xref: /linux/kernel/sched/core.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83 
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 #include "../smpboot.h"
87 
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/sched.h>
90 
91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92 {
93 	unsigned long delta;
94 	ktime_t soft, hard, now;
95 
96 	for (;;) {
97 		if (hrtimer_active(period_timer))
98 			break;
99 
100 		now = hrtimer_cb_get_time(period_timer);
101 		hrtimer_forward(period_timer, now, period);
102 
103 		soft = hrtimer_get_softexpires(period_timer);
104 		hard = hrtimer_get_expires(period_timer);
105 		delta = ktime_to_ns(ktime_sub(hard, soft));
106 		__hrtimer_start_range_ns(period_timer, soft, delta,
107 					 HRTIMER_MODE_ABS_PINNED, 0);
108 	}
109 }
110 
111 DEFINE_MUTEX(sched_domains_mutex);
112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113 
114 static void update_rq_clock_task(struct rq *rq, s64 delta);
115 
116 void update_rq_clock(struct rq *rq)
117 {
118 	s64 delta;
119 
120 	if (rq->skip_clock_update > 0)
121 		return;
122 
123 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 	rq->clock += delta;
125 	update_rq_clock_task(rq, delta);
126 }
127 
128 /*
129  * Debugging: various feature bits
130  */
131 
132 #define SCHED_FEAT(name, enabled)	\
133 	(1UL << __SCHED_FEAT_##name) * enabled |
134 
135 const_debug unsigned int sysctl_sched_features =
136 #include "features.h"
137 	0;
138 
139 #undef SCHED_FEAT
140 
141 #ifdef CONFIG_SCHED_DEBUG
142 #define SCHED_FEAT(name, enabled)	\
143 	#name ,
144 
145 static const char * const sched_feat_names[] = {
146 #include "features.h"
147 };
148 
149 #undef SCHED_FEAT
150 
151 static int sched_feat_show(struct seq_file *m, void *v)
152 {
153 	int i;
154 
155 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 		if (!(sysctl_sched_features & (1UL << i)))
157 			seq_puts(m, "NO_");
158 		seq_printf(m, "%s ", sched_feat_names[i]);
159 	}
160 	seq_puts(m, "\n");
161 
162 	return 0;
163 }
164 
165 #ifdef HAVE_JUMP_LABEL
166 
167 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
169 
170 #define SCHED_FEAT(name, enabled)	\
171 	jump_label_key__##enabled ,
172 
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
175 };
176 
177 #undef SCHED_FEAT
178 
179 static void sched_feat_disable(int i)
180 {
181 	if (static_key_enabled(&sched_feat_keys[i]))
182 		static_key_slow_dec(&sched_feat_keys[i]);
183 }
184 
185 static void sched_feat_enable(int i)
186 {
187 	if (!static_key_enabled(&sched_feat_keys[i]))
188 		static_key_slow_inc(&sched_feat_keys[i]);
189 }
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
194 
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 		size_t cnt, loff_t *ppos)
198 {
199 	char buf[64];
200 	char *cmp;
201 	int neg = 0;
202 	int i;
203 
204 	if (cnt > 63)
205 		cnt = 63;
206 
207 	if (copy_from_user(&buf, ubuf, cnt))
208 		return -EFAULT;
209 
210 	buf[cnt] = 0;
211 	cmp = strstrip(buf);
212 
213 	if (strncmp(cmp, "NO_", 3) == 0) {
214 		neg = 1;
215 		cmp += 3;
216 	}
217 
218 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 			if (neg) {
221 				sysctl_sched_features &= ~(1UL << i);
222 				sched_feat_disable(i);
223 			} else {
224 				sysctl_sched_features |= (1UL << i);
225 				sched_feat_enable(i);
226 			}
227 			break;
228 		}
229 	}
230 
231 	if (i == __SCHED_FEAT_NR)
232 		return -EINVAL;
233 
234 	*ppos += cnt;
235 
236 	return cnt;
237 }
238 
239 static int sched_feat_open(struct inode *inode, struct file *filp)
240 {
241 	return single_open(filp, sched_feat_show, NULL);
242 }
243 
244 static const struct file_operations sched_feat_fops = {
245 	.open		= sched_feat_open,
246 	.write		= sched_feat_write,
247 	.read		= seq_read,
248 	.llseek		= seq_lseek,
249 	.release	= single_release,
250 };
251 
252 static __init int sched_init_debug(void)
253 {
254 	debugfs_create_file("sched_features", 0644, NULL, NULL,
255 			&sched_feat_fops);
256 
257 	return 0;
258 }
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
261 
262 /*
263  * Number of tasks to iterate in a single balance run.
264  * Limited because this is done with IRQs disabled.
265  */
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
267 
268 /*
269  * period over which we average the RT time consumption, measured
270  * in ms.
271  *
272  * default: 1s
273  */
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275 
276 /*
277  * period over which we measure -rt task cpu usage in us.
278  * default: 1s
279  */
280 unsigned int sysctl_sched_rt_period = 1000000;
281 
282 __read_mostly int scheduler_running;
283 
284 /*
285  * part of the period that we allow rt tasks to run in us.
286  * default: 0.95s
287  */
288 int sysctl_sched_rt_runtime = 950000;
289 
290 
291 
292 /*
293  * __task_rq_lock - lock the rq @p resides on.
294  */
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 	__acquires(rq->lock)
297 {
298 	struct rq *rq;
299 
300 	lockdep_assert_held(&p->pi_lock);
301 
302 	for (;;) {
303 		rq = task_rq(p);
304 		raw_spin_lock(&rq->lock);
305 		if (likely(rq == task_rq(p)))
306 			return rq;
307 		raw_spin_unlock(&rq->lock);
308 	}
309 }
310 
311 /*
312  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313  */
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 	__acquires(p->pi_lock)
316 	__acquires(rq->lock)
317 {
318 	struct rq *rq;
319 
320 	for (;;) {
321 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 		rq = task_rq(p);
323 		raw_spin_lock(&rq->lock);
324 		if (likely(rq == task_rq(p)))
325 			return rq;
326 		raw_spin_unlock(&rq->lock);
327 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328 	}
329 }
330 
331 static void __task_rq_unlock(struct rq *rq)
332 	__releases(rq->lock)
333 {
334 	raw_spin_unlock(&rq->lock);
335 }
336 
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 	__releases(rq->lock)
340 	__releases(p->pi_lock)
341 {
342 	raw_spin_unlock(&rq->lock);
343 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344 }
345 
346 /*
347  * this_rq_lock - lock this runqueue and disable interrupts.
348  */
349 static struct rq *this_rq_lock(void)
350 	__acquires(rq->lock)
351 {
352 	struct rq *rq;
353 
354 	local_irq_disable();
355 	rq = this_rq();
356 	raw_spin_lock(&rq->lock);
357 
358 	return rq;
359 }
360 
361 #ifdef CONFIG_SCHED_HRTICK
362 /*
363  * Use HR-timers to deliver accurate preemption points.
364  *
365  * Its all a bit involved since we cannot program an hrt while holding the
366  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367  * reschedule event.
368  *
369  * When we get rescheduled we reprogram the hrtick_timer outside of the
370  * rq->lock.
371  */
372 
373 static void hrtick_clear(struct rq *rq)
374 {
375 	if (hrtimer_active(&rq->hrtick_timer))
376 		hrtimer_cancel(&rq->hrtick_timer);
377 }
378 
379 /*
380  * High-resolution timer tick.
381  * Runs from hardirq context with interrupts disabled.
382  */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386 
387 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388 
389 	raw_spin_lock(&rq->lock);
390 	update_rq_clock(rq);
391 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 	raw_spin_unlock(&rq->lock);
393 
394 	return HRTIMER_NORESTART;
395 }
396 
397 #ifdef CONFIG_SMP
398 /*
399  * called from hardirq (IPI) context
400  */
401 static void __hrtick_start(void *arg)
402 {
403 	struct rq *rq = arg;
404 
405 	raw_spin_lock(&rq->lock);
406 	hrtimer_restart(&rq->hrtick_timer);
407 	rq->hrtick_csd_pending = 0;
408 	raw_spin_unlock(&rq->lock);
409 }
410 
411 /*
412  * Called to set the hrtick timer state.
413  *
414  * called with rq->lock held and irqs disabled
415  */
416 void hrtick_start(struct rq *rq, u64 delay)
417 {
418 	struct hrtimer *timer = &rq->hrtick_timer;
419 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420 
421 	hrtimer_set_expires(timer, time);
422 
423 	if (rq == this_rq()) {
424 		hrtimer_restart(timer);
425 	} else if (!rq->hrtick_csd_pending) {
426 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 		rq->hrtick_csd_pending = 1;
428 	}
429 }
430 
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433 {
434 	int cpu = (int)(long)hcpu;
435 
436 	switch (action) {
437 	case CPU_UP_CANCELED:
438 	case CPU_UP_CANCELED_FROZEN:
439 	case CPU_DOWN_PREPARE:
440 	case CPU_DOWN_PREPARE_FROZEN:
441 	case CPU_DEAD:
442 	case CPU_DEAD_FROZEN:
443 		hrtick_clear(cpu_rq(cpu));
444 		return NOTIFY_OK;
445 	}
446 
447 	return NOTIFY_DONE;
448 }
449 
450 static __init void init_hrtick(void)
451 {
452 	hotcpu_notifier(hotplug_hrtick, 0);
453 }
454 #else
455 /*
456  * Called to set the hrtick timer state.
457  *
458  * called with rq->lock held and irqs disabled
459  */
460 void hrtick_start(struct rq *rq, u64 delay)
461 {
462 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 			HRTIMER_MODE_REL_PINNED, 0);
464 }
465 
466 static inline void init_hrtick(void)
467 {
468 }
469 #endif /* CONFIG_SMP */
470 
471 static void init_rq_hrtick(struct rq *rq)
472 {
473 #ifdef CONFIG_SMP
474 	rq->hrtick_csd_pending = 0;
475 
476 	rq->hrtick_csd.flags = 0;
477 	rq->hrtick_csd.func = __hrtick_start;
478 	rq->hrtick_csd.info = rq;
479 #endif
480 
481 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 	rq->hrtick_timer.function = hrtick;
483 }
484 #else	/* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
486 {
487 }
488 
489 static inline void init_rq_hrtick(struct rq *rq)
490 {
491 }
492 
493 static inline void init_hrtick(void)
494 {
495 }
496 #endif	/* CONFIG_SCHED_HRTICK */
497 
498 /*
499  * resched_task - mark a task 'to be rescheduled now'.
500  *
501  * On UP this means the setting of the need_resched flag, on SMP it
502  * might also involve a cross-CPU call to trigger the scheduler on
503  * the target CPU.
504  */
505 #ifdef CONFIG_SMP
506 
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 #endif
510 
511 void resched_task(struct task_struct *p)
512 {
513 	int cpu;
514 
515 	assert_raw_spin_locked(&task_rq(p)->lock);
516 
517 	if (test_tsk_need_resched(p))
518 		return;
519 
520 	set_tsk_need_resched(p);
521 
522 	cpu = task_cpu(p);
523 	if (cpu == smp_processor_id())
524 		return;
525 
526 	/* NEED_RESCHED must be visible before we test polling */
527 	smp_mb();
528 	if (!tsk_is_polling(p))
529 		smp_send_reschedule(cpu);
530 }
531 
532 void resched_cpu(int cpu)
533 {
534 	struct rq *rq = cpu_rq(cpu);
535 	unsigned long flags;
536 
537 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 		return;
539 	resched_task(cpu_curr(cpu));
540 	raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542 
543 #ifdef CONFIG_NO_HZ
544 /*
545  * In the semi idle case, use the nearest busy cpu for migrating timers
546  * from an idle cpu.  This is good for power-savings.
547  *
548  * We don't do similar optimization for completely idle system, as
549  * selecting an idle cpu will add more delays to the timers than intended
550  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551  */
552 int get_nohz_timer_target(void)
553 {
554 	int cpu = smp_processor_id();
555 	int i;
556 	struct sched_domain *sd;
557 
558 	rcu_read_lock();
559 	for_each_domain(cpu, sd) {
560 		for_each_cpu(i, sched_domain_span(sd)) {
561 			if (!idle_cpu(i)) {
562 				cpu = i;
563 				goto unlock;
564 			}
565 		}
566 	}
567 unlock:
568 	rcu_read_unlock();
569 	return cpu;
570 }
571 /*
572  * When add_timer_on() enqueues a timer into the timer wheel of an
573  * idle CPU then this timer might expire before the next timer event
574  * which is scheduled to wake up that CPU. In case of a completely
575  * idle system the next event might even be infinite time into the
576  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577  * leaves the inner idle loop so the newly added timer is taken into
578  * account when the CPU goes back to idle and evaluates the timer
579  * wheel for the next timer event.
580  */
581 void wake_up_idle_cpu(int cpu)
582 {
583 	struct rq *rq = cpu_rq(cpu);
584 
585 	if (cpu == smp_processor_id())
586 		return;
587 
588 	/*
589 	 * This is safe, as this function is called with the timer
590 	 * wheel base lock of (cpu) held. When the CPU is on the way
591 	 * to idle and has not yet set rq->curr to idle then it will
592 	 * be serialized on the timer wheel base lock and take the new
593 	 * timer into account automatically.
594 	 */
595 	if (rq->curr != rq->idle)
596 		return;
597 
598 	/*
599 	 * We can set TIF_RESCHED on the idle task of the other CPU
600 	 * lockless. The worst case is that the other CPU runs the
601 	 * idle task through an additional NOOP schedule()
602 	 */
603 	set_tsk_need_resched(rq->idle);
604 
605 	/* NEED_RESCHED must be visible before we test polling */
606 	smp_mb();
607 	if (!tsk_is_polling(rq->idle))
608 		smp_send_reschedule(cpu);
609 }
610 
611 static inline bool got_nohz_idle_kick(void)
612 {
613 	int cpu = smp_processor_id();
614 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 }
616 
617 #else /* CONFIG_NO_HZ */
618 
619 static inline bool got_nohz_idle_kick(void)
620 {
621 	return false;
622 }
623 
624 #endif /* CONFIG_NO_HZ */
625 
626 void sched_avg_update(struct rq *rq)
627 {
628 	s64 period = sched_avg_period();
629 
630 	while ((s64)(rq->clock - rq->age_stamp) > period) {
631 		/*
632 		 * Inline assembly required to prevent the compiler
633 		 * optimising this loop into a divmod call.
634 		 * See __iter_div_u64_rem() for another example of this.
635 		 */
636 		asm("" : "+rm" (rq->age_stamp));
637 		rq->age_stamp += period;
638 		rq->rt_avg /= 2;
639 	}
640 }
641 
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
644 {
645 	assert_raw_spin_locked(&task_rq(p)->lock);
646 	set_tsk_need_resched(p);
647 }
648 #endif /* CONFIG_SMP */
649 
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652 /*
653  * Iterate task_group tree rooted at *from, calling @down when first entering a
654  * node and @up when leaving it for the final time.
655  *
656  * Caller must hold rcu_lock or sufficient equivalent.
657  */
658 int walk_tg_tree_from(struct task_group *from,
659 			     tg_visitor down, tg_visitor up, void *data)
660 {
661 	struct task_group *parent, *child;
662 	int ret;
663 
664 	parent = from;
665 
666 down:
667 	ret = (*down)(parent, data);
668 	if (ret)
669 		goto out;
670 	list_for_each_entry_rcu(child, &parent->children, siblings) {
671 		parent = child;
672 		goto down;
673 
674 up:
675 		continue;
676 	}
677 	ret = (*up)(parent, data);
678 	if (ret || parent == from)
679 		goto out;
680 
681 	child = parent;
682 	parent = parent->parent;
683 	if (parent)
684 		goto up;
685 out:
686 	return ret;
687 }
688 
689 int tg_nop(struct task_group *tg, void *data)
690 {
691 	return 0;
692 }
693 #endif
694 
695 static void set_load_weight(struct task_struct *p)
696 {
697 	int prio = p->static_prio - MAX_RT_PRIO;
698 	struct load_weight *load = &p->se.load;
699 
700 	/*
701 	 * SCHED_IDLE tasks get minimal weight:
702 	 */
703 	if (p->policy == SCHED_IDLE) {
704 		load->weight = scale_load(WEIGHT_IDLEPRIO);
705 		load->inv_weight = WMULT_IDLEPRIO;
706 		return;
707 	}
708 
709 	load->weight = scale_load(prio_to_weight[prio]);
710 	load->inv_weight = prio_to_wmult[prio];
711 }
712 
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714 {
715 	update_rq_clock(rq);
716 	sched_info_queued(p);
717 	p->sched_class->enqueue_task(rq, p, flags);
718 }
719 
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721 {
722 	update_rq_clock(rq);
723 	sched_info_dequeued(p);
724 	p->sched_class->dequeue_task(rq, p, flags);
725 }
726 
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 {
729 	if (task_contributes_to_load(p))
730 		rq->nr_uninterruptible--;
731 
732 	enqueue_task(rq, p, flags);
733 }
734 
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 {
737 	if (task_contributes_to_load(p))
738 		rq->nr_uninterruptible++;
739 
740 	dequeue_task(rq, p, flags);
741 }
742 
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
744 
745 /*
746  * There are no locks covering percpu hardirq/softirq time.
747  * They are only modified in account_system_vtime, on corresponding CPU
748  * with interrupts disabled. So, writes are safe.
749  * They are read and saved off onto struct rq in update_rq_clock().
750  * This may result in other CPU reading this CPU's irq time and can
751  * race with irq/account_system_vtime on this CPU. We would either get old
752  * or new value with a side effect of accounting a slice of irq time to wrong
753  * task when irq is in progress while we read rq->clock. That is a worthy
754  * compromise in place of having locks on each irq in account_system_time.
755  */
756 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757 static DEFINE_PER_CPU(u64, cpu_softirq_time);
758 
759 static DEFINE_PER_CPU(u64, irq_start_time);
760 static int sched_clock_irqtime;
761 
762 void enable_sched_clock_irqtime(void)
763 {
764 	sched_clock_irqtime = 1;
765 }
766 
767 void disable_sched_clock_irqtime(void)
768 {
769 	sched_clock_irqtime = 0;
770 }
771 
772 #ifndef CONFIG_64BIT
773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774 
775 static inline void irq_time_write_begin(void)
776 {
777 	__this_cpu_inc(irq_time_seq.sequence);
778 	smp_wmb();
779 }
780 
781 static inline void irq_time_write_end(void)
782 {
783 	smp_wmb();
784 	__this_cpu_inc(irq_time_seq.sequence);
785 }
786 
787 static inline u64 irq_time_read(int cpu)
788 {
789 	u64 irq_time;
790 	unsigned seq;
791 
792 	do {
793 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 		irq_time = per_cpu(cpu_softirq_time, cpu) +
795 			   per_cpu(cpu_hardirq_time, cpu);
796 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797 
798 	return irq_time;
799 }
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
802 {
803 }
804 
805 static inline void irq_time_write_end(void)
806 {
807 }
808 
809 static inline u64 irq_time_read(int cpu)
810 {
811 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812 }
813 #endif /* CONFIG_64BIT */
814 
815 /*
816  * Called before incrementing preempt_count on {soft,}irq_enter
817  * and before decrementing preempt_count on {soft,}irq_exit.
818  */
819 void account_system_vtime(struct task_struct *curr)
820 {
821 	unsigned long flags;
822 	s64 delta;
823 	int cpu;
824 
825 	if (!sched_clock_irqtime)
826 		return;
827 
828 	local_irq_save(flags);
829 
830 	cpu = smp_processor_id();
831 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 	__this_cpu_add(irq_start_time, delta);
833 
834 	irq_time_write_begin();
835 	/*
836 	 * We do not account for softirq time from ksoftirqd here.
837 	 * We want to continue accounting softirq time to ksoftirqd thread
838 	 * in that case, so as not to confuse scheduler with a special task
839 	 * that do not consume any time, but still wants to run.
840 	 */
841 	if (hardirq_count())
842 		__this_cpu_add(cpu_hardirq_time, delta);
843 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844 		__this_cpu_add(cpu_softirq_time, delta);
845 
846 	irq_time_write_end();
847 	local_irq_restore(flags);
848 }
849 EXPORT_SYMBOL_GPL(account_system_vtime);
850 
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852 
853 #ifdef CONFIG_PARAVIRT
854 static inline u64 steal_ticks(u64 steal)
855 {
856 	if (unlikely(steal > NSEC_PER_SEC))
857 		return div_u64(steal, TICK_NSEC);
858 
859 	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860 }
861 #endif
862 
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
864 {
865 /*
866  * In theory, the compile should just see 0 here, and optimize out the call
867  * to sched_rt_avg_update. But I don't trust it...
868  */
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 	s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874 
875 	/*
876 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 	 * this case when a previous update_rq_clock() happened inside a
878 	 * {soft,}irq region.
879 	 *
880 	 * When this happens, we stop ->clock_task and only update the
881 	 * prev_irq_time stamp to account for the part that fit, so that a next
882 	 * update will consume the rest. This ensures ->clock_task is
883 	 * monotonic.
884 	 *
885 	 * It does however cause some slight miss-attribution of {soft,}irq
886 	 * time, a more accurate solution would be to update the irq_time using
887 	 * the current rq->clock timestamp, except that would require using
888 	 * atomic ops.
889 	 */
890 	if (irq_delta > delta)
891 		irq_delta = delta;
892 
893 	rq->prev_irq_time += irq_delta;
894 	delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 	if (static_key_false((&paravirt_steal_rq_enabled))) {
898 		u64 st;
899 
900 		steal = paravirt_steal_clock(cpu_of(rq));
901 		steal -= rq->prev_steal_time_rq;
902 
903 		if (unlikely(steal > delta))
904 			steal = delta;
905 
906 		st = steal_ticks(steal);
907 		steal = st * TICK_NSEC;
908 
909 		rq->prev_steal_time_rq += steal;
910 
911 		delta -= steal;
912 	}
913 #endif
914 
915 	rq->clock_task += delta;
916 
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 		sched_rt_avg_update(rq, irq_delta + steal);
920 #endif
921 }
922 
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
925 {
926 	u64 *cpustat = kcpustat_this_cpu->cpustat;
927 	unsigned long flags;
928 	u64 latest_ns;
929 	int ret = 0;
930 
931 	local_irq_save(flags);
932 	latest_ns = this_cpu_read(cpu_hardirq_time);
933 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 		ret = 1;
935 	local_irq_restore(flags);
936 	return ret;
937 }
938 
939 static int irqtime_account_si_update(void)
940 {
941 	u64 *cpustat = kcpustat_this_cpu->cpustat;
942 	unsigned long flags;
943 	u64 latest_ns;
944 	int ret = 0;
945 
946 	local_irq_save(flags);
947 	latest_ns = this_cpu_read(cpu_softirq_time);
948 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 		ret = 1;
950 	local_irq_restore(flags);
951 	return ret;
952 }
953 
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
955 
956 #define sched_clock_irqtime	(0)
957 
958 #endif
959 
960 void sched_set_stop_task(int cpu, struct task_struct *stop)
961 {
962 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
964 
965 	if (stop) {
966 		/*
967 		 * Make it appear like a SCHED_FIFO task, its something
968 		 * userspace knows about and won't get confused about.
969 		 *
970 		 * Also, it will make PI more or less work without too
971 		 * much confusion -- but then, stop work should not
972 		 * rely on PI working anyway.
973 		 */
974 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975 
976 		stop->sched_class = &stop_sched_class;
977 	}
978 
979 	cpu_rq(cpu)->stop = stop;
980 
981 	if (old_stop) {
982 		/*
983 		 * Reset it back to a normal scheduling class so that
984 		 * it can die in pieces.
985 		 */
986 		old_stop->sched_class = &rt_sched_class;
987 	}
988 }
989 
990 /*
991  * __normal_prio - return the priority that is based on the static prio
992  */
993 static inline int __normal_prio(struct task_struct *p)
994 {
995 	return p->static_prio;
996 }
997 
998 /*
999  * Calculate the expected normal priority: i.e. priority
1000  * without taking RT-inheritance into account. Might be
1001  * boosted by interactivity modifiers. Changes upon fork,
1002  * setprio syscalls, and whenever the interactivity
1003  * estimator recalculates.
1004  */
1005 static inline int normal_prio(struct task_struct *p)
1006 {
1007 	int prio;
1008 
1009 	if (task_has_rt_policy(p))
1010 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 	else
1012 		prio = __normal_prio(p);
1013 	return prio;
1014 }
1015 
1016 /*
1017  * Calculate the current priority, i.e. the priority
1018  * taken into account by the scheduler. This value might
1019  * be boosted by RT tasks, or might be boosted by
1020  * interactivity modifiers. Will be RT if the task got
1021  * RT-boosted. If not then it returns p->normal_prio.
1022  */
1023 static int effective_prio(struct task_struct *p)
1024 {
1025 	p->normal_prio = normal_prio(p);
1026 	/*
1027 	 * If we are RT tasks or we were boosted to RT priority,
1028 	 * keep the priority unchanged. Otherwise, update priority
1029 	 * to the normal priority:
1030 	 */
1031 	if (!rt_prio(p->prio))
1032 		return p->normal_prio;
1033 	return p->prio;
1034 }
1035 
1036 /**
1037  * task_curr - is this task currently executing on a CPU?
1038  * @p: the task in question.
1039  */
1040 inline int task_curr(const struct task_struct *p)
1041 {
1042 	return cpu_curr(task_cpu(p)) == p;
1043 }
1044 
1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 				       const struct sched_class *prev_class,
1047 				       int oldprio)
1048 {
1049 	if (prev_class != p->sched_class) {
1050 		if (prev_class->switched_from)
1051 			prev_class->switched_from(rq, p);
1052 		p->sched_class->switched_to(rq, p);
1053 	} else if (oldprio != p->prio)
1054 		p->sched_class->prio_changed(rq, p, oldprio);
1055 }
1056 
1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058 {
1059 	const struct sched_class *class;
1060 
1061 	if (p->sched_class == rq->curr->sched_class) {
1062 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 	} else {
1064 		for_each_class(class) {
1065 			if (class == rq->curr->sched_class)
1066 				break;
1067 			if (class == p->sched_class) {
1068 				resched_task(rq->curr);
1069 				break;
1070 			}
1071 		}
1072 	}
1073 
1074 	/*
1075 	 * A queue event has occurred, and we're going to schedule.  In
1076 	 * this case, we can save a useless back to back clock update.
1077 	 */
1078 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 		rq->skip_clock_update = 1;
1080 }
1081 
1082 #ifdef CONFIG_SMP
1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084 {
1085 #ifdef CONFIG_SCHED_DEBUG
1086 	/*
1087 	 * We should never call set_task_cpu() on a blocked task,
1088 	 * ttwu() will sort out the placement.
1089 	 */
1090 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092 
1093 #ifdef CONFIG_LOCKDEP
1094 	/*
1095 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 	 *
1098 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 	 * see task_group().
1100 	 *
1101 	 * Furthermore, all task_rq users should acquire both locks, see
1102 	 * task_rq_lock().
1103 	 */
1104 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 				      lockdep_is_held(&task_rq(p)->lock)));
1106 #endif
1107 #endif
1108 
1109 	trace_sched_migrate_task(p, new_cpu);
1110 
1111 	if (task_cpu(p) != new_cpu) {
1112 		p->se.nr_migrations++;
1113 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114 	}
1115 
1116 	__set_task_cpu(p, new_cpu);
1117 }
1118 
1119 struct migration_arg {
1120 	struct task_struct *task;
1121 	int dest_cpu;
1122 };
1123 
1124 static int migration_cpu_stop(void *data);
1125 
1126 /*
1127  * wait_task_inactive - wait for a thread to unschedule.
1128  *
1129  * If @match_state is nonzero, it's the @p->state value just checked and
1130  * not expected to change.  If it changes, i.e. @p might have woken up,
1131  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1132  * we return a positive number (its total switch count).  If a second call
1133  * a short while later returns the same number, the caller can be sure that
1134  * @p has remained unscheduled the whole time.
1135  *
1136  * The caller must ensure that the task *will* unschedule sometime soon,
1137  * else this function might spin for a *long* time. This function can't
1138  * be called with interrupts off, or it may introduce deadlock with
1139  * smp_call_function() if an IPI is sent by the same process we are
1140  * waiting to become inactive.
1141  */
1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143 {
1144 	unsigned long flags;
1145 	int running, on_rq;
1146 	unsigned long ncsw;
1147 	struct rq *rq;
1148 
1149 	for (;;) {
1150 		/*
1151 		 * We do the initial early heuristics without holding
1152 		 * any task-queue locks at all. We'll only try to get
1153 		 * the runqueue lock when things look like they will
1154 		 * work out!
1155 		 */
1156 		rq = task_rq(p);
1157 
1158 		/*
1159 		 * If the task is actively running on another CPU
1160 		 * still, just relax and busy-wait without holding
1161 		 * any locks.
1162 		 *
1163 		 * NOTE! Since we don't hold any locks, it's not
1164 		 * even sure that "rq" stays as the right runqueue!
1165 		 * But we don't care, since "task_running()" will
1166 		 * return false if the runqueue has changed and p
1167 		 * is actually now running somewhere else!
1168 		 */
1169 		while (task_running(rq, p)) {
1170 			if (match_state && unlikely(p->state != match_state))
1171 				return 0;
1172 			cpu_relax();
1173 		}
1174 
1175 		/*
1176 		 * Ok, time to look more closely! We need the rq
1177 		 * lock now, to be *sure*. If we're wrong, we'll
1178 		 * just go back and repeat.
1179 		 */
1180 		rq = task_rq_lock(p, &flags);
1181 		trace_sched_wait_task(p);
1182 		running = task_running(rq, p);
1183 		on_rq = p->on_rq;
1184 		ncsw = 0;
1185 		if (!match_state || p->state == match_state)
1186 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187 		task_rq_unlock(rq, p, &flags);
1188 
1189 		/*
1190 		 * If it changed from the expected state, bail out now.
1191 		 */
1192 		if (unlikely(!ncsw))
1193 			break;
1194 
1195 		/*
1196 		 * Was it really running after all now that we
1197 		 * checked with the proper locks actually held?
1198 		 *
1199 		 * Oops. Go back and try again..
1200 		 */
1201 		if (unlikely(running)) {
1202 			cpu_relax();
1203 			continue;
1204 		}
1205 
1206 		/*
1207 		 * It's not enough that it's not actively running,
1208 		 * it must be off the runqueue _entirely_, and not
1209 		 * preempted!
1210 		 *
1211 		 * So if it was still runnable (but just not actively
1212 		 * running right now), it's preempted, and we should
1213 		 * yield - it could be a while.
1214 		 */
1215 		if (unlikely(on_rq)) {
1216 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217 
1218 			set_current_state(TASK_UNINTERRUPTIBLE);
1219 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 			continue;
1221 		}
1222 
1223 		/*
1224 		 * Ahh, all good. It wasn't running, and it wasn't
1225 		 * runnable, which means that it will never become
1226 		 * running in the future either. We're all done!
1227 		 */
1228 		break;
1229 	}
1230 
1231 	return ncsw;
1232 }
1233 
1234 /***
1235  * kick_process - kick a running thread to enter/exit the kernel
1236  * @p: the to-be-kicked thread
1237  *
1238  * Cause a process which is running on another CPU to enter
1239  * kernel-mode, without any delay. (to get signals handled.)
1240  *
1241  * NOTE: this function doesn't have to take the runqueue lock,
1242  * because all it wants to ensure is that the remote task enters
1243  * the kernel. If the IPI races and the task has been migrated
1244  * to another CPU then no harm is done and the purpose has been
1245  * achieved as well.
1246  */
1247 void kick_process(struct task_struct *p)
1248 {
1249 	int cpu;
1250 
1251 	preempt_disable();
1252 	cpu = task_cpu(p);
1253 	if ((cpu != smp_processor_id()) && task_curr(p))
1254 		smp_send_reschedule(cpu);
1255 	preempt_enable();
1256 }
1257 EXPORT_SYMBOL_GPL(kick_process);
1258 #endif /* CONFIG_SMP */
1259 
1260 #ifdef CONFIG_SMP
1261 /*
1262  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263  */
1264 static int select_fallback_rq(int cpu, struct task_struct *p)
1265 {
1266 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1267 	enum { cpuset, possible, fail } state = cpuset;
1268 	int dest_cpu;
1269 
1270 	/* Look for allowed, online CPU in same node. */
1271 	for_each_cpu(dest_cpu, nodemask) {
1272 		if (!cpu_online(dest_cpu))
1273 			continue;
1274 		if (!cpu_active(dest_cpu))
1275 			continue;
1276 		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277 			return dest_cpu;
1278 	}
1279 
1280 	for (;;) {
1281 		/* Any allowed, online CPU? */
1282 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1283 			if (!cpu_online(dest_cpu))
1284 				continue;
1285 			if (!cpu_active(dest_cpu))
1286 				continue;
1287 			goto out;
1288 		}
1289 
1290 		switch (state) {
1291 		case cpuset:
1292 			/* No more Mr. Nice Guy. */
1293 			cpuset_cpus_allowed_fallback(p);
1294 			state = possible;
1295 			break;
1296 
1297 		case possible:
1298 			do_set_cpus_allowed(p, cpu_possible_mask);
1299 			state = fail;
1300 			break;
1301 
1302 		case fail:
1303 			BUG();
1304 			break;
1305 		}
1306 	}
1307 
1308 out:
1309 	if (state != cpuset) {
1310 		/*
1311 		 * Don't tell them about moving exiting tasks or
1312 		 * kernel threads (both mm NULL), since they never
1313 		 * leave kernel.
1314 		 */
1315 		if (p->mm && printk_ratelimit()) {
1316 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 					task_pid_nr(p), p->comm, cpu);
1318 		}
1319 	}
1320 
1321 	return dest_cpu;
1322 }
1323 
1324 /*
1325  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1326  */
1327 static inline
1328 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1329 {
1330 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1331 
1332 	/*
1333 	 * In order not to call set_task_cpu() on a blocking task we need
1334 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335 	 * cpu.
1336 	 *
1337 	 * Since this is common to all placement strategies, this lives here.
1338 	 *
1339 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 	 *   not worry about this generic constraint ]
1341 	 */
1342 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1343 		     !cpu_online(cpu)))
1344 		cpu = select_fallback_rq(task_cpu(p), p);
1345 
1346 	return cpu;
1347 }
1348 
1349 static void update_avg(u64 *avg, u64 sample)
1350 {
1351 	s64 diff = sample - *avg;
1352 	*avg += diff >> 3;
1353 }
1354 #endif
1355 
1356 static void
1357 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1358 {
1359 #ifdef CONFIG_SCHEDSTATS
1360 	struct rq *rq = this_rq();
1361 
1362 #ifdef CONFIG_SMP
1363 	int this_cpu = smp_processor_id();
1364 
1365 	if (cpu == this_cpu) {
1366 		schedstat_inc(rq, ttwu_local);
1367 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1368 	} else {
1369 		struct sched_domain *sd;
1370 
1371 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372 		rcu_read_lock();
1373 		for_each_domain(this_cpu, sd) {
1374 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375 				schedstat_inc(sd, ttwu_wake_remote);
1376 				break;
1377 			}
1378 		}
1379 		rcu_read_unlock();
1380 	}
1381 
1382 	if (wake_flags & WF_MIGRATED)
1383 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384 
1385 #endif /* CONFIG_SMP */
1386 
1387 	schedstat_inc(rq, ttwu_count);
1388 	schedstat_inc(p, se.statistics.nr_wakeups);
1389 
1390 	if (wake_flags & WF_SYNC)
1391 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1392 
1393 #endif /* CONFIG_SCHEDSTATS */
1394 }
1395 
1396 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397 {
1398 	activate_task(rq, p, en_flags);
1399 	p->on_rq = 1;
1400 
1401 	/* if a worker is waking up, notify workqueue */
1402 	if (p->flags & PF_WQ_WORKER)
1403 		wq_worker_waking_up(p, cpu_of(rq));
1404 }
1405 
1406 /*
1407  * Mark the task runnable and perform wakeup-preemption.
1408  */
1409 static void
1410 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1411 {
1412 	trace_sched_wakeup(p, true);
1413 	check_preempt_curr(rq, p, wake_flags);
1414 
1415 	p->state = TASK_RUNNING;
1416 #ifdef CONFIG_SMP
1417 	if (p->sched_class->task_woken)
1418 		p->sched_class->task_woken(rq, p);
1419 
1420 	if (rq->idle_stamp) {
1421 		u64 delta = rq->clock - rq->idle_stamp;
1422 		u64 max = 2*sysctl_sched_migration_cost;
1423 
1424 		if (delta > max)
1425 			rq->avg_idle = max;
1426 		else
1427 			update_avg(&rq->avg_idle, delta);
1428 		rq->idle_stamp = 0;
1429 	}
1430 #endif
1431 }
1432 
1433 static void
1434 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1435 {
1436 #ifdef CONFIG_SMP
1437 	if (p->sched_contributes_to_load)
1438 		rq->nr_uninterruptible--;
1439 #endif
1440 
1441 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442 	ttwu_do_wakeup(rq, p, wake_flags);
1443 }
1444 
1445 /*
1446  * Called in case the task @p isn't fully descheduled from its runqueue,
1447  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448  * since all we need to do is flip p->state to TASK_RUNNING, since
1449  * the task is still ->on_rq.
1450  */
1451 static int ttwu_remote(struct task_struct *p, int wake_flags)
1452 {
1453 	struct rq *rq;
1454 	int ret = 0;
1455 
1456 	rq = __task_rq_lock(p);
1457 	if (p->on_rq) {
1458 		ttwu_do_wakeup(rq, p, wake_flags);
1459 		ret = 1;
1460 	}
1461 	__task_rq_unlock(rq);
1462 
1463 	return ret;
1464 }
1465 
1466 #ifdef CONFIG_SMP
1467 static void sched_ttwu_pending(void)
1468 {
1469 	struct rq *rq = this_rq();
1470 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1471 	struct task_struct *p;
1472 
1473 	raw_spin_lock(&rq->lock);
1474 
1475 	while (llist) {
1476 		p = llist_entry(llist, struct task_struct, wake_entry);
1477 		llist = llist_next(llist);
1478 		ttwu_do_activate(rq, p, 0);
1479 	}
1480 
1481 	raw_spin_unlock(&rq->lock);
1482 }
1483 
1484 void scheduler_ipi(void)
1485 {
1486 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487 		return;
1488 
1489 	/*
1490 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 	 * traditionally all their work was done from the interrupt return
1492 	 * path. Now that we actually do some work, we need to make sure
1493 	 * we do call them.
1494 	 *
1495 	 * Some archs already do call them, luckily irq_enter/exit nest
1496 	 * properly.
1497 	 *
1498 	 * Arguably we should visit all archs and update all handlers,
1499 	 * however a fair share of IPIs are still resched only so this would
1500 	 * somewhat pessimize the simple resched case.
1501 	 */
1502 	irq_enter();
1503 	sched_ttwu_pending();
1504 
1505 	/*
1506 	 * Check if someone kicked us for doing the nohz idle load balance.
1507 	 */
1508 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 		this_rq()->idle_balance = 1;
1510 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1511 	}
1512 	irq_exit();
1513 }
1514 
1515 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516 {
1517 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518 		smp_send_reschedule(cpu);
1519 }
1520 
1521 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523 {
1524 	struct rq *rq;
1525 	int ret = 0;
1526 
1527 	rq = __task_rq_lock(p);
1528 	if (p->on_cpu) {
1529 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530 		ttwu_do_wakeup(rq, p, wake_flags);
1531 		ret = 1;
1532 	}
1533 	__task_rq_unlock(rq);
1534 
1535 	return ret;
1536 
1537 }
1538 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1539 
1540 bool cpus_share_cache(int this_cpu, int that_cpu)
1541 {
1542 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543 }
1544 #endif /* CONFIG_SMP */
1545 
1546 static void ttwu_queue(struct task_struct *p, int cpu)
1547 {
1548 	struct rq *rq = cpu_rq(cpu);
1549 
1550 #if defined(CONFIG_SMP)
1551 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553 		ttwu_queue_remote(p, cpu);
1554 		return;
1555 	}
1556 #endif
1557 
1558 	raw_spin_lock(&rq->lock);
1559 	ttwu_do_activate(rq, p, 0);
1560 	raw_spin_unlock(&rq->lock);
1561 }
1562 
1563 /**
1564  * try_to_wake_up - wake up a thread
1565  * @p: the thread to be awakened
1566  * @state: the mask of task states that can be woken
1567  * @wake_flags: wake modifier flags (WF_*)
1568  *
1569  * Put it on the run-queue if it's not already there. The "current"
1570  * thread is always on the run-queue (except when the actual
1571  * re-schedule is in progress), and as such you're allowed to do
1572  * the simpler "current->state = TASK_RUNNING" to mark yourself
1573  * runnable without the overhead of this.
1574  *
1575  * Returns %true if @p was woken up, %false if it was already running
1576  * or @state didn't match @p's state.
1577  */
1578 static int
1579 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1580 {
1581 	unsigned long flags;
1582 	int cpu, success = 0;
1583 
1584 	smp_wmb();
1585 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1586 	if (!(p->state & state))
1587 		goto out;
1588 
1589 	success = 1; /* we're going to change ->state */
1590 	cpu = task_cpu(p);
1591 
1592 	if (p->on_rq && ttwu_remote(p, wake_flags))
1593 		goto stat;
1594 
1595 #ifdef CONFIG_SMP
1596 	/*
1597 	 * If the owning (remote) cpu is still in the middle of schedule() with
1598 	 * this task as prev, wait until its done referencing the task.
1599 	 */
1600 	while (p->on_cpu) {
1601 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602 		/*
1603 		 * In case the architecture enables interrupts in
1604 		 * context_switch(), we cannot busy wait, since that
1605 		 * would lead to deadlocks when an interrupt hits and
1606 		 * tries to wake up @prev. So bail and do a complete
1607 		 * remote wakeup.
1608 		 */
1609 		if (ttwu_activate_remote(p, wake_flags))
1610 			goto stat;
1611 #else
1612 		cpu_relax();
1613 #endif
1614 	}
1615 	/*
1616 	 * Pairs with the smp_wmb() in finish_lock_switch().
1617 	 */
1618 	smp_rmb();
1619 
1620 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1621 	p->state = TASK_WAKING;
1622 
1623 	if (p->sched_class->task_waking)
1624 		p->sched_class->task_waking(p);
1625 
1626 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627 	if (task_cpu(p) != cpu) {
1628 		wake_flags |= WF_MIGRATED;
1629 		set_task_cpu(p, cpu);
1630 	}
1631 #endif /* CONFIG_SMP */
1632 
1633 	ttwu_queue(p, cpu);
1634 stat:
1635 	ttwu_stat(p, cpu, wake_flags);
1636 out:
1637 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1638 
1639 	return success;
1640 }
1641 
1642 /**
1643  * try_to_wake_up_local - try to wake up a local task with rq lock held
1644  * @p: the thread to be awakened
1645  *
1646  * Put @p on the run-queue if it's not already there. The caller must
1647  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648  * the current task.
1649  */
1650 static void try_to_wake_up_local(struct task_struct *p)
1651 {
1652 	struct rq *rq = task_rq(p);
1653 
1654 	BUG_ON(rq != this_rq());
1655 	BUG_ON(p == current);
1656 	lockdep_assert_held(&rq->lock);
1657 
1658 	if (!raw_spin_trylock(&p->pi_lock)) {
1659 		raw_spin_unlock(&rq->lock);
1660 		raw_spin_lock(&p->pi_lock);
1661 		raw_spin_lock(&rq->lock);
1662 	}
1663 
1664 	if (!(p->state & TASK_NORMAL))
1665 		goto out;
1666 
1667 	if (!p->on_rq)
1668 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669 
1670 	ttwu_do_wakeup(rq, p, 0);
1671 	ttwu_stat(p, smp_processor_id(), 0);
1672 out:
1673 	raw_spin_unlock(&p->pi_lock);
1674 }
1675 
1676 /**
1677  * wake_up_process - Wake up a specific process
1678  * @p: The process to be woken up.
1679  *
1680  * Attempt to wake up the nominated process and move it to the set of runnable
1681  * processes.  Returns 1 if the process was woken up, 0 if it was already
1682  * running.
1683  *
1684  * It may be assumed that this function implies a write memory barrier before
1685  * changing the task state if and only if any tasks are woken up.
1686  */
1687 int wake_up_process(struct task_struct *p)
1688 {
1689 	return try_to_wake_up(p, TASK_ALL, 0);
1690 }
1691 EXPORT_SYMBOL(wake_up_process);
1692 
1693 int wake_up_state(struct task_struct *p, unsigned int state)
1694 {
1695 	return try_to_wake_up(p, state, 0);
1696 }
1697 
1698 /*
1699  * Perform scheduler related setup for a newly forked process p.
1700  * p is forked by current.
1701  *
1702  * __sched_fork() is basic setup used by init_idle() too:
1703  */
1704 static void __sched_fork(struct task_struct *p)
1705 {
1706 	p->on_rq			= 0;
1707 
1708 	p->se.on_rq			= 0;
1709 	p->se.exec_start		= 0;
1710 	p->se.sum_exec_runtime		= 0;
1711 	p->se.prev_sum_exec_runtime	= 0;
1712 	p->se.nr_migrations		= 0;
1713 	p->se.vruntime			= 0;
1714 	INIT_LIST_HEAD(&p->se.group_node);
1715 
1716 #ifdef CONFIG_SCHEDSTATS
1717 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718 #endif
1719 
1720 	INIT_LIST_HEAD(&p->rt.run_list);
1721 
1722 #ifdef CONFIG_PREEMPT_NOTIFIERS
1723 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1724 #endif
1725 }
1726 
1727 /*
1728  * fork()/clone()-time setup:
1729  */
1730 void sched_fork(struct task_struct *p)
1731 {
1732 	unsigned long flags;
1733 	int cpu = get_cpu();
1734 
1735 	__sched_fork(p);
1736 	/*
1737 	 * We mark the process as running here. This guarantees that
1738 	 * nobody will actually run it, and a signal or other external
1739 	 * event cannot wake it up and insert it on the runqueue either.
1740 	 */
1741 	p->state = TASK_RUNNING;
1742 
1743 	/*
1744 	 * Make sure we do not leak PI boosting priority to the child.
1745 	 */
1746 	p->prio = current->normal_prio;
1747 
1748 	/*
1749 	 * Revert to default priority/policy on fork if requested.
1750 	 */
1751 	if (unlikely(p->sched_reset_on_fork)) {
1752 		if (task_has_rt_policy(p)) {
1753 			p->policy = SCHED_NORMAL;
1754 			p->static_prio = NICE_TO_PRIO(0);
1755 			p->rt_priority = 0;
1756 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1757 			p->static_prio = NICE_TO_PRIO(0);
1758 
1759 		p->prio = p->normal_prio = __normal_prio(p);
1760 		set_load_weight(p);
1761 
1762 		/*
1763 		 * We don't need the reset flag anymore after the fork. It has
1764 		 * fulfilled its duty:
1765 		 */
1766 		p->sched_reset_on_fork = 0;
1767 	}
1768 
1769 	if (!rt_prio(p->prio))
1770 		p->sched_class = &fair_sched_class;
1771 
1772 	if (p->sched_class->task_fork)
1773 		p->sched_class->task_fork(p);
1774 
1775 	/*
1776 	 * The child is not yet in the pid-hash so no cgroup attach races,
1777 	 * and the cgroup is pinned to this child due to cgroup_fork()
1778 	 * is ran before sched_fork().
1779 	 *
1780 	 * Silence PROVE_RCU.
1781 	 */
1782 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1783 	set_task_cpu(p, cpu);
1784 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1785 
1786 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1787 	if (likely(sched_info_on()))
1788 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1789 #endif
1790 #if defined(CONFIG_SMP)
1791 	p->on_cpu = 0;
1792 #endif
1793 #ifdef CONFIG_PREEMPT_COUNT
1794 	/* Want to start with kernel preemption disabled. */
1795 	task_thread_info(p)->preempt_count = 1;
1796 #endif
1797 #ifdef CONFIG_SMP
1798 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1799 #endif
1800 
1801 	put_cpu();
1802 }
1803 
1804 /*
1805  * wake_up_new_task - wake up a newly created task for the first time.
1806  *
1807  * This function will do some initial scheduler statistics housekeeping
1808  * that must be done for every newly created context, then puts the task
1809  * on the runqueue and wakes it.
1810  */
1811 void wake_up_new_task(struct task_struct *p)
1812 {
1813 	unsigned long flags;
1814 	struct rq *rq;
1815 
1816 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1817 #ifdef CONFIG_SMP
1818 	/*
1819 	 * Fork balancing, do it here and not earlier because:
1820 	 *  - cpus_allowed can change in the fork path
1821 	 *  - any previously selected cpu might disappear through hotplug
1822 	 */
1823 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1824 #endif
1825 
1826 	rq = __task_rq_lock(p);
1827 	activate_task(rq, p, 0);
1828 	p->on_rq = 1;
1829 	trace_sched_wakeup_new(p, true);
1830 	check_preempt_curr(rq, p, WF_FORK);
1831 #ifdef CONFIG_SMP
1832 	if (p->sched_class->task_woken)
1833 		p->sched_class->task_woken(rq, p);
1834 #endif
1835 	task_rq_unlock(rq, p, &flags);
1836 }
1837 
1838 #ifdef CONFIG_PREEMPT_NOTIFIERS
1839 
1840 /**
1841  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1842  * @notifier: notifier struct to register
1843  */
1844 void preempt_notifier_register(struct preempt_notifier *notifier)
1845 {
1846 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847 }
1848 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849 
1850 /**
1851  * preempt_notifier_unregister - no longer interested in preemption notifications
1852  * @notifier: notifier struct to unregister
1853  *
1854  * This is safe to call from within a preemption notifier.
1855  */
1856 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857 {
1858 	hlist_del(&notifier->link);
1859 }
1860 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861 
1862 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863 {
1864 	struct preempt_notifier *notifier;
1865 	struct hlist_node *node;
1866 
1867 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869 }
1870 
1871 static void
1872 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 				 struct task_struct *next)
1874 {
1875 	struct preempt_notifier *notifier;
1876 	struct hlist_node *node;
1877 
1878 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 		notifier->ops->sched_out(notifier, next);
1880 }
1881 
1882 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1883 
1884 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885 {
1886 }
1887 
1888 static void
1889 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 				 struct task_struct *next)
1891 {
1892 }
1893 
1894 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1895 
1896 /**
1897  * prepare_task_switch - prepare to switch tasks
1898  * @rq: the runqueue preparing to switch
1899  * @prev: the current task that is being switched out
1900  * @next: the task we are going to switch to.
1901  *
1902  * This is called with the rq lock held and interrupts off. It must
1903  * be paired with a subsequent finish_task_switch after the context
1904  * switch.
1905  *
1906  * prepare_task_switch sets up locking and calls architecture specific
1907  * hooks.
1908  */
1909 static inline void
1910 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 		    struct task_struct *next)
1912 {
1913 	trace_sched_switch(prev, next);
1914 	sched_info_switch(prev, next);
1915 	perf_event_task_sched_out(prev, next);
1916 	fire_sched_out_preempt_notifiers(prev, next);
1917 	prepare_lock_switch(rq, next);
1918 	prepare_arch_switch(next);
1919 }
1920 
1921 /**
1922  * finish_task_switch - clean up after a task-switch
1923  * @rq: runqueue associated with task-switch
1924  * @prev: the thread we just switched away from.
1925  *
1926  * finish_task_switch must be called after the context switch, paired
1927  * with a prepare_task_switch call before the context switch.
1928  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929  * and do any other architecture-specific cleanup actions.
1930  *
1931  * Note that we may have delayed dropping an mm in context_switch(). If
1932  * so, we finish that here outside of the runqueue lock. (Doing it
1933  * with the lock held can cause deadlocks; see schedule() for
1934  * details.)
1935  */
1936 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1937 	__releases(rq->lock)
1938 {
1939 	struct mm_struct *mm = rq->prev_mm;
1940 	long prev_state;
1941 
1942 	rq->prev_mm = NULL;
1943 
1944 	/*
1945 	 * A task struct has one reference for the use as "current".
1946 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1947 	 * schedule one last time. The schedule call will never return, and
1948 	 * the scheduled task must drop that reference.
1949 	 * The test for TASK_DEAD must occur while the runqueue locks are
1950 	 * still held, otherwise prev could be scheduled on another cpu, die
1951 	 * there before we look at prev->state, and then the reference would
1952 	 * be dropped twice.
1953 	 *		Manfred Spraul <manfred@colorfullife.com>
1954 	 */
1955 	prev_state = prev->state;
1956 	finish_arch_switch(prev);
1957 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 	local_irq_disable();
1959 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960 	perf_event_task_sched_in(prev, current);
1961 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962 	local_irq_enable();
1963 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964 	finish_lock_switch(rq, prev);
1965 	finish_arch_post_lock_switch();
1966 
1967 	fire_sched_in_preempt_notifiers(current);
1968 	if (mm)
1969 		mmdrop(mm);
1970 	if (unlikely(prev_state == TASK_DEAD)) {
1971 		/*
1972 		 * Remove function-return probe instances associated with this
1973 		 * task and put them back on the free list.
1974 		 */
1975 		kprobe_flush_task(prev);
1976 		put_task_struct(prev);
1977 	}
1978 }
1979 
1980 #ifdef CONFIG_SMP
1981 
1982 /* assumes rq->lock is held */
1983 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984 {
1985 	if (prev->sched_class->pre_schedule)
1986 		prev->sched_class->pre_schedule(rq, prev);
1987 }
1988 
1989 /* rq->lock is NOT held, but preemption is disabled */
1990 static inline void post_schedule(struct rq *rq)
1991 {
1992 	if (rq->post_schedule) {
1993 		unsigned long flags;
1994 
1995 		raw_spin_lock_irqsave(&rq->lock, flags);
1996 		if (rq->curr->sched_class->post_schedule)
1997 			rq->curr->sched_class->post_schedule(rq);
1998 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1999 
2000 		rq->post_schedule = 0;
2001 	}
2002 }
2003 
2004 #else
2005 
2006 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007 {
2008 }
2009 
2010 static inline void post_schedule(struct rq *rq)
2011 {
2012 }
2013 
2014 #endif
2015 
2016 /**
2017  * schedule_tail - first thing a freshly forked thread must call.
2018  * @prev: the thread we just switched away from.
2019  */
2020 asmlinkage void schedule_tail(struct task_struct *prev)
2021 	__releases(rq->lock)
2022 {
2023 	struct rq *rq = this_rq();
2024 
2025 	finish_task_switch(rq, prev);
2026 
2027 	/*
2028 	 * FIXME: do we need to worry about rq being invalidated by the
2029 	 * task_switch?
2030 	 */
2031 	post_schedule(rq);
2032 
2033 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034 	/* In this case, finish_task_switch does not reenable preemption */
2035 	preempt_enable();
2036 #endif
2037 	if (current->set_child_tid)
2038 		put_user(task_pid_vnr(current), current->set_child_tid);
2039 }
2040 
2041 /*
2042  * context_switch - switch to the new MM and the new
2043  * thread's register state.
2044  */
2045 static inline void
2046 context_switch(struct rq *rq, struct task_struct *prev,
2047 	       struct task_struct *next)
2048 {
2049 	struct mm_struct *mm, *oldmm;
2050 
2051 	prepare_task_switch(rq, prev, next);
2052 
2053 	mm = next->mm;
2054 	oldmm = prev->active_mm;
2055 	/*
2056 	 * For paravirt, this is coupled with an exit in switch_to to
2057 	 * combine the page table reload and the switch backend into
2058 	 * one hypercall.
2059 	 */
2060 	arch_start_context_switch(prev);
2061 
2062 	if (!mm) {
2063 		next->active_mm = oldmm;
2064 		atomic_inc(&oldmm->mm_count);
2065 		enter_lazy_tlb(oldmm, next);
2066 	} else
2067 		switch_mm(oldmm, mm, next);
2068 
2069 	if (!prev->mm) {
2070 		prev->active_mm = NULL;
2071 		rq->prev_mm = oldmm;
2072 	}
2073 	/*
2074 	 * Since the runqueue lock will be released by the next
2075 	 * task (which is an invalid locking op but in the case
2076 	 * of the scheduler it's an obvious special-case), so we
2077 	 * do an early lockdep release here:
2078 	 */
2079 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081 #endif
2082 
2083 	/* Here we just switch the register state and the stack. */
2084 	switch_to(prev, next, prev);
2085 
2086 	barrier();
2087 	/*
2088 	 * this_rq must be evaluated again because prev may have moved
2089 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2090 	 * frame will be invalid.
2091 	 */
2092 	finish_task_switch(this_rq(), prev);
2093 }
2094 
2095 /*
2096  * nr_running, nr_uninterruptible and nr_context_switches:
2097  *
2098  * externally visible scheduler statistics: current number of runnable
2099  * threads, current number of uninterruptible-sleeping threads, total
2100  * number of context switches performed since bootup.
2101  */
2102 unsigned long nr_running(void)
2103 {
2104 	unsigned long i, sum = 0;
2105 
2106 	for_each_online_cpu(i)
2107 		sum += cpu_rq(i)->nr_running;
2108 
2109 	return sum;
2110 }
2111 
2112 unsigned long nr_uninterruptible(void)
2113 {
2114 	unsigned long i, sum = 0;
2115 
2116 	for_each_possible_cpu(i)
2117 		sum += cpu_rq(i)->nr_uninterruptible;
2118 
2119 	/*
2120 	 * Since we read the counters lockless, it might be slightly
2121 	 * inaccurate. Do not allow it to go below zero though:
2122 	 */
2123 	if (unlikely((long)sum < 0))
2124 		sum = 0;
2125 
2126 	return sum;
2127 }
2128 
2129 unsigned long long nr_context_switches(void)
2130 {
2131 	int i;
2132 	unsigned long long sum = 0;
2133 
2134 	for_each_possible_cpu(i)
2135 		sum += cpu_rq(i)->nr_switches;
2136 
2137 	return sum;
2138 }
2139 
2140 unsigned long nr_iowait(void)
2141 {
2142 	unsigned long i, sum = 0;
2143 
2144 	for_each_possible_cpu(i)
2145 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2146 
2147 	return sum;
2148 }
2149 
2150 unsigned long nr_iowait_cpu(int cpu)
2151 {
2152 	struct rq *this = cpu_rq(cpu);
2153 	return atomic_read(&this->nr_iowait);
2154 }
2155 
2156 unsigned long this_cpu_load(void)
2157 {
2158 	struct rq *this = this_rq();
2159 	return this->cpu_load[0];
2160 }
2161 
2162 
2163 /*
2164  * Global load-average calculations
2165  *
2166  * We take a distributed and async approach to calculating the global load-avg
2167  * in order to minimize overhead.
2168  *
2169  * The global load average is an exponentially decaying average of nr_running +
2170  * nr_uninterruptible.
2171  *
2172  * Once every LOAD_FREQ:
2173  *
2174  *   nr_active = 0;
2175  *   for_each_possible_cpu(cpu)
2176  *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2177  *
2178  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2179  *
2180  * Due to a number of reasons the above turns in the mess below:
2181  *
2182  *  - for_each_possible_cpu() is prohibitively expensive on machines with
2183  *    serious number of cpus, therefore we need to take a distributed approach
2184  *    to calculating nr_active.
2185  *
2186  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2187  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2188  *
2189  *    So assuming nr_active := 0 when we start out -- true per definition, we
2190  *    can simply take per-cpu deltas and fold those into a global accumulate
2191  *    to obtain the same result. See calc_load_fold_active().
2192  *
2193  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2194  *    across the machine, we assume 10 ticks is sufficient time for every
2195  *    cpu to have completed this task.
2196  *
2197  *    This places an upper-bound on the IRQ-off latency of the machine. Then
2198  *    again, being late doesn't loose the delta, just wrecks the sample.
2199  *
2200  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2201  *    this would add another cross-cpu cacheline miss and atomic operation
2202  *    to the wakeup path. Instead we increment on whatever cpu the task ran
2203  *    when it went into uninterruptible state and decrement on whatever cpu
2204  *    did the wakeup. This means that only the sum of nr_uninterruptible over
2205  *    all cpus yields the correct result.
2206  *
2207  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2208  */
2209 
2210 /* Variables and functions for calc_load */
2211 static atomic_long_t calc_load_tasks;
2212 static unsigned long calc_load_update;
2213 unsigned long avenrun[3];
2214 EXPORT_SYMBOL(avenrun); /* should be removed */
2215 
2216 /**
2217  * get_avenrun - get the load average array
2218  * @loads:	pointer to dest load array
2219  * @offset:	offset to add
2220  * @shift:	shift count to shift the result left
2221  *
2222  * These values are estimates at best, so no need for locking.
2223  */
2224 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2225 {
2226 	loads[0] = (avenrun[0] + offset) << shift;
2227 	loads[1] = (avenrun[1] + offset) << shift;
2228 	loads[2] = (avenrun[2] + offset) << shift;
2229 }
2230 
2231 static long calc_load_fold_active(struct rq *this_rq)
2232 {
2233 	long nr_active, delta = 0;
2234 
2235 	nr_active = this_rq->nr_running;
2236 	nr_active += (long) this_rq->nr_uninterruptible;
2237 
2238 	if (nr_active != this_rq->calc_load_active) {
2239 		delta = nr_active - this_rq->calc_load_active;
2240 		this_rq->calc_load_active = nr_active;
2241 	}
2242 
2243 	return delta;
2244 }
2245 
2246 /*
2247  * a1 = a0 * e + a * (1 - e)
2248  */
2249 static unsigned long
2250 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2251 {
2252 	load *= exp;
2253 	load += active * (FIXED_1 - exp);
2254 	load += 1UL << (FSHIFT - 1);
2255 	return load >> FSHIFT;
2256 }
2257 
2258 #ifdef CONFIG_NO_HZ
2259 /*
2260  * Handle NO_HZ for the global load-average.
2261  *
2262  * Since the above described distributed algorithm to compute the global
2263  * load-average relies on per-cpu sampling from the tick, it is affected by
2264  * NO_HZ.
2265  *
2266  * The basic idea is to fold the nr_active delta into a global idle-delta upon
2267  * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2268  * when we read the global state.
2269  *
2270  * Obviously reality has to ruin such a delightfully simple scheme:
2271  *
2272  *  - When we go NO_HZ idle during the window, we can negate our sample
2273  *    contribution, causing under-accounting.
2274  *
2275  *    We avoid this by keeping two idle-delta counters and flipping them
2276  *    when the window starts, thus separating old and new NO_HZ load.
2277  *
2278  *    The only trick is the slight shift in index flip for read vs write.
2279  *
2280  *        0s            5s            10s           15s
2281  *          +10           +10           +10           +10
2282  *        |-|-----------|-|-----------|-|-----------|-|
2283  *    r:0 0 1           1 0           0 1           1 0
2284  *    w:0 1 1           0 0           1 1           0 0
2285  *
2286  *    This ensures we'll fold the old idle contribution in this window while
2287  *    accumlating the new one.
2288  *
2289  *  - When we wake up from NO_HZ idle during the window, we push up our
2290  *    contribution, since we effectively move our sample point to a known
2291  *    busy state.
2292  *
2293  *    This is solved by pushing the window forward, and thus skipping the
2294  *    sample, for this cpu (effectively using the idle-delta for this cpu which
2295  *    was in effect at the time the window opened). This also solves the issue
2296  *    of having to deal with a cpu having been in NOHZ idle for multiple
2297  *    LOAD_FREQ intervals.
2298  *
2299  * When making the ILB scale, we should try to pull this in as well.
2300  */
2301 static atomic_long_t calc_load_idle[2];
2302 static int calc_load_idx;
2303 
2304 static inline int calc_load_write_idx(void)
2305 {
2306 	int idx = calc_load_idx;
2307 
2308 	/*
2309 	 * See calc_global_nohz(), if we observe the new index, we also
2310 	 * need to observe the new update time.
2311 	 */
2312 	smp_rmb();
2313 
2314 	/*
2315 	 * If the folding window started, make sure we start writing in the
2316 	 * next idle-delta.
2317 	 */
2318 	if (!time_before(jiffies, calc_load_update))
2319 		idx++;
2320 
2321 	return idx & 1;
2322 }
2323 
2324 static inline int calc_load_read_idx(void)
2325 {
2326 	return calc_load_idx & 1;
2327 }
2328 
2329 void calc_load_enter_idle(void)
2330 {
2331 	struct rq *this_rq = this_rq();
2332 	long delta;
2333 
2334 	/*
2335 	 * We're going into NOHZ mode, if there's any pending delta, fold it
2336 	 * into the pending idle delta.
2337 	 */
2338 	delta = calc_load_fold_active(this_rq);
2339 	if (delta) {
2340 		int idx = calc_load_write_idx();
2341 		atomic_long_add(delta, &calc_load_idle[idx]);
2342 	}
2343 }
2344 
2345 void calc_load_exit_idle(void)
2346 {
2347 	struct rq *this_rq = this_rq();
2348 
2349 	/*
2350 	 * If we're still before the sample window, we're done.
2351 	 */
2352 	if (time_before(jiffies, this_rq->calc_load_update))
2353 		return;
2354 
2355 	/*
2356 	 * We woke inside or after the sample window, this means we're already
2357 	 * accounted through the nohz accounting, so skip the entire deal and
2358 	 * sync up for the next window.
2359 	 */
2360 	this_rq->calc_load_update = calc_load_update;
2361 	if (time_before(jiffies, this_rq->calc_load_update + 10))
2362 		this_rq->calc_load_update += LOAD_FREQ;
2363 }
2364 
2365 static long calc_load_fold_idle(void)
2366 {
2367 	int idx = calc_load_read_idx();
2368 	long delta = 0;
2369 
2370 	if (atomic_long_read(&calc_load_idle[idx]))
2371 		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2372 
2373 	return delta;
2374 }
2375 
2376 /**
2377  * fixed_power_int - compute: x^n, in O(log n) time
2378  *
2379  * @x:         base of the power
2380  * @frac_bits: fractional bits of @x
2381  * @n:         power to raise @x to.
2382  *
2383  * By exploiting the relation between the definition of the natural power
2384  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2385  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2386  * (where: n_i \elem {0, 1}, the binary vector representing n),
2387  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2388  * of course trivially computable in O(log_2 n), the length of our binary
2389  * vector.
2390  */
2391 static unsigned long
2392 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2393 {
2394 	unsigned long result = 1UL << frac_bits;
2395 
2396 	if (n) for (;;) {
2397 		if (n & 1) {
2398 			result *= x;
2399 			result += 1UL << (frac_bits - 1);
2400 			result >>= frac_bits;
2401 		}
2402 		n >>= 1;
2403 		if (!n)
2404 			break;
2405 		x *= x;
2406 		x += 1UL << (frac_bits - 1);
2407 		x >>= frac_bits;
2408 	}
2409 
2410 	return result;
2411 }
2412 
2413 /*
2414  * a1 = a0 * e + a * (1 - e)
2415  *
2416  * a2 = a1 * e + a * (1 - e)
2417  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2418  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2419  *
2420  * a3 = a2 * e + a * (1 - e)
2421  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2422  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2423  *
2424  *  ...
2425  *
2426  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2427  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2428  *    = a0 * e^n + a * (1 - e^n)
2429  *
2430  * [1] application of the geometric series:
2431  *
2432  *              n         1 - x^(n+1)
2433  *     S_n := \Sum x^i = -------------
2434  *             i=0          1 - x
2435  */
2436 static unsigned long
2437 calc_load_n(unsigned long load, unsigned long exp,
2438 	    unsigned long active, unsigned int n)
2439 {
2440 
2441 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2442 }
2443 
2444 /*
2445  * NO_HZ can leave us missing all per-cpu ticks calling
2446  * calc_load_account_active(), but since an idle CPU folds its delta into
2447  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2448  * in the pending idle delta if our idle period crossed a load cycle boundary.
2449  *
2450  * Once we've updated the global active value, we need to apply the exponential
2451  * weights adjusted to the number of cycles missed.
2452  */
2453 static void calc_global_nohz(void)
2454 {
2455 	long delta, active, n;
2456 
2457 	if (!time_before(jiffies, calc_load_update + 10)) {
2458 		/*
2459 		 * Catch-up, fold however many we are behind still
2460 		 */
2461 		delta = jiffies - calc_load_update - 10;
2462 		n = 1 + (delta / LOAD_FREQ);
2463 
2464 		active = atomic_long_read(&calc_load_tasks);
2465 		active = active > 0 ? active * FIXED_1 : 0;
2466 
2467 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2468 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2469 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2470 
2471 		calc_load_update += n * LOAD_FREQ;
2472 	}
2473 
2474 	/*
2475 	 * Flip the idle index...
2476 	 *
2477 	 * Make sure we first write the new time then flip the index, so that
2478 	 * calc_load_write_idx() will see the new time when it reads the new
2479 	 * index, this avoids a double flip messing things up.
2480 	 */
2481 	smp_wmb();
2482 	calc_load_idx++;
2483 }
2484 #else /* !CONFIG_NO_HZ */
2485 
2486 static inline long calc_load_fold_idle(void) { return 0; }
2487 static inline void calc_global_nohz(void) { }
2488 
2489 #endif /* CONFIG_NO_HZ */
2490 
2491 /*
2492  * calc_load - update the avenrun load estimates 10 ticks after the
2493  * CPUs have updated calc_load_tasks.
2494  */
2495 void calc_global_load(unsigned long ticks)
2496 {
2497 	long active, delta;
2498 
2499 	if (time_before(jiffies, calc_load_update + 10))
2500 		return;
2501 
2502 	/*
2503 	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2504 	 */
2505 	delta = calc_load_fold_idle();
2506 	if (delta)
2507 		atomic_long_add(delta, &calc_load_tasks);
2508 
2509 	active = atomic_long_read(&calc_load_tasks);
2510 	active = active > 0 ? active * FIXED_1 : 0;
2511 
2512 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2513 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2514 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2515 
2516 	calc_load_update += LOAD_FREQ;
2517 
2518 	/*
2519 	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2520 	 */
2521 	calc_global_nohz();
2522 }
2523 
2524 /*
2525  * Called from update_cpu_load() to periodically update this CPU's
2526  * active count.
2527  */
2528 static void calc_load_account_active(struct rq *this_rq)
2529 {
2530 	long delta;
2531 
2532 	if (time_before(jiffies, this_rq->calc_load_update))
2533 		return;
2534 
2535 	delta  = calc_load_fold_active(this_rq);
2536 	if (delta)
2537 		atomic_long_add(delta, &calc_load_tasks);
2538 
2539 	this_rq->calc_load_update += LOAD_FREQ;
2540 }
2541 
2542 /*
2543  * End of global load-average stuff
2544  */
2545 
2546 /*
2547  * The exact cpuload at various idx values, calculated at every tick would be
2548  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2549  *
2550  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2551  * on nth tick when cpu may be busy, then we have:
2552  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2553  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2554  *
2555  * decay_load_missed() below does efficient calculation of
2556  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2557  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2558  *
2559  * The calculation is approximated on a 128 point scale.
2560  * degrade_zero_ticks is the number of ticks after which load at any
2561  * particular idx is approximated to be zero.
2562  * degrade_factor is a precomputed table, a row for each load idx.
2563  * Each column corresponds to degradation factor for a power of two ticks,
2564  * based on 128 point scale.
2565  * Example:
2566  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2567  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2568  *
2569  * With this power of 2 load factors, we can degrade the load n times
2570  * by looking at 1 bits in n and doing as many mult/shift instead of
2571  * n mult/shifts needed by the exact degradation.
2572  */
2573 #define DEGRADE_SHIFT		7
2574 static const unsigned char
2575 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2576 static const unsigned char
2577 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2578 					{0, 0, 0, 0, 0, 0, 0, 0},
2579 					{64, 32, 8, 0, 0, 0, 0, 0},
2580 					{96, 72, 40, 12, 1, 0, 0},
2581 					{112, 98, 75, 43, 15, 1, 0},
2582 					{120, 112, 98, 76, 45, 16, 2} };
2583 
2584 /*
2585  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2586  * would be when CPU is idle and so we just decay the old load without
2587  * adding any new load.
2588  */
2589 static unsigned long
2590 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2591 {
2592 	int j = 0;
2593 
2594 	if (!missed_updates)
2595 		return load;
2596 
2597 	if (missed_updates >= degrade_zero_ticks[idx])
2598 		return 0;
2599 
2600 	if (idx == 1)
2601 		return load >> missed_updates;
2602 
2603 	while (missed_updates) {
2604 		if (missed_updates % 2)
2605 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2606 
2607 		missed_updates >>= 1;
2608 		j++;
2609 	}
2610 	return load;
2611 }
2612 
2613 /*
2614  * Update rq->cpu_load[] statistics. This function is usually called every
2615  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2616  * every tick. We fix it up based on jiffies.
2617  */
2618 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2619 			      unsigned long pending_updates)
2620 {
2621 	int i, scale;
2622 
2623 	this_rq->nr_load_updates++;
2624 
2625 	/* Update our load: */
2626 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2627 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2628 		unsigned long old_load, new_load;
2629 
2630 		/* scale is effectively 1 << i now, and >> i divides by scale */
2631 
2632 		old_load = this_rq->cpu_load[i];
2633 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2634 		new_load = this_load;
2635 		/*
2636 		 * Round up the averaging division if load is increasing. This
2637 		 * prevents us from getting stuck on 9 if the load is 10, for
2638 		 * example.
2639 		 */
2640 		if (new_load > old_load)
2641 			new_load += scale - 1;
2642 
2643 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2644 	}
2645 
2646 	sched_avg_update(this_rq);
2647 }
2648 
2649 #ifdef CONFIG_NO_HZ
2650 /*
2651  * There is no sane way to deal with nohz on smp when using jiffies because the
2652  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2653  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2654  *
2655  * Therefore we cannot use the delta approach from the regular tick since that
2656  * would seriously skew the load calculation. However we'll make do for those
2657  * updates happening while idle (nohz_idle_balance) or coming out of idle
2658  * (tick_nohz_idle_exit).
2659  *
2660  * This means we might still be one tick off for nohz periods.
2661  */
2662 
2663 /*
2664  * Called from nohz_idle_balance() to update the load ratings before doing the
2665  * idle balance.
2666  */
2667 void update_idle_cpu_load(struct rq *this_rq)
2668 {
2669 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2670 	unsigned long load = this_rq->load.weight;
2671 	unsigned long pending_updates;
2672 
2673 	/*
2674 	 * bail if there's load or we're actually up-to-date.
2675 	 */
2676 	if (load || curr_jiffies == this_rq->last_load_update_tick)
2677 		return;
2678 
2679 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2680 	this_rq->last_load_update_tick = curr_jiffies;
2681 
2682 	__update_cpu_load(this_rq, load, pending_updates);
2683 }
2684 
2685 /*
2686  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2687  */
2688 void update_cpu_load_nohz(void)
2689 {
2690 	struct rq *this_rq = this_rq();
2691 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2692 	unsigned long pending_updates;
2693 
2694 	if (curr_jiffies == this_rq->last_load_update_tick)
2695 		return;
2696 
2697 	raw_spin_lock(&this_rq->lock);
2698 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2699 	if (pending_updates) {
2700 		this_rq->last_load_update_tick = curr_jiffies;
2701 		/*
2702 		 * We were idle, this means load 0, the current load might be
2703 		 * !0 due to remote wakeups and the sort.
2704 		 */
2705 		__update_cpu_load(this_rq, 0, pending_updates);
2706 	}
2707 	raw_spin_unlock(&this_rq->lock);
2708 }
2709 #endif /* CONFIG_NO_HZ */
2710 
2711 /*
2712  * Called from scheduler_tick()
2713  */
2714 static void update_cpu_load_active(struct rq *this_rq)
2715 {
2716 	/*
2717 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2718 	 */
2719 	this_rq->last_load_update_tick = jiffies;
2720 	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2721 
2722 	calc_load_account_active(this_rq);
2723 }
2724 
2725 #ifdef CONFIG_SMP
2726 
2727 /*
2728  * sched_exec - execve() is a valuable balancing opportunity, because at
2729  * this point the task has the smallest effective memory and cache footprint.
2730  */
2731 void sched_exec(void)
2732 {
2733 	struct task_struct *p = current;
2734 	unsigned long flags;
2735 	int dest_cpu;
2736 
2737 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2738 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2739 	if (dest_cpu == smp_processor_id())
2740 		goto unlock;
2741 
2742 	if (likely(cpu_active(dest_cpu))) {
2743 		struct migration_arg arg = { p, dest_cpu };
2744 
2745 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2746 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2747 		return;
2748 	}
2749 unlock:
2750 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2751 }
2752 
2753 #endif
2754 
2755 DEFINE_PER_CPU(struct kernel_stat, kstat);
2756 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2757 
2758 EXPORT_PER_CPU_SYMBOL(kstat);
2759 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2760 
2761 /*
2762  * Return any ns on the sched_clock that have not yet been accounted in
2763  * @p in case that task is currently running.
2764  *
2765  * Called with task_rq_lock() held on @rq.
2766  */
2767 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2768 {
2769 	u64 ns = 0;
2770 
2771 	if (task_current(rq, p)) {
2772 		update_rq_clock(rq);
2773 		ns = rq->clock_task - p->se.exec_start;
2774 		if ((s64)ns < 0)
2775 			ns = 0;
2776 	}
2777 
2778 	return ns;
2779 }
2780 
2781 unsigned long long task_delta_exec(struct task_struct *p)
2782 {
2783 	unsigned long flags;
2784 	struct rq *rq;
2785 	u64 ns = 0;
2786 
2787 	rq = task_rq_lock(p, &flags);
2788 	ns = do_task_delta_exec(p, rq);
2789 	task_rq_unlock(rq, p, &flags);
2790 
2791 	return ns;
2792 }
2793 
2794 /*
2795  * Return accounted runtime for the task.
2796  * In case the task is currently running, return the runtime plus current's
2797  * pending runtime that have not been accounted yet.
2798  */
2799 unsigned long long task_sched_runtime(struct task_struct *p)
2800 {
2801 	unsigned long flags;
2802 	struct rq *rq;
2803 	u64 ns = 0;
2804 
2805 	rq = task_rq_lock(p, &flags);
2806 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2807 	task_rq_unlock(rq, p, &flags);
2808 
2809 	return ns;
2810 }
2811 
2812 #ifdef CONFIG_CGROUP_CPUACCT
2813 struct cgroup_subsys cpuacct_subsys;
2814 struct cpuacct root_cpuacct;
2815 #endif
2816 
2817 static inline void task_group_account_field(struct task_struct *p, int index,
2818 					    u64 tmp)
2819 {
2820 #ifdef CONFIG_CGROUP_CPUACCT
2821 	struct kernel_cpustat *kcpustat;
2822 	struct cpuacct *ca;
2823 #endif
2824 	/*
2825 	 * Since all updates are sure to touch the root cgroup, we
2826 	 * get ourselves ahead and touch it first. If the root cgroup
2827 	 * is the only cgroup, then nothing else should be necessary.
2828 	 *
2829 	 */
2830 	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2831 
2832 #ifdef CONFIG_CGROUP_CPUACCT
2833 	if (unlikely(!cpuacct_subsys.active))
2834 		return;
2835 
2836 	rcu_read_lock();
2837 	ca = task_ca(p);
2838 	while (ca && (ca != &root_cpuacct)) {
2839 		kcpustat = this_cpu_ptr(ca->cpustat);
2840 		kcpustat->cpustat[index] += tmp;
2841 		ca = parent_ca(ca);
2842 	}
2843 	rcu_read_unlock();
2844 #endif
2845 }
2846 
2847 
2848 /*
2849  * Account user cpu time to a process.
2850  * @p: the process that the cpu time gets accounted to
2851  * @cputime: the cpu time spent in user space since the last update
2852  * @cputime_scaled: cputime scaled by cpu frequency
2853  */
2854 void account_user_time(struct task_struct *p, cputime_t cputime,
2855 		       cputime_t cputime_scaled)
2856 {
2857 	int index;
2858 
2859 	/* Add user time to process. */
2860 	p->utime += cputime;
2861 	p->utimescaled += cputime_scaled;
2862 	account_group_user_time(p, cputime);
2863 
2864 	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2865 
2866 	/* Add user time to cpustat. */
2867 	task_group_account_field(p, index, (__force u64) cputime);
2868 
2869 	/* Account for user time used */
2870 	acct_update_integrals(p);
2871 }
2872 
2873 /*
2874  * Account guest cpu time to a process.
2875  * @p: the process that the cpu time gets accounted to
2876  * @cputime: the cpu time spent in virtual machine since the last update
2877  * @cputime_scaled: cputime scaled by cpu frequency
2878  */
2879 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2880 			       cputime_t cputime_scaled)
2881 {
2882 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2883 
2884 	/* Add guest time to process. */
2885 	p->utime += cputime;
2886 	p->utimescaled += cputime_scaled;
2887 	account_group_user_time(p, cputime);
2888 	p->gtime += cputime;
2889 
2890 	/* Add guest time to cpustat. */
2891 	if (TASK_NICE(p) > 0) {
2892 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2893 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2894 	} else {
2895 		cpustat[CPUTIME_USER] += (__force u64) cputime;
2896 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2897 	}
2898 }
2899 
2900 /*
2901  * Account system cpu time to a process and desired cpustat field
2902  * @p: the process that the cpu time gets accounted to
2903  * @cputime: the cpu time spent in kernel space since the last update
2904  * @cputime_scaled: cputime scaled by cpu frequency
2905  * @target_cputime64: pointer to cpustat field that has to be updated
2906  */
2907 static inline
2908 void __account_system_time(struct task_struct *p, cputime_t cputime,
2909 			cputime_t cputime_scaled, int index)
2910 {
2911 	/* Add system time to process. */
2912 	p->stime += cputime;
2913 	p->stimescaled += cputime_scaled;
2914 	account_group_system_time(p, cputime);
2915 
2916 	/* Add system time to cpustat. */
2917 	task_group_account_field(p, index, (__force u64) cputime);
2918 
2919 	/* Account for system time used */
2920 	acct_update_integrals(p);
2921 }
2922 
2923 /*
2924  * Account system cpu time to a process.
2925  * @p: the process that the cpu time gets accounted to
2926  * @hardirq_offset: the offset to subtract from hardirq_count()
2927  * @cputime: the cpu time spent in kernel space since the last update
2928  * @cputime_scaled: cputime scaled by cpu frequency
2929  */
2930 void account_system_time(struct task_struct *p, int hardirq_offset,
2931 			 cputime_t cputime, cputime_t cputime_scaled)
2932 {
2933 	int index;
2934 
2935 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2936 		account_guest_time(p, cputime, cputime_scaled);
2937 		return;
2938 	}
2939 
2940 	if (hardirq_count() - hardirq_offset)
2941 		index = CPUTIME_IRQ;
2942 	else if (in_serving_softirq())
2943 		index = CPUTIME_SOFTIRQ;
2944 	else
2945 		index = CPUTIME_SYSTEM;
2946 
2947 	__account_system_time(p, cputime, cputime_scaled, index);
2948 }
2949 
2950 /*
2951  * Account for involuntary wait time.
2952  * @cputime: the cpu time spent in involuntary wait
2953  */
2954 void account_steal_time(cputime_t cputime)
2955 {
2956 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2957 
2958 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2959 }
2960 
2961 /*
2962  * Account for idle time.
2963  * @cputime: the cpu time spent in idle wait
2964  */
2965 void account_idle_time(cputime_t cputime)
2966 {
2967 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2968 	struct rq *rq = this_rq();
2969 
2970 	if (atomic_read(&rq->nr_iowait) > 0)
2971 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2972 	else
2973 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2974 }
2975 
2976 static __always_inline bool steal_account_process_tick(void)
2977 {
2978 #ifdef CONFIG_PARAVIRT
2979 	if (static_key_false(&paravirt_steal_enabled)) {
2980 		u64 steal, st = 0;
2981 
2982 		steal = paravirt_steal_clock(smp_processor_id());
2983 		steal -= this_rq()->prev_steal_time;
2984 
2985 		st = steal_ticks(steal);
2986 		this_rq()->prev_steal_time += st * TICK_NSEC;
2987 
2988 		account_steal_time(st);
2989 		return st;
2990 	}
2991 #endif
2992 	return false;
2993 }
2994 
2995 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2996 
2997 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2998 /*
2999  * Account a tick to a process and cpustat
3000  * @p: the process that the cpu time gets accounted to
3001  * @user_tick: is the tick from userspace
3002  * @rq: the pointer to rq
3003  *
3004  * Tick demultiplexing follows the order
3005  * - pending hardirq update
3006  * - pending softirq update
3007  * - user_time
3008  * - idle_time
3009  * - system time
3010  *   - check for guest_time
3011  *   - else account as system_time
3012  *
3013  * Check for hardirq is done both for system and user time as there is
3014  * no timer going off while we are on hardirq and hence we may never get an
3015  * opportunity to update it solely in system time.
3016  * p->stime and friends are only updated on system time and not on irq
3017  * softirq as those do not count in task exec_runtime any more.
3018  */
3019 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3020 						struct rq *rq)
3021 {
3022 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3023 	u64 *cpustat = kcpustat_this_cpu->cpustat;
3024 
3025 	if (steal_account_process_tick())
3026 		return;
3027 
3028 	if (irqtime_account_hi_update()) {
3029 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
3030 	} else if (irqtime_account_si_update()) {
3031 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
3032 	} else if (this_cpu_ksoftirqd() == p) {
3033 		/*
3034 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
3035 		 * So, we have to handle it separately here.
3036 		 * Also, p->stime needs to be updated for ksoftirqd.
3037 		 */
3038 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3039 					CPUTIME_SOFTIRQ);
3040 	} else if (user_tick) {
3041 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3042 	} else if (p == rq->idle) {
3043 		account_idle_time(cputime_one_jiffy);
3044 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
3045 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3046 	} else {
3047 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3048 					CPUTIME_SYSTEM);
3049 	}
3050 }
3051 
3052 static void irqtime_account_idle_ticks(int ticks)
3053 {
3054 	int i;
3055 	struct rq *rq = this_rq();
3056 
3057 	for (i = 0; i < ticks; i++)
3058 		irqtime_account_process_tick(current, 0, rq);
3059 }
3060 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3061 static void irqtime_account_idle_ticks(int ticks) {}
3062 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3063 						struct rq *rq) {}
3064 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3065 
3066 /*
3067  * Account a single tick of cpu time.
3068  * @p: the process that the cpu time gets accounted to
3069  * @user_tick: indicates if the tick is a user or a system tick
3070  */
3071 void account_process_tick(struct task_struct *p, int user_tick)
3072 {
3073 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3074 	struct rq *rq = this_rq();
3075 
3076 	if (sched_clock_irqtime) {
3077 		irqtime_account_process_tick(p, user_tick, rq);
3078 		return;
3079 	}
3080 
3081 	if (steal_account_process_tick())
3082 		return;
3083 
3084 	if (user_tick)
3085 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3086 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3087 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3088 				    one_jiffy_scaled);
3089 	else
3090 		account_idle_time(cputime_one_jiffy);
3091 }
3092 
3093 /*
3094  * Account multiple ticks of steal time.
3095  * @p: the process from which the cpu time has been stolen
3096  * @ticks: number of stolen ticks
3097  */
3098 void account_steal_ticks(unsigned long ticks)
3099 {
3100 	account_steal_time(jiffies_to_cputime(ticks));
3101 }
3102 
3103 /*
3104  * Account multiple ticks of idle time.
3105  * @ticks: number of stolen ticks
3106  */
3107 void account_idle_ticks(unsigned long ticks)
3108 {
3109 
3110 	if (sched_clock_irqtime) {
3111 		irqtime_account_idle_ticks(ticks);
3112 		return;
3113 	}
3114 
3115 	account_idle_time(jiffies_to_cputime(ticks));
3116 }
3117 
3118 #endif
3119 
3120 /*
3121  * Use precise platform statistics if available:
3122  */
3123 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3124 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3125 {
3126 	*ut = p->utime;
3127 	*st = p->stime;
3128 }
3129 
3130 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3131 {
3132 	struct task_cputime cputime;
3133 
3134 	thread_group_cputime(p, &cputime);
3135 
3136 	*ut = cputime.utime;
3137 	*st = cputime.stime;
3138 }
3139 #else
3140 
3141 #ifndef nsecs_to_cputime
3142 # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3143 #endif
3144 
3145 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3146 {
3147 	cputime_t rtime, utime = p->utime, total = utime + p->stime;
3148 
3149 	/*
3150 	 * Use CFS's precise accounting:
3151 	 */
3152 	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3153 
3154 	if (total) {
3155 		u64 temp = (__force u64) rtime;
3156 
3157 		temp *= (__force u64) utime;
3158 		do_div(temp, (__force u32) total);
3159 		utime = (__force cputime_t) temp;
3160 	} else
3161 		utime = rtime;
3162 
3163 	/*
3164 	 * Compare with previous values, to keep monotonicity:
3165 	 */
3166 	p->prev_utime = max(p->prev_utime, utime);
3167 	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3168 
3169 	*ut = p->prev_utime;
3170 	*st = p->prev_stime;
3171 }
3172 
3173 /*
3174  * Must be called with siglock held.
3175  */
3176 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3177 {
3178 	struct signal_struct *sig = p->signal;
3179 	struct task_cputime cputime;
3180 	cputime_t rtime, utime, total;
3181 
3182 	thread_group_cputime(p, &cputime);
3183 
3184 	total = cputime.utime + cputime.stime;
3185 	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3186 
3187 	if (total) {
3188 		u64 temp = (__force u64) rtime;
3189 
3190 		temp *= (__force u64) cputime.utime;
3191 		do_div(temp, (__force u32) total);
3192 		utime = (__force cputime_t) temp;
3193 	} else
3194 		utime = rtime;
3195 
3196 	sig->prev_utime = max(sig->prev_utime, utime);
3197 	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3198 
3199 	*ut = sig->prev_utime;
3200 	*st = sig->prev_stime;
3201 }
3202 #endif
3203 
3204 /*
3205  * This function gets called by the timer code, with HZ frequency.
3206  * We call it with interrupts disabled.
3207  */
3208 void scheduler_tick(void)
3209 {
3210 	int cpu = smp_processor_id();
3211 	struct rq *rq = cpu_rq(cpu);
3212 	struct task_struct *curr = rq->curr;
3213 
3214 	sched_clock_tick();
3215 
3216 	raw_spin_lock(&rq->lock);
3217 	update_rq_clock(rq);
3218 	update_cpu_load_active(rq);
3219 	curr->sched_class->task_tick(rq, curr, 0);
3220 	raw_spin_unlock(&rq->lock);
3221 
3222 	perf_event_task_tick();
3223 
3224 #ifdef CONFIG_SMP
3225 	rq->idle_balance = idle_cpu(cpu);
3226 	trigger_load_balance(rq, cpu);
3227 #endif
3228 }
3229 
3230 notrace unsigned long get_parent_ip(unsigned long addr)
3231 {
3232 	if (in_lock_functions(addr)) {
3233 		addr = CALLER_ADDR2;
3234 		if (in_lock_functions(addr))
3235 			addr = CALLER_ADDR3;
3236 	}
3237 	return addr;
3238 }
3239 
3240 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3241 				defined(CONFIG_PREEMPT_TRACER))
3242 
3243 void __kprobes add_preempt_count(int val)
3244 {
3245 #ifdef CONFIG_DEBUG_PREEMPT
3246 	/*
3247 	 * Underflow?
3248 	 */
3249 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3250 		return;
3251 #endif
3252 	preempt_count() += val;
3253 #ifdef CONFIG_DEBUG_PREEMPT
3254 	/*
3255 	 * Spinlock count overflowing soon?
3256 	 */
3257 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3258 				PREEMPT_MASK - 10);
3259 #endif
3260 	if (preempt_count() == val)
3261 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3262 }
3263 EXPORT_SYMBOL(add_preempt_count);
3264 
3265 void __kprobes sub_preempt_count(int val)
3266 {
3267 #ifdef CONFIG_DEBUG_PREEMPT
3268 	/*
3269 	 * Underflow?
3270 	 */
3271 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3272 		return;
3273 	/*
3274 	 * Is the spinlock portion underflowing?
3275 	 */
3276 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3277 			!(preempt_count() & PREEMPT_MASK)))
3278 		return;
3279 #endif
3280 
3281 	if (preempt_count() == val)
3282 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3283 	preempt_count() -= val;
3284 }
3285 EXPORT_SYMBOL(sub_preempt_count);
3286 
3287 #endif
3288 
3289 /*
3290  * Print scheduling while atomic bug:
3291  */
3292 static noinline void __schedule_bug(struct task_struct *prev)
3293 {
3294 	if (oops_in_progress)
3295 		return;
3296 
3297 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3298 		prev->comm, prev->pid, preempt_count());
3299 
3300 	debug_show_held_locks(prev);
3301 	print_modules();
3302 	if (irqs_disabled())
3303 		print_irqtrace_events(prev);
3304 	dump_stack();
3305 	add_taint(TAINT_WARN);
3306 }
3307 
3308 /*
3309  * Various schedule()-time debugging checks and statistics:
3310  */
3311 static inline void schedule_debug(struct task_struct *prev)
3312 {
3313 	/*
3314 	 * Test if we are atomic. Since do_exit() needs to call into
3315 	 * schedule() atomically, we ignore that path for now.
3316 	 * Otherwise, whine if we are scheduling when we should not be.
3317 	 */
3318 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3319 		__schedule_bug(prev);
3320 	rcu_sleep_check();
3321 
3322 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3323 
3324 	schedstat_inc(this_rq(), sched_count);
3325 }
3326 
3327 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3328 {
3329 	if (prev->on_rq || rq->skip_clock_update < 0)
3330 		update_rq_clock(rq);
3331 	prev->sched_class->put_prev_task(rq, prev);
3332 }
3333 
3334 /*
3335  * Pick up the highest-prio task:
3336  */
3337 static inline struct task_struct *
3338 pick_next_task(struct rq *rq)
3339 {
3340 	const struct sched_class *class;
3341 	struct task_struct *p;
3342 
3343 	/*
3344 	 * Optimization: we know that if all tasks are in
3345 	 * the fair class we can call that function directly:
3346 	 */
3347 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3348 		p = fair_sched_class.pick_next_task(rq);
3349 		if (likely(p))
3350 			return p;
3351 	}
3352 
3353 	for_each_class(class) {
3354 		p = class->pick_next_task(rq);
3355 		if (p)
3356 			return p;
3357 	}
3358 
3359 	BUG(); /* the idle class will always have a runnable task */
3360 }
3361 
3362 /*
3363  * __schedule() is the main scheduler function.
3364  */
3365 static void __sched __schedule(void)
3366 {
3367 	struct task_struct *prev, *next;
3368 	unsigned long *switch_count;
3369 	struct rq *rq;
3370 	int cpu;
3371 
3372 need_resched:
3373 	preempt_disable();
3374 	cpu = smp_processor_id();
3375 	rq = cpu_rq(cpu);
3376 	rcu_note_context_switch(cpu);
3377 	prev = rq->curr;
3378 
3379 	schedule_debug(prev);
3380 
3381 	if (sched_feat(HRTICK))
3382 		hrtick_clear(rq);
3383 
3384 	raw_spin_lock_irq(&rq->lock);
3385 
3386 	switch_count = &prev->nivcsw;
3387 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3388 		if (unlikely(signal_pending_state(prev->state, prev))) {
3389 			prev->state = TASK_RUNNING;
3390 		} else {
3391 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3392 			prev->on_rq = 0;
3393 
3394 			/*
3395 			 * If a worker went to sleep, notify and ask workqueue
3396 			 * whether it wants to wake up a task to maintain
3397 			 * concurrency.
3398 			 */
3399 			if (prev->flags & PF_WQ_WORKER) {
3400 				struct task_struct *to_wakeup;
3401 
3402 				to_wakeup = wq_worker_sleeping(prev, cpu);
3403 				if (to_wakeup)
3404 					try_to_wake_up_local(to_wakeup);
3405 			}
3406 		}
3407 		switch_count = &prev->nvcsw;
3408 	}
3409 
3410 	pre_schedule(rq, prev);
3411 
3412 	if (unlikely(!rq->nr_running))
3413 		idle_balance(cpu, rq);
3414 
3415 	put_prev_task(rq, prev);
3416 	next = pick_next_task(rq);
3417 	clear_tsk_need_resched(prev);
3418 	rq->skip_clock_update = 0;
3419 
3420 	if (likely(prev != next)) {
3421 		rq->nr_switches++;
3422 		rq->curr = next;
3423 		++*switch_count;
3424 
3425 		context_switch(rq, prev, next); /* unlocks the rq */
3426 		/*
3427 		 * The context switch have flipped the stack from under us
3428 		 * and restored the local variables which were saved when
3429 		 * this task called schedule() in the past. prev == current
3430 		 * is still correct, but it can be moved to another cpu/rq.
3431 		 */
3432 		cpu = smp_processor_id();
3433 		rq = cpu_rq(cpu);
3434 	} else
3435 		raw_spin_unlock_irq(&rq->lock);
3436 
3437 	post_schedule(rq);
3438 
3439 	sched_preempt_enable_no_resched();
3440 	if (need_resched())
3441 		goto need_resched;
3442 }
3443 
3444 static inline void sched_submit_work(struct task_struct *tsk)
3445 {
3446 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3447 		return;
3448 	/*
3449 	 * If we are going to sleep and we have plugged IO queued,
3450 	 * make sure to submit it to avoid deadlocks.
3451 	 */
3452 	if (blk_needs_flush_plug(tsk))
3453 		blk_schedule_flush_plug(tsk);
3454 }
3455 
3456 asmlinkage void __sched schedule(void)
3457 {
3458 	struct task_struct *tsk = current;
3459 
3460 	sched_submit_work(tsk);
3461 	__schedule();
3462 }
3463 EXPORT_SYMBOL(schedule);
3464 
3465 /**
3466  * schedule_preempt_disabled - called with preemption disabled
3467  *
3468  * Returns with preemption disabled. Note: preempt_count must be 1
3469  */
3470 void __sched schedule_preempt_disabled(void)
3471 {
3472 	sched_preempt_enable_no_resched();
3473 	schedule();
3474 	preempt_disable();
3475 }
3476 
3477 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3478 
3479 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3480 {
3481 	if (lock->owner != owner)
3482 		return false;
3483 
3484 	/*
3485 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3486 	 * lock->owner still matches owner, if that fails, owner might
3487 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3488 	 * ensures the memory stays valid.
3489 	 */
3490 	barrier();
3491 
3492 	return owner->on_cpu;
3493 }
3494 
3495 /*
3496  * Look out! "owner" is an entirely speculative pointer
3497  * access and not reliable.
3498  */
3499 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3500 {
3501 	if (!sched_feat(OWNER_SPIN))
3502 		return 0;
3503 
3504 	rcu_read_lock();
3505 	while (owner_running(lock, owner)) {
3506 		if (need_resched())
3507 			break;
3508 
3509 		arch_mutex_cpu_relax();
3510 	}
3511 	rcu_read_unlock();
3512 
3513 	/*
3514 	 * We break out the loop above on need_resched() and when the
3515 	 * owner changed, which is a sign for heavy contention. Return
3516 	 * success only when lock->owner is NULL.
3517 	 */
3518 	return lock->owner == NULL;
3519 }
3520 #endif
3521 
3522 #ifdef CONFIG_PREEMPT
3523 /*
3524  * this is the entry point to schedule() from in-kernel preemption
3525  * off of preempt_enable. Kernel preemptions off return from interrupt
3526  * occur there and call schedule directly.
3527  */
3528 asmlinkage void __sched notrace preempt_schedule(void)
3529 {
3530 	struct thread_info *ti = current_thread_info();
3531 
3532 	/*
3533 	 * If there is a non-zero preempt_count or interrupts are disabled,
3534 	 * we do not want to preempt the current task. Just return..
3535 	 */
3536 	if (likely(ti->preempt_count || irqs_disabled()))
3537 		return;
3538 
3539 	do {
3540 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3541 		__schedule();
3542 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3543 
3544 		/*
3545 		 * Check again in case we missed a preemption opportunity
3546 		 * between schedule and now.
3547 		 */
3548 		barrier();
3549 	} while (need_resched());
3550 }
3551 EXPORT_SYMBOL(preempt_schedule);
3552 
3553 /*
3554  * this is the entry point to schedule() from kernel preemption
3555  * off of irq context.
3556  * Note, that this is called and return with irqs disabled. This will
3557  * protect us against recursive calling from irq.
3558  */
3559 asmlinkage void __sched preempt_schedule_irq(void)
3560 {
3561 	struct thread_info *ti = current_thread_info();
3562 
3563 	/* Catch callers which need to be fixed */
3564 	BUG_ON(ti->preempt_count || !irqs_disabled());
3565 
3566 	do {
3567 		add_preempt_count(PREEMPT_ACTIVE);
3568 		local_irq_enable();
3569 		__schedule();
3570 		local_irq_disable();
3571 		sub_preempt_count(PREEMPT_ACTIVE);
3572 
3573 		/*
3574 		 * Check again in case we missed a preemption opportunity
3575 		 * between schedule and now.
3576 		 */
3577 		barrier();
3578 	} while (need_resched());
3579 }
3580 
3581 #endif /* CONFIG_PREEMPT */
3582 
3583 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3584 			  void *key)
3585 {
3586 	return try_to_wake_up(curr->private, mode, wake_flags);
3587 }
3588 EXPORT_SYMBOL(default_wake_function);
3589 
3590 /*
3591  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3592  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3593  * number) then we wake all the non-exclusive tasks and one exclusive task.
3594  *
3595  * There are circumstances in which we can try to wake a task which has already
3596  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3597  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3598  */
3599 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3600 			int nr_exclusive, int wake_flags, void *key)
3601 {
3602 	wait_queue_t *curr, *next;
3603 
3604 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3605 		unsigned flags = curr->flags;
3606 
3607 		if (curr->func(curr, mode, wake_flags, key) &&
3608 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3609 			break;
3610 	}
3611 }
3612 
3613 /**
3614  * __wake_up - wake up threads blocked on a waitqueue.
3615  * @q: the waitqueue
3616  * @mode: which threads
3617  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3618  * @key: is directly passed to the wakeup function
3619  *
3620  * It may be assumed that this function implies a write memory barrier before
3621  * changing the task state if and only if any tasks are woken up.
3622  */
3623 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3624 			int nr_exclusive, void *key)
3625 {
3626 	unsigned long flags;
3627 
3628 	spin_lock_irqsave(&q->lock, flags);
3629 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3630 	spin_unlock_irqrestore(&q->lock, flags);
3631 }
3632 EXPORT_SYMBOL(__wake_up);
3633 
3634 /*
3635  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3636  */
3637 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3638 {
3639 	__wake_up_common(q, mode, nr, 0, NULL);
3640 }
3641 EXPORT_SYMBOL_GPL(__wake_up_locked);
3642 
3643 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3644 {
3645 	__wake_up_common(q, mode, 1, 0, key);
3646 }
3647 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3648 
3649 /**
3650  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3651  * @q: the waitqueue
3652  * @mode: which threads
3653  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3654  * @key: opaque value to be passed to wakeup targets
3655  *
3656  * The sync wakeup differs that the waker knows that it will schedule
3657  * away soon, so while the target thread will be woken up, it will not
3658  * be migrated to another CPU - ie. the two threads are 'synchronized'
3659  * with each other. This can prevent needless bouncing between CPUs.
3660  *
3661  * On UP it can prevent extra preemption.
3662  *
3663  * It may be assumed that this function implies a write memory barrier before
3664  * changing the task state if and only if any tasks are woken up.
3665  */
3666 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3667 			int nr_exclusive, void *key)
3668 {
3669 	unsigned long flags;
3670 	int wake_flags = WF_SYNC;
3671 
3672 	if (unlikely(!q))
3673 		return;
3674 
3675 	if (unlikely(!nr_exclusive))
3676 		wake_flags = 0;
3677 
3678 	spin_lock_irqsave(&q->lock, flags);
3679 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3680 	spin_unlock_irqrestore(&q->lock, flags);
3681 }
3682 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3683 
3684 /*
3685  * __wake_up_sync - see __wake_up_sync_key()
3686  */
3687 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3688 {
3689 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3690 }
3691 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3692 
3693 /**
3694  * complete: - signals a single thread waiting on this completion
3695  * @x:  holds the state of this particular completion
3696  *
3697  * This will wake up a single thread waiting on this completion. Threads will be
3698  * awakened in the same order in which they were queued.
3699  *
3700  * See also complete_all(), wait_for_completion() and related routines.
3701  *
3702  * It may be assumed that this function implies a write memory barrier before
3703  * changing the task state if and only if any tasks are woken up.
3704  */
3705 void complete(struct completion *x)
3706 {
3707 	unsigned long flags;
3708 
3709 	spin_lock_irqsave(&x->wait.lock, flags);
3710 	x->done++;
3711 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3712 	spin_unlock_irqrestore(&x->wait.lock, flags);
3713 }
3714 EXPORT_SYMBOL(complete);
3715 
3716 /**
3717  * complete_all: - signals all threads waiting on this completion
3718  * @x:  holds the state of this particular completion
3719  *
3720  * This will wake up all threads waiting on this particular completion event.
3721  *
3722  * It may be assumed that this function implies a write memory barrier before
3723  * changing the task state if and only if any tasks are woken up.
3724  */
3725 void complete_all(struct completion *x)
3726 {
3727 	unsigned long flags;
3728 
3729 	spin_lock_irqsave(&x->wait.lock, flags);
3730 	x->done += UINT_MAX/2;
3731 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3732 	spin_unlock_irqrestore(&x->wait.lock, flags);
3733 }
3734 EXPORT_SYMBOL(complete_all);
3735 
3736 static inline long __sched
3737 do_wait_for_common(struct completion *x, long timeout, int state)
3738 {
3739 	if (!x->done) {
3740 		DECLARE_WAITQUEUE(wait, current);
3741 
3742 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3743 		do {
3744 			if (signal_pending_state(state, current)) {
3745 				timeout = -ERESTARTSYS;
3746 				break;
3747 			}
3748 			__set_current_state(state);
3749 			spin_unlock_irq(&x->wait.lock);
3750 			timeout = schedule_timeout(timeout);
3751 			spin_lock_irq(&x->wait.lock);
3752 		} while (!x->done && timeout);
3753 		__remove_wait_queue(&x->wait, &wait);
3754 		if (!x->done)
3755 			return timeout;
3756 	}
3757 	x->done--;
3758 	return timeout ?: 1;
3759 }
3760 
3761 static long __sched
3762 wait_for_common(struct completion *x, long timeout, int state)
3763 {
3764 	might_sleep();
3765 
3766 	spin_lock_irq(&x->wait.lock);
3767 	timeout = do_wait_for_common(x, timeout, state);
3768 	spin_unlock_irq(&x->wait.lock);
3769 	return timeout;
3770 }
3771 
3772 /**
3773  * wait_for_completion: - waits for completion of a task
3774  * @x:  holds the state of this particular completion
3775  *
3776  * This waits to be signaled for completion of a specific task. It is NOT
3777  * interruptible and there is no timeout.
3778  *
3779  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3780  * and interrupt capability. Also see complete().
3781  */
3782 void __sched wait_for_completion(struct completion *x)
3783 {
3784 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3785 }
3786 EXPORT_SYMBOL(wait_for_completion);
3787 
3788 /**
3789  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3790  * @x:  holds the state of this particular completion
3791  * @timeout:  timeout value in jiffies
3792  *
3793  * This waits for either a completion of a specific task to be signaled or for a
3794  * specified timeout to expire. The timeout is in jiffies. It is not
3795  * interruptible.
3796  *
3797  * The return value is 0 if timed out, and positive (at least 1, or number of
3798  * jiffies left till timeout) if completed.
3799  */
3800 unsigned long __sched
3801 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3802 {
3803 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3804 }
3805 EXPORT_SYMBOL(wait_for_completion_timeout);
3806 
3807 /**
3808  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3809  * @x:  holds the state of this particular completion
3810  *
3811  * This waits for completion of a specific task to be signaled. It is
3812  * interruptible.
3813  *
3814  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3815  */
3816 int __sched wait_for_completion_interruptible(struct completion *x)
3817 {
3818 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3819 	if (t == -ERESTARTSYS)
3820 		return t;
3821 	return 0;
3822 }
3823 EXPORT_SYMBOL(wait_for_completion_interruptible);
3824 
3825 /**
3826  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3827  * @x:  holds the state of this particular completion
3828  * @timeout:  timeout value in jiffies
3829  *
3830  * This waits for either a completion of a specific task to be signaled or for a
3831  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3832  *
3833  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3834  * positive (at least 1, or number of jiffies left till timeout) if completed.
3835  */
3836 long __sched
3837 wait_for_completion_interruptible_timeout(struct completion *x,
3838 					  unsigned long timeout)
3839 {
3840 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3841 }
3842 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3843 
3844 /**
3845  * wait_for_completion_killable: - waits for completion of a task (killable)
3846  * @x:  holds the state of this particular completion
3847  *
3848  * This waits to be signaled for completion of a specific task. It can be
3849  * interrupted by a kill signal.
3850  *
3851  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3852  */
3853 int __sched wait_for_completion_killable(struct completion *x)
3854 {
3855 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3856 	if (t == -ERESTARTSYS)
3857 		return t;
3858 	return 0;
3859 }
3860 EXPORT_SYMBOL(wait_for_completion_killable);
3861 
3862 /**
3863  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3864  * @x:  holds the state of this particular completion
3865  * @timeout:  timeout value in jiffies
3866  *
3867  * This waits for either a completion of a specific task to be
3868  * signaled or for a specified timeout to expire. It can be
3869  * interrupted by a kill signal. The timeout is in jiffies.
3870  *
3871  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3872  * positive (at least 1, or number of jiffies left till timeout) if completed.
3873  */
3874 long __sched
3875 wait_for_completion_killable_timeout(struct completion *x,
3876 				     unsigned long timeout)
3877 {
3878 	return wait_for_common(x, timeout, TASK_KILLABLE);
3879 }
3880 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3881 
3882 /**
3883  *	try_wait_for_completion - try to decrement a completion without blocking
3884  *	@x:	completion structure
3885  *
3886  *	Returns: 0 if a decrement cannot be done without blocking
3887  *		 1 if a decrement succeeded.
3888  *
3889  *	If a completion is being used as a counting completion,
3890  *	attempt to decrement the counter without blocking. This
3891  *	enables us to avoid waiting if the resource the completion
3892  *	is protecting is not available.
3893  */
3894 bool try_wait_for_completion(struct completion *x)
3895 {
3896 	unsigned long flags;
3897 	int ret = 1;
3898 
3899 	spin_lock_irqsave(&x->wait.lock, flags);
3900 	if (!x->done)
3901 		ret = 0;
3902 	else
3903 		x->done--;
3904 	spin_unlock_irqrestore(&x->wait.lock, flags);
3905 	return ret;
3906 }
3907 EXPORT_SYMBOL(try_wait_for_completion);
3908 
3909 /**
3910  *	completion_done - Test to see if a completion has any waiters
3911  *	@x:	completion structure
3912  *
3913  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3914  *		 1 if there are no waiters.
3915  *
3916  */
3917 bool completion_done(struct completion *x)
3918 {
3919 	unsigned long flags;
3920 	int ret = 1;
3921 
3922 	spin_lock_irqsave(&x->wait.lock, flags);
3923 	if (!x->done)
3924 		ret = 0;
3925 	spin_unlock_irqrestore(&x->wait.lock, flags);
3926 	return ret;
3927 }
3928 EXPORT_SYMBOL(completion_done);
3929 
3930 static long __sched
3931 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3932 {
3933 	unsigned long flags;
3934 	wait_queue_t wait;
3935 
3936 	init_waitqueue_entry(&wait, current);
3937 
3938 	__set_current_state(state);
3939 
3940 	spin_lock_irqsave(&q->lock, flags);
3941 	__add_wait_queue(q, &wait);
3942 	spin_unlock(&q->lock);
3943 	timeout = schedule_timeout(timeout);
3944 	spin_lock_irq(&q->lock);
3945 	__remove_wait_queue(q, &wait);
3946 	spin_unlock_irqrestore(&q->lock, flags);
3947 
3948 	return timeout;
3949 }
3950 
3951 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3952 {
3953 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3954 }
3955 EXPORT_SYMBOL(interruptible_sleep_on);
3956 
3957 long __sched
3958 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3959 {
3960 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3961 }
3962 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3963 
3964 void __sched sleep_on(wait_queue_head_t *q)
3965 {
3966 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3967 }
3968 EXPORT_SYMBOL(sleep_on);
3969 
3970 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3971 {
3972 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3973 }
3974 EXPORT_SYMBOL(sleep_on_timeout);
3975 
3976 #ifdef CONFIG_RT_MUTEXES
3977 
3978 /*
3979  * rt_mutex_setprio - set the current priority of a task
3980  * @p: task
3981  * @prio: prio value (kernel-internal form)
3982  *
3983  * This function changes the 'effective' priority of a task. It does
3984  * not touch ->normal_prio like __setscheduler().
3985  *
3986  * Used by the rt_mutex code to implement priority inheritance logic.
3987  */
3988 void rt_mutex_setprio(struct task_struct *p, int prio)
3989 {
3990 	int oldprio, on_rq, running;
3991 	struct rq *rq;
3992 	const struct sched_class *prev_class;
3993 
3994 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3995 
3996 	rq = __task_rq_lock(p);
3997 
3998 	/*
3999 	 * Idle task boosting is a nono in general. There is one
4000 	 * exception, when PREEMPT_RT and NOHZ is active:
4001 	 *
4002 	 * The idle task calls get_next_timer_interrupt() and holds
4003 	 * the timer wheel base->lock on the CPU and another CPU wants
4004 	 * to access the timer (probably to cancel it). We can safely
4005 	 * ignore the boosting request, as the idle CPU runs this code
4006 	 * with interrupts disabled and will complete the lock
4007 	 * protected section without being interrupted. So there is no
4008 	 * real need to boost.
4009 	 */
4010 	if (unlikely(p == rq->idle)) {
4011 		WARN_ON(p != rq->curr);
4012 		WARN_ON(p->pi_blocked_on);
4013 		goto out_unlock;
4014 	}
4015 
4016 	trace_sched_pi_setprio(p, prio);
4017 	oldprio = p->prio;
4018 	prev_class = p->sched_class;
4019 	on_rq = p->on_rq;
4020 	running = task_current(rq, p);
4021 	if (on_rq)
4022 		dequeue_task(rq, p, 0);
4023 	if (running)
4024 		p->sched_class->put_prev_task(rq, p);
4025 
4026 	if (rt_prio(prio))
4027 		p->sched_class = &rt_sched_class;
4028 	else
4029 		p->sched_class = &fair_sched_class;
4030 
4031 	p->prio = prio;
4032 
4033 	if (running)
4034 		p->sched_class->set_curr_task(rq);
4035 	if (on_rq)
4036 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4037 
4038 	check_class_changed(rq, p, prev_class, oldprio);
4039 out_unlock:
4040 	__task_rq_unlock(rq);
4041 }
4042 #endif
4043 void set_user_nice(struct task_struct *p, long nice)
4044 {
4045 	int old_prio, delta, on_rq;
4046 	unsigned long flags;
4047 	struct rq *rq;
4048 
4049 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4050 		return;
4051 	/*
4052 	 * We have to be careful, if called from sys_setpriority(),
4053 	 * the task might be in the middle of scheduling on another CPU.
4054 	 */
4055 	rq = task_rq_lock(p, &flags);
4056 	/*
4057 	 * The RT priorities are set via sched_setscheduler(), but we still
4058 	 * allow the 'normal' nice value to be set - but as expected
4059 	 * it wont have any effect on scheduling until the task is
4060 	 * SCHED_FIFO/SCHED_RR:
4061 	 */
4062 	if (task_has_rt_policy(p)) {
4063 		p->static_prio = NICE_TO_PRIO(nice);
4064 		goto out_unlock;
4065 	}
4066 	on_rq = p->on_rq;
4067 	if (on_rq)
4068 		dequeue_task(rq, p, 0);
4069 
4070 	p->static_prio = NICE_TO_PRIO(nice);
4071 	set_load_weight(p);
4072 	old_prio = p->prio;
4073 	p->prio = effective_prio(p);
4074 	delta = p->prio - old_prio;
4075 
4076 	if (on_rq) {
4077 		enqueue_task(rq, p, 0);
4078 		/*
4079 		 * If the task increased its priority or is running and
4080 		 * lowered its priority, then reschedule its CPU:
4081 		 */
4082 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
4083 			resched_task(rq->curr);
4084 	}
4085 out_unlock:
4086 	task_rq_unlock(rq, p, &flags);
4087 }
4088 EXPORT_SYMBOL(set_user_nice);
4089 
4090 /*
4091  * can_nice - check if a task can reduce its nice value
4092  * @p: task
4093  * @nice: nice value
4094  */
4095 int can_nice(const struct task_struct *p, const int nice)
4096 {
4097 	/* convert nice value [19,-20] to rlimit style value [1,40] */
4098 	int nice_rlim = 20 - nice;
4099 
4100 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4101 		capable(CAP_SYS_NICE));
4102 }
4103 
4104 #ifdef __ARCH_WANT_SYS_NICE
4105 
4106 /*
4107  * sys_nice - change the priority of the current process.
4108  * @increment: priority increment
4109  *
4110  * sys_setpriority is a more generic, but much slower function that
4111  * does similar things.
4112  */
4113 SYSCALL_DEFINE1(nice, int, increment)
4114 {
4115 	long nice, retval;
4116 
4117 	/*
4118 	 * Setpriority might change our priority at the same moment.
4119 	 * We don't have to worry. Conceptually one call occurs first
4120 	 * and we have a single winner.
4121 	 */
4122 	if (increment < -40)
4123 		increment = -40;
4124 	if (increment > 40)
4125 		increment = 40;
4126 
4127 	nice = TASK_NICE(current) + increment;
4128 	if (nice < -20)
4129 		nice = -20;
4130 	if (nice > 19)
4131 		nice = 19;
4132 
4133 	if (increment < 0 && !can_nice(current, nice))
4134 		return -EPERM;
4135 
4136 	retval = security_task_setnice(current, nice);
4137 	if (retval)
4138 		return retval;
4139 
4140 	set_user_nice(current, nice);
4141 	return 0;
4142 }
4143 
4144 #endif
4145 
4146 /**
4147  * task_prio - return the priority value of a given task.
4148  * @p: the task in question.
4149  *
4150  * This is the priority value as seen by users in /proc.
4151  * RT tasks are offset by -200. Normal tasks are centered
4152  * around 0, value goes from -16 to +15.
4153  */
4154 int task_prio(const struct task_struct *p)
4155 {
4156 	return p->prio - MAX_RT_PRIO;
4157 }
4158 
4159 /**
4160  * task_nice - return the nice value of a given task.
4161  * @p: the task in question.
4162  */
4163 int task_nice(const struct task_struct *p)
4164 {
4165 	return TASK_NICE(p);
4166 }
4167 EXPORT_SYMBOL(task_nice);
4168 
4169 /**
4170  * idle_cpu - is a given cpu idle currently?
4171  * @cpu: the processor in question.
4172  */
4173 int idle_cpu(int cpu)
4174 {
4175 	struct rq *rq = cpu_rq(cpu);
4176 
4177 	if (rq->curr != rq->idle)
4178 		return 0;
4179 
4180 	if (rq->nr_running)
4181 		return 0;
4182 
4183 #ifdef CONFIG_SMP
4184 	if (!llist_empty(&rq->wake_list))
4185 		return 0;
4186 #endif
4187 
4188 	return 1;
4189 }
4190 
4191 /**
4192  * idle_task - return the idle task for a given cpu.
4193  * @cpu: the processor in question.
4194  */
4195 struct task_struct *idle_task(int cpu)
4196 {
4197 	return cpu_rq(cpu)->idle;
4198 }
4199 
4200 /**
4201  * find_process_by_pid - find a process with a matching PID value.
4202  * @pid: the pid in question.
4203  */
4204 static struct task_struct *find_process_by_pid(pid_t pid)
4205 {
4206 	return pid ? find_task_by_vpid(pid) : current;
4207 }
4208 
4209 /* Actually do priority change: must hold rq lock. */
4210 static void
4211 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4212 {
4213 	p->policy = policy;
4214 	p->rt_priority = prio;
4215 	p->normal_prio = normal_prio(p);
4216 	/* we are holding p->pi_lock already */
4217 	p->prio = rt_mutex_getprio(p);
4218 	if (rt_prio(p->prio))
4219 		p->sched_class = &rt_sched_class;
4220 	else
4221 		p->sched_class = &fair_sched_class;
4222 	set_load_weight(p);
4223 }
4224 
4225 /*
4226  * check the target process has a UID that matches the current process's
4227  */
4228 static bool check_same_owner(struct task_struct *p)
4229 {
4230 	const struct cred *cred = current_cred(), *pcred;
4231 	bool match;
4232 
4233 	rcu_read_lock();
4234 	pcred = __task_cred(p);
4235 	match = (uid_eq(cred->euid, pcred->euid) ||
4236 		 uid_eq(cred->euid, pcred->uid));
4237 	rcu_read_unlock();
4238 	return match;
4239 }
4240 
4241 static int __sched_setscheduler(struct task_struct *p, int policy,
4242 				const struct sched_param *param, bool user)
4243 {
4244 	int retval, oldprio, oldpolicy = -1, on_rq, running;
4245 	unsigned long flags;
4246 	const struct sched_class *prev_class;
4247 	struct rq *rq;
4248 	int reset_on_fork;
4249 
4250 	/* may grab non-irq protected spin_locks */
4251 	BUG_ON(in_interrupt());
4252 recheck:
4253 	/* double check policy once rq lock held */
4254 	if (policy < 0) {
4255 		reset_on_fork = p->sched_reset_on_fork;
4256 		policy = oldpolicy = p->policy;
4257 	} else {
4258 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4259 		policy &= ~SCHED_RESET_ON_FORK;
4260 
4261 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4262 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4263 				policy != SCHED_IDLE)
4264 			return -EINVAL;
4265 	}
4266 
4267 	/*
4268 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4269 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4270 	 * SCHED_BATCH and SCHED_IDLE is 0.
4271 	 */
4272 	if (param->sched_priority < 0 ||
4273 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4274 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4275 		return -EINVAL;
4276 	if (rt_policy(policy) != (param->sched_priority != 0))
4277 		return -EINVAL;
4278 
4279 	/*
4280 	 * Allow unprivileged RT tasks to decrease priority:
4281 	 */
4282 	if (user && !capable(CAP_SYS_NICE)) {
4283 		if (rt_policy(policy)) {
4284 			unsigned long rlim_rtprio =
4285 					task_rlimit(p, RLIMIT_RTPRIO);
4286 
4287 			/* can't set/change the rt policy */
4288 			if (policy != p->policy && !rlim_rtprio)
4289 				return -EPERM;
4290 
4291 			/* can't increase priority */
4292 			if (param->sched_priority > p->rt_priority &&
4293 			    param->sched_priority > rlim_rtprio)
4294 				return -EPERM;
4295 		}
4296 
4297 		/*
4298 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4299 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4300 		 */
4301 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4302 			if (!can_nice(p, TASK_NICE(p)))
4303 				return -EPERM;
4304 		}
4305 
4306 		/* can't change other user's priorities */
4307 		if (!check_same_owner(p))
4308 			return -EPERM;
4309 
4310 		/* Normal users shall not reset the sched_reset_on_fork flag */
4311 		if (p->sched_reset_on_fork && !reset_on_fork)
4312 			return -EPERM;
4313 	}
4314 
4315 	if (user) {
4316 		retval = security_task_setscheduler(p);
4317 		if (retval)
4318 			return retval;
4319 	}
4320 
4321 	/*
4322 	 * make sure no PI-waiters arrive (or leave) while we are
4323 	 * changing the priority of the task:
4324 	 *
4325 	 * To be able to change p->policy safely, the appropriate
4326 	 * runqueue lock must be held.
4327 	 */
4328 	rq = task_rq_lock(p, &flags);
4329 
4330 	/*
4331 	 * Changing the policy of the stop threads its a very bad idea
4332 	 */
4333 	if (p == rq->stop) {
4334 		task_rq_unlock(rq, p, &flags);
4335 		return -EINVAL;
4336 	}
4337 
4338 	/*
4339 	 * If not changing anything there's no need to proceed further:
4340 	 */
4341 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4342 			param->sched_priority == p->rt_priority))) {
4343 
4344 		__task_rq_unlock(rq);
4345 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4346 		return 0;
4347 	}
4348 
4349 #ifdef CONFIG_RT_GROUP_SCHED
4350 	if (user) {
4351 		/*
4352 		 * Do not allow realtime tasks into groups that have no runtime
4353 		 * assigned.
4354 		 */
4355 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4356 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4357 				!task_group_is_autogroup(task_group(p))) {
4358 			task_rq_unlock(rq, p, &flags);
4359 			return -EPERM;
4360 		}
4361 	}
4362 #endif
4363 
4364 	/* recheck policy now with rq lock held */
4365 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4366 		policy = oldpolicy = -1;
4367 		task_rq_unlock(rq, p, &flags);
4368 		goto recheck;
4369 	}
4370 	on_rq = p->on_rq;
4371 	running = task_current(rq, p);
4372 	if (on_rq)
4373 		dequeue_task(rq, p, 0);
4374 	if (running)
4375 		p->sched_class->put_prev_task(rq, p);
4376 
4377 	p->sched_reset_on_fork = reset_on_fork;
4378 
4379 	oldprio = p->prio;
4380 	prev_class = p->sched_class;
4381 	__setscheduler(rq, p, policy, param->sched_priority);
4382 
4383 	if (running)
4384 		p->sched_class->set_curr_task(rq);
4385 	if (on_rq)
4386 		enqueue_task(rq, p, 0);
4387 
4388 	check_class_changed(rq, p, prev_class, oldprio);
4389 	task_rq_unlock(rq, p, &flags);
4390 
4391 	rt_mutex_adjust_pi(p);
4392 
4393 	return 0;
4394 }
4395 
4396 /**
4397  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4398  * @p: the task in question.
4399  * @policy: new policy.
4400  * @param: structure containing the new RT priority.
4401  *
4402  * NOTE that the task may be already dead.
4403  */
4404 int sched_setscheduler(struct task_struct *p, int policy,
4405 		       const struct sched_param *param)
4406 {
4407 	return __sched_setscheduler(p, policy, param, true);
4408 }
4409 EXPORT_SYMBOL_GPL(sched_setscheduler);
4410 
4411 /**
4412  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4413  * @p: the task in question.
4414  * @policy: new policy.
4415  * @param: structure containing the new RT priority.
4416  *
4417  * Just like sched_setscheduler, only don't bother checking if the
4418  * current context has permission.  For example, this is needed in
4419  * stop_machine(): we create temporary high priority worker threads,
4420  * but our caller might not have that capability.
4421  */
4422 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4423 			       const struct sched_param *param)
4424 {
4425 	return __sched_setscheduler(p, policy, param, false);
4426 }
4427 
4428 static int
4429 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4430 {
4431 	struct sched_param lparam;
4432 	struct task_struct *p;
4433 	int retval;
4434 
4435 	if (!param || pid < 0)
4436 		return -EINVAL;
4437 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4438 		return -EFAULT;
4439 
4440 	rcu_read_lock();
4441 	retval = -ESRCH;
4442 	p = find_process_by_pid(pid);
4443 	if (p != NULL)
4444 		retval = sched_setscheduler(p, policy, &lparam);
4445 	rcu_read_unlock();
4446 
4447 	return retval;
4448 }
4449 
4450 /**
4451  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4452  * @pid: the pid in question.
4453  * @policy: new policy.
4454  * @param: structure containing the new RT priority.
4455  */
4456 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4457 		struct sched_param __user *, param)
4458 {
4459 	/* negative values for policy are not valid */
4460 	if (policy < 0)
4461 		return -EINVAL;
4462 
4463 	return do_sched_setscheduler(pid, policy, param);
4464 }
4465 
4466 /**
4467  * sys_sched_setparam - set/change the RT priority of a thread
4468  * @pid: the pid in question.
4469  * @param: structure containing the new RT priority.
4470  */
4471 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4472 {
4473 	return do_sched_setscheduler(pid, -1, param);
4474 }
4475 
4476 /**
4477  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4478  * @pid: the pid in question.
4479  */
4480 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4481 {
4482 	struct task_struct *p;
4483 	int retval;
4484 
4485 	if (pid < 0)
4486 		return -EINVAL;
4487 
4488 	retval = -ESRCH;
4489 	rcu_read_lock();
4490 	p = find_process_by_pid(pid);
4491 	if (p) {
4492 		retval = security_task_getscheduler(p);
4493 		if (!retval)
4494 			retval = p->policy
4495 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4496 	}
4497 	rcu_read_unlock();
4498 	return retval;
4499 }
4500 
4501 /**
4502  * sys_sched_getparam - get the RT priority of a thread
4503  * @pid: the pid in question.
4504  * @param: structure containing the RT priority.
4505  */
4506 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4507 {
4508 	struct sched_param lp;
4509 	struct task_struct *p;
4510 	int retval;
4511 
4512 	if (!param || pid < 0)
4513 		return -EINVAL;
4514 
4515 	rcu_read_lock();
4516 	p = find_process_by_pid(pid);
4517 	retval = -ESRCH;
4518 	if (!p)
4519 		goto out_unlock;
4520 
4521 	retval = security_task_getscheduler(p);
4522 	if (retval)
4523 		goto out_unlock;
4524 
4525 	lp.sched_priority = p->rt_priority;
4526 	rcu_read_unlock();
4527 
4528 	/*
4529 	 * This one might sleep, we cannot do it with a spinlock held ...
4530 	 */
4531 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4532 
4533 	return retval;
4534 
4535 out_unlock:
4536 	rcu_read_unlock();
4537 	return retval;
4538 }
4539 
4540 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4541 {
4542 	cpumask_var_t cpus_allowed, new_mask;
4543 	struct task_struct *p;
4544 	int retval;
4545 
4546 	get_online_cpus();
4547 	rcu_read_lock();
4548 
4549 	p = find_process_by_pid(pid);
4550 	if (!p) {
4551 		rcu_read_unlock();
4552 		put_online_cpus();
4553 		return -ESRCH;
4554 	}
4555 
4556 	/* Prevent p going away */
4557 	get_task_struct(p);
4558 	rcu_read_unlock();
4559 
4560 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4561 		retval = -ENOMEM;
4562 		goto out_put_task;
4563 	}
4564 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4565 		retval = -ENOMEM;
4566 		goto out_free_cpus_allowed;
4567 	}
4568 	retval = -EPERM;
4569 	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4570 		goto out_unlock;
4571 
4572 	retval = security_task_setscheduler(p);
4573 	if (retval)
4574 		goto out_unlock;
4575 
4576 	cpuset_cpus_allowed(p, cpus_allowed);
4577 	cpumask_and(new_mask, in_mask, cpus_allowed);
4578 again:
4579 	retval = set_cpus_allowed_ptr(p, new_mask);
4580 
4581 	if (!retval) {
4582 		cpuset_cpus_allowed(p, cpus_allowed);
4583 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4584 			/*
4585 			 * We must have raced with a concurrent cpuset
4586 			 * update. Just reset the cpus_allowed to the
4587 			 * cpuset's cpus_allowed
4588 			 */
4589 			cpumask_copy(new_mask, cpus_allowed);
4590 			goto again;
4591 		}
4592 	}
4593 out_unlock:
4594 	free_cpumask_var(new_mask);
4595 out_free_cpus_allowed:
4596 	free_cpumask_var(cpus_allowed);
4597 out_put_task:
4598 	put_task_struct(p);
4599 	put_online_cpus();
4600 	return retval;
4601 }
4602 
4603 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4604 			     struct cpumask *new_mask)
4605 {
4606 	if (len < cpumask_size())
4607 		cpumask_clear(new_mask);
4608 	else if (len > cpumask_size())
4609 		len = cpumask_size();
4610 
4611 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4612 }
4613 
4614 /**
4615  * sys_sched_setaffinity - set the cpu affinity of a process
4616  * @pid: pid of the process
4617  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4618  * @user_mask_ptr: user-space pointer to the new cpu mask
4619  */
4620 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4621 		unsigned long __user *, user_mask_ptr)
4622 {
4623 	cpumask_var_t new_mask;
4624 	int retval;
4625 
4626 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4627 		return -ENOMEM;
4628 
4629 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4630 	if (retval == 0)
4631 		retval = sched_setaffinity(pid, new_mask);
4632 	free_cpumask_var(new_mask);
4633 	return retval;
4634 }
4635 
4636 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4637 {
4638 	struct task_struct *p;
4639 	unsigned long flags;
4640 	int retval;
4641 
4642 	get_online_cpus();
4643 	rcu_read_lock();
4644 
4645 	retval = -ESRCH;
4646 	p = find_process_by_pid(pid);
4647 	if (!p)
4648 		goto out_unlock;
4649 
4650 	retval = security_task_getscheduler(p);
4651 	if (retval)
4652 		goto out_unlock;
4653 
4654 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4655 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4656 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4657 
4658 out_unlock:
4659 	rcu_read_unlock();
4660 	put_online_cpus();
4661 
4662 	return retval;
4663 }
4664 
4665 /**
4666  * sys_sched_getaffinity - get the cpu affinity of a process
4667  * @pid: pid of the process
4668  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4669  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4670  */
4671 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4672 		unsigned long __user *, user_mask_ptr)
4673 {
4674 	int ret;
4675 	cpumask_var_t mask;
4676 
4677 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4678 		return -EINVAL;
4679 	if (len & (sizeof(unsigned long)-1))
4680 		return -EINVAL;
4681 
4682 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4683 		return -ENOMEM;
4684 
4685 	ret = sched_getaffinity(pid, mask);
4686 	if (ret == 0) {
4687 		size_t retlen = min_t(size_t, len, cpumask_size());
4688 
4689 		if (copy_to_user(user_mask_ptr, mask, retlen))
4690 			ret = -EFAULT;
4691 		else
4692 			ret = retlen;
4693 	}
4694 	free_cpumask_var(mask);
4695 
4696 	return ret;
4697 }
4698 
4699 /**
4700  * sys_sched_yield - yield the current processor to other threads.
4701  *
4702  * This function yields the current CPU to other tasks. If there are no
4703  * other threads running on this CPU then this function will return.
4704  */
4705 SYSCALL_DEFINE0(sched_yield)
4706 {
4707 	struct rq *rq = this_rq_lock();
4708 
4709 	schedstat_inc(rq, yld_count);
4710 	current->sched_class->yield_task(rq);
4711 
4712 	/*
4713 	 * Since we are going to call schedule() anyway, there's
4714 	 * no need to preempt or enable interrupts:
4715 	 */
4716 	__release(rq->lock);
4717 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4718 	do_raw_spin_unlock(&rq->lock);
4719 	sched_preempt_enable_no_resched();
4720 
4721 	schedule();
4722 
4723 	return 0;
4724 }
4725 
4726 static inline int should_resched(void)
4727 {
4728 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4729 }
4730 
4731 static void __cond_resched(void)
4732 {
4733 	add_preempt_count(PREEMPT_ACTIVE);
4734 	__schedule();
4735 	sub_preempt_count(PREEMPT_ACTIVE);
4736 }
4737 
4738 int __sched _cond_resched(void)
4739 {
4740 	if (should_resched()) {
4741 		__cond_resched();
4742 		return 1;
4743 	}
4744 	return 0;
4745 }
4746 EXPORT_SYMBOL(_cond_resched);
4747 
4748 /*
4749  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4750  * call schedule, and on return reacquire the lock.
4751  *
4752  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4753  * operations here to prevent schedule() from being called twice (once via
4754  * spin_unlock(), once by hand).
4755  */
4756 int __cond_resched_lock(spinlock_t *lock)
4757 {
4758 	int resched = should_resched();
4759 	int ret = 0;
4760 
4761 	lockdep_assert_held(lock);
4762 
4763 	if (spin_needbreak(lock) || resched) {
4764 		spin_unlock(lock);
4765 		if (resched)
4766 			__cond_resched();
4767 		else
4768 			cpu_relax();
4769 		ret = 1;
4770 		spin_lock(lock);
4771 	}
4772 	return ret;
4773 }
4774 EXPORT_SYMBOL(__cond_resched_lock);
4775 
4776 int __sched __cond_resched_softirq(void)
4777 {
4778 	BUG_ON(!in_softirq());
4779 
4780 	if (should_resched()) {
4781 		local_bh_enable();
4782 		__cond_resched();
4783 		local_bh_disable();
4784 		return 1;
4785 	}
4786 	return 0;
4787 }
4788 EXPORT_SYMBOL(__cond_resched_softirq);
4789 
4790 /**
4791  * yield - yield the current processor to other threads.
4792  *
4793  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4794  *
4795  * The scheduler is at all times free to pick the calling task as the most
4796  * eligible task to run, if removing the yield() call from your code breaks
4797  * it, its already broken.
4798  *
4799  * Typical broken usage is:
4800  *
4801  * while (!event)
4802  * 	yield();
4803  *
4804  * where one assumes that yield() will let 'the other' process run that will
4805  * make event true. If the current task is a SCHED_FIFO task that will never
4806  * happen. Never use yield() as a progress guarantee!!
4807  *
4808  * If you want to use yield() to wait for something, use wait_event().
4809  * If you want to use yield() to be 'nice' for others, use cond_resched().
4810  * If you still want to use yield(), do not!
4811  */
4812 void __sched yield(void)
4813 {
4814 	set_current_state(TASK_RUNNING);
4815 	sys_sched_yield();
4816 }
4817 EXPORT_SYMBOL(yield);
4818 
4819 /**
4820  * yield_to - yield the current processor to another thread in
4821  * your thread group, or accelerate that thread toward the
4822  * processor it's on.
4823  * @p: target task
4824  * @preempt: whether task preemption is allowed or not
4825  *
4826  * It's the caller's job to ensure that the target task struct
4827  * can't go away on us before we can do any checks.
4828  *
4829  * Returns true if we indeed boosted the target task.
4830  */
4831 bool __sched yield_to(struct task_struct *p, bool preempt)
4832 {
4833 	struct task_struct *curr = current;
4834 	struct rq *rq, *p_rq;
4835 	unsigned long flags;
4836 	bool yielded = 0;
4837 
4838 	local_irq_save(flags);
4839 	rq = this_rq();
4840 
4841 again:
4842 	p_rq = task_rq(p);
4843 	double_rq_lock(rq, p_rq);
4844 	while (task_rq(p) != p_rq) {
4845 		double_rq_unlock(rq, p_rq);
4846 		goto again;
4847 	}
4848 
4849 	if (!curr->sched_class->yield_to_task)
4850 		goto out;
4851 
4852 	if (curr->sched_class != p->sched_class)
4853 		goto out;
4854 
4855 	if (task_running(p_rq, p) || p->state)
4856 		goto out;
4857 
4858 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4859 	if (yielded) {
4860 		schedstat_inc(rq, yld_count);
4861 		/*
4862 		 * Make p's CPU reschedule; pick_next_entity takes care of
4863 		 * fairness.
4864 		 */
4865 		if (preempt && rq != p_rq)
4866 			resched_task(p_rq->curr);
4867 	} else {
4868 		/*
4869 		 * We might have set it in task_yield_fair(), but are
4870 		 * not going to schedule(), so don't want to skip
4871 		 * the next update.
4872 		 */
4873 		rq->skip_clock_update = 0;
4874 	}
4875 
4876 out:
4877 	double_rq_unlock(rq, p_rq);
4878 	local_irq_restore(flags);
4879 
4880 	if (yielded)
4881 		schedule();
4882 
4883 	return yielded;
4884 }
4885 EXPORT_SYMBOL_GPL(yield_to);
4886 
4887 /*
4888  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4889  * that process accounting knows that this is a task in IO wait state.
4890  */
4891 void __sched io_schedule(void)
4892 {
4893 	struct rq *rq = raw_rq();
4894 
4895 	delayacct_blkio_start();
4896 	atomic_inc(&rq->nr_iowait);
4897 	blk_flush_plug(current);
4898 	current->in_iowait = 1;
4899 	schedule();
4900 	current->in_iowait = 0;
4901 	atomic_dec(&rq->nr_iowait);
4902 	delayacct_blkio_end();
4903 }
4904 EXPORT_SYMBOL(io_schedule);
4905 
4906 long __sched io_schedule_timeout(long timeout)
4907 {
4908 	struct rq *rq = raw_rq();
4909 	long ret;
4910 
4911 	delayacct_blkio_start();
4912 	atomic_inc(&rq->nr_iowait);
4913 	blk_flush_plug(current);
4914 	current->in_iowait = 1;
4915 	ret = schedule_timeout(timeout);
4916 	current->in_iowait = 0;
4917 	atomic_dec(&rq->nr_iowait);
4918 	delayacct_blkio_end();
4919 	return ret;
4920 }
4921 
4922 /**
4923  * sys_sched_get_priority_max - return maximum RT priority.
4924  * @policy: scheduling class.
4925  *
4926  * this syscall returns the maximum rt_priority that can be used
4927  * by a given scheduling class.
4928  */
4929 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4930 {
4931 	int ret = -EINVAL;
4932 
4933 	switch (policy) {
4934 	case SCHED_FIFO:
4935 	case SCHED_RR:
4936 		ret = MAX_USER_RT_PRIO-1;
4937 		break;
4938 	case SCHED_NORMAL:
4939 	case SCHED_BATCH:
4940 	case SCHED_IDLE:
4941 		ret = 0;
4942 		break;
4943 	}
4944 	return ret;
4945 }
4946 
4947 /**
4948  * sys_sched_get_priority_min - return minimum RT priority.
4949  * @policy: scheduling class.
4950  *
4951  * this syscall returns the minimum rt_priority that can be used
4952  * by a given scheduling class.
4953  */
4954 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4955 {
4956 	int ret = -EINVAL;
4957 
4958 	switch (policy) {
4959 	case SCHED_FIFO:
4960 	case SCHED_RR:
4961 		ret = 1;
4962 		break;
4963 	case SCHED_NORMAL:
4964 	case SCHED_BATCH:
4965 	case SCHED_IDLE:
4966 		ret = 0;
4967 	}
4968 	return ret;
4969 }
4970 
4971 /**
4972  * sys_sched_rr_get_interval - return the default timeslice of a process.
4973  * @pid: pid of the process.
4974  * @interval: userspace pointer to the timeslice value.
4975  *
4976  * this syscall writes the default timeslice value of a given process
4977  * into the user-space timespec buffer. A value of '0' means infinity.
4978  */
4979 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4980 		struct timespec __user *, interval)
4981 {
4982 	struct task_struct *p;
4983 	unsigned int time_slice;
4984 	unsigned long flags;
4985 	struct rq *rq;
4986 	int retval;
4987 	struct timespec t;
4988 
4989 	if (pid < 0)
4990 		return -EINVAL;
4991 
4992 	retval = -ESRCH;
4993 	rcu_read_lock();
4994 	p = find_process_by_pid(pid);
4995 	if (!p)
4996 		goto out_unlock;
4997 
4998 	retval = security_task_getscheduler(p);
4999 	if (retval)
5000 		goto out_unlock;
5001 
5002 	rq = task_rq_lock(p, &flags);
5003 	time_slice = p->sched_class->get_rr_interval(rq, p);
5004 	task_rq_unlock(rq, p, &flags);
5005 
5006 	rcu_read_unlock();
5007 	jiffies_to_timespec(time_slice, &t);
5008 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5009 	return retval;
5010 
5011 out_unlock:
5012 	rcu_read_unlock();
5013 	return retval;
5014 }
5015 
5016 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5017 
5018 void sched_show_task(struct task_struct *p)
5019 {
5020 	unsigned long free = 0;
5021 	unsigned state;
5022 
5023 	state = p->state ? __ffs(p->state) + 1 : 0;
5024 	printk(KERN_INFO "%-15.15s %c", p->comm,
5025 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5026 #if BITS_PER_LONG == 32
5027 	if (state == TASK_RUNNING)
5028 		printk(KERN_CONT " running  ");
5029 	else
5030 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5031 #else
5032 	if (state == TASK_RUNNING)
5033 		printk(KERN_CONT "  running task    ");
5034 	else
5035 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5036 #endif
5037 #ifdef CONFIG_DEBUG_STACK_USAGE
5038 	free = stack_not_used(p);
5039 #endif
5040 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5041 		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
5042 		(unsigned long)task_thread_info(p)->flags);
5043 
5044 	show_stack(p, NULL);
5045 }
5046 
5047 void show_state_filter(unsigned long state_filter)
5048 {
5049 	struct task_struct *g, *p;
5050 
5051 #if BITS_PER_LONG == 32
5052 	printk(KERN_INFO
5053 		"  task                PC stack   pid father\n");
5054 #else
5055 	printk(KERN_INFO
5056 		"  task                        PC stack   pid father\n");
5057 #endif
5058 	rcu_read_lock();
5059 	do_each_thread(g, p) {
5060 		/*
5061 		 * reset the NMI-timeout, listing all files on a slow
5062 		 * console might take a lot of time:
5063 		 */
5064 		touch_nmi_watchdog();
5065 		if (!state_filter || (p->state & state_filter))
5066 			sched_show_task(p);
5067 	} while_each_thread(g, p);
5068 
5069 	touch_all_softlockup_watchdogs();
5070 
5071 #ifdef CONFIG_SCHED_DEBUG
5072 	sysrq_sched_debug_show();
5073 #endif
5074 	rcu_read_unlock();
5075 	/*
5076 	 * Only show locks if all tasks are dumped:
5077 	 */
5078 	if (!state_filter)
5079 		debug_show_all_locks();
5080 }
5081 
5082 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5083 {
5084 	idle->sched_class = &idle_sched_class;
5085 }
5086 
5087 /**
5088  * init_idle - set up an idle thread for a given CPU
5089  * @idle: task in question
5090  * @cpu: cpu the idle task belongs to
5091  *
5092  * NOTE: this function does not set the idle thread's NEED_RESCHED
5093  * flag, to make booting more robust.
5094  */
5095 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5096 {
5097 	struct rq *rq = cpu_rq(cpu);
5098 	unsigned long flags;
5099 
5100 	raw_spin_lock_irqsave(&rq->lock, flags);
5101 
5102 	__sched_fork(idle);
5103 	idle->state = TASK_RUNNING;
5104 	idle->se.exec_start = sched_clock();
5105 
5106 	do_set_cpus_allowed(idle, cpumask_of(cpu));
5107 	/*
5108 	 * We're having a chicken and egg problem, even though we are
5109 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5110 	 * lockdep check in task_group() will fail.
5111 	 *
5112 	 * Similar case to sched_fork(). / Alternatively we could
5113 	 * use task_rq_lock() here and obtain the other rq->lock.
5114 	 *
5115 	 * Silence PROVE_RCU
5116 	 */
5117 	rcu_read_lock();
5118 	__set_task_cpu(idle, cpu);
5119 	rcu_read_unlock();
5120 
5121 	rq->curr = rq->idle = idle;
5122 #if defined(CONFIG_SMP)
5123 	idle->on_cpu = 1;
5124 #endif
5125 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5126 
5127 	/* Set the preempt count _outside_ the spinlocks! */
5128 	task_thread_info(idle)->preempt_count = 0;
5129 
5130 	/*
5131 	 * The idle tasks have their own, simple scheduling class:
5132 	 */
5133 	idle->sched_class = &idle_sched_class;
5134 	ftrace_graph_init_idle_task(idle, cpu);
5135 #if defined(CONFIG_SMP)
5136 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5137 #endif
5138 }
5139 
5140 #ifdef CONFIG_SMP
5141 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5142 {
5143 	if (p->sched_class && p->sched_class->set_cpus_allowed)
5144 		p->sched_class->set_cpus_allowed(p, new_mask);
5145 
5146 	cpumask_copy(&p->cpus_allowed, new_mask);
5147 	p->nr_cpus_allowed = cpumask_weight(new_mask);
5148 }
5149 
5150 /*
5151  * This is how migration works:
5152  *
5153  * 1) we invoke migration_cpu_stop() on the target CPU using
5154  *    stop_one_cpu().
5155  * 2) stopper starts to run (implicitly forcing the migrated thread
5156  *    off the CPU)
5157  * 3) it checks whether the migrated task is still in the wrong runqueue.
5158  * 4) if it's in the wrong runqueue then the migration thread removes
5159  *    it and puts it into the right queue.
5160  * 5) stopper completes and stop_one_cpu() returns and the migration
5161  *    is done.
5162  */
5163 
5164 /*
5165  * Change a given task's CPU affinity. Migrate the thread to a
5166  * proper CPU and schedule it away if the CPU it's executing on
5167  * is removed from the allowed bitmask.
5168  *
5169  * NOTE: the caller must have a valid reference to the task, the
5170  * task must not exit() & deallocate itself prematurely. The
5171  * call is not atomic; no spinlocks may be held.
5172  */
5173 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5174 {
5175 	unsigned long flags;
5176 	struct rq *rq;
5177 	unsigned int dest_cpu;
5178 	int ret = 0;
5179 
5180 	rq = task_rq_lock(p, &flags);
5181 
5182 	if (cpumask_equal(&p->cpus_allowed, new_mask))
5183 		goto out;
5184 
5185 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5186 		ret = -EINVAL;
5187 		goto out;
5188 	}
5189 
5190 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5191 		ret = -EINVAL;
5192 		goto out;
5193 	}
5194 
5195 	do_set_cpus_allowed(p, new_mask);
5196 
5197 	/* Can the task run on the task's current CPU? If so, we're done */
5198 	if (cpumask_test_cpu(task_cpu(p), new_mask))
5199 		goto out;
5200 
5201 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5202 	if (p->on_rq) {
5203 		struct migration_arg arg = { p, dest_cpu };
5204 		/* Need help from migration thread: drop lock and wait. */
5205 		task_rq_unlock(rq, p, &flags);
5206 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5207 		tlb_migrate_finish(p->mm);
5208 		return 0;
5209 	}
5210 out:
5211 	task_rq_unlock(rq, p, &flags);
5212 
5213 	return ret;
5214 }
5215 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5216 
5217 /*
5218  * Move (not current) task off this cpu, onto dest cpu. We're doing
5219  * this because either it can't run here any more (set_cpus_allowed()
5220  * away from this CPU, or CPU going down), or because we're
5221  * attempting to rebalance this task on exec (sched_exec).
5222  *
5223  * So we race with normal scheduler movements, but that's OK, as long
5224  * as the task is no longer on this CPU.
5225  *
5226  * Returns non-zero if task was successfully migrated.
5227  */
5228 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5229 {
5230 	struct rq *rq_dest, *rq_src;
5231 	int ret = 0;
5232 
5233 	if (unlikely(!cpu_active(dest_cpu)))
5234 		return ret;
5235 
5236 	rq_src = cpu_rq(src_cpu);
5237 	rq_dest = cpu_rq(dest_cpu);
5238 
5239 	raw_spin_lock(&p->pi_lock);
5240 	double_rq_lock(rq_src, rq_dest);
5241 	/* Already moved. */
5242 	if (task_cpu(p) != src_cpu)
5243 		goto done;
5244 	/* Affinity changed (again). */
5245 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5246 		goto fail;
5247 
5248 	/*
5249 	 * If we're not on a rq, the next wake-up will ensure we're
5250 	 * placed properly.
5251 	 */
5252 	if (p->on_rq) {
5253 		dequeue_task(rq_src, p, 0);
5254 		set_task_cpu(p, dest_cpu);
5255 		enqueue_task(rq_dest, p, 0);
5256 		check_preempt_curr(rq_dest, p, 0);
5257 	}
5258 done:
5259 	ret = 1;
5260 fail:
5261 	double_rq_unlock(rq_src, rq_dest);
5262 	raw_spin_unlock(&p->pi_lock);
5263 	return ret;
5264 }
5265 
5266 /*
5267  * migration_cpu_stop - this will be executed by a highprio stopper thread
5268  * and performs thread migration by bumping thread off CPU then
5269  * 'pushing' onto another runqueue.
5270  */
5271 static int migration_cpu_stop(void *data)
5272 {
5273 	struct migration_arg *arg = data;
5274 
5275 	/*
5276 	 * The original target cpu might have gone down and we might
5277 	 * be on another cpu but it doesn't matter.
5278 	 */
5279 	local_irq_disable();
5280 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5281 	local_irq_enable();
5282 	return 0;
5283 }
5284 
5285 #ifdef CONFIG_HOTPLUG_CPU
5286 
5287 /*
5288  * Ensures that the idle task is using init_mm right before its cpu goes
5289  * offline.
5290  */
5291 void idle_task_exit(void)
5292 {
5293 	struct mm_struct *mm = current->active_mm;
5294 
5295 	BUG_ON(cpu_online(smp_processor_id()));
5296 
5297 	if (mm != &init_mm)
5298 		switch_mm(mm, &init_mm, current);
5299 	mmdrop(mm);
5300 }
5301 
5302 /*
5303  * While a dead CPU has no uninterruptible tasks queued at this point,
5304  * it might still have a nonzero ->nr_uninterruptible counter, because
5305  * for performance reasons the counter is not stricly tracking tasks to
5306  * their home CPUs. So we just add the counter to another CPU's counter,
5307  * to keep the global sum constant after CPU-down:
5308  */
5309 static void migrate_nr_uninterruptible(struct rq *rq_src)
5310 {
5311 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5312 
5313 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5314 	rq_src->nr_uninterruptible = 0;
5315 }
5316 
5317 /*
5318  * remove the tasks which were accounted by rq from calc_load_tasks.
5319  */
5320 static void calc_global_load_remove(struct rq *rq)
5321 {
5322 	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5323 	rq->calc_load_active = 0;
5324 }
5325 
5326 /*
5327  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5328  * try_to_wake_up()->select_task_rq().
5329  *
5330  * Called with rq->lock held even though we'er in stop_machine() and
5331  * there's no concurrency possible, we hold the required locks anyway
5332  * because of lock validation efforts.
5333  */
5334 static void migrate_tasks(unsigned int dead_cpu)
5335 {
5336 	struct rq *rq = cpu_rq(dead_cpu);
5337 	struct task_struct *next, *stop = rq->stop;
5338 	int dest_cpu;
5339 
5340 	/*
5341 	 * Fudge the rq selection such that the below task selection loop
5342 	 * doesn't get stuck on the currently eligible stop task.
5343 	 *
5344 	 * We're currently inside stop_machine() and the rq is either stuck
5345 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5346 	 * either way we should never end up calling schedule() until we're
5347 	 * done here.
5348 	 */
5349 	rq->stop = NULL;
5350 
5351 	/* Ensure any throttled groups are reachable by pick_next_task */
5352 	unthrottle_offline_cfs_rqs(rq);
5353 
5354 	for ( ; ; ) {
5355 		/*
5356 		 * There's this thread running, bail when that's the only
5357 		 * remaining thread.
5358 		 */
5359 		if (rq->nr_running == 1)
5360 			break;
5361 
5362 		next = pick_next_task(rq);
5363 		BUG_ON(!next);
5364 		next->sched_class->put_prev_task(rq, next);
5365 
5366 		/* Find suitable destination for @next, with force if needed. */
5367 		dest_cpu = select_fallback_rq(dead_cpu, next);
5368 		raw_spin_unlock(&rq->lock);
5369 
5370 		__migrate_task(next, dead_cpu, dest_cpu);
5371 
5372 		raw_spin_lock(&rq->lock);
5373 	}
5374 
5375 	rq->stop = stop;
5376 }
5377 
5378 #endif /* CONFIG_HOTPLUG_CPU */
5379 
5380 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5381 
5382 static struct ctl_table sd_ctl_dir[] = {
5383 	{
5384 		.procname	= "sched_domain",
5385 		.mode		= 0555,
5386 	},
5387 	{}
5388 };
5389 
5390 static struct ctl_table sd_ctl_root[] = {
5391 	{
5392 		.procname	= "kernel",
5393 		.mode		= 0555,
5394 		.child		= sd_ctl_dir,
5395 	},
5396 	{}
5397 };
5398 
5399 static struct ctl_table *sd_alloc_ctl_entry(int n)
5400 {
5401 	struct ctl_table *entry =
5402 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5403 
5404 	return entry;
5405 }
5406 
5407 static void sd_free_ctl_entry(struct ctl_table **tablep)
5408 {
5409 	struct ctl_table *entry;
5410 
5411 	/*
5412 	 * In the intermediate directories, both the child directory and
5413 	 * procname are dynamically allocated and could fail but the mode
5414 	 * will always be set. In the lowest directory the names are
5415 	 * static strings and all have proc handlers.
5416 	 */
5417 	for (entry = *tablep; entry->mode; entry++) {
5418 		if (entry->child)
5419 			sd_free_ctl_entry(&entry->child);
5420 		if (entry->proc_handler == NULL)
5421 			kfree(entry->procname);
5422 	}
5423 
5424 	kfree(*tablep);
5425 	*tablep = NULL;
5426 }
5427 
5428 static void
5429 set_table_entry(struct ctl_table *entry,
5430 		const char *procname, void *data, int maxlen,
5431 		umode_t mode, proc_handler *proc_handler)
5432 {
5433 	entry->procname = procname;
5434 	entry->data = data;
5435 	entry->maxlen = maxlen;
5436 	entry->mode = mode;
5437 	entry->proc_handler = proc_handler;
5438 }
5439 
5440 static struct ctl_table *
5441 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5442 {
5443 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5444 
5445 	if (table == NULL)
5446 		return NULL;
5447 
5448 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5449 		sizeof(long), 0644, proc_doulongvec_minmax);
5450 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5451 		sizeof(long), 0644, proc_doulongvec_minmax);
5452 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5453 		sizeof(int), 0644, proc_dointvec_minmax);
5454 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5455 		sizeof(int), 0644, proc_dointvec_minmax);
5456 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5457 		sizeof(int), 0644, proc_dointvec_minmax);
5458 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5459 		sizeof(int), 0644, proc_dointvec_minmax);
5460 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5461 		sizeof(int), 0644, proc_dointvec_minmax);
5462 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5463 		sizeof(int), 0644, proc_dointvec_minmax);
5464 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5465 		sizeof(int), 0644, proc_dointvec_minmax);
5466 	set_table_entry(&table[9], "cache_nice_tries",
5467 		&sd->cache_nice_tries,
5468 		sizeof(int), 0644, proc_dointvec_minmax);
5469 	set_table_entry(&table[10], "flags", &sd->flags,
5470 		sizeof(int), 0644, proc_dointvec_minmax);
5471 	set_table_entry(&table[11], "name", sd->name,
5472 		CORENAME_MAX_SIZE, 0444, proc_dostring);
5473 	/* &table[12] is terminator */
5474 
5475 	return table;
5476 }
5477 
5478 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5479 {
5480 	struct ctl_table *entry, *table;
5481 	struct sched_domain *sd;
5482 	int domain_num = 0, i;
5483 	char buf[32];
5484 
5485 	for_each_domain(cpu, sd)
5486 		domain_num++;
5487 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5488 	if (table == NULL)
5489 		return NULL;
5490 
5491 	i = 0;
5492 	for_each_domain(cpu, sd) {
5493 		snprintf(buf, 32, "domain%d", i);
5494 		entry->procname = kstrdup(buf, GFP_KERNEL);
5495 		entry->mode = 0555;
5496 		entry->child = sd_alloc_ctl_domain_table(sd);
5497 		entry++;
5498 		i++;
5499 	}
5500 	return table;
5501 }
5502 
5503 static struct ctl_table_header *sd_sysctl_header;
5504 static void register_sched_domain_sysctl(void)
5505 {
5506 	int i, cpu_num = num_possible_cpus();
5507 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5508 	char buf[32];
5509 
5510 	WARN_ON(sd_ctl_dir[0].child);
5511 	sd_ctl_dir[0].child = entry;
5512 
5513 	if (entry == NULL)
5514 		return;
5515 
5516 	for_each_possible_cpu(i) {
5517 		snprintf(buf, 32, "cpu%d", i);
5518 		entry->procname = kstrdup(buf, GFP_KERNEL);
5519 		entry->mode = 0555;
5520 		entry->child = sd_alloc_ctl_cpu_table(i);
5521 		entry++;
5522 	}
5523 
5524 	WARN_ON(sd_sysctl_header);
5525 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5526 }
5527 
5528 /* may be called multiple times per register */
5529 static void unregister_sched_domain_sysctl(void)
5530 {
5531 	if (sd_sysctl_header)
5532 		unregister_sysctl_table(sd_sysctl_header);
5533 	sd_sysctl_header = NULL;
5534 	if (sd_ctl_dir[0].child)
5535 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5536 }
5537 #else
5538 static void register_sched_domain_sysctl(void)
5539 {
5540 }
5541 static void unregister_sched_domain_sysctl(void)
5542 {
5543 }
5544 #endif
5545 
5546 static void set_rq_online(struct rq *rq)
5547 {
5548 	if (!rq->online) {
5549 		const struct sched_class *class;
5550 
5551 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5552 		rq->online = 1;
5553 
5554 		for_each_class(class) {
5555 			if (class->rq_online)
5556 				class->rq_online(rq);
5557 		}
5558 	}
5559 }
5560 
5561 static void set_rq_offline(struct rq *rq)
5562 {
5563 	if (rq->online) {
5564 		const struct sched_class *class;
5565 
5566 		for_each_class(class) {
5567 			if (class->rq_offline)
5568 				class->rq_offline(rq);
5569 		}
5570 
5571 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5572 		rq->online = 0;
5573 	}
5574 }
5575 
5576 /*
5577  * migration_call - callback that gets triggered when a CPU is added.
5578  * Here we can start up the necessary migration thread for the new CPU.
5579  */
5580 static int __cpuinit
5581 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5582 {
5583 	int cpu = (long)hcpu;
5584 	unsigned long flags;
5585 	struct rq *rq = cpu_rq(cpu);
5586 
5587 	switch (action & ~CPU_TASKS_FROZEN) {
5588 
5589 	case CPU_UP_PREPARE:
5590 		rq->calc_load_update = calc_load_update;
5591 		break;
5592 
5593 	case CPU_ONLINE:
5594 		/* Update our root-domain */
5595 		raw_spin_lock_irqsave(&rq->lock, flags);
5596 		if (rq->rd) {
5597 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5598 
5599 			set_rq_online(rq);
5600 		}
5601 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5602 		break;
5603 
5604 #ifdef CONFIG_HOTPLUG_CPU
5605 	case CPU_DYING:
5606 		sched_ttwu_pending();
5607 		/* Update our root-domain */
5608 		raw_spin_lock_irqsave(&rq->lock, flags);
5609 		if (rq->rd) {
5610 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5611 			set_rq_offline(rq);
5612 		}
5613 		migrate_tasks(cpu);
5614 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5615 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5616 
5617 		migrate_nr_uninterruptible(rq);
5618 		calc_global_load_remove(rq);
5619 		break;
5620 #endif
5621 	}
5622 
5623 	update_max_interval();
5624 
5625 	return NOTIFY_OK;
5626 }
5627 
5628 /*
5629  * Register at high priority so that task migration (migrate_all_tasks)
5630  * happens before everything else.  This has to be lower priority than
5631  * the notifier in the perf_event subsystem, though.
5632  */
5633 static struct notifier_block __cpuinitdata migration_notifier = {
5634 	.notifier_call = migration_call,
5635 	.priority = CPU_PRI_MIGRATION,
5636 };
5637 
5638 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5639 				      unsigned long action, void *hcpu)
5640 {
5641 	switch (action & ~CPU_TASKS_FROZEN) {
5642 	case CPU_STARTING:
5643 	case CPU_DOWN_FAILED:
5644 		set_cpu_active((long)hcpu, true);
5645 		return NOTIFY_OK;
5646 	default:
5647 		return NOTIFY_DONE;
5648 	}
5649 }
5650 
5651 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5652 					unsigned long action, void *hcpu)
5653 {
5654 	switch (action & ~CPU_TASKS_FROZEN) {
5655 	case CPU_DOWN_PREPARE:
5656 		set_cpu_active((long)hcpu, false);
5657 		return NOTIFY_OK;
5658 	default:
5659 		return NOTIFY_DONE;
5660 	}
5661 }
5662 
5663 static int __init migration_init(void)
5664 {
5665 	void *cpu = (void *)(long)smp_processor_id();
5666 	int err;
5667 
5668 	/* Initialize migration for the boot CPU */
5669 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5670 	BUG_ON(err == NOTIFY_BAD);
5671 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5672 	register_cpu_notifier(&migration_notifier);
5673 
5674 	/* Register cpu active notifiers */
5675 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5676 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5677 
5678 	return 0;
5679 }
5680 early_initcall(migration_init);
5681 #endif
5682 
5683 #ifdef CONFIG_SMP
5684 
5685 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5686 
5687 #ifdef CONFIG_SCHED_DEBUG
5688 
5689 static __read_mostly int sched_debug_enabled;
5690 
5691 static int __init sched_debug_setup(char *str)
5692 {
5693 	sched_debug_enabled = 1;
5694 
5695 	return 0;
5696 }
5697 early_param("sched_debug", sched_debug_setup);
5698 
5699 static inline bool sched_debug(void)
5700 {
5701 	return sched_debug_enabled;
5702 }
5703 
5704 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5705 				  struct cpumask *groupmask)
5706 {
5707 	struct sched_group *group = sd->groups;
5708 	char str[256];
5709 
5710 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5711 	cpumask_clear(groupmask);
5712 
5713 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5714 
5715 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5716 		printk("does not load-balance\n");
5717 		if (sd->parent)
5718 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5719 					" has parent");
5720 		return -1;
5721 	}
5722 
5723 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5724 
5725 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5726 		printk(KERN_ERR "ERROR: domain->span does not contain "
5727 				"CPU%d\n", cpu);
5728 	}
5729 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5730 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5731 				" CPU%d\n", cpu);
5732 	}
5733 
5734 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5735 	do {
5736 		if (!group) {
5737 			printk("\n");
5738 			printk(KERN_ERR "ERROR: group is NULL\n");
5739 			break;
5740 		}
5741 
5742 		/*
5743 		 * Even though we initialize ->power to something semi-sane,
5744 		 * we leave power_orig unset. This allows us to detect if
5745 		 * domain iteration is still funny without causing /0 traps.
5746 		 */
5747 		if (!group->sgp->power_orig) {
5748 			printk(KERN_CONT "\n");
5749 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5750 					"set\n");
5751 			break;
5752 		}
5753 
5754 		if (!cpumask_weight(sched_group_cpus(group))) {
5755 			printk(KERN_CONT "\n");
5756 			printk(KERN_ERR "ERROR: empty group\n");
5757 			break;
5758 		}
5759 
5760 		if (!(sd->flags & SD_OVERLAP) &&
5761 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5762 			printk(KERN_CONT "\n");
5763 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5764 			break;
5765 		}
5766 
5767 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5768 
5769 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5770 
5771 		printk(KERN_CONT " %s", str);
5772 		if (group->sgp->power != SCHED_POWER_SCALE) {
5773 			printk(KERN_CONT " (cpu_power = %d)",
5774 				group->sgp->power);
5775 		}
5776 
5777 		group = group->next;
5778 	} while (group != sd->groups);
5779 	printk(KERN_CONT "\n");
5780 
5781 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5782 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5783 
5784 	if (sd->parent &&
5785 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5786 		printk(KERN_ERR "ERROR: parent span is not a superset "
5787 			"of domain->span\n");
5788 	return 0;
5789 }
5790 
5791 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5792 {
5793 	int level = 0;
5794 
5795 	if (!sched_debug_enabled)
5796 		return;
5797 
5798 	if (!sd) {
5799 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5800 		return;
5801 	}
5802 
5803 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5804 
5805 	for (;;) {
5806 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5807 			break;
5808 		level++;
5809 		sd = sd->parent;
5810 		if (!sd)
5811 			break;
5812 	}
5813 }
5814 #else /* !CONFIG_SCHED_DEBUG */
5815 # define sched_domain_debug(sd, cpu) do { } while (0)
5816 static inline bool sched_debug(void)
5817 {
5818 	return false;
5819 }
5820 #endif /* CONFIG_SCHED_DEBUG */
5821 
5822 static int sd_degenerate(struct sched_domain *sd)
5823 {
5824 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5825 		return 1;
5826 
5827 	/* Following flags need at least 2 groups */
5828 	if (sd->flags & (SD_LOAD_BALANCE |
5829 			 SD_BALANCE_NEWIDLE |
5830 			 SD_BALANCE_FORK |
5831 			 SD_BALANCE_EXEC |
5832 			 SD_SHARE_CPUPOWER |
5833 			 SD_SHARE_PKG_RESOURCES)) {
5834 		if (sd->groups != sd->groups->next)
5835 			return 0;
5836 	}
5837 
5838 	/* Following flags don't use groups */
5839 	if (sd->flags & (SD_WAKE_AFFINE))
5840 		return 0;
5841 
5842 	return 1;
5843 }
5844 
5845 static int
5846 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5847 {
5848 	unsigned long cflags = sd->flags, pflags = parent->flags;
5849 
5850 	if (sd_degenerate(parent))
5851 		return 1;
5852 
5853 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5854 		return 0;
5855 
5856 	/* Flags needing groups don't count if only 1 group in parent */
5857 	if (parent->groups == parent->groups->next) {
5858 		pflags &= ~(SD_LOAD_BALANCE |
5859 				SD_BALANCE_NEWIDLE |
5860 				SD_BALANCE_FORK |
5861 				SD_BALANCE_EXEC |
5862 				SD_SHARE_CPUPOWER |
5863 				SD_SHARE_PKG_RESOURCES);
5864 		if (nr_node_ids == 1)
5865 			pflags &= ~SD_SERIALIZE;
5866 	}
5867 	if (~cflags & pflags)
5868 		return 0;
5869 
5870 	return 1;
5871 }
5872 
5873 static void free_rootdomain(struct rcu_head *rcu)
5874 {
5875 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5876 
5877 	cpupri_cleanup(&rd->cpupri);
5878 	free_cpumask_var(rd->rto_mask);
5879 	free_cpumask_var(rd->online);
5880 	free_cpumask_var(rd->span);
5881 	kfree(rd);
5882 }
5883 
5884 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5885 {
5886 	struct root_domain *old_rd = NULL;
5887 	unsigned long flags;
5888 
5889 	raw_spin_lock_irqsave(&rq->lock, flags);
5890 
5891 	if (rq->rd) {
5892 		old_rd = rq->rd;
5893 
5894 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5895 			set_rq_offline(rq);
5896 
5897 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5898 
5899 		/*
5900 		 * If we dont want to free the old_rt yet then
5901 		 * set old_rd to NULL to skip the freeing later
5902 		 * in this function:
5903 		 */
5904 		if (!atomic_dec_and_test(&old_rd->refcount))
5905 			old_rd = NULL;
5906 	}
5907 
5908 	atomic_inc(&rd->refcount);
5909 	rq->rd = rd;
5910 
5911 	cpumask_set_cpu(rq->cpu, rd->span);
5912 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5913 		set_rq_online(rq);
5914 
5915 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5916 
5917 	if (old_rd)
5918 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5919 }
5920 
5921 static int init_rootdomain(struct root_domain *rd)
5922 {
5923 	memset(rd, 0, sizeof(*rd));
5924 
5925 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5926 		goto out;
5927 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5928 		goto free_span;
5929 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5930 		goto free_online;
5931 
5932 	if (cpupri_init(&rd->cpupri) != 0)
5933 		goto free_rto_mask;
5934 	return 0;
5935 
5936 free_rto_mask:
5937 	free_cpumask_var(rd->rto_mask);
5938 free_online:
5939 	free_cpumask_var(rd->online);
5940 free_span:
5941 	free_cpumask_var(rd->span);
5942 out:
5943 	return -ENOMEM;
5944 }
5945 
5946 /*
5947  * By default the system creates a single root-domain with all cpus as
5948  * members (mimicking the global state we have today).
5949  */
5950 struct root_domain def_root_domain;
5951 
5952 static void init_defrootdomain(void)
5953 {
5954 	init_rootdomain(&def_root_domain);
5955 
5956 	atomic_set(&def_root_domain.refcount, 1);
5957 }
5958 
5959 static struct root_domain *alloc_rootdomain(void)
5960 {
5961 	struct root_domain *rd;
5962 
5963 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5964 	if (!rd)
5965 		return NULL;
5966 
5967 	if (init_rootdomain(rd) != 0) {
5968 		kfree(rd);
5969 		return NULL;
5970 	}
5971 
5972 	return rd;
5973 }
5974 
5975 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5976 {
5977 	struct sched_group *tmp, *first;
5978 
5979 	if (!sg)
5980 		return;
5981 
5982 	first = sg;
5983 	do {
5984 		tmp = sg->next;
5985 
5986 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5987 			kfree(sg->sgp);
5988 
5989 		kfree(sg);
5990 		sg = tmp;
5991 	} while (sg != first);
5992 }
5993 
5994 static void free_sched_domain(struct rcu_head *rcu)
5995 {
5996 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5997 
5998 	/*
5999 	 * If its an overlapping domain it has private groups, iterate and
6000 	 * nuke them all.
6001 	 */
6002 	if (sd->flags & SD_OVERLAP) {
6003 		free_sched_groups(sd->groups, 1);
6004 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6005 		kfree(sd->groups->sgp);
6006 		kfree(sd->groups);
6007 	}
6008 	kfree(sd);
6009 }
6010 
6011 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6012 {
6013 	call_rcu(&sd->rcu, free_sched_domain);
6014 }
6015 
6016 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6017 {
6018 	for (; sd; sd = sd->parent)
6019 		destroy_sched_domain(sd, cpu);
6020 }
6021 
6022 /*
6023  * Keep a special pointer to the highest sched_domain that has
6024  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6025  * allows us to avoid some pointer chasing select_idle_sibling().
6026  *
6027  * Iterate domains and sched_groups downward, assigning CPUs to be
6028  * select_idle_sibling() hw buddy.  Cross-wiring hw makes bouncing
6029  * due to random perturbation self canceling, ie sw buddies pull
6030  * their counterpart to their CPU's hw counterpart.
6031  *
6032  * Also keep a unique ID per domain (we use the first cpu number in
6033  * the cpumask of the domain), this allows us to quickly tell if
6034  * two cpus are in the same cache domain, see cpus_share_cache().
6035  */
6036 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6037 DEFINE_PER_CPU(int, sd_llc_id);
6038 
6039 static void update_top_cache_domain(int cpu)
6040 {
6041 	struct sched_domain *sd;
6042 	int id = cpu;
6043 
6044 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6045 	if (sd) {
6046 		struct sched_domain *tmp = sd;
6047 		struct sched_group *sg, *prev;
6048 		bool right;
6049 
6050 		/*
6051 		 * Traverse to first CPU in group, and count hops
6052 		 * to cpu from there, switching direction on each
6053 		 * hop, never ever pointing the last CPU rightward.
6054 		 */
6055 		do {
6056 			id = cpumask_first(sched_domain_span(tmp));
6057 			prev = sg = tmp->groups;
6058 			right = 1;
6059 
6060 			while (cpumask_first(sched_group_cpus(sg)) != id)
6061 				sg = sg->next;
6062 
6063 			while (!cpumask_test_cpu(cpu, sched_group_cpus(sg))) {
6064 				prev = sg;
6065 				sg = sg->next;
6066 				right = !right;
6067 			}
6068 
6069 			/* A CPU went down, never point back to domain start. */
6070 			if (right && cpumask_first(sched_group_cpus(sg->next)) == id)
6071 				right = false;
6072 
6073 			sg = right ? sg->next : prev;
6074 			tmp->idle_buddy = cpumask_first(sched_group_cpus(sg));
6075 		} while ((tmp = tmp->child));
6076 
6077 		id = cpumask_first(sched_domain_span(sd));
6078 	}
6079 
6080 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6081 	per_cpu(sd_llc_id, cpu) = id;
6082 }
6083 
6084 /*
6085  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6086  * hold the hotplug lock.
6087  */
6088 static void
6089 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6090 {
6091 	struct rq *rq = cpu_rq(cpu);
6092 	struct sched_domain *tmp;
6093 
6094 	/* Remove the sched domains which do not contribute to scheduling. */
6095 	for (tmp = sd; tmp; ) {
6096 		struct sched_domain *parent = tmp->parent;
6097 		if (!parent)
6098 			break;
6099 
6100 		if (sd_parent_degenerate(tmp, parent)) {
6101 			tmp->parent = parent->parent;
6102 			if (parent->parent)
6103 				parent->parent->child = tmp;
6104 			destroy_sched_domain(parent, cpu);
6105 		} else
6106 			tmp = tmp->parent;
6107 	}
6108 
6109 	if (sd && sd_degenerate(sd)) {
6110 		tmp = sd;
6111 		sd = sd->parent;
6112 		destroy_sched_domain(tmp, cpu);
6113 		if (sd)
6114 			sd->child = NULL;
6115 	}
6116 
6117 	sched_domain_debug(sd, cpu);
6118 
6119 	rq_attach_root(rq, rd);
6120 	tmp = rq->sd;
6121 	rcu_assign_pointer(rq->sd, sd);
6122 	destroy_sched_domains(tmp, cpu);
6123 
6124 	update_top_cache_domain(cpu);
6125 }
6126 
6127 /* cpus with isolated domains */
6128 static cpumask_var_t cpu_isolated_map;
6129 
6130 /* Setup the mask of cpus configured for isolated domains */
6131 static int __init isolated_cpu_setup(char *str)
6132 {
6133 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6134 	cpulist_parse(str, cpu_isolated_map);
6135 	return 1;
6136 }
6137 
6138 __setup("isolcpus=", isolated_cpu_setup);
6139 
6140 static const struct cpumask *cpu_cpu_mask(int cpu)
6141 {
6142 	return cpumask_of_node(cpu_to_node(cpu));
6143 }
6144 
6145 struct sd_data {
6146 	struct sched_domain **__percpu sd;
6147 	struct sched_group **__percpu sg;
6148 	struct sched_group_power **__percpu sgp;
6149 };
6150 
6151 struct s_data {
6152 	struct sched_domain ** __percpu sd;
6153 	struct root_domain	*rd;
6154 };
6155 
6156 enum s_alloc {
6157 	sa_rootdomain,
6158 	sa_sd,
6159 	sa_sd_storage,
6160 	sa_none,
6161 };
6162 
6163 struct sched_domain_topology_level;
6164 
6165 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6166 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6167 
6168 #define SDTL_OVERLAP	0x01
6169 
6170 struct sched_domain_topology_level {
6171 	sched_domain_init_f init;
6172 	sched_domain_mask_f mask;
6173 	int		    flags;
6174 	int		    numa_level;
6175 	struct sd_data      data;
6176 };
6177 
6178 /*
6179  * Build an iteration mask that can exclude certain CPUs from the upwards
6180  * domain traversal.
6181  *
6182  * Asymmetric node setups can result in situations where the domain tree is of
6183  * unequal depth, make sure to skip domains that already cover the entire
6184  * range.
6185  *
6186  * In that case build_sched_domains() will have terminated the iteration early
6187  * and our sibling sd spans will be empty. Domains should always include the
6188  * cpu they're built on, so check that.
6189  *
6190  */
6191 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6192 {
6193 	const struct cpumask *span = sched_domain_span(sd);
6194 	struct sd_data *sdd = sd->private;
6195 	struct sched_domain *sibling;
6196 	int i;
6197 
6198 	for_each_cpu(i, span) {
6199 		sibling = *per_cpu_ptr(sdd->sd, i);
6200 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6201 			continue;
6202 
6203 		cpumask_set_cpu(i, sched_group_mask(sg));
6204 	}
6205 }
6206 
6207 /*
6208  * Return the canonical balance cpu for this group, this is the first cpu
6209  * of this group that's also in the iteration mask.
6210  */
6211 int group_balance_cpu(struct sched_group *sg)
6212 {
6213 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6214 }
6215 
6216 static int
6217 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6218 {
6219 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6220 	const struct cpumask *span = sched_domain_span(sd);
6221 	struct cpumask *covered = sched_domains_tmpmask;
6222 	struct sd_data *sdd = sd->private;
6223 	struct sched_domain *child;
6224 	int i;
6225 
6226 	cpumask_clear(covered);
6227 
6228 	for_each_cpu(i, span) {
6229 		struct cpumask *sg_span;
6230 
6231 		if (cpumask_test_cpu(i, covered))
6232 			continue;
6233 
6234 		child = *per_cpu_ptr(sdd->sd, i);
6235 
6236 		/* See the comment near build_group_mask(). */
6237 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
6238 			continue;
6239 
6240 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6241 				GFP_KERNEL, cpu_to_node(cpu));
6242 
6243 		if (!sg)
6244 			goto fail;
6245 
6246 		sg_span = sched_group_cpus(sg);
6247 		if (child->child) {
6248 			child = child->child;
6249 			cpumask_copy(sg_span, sched_domain_span(child));
6250 		} else
6251 			cpumask_set_cpu(i, sg_span);
6252 
6253 		cpumask_or(covered, covered, sg_span);
6254 
6255 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
6256 		if (atomic_inc_return(&sg->sgp->ref) == 1)
6257 			build_group_mask(sd, sg);
6258 
6259 		/*
6260 		 * Initialize sgp->power such that even if we mess up the
6261 		 * domains and no possible iteration will get us here, we won't
6262 		 * die on a /0 trap.
6263 		 */
6264 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
6265 
6266 		/*
6267 		 * Make sure the first group of this domain contains the
6268 		 * canonical balance cpu. Otherwise the sched_domain iteration
6269 		 * breaks. See update_sg_lb_stats().
6270 		 */
6271 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6272 		    group_balance_cpu(sg) == cpu)
6273 			groups = sg;
6274 
6275 		if (!first)
6276 			first = sg;
6277 		if (last)
6278 			last->next = sg;
6279 		last = sg;
6280 		last->next = first;
6281 	}
6282 	sd->groups = groups;
6283 
6284 	return 0;
6285 
6286 fail:
6287 	free_sched_groups(first, 0);
6288 
6289 	return -ENOMEM;
6290 }
6291 
6292 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6293 {
6294 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6295 	struct sched_domain *child = sd->child;
6296 
6297 	if (child)
6298 		cpu = cpumask_first(sched_domain_span(child));
6299 
6300 	if (sg) {
6301 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6302 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6303 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6304 	}
6305 
6306 	return cpu;
6307 }
6308 
6309 /*
6310  * build_sched_groups will build a circular linked list of the groups
6311  * covered by the given span, and will set each group's ->cpumask correctly,
6312  * and ->cpu_power to 0.
6313  *
6314  * Assumes the sched_domain tree is fully constructed
6315  */
6316 static int
6317 build_sched_groups(struct sched_domain *sd, int cpu)
6318 {
6319 	struct sched_group *first = NULL, *last = NULL;
6320 	struct sd_data *sdd = sd->private;
6321 	const struct cpumask *span = sched_domain_span(sd);
6322 	struct cpumask *covered;
6323 	int i;
6324 
6325 	get_group(cpu, sdd, &sd->groups);
6326 	atomic_inc(&sd->groups->ref);
6327 
6328 	if (cpu != cpumask_first(sched_domain_span(sd)))
6329 		return 0;
6330 
6331 	lockdep_assert_held(&sched_domains_mutex);
6332 	covered = sched_domains_tmpmask;
6333 
6334 	cpumask_clear(covered);
6335 
6336 	for_each_cpu(i, span) {
6337 		struct sched_group *sg;
6338 		int group = get_group(i, sdd, &sg);
6339 		int j;
6340 
6341 		if (cpumask_test_cpu(i, covered))
6342 			continue;
6343 
6344 		cpumask_clear(sched_group_cpus(sg));
6345 		sg->sgp->power = 0;
6346 		cpumask_setall(sched_group_mask(sg));
6347 
6348 		for_each_cpu(j, span) {
6349 			if (get_group(j, sdd, NULL) != group)
6350 				continue;
6351 
6352 			cpumask_set_cpu(j, covered);
6353 			cpumask_set_cpu(j, sched_group_cpus(sg));
6354 		}
6355 
6356 		if (!first)
6357 			first = sg;
6358 		if (last)
6359 			last->next = sg;
6360 		last = sg;
6361 	}
6362 	last->next = first;
6363 
6364 	return 0;
6365 }
6366 
6367 /*
6368  * Initialize sched groups cpu_power.
6369  *
6370  * cpu_power indicates the capacity of sched group, which is used while
6371  * distributing the load between different sched groups in a sched domain.
6372  * Typically cpu_power for all the groups in a sched domain will be same unless
6373  * there are asymmetries in the topology. If there are asymmetries, group
6374  * having more cpu_power will pickup more load compared to the group having
6375  * less cpu_power.
6376  */
6377 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6378 {
6379 	struct sched_group *sg = sd->groups;
6380 
6381 	WARN_ON(!sd || !sg);
6382 
6383 	do {
6384 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6385 		sg = sg->next;
6386 	} while (sg != sd->groups);
6387 
6388 	if (cpu != group_balance_cpu(sg))
6389 		return;
6390 
6391 	update_group_power(sd, cpu);
6392 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6393 }
6394 
6395 int __weak arch_sd_sibling_asym_packing(void)
6396 {
6397        return 0*SD_ASYM_PACKING;
6398 }
6399 
6400 /*
6401  * Initializers for schedule domains
6402  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6403  */
6404 
6405 #ifdef CONFIG_SCHED_DEBUG
6406 # define SD_INIT_NAME(sd, type)		sd->name = #type
6407 #else
6408 # define SD_INIT_NAME(sd, type)		do { } while (0)
6409 #endif
6410 
6411 #define SD_INIT_FUNC(type)						\
6412 static noinline struct sched_domain *					\
6413 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6414 {									\
6415 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6416 	*sd = SD_##type##_INIT;						\
6417 	SD_INIT_NAME(sd, type);						\
6418 	sd->private = &tl->data;					\
6419 	return sd;							\
6420 }
6421 
6422 SD_INIT_FUNC(CPU)
6423 #ifdef CONFIG_SCHED_SMT
6424  SD_INIT_FUNC(SIBLING)
6425 #endif
6426 #ifdef CONFIG_SCHED_MC
6427  SD_INIT_FUNC(MC)
6428 #endif
6429 #ifdef CONFIG_SCHED_BOOK
6430  SD_INIT_FUNC(BOOK)
6431 #endif
6432 
6433 static int default_relax_domain_level = -1;
6434 int sched_domain_level_max;
6435 
6436 static int __init setup_relax_domain_level(char *str)
6437 {
6438 	if (kstrtoint(str, 0, &default_relax_domain_level))
6439 		pr_warn("Unable to set relax_domain_level\n");
6440 
6441 	return 1;
6442 }
6443 __setup("relax_domain_level=", setup_relax_domain_level);
6444 
6445 static void set_domain_attribute(struct sched_domain *sd,
6446 				 struct sched_domain_attr *attr)
6447 {
6448 	int request;
6449 
6450 	if (!attr || attr->relax_domain_level < 0) {
6451 		if (default_relax_domain_level < 0)
6452 			return;
6453 		else
6454 			request = default_relax_domain_level;
6455 	} else
6456 		request = attr->relax_domain_level;
6457 	if (request < sd->level) {
6458 		/* turn off idle balance on this domain */
6459 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6460 	} else {
6461 		/* turn on idle balance on this domain */
6462 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6463 	}
6464 }
6465 
6466 static void __sdt_free(const struct cpumask *cpu_map);
6467 static int __sdt_alloc(const struct cpumask *cpu_map);
6468 
6469 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6470 				 const struct cpumask *cpu_map)
6471 {
6472 	switch (what) {
6473 	case sa_rootdomain:
6474 		if (!atomic_read(&d->rd->refcount))
6475 			free_rootdomain(&d->rd->rcu); /* fall through */
6476 	case sa_sd:
6477 		free_percpu(d->sd); /* fall through */
6478 	case sa_sd_storage:
6479 		__sdt_free(cpu_map); /* fall through */
6480 	case sa_none:
6481 		break;
6482 	}
6483 }
6484 
6485 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6486 						   const struct cpumask *cpu_map)
6487 {
6488 	memset(d, 0, sizeof(*d));
6489 
6490 	if (__sdt_alloc(cpu_map))
6491 		return sa_sd_storage;
6492 	d->sd = alloc_percpu(struct sched_domain *);
6493 	if (!d->sd)
6494 		return sa_sd_storage;
6495 	d->rd = alloc_rootdomain();
6496 	if (!d->rd)
6497 		return sa_sd;
6498 	return sa_rootdomain;
6499 }
6500 
6501 /*
6502  * NULL the sd_data elements we've used to build the sched_domain and
6503  * sched_group structure so that the subsequent __free_domain_allocs()
6504  * will not free the data we're using.
6505  */
6506 static void claim_allocations(int cpu, struct sched_domain *sd)
6507 {
6508 	struct sd_data *sdd = sd->private;
6509 
6510 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6511 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6512 
6513 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6514 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6515 
6516 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6517 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6518 }
6519 
6520 #ifdef CONFIG_SCHED_SMT
6521 static const struct cpumask *cpu_smt_mask(int cpu)
6522 {
6523 	return topology_thread_cpumask(cpu);
6524 }
6525 #endif
6526 
6527 /*
6528  * Topology list, bottom-up.
6529  */
6530 static struct sched_domain_topology_level default_topology[] = {
6531 #ifdef CONFIG_SCHED_SMT
6532 	{ sd_init_SIBLING, cpu_smt_mask, },
6533 #endif
6534 #ifdef CONFIG_SCHED_MC
6535 	{ sd_init_MC, cpu_coregroup_mask, },
6536 #endif
6537 #ifdef CONFIG_SCHED_BOOK
6538 	{ sd_init_BOOK, cpu_book_mask, },
6539 #endif
6540 	{ sd_init_CPU, cpu_cpu_mask, },
6541 	{ NULL, },
6542 };
6543 
6544 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6545 
6546 #ifdef CONFIG_NUMA
6547 
6548 static int sched_domains_numa_levels;
6549 static int *sched_domains_numa_distance;
6550 static struct cpumask ***sched_domains_numa_masks;
6551 static int sched_domains_curr_level;
6552 
6553 static inline int sd_local_flags(int level)
6554 {
6555 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6556 		return 0;
6557 
6558 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6559 }
6560 
6561 static struct sched_domain *
6562 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6563 {
6564 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6565 	int level = tl->numa_level;
6566 	int sd_weight = cpumask_weight(
6567 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6568 
6569 	*sd = (struct sched_domain){
6570 		.min_interval		= sd_weight,
6571 		.max_interval		= 2*sd_weight,
6572 		.busy_factor		= 32,
6573 		.imbalance_pct		= 125,
6574 		.cache_nice_tries	= 2,
6575 		.busy_idx		= 3,
6576 		.idle_idx		= 2,
6577 		.newidle_idx		= 0,
6578 		.wake_idx		= 0,
6579 		.forkexec_idx		= 0,
6580 
6581 		.flags			= 1*SD_LOAD_BALANCE
6582 					| 1*SD_BALANCE_NEWIDLE
6583 					| 0*SD_BALANCE_EXEC
6584 					| 0*SD_BALANCE_FORK
6585 					| 0*SD_BALANCE_WAKE
6586 					| 0*SD_WAKE_AFFINE
6587 					| 0*SD_PREFER_LOCAL
6588 					| 0*SD_SHARE_CPUPOWER
6589 					| 0*SD_SHARE_PKG_RESOURCES
6590 					| 1*SD_SERIALIZE
6591 					| 0*SD_PREFER_SIBLING
6592 					| sd_local_flags(level)
6593 					,
6594 		.last_balance		= jiffies,
6595 		.balance_interval	= sd_weight,
6596 	};
6597 	SD_INIT_NAME(sd, NUMA);
6598 	sd->private = &tl->data;
6599 
6600 	/*
6601 	 * Ugly hack to pass state to sd_numa_mask()...
6602 	 */
6603 	sched_domains_curr_level = tl->numa_level;
6604 
6605 	return sd;
6606 }
6607 
6608 static const struct cpumask *sd_numa_mask(int cpu)
6609 {
6610 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6611 }
6612 
6613 static void sched_numa_warn(const char *str)
6614 {
6615 	static int done = false;
6616 	int i,j;
6617 
6618 	if (done)
6619 		return;
6620 
6621 	done = true;
6622 
6623 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6624 
6625 	for (i = 0; i < nr_node_ids; i++) {
6626 		printk(KERN_WARNING "  ");
6627 		for (j = 0; j < nr_node_ids; j++)
6628 			printk(KERN_CONT "%02d ", node_distance(i,j));
6629 		printk(KERN_CONT "\n");
6630 	}
6631 	printk(KERN_WARNING "\n");
6632 }
6633 
6634 static bool find_numa_distance(int distance)
6635 {
6636 	int i;
6637 
6638 	if (distance == node_distance(0, 0))
6639 		return true;
6640 
6641 	for (i = 0; i < sched_domains_numa_levels; i++) {
6642 		if (sched_domains_numa_distance[i] == distance)
6643 			return true;
6644 	}
6645 
6646 	return false;
6647 }
6648 
6649 static void sched_init_numa(void)
6650 {
6651 	int next_distance, curr_distance = node_distance(0, 0);
6652 	struct sched_domain_topology_level *tl;
6653 	int level = 0;
6654 	int i, j, k;
6655 
6656 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6657 	if (!sched_domains_numa_distance)
6658 		return;
6659 
6660 	/*
6661 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6662 	 * unique distances in the node_distance() table.
6663 	 *
6664 	 * Assumes node_distance(0,j) includes all distances in
6665 	 * node_distance(i,j) in order to avoid cubic time.
6666 	 */
6667 	next_distance = curr_distance;
6668 	for (i = 0; i < nr_node_ids; i++) {
6669 		for (j = 0; j < nr_node_ids; j++) {
6670 			for (k = 0; k < nr_node_ids; k++) {
6671 				int distance = node_distance(i, k);
6672 
6673 				if (distance > curr_distance &&
6674 				    (distance < next_distance ||
6675 				     next_distance == curr_distance))
6676 					next_distance = distance;
6677 
6678 				/*
6679 				 * While not a strong assumption it would be nice to know
6680 				 * about cases where if node A is connected to B, B is not
6681 				 * equally connected to A.
6682 				 */
6683 				if (sched_debug() && node_distance(k, i) != distance)
6684 					sched_numa_warn("Node-distance not symmetric");
6685 
6686 				if (sched_debug() && i && !find_numa_distance(distance))
6687 					sched_numa_warn("Node-0 not representative");
6688 			}
6689 			if (next_distance != curr_distance) {
6690 				sched_domains_numa_distance[level++] = next_distance;
6691 				sched_domains_numa_levels = level;
6692 				curr_distance = next_distance;
6693 			} else break;
6694 		}
6695 
6696 		/*
6697 		 * In case of sched_debug() we verify the above assumption.
6698 		 */
6699 		if (!sched_debug())
6700 			break;
6701 	}
6702 	/*
6703 	 * 'level' contains the number of unique distances, excluding the
6704 	 * identity distance node_distance(i,i).
6705 	 *
6706 	 * The sched_domains_nume_distance[] array includes the actual distance
6707 	 * numbers.
6708 	 */
6709 
6710 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6711 	if (!sched_domains_numa_masks)
6712 		return;
6713 
6714 	/*
6715 	 * Now for each level, construct a mask per node which contains all
6716 	 * cpus of nodes that are that many hops away from us.
6717 	 */
6718 	for (i = 0; i < level; i++) {
6719 		sched_domains_numa_masks[i] =
6720 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6721 		if (!sched_domains_numa_masks[i])
6722 			return;
6723 
6724 		for (j = 0; j < nr_node_ids; j++) {
6725 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6726 			if (!mask)
6727 				return;
6728 
6729 			sched_domains_numa_masks[i][j] = mask;
6730 
6731 			for (k = 0; k < nr_node_ids; k++) {
6732 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6733 					continue;
6734 
6735 				cpumask_or(mask, mask, cpumask_of_node(k));
6736 			}
6737 		}
6738 	}
6739 
6740 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6741 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6742 	if (!tl)
6743 		return;
6744 
6745 	/*
6746 	 * Copy the default topology bits..
6747 	 */
6748 	for (i = 0; default_topology[i].init; i++)
6749 		tl[i] = default_topology[i];
6750 
6751 	/*
6752 	 * .. and append 'j' levels of NUMA goodness.
6753 	 */
6754 	for (j = 0; j < level; i++, j++) {
6755 		tl[i] = (struct sched_domain_topology_level){
6756 			.init = sd_numa_init,
6757 			.mask = sd_numa_mask,
6758 			.flags = SDTL_OVERLAP,
6759 			.numa_level = j,
6760 		};
6761 	}
6762 
6763 	sched_domain_topology = tl;
6764 }
6765 #else
6766 static inline void sched_init_numa(void)
6767 {
6768 }
6769 #endif /* CONFIG_NUMA */
6770 
6771 static int __sdt_alloc(const struct cpumask *cpu_map)
6772 {
6773 	struct sched_domain_topology_level *tl;
6774 	int j;
6775 
6776 	for (tl = sched_domain_topology; tl->init; tl++) {
6777 		struct sd_data *sdd = &tl->data;
6778 
6779 		sdd->sd = alloc_percpu(struct sched_domain *);
6780 		if (!sdd->sd)
6781 			return -ENOMEM;
6782 
6783 		sdd->sg = alloc_percpu(struct sched_group *);
6784 		if (!sdd->sg)
6785 			return -ENOMEM;
6786 
6787 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6788 		if (!sdd->sgp)
6789 			return -ENOMEM;
6790 
6791 		for_each_cpu(j, cpu_map) {
6792 			struct sched_domain *sd;
6793 			struct sched_group *sg;
6794 			struct sched_group_power *sgp;
6795 
6796 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6797 					GFP_KERNEL, cpu_to_node(j));
6798 			if (!sd)
6799 				return -ENOMEM;
6800 
6801 			*per_cpu_ptr(sdd->sd, j) = sd;
6802 
6803 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6804 					GFP_KERNEL, cpu_to_node(j));
6805 			if (!sg)
6806 				return -ENOMEM;
6807 
6808 			sg->next = sg;
6809 
6810 			*per_cpu_ptr(sdd->sg, j) = sg;
6811 
6812 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6813 					GFP_KERNEL, cpu_to_node(j));
6814 			if (!sgp)
6815 				return -ENOMEM;
6816 
6817 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6818 		}
6819 	}
6820 
6821 	return 0;
6822 }
6823 
6824 static void __sdt_free(const struct cpumask *cpu_map)
6825 {
6826 	struct sched_domain_topology_level *tl;
6827 	int j;
6828 
6829 	for (tl = sched_domain_topology; tl->init; tl++) {
6830 		struct sd_data *sdd = &tl->data;
6831 
6832 		for_each_cpu(j, cpu_map) {
6833 			struct sched_domain *sd;
6834 
6835 			if (sdd->sd) {
6836 				sd = *per_cpu_ptr(sdd->sd, j);
6837 				if (sd && (sd->flags & SD_OVERLAP))
6838 					free_sched_groups(sd->groups, 0);
6839 				kfree(*per_cpu_ptr(sdd->sd, j));
6840 			}
6841 
6842 			if (sdd->sg)
6843 				kfree(*per_cpu_ptr(sdd->sg, j));
6844 			if (sdd->sgp)
6845 				kfree(*per_cpu_ptr(sdd->sgp, j));
6846 		}
6847 		free_percpu(sdd->sd);
6848 		sdd->sd = NULL;
6849 		free_percpu(sdd->sg);
6850 		sdd->sg = NULL;
6851 		free_percpu(sdd->sgp);
6852 		sdd->sgp = NULL;
6853 	}
6854 }
6855 
6856 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6857 		struct s_data *d, const struct cpumask *cpu_map,
6858 		struct sched_domain_attr *attr, struct sched_domain *child,
6859 		int cpu)
6860 {
6861 	struct sched_domain *sd = tl->init(tl, cpu);
6862 	if (!sd)
6863 		return child;
6864 
6865 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6866 	if (child) {
6867 		sd->level = child->level + 1;
6868 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6869 		child->parent = sd;
6870 	}
6871 	sd->child = child;
6872 	set_domain_attribute(sd, attr);
6873 
6874 	return sd;
6875 }
6876 
6877 /*
6878  * Build sched domains for a given set of cpus and attach the sched domains
6879  * to the individual cpus
6880  */
6881 static int build_sched_domains(const struct cpumask *cpu_map,
6882 			       struct sched_domain_attr *attr)
6883 {
6884 	enum s_alloc alloc_state = sa_none;
6885 	struct sched_domain *sd;
6886 	struct s_data d;
6887 	int i, ret = -ENOMEM;
6888 
6889 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6890 	if (alloc_state != sa_rootdomain)
6891 		goto error;
6892 
6893 	/* Set up domains for cpus specified by the cpu_map. */
6894 	for_each_cpu(i, cpu_map) {
6895 		struct sched_domain_topology_level *tl;
6896 
6897 		sd = NULL;
6898 		for (tl = sched_domain_topology; tl->init; tl++) {
6899 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6900 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6901 				sd->flags |= SD_OVERLAP;
6902 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6903 				break;
6904 		}
6905 
6906 		while (sd->child)
6907 			sd = sd->child;
6908 
6909 		*per_cpu_ptr(d.sd, i) = sd;
6910 	}
6911 
6912 	/* Build the groups for the domains */
6913 	for_each_cpu(i, cpu_map) {
6914 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6915 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6916 			if (sd->flags & SD_OVERLAP) {
6917 				if (build_overlap_sched_groups(sd, i))
6918 					goto error;
6919 			} else {
6920 				if (build_sched_groups(sd, i))
6921 					goto error;
6922 			}
6923 		}
6924 	}
6925 
6926 	/* Calculate CPU power for physical packages and nodes */
6927 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6928 		if (!cpumask_test_cpu(i, cpu_map))
6929 			continue;
6930 
6931 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6932 			claim_allocations(i, sd);
6933 			init_sched_groups_power(i, sd);
6934 		}
6935 	}
6936 
6937 	/* Attach the domains */
6938 	rcu_read_lock();
6939 	for_each_cpu(i, cpu_map) {
6940 		sd = *per_cpu_ptr(d.sd, i);
6941 		cpu_attach_domain(sd, d.rd, i);
6942 	}
6943 	rcu_read_unlock();
6944 
6945 	ret = 0;
6946 error:
6947 	__free_domain_allocs(&d, alloc_state, cpu_map);
6948 	return ret;
6949 }
6950 
6951 static cpumask_var_t *doms_cur;	/* current sched domains */
6952 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6953 static struct sched_domain_attr *dattr_cur;
6954 				/* attribues of custom domains in 'doms_cur' */
6955 
6956 /*
6957  * Special case: If a kmalloc of a doms_cur partition (array of
6958  * cpumask) fails, then fallback to a single sched domain,
6959  * as determined by the single cpumask fallback_doms.
6960  */
6961 static cpumask_var_t fallback_doms;
6962 
6963 /*
6964  * arch_update_cpu_topology lets virtualized architectures update the
6965  * cpu core maps. It is supposed to return 1 if the topology changed
6966  * or 0 if it stayed the same.
6967  */
6968 int __attribute__((weak)) arch_update_cpu_topology(void)
6969 {
6970 	return 0;
6971 }
6972 
6973 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6974 {
6975 	int i;
6976 	cpumask_var_t *doms;
6977 
6978 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6979 	if (!doms)
6980 		return NULL;
6981 	for (i = 0; i < ndoms; i++) {
6982 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6983 			free_sched_domains(doms, i);
6984 			return NULL;
6985 		}
6986 	}
6987 	return doms;
6988 }
6989 
6990 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6991 {
6992 	unsigned int i;
6993 	for (i = 0; i < ndoms; i++)
6994 		free_cpumask_var(doms[i]);
6995 	kfree(doms);
6996 }
6997 
6998 /*
6999  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7000  * For now this just excludes isolated cpus, but could be used to
7001  * exclude other special cases in the future.
7002  */
7003 static int init_sched_domains(const struct cpumask *cpu_map)
7004 {
7005 	int err;
7006 
7007 	arch_update_cpu_topology();
7008 	ndoms_cur = 1;
7009 	doms_cur = alloc_sched_domains(ndoms_cur);
7010 	if (!doms_cur)
7011 		doms_cur = &fallback_doms;
7012 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7013 	err = build_sched_domains(doms_cur[0], NULL);
7014 	register_sched_domain_sysctl();
7015 
7016 	return err;
7017 }
7018 
7019 /*
7020  * Detach sched domains from a group of cpus specified in cpu_map
7021  * These cpus will now be attached to the NULL domain
7022  */
7023 static void detach_destroy_domains(const struct cpumask *cpu_map)
7024 {
7025 	int i;
7026 
7027 	rcu_read_lock();
7028 	for_each_cpu(i, cpu_map)
7029 		cpu_attach_domain(NULL, &def_root_domain, i);
7030 	rcu_read_unlock();
7031 }
7032 
7033 /* handle null as "default" */
7034 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7035 			struct sched_domain_attr *new, int idx_new)
7036 {
7037 	struct sched_domain_attr tmp;
7038 
7039 	/* fast path */
7040 	if (!new && !cur)
7041 		return 1;
7042 
7043 	tmp = SD_ATTR_INIT;
7044 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7045 			new ? (new + idx_new) : &tmp,
7046 			sizeof(struct sched_domain_attr));
7047 }
7048 
7049 /*
7050  * Partition sched domains as specified by the 'ndoms_new'
7051  * cpumasks in the array doms_new[] of cpumasks. This compares
7052  * doms_new[] to the current sched domain partitioning, doms_cur[].
7053  * It destroys each deleted domain and builds each new domain.
7054  *
7055  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7056  * The masks don't intersect (don't overlap.) We should setup one
7057  * sched domain for each mask. CPUs not in any of the cpumasks will
7058  * not be load balanced. If the same cpumask appears both in the
7059  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7060  * it as it is.
7061  *
7062  * The passed in 'doms_new' should be allocated using
7063  * alloc_sched_domains.  This routine takes ownership of it and will
7064  * free_sched_domains it when done with it. If the caller failed the
7065  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7066  * and partition_sched_domains() will fallback to the single partition
7067  * 'fallback_doms', it also forces the domains to be rebuilt.
7068  *
7069  * If doms_new == NULL it will be replaced with cpu_online_mask.
7070  * ndoms_new == 0 is a special case for destroying existing domains,
7071  * and it will not create the default domain.
7072  *
7073  * Call with hotplug lock held
7074  */
7075 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7076 			     struct sched_domain_attr *dattr_new)
7077 {
7078 	int i, j, n;
7079 	int new_topology;
7080 
7081 	mutex_lock(&sched_domains_mutex);
7082 
7083 	/* always unregister in case we don't destroy any domains */
7084 	unregister_sched_domain_sysctl();
7085 
7086 	/* Let architecture update cpu core mappings. */
7087 	new_topology = arch_update_cpu_topology();
7088 
7089 	n = doms_new ? ndoms_new : 0;
7090 
7091 	/* Destroy deleted domains */
7092 	for (i = 0; i < ndoms_cur; i++) {
7093 		for (j = 0; j < n && !new_topology; j++) {
7094 			if (cpumask_equal(doms_cur[i], doms_new[j])
7095 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7096 				goto match1;
7097 		}
7098 		/* no match - a current sched domain not in new doms_new[] */
7099 		detach_destroy_domains(doms_cur[i]);
7100 match1:
7101 		;
7102 	}
7103 
7104 	if (doms_new == NULL) {
7105 		ndoms_cur = 0;
7106 		doms_new = &fallback_doms;
7107 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7108 		WARN_ON_ONCE(dattr_new);
7109 	}
7110 
7111 	/* Build new domains */
7112 	for (i = 0; i < ndoms_new; i++) {
7113 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7114 			if (cpumask_equal(doms_new[i], doms_cur[j])
7115 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7116 				goto match2;
7117 		}
7118 		/* no match - add a new doms_new */
7119 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7120 match2:
7121 		;
7122 	}
7123 
7124 	/* Remember the new sched domains */
7125 	if (doms_cur != &fallback_doms)
7126 		free_sched_domains(doms_cur, ndoms_cur);
7127 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7128 	doms_cur = doms_new;
7129 	dattr_cur = dattr_new;
7130 	ndoms_cur = ndoms_new;
7131 
7132 	register_sched_domain_sysctl();
7133 
7134 	mutex_unlock(&sched_domains_mutex);
7135 }
7136 
7137 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7138 
7139 /*
7140  * Update cpusets according to cpu_active mask.  If cpusets are
7141  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7142  * around partition_sched_domains().
7143  *
7144  * If we come here as part of a suspend/resume, don't touch cpusets because we
7145  * want to restore it back to its original state upon resume anyway.
7146  */
7147 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7148 			     void *hcpu)
7149 {
7150 	switch (action) {
7151 	case CPU_ONLINE_FROZEN:
7152 	case CPU_DOWN_FAILED_FROZEN:
7153 
7154 		/*
7155 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7156 		 * resume sequence. As long as this is not the last online
7157 		 * operation in the resume sequence, just build a single sched
7158 		 * domain, ignoring cpusets.
7159 		 */
7160 		num_cpus_frozen--;
7161 		if (likely(num_cpus_frozen)) {
7162 			partition_sched_domains(1, NULL, NULL);
7163 			break;
7164 		}
7165 
7166 		/*
7167 		 * This is the last CPU online operation. So fall through and
7168 		 * restore the original sched domains by considering the
7169 		 * cpuset configurations.
7170 		 */
7171 
7172 	case CPU_ONLINE:
7173 	case CPU_DOWN_FAILED:
7174 		cpuset_update_active_cpus(true);
7175 		break;
7176 	default:
7177 		return NOTIFY_DONE;
7178 	}
7179 	return NOTIFY_OK;
7180 }
7181 
7182 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7183 			       void *hcpu)
7184 {
7185 	switch (action) {
7186 	case CPU_DOWN_PREPARE:
7187 		cpuset_update_active_cpus(false);
7188 		break;
7189 	case CPU_DOWN_PREPARE_FROZEN:
7190 		num_cpus_frozen++;
7191 		partition_sched_domains(1, NULL, NULL);
7192 		break;
7193 	default:
7194 		return NOTIFY_DONE;
7195 	}
7196 	return NOTIFY_OK;
7197 }
7198 
7199 void __init sched_init_smp(void)
7200 {
7201 	cpumask_var_t non_isolated_cpus;
7202 
7203 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7204 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7205 
7206 	sched_init_numa();
7207 
7208 	get_online_cpus();
7209 	mutex_lock(&sched_domains_mutex);
7210 	init_sched_domains(cpu_active_mask);
7211 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7212 	if (cpumask_empty(non_isolated_cpus))
7213 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7214 	mutex_unlock(&sched_domains_mutex);
7215 	put_online_cpus();
7216 
7217 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7218 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7219 
7220 	/* RT runtime code needs to handle some hotplug events */
7221 	hotcpu_notifier(update_runtime, 0);
7222 
7223 	init_hrtick();
7224 
7225 	/* Move init over to a non-isolated CPU */
7226 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7227 		BUG();
7228 	sched_init_granularity();
7229 	free_cpumask_var(non_isolated_cpus);
7230 
7231 	init_sched_rt_class();
7232 }
7233 #else
7234 void __init sched_init_smp(void)
7235 {
7236 	sched_init_granularity();
7237 }
7238 #endif /* CONFIG_SMP */
7239 
7240 const_debug unsigned int sysctl_timer_migration = 1;
7241 
7242 int in_sched_functions(unsigned long addr)
7243 {
7244 	return in_lock_functions(addr) ||
7245 		(addr >= (unsigned long)__sched_text_start
7246 		&& addr < (unsigned long)__sched_text_end);
7247 }
7248 
7249 #ifdef CONFIG_CGROUP_SCHED
7250 struct task_group root_task_group;
7251 #endif
7252 
7253 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
7254 
7255 void __init sched_init(void)
7256 {
7257 	int i, j;
7258 	unsigned long alloc_size = 0, ptr;
7259 
7260 #ifdef CONFIG_FAIR_GROUP_SCHED
7261 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7262 #endif
7263 #ifdef CONFIG_RT_GROUP_SCHED
7264 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7265 #endif
7266 #ifdef CONFIG_CPUMASK_OFFSTACK
7267 	alloc_size += num_possible_cpus() * cpumask_size();
7268 #endif
7269 	if (alloc_size) {
7270 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7271 
7272 #ifdef CONFIG_FAIR_GROUP_SCHED
7273 		root_task_group.se = (struct sched_entity **)ptr;
7274 		ptr += nr_cpu_ids * sizeof(void **);
7275 
7276 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7277 		ptr += nr_cpu_ids * sizeof(void **);
7278 
7279 #endif /* CONFIG_FAIR_GROUP_SCHED */
7280 #ifdef CONFIG_RT_GROUP_SCHED
7281 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7282 		ptr += nr_cpu_ids * sizeof(void **);
7283 
7284 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7285 		ptr += nr_cpu_ids * sizeof(void **);
7286 
7287 #endif /* CONFIG_RT_GROUP_SCHED */
7288 #ifdef CONFIG_CPUMASK_OFFSTACK
7289 		for_each_possible_cpu(i) {
7290 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7291 			ptr += cpumask_size();
7292 		}
7293 #endif /* CONFIG_CPUMASK_OFFSTACK */
7294 	}
7295 
7296 #ifdef CONFIG_SMP
7297 	init_defrootdomain();
7298 #endif
7299 
7300 	init_rt_bandwidth(&def_rt_bandwidth,
7301 			global_rt_period(), global_rt_runtime());
7302 
7303 #ifdef CONFIG_RT_GROUP_SCHED
7304 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7305 			global_rt_period(), global_rt_runtime());
7306 #endif /* CONFIG_RT_GROUP_SCHED */
7307 
7308 #ifdef CONFIG_CGROUP_SCHED
7309 	list_add(&root_task_group.list, &task_groups);
7310 	INIT_LIST_HEAD(&root_task_group.children);
7311 	INIT_LIST_HEAD(&root_task_group.siblings);
7312 	autogroup_init(&init_task);
7313 
7314 #endif /* CONFIG_CGROUP_SCHED */
7315 
7316 #ifdef CONFIG_CGROUP_CPUACCT
7317 	root_cpuacct.cpustat = &kernel_cpustat;
7318 	root_cpuacct.cpuusage = alloc_percpu(u64);
7319 	/* Too early, not expected to fail */
7320 	BUG_ON(!root_cpuacct.cpuusage);
7321 #endif
7322 	for_each_possible_cpu(i) {
7323 		struct rq *rq;
7324 
7325 		rq = cpu_rq(i);
7326 		raw_spin_lock_init(&rq->lock);
7327 		rq->nr_running = 0;
7328 		rq->calc_load_active = 0;
7329 		rq->calc_load_update = jiffies + LOAD_FREQ;
7330 		init_cfs_rq(&rq->cfs);
7331 		init_rt_rq(&rq->rt, rq);
7332 #ifdef CONFIG_FAIR_GROUP_SCHED
7333 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7334 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7335 		/*
7336 		 * How much cpu bandwidth does root_task_group get?
7337 		 *
7338 		 * In case of task-groups formed thr' the cgroup filesystem, it
7339 		 * gets 100% of the cpu resources in the system. This overall
7340 		 * system cpu resource is divided among the tasks of
7341 		 * root_task_group and its child task-groups in a fair manner,
7342 		 * based on each entity's (task or task-group's) weight
7343 		 * (se->load.weight).
7344 		 *
7345 		 * In other words, if root_task_group has 10 tasks of weight
7346 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7347 		 * then A0's share of the cpu resource is:
7348 		 *
7349 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7350 		 *
7351 		 * We achieve this by letting root_task_group's tasks sit
7352 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7353 		 */
7354 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7355 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7356 #endif /* CONFIG_FAIR_GROUP_SCHED */
7357 
7358 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7359 #ifdef CONFIG_RT_GROUP_SCHED
7360 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7361 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7362 #endif
7363 
7364 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7365 			rq->cpu_load[j] = 0;
7366 
7367 		rq->last_load_update_tick = jiffies;
7368 
7369 #ifdef CONFIG_SMP
7370 		rq->sd = NULL;
7371 		rq->rd = NULL;
7372 		rq->cpu_power = SCHED_POWER_SCALE;
7373 		rq->post_schedule = 0;
7374 		rq->active_balance = 0;
7375 		rq->next_balance = jiffies;
7376 		rq->push_cpu = 0;
7377 		rq->cpu = i;
7378 		rq->online = 0;
7379 		rq->idle_stamp = 0;
7380 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7381 
7382 		INIT_LIST_HEAD(&rq->cfs_tasks);
7383 
7384 		rq_attach_root(rq, &def_root_domain);
7385 #ifdef CONFIG_NO_HZ
7386 		rq->nohz_flags = 0;
7387 #endif
7388 #endif
7389 		init_rq_hrtick(rq);
7390 		atomic_set(&rq->nr_iowait, 0);
7391 	}
7392 
7393 	set_load_weight(&init_task);
7394 
7395 #ifdef CONFIG_PREEMPT_NOTIFIERS
7396 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7397 #endif
7398 
7399 #ifdef CONFIG_RT_MUTEXES
7400 	plist_head_init(&init_task.pi_waiters);
7401 #endif
7402 
7403 	/*
7404 	 * The boot idle thread does lazy MMU switching as well:
7405 	 */
7406 	atomic_inc(&init_mm.mm_count);
7407 	enter_lazy_tlb(&init_mm, current);
7408 
7409 	/*
7410 	 * Make us the idle thread. Technically, schedule() should not be
7411 	 * called from this thread, however somewhere below it might be,
7412 	 * but because we are the idle thread, we just pick up running again
7413 	 * when this runqueue becomes "idle".
7414 	 */
7415 	init_idle(current, smp_processor_id());
7416 
7417 	calc_load_update = jiffies + LOAD_FREQ;
7418 
7419 	/*
7420 	 * During early bootup we pretend to be a normal task:
7421 	 */
7422 	current->sched_class = &fair_sched_class;
7423 
7424 #ifdef CONFIG_SMP
7425 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7426 	/* May be allocated at isolcpus cmdline parse time */
7427 	if (cpu_isolated_map == NULL)
7428 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7429 	idle_thread_set_boot_cpu();
7430 #endif
7431 	init_sched_fair_class();
7432 
7433 	scheduler_running = 1;
7434 }
7435 
7436 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7437 static inline int preempt_count_equals(int preempt_offset)
7438 {
7439 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7440 
7441 	return (nested == preempt_offset);
7442 }
7443 
7444 void __might_sleep(const char *file, int line, int preempt_offset)
7445 {
7446 	static unsigned long prev_jiffy;	/* ratelimiting */
7447 
7448 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7449 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7450 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7451 		return;
7452 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7453 		return;
7454 	prev_jiffy = jiffies;
7455 
7456 	printk(KERN_ERR
7457 		"BUG: sleeping function called from invalid context at %s:%d\n",
7458 			file, line);
7459 	printk(KERN_ERR
7460 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7461 			in_atomic(), irqs_disabled(),
7462 			current->pid, current->comm);
7463 
7464 	debug_show_held_locks(current);
7465 	if (irqs_disabled())
7466 		print_irqtrace_events(current);
7467 	dump_stack();
7468 }
7469 EXPORT_SYMBOL(__might_sleep);
7470 #endif
7471 
7472 #ifdef CONFIG_MAGIC_SYSRQ
7473 static void normalize_task(struct rq *rq, struct task_struct *p)
7474 {
7475 	const struct sched_class *prev_class = p->sched_class;
7476 	int old_prio = p->prio;
7477 	int on_rq;
7478 
7479 	on_rq = p->on_rq;
7480 	if (on_rq)
7481 		dequeue_task(rq, p, 0);
7482 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7483 	if (on_rq) {
7484 		enqueue_task(rq, p, 0);
7485 		resched_task(rq->curr);
7486 	}
7487 
7488 	check_class_changed(rq, p, prev_class, old_prio);
7489 }
7490 
7491 void normalize_rt_tasks(void)
7492 {
7493 	struct task_struct *g, *p;
7494 	unsigned long flags;
7495 	struct rq *rq;
7496 
7497 	read_lock_irqsave(&tasklist_lock, flags);
7498 	do_each_thread(g, p) {
7499 		/*
7500 		 * Only normalize user tasks:
7501 		 */
7502 		if (!p->mm)
7503 			continue;
7504 
7505 		p->se.exec_start		= 0;
7506 #ifdef CONFIG_SCHEDSTATS
7507 		p->se.statistics.wait_start	= 0;
7508 		p->se.statistics.sleep_start	= 0;
7509 		p->se.statistics.block_start	= 0;
7510 #endif
7511 
7512 		if (!rt_task(p)) {
7513 			/*
7514 			 * Renice negative nice level userspace
7515 			 * tasks back to 0:
7516 			 */
7517 			if (TASK_NICE(p) < 0 && p->mm)
7518 				set_user_nice(p, 0);
7519 			continue;
7520 		}
7521 
7522 		raw_spin_lock(&p->pi_lock);
7523 		rq = __task_rq_lock(p);
7524 
7525 		normalize_task(rq, p);
7526 
7527 		__task_rq_unlock(rq);
7528 		raw_spin_unlock(&p->pi_lock);
7529 	} while_each_thread(g, p);
7530 
7531 	read_unlock_irqrestore(&tasklist_lock, flags);
7532 }
7533 
7534 #endif /* CONFIG_MAGIC_SYSRQ */
7535 
7536 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7537 /*
7538  * These functions are only useful for the IA64 MCA handling, or kdb.
7539  *
7540  * They can only be called when the whole system has been
7541  * stopped - every CPU needs to be quiescent, and no scheduling
7542  * activity can take place. Using them for anything else would
7543  * be a serious bug, and as a result, they aren't even visible
7544  * under any other configuration.
7545  */
7546 
7547 /**
7548  * curr_task - return the current task for a given cpu.
7549  * @cpu: the processor in question.
7550  *
7551  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7552  */
7553 struct task_struct *curr_task(int cpu)
7554 {
7555 	return cpu_curr(cpu);
7556 }
7557 
7558 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7559 
7560 #ifdef CONFIG_IA64
7561 /**
7562  * set_curr_task - set the current task for a given cpu.
7563  * @cpu: the processor in question.
7564  * @p: the task pointer to set.
7565  *
7566  * Description: This function must only be used when non-maskable interrupts
7567  * are serviced on a separate stack. It allows the architecture to switch the
7568  * notion of the current task on a cpu in a non-blocking manner. This function
7569  * must be called with all CPU's synchronized, and interrupts disabled, the
7570  * and caller must save the original value of the current task (see
7571  * curr_task() above) and restore that value before reenabling interrupts and
7572  * re-starting the system.
7573  *
7574  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7575  */
7576 void set_curr_task(int cpu, struct task_struct *p)
7577 {
7578 	cpu_curr(cpu) = p;
7579 }
7580 
7581 #endif
7582 
7583 #ifdef CONFIG_CGROUP_SCHED
7584 /* task_group_lock serializes the addition/removal of task groups */
7585 static DEFINE_SPINLOCK(task_group_lock);
7586 
7587 static void free_sched_group(struct task_group *tg)
7588 {
7589 	free_fair_sched_group(tg);
7590 	free_rt_sched_group(tg);
7591 	autogroup_free(tg);
7592 	kfree(tg);
7593 }
7594 
7595 /* allocate runqueue etc for a new task group */
7596 struct task_group *sched_create_group(struct task_group *parent)
7597 {
7598 	struct task_group *tg;
7599 	unsigned long flags;
7600 
7601 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7602 	if (!tg)
7603 		return ERR_PTR(-ENOMEM);
7604 
7605 	if (!alloc_fair_sched_group(tg, parent))
7606 		goto err;
7607 
7608 	if (!alloc_rt_sched_group(tg, parent))
7609 		goto err;
7610 
7611 	spin_lock_irqsave(&task_group_lock, flags);
7612 	list_add_rcu(&tg->list, &task_groups);
7613 
7614 	WARN_ON(!parent); /* root should already exist */
7615 
7616 	tg->parent = parent;
7617 	INIT_LIST_HEAD(&tg->children);
7618 	list_add_rcu(&tg->siblings, &parent->children);
7619 	spin_unlock_irqrestore(&task_group_lock, flags);
7620 
7621 	return tg;
7622 
7623 err:
7624 	free_sched_group(tg);
7625 	return ERR_PTR(-ENOMEM);
7626 }
7627 
7628 /* rcu callback to free various structures associated with a task group */
7629 static void free_sched_group_rcu(struct rcu_head *rhp)
7630 {
7631 	/* now it should be safe to free those cfs_rqs */
7632 	free_sched_group(container_of(rhp, struct task_group, rcu));
7633 }
7634 
7635 /* Destroy runqueue etc associated with a task group */
7636 void sched_destroy_group(struct task_group *tg)
7637 {
7638 	unsigned long flags;
7639 	int i;
7640 
7641 	/* end participation in shares distribution */
7642 	for_each_possible_cpu(i)
7643 		unregister_fair_sched_group(tg, i);
7644 
7645 	spin_lock_irqsave(&task_group_lock, flags);
7646 	list_del_rcu(&tg->list);
7647 	list_del_rcu(&tg->siblings);
7648 	spin_unlock_irqrestore(&task_group_lock, flags);
7649 
7650 	/* wait for possible concurrent references to cfs_rqs complete */
7651 	call_rcu(&tg->rcu, free_sched_group_rcu);
7652 }
7653 
7654 /* change task's runqueue when it moves between groups.
7655  *	The caller of this function should have put the task in its new group
7656  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7657  *	reflect its new group.
7658  */
7659 void sched_move_task(struct task_struct *tsk)
7660 {
7661 	struct task_group *tg;
7662 	int on_rq, running;
7663 	unsigned long flags;
7664 	struct rq *rq;
7665 
7666 	rq = task_rq_lock(tsk, &flags);
7667 
7668 	running = task_current(rq, tsk);
7669 	on_rq = tsk->on_rq;
7670 
7671 	if (on_rq)
7672 		dequeue_task(rq, tsk, 0);
7673 	if (unlikely(running))
7674 		tsk->sched_class->put_prev_task(rq, tsk);
7675 
7676 	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7677 				lockdep_is_held(&tsk->sighand->siglock)),
7678 			  struct task_group, css);
7679 	tg = autogroup_task_group(tsk, tg);
7680 	tsk->sched_task_group = tg;
7681 
7682 #ifdef CONFIG_FAIR_GROUP_SCHED
7683 	if (tsk->sched_class->task_move_group)
7684 		tsk->sched_class->task_move_group(tsk, on_rq);
7685 	else
7686 #endif
7687 		set_task_rq(tsk, task_cpu(tsk));
7688 
7689 	if (unlikely(running))
7690 		tsk->sched_class->set_curr_task(rq);
7691 	if (on_rq)
7692 		enqueue_task(rq, tsk, 0);
7693 
7694 	task_rq_unlock(rq, tsk, &flags);
7695 }
7696 #endif /* CONFIG_CGROUP_SCHED */
7697 
7698 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7699 static unsigned long to_ratio(u64 period, u64 runtime)
7700 {
7701 	if (runtime == RUNTIME_INF)
7702 		return 1ULL << 20;
7703 
7704 	return div64_u64(runtime << 20, period);
7705 }
7706 #endif
7707 
7708 #ifdef CONFIG_RT_GROUP_SCHED
7709 /*
7710  * Ensure that the real time constraints are schedulable.
7711  */
7712 static DEFINE_MUTEX(rt_constraints_mutex);
7713 
7714 /* Must be called with tasklist_lock held */
7715 static inline int tg_has_rt_tasks(struct task_group *tg)
7716 {
7717 	struct task_struct *g, *p;
7718 
7719 	do_each_thread(g, p) {
7720 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7721 			return 1;
7722 	} while_each_thread(g, p);
7723 
7724 	return 0;
7725 }
7726 
7727 struct rt_schedulable_data {
7728 	struct task_group *tg;
7729 	u64 rt_period;
7730 	u64 rt_runtime;
7731 };
7732 
7733 static int tg_rt_schedulable(struct task_group *tg, void *data)
7734 {
7735 	struct rt_schedulable_data *d = data;
7736 	struct task_group *child;
7737 	unsigned long total, sum = 0;
7738 	u64 period, runtime;
7739 
7740 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7741 	runtime = tg->rt_bandwidth.rt_runtime;
7742 
7743 	if (tg == d->tg) {
7744 		period = d->rt_period;
7745 		runtime = d->rt_runtime;
7746 	}
7747 
7748 	/*
7749 	 * Cannot have more runtime than the period.
7750 	 */
7751 	if (runtime > period && runtime != RUNTIME_INF)
7752 		return -EINVAL;
7753 
7754 	/*
7755 	 * Ensure we don't starve existing RT tasks.
7756 	 */
7757 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7758 		return -EBUSY;
7759 
7760 	total = to_ratio(period, runtime);
7761 
7762 	/*
7763 	 * Nobody can have more than the global setting allows.
7764 	 */
7765 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7766 		return -EINVAL;
7767 
7768 	/*
7769 	 * The sum of our children's runtime should not exceed our own.
7770 	 */
7771 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7772 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7773 		runtime = child->rt_bandwidth.rt_runtime;
7774 
7775 		if (child == d->tg) {
7776 			period = d->rt_period;
7777 			runtime = d->rt_runtime;
7778 		}
7779 
7780 		sum += to_ratio(period, runtime);
7781 	}
7782 
7783 	if (sum > total)
7784 		return -EINVAL;
7785 
7786 	return 0;
7787 }
7788 
7789 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7790 {
7791 	int ret;
7792 
7793 	struct rt_schedulable_data data = {
7794 		.tg = tg,
7795 		.rt_period = period,
7796 		.rt_runtime = runtime,
7797 	};
7798 
7799 	rcu_read_lock();
7800 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7801 	rcu_read_unlock();
7802 
7803 	return ret;
7804 }
7805 
7806 static int tg_set_rt_bandwidth(struct task_group *tg,
7807 		u64 rt_period, u64 rt_runtime)
7808 {
7809 	int i, err = 0;
7810 
7811 	mutex_lock(&rt_constraints_mutex);
7812 	read_lock(&tasklist_lock);
7813 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7814 	if (err)
7815 		goto unlock;
7816 
7817 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7818 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7819 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7820 
7821 	for_each_possible_cpu(i) {
7822 		struct rt_rq *rt_rq = tg->rt_rq[i];
7823 
7824 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7825 		rt_rq->rt_runtime = rt_runtime;
7826 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7827 	}
7828 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7829 unlock:
7830 	read_unlock(&tasklist_lock);
7831 	mutex_unlock(&rt_constraints_mutex);
7832 
7833 	return err;
7834 }
7835 
7836 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7837 {
7838 	u64 rt_runtime, rt_period;
7839 
7840 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7841 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7842 	if (rt_runtime_us < 0)
7843 		rt_runtime = RUNTIME_INF;
7844 
7845 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7846 }
7847 
7848 long sched_group_rt_runtime(struct task_group *tg)
7849 {
7850 	u64 rt_runtime_us;
7851 
7852 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7853 		return -1;
7854 
7855 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7856 	do_div(rt_runtime_us, NSEC_PER_USEC);
7857 	return rt_runtime_us;
7858 }
7859 
7860 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7861 {
7862 	u64 rt_runtime, rt_period;
7863 
7864 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7865 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7866 
7867 	if (rt_period == 0)
7868 		return -EINVAL;
7869 
7870 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7871 }
7872 
7873 long sched_group_rt_period(struct task_group *tg)
7874 {
7875 	u64 rt_period_us;
7876 
7877 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7878 	do_div(rt_period_us, NSEC_PER_USEC);
7879 	return rt_period_us;
7880 }
7881 
7882 static int sched_rt_global_constraints(void)
7883 {
7884 	u64 runtime, period;
7885 	int ret = 0;
7886 
7887 	if (sysctl_sched_rt_period <= 0)
7888 		return -EINVAL;
7889 
7890 	runtime = global_rt_runtime();
7891 	period = global_rt_period();
7892 
7893 	/*
7894 	 * Sanity check on the sysctl variables.
7895 	 */
7896 	if (runtime > period && runtime != RUNTIME_INF)
7897 		return -EINVAL;
7898 
7899 	mutex_lock(&rt_constraints_mutex);
7900 	read_lock(&tasklist_lock);
7901 	ret = __rt_schedulable(NULL, 0, 0);
7902 	read_unlock(&tasklist_lock);
7903 	mutex_unlock(&rt_constraints_mutex);
7904 
7905 	return ret;
7906 }
7907 
7908 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7909 {
7910 	/* Don't accept realtime tasks when there is no way for them to run */
7911 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7912 		return 0;
7913 
7914 	return 1;
7915 }
7916 
7917 #else /* !CONFIG_RT_GROUP_SCHED */
7918 static int sched_rt_global_constraints(void)
7919 {
7920 	unsigned long flags;
7921 	int i;
7922 
7923 	if (sysctl_sched_rt_period <= 0)
7924 		return -EINVAL;
7925 
7926 	/*
7927 	 * There's always some RT tasks in the root group
7928 	 * -- migration, kstopmachine etc..
7929 	 */
7930 	if (sysctl_sched_rt_runtime == 0)
7931 		return -EBUSY;
7932 
7933 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7934 	for_each_possible_cpu(i) {
7935 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7936 
7937 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7938 		rt_rq->rt_runtime = global_rt_runtime();
7939 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7940 	}
7941 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7942 
7943 	return 0;
7944 }
7945 #endif /* CONFIG_RT_GROUP_SCHED */
7946 
7947 int sched_rt_handler(struct ctl_table *table, int write,
7948 		void __user *buffer, size_t *lenp,
7949 		loff_t *ppos)
7950 {
7951 	int ret;
7952 	int old_period, old_runtime;
7953 	static DEFINE_MUTEX(mutex);
7954 
7955 	mutex_lock(&mutex);
7956 	old_period = sysctl_sched_rt_period;
7957 	old_runtime = sysctl_sched_rt_runtime;
7958 
7959 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7960 
7961 	if (!ret && write) {
7962 		ret = sched_rt_global_constraints();
7963 		if (ret) {
7964 			sysctl_sched_rt_period = old_period;
7965 			sysctl_sched_rt_runtime = old_runtime;
7966 		} else {
7967 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7968 			def_rt_bandwidth.rt_period =
7969 				ns_to_ktime(global_rt_period());
7970 		}
7971 	}
7972 	mutex_unlock(&mutex);
7973 
7974 	return ret;
7975 }
7976 
7977 #ifdef CONFIG_CGROUP_SCHED
7978 
7979 /* return corresponding task_group object of a cgroup */
7980 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7981 {
7982 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7983 			    struct task_group, css);
7984 }
7985 
7986 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7987 {
7988 	struct task_group *tg, *parent;
7989 
7990 	if (!cgrp->parent) {
7991 		/* This is early initialization for the top cgroup */
7992 		return &root_task_group.css;
7993 	}
7994 
7995 	parent = cgroup_tg(cgrp->parent);
7996 	tg = sched_create_group(parent);
7997 	if (IS_ERR(tg))
7998 		return ERR_PTR(-ENOMEM);
7999 
8000 	return &tg->css;
8001 }
8002 
8003 static void cpu_cgroup_destroy(struct cgroup *cgrp)
8004 {
8005 	struct task_group *tg = cgroup_tg(cgrp);
8006 
8007 	sched_destroy_group(tg);
8008 }
8009 
8010 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
8011 				 struct cgroup_taskset *tset)
8012 {
8013 	struct task_struct *task;
8014 
8015 	cgroup_taskset_for_each(task, cgrp, tset) {
8016 #ifdef CONFIG_RT_GROUP_SCHED
8017 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
8018 			return -EINVAL;
8019 #else
8020 		/* We don't support RT-tasks being in separate groups */
8021 		if (task->sched_class != &fair_sched_class)
8022 			return -EINVAL;
8023 #endif
8024 	}
8025 	return 0;
8026 }
8027 
8028 static void cpu_cgroup_attach(struct cgroup *cgrp,
8029 			      struct cgroup_taskset *tset)
8030 {
8031 	struct task_struct *task;
8032 
8033 	cgroup_taskset_for_each(task, cgrp, tset)
8034 		sched_move_task(task);
8035 }
8036 
8037 static void
8038 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
8039 		struct task_struct *task)
8040 {
8041 	/*
8042 	 * cgroup_exit() is called in the copy_process() failure path.
8043 	 * Ignore this case since the task hasn't ran yet, this avoids
8044 	 * trying to poke a half freed task state from generic code.
8045 	 */
8046 	if (!(task->flags & PF_EXITING))
8047 		return;
8048 
8049 	sched_move_task(task);
8050 }
8051 
8052 #ifdef CONFIG_FAIR_GROUP_SCHED
8053 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8054 				u64 shareval)
8055 {
8056 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
8057 }
8058 
8059 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8060 {
8061 	struct task_group *tg = cgroup_tg(cgrp);
8062 
8063 	return (u64) scale_load_down(tg->shares);
8064 }
8065 
8066 #ifdef CONFIG_CFS_BANDWIDTH
8067 static DEFINE_MUTEX(cfs_constraints_mutex);
8068 
8069 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8070 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8071 
8072 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8073 
8074 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8075 {
8076 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8077 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8078 
8079 	if (tg == &root_task_group)
8080 		return -EINVAL;
8081 
8082 	/*
8083 	 * Ensure we have at some amount of bandwidth every period.  This is
8084 	 * to prevent reaching a state of large arrears when throttled via
8085 	 * entity_tick() resulting in prolonged exit starvation.
8086 	 */
8087 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8088 		return -EINVAL;
8089 
8090 	/*
8091 	 * Likewise, bound things on the otherside by preventing insane quota
8092 	 * periods.  This also allows us to normalize in computing quota
8093 	 * feasibility.
8094 	 */
8095 	if (period > max_cfs_quota_period)
8096 		return -EINVAL;
8097 
8098 	mutex_lock(&cfs_constraints_mutex);
8099 	ret = __cfs_schedulable(tg, period, quota);
8100 	if (ret)
8101 		goto out_unlock;
8102 
8103 	runtime_enabled = quota != RUNTIME_INF;
8104 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8105 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
8106 	raw_spin_lock_irq(&cfs_b->lock);
8107 	cfs_b->period = ns_to_ktime(period);
8108 	cfs_b->quota = quota;
8109 
8110 	__refill_cfs_bandwidth_runtime(cfs_b);
8111 	/* restart the period timer (if active) to handle new period expiry */
8112 	if (runtime_enabled && cfs_b->timer_active) {
8113 		/* force a reprogram */
8114 		cfs_b->timer_active = 0;
8115 		__start_cfs_bandwidth(cfs_b);
8116 	}
8117 	raw_spin_unlock_irq(&cfs_b->lock);
8118 
8119 	for_each_possible_cpu(i) {
8120 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8121 		struct rq *rq = cfs_rq->rq;
8122 
8123 		raw_spin_lock_irq(&rq->lock);
8124 		cfs_rq->runtime_enabled = runtime_enabled;
8125 		cfs_rq->runtime_remaining = 0;
8126 
8127 		if (cfs_rq->throttled)
8128 			unthrottle_cfs_rq(cfs_rq);
8129 		raw_spin_unlock_irq(&rq->lock);
8130 	}
8131 out_unlock:
8132 	mutex_unlock(&cfs_constraints_mutex);
8133 
8134 	return ret;
8135 }
8136 
8137 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8138 {
8139 	u64 quota, period;
8140 
8141 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8142 	if (cfs_quota_us < 0)
8143 		quota = RUNTIME_INF;
8144 	else
8145 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8146 
8147 	return tg_set_cfs_bandwidth(tg, period, quota);
8148 }
8149 
8150 long tg_get_cfs_quota(struct task_group *tg)
8151 {
8152 	u64 quota_us;
8153 
8154 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8155 		return -1;
8156 
8157 	quota_us = tg->cfs_bandwidth.quota;
8158 	do_div(quota_us, NSEC_PER_USEC);
8159 
8160 	return quota_us;
8161 }
8162 
8163 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8164 {
8165 	u64 quota, period;
8166 
8167 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8168 	quota = tg->cfs_bandwidth.quota;
8169 
8170 	return tg_set_cfs_bandwidth(tg, period, quota);
8171 }
8172 
8173 long tg_get_cfs_period(struct task_group *tg)
8174 {
8175 	u64 cfs_period_us;
8176 
8177 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8178 	do_div(cfs_period_us, NSEC_PER_USEC);
8179 
8180 	return cfs_period_us;
8181 }
8182 
8183 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
8184 {
8185 	return tg_get_cfs_quota(cgroup_tg(cgrp));
8186 }
8187 
8188 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
8189 				s64 cfs_quota_us)
8190 {
8191 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
8192 }
8193 
8194 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
8195 {
8196 	return tg_get_cfs_period(cgroup_tg(cgrp));
8197 }
8198 
8199 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8200 				u64 cfs_period_us)
8201 {
8202 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
8203 }
8204 
8205 struct cfs_schedulable_data {
8206 	struct task_group *tg;
8207 	u64 period, quota;
8208 };
8209 
8210 /*
8211  * normalize group quota/period to be quota/max_period
8212  * note: units are usecs
8213  */
8214 static u64 normalize_cfs_quota(struct task_group *tg,
8215 			       struct cfs_schedulable_data *d)
8216 {
8217 	u64 quota, period;
8218 
8219 	if (tg == d->tg) {
8220 		period = d->period;
8221 		quota = d->quota;
8222 	} else {
8223 		period = tg_get_cfs_period(tg);
8224 		quota = tg_get_cfs_quota(tg);
8225 	}
8226 
8227 	/* note: these should typically be equivalent */
8228 	if (quota == RUNTIME_INF || quota == -1)
8229 		return RUNTIME_INF;
8230 
8231 	return to_ratio(period, quota);
8232 }
8233 
8234 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8235 {
8236 	struct cfs_schedulable_data *d = data;
8237 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8238 	s64 quota = 0, parent_quota = -1;
8239 
8240 	if (!tg->parent) {
8241 		quota = RUNTIME_INF;
8242 	} else {
8243 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8244 
8245 		quota = normalize_cfs_quota(tg, d);
8246 		parent_quota = parent_b->hierarchal_quota;
8247 
8248 		/*
8249 		 * ensure max(child_quota) <= parent_quota, inherit when no
8250 		 * limit is set
8251 		 */
8252 		if (quota == RUNTIME_INF)
8253 			quota = parent_quota;
8254 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8255 			return -EINVAL;
8256 	}
8257 	cfs_b->hierarchal_quota = quota;
8258 
8259 	return 0;
8260 }
8261 
8262 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8263 {
8264 	int ret;
8265 	struct cfs_schedulable_data data = {
8266 		.tg = tg,
8267 		.period = period,
8268 		.quota = quota,
8269 	};
8270 
8271 	if (quota != RUNTIME_INF) {
8272 		do_div(data.period, NSEC_PER_USEC);
8273 		do_div(data.quota, NSEC_PER_USEC);
8274 	}
8275 
8276 	rcu_read_lock();
8277 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8278 	rcu_read_unlock();
8279 
8280 	return ret;
8281 }
8282 
8283 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8284 		struct cgroup_map_cb *cb)
8285 {
8286 	struct task_group *tg = cgroup_tg(cgrp);
8287 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8288 
8289 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8290 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8291 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8292 
8293 	return 0;
8294 }
8295 #endif /* CONFIG_CFS_BANDWIDTH */
8296 #endif /* CONFIG_FAIR_GROUP_SCHED */
8297 
8298 #ifdef CONFIG_RT_GROUP_SCHED
8299 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8300 				s64 val)
8301 {
8302 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8303 }
8304 
8305 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8306 {
8307 	return sched_group_rt_runtime(cgroup_tg(cgrp));
8308 }
8309 
8310 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8311 		u64 rt_period_us)
8312 {
8313 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8314 }
8315 
8316 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8317 {
8318 	return sched_group_rt_period(cgroup_tg(cgrp));
8319 }
8320 #endif /* CONFIG_RT_GROUP_SCHED */
8321 
8322 static struct cftype cpu_files[] = {
8323 #ifdef CONFIG_FAIR_GROUP_SCHED
8324 	{
8325 		.name = "shares",
8326 		.read_u64 = cpu_shares_read_u64,
8327 		.write_u64 = cpu_shares_write_u64,
8328 	},
8329 #endif
8330 #ifdef CONFIG_CFS_BANDWIDTH
8331 	{
8332 		.name = "cfs_quota_us",
8333 		.read_s64 = cpu_cfs_quota_read_s64,
8334 		.write_s64 = cpu_cfs_quota_write_s64,
8335 	},
8336 	{
8337 		.name = "cfs_period_us",
8338 		.read_u64 = cpu_cfs_period_read_u64,
8339 		.write_u64 = cpu_cfs_period_write_u64,
8340 	},
8341 	{
8342 		.name = "stat",
8343 		.read_map = cpu_stats_show,
8344 	},
8345 #endif
8346 #ifdef CONFIG_RT_GROUP_SCHED
8347 	{
8348 		.name = "rt_runtime_us",
8349 		.read_s64 = cpu_rt_runtime_read,
8350 		.write_s64 = cpu_rt_runtime_write,
8351 	},
8352 	{
8353 		.name = "rt_period_us",
8354 		.read_u64 = cpu_rt_period_read_uint,
8355 		.write_u64 = cpu_rt_period_write_uint,
8356 	},
8357 #endif
8358 	{ }	/* terminate */
8359 };
8360 
8361 struct cgroup_subsys cpu_cgroup_subsys = {
8362 	.name		= "cpu",
8363 	.create		= cpu_cgroup_create,
8364 	.destroy	= cpu_cgroup_destroy,
8365 	.can_attach	= cpu_cgroup_can_attach,
8366 	.attach		= cpu_cgroup_attach,
8367 	.exit		= cpu_cgroup_exit,
8368 	.subsys_id	= cpu_cgroup_subsys_id,
8369 	.base_cftypes	= cpu_files,
8370 	.early_init	= 1,
8371 };
8372 
8373 #endif	/* CONFIG_CGROUP_SCHED */
8374 
8375 #ifdef CONFIG_CGROUP_CPUACCT
8376 
8377 /*
8378  * CPU accounting code for task groups.
8379  *
8380  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8381  * (balbir@in.ibm.com).
8382  */
8383 
8384 /* create a new cpu accounting group */
8385 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8386 {
8387 	struct cpuacct *ca;
8388 
8389 	if (!cgrp->parent)
8390 		return &root_cpuacct.css;
8391 
8392 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8393 	if (!ca)
8394 		goto out;
8395 
8396 	ca->cpuusage = alloc_percpu(u64);
8397 	if (!ca->cpuusage)
8398 		goto out_free_ca;
8399 
8400 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8401 	if (!ca->cpustat)
8402 		goto out_free_cpuusage;
8403 
8404 	return &ca->css;
8405 
8406 out_free_cpuusage:
8407 	free_percpu(ca->cpuusage);
8408 out_free_ca:
8409 	kfree(ca);
8410 out:
8411 	return ERR_PTR(-ENOMEM);
8412 }
8413 
8414 /* destroy an existing cpu accounting group */
8415 static void cpuacct_destroy(struct cgroup *cgrp)
8416 {
8417 	struct cpuacct *ca = cgroup_ca(cgrp);
8418 
8419 	free_percpu(ca->cpustat);
8420 	free_percpu(ca->cpuusage);
8421 	kfree(ca);
8422 }
8423 
8424 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8425 {
8426 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8427 	u64 data;
8428 
8429 #ifndef CONFIG_64BIT
8430 	/*
8431 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8432 	 */
8433 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8434 	data = *cpuusage;
8435 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8436 #else
8437 	data = *cpuusage;
8438 #endif
8439 
8440 	return data;
8441 }
8442 
8443 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8444 {
8445 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8446 
8447 #ifndef CONFIG_64BIT
8448 	/*
8449 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8450 	 */
8451 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8452 	*cpuusage = val;
8453 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8454 #else
8455 	*cpuusage = val;
8456 #endif
8457 }
8458 
8459 /* return total cpu usage (in nanoseconds) of a group */
8460 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8461 {
8462 	struct cpuacct *ca = cgroup_ca(cgrp);
8463 	u64 totalcpuusage = 0;
8464 	int i;
8465 
8466 	for_each_present_cpu(i)
8467 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8468 
8469 	return totalcpuusage;
8470 }
8471 
8472 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8473 								u64 reset)
8474 {
8475 	struct cpuacct *ca = cgroup_ca(cgrp);
8476 	int err = 0;
8477 	int i;
8478 
8479 	if (reset) {
8480 		err = -EINVAL;
8481 		goto out;
8482 	}
8483 
8484 	for_each_present_cpu(i)
8485 		cpuacct_cpuusage_write(ca, i, 0);
8486 
8487 out:
8488 	return err;
8489 }
8490 
8491 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8492 				   struct seq_file *m)
8493 {
8494 	struct cpuacct *ca = cgroup_ca(cgroup);
8495 	u64 percpu;
8496 	int i;
8497 
8498 	for_each_present_cpu(i) {
8499 		percpu = cpuacct_cpuusage_read(ca, i);
8500 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8501 	}
8502 	seq_printf(m, "\n");
8503 	return 0;
8504 }
8505 
8506 static const char *cpuacct_stat_desc[] = {
8507 	[CPUACCT_STAT_USER] = "user",
8508 	[CPUACCT_STAT_SYSTEM] = "system",
8509 };
8510 
8511 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8512 			      struct cgroup_map_cb *cb)
8513 {
8514 	struct cpuacct *ca = cgroup_ca(cgrp);
8515 	int cpu;
8516 	s64 val = 0;
8517 
8518 	for_each_online_cpu(cpu) {
8519 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8520 		val += kcpustat->cpustat[CPUTIME_USER];
8521 		val += kcpustat->cpustat[CPUTIME_NICE];
8522 	}
8523 	val = cputime64_to_clock_t(val);
8524 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8525 
8526 	val = 0;
8527 	for_each_online_cpu(cpu) {
8528 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8529 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8530 		val += kcpustat->cpustat[CPUTIME_IRQ];
8531 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8532 	}
8533 
8534 	val = cputime64_to_clock_t(val);
8535 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8536 
8537 	return 0;
8538 }
8539 
8540 static struct cftype files[] = {
8541 	{
8542 		.name = "usage",
8543 		.read_u64 = cpuusage_read,
8544 		.write_u64 = cpuusage_write,
8545 	},
8546 	{
8547 		.name = "usage_percpu",
8548 		.read_seq_string = cpuacct_percpu_seq_read,
8549 	},
8550 	{
8551 		.name = "stat",
8552 		.read_map = cpuacct_stats_show,
8553 	},
8554 	{ }	/* terminate */
8555 };
8556 
8557 /*
8558  * charge this task's execution time to its accounting group.
8559  *
8560  * called with rq->lock held.
8561  */
8562 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8563 {
8564 	struct cpuacct *ca;
8565 	int cpu;
8566 
8567 	if (unlikely(!cpuacct_subsys.active))
8568 		return;
8569 
8570 	cpu = task_cpu(tsk);
8571 
8572 	rcu_read_lock();
8573 
8574 	ca = task_ca(tsk);
8575 
8576 	for (; ca; ca = parent_ca(ca)) {
8577 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8578 		*cpuusage += cputime;
8579 	}
8580 
8581 	rcu_read_unlock();
8582 }
8583 
8584 struct cgroup_subsys cpuacct_subsys = {
8585 	.name = "cpuacct",
8586 	.create = cpuacct_create,
8587 	.destroy = cpuacct_destroy,
8588 	.subsys_id = cpuacct_subsys_id,
8589 	.base_cftypes = files,
8590 };
8591 #endif	/* CONFIG_CGROUP_CPUACCT */
8592