1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 76 #include <asm/switch_to.h> 77 #include <asm/tlb.h> 78 #include <asm/irq_regs.h> 79 #include <asm/mutex.h> 80 #ifdef CONFIG_PARAVIRT 81 #include <asm/paravirt.h> 82 #endif 83 84 #include "sched.h" 85 #include "../workqueue_sched.h" 86 #include "../smpboot.h" 87 88 #define CREATE_TRACE_POINTS 89 #include <trace/events/sched.h> 90 91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 92 { 93 unsigned long delta; 94 ktime_t soft, hard, now; 95 96 for (;;) { 97 if (hrtimer_active(period_timer)) 98 break; 99 100 now = hrtimer_cb_get_time(period_timer); 101 hrtimer_forward(period_timer, now, period); 102 103 soft = hrtimer_get_softexpires(period_timer); 104 hard = hrtimer_get_expires(period_timer); 105 delta = ktime_to_ns(ktime_sub(hard, soft)); 106 __hrtimer_start_range_ns(period_timer, soft, delta, 107 HRTIMER_MODE_ABS_PINNED, 0); 108 } 109 } 110 111 DEFINE_MUTEX(sched_domains_mutex); 112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 113 114 static void update_rq_clock_task(struct rq *rq, s64 delta); 115 116 void update_rq_clock(struct rq *rq) 117 { 118 s64 delta; 119 120 if (rq->skip_clock_update > 0) 121 return; 122 123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 124 rq->clock += delta; 125 update_rq_clock_task(rq, delta); 126 } 127 128 /* 129 * Debugging: various feature bits 130 */ 131 132 #define SCHED_FEAT(name, enabled) \ 133 (1UL << __SCHED_FEAT_##name) * enabled | 134 135 const_debug unsigned int sysctl_sched_features = 136 #include "features.h" 137 0; 138 139 #undef SCHED_FEAT 140 141 #ifdef CONFIG_SCHED_DEBUG 142 #define SCHED_FEAT(name, enabled) \ 143 #name , 144 145 static const char * const sched_feat_names[] = { 146 #include "features.h" 147 }; 148 149 #undef SCHED_FEAT 150 151 static int sched_feat_show(struct seq_file *m, void *v) 152 { 153 int i; 154 155 for (i = 0; i < __SCHED_FEAT_NR; i++) { 156 if (!(sysctl_sched_features & (1UL << i))) 157 seq_puts(m, "NO_"); 158 seq_printf(m, "%s ", sched_feat_names[i]); 159 } 160 seq_puts(m, "\n"); 161 162 return 0; 163 } 164 165 #ifdef HAVE_JUMP_LABEL 166 167 #define jump_label_key__true STATIC_KEY_INIT_TRUE 168 #define jump_label_key__false STATIC_KEY_INIT_FALSE 169 170 #define SCHED_FEAT(name, enabled) \ 171 jump_label_key__##enabled , 172 173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 174 #include "features.h" 175 }; 176 177 #undef SCHED_FEAT 178 179 static void sched_feat_disable(int i) 180 { 181 if (static_key_enabled(&sched_feat_keys[i])) 182 static_key_slow_dec(&sched_feat_keys[i]); 183 } 184 185 static void sched_feat_enable(int i) 186 { 187 if (!static_key_enabled(&sched_feat_keys[i])) 188 static_key_slow_inc(&sched_feat_keys[i]); 189 } 190 #else 191 static void sched_feat_disable(int i) { }; 192 static void sched_feat_enable(int i) { }; 193 #endif /* HAVE_JUMP_LABEL */ 194 195 static ssize_t 196 sched_feat_write(struct file *filp, const char __user *ubuf, 197 size_t cnt, loff_t *ppos) 198 { 199 char buf[64]; 200 char *cmp; 201 int neg = 0; 202 int i; 203 204 if (cnt > 63) 205 cnt = 63; 206 207 if (copy_from_user(&buf, ubuf, cnt)) 208 return -EFAULT; 209 210 buf[cnt] = 0; 211 cmp = strstrip(buf); 212 213 if (strncmp(cmp, "NO_", 3) == 0) { 214 neg = 1; 215 cmp += 3; 216 } 217 218 for (i = 0; i < __SCHED_FEAT_NR; i++) { 219 if (strcmp(cmp, sched_feat_names[i]) == 0) { 220 if (neg) { 221 sysctl_sched_features &= ~(1UL << i); 222 sched_feat_disable(i); 223 } else { 224 sysctl_sched_features |= (1UL << i); 225 sched_feat_enable(i); 226 } 227 break; 228 } 229 } 230 231 if (i == __SCHED_FEAT_NR) 232 return -EINVAL; 233 234 *ppos += cnt; 235 236 return cnt; 237 } 238 239 static int sched_feat_open(struct inode *inode, struct file *filp) 240 { 241 return single_open(filp, sched_feat_show, NULL); 242 } 243 244 static const struct file_operations sched_feat_fops = { 245 .open = sched_feat_open, 246 .write = sched_feat_write, 247 .read = seq_read, 248 .llseek = seq_lseek, 249 .release = single_release, 250 }; 251 252 static __init int sched_init_debug(void) 253 { 254 debugfs_create_file("sched_features", 0644, NULL, NULL, 255 &sched_feat_fops); 256 257 return 0; 258 } 259 late_initcall(sched_init_debug); 260 #endif /* CONFIG_SCHED_DEBUG */ 261 262 /* 263 * Number of tasks to iterate in a single balance run. 264 * Limited because this is done with IRQs disabled. 265 */ 266 const_debug unsigned int sysctl_sched_nr_migrate = 32; 267 268 /* 269 * period over which we average the RT time consumption, measured 270 * in ms. 271 * 272 * default: 1s 273 */ 274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 275 276 /* 277 * period over which we measure -rt task cpu usage in us. 278 * default: 1s 279 */ 280 unsigned int sysctl_sched_rt_period = 1000000; 281 282 __read_mostly int scheduler_running; 283 284 /* 285 * part of the period that we allow rt tasks to run in us. 286 * default: 0.95s 287 */ 288 int sysctl_sched_rt_runtime = 950000; 289 290 291 292 /* 293 * __task_rq_lock - lock the rq @p resides on. 294 */ 295 static inline struct rq *__task_rq_lock(struct task_struct *p) 296 __acquires(rq->lock) 297 { 298 struct rq *rq; 299 300 lockdep_assert_held(&p->pi_lock); 301 302 for (;;) { 303 rq = task_rq(p); 304 raw_spin_lock(&rq->lock); 305 if (likely(rq == task_rq(p))) 306 return rq; 307 raw_spin_unlock(&rq->lock); 308 } 309 } 310 311 /* 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 313 */ 314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 315 __acquires(p->pi_lock) 316 __acquires(rq->lock) 317 { 318 struct rq *rq; 319 320 for (;;) { 321 raw_spin_lock_irqsave(&p->pi_lock, *flags); 322 rq = task_rq(p); 323 raw_spin_lock(&rq->lock); 324 if (likely(rq == task_rq(p))) 325 return rq; 326 raw_spin_unlock(&rq->lock); 327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 328 } 329 } 330 331 static void __task_rq_unlock(struct rq *rq) 332 __releases(rq->lock) 333 { 334 raw_spin_unlock(&rq->lock); 335 } 336 337 static inline void 338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 339 __releases(rq->lock) 340 __releases(p->pi_lock) 341 { 342 raw_spin_unlock(&rq->lock); 343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 344 } 345 346 /* 347 * this_rq_lock - lock this runqueue and disable interrupts. 348 */ 349 static struct rq *this_rq_lock(void) 350 __acquires(rq->lock) 351 { 352 struct rq *rq; 353 354 local_irq_disable(); 355 rq = this_rq(); 356 raw_spin_lock(&rq->lock); 357 358 return rq; 359 } 360 361 #ifdef CONFIG_SCHED_HRTICK 362 /* 363 * Use HR-timers to deliver accurate preemption points. 364 * 365 * Its all a bit involved since we cannot program an hrt while holding the 366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 367 * reschedule event. 368 * 369 * When we get rescheduled we reprogram the hrtick_timer outside of the 370 * rq->lock. 371 */ 372 373 static void hrtick_clear(struct rq *rq) 374 { 375 if (hrtimer_active(&rq->hrtick_timer)) 376 hrtimer_cancel(&rq->hrtick_timer); 377 } 378 379 /* 380 * High-resolution timer tick. 381 * Runs from hardirq context with interrupts disabled. 382 */ 383 static enum hrtimer_restart hrtick(struct hrtimer *timer) 384 { 385 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 386 387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 388 389 raw_spin_lock(&rq->lock); 390 update_rq_clock(rq); 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 392 raw_spin_unlock(&rq->lock); 393 394 return HRTIMER_NORESTART; 395 } 396 397 #ifdef CONFIG_SMP 398 /* 399 * called from hardirq (IPI) context 400 */ 401 static void __hrtick_start(void *arg) 402 { 403 struct rq *rq = arg; 404 405 raw_spin_lock(&rq->lock); 406 hrtimer_restart(&rq->hrtick_timer); 407 rq->hrtick_csd_pending = 0; 408 raw_spin_unlock(&rq->lock); 409 } 410 411 /* 412 * Called to set the hrtick timer state. 413 * 414 * called with rq->lock held and irqs disabled 415 */ 416 void hrtick_start(struct rq *rq, u64 delay) 417 { 418 struct hrtimer *timer = &rq->hrtick_timer; 419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 420 421 hrtimer_set_expires(timer, time); 422 423 if (rq == this_rq()) { 424 hrtimer_restart(timer); 425 } else if (!rq->hrtick_csd_pending) { 426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 427 rq->hrtick_csd_pending = 1; 428 } 429 } 430 431 static int 432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 433 { 434 int cpu = (int)(long)hcpu; 435 436 switch (action) { 437 case CPU_UP_CANCELED: 438 case CPU_UP_CANCELED_FROZEN: 439 case CPU_DOWN_PREPARE: 440 case CPU_DOWN_PREPARE_FROZEN: 441 case CPU_DEAD: 442 case CPU_DEAD_FROZEN: 443 hrtick_clear(cpu_rq(cpu)); 444 return NOTIFY_OK; 445 } 446 447 return NOTIFY_DONE; 448 } 449 450 static __init void init_hrtick(void) 451 { 452 hotcpu_notifier(hotplug_hrtick, 0); 453 } 454 #else 455 /* 456 * Called to set the hrtick timer state. 457 * 458 * called with rq->lock held and irqs disabled 459 */ 460 void hrtick_start(struct rq *rq, u64 delay) 461 { 462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 463 HRTIMER_MODE_REL_PINNED, 0); 464 } 465 466 static inline void init_hrtick(void) 467 { 468 } 469 #endif /* CONFIG_SMP */ 470 471 static void init_rq_hrtick(struct rq *rq) 472 { 473 #ifdef CONFIG_SMP 474 rq->hrtick_csd_pending = 0; 475 476 rq->hrtick_csd.flags = 0; 477 rq->hrtick_csd.func = __hrtick_start; 478 rq->hrtick_csd.info = rq; 479 #endif 480 481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 482 rq->hrtick_timer.function = hrtick; 483 } 484 #else /* CONFIG_SCHED_HRTICK */ 485 static inline void hrtick_clear(struct rq *rq) 486 { 487 } 488 489 static inline void init_rq_hrtick(struct rq *rq) 490 { 491 } 492 493 static inline void init_hrtick(void) 494 { 495 } 496 #endif /* CONFIG_SCHED_HRTICK */ 497 498 /* 499 * resched_task - mark a task 'to be rescheduled now'. 500 * 501 * On UP this means the setting of the need_resched flag, on SMP it 502 * might also involve a cross-CPU call to trigger the scheduler on 503 * the target CPU. 504 */ 505 #ifdef CONFIG_SMP 506 507 #ifndef tsk_is_polling 508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) 509 #endif 510 511 void resched_task(struct task_struct *p) 512 { 513 int cpu; 514 515 assert_raw_spin_locked(&task_rq(p)->lock); 516 517 if (test_tsk_need_resched(p)) 518 return; 519 520 set_tsk_need_resched(p); 521 522 cpu = task_cpu(p); 523 if (cpu == smp_processor_id()) 524 return; 525 526 /* NEED_RESCHED must be visible before we test polling */ 527 smp_mb(); 528 if (!tsk_is_polling(p)) 529 smp_send_reschedule(cpu); 530 } 531 532 void resched_cpu(int cpu) 533 { 534 struct rq *rq = cpu_rq(cpu); 535 unsigned long flags; 536 537 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 538 return; 539 resched_task(cpu_curr(cpu)); 540 raw_spin_unlock_irqrestore(&rq->lock, flags); 541 } 542 543 #ifdef CONFIG_NO_HZ 544 /* 545 * In the semi idle case, use the nearest busy cpu for migrating timers 546 * from an idle cpu. This is good for power-savings. 547 * 548 * We don't do similar optimization for completely idle system, as 549 * selecting an idle cpu will add more delays to the timers than intended 550 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 551 */ 552 int get_nohz_timer_target(void) 553 { 554 int cpu = smp_processor_id(); 555 int i; 556 struct sched_domain *sd; 557 558 rcu_read_lock(); 559 for_each_domain(cpu, sd) { 560 for_each_cpu(i, sched_domain_span(sd)) { 561 if (!idle_cpu(i)) { 562 cpu = i; 563 goto unlock; 564 } 565 } 566 } 567 unlock: 568 rcu_read_unlock(); 569 return cpu; 570 } 571 /* 572 * When add_timer_on() enqueues a timer into the timer wheel of an 573 * idle CPU then this timer might expire before the next timer event 574 * which is scheduled to wake up that CPU. In case of a completely 575 * idle system the next event might even be infinite time into the 576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 577 * leaves the inner idle loop so the newly added timer is taken into 578 * account when the CPU goes back to idle and evaluates the timer 579 * wheel for the next timer event. 580 */ 581 void wake_up_idle_cpu(int cpu) 582 { 583 struct rq *rq = cpu_rq(cpu); 584 585 if (cpu == smp_processor_id()) 586 return; 587 588 /* 589 * This is safe, as this function is called with the timer 590 * wheel base lock of (cpu) held. When the CPU is on the way 591 * to idle and has not yet set rq->curr to idle then it will 592 * be serialized on the timer wheel base lock and take the new 593 * timer into account automatically. 594 */ 595 if (rq->curr != rq->idle) 596 return; 597 598 /* 599 * We can set TIF_RESCHED on the idle task of the other CPU 600 * lockless. The worst case is that the other CPU runs the 601 * idle task through an additional NOOP schedule() 602 */ 603 set_tsk_need_resched(rq->idle); 604 605 /* NEED_RESCHED must be visible before we test polling */ 606 smp_mb(); 607 if (!tsk_is_polling(rq->idle)) 608 smp_send_reschedule(cpu); 609 } 610 611 static inline bool got_nohz_idle_kick(void) 612 { 613 int cpu = smp_processor_id(); 614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 615 } 616 617 #else /* CONFIG_NO_HZ */ 618 619 static inline bool got_nohz_idle_kick(void) 620 { 621 return false; 622 } 623 624 #endif /* CONFIG_NO_HZ */ 625 626 void sched_avg_update(struct rq *rq) 627 { 628 s64 period = sched_avg_period(); 629 630 while ((s64)(rq->clock - rq->age_stamp) > period) { 631 /* 632 * Inline assembly required to prevent the compiler 633 * optimising this loop into a divmod call. 634 * See __iter_div_u64_rem() for another example of this. 635 */ 636 asm("" : "+rm" (rq->age_stamp)); 637 rq->age_stamp += period; 638 rq->rt_avg /= 2; 639 } 640 } 641 642 #else /* !CONFIG_SMP */ 643 void resched_task(struct task_struct *p) 644 { 645 assert_raw_spin_locked(&task_rq(p)->lock); 646 set_tsk_need_resched(p); 647 } 648 #endif /* CONFIG_SMP */ 649 650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 652 /* 653 * Iterate task_group tree rooted at *from, calling @down when first entering a 654 * node and @up when leaving it for the final time. 655 * 656 * Caller must hold rcu_lock or sufficient equivalent. 657 */ 658 int walk_tg_tree_from(struct task_group *from, 659 tg_visitor down, tg_visitor up, void *data) 660 { 661 struct task_group *parent, *child; 662 int ret; 663 664 parent = from; 665 666 down: 667 ret = (*down)(parent, data); 668 if (ret) 669 goto out; 670 list_for_each_entry_rcu(child, &parent->children, siblings) { 671 parent = child; 672 goto down; 673 674 up: 675 continue; 676 } 677 ret = (*up)(parent, data); 678 if (ret || parent == from) 679 goto out; 680 681 child = parent; 682 parent = parent->parent; 683 if (parent) 684 goto up; 685 out: 686 return ret; 687 } 688 689 int tg_nop(struct task_group *tg, void *data) 690 { 691 return 0; 692 } 693 #endif 694 695 static void set_load_weight(struct task_struct *p) 696 { 697 int prio = p->static_prio - MAX_RT_PRIO; 698 struct load_weight *load = &p->se.load; 699 700 /* 701 * SCHED_IDLE tasks get minimal weight: 702 */ 703 if (p->policy == SCHED_IDLE) { 704 load->weight = scale_load(WEIGHT_IDLEPRIO); 705 load->inv_weight = WMULT_IDLEPRIO; 706 return; 707 } 708 709 load->weight = scale_load(prio_to_weight[prio]); 710 load->inv_weight = prio_to_wmult[prio]; 711 } 712 713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 714 { 715 update_rq_clock(rq); 716 sched_info_queued(p); 717 p->sched_class->enqueue_task(rq, p, flags); 718 } 719 720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 721 { 722 update_rq_clock(rq); 723 sched_info_dequeued(p); 724 p->sched_class->dequeue_task(rq, p, flags); 725 } 726 727 void activate_task(struct rq *rq, struct task_struct *p, int flags) 728 { 729 if (task_contributes_to_load(p)) 730 rq->nr_uninterruptible--; 731 732 enqueue_task(rq, p, flags); 733 } 734 735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 736 { 737 if (task_contributes_to_load(p)) 738 rq->nr_uninterruptible++; 739 740 dequeue_task(rq, p, flags); 741 } 742 743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 744 745 /* 746 * There are no locks covering percpu hardirq/softirq time. 747 * They are only modified in account_system_vtime, on corresponding CPU 748 * with interrupts disabled. So, writes are safe. 749 * They are read and saved off onto struct rq in update_rq_clock(). 750 * This may result in other CPU reading this CPU's irq time and can 751 * race with irq/account_system_vtime on this CPU. We would either get old 752 * or new value with a side effect of accounting a slice of irq time to wrong 753 * task when irq is in progress while we read rq->clock. That is a worthy 754 * compromise in place of having locks on each irq in account_system_time. 755 */ 756 static DEFINE_PER_CPU(u64, cpu_hardirq_time); 757 static DEFINE_PER_CPU(u64, cpu_softirq_time); 758 759 static DEFINE_PER_CPU(u64, irq_start_time); 760 static int sched_clock_irqtime; 761 762 void enable_sched_clock_irqtime(void) 763 { 764 sched_clock_irqtime = 1; 765 } 766 767 void disable_sched_clock_irqtime(void) 768 { 769 sched_clock_irqtime = 0; 770 } 771 772 #ifndef CONFIG_64BIT 773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq); 774 775 static inline void irq_time_write_begin(void) 776 { 777 __this_cpu_inc(irq_time_seq.sequence); 778 smp_wmb(); 779 } 780 781 static inline void irq_time_write_end(void) 782 { 783 smp_wmb(); 784 __this_cpu_inc(irq_time_seq.sequence); 785 } 786 787 static inline u64 irq_time_read(int cpu) 788 { 789 u64 irq_time; 790 unsigned seq; 791 792 do { 793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 794 irq_time = per_cpu(cpu_softirq_time, cpu) + 795 per_cpu(cpu_hardirq_time, cpu); 796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 797 798 return irq_time; 799 } 800 #else /* CONFIG_64BIT */ 801 static inline void irq_time_write_begin(void) 802 { 803 } 804 805 static inline void irq_time_write_end(void) 806 { 807 } 808 809 static inline u64 irq_time_read(int cpu) 810 { 811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 812 } 813 #endif /* CONFIG_64BIT */ 814 815 /* 816 * Called before incrementing preempt_count on {soft,}irq_enter 817 * and before decrementing preempt_count on {soft,}irq_exit. 818 */ 819 void account_system_vtime(struct task_struct *curr) 820 { 821 unsigned long flags; 822 s64 delta; 823 int cpu; 824 825 if (!sched_clock_irqtime) 826 return; 827 828 local_irq_save(flags); 829 830 cpu = smp_processor_id(); 831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 832 __this_cpu_add(irq_start_time, delta); 833 834 irq_time_write_begin(); 835 /* 836 * We do not account for softirq time from ksoftirqd here. 837 * We want to continue accounting softirq time to ksoftirqd thread 838 * in that case, so as not to confuse scheduler with a special task 839 * that do not consume any time, but still wants to run. 840 */ 841 if (hardirq_count()) 842 __this_cpu_add(cpu_hardirq_time, delta); 843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 844 __this_cpu_add(cpu_softirq_time, delta); 845 846 irq_time_write_end(); 847 local_irq_restore(flags); 848 } 849 EXPORT_SYMBOL_GPL(account_system_vtime); 850 851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 852 853 #ifdef CONFIG_PARAVIRT 854 static inline u64 steal_ticks(u64 steal) 855 { 856 if (unlikely(steal > NSEC_PER_SEC)) 857 return div_u64(steal, TICK_NSEC); 858 859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal); 860 } 861 #endif 862 863 static void update_rq_clock_task(struct rq *rq, s64 delta) 864 { 865 /* 866 * In theory, the compile should just see 0 here, and optimize out the call 867 * to sched_rt_avg_update. But I don't trust it... 868 */ 869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 870 s64 steal = 0, irq_delta = 0; 871 #endif 872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 874 875 /* 876 * Since irq_time is only updated on {soft,}irq_exit, we might run into 877 * this case when a previous update_rq_clock() happened inside a 878 * {soft,}irq region. 879 * 880 * When this happens, we stop ->clock_task and only update the 881 * prev_irq_time stamp to account for the part that fit, so that a next 882 * update will consume the rest. This ensures ->clock_task is 883 * monotonic. 884 * 885 * It does however cause some slight miss-attribution of {soft,}irq 886 * time, a more accurate solution would be to update the irq_time using 887 * the current rq->clock timestamp, except that would require using 888 * atomic ops. 889 */ 890 if (irq_delta > delta) 891 irq_delta = delta; 892 893 rq->prev_irq_time += irq_delta; 894 delta -= irq_delta; 895 #endif 896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 897 if (static_key_false((¶virt_steal_rq_enabled))) { 898 u64 st; 899 900 steal = paravirt_steal_clock(cpu_of(rq)); 901 steal -= rq->prev_steal_time_rq; 902 903 if (unlikely(steal > delta)) 904 steal = delta; 905 906 st = steal_ticks(steal); 907 steal = st * TICK_NSEC; 908 909 rq->prev_steal_time_rq += steal; 910 911 delta -= steal; 912 } 913 #endif 914 915 rq->clock_task += delta; 916 917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 919 sched_rt_avg_update(rq, irq_delta + steal); 920 #endif 921 } 922 923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 924 static int irqtime_account_hi_update(void) 925 { 926 u64 *cpustat = kcpustat_this_cpu->cpustat; 927 unsigned long flags; 928 u64 latest_ns; 929 int ret = 0; 930 931 local_irq_save(flags); 932 latest_ns = this_cpu_read(cpu_hardirq_time); 933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) 934 ret = 1; 935 local_irq_restore(flags); 936 return ret; 937 } 938 939 static int irqtime_account_si_update(void) 940 { 941 u64 *cpustat = kcpustat_this_cpu->cpustat; 942 unsigned long flags; 943 u64 latest_ns; 944 int ret = 0; 945 946 local_irq_save(flags); 947 latest_ns = this_cpu_read(cpu_softirq_time); 948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) 949 ret = 1; 950 local_irq_restore(flags); 951 return ret; 952 } 953 954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 955 956 #define sched_clock_irqtime (0) 957 958 #endif 959 960 void sched_set_stop_task(int cpu, struct task_struct *stop) 961 { 962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 963 struct task_struct *old_stop = cpu_rq(cpu)->stop; 964 965 if (stop) { 966 /* 967 * Make it appear like a SCHED_FIFO task, its something 968 * userspace knows about and won't get confused about. 969 * 970 * Also, it will make PI more or less work without too 971 * much confusion -- but then, stop work should not 972 * rely on PI working anyway. 973 */ 974 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 975 976 stop->sched_class = &stop_sched_class; 977 } 978 979 cpu_rq(cpu)->stop = stop; 980 981 if (old_stop) { 982 /* 983 * Reset it back to a normal scheduling class so that 984 * it can die in pieces. 985 */ 986 old_stop->sched_class = &rt_sched_class; 987 } 988 } 989 990 /* 991 * __normal_prio - return the priority that is based on the static prio 992 */ 993 static inline int __normal_prio(struct task_struct *p) 994 { 995 return p->static_prio; 996 } 997 998 /* 999 * Calculate the expected normal priority: i.e. priority 1000 * without taking RT-inheritance into account. Might be 1001 * boosted by interactivity modifiers. Changes upon fork, 1002 * setprio syscalls, and whenever the interactivity 1003 * estimator recalculates. 1004 */ 1005 static inline int normal_prio(struct task_struct *p) 1006 { 1007 int prio; 1008 1009 if (task_has_rt_policy(p)) 1010 prio = MAX_RT_PRIO-1 - p->rt_priority; 1011 else 1012 prio = __normal_prio(p); 1013 return prio; 1014 } 1015 1016 /* 1017 * Calculate the current priority, i.e. the priority 1018 * taken into account by the scheduler. This value might 1019 * be boosted by RT tasks, or might be boosted by 1020 * interactivity modifiers. Will be RT if the task got 1021 * RT-boosted. If not then it returns p->normal_prio. 1022 */ 1023 static int effective_prio(struct task_struct *p) 1024 { 1025 p->normal_prio = normal_prio(p); 1026 /* 1027 * If we are RT tasks or we were boosted to RT priority, 1028 * keep the priority unchanged. Otherwise, update priority 1029 * to the normal priority: 1030 */ 1031 if (!rt_prio(p->prio)) 1032 return p->normal_prio; 1033 return p->prio; 1034 } 1035 1036 /** 1037 * task_curr - is this task currently executing on a CPU? 1038 * @p: the task in question. 1039 */ 1040 inline int task_curr(const struct task_struct *p) 1041 { 1042 return cpu_curr(task_cpu(p)) == p; 1043 } 1044 1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1046 const struct sched_class *prev_class, 1047 int oldprio) 1048 { 1049 if (prev_class != p->sched_class) { 1050 if (prev_class->switched_from) 1051 prev_class->switched_from(rq, p); 1052 p->sched_class->switched_to(rq, p); 1053 } else if (oldprio != p->prio) 1054 p->sched_class->prio_changed(rq, p, oldprio); 1055 } 1056 1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1058 { 1059 const struct sched_class *class; 1060 1061 if (p->sched_class == rq->curr->sched_class) { 1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1063 } else { 1064 for_each_class(class) { 1065 if (class == rq->curr->sched_class) 1066 break; 1067 if (class == p->sched_class) { 1068 resched_task(rq->curr); 1069 break; 1070 } 1071 } 1072 } 1073 1074 /* 1075 * A queue event has occurred, and we're going to schedule. In 1076 * this case, we can save a useless back to back clock update. 1077 */ 1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 1079 rq->skip_clock_update = 1; 1080 } 1081 1082 #ifdef CONFIG_SMP 1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1084 { 1085 #ifdef CONFIG_SCHED_DEBUG 1086 /* 1087 * We should never call set_task_cpu() on a blocked task, 1088 * ttwu() will sort out the placement. 1089 */ 1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 1092 1093 #ifdef CONFIG_LOCKDEP 1094 /* 1095 * The caller should hold either p->pi_lock or rq->lock, when changing 1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1097 * 1098 * sched_move_task() holds both and thus holding either pins the cgroup, 1099 * see task_group(). 1100 * 1101 * Furthermore, all task_rq users should acquire both locks, see 1102 * task_rq_lock(). 1103 */ 1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1105 lockdep_is_held(&task_rq(p)->lock))); 1106 #endif 1107 #endif 1108 1109 trace_sched_migrate_task(p, new_cpu); 1110 1111 if (task_cpu(p) != new_cpu) { 1112 p->se.nr_migrations++; 1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1114 } 1115 1116 __set_task_cpu(p, new_cpu); 1117 } 1118 1119 struct migration_arg { 1120 struct task_struct *task; 1121 int dest_cpu; 1122 }; 1123 1124 static int migration_cpu_stop(void *data); 1125 1126 /* 1127 * wait_task_inactive - wait for a thread to unschedule. 1128 * 1129 * If @match_state is nonzero, it's the @p->state value just checked and 1130 * not expected to change. If it changes, i.e. @p might have woken up, 1131 * then return zero. When we succeed in waiting for @p to be off its CPU, 1132 * we return a positive number (its total switch count). If a second call 1133 * a short while later returns the same number, the caller can be sure that 1134 * @p has remained unscheduled the whole time. 1135 * 1136 * The caller must ensure that the task *will* unschedule sometime soon, 1137 * else this function might spin for a *long* time. This function can't 1138 * be called with interrupts off, or it may introduce deadlock with 1139 * smp_call_function() if an IPI is sent by the same process we are 1140 * waiting to become inactive. 1141 */ 1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1143 { 1144 unsigned long flags; 1145 int running, on_rq; 1146 unsigned long ncsw; 1147 struct rq *rq; 1148 1149 for (;;) { 1150 /* 1151 * We do the initial early heuristics without holding 1152 * any task-queue locks at all. We'll only try to get 1153 * the runqueue lock when things look like they will 1154 * work out! 1155 */ 1156 rq = task_rq(p); 1157 1158 /* 1159 * If the task is actively running on another CPU 1160 * still, just relax and busy-wait without holding 1161 * any locks. 1162 * 1163 * NOTE! Since we don't hold any locks, it's not 1164 * even sure that "rq" stays as the right runqueue! 1165 * But we don't care, since "task_running()" will 1166 * return false if the runqueue has changed and p 1167 * is actually now running somewhere else! 1168 */ 1169 while (task_running(rq, p)) { 1170 if (match_state && unlikely(p->state != match_state)) 1171 return 0; 1172 cpu_relax(); 1173 } 1174 1175 /* 1176 * Ok, time to look more closely! We need the rq 1177 * lock now, to be *sure*. If we're wrong, we'll 1178 * just go back and repeat. 1179 */ 1180 rq = task_rq_lock(p, &flags); 1181 trace_sched_wait_task(p); 1182 running = task_running(rq, p); 1183 on_rq = p->on_rq; 1184 ncsw = 0; 1185 if (!match_state || p->state == match_state) 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1187 task_rq_unlock(rq, p, &flags); 1188 1189 /* 1190 * If it changed from the expected state, bail out now. 1191 */ 1192 if (unlikely(!ncsw)) 1193 break; 1194 1195 /* 1196 * Was it really running after all now that we 1197 * checked with the proper locks actually held? 1198 * 1199 * Oops. Go back and try again.. 1200 */ 1201 if (unlikely(running)) { 1202 cpu_relax(); 1203 continue; 1204 } 1205 1206 /* 1207 * It's not enough that it's not actively running, 1208 * it must be off the runqueue _entirely_, and not 1209 * preempted! 1210 * 1211 * So if it was still runnable (but just not actively 1212 * running right now), it's preempted, and we should 1213 * yield - it could be a while. 1214 */ 1215 if (unlikely(on_rq)) { 1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1217 1218 set_current_state(TASK_UNINTERRUPTIBLE); 1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1220 continue; 1221 } 1222 1223 /* 1224 * Ahh, all good. It wasn't running, and it wasn't 1225 * runnable, which means that it will never become 1226 * running in the future either. We're all done! 1227 */ 1228 break; 1229 } 1230 1231 return ncsw; 1232 } 1233 1234 /*** 1235 * kick_process - kick a running thread to enter/exit the kernel 1236 * @p: the to-be-kicked thread 1237 * 1238 * Cause a process which is running on another CPU to enter 1239 * kernel-mode, without any delay. (to get signals handled.) 1240 * 1241 * NOTE: this function doesn't have to take the runqueue lock, 1242 * because all it wants to ensure is that the remote task enters 1243 * the kernel. If the IPI races and the task has been migrated 1244 * to another CPU then no harm is done and the purpose has been 1245 * achieved as well. 1246 */ 1247 void kick_process(struct task_struct *p) 1248 { 1249 int cpu; 1250 1251 preempt_disable(); 1252 cpu = task_cpu(p); 1253 if ((cpu != smp_processor_id()) && task_curr(p)) 1254 smp_send_reschedule(cpu); 1255 preempt_enable(); 1256 } 1257 EXPORT_SYMBOL_GPL(kick_process); 1258 #endif /* CONFIG_SMP */ 1259 1260 #ifdef CONFIG_SMP 1261 /* 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1263 */ 1264 static int select_fallback_rq(int cpu, struct task_struct *p) 1265 { 1266 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); 1267 enum { cpuset, possible, fail } state = cpuset; 1268 int dest_cpu; 1269 1270 /* Look for allowed, online CPU in same node. */ 1271 for_each_cpu(dest_cpu, nodemask) { 1272 if (!cpu_online(dest_cpu)) 1273 continue; 1274 if (!cpu_active(dest_cpu)) 1275 continue; 1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1277 return dest_cpu; 1278 } 1279 1280 for (;;) { 1281 /* Any allowed, online CPU? */ 1282 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1283 if (!cpu_online(dest_cpu)) 1284 continue; 1285 if (!cpu_active(dest_cpu)) 1286 continue; 1287 goto out; 1288 } 1289 1290 switch (state) { 1291 case cpuset: 1292 /* No more Mr. Nice Guy. */ 1293 cpuset_cpus_allowed_fallback(p); 1294 state = possible; 1295 break; 1296 1297 case possible: 1298 do_set_cpus_allowed(p, cpu_possible_mask); 1299 state = fail; 1300 break; 1301 1302 case fail: 1303 BUG(); 1304 break; 1305 } 1306 } 1307 1308 out: 1309 if (state != cpuset) { 1310 /* 1311 * Don't tell them about moving exiting tasks or 1312 * kernel threads (both mm NULL), since they never 1313 * leave kernel. 1314 */ 1315 if (p->mm && printk_ratelimit()) { 1316 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1317 task_pid_nr(p), p->comm, cpu); 1318 } 1319 } 1320 1321 return dest_cpu; 1322 } 1323 1324 /* 1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1326 */ 1327 static inline 1328 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1329 { 1330 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1331 1332 /* 1333 * In order not to call set_task_cpu() on a blocking task we need 1334 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1335 * cpu. 1336 * 1337 * Since this is common to all placement strategies, this lives here. 1338 * 1339 * [ this allows ->select_task() to simply return task_cpu(p) and 1340 * not worry about this generic constraint ] 1341 */ 1342 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1343 !cpu_online(cpu))) 1344 cpu = select_fallback_rq(task_cpu(p), p); 1345 1346 return cpu; 1347 } 1348 1349 static void update_avg(u64 *avg, u64 sample) 1350 { 1351 s64 diff = sample - *avg; 1352 *avg += diff >> 3; 1353 } 1354 #endif 1355 1356 static void 1357 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1358 { 1359 #ifdef CONFIG_SCHEDSTATS 1360 struct rq *rq = this_rq(); 1361 1362 #ifdef CONFIG_SMP 1363 int this_cpu = smp_processor_id(); 1364 1365 if (cpu == this_cpu) { 1366 schedstat_inc(rq, ttwu_local); 1367 schedstat_inc(p, se.statistics.nr_wakeups_local); 1368 } else { 1369 struct sched_domain *sd; 1370 1371 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1372 rcu_read_lock(); 1373 for_each_domain(this_cpu, sd) { 1374 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1375 schedstat_inc(sd, ttwu_wake_remote); 1376 break; 1377 } 1378 } 1379 rcu_read_unlock(); 1380 } 1381 1382 if (wake_flags & WF_MIGRATED) 1383 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1384 1385 #endif /* CONFIG_SMP */ 1386 1387 schedstat_inc(rq, ttwu_count); 1388 schedstat_inc(p, se.statistics.nr_wakeups); 1389 1390 if (wake_flags & WF_SYNC) 1391 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1392 1393 #endif /* CONFIG_SCHEDSTATS */ 1394 } 1395 1396 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1397 { 1398 activate_task(rq, p, en_flags); 1399 p->on_rq = 1; 1400 1401 /* if a worker is waking up, notify workqueue */ 1402 if (p->flags & PF_WQ_WORKER) 1403 wq_worker_waking_up(p, cpu_of(rq)); 1404 } 1405 1406 /* 1407 * Mark the task runnable and perform wakeup-preemption. 1408 */ 1409 static void 1410 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1411 { 1412 trace_sched_wakeup(p, true); 1413 check_preempt_curr(rq, p, wake_flags); 1414 1415 p->state = TASK_RUNNING; 1416 #ifdef CONFIG_SMP 1417 if (p->sched_class->task_woken) 1418 p->sched_class->task_woken(rq, p); 1419 1420 if (rq->idle_stamp) { 1421 u64 delta = rq->clock - rq->idle_stamp; 1422 u64 max = 2*sysctl_sched_migration_cost; 1423 1424 if (delta > max) 1425 rq->avg_idle = max; 1426 else 1427 update_avg(&rq->avg_idle, delta); 1428 rq->idle_stamp = 0; 1429 } 1430 #endif 1431 } 1432 1433 static void 1434 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1435 { 1436 #ifdef CONFIG_SMP 1437 if (p->sched_contributes_to_load) 1438 rq->nr_uninterruptible--; 1439 #endif 1440 1441 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1442 ttwu_do_wakeup(rq, p, wake_flags); 1443 } 1444 1445 /* 1446 * Called in case the task @p isn't fully descheduled from its runqueue, 1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1448 * since all we need to do is flip p->state to TASK_RUNNING, since 1449 * the task is still ->on_rq. 1450 */ 1451 static int ttwu_remote(struct task_struct *p, int wake_flags) 1452 { 1453 struct rq *rq; 1454 int ret = 0; 1455 1456 rq = __task_rq_lock(p); 1457 if (p->on_rq) { 1458 ttwu_do_wakeup(rq, p, wake_flags); 1459 ret = 1; 1460 } 1461 __task_rq_unlock(rq); 1462 1463 return ret; 1464 } 1465 1466 #ifdef CONFIG_SMP 1467 static void sched_ttwu_pending(void) 1468 { 1469 struct rq *rq = this_rq(); 1470 struct llist_node *llist = llist_del_all(&rq->wake_list); 1471 struct task_struct *p; 1472 1473 raw_spin_lock(&rq->lock); 1474 1475 while (llist) { 1476 p = llist_entry(llist, struct task_struct, wake_entry); 1477 llist = llist_next(llist); 1478 ttwu_do_activate(rq, p, 0); 1479 } 1480 1481 raw_spin_unlock(&rq->lock); 1482 } 1483 1484 void scheduler_ipi(void) 1485 { 1486 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1487 return; 1488 1489 /* 1490 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1491 * traditionally all their work was done from the interrupt return 1492 * path. Now that we actually do some work, we need to make sure 1493 * we do call them. 1494 * 1495 * Some archs already do call them, luckily irq_enter/exit nest 1496 * properly. 1497 * 1498 * Arguably we should visit all archs and update all handlers, 1499 * however a fair share of IPIs are still resched only so this would 1500 * somewhat pessimize the simple resched case. 1501 */ 1502 irq_enter(); 1503 sched_ttwu_pending(); 1504 1505 /* 1506 * Check if someone kicked us for doing the nohz idle load balance. 1507 */ 1508 if (unlikely(got_nohz_idle_kick() && !need_resched())) { 1509 this_rq()->idle_balance = 1; 1510 raise_softirq_irqoff(SCHED_SOFTIRQ); 1511 } 1512 irq_exit(); 1513 } 1514 1515 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1516 { 1517 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1518 smp_send_reschedule(cpu); 1519 } 1520 1521 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1522 static int ttwu_activate_remote(struct task_struct *p, int wake_flags) 1523 { 1524 struct rq *rq; 1525 int ret = 0; 1526 1527 rq = __task_rq_lock(p); 1528 if (p->on_cpu) { 1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1530 ttwu_do_wakeup(rq, p, wake_flags); 1531 ret = 1; 1532 } 1533 __task_rq_unlock(rq); 1534 1535 return ret; 1536 1537 } 1538 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1539 1540 bool cpus_share_cache(int this_cpu, int that_cpu) 1541 { 1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1543 } 1544 #endif /* CONFIG_SMP */ 1545 1546 static void ttwu_queue(struct task_struct *p, int cpu) 1547 { 1548 struct rq *rq = cpu_rq(cpu); 1549 1550 #if defined(CONFIG_SMP) 1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1553 ttwu_queue_remote(p, cpu); 1554 return; 1555 } 1556 #endif 1557 1558 raw_spin_lock(&rq->lock); 1559 ttwu_do_activate(rq, p, 0); 1560 raw_spin_unlock(&rq->lock); 1561 } 1562 1563 /** 1564 * try_to_wake_up - wake up a thread 1565 * @p: the thread to be awakened 1566 * @state: the mask of task states that can be woken 1567 * @wake_flags: wake modifier flags (WF_*) 1568 * 1569 * Put it on the run-queue if it's not already there. The "current" 1570 * thread is always on the run-queue (except when the actual 1571 * re-schedule is in progress), and as such you're allowed to do 1572 * the simpler "current->state = TASK_RUNNING" to mark yourself 1573 * runnable without the overhead of this. 1574 * 1575 * Returns %true if @p was woken up, %false if it was already running 1576 * or @state didn't match @p's state. 1577 */ 1578 static int 1579 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1580 { 1581 unsigned long flags; 1582 int cpu, success = 0; 1583 1584 smp_wmb(); 1585 raw_spin_lock_irqsave(&p->pi_lock, flags); 1586 if (!(p->state & state)) 1587 goto out; 1588 1589 success = 1; /* we're going to change ->state */ 1590 cpu = task_cpu(p); 1591 1592 if (p->on_rq && ttwu_remote(p, wake_flags)) 1593 goto stat; 1594 1595 #ifdef CONFIG_SMP 1596 /* 1597 * If the owning (remote) cpu is still in the middle of schedule() with 1598 * this task as prev, wait until its done referencing the task. 1599 */ 1600 while (p->on_cpu) { 1601 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1602 /* 1603 * In case the architecture enables interrupts in 1604 * context_switch(), we cannot busy wait, since that 1605 * would lead to deadlocks when an interrupt hits and 1606 * tries to wake up @prev. So bail and do a complete 1607 * remote wakeup. 1608 */ 1609 if (ttwu_activate_remote(p, wake_flags)) 1610 goto stat; 1611 #else 1612 cpu_relax(); 1613 #endif 1614 } 1615 /* 1616 * Pairs with the smp_wmb() in finish_lock_switch(). 1617 */ 1618 smp_rmb(); 1619 1620 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1621 p->state = TASK_WAKING; 1622 1623 if (p->sched_class->task_waking) 1624 p->sched_class->task_waking(p); 1625 1626 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1627 if (task_cpu(p) != cpu) { 1628 wake_flags |= WF_MIGRATED; 1629 set_task_cpu(p, cpu); 1630 } 1631 #endif /* CONFIG_SMP */ 1632 1633 ttwu_queue(p, cpu); 1634 stat: 1635 ttwu_stat(p, cpu, wake_flags); 1636 out: 1637 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1638 1639 return success; 1640 } 1641 1642 /** 1643 * try_to_wake_up_local - try to wake up a local task with rq lock held 1644 * @p: the thread to be awakened 1645 * 1646 * Put @p on the run-queue if it's not already there. The caller must 1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1648 * the current task. 1649 */ 1650 static void try_to_wake_up_local(struct task_struct *p) 1651 { 1652 struct rq *rq = task_rq(p); 1653 1654 BUG_ON(rq != this_rq()); 1655 BUG_ON(p == current); 1656 lockdep_assert_held(&rq->lock); 1657 1658 if (!raw_spin_trylock(&p->pi_lock)) { 1659 raw_spin_unlock(&rq->lock); 1660 raw_spin_lock(&p->pi_lock); 1661 raw_spin_lock(&rq->lock); 1662 } 1663 1664 if (!(p->state & TASK_NORMAL)) 1665 goto out; 1666 1667 if (!p->on_rq) 1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1669 1670 ttwu_do_wakeup(rq, p, 0); 1671 ttwu_stat(p, smp_processor_id(), 0); 1672 out: 1673 raw_spin_unlock(&p->pi_lock); 1674 } 1675 1676 /** 1677 * wake_up_process - Wake up a specific process 1678 * @p: The process to be woken up. 1679 * 1680 * Attempt to wake up the nominated process and move it to the set of runnable 1681 * processes. Returns 1 if the process was woken up, 0 if it was already 1682 * running. 1683 * 1684 * It may be assumed that this function implies a write memory barrier before 1685 * changing the task state if and only if any tasks are woken up. 1686 */ 1687 int wake_up_process(struct task_struct *p) 1688 { 1689 return try_to_wake_up(p, TASK_ALL, 0); 1690 } 1691 EXPORT_SYMBOL(wake_up_process); 1692 1693 int wake_up_state(struct task_struct *p, unsigned int state) 1694 { 1695 return try_to_wake_up(p, state, 0); 1696 } 1697 1698 /* 1699 * Perform scheduler related setup for a newly forked process p. 1700 * p is forked by current. 1701 * 1702 * __sched_fork() is basic setup used by init_idle() too: 1703 */ 1704 static void __sched_fork(struct task_struct *p) 1705 { 1706 p->on_rq = 0; 1707 1708 p->se.on_rq = 0; 1709 p->se.exec_start = 0; 1710 p->se.sum_exec_runtime = 0; 1711 p->se.prev_sum_exec_runtime = 0; 1712 p->se.nr_migrations = 0; 1713 p->se.vruntime = 0; 1714 INIT_LIST_HEAD(&p->se.group_node); 1715 1716 #ifdef CONFIG_SCHEDSTATS 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1718 #endif 1719 1720 INIT_LIST_HEAD(&p->rt.run_list); 1721 1722 #ifdef CONFIG_PREEMPT_NOTIFIERS 1723 INIT_HLIST_HEAD(&p->preempt_notifiers); 1724 #endif 1725 } 1726 1727 /* 1728 * fork()/clone()-time setup: 1729 */ 1730 void sched_fork(struct task_struct *p) 1731 { 1732 unsigned long flags; 1733 int cpu = get_cpu(); 1734 1735 __sched_fork(p); 1736 /* 1737 * We mark the process as running here. This guarantees that 1738 * nobody will actually run it, and a signal or other external 1739 * event cannot wake it up and insert it on the runqueue either. 1740 */ 1741 p->state = TASK_RUNNING; 1742 1743 /* 1744 * Make sure we do not leak PI boosting priority to the child. 1745 */ 1746 p->prio = current->normal_prio; 1747 1748 /* 1749 * Revert to default priority/policy on fork if requested. 1750 */ 1751 if (unlikely(p->sched_reset_on_fork)) { 1752 if (task_has_rt_policy(p)) { 1753 p->policy = SCHED_NORMAL; 1754 p->static_prio = NICE_TO_PRIO(0); 1755 p->rt_priority = 0; 1756 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1757 p->static_prio = NICE_TO_PRIO(0); 1758 1759 p->prio = p->normal_prio = __normal_prio(p); 1760 set_load_weight(p); 1761 1762 /* 1763 * We don't need the reset flag anymore after the fork. It has 1764 * fulfilled its duty: 1765 */ 1766 p->sched_reset_on_fork = 0; 1767 } 1768 1769 if (!rt_prio(p->prio)) 1770 p->sched_class = &fair_sched_class; 1771 1772 if (p->sched_class->task_fork) 1773 p->sched_class->task_fork(p); 1774 1775 /* 1776 * The child is not yet in the pid-hash so no cgroup attach races, 1777 * and the cgroup is pinned to this child due to cgroup_fork() 1778 * is ran before sched_fork(). 1779 * 1780 * Silence PROVE_RCU. 1781 */ 1782 raw_spin_lock_irqsave(&p->pi_lock, flags); 1783 set_task_cpu(p, cpu); 1784 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1785 1786 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1787 if (likely(sched_info_on())) 1788 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1789 #endif 1790 #if defined(CONFIG_SMP) 1791 p->on_cpu = 0; 1792 #endif 1793 #ifdef CONFIG_PREEMPT_COUNT 1794 /* Want to start with kernel preemption disabled. */ 1795 task_thread_info(p)->preempt_count = 1; 1796 #endif 1797 #ifdef CONFIG_SMP 1798 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1799 #endif 1800 1801 put_cpu(); 1802 } 1803 1804 /* 1805 * wake_up_new_task - wake up a newly created task for the first time. 1806 * 1807 * This function will do some initial scheduler statistics housekeeping 1808 * that must be done for every newly created context, then puts the task 1809 * on the runqueue and wakes it. 1810 */ 1811 void wake_up_new_task(struct task_struct *p) 1812 { 1813 unsigned long flags; 1814 struct rq *rq; 1815 1816 raw_spin_lock_irqsave(&p->pi_lock, flags); 1817 #ifdef CONFIG_SMP 1818 /* 1819 * Fork balancing, do it here and not earlier because: 1820 * - cpus_allowed can change in the fork path 1821 * - any previously selected cpu might disappear through hotplug 1822 */ 1823 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1824 #endif 1825 1826 rq = __task_rq_lock(p); 1827 activate_task(rq, p, 0); 1828 p->on_rq = 1; 1829 trace_sched_wakeup_new(p, true); 1830 check_preempt_curr(rq, p, WF_FORK); 1831 #ifdef CONFIG_SMP 1832 if (p->sched_class->task_woken) 1833 p->sched_class->task_woken(rq, p); 1834 #endif 1835 task_rq_unlock(rq, p, &flags); 1836 } 1837 1838 #ifdef CONFIG_PREEMPT_NOTIFIERS 1839 1840 /** 1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1842 * @notifier: notifier struct to register 1843 */ 1844 void preempt_notifier_register(struct preempt_notifier *notifier) 1845 { 1846 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1847 } 1848 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1849 1850 /** 1851 * preempt_notifier_unregister - no longer interested in preemption notifications 1852 * @notifier: notifier struct to unregister 1853 * 1854 * This is safe to call from within a preemption notifier. 1855 */ 1856 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1857 { 1858 hlist_del(¬ifier->link); 1859 } 1860 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1861 1862 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1863 { 1864 struct preempt_notifier *notifier; 1865 struct hlist_node *node; 1866 1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1868 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1869 } 1870 1871 static void 1872 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1873 struct task_struct *next) 1874 { 1875 struct preempt_notifier *notifier; 1876 struct hlist_node *node; 1877 1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1879 notifier->ops->sched_out(notifier, next); 1880 } 1881 1882 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1883 1884 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1885 { 1886 } 1887 1888 static void 1889 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1890 struct task_struct *next) 1891 { 1892 } 1893 1894 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1895 1896 /** 1897 * prepare_task_switch - prepare to switch tasks 1898 * @rq: the runqueue preparing to switch 1899 * @prev: the current task that is being switched out 1900 * @next: the task we are going to switch to. 1901 * 1902 * This is called with the rq lock held and interrupts off. It must 1903 * be paired with a subsequent finish_task_switch after the context 1904 * switch. 1905 * 1906 * prepare_task_switch sets up locking and calls architecture specific 1907 * hooks. 1908 */ 1909 static inline void 1910 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1911 struct task_struct *next) 1912 { 1913 trace_sched_switch(prev, next); 1914 sched_info_switch(prev, next); 1915 perf_event_task_sched_out(prev, next); 1916 fire_sched_out_preempt_notifiers(prev, next); 1917 prepare_lock_switch(rq, next); 1918 prepare_arch_switch(next); 1919 } 1920 1921 /** 1922 * finish_task_switch - clean up after a task-switch 1923 * @rq: runqueue associated with task-switch 1924 * @prev: the thread we just switched away from. 1925 * 1926 * finish_task_switch must be called after the context switch, paired 1927 * with a prepare_task_switch call before the context switch. 1928 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1929 * and do any other architecture-specific cleanup actions. 1930 * 1931 * Note that we may have delayed dropping an mm in context_switch(). If 1932 * so, we finish that here outside of the runqueue lock. (Doing it 1933 * with the lock held can cause deadlocks; see schedule() for 1934 * details.) 1935 */ 1936 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1937 __releases(rq->lock) 1938 { 1939 struct mm_struct *mm = rq->prev_mm; 1940 long prev_state; 1941 1942 rq->prev_mm = NULL; 1943 1944 /* 1945 * A task struct has one reference for the use as "current". 1946 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1947 * schedule one last time. The schedule call will never return, and 1948 * the scheduled task must drop that reference. 1949 * The test for TASK_DEAD must occur while the runqueue locks are 1950 * still held, otherwise prev could be scheduled on another cpu, die 1951 * there before we look at prev->state, and then the reference would 1952 * be dropped twice. 1953 * Manfred Spraul <manfred@colorfullife.com> 1954 */ 1955 prev_state = prev->state; 1956 finish_arch_switch(prev); 1957 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1958 local_irq_disable(); 1959 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1960 perf_event_task_sched_in(prev, current); 1961 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1962 local_irq_enable(); 1963 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1964 finish_lock_switch(rq, prev); 1965 finish_arch_post_lock_switch(); 1966 1967 fire_sched_in_preempt_notifiers(current); 1968 if (mm) 1969 mmdrop(mm); 1970 if (unlikely(prev_state == TASK_DEAD)) { 1971 /* 1972 * Remove function-return probe instances associated with this 1973 * task and put them back on the free list. 1974 */ 1975 kprobe_flush_task(prev); 1976 put_task_struct(prev); 1977 } 1978 } 1979 1980 #ifdef CONFIG_SMP 1981 1982 /* assumes rq->lock is held */ 1983 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1984 { 1985 if (prev->sched_class->pre_schedule) 1986 prev->sched_class->pre_schedule(rq, prev); 1987 } 1988 1989 /* rq->lock is NOT held, but preemption is disabled */ 1990 static inline void post_schedule(struct rq *rq) 1991 { 1992 if (rq->post_schedule) { 1993 unsigned long flags; 1994 1995 raw_spin_lock_irqsave(&rq->lock, flags); 1996 if (rq->curr->sched_class->post_schedule) 1997 rq->curr->sched_class->post_schedule(rq); 1998 raw_spin_unlock_irqrestore(&rq->lock, flags); 1999 2000 rq->post_schedule = 0; 2001 } 2002 } 2003 2004 #else 2005 2006 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 2007 { 2008 } 2009 2010 static inline void post_schedule(struct rq *rq) 2011 { 2012 } 2013 2014 #endif 2015 2016 /** 2017 * schedule_tail - first thing a freshly forked thread must call. 2018 * @prev: the thread we just switched away from. 2019 */ 2020 asmlinkage void schedule_tail(struct task_struct *prev) 2021 __releases(rq->lock) 2022 { 2023 struct rq *rq = this_rq(); 2024 2025 finish_task_switch(rq, prev); 2026 2027 /* 2028 * FIXME: do we need to worry about rq being invalidated by the 2029 * task_switch? 2030 */ 2031 post_schedule(rq); 2032 2033 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2034 /* In this case, finish_task_switch does not reenable preemption */ 2035 preempt_enable(); 2036 #endif 2037 if (current->set_child_tid) 2038 put_user(task_pid_vnr(current), current->set_child_tid); 2039 } 2040 2041 /* 2042 * context_switch - switch to the new MM and the new 2043 * thread's register state. 2044 */ 2045 static inline void 2046 context_switch(struct rq *rq, struct task_struct *prev, 2047 struct task_struct *next) 2048 { 2049 struct mm_struct *mm, *oldmm; 2050 2051 prepare_task_switch(rq, prev, next); 2052 2053 mm = next->mm; 2054 oldmm = prev->active_mm; 2055 /* 2056 * For paravirt, this is coupled with an exit in switch_to to 2057 * combine the page table reload and the switch backend into 2058 * one hypercall. 2059 */ 2060 arch_start_context_switch(prev); 2061 2062 if (!mm) { 2063 next->active_mm = oldmm; 2064 atomic_inc(&oldmm->mm_count); 2065 enter_lazy_tlb(oldmm, next); 2066 } else 2067 switch_mm(oldmm, mm, next); 2068 2069 if (!prev->mm) { 2070 prev->active_mm = NULL; 2071 rq->prev_mm = oldmm; 2072 } 2073 /* 2074 * Since the runqueue lock will be released by the next 2075 * task (which is an invalid locking op but in the case 2076 * of the scheduler it's an obvious special-case), so we 2077 * do an early lockdep release here: 2078 */ 2079 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2080 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2081 #endif 2082 2083 /* Here we just switch the register state and the stack. */ 2084 switch_to(prev, next, prev); 2085 2086 barrier(); 2087 /* 2088 * this_rq must be evaluated again because prev may have moved 2089 * CPUs since it called schedule(), thus the 'rq' on its stack 2090 * frame will be invalid. 2091 */ 2092 finish_task_switch(this_rq(), prev); 2093 } 2094 2095 /* 2096 * nr_running, nr_uninterruptible and nr_context_switches: 2097 * 2098 * externally visible scheduler statistics: current number of runnable 2099 * threads, current number of uninterruptible-sleeping threads, total 2100 * number of context switches performed since bootup. 2101 */ 2102 unsigned long nr_running(void) 2103 { 2104 unsigned long i, sum = 0; 2105 2106 for_each_online_cpu(i) 2107 sum += cpu_rq(i)->nr_running; 2108 2109 return sum; 2110 } 2111 2112 unsigned long nr_uninterruptible(void) 2113 { 2114 unsigned long i, sum = 0; 2115 2116 for_each_possible_cpu(i) 2117 sum += cpu_rq(i)->nr_uninterruptible; 2118 2119 /* 2120 * Since we read the counters lockless, it might be slightly 2121 * inaccurate. Do not allow it to go below zero though: 2122 */ 2123 if (unlikely((long)sum < 0)) 2124 sum = 0; 2125 2126 return sum; 2127 } 2128 2129 unsigned long long nr_context_switches(void) 2130 { 2131 int i; 2132 unsigned long long sum = 0; 2133 2134 for_each_possible_cpu(i) 2135 sum += cpu_rq(i)->nr_switches; 2136 2137 return sum; 2138 } 2139 2140 unsigned long nr_iowait(void) 2141 { 2142 unsigned long i, sum = 0; 2143 2144 for_each_possible_cpu(i) 2145 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2146 2147 return sum; 2148 } 2149 2150 unsigned long nr_iowait_cpu(int cpu) 2151 { 2152 struct rq *this = cpu_rq(cpu); 2153 return atomic_read(&this->nr_iowait); 2154 } 2155 2156 unsigned long this_cpu_load(void) 2157 { 2158 struct rq *this = this_rq(); 2159 return this->cpu_load[0]; 2160 } 2161 2162 2163 /* 2164 * Global load-average calculations 2165 * 2166 * We take a distributed and async approach to calculating the global load-avg 2167 * in order to minimize overhead. 2168 * 2169 * The global load average is an exponentially decaying average of nr_running + 2170 * nr_uninterruptible. 2171 * 2172 * Once every LOAD_FREQ: 2173 * 2174 * nr_active = 0; 2175 * for_each_possible_cpu(cpu) 2176 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; 2177 * 2178 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) 2179 * 2180 * Due to a number of reasons the above turns in the mess below: 2181 * 2182 * - for_each_possible_cpu() is prohibitively expensive on machines with 2183 * serious number of cpus, therefore we need to take a distributed approach 2184 * to calculating nr_active. 2185 * 2186 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 2187 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } 2188 * 2189 * So assuming nr_active := 0 when we start out -- true per definition, we 2190 * can simply take per-cpu deltas and fold those into a global accumulate 2191 * to obtain the same result. See calc_load_fold_active(). 2192 * 2193 * Furthermore, in order to avoid synchronizing all per-cpu delta folding 2194 * across the machine, we assume 10 ticks is sufficient time for every 2195 * cpu to have completed this task. 2196 * 2197 * This places an upper-bound on the IRQ-off latency of the machine. Then 2198 * again, being late doesn't loose the delta, just wrecks the sample. 2199 * 2200 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because 2201 * this would add another cross-cpu cacheline miss and atomic operation 2202 * to the wakeup path. Instead we increment on whatever cpu the task ran 2203 * when it went into uninterruptible state and decrement on whatever cpu 2204 * did the wakeup. This means that only the sum of nr_uninterruptible over 2205 * all cpus yields the correct result. 2206 * 2207 * This covers the NO_HZ=n code, for extra head-aches, see the comment below. 2208 */ 2209 2210 /* Variables and functions for calc_load */ 2211 static atomic_long_t calc_load_tasks; 2212 static unsigned long calc_load_update; 2213 unsigned long avenrun[3]; 2214 EXPORT_SYMBOL(avenrun); /* should be removed */ 2215 2216 /** 2217 * get_avenrun - get the load average array 2218 * @loads: pointer to dest load array 2219 * @offset: offset to add 2220 * @shift: shift count to shift the result left 2221 * 2222 * These values are estimates at best, so no need for locking. 2223 */ 2224 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2225 { 2226 loads[0] = (avenrun[0] + offset) << shift; 2227 loads[1] = (avenrun[1] + offset) << shift; 2228 loads[2] = (avenrun[2] + offset) << shift; 2229 } 2230 2231 static long calc_load_fold_active(struct rq *this_rq) 2232 { 2233 long nr_active, delta = 0; 2234 2235 nr_active = this_rq->nr_running; 2236 nr_active += (long) this_rq->nr_uninterruptible; 2237 2238 if (nr_active != this_rq->calc_load_active) { 2239 delta = nr_active - this_rq->calc_load_active; 2240 this_rq->calc_load_active = nr_active; 2241 } 2242 2243 return delta; 2244 } 2245 2246 /* 2247 * a1 = a0 * e + a * (1 - e) 2248 */ 2249 static unsigned long 2250 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2251 { 2252 load *= exp; 2253 load += active * (FIXED_1 - exp); 2254 load += 1UL << (FSHIFT - 1); 2255 return load >> FSHIFT; 2256 } 2257 2258 #ifdef CONFIG_NO_HZ 2259 /* 2260 * Handle NO_HZ for the global load-average. 2261 * 2262 * Since the above described distributed algorithm to compute the global 2263 * load-average relies on per-cpu sampling from the tick, it is affected by 2264 * NO_HZ. 2265 * 2266 * The basic idea is to fold the nr_active delta into a global idle-delta upon 2267 * entering NO_HZ state such that we can include this as an 'extra' cpu delta 2268 * when we read the global state. 2269 * 2270 * Obviously reality has to ruin such a delightfully simple scheme: 2271 * 2272 * - When we go NO_HZ idle during the window, we can negate our sample 2273 * contribution, causing under-accounting. 2274 * 2275 * We avoid this by keeping two idle-delta counters and flipping them 2276 * when the window starts, thus separating old and new NO_HZ load. 2277 * 2278 * The only trick is the slight shift in index flip for read vs write. 2279 * 2280 * 0s 5s 10s 15s 2281 * +10 +10 +10 +10 2282 * |-|-----------|-|-----------|-|-----------|-| 2283 * r:0 0 1 1 0 0 1 1 0 2284 * w:0 1 1 0 0 1 1 0 0 2285 * 2286 * This ensures we'll fold the old idle contribution in this window while 2287 * accumlating the new one. 2288 * 2289 * - When we wake up from NO_HZ idle during the window, we push up our 2290 * contribution, since we effectively move our sample point to a known 2291 * busy state. 2292 * 2293 * This is solved by pushing the window forward, and thus skipping the 2294 * sample, for this cpu (effectively using the idle-delta for this cpu which 2295 * was in effect at the time the window opened). This also solves the issue 2296 * of having to deal with a cpu having been in NOHZ idle for multiple 2297 * LOAD_FREQ intervals. 2298 * 2299 * When making the ILB scale, we should try to pull this in as well. 2300 */ 2301 static atomic_long_t calc_load_idle[2]; 2302 static int calc_load_idx; 2303 2304 static inline int calc_load_write_idx(void) 2305 { 2306 int idx = calc_load_idx; 2307 2308 /* 2309 * See calc_global_nohz(), if we observe the new index, we also 2310 * need to observe the new update time. 2311 */ 2312 smp_rmb(); 2313 2314 /* 2315 * If the folding window started, make sure we start writing in the 2316 * next idle-delta. 2317 */ 2318 if (!time_before(jiffies, calc_load_update)) 2319 idx++; 2320 2321 return idx & 1; 2322 } 2323 2324 static inline int calc_load_read_idx(void) 2325 { 2326 return calc_load_idx & 1; 2327 } 2328 2329 void calc_load_enter_idle(void) 2330 { 2331 struct rq *this_rq = this_rq(); 2332 long delta; 2333 2334 /* 2335 * We're going into NOHZ mode, if there's any pending delta, fold it 2336 * into the pending idle delta. 2337 */ 2338 delta = calc_load_fold_active(this_rq); 2339 if (delta) { 2340 int idx = calc_load_write_idx(); 2341 atomic_long_add(delta, &calc_load_idle[idx]); 2342 } 2343 } 2344 2345 void calc_load_exit_idle(void) 2346 { 2347 struct rq *this_rq = this_rq(); 2348 2349 /* 2350 * If we're still before the sample window, we're done. 2351 */ 2352 if (time_before(jiffies, this_rq->calc_load_update)) 2353 return; 2354 2355 /* 2356 * We woke inside or after the sample window, this means we're already 2357 * accounted through the nohz accounting, so skip the entire deal and 2358 * sync up for the next window. 2359 */ 2360 this_rq->calc_load_update = calc_load_update; 2361 if (time_before(jiffies, this_rq->calc_load_update + 10)) 2362 this_rq->calc_load_update += LOAD_FREQ; 2363 } 2364 2365 static long calc_load_fold_idle(void) 2366 { 2367 int idx = calc_load_read_idx(); 2368 long delta = 0; 2369 2370 if (atomic_long_read(&calc_load_idle[idx])) 2371 delta = atomic_long_xchg(&calc_load_idle[idx], 0); 2372 2373 return delta; 2374 } 2375 2376 /** 2377 * fixed_power_int - compute: x^n, in O(log n) time 2378 * 2379 * @x: base of the power 2380 * @frac_bits: fractional bits of @x 2381 * @n: power to raise @x to. 2382 * 2383 * By exploiting the relation between the definition of the natural power 2384 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2385 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2386 * (where: n_i \elem {0, 1}, the binary vector representing n), 2387 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2388 * of course trivially computable in O(log_2 n), the length of our binary 2389 * vector. 2390 */ 2391 static unsigned long 2392 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2393 { 2394 unsigned long result = 1UL << frac_bits; 2395 2396 if (n) for (;;) { 2397 if (n & 1) { 2398 result *= x; 2399 result += 1UL << (frac_bits - 1); 2400 result >>= frac_bits; 2401 } 2402 n >>= 1; 2403 if (!n) 2404 break; 2405 x *= x; 2406 x += 1UL << (frac_bits - 1); 2407 x >>= frac_bits; 2408 } 2409 2410 return result; 2411 } 2412 2413 /* 2414 * a1 = a0 * e + a * (1 - e) 2415 * 2416 * a2 = a1 * e + a * (1 - e) 2417 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2418 * = a0 * e^2 + a * (1 - e) * (1 + e) 2419 * 2420 * a3 = a2 * e + a * (1 - e) 2421 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2422 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2423 * 2424 * ... 2425 * 2426 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2427 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2428 * = a0 * e^n + a * (1 - e^n) 2429 * 2430 * [1] application of the geometric series: 2431 * 2432 * n 1 - x^(n+1) 2433 * S_n := \Sum x^i = ------------- 2434 * i=0 1 - x 2435 */ 2436 static unsigned long 2437 calc_load_n(unsigned long load, unsigned long exp, 2438 unsigned long active, unsigned int n) 2439 { 2440 2441 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2442 } 2443 2444 /* 2445 * NO_HZ can leave us missing all per-cpu ticks calling 2446 * calc_load_account_active(), but since an idle CPU folds its delta into 2447 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2448 * in the pending idle delta if our idle period crossed a load cycle boundary. 2449 * 2450 * Once we've updated the global active value, we need to apply the exponential 2451 * weights adjusted to the number of cycles missed. 2452 */ 2453 static void calc_global_nohz(void) 2454 { 2455 long delta, active, n; 2456 2457 if (!time_before(jiffies, calc_load_update + 10)) { 2458 /* 2459 * Catch-up, fold however many we are behind still 2460 */ 2461 delta = jiffies - calc_load_update - 10; 2462 n = 1 + (delta / LOAD_FREQ); 2463 2464 active = atomic_long_read(&calc_load_tasks); 2465 active = active > 0 ? active * FIXED_1 : 0; 2466 2467 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2468 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2469 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2470 2471 calc_load_update += n * LOAD_FREQ; 2472 } 2473 2474 /* 2475 * Flip the idle index... 2476 * 2477 * Make sure we first write the new time then flip the index, so that 2478 * calc_load_write_idx() will see the new time when it reads the new 2479 * index, this avoids a double flip messing things up. 2480 */ 2481 smp_wmb(); 2482 calc_load_idx++; 2483 } 2484 #else /* !CONFIG_NO_HZ */ 2485 2486 static inline long calc_load_fold_idle(void) { return 0; } 2487 static inline void calc_global_nohz(void) { } 2488 2489 #endif /* CONFIG_NO_HZ */ 2490 2491 /* 2492 * calc_load - update the avenrun load estimates 10 ticks after the 2493 * CPUs have updated calc_load_tasks. 2494 */ 2495 void calc_global_load(unsigned long ticks) 2496 { 2497 long active, delta; 2498 2499 if (time_before(jiffies, calc_load_update + 10)) 2500 return; 2501 2502 /* 2503 * Fold the 'old' idle-delta to include all NO_HZ cpus. 2504 */ 2505 delta = calc_load_fold_idle(); 2506 if (delta) 2507 atomic_long_add(delta, &calc_load_tasks); 2508 2509 active = atomic_long_read(&calc_load_tasks); 2510 active = active > 0 ? active * FIXED_1 : 0; 2511 2512 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2513 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2514 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2515 2516 calc_load_update += LOAD_FREQ; 2517 2518 /* 2519 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. 2520 */ 2521 calc_global_nohz(); 2522 } 2523 2524 /* 2525 * Called from update_cpu_load() to periodically update this CPU's 2526 * active count. 2527 */ 2528 static void calc_load_account_active(struct rq *this_rq) 2529 { 2530 long delta; 2531 2532 if (time_before(jiffies, this_rq->calc_load_update)) 2533 return; 2534 2535 delta = calc_load_fold_active(this_rq); 2536 if (delta) 2537 atomic_long_add(delta, &calc_load_tasks); 2538 2539 this_rq->calc_load_update += LOAD_FREQ; 2540 } 2541 2542 /* 2543 * End of global load-average stuff 2544 */ 2545 2546 /* 2547 * The exact cpuload at various idx values, calculated at every tick would be 2548 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2549 * 2550 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2551 * on nth tick when cpu may be busy, then we have: 2552 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2553 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2554 * 2555 * decay_load_missed() below does efficient calculation of 2556 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2557 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2558 * 2559 * The calculation is approximated on a 128 point scale. 2560 * degrade_zero_ticks is the number of ticks after which load at any 2561 * particular idx is approximated to be zero. 2562 * degrade_factor is a precomputed table, a row for each load idx. 2563 * Each column corresponds to degradation factor for a power of two ticks, 2564 * based on 128 point scale. 2565 * Example: 2566 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2567 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2568 * 2569 * With this power of 2 load factors, we can degrade the load n times 2570 * by looking at 1 bits in n and doing as many mult/shift instead of 2571 * n mult/shifts needed by the exact degradation. 2572 */ 2573 #define DEGRADE_SHIFT 7 2574 static const unsigned char 2575 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2576 static const unsigned char 2577 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2578 {0, 0, 0, 0, 0, 0, 0, 0}, 2579 {64, 32, 8, 0, 0, 0, 0, 0}, 2580 {96, 72, 40, 12, 1, 0, 0}, 2581 {112, 98, 75, 43, 15, 1, 0}, 2582 {120, 112, 98, 76, 45, 16, 2} }; 2583 2584 /* 2585 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2586 * would be when CPU is idle and so we just decay the old load without 2587 * adding any new load. 2588 */ 2589 static unsigned long 2590 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2591 { 2592 int j = 0; 2593 2594 if (!missed_updates) 2595 return load; 2596 2597 if (missed_updates >= degrade_zero_ticks[idx]) 2598 return 0; 2599 2600 if (idx == 1) 2601 return load >> missed_updates; 2602 2603 while (missed_updates) { 2604 if (missed_updates % 2) 2605 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2606 2607 missed_updates >>= 1; 2608 j++; 2609 } 2610 return load; 2611 } 2612 2613 /* 2614 * Update rq->cpu_load[] statistics. This function is usually called every 2615 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2616 * every tick. We fix it up based on jiffies. 2617 */ 2618 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, 2619 unsigned long pending_updates) 2620 { 2621 int i, scale; 2622 2623 this_rq->nr_load_updates++; 2624 2625 /* Update our load: */ 2626 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2627 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2628 unsigned long old_load, new_load; 2629 2630 /* scale is effectively 1 << i now, and >> i divides by scale */ 2631 2632 old_load = this_rq->cpu_load[i]; 2633 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2634 new_load = this_load; 2635 /* 2636 * Round up the averaging division if load is increasing. This 2637 * prevents us from getting stuck on 9 if the load is 10, for 2638 * example. 2639 */ 2640 if (new_load > old_load) 2641 new_load += scale - 1; 2642 2643 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2644 } 2645 2646 sched_avg_update(this_rq); 2647 } 2648 2649 #ifdef CONFIG_NO_HZ 2650 /* 2651 * There is no sane way to deal with nohz on smp when using jiffies because the 2652 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 2653 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 2654 * 2655 * Therefore we cannot use the delta approach from the regular tick since that 2656 * would seriously skew the load calculation. However we'll make do for those 2657 * updates happening while idle (nohz_idle_balance) or coming out of idle 2658 * (tick_nohz_idle_exit). 2659 * 2660 * This means we might still be one tick off for nohz periods. 2661 */ 2662 2663 /* 2664 * Called from nohz_idle_balance() to update the load ratings before doing the 2665 * idle balance. 2666 */ 2667 void update_idle_cpu_load(struct rq *this_rq) 2668 { 2669 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2670 unsigned long load = this_rq->load.weight; 2671 unsigned long pending_updates; 2672 2673 /* 2674 * bail if there's load or we're actually up-to-date. 2675 */ 2676 if (load || curr_jiffies == this_rq->last_load_update_tick) 2677 return; 2678 2679 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2680 this_rq->last_load_update_tick = curr_jiffies; 2681 2682 __update_cpu_load(this_rq, load, pending_updates); 2683 } 2684 2685 /* 2686 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. 2687 */ 2688 void update_cpu_load_nohz(void) 2689 { 2690 struct rq *this_rq = this_rq(); 2691 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2692 unsigned long pending_updates; 2693 2694 if (curr_jiffies == this_rq->last_load_update_tick) 2695 return; 2696 2697 raw_spin_lock(&this_rq->lock); 2698 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2699 if (pending_updates) { 2700 this_rq->last_load_update_tick = curr_jiffies; 2701 /* 2702 * We were idle, this means load 0, the current load might be 2703 * !0 due to remote wakeups and the sort. 2704 */ 2705 __update_cpu_load(this_rq, 0, pending_updates); 2706 } 2707 raw_spin_unlock(&this_rq->lock); 2708 } 2709 #endif /* CONFIG_NO_HZ */ 2710 2711 /* 2712 * Called from scheduler_tick() 2713 */ 2714 static void update_cpu_load_active(struct rq *this_rq) 2715 { 2716 /* 2717 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). 2718 */ 2719 this_rq->last_load_update_tick = jiffies; 2720 __update_cpu_load(this_rq, this_rq->load.weight, 1); 2721 2722 calc_load_account_active(this_rq); 2723 } 2724 2725 #ifdef CONFIG_SMP 2726 2727 /* 2728 * sched_exec - execve() is a valuable balancing opportunity, because at 2729 * this point the task has the smallest effective memory and cache footprint. 2730 */ 2731 void sched_exec(void) 2732 { 2733 struct task_struct *p = current; 2734 unsigned long flags; 2735 int dest_cpu; 2736 2737 raw_spin_lock_irqsave(&p->pi_lock, flags); 2738 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2739 if (dest_cpu == smp_processor_id()) 2740 goto unlock; 2741 2742 if (likely(cpu_active(dest_cpu))) { 2743 struct migration_arg arg = { p, dest_cpu }; 2744 2745 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2746 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2747 return; 2748 } 2749 unlock: 2750 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2751 } 2752 2753 #endif 2754 2755 DEFINE_PER_CPU(struct kernel_stat, kstat); 2756 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2757 2758 EXPORT_PER_CPU_SYMBOL(kstat); 2759 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2760 2761 /* 2762 * Return any ns on the sched_clock that have not yet been accounted in 2763 * @p in case that task is currently running. 2764 * 2765 * Called with task_rq_lock() held on @rq. 2766 */ 2767 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2768 { 2769 u64 ns = 0; 2770 2771 if (task_current(rq, p)) { 2772 update_rq_clock(rq); 2773 ns = rq->clock_task - p->se.exec_start; 2774 if ((s64)ns < 0) 2775 ns = 0; 2776 } 2777 2778 return ns; 2779 } 2780 2781 unsigned long long task_delta_exec(struct task_struct *p) 2782 { 2783 unsigned long flags; 2784 struct rq *rq; 2785 u64 ns = 0; 2786 2787 rq = task_rq_lock(p, &flags); 2788 ns = do_task_delta_exec(p, rq); 2789 task_rq_unlock(rq, p, &flags); 2790 2791 return ns; 2792 } 2793 2794 /* 2795 * Return accounted runtime for the task. 2796 * In case the task is currently running, return the runtime plus current's 2797 * pending runtime that have not been accounted yet. 2798 */ 2799 unsigned long long task_sched_runtime(struct task_struct *p) 2800 { 2801 unsigned long flags; 2802 struct rq *rq; 2803 u64 ns = 0; 2804 2805 rq = task_rq_lock(p, &flags); 2806 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2807 task_rq_unlock(rq, p, &flags); 2808 2809 return ns; 2810 } 2811 2812 #ifdef CONFIG_CGROUP_CPUACCT 2813 struct cgroup_subsys cpuacct_subsys; 2814 struct cpuacct root_cpuacct; 2815 #endif 2816 2817 static inline void task_group_account_field(struct task_struct *p, int index, 2818 u64 tmp) 2819 { 2820 #ifdef CONFIG_CGROUP_CPUACCT 2821 struct kernel_cpustat *kcpustat; 2822 struct cpuacct *ca; 2823 #endif 2824 /* 2825 * Since all updates are sure to touch the root cgroup, we 2826 * get ourselves ahead and touch it first. If the root cgroup 2827 * is the only cgroup, then nothing else should be necessary. 2828 * 2829 */ 2830 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; 2831 2832 #ifdef CONFIG_CGROUP_CPUACCT 2833 if (unlikely(!cpuacct_subsys.active)) 2834 return; 2835 2836 rcu_read_lock(); 2837 ca = task_ca(p); 2838 while (ca && (ca != &root_cpuacct)) { 2839 kcpustat = this_cpu_ptr(ca->cpustat); 2840 kcpustat->cpustat[index] += tmp; 2841 ca = parent_ca(ca); 2842 } 2843 rcu_read_unlock(); 2844 #endif 2845 } 2846 2847 2848 /* 2849 * Account user cpu time to a process. 2850 * @p: the process that the cpu time gets accounted to 2851 * @cputime: the cpu time spent in user space since the last update 2852 * @cputime_scaled: cputime scaled by cpu frequency 2853 */ 2854 void account_user_time(struct task_struct *p, cputime_t cputime, 2855 cputime_t cputime_scaled) 2856 { 2857 int index; 2858 2859 /* Add user time to process. */ 2860 p->utime += cputime; 2861 p->utimescaled += cputime_scaled; 2862 account_group_user_time(p, cputime); 2863 2864 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 2865 2866 /* Add user time to cpustat. */ 2867 task_group_account_field(p, index, (__force u64) cputime); 2868 2869 /* Account for user time used */ 2870 acct_update_integrals(p); 2871 } 2872 2873 /* 2874 * Account guest cpu time to a process. 2875 * @p: the process that the cpu time gets accounted to 2876 * @cputime: the cpu time spent in virtual machine since the last update 2877 * @cputime_scaled: cputime scaled by cpu frequency 2878 */ 2879 static void account_guest_time(struct task_struct *p, cputime_t cputime, 2880 cputime_t cputime_scaled) 2881 { 2882 u64 *cpustat = kcpustat_this_cpu->cpustat; 2883 2884 /* Add guest time to process. */ 2885 p->utime += cputime; 2886 p->utimescaled += cputime_scaled; 2887 account_group_user_time(p, cputime); 2888 p->gtime += cputime; 2889 2890 /* Add guest time to cpustat. */ 2891 if (TASK_NICE(p) > 0) { 2892 cpustat[CPUTIME_NICE] += (__force u64) cputime; 2893 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 2894 } else { 2895 cpustat[CPUTIME_USER] += (__force u64) cputime; 2896 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 2897 } 2898 } 2899 2900 /* 2901 * Account system cpu time to a process and desired cpustat field 2902 * @p: the process that the cpu time gets accounted to 2903 * @cputime: the cpu time spent in kernel space since the last update 2904 * @cputime_scaled: cputime scaled by cpu frequency 2905 * @target_cputime64: pointer to cpustat field that has to be updated 2906 */ 2907 static inline 2908 void __account_system_time(struct task_struct *p, cputime_t cputime, 2909 cputime_t cputime_scaled, int index) 2910 { 2911 /* Add system time to process. */ 2912 p->stime += cputime; 2913 p->stimescaled += cputime_scaled; 2914 account_group_system_time(p, cputime); 2915 2916 /* Add system time to cpustat. */ 2917 task_group_account_field(p, index, (__force u64) cputime); 2918 2919 /* Account for system time used */ 2920 acct_update_integrals(p); 2921 } 2922 2923 /* 2924 * Account system cpu time to a process. 2925 * @p: the process that the cpu time gets accounted to 2926 * @hardirq_offset: the offset to subtract from hardirq_count() 2927 * @cputime: the cpu time spent in kernel space since the last update 2928 * @cputime_scaled: cputime scaled by cpu frequency 2929 */ 2930 void account_system_time(struct task_struct *p, int hardirq_offset, 2931 cputime_t cputime, cputime_t cputime_scaled) 2932 { 2933 int index; 2934 2935 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 2936 account_guest_time(p, cputime, cputime_scaled); 2937 return; 2938 } 2939 2940 if (hardirq_count() - hardirq_offset) 2941 index = CPUTIME_IRQ; 2942 else if (in_serving_softirq()) 2943 index = CPUTIME_SOFTIRQ; 2944 else 2945 index = CPUTIME_SYSTEM; 2946 2947 __account_system_time(p, cputime, cputime_scaled, index); 2948 } 2949 2950 /* 2951 * Account for involuntary wait time. 2952 * @cputime: the cpu time spent in involuntary wait 2953 */ 2954 void account_steal_time(cputime_t cputime) 2955 { 2956 u64 *cpustat = kcpustat_this_cpu->cpustat; 2957 2958 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 2959 } 2960 2961 /* 2962 * Account for idle time. 2963 * @cputime: the cpu time spent in idle wait 2964 */ 2965 void account_idle_time(cputime_t cputime) 2966 { 2967 u64 *cpustat = kcpustat_this_cpu->cpustat; 2968 struct rq *rq = this_rq(); 2969 2970 if (atomic_read(&rq->nr_iowait) > 0) 2971 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 2972 else 2973 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 2974 } 2975 2976 static __always_inline bool steal_account_process_tick(void) 2977 { 2978 #ifdef CONFIG_PARAVIRT 2979 if (static_key_false(¶virt_steal_enabled)) { 2980 u64 steal, st = 0; 2981 2982 steal = paravirt_steal_clock(smp_processor_id()); 2983 steal -= this_rq()->prev_steal_time; 2984 2985 st = steal_ticks(steal); 2986 this_rq()->prev_steal_time += st * TICK_NSEC; 2987 2988 account_steal_time(st); 2989 return st; 2990 } 2991 #endif 2992 return false; 2993 } 2994 2995 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 2996 2997 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2998 /* 2999 * Account a tick to a process and cpustat 3000 * @p: the process that the cpu time gets accounted to 3001 * @user_tick: is the tick from userspace 3002 * @rq: the pointer to rq 3003 * 3004 * Tick demultiplexing follows the order 3005 * - pending hardirq update 3006 * - pending softirq update 3007 * - user_time 3008 * - idle_time 3009 * - system time 3010 * - check for guest_time 3011 * - else account as system_time 3012 * 3013 * Check for hardirq is done both for system and user time as there is 3014 * no timer going off while we are on hardirq and hence we may never get an 3015 * opportunity to update it solely in system time. 3016 * p->stime and friends are only updated on system time and not on irq 3017 * softirq as those do not count in task exec_runtime any more. 3018 */ 3019 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 3020 struct rq *rq) 3021 { 3022 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 3023 u64 *cpustat = kcpustat_this_cpu->cpustat; 3024 3025 if (steal_account_process_tick()) 3026 return; 3027 3028 if (irqtime_account_hi_update()) { 3029 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; 3030 } else if (irqtime_account_si_update()) { 3031 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; 3032 } else if (this_cpu_ksoftirqd() == p) { 3033 /* 3034 * ksoftirqd time do not get accounted in cpu_softirq_time. 3035 * So, we have to handle it separately here. 3036 * Also, p->stime needs to be updated for ksoftirqd. 3037 */ 3038 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 3039 CPUTIME_SOFTIRQ); 3040 } else if (user_tick) { 3041 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 3042 } else if (p == rq->idle) { 3043 account_idle_time(cputime_one_jiffy); 3044 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 3045 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); 3046 } else { 3047 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 3048 CPUTIME_SYSTEM); 3049 } 3050 } 3051 3052 static void irqtime_account_idle_ticks(int ticks) 3053 { 3054 int i; 3055 struct rq *rq = this_rq(); 3056 3057 for (i = 0; i < ticks; i++) 3058 irqtime_account_process_tick(current, 0, rq); 3059 } 3060 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 3061 static void irqtime_account_idle_ticks(int ticks) {} 3062 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 3063 struct rq *rq) {} 3064 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 3065 3066 /* 3067 * Account a single tick of cpu time. 3068 * @p: the process that the cpu time gets accounted to 3069 * @user_tick: indicates if the tick is a user or a system tick 3070 */ 3071 void account_process_tick(struct task_struct *p, int user_tick) 3072 { 3073 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 3074 struct rq *rq = this_rq(); 3075 3076 if (sched_clock_irqtime) { 3077 irqtime_account_process_tick(p, user_tick, rq); 3078 return; 3079 } 3080 3081 if (steal_account_process_tick()) 3082 return; 3083 3084 if (user_tick) 3085 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 3086 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 3087 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 3088 one_jiffy_scaled); 3089 else 3090 account_idle_time(cputime_one_jiffy); 3091 } 3092 3093 /* 3094 * Account multiple ticks of steal time. 3095 * @p: the process from which the cpu time has been stolen 3096 * @ticks: number of stolen ticks 3097 */ 3098 void account_steal_ticks(unsigned long ticks) 3099 { 3100 account_steal_time(jiffies_to_cputime(ticks)); 3101 } 3102 3103 /* 3104 * Account multiple ticks of idle time. 3105 * @ticks: number of stolen ticks 3106 */ 3107 void account_idle_ticks(unsigned long ticks) 3108 { 3109 3110 if (sched_clock_irqtime) { 3111 irqtime_account_idle_ticks(ticks); 3112 return; 3113 } 3114 3115 account_idle_time(jiffies_to_cputime(ticks)); 3116 } 3117 3118 #endif 3119 3120 /* 3121 * Use precise platform statistics if available: 3122 */ 3123 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 3124 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 3125 { 3126 *ut = p->utime; 3127 *st = p->stime; 3128 } 3129 3130 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 3131 { 3132 struct task_cputime cputime; 3133 3134 thread_group_cputime(p, &cputime); 3135 3136 *ut = cputime.utime; 3137 *st = cputime.stime; 3138 } 3139 #else 3140 3141 #ifndef nsecs_to_cputime 3142 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) 3143 #endif 3144 3145 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 3146 { 3147 cputime_t rtime, utime = p->utime, total = utime + p->stime; 3148 3149 /* 3150 * Use CFS's precise accounting: 3151 */ 3152 rtime = nsecs_to_cputime(p->se.sum_exec_runtime); 3153 3154 if (total) { 3155 u64 temp = (__force u64) rtime; 3156 3157 temp *= (__force u64) utime; 3158 do_div(temp, (__force u32) total); 3159 utime = (__force cputime_t) temp; 3160 } else 3161 utime = rtime; 3162 3163 /* 3164 * Compare with previous values, to keep monotonicity: 3165 */ 3166 p->prev_utime = max(p->prev_utime, utime); 3167 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); 3168 3169 *ut = p->prev_utime; 3170 *st = p->prev_stime; 3171 } 3172 3173 /* 3174 * Must be called with siglock held. 3175 */ 3176 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 3177 { 3178 struct signal_struct *sig = p->signal; 3179 struct task_cputime cputime; 3180 cputime_t rtime, utime, total; 3181 3182 thread_group_cputime(p, &cputime); 3183 3184 total = cputime.utime + cputime.stime; 3185 rtime = nsecs_to_cputime(cputime.sum_exec_runtime); 3186 3187 if (total) { 3188 u64 temp = (__force u64) rtime; 3189 3190 temp *= (__force u64) cputime.utime; 3191 do_div(temp, (__force u32) total); 3192 utime = (__force cputime_t) temp; 3193 } else 3194 utime = rtime; 3195 3196 sig->prev_utime = max(sig->prev_utime, utime); 3197 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); 3198 3199 *ut = sig->prev_utime; 3200 *st = sig->prev_stime; 3201 } 3202 #endif 3203 3204 /* 3205 * This function gets called by the timer code, with HZ frequency. 3206 * We call it with interrupts disabled. 3207 */ 3208 void scheduler_tick(void) 3209 { 3210 int cpu = smp_processor_id(); 3211 struct rq *rq = cpu_rq(cpu); 3212 struct task_struct *curr = rq->curr; 3213 3214 sched_clock_tick(); 3215 3216 raw_spin_lock(&rq->lock); 3217 update_rq_clock(rq); 3218 update_cpu_load_active(rq); 3219 curr->sched_class->task_tick(rq, curr, 0); 3220 raw_spin_unlock(&rq->lock); 3221 3222 perf_event_task_tick(); 3223 3224 #ifdef CONFIG_SMP 3225 rq->idle_balance = idle_cpu(cpu); 3226 trigger_load_balance(rq, cpu); 3227 #endif 3228 } 3229 3230 notrace unsigned long get_parent_ip(unsigned long addr) 3231 { 3232 if (in_lock_functions(addr)) { 3233 addr = CALLER_ADDR2; 3234 if (in_lock_functions(addr)) 3235 addr = CALLER_ADDR3; 3236 } 3237 return addr; 3238 } 3239 3240 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3241 defined(CONFIG_PREEMPT_TRACER)) 3242 3243 void __kprobes add_preempt_count(int val) 3244 { 3245 #ifdef CONFIG_DEBUG_PREEMPT 3246 /* 3247 * Underflow? 3248 */ 3249 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3250 return; 3251 #endif 3252 preempt_count() += val; 3253 #ifdef CONFIG_DEBUG_PREEMPT 3254 /* 3255 * Spinlock count overflowing soon? 3256 */ 3257 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3258 PREEMPT_MASK - 10); 3259 #endif 3260 if (preempt_count() == val) 3261 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3262 } 3263 EXPORT_SYMBOL(add_preempt_count); 3264 3265 void __kprobes sub_preempt_count(int val) 3266 { 3267 #ifdef CONFIG_DEBUG_PREEMPT 3268 /* 3269 * Underflow? 3270 */ 3271 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3272 return; 3273 /* 3274 * Is the spinlock portion underflowing? 3275 */ 3276 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3277 !(preempt_count() & PREEMPT_MASK))) 3278 return; 3279 #endif 3280 3281 if (preempt_count() == val) 3282 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3283 preempt_count() -= val; 3284 } 3285 EXPORT_SYMBOL(sub_preempt_count); 3286 3287 #endif 3288 3289 /* 3290 * Print scheduling while atomic bug: 3291 */ 3292 static noinline void __schedule_bug(struct task_struct *prev) 3293 { 3294 if (oops_in_progress) 3295 return; 3296 3297 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3298 prev->comm, prev->pid, preempt_count()); 3299 3300 debug_show_held_locks(prev); 3301 print_modules(); 3302 if (irqs_disabled()) 3303 print_irqtrace_events(prev); 3304 dump_stack(); 3305 add_taint(TAINT_WARN); 3306 } 3307 3308 /* 3309 * Various schedule()-time debugging checks and statistics: 3310 */ 3311 static inline void schedule_debug(struct task_struct *prev) 3312 { 3313 /* 3314 * Test if we are atomic. Since do_exit() needs to call into 3315 * schedule() atomically, we ignore that path for now. 3316 * Otherwise, whine if we are scheduling when we should not be. 3317 */ 3318 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 3319 __schedule_bug(prev); 3320 rcu_sleep_check(); 3321 3322 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3323 3324 schedstat_inc(this_rq(), sched_count); 3325 } 3326 3327 static void put_prev_task(struct rq *rq, struct task_struct *prev) 3328 { 3329 if (prev->on_rq || rq->skip_clock_update < 0) 3330 update_rq_clock(rq); 3331 prev->sched_class->put_prev_task(rq, prev); 3332 } 3333 3334 /* 3335 * Pick up the highest-prio task: 3336 */ 3337 static inline struct task_struct * 3338 pick_next_task(struct rq *rq) 3339 { 3340 const struct sched_class *class; 3341 struct task_struct *p; 3342 3343 /* 3344 * Optimization: we know that if all tasks are in 3345 * the fair class we can call that function directly: 3346 */ 3347 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 3348 p = fair_sched_class.pick_next_task(rq); 3349 if (likely(p)) 3350 return p; 3351 } 3352 3353 for_each_class(class) { 3354 p = class->pick_next_task(rq); 3355 if (p) 3356 return p; 3357 } 3358 3359 BUG(); /* the idle class will always have a runnable task */ 3360 } 3361 3362 /* 3363 * __schedule() is the main scheduler function. 3364 */ 3365 static void __sched __schedule(void) 3366 { 3367 struct task_struct *prev, *next; 3368 unsigned long *switch_count; 3369 struct rq *rq; 3370 int cpu; 3371 3372 need_resched: 3373 preempt_disable(); 3374 cpu = smp_processor_id(); 3375 rq = cpu_rq(cpu); 3376 rcu_note_context_switch(cpu); 3377 prev = rq->curr; 3378 3379 schedule_debug(prev); 3380 3381 if (sched_feat(HRTICK)) 3382 hrtick_clear(rq); 3383 3384 raw_spin_lock_irq(&rq->lock); 3385 3386 switch_count = &prev->nivcsw; 3387 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3388 if (unlikely(signal_pending_state(prev->state, prev))) { 3389 prev->state = TASK_RUNNING; 3390 } else { 3391 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3392 prev->on_rq = 0; 3393 3394 /* 3395 * If a worker went to sleep, notify and ask workqueue 3396 * whether it wants to wake up a task to maintain 3397 * concurrency. 3398 */ 3399 if (prev->flags & PF_WQ_WORKER) { 3400 struct task_struct *to_wakeup; 3401 3402 to_wakeup = wq_worker_sleeping(prev, cpu); 3403 if (to_wakeup) 3404 try_to_wake_up_local(to_wakeup); 3405 } 3406 } 3407 switch_count = &prev->nvcsw; 3408 } 3409 3410 pre_schedule(rq, prev); 3411 3412 if (unlikely(!rq->nr_running)) 3413 idle_balance(cpu, rq); 3414 3415 put_prev_task(rq, prev); 3416 next = pick_next_task(rq); 3417 clear_tsk_need_resched(prev); 3418 rq->skip_clock_update = 0; 3419 3420 if (likely(prev != next)) { 3421 rq->nr_switches++; 3422 rq->curr = next; 3423 ++*switch_count; 3424 3425 context_switch(rq, prev, next); /* unlocks the rq */ 3426 /* 3427 * The context switch have flipped the stack from under us 3428 * and restored the local variables which were saved when 3429 * this task called schedule() in the past. prev == current 3430 * is still correct, but it can be moved to another cpu/rq. 3431 */ 3432 cpu = smp_processor_id(); 3433 rq = cpu_rq(cpu); 3434 } else 3435 raw_spin_unlock_irq(&rq->lock); 3436 3437 post_schedule(rq); 3438 3439 sched_preempt_enable_no_resched(); 3440 if (need_resched()) 3441 goto need_resched; 3442 } 3443 3444 static inline void sched_submit_work(struct task_struct *tsk) 3445 { 3446 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3447 return; 3448 /* 3449 * If we are going to sleep and we have plugged IO queued, 3450 * make sure to submit it to avoid deadlocks. 3451 */ 3452 if (blk_needs_flush_plug(tsk)) 3453 blk_schedule_flush_plug(tsk); 3454 } 3455 3456 asmlinkage void __sched schedule(void) 3457 { 3458 struct task_struct *tsk = current; 3459 3460 sched_submit_work(tsk); 3461 __schedule(); 3462 } 3463 EXPORT_SYMBOL(schedule); 3464 3465 /** 3466 * schedule_preempt_disabled - called with preemption disabled 3467 * 3468 * Returns with preemption disabled. Note: preempt_count must be 1 3469 */ 3470 void __sched schedule_preempt_disabled(void) 3471 { 3472 sched_preempt_enable_no_resched(); 3473 schedule(); 3474 preempt_disable(); 3475 } 3476 3477 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 3478 3479 static inline bool owner_running(struct mutex *lock, struct task_struct *owner) 3480 { 3481 if (lock->owner != owner) 3482 return false; 3483 3484 /* 3485 * Ensure we emit the owner->on_cpu, dereference _after_ checking 3486 * lock->owner still matches owner, if that fails, owner might 3487 * point to free()d memory, if it still matches, the rcu_read_lock() 3488 * ensures the memory stays valid. 3489 */ 3490 barrier(); 3491 3492 return owner->on_cpu; 3493 } 3494 3495 /* 3496 * Look out! "owner" is an entirely speculative pointer 3497 * access and not reliable. 3498 */ 3499 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 3500 { 3501 if (!sched_feat(OWNER_SPIN)) 3502 return 0; 3503 3504 rcu_read_lock(); 3505 while (owner_running(lock, owner)) { 3506 if (need_resched()) 3507 break; 3508 3509 arch_mutex_cpu_relax(); 3510 } 3511 rcu_read_unlock(); 3512 3513 /* 3514 * We break out the loop above on need_resched() and when the 3515 * owner changed, which is a sign for heavy contention. Return 3516 * success only when lock->owner is NULL. 3517 */ 3518 return lock->owner == NULL; 3519 } 3520 #endif 3521 3522 #ifdef CONFIG_PREEMPT 3523 /* 3524 * this is the entry point to schedule() from in-kernel preemption 3525 * off of preempt_enable. Kernel preemptions off return from interrupt 3526 * occur there and call schedule directly. 3527 */ 3528 asmlinkage void __sched notrace preempt_schedule(void) 3529 { 3530 struct thread_info *ti = current_thread_info(); 3531 3532 /* 3533 * If there is a non-zero preempt_count or interrupts are disabled, 3534 * we do not want to preempt the current task. Just return.. 3535 */ 3536 if (likely(ti->preempt_count || irqs_disabled())) 3537 return; 3538 3539 do { 3540 add_preempt_count_notrace(PREEMPT_ACTIVE); 3541 __schedule(); 3542 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3543 3544 /* 3545 * Check again in case we missed a preemption opportunity 3546 * between schedule and now. 3547 */ 3548 barrier(); 3549 } while (need_resched()); 3550 } 3551 EXPORT_SYMBOL(preempt_schedule); 3552 3553 /* 3554 * this is the entry point to schedule() from kernel preemption 3555 * off of irq context. 3556 * Note, that this is called and return with irqs disabled. This will 3557 * protect us against recursive calling from irq. 3558 */ 3559 asmlinkage void __sched preempt_schedule_irq(void) 3560 { 3561 struct thread_info *ti = current_thread_info(); 3562 3563 /* Catch callers which need to be fixed */ 3564 BUG_ON(ti->preempt_count || !irqs_disabled()); 3565 3566 do { 3567 add_preempt_count(PREEMPT_ACTIVE); 3568 local_irq_enable(); 3569 __schedule(); 3570 local_irq_disable(); 3571 sub_preempt_count(PREEMPT_ACTIVE); 3572 3573 /* 3574 * Check again in case we missed a preemption opportunity 3575 * between schedule and now. 3576 */ 3577 barrier(); 3578 } while (need_resched()); 3579 } 3580 3581 #endif /* CONFIG_PREEMPT */ 3582 3583 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3584 void *key) 3585 { 3586 return try_to_wake_up(curr->private, mode, wake_flags); 3587 } 3588 EXPORT_SYMBOL(default_wake_function); 3589 3590 /* 3591 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3592 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3593 * number) then we wake all the non-exclusive tasks and one exclusive task. 3594 * 3595 * There are circumstances in which we can try to wake a task which has already 3596 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3597 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3598 */ 3599 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3600 int nr_exclusive, int wake_flags, void *key) 3601 { 3602 wait_queue_t *curr, *next; 3603 3604 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3605 unsigned flags = curr->flags; 3606 3607 if (curr->func(curr, mode, wake_flags, key) && 3608 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3609 break; 3610 } 3611 } 3612 3613 /** 3614 * __wake_up - wake up threads blocked on a waitqueue. 3615 * @q: the waitqueue 3616 * @mode: which threads 3617 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3618 * @key: is directly passed to the wakeup function 3619 * 3620 * It may be assumed that this function implies a write memory barrier before 3621 * changing the task state if and only if any tasks are woken up. 3622 */ 3623 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3624 int nr_exclusive, void *key) 3625 { 3626 unsigned long flags; 3627 3628 spin_lock_irqsave(&q->lock, flags); 3629 __wake_up_common(q, mode, nr_exclusive, 0, key); 3630 spin_unlock_irqrestore(&q->lock, flags); 3631 } 3632 EXPORT_SYMBOL(__wake_up); 3633 3634 /* 3635 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3636 */ 3637 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) 3638 { 3639 __wake_up_common(q, mode, nr, 0, NULL); 3640 } 3641 EXPORT_SYMBOL_GPL(__wake_up_locked); 3642 3643 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3644 { 3645 __wake_up_common(q, mode, 1, 0, key); 3646 } 3647 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3648 3649 /** 3650 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3651 * @q: the waitqueue 3652 * @mode: which threads 3653 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3654 * @key: opaque value to be passed to wakeup targets 3655 * 3656 * The sync wakeup differs that the waker knows that it will schedule 3657 * away soon, so while the target thread will be woken up, it will not 3658 * be migrated to another CPU - ie. the two threads are 'synchronized' 3659 * with each other. This can prevent needless bouncing between CPUs. 3660 * 3661 * On UP it can prevent extra preemption. 3662 * 3663 * It may be assumed that this function implies a write memory barrier before 3664 * changing the task state if and only if any tasks are woken up. 3665 */ 3666 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3667 int nr_exclusive, void *key) 3668 { 3669 unsigned long flags; 3670 int wake_flags = WF_SYNC; 3671 3672 if (unlikely(!q)) 3673 return; 3674 3675 if (unlikely(!nr_exclusive)) 3676 wake_flags = 0; 3677 3678 spin_lock_irqsave(&q->lock, flags); 3679 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3680 spin_unlock_irqrestore(&q->lock, flags); 3681 } 3682 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3683 3684 /* 3685 * __wake_up_sync - see __wake_up_sync_key() 3686 */ 3687 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3688 { 3689 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3690 } 3691 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3692 3693 /** 3694 * complete: - signals a single thread waiting on this completion 3695 * @x: holds the state of this particular completion 3696 * 3697 * This will wake up a single thread waiting on this completion. Threads will be 3698 * awakened in the same order in which they were queued. 3699 * 3700 * See also complete_all(), wait_for_completion() and related routines. 3701 * 3702 * It may be assumed that this function implies a write memory barrier before 3703 * changing the task state if and only if any tasks are woken up. 3704 */ 3705 void complete(struct completion *x) 3706 { 3707 unsigned long flags; 3708 3709 spin_lock_irqsave(&x->wait.lock, flags); 3710 x->done++; 3711 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3712 spin_unlock_irqrestore(&x->wait.lock, flags); 3713 } 3714 EXPORT_SYMBOL(complete); 3715 3716 /** 3717 * complete_all: - signals all threads waiting on this completion 3718 * @x: holds the state of this particular completion 3719 * 3720 * This will wake up all threads waiting on this particular completion event. 3721 * 3722 * It may be assumed that this function implies a write memory barrier before 3723 * changing the task state if and only if any tasks are woken up. 3724 */ 3725 void complete_all(struct completion *x) 3726 { 3727 unsigned long flags; 3728 3729 spin_lock_irqsave(&x->wait.lock, flags); 3730 x->done += UINT_MAX/2; 3731 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3732 spin_unlock_irqrestore(&x->wait.lock, flags); 3733 } 3734 EXPORT_SYMBOL(complete_all); 3735 3736 static inline long __sched 3737 do_wait_for_common(struct completion *x, long timeout, int state) 3738 { 3739 if (!x->done) { 3740 DECLARE_WAITQUEUE(wait, current); 3741 3742 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3743 do { 3744 if (signal_pending_state(state, current)) { 3745 timeout = -ERESTARTSYS; 3746 break; 3747 } 3748 __set_current_state(state); 3749 spin_unlock_irq(&x->wait.lock); 3750 timeout = schedule_timeout(timeout); 3751 spin_lock_irq(&x->wait.lock); 3752 } while (!x->done && timeout); 3753 __remove_wait_queue(&x->wait, &wait); 3754 if (!x->done) 3755 return timeout; 3756 } 3757 x->done--; 3758 return timeout ?: 1; 3759 } 3760 3761 static long __sched 3762 wait_for_common(struct completion *x, long timeout, int state) 3763 { 3764 might_sleep(); 3765 3766 spin_lock_irq(&x->wait.lock); 3767 timeout = do_wait_for_common(x, timeout, state); 3768 spin_unlock_irq(&x->wait.lock); 3769 return timeout; 3770 } 3771 3772 /** 3773 * wait_for_completion: - waits for completion of a task 3774 * @x: holds the state of this particular completion 3775 * 3776 * This waits to be signaled for completion of a specific task. It is NOT 3777 * interruptible and there is no timeout. 3778 * 3779 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3780 * and interrupt capability. Also see complete(). 3781 */ 3782 void __sched wait_for_completion(struct completion *x) 3783 { 3784 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3785 } 3786 EXPORT_SYMBOL(wait_for_completion); 3787 3788 /** 3789 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3790 * @x: holds the state of this particular completion 3791 * @timeout: timeout value in jiffies 3792 * 3793 * This waits for either a completion of a specific task to be signaled or for a 3794 * specified timeout to expire. The timeout is in jiffies. It is not 3795 * interruptible. 3796 * 3797 * The return value is 0 if timed out, and positive (at least 1, or number of 3798 * jiffies left till timeout) if completed. 3799 */ 3800 unsigned long __sched 3801 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3802 { 3803 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3804 } 3805 EXPORT_SYMBOL(wait_for_completion_timeout); 3806 3807 /** 3808 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3809 * @x: holds the state of this particular completion 3810 * 3811 * This waits for completion of a specific task to be signaled. It is 3812 * interruptible. 3813 * 3814 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3815 */ 3816 int __sched wait_for_completion_interruptible(struct completion *x) 3817 { 3818 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3819 if (t == -ERESTARTSYS) 3820 return t; 3821 return 0; 3822 } 3823 EXPORT_SYMBOL(wait_for_completion_interruptible); 3824 3825 /** 3826 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3827 * @x: holds the state of this particular completion 3828 * @timeout: timeout value in jiffies 3829 * 3830 * This waits for either a completion of a specific task to be signaled or for a 3831 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3832 * 3833 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3834 * positive (at least 1, or number of jiffies left till timeout) if completed. 3835 */ 3836 long __sched 3837 wait_for_completion_interruptible_timeout(struct completion *x, 3838 unsigned long timeout) 3839 { 3840 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3841 } 3842 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3843 3844 /** 3845 * wait_for_completion_killable: - waits for completion of a task (killable) 3846 * @x: holds the state of this particular completion 3847 * 3848 * This waits to be signaled for completion of a specific task. It can be 3849 * interrupted by a kill signal. 3850 * 3851 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3852 */ 3853 int __sched wait_for_completion_killable(struct completion *x) 3854 { 3855 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3856 if (t == -ERESTARTSYS) 3857 return t; 3858 return 0; 3859 } 3860 EXPORT_SYMBOL(wait_for_completion_killable); 3861 3862 /** 3863 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3864 * @x: holds the state of this particular completion 3865 * @timeout: timeout value in jiffies 3866 * 3867 * This waits for either a completion of a specific task to be 3868 * signaled or for a specified timeout to expire. It can be 3869 * interrupted by a kill signal. The timeout is in jiffies. 3870 * 3871 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3872 * positive (at least 1, or number of jiffies left till timeout) if completed. 3873 */ 3874 long __sched 3875 wait_for_completion_killable_timeout(struct completion *x, 3876 unsigned long timeout) 3877 { 3878 return wait_for_common(x, timeout, TASK_KILLABLE); 3879 } 3880 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3881 3882 /** 3883 * try_wait_for_completion - try to decrement a completion without blocking 3884 * @x: completion structure 3885 * 3886 * Returns: 0 if a decrement cannot be done without blocking 3887 * 1 if a decrement succeeded. 3888 * 3889 * If a completion is being used as a counting completion, 3890 * attempt to decrement the counter without blocking. This 3891 * enables us to avoid waiting if the resource the completion 3892 * is protecting is not available. 3893 */ 3894 bool try_wait_for_completion(struct completion *x) 3895 { 3896 unsigned long flags; 3897 int ret = 1; 3898 3899 spin_lock_irqsave(&x->wait.lock, flags); 3900 if (!x->done) 3901 ret = 0; 3902 else 3903 x->done--; 3904 spin_unlock_irqrestore(&x->wait.lock, flags); 3905 return ret; 3906 } 3907 EXPORT_SYMBOL(try_wait_for_completion); 3908 3909 /** 3910 * completion_done - Test to see if a completion has any waiters 3911 * @x: completion structure 3912 * 3913 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3914 * 1 if there are no waiters. 3915 * 3916 */ 3917 bool completion_done(struct completion *x) 3918 { 3919 unsigned long flags; 3920 int ret = 1; 3921 3922 spin_lock_irqsave(&x->wait.lock, flags); 3923 if (!x->done) 3924 ret = 0; 3925 spin_unlock_irqrestore(&x->wait.lock, flags); 3926 return ret; 3927 } 3928 EXPORT_SYMBOL(completion_done); 3929 3930 static long __sched 3931 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3932 { 3933 unsigned long flags; 3934 wait_queue_t wait; 3935 3936 init_waitqueue_entry(&wait, current); 3937 3938 __set_current_state(state); 3939 3940 spin_lock_irqsave(&q->lock, flags); 3941 __add_wait_queue(q, &wait); 3942 spin_unlock(&q->lock); 3943 timeout = schedule_timeout(timeout); 3944 spin_lock_irq(&q->lock); 3945 __remove_wait_queue(q, &wait); 3946 spin_unlock_irqrestore(&q->lock, flags); 3947 3948 return timeout; 3949 } 3950 3951 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3952 { 3953 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3954 } 3955 EXPORT_SYMBOL(interruptible_sleep_on); 3956 3957 long __sched 3958 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3959 { 3960 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3961 } 3962 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3963 3964 void __sched sleep_on(wait_queue_head_t *q) 3965 { 3966 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3967 } 3968 EXPORT_SYMBOL(sleep_on); 3969 3970 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3971 { 3972 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3973 } 3974 EXPORT_SYMBOL(sleep_on_timeout); 3975 3976 #ifdef CONFIG_RT_MUTEXES 3977 3978 /* 3979 * rt_mutex_setprio - set the current priority of a task 3980 * @p: task 3981 * @prio: prio value (kernel-internal form) 3982 * 3983 * This function changes the 'effective' priority of a task. It does 3984 * not touch ->normal_prio like __setscheduler(). 3985 * 3986 * Used by the rt_mutex code to implement priority inheritance logic. 3987 */ 3988 void rt_mutex_setprio(struct task_struct *p, int prio) 3989 { 3990 int oldprio, on_rq, running; 3991 struct rq *rq; 3992 const struct sched_class *prev_class; 3993 3994 BUG_ON(prio < 0 || prio > MAX_PRIO); 3995 3996 rq = __task_rq_lock(p); 3997 3998 /* 3999 * Idle task boosting is a nono in general. There is one 4000 * exception, when PREEMPT_RT and NOHZ is active: 4001 * 4002 * The idle task calls get_next_timer_interrupt() and holds 4003 * the timer wheel base->lock on the CPU and another CPU wants 4004 * to access the timer (probably to cancel it). We can safely 4005 * ignore the boosting request, as the idle CPU runs this code 4006 * with interrupts disabled and will complete the lock 4007 * protected section without being interrupted. So there is no 4008 * real need to boost. 4009 */ 4010 if (unlikely(p == rq->idle)) { 4011 WARN_ON(p != rq->curr); 4012 WARN_ON(p->pi_blocked_on); 4013 goto out_unlock; 4014 } 4015 4016 trace_sched_pi_setprio(p, prio); 4017 oldprio = p->prio; 4018 prev_class = p->sched_class; 4019 on_rq = p->on_rq; 4020 running = task_current(rq, p); 4021 if (on_rq) 4022 dequeue_task(rq, p, 0); 4023 if (running) 4024 p->sched_class->put_prev_task(rq, p); 4025 4026 if (rt_prio(prio)) 4027 p->sched_class = &rt_sched_class; 4028 else 4029 p->sched_class = &fair_sched_class; 4030 4031 p->prio = prio; 4032 4033 if (running) 4034 p->sched_class->set_curr_task(rq); 4035 if (on_rq) 4036 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 4037 4038 check_class_changed(rq, p, prev_class, oldprio); 4039 out_unlock: 4040 __task_rq_unlock(rq); 4041 } 4042 #endif 4043 void set_user_nice(struct task_struct *p, long nice) 4044 { 4045 int old_prio, delta, on_rq; 4046 unsigned long flags; 4047 struct rq *rq; 4048 4049 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 4050 return; 4051 /* 4052 * We have to be careful, if called from sys_setpriority(), 4053 * the task might be in the middle of scheduling on another CPU. 4054 */ 4055 rq = task_rq_lock(p, &flags); 4056 /* 4057 * The RT priorities are set via sched_setscheduler(), but we still 4058 * allow the 'normal' nice value to be set - but as expected 4059 * it wont have any effect on scheduling until the task is 4060 * SCHED_FIFO/SCHED_RR: 4061 */ 4062 if (task_has_rt_policy(p)) { 4063 p->static_prio = NICE_TO_PRIO(nice); 4064 goto out_unlock; 4065 } 4066 on_rq = p->on_rq; 4067 if (on_rq) 4068 dequeue_task(rq, p, 0); 4069 4070 p->static_prio = NICE_TO_PRIO(nice); 4071 set_load_weight(p); 4072 old_prio = p->prio; 4073 p->prio = effective_prio(p); 4074 delta = p->prio - old_prio; 4075 4076 if (on_rq) { 4077 enqueue_task(rq, p, 0); 4078 /* 4079 * If the task increased its priority or is running and 4080 * lowered its priority, then reschedule its CPU: 4081 */ 4082 if (delta < 0 || (delta > 0 && task_running(rq, p))) 4083 resched_task(rq->curr); 4084 } 4085 out_unlock: 4086 task_rq_unlock(rq, p, &flags); 4087 } 4088 EXPORT_SYMBOL(set_user_nice); 4089 4090 /* 4091 * can_nice - check if a task can reduce its nice value 4092 * @p: task 4093 * @nice: nice value 4094 */ 4095 int can_nice(const struct task_struct *p, const int nice) 4096 { 4097 /* convert nice value [19,-20] to rlimit style value [1,40] */ 4098 int nice_rlim = 20 - nice; 4099 4100 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 4101 capable(CAP_SYS_NICE)); 4102 } 4103 4104 #ifdef __ARCH_WANT_SYS_NICE 4105 4106 /* 4107 * sys_nice - change the priority of the current process. 4108 * @increment: priority increment 4109 * 4110 * sys_setpriority is a more generic, but much slower function that 4111 * does similar things. 4112 */ 4113 SYSCALL_DEFINE1(nice, int, increment) 4114 { 4115 long nice, retval; 4116 4117 /* 4118 * Setpriority might change our priority at the same moment. 4119 * We don't have to worry. Conceptually one call occurs first 4120 * and we have a single winner. 4121 */ 4122 if (increment < -40) 4123 increment = -40; 4124 if (increment > 40) 4125 increment = 40; 4126 4127 nice = TASK_NICE(current) + increment; 4128 if (nice < -20) 4129 nice = -20; 4130 if (nice > 19) 4131 nice = 19; 4132 4133 if (increment < 0 && !can_nice(current, nice)) 4134 return -EPERM; 4135 4136 retval = security_task_setnice(current, nice); 4137 if (retval) 4138 return retval; 4139 4140 set_user_nice(current, nice); 4141 return 0; 4142 } 4143 4144 #endif 4145 4146 /** 4147 * task_prio - return the priority value of a given task. 4148 * @p: the task in question. 4149 * 4150 * This is the priority value as seen by users in /proc. 4151 * RT tasks are offset by -200. Normal tasks are centered 4152 * around 0, value goes from -16 to +15. 4153 */ 4154 int task_prio(const struct task_struct *p) 4155 { 4156 return p->prio - MAX_RT_PRIO; 4157 } 4158 4159 /** 4160 * task_nice - return the nice value of a given task. 4161 * @p: the task in question. 4162 */ 4163 int task_nice(const struct task_struct *p) 4164 { 4165 return TASK_NICE(p); 4166 } 4167 EXPORT_SYMBOL(task_nice); 4168 4169 /** 4170 * idle_cpu - is a given cpu idle currently? 4171 * @cpu: the processor in question. 4172 */ 4173 int idle_cpu(int cpu) 4174 { 4175 struct rq *rq = cpu_rq(cpu); 4176 4177 if (rq->curr != rq->idle) 4178 return 0; 4179 4180 if (rq->nr_running) 4181 return 0; 4182 4183 #ifdef CONFIG_SMP 4184 if (!llist_empty(&rq->wake_list)) 4185 return 0; 4186 #endif 4187 4188 return 1; 4189 } 4190 4191 /** 4192 * idle_task - return the idle task for a given cpu. 4193 * @cpu: the processor in question. 4194 */ 4195 struct task_struct *idle_task(int cpu) 4196 { 4197 return cpu_rq(cpu)->idle; 4198 } 4199 4200 /** 4201 * find_process_by_pid - find a process with a matching PID value. 4202 * @pid: the pid in question. 4203 */ 4204 static struct task_struct *find_process_by_pid(pid_t pid) 4205 { 4206 return pid ? find_task_by_vpid(pid) : current; 4207 } 4208 4209 /* Actually do priority change: must hold rq lock. */ 4210 static void 4211 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 4212 { 4213 p->policy = policy; 4214 p->rt_priority = prio; 4215 p->normal_prio = normal_prio(p); 4216 /* we are holding p->pi_lock already */ 4217 p->prio = rt_mutex_getprio(p); 4218 if (rt_prio(p->prio)) 4219 p->sched_class = &rt_sched_class; 4220 else 4221 p->sched_class = &fair_sched_class; 4222 set_load_weight(p); 4223 } 4224 4225 /* 4226 * check the target process has a UID that matches the current process's 4227 */ 4228 static bool check_same_owner(struct task_struct *p) 4229 { 4230 const struct cred *cred = current_cred(), *pcred; 4231 bool match; 4232 4233 rcu_read_lock(); 4234 pcred = __task_cred(p); 4235 match = (uid_eq(cred->euid, pcred->euid) || 4236 uid_eq(cred->euid, pcred->uid)); 4237 rcu_read_unlock(); 4238 return match; 4239 } 4240 4241 static int __sched_setscheduler(struct task_struct *p, int policy, 4242 const struct sched_param *param, bool user) 4243 { 4244 int retval, oldprio, oldpolicy = -1, on_rq, running; 4245 unsigned long flags; 4246 const struct sched_class *prev_class; 4247 struct rq *rq; 4248 int reset_on_fork; 4249 4250 /* may grab non-irq protected spin_locks */ 4251 BUG_ON(in_interrupt()); 4252 recheck: 4253 /* double check policy once rq lock held */ 4254 if (policy < 0) { 4255 reset_on_fork = p->sched_reset_on_fork; 4256 policy = oldpolicy = p->policy; 4257 } else { 4258 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 4259 policy &= ~SCHED_RESET_ON_FORK; 4260 4261 if (policy != SCHED_FIFO && policy != SCHED_RR && 4262 policy != SCHED_NORMAL && policy != SCHED_BATCH && 4263 policy != SCHED_IDLE) 4264 return -EINVAL; 4265 } 4266 4267 /* 4268 * Valid priorities for SCHED_FIFO and SCHED_RR are 4269 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4270 * SCHED_BATCH and SCHED_IDLE is 0. 4271 */ 4272 if (param->sched_priority < 0 || 4273 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 4274 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 4275 return -EINVAL; 4276 if (rt_policy(policy) != (param->sched_priority != 0)) 4277 return -EINVAL; 4278 4279 /* 4280 * Allow unprivileged RT tasks to decrease priority: 4281 */ 4282 if (user && !capable(CAP_SYS_NICE)) { 4283 if (rt_policy(policy)) { 4284 unsigned long rlim_rtprio = 4285 task_rlimit(p, RLIMIT_RTPRIO); 4286 4287 /* can't set/change the rt policy */ 4288 if (policy != p->policy && !rlim_rtprio) 4289 return -EPERM; 4290 4291 /* can't increase priority */ 4292 if (param->sched_priority > p->rt_priority && 4293 param->sched_priority > rlim_rtprio) 4294 return -EPERM; 4295 } 4296 4297 /* 4298 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4299 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4300 */ 4301 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 4302 if (!can_nice(p, TASK_NICE(p))) 4303 return -EPERM; 4304 } 4305 4306 /* can't change other user's priorities */ 4307 if (!check_same_owner(p)) 4308 return -EPERM; 4309 4310 /* Normal users shall not reset the sched_reset_on_fork flag */ 4311 if (p->sched_reset_on_fork && !reset_on_fork) 4312 return -EPERM; 4313 } 4314 4315 if (user) { 4316 retval = security_task_setscheduler(p); 4317 if (retval) 4318 return retval; 4319 } 4320 4321 /* 4322 * make sure no PI-waiters arrive (or leave) while we are 4323 * changing the priority of the task: 4324 * 4325 * To be able to change p->policy safely, the appropriate 4326 * runqueue lock must be held. 4327 */ 4328 rq = task_rq_lock(p, &flags); 4329 4330 /* 4331 * Changing the policy of the stop threads its a very bad idea 4332 */ 4333 if (p == rq->stop) { 4334 task_rq_unlock(rq, p, &flags); 4335 return -EINVAL; 4336 } 4337 4338 /* 4339 * If not changing anything there's no need to proceed further: 4340 */ 4341 if (unlikely(policy == p->policy && (!rt_policy(policy) || 4342 param->sched_priority == p->rt_priority))) { 4343 4344 __task_rq_unlock(rq); 4345 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4346 return 0; 4347 } 4348 4349 #ifdef CONFIG_RT_GROUP_SCHED 4350 if (user) { 4351 /* 4352 * Do not allow realtime tasks into groups that have no runtime 4353 * assigned. 4354 */ 4355 if (rt_bandwidth_enabled() && rt_policy(policy) && 4356 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4357 !task_group_is_autogroup(task_group(p))) { 4358 task_rq_unlock(rq, p, &flags); 4359 return -EPERM; 4360 } 4361 } 4362 #endif 4363 4364 /* recheck policy now with rq lock held */ 4365 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4366 policy = oldpolicy = -1; 4367 task_rq_unlock(rq, p, &flags); 4368 goto recheck; 4369 } 4370 on_rq = p->on_rq; 4371 running = task_current(rq, p); 4372 if (on_rq) 4373 dequeue_task(rq, p, 0); 4374 if (running) 4375 p->sched_class->put_prev_task(rq, p); 4376 4377 p->sched_reset_on_fork = reset_on_fork; 4378 4379 oldprio = p->prio; 4380 prev_class = p->sched_class; 4381 __setscheduler(rq, p, policy, param->sched_priority); 4382 4383 if (running) 4384 p->sched_class->set_curr_task(rq); 4385 if (on_rq) 4386 enqueue_task(rq, p, 0); 4387 4388 check_class_changed(rq, p, prev_class, oldprio); 4389 task_rq_unlock(rq, p, &flags); 4390 4391 rt_mutex_adjust_pi(p); 4392 4393 return 0; 4394 } 4395 4396 /** 4397 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4398 * @p: the task in question. 4399 * @policy: new policy. 4400 * @param: structure containing the new RT priority. 4401 * 4402 * NOTE that the task may be already dead. 4403 */ 4404 int sched_setscheduler(struct task_struct *p, int policy, 4405 const struct sched_param *param) 4406 { 4407 return __sched_setscheduler(p, policy, param, true); 4408 } 4409 EXPORT_SYMBOL_GPL(sched_setscheduler); 4410 4411 /** 4412 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4413 * @p: the task in question. 4414 * @policy: new policy. 4415 * @param: structure containing the new RT priority. 4416 * 4417 * Just like sched_setscheduler, only don't bother checking if the 4418 * current context has permission. For example, this is needed in 4419 * stop_machine(): we create temporary high priority worker threads, 4420 * but our caller might not have that capability. 4421 */ 4422 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4423 const struct sched_param *param) 4424 { 4425 return __sched_setscheduler(p, policy, param, false); 4426 } 4427 4428 static int 4429 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4430 { 4431 struct sched_param lparam; 4432 struct task_struct *p; 4433 int retval; 4434 4435 if (!param || pid < 0) 4436 return -EINVAL; 4437 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4438 return -EFAULT; 4439 4440 rcu_read_lock(); 4441 retval = -ESRCH; 4442 p = find_process_by_pid(pid); 4443 if (p != NULL) 4444 retval = sched_setscheduler(p, policy, &lparam); 4445 rcu_read_unlock(); 4446 4447 return retval; 4448 } 4449 4450 /** 4451 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4452 * @pid: the pid in question. 4453 * @policy: new policy. 4454 * @param: structure containing the new RT priority. 4455 */ 4456 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4457 struct sched_param __user *, param) 4458 { 4459 /* negative values for policy are not valid */ 4460 if (policy < 0) 4461 return -EINVAL; 4462 4463 return do_sched_setscheduler(pid, policy, param); 4464 } 4465 4466 /** 4467 * sys_sched_setparam - set/change the RT priority of a thread 4468 * @pid: the pid in question. 4469 * @param: structure containing the new RT priority. 4470 */ 4471 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4472 { 4473 return do_sched_setscheduler(pid, -1, param); 4474 } 4475 4476 /** 4477 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4478 * @pid: the pid in question. 4479 */ 4480 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4481 { 4482 struct task_struct *p; 4483 int retval; 4484 4485 if (pid < 0) 4486 return -EINVAL; 4487 4488 retval = -ESRCH; 4489 rcu_read_lock(); 4490 p = find_process_by_pid(pid); 4491 if (p) { 4492 retval = security_task_getscheduler(p); 4493 if (!retval) 4494 retval = p->policy 4495 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4496 } 4497 rcu_read_unlock(); 4498 return retval; 4499 } 4500 4501 /** 4502 * sys_sched_getparam - get the RT priority of a thread 4503 * @pid: the pid in question. 4504 * @param: structure containing the RT priority. 4505 */ 4506 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4507 { 4508 struct sched_param lp; 4509 struct task_struct *p; 4510 int retval; 4511 4512 if (!param || pid < 0) 4513 return -EINVAL; 4514 4515 rcu_read_lock(); 4516 p = find_process_by_pid(pid); 4517 retval = -ESRCH; 4518 if (!p) 4519 goto out_unlock; 4520 4521 retval = security_task_getscheduler(p); 4522 if (retval) 4523 goto out_unlock; 4524 4525 lp.sched_priority = p->rt_priority; 4526 rcu_read_unlock(); 4527 4528 /* 4529 * This one might sleep, we cannot do it with a spinlock held ... 4530 */ 4531 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4532 4533 return retval; 4534 4535 out_unlock: 4536 rcu_read_unlock(); 4537 return retval; 4538 } 4539 4540 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4541 { 4542 cpumask_var_t cpus_allowed, new_mask; 4543 struct task_struct *p; 4544 int retval; 4545 4546 get_online_cpus(); 4547 rcu_read_lock(); 4548 4549 p = find_process_by_pid(pid); 4550 if (!p) { 4551 rcu_read_unlock(); 4552 put_online_cpus(); 4553 return -ESRCH; 4554 } 4555 4556 /* Prevent p going away */ 4557 get_task_struct(p); 4558 rcu_read_unlock(); 4559 4560 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4561 retval = -ENOMEM; 4562 goto out_put_task; 4563 } 4564 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4565 retval = -ENOMEM; 4566 goto out_free_cpus_allowed; 4567 } 4568 retval = -EPERM; 4569 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE)) 4570 goto out_unlock; 4571 4572 retval = security_task_setscheduler(p); 4573 if (retval) 4574 goto out_unlock; 4575 4576 cpuset_cpus_allowed(p, cpus_allowed); 4577 cpumask_and(new_mask, in_mask, cpus_allowed); 4578 again: 4579 retval = set_cpus_allowed_ptr(p, new_mask); 4580 4581 if (!retval) { 4582 cpuset_cpus_allowed(p, cpus_allowed); 4583 if (!cpumask_subset(new_mask, cpus_allowed)) { 4584 /* 4585 * We must have raced with a concurrent cpuset 4586 * update. Just reset the cpus_allowed to the 4587 * cpuset's cpus_allowed 4588 */ 4589 cpumask_copy(new_mask, cpus_allowed); 4590 goto again; 4591 } 4592 } 4593 out_unlock: 4594 free_cpumask_var(new_mask); 4595 out_free_cpus_allowed: 4596 free_cpumask_var(cpus_allowed); 4597 out_put_task: 4598 put_task_struct(p); 4599 put_online_cpus(); 4600 return retval; 4601 } 4602 4603 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4604 struct cpumask *new_mask) 4605 { 4606 if (len < cpumask_size()) 4607 cpumask_clear(new_mask); 4608 else if (len > cpumask_size()) 4609 len = cpumask_size(); 4610 4611 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4612 } 4613 4614 /** 4615 * sys_sched_setaffinity - set the cpu affinity of a process 4616 * @pid: pid of the process 4617 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4618 * @user_mask_ptr: user-space pointer to the new cpu mask 4619 */ 4620 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4621 unsigned long __user *, user_mask_ptr) 4622 { 4623 cpumask_var_t new_mask; 4624 int retval; 4625 4626 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4627 return -ENOMEM; 4628 4629 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4630 if (retval == 0) 4631 retval = sched_setaffinity(pid, new_mask); 4632 free_cpumask_var(new_mask); 4633 return retval; 4634 } 4635 4636 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4637 { 4638 struct task_struct *p; 4639 unsigned long flags; 4640 int retval; 4641 4642 get_online_cpus(); 4643 rcu_read_lock(); 4644 4645 retval = -ESRCH; 4646 p = find_process_by_pid(pid); 4647 if (!p) 4648 goto out_unlock; 4649 4650 retval = security_task_getscheduler(p); 4651 if (retval) 4652 goto out_unlock; 4653 4654 raw_spin_lock_irqsave(&p->pi_lock, flags); 4655 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4656 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4657 4658 out_unlock: 4659 rcu_read_unlock(); 4660 put_online_cpus(); 4661 4662 return retval; 4663 } 4664 4665 /** 4666 * sys_sched_getaffinity - get the cpu affinity of a process 4667 * @pid: pid of the process 4668 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4669 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4670 */ 4671 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4672 unsigned long __user *, user_mask_ptr) 4673 { 4674 int ret; 4675 cpumask_var_t mask; 4676 4677 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4678 return -EINVAL; 4679 if (len & (sizeof(unsigned long)-1)) 4680 return -EINVAL; 4681 4682 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4683 return -ENOMEM; 4684 4685 ret = sched_getaffinity(pid, mask); 4686 if (ret == 0) { 4687 size_t retlen = min_t(size_t, len, cpumask_size()); 4688 4689 if (copy_to_user(user_mask_ptr, mask, retlen)) 4690 ret = -EFAULT; 4691 else 4692 ret = retlen; 4693 } 4694 free_cpumask_var(mask); 4695 4696 return ret; 4697 } 4698 4699 /** 4700 * sys_sched_yield - yield the current processor to other threads. 4701 * 4702 * This function yields the current CPU to other tasks. If there are no 4703 * other threads running on this CPU then this function will return. 4704 */ 4705 SYSCALL_DEFINE0(sched_yield) 4706 { 4707 struct rq *rq = this_rq_lock(); 4708 4709 schedstat_inc(rq, yld_count); 4710 current->sched_class->yield_task(rq); 4711 4712 /* 4713 * Since we are going to call schedule() anyway, there's 4714 * no need to preempt or enable interrupts: 4715 */ 4716 __release(rq->lock); 4717 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4718 do_raw_spin_unlock(&rq->lock); 4719 sched_preempt_enable_no_resched(); 4720 4721 schedule(); 4722 4723 return 0; 4724 } 4725 4726 static inline int should_resched(void) 4727 { 4728 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4729 } 4730 4731 static void __cond_resched(void) 4732 { 4733 add_preempt_count(PREEMPT_ACTIVE); 4734 __schedule(); 4735 sub_preempt_count(PREEMPT_ACTIVE); 4736 } 4737 4738 int __sched _cond_resched(void) 4739 { 4740 if (should_resched()) { 4741 __cond_resched(); 4742 return 1; 4743 } 4744 return 0; 4745 } 4746 EXPORT_SYMBOL(_cond_resched); 4747 4748 /* 4749 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4750 * call schedule, and on return reacquire the lock. 4751 * 4752 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4753 * operations here to prevent schedule() from being called twice (once via 4754 * spin_unlock(), once by hand). 4755 */ 4756 int __cond_resched_lock(spinlock_t *lock) 4757 { 4758 int resched = should_resched(); 4759 int ret = 0; 4760 4761 lockdep_assert_held(lock); 4762 4763 if (spin_needbreak(lock) || resched) { 4764 spin_unlock(lock); 4765 if (resched) 4766 __cond_resched(); 4767 else 4768 cpu_relax(); 4769 ret = 1; 4770 spin_lock(lock); 4771 } 4772 return ret; 4773 } 4774 EXPORT_SYMBOL(__cond_resched_lock); 4775 4776 int __sched __cond_resched_softirq(void) 4777 { 4778 BUG_ON(!in_softirq()); 4779 4780 if (should_resched()) { 4781 local_bh_enable(); 4782 __cond_resched(); 4783 local_bh_disable(); 4784 return 1; 4785 } 4786 return 0; 4787 } 4788 EXPORT_SYMBOL(__cond_resched_softirq); 4789 4790 /** 4791 * yield - yield the current processor to other threads. 4792 * 4793 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4794 * 4795 * The scheduler is at all times free to pick the calling task as the most 4796 * eligible task to run, if removing the yield() call from your code breaks 4797 * it, its already broken. 4798 * 4799 * Typical broken usage is: 4800 * 4801 * while (!event) 4802 * yield(); 4803 * 4804 * where one assumes that yield() will let 'the other' process run that will 4805 * make event true. If the current task is a SCHED_FIFO task that will never 4806 * happen. Never use yield() as a progress guarantee!! 4807 * 4808 * If you want to use yield() to wait for something, use wait_event(). 4809 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4810 * If you still want to use yield(), do not! 4811 */ 4812 void __sched yield(void) 4813 { 4814 set_current_state(TASK_RUNNING); 4815 sys_sched_yield(); 4816 } 4817 EXPORT_SYMBOL(yield); 4818 4819 /** 4820 * yield_to - yield the current processor to another thread in 4821 * your thread group, or accelerate that thread toward the 4822 * processor it's on. 4823 * @p: target task 4824 * @preempt: whether task preemption is allowed or not 4825 * 4826 * It's the caller's job to ensure that the target task struct 4827 * can't go away on us before we can do any checks. 4828 * 4829 * Returns true if we indeed boosted the target task. 4830 */ 4831 bool __sched yield_to(struct task_struct *p, bool preempt) 4832 { 4833 struct task_struct *curr = current; 4834 struct rq *rq, *p_rq; 4835 unsigned long flags; 4836 bool yielded = 0; 4837 4838 local_irq_save(flags); 4839 rq = this_rq(); 4840 4841 again: 4842 p_rq = task_rq(p); 4843 double_rq_lock(rq, p_rq); 4844 while (task_rq(p) != p_rq) { 4845 double_rq_unlock(rq, p_rq); 4846 goto again; 4847 } 4848 4849 if (!curr->sched_class->yield_to_task) 4850 goto out; 4851 4852 if (curr->sched_class != p->sched_class) 4853 goto out; 4854 4855 if (task_running(p_rq, p) || p->state) 4856 goto out; 4857 4858 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4859 if (yielded) { 4860 schedstat_inc(rq, yld_count); 4861 /* 4862 * Make p's CPU reschedule; pick_next_entity takes care of 4863 * fairness. 4864 */ 4865 if (preempt && rq != p_rq) 4866 resched_task(p_rq->curr); 4867 } else { 4868 /* 4869 * We might have set it in task_yield_fair(), but are 4870 * not going to schedule(), so don't want to skip 4871 * the next update. 4872 */ 4873 rq->skip_clock_update = 0; 4874 } 4875 4876 out: 4877 double_rq_unlock(rq, p_rq); 4878 local_irq_restore(flags); 4879 4880 if (yielded) 4881 schedule(); 4882 4883 return yielded; 4884 } 4885 EXPORT_SYMBOL_GPL(yield_to); 4886 4887 /* 4888 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4889 * that process accounting knows that this is a task in IO wait state. 4890 */ 4891 void __sched io_schedule(void) 4892 { 4893 struct rq *rq = raw_rq(); 4894 4895 delayacct_blkio_start(); 4896 atomic_inc(&rq->nr_iowait); 4897 blk_flush_plug(current); 4898 current->in_iowait = 1; 4899 schedule(); 4900 current->in_iowait = 0; 4901 atomic_dec(&rq->nr_iowait); 4902 delayacct_blkio_end(); 4903 } 4904 EXPORT_SYMBOL(io_schedule); 4905 4906 long __sched io_schedule_timeout(long timeout) 4907 { 4908 struct rq *rq = raw_rq(); 4909 long ret; 4910 4911 delayacct_blkio_start(); 4912 atomic_inc(&rq->nr_iowait); 4913 blk_flush_plug(current); 4914 current->in_iowait = 1; 4915 ret = schedule_timeout(timeout); 4916 current->in_iowait = 0; 4917 atomic_dec(&rq->nr_iowait); 4918 delayacct_blkio_end(); 4919 return ret; 4920 } 4921 4922 /** 4923 * sys_sched_get_priority_max - return maximum RT priority. 4924 * @policy: scheduling class. 4925 * 4926 * this syscall returns the maximum rt_priority that can be used 4927 * by a given scheduling class. 4928 */ 4929 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4930 { 4931 int ret = -EINVAL; 4932 4933 switch (policy) { 4934 case SCHED_FIFO: 4935 case SCHED_RR: 4936 ret = MAX_USER_RT_PRIO-1; 4937 break; 4938 case SCHED_NORMAL: 4939 case SCHED_BATCH: 4940 case SCHED_IDLE: 4941 ret = 0; 4942 break; 4943 } 4944 return ret; 4945 } 4946 4947 /** 4948 * sys_sched_get_priority_min - return minimum RT priority. 4949 * @policy: scheduling class. 4950 * 4951 * this syscall returns the minimum rt_priority that can be used 4952 * by a given scheduling class. 4953 */ 4954 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4955 { 4956 int ret = -EINVAL; 4957 4958 switch (policy) { 4959 case SCHED_FIFO: 4960 case SCHED_RR: 4961 ret = 1; 4962 break; 4963 case SCHED_NORMAL: 4964 case SCHED_BATCH: 4965 case SCHED_IDLE: 4966 ret = 0; 4967 } 4968 return ret; 4969 } 4970 4971 /** 4972 * sys_sched_rr_get_interval - return the default timeslice of a process. 4973 * @pid: pid of the process. 4974 * @interval: userspace pointer to the timeslice value. 4975 * 4976 * this syscall writes the default timeslice value of a given process 4977 * into the user-space timespec buffer. A value of '0' means infinity. 4978 */ 4979 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4980 struct timespec __user *, interval) 4981 { 4982 struct task_struct *p; 4983 unsigned int time_slice; 4984 unsigned long flags; 4985 struct rq *rq; 4986 int retval; 4987 struct timespec t; 4988 4989 if (pid < 0) 4990 return -EINVAL; 4991 4992 retval = -ESRCH; 4993 rcu_read_lock(); 4994 p = find_process_by_pid(pid); 4995 if (!p) 4996 goto out_unlock; 4997 4998 retval = security_task_getscheduler(p); 4999 if (retval) 5000 goto out_unlock; 5001 5002 rq = task_rq_lock(p, &flags); 5003 time_slice = p->sched_class->get_rr_interval(rq, p); 5004 task_rq_unlock(rq, p, &flags); 5005 5006 rcu_read_unlock(); 5007 jiffies_to_timespec(time_slice, &t); 5008 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 5009 return retval; 5010 5011 out_unlock: 5012 rcu_read_unlock(); 5013 return retval; 5014 } 5015 5016 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 5017 5018 void sched_show_task(struct task_struct *p) 5019 { 5020 unsigned long free = 0; 5021 unsigned state; 5022 5023 state = p->state ? __ffs(p->state) + 1 : 0; 5024 printk(KERN_INFO "%-15.15s %c", p->comm, 5025 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 5026 #if BITS_PER_LONG == 32 5027 if (state == TASK_RUNNING) 5028 printk(KERN_CONT " running "); 5029 else 5030 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 5031 #else 5032 if (state == TASK_RUNNING) 5033 printk(KERN_CONT " running task "); 5034 else 5035 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 5036 #endif 5037 #ifdef CONFIG_DEBUG_STACK_USAGE 5038 free = stack_not_used(p); 5039 #endif 5040 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5041 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)), 5042 (unsigned long)task_thread_info(p)->flags); 5043 5044 show_stack(p, NULL); 5045 } 5046 5047 void show_state_filter(unsigned long state_filter) 5048 { 5049 struct task_struct *g, *p; 5050 5051 #if BITS_PER_LONG == 32 5052 printk(KERN_INFO 5053 " task PC stack pid father\n"); 5054 #else 5055 printk(KERN_INFO 5056 " task PC stack pid father\n"); 5057 #endif 5058 rcu_read_lock(); 5059 do_each_thread(g, p) { 5060 /* 5061 * reset the NMI-timeout, listing all files on a slow 5062 * console might take a lot of time: 5063 */ 5064 touch_nmi_watchdog(); 5065 if (!state_filter || (p->state & state_filter)) 5066 sched_show_task(p); 5067 } while_each_thread(g, p); 5068 5069 touch_all_softlockup_watchdogs(); 5070 5071 #ifdef CONFIG_SCHED_DEBUG 5072 sysrq_sched_debug_show(); 5073 #endif 5074 rcu_read_unlock(); 5075 /* 5076 * Only show locks if all tasks are dumped: 5077 */ 5078 if (!state_filter) 5079 debug_show_all_locks(); 5080 } 5081 5082 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 5083 { 5084 idle->sched_class = &idle_sched_class; 5085 } 5086 5087 /** 5088 * init_idle - set up an idle thread for a given CPU 5089 * @idle: task in question 5090 * @cpu: cpu the idle task belongs to 5091 * 5092 * NOTE: this function does not set the idle thread's NEED_RESCHED 5093 * flag, to make booting more robust. 5094 */ 5095 void __cpuinit init_idle(struct task_struct *idle, int cpu) 5096 { 5097 struct rq *rq = cpu_rq(cpu); 5098 unsigned long flags; 5099 5100 raw_spin_lock_irqsave(&rq->lock, flags); 5101 5102 __sched_fork(idle); 5103 idle->state = TASK_RUNNING; 5104 idle->se.exec_start = sched_clock(); 5105 5106 do_set_cpus_allowed(idle, cpumask_of(cpu)); 5107 /* 5108 * We're having a chicken and egg problem, even though we are 5109 * holding rq->lock, the cpu isn't yet set to this cpu so the 5110 * lockdep check in task_group() will fail. 5111 * 5112 * Similar case to sched_fork(). / Alternatively we could 5113 * use task_rq_lock() here and obtain the other rq->lock. 5114 * 5115 * Silence PROVE_RCU 5116 */ 5117 rcu_read_lock(); 5118 __set_task_cpu(idle, cpu); 5119 rcu_read_unlock(); 5120 5121 rq->curr = rq->idle = idle; 5122 #if defined(CONFIG_SMP) 5123 idle->on_cpu = 1; 5124 #endif 5125 raw_spin_unlock_irqrestore(&rq->lock, flags); 5126 5127 /* Set the preempt count _outside_ the spinlocks! */ 5128 task_thread_info(idle)->preempt_count = 0; 5129 5130 /* 5131 * The idle tasks have their own, simple scheduling class: 5132 */ 5133 idle->sched_class = &idle_sched_class; 5134 ftrace_graph_init_idle_task(idle, cpu); 5135 #if defined(CONFIG_SMP) 5136 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5137 #endif 5138 } 5139 5140 #ifdef CONFIG_SMP 5141 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 5142 { 5143 if (p->sched_class && p->sched_class->set_cpus_allowed) 5144 p->sched_class->set_cpus_allowed(p, new_mask); 5145 5146 cpumask_copy(&p->cpus_allowed, new_mask); 5147 p->nr_cpus_allowed = cpumask_weight(new_mask); 5148 } 5149 5150 /* 5151 * This is how migration works: 5152 * 5153 * 1) we invoke migration_cpu_stop() on the target CPU using 5154 * stop_one_cpu(). 5155 * 2) stopper starts to run (implicitly forcing the migrated thread 5156 * off the CPU) 5157 * 3) it checks whether the migrated task is still in the wrong runqueue. 5158 * 4) if it's in the wrong runqueue then the migration thread removes 5159 * it and puts it into the right queue. 5160 * 5) stopper completes and stop_one_cpu() returns and the migration 5161 * is done. 5162 */ 5163 5164 /* 5165 * Change a given task's CPU affinity. Migrate the thread to a 5166 * proper CPU and schedule it away if the CPU it's executing on 5167 * is removed from the allowed bitmask. 5168 * 5169 * NOTE: the caller must have a valid reference to the task, the 5170 * task must not exit() & deallocate itself prematurely. The 5171 * call is not atomic; no spinlocks may be held. 5172 */ 5173 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 5174 { 5175 unsigned long flags; 5176 struct rq *rq; 5177 unsigned int dest_cpu; 5178 int ret = 0; 5179 5180 rq = task_rq_lock(p, &flags); 5181 5182 if (cpumask_equal(&p->cpus_allowed, new_mask)) 5183 goto out; 5184 5185 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 5186 ret = -EINVAL; 5187 goto out; 5188 } 5189 5190 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { 5191 ret = -EINVAL; 5192 goto out; 5193 } 5194 5195 do_set_cpus_allowed(p, new_mask); 5196 5197 /* Can the task run on the task's current CPU? If so, we're done */ 5198 if (cpumask_test_cpu(task_cpu(p), new_mask)) 5199 goto out; 5200 5201 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 5202 if (p->on_rq) { 5203 struct migration_arg arg = { p, dest_cpu }; 5204 /* Need help from migration thread: drop lock and wait. */ 5205 task_rq_unlock(rq, p, &flags); 5206 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 5207 tlb_migrate_finish(p->mm); 5208 return 0; 5209 } 5210 out: 5211 task_rq_unlock(rq, p, &flags); 5212 5213 return ret; 5214 } 5215 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 5216 5217 /* 5218 * Move (not current) task off this cpu, onto dest cpu. We're doing 5219 * this because either it can't run here any more (set_cpus_allowed() 5220 * away from this CPU, or CPU going down), or because we're 5221 * attempting to rebalance this task on exec (sched_exec). 5222 * 5223 * So we race with normal scheduler movements, but that's OK, as long 5224 * as the task is no longer on this CPU. 5225 * 5226 * Returns non-zero if task was successfully migrated. 5227 */ 5228 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 5229 { 5230 struct rq *rq_dest, *rq_src; 5231 int ret = 0; 5232 5233 if (unlikely(!cpu_active(dest_cpu))) 5234 return ret; 5235 5236 rq_src = cpu_rq(src_cpu); 5237 rq_dest = cpu_rq(dest_cpu); 5238 5239 raw_spin_lock(&p->pi_lock); 5240 double_rq_lock(rq_src, rq_dest); 5241 /* Already moved. */ 5242 if (task_cpu(p) != src_cpu) 5243 goto done; 5244 /* Affinity changed (again). */ 5245 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 5246 goto fail; 5247 5248 /* 5249 * If we're not on a rq, the next wake-up will ensure we're 5250 * placed properly. 5251 */ 5252 if (p->on_rq) { 5253 dequeue_task(rq_src, p, 0); 5254 set_task_cpu(p, dest_cpu); 5255 enqueue_task(rq_dest, p, 0); 5256 check_preempt_curr(rq_dest, p, 0); 5257 } 5258 done: 5259 ret = 1; 5260 fail: 5261 double_rq_unlock(rq_src, rq_dest); 5262 raw_spin_unlock(&p->pi_lock); 5263 return ret; 5264 } 5265 5266 /* 5267 * migration_cpu_stop - this will be executed by a highprio stopper thread 5268 * and performs thread migration by bumping thread off CPU then 5269 * 'pushing' onto another runqueue. 5270 */ 5271 static int migration_cpu_stop(void *data) 5272 { 5273 struct migration_arg *arg = data; 5274 5275 /* 5276 * The original target cpu might have gone down and we might 5277 * be on another cpu but it doesn't matter. 5278 */ 5279 local_irq_disable(); 5280 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 5281 local_irq_enable(); 5282 return 0; 5283 } 5284 5285 #ifdef CONFIG_HOTPLUG_CPU 5286 5287 /* 5288 * Ensures that the idle task is using init_mm right before its cpu goes 5289 * offline. 5290 */ 5291 void idle_task_exit(void) 5292 { 5293 struct mm_struct *mm = current->active_mm; 5294 5295 BUG_ON(cpu_online(smp_processor_id())); 5296 5297 if (mm != &init_mm) 5298 switch_mm(mm, &init_mm, current); 5299 mmdrop(mm); 5300 } 5301 5302 /* 5303 * While a dead CPU has no uninterruptible tasks queued at this point, 5304 * it might still have a nonzero ->nr_uninterruptible counter, because 5305 * for performance reasons the counter is not stricly tracking tasks to 5306 * their home CPUs. So we just add the counter to another CPU's counter, 5307 * to keep the global sum constant after CPU-down: 5308 */ 5309 static void migrate_nr_uninterruptible(struct rq *rq_src) 5310 { 5311 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); 5312 5313 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; 5314 rq_src->nr_uninterruptible = 0; 5315 } 5316 5317 /* 5318 * remove the tasks which were accounted by rq from calc_load_tasks. 5319 */ 5320 static void calc_global_load_remove(struct rq *rq) 5321 { 5322 atomic_long_sub(rq->calc_load_active, &calc_load_tasks); 5323 rq->calc_load_active = 0; 5324 } 5325 5326 /* 5327 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5328 * try_to_wake_up()->select_task_rq(). 5329 * 5330 * Called with rq->lock held even though we'er in stop_machine() and 5331 * there's no concurrency possible, we hold the required locks anyway 5332 * because of lock validation efforts. 5333 */ 5334 static void migrate_tasks(unsigned int dead_cpu) 5335 { 5336 struct rq *rq = cpu_rq(dead_cpu); 5337 struct task_struct *next, *stop = rq->stop; 5338 int dest_cpu; 5339 5340 /* 5341 * Fudge the rq selection such that the below task selection loop 5342 * doesn't get stuck on the currently eligible stop task. 5343 * 5344 * We're currently inside stop_machine() and the rq is either stuck 5345 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5346 * either way we should never end up calling schedule() until we're 5347 * done here. 5348 */ 5349 rq->stop = NULL; 5350 5351 /* Ensure any throttled groups are reachable by pick_next_task */ 5352 unthrottle_offline_cfs_rqs(rq); 5353 5354 for ( ; ; ) { 5355 /* 5356 * There's this thread running, bail when that's the only 5357 * remaining thread. 5358 */ 5359 if (rq->nr_running == 1) 5360 break; 5361 5362 next = pick_next_task(rq); 5363 BUG_ON(!next); 5364 next->sched_class->put_prev_task(rq, next); 5365 5366 /* Find suitable destination for @next, with force if needed. */ 5367 dest_cpu = select_fallback_rq(dead_cpu, next); 5368 raw_spin_unlock(&rq->lock); 5369 5370 __migrate_task(next, dead_cpu, dest_cpu); 5371 5372 raw_spin_lock(&rq->lock); 5373 } 5374 5375 rq->stop = stop; 5376 } 5377 5378 #endif /* CONFIG_HOTPLUG_CPU */ 5379 5380 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5381 5382 static struct ctl_table sd_ctl_dir[] = { 5383 { 5384 .procname = "sched_domain", 5385 .mode = 0555, 5386 }, 5387 {} 5388 }; 5389 5390 static struct ctl_table sd_ctl_root[] = { 5391 { 5392 .procname = "kernel", 5393 .mode = 0555, 5394 .child = sd_ctl_dir, 5395 }, 5396 {} 5397 }; 5398 5399 static struct ctl_table *sd_alloc_ctl_entry(int n) 5400 { 5401 struct ctl_table *entry = 5402 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5403 5404 return entry; 5405 } 5406 5407 static void sd_free_ctl_entry(struct ctl_table **tablep) 5408 { 5409 struct ctl_table *entry; 5410 5411 /* 5412 * In the intermediate directories, both the child directory and 5413 * procname are dynamically allocated and could fail but the mode 5414 * will always be set. In the lowest directory the names are 5415 * static strings and all have proc handlers. 5416 */ 5417 for (entry = *tablep; entry->mode; entry++) { 5418 if (entry->child) 5419 sd_free_ctl_entry(&entry->child); 5420 if (entry->proc_handler == NULL) 5421 kfree(entry->procname); 5422 } 5423 5424 kfree(*tablep); 5425 *tablep = NULL; 5426 } 5427 5428 static void 5429 set_table_entry(struct ctl_table *entry, 5430 const char *procname, void *data, int maxlen, 5431 umode_t mode, proc_handler *proc_handler) 5432 { 5433 entry->procname = procname; 5434 entry->data = data; 5435 entry->maxlen = maxlen; 5436 entry->mode = mode; 5437 entry->proc_handler = proc_handler; 5438 } 5439 5440 static struct ctl_table * 5441 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5442 { 5443 struct ctl_table *table = sd_alloc_ctl_entry(13); 5444 5445 if (table == NULL) 5446 return NULL; 5447 5448 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5449 sizeof(long), 0644, proc_doulongvec_minmax); 5450 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5451 sizeof(long), 0644, proc_doulongvec_minmax); 5452 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5453 sizeof(int), 0644, proc_dointvec_minmax); 5454 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5455 sizeof(int), 0644, proc_dointvec_minmax); 5456 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5457 sizeof(int), 0644, proc_dointvec_minmax); 5458 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5459 sizeof(int), 0644, proc_dointvec_minmax); 5460 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5461 sizeof(int), 0644, proc_dointvec_minmax); 5462 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5463 sizeof(int), 0644, proc_dointvec_minmax); 5464 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5465 sizeof(int), 0644, proc_dointvec_minmax); 5466 set_table_entry(&table[9], "cache_nice_tries", 5467 &sd->cache_nice_tries, 5468 sizeof(int), 0644, proc_dointvec_minmax); 5469 set_table_entry(&table[10], "flags", &sd->flags, 5470 sizeof(int), 0644, proc_dointvec_minmax); 5471 set_table_entry(&table[11], "name", sd->name, 5472 CORENAME_MAX_SIZE, 0444, proc_dostring); 5473 /* &table[12] is terminator */ 5474 5475 return table; 5476 } 5477 5478 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5479 { 5480 struct ctl_table *entry, *table; 5481 struct sched_domain *sd; 5482 int domain_num = 0, i; 5483 char buf[32]; 5484 5485 for_each_domain(cpu, sd) 5486 domain_num++; 5487 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5488 if (table == NULL) 5489 return NULL; 5490 5491 i = 0; 5492 for_each_domain(cpu, sd) { 5493 snprintf(buf, 32, "domain%d", i); 5494 entry->procname = kstrdup(buf, GFP_KERNEL); 5495 entry->mode = 0555; 5496 entry->child = sd_alloc_ctl_domain_table(sd); 5497 entry++; 5498 i++; 5499 } 5500 return table; 5501 } 5502 5503 static struct ctl_table_header *sd_sysctl_header; 5504 static void register_sched_domain_sysctl(void) 5505 { 5506 int i, cpu_num = num_possible_cpus(); 5507 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5508 char buf[32]; 5509 5510 WARN_ON(sd_ctl_dir[0].child); 5511 sd_ctl_dir[0].child = entry; 5512 5513 if (entry == NULL) 5514 return; 5515 5516 for_each_possible_cpu(i) { 5517 snprintf(buf, 32, "cpu%d", i); 5518 entry->procname = kstrdup(buf, GFP_KERNEL); 5519 entry->mode = 0555; 5520 entry->child = sd_alloc_ctl_cpu_table(i); 5521 entry++; 5522 } 5523 5524 WARN_ON(sd_sysctl_header); 5525 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5526 } 5527 5528 /* may be called multiple times per register */ 5529 static void unregister_sched_domain_sysctl(void) 5530 { 5531 if (sd_sysctl_header) 5532 unregister_sysctl_table(sd_sysctl_header); 5533 sd_sysctl_header = NULL; 5534 if (sd_ctl_dir[0].child) 5535 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5536 } 5537 #else 5538 static void register_sched_domain_sysctl(void) 5539 { 5540 } 5541 static void unregister_sched_domain_sysctl(void) 5542 { 5543 } 5544 #endif 5545 5546 static void set_rq_online(struct rq *rq) 5547 { 5548 if (!rq->online) { 5549 const struct sched_class *class; 5550 5551 cpumask_set_cpu(rq->cpu, rq->rd->online); 5552 rq->online = 1; 5553 5554 for_each_class(class) { 5555 if (class->rq_online) 5556 class->rq_online(rq); 5557 } 5558 } 5559 } 5560 5561 static void set_rq_offline(struct rq *rq) 5562 { 5563 if (rq->online) { 5564 const struct sched_class *class; 5565 5566 for_each_class(class) { 5567 if (class->rq_offline) 5568 class->rq_offline(rq); 5569 } 5570 5571 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5572 rq->online = 0; 5573 } 5574 } 5575 5576 /* 5577 * migration_call - callback that gets triggered when a CPU is added. 5578 * Here we can start up the necessary migration thread for the new CPU. 5579 */ 5580 static int __cpuinit 5581 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5582 { 5583 int cpu = (long)hcpu; 5584 unsigned long flags; 5585 struct rq *rq = cpu_rq(cpu); 5586 5587 switch (action & ~CPU_TASKS_FROZEN) { 5588 5589 case CPU_UP_PREPARE: 5590 rq->calc_load_update = calc_load_update; 5591 break; 5592 5593 case CPU_ONLINE: 5594 /* Update our root-domain */ 5595 raw_spin_lock_irqsave(&rq->lock, flags); 5596 if (rq->rd) { 5597 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5598 5599 set_rq_online(rq); 5600 } 5601 raw_spin_unlock_irqrestore(&rq->lock, flags); 5602 break; 5603 5604 #ifdef CONFIG_HOTPLUG_CPU 5605 case CPU_DYING: 5606 sched_ttwu_pending(); 5607 /* Update our root-domain */ 5608 raw_spin_lock_irqsave(&rq->lock, flags); 5609 if (rq->rd) { 5610 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5611 set_rq_offline(rq); 5612 } 5613 migrate_tasks(cpu); 5614 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5615 raw_spin_unlock_irqrestore(&rq->lock, flags); 5616 5617 migrate_nr_uninterruptible(rq); 5618 calc_global_load_remove(rq); 5619 break; 5620 #endif 5621 } 5622 5623 update_max_interval(); 5624 5625 return NOTIFY_OK; 5626 } 5627 5628 /* 5629 * Register at high priority so that task migration (migrate_all_tasks) 5630 * happens before everything else. This has to be lower priority than 5631 * the notifier in the perf_event subsystem, though. 5632 */ 5633 static struct notifier_block __cpuinitdata migration_notifier = { 5634 .notifier_call = migration_call, 5635 .priority = CPU_PRI_MIGRATION, 5636 }; 5637 5638 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5639 unsigned long action, void *hcpu) 5640 { 5641 switch (action & ~CPU_TASKS_FROZEN) { 5642 case CPU_STARTING: 5643 case CPU_DOWN_FAILED: 5644 set_cpu_active((long)hcpu, true); 5645 return NOTIFY_OK; 5646 default: 5647 return NOTIFY_DONE; 5648 } 5649 } 5650 5651 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5652 unsigned long action, void *hcpu) 5653 { 5654 switch (action & ~CPU_TASKS_FROZEN) { 5655 case CPU_DOWN_PREPARE: 5656 set_cpu_active((long)hcpu, false); 5657 return NOTIFY_OK; 5658 default: 5659 return NOTIFY_DONE; 5660 } 5661 } 5662 5663 static int __init migration_init(void) 5664 { 5665 void *cpu = (void *)(long)smp_processor_id(); 5666 int err; 5667 5668 /* Initialize migration for the boot CPU */ 5669 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5670 BUG_ON(err == NOTIFY_BAD); 5671 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5672 register_cpu_notifier(&migration_notifier); 5673 5674 /* Register cpu active notifiers */ 5675 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5676 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5677 5678 return 0; 5679 } 5680 early_initcall(migration_init); 5681 #endif 5682 5683 #ifdef CONFIG_SMP 5684 5685 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5686 5687 #ifdef CONFIG_SCHED_DEBUG 5688 5689 static __read_mostly int sched_debug_enabled; 5690 5691 static int __init sched_debug_setup(char *str) 5692 { 5693 sched_debug_enabled = 1; 5694 5695 return 0; 5696 } 5697 early_param("sched_debug", sched_debug_setup); 5698 5699 static inline bool sched_debug(void) 5700 { 5701 return sched_debug_enabled; 5702 } 5703 5704 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5705 struct cpumask *groupmask) 5706 { 5707 struct sched_group *group = sd->groups; 5708 char str[256]; 5709 5710 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5711 cpumask_clear(groupmask); 5712 5713 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5714 5715 if (!(sd->flags & SD_LOAD_BALANCE)) { 5716 printk("does not load-balance\n"); 5717 if (sd->parent) 5718 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5719 " has parent"); 5720 return -1; 5721 } 5722 5723 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5724 5725 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5726 printk(KERN_ERR "ERROR: domain->span does not contain " 5727 "CPU%d\n", cpu); 5728 } 5729 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5730 printk(KERN_ERR "ERROR: domain->groups does not contain" 5731 " CPU%d\n", cpu); 5732 } 5733 5734 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5735 do { 5736 if (!group) { 5737 printk("\n"); 5738 printk(KERN_ERR "ERROR: group is NULL\n"); 5739 break; 5740 } 5741 5742 /* 5743 * Even though we initialize ->power to something semi-sane, 5744 * we leave power_orig unset. This allows us to detect if 5745 * domain iteration is still funny without causing /0 traps. 5746 */ 5747 if (!group->sgp->power_orig) { 5748 printk(KERN_CONT "\n"); 5749 printk(KERN_ERR "ERROR: domain->cpu_power not " 5750 "set\n"); 5751 break; 5752 } 5753 5754 if (!cpumask_weight(sched_group_cpus(group))) { 5755 printk(KERN_CONT "\n"); 5756 printk(KERN_ERR "ERROR: empty group\n"); 5757 break; 5758 } 5759 5760 if (!(sd->flags & SD_OVERLAP) && 5761 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5762 printk(KERN_CONT "\n"); 5763 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5764 break; 5765 } 5766 5767 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5768 5769 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5770 5771 printk(KERN_CONT " %s", str); 5772 if (group->sgp->power != SCHED_POWER_SCALE) { 5773 printk(KERN_CONT " (cpu_power = %d)", 5774 group->sgp->power); 5775 } 5776 5777 group = group->next; 5778 } while (group != sd->groups); 5779 printk(KERN_CONT "\n"); 5780 5781 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5782 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5783 5784 if (sd->parent && 5785 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5786 printk(KERN_ERR "ERROR: parent span is not a superset " 5787 "of domain->span\n"); 5788 return 0; 5789 } 5790 5791 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5792 { 5793 int level = 0; 5794 5795 if (!sched_debug_enabled) 5796 return; 5797 5798 if (!sd) { 5799 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5800 return; 5801 } 5802 5803 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5804 5805 for (;;) { 5806 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5807 break; 5808 level++; 5809 sd = sd->parent; 5810 if (!sd) 5811 break; 5812 } 5813 } 5814 #else /* !CONFIG_SCHED_DEBUG */ 5815 # define sched_domain_debug(sd, cpu) do { } while (0) 5816 static inline bool sched_debug(void) 5817 { 5818 return false; 5819 } 5820 #endif /* CONFIG_SCHED_DEBUG */ 5821 5822 static int sd_degenerate(struct sched_domain *sd) 5823 { 5824 if (cpumask_weight(sched_domain_span(sd)) == 1) 5825 return 1; 5826 5827 /* Following flags need at least 2 groups */ 5828 if (sd->flags & (SD_LOAD_BALANCE | 5829 SD_BALANCE_NEWIDLE | 5830 SD_BALANCE_FORK | 5831 SD_BALANCE_EXEC | 5832 SD_SHARE_CPUPOWER | 5833 SD_SHARE_PKG_RESOURCES)) { 5834 if (sd->groups != sd->groups->next) 5835 return 0; 5836 } 5837 5838 /* Following flags don't use groups */ 5839 if (sd->flags & (SD_WAKE_AFFINE)) 5840 return 0; 5841 5842 return 1; 5843 } 5844 5845 static int 5846 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5847 { 5848 unsigned long cflags = sd->flags, pflags = parent->flags; 5849 5850 if (sd_degenerate(parent)) 5851 return 1; 5852 5853 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5854 return 0; 5855 5856 /* Flags needing groups don't count if only 1 group in parent */ 5857 if (parent->groups == parent->groups->next) { 5858 pflags &= ~(SD_LOAD_BALANCE | 5859 SD_BALANCE_NEWIDLE | 5860 SD_BALANCE_FORK | 5861 SD_BALANCE_EXEC | 5862 SD_SHARE_CPUPOWER | 5863 SD_SHARE_PKG_RESOURCES); 5864 if (nr_node_ids == 1) 5865 pflags &= ~SD_SERIALIZE; 5866 } 5867 if (~cflags & pflags) 5868 return 0; 5869 5870 return 1; 5871 } 5872 5873 static void free_rootdomain(struct rcu_head *rcu) 5874 { 5875 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5876 5877 cpupri_cleanup(&rd->cpupri); 5878 free_cpumask_var(rd->rto_mask); 5879 free_cpumask_var(rd->online); 5880 free_cpumask_var(rd->span); 5881 kfree(rd); 5882 } 5883 5884 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5885 { 5886 struct root_domain *old_rd = NULL; 5887 unsigned long flags; 5888 5889 raw_spin_lock_irqsave(&rq->lock, flags); 5890 5891 if (rq->rd) { 5892 old_rd = rq->rd; 5893 5894 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5895 set_rq_offline(rq); 5896 5897 cpumask_clear_cpu(rq->cpu, old_rd->span); 5898 5899 /* 5900 * If we dont want to free the old_rt yet then 5901 * set old_rd to NULL to skip the freeing later 5902 * in this function: 5903 */ 5904 if (!atomic_dec_and_test(&old_rd->refcount)) 5905 old_rd = NULL; 5906 } 5907 5908 atomic_inc(&rd->refcount); 5909 rq->rd = rd; 5910 5911 cpumask_set_cpu(rq->cpu, rd->span); 5912 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5913 set_rq_online(rq); 5914 5915 raw_spin_unlock_irqrestore(&rq->lock, flags); 5916 5917 if (old_rd) 5918 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5919 } 5920 5921 static int init_rootdomain(struct root_domain *rd) 5922 { 5923 memset(rd, 0, sizeof(*rd)); 5924 5925 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5926 goto out; 5927 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5928 goto free_span; 5929 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5930 goto free_online; 5931 5932 if (cpupri_init(&rd->cpupri) != 0) 5933 goto free_rto_mask; 5934 return 0; 5935 5936 free_rto_mask: 5937 free_cpumask_var(rd->rto_mask); 5938 free_online: 5939 free_cpumask_var(rd->online); 5940 free_span: 5941 free_cpumask_var(rd->span); 5942 out: 5943 return -ENOMEM; 5944 } 5945 5946 /* 5947 * By default the system creates a single root-domain with all cpus as 5948 * members (mimicking the global state we have today). 5949 */ 5950 struct root_domain def_root_domain; 5951 5952 static void init_defrootdomain(void) 5953 { 5954 init_rootdomain(&def_root_domain); 5955 5956 atomic_set(&def_root_domain.refcount, 1); 5957 } 5958 5959 static struct root_domain *alloc_rootdomain(void) 5960 { 5961 struct root_domain *rd; 5962 5963 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5964 if (!rd) 5965 return NULL; 5966 5967 if (init_rootdomain(rd) != 0) { 5968 kfree(rd); 5969 return NULL; 5970 } 5971 5972 return rd; 5973 } 5974 5975 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5976 { 5977 struct sched_group *tmp, *first; 5978 5979 if (!sg) 5980 return; 5981 5982 first = sg; 5983 do { 5984 tmp = sg->next; 5985 5986 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5987 kfree(sg->sgp); 5988 5989 kfree(sg); 5990 sg = tmp; 5991 } while (sg != first); 5992 } 5993 5994 static void free_sched_domain(struct rcu_head *rcu) 5995 { 5996 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5997 5998 /* 5999 * If its an overlapping domain it has private groups, iterate and 6000 * nuke them all. 6001 */ 6002 if (sd->flags & SD_OVERLAP) { 6003 free_sched_groups(sd->groups, 1); 6004 } else if (atomic_dec_and_test(&sd->groups->ref)) { 6005 kfree(sd->groups->sgp); 6006 kfree(sd->groups); 6007 } 6008 kfree(sd); 6009 } 6010 6011 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 6012 { 6013 call_rcu(&sd->rcu, free_sched_domain); 6014 } 6015 6016 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 6017 { 6018 for (; sd; sd = sd->parent) 6019 destroy_sched_domain(sd, cpu); 6020 } 6021 6022 /* 6023 * Keep a special pointer to the highest sched_domain that has 6024 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 6025 * allows us to avoid some pointer chasing select_idle_sibling(). 6026 * 6027 * Iterate domains and sched_groups downward, assigning CPUs to be 6028 * select_idle_sibling() hw buddy. Cross-wiring hw makes bouncing 6029 * due to random perturbation self canceling, ie sw buddies pull 6030 * their counterpart to their CPU's hw counterpart. 6031 * 6032 * Also keep a unique ID per domain (we use the first cpu number in 6033 * the cpumask of the domain), this allows us to quickly tell if 6034 * two cpus are in the same cache domain, see cpus_share_cache(). 6035 */ 6036 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 6037 DEFINE_PER_CPU(int, sd_llc_id); 6038 6039 static void update_top_cache_domain(int cpu) 6040 { 6041 struct sched_domain *sd; 6042 int id = cpu; 6043 6044 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 6045 if (sd) { 6046 struct sched_domain *tmp = sd; 6047 struct sched_group *sg, *prev; 6048 bool right; 6049 6050 /* 6051 * Traverse to first CPU in group, and count hops 6052 * to cpu from there, switching direction on each 6053 * hop, never ever pointing the last CPU rightward. 6054 */ 6055 do { 6056 id = cpumask_first(sched_domain_span(tmp)); 6057 prev = sg = tmp->groups; 6058 right = 1; 6059 6060 while (cpumask_first(sched_group_cpus(sg)) != id) 6061 sg = sg->next; 6062 6063 while (!cpumask_test_cpu(cpu, sched_group_cpus(sg))) { 6064 prev = sg; 6065 sg = sg->next; 6066 right = !right; 6067 } 6068 6069 /* A CPU went down, never point back to domain start. */ 6070 if (right && cpumask_first(sched_group_cpus(sg->next)) == id) 6071 right = false; 6072 6073 sg = right ? sg->next : prev; 6074 tmp->idle_buddy = cpumask_first(sched_group_cpus(sg)); 6075 } while ((tmp = tmp->child)); 6076 6077 id = cpumask_first(sched_domain_span(sd)); 6078 } 6079 6080 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 6081 per_cpu(sd_llc_id, cpu) = id; 6082 } 6083 6084 /* 6085 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 6086 * hold the hotplug lock. 6087 */ 6088 static void 6089 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 6090 { 6091 struct rq *rq = cpu_rq(cpu); 6092 struct sched_domain *tmp; 6093 6094 /* Remove the sched domains which do not contribute to scheduling. */ 6095 for (tmp = sd; tmp; ) { 6096 struct sched_domain *parent = tmp->parent; 6097 if (!parent) 6098 break; 6099 6100 if (sd_parent_degenerate(tmp, parent)) { 6101 tmp->parent = parent->parent; 6102 if (parent->parent) 6103 parent->parent->child = tmp; 6104 destroy_sched_domain(parent, cpu); 6105 } else 6106 tmp = tmp->parent; 6107 } 6108 6109 if (sd && sd_degenerate(sd)) { 6110 tmp = sd; 6111 sd = sd->parent; 6112 destroy_sched_domain(tmp, cpu); 6113 if (sd) 6114 sd->child = NULL; 6115 } 6116 6117 sched_domain_debug(sd, cpu); 6118 6119 rq_attach_root(rq, rd); 6120 tmp = rq->sd; 6121 rcu_assign_pointer(rq->sd, sd); 6122 destroy_sched_domains(tmp, cpu); 6123 6124 update_top_cache_domain(cpu); 6125 } 6126 6127 /* cpus with isolated domains */ 6128 static cpumask_var_t cpu_isolated_map; 6129 6130 /* Setup the mask of cpus configured for isolated domains */ 6131 static int __init isolated_cpu_setup(char *str) 6132 { 6133 alloc_bootmem_cpumask_var(&cpu_isolated_map); 6134 cpulist_parse(str, cpu_isolated_map); 6135 return 1; 6136 } 6137 6138 __setup("isolcpus=", isolated_cpu_setup); 6139 6140 static const struct cpumask *cpu_cpu_mask(int cpu) 6141 { 6142 return cpumask_of_node(cpu_to_node(cpu)); 6143 } 6144 6145 struct sd_data { 6146 struct sched_domain **__percpu sd; 6147 struct sched_group **__percpu sg; 6148 struct sched_group_power **__percpu sgp; 6149 }; 6150 6151 struct s_data { 6152 struct sched_domain ** __percpu sd; 6153 struct root_domain *rd; 6154 }; 6155 6156 enum s_alloc { 6157 sa_rootdomain, 6158 sa_sd, 6159 sa_sd_storage, 6160 sa_none, 6161 }; 6162 6163 struct sched_domain_topology_level; 6164 6165 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 6166 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 6167 6168 #define SDTL_OVERLAP 0x01 6169 6170 struct sched_domain_topology_level { 6171 sched_domain_init_f init; 6172 sched_domain_mask_f mask; 6173 int flags; 6174 int numa_level; 6175 struct sd_data data; 6176 }; 6177 6178 /* 6179 * Build an iteration mask that can exclude certain CPUs from the upwards 6180 * domain traversal. 6181 * 6182 * Asymmetric node setups can result in situations where the domain tree is of 6183 * unequal depth, make sure to skip domains that already cover the entire 6184 * range. 6185 * 6186 * In that case build_sched_domains() will have terminated the iteration early 6187 * and our sibling sd spans will be empty. Domains should always include the 6188 * cpu they're built on, so check that. 6189 * 6190 */ 6191 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 6192 { 6193 const struct cpumask *span = sched_domain_span(sd); 6194 struct sd_data *sdd = sd->private; 6195 struct sched_domain *sibling; 6196 int i; 6197 6198 for_each_cpu(i, span) { 6199 sibling = *per_cpu_ptr(sdd->sd, i); 6200 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6201 continue; 6202 6203 cpumask_set_cpu(i, sched_group_mask(sg)); 6204 } 6205 } 6206 6207 /* 6208 * Return the canonical balance cpu for this group, this is the first cpu 6209 * of this group that's also in the iteration mask. 6210 */ 6211 int group_balance_cpu(struct sched_group *sg) 6212 { 6213 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 6214 } 6215 6216 static int 6217 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6218 { 6219 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6220 const struct cpumask *span = sched_domain_span(sd); 6221 struct cpumask *covered = sched_domains_tmpmask; 6222 struct sd_data *sdd = sd->private; 6223 struct sched_domain *child; 6224 int i; 6225 6226 cpumask_clear(covered); 6227 6228 for_each_cpu(i, span) { 6229 struct cpumask *sg_span; 6230 6231 if (cpumask_test_cpu(i, covered)) 6232 continue; 6233 6234 child = *per_cpu_ptr(sdd->sd, i); 6235 6236 /* See the comment near build_group_mask(). */ 6237 if (!cpumask_test_cpu(i, sched_domain_span(child))) 6238 continue; 6239 6240 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6241 GFP_KERNEL, cpu_to_node(cpu)); 6242 6243 if (!sg) 6244 goto fail; 6245 6246 sg_span = sched_group_cpus(sg); 6247 if (child->child) { 6248 child = child->child; 6249 cpumask_copy(sg_span, sched_domain_span(child)); 6250 } else 6251 cpumask_set_cpu(i, sg_span); 6252 6253 cpumask_or(covered, covered, sg_span); 6254 6255 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 6256 if (atomic_inc_return(&sg->sgp->ref) == 1) 6257 build_group_mask(sd, sg); 6258 6259 /* 6260 * Initialize sgp->power such that even if we mess up the 6261 * domains and no possible iteration will get us here, we won't 6262 * die on a /0 trap. 6263 */ 6264 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 6265 6266 /* 6267 * Make sure the first group of this domain contains the 6268 * canonical balance cpu. Otherwise the sched_domain iteration 6269 * breaks. See update_sg_lb_stats(). 6270 */ 6271 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6272 group_balance_cpu(sg) == cpu) 6273 groups = sg; 6274 6275 if (!first) 6276 first = sg; 6277 if (last) 6278 last->next = sg; 6279 last = sg; 6280 last->next = first; 6281 } 6282 sd->groups = groups; 6283 6284 return 0; 6285 6286 fail: 6287 free_sched_groups(first, 0); 6288 6289 return -ENOMEM; 6290 } 6291 6292 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6293 { 6294 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6295 struct sched_domain *child = sd->child; 6296 6297 if (child) 6298 cpu = cpumask_first(sched_domain_span(child)); 6299 6300 if (sg) { 6301 *sg = *per_cpu_ptr(sdd->sg, cpu); 6302 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 6303 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 6304 } 6305 6306 return cpu; 6307 } 6308 6309 /* 6310 * build_sched_groups will build a circular linked list of the groups 6311 * covered by the given span, and will set each group's ->cpumask correctly, 6312 * and ->cpu_power to 0. 6313 * 6314 * Assumes the sched_domain tree is fully constructed 6315 */ 6316 static int 6317 build_sched_groups(struct sched_domain *sd, int cpu) 6318 { 6319 struct sched_group *first = NULL, *last = NULL; 6320 struct sd_data *sdd = sd->private; 6321 const struct cpumask *span = sched_domain_span(sd); 6322 struct cpumask *covered; 6323 int i; 6324 6325 get_group(cpu, sdd, &sd->groups); 6326 atomic_inc(&sd->groups->ref); 6327 6328 if (cpu != cpumask_first(sched_domain_span(sd))) 6329 return 0; 6330 6331 lockdep_assert_held(&sched_domains_mutex); 6332 covered = sched_domains_tmpmask; 6333 6334 cpumask_clear(covered); 6335 6336 for_each_cpu(i, span) { 6337 struct sched_group *sg; 6338 int group = get_group(i, sdd, &sg); 6339 int j; 6340 6341 if (cpumask_test_cpu(i, covered)) 6342 continue; 6343 6344 cpumask_clear(sched_group_cpus(sg)); 6345 sg->sgp->power = 0; 6346 cpumask_setall(sched_group_mask(sg)); 6347 6348 for_each_cpu(j, span) { 6349 if (get_group(j, sdd, NULL) != group) 6350 continue; 6351 6352 cpumask_set_cpu(j, covered); 6353 cpumask_set_cpu(j, sched_group_cpus(sg)); 6354 } 6355 6356 if (!first) 6357 first = sg; 6358 if (last) 6359 last->next = sg; 6360 last = sg; 6361 } 6362 last->next = first; 6363 6364 return 0; 6365 } 6366 6367 /* 6368 * Initialize sched groups cpu_power. 6369 * 6370 * cpu_power indicates the capacity of sched group, which is used while 6371 * distributing the load between different sched groups in a sched domain. 6372 * Typically cpu_power for all the groups in a sched domain will be same unless 6373 * there are asymmetries in the topology. If there are asymmetries, group 6374 * having more cpu_power will pickup more load compared to the group having 6375 * less cpu_power. 6376 */ 6377 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 6378 { 6379 struct sched_group *sg = sd->groups; 6380 6381 WARN_ON(!sd || !sg); 6382 6383 do { 6384 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6385 sg = sg->next; 6386 } while (sg != sd->groups); 6387 6388 if (cpu != group_balance_cpu(sg)) 6389 return; 6390 6391 update_group_power(sd, cpu); 6392 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 6393 } 6394 6395 int __weak arch_sd_sibling_asym_packing(void) 6396 { 6397 return 0*SD_ASYM_PACKING; 6398 } 6399 6400 /* 6401 * Initializers for schedule domains 6402 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6403 */ 6404 6405 #ifdef CONFIG_SCHED_DEBUG 6406 # define SD_INIT_NAME(sd, type) sd->name = #type 6407 #else 6408 # define SD_INIT_NAME(sd, type) do { } while (0) 6409 #endif 6410 6411 #define SD_INIT_FUNC(type) \ 6412 static noinline struct sched_domain * \ 6413 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 6414 { \ 6415 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 6416 *sd = SD_##type##_INIT; \ 6417 SD_INIT_NAME(sd, type); \ 6418 sd->private = &tl->data; \ 6419 return sd; \ 6420 } 6421 6422 SD_INIT_FUNC(CPU) 6423 #ifdef CONFIG_SCHED_SMT 6424 SD_INIT_FUNC(SIBLING) 6425 #endif 6426 #ifdef CONFIG_SCHED_MC 6427 SD_INIT_FUNC(MC) 6428 #endif 6429 #ifdef CONFIG_SCHED_BOOK 6430 SD_INIT_FUNC(BOOK) 6431 #endif 6432 6433 static int default_relax_domain_level = -1; 6434 int sched_domain_level_max; 6435 6436 static int __init setup_relax_domain_level(char *str) 6437 { 6438 if (kstrtoint(str, 0, &default_relax_domain_level)) 6439 pr_warn("Unable to set relax_domain_level\n"); 6440 6441 return 1; 6442 } 6443 __setup("relax_domain_level=", setup_relax_domain_level); 6444 6445 static void set_domain_attribute(struct sched_domain *sd, 6446 struct sched_domain_attr *attr) 6447 { 6448 int request; 6449 6450 if (!attr || attr->relax_domain_level < 0) { 6451 if (default_relax_domain_level < 0) 6452 return; 6453 else 6454 request = default_relax_domain_level; 6455 } else 6456 request = attr->relax_domain_level; 6457 if (request < sd->level) { 6458 /* turn off idle balance on this domain */ 6459 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6460 } else { 6461 /* turn on idle balance on this domain */ 6462 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6463 } 6464 } 6465 6466 static void __sdt_free(const struct cpumask *cpu_map); 6467 static int __sdt_alloc(const struct cpumask *cpu_map); 6468 6469 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6470 const struct cpumask *cpu_map) 6471 { 6472 switch (what) { 6473 case sa_rootdomain: 6474 if (!atomic_read(&d->rd->refcount)) 6475 free_rootdomain(&d->rd->rcu); /* fall through */ 6476 case sa_sd: 6477 free_percpu(d->sd); /* fall through */ 6478 case sa_sd_storage: 6479 __sdt_free(cpu_map); /* fall through */ 6480 case sa_none: 6481 break; 6482 } 6483 } 6484 6485 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6486 const struct cpumask *cpu_map) 6487 { 6488 memset(d, 0, sizeof(*d)); 6489 6490 if (__sdt_alloc(cpu_map)) 6491 return sa_sd_storage; 6492 d->sd = alloc_percpu(struct sched_domain *); 6493 if (!d->sd) 6494 return sa_sd_storage; 6495 d->rd = alloc_rootdomain(); 6496 if (!d->rd) 6497 return sa_sd; 6498 return sa_rootdomain; 6499 } 6500 6501 /* 6502 * NULL the sd_data elements we've used to build the sched_domain and 6503 * sched_group structure so that the subsequent __free_domain_allocs() 6504 * will not free the data we're using. 6505 */ 6506 static void claim_allocations(int cpu, struct sched_domain *sd) 6507 { 6508 struct sd_data *sdd = sd->private; 6509 6510 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6511 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6512 6513 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6514 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6515 6516 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6517 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6518 } 6519 6520 #ifdef CONFIG_SCHED_SMT 6521 static const struct cpumask *cpu_smt_mask(int cpu) 6522 { 6523 return topology_thread_cpumask(cpu); 6524 } 6525 #endif 6526 6527 /* 6528 * Topology list, bottom-up. 6529 */ 6530 static struct sched_domain_topology_level default_topology[] = { 6531 #ifdef CONFIG_SCHED_SMT 6532 { sd_init_SIBLING, cpu_smt_mask, }, 6533 #endif 6534 #ifdef CONFIG_SCHED_MC 6535 { sd_init_MC, cpu_coregroup_mask, }, 6536 #endif 6537 #ifdef CONFIG_SCHED_BOOK 6538 { sd_init_BOOK, cpu_book_mask, }, 6539 #endif 6540 { sd_init_CPU, cpu_cpu_mask, }, 6541 { NULL, }, 6542 }; 6543 6544 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6545 6546 #ifdef CONFIG_NUMA 6547 6548 static int sched_domains_numa_levels; 6549 static int *sched_domains_numa_distance; 6550 static struct cpumask ***sched_domains_numa_masks; 6551 static int sched_domains_curr_level; 6552 6553 static inline int sd_local_flags(int level) 6554 { 6555 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 6556 return 0; 6557 6558 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 6559 } 6560 6561 static struct sched_domain * 6562 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 6563 { 6564 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6565 int level = tl->numa_level; 6566 int sd_weight = cpumask_weight( 6567 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 6568 6569 *sd = (struct sched_domain){ 6570 .min_interval = sd_weight, 6571 .max_interval = 2*sd_weight, 6572 .busy_factor = 32, 6573 .imbalance_pct = 125, 6574 .cache_nice_tries = 2, 6575 .busy_idx = 3, 6576 .idle_idx = 2, 6577 .newidle_idx = 0, 6578 .wake_idx = 0, 6579 .forkexec_idx = 0, 6580 6581 .flags = 1*SD_LOAD_BALANCE 6582 | 1*SD_BALANCE_NEWIDLE 6583 | 0*SD_BALANCE_EXEC 6584 | 0*SD_BALANCE_FORK 6585 | 0*SD_BALANCE_WAKE 6586 | 0*SD_WAKE_AFFINE 6587 | 0*SD_PREFER_LOCAL 6588 | 0*SD_SHARE_CPUPOWER 6589 | 0*SD_SHARE_PKG_RESOURCES 6590 | 1*SD_SERIALIZE 6591 | 0*SD_PREFER_SIBLING 6592 | sd_local_flags(level) 6593 , 6594 .last_balance = jiffies, 6595 .balance_interval = sd_weight, 6596 }; 6597 SD_INIT_NAME(sd, NUMA); 6598 sd->private = &tl->data; 6599 6600 /* 6601 * Ugly hack to pass state to sd_numa_mask()... 6602 */ 6603 sched_domains_curr_level = tl->numa_level; 6604 6605 return sd; 6606 } 6607 6608 static const struct cpumask *sd_numa_mask(int cpu) 6609 { 6610 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6611 } 6612 6613 static void sched_numa_warn(const char *str) 6614 { 6615 static int done = false; 6616 int i,j; 6617 6618 if (done) 6619 return; 6620 6621 done = true; 6622 6623 printk(KERN_WARNING "ERROR: %s\n\n", str); 6624 6625 for (i = 0; i < nr_node_ids; i++) { 6626 printk(KERN_WARNING " "); 6627 for (j = 0; j < nr_node_ids; j++) 6628 printk(KERN_CONT "%02d ", node_distance(i,j)); 6629 printk(KERN_CONT "\n"); 6630 } 6631 printk(KERN_WARNING "\n"); 6632 } 6633 6634 static bool find_numa_distance(int distance) 6635 { 6636 int i; 6637 6638 if (distance == node_distance(0, 0)) 6639 return true; 6640 6641 for (i = 0; i < sched_domains_numa_levels; i++) { 6642 if (sched_domains_numa_distance[i] == distance) 6643 return true; 6644 } 6645 6646 return false; 6647 } 6648 6649 static void sched_init_numa(void) 6650 { 6651 int next_distance, curr_distance = node_distance(0, 0); 6652 struct sched_domain_topology_level *tl; 6653 int level = 0; 6654 int i, j, k; 6655 6656 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6657 if (!sched_domains_numa_distance) 6658 return; 6659 6660 /* 6661 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6662 * unique distances in the node_distance() table. 6663 * 6664 * Assumes node_distance(0,j) includes all distances in 6665 * node_distance(i,j) in order to avoid cubic time. 6666 */ 6667 next_distance = curr_distance; 6668 for (i = 0; i < nr_node_ids; i++) { 6669 for (j = 0; j < nr_node_ids; j++) { 6670 for (k = 0; k < nr_node_ids; k++) { 6671 int distance = node_distance(i, k); 6672 6673 if (distance > curr_distance && 6674 (distance < next_distance || 6675 next_distance == curr_distance)) 6676 next_distance = distance; 6677 6678 /* 6679 * While not a strong assumption it would be nice to know 6680 * about cases where if node A is connected to B, B is not 6681 * equally connected to A. 6682 */ 6683 if (sched_debug() && node_distance(k, i) != distance) 6684 sched_numa_warn("Node-distance not symmetric"); 6685 6686 if (sched_debug() && i && !find_numa_distance(distance)) 6687 sched_numa_warn("Node-0 not representative"); 6688 } 6689 if (next_distance != curr_distance) { 6690 sched_domains_numa_distance[level++] = next_distance; 6691 sched_domains_numa_levels = level; 6692 curr_distance = next_distance; 6693 } else break; 6694 } 6695 6696 /* 6697 * In case of sched_debug() we verify the above assumption. 6698 */ 6699 if (!sched_debug()) 6700 break; 6701 } 6702 /* 6703 * 'level' contains the number of unique distances, excluding the 6704 * identity distance node_distance(i,i). 6705 * 6706 * The sched_domains_nume_distance[] array includes the actual distance 6707 * numbers. 6708 */ 6709 6710 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6711 if (!sched_domains_numa_masks) 6712 return; 6713 6714 /* 6715 * Now for each level, construct a mask per node which contains all 6716 * cpus of nodes that are that many hops away from us. 6717 */ 6718 for (i = 0; i < level; i++) { 6719 sched_domains_numa_masks[i] = 6720 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6721 if (!sched_domains_numa_masks[i]) 6722 return; 6723 6724 for (j = 0; j < nr_node_ids; j++) { 6725 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6726 if (!mask) 6727 return; 6728 6729 sched_domains_numa_masks[i][j] = mask; 6730 6731 for (k = 0; k < nr_node_ids; k++) { 6732 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6733 continue; 6734 6735 cpumask_or(mask, mask, cpumask_of_node(k)); 6736 } 6737 } 6738 } 6739 6740 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 6741 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6742 if (!tl) 6743 return; 6744 6745 /* 6746 * Copy the default topology bits.. 6747 */ 6748 for (i = 0; default_topology[i].init; i++) 6749 tl[i] = default_topology[i]; 6750 6751 /* 6752 * .. and append 'j' levels of NUMA goodness. 6753 */ 6754 for (j = 0; j < level; i++, j++) { 6755 tl[i] = (struct sched_domain_topology_level){ 6756 .init = sd_numa_init, 6757 .mask = sd_numa_mask, 6758 .flags = SDTL_OVERLAP, 6759 .numa_level = j, 6760 }; 6761 } 6762 6763 sched_domain_topology = tl; 6764 } 6765 #else 6766 static inline void sched_init_numa(void) 6767 { 6768 } 6769 #endif /* CONFIG_NUMA */ 6770 6771 static int __sdt_alloc(const struct cpumask *cpu_map) 6772 { 6773 struct sched_domain_topology_level *tl; 6774 int j; 6775 6776 for (tl = sched_domain_topology; tl->init; tl++) { 6777 struct sd_data *sdd = &tl->data; 6778 6779 sdd->sd = alloc_percpu(struct sched_domain *); 6780 if (!sdd->sd) 6781 return -ENOMEM; 6782 6783 sdd->sg = alloc_percpu(struct sched_group *); 6784 if (!sdd->sg) 6785 return -ENOMEM; 6786 6787 sdd->sgp = alloc_percpu(struct sched_group_power *); 6788 if (!sdd->sgp) 6789 return -ENOMEM; 6790 6791 for_each_cpu(j, cpu_map) { 6792 struct sched_domain *sd; 6793 struct sched_group *sg; 6794 struct sched_group_power *sgp; 6795 6796 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6797 GFP_KERNEL, cpu_to_node(j)); 6798 if (!sd) 6799 return -ENOMEM; 6800 6801 *per_cpu_ptr(sdd->sd, j) = sd; 6802 6803 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6804 GFP_KERNEL, cpu_to_node(j)); 6805 if (!sg) 6806 return -ENOMEM; 6807 6808 sg->next = sg; 6809 6810 *per_cpu_ptr(sdd->sg, j) = sg; 6811 6812 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 6813 GFP_KERNEL, cpu_to_node(j)); 6814 if (!sgp) 6815 return -ENOMEM; 6816 6817 *per_cpu_ptr(sdd->sgp, j) = sgp; 6818 } 6819 } 6820 6821 return 0; 6822 } 6823 6824 static void __sdt_free(const struct cpumask *cpu_map) 6825 { 6826 struct sched_domain_topology_level *tl; 6827 int j; 6828 6829 for (tl = sched_domain_topology; tl->init; tl++) { 6830 struct sd_data *sdd = &tl->data; 6831 6832 for_each_cpu(j, cpu_map) { 6833 struct sched_domain *sd; 6834 6835 if (sdd->sd) { 6836 sd = *per_cpu_ptr(sdd->sd, j); 6837 if (sd && (sd->flags & SD_OVERLAP)) 6838 free_sched_groups(sd->groups, 0); 6839 kfree(*per_cpu_ptr(sdd->sd, j)); 6840 } 6841 6842 if (sdd->sg) 6843 kfree(*per_cpu_ptr(sdd->sg, j)); 6844 if (sdd->sgp) 6845 kfree(*per_cpu_ptr(sdd->sgp, j)); 6846 } 6847 free_percpu(sdd->sd); 6848 sdd->sd = NULL; 6849 free_percpu(sdd->sg); 6850 sdd->sg = NULL; 6851 free_percpu(sdd->sgp); 6852 sdd->sgp = NULL; 6853 } 6854 } 6855 6856 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6857 struct s_data *d, const struct cpumask *cpu_map, 6858 struct sched_domain_attr *attr, struct sched_domain *child, 6859 int cpu) 6860 { 6861 struct sched_domain *sd = tl->init(tl, cpu); 6862 if (!sd) 6863 return child; 6864 6865 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6866 if (child) { 6867 sd->level = child->level + 1; 6868 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6869 child->parent = sd; 6870 } 6871 sd->child = child; 6872 set_domain_attribute(sd, attr); 6873 6874 return sd; 6875 } 6876 6877 /* 6878 * Build sched domains for a given set of cpus and attach the sched domains 6879 * to the individual cpus 6880 */ 6881 static int build_sched_domains(const struct cpumask *cpu_map, 6882 struct sched_domain_attr *attr) 6883 { 6884 enum s_alloc alloc_state = sa_none; 6885 struct sched_domain *sd; 6886 struct s_data d; 6887 int i, ret = -ENOMEM; 6888 6889 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6890 if (alloc_state != sa_rootdomain) 6891 goto error; 6892 6893 /* Set up domains for cpus specified by the cpu_map. */ 6894 for_each_cpu(i, cpu_map) { 6895 struct sched_domain_topology_level *tl; 6896 6897 sd = NULL; 6898 for (tl = sched_domain_topology; tl->init; tl++) { 6899 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6900 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6901 sd->flags |= SD_OVERLAP; 6902 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6903 break; 6904 } 6905 6906 while (sd->child) 6907 sd = sd->child; 6908 6909 *per_cpu_ptr(d.sd, i) = sd; 6910 } 6911 6912 /* Build the groups for the domains */ 6913 for_each_cpu(i, cpu_map) { 6914 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6915 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6916 if (sd->flags & SD_OVERLAP) { 6917 if (build_overlap_sched_groups(sd, i)) 6918 goto error; 6919 } else { 6920 if (build_sched_groups(sd, i)) 6921 goto error; 6922 } 6923 } 6924 } 6925 6926 /* Calculate CPU power for physical packages and nodes */ 6927 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6928 if (!cpumask_test_cpu(i, cpu_map)) 6929 continue; 6930 6931 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6932 claim_allocations(i, sd); 6933 init_sched_groups_power(i, sd); 6934 } 6935 } 6936 6937 /* Attach the domains */ 6938 rcu_read_lock(); 6939 for_each_cpu(i, cpu_map) { 6940 sd = *per_cpu_ptr(d.sd, i); 6941 cpu_attach_domain(sd, d.rd, i); 6942 } 6943 rcu_read_unlock(); 6944 6945 ret = 0; 6946 error: 6947 __free_domain_allocs(&d, alloc_state, cpu_map); 6948 return ret; 6949 } 6950 6951 static cpumask_var_t *doms_cur; /* current sched domains */ 6952 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6953 static struct sched_domain_attr *dattr_cur; 6954 /* attribues of custom domains in 'doms_cur' */ 6955 6956 /* 6957 * Special case: If a kmalloc of a doms_cur partition (array of 6958 * cpumask) fails, then fallback to a single sched domain, 6959 * as determined by the single cpumask fallback_doms. 6960 */ 6961 static cpumask_var_t fallback_doms; 6962 6963 /* 6964 * arch_update_cpu_topology lets virtualized architectures update the 6965 * cpu core maps. It is supposed to return 1 if the topology changed 6966 * or 0 if it stayed the same. 6967 */ 6968 int __attribute__((weak)) arch_update_cpu_topology(void) 6969 { 6970 return 0; 6971 } 6972 6973 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6974 { 6975 int i; 6976 cpumask_var_t *doms; 6977 6978 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6979 if (!doms) 6980 return NULL; 6981 for (i = 0; i < ndoms; i++) { 6982 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6983 free_sched_domains(doms, i); 6984 return NULL; 6985 } 6986 } 6987 return doms; 6988 } 6989 6990 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6991 { 6992 unsigned int i; 6993 for (i = 0; i < ndoms; i++) 6994 free_cpumask_var(doms[i]); 6995 kfree(doms); 6996 } 6997 6998 /* 6999 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 7000 * For now this just excludes isolated cpus, but could be used to 7001 * exclude other special cases in the future. 7002 */ 7003 static int init_sched_domains(const struct cpumask *cpu_map) 7004 { 7005 int err; 7006 7007 arch_update_cpu_topology(); 7008 ndoms_cur = 1; 7009 doms_cur = alloc_sched_domains(ndoms_cur); 7010 if (!doms_cur) 7011 doms_cur = &fallback_doms; 7012 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 7013 err = build_sched_domains(doms_cur[0], NULL); 7014 register_sched_domain_sysctl(); 7015 7016 return err; 7017 } 7018 7019 /* 7020 * Detach sched domains from a group of cpus specified in cpu_map 7021 * These cpus will now be attached to the NULL domain 7022 */ 7023 static void detach_destroy_domains(const struct cpumask *cpu_map) 7024 { 7025 int i; 7026 7027 rcu_read_lock(); 7028 for_each_cpu(i, cpu_map) 7029 cpu_attach_domain(NULL, &def_root_domain, i); 7030 rcu_read_unlock(); 7031 } 7032 7033 /* handle null as "default" */ 7034 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 7035 struct sched_domain_attr *new, int idx_new) 7036 { 7037 struct sched_domain_attr tmp; 7038 7039 /* fast path */ 7040 if (!new && !cur) 7041 return 1; 7042 7043 tmp = SD_ATTR_INIT; 7044 return !memcmp(cur ? (cur + idx_cur) : &tmp, 7045 new ? (new + idx_new) : &tmp, 7046 sizeof(struct sched_domain_attr)); 7047 } 7048 7049 /* 7050 * Partition sched domains as specified by the 'ndoms_new' 7051 * cpumasks in the array doms_new[] of cpumasks. This compares 7052 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7053 * It destroys each deleted domain and builds each new domain. 7054 * 7055 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 7056 * The masks don't intersect (don't overlap.) We should setup one 7057 * sched domain for each mask. CPUs not in any of the cpumasks will 7058 * not be load balanced. If the same cpumask appears both in the 7059 * current 'doms_cur' domains and in the new 'doms_new', we can leave 7060 * it as it is. 7061 * 7062 * The passed in 'doms_new' should be allocated using 7063 * alloc_sched_domains. This routine takes ownership of it and will 7064 * free_sched_domains it when done with it. If the caller failed the 7065 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 7066 * and partition_sched_domains() will fallback to the single partition 7067 * 'fallback_doms', it also forces the domains to be rebuilt. 7068 * 7069 * If doms_new == NULL it will be replaced with cpu_online_mask. 7070 * ndoms_new == 0 is a special case for destroying existing domains, 7071 * and it will not create the default domain. 7072 * 7073 * Call with hotplug lock held 7074 */ 7075 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 7076 struct sched_domain_attr *dattr_new) 7077 { 7078 int i, j, n; 7079 int new_topology; 7080 7081 mutex_lock(&sched_domains_mutex); 7082 7083 /* always unregister in case we don't destroy any domains */ 7084 unregister_sched_domain_sysctl(); 7085 7086 /* Let architecture update cpu core mappings. */ 7087 new_topology = arch_update_cpu_topology(); 7088 7089 n = doms_new ? ndoms_new : 0; 7090 7091 /* Destroy deleted domains */ 7092 for (i = 0; i < ndoms_cur; i++) { 7093 for (j = 0; j < n && !new_topology; j++) { 7094 if (cpumask_equal(doms_cur[i], doms_new[j]) 7095 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7096 goto match1; 7097 } 7098 /* no match - a current sched domain not in new doms_new[] */ 7099 detach_destroy_domains(doms_cur[i]); 7100 match1: 7101 ; 7102 } 7103 7104 if (doms_new == NULL) { 7105 ndoms_cur = 0; 7106 doms_new = &fallback_doms; 7107 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7108 WARN_ON_ONCE(dattr_new); 7109 } 7110 7111 /* Build new domains */ 7112 for (i = 0; i < ndoms_new; i++) { 7113 for (j = 0; j < ndoms_cur && !new_topology; j++) { 7114 if (cpumask_equal(doms_new[i], doms_cur[j]) 7115 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7116 goto match2; 7117 } 7118 /* no match - add a new doms_new */ 7119 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7120 match2: 7121 ; 7122 } 7123 7124 /* Remember the new sched domains */ 7125 if (doms_cur != &fallback_doms) 7126 free_sched_domains(doms_cur, ndoms_cur); 7127 kfree(dattr_cur); /* kfree(NULL) is safe */ 7128 doms_cur = doms_new; 7129 dattr_cur = dattr_new; 7130 ndoms_cur = ndoms_new; 7131 7132 register_sched_domain_sysctl(); 7133 7134 mutex_unlock(&sched_domains_mutex); 7135 } 7136 7137 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7138 7139 /* 7140 * Update cpusets according to cpu_active mask. If cpusets are 7141 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7142 * around partition_sched_domains(). 7143 * 7144 * If we come here as part of a suspend/resume, don't touch cpusets because we 7145 * want to restore it back to its original state upon resume anyway. 7146 */ 7147 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 7148 void *hcpu) 7149 { 7150 switch (action) { 7151 case CPU_ONLINE_FROZEN: 7152 case CPU_DOWN_FAILED_FROZEN: 7153 7154 /* 7155 * num_cpus_frozen tracks how many CPUs are involved in suspend 7156 * resume sequence. As long as this is not the last online 7157 * operation in the resume sequence, just build a single sched 7158 * domain, ignoring cpusets. 7159 */ 7160 num_cpus_frozen--; 7161 if (likely(num_cpus_frozen)) { 7162 partition_sched_domains(1, NULL, NULL); 7163 break; 7164 } 7165 7166 /* 7167 * This is the last CPU online operation. So fall through and 7168 * restore the original sched domains by considering the 7169 * cpuset configurations. 7170 */ 7171 7172 case CPU_ONLINE: 7173 case CPU_DOWN_FAILED: 7174 cpuset_update_active_cpus(true); 7175 break; 7176 default: 7177 return NOTIFY_DONE; 7178 } 7179 return NOTIFY_OK; 7180 } 7181 7182 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 7183 void *hcpu) 7184 { 7185 switch (action) { 7186 case CPU_DOWN_PREPARE: 7187 cpuset_update_active_cpus(false); 7188 break; 7189 case CPU_DOWN_PREPARE_FROZEN: 7190 num_cpus_frozen++; 7191 partition_sched_domains(1, NULL, NULL); 7192 break; 7193 default: 7194 return NOTIFY_DONE; 7195 } 7196 return NOTIFY_OK; 7197 } 7198 7199 void __init sched_init_smp(void) 7200 { 7201 cpumask_var_t non_isolated_cpus; 7202 7203 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7204 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7205 7206 sched_init_numa(); 7207 7208 get_online_cpus(); 7209 mutex_lock(&sched_domains_mutex); 7210 init_sched_domains(cpu_active_mask); 7211 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7212 if (cpumask_empty(non_isolated_cpus)) 7213 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7214 mutex_unlock(&sched_domains_mutex); 7215 put_online_cpus(); 7216 7217 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7218 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7219 7220 /* RT runtime code needs to handle some hotplug events */ 7221 hotcpu_notifier(update_runtime, 0); 7222 7223 init_hrtick(); 7224 7225 /* Move init over to a non-isolated CPU */ 7226 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7227 BUG(); 7228 sched_init_granularity(); 7229 free_cpumask_var(non_isolated_cpus); 7230 7231 init_sched_rt_class(); 7232 } 7233 #else 7234 void __init sched_init_smp(void) 7235 { 7236 sched_init_granularity(); 7237 } 7238 #endif /* CONFIG_SMP */ 7239 7240 const_debug unsigned int sysctl_timer_migration = 1; 7241 7242 int in_sched_functions(unsigned long addr) 7243 { 7244 return in_lock_functions(addr) || 7245 (addr >= (unsigned long)__sched_text_start 7246 && addr < (unsigned long)__sched_text_end); 7247 } 7248 7249 #ifdef CONFIG_CGROUP_SCHED 7250 struct task_group root_task_group; 7251 #endif 7252 7253 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 7254 7255 void __init sched_init(void) 7256 { 7257 int i, j; 7258 unsigned long alloc_size = 0, ptr; 7259 7260 #ifdef CONFIG_FAIR_GROUP_SCHED 7261 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7262 #endif 7263 #ifdef CONFIG_RT_GROUP_SCHED 7264 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7265 #endif 7266 #ifdef CONFIG_CPUMASK_OFFSTACK 7267 alloc_size += num_possible_cpus() * cpumask_size(); 7268 #endif 7269 if (alloc_size) { 7270 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7271 7272 #ifdef CONFIG_FAIR_GROUP_SCHED 7273 root_task_group.se = (struct sched_entity **)ptr; 7274 ptr += nr_cpu_ids * sizeof(void **); 7275 7276 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7277 ptr += nr_cpu_ids * sizeof(void **); 7278 7279 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7280 #ifdef CONFIG_RT_GROUP_SCHED 7281 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7282 ptr += nr_cpu_ids * sizeof(void **); 7283 7284 root_task_group.rt_rq = (struct rt_rq **)ptr; 7285 ptr += nr_cpu_ids * sizeof(void **); 7286 7287 #endif /* CONFIG_RT_GROUP_SCHED */ 7288 #ifdef CONFIG_CPUMASK_OFFSTACK 7289 for_each_possible_cpu(i) { 7290 per_cpu(load_balance_tmpmask, i) = (void *)ptr; 7291 ptr += cpumask_size(); 7292 } 7293 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7294 } 7295 7296 #ifdef CONFIG_SMP 7297 init_defrootdomain(); 7298 #endif 7299 7300 init_rt_bandwidth(&def_rt_bandwidth, 7301 global_rt_period(), global_rt_runtime()); 7302 7303 #ifdef CONFIG_RT_GROUP_SCHED 7304 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7305 global_rt_period(), global_rt_runtime()); 7306 #endif /* CONFIG_RT_GROUP_SCHED */ 7307 7308 #ifdef CONFIG_CGROUP_SCHED 7309 list_add(&root_task_group.list, &task_groups); 7310 INIT_LIST_HEAD(&root_task_group.children); 7311 INIT_LIST_HEAD(&root_task_group.siblings); 7312 autogroup_init(&init_task); 7313 7314 #endif /* CONFIG_CGROUP_SCHED */ 7315 7316 #ifdef CONFIG_CGROUP_CPUACCT 7317 root_cpuacct.cpustat = &kernel_cpustat; 7318 root_cpuacct.cpuusage = alloc_percpu(u64); 7319 /* Too early, not expected to fail */ 7320 BUG_ON(!root_cpuacct.cpuusage); 7321 #endif 7322 for_each_possible_cpu(i) { 7323 struct rq *rq; 7324 7325 rq = cpu_rq(i); 7326 raw_spin_lock_init(&rq->lock); 7327 rq->nr_running = 0; 7328 rq->calc_load_active = 0; 7329 rq->calc_load_update = jiffies + LOAD_FREQ; 7330 init_cfs_rq(&rq->cfs); 7331 init_rt_rq(&rq->rt, rq); 7332 #ifdef CONFIG_FAIR_GROUP_SCHED 7333 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7334 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7335 /* 7336 * How much cpu bandwidth does root_task_group get? 7337 * 7338 * In case of task-groups formed thr' the cgroup filesystem, it 7339 * gets 100% of the cpu resources in the system. This overall 7340 * system cpu resource is divided among the tasks of 7341 * root_task_group and its child task-groups in a fair manner, 7342 * based on each entity's (task or task-group's) weight 7343 * (se->load.weight). 7344 * 7345 * In other words, if root_task_group has 10 tasks of weight 7346 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7347 * then A0's share of the cpu resource is: 7348 * 7349 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7350 * 7351 * We achieve this by letting root_task_group's tasks sit 7352 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7353 */ 7354 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7355 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7356 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7357 7358 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7359 #ifdef CONFIG_RT_GROUP_SCHED 7360 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 7361 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7362 #endif 7363 7364 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7365 rq->cpu_load[j] = 0; 7366 7367 rq->last_load_update_tick = jiffies; 7368 7369 #ifdef CONFIG_SMP 7370 rq->sd = NULL; 7371 rq->rd = NULL; 7372 rq->cpu_power = SCHED_POWER_SCALE; 7373 rq->post_schedule = 0; 7374 rq->active_balance = 0; 7375 rq->next_balance = jiffies; 7376 rq->push_cpu = 0; 7377 rq->cpu = i; 7378 rq->online = 0; 7379 rq->idle_stamp = 0; 7380 rq->avg_idle = 2*sysctl_sched_migration_cost; 7381 7382 INIT_LIST_HEAD(&rq->cfs_tasks); 7383 7384 rq_attach_root(rq, &def_root_domain); 7385 #ifdef CONFIG_NO_HZ 7386 rq->nohz_flags = 0; 7387 #endif 7388 #endif 7389 init_rq_hrtick(rq); 7390 atomic_set(&rq->nr_iowait, 0); 7391 } 7392 7393 set_load_weight(&init_task); 7394 7395 #ifdef CONFIG_PREEMPT_NOTIFIERS 7396 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7397 #endif 7398 7399 #ifdef CONFIG_RT_MUTEXES 7400 plist_head_init(&init_task.pi_waiters); 7401 #endif 7402 7403 /* 7404 * The boot idle thread does lazy MMU switching as well: 7405 */ 7406 atomic_inc(&init_mm.mm_count); 7407 enter_lazy_tlb(&init_mm, current); 7408 7409 /* 7410 * Make us the idle thread. Technically, schedule() should not be 7411 * called from this thread, however somewhere below it might be, 7412 * but because we are the idle thread, we just pick up running again 7413 * when this runqueue becomes "idle". 7414 */ 7415 init_idle(current, smp_processor_id()); 7416 7417 calc_load_update = jiffies + LOAD_FREQ; 7418 7419 /* 7420 * During early bootup we pretend to be a normal task: 7421 */ 7422 current->sched_class = &fair_sched_class; 7423 7424 #ifdef CONFIG_SMP 7425 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7426 /* May be allocated at isolcpus cmdline parse time */ 7427 if (cpu_isolated_map == NULL) 7428 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7429 idle_thread_set_boot_cpu(); 7430 #endif 7431 init_sched_fair_class(); 7432 7433 scheduler_running = 1; 7434 } 7435 7436 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7437 static inline int preempt_count_equals(int preempt_offset) 7438 { 7439 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7440 7441 return (nested == preempt_offset); 7442 } 7443 7444 void __might_sleep(const char *file, int line, int preempt_offset) 7445 { 7446 static unsigned long prev_jiffy; /* ratelimiting */ 7447 7448 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7449 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7450 system_state != SYSTEM_RUNNING || oops_in_progress) 7451 return; 7452 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7453 return; 7454 prev_jiffy = jiffies; 7455 7456 printk(KERN_ERR 7457 "BUG: sleeping function called from invalid context at %s:%d\n", 7458 file, line); 7459 printk(KERN_ERR 7460 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7461 in_atomic(), irqs_disabled(), 7462 current->pid, current->comm); 7463 7464 debug_show_held_locks(current); 7465 if (irqs_disabled()) 7466 print_irqtrace_events(current); 7467 dump_stack(); 7468 } 7469 EXPORT_SYMBOL(__might_sleep); 7470 #endif 7471 7472 #ifdef CONFIG_MAGIC_SYSRQ 7473 static void normalize_task(struct rq *rq, struct task_struct *p) 7474 { 7475 const struct sched_class *prev_class = p->sched_class; 7476 int old_prio = p->prio; 7477 int on_rq; 7478 7479 on_rq = p->on_rq; 7480 if (on_rq) 7481 dequeue_task(rq, p, 0); 7482 __setscheduler(rq, p, SCHED_NORMAL, 0); 7483 if (on_rq) { 7484 enqueue_task(rq, p, 0); 7485 resched_task(rq->curr); 7486 } 7487 7488 check_class_changed(rq, p, prev_class, old_prio); 7489 } 7490 7491 void normalize_rt_tasks(void) 7492 { 7493 struct task_struct *g, *p; 7494 unsigned long flags; 7495 struct rq *rq; 7496 7497 read_lock_irqsave(&tasklist_lock, flags); 7498 do_each_thread(g, p) { 7499 /* 7500 * Only normalize user tasks: 7501 */ 7502 if (!p->mm) 7503 continue; 7504 7505 p->se.exec_start = 0; 7506 #ifdef CONFIG_SCHEDSTATS 7507 p->se.statistics.wait_start = 0; 7508 p->se.statistics.sleep_start = 0; 7509 p->se.statistics.block_start = 0; 7510 #endif 7511 7512 if (!rt_task(p)) { 7513 /* 7514 * Renice negative nice level userspace 7515 * tasks back to 0: 7516 */ 7517 if (TASK_NICE(p) < 0 && p->mm) 7518 set_user_nice(p, 0); 7519 continue; 7520 } 7521 7522 raw_spin_lock(&p->pi_lock); 7523 rq = __task_rq_lock(p); 7524 7525 normalize_task(rq, p); 7526 7527 __task_rq_unlock(rq); 7528 raw_spin_unlock(&p->pi_lock); 7529 } while_each_thread(g, p); 7530 7531 read_unlock_irqrestore(&tasklist_lock, flags); 7532 } 7533 7534 #endif /* CONFIG_MAGIC_SYSRQ */ 7535 7536 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7537 /* 7538 * These functions are only useful for the IA64 MCA handling, or kdb. 7539 * 7540 * They can only be called when the whole system has been 7541 * stopped - every CPU needs to be quiescent, and no scheduling 7542 * activity can take place. Using them for anything else would 7543 * be a serious bug, and as a result, they aren't even visible 7544 * under any other configuration. 7545 */ 7546 7547 /** 7548 * curr_task - return the current task for a given cpu. 7549 * @cpu: the processor in question. 7550 * 7551 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7552 */ 7553 struct task_struct *curr_task(int cpu) 7554 { 7555 return cpu_curr(cpu); 7556 } 7557 7558 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7559 7560 #ifdef CONFIG_IA64 7561 /** 7562 * set_curr_task - set the current task for a given cpu. 7563 * @cpu: the processor in question. 7564 * @p: the task pointer to set. 7565 * 7566 * Description: This function must only be used when non-maskable interrupts 7567 * are serviced on a separate stack. It allows the architecture to switch the 7568 * notion of the current task on a cpu in a non-blocking manner. This function 7569 * must be called with all CPU's synchronized, and interrupts disabled, the 7570 * and caller must save the original value of the current task (see 7571 * curr_task() above) and restore that value before reenabling interrupts and 7572 * re-starting the system. 7573 * 7574 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7575 */ 7576 void set_curr_task(int cpu, struct task_struct *p) 7577 { 7578 cpu_curr(cpu) = p; 7579 } 7580 7581 #endif 7582 7583 #ifdef CONFIG_CGROUP_SCHED 7584 /* task_group_lock serializes the addition/removal of task groups */ 7585 static DEFINE_SPINLOCK(task_group_lock); 7586 7587 static void free_sched_group(struct task_group *tg) 7588 { 7589 free_fair_sched_group(tg); 7590 free_rt_sched_group(tg); 7591 autogroup_free(tg); 7592 kfree(tg); 7593 } 7594 7595 /* allocate runqueue etc for a new task group */ 7596 struct task_group *sched_create_group(struct task_group *parent) 7597 { 7598 struct task_group *tg; 7599 unsigned long flags; 7600 7601 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7602 if (!tg) 7603 return ERR_PTR(-ENOMEM); 7604 7605 if (!alloc_fair_sched_group(tg, parent)) 7606 goto err; 7607 7608 if (!alloc_rt_sched_group(tg, parent)) 7609 goto err; 7610 7611 spin_lock_irqsave(&task_group_lock, flags); 7612 list_add_rcu(&tg->list, &task_groups); 7613 7614 WARN_ON(!parent); /* root should already exist */ 7615 7616 tg->parent = parent; 7617 INIT_LIST_HEAD(&tg->children); 7618 list_add_rcu(&tg->siblings, &parent->children); 7619 spin_unlock_irqrestore(&task_group_lock, flags); 7620 7621 return tg; 7622 7623 err: 7624 free_sched_group(tg); 7625 return ERR_PTR(-ENOMEM); 7626 } 7627 7628 /* rcu callback to free various structures associated with a task group */ 7629 static void free_sched_group_rcu(struct rcu_head *rhp) 7630 { 7631 /* now it should be safe to free those cfs_rqs */ 7632 free_sched_group(container_of(rhp, struct task_group, rcu)); 7633 } 7634 7635 /* Destroy runqueue etc associated with a task group */ 7636 void sched_destroy_group(struct task_group *tg) 7637 { 7638 unsigned long flags; 7639 int i; 7640 7641 /* end participation in shares distribution */ 7642 for_each_possible_cpu(i) 7643 unregister_fair_sched_group(tg, i); 7644 7645 spin_lock_irqsave(&task_group_lock, flags); 7646 list_del_rcu(&tg->list); 7647 list_del_rcu(&tg->siblings); 7648 spin_unlock_irqrestore(&task_group_lock, flags); 7649 7650 /* wait for possible concurrent references to cfs_rqs complete */ 7651 call_rcu(&tg->rcu, free_sched_group_rcu); 7652 } 7653 7654 /* change task's runqueue when it moves between groups. 7655 * The caller of this function should have put the task in its new group 7656 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7657 * reflect its new group. 7658 */ 7659 void sched_move_task(struct task_struct *tsk) 7660 { 7661 struct task_group *tg; 7662 int on_rq, running; 7663 unsigned long flags; 7664 struct rq *rq; 7665 7666 rq = task_rq_lock(tsk, &flags); 7667 7668 running = task_current(rq, tsk); 7669 on_rq = tsk->on_rq; 7670 7671 if (on_rq) 7672 dequeue_task(rq, tsk, 0); 7673 if (unlikely(running)) 7674 tsk->sched_class->put_prev_task(rq, tsk); 7675 7676 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id, 7677 lockdep_is_held(&tsk->sighand->siglock)), 7678 struct task_group, css); 7679 tg = autogroup_task_group(tsk, tg); 7680 tsk->sched_task_group = tg; 7681 7682 #ifdef CONFIG_FAIR_GROUP_SCHED 7683 if (tsk->sched_class->task_move_group) 7684 tsk->sched_class->task_move_group(tsk, on_rq); 7685 else 7686 #endif 7687 set_task_rq(tsk, task_cpu(tsk)); 7688 7689 if (unlikely(running)) 7690 tsk->sched_class->set_curr_task(rq); 7691 if (on_rq) 7692 enqueue_task(rq, tsk, 0); 7693 7694 task_rq_unlock(rq, tsk, &flags); 7695 } 7696 #endif /* CONFIG_CGROUP_SCHED */ 7697 7698 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7699 static unsigned long to_ratio(u64 period, u64 runtime) 7700 { 7701 if (runtime == RUNTIME_INF) 7702 return 1ULL << 20; 7703 7704 return div64_u64(runtime << 20, period); 7705 } 7706 #endif 7707 7708 #ifdef CONFIG_RT_GROUP_SCHED 7709 /* 7710 * Ensure that the real time constraints are schedulable. 7711 */ 7712 static DEFINE_MUTEX(rt_constraints_mutex); 7713 7714 /* Must be called with tasklist_lock held */ 7715 static inline int tg_has_rt_tasks(struct task_group *tg) 7716 { 7717 struct task_struct *g, *p; 7718 7719 do_each_thread(g, p) { 7720 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7721 return 1; 7722 } while_each_thread(g, p); 7723 7724 return 0; 7725 } 7726 7727 struct rt_schedulable_data { 7728 struct task_group *tg; 7729 u64 rt_period; 7730 u64 rt_runtime; 7731 }; 7732 7733 static int tg_rt_schedulable(struct task_group *tg, void *data) 7734 { 7735 struct rt_schedulable_data *d = data; 7736 struct task_group *child; 7737 unsigned long total, sum = 0; 7738 u64 period, runtime; 7739 7740 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7741 runtime = tg->rt_bandwidth.rt_runtime; 7742 7743 if (tg == d->tg) { 7744 period = d->rt_period; 7745 runtime = d->rt_runtime; 7746 } 7747 7748 /* 7749 * Cannot have more runtime than the period. 7750 */ 7751 if (runtime > period && runtime != RUNTIME_INF) 7752 return -EINVAL; 7753 7754 /* 7755 * Ensure we don't starve existing RT tasks. 7756 */ 7757 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7758 return -EBUSY; 7759 7760 total = to_ratio(period, runtime); 7761 7762 /* 7763 * Nobody can have more than the global setting allows. 7764 */ 7765 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7766 return -EINVAL; 7767 7768 /* 7769 * The sum of our children's runtime should not exceed our own. 7770 */ 7771 list_for_each_entry_rcu(child, &tg->children, siblings) { 7772 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7773 runtime = child->rt_bandwidth.rt_runtime; 7774 7775 if (child == d->tg) { 7776 period = d->rt_period; 7777 runtime = d->rt_runtime; 7778 } 7779 7780 sum += to_ratio(period, runtime); 7781 } 7782 7783 if (sum > total) 7784 return -EINVAL; 7785 7786 return 0; 7787 } 7788 7789 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7790 { 7791 int ret; 7792 7793 struct rt_schedulable_data data = { 7794 .tg = tg, 7795 .rt_period = period, 7796 .rt_runtime = runtime, 7797 }; 7798 7799 rcu_read_lock(); 7800 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7801 rcu_read_unlock(); 7802 7803 return ret; 7804 } 7805 7806 static int tg_set_rt_bandwidth(struct task_group *tg, 7807 u64 rt_period, u64 rt_runtime) 7808 { 7809 int i, err = 0; 7810 7811 mutex_lock(&rt_constraints_mutex); 7812 read_lock(&tasklist_lock); 7813 err = __rt_schedulable(tg, rt_period, rt_runtime); 7814 if (err) 7815 goto unlock; 7816 7817 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7818 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7819 tg->rt_bandwidth.rt_runtime = rt_runtime; 7820 7821 for_each_possible_cpu(i) { 7822 struct rt_rq *rt_rq = tg->rt_rq[i]; 7823 7824 raw_spin_lock(&rt_rq->rt_runtime_lock); 7825 rt_rq->rt_runtime = rt_runtime; 7826 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7827 } 7828 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7829 unlock: 7830 read_unlock(&tasklist_lock); 7831 mutex_unlock(&rt_constraints_mutex); 7832 7833 return err; 7834 } 7835 7836 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7837 { 7838 u64 rt_runtime, rt_period; 7839 7840 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7841 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7842 if (rt_runtime_us < 0) 7843 rt_runtime = RUNTIME_INF; 7844 7845 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7846 } 7847 7848 long sched_group_rt_runtime(struct task_group *tg) 7849 { 7850 u64 rt_runtime_us; 7851 7852 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7853 return -1; 7854 7855 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7856 do_div(rt_runtime_us, NSEC_PER_USEC); 7857 return rt_runtime_us; 7858 } 7859 7860 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7861 { 7862 u64 rt_runtime, rt_period; 7863 7864 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7865 rt_runtime = tg->rt_bandwidth.rt_runtime; 7866 7867 if (rt_period == 0) 7868 return -EINVAL; 7869 7870 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7871 } 7872 7873 long sched_group_rt_period(struct task_group *tg) 7874 { 7875 u64 rt_period_us; 7876 7877 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7878 do_div(rt_period_us, NSEC_PER_USEC); 7879 return rt_period_us; 7880 } 7881 7882 static int sched_rt_global_constraints(void) 7883 { 7884 u64 runtime, period; 7885 int ret = 0; 7886 7887 if (sysctl_sched_rt_period <= 0) 7888 return -EINVAL; 7889 7890 runtime = global_rt_runtime(); 7891 period = global_rt_period(); 7892 7893 /* 7894 * Sanity check on the sysctl variables. 7895 */ 7896 if (runtime > period && runtime != RUNTIME_INF) 7897 return -EINVAL; 7898 7899 mutex_lock(&rt_constraints_mutex); 7900 read_lock(&tasklist_lock); 7901 ret = __rt_schedulable(NULL, 0, 0); 7902 read_unlock(&tasklist_lock); 7903 mutex_unlock(&rt_constraints_mutex); 7904 7905 return ret; 7906 } 7907 7908 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7909 { 7910 /* Don't accept realtime tasks when there is no way for them to run */ 7911 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7912 return 0; 7913 7914 return 1; 7915 } 7916 7917 #else /* !CONFIG_RT_GROUP_SCHED */ 7918 static int sched_rt_global_constraints(void) 7919 { 7920 unsigned long flags; 7921 int i; 7922 7923 if (sysctl_sched_rt_period <= 0) 7924 return -EINVAL; 7925 7926 /* 7927 * There's always some RT tasks in the root group 7928 * -- migration, kstopmachine etc.. 7929 */ 7930 if (sysctl_sched_rt_runtime == 0) 7931 return -EBUSY; 7932 7933 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7934 for_each_possible_cpu(i) { 7935 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7936 7937 raw_spin_lock(&rt_rq->rt_runtime_lock); 7938 rt_rq->rt_runtime = global_rt_runtime(); 7939 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7940 } 7941 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7942 7943 return 0; 7944 } 7945 #endif /* CONFIG_RT_GROUP_SCHED */ 7946 7947 int sched_rt_handler(struct ctl_table *table, int write, 7948 void __user *buffer, size_t *lenp, 7949 loff_t *ppos) 7950 { 7951 int ret; 7952 int old_period, old_runtime; 7953 static DEFINE_MUTEX(mutex); 7954 7955 mutex_lock(&mutex); 7956 old_period = sysctl_sched_rt_period; 7957 old_runtime = sysctl_sched_rt_runtime; 7958 7959 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7960 7961 if (!ret && write) { 7962 ret = sched_rt_global_constraints(); 7963 if (ret) { 7964 sysctl_sched_rt_period = old_period; 7965 sysctl_sched_rt_runtime = old_runtime; 7966 } else { 7967 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7968 def_rt_bandwidth.rt_period = 7969 ns_to_ktime(global_rt_period()); 7970 } 7971 } 7972 mutex_unlock(&mutex); 7973 7974 return ret; 7975 } 7976 7977 #ifdef CONFIG_CGROUP_SCHED 7978 7979 /* return corresponding task_group object of a cgroup */ 7980 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7981 { 7982 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7983 struct task_group, css); 7984 } 7985 7986 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp) 7987 { 7988 struct task_group *tg, *parent; 7989 7990 if (!cgrp->parent) { 7991 /* This is early initialization for the top cgroup */ 7992 return &root_task_group.css; 7993 } 7994 7995 parent = cgroup_tg(cgrp->parent); 7996 tg = sched_create_group(parent); 7997 if (IS_ERR(tg)) 7998 return ERR_PTR(-ENOMEM); 7999 8000 return &tg->css; 8001 } 8002 8003 static void cpu_cgroup_destroy(struct cgroup *cgrp) 8004 { 8005 struct task_group *tg = cgroup_tg(cgrp); 8006 8007 sched_destroy_group(tg); 8008 } 8009 8010 static int cpu_cgroup_can_attach(struct cgroup *cgrp, 8011 struct cgroup_taskset *tset) 8012 { 8013 struct task_struct *task; 8014 8015 cgroup_taskset_for_each(task, cgrp, tset) { 8016 #ifdef CONFIG_RT_GROUP_SCHED 8017 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 8018 return -EINVAL; 8019 #else 8020 /* We don't support RT-tasks being in separate groups */ 8021 if (task->sched_class != &fair_sched_class) 8022 return -EINVAL; 8023 #endif 8024 } 8025 return 0; 8026 } 8027 8028 static void cpu_cgroup_attach(struct cgroup *cgrp, 8029 struct cgroup_taskset *tset) 8030 { 8031 struct task_struct *task; 8032 8033 cgroup_taskset_for_each(task, cgrp, tset) 8034 sched_move_task(task); 8035 } 8036 8037 static void 8038 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 8039 struct task_struct *task) 8040 { 8041 /* 8042 * cgroup_exit() is called in the copy_process() failure path. 8043 * Ignore this case since the task hasn't ran yet, this avoids 8044 * trying to poke a half freed task state from generic code. 8045 */ 8046 if (!(task->flags & PF_EXITING)) 8047 return; 8048 8049 sched_move_task(task); 8050 } 8051 8052 #ifdef CONFIG_FAIR_GROUP_SCHED 8053 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 8054 u64 shareval) 8055 { 8056 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 8057 } 8058 8059 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 8060 { 8061 struct task_group *tg = cgroup_tg(cgrp); 8062 8063 return (u64) scale_load_down(tg->shares); 8064 } 8065 8066 #ifdef CONFIG_CFS_BANDWIDTH 8067 static DEFINE_MUTEX(cfs_constraints_mutex); 8068 8069 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8070 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8071 8072 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8073 8074 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8075 { 8076 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8077 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8078 8079 if (tg == &root_task_group) 8080 return -EINVAL; 8081 8082 /* 8083 * Ensure we have at some amount of bandwidth every period. This is 8084 * to prevent reaching a state of large arrears when throttled via 8085 * entity_tick() resulting in prolonged exit starvation. 8086 */ 8087 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8088 return -EINVAL; 8089 8090 /* 8091 * Likewise, bound things on the otherside by preventing insane quota 8092 * periods. This also allows us to normalize in computing quota 8093 * feasibility. 8094 */ 8095 if (period > max_cfs_quota_period) 8096 return -EINVAL; 8097 8098 mutex_lock(&cfs_constraints_mutex); 8099 ret = __cfs_schedulable(tg, period, quota); 8100 if (ret) 8101 goto out_unlock; 8102 8103 runtime_enabled = quota != RUNTIME_INF; 8104 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8105 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 8106 raw_spin_lock_irq(&cfs_b->lock); 8107 cfs_b->period = ns_to_ktime(period); 8108 cfs_b->quota = quota; 8109 8110 __refill_cfs_bandwidth_runtime(cfs_b); 8111 /* restart the period timer (if active) to handle new period expiry */ 8112 if (runtime_enabled && cfs_b->timer_active) { 8113 /* force a reprogram */ 8114 cfs_b->timer_active = 0; 8115 __start_cfs_bandwidth(cfs_b); 8116 } 8117 raw_spin_unlock_irq(&cfs_b->lock); 8118 8119 for_each_possible_cpu(i) { 8120 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8121 struct rq *rq = cfs_rq->rq; 8122 8123 raw_spin_lock_irq(&rq->lock); 8124 cfs_rq->runtime_enabled = runtime_enabled; 8125 cfs_rq->runtime_remaining = 0; 8126 8127 if (cfs_rq->throttled) 8128 unthrottle_cfs_rq(cfs_rq); 8129 raw_spin_unlock_irq(&rq->lock); 8130 } 8131 out_unlock: 8132 mutex_unlock(&cfs_constraints_mutex); 8133 8134 return ret; 8135 } 8136 8137 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8138 { 8139 u64 quota, period; 8140 8141 period = ktime_to_ns(tg->cfs_bandwidth.period); 8142 if (cfs_quota_us < 0) 8143 quota = RUNTIME_INF; 8144 else 8145 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8146 8147 return tg_set_cfs_bandwidth(tg, period, quota); 8148 } 8149 8150 long tg_get_cfs_quota(struct task_group *tg) 8151 { 8152 u64 quota_us; 8153 8154 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8155 return -1; 8156 8157 quota_us = tg->cfs_bandwidth.quota; 8158 do_div(quota_us, NSEC_PER_USEC); 8159 8160 return quota_us; 8161 } 8162 8163 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8164 { 8165 u64 quota, period; 8166 8167 period = (u64)cfs_period_us * NSEC_PER_USEC; 8168 quota = tg->cfs_bandwidth.quota; 8169 8170 return tg_set_cfs_bandwidth(tg, period, quota); 8171 } 8172 8173 long tg_get_cfs_period(struct task_group *tg) 8174 { 8175 u64 cfs_period_us; 8176 8177 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8178 do_div(cfs_period_us, NSEC_PER_USEC); 8179 8180 return cfs_period_us; 8181 } 8182 8183 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 8184 { 8185 return tg_get_cfs_quota(cgroup_tg(cgrp)); 8186 } 8187 8188 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 8189 s64 cfs_quota_us) 8190 { 8191 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 8192 } 8193 8194 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 8195 { 8196 return tg_get_cfs_period(cgroup_tg(cgrp)); 8197 } 8198 8199 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 8200 u64 cfs_period_us) 8201 { 8202 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 8203 } 8204 8205 struct cfs_schedulable_data { 8206 struct task_group *tg; 8207 u64 period, quota; 8208 }; 8209 8210 /* 8211 * normalize group quota/period to be quota/max_period 8212 * note: units are usecs 8213 */ 8214 static u64 normalize_cfs_quota(struct task_group *tg, 8215 struct cfs_schedulable_data *d) 8216 { 8217 u64 quota, period; 8218 8219 if (tg == d->tg) { 8220 period = d->period; 8221 quota = d->quota; 8222 } else { 8223 period = tg_get_cfs_period(tg); 8224 quota = tg_get_cfs_quota(tg); 8225 } 8226 8227 /* note: these should typically be equivalent */ 8228 if (quota == RUNTIME_INF || quota == -1) 8229 return RUNTIME_INF; 8230 8231 return to_ratio(period, quota); 8232 } 8233 8234 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8235 { 8236 struct cfs_schedulable_data *d = data; 8237 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8238 s64 quota = 0, parent_quota = -1; 8239 8240 if (!tg->parent) { 8241 quota = RUNTIME_INF; 8242 } else { 8243 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8244 8245 quota = normalize_cfs_quota(tg, d); 8246 parent_quota = parent_b->hierarchal_quota; 8247 8248 /* 8249 * ensure max(child_quota) <= parent_quota, inherit when no 8250 * limit is set 8251 */ 8252 if (quota == RUNTIME_INF) 8253 quota = parent_quota; 8254 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8255 return -EINVAL; 8256 } 8257 cfs_b->hierarchal_quota = quota; 8258 8259 return 0; 8260 } 8261 8262 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8263 { 8264 int ret; 8265 struct cfs_schedulable_data data = { 8266 .tg = tg, 8267 .period = period, 8268 .quota = quota, 8269 }; 8270 8271 if (quota != RUNTIME_INF) { 8272 do_div(data.period, NSEC_PER_USEC); 8273 do_div(data.quota, NSEC_PER_USEC); 8274 } 8275 8276 rcu_read_lock(); 8277 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8278 rcu_read_unlock(); 8279 8280 return ret; 8281 } 8282 8283 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 8284 struct cgroup_map_cb *cb) 8285 { 8286 struct task_group *tg = cgroup_tg(cgrp); 8287 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8288 8289 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 8290 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 8291 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 8292 8293 return 0; 8294 } 8295 #endif /* CONFIG_CFS_BANDWIDTH */ 8296 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8297 8298 #ifdef CONFIG_RT_GROUP_SCHED 8299 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 8300 s64 val) 8301 { 8302 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 8303 } 8304 8305 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 8306 { 8307 return sched_group_rt_runtime(cgroup_tg(cgrp)); 8308 } 8309 8310 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 8311 u64 rt_period_us) 8312 { 8313 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 8314 } 8315 8316 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 8317 { 8318 return sched_group_rt_period(cgroup_tg(cgrp)); 8319 } 8320 #endif /* CONFIG_RT_GROUP_SCHED */ 8321 8322 static struct cftype cpu_files[] = { 8323 #ifdef CONFIG_FAIR_GROUP_SCHED 8324 { 8325 .name = "shares", 8326 .read_u64 = cpu_shares_read_u64, 8327 .write_u64 = cpu_shares_write_u64, 8328 }, 8329 #endif 8330 #ifdef CONFIG_CFS_BANDWIDTH 8331 { 8332 .name = "cfs_quota_us", 8333 .read_s64 = cpu_cfs_quota_read_s64, 8334 .write_s64 = cpu_cfs_quota_write_s64, 8335 }, 8336 { 8337 .name = "cfs_period_us", 8338 .read_u64 = cpu_cfs_period_read_u64, 8339 .write_u64 = cpu_cfs_period_write_u64, 8340 }, 8341 { 8342 .name = "stat", 8343 .read_map = cpu_stats_show, 8344 }, 8345 #endif 8346 #ifdef CONFIG_RT_GROUP_SCHED 8347 { 8348 .name = "rt_runtime_us", 8349 .read_s64 = cpu_rt_runtime_read, 8350 .write_s64 = cpu_rt_runtime_write, 8351 }, 8352 { 8353 .name = "rt_period_us", 8354 .read_u64 = cpu_rt_period_read_uint, 8355 .write_u64 = cpu_rt_period_write_uint, 8356 }, 8357 #endif 8358 { } /* terminate */ 8359 }; 8360 8361 struct cgroup_subsys cpu_cgroup_subsys = { 8362 .name = "cpu", 8363 .create = cpu_cgroup_create, 8364 .destroy = cpu_cgroup_destroy, 8365 .can_attach = cpu_cgroup_can_attach, 8366 .attach = cpu_cgroup_attach, 8367 .exit = cpu_cgroup_exit, 8368 .subsys_id = cpu_cgroup_subsys_id, 8369 .base_cftypes = cpu_files, 8370 .early_init = 1, 8371 }; 8372 8373 #endif /* CONFIG_CGROUP_SCHED */ 8374 8375 #ifdef CONFIG_CGROUP_CPUACCT 8376 8377 /* 8378 * CPU accounting code for task groups. 8379 * 8380 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh 8381 * (balbir@in.ibm.com). 8382 */ 8383 8384 /* create a new cpu accounting group */ 8385 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp) 8386 { 8387 struct cpuacct *ca; 8388 8389 if (!cgrp->parent) 8390 return &root_cpuacct.css; 8391 8392 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 8393 if (!ca) 8394 goto out; 8395 8396 ca->cpuusage = alloc_percpu(u64); 8397 if (!ca->cpuusage) 8398 goto out_free_ca; 8399 8400 ca->cpustat = alloc_percpu(struct kernel_cpustat); 8401 if (!ca->cpustat) 8402 goto out_free_cpuusage; 8403 8404 return &ca->css; 8405 8406 out_free_cpuusage: 8407 free_percpu(ca->cpuusage); 8408 out_free_ca: 8409 kfree(ca); 8410 out: 8411 return ERR_PTR(-ENOMEM); 8412 } 8413 8414 /* destroy an existing cpu accounting group */ 8415 static void cpuacct_destroy(struct cgroup *cgrp) 8416 { 8417 struct cpuacct *ca = cgroup_ca(cgrp); 8418 8419 free_percpu(ca->cpustat); 8420 free_percpu(ca->cpuusage); 8421 kfree(ca); 8422 } 8423 8424 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) 8425 { 8426 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8427 u64 data; 8428 8429 #ifndef CONFIG_64BIT 8430 /* 8431 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 8432 */ 8433 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8434 data = *cpuusage; 8435 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8436 #else 8437 data = *cpuusage; 8438 #endif 8439 8440 return data; 8441 } 8442 8443 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) 8444 { 8445 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8446 8447 #ifndef CONFIG_64BIT 8448 /* 8449 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 8450 */ 8451 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8452 *cpuusage = val; 8453 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8454 #else 8455 *cpuusage = val; 8456 #endif 8457 } 8458 8459 /* return total cpu usage (in nanoseconds) of a group */ 8460 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 8461 { 8462 struct cpuacct *ca = cgroup_ca(cgrp); 8463 u64 totalcpuusage = 0; 8464 int i; 8465 8466 for_each_present_cpu(i) 8467 totalcpuusage += cpuacct_cpuusage_read(ca, i); 8468 8469 return totalcpuusage; 8470 } 8471 8472 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, 8473 u64 reset) 8474 { 8475 struct cpuacct *ca = cgroup_ca(cgrp); 8476 int err = 0; 8477 int i; 8478 8479 if (reset) { 8480 err = -EINVAL; 8481 goto out; 8482 } 8483 8484 for_each_present_cpu(i) 8485 cpuacct_cpuusage_write(ca, i, 0); 8486 8487 out: 8488 return err; 8489 } 8490 8491 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, 8492 struct seq_file *m) 8493 { 8494 struct cpuacct *ca = cgroup_ca(cgroup); 8495 u64 percpu; 8496 int i; 8497 8498 for_each_present_cpu(i) { 8499 percpu = cpuacct_cpuusage_read(ca, i); 8500 seq_printf(m, "%llu ", (unsigned long long) percpu); 8501 } 8502 seq_printf(m, "\n"); 8503 return 0; 8504 } 8505 8506 static const char *cpuacct_stat_desc[] = { 8507 [CPUACCT_STAT_USER] = "user", 8508 [CPUACCT_STAT_SYSTEM] = "system", 8509 }; 8510 8511 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, 8512 struct cgroup_map_cb *cb) 8513 { 8514 struct cpuacct *ca = cgroup_ca(cgrp); 8515 int cpu; 8516 s64 val = 0; 8517 8518 for_each_online_cpu(cpu) { 8519 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8520 val += kcpustat->cpustat[CPUTIME_USER]; 8521 val += kcpustat->cpustat[CPUTIME_NICE]; 8522 } 8523 val = cputime64_to_clock_t(val); 8524 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); 8525 8526 val = 0; 8527 for_each_online_cpu(cpu) { 8528 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8529 val += kcpustat->cpustat[CPUTIME_SYSTEM]; 8530 val += kcpustat->cpustat[CPUTIME_IRQ]; 8531 val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; 8532 } 8533 8534 val = cputime64_to_clock_t(val); 8535 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); 8536 8537 return 0; 8538 } 8539 8540 static struct cftype files[] = { 8541 { 8542 .name = "usage", 8543 .read_u64 = cpuusage_read, 8544 .write_u64 = cpuusage_write, 8545 }, 8546 { 8547 .name = "usage_percpu", 8548 .read_seq_string = cpuacct_percpu_seq_read, 8549 }, 8550 { 8551 .name = "stat", 8552 .read_map = cpuacct_stats_show, 8553 }, 8554 { } /* terminate */ 8555 }; 8556 8557 /* 8558 * charge this task's execution time to its accounting group. 8559 * 8560 * called with rq->lock held. 8561 */ 8562 void cpuacct_charge(struct task_struct *tsk, u64 cputime) 8563 { 8564 struct cpuacct *ca; 8565 int cpu; 8566 8567 if (unlikely(!cpuacct_subsys.active)) 8568 return; 8569 8570 cpu = task_cpu(tsk); 8571 8572 rcu_read_lock(); 8573 8574 ca = task_ca(tsk); 8575 8576 for (; ca; ca = parent_ca(ca)) { 8577 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8578 *cpuusage += cputime; 8579 } 8580 8581 rcu_read_unlock(); 8582 } 8583 8584 struct cgroup_subsys cpuacct_subsys = { 8585 .name = "cpuacct", 8586 .create = cpuacct_create, 8587 .destroy = cpuacct_destroy, 8588 .subsys_id = cpuacct_subsys_id, 8589 .base_cftypes = files, 8590 }; 8591 #endif /* CONFIG_CGROUP_CPUACCT */ 8592