1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include "sched.h" 9 10 #include <linux/nospec.h> 11 12 #include <linux/kcov.h> 13 14 #include <asm/switch_to.h> 15 #include <asm/tlb.h> 16 17 #include "../workqueue_internal.h" 18 #include "../smpboot.h" 19 20 #include "pelt.h" 21 22 #define CREATE_TRACE_POINTS 23 #include <trace/events/sched.h> 24 25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 26 27 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 28 /* 29 * Debugging: various feature bits 30 * 31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 32 * sysctl_sched_features, defined in sched.h, to allow constants propagation 33 * at compile time and compiler optimization based on features default. 34 */ 35 #define SCHED_FEAT(name, enabled) \ 36 (1UL << __SCHED_FEAT_##name) * enabled | 37 const_debug unsigned int sysctl_sched_features = 38 #include "features.h" 39 0; 40 #undef SCHED_FEAT 41 #endif 42 43 /* 44 * Number of tasks to iterate in a single balance run. 45 * Limited because this is done with IRQs disabled. 46 */ 47 const_debug unsigned int sysctl_sched_nr_migrate = 32; 48 49 /* 50 * period over which we measure -rt task CPU usage in us. 51 * default: 1s 52 */ 53 unsigned int sysctl_sched_rt_period = 1000000; 54 55 __read_mostly int scheduler_running; 56 57 /* 58 * part of the period that we allow rt tasks to run in us. 59 * default: 0.95s 60 */ 61 int sysctl_sched_rt_runtime = 950000; 62 63 /* 64 * __task_rq_lock - lock the rq @p resides on. 65 */ 66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 67 __acquires(rq->lock) 68 { 69 struct rq *rq; 70 71 lockdep_assert_held(&p->pi_lock); 72 73 for (;;) { 74 rq = task_rq(p); 75 raw_spin_lock(&rq->lock); 76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 77 rq_pin_lock(rq, rf); 78 return rq; 79 } 80 raw_spin_unlock(&rq->lock); 81 82 while (unlikely(task_on_rq_migrating(p))) 83 cpu_relax(); 84 } 85 } 86 87 /* 88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 89 */ 90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 91 __acquires(p->pi_lock) 92 __acquires(rq->lock) 93 { 94 struct rq *rq; 95 96 for (;;) { 97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 98 rq = task_rq(p); 99 raw_spin_lock(&rq->lock); 100 /* 101 * move_queued_task() task_rq_lock() 102 * 103 * ACQUIRE (rq->lock) 104 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 106 * [S] ->cpu = new_cpu [L] task_rq() 107 * [L] ->on_rq 108 * RELEASE (rq->lock) 109 * 110 * If we observe the old CPU in task_rq_lock(), the acquire of 111 * the old rq->lock will fully serialize against the stores. 112 * 113 * If we observe the new CPU in task_rq_lock(), the address 114 * dependency headed by '[L] rq = task_rq()' and the acquire 115 * will pair with the WMB to ensure we then also see migrating. 116 */ 117 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 118 rq_pin_lock(rq, rf); 119 return rq; 120 } 121 raw_spin_unlock(&rq->lock); 122 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 123 124 while (unlikely(task_on_rq_migrating(p))) 125 cpu_relax(); 126 } 127 } 128 129 /* 130 * RQ-clock updating methods: 131 */ 132 133 static void update_rq_clock_task(struct rq *rq, s64 delta) 134 { 135 /* 136 * In theory, the compile should just see 0 here, and optimize out the call 137 * to sched_rt_avg_update. But I don't trust it... 138 */ 139 s64 __maybe_unused steal = 0, irq_delta = 0; 140 141 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 142 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 143 144 /* 145 * Since irq_time is only updated on {soft,}irq_exit, we might run into 146 * this case when a previous update_rq_clock() happened inside a 147 * {soft,}irq region. 148 * 149 * When this happens, we stop ->clock_task and only update the 150 * prev_irq_time stamp to account for the part that fit, so that a next 151 * update will consume the rest. This ensures ->clock_task is 152 * monotonic. 153 * 154 * It does however cause some slight miss-attribution of {soft,}irq 155 * time, a more accurate solution would be to update the irq_time using 156 * the current rq->clock timestamp, except that would require using 157 * atomic ops. 158 */ 159 if (irq_delta > delta) 160 irq_delta = delta; 161 162 rq->prev_irq_time += irq_delta; 163 delta -= irq_delta; 164 #endif 165 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 166 if (static_key_false((¶virt_steal_rq_enabled))) { 167 steal = paravirt_steal_clock(cpu_of(rq)); 168 steal -= rq->prev_steal_time_rq; 169 170 if (unlikely(steal > delta)) 171 steal = delta; 172 173 rq->prev_steal_time_rq += steal; 174 delta -= steal; 175 } 176 #endif 177 178 rq->clock_task += delta; 179 180 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 181 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 182 update_irq_load_avg(rq, irq_delta + steal); 183 #endif 184 update_rq_clock_pelt(rq, delta); 185 } 186 187 void update_rq_clock(struct rq *rq) 188 { 189 s64 delta; 190 191 lockdep_assert_held(&rq->lock); 192 193 if (rq->clock_update_flags & RQCF_ACT_SKIP) 194 return; 195 196 #ifdef CONFIG_SCHED_DEBUG 197 if (sched_feat(WARN_DOUBLE_CLOCK)) 198 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 199 rq->clock_update_flags |= RQCF_UPDATED; 200 #endif 201 202 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 203 if (delta < 0) 204 return; 205 rq->clock += delta; 206 update_rq_clock_task(rq, delta); 207 } 208 209 210 #ifdef CONFIG_SCHED_HRTICK 211 /* 212 * Use HR-timers to deliver accurate preemption points. 213 */ 214 215 static void hrtick_clear(struct rq *rq) 216 { 217 if (hrtimer_active(&rq->hrtick_timer)) 218 hrtimer_cancel(&rq->hrtick_timer); 219 } 220 221 /* 222 * High-resolution timer tick. 223 * Runs from hardirq context with interrupts disabled. 224 */ 225 static enum hrtimer_restart hrtick(struct hrtimer *timer) 226 { 227 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 228 struct rq_flags rf; 229 230 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 231 232 rq_lock(rq, &rf); 233 update_rq_clock(rq); 234 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 235 rq_unlock(rq, &rf); 236 237 return HRTIMER_NORESTART; 238 } 239 240 #ifdef CONFIG_SMP 241 242 static void __hrtick_restart(struct rq *rq) 243 { 244 struct hrtimer *timer = &rq->hrtick_timer; 245 246 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 247 } 248 249 /* 250 * called from hardirq (IPI) context 251 */ 252 static void __hrtick_start(void *arg) 253 { 254 struct rq *rq = arg; 255 struct rq_flags rf; 256 257 rq_lock(rq, &rf); 258 __hrtick_restart(rq); 259 rq->hrtick_csd_pending = 0; 260 rq_unlock(rq, &rf); 261 } 262 263 /* 264 * Called to set the hrtick timer state. 265 * 266 * called with rq->lock held and irqs disabled 267 */ 268 void hrtick_start(struct rq *rq, u64 delay) 269 { 270 struct hrtimer *timer = &rq->hrtick_timer; 271 ktime_t time; 272 s64 delta; 273 274 /* 275 * Don't schedule slices shorter than 10000ns, that just 276 * doesn't make sense and can cause timer DoS. 277 */ 278 delta = max_t(s64, delay, 10000LL); 279 time = ktime_add_ns(timer->base->get_time(), delta); 280 281 hrtimer_set_expires(timer, time); 282 283 if (rq == this_rq()) { 284 __hrtick_restart(rq); 285 } else if (!rq->hrtick_csd_pending) { 286 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 287 rq->hrtick_csd_pending = 1; 288 } 289 } 290 291 #else 292 /* 293 * Called to set the hrtick timer state. 294 * 295 * called with rq->lock held and irqs disabled 296 */ 297 void hrtick_start(struct rq *rq, u64 delay) 298 { 299 /* 300 * Don't schedule slices shorter than 10000ns, that just 301 * doesn't make sense. Rely on vruntime for fairness. 302 */ 303 delay = max_t(u64, delay, 10000LL); 304 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 305 HRTIMER_MODE_REL_PINNED); 306 } 307 #endif /* CONFIG_SMP */ 308 309 static void hrtick_rq_init(struct rq *rq) 310 { 311 #ifdef CONFIG_SMP 312 rq->hrtick_csd_pending = 0; 313 314 rq->hrtick_csd.flags = 0; 315 rq->hrtick_csd.func = __hrtick_start; 316 rq->hrtick_csd.info = rq; 317 #endif 318 319 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 320 rq->hrtick_timer.function = hrtick; 321 } 322 #else /* CONFIG_SCHED_HRTICK */ 323 static inline void hrtick_clear(struct rq *rq) 324 { 325 } 326 327 static inline void hrtick_rq_init(struct rq *rq) 328 { 329 } 330 #endif /* CONFIG_SCHED_HRTICK */ 331 332 /* 333 * cmpxchg based fetch_or, macro so it works for different integer types 334 */ 335 #define fetch_or(ptr, mask) \ 336 ({ \ 337 typeof(ptr) _ptr = (ptr); \ 338 typeof(mask) _mask = (mask); \ 339 typeof(*_ptr) _old, _val = *_ptr; \ 340 \ 341 for (;;) { \ 342 _old = cmpxchg(_ptr, _val, _val | _mask); \ 343 if (_old == _val) \ 344 break; \ 345 _val = _old; \ 346 } \ 347 _old; \ 348 }) 349 350 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 351 /* 352 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 353 * this avoids any races wrt polling state changes and thereby avoids 354 * spurious IPIs. 355 */ 356 static bool set_nr_and_not_polling(struct task_struct *p) 357 { 358 struct thread_info *ti = task_thread_info(p); 359 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 360 } 361 362 /* 363 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 364 * 365 * If this returns true, then the idle task promises to call 366 * sched_ttwu_pending() and reschedule soon. 367 */ 368 static bool set_nr_if_polling(struct task_struct *p) 369 { 370 struct thread_info *ti = task_thread_info(p); 371 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 372 373 for (;;) { 374 if (!(val & _TIF_POLLING_NRFLAG)) 375 return false; 376 if (val & _TIF_NEED_RESCHED) 377 return true; 378 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 379 if (old == val) 380 break; 381 val = old; 382 } 383 return true; 384 } 385 386 #else 387 static bool set_nr_and_not_polling(struct task_struct *p) 388 { 389 set_tsk_need_resched(p); 390 return true; 391 } 392 393 #ifdef CONFIG_SMP 394 static bool set_nr_if_polling(struct task_struct *p) 395 { 396 return false; 397 } 398 #endif 399 #endif 400 401 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 402 { 403 struct wake_q_node *node = &task->wake_q; 404 405 /* 406 * Atomically grab the task, if ->wake_q is !nil already it means 407 * its already queued (either by us or someone else) and will get the 408 * wakeup due to that. 409 * 410 * In order to ensure that a pending wakeup will observe our pending 411 * state, even in the failed case, an explicit smp_mb() must be used. 412 */ 413 smp_mb__before_atomic(); 414 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 415 return false; 416 417 /* 418 * The head is context local, there can be no concurrency. 419 */ 420 *head->lastp = node; 421 head->lastp = &node->next; 422 return true; 423 } 424 425 /** 426 * wake_q_add() - queue a wakeup for 'later' waking. 427 * @head: the wake_q_head to add @task to 428 * @task: the task to queue for 'later' wakeup 429 * 430 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 431 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 432 * instantly. 433 * 434 * This function must be used as-if it were wake_up_process(); IOW the task 435 * must be ready to be woken at this location. 436 */ 437 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 438 { 439 if (__wake_q_add(head, task)) 440 get_task_struct(task); 441 } 442 443 /** 444 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 445 * @head: the wake_q_head to add @task to 446 * @task: the task to queue for 'later' wakeup 447 * 448 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 449 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 450 * instantly. 451 * 452 * This function must be used as-if it were wake_up_process(); IOW the task 453 * must be ready to be woken at this location. 454 * 455 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 456 * that already hold reference to @task can call the 'safe' version and trust 457 * wake_q to do the right thing depending whether or not the @task is already 458 * queued for wakeup. 459 */ 460 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 461 { 462 if (!__wake_q_add(head, task)) 463 put_task_struct(task); 464 } 465 466 void wake_up_q(struct wake_q_head *head) 467 { 468 struct wake_q_node *node = head->first; 469 470 while (node != WAKE_Q_TAIL) { 471 struct task_struct *task; 472 473 task = container_of(node, struct task_struct, wake_q); 474 BUG_ON(!task); 475 /* Task can safely be re-inserted now: */ 476 node = node->next; 477 task->wake_q.next = NULL; 478 479 /* 480 * wake_up_process() executes a full barrier, which pairs with 481 * the queueing in wake_q_add() so as not to miss wakeups. 482 */ 483 wake_up_process(task); 484 put_task_struct(task); 485 } 486 } 487 488 /* 489 * resched_curr - mark rq's current task 'to be rescheduled now'. 490 * 491 * On UP this means the setting of the need_resched flag, on SMP it 492 * might also involve a cross-CPU call to trigger the scheduler on 493 * the target CPU. 494 */ 495 void resched_curr(struct rq *rq) 496 { 497 struct task_struct *curr = rq->curr; 498 int cpu; 499 500 lockdep_assert_held(&rq->lock); 501 502 if (test_tsk_need_resched(curr)) 503 return; 504 505 cpu = cpu_of(rq); 506 507 if (cpu == smp_processor_id()) { 508 set_tsk_need_resched(curr); 509 set_preempt_need_resched(); 510 return; 511 } 512 513 if (set_nr_and_not_polling(curr)) 514 smp_send_reschedule(cpu); 515 else 516 trace_sched_wake_idle_without_ipi(cpu); 517 } 518 519 void resched_cpu(int cpu) 520 { 521 struct rq *rq = cpu_rq(cpu); 522 unsigned long flags; 523 524 raw_spin_lock_irqsave(&rq->lock, flags); 525 if (cpu_online(cpu) || cpu == smp_processor_id()) 526 resched_curr(rq); 527 raw_spin_unlock_irqrestore(&rq->lock, flags); 528 } 529 530 #ifdef CONFIG_SMP 531 #ifdef CONFIG_NO_HZ_COMMON 532 /* 533 * In the semi idle case, use the nearest busy CPU for migrating timers 534 * from an idle CPU. This is good for power-savings. 535 * 536 * We don't do similar optimization for completely idle system, as 537 * selecting an idle CPU will add more delays to the timers than intended 538 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 539 */ 540 int get_nohz_timer_target(void) 541 { 542 int i, cpu = smp_processor_id(); 543 struct sched_domain *sd; 544 545 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 546 return cpu; 547 548 rcu_read_lock(); 549 for_each_domain(cpu, sd) { 550 for_each_cpu(i, sched_domain_span(sd)) { 551 if (cpu == i) 552 continue; 553 554 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 555 cpu = i; 556 goto unlock; 557 } 558 } 559 } 560 561 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 562 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 563 unlock: 564 rcu_read_unlock(); 565 return cpu; 566 } 567 568 /* 569 * When add_timer_on() enqueues a timer into the timer wheel of an 570 * idle CPU then this timer might expire before the next timer event 571 * which is scheduled to wake up that CPU. In case of a completely 572 * idle system the next event might even be infinite time into the 573 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 574 * leaves the inner idle loop so the newly added timer is taken into 575 * account when the CPU goes back to idle and evaluates the timer 576 * wheel for the next timer event. 577 */ 578 static void wake_up_idle_cpu(int cpu) 579 { 580 struct rq *rq = cpu_rq(cpu); 581 582 if (cpu == smp_processor_id()) 583 return; 584 585 if (set_nr_and_not_polling(rq->idle)) 586 smp_send_reschedule(cpu); 587 else 588 trace_sched_wake_idle_without_ipi(cpu); 589 } 590 591 static bool wake_up_full_nohz_cpu(int cpu) 592 { 593 /* 594 * We just need the target to call irq_exit() and re-evaluate 595 * the next tick. The nohz full kick at least implies that. 596 * If needed we can still optimize that later with an 597 * empty IRQ. 598 */ 599 if (cpu_is_offline(cpu)) 600 return true; /* Don't try to wake offline CPUs. */ 601 if (tick_nohz_full_cpu(cpu)) { 602 if (cpu != smp_processor_id() || 603 tick_nohz_tick_stopped()) 604 tick_nohz_full_kick_cpu(cpu); 605 return true; 606 } 607 608 return false; 609 } 610 611 /* 612 * Wake up the specified CPU. If the CPU is going offline, it is the 613 * caller's responsibility to deal with the lost wakeup, for example, 614 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 615 */ 616 void wake_up_nohz_cpu(int cpu) 617 { 618 if (!wake_up_full_nohz_cpu(cpu)) 619 wake_up_idle_cpu(cpu); 620 } 621 622 static inline bool got_nohz_idle_kick(void) 623 { 624 int cpu = smp_processor_id(); 625 626 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 627 return false; 628 629 if (idle_cpu(cpu) && !need_resched()) 630 return true; 631 632 /* 633 * We can't run Idle Load Balance on this CPU for this time so we 634 * cancel it and clear NOHZ_BALANCE_KICK 635 */ 636 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 637 return false; 638 } 639 640 #else /* CONFIG_NO_HZ_COMMON */ 641 642 static inline bool got_nohz_idle_kick(void) 643 { 644 return false; 645 } 646 647 #endif /* CONFIG_NO_HZ_COMMON */ 648 649 #ifdef CONFIG_NO_HZ_FULL 650 bool sched_can_stop_tick(struct rq *rq) 651 { 652 int fifo_nr_running; 653 654 /* Deadline tasks, even if single, need the tick */ 655 if (rq->dl.dl_nr_running) 656 return false; 657 658 /* 659 * If there are more than one RR tasks, we need the tick to effect the 660 * actual RR behaviour. 661 */ 662 if (rq->rt.rr_nr_running) { 663 if (rq->rt.rr_nr_running == 1) 664 return true; 665 else 666 return false; 667 } 668 669 /* 670 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 671 * forced preemption between FIFO tasks. 672 */ 673 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 674 if (fifo_nr_running) 675 return true; 676 677 /* 678 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 679 * if there's more than one we need the tick for involuntary 680 * preemption. 681 */ 682 if (rq->nr_running > 1) 683 return false; 684 685 return true; 686 } 687 #endif /* CONFIG_NO_HZ_FULL */ 688 #endif /* CONFIG_SMP */ 689 690 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 691 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 692 /* 693 * Iterate task_group tree rooted at *from, calling @down when first entering a 694 * node and @up when leaving it for the final time. 695 * 696 * Caller must hold rcu_lock or sufficient equivalent. 697 */ 698 int walk_tg_tree_from(struct task_group *from, 699 tg_visitor down, tg_visitor up, void *data) 700 { 701 struct task_group *parent, *child; 702 int ret; 703 704 parent = from; 705 706 down: 707 ret = (*down)(parent, data); 708 if (ret) 709 goto out; 710 list_for_each_entry_rcu(child, &parent->children, siblings) { 711 parent = child; 712 goto down; 713 714 up: 715 continue; 716 } 717 ret = (*up)(parent, data); 718 if (ret || parent == from) 719 goto out; 720 721 child = parent; 722 parent = parent->parent; 723 if (parent) 724 goto up; 725 out: 726 return ret; 727 } 728 729 int tg_nop(struct task_group *tg, void *data) 730 { 731 return 0; 732 } 733 #endif 734 735 static void set_load_weight(struct task_struct *p, bool update_load) 736 { 737 int prio = p->static_prio - MAX_RT_PRIO; 738 struct load_weight *load = &p->se.load; 739 740 /* 741 * SCHED_IDLE tasks get minimal weight: 742 */ 743 if (task_has_idle_policy(p)) { 744 load->weight = scale_load(WEIGHT_IDLEPRIO); 745 load->inv_weight = WMULT_IDLEPRIO; 746 p->se.runnable_weight = load->weight; 747 return; 748 } 749 750 /* 751 * SCHED_OTHER tasks have to update their load when changing their 752 * weight 753 */ 754 if (update_load && p->sched_class == &fair_sched_class) { 755 reweight_task(p, prio); 756 } else { 757 load->weight = scale_load(sched_prio_to_weight[prio]); 758 load->inv_weight = sched_prio_to_wmult[prio]; 759 p->se.runnable_weight = load->weight; 760 } 761 } 762 763 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 764 { 765 if (!(flags & ENQUEUE_NOCLOCK)) 766 update_rq_clock(rq); 767 768 if (!(flags & ENQUEUE_RESTORE)) { 769 sched_info_queued(rq, p); 770 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 771 } 772 773 p->sched_class->enqueue_task(rq, p, flags); 774 } 775 776 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 777 { 778 if (!(flags & DEQUEUE_NOCLOCK)) 779 update_rq_clock(rq); 780 781 if (!(flags & DEQUEUE_SAVE)) { 782 sched_info_dequeued(rq, p); 783 psi_dequeue(p, flags & DEQUEUE_SLEEP); 784 } 785 786 p->sched_class->dequeue_task(rq, p, flags); 787 } 788 789 void activate_task(struct rq *rq, struct task_struct *p, int flags) 790 { 791 if (task_contributes_to_load(p)) 792 rq->nr_uninterruptible--; 793 794 enqueue_task(rq, p, flags); 795 } 796 797 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 798 { 799 if (task_contributes_to_load(p)) 800 rq->nr_uninterruptible++; 801 802 dequeue_task(rq, p, flags); 803 } 804 805 /* 806 * __normal_prio - return the priority that is based on the static prio 807 */ 808 static inline int __normal_prio(struct task_struct *p) 809 { 810 return p->static_prio; 811 } 812 813 /* 814 * Calculate the expected normal priority: i.e. priority 815 * without taking RT-inheritance into account. Might be 816 * boosted by interactivity modifiers. Changes upon fork, 817 * setprio syscalls, and whenever the interactivity 818 * estimator recalculates. 819 */ 820 static inline int normal_prio(struct task_struct *p) 821 { 822 int prio; 823 824 if (task_has_dl_policy(p)) 825 prio = MAX_DL_PRIO-1; 826 else if (task_has_rt_policy(p)) 827 prio = MAX_RT_PRIO-1 - p->rt_priority; 828 else 829 prio = __normal_prio(p); 830 return prio; 831 } 832 833 /* 834 * Calculate the current priority, i.e. the priority 835 * taken into account by the scheduler. This value might 836 * be boosted by RT tasks, or might be boosted by 837 * interactivity modifiers. Will be RT if the task got 838 * RT-boosted. If not then it returns p->normal_prio. 839 */ 840 static int effective_prio(struct task_struct *p) 841 { 842 p->normal_prio = normal_prio(p); 843 /* 844 * If we are RT tasks or we were boosted to RT priority, 845 * keep the priority unchanged. Otherwise, update priority 846 * to the normal priority: 847 */ 848 if (!rt_prio(p->prio)) 849 return p->normal_prio; 850 return p->prio; 851 } 852 853 /** 854 * task_curr - is this task currently executing on a CPU? 855 * @p: the task in question. 856 * 857 * Return: 1 if the task is currently executing. 0 otherwise. 858 */ 859 inline int task_curr(const struct task_struct *p) 860 { 861 return cpu_curr(task_cpu(p)) == p; 862 } 863 864 /* 865 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 866 * use the balance_callback list if you want balancing. 867 * 868 * this means any call to check_class_changed() must be followed by a call to 869 * balance_callback(). 870 */ 871 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 872 const struct sched_class *prev_class, 873 int oldprio) 874 { 875 if (prev_class != p->sched_class) { 876 if (prev_class->switched_from) 877 prev_class->switched_from(rq, p); 878 879 p->sched_class->switched_to(rq, p); 880 } else if (oldprio != p->prio || dl_task(p)) 881 p->sched_class->prio_changed(rq, p, oldprio); 882 } 883 884 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 885 { 886 const struct sched_class *class; 887 888 if (p->sched_class == rq->curr->sched_class) { 889 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 890 } else { 891 for_each_class(class) { 892 if (class == rq->curr->sched_class) 893 break; 894 if (class == p->sched_class) { 895 resched_curr(rq); 896 break; 897 } 898 } 899 } 900 901 /* 902 * A queue event has occurred, and we're going to schedule. In 903 * this case, we can save a useless back to back clock update. 904 */ 905 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 906 rq_clock_skip_update(rq); 907 } 908 909 #ifdef CONFIG_SMP 910 911 static inline bool is_per_cpu_kthread(struct task_struct *p) 912 { 913 if (!(p->flags & PF_KTHREAD)) 914 return false; 915 916 if (p->nr_cpus_allowed != 1) 917 return false; 918 919 return true; 920 } 921 922 /* 923 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see 924 * __set_cpus_allowed_ptr() and select_fallback_rq(). 925 */ 926 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 927 { 928 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 929 return false; 930 931 if (is_per_cpu_kthread(p)) 932 return cpu_online(cpu); 933 934 return cpu_active(cpu); 935 } 936 937 /* 938 * This is how migration works: 939 * 940 * 1) we invoke migration_cpu_stop() on the target CPU using 941 * stop_one_cpu(). 942 * 2) stopper starts to run (implicitly forcing the migrated thread 943 * off the CPU) 944 * 3) it checks whether the migrated task is still in the wrong runqueue. 945 * 4) if it's in the wrong runqueue then the migration thread removes 946 * it and puts it into the right queue. 947 * 5) stopper completes and stop_one_cpu() returns and the migration 948 * is done. 949 */ 950 951 /* 952 * move_queued_task - move a queued task to new rq. 953 * 954 * Returns (locked) new rq. Old rq's lock is released. 955 */ 956 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 957 struct task_struct *p, int new_cpu) 958 { 959 lockdep_assert_held(&rq->lock); 960 961 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 962 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 963 set_task_cpu(p, new_cpu); 964 rq_unlock(rq, rf); 965 966 rq = cpu_rq(new_cpu); 967 968 rq_lock(rq, rf); 969 BUG_ON(task_cpu(p) != new_cpu); 970 enqueue_task(rq, p, 0); 971 p->on_rq = TASK_ON_RQ_QUEUED; 972 check_preempt_curr(rq, p, 0); 973 974 return rq; 975 } 976 977 struct migration_arg { 978 struct task_struct *task; 979 int dest_cpu; 980 }; 981 982 /* 983 * Move (not current) task off this CPU, onto the destination CPU. We're doing 984 * this because either it can't run here any more (set_cpus_allowed() 985 * away from this CPU, or CPU going down), or because we're 986 * attempting to rebalance this task on exec (sched_exec). 987 * 988 * So we race with normal scheduler movements, but that's OK, as long 989 * as the task is no longer on this CPU. 990 */ 991 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 992 struct task_struct *p, int dest_cpu) 993 { 994 /* Affinity changed (again). */ 995 if (!is_cpu_allowed(p, dest_cpu)) 996 return rq; 997 998 update_rq_clock(rq); 999 rq = move_queued_task(rq, rf, p, dest_cpu); 1000 1001 return rq; 1002 } 1003 1004 /* 1005 * migration_cpu_stop - this will be executed by a highprio stopper thread 1006 * and performs thread migration by bumping thread off CPU then 1007 * 'pushing' onto another runqueue. 1008 */ 1009 static int migration_cpu_stop(void *data) 1010 { 1011 struct migration_arg *arg = data; 1012 struct task_struct *p = arg->task; 1013 struct rq *rq = this_rq(); 1014 struct rq_flags rf; 1015 1016 /* 1017 * The original target CPU might have gone down and we might 1018 * be on another CPU but it doesn't matter. 1019 */ 1020 local_irq_disable(); 1021 /* 1022 * We need to explicitly wake pending tasks before running 1023 * __migrate_task() such that we will not miss enforcing cpus_allowed 1024 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1025 */ 1026 sched_ttwu_pending(); 1027 1028 raw_spin_lock(&p->pi_lock); 1029 rq_lock(rq, &rf); 1030 /* 1031 * If task_rq(p) != rq, it cannot be migrated here, because we're 1032 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1033 * we're holding p->pi_lock. 1034 */ 1035 if (task_rq(p) == rq) { 1036 if (task_on_rq_queued(p)) 1037 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1038 else 1039 p->wake_cpu = arg->dest_cpu; 1040 } 1041 rq_unlock(rq, &rf); 1042 raw_spin_unlock(&p->pi_lock); 1043 1044 local_irq_enable(); 1045 return 0; 1046 } 1047 1048 /* 1049 * sched_class::set_cpus_allowed must do the below, but is not required to 1050 * actually call this function. 1051 */ 1052 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1053 { 1054 cpumask_copy(&p->cpus_allowed, new_mask); 1055 p->nr_cpus_allowed = cpumask_weight(new_mask); 1056 } 1057 1058 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1059 { 1060 struct rq *rq = task_rq(p); 1061 bool queued, running; 1062 1063 lockdep_assert_held(&p->pi_lock); 1064 1065 queued = task_on_rq_queued(p); 1066 running = task_current(rq, p); 1067 1068 if (queued) { 1069 /* 1070 * Because __kthread_bind() calls this on blocked tasks without 1071 * holding rq->lock. 1072 */ 1073 lockdep_assert_held(&rq->lock); 1074 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1075 } 1076 if (running) 1077 put_prev_task(rq, p); 1078 1079 p->sched_class->set_cpus_allowed(p, new_mask); 1080 1081 if (queued) 1082 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1083 if (running) 1084 set_curr_task(rq, p); 1085 } 1086 1087 /* 1088 * Change a given task's CPU affinity. Migrate the thread to a 1089 * proper CPU and schedule it away if the CPU it's executing on 1090 * is removed from the allowed bitmask. 1091 * 1092 * NOTE: the caller must have a valid reference to the task, the 1093 * task must not exit() & deallocate itself prematurely. The 1094 * call is not atomic; no spinlocks may be held. 1095 */ 1096 static int __set_cpus_allowed_ptr(struct task_struct *p, 1097 const struct cpumask *new_mask, bool check) 1098 { 1099 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1100 unsigned int dest_cpu; 1101 struct rq_flags rf; 1102 struct rq *rq; 1103 int ret = 0; 1104 1105 rq = task_rq_lock(p, &rf); 1106 update_rq_clock(rq); 1107 1108 if (p->flags & PF_KTHREAD) { 1109 /* 1110 * Kernel threads are allowed on online && !active CPUs 1111 */ 1112 cpu_valid_mask = cpu_online_mask; 1113 } 1114 1115 /* 1116 * Must re-check here, to close a race against __kthread_bind(), 1117 * sched_setaffinity() is not guaranteed to observe the flag. 1118 */ 1119 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1120 ret = -EINVAL; 1121 goto out; 1122 } 1123 1124 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1125 goto out; 1126 1127 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1128 ret = -EINVAL; 1129 goto out; 1130 } 1131 1132 do_set_cpus_allowed(p, new_mask); 1133 1134 if (p->flags & PF_KTHREAD) { 1135 /* 1136 * For kernel threads that do indeed end up on online && 1137 * !active we want to ensure they are strict per-CPU threads. 1138 */ 1139 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1140 !cpumask_intersects(new_mask, cpu_active_mask) && 1141 p->nr_cpus_allowed != 1); 1142 } 1143 1144 /* Can the task run on the task's current CPU? If so, we're done */ 1145 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1146 goto out; 1147 1148 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1149 if (task_running(rq, p) || p->state == TASK_WAKING) { 1150 struct migration_arg arg = { p, dest_cpu }; 1151 /* Need help from migration thread: drop lock and wait. */ 1152 task_rq_unlock(rq, p, &rf); 1153 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1154 tlb_migrate_finish(p->mm); 1155 return 0; 1156 } else if (task_on_rq_queued(p)) { 1157 /* 1158 * OK, since we're going to drop the lock immediately 1159 * afterwards anyway. 1160 */ 1161 rq = move_queued_task(rq, &rf, p, dest_cpu); 1162 } 1163 out: 1164 task_rq_unlock(rq, p, &rf); 1165 1166 return ret; 1167 } 1168 1169 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1170 { 1171 return __set_cpus_allowed_ptr(p, new_mask, false); 1172 } 1173 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1174 1175 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1176 { 1177 #ifdef CONFIG_SCHED_DEBUG 1178 /* 1179 * We should never call set_task_cpu() on a blocked task, 1180 * ttwu() will sort out the placement. 1181 */ 1182 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1183 !p->on_rq); 1184 1185 /* 1186 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1187 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1188 * time relying on p->on_rq. 1189 */ 1190 WARN_ON_ONCE(p->state == TASK_RUNNING && 1191 p->sched_class == &fair_sched_class && 1192 (p->on_rq && !task_on_rq_migrating(p))); 1193 1194 #ifdef CONFIG_LOCKDEP 1195 /* 1196 * The caller should hold either p->pi_lock or rq->lock, when changing 1197 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1198 * 1199 * sched_move_task() holds both and thus holding either pins the cgroup, 1200 * see task_group(). 1201 * 1202 * Furthermore, all task_rq users should acquire both locks, see 1203 * task_rq_lock(). 1204 */ 1205 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1206 lockdep_is_held(&task_rq(p)->lock))); 1207 #endif 1208 /* 1209 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1210 */ 1211 WARN_ON_ONCE(!cpu_online(new_cpu)); 1212 #endif 1213 1214 trace_sched_migrate_task(p, new_cpu); 1215 1216 if (task_cpu(p) != new_cpu) { 1217 if (p->sched_class->migrate_task_rq) 1218 p->sched_class->migrate_task_rq(p, new_cpu); 1219 p->se.nr_migrations++; 1220 rseq_migrate(p); 1221 perf_event_task_migrate(p); 1222 } 1223 1224 __set_task_cpu(p, new_cpu); 1225 } 1226 1227 #ifdef CONFIG_NUMA_BALANCING 1228 static void __migrate_swap_task(struct task_struct *p, int cpu) 1229 { 1230 if (task_on_rq_queued(p)) { 1231 struct rq *src_rq, *dst_rq; 1232 struct rq_flags srf, drf; 1233 1234 src_rq = task_rq(p); 1235 dst_rq = cpu_rq(cpu); 1236 1237 rq_pin_lock(src_rq, &srf); 1238 rq_pin_lock(dst_rq, &drf); 1239 1240 p->on_rq = TASK_ON_RQ_MIGRATING; 1241 deactivate_task(src_rq, p, 0); 1242 set_task_cpu(p, cpu); 1243 activate_task(dst_rq, p, 0); 1244 p->on_rq = TASK_ON_RQ_QUEUED; 1245 check_preempt_curr(dst_rq, p, 0); 1246 1247 rq_unpin_lock(dst_rq, &drf); 1248 rq_unpin_lock(src_rq, &srf); 1249 1250 } else { 1251 /* 1252 * Task isn't running anymore; make it appear like we migrated 1253 * it before it went to sleep. This means on wakeup we make the 1254 * previous CPU our target instead of where it really is. 1255 */ 1256 p->wake_cpu = cpu; 1257 } 1258 } 1259 1260 struct migration_swap_arg { 1261 struct task_struct *src_task, *dst_task; 1262 int src_cpu, dst_cpu; 1263 }; 1264 1265 static int migrate_swap_stop(void *data) 1266 { 1267 struct migration_swap_arg *arg = data; 1268 struct rq *src_rq, *dst_rq; 1269 int ret = -EAGAIN; 1270 1271 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1272 return -EAGAIN; 1273 1274 src_rq = cpu_rq(arg->src_cpu); 1275 dst_rq = cpu_rq(arg->dst_cpu); 1276 1277 double_raw_lock(&arg->src_task->pi_lock, 1278 &arg->dst_task->pi_lock); 1279 double_rq_lock(src_rq, dst_rq); 1280 1281 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1282 goto unlock; 1283 1284 if (task_cpu(arg->src_task) != arg->src_cpu) 1285 goto unlock; 1286 1287 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1288 goto unlock; 1289 1290 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1291 goto unlock; 1292 1293 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1294 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1295 1296 ret = 0; 1297 1298 unlock: 1299 double_rq_unlock(src_rq, dst_rq); 1300 raw_spin_unlock(&arg->dst_task->pi_lock); 1301 raw_spin_unlock(&arg->src_task->pi_lock); 1302 1303 return ret; 1304 } 1305 1306 /* 1307 * Cross migrate two tasks 1308 */ 1309 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1310 int target_cpu, int curr_cpu) 1311 { 1312 struct migration_swap_arg arg; 1313 int ret = -EINVAL; 1314 1315 arg = (struct migration_swap_arg){ 1316 .src_task = cur, 1317 .src_cpu = curr_cpu, 1318 .dst_task = p, 1319 .dst_cpu = target_cpu, 1320 }; 1321 1322 if (arg.src_cpu == arg.dst_cpu) 1323 goto out; 1324 1325 /* 1326 * These three tests are all lockless; this is OK since all of them 1327 * will be re-checked with proper locks held further down the line. 1328 */ 1329 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1330 goto out; 1331 1332 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1333 goto out; 1334 1335 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1336 goto out; 1337 1338 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1339 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1340 1341 out: 1342 return ret; 1343 } 1344 #endif /* CONFIG_NUMA_BALANCING */ 1345 1346 /* 1347 * wait_task_inactive - wait for a thread to unschedule. 1348 * 1349 * If @match_state is nonzero, it's the @p->state value just checked and 1350 * not expected to change. If it changes, i.e. @p might have woken up, 1351 * then return zero. When we succeed in waiting for @p to be off its CPU, 1352 * we return a positive number (its total switch count). If a second call 1353 * a short while later returns the same number, the caller can be sure that 1354 * @p has remained unscheduled the whole time. 1355 * 1356 * The caller must ensure that the task *will* unschedule sometime soon, 1357 * else this function might spin for a *long* time. This function can't 1358 * be called with interrupts off, or it may introduce deadlock with 1359 * smp_call_function() if an IPI is sent by the same process we are 1360 * waiting to become inactive. 1361 */ 1362 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1363 { 1364 int running, queued; 1365 struct rq_flags rf; 1366 unsigned long ncsw; 1367 struct rq *rq; 1368 1369 for (;;) { 1370 /* 1371 * We do the initial early heuristics without holding 1372 * any task-queue locks at all. We'll only try to get 1373 * the runqueue lock when things look like they will 1374 * work out! 1375 */ 1376 rq = task_rq(p); 1377 1378 /* 1379 * If the task is actively running on another CPU 1380 * still, just relax and busy-wait without holding 1381 * any locks. 1382 * 1383 * NOTE! Since we don't hold any locks, it's not 1384 * even sure that "rq" stays as the right runqueue! 1385 * But we don't care, since "task_running()" will 1386 * return false if the runqueue has changed and p 1387 * is actually now running somewhere else! 1388 */ 1389 while (task_running(rq, p)) { 1390 if (match_state && unlikely(p->state != match_state)) 1391 return 0; 1392 cpu_relax(); 1393 } 1394 1395 /* 1396 * Ok, time to look more closely! We need the rq 1397 * lock now, to be *sure*. If we're wrong, we'll 1398 * just go back and repeat. 1399 */ 1400 rq = task_rq_lock(p, &rf); 1401 trace_sched_wait_task(p); 1402 running = task_running(rq, p); 1403 queued = task_on_rq_queued(p); 1404 ncsw = 0; 1405 if (!match_state || p->state == match_state) 1406 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1407 task_rq_unlock(rq, p, &rf); 1408 1409 /* 1410 * If it changed from the expected state, bail out now. 1411 */ 1412 if (unlikely(!ncsw)) 1413 break; 1414 1415 /* 1416 * Was it really running after all now that we 1417 * checked with the proper locks actually held? 1418 * 1419 * Oops. Go back and try again.. 1420 */ 1421 if (unlikely(running)) { 1422 cpu_relax(); 1423 continue; 1424 } 1425 1426 /* 1427 * It's not enough that it's not actively running, 1428 * it must be off the runqueue _entirely_, and not 1429 * preempted! 1430 * 1431 * So if it was still runnable (but just not actively 1432 * running right now), it's preempted, and we should 1433 * yield - it could be a while. 1434 */ 1435 if (unlikely(queued)) { 1436 ktime_t to = NSEC_PER_SEC / HZ; 1437 1438 set_current_state(TASK_UNINTERRUPTIBLE); 1439 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1440 continue; 1441 } 1442 1443 /* 1444 * Ahh, all good. It wasn't running, and it wasn't 1445 * runnable, which means that it will never become 1446 * running in the future either. We're all done! 1447 */ 1448 break; 1449 } 1450 1451 return ncsw; 1452 } 1453 1454 /*** 1455 * kick_process - kick a running thread to enter/exit the kernel 1456 * @p: the to-be-kicked thread 1457 * 1458 * Cause a process which is running on another CPU to enter 1459 * kernel-mode, without any delay. (to get signals handled.) 1460 * 1461 * NOTE: this function doesn't have to take the runqueue lock, 1462 * because all it wants to ensure is that the remote task enters 1463 * the kernel. If the IPI races and the task has been migrated 1464 * to another CPU then no harm is done and the purpose has been 1465 * achieved as well. 1466 */ 1467 void kick_process(struct task_struct *p) 1468 { 1469 int cpu; 1470 1471 preempt_disable(); 1472 cpu = task_cpu(p); 1473 if ((cpu != smp_processor_id()) && task_curr(p)) 1474 smp_send_reschedule(cpu); 1475 preempt_enable(); 1476 } 1477 EXPORT_SYMBOL_GPL(kick_process); 1478 1479 /* 1480 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1481 * 1482 * A few notes on cpu_active vs cpu_online: 1483 * 1484 * - cpu_active must be a subset of cpu_online 1485 * 1486 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1487 * see __set_cpus_allowed_ptr(). At this point the newly online 1488 * CPU isn't yet part of the sched domains, and balancing will not 1489 * see it. 1490 * 1491 * - on CPU-down we clear cpu_active() to mask the sched domains and 1492 * avoid the load balancer to place new tasks on the to be removed 1493 * CPU. Existing tasks will remain running there and will be taken 1494 * off. 1495 * 1496 * This means that fallback selection must not select !active CPUs. 1497 * And can assume that any active CPU must be online. Conversely 1498 * select_task_rq() below may allow selection of !active CPUs in order 1499 * to satisfy the above rules. 1500 */ 1501 static int select_fallback_rq(int cpu, struct task_struct *p) 1502 { 1503 int nid = cpu_to_node(cpu); 1504 const struct cpumask *nodemask = NULL; 1505 enum { cpuset, possible, fail } state = cpuset; 1506 int dest_cpu; 1507 1508 /* 1509 * If the node that the CPU is on has been offlined, cpu_to_node() 1510 * will return -1. There is no CPU on the node, and we should 1511 * select the CPU on the other node. 1512 */ 1513 if (nid != -1) { 1514 nodemask = cpumask_of_node(nid); 1515 1516 /* Look for allowed, online CPU in same node. */ 1517 for_each_cpu(dest_cpu, nodemask) { 1518 if (!cpu_active(dest_cpu)) 1519 continue; 1520 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1521 return dest_cpu; 1522 } 1523 } 1524 1525 for (;;) { 1526 /* Any allowed, online CPU? */ 1527 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1528 if (!is_cpu_allowed(p, dest_cpu)) 1529 continue; 1530 1531 goto out; 1532 } 1533 1534 /* No more Mr. Nice Guy. */ 1535 switch (state) { 1536 case cpuset: 1537 if (IS_ENABLED(CONFIG_CPUSETS)) { 1538 cpuset_cpus_allowed_fallback(p); 1539 state = possible; 1540 break; 1541 } 1542 /* Fall-through */ 1543 case possible: 1544 do_set_cpus_allowed(p, cpu_possible_mask); 1545 state = fail; 1546 break; 1547 1548 case fail: 1549 BUG(); 1550 break; 1551 } 1552 } 1553 1554 out: 1555 if (state != cpuset) { 1556 /* 1557 * Don't tell them about moving exiting tasks or 1558 * kernel threads (both mm NULL), since they never 1559 * leave kernel. 1560 */ 1561 if (p->mm && printk_ratelimit()) { 1562 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1563 task_pid_nr(p), p->comm, cpu); 1564 } 1565 } 1566 1567 return dest_cpu; 1568 } 1569 1570 /* 1571 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1572 */ 1573 static inline 1574 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1575 { 1576 lockdep_assert_held(&p->pi_lock); 1577 1578 if (p->nr_cpus_allowed > 1) 1579 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1580 else 1581 cpu = cpumask_any(&p->cpus_allowed); 1582 1583 /* 1584 * In order not to call set_task_cpu() on a blocking task we need 1585 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1586 * CPU. 1587 * 1588 * Since this is common to all placement strategies, this lives here. 1589 * 1590 * [ this allows ->select_task() to simply return task_cpu(p) and 1591 * not worry about this generic constraint ] 1592 */ 1593 if (unlikely(!is_cpu_allowed(p, cpu))) 1594 cpu = select_fallback_rq(task_cpu(p), p); 1595 1596 return cpu; 1597 } 1598 1599 static void update_avg(u64 *avg, u64 sample) 1600 { 1601 s64 diff = sample - *avg; 1602 *avg += diff >> 3; 1603 } 1604 1605 void sched_set_stop_task(int cpu, struct task_struct *stop) 1606 { 1607 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1608 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1609 1610 if (stop) { 1611 /* 1612 * Make it appear like a SCHED_FIFO task, its something 1613 * userspace knows about and won't get confused about. 1614 * 1615 * Also, it will make PI more or less work without too 1616 * much confusion -- but then, stop work should not 1617 * rely on PI working anyway. 1618 */ 1619 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1620 1621 stop->sched_class = &stop_sched_class; 1622 } 1623 1624 cpu_rq(cpu)->stop = stop; 1625 1626 if (old_stop) { 1627 /* 1628 * Reset it back to a normal scheduling class so that 1629 * it can die in pieces. 1630 */ 1631 old_stop->sched_class = &rt_sched_class; 1632 } 1633 } 1634 1635 #else 1636 1637 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1638 const struct cpumask *new_mask, bool check) 1639 { 1640 return set_cpus_allowed_ptr(p, new_mask); 1641 } 1642 1643 #endif /* CONFIG_SMP */ 1644 1645 static void 1646 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1647 { 1648 struct rq *rq; 1649 1650 if (!schedstat_enabled()) 1651 return; 1652 1653 rq = this_rq(); 1654 1655 #ifdef CONFIG_SMP 1656 if (cpu == rq->cpu) { 1657 __schedstat_inc(rq->ttwu_local); 1658 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1659 } else { 1660 struct sched_domain *sd; 1661 1662 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1663 rcu_read_lock(); 1664 for_each_domain(rq->cpu, sd) { 1665 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1666 __schedstat_inc(sd->ttwu_wake_remote); 1667 break; 1668 } 1669 } 1670 rcu_read_unlock(); 1671 } 1672 1673 if (wake_flags & WF_MIGRATED) 1674 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1675 #endif /* CONFIG_SMP */ 1676 1677 __schedstat_inc(rq->ttwu_count); 1678 __schedstat_inc(p->se.statistics.nr_wakeups); 1679 1680 if (wake_flags & WF_SYNC) 1681 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1682 } 1683 1684 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1685 { 1686 activate_task(rq, p, en_flags); 1687 p->on_rq = TASK_ON_RQ_QUEUED; 1688 1689 /* If a worker is waking up, notify the workqueue: */ 1690 if (p->flags & PF_WQ_WORKER) 1691 wq_worker_waking_up(p, cpu_of(rq)); 1692 } 1693 1694 /* 1695 * Mark the task runnable and perform wakeup-preemption. 1696 */ 1697 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1698 struct rq_flags *rf) 1699 { 1700 check_preempt_curr(rq, p, wake_flags); 1701 p->state = TASK_RUNNING; 1702 trace_sched_wakeup(p); 1703 1704 #ifdef CONFIG_SMP 1705 if (p->sched_class->task_woken) { 1706 /* 1707 * Our task @p is fully woken up and running; so its safe to 1708 * drop the rq->lock, hereafter rq is only used for statistics. 1709 */ 1710 rq_unpin_lock(rq, rf); 1711 p->sched_class->task_woken(rq, p); 1712 rq_repin_lock(rq, rf); 1713 } 1714 1715 if (rq->idle_stamp) { 1716 u64 delta = rq_clock(rq) - rq->idle_stamp; 1717 u64 max = 2*rq->max_idle_balance_cost; 1718 1719 update_avg(&rq->avg_idle, delta); 1720 1721 if (rq->avg_idle > max) 1722 rq->avg_idle = max; 1723 1724 rq->idle_stamp = 0; 1725 } 1726 #endif 1727 } 1728 1729 static void 1730 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1731 struct rq_flags *rf) 1732 { 1733 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1734 1735 lockdep_assert_held(&rq->lock); 1736 1737 #ifdef CONFIG_SMP 1738 if (p->sched_contributes_to_load) 1739 rq->nr_uninterruptible--; 1740 1741 if (wake_flags & WF_MIGRATED) 1742 en_flags |= ENQUEUE_MIGRATED; 1743 #endif 1744 1745 ttwu_activate(rq, p, en_flags); 1746 ttwu_do_wakeup(rq, p, wake_flags, rf); 1747 } 1748 1749 /* 1750 * Called in case the task @p isn't fully descheduled from its runqueue, 1751 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1752 * since all we need to do is flip p->state to TASK_RUNNING, since 1753 * the task is still ->on_rq. 1754 */ 1755 static int ttwu_remote(struct task_struct *p, int wake_flags) 1756 { 1757 struct rq_flags rf; 1758 struct rq *rq; 1759 int ret = 0; 1760 1761 rq = __task_rq_lock(p, &rf); 1762 if (task_on_rq_queued(p)) { 1763 /* check_preempt_curr() may use rq clock */ 1764 update_rq_clock(rq); 1765 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1766 ret = 1; 1767 } 1768 __task_rq_unlock(rq, &rf); 1769 1770 return ret; 1771 } 1772 1773 #ifdef CONFIG_SMP 1774 void sched_ttwu_pending(void) 1775 { 1776 struct rq *rq = this_rq(); 1777 struct llist_node *llist = llist_del_all(&rq->wake_list); 1778 struct task_struct *p, *t; 1779 struct rq_flags rf; 1780 1781 if (!llist) 1782 return; 1783 1784 rq_lock_irqsave(rq, &rf); 1785 update_rq_clock(rq); 1786 1787 llist_for_each_entry_safe(p, t, llist, wake_entry) 1788 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1789 1790 rq_unlock_irqrestore(rq, &rf); 1791 } 1792 1793 void scheduler_ipi(void) 1794 { 1795 /* 1796 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1797 * TIF_NEED_RESCHED remotely (for the first time) will also send 1798 * this IPI. 1799 */ 1800 preempt_fold_need_resched(); 1801 1802 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1803 return; 1804 1805 /* 1806 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1807 * traditionally all their work was done from the interrupt return 1808 * path. Now that we actually do some work, we need to make sure 1809 * we do call them. 1810 * 1811 * Some archs already do call them, luckily irq_enter/exit nest 1812 * properly. 1813 * 1814 * Arguably we should visit all archs and update all handlers, 1815 * however a fair share of IPIs are still resched only so this would 1816 * somewhat pessimize the simple resched case. 1817 */ 1818 irq_enter(); 1819 sched_ttwu_pending(); 1820 1821 /* 1822 * Check if someone kicked us for doing the nohz idle load balance. 1823 */ 1824 if (unlikely(got_nohz_idle_kick())) { 1825 this_rq()->idle_balance = 1; 1826 raise_softirq_irqoff(SCHED_SOFTIRQ); 1827 } 1828 irq_exit(); 1829 } 1830 1831 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1832 { 1833 struct rq *rq = cpu_rq(cpu); 1834 1835 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1836 1837 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1838 if (!set_nr_if_polling(rq->idle)) 1839 smp_send_reschedule(cpu); 1840 else 1841 trace_sched_wake_idle_without_ipi(cpu); 1842 } 1843 } 1844 1845 void wake_up_if_idle(int cpu) 1846 { 1847 struct rq *rq = cpu_rq(cpu); 1848 struct rq_flags rf; 1849 1850 rcu_read_lock(); 1851 1852 if (!is_idle_task(rcu_dereference(rq->curr))) 1853 goto out; 1854 1855 if (set_nr_if_polling(rq->idle)) { 1856 trace_sched_wake_idle_without_ipi(cpu); 1857 } else { 1858 rq_lock_irqsave(rq, &rf); 1859 if (is_idle_task(rq->curr)) 1860 smp_send_reschedule(cpu); 1861 /* Else CPU is not idle, do nothing here: */ 1862 rq_unlock_irqrestore(rq, &rf); 1863 } 1864 1865 out: 1866 rcu_read_unlock(); 1867 } 1868 1869 bool cpus_share_cache(int this_cpu, int that_cpu) 1870 { 1871 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1872 } 1873 #endif /* CONFIG_SMP */ 1874 1875 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1876 { 1877 struct rq *rq = cpu_rq(cpu); 1878 struct rq_flags rf; 1879 1880 #if defined(CONFIG_SMP) 1881 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1882 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1883 ttwu_queue_remote(p, cpu, wake_flags); 1884 return; 1885 } 1886 #endif 1887 1888 rq_lock(rq, &rf); 1889 update_rq_clock(rq); 1890 ttwu_do_activate(rq, p, wake_flags, &rf); 1891 rq_unlock(rq, &rf); 1892 } 1893 1894 /* 1895 * Notes on Program-Order guarantees on SMP systems. 1896 * 1897 * MIGRATION 1898 * 1899 * The basic program-order guarantee on SMP systems is that when a task [t] 1900 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1901 * execution on its new CPU [c1]. 1902 * 1903 * For migration (of runnable tasks) this is provided by the following means: 1904 * 1905 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1906 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1907 * rq(c1)->lock (if not at the same time, then in that order). 1908 * C) LOCK of the rq(c1)->lock scheduling in task 1909 * 1910 * Release/acquire chaining guarantees that B happens after A and C after B. 1911 * Note: the CPU doing B need not be c0 or c1 1912 * 1913 * Example: 1914 * 1915 * CPU0 CPU1 CPU2 1916 * 1917 * LOCK rq(0)->lock 1918 * sched-out X 1919 * sched-in Y 1920 * UNLOCK rq(0)->lock 1921 * 1922 * LOCK rq(0)->lock // orders against CPU0 1923 * dequeue X 1924 * UNLOCK rq(0)->lock 1925 * 1926 * LOCK rq(1)->lock 1927 * enqueue X 1928 * UNLOCK rq(1)->lock 1929 * 1930 * LOCK rq(1)->lock // orders against CPU2 1931 * sched-out Z 1932 * sched-in X 1933 * UNLOCK rq(1)->lock 1934 * 1935 * 1936 * BLOCKING -- aka. SLEEP + WAKEUP 1937 * 1938 * For blocking we (obviously) need to provide the same guarantee as for 1939 * migration. However the means are completely different as there is no lock 1940 * chain to provide order. Instead we do: 1941 * 1942 * 1) smp_store_release(X->on_cpu, 0) 1943 * 2) smp_cond_load_acquire(!X->on_cpu) 1944 * 1945 * Example: 1946 * 1947 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1948 * 1949 * LOCK rq(0)->lock LOCK X->pi_lock 1950 * dequeue X 1951 * sched-out X 1952 * smp_store_release(X->on_cpu, 0); 1953 * 1954 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1955 * X->state = WAKING 1956 * set_task_cpu(X,2) 1957 * 1958 * LOCK rq(2)->lock 1959 * enqueue X 1960 * X->state = RUNNING 1961 * UNLOCK rq(2)->lock 1962 * 1963 * LOCK rq(2)->lock // orders against CPU1 1964 * sched-out Z 1965 * sched-in X 1966 * UNLOCK rq(2)->lock 1967 * 1968 * UNLOCK X->pi_lock 1969 * UNLOCK rq(0)->lock 1970 * 1971 * 1972 * However, for wakeups there is a second guarantee we must provide, namely we 1973 * must ensure that CONDITION=1 done by the caller can not be reordered with 1974 * accesses to the task state; see try_to_wake_up() and set_current_state(). 1975 */ 1976 1977 /** 1978 * try_to_wake_up - wake up a thread 1979 * @p: the thread to be awakened 1980 * @state: the mask of task states that can be woken 1981 * @wake_flags: wake modifier flags (WF_*) 1982 * 1983 * If (@state & @p->state) @p->state = TASK_RUNNING. 1984 * 1985 * If the task was not queued/runnable, also place it back on a runqueue. 1986 * 1987 * Atomic against schedule() which would dequeue a task, also see 1988 * set_current_state(). 1989 * 1990 * This function executes a full memory barrier before accessing the task 1991 * state; see set_current_state(). 1992 * 1993 * Return: %true if @p->state changes (an actual wakeup was done), 1994 * %false otherwise. 1995 */ 1996 static int 1997 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1998 { 1999 unsigned long flags; 2000 int cpu, success = 0; 2001 2002 /* 2003 * If we are going to wake up a thread waiting for CONDITION we 2004 * need to ensure that CONDITION=1 done by the caller can not be 2005 * reordered with p->state check below. This pairs with mb() in 2006 * set_current_state() the waiting thread does. 2007 */ 2008 raw_spin_lock_irqsave(&p->pi_lock, flags); 2009 smp_mb__after_spinlock(); 2010 if (!(p->state & state)) 2011 goto out; 2012 2013 trace_sched_waking(p); 2014 2015 /* We're going to change ->state: */ 2016 success = 1; 2017 cpu = task_cpu(p); 2018 2019 /* 2020 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2021 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2022 * in smp_cond_load_acquire() below. 2023 * 2024 * sched_ttwu_pending() try_to_wake_up() 2025 * STORE p->on_rq = 1 LOAD p->state 2026 * UNLOCK rq->lock 2027 * 2028 * __schedule() (switch to task 'p') 2029 * LOCK rq->lock smp_rmb(); 2030 * smp_mb__after_spinlock(); 2031 * UNLOCK rq->lock 2032 * 2033 * [task p] 2034 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2035 * 2036 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2037 * __schedule(). See the comment for smp_mb__after_spinlock(). 2038 */ 2039 smp_rmb(); 2040 if (p->on_rq && ttwu_remote(p, wake_flags)) 2041 goto stat; 2042 2043 #ifdef CONFIG_SMP 2044 /* 2045 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2046 * possible to, falsely, observe p->on_cpu == 0. 2047 * 2048 * One must be running (->on_cpu == 1) in order to remove oneself 2049 * from the runqueue. 2050 * 2051 * __schedule() (switch to task 'p') try_to_wake_up() 2052 * STORE p->on_cpu = 1 LOAD p->on_rq 2053 * UNLOCK rq->lock 2054 * 2055 * __schedule() (put 'p' to sleep) 2056 * LOCK rq->lock smp_rmb(); 2057 * smp_mb__after_spinlock(); 2058 * STORE p->on_rq = 0 LOAD p->on_cpu 2059 * 2060 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2061 * __schedule(). See the comment for smp_mb__after_spinlock(). 2062 */ 2063 smp_rmb(); 2064 2065 /* 2066 * If the owning (remote) CPU is still in the middle of schedule() with 2067 * this task as prev, wait until its done referencing the task. 2068 * 2069 * Pairs with the smp_store_release() in finish_task(). 2070 * 2071 * This ensures that tasks getting woken will be fully ordered against 2072 * their previous state and preserve Program Order. 2073 */ 2074 smp_cond_load_acquire(&p->on_cpu, !VAL); 2075 2076 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2077 p->state = TASK_WAKING; 2078 2079 if (p->in_iowait) { 2080 delayacct_blkio_end(p); 2081 atomic_dec(&task_rq(p)->nr_iowait); 2082 } 2083 2084 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2085 if (task_cpu(p) != cpu) { 2086 wake_flags |= WF_MIGRATED; 2087 psi_ttwu_dequeue(p); 2088 set_task_cpu(p, cpu); 2089 } 2090 2091 #else /* CONFIG_SMP */ 2092 2093 if (p->in_iowait) { 2094 delayacct_blkio_end(p); 2095 atomic_dec(&task_rq(p)->nr_iowait); 2096 } 2097 2098 #endif /* CONFIG_SMP */ 2099 2100 ttwu_queue(p, cpu, wake_flags); 2101 stat: 2102 ttwu_stat(p, cpu, wake_flags); 2103 out: 2104 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2105 2106 return success; 2107 } 2108 2109 /** 2110 * try_to_wake_up_local - try to wake up a local task with rq lock held 2111 * @p: the thread to be awakened 2112 * @rf: request-queue flags for pinning 2113 * 2114 * Put @p on the run-queue if it's not already there. The caller must 2115 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2116 * the current task. 2117 */ 2118 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2119 { 2120 struct rq *rq = task_rq(p); 2121 2122 if (WARN_ON_ONCE(rq != this_rq()) || 2123 WARN_ON_ONCE(p == current)) 2124 return; 2125 2126 lockdep_assert_held(&rq->lock); 2127 2128 if (!raw_spin_trylock(&p->pi_lock)) { 2129 /* 2130 * This is OK, because current is on_cpu, which avoids it being 2131 * picked for load-balance and preemption/IRQs are still 2132 * disabled avoiding further scheduler activity on it and we've 2133 * not yet picked a replacement task. 2134 */ 2135 rq_unlock(rq, rf); 2136 raw_spin_lock(&p->pi_lock); 2137 rq_relock(rq, rf); 2138 } 2139 2140 if (!(p->state & TASK_NORMAL)) 2141 goto out; 2142 2143 trace_sched_waking(p); 2144 2145 if (!task_on_rq_queued(p)) { 2146 if (p->in_iowait) { 2147 delayacct_blkio_end(p); 2148 atomic_dec(&rq->nr_iowait); 2149 } 2150 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2151 } 2152 2153 ttwu_do_wakeup(rq, p, 0, rf); 2154 ttwu_stat(p, smp_processor_id(), 0); 2155 out: 2156 raw_spin_unlock(&p->pi_lock); 2157 } 2158 2159 /** 2160 * wake_up_process - Wake up a specific process 2161 * @p: The process to be woken up. 2162 * 2163 * Attempt to wake up the nominated process and move it to the set of runnable 2164 * processes. 2165 * 2166 * Return: 1 if the process was woken up, 0 if it was already running. 2167 * 2168 * This function executes a full memory barrier before accessing the task state. 2169 */ 2170 int wake_up_process(struct task_struct *p) 2171 { 2172 return try_to_wake_up(p, TASK_NORMAL, 0); 2173 } 2174 EXPORT_SYMBOL(wake_up_process); 2175 2176 int wake_up_state(struct task_struct *p, unsigned int state) 2177 { 2178 return try_to_wake_up(p, state, 0); 2179 } 2180 2181 /* 2182 * Perform scheduler related setup for a newly forked process p. 2183 * p is forked by current. 2184 * 2185 * __sched_fork() is basic setup used by init_idle() too: 2186 */ 2187 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2188 { 2189 p->on_rq = 0; 2190 2191 p->se.on_rq = 0; 2192 p->se.exec_start = 0; 2193 p->se.sum_exec_runtime = 0; 2194 p->se.prev_sum_exec_runtime = 0; 2195 p->se.nr_migrations = 0; 2196 p->se.vruntime = 0; 2197 INIT_LIST_HEAD(&p->se.group_node); 2198 2199 #ifdef CONFIG_FAIR_GROUP_SCHED 2200 p->se.cfs_rq = NULL; 2201 #endif 2202 2203 #ifdef CONFIG_SCHEDSTATS 2204 /* Even if schedstat is disabled, there should not be garbage */ 2205 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2206 #endif 2207 2208 RB_CLEAR_NODE(&p->dl.rb_node); 2209 init_dl_task_timer(&p->dl); 2210 init_dl_inactive_task_timer(&p->dl); 2211 __dl_clear_params(p); 2212 2213 INIT_LIST_HEAD(&p->rt.run_list); 2214 p->rt.timeout = 0; 2215 p->rt.time_slice = sched_rr_timeslice; 2216 p->rt.on_rq = 0; 2217 p->rt.on_list = 0; 2218 2219 #ifdef CONFIG_PREEMPT_NOTIFIERS 2220 INIT_HLIST_HEAD(&p->preempt_notifiers); 2221 #endif 2222 2223 #ifdef CONFIG_COMPACTION 2224 p->capture_control = NULL; 2225 #endif 2226 init_numa_balancing(clone_flags, p); 2227 } 2228 2229 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2230 2231 #ifdef CONFIG_NUMA_BALANCING 2232 2233 void set_numabalancing_state(bool enabled) 2234 { 2235 if (enabled) 2236 static_branch_enable(&sched_numa_balancing); 2237 else 2238 static_branch_disable(&sched_numa_balancing); 2239 } 2240 2241 #ifdef CONFIG_PROC_SYSCTL 2242 int sysctl_numa_balancing(struct ctl_table *table, int write, 2243 void __user *buffer, size_t *lenp, loff_t *ppos) 2244 { 2245 struct ctl_table t; 2246 int err; 2247 int state = static_branch_likely(&sched_numa_balancing); 2248 2249 if (write && !capable(CAP_SYS_ADMIN)) 2250 return -EPERM; 2251 2252 t = *table; 2253 t.data = &state; 2254 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2255 if (err < 0) 2256 return err; 2257 if (write) 2258 set_numabalancing_state(state); 2259 return err; 2260 } 2261 #endif 2262 #endif 2263 2264 #ifdef CONFIG_SCHEDSTATS 2265 2266 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2267 static bool __initdata __sched_schedstats = false; 2268 2269 static void set_schedstats(bool enabled) 2270 { 2271 if (enabled) 2272 static_branch_enable(&sched_schedstats); 2273 else 2274 static_branch_disable(&sched_schedstats); 2275 } 2276 2277 void force_schedstat_enabled(void) 2278 { 2279 if (!schedstat_enabled()) { 2280 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2281 static_branch_enable(&sched_schedstats); 2282 } 2283 } 2284 2285 static int __init setup_schedstats(char *str) 2286 { 2287 int ret = 0; 2288 if (!str) 2289 goto out; 2290 2291 /* 2292 * This code is called before jump labels have been set up, so we can't 2293 * change the static branch directly just yet. Instead set a temporary 2294 * variable so init_schedstats() can do it later. 2295 */ 2296 if (!strcmp(str, "enable")) { 2297 __sched_schedstats = true; 2298 ret = 1; 2299 } else if (!strcmp(str, "disable")) { 2300 __sched_schedstats = false; 2301 ret = 1; 2302 } 2303 out: 2304 if (!ret) 2305 pr_warn("Unable to parse schedstats=\n"); 2306 2307 return ret; 2308 } 2309 __setup("schedstats=", setup_schedstats); 2310 2311 static void __init init_schedstats(void) 2312 { 2313 set_schedstats(__sched_schedstats); 2314 } 2315 2316 #ifdef CONFIG_PROC_SYSCTL 2317 int sysctl_schedstats(struct ctl_table *table, int write, 2318 void __user *buffer, size_t *lenp, loff_t *ppos) 2319 { 2320 struct ctl_table t; 2321 int err; 2322 int state = static_branch_likely(&sched_schedstats); 2323 2324 if (write && !capable(CAP_SYS_ADMIN)) 2325 return -EPERM; 2326 2327 t = *table; 2328 t.data = &state; 2329 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2330 if (err < 0) 2331 return err; 2332 if (write) 2333 set_schedstats(state); 2334 return err; 2335 } 2336 #endif /* CONFIG_PROC_SYSCTL */ 2337 #else /* !CONFIG_SCHEDSTATS */ 2338 static inline void init_schedstats(void) {} 2339 #endif /* CONFIG_SCHEDSTATS */ 2340 2341 /* 2342 * fork()/clone()-time setup: 2343 */ 2344 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2345 { 2346 unsigned long flags; 2347 2348 __sched_fork(clone_flags, p); 2349 /* 2350 * We mark the process as NEW here. This guarantees that 2351 * nobody will actually run it, and a signal or other external 2352 * event cannot wake it up and insert it on the runqueue either. 2353 */ 2354 p->state = TASK_NEW; 2355 2356 /* 2357 * Make sure we do not leak PI boosting priority to the child. 2358 */ 2359 p->prio = current->normal_prio; 2360 2361 /* 2362 * Revert to default priority/policy on fork if requested. 2363 */ 2364 if (unlikely(p->sched_reset_on_fork)) { 2365 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2366 p->policy = SCHED_NORMAL; 2367 p->static_prio = NICE_TO_PRIO(0); 2368 p->rt_priority = 0; 2369 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2370 p->static_prio = NICE_TO_PRIO(0); 2371 2372 p->prio = p->normal_prio = __normal_prio(p); 2373 set_load_weight(p, false); 2374 2375 /* 2376 * We don't need the reset flag anymore after the fork. It has 2377 * fulfilled its duty: 2378 */ 2379 p->sched_reset_on_fork = 0; 2380 } 2381 2382 if (dl_prio(p->prio)) 2383 return -EAGAIN; 2384 else if (rt_prio(p->prio)) 2385 p->sched_class = &rt_sched_class; 2386 else 2387 p->sched_class = &fair_sched_class; 2388 2389 init_entity_runnable_average(&p->se); 2390 2391 /* 2392 * The child is not yet in the pid-hash so no cgroup attach races, 2393 * and the cgroup is pinned to this child due to cgroup_fork() 2394 * is ran before sched_fork(). 2395 * 2396 * Silence PROVE_RCU. 2397 */ 2398 raw_spin_lock_irqsave(&p->pi_lock, flags); 2399 /* 2400 * We're setting the CPU for the first time, we don't migrate, 2401 * so use __set_task_cpu(). 2402 */ 2403 __set_task_cpu(p, smp_processor_id()); 2404 if (p->sched_class->task_fork) 2405 p->sched_class->task_fork(p); 2406 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2407 2408 #ifdef CONFIG_SCHED_INFO 2409 if (likely(sched_info_on())) 2410 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2411 #endif 2412 #if defined(CONFIG_SMP) 2413 p->on_cpu = 0; 2414 #endif 2415 init_task_preempt_count(p); 2416 #ifdef CONFIG_SMP 2417 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2418 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2419 #endif 2420 return 0; 2421 } 2422 2423 unsigned long to_ratio(u64 period, u64 runtime) 2424 { 2425 if (runtime == RUNTIME_INF) 2426 return BW_UNIT; 2427 2428 /* 2429 * Doing this here saves a lot of checks in all 2430 * the calling paths, and returning zero seems 2431 * safe for them anyway. 2432 */ 2433 if (period == 0) 2434 return 0; 2435 2436 return div64_u64(runtime << BW_SHIFT, period); 2437 } 2438 2439 /* 2440 * wake_up_new_task - wake up a newly created task for the first time. 2441 * 2442 * This function will do some initial scheduler statistics housekeeping 2443 * that must be done for every newly created context, then puts the task 2444 * on the runqueue and wakes it. 2445 */ 2446 void wake_up_new_task(struct task_struct *p) 2447 { 2448 struct rq_flags rf; 2449 struct rq *rq; 2450 2451 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2452 p->state = TASK_RUNNING; 2453 #ifdef CONFIG_SMP 2454 /* 2455 * Fork balancing, do it here and not earlier because: 2456 * - cpus_allowed can change in the fork path 2457 * - any previously selected CPU might disappear through hotplug 2458 * 2459 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2460 * as we're not fully set-up yet. 2461 */ 2462 p->recent_used_cpu = task_cpu(p); 2463 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2464 #endif 2465 rq = __task_rq_lock(p, &rf); 2466 update_rq_clock(rq); 2467 post_init_entity_util_avg(p); 2468 2469 activate_task(rq, p, ENQUEUE_NOCLOCK); 2470 p->on_rq = TASK_ON_RQ_QUEUED; 2471 trace_sched_wakeup_new(p); 2472 check_preempt_curr(rq, p, WF_FORK); 2473 #ifdef CONFIG_SMP 2474 if (p->sched_class->task_woken) { 2475 /* 2476 * Nothing relies on rq->lock after this, so its fine to 2477 * drop it. 2478 */ 2479 rq_unpin_lock(rq, &rf); 2480 p->sched_class->task_woken(rq, p); 2481 rq_repin_lock(rq, &rf); 2482 } 2483 #endif 2484 task_rq_unlock(rq, p, &rf); 2485 } 2486 2487 #ifdef CONFIG_PREEMPT_NOTIFIERS 2488 2489 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2490 2491 void preempt_notifier_inc(void) 2492 { 2493 static_branch_inc(&preempt_notifier_key); 2494 } 2495 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2496 2497 void preempt_notifier_dec(void) 2498 { 2499 static_branch_dec(&preempt_notifier_key); 2500 } 2501 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2502 2503 /** 2504 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2505 * @notifier: notifier struct to register 2506 */ 2507 void preempt_notifier_register(struct preempt_notifier *notifier) 2508 { 2509 if (!static_branch_unlikely(&preempt_notifier_key)) 2510 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2511 2512 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2513 } 2514 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2515 2516 /** 2517 * preempt_notifier_unregister - no longer interested in preemption notifications 2518 * @notifier: notifier struct to unregister 2519 * 2520 * This is *not* safe to call from within a preemption notifier. 2521 */ 2522 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2523 { 2524 hlist_del(¬ifier->link); 2525 } 2526 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2527 2528 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2529 { 2530 struct preempt_notifier *notifier; 2531 2532 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2533 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2534 } 2535 2536 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2537 { 2538 if (static_branch_unlikely(&preempt_notifier_key)) 2539 __fire_sched_in_preempt_notifiers(curr); 2540 } 2541 2542 static void 2543 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2544 struct task_struct *next) 2545 { 2546 struct preempt_notifier *notifier; 2547 2548 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2549 notifier->ops->sched_out(notifier, next); 2550 } 2551 2552 static __always_inline void 2553 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2554 struct task_struct *next) 2555 { 2556 if (static_branch_unlikely(&preempt_notifier_key)) 2557 __fire_sched_out_preempt_notifiers(curr, next); 2558 } 2559 2560 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2561 2562 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2563 { 2564 } 2565 2566 static inline void 2567 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2568 struct task_struct *next) 2569 { 2570 } 2571 2572 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2573 2574 static inline void prepare_task(struct task_struct *next) 2575 { 2576 #ifdef CONFIG_SMP 2577 /* 2578 * Claim the task as running, we do this before switching to it 2579 * such that any running task will have this set. 2580 */ 2581 next->on_cpu = 1; 2582 #endif 2583 } 2584 2585 static inline void finish_task(struct task_struct *prev) 2586 { 2587 #ifdef CONFIG_SMP 2588 /* 2589 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2590 * We must ensure this doesn't happen until the switch is completely 2591 * finished. 2592 * 2593 * In particular, the load of prev->state in finish_task_switch() must 2594 * happen before this. 2595 * 2596 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2597 */ 2598 smp_store_release(&prev->on_cpu, 0); 2599 #endif 2600 } 2601 2602 static inline void 2603 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2604 { 2605 /* 2606 * Since the runqueue lock will be released by the next 2607 * task (which is an invalid locking op but in the case 2608 * of the scheduler it's an obvious special-case), so we 2609 * do an early lockdep release here: 2610 */ 2611 rq_unpin_lock(rq, rf); 2612 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2613 #ifdef CONFIG_DEBUG_SPINLOCK 2614 /* this is a valid case when another task releases the spinlock */ 2615 rq->lock.owner = next; 2616 #endif 2617 } 2618 2619 static inline void finish_lock_switch(struct rq *rq) 2620 { 2621 /* 2622 * If we are tracking spinlock dependencies then we have to 2623 * fix up the runqueue lock - which gets 'carried over' from 2624 * prev into current: 2625 */ 2626 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2627 raw_spin_unlock_irq(&rq->lock); 2628 } 2629 2630 /* 2631 * NOP if the arch has not defined these: 2632 */ 2633 2634 #ifndef prepare_arch_switch 2635 # define prepare_arch_switch(next) do { } while (0) 2636 #endif 2637 2638 #ifndef finish_arch_post_lock_switch 2639 # define finish_arch_post_lock_switch() do { } while (0) 2640 #endif 2641 2642 /** 2643 * prepare_task_switch - prepare to switch tasks 2644 * @rq: the runqueue preparing to switch 2645 * @prev: the current task that is being switched out 2646 * @next: the task we are going to switch to. 2647 * 2648 * This is called with the rq lock held and interrupts off. It must 2649 * be paired with a subsequent finish_task_switch after the context 2650 * switch. 2651 * 2652 * prepare_task_switch sets up locking and calls architecture specific 2653 * hooks. 2654 */ 2655 static inline void 2656 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2657 struct task_struct *next) 2658 { 2659 kcov_prepare_switch(prev); 2660 sched_info_switch(rq, prev, next); 2661 perf_event_task_sched_out(prev, next); 2662 rseq_preempt(prev); 2663 fire_sched_out_preempt_notifiers(prev, next); 2664 prepare_task(next); 2665 prepare_arch_switch(next); 2666 } 2667 2668 /** 2669 * finish_task_switch - clean up after a task-switch 2670 * @prev: the thread we just switched away from. 2671 * 2672 * finish_task_switch must be called after the context switch, paired 2673 * with a prepare_task_switch call before the context switch. 2674 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2675 * and do any other architecture-specific cleanup actions. 2676 * 2677 * Note that we may have delayed dropping an mm in context_switch(). If 2678 * so, we finish that here outside of the runqueue lock. (Doing it 2679 * with the lock held can cause deadlocks; see schedule() for 2680 * details.) 2681 * 2682 * The context switch have flipped the stack from under us and restored the 2683 * local variables which were saved when this task called schedule() in the 2684 * past. prev == current is still correct but we need to recalculate this_rq 2685 * because prev may have moved to another CPU. 2686 */ 2687 static struct rq *finish_task_switch(struct task_struct *prev) 2688 __releases(rq->lock) 2689 { 2690 struct rq *rq = this_rq(); 2691 struct mm_struct *mm = rq->prev_mm; 2692 long prev_state; 2693 2694 /* 2695 * The previous task will have left us with a preempt_count of 2 2696 * because it left us after: 2697 * 2698 * schedule() 2699 * preempt_disable(); // 1 2700 * __schedule() 2701 * raw_spin_lock_irq(&rq->lock) // 2 2702 * 2703 * Also, see FORK_PREEMPT_COUNT. 2704 */ 2705 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2706 "corrupted preempt_count: %s/%d/0x%x\n", 2707 current->comm, current->pid, preempt_count())) 2708 preempt_count_set(FORK_PREEMPT_COUNT); 2709 2710 rq->prev_mm = NULL; 2711 2712 /* 2713 * A task struct has one reference for the use as "current". 2714 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2715 * schedule one last time. The schedule call will never return, and 2716 * the scheduled task must drop that reference. 2717 * 2718 * We must observe prev->state before clearing prev->on_cpu (in 2719 * finish_task), otherwise a concurrent wakeup can get prev 2720 * running on another CPU and we could rave with its RUNNING -> DEAD 2721 * transition, resulting in a double drop. 2722 */ 2723 prev_state = prev->state; 2724 vtime_task_switch(prev); 2725 perf_event_task_sched_in(prev, current); 2726 finish_task(prev); 2727 finish_lock_switch(rq); 2728 finish_arch_post_lock_switch(); 2729 kcov_finish_switch(current); 2730 2731 fire_sched_in_preempt_notifiers(current); 2732 /* 2733 * When switching through a kernel thread, the loop in 2734 * membarrier_{private,global}_expedited() may have observed that 2735 * kernel thread and not issued an IPI. It is therefore possible to 2736 * schedule between user->kernel->user threads without passing though 2737 * switch_mm(). Membarrier requires a barrier after storing to 2738 * rq->curr, before returning to userspace, so provide them here: 2739 * 2740 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2741 * provided by mmdrop(), 2742 * - a sync_core for SYNC_CORE. 2743 */ 2744 if (mm) { 2745 membarrier_mm_sync_core_before_usermode(mm); 2746 mmdrop(mm); 2747 } 2748 if (unlikely(prev_state == TASK_DEAD)) { 2749 if (prev->sched_class->task_dead) 2750 prev->sched_class->task_dead(prev); 2751 2752 /* 2753 * Remove function-return probe instances associated with this 2754 * task and put them back on the free list. 2755 */ 2756 kprobe_flush_task(prev); 2757 2758 /* Task is done with its stack. */ 2759 put_task_stack(prev); 2760 2761 put_task_struct(prev); 2762 } 2763 2764 tick_nohz_task_switch(); 2765 return rq; 2766 } 2767 2768 #ifdef CONFIG_SMP 2769 2770 /* rq->lock is NOT held, but preemption is disabled */ 2771 static void __balance_callback(struct rq *rq) 2772 { 2773 struct callback_head *head, *next; 2774 void (*func)(struct rq *rq); 2775 unsigned long flags; 2776 2777 raw_spin_lock_irqsave(&rq->lock, flags); 2778 head = rq->balance_callback; 2779 rq->balance_callback = NULL; 2780 while (head) { 2781 func = (void (*)(struct rq *))head->func; 2782 next = head->next; 2783 head->next = NULL; 2784 head = next; 2785 2786 func(rq); 2787 } 2788 raw_spin_unlock_irqrestore(&rq->lock, flags); 2789 } 2790 2791 static inline void balance_callback(struct rq *rq) 2792 { 2793 if (unlikely(rq->balance_callback)) 2794 __balance_callback(rq); 2795 } 2796 2797 #else 2798 2799 static inline void balance_callback(struct rq *rq) 2800 { 2801 } 2802 2803 #endif 2804 2805 /** 2806 * schedule_tail - first thing a freshly forked thread must call. 2807 * @prev: the thread we just switched away from. 2808 */ 2809 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2810 __releases(rq->lock) 2811 { 2812 struct rq *rq; 2813 2814 /* 2815 * New tasks start with FORK_PREEMPT_COUNT, see there and 2816 * finish_task_switch() for details. 2817 * 2818 * finish_task_switch() will drop rq->lock() and lower preempt_count 2819 * and the preempt_enable() will end up enabling preemption (on 2820 * PREEMPT_COUNT kernels). 2821 */ 2822 2823 rq = finish_task_switch(prev); 2824 balance_callback(rq); 2825 preempt_enable(); 2826 2827 if (current->set_child_tid) 2828 put_user(task_pid_vnr(current), current->set_child_tid); 2829 2830 calculate_sigpending(); 2831 } 2832 2833 /* 2834 * context_switch - switch to the new MM and the new thread's register state. 2835 */ 2836 static __always_inline struct rq * 2837 context_switch(struct rq *rq, struct task_struct *prev, 2838 struct task_struct *next, struct rq_flags *rf) 2839 { 2840 struct mm_struct *mm, *oldmm; 2841 2842 prepare_task_switch(rq, prev, next); 2843 2844 mm = next->mm; 2845 oldmm = prev->active_mm; 2846 /* 2847 * For paravirt, this is coupled with an exit in switch_to to 2848 * combine the page table reload and the switch backend into 2849 * one hypercall. 2850 */ 2851 arch_start_context_switch(prev); 2852 2853 /* 2854 * If mm is non-NULL, we pass through switch_mm(). If mm is 2855 * NULL, we will pass through mmdrop() in finish_task_switch(). 2856 * Both of these contain the full memory barrier required by 2857 * membarrier after storing to rq->curr, before returning to 2858 * user-space. 2859 */ 2860 if (!mm) { 2861 next->active_mm = oldmm; 2862 mmgrab(oldmm); 2863 enter_lazy_tlb(oldmm, next); 2864 } else 2865 switch_mm_irqs_off(oldmm, mm, next); 2866 2867 if (!prev->mm) { 2868 prev->active_mm = NULL; 2869 rq->prev_mm = oldmm; 2870 } 2871 2872 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2873 2874 prepare_lock_switch(rq, next, rf); 2875 2876 /* Here we just switch the register state and the stack. */ 2877 switch_to(prev, next, prev); 2878 barrier(); 2879 2880 return finish_task_switch(prev); 2881 } 2882 2883 /* 2884 * nr_running and nr_context_switches: 2885 * 2886 * externally visible scheduler statistics: current number of runnable 2887 * threads, total number of context switches performed since bootup. 2888 */ 2889 unsigned long nr_running(void) 2890 { 2891 unsigned long i, sum = 0; 2892 2893 for_each_online_cpu(i) 2894 sum += cpu_rq(i)->nr_running; 2895 2896 return sum; 2897 } 2898 2899 /* 2900 * Check if only the current task is running on the CPU. 2901 * 2902 * Caution: this function does not check that the caller has disabled 2903 * preemption, thus the result might have a time-of-check-to-time-of-use 2904 * race. The caller is responsible to use it correctly, for example: 2905 * 2906 * - from a non-preemptible section (of course) 2907 * 2908 * - from a thread that is bound to a single CPU 2909 * 2910 * - in a loop with very short iterations (e.g. a polling loop) 2911 */ 2912 bool single_task_running(void) 2913 { 2914 return raw_rq()->nr_running == 1; 2915 } 2916 EXPORT_SYMBOL(single_task_running); 2917 2918 unsigned long long nr_context_switches(void) 2919 { 2920 int i; 2921 unsigned long long sum = 0; 2922 2923 for_each_possible_cpu(i) 2924 sum += cpu_rq(i)->nr_switches; 2925 2926 return sum; 2927 } 2928 2929 /* 2930 * Consumers of these two interfaces, like for example the cpuidle menu 2931 * governor, are using nonsensical data. Preferring shallow idle state selection 2932 * for a CPU that has IO-wait which might not even end up running the task when 2933 * it does become runnable. 2934 */ 2935 2936 unsigned long nr_iowait_cpu(int cpu) 2937 { 2938 return atomic_read(&cpu_rq(cpu)->nr_iowait); 2939 } 2940 2941 /* 2942 * IO-wait accounting, and how its mostly bollocks (on SMP). 2943 * 2944 * The idea behind IO-wait account is to account the idle time that we could 2945 * have spend running if it were not for IO. That is, if we were to improve the 2946 * storage performance, we'd have a proportional reduction in IO-wait time. 2947 * 2948 * This all works nicely on UP, where, when a task blocks on IO, we account 2949 * idle time as IO-wait, because if the storage were faster, it could've been 2950 * running and we'd not be idle. 2951 * 2952 * This has been extended to SMP, by doing the same for each CPU. This however 2953 * is broken. 2954 * 2955 * Imagine for instance the case where two tasks block on one CPU, only the one 2956 * CPU will have IO-wait accounted, while the other has regular idle. Even 2957 * though, if the storage were faster, both could've ran at the same time, 2958 * utilising both CPUs. 2959 * 2960 * This means, that when looking globally, the current IO-wait accounting on 2961 * SMP is a lower bound, by reason of under accounting. 2962 * 2963 * Worse, since the numbers are provided per CPU, they are sometimes 2964 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2965 * associated with any one particular CPU, it can wake to another CPU than it 2966 * blocked on. This means the per CPU IO-wait number is meaningless. 2967 * 2968 * Task CPU affinities can make all that even more 'interesting'. 2969 */ 2970 2971 unsigned long nr_iowait(void) 2972 { 2973 unsigned long i, sum = 0; 2974 2975 for_each_possible_cpu(i) 2976 sum += nr_iowait_cpu(i); 2977 2978 return sum; 2979 } 2980 2981 #ifdef CONFIG_SMP 2982 2983 /* 2984 * sched_exec - execve() is a valuable balancing opportunity, because at 2985 * this point the task has the smallest effective memory and cache footprint. 2986 */ 2987 void sched_exec(void) 2988 { 2989 struct task_struct *p = current; 2990 unsigned long flags; 2991 int dest_cpu; 2992 2993 raw_spin_lock_irqsave(&p->pi_lock, flags); 2994 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2995 if (dest_cpu == smp_processor_id()) 2996 goto unlock; 2997 2998 if (likely(cpu_active(dest_cpu))) { 2999 struct migration_arg arg = { p, dest_cpu }; 3000 3001 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3002 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3003 return; 3004 } 3005 unlock: 3006 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3007 } 3008 3009 #endif 3010 3011 DEFINE_PER_CPU(struct kernel_stat, kstat); 3012 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3013 3014 EXPORT_PER_CPU_SYMBOL(kstat); 3015 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3016 3017 /* 3018 * The function fair_sched_class.update_curr accesses the struct curr 3019 * and its field curr->exec_start; when called from task_sched_runtime(), 3020 * we observe a high rate of cache misses in practice. 3021 * Prefetching this data results in improved performance. 3022 */ 3023 static inline void prefetch_curr_exec_start(struct task_struct *p) 3024 { 3025 #ifdef CONFIG_FAIR_GROUP_SCHED 3026 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3027 #else 3028 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3029 #endif 3030 prefetch(curr); 3031 prefetch(&curr->exec_start); 3032 } 3033 3034 /* 3035 * Return accounted runtime for the task. 3036 * In case the task is currently running, return the runtime plus current's 3037 * pending runtime that have not been accounted yet. 3038 */ 3039 unsigned long long task_sched_runtime(struct task_struct *p) 3040 { 3041 struct rq_flags rf; 3042 struct rq *rq; 3043 u64 ns; 3044 3045 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3046 /* 3047 * 64-bit doesn't need locks to atomically read a 64-bit value. 3048 * So we have a optimization chance when the task's delta_exec is 0. 3049 * Reading ->on_cpu is racy, but this is ok. 3050 * 3051 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3052 * If we race with it entering CPU, unaccounted time is 0. This is 3053 * indistinguishable from the read occurring a few cycles earlier. 3054 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3055 * been accounted, so we're correct here as well. 3056 */ 3057 if (!p->on_cpu || !task_on_rq_queued(p)) 3058 return p->se.sum_exec_runtime; 3059 #endif 3060 3061 rq = task_rq_lock(p, &rf); 3062 /* 3063 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3064 * project cycles that may never be accounted to this 3065 * thread, breaking clock_gettime(). 3066 */ 3067 if (task_current(rq, p) && task_on_rq_queued(p)) { 3068 prefetch_curr_exec_start(p); 3069 update_rq_clock(rq); 3070 p->sched_class->update_curr(rq); 3071 } 3072 ns = p->se.sum_exec_runtime; 3073 task_rq_unlock(rq, p, &rf); 3074 3075 return ns; 3076 } 3077 3078 /* 3079 * This function gets called by the timer code, with HZ frequency. 3080 * We call it with interrupts disabled. 3081 */ 3082 void scheduler_tick(void) 3083 { 3084 int cpu = smp_processor_id(); 3085 struct rq *rq = cpu_rq(cpu); 3086 struct task_struct *curr = rq->curr; 3087 struct rq_flags rf; 3088 3089 sched_clock_tick(); 3090 3091 rq_lock(rq, &rf); 3092 3093 update_rq_clock(rq); 3094 curr->sched_class->task_tick(rq, curr, 0); 3095 cpu_load_update_active(rq); 3096 calc_global_load_tick(rq); 3097 psi_task_tick(rq); 3098 3099 rq_unlock(rq, &rf); 3100 3101 perf_event_task_tick(); 3102 3103 #ifdef CONFIG_SMP 3104 rq->idle_balance = idle_cpu(cpu); 3105 trigger_load_balance(rq); 3106 #endif 3107 } 3108 3109 #ifdef CONFIG_NO_HZ_FULL 3110 3111 struct tick_work { 3112 int cpu; 3113 struct delayed_work work; 3114 }; 3115 3116 static struct tick_work __percpu *tick_work_cpu; 3117 3118 static void sched_tick_remote(struct work_struct *work) 3119 { 3120 struct delayed_work *dwork = to_delayed_work(work); 3121 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3122 int cpu = twork->cpu; 3123 struct rq *rq = cpu_rq(cpu); 3124 struct task_struct *curr; 3125 struct rq_flags rf; 3126 u64 delta; 3127 3128 /* 3129 * Handle the tick only if it appears the remote CPU is running in full 3130 * dynticks mode. The check is racy by nature, but missing a tick or 3131 * having one too much is no big deal because the scheduler tick updates 3132 * statistics and checks timeslices in a time-independent way, regardless 3133 * of when exactly it is running. 3134 */ 3135 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu)) 3136 goto out_requeue; 3137 3138 rq_lock_irq(rq, &rf); 3139 curr = rq->curr; 3140 if (is_idle_task(curr)) 3141 goto out_unlock; 3142 3143 update_rq_clock(rq); 3144 delta = rq_clock_task(rq) - curr->se.exec_start; 3145 3146 /* 3147 * Make sure the next tick runs within a reasonable 3148 * amount of time. 3149 */ 3150 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3151 curr->sched_class->task_tick(rq, curr, 0); 3152 3153 out_unlock: 3154 rq_unlock_irq(rq, &rf); 3155 3156 out_requeue: 3157 /* 3158 * Run the remote tick once per second (1Hz). This arbitrary 3159 * frequency is large enough to avoid overload but short enough 3160 * to keep scheduler internal stats reasonably up to date. 3161 */ 3162 queue_delayed_work(system_unbound_wq, dwork, HZ); 3163 } 3164 3165 static void sched_tick_start(int cpu) 3166 { 3167 struct tick_work *twork; 3168 3169 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3170 return; 3171 3172 WARN_ON_ONCE(!tick_work_cpu); 3173 3174 twork = per_cpu_ptr(tick_work_cpu, cpu); 3175 twork->cpu = cpu; 3176 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3177 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3178 } 3179 3180 #ifdef CONFIG_HOTPLUG_CPU 3181 static void sched_tick_stop(int cpu) 3182 { 3183 struct tick_work *twork; 3184 3185 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3186 return; 3187 3188 WARN_ON_ONCE(!tick_work_cpu); 3189 3190 twork = per_cpu_ptr(tick_work_cpu, cpu); 3191 cancel_delayed_work_sync(&twork->work); 3192 } 3193 #endif /* CONFIG_HOTPLUG_CPU */ 3194 3195 int __init sched_tick_offload_init(void) 3196 { 3197 tick_work_cpu = alloc_percpu(struct tick_work); 3198 BUG_ON(!tick_work_cpu); 3199 3200 return 0; 3201 } 3202 3203 #else /* !CONFIG_NO_HZ_FULL */ 3204 static inline void sched_tick_start(int cpu) { } 3205 static inline void sched_tick_stop(int cpu) { } 3206 #endif 3207 3208 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3209 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3210 /* 3211 * If the value passed in is equal to the current preempt count 3212 * then we just disabled preemption. Start timing the latency. 3213 */ 3214 static inline void preempt_latency_start(int val) 3215 { 3216 if (preempt_count() == val) { 3217 unsigned long ip = get_lock_parent_ip(); 3218 #ifdef CONFIG_DEBUG_PREEMPT 3219 current->preempt_disable_ip = ip; 3220 #endif 3221 trace_preempt_off(CALLER_ADDR0, ip); 3222 } 3223 } 3224 3225 void preempt_count_add(int val) 3226 { 3227 #ifdef CONFIG_DEBUG_PREEMPT 3228 /* 3229 * Underflow? 3230 */ 3231 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3232 return; 3233 #endif 3234 __preempt_count_add(val); 3235 #ifdef CONFIG_DEBUG_PREEMPT 3236 /* 3237 * Spinlock count overflowing soon? 3238 */ 3239 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3240 PREEMPT_MASK - 10); 3241 #endif 3242 preempt_latency_start(val); 3243 } 3244 EXPORT_SYMBOL(preempt_count_add); 3245 NOKPROBE_SYMBOL(preempt_count_add); 3246 3247 /* 3248 * If the value passed in equals to the current preempt count 3249 * then we just enabled preemption. Stop timing the latency. 3250 */ 3251 static inline void preempt_latency_stop(int val) 3252 { 3253 if (preempt_count() == val) 3254 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3255 } 3256 3257 void preempt_count_sub(int val) 3258 { 3259 #ifdef CONFIG_DEBUG_PREEMPT 3260 /* 3261 * Underflow? 3262 */ 3263 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3264 return; 3265 /* 3266 * Is the spinlock portion underflowing? 3267 */ 3268 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3269 !(preempt_count() & PREEMPT_MASK))) 3270 return; 3271 #endif 3272 3273 preempt_latency_stop(val); 3274 __preempt_count_sub(val); 3275 } 3276 EXPORT_SYMBOL(preempt_count_sub); 3277 NOKPROBE_SYMBOL(preempt_count_sub); 3278 3279 #else 3280 static inline void preempt_latency_start(int val) { } 3281 static inline void preempt_latency_stop(int val) { } 3282 #endif 3283 3284 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3285 { 3286 #ifdef CONFIG_DEBUG_PREEMPT 3287 return p->preempt_disable_ip; 3288 #else 3289 return 0; 3290 #endif 3291 } 3292 3293 /* 3294 * Print scheduling while atomic bug: 3295 */ 3296 static noinline void __schedule_bug(struct task_struct *prev) 3297 { 3298 /* Save this before calling printk(), since that will clobber it */ 3299 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3300 3301 if (oops_in_progress) 3302 return; 3303 3304 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3305 prev->comm, prev->pid, preempt_count()); 3306 3307 debug_show_held_locks(prev); 3308 print_modules(); 3309 if (irqs_disabled()) 3310 print_irqtrace_events(prev); 3311 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3312 && in_atomic_preempt_off()) { 3313 pr_err("Preemption disabled at:"); 3314 print_ip_sym(preempt_disable_ip); 3315 pr_cont("\n"); 3316 } 3317 if (panic_on_warn) 3318 panic("scheduling while atomic\n"); 3319 3320 dump_stack(); 3321 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3322 } 3323 3324 /* 3325 * Various schedule()-time debugging checks and statistics: 3326 */ 3327 static inline void schedule_debug(struct task_struct *prev) 3328 { 3329 #ifdef CONFIG_SCHED_STACK_END_CHECK 3330 if (task_stack_end_corrupted(prev)) 3331 panic("corrupted stack end detected inside scheduler\n"); 3332 #endif 3333 3334 if (unlikely(in_atomic_preempt_off())) { 3335 __schedule_bug(prev); 3336 preempt_count_set(PREEMPT_DISABLED); 3337 } 3338 rcu_sleep_check(); 3339 3340 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3341 3342 schedstat_inc(this_rq()->sched_count); 3343 } 3344 3345 /* 3346 * Pick up the highest-prio task: 3347 */ 3348 static inline struct task_struct * 3349 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3350 { 3351 const struct sched_class *class; 3352 struct task_struct *p; 3353 3354 /* 3355 * Optimization: we know that if all tasks are in the fair class we can 3356 * call that function directly, but only if the @prev task wasn't of a 3357 * higher scheduling class, because otherwise those loose the 3358 * opportunity to pull in more work from other CPUs. 3359 */ 3360 if (likely((prev->sched_class == &idle_sched_class || 3361 prev->sched_class == &fair_sched_class) && 3362 rq->nr_running == rq->cfs.h_nr_running)) { 3363 3364 p = fair_sched_class.pick_next_task(rq, prev, rf); 3365 if (unlikely(p == RETRY_TASK)) 3366 goto again; 3367 3368 /* Assumes fair_sched_class->next == idle_sched_class */ 3369 if (unlikely(!p)) 3370 p = idle_sched_class.pick_next_task(rq, prev, rf); 3371 3372 return p; 3373 } 3374 3375 again: 3376 for_each_class(class) { 3377 p = class->pick_next_task(rq, prev, rf); 3378 if (p) { 3379 if (unlikely(p == RETRY_TASK)) 3380 goto again; 3381 return p; 3382 } 3383 } 3384 3385 /* The idle class should always have a runnable task: */ 3386 BUG(); 3387 } 3388 3389 /* 3390 * __schedule() is the main scheduler function. 3391 * 3392 * The main means of driving the scheduler and thus entering this function are: 3393 * 3394 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3395 * 3396 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3397 * paths. For example, see arch/x86/entry_64.S. 3398 * 3399 * To drive preemption between tasks, the scheduler sets the flag in timer 3400 * interrupt handler scheduler_tick(). 3401 * 3402 * 3. Wakeups don't really cause entry into schedule(). They add a 3403 * task to the run-queue and that's it. 3404 * 3405 * Now, if the new task added to the run-queue preempts the current 3406 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3407 * called on the nearest possible occasion: 3408 * 3409 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3410 * 3411 * - in syscall or exception context, at the next outmost 3412 * preempt_enable(). (this might be as soon as the wake_up()'s 3413 * spin_unlock()!) 3414 * 3415 * - in IRQ context, return from interrupt-handler to 3416 * preemptible context 3417 * 3418 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3419 * then at the next: 3420 * 3421 * - cond_resched() call 3422 * - explicit schedule() call 3423 * - return from syscall or exception to user-space 3424 * - return from interrupt-handler to user-space 3425 * 3426 * WARNING: must be called with preemption disabled! 3427 */ 3428 static void __sched notrace __schedule(bool preempt) 3429 { 3430 struct task_struct *prev, *next; 3431 unsigned long *switch_count; 3432 struct rq_flags rf; 3433 struct rq *rq; 3434 int cpu; 3435 3436 cpu = smp_processor_id(); 3437 rq = cpu_rq(cpu); 3438 prev = rq->curr; 3439 3440 schedule_debug(prev); 3441 3442 if (sched_feat(HRTICK)) 3443 hrtick_clear(rq); 3444 3445 local_irq_disable(); 3446 rcu_note_context_switch(preempt); 3447 3448 /* 3449 * Make sure that signal_pending_state()->signal_pending() below 3450 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3451 * done by the caller to avoid the race with signal_wake_up(). 3452 * 3453 * The membarrier system call requires a full memory barrier 3454 * after coming from user-space, before storing to rq->curr. 3455 */ 3456 rq_lock(rq, &rf); 3457 smp_mb__after_spinlock(); 3458 3459 /* Promote REQ to ACT */ 3460 rq->clock_update_flags <<= 1; 3461 update_rq_clock(rq); 3462 3463 switch_count = &prev->nivcsw; 3464 if (!preempt && prev->state) { 3465 if (signal_pending_state(prev->state, prev)) { 3466 prev->state = TASK_RUNNING; 3467 } else { 3468 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3469 prev->on_rq = 0; 3470 3471 if (prev->in_iowait) { 3472 atomic_inc(&rq->nr_iowait); 3473 delayacct_blkio_start(); 3474 } 3475 3476 /* 3477 * If a worker went to sleep, notify and ask workqueue 3478 * whether it wants to wake up a task to maintain 3479 * concurrency. 3480 */ 3481 if (prev->flags & PF_WQ_WORKER) { 3482 struct task_struct *to_wakeup; 3483 3484 to_wakeup = wq_worker_sleeping(prev); 3485 if (to_wakeup) 3486 try_to_wake_up_local(to_wakeup, &rf); 3487 } 3488 } 3489 switch_count = &prev->nvcsw; 3490 } 3491 3492 next = pick_next_task(rq, prev, &rf); 3493 clear_tsk_need_resched(prev); 3494 clear_preempt_need_resched(); 3495 3496 if (likely(prev != next)) { 3497 rq->nr_switches++; 3498 rq->curr = next; 3499 /* 3500 * The membarrier system call requires each architecture 3501 * to have a full memory barrier after updating 3502 * rq->curr, before returning to user-space. 3503 * 3504 * Here are the schemes providing that barrier on the 3505 * various architectures: 3506 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3507 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3508 * - finish_lock_switch() for weakly-ordered 3509 * architectures where spin_unlock is a full barrier, 3510 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3511 * is a RELEASE barrier), 3512 */ 3513 ++*switch_count; 3514 3515 trace_sched_switch(preempt, prev, next); 3516 3517 /* Also unlocks the rq: */ 3518 rq = context_switch(rq, prev, next, &rf); 3519 } else { 3520 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3521 rq_unlock_irq(rq, &rf); 3522 } 3523 3524 balance_callback(rq); 3525 } 3526 3527 void __noreturn do_task_dead(void) 3528 { 3529 /* Causes final put_task_struct in finish_task_switch(): */ 3530 set_special_state(TASK_DEAD); 3531 3532 /* Tell freezer to ignore us: */ 3533 current->flags |= PF_NOFREEZE; 3534 3535 __schedule(false); 3536 BUG(); 3537 3538 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3539 for (;;) 3540 cpu_relax(); 3541 } 3542 3543 static inline void sched_submit_work(struct task_struct *tsk) 3544 { 3545 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3546 return; 3547 /* 3548 * If we are going to sleep and we have plugged IO queued, 3549 * make sure to submit it to avoid deadlocks. 3550 */ 3551 if (blk_needs_flush_plug(tsk)) 3552 blk_schedule_flush_plug(tsk); 3553 } 3554 3555 asmlinkage __visible void __sched schedule(void) 3556 { 3557 struct task_struct *tsk = current; 3558 3559 sched_submit_work(tsk); 3560 do { 3561 preempt_disable(); 3562 __schedule(false); 3563 sched_preempt_enable_no_resched(); 3564 } while (need_resched()); 3565 } 3566 EXPORT_SYMBOL(schedule); 3567 3568 /* 3569 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3570 * state (have scheduled out non-voluntarily) by making sure that all 3571 * tasks have either left the run queue or have gone into user space. 3572 * As idle tasks do not do either, they must not ever be preempted 3573 * (schedule out non-voluntarily). 3574 * 3575 * schedule_idle() is similar to schedule_preempt_disable() except that it 3576 * never enables preemption because it does not call sched_submit_work(). 3577 */ 3578 void __sched schedule_idle(void) 3579 { 3580 /* 3581 * As this skips calling sched_submit_work(), which the idle task does 3582 * regardless because that function is a nop when the task is in a 3583 * TASK_RUNNING state, make sure this isn't used someplace that the 3584 * current task can be in any other state. Note, idle is always in the 3585 * TASK_RUNNING state. 3586 */ 3587 WARN_ON_ONCE(current->state); 3588 do { 3589 __schedule(false); 3590 } while (need_resched()); 3591 } 3592 3593 #ifdef CONFIG_CONTEXT_TRACKING 3594 asmlinkage __visible void __sched schedule_user(void) 3595 { 3596 /* 3597 * If we come here after a random call to set_need_resched(), 3598 * or we have been woken up remotely but the IPI has not yet arrived, 3599 * we haven't yet exited the RCU idle mode. Do it here manually until 3600 * we find a better solution. 3601 * 3602 * NB: There are buggy callers of this function. Ideally we 3603 * should warn if prev_state != CONTEXT_USER, but that will trigger 3604 * too frequently to make sense yet. 3605 */ 3606 enum ctx_state prev_state = exception_enter(); 3607 schedule(); 3608 exception_exit(prev_state); 3609 } 3610 #endif 3611 3612 /** 3613 * schedule_preempt_disabled - called with preemption disabled 3614 * 3615 * Returns with preemption disabled. Note: preempt_count must be 1 3616 */ 3617 void __sched schedule_preempt_disabled(void) 3618 { 3619 sched_preempt_enable_no_resched(); 3620 schedule(); 3621 preempt_disable(); 3622 } 3623 3624 static void __sched notrace preempt_schedule_common(void) 3625 { 3626 do { 3627 /* 3628 * Because the function tracer can trace preempt_count_sub() 3629 * and it also uses preempt_enable/disable_notrace(), if 3630 * NEED_RESCHED is set, the preempt_enable_notrace() called 3631 * by the function tracer will call this function again and 3632 * cause infinite recursion. 3633 * 3634 * Preemption must be disabled here before the function 3635 * tracer can trace. Break up preempt_disable() into two 3636 * calls. One to disable preemption without fear of being 3637 * traced. The other to still record the preemption latency, 3638 * which can also be traced by the function tracer. 3639 */ 3640 preempt_disable_notrace(); 3641 preempt_latency_start(1); 3642 __schedule(true); 3643 preempt_latency_stop(1); 3644 preempt_enable_no_resched_notrace(); 3645 3646 /* 3647 * Check again in case we missed a preemption opportunity 3648 * between schedule and now. 3649 */ 3650 } while (need_resched()); 3651 } 3652 3653 #ifdef CONFIG_PREEMPT 3654 /* 3655 * this is the entry point to schedule() from in-kernel preemption 3656 * off of preempt_enable. Kernel preemptions off return from interrupt 3657 * occur there and call schedule directly. 3658 */ 3659 asmlinkage __visible void __sched notrace preempt_schedule(void) 3660 { 3661 /* 3662 * If there is a non-zero preempt_count or interrupts are disabled, 3663 * we do not want to preempt the current task. Just return.. 3664 */ 3665 if (likely(!preemptible())) 3666 return; 3667 3668 preempt_schedule_common(); 3669 } 3670 NOKPROBE_SYMBOL(preempt_schedule); 3671 EXPORT_SYMBOL(preempt_schedule); 3672 3673 /** 3674 * preempt_schedule_notrace - preempt_schedule called by tracing 3675 * 3676 * The tracing infrastructure uses preempt_enable_notrace to prevent 3677 * recursion and tracing preempt enabling caused by the tracing 3678 * infrastructure itself. But as tracing can happen in areas coming 3679 * from userspace or just about to enter userspace, a preempt enable 3680 * can occur before user_exit() is called. This will cause the scheduler 3681 * to be called when the system is still in usermode. 3682 * 3683 * To prevent this, the preempt_enable_notrace will use this function 3684 * instead of preempt_schedule() to exit user context if needed before 3685 * calling the scheduler. 3686 */ 3687 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3688 { 3689 enum ctx_state prev_ctx; 3690 3691 if (likely(!preemptible())) 3692 return; 3693 3694 do { 3695 /* 3696 * Because the function tracer can trace preempt_count_sub() 3697 * and it also uses preempt_enable/disable_notrace(), if 3698 * NEED_RESCHED is set, the preempt_enable_notrace() called 3699 * by the function tracer will call this function again and 3700 * cause infinite recursion. 3701 * 3702 * Preemption must be disabled here before the function 3703 * tracer can trace. Break up preempt_disable() into two 3704 * calls. One to disable preemption without fear of being 3705 * traced. The other to still record the preemption latency, 3706 * which can also be traced by the function tracer. 3707 */ 3708 preempt_disable_notrace(); 3709 preempt_latency_start(1); 3710 /* 3711 * Needs preempt disabled in case user_exit() is traced 3712 * and the tracer calls preempt_enable_notrace() causing 3713 * an infinite recursion. 3714 */ 3715 prev_ctx = exception_enter(); 3716 __schedule(true); 3717 exception_exit(prev_ctx); 3718 3719 preempt_latency_stop(1); 3720 preempt_enable_no_resched_notrace(); 3721 } while (need_resched()); 3722 } 3723 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3724 3725 #endif /* CONFIG_PREEMPT */ 3726 3727 /* 3728 * this is the entry point to schedule() from kernel preemption 3729 * off of irq context. 3730 * Note, that this is called and return with irqs disabled. This will 3731 * protect us against recursive calling from irq. 3732 */ 3733 asmlinkage __visible void __sched preempt_schedule_irq(void) 3734 { 3735 enum ctx_state prev_state; 3736 3737 /* Catch callers which need to be fixed */ 3738 BUG_ON(preempt_count() || !irqs_disabled()); 3739 3740 prev_state = exception_enter(); 3741 3742 do { 3743 preempt_disable(); 3744 local_irq_enable(); 3745 __schedule(true); 3746 local_irq_disable(); 3747 sched_preempt_enable_no_resched(); 3748 } while (need_resched()); 3749 3750 exception_exit(prev_state); 3751 } 3752 3753 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3754 void *key) 3755 { 3756 return try_to_wake_up(curr->private, mode, wake_flags); 3757 } 3758 EXPORT_SYMBOL(default_wake_function); 3759 3760 #ifdef CONFIG_RT_MUTEXES 3761 3762 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3763 { 3764 if (pi_task) 3765 prio = min(prio, pi_task->prio); 3766 3767 return prio; 3768 } 3769 3770 static inline int rt_effective_prio(struct task_struct *p, int prio) 3771 { 3772 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3773 3774 return __rt_effective_prio(pi_task, prio); 3775 } 3776 3777 /* 3778 * rt_mutex_setprio - set the current priority of a task 3779 * @p: task to boost 3780 * @pi_task: donor task 3781 * 3782 * This function changes the 'effective' priority of a task. It does 3783 * not touch ->normal_prio like __setscheduler(). 3784 * 3785 * Used by the rt_mutex code to implement priority inheritance 3786 * logic. Call site only calls if the priority of the task changed. 3787 */ 3788 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3789 { 3790 int prio, oldprio, queued, running, queue_flag = 3791 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3792 const struct sched_class *prev_class; 3793 struct rq_flags rf; 3794 struct rq *rq; 3795 3796 /* XXX used to be waiter->prio, not waiter->task->prio */ 3797 prio = __rt_effective_prio(pi_task, p->normal_prio); 3798 3799 /* 3800 * If nothing changed; bail early. 3801 */ 3802 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3803 return; 3804 3805 rq = __task_rq_lock(p, &rf); 3806 update_rq_clock(rq); 3807 /* 3808 * Set under pi_lock && rq->lock, such that the value can be used under 3809 * either lock. 3810 * 3811 * Note that there is loads of tricky to make this pointer cache work 3812 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3813 * ensure a task is de-boosted (pi_task is set to NULL) before the 3814 * task is allowed to run again (and can exit). This ensures the pointer 3815 * points to a blocked task -- which guaratees the task is present. 3816 */ 3817 p->pi_top_task = pi_task; 3818 3819 /* 3820 * For FIFO/RR we only need to set prio, if that matches we're done. 3821 */ 3822 if (prio == p->prio && !dl_prio(prio)) 3823 goto out_unlock; 3824 3825 /* 3826 * Idle task boosting is a nono in general. There is one 3827 * exception, when PREEMPT_RT and NOHZ is active: 3828 * 3829 * The idle task calls get_next_timer_interrupt() and holds 3830 * the timer wheel base->lock on the CPU and another CPU wants 3831 * to access the timer (probably to cancel it). We can safely 3832 * ignore the boosting request, as the idle CPU runs this code 3833 * with interrupts disabled and will complete the lock 3834 * protected section without being interrupted. So there is no 3835 * real need to boost. 3836 */ 3837 if (unlikely(p == rq->idle)) { 3838 WARN_ON(p != rq->curr); 3839 WARN_ON(p->pi_blocked_on); 3840 goto out_unlock; 3841 } 3842 3843 trace_sched_pi_setprio(p, pi_task); 3844 oldprio = p->prio; 3845 3846 if (oldprio == prio) 3847 queue_flag &= ~DEQUEUE_MOVE; 3848 3849 prev_class = p->sched_class; 3850 queued = task_on_rq_queued(p); 3851 running = task_current(rq, p); 3852 if (queued) 3853 dequeue_task(rq, p, queue_flag); 3854 if (running) 3855 put_prev_task(rq, p); 3856 3857 /* 3858 * Boosting condition are: 3859 * 1. -rt task is running and holds mutex A 3860 * --> -dl task blocks on mutex A 3861 * 3862 * 2. -dl task is running and holds mutex A 3863 * --> -dl task blocks on mutex A and could preempt the 3864 * running task 3865 */ 3866 if (dl_prio(prio)) { 3867 if (!dl_prio(p->normal_prio) || 3868 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3869 p->dl.dl_boosted = 1; 3870 queue_flag |= ENQUEUE_REPLENISH; 3871 } else 3872 p->dl.dl_boosted = 0; 3873 p->sched_class = &dl_sched_class; 3874 } else if (rt_prio(prio)) { 3875 if (dl_prio(oldprio)) 3876 p->dl.dl_boosted = 0; 3877 if (oldprio < prio) 3878 queue_flag |= ENQUEUE_HEAD; 3879 p->sched_class = &rt_sched_class; 3880 } else { 3881 if (dl_prio(oldprio)) 3882 p->dl.dl_boosted = 0; 3883 if (rt_prio(oldprio)) 3884 p->rt.timeout = 0; 3885 p->sched_class = &fair_sched_class; 3886 } 3887 3888 p->prio = prio; 3889 3890 if (queued) 3891 enqueue_task(rq, p, queue_flag); 3892 if (running) 3893 set_curr_task(rq, p); 3894 3895 check_class_changed(rq, p, prev_class, oldprio); 3896 out_unlock: 3897 /* Avoid rq from going away on us: */ 3898 preempt_disable(); 3899 __task_rq_unlock(rq, &rf); 3900 3901 balance_callback(rq); 3902 preempt_enable(); 3903 } 3904 #else 3905 static inline int rt_effective_prio(struct task_struct *p, int prio) 3906 { 3907 return prio; 3908 } 3909 #endif 3910 3911 void set_user_nice(struct task_struct *p, long nice) 3912 { 3913 bool queued, running; 3914 int old_prio, delta; 3915 struct rq_flags rf; 3916 struct rq *rq; 3917 3918 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3919 return; 3920 /* 3921 * We have to be careful, if called from sys_setpriority(), 3922 * the task might be in the middle of scheduling on another CPU. 3923 */ 3924 rq = task_rq_lock(p, &rf); 3925 update_rq_clock(rq); 3926 3927 /* 3928 * The RT priorities are set via sched_setscheduler(), but we still 3929 * allow the 'normal' nice value to be set - but as expected 3930 * it wont have any effect on scheduling until the task is 3931 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3932 */ 3933 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3934 p->static_prio = NICE_TO_PRIO(nice); 3935 goto out_unlock; 3936 } 3937 queued = task_on_rq_queued(p); 3938 running = task_current(rq, p); 3939 if (queued) 3940 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3941 if (running) 3942 put_prev_task(rq, p); 3943 3944 p->static_prio = NICE_TO_PRIO(nice); 3945 set_load_weight(p, true); 3946 old_prio = p->prio; 3947 p->prio = effective_prio(p); 3948 delta = p->prio - old_prio; 3949 3950 if (queued) { 3951 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3952 /* 3953 * If the task increased its priority or is running and 3954 * lowered its priority, then reschedule its CPU: 3955 */ 3956 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3957 resched_curr(rq); 3958 } 3959 if (running) 3960 set_curr_task(rq, p); 3961 out_unlock: 3962 task_rq_unlock(rq, p, &rf); 3963 } 3964 EXPORT_SYMBOL(set_user_nice); 3965 3966 /* 3967 * can_nice - check if a task can reduce its nice value 3968 * @p: task 3969 * @nice: nice value 3970 */ 3971 int can_nice(const struct task_struct *p, const int nice) 3972 { 3973 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3974 int nice_rlim = nice_to_rlimit(nice); 3975 3976 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3977 capable(CAP_SYS_NICE)); 3978 } 3979 3980 #ifdef __ARCH_WANT_SYS_NICE 3981 3982 /* 3983 * sys_nice - change the priority of the current process. 3984 * @increment: priority increment 3985 * 3986 * sys_setpriority is a more generic, but much slower function that 3987 * does similar things. 3988 */ 3989 SYSCALL_DEFINE1(nice, int, increment) 3990 { 3991 long nice, retval; 3992 3993 /* 3994 * Setpriority might change our priority at the same moment. 3995 * We don't have to worry. Conceptually one call occurs first 3996 * and we have a single winner. 3997 */ 3998 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3999 nice = task_nice(current) + increment; 4000 4001 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 4002 if (increment < 0 && !can_nice(current, nice)) 4003 return -EPERM; 4004 4005 retval = security_task_setnice(current, nice); 4006 if (retval) 4007 return retval; 4008 4009 set_user_nice(current, nice); 4010 return 0; 4011 } 4012 4013 #endif 4014 4015 /** 4016 * task_prio - return the priority value of a given task. 4017 * @p: the task in question. 4018 * 4019 * Return: The priority value as seen by users in /proc. 4020 * RT tasks are offset by -200. Normal tasks are centered 4021 * around 0, value goes from -16 to +15. 4022 */ 4023 int task_prio(const struct task_struct *p) 4024 { 4025 return p->prio - MAX_RT_PRIO; 4026 } 4027 4028 /** 4029 * idle_cpu - is a given CPU idle currently? 4030 * @cpu: the processor in question. 4031 * 4032 * Return: 1 if the CPU is currently idle. 0 otherwise. 4033 */ 4034 int idle_cpu(int cpu) 4035 { 4036 struct rq *rq = cpu_rq(cpu); 4037 4038 if (rq->curr != rq->idle) 4039 return 0; 4040 4041 if (rq->nr_running) 4042 return 0; 4043 4044 #ifdef CONFIG_SMP 4045 if (!llist_empty(&rq->wake_list)) 4046 return 0; 4047 #endif 4048 4049 return 1; 4050 } 4051 4052 /** 4053 * available_idle_cpu - is a given CPU idle for enqueuing work. 4054 * @cpu: the CPU in question. 4055 * 4056 * Return: 1 if the CPU is currently idle. 0 otherwise. 4057 */ 4058 int available_idle_cpu(int cpu) 4059 { 4060 if (!idle_cpu(cpu)) 4061 return 0; 4062 4063 if (vcpu_is_preempted(cpu)) 4064 return 0; 4065 4066 return 1; 4067 } 4068 4069 /** 4070 * idle_task - return the idle task for a given CPU. 4071 * @cpu: the processor in question. 4072 * 4073 * Return: The idle task for the CPU @cpu. 4074 */ 4075 struct task_struct *idle_task(int cpu) 4076 { 4077 return cpu_rq(cpu)->idle; 4078 } 4079 4080 /** 4081 * find_process_by_pid - find a process with a matching PID value. 4082 * @pid: the pid in question. 4083 * 4084 * The task of @pid, if found. %NULL otherwise. 4085 */ 4086 static struct task_struct *find_process_by_pid(pid_t pid) 4087 { 4088 return pid ? find_task_by_vpid(pid) : current; 4089 } 4090 4091 /* 4092 * sched_setparam() passes in -1 for its policy, to let the functions 4093 * it calls know not to change it. 4094 */ 4095 #define SETPARAM_POLICY -1 4096 4097 static void __setscheduler_params(struct task_struct *p, 4098 const struct sched_attr *attr) 4099 { 4100 int policy = attr->sched_policy; 4101 4102 if (policy == SETPARAM_POLICY) 4103 policy = p->policy; 4104 4105 p->policy = policy; 4106 4107 if (dl_policy(policy)) 4108 __setparam_dl(p, attr); 4109 else if (fair_policy(policy)) 4110 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4111 4112 /* 4113 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4114 * !rt_policy. Always setting this ensures that things like 4115 * getparam()/getattr() don't report silly values for !rt tasks. 4116 */ 4117 p->rt_priority = attr->sched_priority; 4118 p->normal_prio = normal_prio(p); 4119 set_load_weight(p, true); 4120 } 4121 4122 /* Actually do priority change: must hold pi & rq lock. */ 4123 static void __setscheduler(struct rq *rq, struct task_struct *p, 4124 const struct sched_attr *attr, bool keep_boost) 4125 { 4126 __setscheduler_params(p, attr); 4127 4128 /* 4129 * Keep a potential priority boosting if called from 4130 * sched_setscheduler(). 4131 */ 4132 p->prio = normal_prio(p); 4133 if (keep_boost) 4134 p->prio = rt_effective_prio(p, p->prio); 4135 4136 if (dl_prio(p->prio)) 4137 p->sched_class = &dl_sched_class; 4138 else if (rt_prio(p->prio)) 4139 p->sched_class = &rt_sched_class; 4140 else 4141 p->sched_class = &fair_sched_class; 4142 } 4143 4144 /* 4145 * Check the target process has a UID that matches the current process's: 4146 */ 4147 static bool check_same_owner(struct task_struct *p) 4148 { 4149 const struct cred *cred = current_cred(), *pcred; 4150 bool match; 4151 4152 rcu_read_lock(); 4153 pcred = __task_cred(p); 4154 match = (uid_eq(cred->euid, pcred->euid) || 4155 uid_eq(cred->euid, pcred->uid)); 4156 rcu_read_unlock(); 4157 return match; 4158 } 4159 4160 static int __sched_setscheduler(struct task_struct *p, 4161 const struct sched_attr *attr, 4162 bool user, bool pi) 4163 { 4164 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4165 MAX_RT_PRIO - 1 - attr->sched_priority; 4166 int retval, oldprio, oldpolicy = -1, queued, running; 4167 int new_effective_prio, policy = attr->sched_policy; 4168 const struct sched_class *prev_class; 4169 struct rq_flags rf; 4170 int reset_on_fork; 4171 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4172 struct rq *rq; 4173 4174 /* The pi code expects interrupts enabled */ 4175 BUG_ON(pi && in_interrupt()); 4176 recheck: 4177 /* Double check policy once rq lock held: */ 4178 if (policy < 0) { 4179 reset_on_fork = p->sched_reset_on_fork; 4180 policy = oldpolicy = p->policy; 4181 } else { 4182 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4183 4184 if (!valid_policy(policy)) 4185 return -EINVAL; 4186 } 4187 4188 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4189 return -EINVAL; 4190 4191 /* 4192 * Valid priorities for SCHED_FIFO and SCHED_RR are 4193 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4194 * SCHED_BATCH and SCHED_IDLE is 0. 4195 */ 4196 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4197 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4198 return -EINVAL; 4199 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4200 (rt_policy(policy) != (attr->sched_priority != 0))) 4201 return -EINVAL; 4202 4203 /* 4204 * Allow unprivileged RT tasks to decrease priority: 4205 */ 4206 if (user && !capable(CAP_SYS_NICE)) { 4207 if (fair_policy(policy)) { 4208 if (attr->sched_nice < task_nice(p) && 4209 !can_nice(p, attr->sched_nice)) 4210 return -EPERM; 4211 } 4212 4213 if (rt_policy(policy)) { 4214 unsigned long rlim_rtprio = 4215 task_rlimit(p, RLIMIT_RTPRIO); 4216 4217 /* Can't set/change the rt policy: */ 4218 if (policy != p->policy && !rlim_rtprio) 4219 return -EPERM; 4220 4221 /* Can't increase priority: */ 4222 if (attr->sched_priority > p->rt_priority && 4223 attr->sched_priority > rlim_rtprio) 4224 return -EPERM; 4225 } 4226 4227 /* 4228 * Can't set/change SCHED_DEADLINE policy at all for now 4229 * (safest behavior); in the future we would like to allow 4230 * unprivileged DL tasks to increase their relative deadline 4231 * or reduce their runtime (both ways reducing utilization) 4232 */ 4233 if (dl_policy(policy)) 4234 return -EPERM; 4235 4236 /* 4237 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4238 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4239 */ 4240 if (task_has_idle_policy(p) && !idle_policy(policy)) { 4241 if (!can_nice(p, task_nice(p))) 4242 return -EPERM; 4243 } 4244 4245 /* Can't change other user's priorities: */ 4246 if (!check_same_owner(p)) 4247 return -EPERM; 4248 4249 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4250 if (p->sched_reset_on_fork && !reset_on_fork) 4251 return -EPERM; 4252 } 4253 4254 if (user) { 4255 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4256 return -EINVAL; 4257 4258 retval = security_task_setscheduler(p); 4259 if (retval) 4260 return retval; 4261 } 4262 4263 /* 4264 * Make sure no PI-waiters arrive (or leave) while we are 4265 * changing the priority of the task: 4266 * 4267 * To be able to change p->policy safely, the appropriate 4268 * runqueue lock must be held. 4269 */ 4270 rq = task_rq_lock(p, &rf); 4271 update_rq_clock(rq); 4272 4273 /* 4274 * Changing the policy of the stop threads its a very bad idea: 4275 */ 4276 if (p == rq->stop) { 4277 task_rq_unlock(rq, p, &rf); 4278 return -EINVAL; 4279 } 4280 4281 /* 4282 * If not changing anything there's no need to proceed further, 4283 * but store a possible modification of reset_on_fork. 4284 */ 4285 if (unlikely(policy == p->policy)) { 4286 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4287 goto change; 4288 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4289 goto change; 4290 if (dl_policy(policy) && dl_param_changed(p, attr)) 4291 goto change; 4292 4293 p->sched_reset_on_fork = reset_on_fork; 4294 task_rq_unlock(rq, p, &rf); 4295 return 0; 4296 } 4297 change: 4298 4299 if (user) { 4300 #ifdef CONFIG_RT_GROUP_SCHED 4301 /* 4302 * Do not allow realtime tasks into groups that have no runtime 4303 * assigned. 4304 */ 4305 if (rt_bandwidth_enabled() && rt_policy(policy) && 4306 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4307 !task_group_is_autogroup(task_group(p))) { 4308 task_rq_unlock(rq, p, &rf); 4309 return -EPERM; 4310 } 4311 #endif 4312 #ifdef CONFIG_SMP 4313 if (dl_bandwidth_enabled() && dl_policy(policy) && 4314 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4315 cpumask_t *span = rq->rd->span; 4316 4317 /* 4318 * Don't allow tasks with an affinity mask smaller than 4319 * the entire root_domain to become SCHED_DEADLINE. We 4320 * will also fail if there's no bandwidth available. 4321 */ 4322 if (!cpumask_subset(span, &p->cpus_allowed) || 4323 rq->rd->dl_bw.bw == 0) { 4324 task_rq_unlock(rq, p, &rf); 4325 return -EPERM; 4326 } 4327 } 4328 #endif 4329 } 4330 4331 /* Re-check policy now with rq lock held: */ 4332 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4333 policy = oldpolicy = -1; 4334 task_rq_unlock(rq, p, &rf); 4335 goto recheck; 4336 } 4337 4338 /* 4339 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4340 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4341 * is available. 4342 */ 4343 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4344 task_rq_unlock(rq, p, &rf); 4345 return -EBUSY; 4346 } 4347 4348 p->sched_reset_on_fork = reset_on_fork; 4349 oldprio = p->prio; 4350 4351 if (pi) { 4352 /* 4353 * Take priority boosted tasks into account. If the new 4354 * effective priority is unchanged, we just store the new 4355 * normal parameters and do not touch the scheduler class and 4356 * the runqueue. This will be done when the task deboost 4357 * itself. 4358 */ 4359 new_effective_prio = rt_effective_prio(p, newprio); 4360 if (new_effective_prio == oldprio) 4361 queue_flags &= ~DEQUEUE_MOVE; 4362 } 4363 4364 queued = task_on_rq_queued(p); 4365 running = task_current(rq, p); 4366 if (queued) 4367 dequeue_task(rq, p, queue_flags); 4368 if (running) 4369 put_prev_task(rq, p); 4370 4371 prev_class = p->sched_class; 4372 __setscheduler(rq, p, attr, pi); 4373 4374 if (queued) { 4375 /* 4376 * We enqueue to tail when the priority of a task is 4377 * increased (user space view). 4378 */ 4379 if (oldprio < p->prio) 4380 queue_flags |= ENQUEUE_HEAD; 4381 4382 enqueue_task(rq, p, queue_flags); 4383 } 4384 if (running) 4385 set_curr_task(rq, p); 4386 4387 check_class_changed(rq, p, prev_class, oldprio); 4388 4389 /* Avoid rq from going away on us: */ 4390 preempt_disable(); 4391 task_rq_unlock(rq, p, &rf); 4392 4393 if (pi) 4394 rt_mutex_adjust_pi(p); 4395 4396 /* Run balance callbacks after we've adjusted the PI chain: */ 4397 balance_callback(rq); 4398 preempt_enable(); 4399 4400 return 0; 4401 } 4402 4403 static int _sched_setscheduler(struct task_struct *p, int policy, 4404 const struct sched_param *param, bool check) 4405 { 4406 struct sched_attr attr = { 4407 .sched_policy = policy, 4408 .sched_priority = param->sched_priority, 4409 .sched_nice = PRIO_TO_NICE(p->static_prio), 4410 }; 4411 4412 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4413 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4414 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4415 policy &= ~SCHED_RESET_ON_FORK; 4416 attr.sched_policy = policy; 4417 } 4418 4419 return __sched_setscheduler(p, &attr, check, true); 4420 } 4421 /** 4422 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4423 * @p: the task in question. 4424 * @policy: new policy. 4425 * @param: structure containing the new RT priority. 4426 * 4427 * Return: 0 on success. An error code otherwise. 4428 * 4429 * NOTE that the task may be already dead. 4430 */ 4431 int sched_setscheduler(struct task_struct *p, int policy, 4432 const struct sched_param *param) 4433 { 4434 return _sched_setscheduler(p, policy, param, true); 4435 } 4436 EXPORT_SYMBOL_GPL(sched_setscheduler); 4437 4438 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4439 { 4440 return __sched_setscheduler(p, attr, true, true); 4441 } 4442 EXPORT_SYMBOL_GPL(sched_setattr); 4443 4444 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4445 { 4446 return __sched_setscheduler(p, attr, false, true); 4447 } 4448 4449 /** 4450 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4451 * @p: the task in question. 4452 * @policy: new policy. 4453 * @param: structure containing the new RT priority. 4454 * 4455 * Just like sched_setscheduler, only don't bother checking if the 4456 * current context has permission. For example, this is needed in 4457 * stop_machine(): we create temporary high priority worker threads, 4458 * but our caller might not have that capability. 4459 * 4460 * Return: 0 on success. An error code otherwise. 4461 */ 4462 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4463 const struct sched_param *param) 4464 { 4465 return _sched_setscheduler(p, policy, param, false); 4466 } 4467 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4468 4469 static int 4470 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4471 { 4472 struct sched_param lparam; 4473 struct task_struct *p; 4474 int retval; 4475 4476 if (!param || pid < 0) 4477 return -EINVAL; 4478 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4479 return -EFAULT; 4480 4481 rcu_read_lock(); 4482 retval = -ESRCH; 4483 p = find_process_by_pid(pid); 4484 if (p != NULL) 4485 retval = sched_setscheduler(p, policy, &lparam); 4486 rcu_read_unlock(); 4487 4488 return retval; 4489 } 4490 4491 /* 4492 * Mimics kernel/events/core.c perf_copy_attr(). 4493 */ 4494 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4495 { 4496 u32 size; 4497 int ret; 4498 4499 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0)) 4500 return -EFAULT; 4501 4502 /* Zero the full structure, so that a short copy will be nice: */ 4503 memset(attr, 0, sizeof(*attr)); 4504 4505 ret = get_user(size, &uattr->size); 4506 if (ret) 4507 return ret; 4508 4509 /* Bail out on silly large: */ 4510 if (size > PAGE_SIZE) 4511 goto err_size; 4512 4513 /* ABI compatibility quirk: */ 4514 if (!size) 4515 size = SCHED_ATTR_SIZE_VER0; 4516 4517 if (size < SCHED_ATTR_SIZE_VER0) 4518 goto err_size; 4519 4520 /* 4521 * If we're handed a bigger struct than we know of, 4522 * ensure all the unknown bits are 0 - i.e. new 4523 * user-space does not rely on any kernel feature 4524 * extensions we dont know about yet. 4525 */ 4526 if (size > sizeof(*attr)) { 4527 unsigned char __user *addr; 4528 unsigned char __user *end; 4529 unsigned char val; 4530 4531 addr = (void __user *)uattr + sizeof(*attr); 4532 end = (void __user *)uattr + size; 4533 4534 for (; addr < end; addr++) { 4535 ret = get_user(val, addr); 4536 if (ret) 4537 return ret; 4538 if (val) 4539 goto err_size; 4540 } 4541 size = sizeof(*attr); 4542 } 4543 4544 ret = copy_from_user(attr, uattr, size); 4545 if (ret) 4546 return -EFAULT; 4547 4548 /* 4549 * XXX: Do we want to be lenient like existing syscalls; or do we want 4550 * to be strict and return an error on out-of-bounds values? 4551 */ 4552 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4553 4554 return 0; 4555 4556 err_size: 4557 put_user(sizeof(*attr), &uattr->size); 4558 return -E2BIG; 4559 } 4560 4561 /** 4562 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4563 * @pid: the pid in question. 4564 * @policy: new policy. 4565 * @param: structure containing the new RT priority. 4566 * 4567 * Return: 0 on success. An error code otherwise. 4568 */ 4569 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4570 { 4571 if (policy < 0) 4572 return -EINVAL; 4573 4574 return do_sched_setscheduler(pid, policy, param); 4575 } 4576 4577 /** 4578 * sys_sched_setparam - set/change the RT priority of a thread 4579 * @pid: the pid in question. 4580 * @param: structure containing the new RT priority. 4581 * 4582 * Return: 0 on success. An error code otherwise. 4583 */ 4584 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4585 { 4586 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4587 } 4588 4589 /** 4590 * sys_sched_setattr - same as above, but with extended sched_attr 4591 * @pid: the pid in question. 4592 * @uattr: structure containing the extended parameters. 4593 * @flags: for future extension. 4594 */ 4595 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4596 unsigned int, flags) 4597 { 4598 struct sched_attr attr; 4599 struct task_struct *p; 4600 int retval; 4601 4602 if (!uattr || pid < 0 || flags) 4603 return -EINVAL; 4604 4605 retval = sched_copy_attr(uattr, &attr); 4606 if (retval) 4607 return retval; 4608 4609 if ((int)attr.sched_policy < 0) 4610 return -EINVAL; 4611 4612 rcu_read_lock(); 4613 retval = -ESRCH; 4614 p = find_process_by_pid(pid); 4615 if (p != NULL) 4616 retval = sched_setattr(p, &attr); 4617 rcu_read_unlock(); 4618 4619 return retval; 4620 } 4621 4622 /** 4623 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4624 * @pid: the pid in question. 4625 * 4626 * Return: On success, the policy of the thread. Otherwise, a negative error 4627 * code. 4628 */ 4629 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4630 { 4631 struct task_struct *p; 4632 int retval; 4633 4634 if (pid < 0) 4635 return -EINVAL; 4636 4637 retval = -ESRCH; 4638 rcu_read_lock(); 4639 p = find_process_by_pid(pid); 4640 if (p) { 4641 retval = security_task_getscheduler(p); 4642 if (!retval) 4643 retval = p->policy 4644 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4645 } 4646 rcu_read_unlock(); 4647 return retval; 4648 } 4649 4650 /** 4651 * sys_sched_getparam - get the RT priority of a thread 4652 * @pid: the pid in question. 4653 * @param: structure containing the RT priority. 4654 * 4655 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4656 * code. 4657 */ 4658 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4659 { 4660 struct sched_param lp = { .sched_priority = 0 }; 4661 struct task_struct *p; 4662 int retval; 4663 4664 if (!param || pid < 0) 4665 return -EINVAL; 4666 4667 rcu_read_lock(); 4668 p = find_process_by_pid(pid); 4669 retval = -ESRCH; 4670 if (!p) 4671 goto out_unlock; 4672 4673 retval = security_task_getscheduler(p); 4674 if (retval) 4675 goto out_unlock; 4676 4677 if (task_has_rt_policy(p)) 4678 lp.sched_priority = p->rt_priority; 4679 rcu_read_unlock(); 4680 4681 /* 4682 * This one might sleep, we cannot do it with a spinlock held ... 4683 */ 4684 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4685 4686 return retval; 4687 4688 out_unlock: 4689 rcu_read_unlock(); 4690 return retval; 4691 } 4692 4693 static int sched_read_attr(struct sched_attr __user *uattr, 4694 struct sched_attr *attr, 4695 unsigned int usize) 4696 { 4697 int ret; 4698 4699 if (!access_ok(uattr, usize)) 4700 return -EFAULT; 4701 4702 /* 4703 * If we're handed a smaller struct than we know of, 4704 * ensure all the unknown bits are 0 - i.e. old 4705 * user-space does not get uncomplete information. 4706 */ 4707 if (usize < sizeof(*attr)) { 4708 unsigned char *addr; 4709 unsigned char *end; 4710 4711 addr = (void *)attr + usize; 4712 end = (void *)attr + sizeof(*attr); 4713 4714 for (; addr < end; addr++) { 4715 if (*addr) 4716 return -EFBIG; 4717 } 4718 4719 attr->size = usize; 4720 } 4721 4722 ret = copy_to_user(uattr, attr, attr->size); 4723 if (ret) 4724 return -EFAULT; 4725 4726 return 0; 4727 } 4728 4729 /** 4730 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4731 * @pid: the pid in question. 4732 * @uattr: structure containing the extended parameters. 4733 * @size: sizeof(attr) for fwd/bwd comp. 4734 * @flags: for future extension. 4735 */ 4736 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4737 unsigned int, size, unsigned int, flags) 4738 { 4739 struct sched_attr attr = { 4740 .size = sizeof(struct sched_attr), 4741 }; 4742 struct task_struct *p; 4743 int retval; 4744 4745 if (!uattr || pid < 0 || size > PAGE_SIZE || 4746 size < SCHED_ATTR_SIZE_VER0 || flags) 4747 return -EINVAL; 4748 4749 rcu_read_lock(); 4750 p = find_process_by_pid(pid); 4751 retval = -ESRCH; 4752 if (!p) 4753 goto out_unlock; 4754 4755 retval = security_task_getscheduler(p); 4756 if (retval) 4757 goto out_unlock; 4758 4759 attr.sched_policy = p->policy; 4760 if (p->sched_reset_on_fork) 4761 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4762 if (task_has_dl_policy(p)) 4763 __getparam_dl(p, &attr); 4764 else if (task_has_rt_policy(p)) 4765 attr.sched_priority = p->rt_priority; 4766 else 4767 attr.sched_nice = task_nice(p); 4768 4769 rcu_read_unlock(); 4770 4771 retval = sched_read_attr(uattr, &attr, size); 4772 return retval; 4773 4774 out_unlock: 4775 rcu_read_unlock(); 4776 return retval; 4777 } 4778 4779 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4780 { 4781 cpumask_var_t cpus_allowed, new_mask; 4782 struct task_struct *p; 4783 int retval; 4784 4785 rcu_read_lock(); 4786 4787 p = find_process_by_pid(pid); 4788 if (!p) { 4789 rcu_read_unlock(); 4790 return -ESRCH; 4791 } 4792 4793 /* Prevent p going away */ 4794 get_task_struct(p); 4795 rcu_read_unlock(); 4796 4797 if (p->flags & PF_NO_SETAFFINITY) { 4798 retval = -EINVAL; 4799 goto out_put_task; 4800 } 4801 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4802 retval = -ENOMEM; 4803 goto out_put_task; 4804 } 4805 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4806 retval = -ENOMEM; 4807 goto out_free_cpus_allowed; 4808 } 4809 retval = -EPERM; 4810 if (!check_same_owner(p)) { 4811 rcu_read_lock(); 4812 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4813 rcu_read_unlock(); 4814 goto out_free_new_mask; 4815 } 4816 rcu_read_unlock(); 4817 } 4818 4819 retval = security_task_setscheduler(p); 4820 if (retval) 4821 goto out_free_new_mask; 4822 4823 4824 cpuset_cpus_allowed(p, cpus_allowed); 4825 cpumask_and(new_mask, in_mask, cpus_allowed); 4826 4827 /* 4828 * Since bandwidth control happens on root_domain basis, 4829 * if admission test is enabled, we only admit -deadline 4830 * tasks allowed to run on all the CPUs in the task's 4831 * root_domain. 4832 */ 4833 #ifdef CONFIG_SMP 4834 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4835 rcu_read_lock(); 4836 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4837 retval = -EBUSY; 4838 rcu_read_unlock(); 4839 goto out_free_new_mask; 4840 } 4841 rcu_read_unlock(); 4842 } 4843 #endif 4844 again: 4845 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4846 4847 if (!retval) { 4848 cpuset_cpus_allowed(p, cpus_allowed); 4849 if (!cpumask_subset(new_mask, cpus_allowed)) { 4850 /* 4851 * We must have raced with a concurrent cpuset 4852 * update. Just reset the cpus_allowed to the 4853 * cpuset's cpus_allowed 4854 */ 4855 cpumask_copy(new_mask, cpus_allowed); 4856 goto again; 4857 } 4858 } 4859 out_free_new_mask: 4860 free_cpumask_var(new_mask); 4861 out_free_cpus_allowed: 4862 free_cpumask_var(cpus_allowed); 4863 out_put_task: 4864 put_task_struct(p); 4865 return retval; 4866 } 4867 4868 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4869 struct cpumask *new_mask) 4870 { 4871 if (len < cpumask_size()) 4872 cpumask_clear(new_mask); 4873 else if (len > cpumask_size()) 4874 len = cpumask_size(); 4875 4876 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4877 } 4878 4879 /** 4880 * sys_sched_setaffinity - set the CPU affinity of a process 4881 * @pid: pid of the process 4882 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4883 * @user_mask_ptr: user-space pointer to the new CPU mask 4884 * 4885 * Return: 0 on success. An error code otherwise. 4886 */ 4887 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4888 unsigned long __user *, user_mask_ptr) 4889 { 4890 cpumask_var_t new_mask; 4891 int retval; 4892 4893 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4894 return -ENOMEM; 4895 4896 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4897 if (retval == 0) 4898 retval = sched_setaffinity(pid, new_mask); 4899 free_cpumask_var(new_mask); 4900 return retval; 4901 } 4902 4903 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4904 { 4905 struct task_struct *p; 4906 unsigned long flags; 4907 int retval; 4908 4909 rcu_read_lock(); 4910 4911 retval = -ESRCH; 4912 p = find_process_by_pid(pid); 4913 if (!p) 4914 goto out_unlock; 4915 4916 retval = security_task_getscheduler(p); 4917 if (retval) 4918 goto out_unlock; 4919 4920 raw_spin_lock_irqsave(&p->pi_lock, flags); 4921 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4922 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4923 4924 out_unlock: 4925 rcu_read_unlock(); 4926 4927 return retval; 4928 } 4929 4930 /** 4931 * sys_sched_getaffinity - get the CPU affinity of a process 4932 * @pid: pid of the process 4933 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4934 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4935 * 4936 * Return: size of CPU mask copied to user_mask_ptr on success. An 4937 * error code otherwise. 4938 */ 4939 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4940 unsigned long __user *, user_mask_ptr) 4941 { 4942 int ret; 4943 cpumask_var_t mask; 4944 4945 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4946 return -EINVAL; 4947 if (len & (sizeof(unsigned long)-1)) 4948 return -EINVAL; 4949 4950 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4951 return -ENOMEM; 4952 4953 ret = sched_getaffinity(pid, mask); 4954 if (ret == 0) { 4955 unsigned int retlen = min(len, cpumask_size()); 4956 4957 if (copy_to_user(user_mask_ptr, mask, retlen)) 4958 ret = -EFAULT; 4959 else 4960 ret = retlen; 4961 } 4962 free_cpumask_var(mask); 4963 4964 return ret; 4965 } 4966 4967 /** 4968 * sys_sched_yield - yield the current processor to other threads. 4969 * 4970 * This function yields the current CPU to other tasks. If there are no 4971 * other threads running on this CPU then this function will return. 4972 * 4973 * Return: 0. 4974 */ 4975 static void do_sched_yield(void) 4976 { 4977 struct rq_flags rf; 4978 struct rq *rq; 4979 4980 rq = this_rq_lock_irq(&rf); 4981 4982 schedstat_inc(rq->yld_count); 4983 current->sched_class->yield_task(rq); 4984 4985 /* 4986 * Since we are going to call schedule() anyway, there's 4987 * no need to preempt or enable interrupts: 4988 */ 4989 preempt_disable(); 4990 rq_unlock(rq, &rf); 4991 sched_preempt_enable_no_resched(); 4992 4993 schedule(); 4994 } 4995 4996 SYSCALL_DEFINE0(sched_yield) 4997 { 4998 do_sched_yield(); 4999 return 0; 5000 } 5001 5002 #ifndef CONFIG_PREEMPT 5003 int __sched _cond_resched(void) 5004 { 5005 if (should_resched(0)) { 5006 preempt_schedule_common(); 5007 return 1; 5008 } 5009 rcu_all_qs(); 5010 return 0; 5011 } 5012 EXPORT_SYMBOL(_cond_resched); 5013 #endif 5014 5015 /* 5016 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5017 * call schedule, and on return reacquire the lock. 5018 * 5019 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 5020 * operations here to prevent schedule() from being called twice (once via 5021 * spin_unlock(), once by hand). 5022 */ 5023 int __cond_resched_lock(spinlock_t *lock) 5024 { 5025 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5026 int ret = 0; 5027 5028 lockdep_assert_held(lock); 5029 5030 if (spin_needbreak(lock) || resched) { 5031 spin_unlock(lock); 5032 if (resched) 5033 preempt_schedule_common(); 5034 else 5035 cpu_relax(); 5036 ret = 1; 5037 spin_lock(lock); 5038 } 5039 return ret; 5040 } 5041 EXPORT_SYMBOL(__cond_resched_lock); 5042 5043 /** 5044 * yield - yield the current processor to other threads. 5045 * 5046 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5047 * 5048 * The scheduler is at all times free to pick the calling task as the most 5049 * eligible task to run, if removing the yield() call from your code breaks 5050 * it, its already broken. 5051 * 5052 * Typical broken usage is: 5053 * 5054 * while (!event) 5055 * yield(); 5056 * 5057 * where one assumes that yield() will let 'the other' process run that will 5058 * make event true. If the current task is a SCHED_FIFO task that will never 5059 * happen. Never use yield() as a progress guarantee!! 5060 * 5061 * If you want to use yield() to wait for something, use wait_event(). 5062 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5063 * If you still want to use yield(), do not! 5064 */ 5065 void __sched yield(void) 5066 { 5067 set_current_state(TASK_RUNNING); 5068 do_sched_yield(); 5069 } 5070 EXPORT_SYMBOL(yield); 5071 5072 /** 5073 * yield_to - yield the current processor to another thread in 5074 * your thread group, or accelerate that thread toward the 5075 * processor it's on. 5076 * @p: target task 5077 * @preempt: whether task preemption is allowed or not 5078 * 5079 * It's the caller's job to ensure that the target task struct 5080 * can't go away on us before we can do any checks. 5081 * 5082 * Return: 5083 * true (>0) if we indeed boosted the target task. 5084 * false (0) if we failed to boost the target. 5085 * -ESRCH if there's no task to yield to. 5086 */ 5087 int __sched yield_to(struct task_struct *p, bool preempt) 5088 { 5089 struct task_struct *curr = current; 5090 struct rq *rq, *p_rq; 5091 unsigned long flags; 5092 int yielded = 0; 5093 5094 local_irq_save(flags); 5095 rq = this_rq(); 5096 5097 again: 5098 p_rq = task_rq(p); 5099 /* 5100 * If we're the only runnable task on the rq and target rq also 5101 * has only one task, there's absolutely no point in yielding. 5102 */ 5103 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5104 yielded = -ESRCH; 5105 goto out_irq; 5106 } 5107 5108 double_rq_lock(rq, p_rq); 5109 if (task_rq(p) != p_rq) { 5110 double_rq_unlock(rq, p_rq); 5111 goto again; 5112 } 5113 5114 if (!curr->sched_class->yield_to_task) 5115 goto out_unlock; 5116 5117 if (curr->sched_class != p->sched_class) 5118 goto out_unlock; 5119 5120 if (task_running(p_rq, p) || p->state) 5121 goto out_unlock; 5122 5123 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5124 if (yielded) { 5125 schedstat_inc(rq->yld_count); 5126 /* 5127 * Make p's CPU reschedule; pick_next_entity takes care of 5128 * fairness. 5129 */ 5130 if (preempt && rq != p_rq) 5131 resched_curr(p_rq); 5132 } 5133 5134 out_unlock: 5135 double_rq_unlock(rq, p_rq); 5136 out_irq: 5137 local_irq_restore(flags); 5138 5139 if (yielded > 0) 5140 schedule(); 5141 5142 return yielded; 5143 } 5144 EXPORT_SYMBOL_GPL(yield_to); 5145 5146 int io_schedule_prepare(void) 5147 { 5148 int old_iowait = current->in_iowait; 5149 5150 current->in_iowait = 1; 5151 blk_schedule_flush_plug(current); 5152 5153 return old_iowait; 5154 } 5155 5156 void io_schedule_finish(int token) 5157 { 5158 current->in_iowait = token; 5159 } 5160 5161 /* 5162 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5163 * that process accounting knows that this is a task in IO wait state. 5164 */ 5165 long __sched io_schedule_timeout(long timeout) 5166 { 5167 int token; 5168 long ret; 5169 5170 token = io_schedule_prepare(); 5171 ret = schedule_timeout(timeout); 5172 io_schedule_finish(token); 5173 5174 return ret; 5175 } 5176 EXPORT_SYMBOL(io_schedule_timeout); 5177 5178 void io_schedule(void) 5179 { 5180 int token; 5181 5182 token = io_schedule_prepare(); 5183 schedule(); 5184 io_schedule_finish(token); 5185 } 5186 EXPORT_SYMBOL(io_schedule); 5187 5188 /** 5189 * sys_sched_get_priority_max - return maximum RT priority. 5190 * @policy: scheduling class. 5191 * 5192 * Return: On success, this syscall returns the maximum 5193 * rt_priority that can be used by a given scheduling class. 5194 * On failure, a negative error code is returned. 5195 */ 5196 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5197 { 5198 int ret = -EINVAL; 5199 5200 switch (policy) { 5201 case SCHED_FIFO: 5202 case SCHED_RR: 5203 ret = MAX_USER_RT_PRIO-1; 5204 break; 5205 case SCHED_DEADLINE: 5206 case SCHED_NORMAL: 5207 case SCHED_BATCH: 5208 case SCHED_IDLE: 5209 ret = 0; 5210 break; 5211 } 5212 return ret; 5213 } 5214 5215 /** 5216 * sys_sched_get_priority_min - return minimum RT priority. 5217 * @policy: scheduling class. 5218 * 5219 * Return: On success, this syscall returns the minimum 5220 * rt_priority that can be used by a given scheduling class. 5221 * On failure, a negative error code is returned. 5222 */ 5223 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5224 { 5225 int ret = -EINVAL; 5226 5227 switch (policy) { 5228 case SCHED_FIFO: 5229 case SCHED_RR: 5230 ret = 1; 5231 break; 5232 case SCHED_DEADLINE: 5233 case SCHED_NORMAL: 5234 case SCHED_BATCH: 5235 case SCHED_IDLE: 5236 ret = 0; 5237 } 5238 return ret; 5239 } 5240 5241 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5242 { 5243 struct task_struct *p; 5244 unsigned int time_slice; 5245 struct rq_flags rf; 5246 struct rq *rq; 5247 int retval; 5248 5249 if (pid < 0) 5250 return -EINVAL; 5251 5252 retval = -ESRCH; 5253 rcu_read_lock(); 5254 p = find_process_by_pid(pid); 5255 if (!p) 5256 goto out_unlock; 5257 5258 retval = security_task_getscheduler(p); 5259 if (retval) 5260 goto out_unlock; 5261 5262 rq = task_rq_lock(p, &rf); 5263 time_slice = 0; 5264 if (p->sched_class->get_rr_interval) 5265 time_slice = p->sched_class->get_rr_interval(rq, p); 5266 task_rq_unlock(rq, p, &rf); 5267 5268 rcu_read_unlock(); 5269 jiffies_to_timespec64(time_slice, t); 5270 return 0; 5271 5272 out_unlock: 5273 rcu_read_unlock(); 5274 return retval; 5275 } 5276 5277 /** 5278 * sys_sched_rr_get_interval - return the default timeslice of a process. 5279 * @pid: pid of the process. 5280 * @interval: userspace pointer to the timeslice value. 5281 * 5282 * this syscall writes the default timeslice value of a given process 5283 * into the user-space timespec buffer. A value of '0' means infinity. 5284 * 5285 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5286 * an error code. 5287 */ 5288 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5289 struct __kernel_timespec __user *, interval) 5290 { 5291 struct timespec64 t; 5292 int retval = sched_rr_get_interval(pid, &t); 5293 5294 if (retval == 0) 5295 retval = put_timespec64(&t, interval); 5296 5297 return retval; 5298 } 5299 5300 #ifdef CONFIG_COMPAT_32BIT_TIME 5301 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 5302 struct old_timespec32 __user *, interval) 5303 { 5304 struct timespec64 t; 5305 int retval = sched_rr_get_interval(pid, &t); 5306 5307 if (retval == 0) 5308 retval = put_old_timespec32(&t, interval); 5309 return retval; 5310 } 5311 #endif 5312 5313 void sched_show_task(struct task_struct *p) 5314 { 5315 unsigned long free = 0; 5316 int ppid; 5317 5318 if (!try_get_task_stack(p)) 5319 return; 5320 5321 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5322 5323 if (p->state == TASK_RUNNING) 5324 printk(KERN_CONT " running task "); 5325 #ifdef CONFIG_DEBUG_STACK_USAGE 5326 free = stack_not_used(p); 5327 #endif 5328 ppid = 0; 5329 rcu_read_lock(); 5330 if (pid_alive(p)) 5331 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5332 rcu_read_unlock(); 5333 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5334 task_pid_nr(p), ppid, 5335 (unsigned long)task_thread_info(p)->flags); 5336 5337 print_worker_info(KERN_INFO, p); 5338 show_stack(p, NULL); 5339 put_task_stack(p); 5340 } 5341 EXPORT_SYMBOL_GPL(sched_show_task); 5342 5343 static inline bool 5344 state_filter_match(unsigned long state_filter, struct task_struct *p) 5345 { 5346 /* no filter, everything matches */ 5347 if (!state_filter) 5348 return true; 5349 5350 /* filter, but doesn't match */ 5351 if (!(p->state & state_filter)) 5352 return false; 5353 5354 /* 5355 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5356 * TASK_KILLABLE). 5357 */ 5358 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5359 return false; 5360 5361 return true; 5362 } 5363 5364 5365 void show_state_filter(unsigned long state_filter) 5366 { 5367 struct task_struct *g, *p; 5368 5369 #if BITS_PER_LONG == 32 5370 printk(KERN_INFO 5371 " task PC stack pid father\n"); 5372 #else 5373 printk(KERN_INFO 5374 " task PC stack pid father\n"); 5375 #endif 5376 rcu_read_lock(); 5377 for_each_process_thread(g, p) { 5378 /* 5379 * reset the NMI-timeout, listing all files on a slow 5380 * console might take a lot of time: 5381 * Also, reset softlockup watchdogs on all CPUs, because 5382 * another CPU might be blocked waiting for us to process 5383 * an IPI. 5384 */ 5385 touch_nmi_watchdog(); 5386 touch_all_softlockup_watchdogs(); 5387 if (state_filter_match(state_filter, p)) 5388 sched_show_task(p); 5389 } 5390 5391 #ifdef CONFIG_SCHED_DEBUG 5392 if (!state_filter) 5393 sysrq_sched_debug_show(); 5394 #endif 5395 rcu_read_unlock(); 5396 /* 5397 * Only show locks if all tasks are dumped: 5398 */ 5399 if (!state_filter) 5400 debug_show_all_locks(); 5401 } 5402 5403 /** 5404 * init_idle - set up an idle thread for a given CPU 5405 * @idle: task in question 5406 * @cpu: CPU the idle task belongs to 5407 * 5408 * NOTE: this function does not set the idle thread's NEED_RESCHED 5409 * flag, to make booting more robust. 5410 */ 5411 void init_idle(struct task_struct *idle, int cpu) 5412 { 5413 struct rq *rq = cpu_rq(cpu); 5414 unsigned long flags; 5415 5416 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5417 raw_spin_lock(&rq->lock); 5418 5419 __sched_fork(0, idle); 5420 idle->state = TASK_RUNNING; 5421 idle->se.exec_start = sched_clock(); 5422 idle->flags |= PF_IDLE; 5423 5424 kasan_unpoison_task_stack(idle); 5425 5426 #ifdef CONFIG_SMP 5427 /* 5428 * Its possible that init_idle() gets called multiple times on a task, 5429 * in that case do_set_cpus_allowed() will not do the right thing. 5430 * 5431 * And since this is boot we can forgo the serialization. 5432 */ 5433 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5434 #endif 5435 /* 5436 * We're having a chicken and egg problem, even though we are 5437 * holding rq->lock, the CPU isn't yet set to this CPU so the 5438 * lockdep check in task_group() will fail. 5439 * 5440 * Similar case to sched_fork(). / Alternatively we could 5441 * use task_rq_lock() here and obtain the other rq->lock. 5442 * 5443 * Silence PROVE_RCU 5444 */ 5445 rcu_read_lock(); 5446 __set_task_cpu(idle, cpu); 5447 rcu_read_unlock(); 5448 5449 rq->curr = rq->idle = idle; 5450 idle->on_rq = TASK_ON_RQ_QUEUED; 5451 #ifdef CONFIG_SMP 5452 idle->on_cpu = 1; 5453 #endif 5454 raw_spin_unlock(&rq->lock); 5455 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5456 5457 /* Set the preempt count _outside_ the spinlocks! */ 5458 init_idle_preempt_count(idle, cpu); 5459 5460 /* 5461 * The idle tasks have their own, simple scheduling class: 5462 */ 5463 idle->sched_class = &idle_sched_class; 5464 ftrace_graph_init_idle_task(idle, cpu); 5465 vtime_init_idle(idle, cpu); 5466 #ifdef CONFIG_SMP 5467 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5468 #endif 5469 } 5470 5471 #ifdef CONFIG_SMP 5472 5473 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5474 const struct cpumask *trial) 5475 { 5476 int ret = 1; 5477 5478 if (!cpumask_weight(cur)) 5479 return ret; 5480 5481 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5482 5483 return ret; 5484 } 5485 5486 int task_can_attach(struct task_struct *p, 5487 const struct cpumask *cs_cpus_allowed) 5488 { 5489 int ret = 0; 5490 5491 /* 5492 * Kthreads which disallow setaffinity shouldn't be moved 5493 * to a new cpuset; we don't want to change their CPU 5494 * affinity and isolating such threads by their set of 5495 * allowed nodes is unnecessary. Thus, cpusets are not 5496 * applicable for such threads. This prevents checking for 5497 * success of set_cpus_allowed_ptr() on all attached tasks 5498 * before cpus_allowed may be changed. 5499 */ 5500 if (p->flags & PF_NO_SETAFFINITY) { 5501 ret = -EINVAL; 5502 goto out; 5503 } 5504 5505 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5506 cs_cpus_allowed)) 5507 ret = dl_task_can_attach(p, cs_cpus_allowed); 5508 5509 out: 5510 return ret; 5511 } 5512 5513 bool sched_smp_initialized __read_mostly; 5514 5515 #ifdef CONFIG_NUMA_BALANCING 5516 /* Migrate current task p to target_cpu */ 5517 int migrate_task_to(struct task_struct *p, int target_cpu) 5518 { 5519 struct migration_arg arg = { p, target_cpu }; 5520 int curr_cpu = task_cpu(p); 5521 5522 if (curr_cpu == target_cpu) 5523 return 0; 5524 5525 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5526 return -EINVAL; 5527 5528 /* TODO: This is not properly updating schedstats */ 5529 5530 trace_sched_move_numa(p, curr_cpu, target_cpu); 5531 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5532 } 5533 5534 /* 5535 * Requeue a task on a given node and accurately track the number of NUMA 5536 * tasks on the runqueues 5537 */ 5538 void sched_setnuma(struct task_struct *p, int nid) 5539 { 5540 bool queued, running; 5541 struct rq_flags rf; 5542 struct rq *rq; 5543 5544 rq = task_rq_lock(p, &rf); 5545 queued = task_on_rq_queued(p); 5546 running = task_current(rq, p); 5547 5548 if (queued) 5549 dequeue_task(rq, p, DEQUEUE_SAVE); 5550 if (running) 5551 put_prev_task(rq, p); 5552 5553 p->numa_preferred_nid = nid; 5554 5555 if (queued) 5556 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5557 if (running) 5558 set_curr_task(rq, p); 5559 task_rq_unlock(rq, p, &rf); 5560 } 5561 #endif /* CONFIG_NUMA_BALANCING */ 5562 5563 #ifdef CONFIG_HOTPLUG_CPU 5564 /* 5565 * Ensure that the idle task is using init_mm right before its CPU goes 5566 * offline. 5567 */ 5568 void idle_task_exit(void) 5569 { 5570 struct mm_struct *mm = current->active_mm; 5571 5572 BUG_ON(cpu_online(smp_processor_id())); 5573 5574 if (mm != &init_mm) { 5575 switch_mm(mm, &init_mm, current); 5576 current->active_mm = &init_mm; 5577 finish_arch_post_lock_switch(); 5578 } 5579 mmdrop(mm); 5580 } 5581 5582 /* 5583 * Since this CPU is going 'away' for a while, fold any nr_active delta 5584 * we might have. Assumes we're called after migrate_tasks() so that the 5585 * nr_active count is stable. We need to take the teardown thread which 5586 * is calling this into account, so we hand in adjust = 1 to the load 5587 * calculation. 5588 * 5589 * Also see the comment "Global load-average calculations". 5590 */ 5591 static void calc_load_migrate(struct rq *rq) 5592 { 5593 long delta = calc_load_fold_active(rq, 1); 5594 if (delta) 5595 atomic_long_add(delta, &calc_load_tasks); 5596 } 5597 5598 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5599 { 5600 } 5601 5602 static const struct sched_class fake_sched_class = { 5603 .put_prev_task = put_prev_task_fake, 5604 }; 5605 5606 static struct task_struct fake_task = { 5607 /* 5608 * Avoid pull_{rt,dl}_task() 5609 */ 5610 .prio = MAX_PRIO + 1, 5611 .sched_class = &fake_sched_class, 5612 }; 5613 5614 /* 5615 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5616 * try_to_wake_up()->select_task_rq(). 5617 * 5618 * Called with rq->lock held even though we'er in stop_machine() and 5619 * there's no concurrency possible, we hold the required locks anyway 5620 * because of lock validation efforts. 5621 */ 5622 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5623 { 5624 struct rq *rq = dead_rq; 5625 struct task_struct *next, *stop = rq->stop; 5626 struct rq_flags orf = *rf; 5627 int dest_cpu; 5628 5629 /* 5630 * Fudge the rq selection such that the below task selection loop 5631 * doesn't get stuck on the currently eligible stop task. 5632 * 5633 * We're currently inside stop_machine() and the rq is either stuck 5634 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5635 * either way we should never end up calling schedule() until we're 5636 * done here. 5637 */ 5638 rq->stop = NULL; 5639 5640 /* 5641 * put_prev_task() and pick_next_task() sched 5642 * class method both need to have an up-to-date 5643 * value of rq->clock[_task] 5644 */ 5645 update_rq_clock(rq); 5646 5647 for (;;) { 5648 /* 5649 * There's this thread running, bail when that's the only 5650 * remaining thread: 5651 */ 5652 if (rq->nr_running == 1) 5653 break; 5654 5655 /* 5656 * pick_next_task() assumes pinned rq->lock: 5657 */ 5658 next = pick_next_task(rq, &fake_task, rf); 5659 BUG_ON(!next); 5660 put_prev_task(rq, next); 5661 5662 /* 5663 * Rules for changing task_struct::cpus_allowed are holding 5664 * both pi_lock and rq->lock, such that holding either 5665 * stabilizes the mask. 5666 * 5667 * Drop rq->lock is not quite as disastrous as it usually is 5668 * because !cpu_active at this point, which means load-balance 5669 * will not interfere. Also, stop-machine. 5670 */ 5671 rq_unlock(rq, rf); 5672 raw_spin_lock(&next->pi_lock); 5673 rq_relock(rq, rf); 5674 5675 /* 5676 * Since we're inside stop-machine, _nothing_ should have 5677 * changed the task, WARN if weird stuff happened, because in 5678 * that case the above rq->lock drop is a fail too. 5679 */ 5680 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5681 raw_spin_unlock(&next->pi_lock); 5682 continue; 5683 } 5684 5685 /* Find suitable destination for @next, with force if needed. */ 5686 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5687 rq = __migrate_task(rq, rf, next, dest_cpu); 5688 if (rq != dead_rq) { 5689 rq_unlock(rq, rf); 5690 rq = dead_rq; 5691 *rf = orf; 5692 rq_relock(rq, rf); 5693 } 5694 raw_spin_unlock(&next->pi_lock); 5695 } 5696 5697 rq->stop = stop; 5698 } 5699 #endif /* CONFIG_HOTPLUG_CPU */ 5700 5701 void set_rq_online(struct rq *rq) 5702 { 5703 if (!rq->online) { 5704 const struct sched_class *class; 5705 5706 cpumask_set_cpu(rq->cpu, rq->rd->online); 5707 rq->online = 1; 5708 5709 for_each_class(class) { 5710 if (class->rq_online) 5711 class->rq_online(rq); 5712 } 5713 } 5714 } 5715 5716 void set_rq_offline(struct rq *rq) 5717 { 5718 if (rq->online) { 5719 const struct sched_class *class; 5720 5721 for_each_class(class) { 5722 if (class->rq_offline) 5723 class->rq_offline(rq); 5724 } 5725 5726 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5727 rq->online = 0; 5728 } 5729 } 5730 5731 /* 5732 * used to mark begin/end of suspend/resume: 5733 */ 5734 static int num_cpus_frozen; 5735 5736 /* 5737 * Update cpusets according to cpu_active mask. If cpusets are 5738 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5739 * around partition_sched_domains(). 5740 * 5741 * If we come here as part of a suspend/resume, don't touch cpusets because we 5742 * want to restore it back to its original state upon resume anyway. 5743 */ 5744 static void cpuset_cpu_active(void) 5745 { 5746 if (cpuhp_tasks_frozen) { 5747 /* 5748 * num_cpus_frozen tracks how many CPUs are involved in suspend 5749 * resume sequence. As long as this is not the last online 5750 * operation in the resume sequence, just build a single sched 5751 * domain, ignoring cpusets. 5752 */ 5753 partition_sched_domains(1, NULL, NULL); 5754 if (--num_cpus_frozen) 5755 return; 5756 /* 5757 * This is the last CPU online operation. So fall through and 5758 * restore the original sched domains by considering the 5759 * cpuset configurations. 5760 */ 5761 cpuset_force_rebuild(); 5762 } 5763 cpuset_update_active_cpus(); 5764 } 5765 5766 static int cpuset_cpu_inactive(unsigned int cpu) 5767 { 5768 if (!cpuhp_tasks_frozen) { 5769 if (dl_cpu_busy(cpu)) 5770 return -EBUSY; 5771 cpuset_update_active_cpus(); 5772 } else { 5773 num_cpus_frozen++; 5774 partition_sched_domains(1, NULL, NULL); 5775 } 5776 return 0; 5777 } 5778 5779 int sched_cpu_activate(unsigned int cpu) 5780 { 5781 struct rq *rq = cpu_rq(cpu); 5782 struct rq_flags rf; 5783 5784 #ifdef CONFIG_SCHED_SMT 5785 /* 5786 * When going up, increment the number of cores with SMT present. 5787 */ 5788 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 5789 static_branch_inc_cpuslocked(&sched_smt_present); 5790 #endif 5791 set_cpu_active(cpu, true); 5792 5793 if (sched_smp_initialized) { 5794 sched_domains_numa_masks_set(cpu); 5795 cpuset_cpu_active(); 5796 } 5797 5798 /* 5799 * Put the rq online, if not already. This happens: 5800 * 5801 * 1) In the early boot process, because we build the real domains 5802 * after all CPUs have been brought up. 5803 * 5804 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5805 * domains. 5806 */ 5807 rq_lock_irqsave(rq, &rf); 5808 if (rq->rd) { 5809 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5810 set_rq_online(rq); 5811 } 5812 rq_unlock_irqrestore(rq, &rf); 5813 5814 update_max_interval(); 5815 5816 return 0; 5817 } 5818 5819 int sched_cpu_deactivate(unsigned int cpu) 5820 { 5821 int ret; 5822 5823 set_cpu_active(cpu, false); 5824 /* 5825 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5826 * users of this state to go away such that all new such users will 5827 * observe it. 5828 * 5829 * Do sync before park smpboot threads to take care the rcu boost case. 5830 */ 5831 synchronize_rcu(); 5832 5833 #ifdef CONFIG_SCHED_SMT 5834 /* 5835 * When going down, decrement the number of cores with SMT present. 5836 */ 5837 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 5838 static_branch_dec_cpuslocked(&sched_smt_present); 5839 #endif 5840 5841 if (!sched_smp_initialized) 5842 return 0; 5843 5844 ret = cpuset_cpu_inactive(cpu); 5845 if (ret) { 5846 set_cpu_active(cpu, true); 5847 return ret; 5848 } 5849 sched_domains_numa_masks_clear(cpu); 5850 return 0; 5851 } 5852 5853 static void sched_rq_cpu_starting(unsigned int cpu) 5854 { 5855 struct rq *rq = cpu_rq(cpu); 5856 5857 rq->calc_load_update = calc_load_update; 5858 update_max_interval(); 5859 } 5860 5861 int sched_cpu_starting(unsigned int cpu) 5862 { 5863 sched_rq_cpu_starting(cpu); 5864 sched_tick_start(cpu); 5865 return 0; 5866 } 5867 5868 #ifdef CONFIG_HOTPLUG_CPU 5869 int sched_cpu_dying(unsigned int cpu) 5870 { 5871 struct rq *rq = cpu_rq(cpu); 5872 struct rq_flags rf; 5873 5874 /* Handle pending wakeups and then migrate everything off */ 5875 sched_ttwu_pending(); 5876 sched_tick_stop(cpu); 5877 5878 rq_lock_irqsave(rq, &rf); 5879 if (rq->rd) { 5880 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5881 set_rq_offline(rq); 5882 } 5883 migrate_tasks(rq, &rf); 5884 BUG_ON(rq->nr_running != 1); 5885 rq_unlock_irqrestore(rq, &rf); 5886 5887 calc_load_migrate(rq); 5888 update_max_interval(); 5889 nohz_balance_exit_idle(rq); 5890 hrtick_clear(rq); 5891 return 0; 5892 } 5893 #endif 5894 5895 void __init sched_init_smp(void) 5896 { 5897 sched_init_numa(); 5898 5899 /* 5900 * There's no userspace yet to cause hotplug operations; hence all the 5901 * CPU masks are stable and all blatant races in the below code cannot 5902 * happen. 5903 */ 5904 mutex_lock(&sched_domains_mutex); 5905 sched_init_domains(cpu_active_mask); 5906 mutex_unlock(&sched_domains_mutex); 5907 5908 /* Move init over to a non-isolated CPU */ 5909 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5910 BUG(); 5911 sched_init_granularity(); 5912 5913 init_sched_rt_class(); 5914 init_sched_dl_class(); 5915 5916 sched_smp_initialized = true; 5917 } 5918 5919 static int __init migration_init(void) 5920 { 5921 sched_rq_cpu_starting(smp_processor_id()); 5922 return 0; 5923 } 5924 early_initcall(migration_init); 5925 5926 #else 5927 void __init sched_init_smp(void) 5928 { 5929 sched_init_granularity(); 5930 } 5931 #endif /* CONFIG_SMP */ 5932 5933 int in_sched_functions(unsigned long addr) 5934 { 5935 return in_lock_functions(addr) || 5936 (addr >= (unsigned long)__sched_text_start 5937 && addr < (unsigned long)__sched_text_end); 5938 } 5939 5940 #ifdef CONFIG_CGROUP_SCHED 5941 /* 5942 * Default task group. 5943 * Every task in system belongs to this group at bootup. 5944 */ 5945 struct task_group root_task_group; 5946 LIST_HEAD(task_groups); 5947 5948 /* Cacheline aligned slab cache for task_group */ 5949 static struct kmem_cache *task_group_cache __read_mostly; 5950 #endif 5951 5952 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5953 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5954 5955 void __init sched_init(void) 5956 { 5957 int i, j; 5958 unsigned long alloc_size = 0, ptr; 5959 5960 wait_bit_init(); 5961 5962 #ifdef CONFIG_FAIR_GROUP_SCHED 5963 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5964 #endif 5965 #ifdef CONFIG_RT_GROUP_SCHED 5966 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5967 #endif 5968 if (alloc_size) { 5969 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5970 5971 #ifdef CONFIG_FAIR_GROUP_SCHED 5972 root_task_group.se = (struct sched_entity **)ptr; 5973 ptr += nr_cpu_ids * sizeof(void **); 5974 5975 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5976 ptr += nr_cpu_ids * sizeof(void **); 5977 5978 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5979 #ifdef CONFIG_RT_GROUP_SCHED 5980 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5981 ptr += nr_cpu_ids * sizeof(void **); 5982 5983 root_task_group.rt_rq = (struct rt_rq **)ptr; 5984 ptr += nr_cpu_ids * sizeof(void **); 5985 5986 #endif /* CONFIG_RT_GROUP_SCHED */ 5987 } 5988 #ifdef CONFIG_CPUMASK_OFFSTACK 5989 for_each_possible_cpu(i) { 5990 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5991 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5992 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5993 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5994 } 5995 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5996 5997 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5998 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5999 6000 #ifdef CONFIG_SMP 6001 init_defrootdomain(); 6002 #endif 6003 6004 #ifdef CONFIG_RT_GROUP_SCHED 6005 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6006 global_rt_period(), global_rt_runtime()); 6007 #endif /* CONFIG_RT_GROUP_SCHED */ 6008 6009 #ifdef CONFIG_CGROUP_SCHED 6010 task_group_cache = KMEM_CACHE(task_group, 0); 6011 6012 list_add(&root_task_group.list, &task_groups); 6013 INIT_LIST_HEAD(&root_task_group.children); 6014 INIT_LIST_HEAD(&root_task_group.siblings); 6015 autogroup_init(&init_task); 6016 #endif /* CONFIG_CGROUP_SCHED */ 6017 6018 for_each_possible_cpu(i) { 6019 struct rq *rq; 6020 6021 rq = cpu_rq(i); 6022 raw_spin_lock_init(&rq->lock); 6023 rq->nr_running = 0; 6024 rq->calc_load_active = 0; 6025 rq->calc_load_update = jiffies + LOAD_FREQ; 6026 init_cfs_rq(&rq->cfs); 6027 init_rt_rq(&rq->rt); 6028 init_dl_rq(&rq->dl); 6029 #ifdef CONFIG_FAIR_GROUP_SCHED 6030 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6031 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6032 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6033 /* 6034 * How much CPU bandwidth does root_task_group get? 6035 * 6036 * In case of task-groups formed thr' the cgroup filesystem, it 6037 * gets 100% of the CPU resources in the system. This overall 6038 * system CPU resource is divided among the tasks of 6039 * root_task_group and its child task-groups in a fair manner, 6040 * based on each entity's (task or task-group's) weight 6041 * (se->load.weight). 6042 * 6043 * In other words, if root_task_group has 10 tasks of weight 6044 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6045 * then A0's share of the CPU resource is: 6046 * 6047 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6048 * 6049 * We achieve this by letting root_task_group's tasks sit 6050 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6051 */ 6052 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6053 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6054 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6055 6056 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6057 #ifdef CONFIG_RT_GROUP_SCHED 6058 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6059 #endif 6060 6061 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6062 rq->cpu_load[j] = 0; 6063 6064 #ifdef CONFIG_SMP 6065 rq->sd = NULL; 6066 rq->rd = NULL; 6067 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6068 rq->balance_callback = NULL; 6069 rq->active_balance = 0; 6070 rq->next_balance = jiffies; 6071 rq->push_cpu = 0; 6072 rq->cpu = i; 6073 rq->online = 0; 6074 rq->idle_stamp = 0; 6075 rq->avg_idle = 2*sysctl_sched_migration_cost; 6076 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6077 6078 INIT_LIST_HEAD(&rq->cfs_tasks); 6079 6080 rq_attach_root(rq, &def_root_domain); 6081 #ifdef CONFIG_NO_HZ_COMMON 6082 rq->last_load_update_tick = jiffies; 6083 rq->last_blocked_load_update_tick = jiffies; 6084 atomic_set(&rq->nohz_flags, 0); 6085 #endif 6086 #endif /* CONFIG_SMP */ 6087 hrtick_rq_init(rq); 6088 atomic_set(&rq->nr_iowait, 0); 6089 } 6090 6091 set_load_weight(&init_task, false); 6092 6093 /* 6094 * The boot idle thread does lazy MMU switching as well: 6095 */ 6096 mmgrab(&init_mm); 6097 enter_lazy_tlb(&init_mm, current); 6098 6099 /* 6100 * Make us the idle thread. Technically, schedule() should not be 6101 * called from this thread, however somewhere below it might be, 6102 * but because we are the idle thread, we just pick up running again 6103 * when this runqueue becomes "idle". 6104 */ 6105 init_idle(current, smp_processor_id()); 6106 6107 calc_load_update = jiffies + LOAD_FREQ; 6108 6109 #ifdef CONFIG_SMP 6110 idle_thread_set_boot_cpu(); 6111 #endif 6112 init_sched_fair_class(); 6113 6114 init_schedstats(); 6115 6116 psi_init(); 6117 6118 scheduler_running = 1; 6119 } 6120 6121 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6122 static inline int preempt_count_equals(int preempt_offset) 6123 { 6124 int nested = preempt_count() + rcu_preempt_depth(); 6125 6126 return (nested == preempt_offset); 6127 } 6128 6129 void __might_sleep(const char *file, int line, int preempt_offset) 6130 { 6131 /* 6132 * Blocking primitives will set (and therefore destroy) current->state, 6133 * since we will exit with TASK_RUNNING make sure we enter with it, 6134 * otherwise we will destroy state. 6135 */ 6136 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6137 "do not call blocking ops when !TASK_RUNNING; " 6138 "state=%lx set at [<%p>] %pS\n", 6139 current->state, 6140 (void *)current->task_state_change, 6141 (void *)current->task_state_change); 6142 6143 ___might_sleep(file, line, preempt_offset); 6144 } 6145 EXPORT_SYMBOL(__might_sleep); 6146 6147 void ___might_sleep(const char *file, int line, int preempt_offset) 6148 { 6149 /* Ratelimiting timestamp: */ 6150 static unsigned long prev_jiffy; 6151 6152 unsigned long preempt_disable_ip; 6153 6154 /* WARN_ON_ONCE() by default, no rate limit required: */ 6155 rcu_sleep_check(); 6156 6157 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6158 !is_idle_task(current)) || 6159 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6160 oops_in_progress) 6161 return; 6162 6163 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6164 return; 6165 prev_jiffy = jiffies; 6166 6167 /* Save this before calling printk(), since that will clobber it: */ 6168 preempt_disable_ip = get_preempt_disable_ip(current); 6169 6170 printk(KERN_ERR 6171 "BUG: sleeping function called from invalid context at %s:%d\n", 6172 file, line); 6173 printk(KERN_ERR 6174 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6175 in_atomic(), irqs_disabled(), 6176 current->pid, current->comm); 6177 6178 if (task_stack_end_corrupted(current)) 6179 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6180 6181 debug_show_held_locks(current); 6182 if (irqs_disabled()) 6183 print_irqtrace_events(current); 6184 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6185 && !preempt_count_equals(preempt_offset)) { 6186 pr_err("Preemption disabled at:"); 6187 print_ip_sym(preempt_disable_ip); 6188 pr_cont("\n"); 6189 } 6190 dump_stack(); 6191 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6192 } 6193 EXPORT_SYMBOL(___might_sleep); 6194 6195 void __cant_sleep(const char *file, int line, int preempt_offset) 6196 { 6197 static unsigned long prev_jiffy; 6198 6199 if (irqs_disabled()) 6200 return; 6201 6202 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 6203 return; 6204 6205 if (preempt_count() > preempt_offset) 6206 return; 6207 6208 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6209 return; 6210 prev_jiffy = jiffies; 6211 6212 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 6213 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6214 in_atomic(), irqs_disabled(), 6215 current->pid, current->comm); 6216 6217 debug_show_held_locks(current); 6218 dump_stack(); 6219 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6220 } 6221 EXPORT_SYMBOL_GPL(__cant_sleep); 6222 #endif 6223 6224 #ifdef CONFIG_MAGIC_SYSRQ 6225 void normalize_rt_tasks(void) 6226 { 6227 struct task_struct *g, *p; 6228 struct sched_attr attr = { 6229 .sched_policy = SCHED_NORMAL, 6230 }; 6231 6232 read_lock(&tasklist_lock); 6233 for_each_process_thread(g, p) { 6234 /* 6235 * Only normalize user tasks: 6236 */ 6237 if (p->flags & PF_KTHREAD) 6238 continue; 6239 6240 p->se.exec_start = 0; 6241 schedstat_set(p->se.statistics.wait_start, 0); 6242 schedstat_set(p->se.statistics.sleep_start, 0); 6243 schedstat_set(p->se.statistics.block_start, 0); 6244 6245 if (!dl_task(p) && !rt_task(p)) { 6246 /* 6247 * Renice negative nice level userspace 6248 * tasks back to 0: 6249 */ 6250 if (task_nice(p) < 0) 6251 set_user_nice(p, 0); 6252 continue; 6253 } 6254 6255 __sched_setscheduler(p, &attr, false, false); 6256 } 6257 read_unlock(&tasklist_lock); 6258 } 6259 6260 #endif /* CONFIG_MAGIC_SYSRQ */ 6261 6262 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6263 /* 6264 * These functions are only useful for the IA64 MCA handling, or kdb. 6265 * 6266 * They can only be called when the whole system has been 6267 * stopped - every CPU needs to be quiescent, and no scheduling 6268 * activity can take place. Using them for anything else would 6269 * be a serious bug, and as a result, they aren't even visible 6270 * under any other configuration. 6271 */ 6272 6273 /** 6274 * curr_task - return the current task for a given CPU. 6275 * @cpu: the processor in question. 6276 * 6277 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6278 * 6279 * Return: The current task for @cpu. 6280 */ 6281 struct task_struct *curr_task(int cpu) 6282 { 6283 return cpu_curr(cpu); 6284 } 6285 6286 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6287 6288 #ifdef CONFIG_IA64 6289 /** 6290 * set_curr_task - set the current task for a given CPU. 6291 * @cpu: the processor in question. 6292 * @p: the task pointer to set. 6293 * 6294 * Description: This function must only be used when non-maskable interrupts 6295 * are serviced on a separate stack. It allows the architecture to switch the 6296 * notion of the current task on a CPU in a non-blocking manner. This function 6297 * must be called with all CPU's synchronized, and interrupts disabled, the 6298 * and caller must save the original value of the current task (see 6299 * curr_task() above) and restore that value before reenabling interrupts and 6300 * re-starting the system. 6301 * 6302 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6303 */ 6304 void ia64_set_curr_task(int cpu, struct task_struct *p) 6305 { 6306 cpu_curr(cpu) = p; 6307 } 6308 6309 #endif 6310 6311 #ifdef CONFIG_CGROUP_SCHED 6312 /* task_group_lock serializes the addition/removal of task groups */ 6313 static DEFINE_SPINLOCK(task_group_lock); 6314 6315 static void sched_free_group(struct task_group *tg) 6316 { 6317 free_fair_sched_group(tg); 6318 free_rt_sched_group(tg); 6319 autogroup_free(tg); 6320 kmem_cache_free(task_group_cache, tg); 6321 } 6322 6323 /* allocate runqueue etc for a new task group */ 6324 struct task_group *sched_create_group(struct task_group *parent) 6325 { 6326 struct task_group *tg; 6327 6328 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6329 if (!tg) 6330 return ERR_PTR(-ENOMEM); 6331 6332 if (!alloc_fair_sched_group(tg, parent)) 6333 goto err; 6334 6335 if (!alloc_rt_sched_group(tg, parent)) 6336 goto err; 6337 6338 return tg; 6339 6340 err: 6341 sched_free_group(tg); 6342 return ERR_PTR(-ENOMEM); 6343 } 6344 6345 void sched_online_group(struct task_group *tg, struct task_group *parent) 6346 { 6347 unsigned long flags; 6348 6349 spin_lock_irqsave(&task_group_lock, flags); 6350 list_add_rcu(&tg->list, &task_groups); 6351 6352 /* Root should already exist: */ 6353 WARN_ON(!parent); 6354 6355 tg->parent = parent; 6356 INIT_LIST_HEAD(&tg->children); 6357 list_add_rcu(&tg->siblings, &parent->children); 6358 spin_unlock_irqrestore(&task_group_lock, flags); 6359 6360 online_fair_sched_group(tg); 6361 } 6362 6363 /* rcu callback to free various structures associated with a task group */ 6364 static void sched_free_group_rcu(struct rcu_head *rhp) 6365 { 6366 /* Now it should be safe to free those cfs_rqs: */ 6367 sched_free_group(container_of(rhp, struct task_group, rcu)); 6368 } 6369 6370 void sched_destroy_group(struct task_group *tg) 6371 { 6372 /* Wait for possible concurrent references to cfs_rqs complete: */ 6373 call_rcu(&tg->rcu, sched_free_group_rcu); 6374 } 6375 6376 void sched_offline_group(struct task_group *tg) 6377 { 6378 unsigned long flags; 6379 6380 /* End participation in shares distribution: */ 6381 unregister_fair_sched_group(tg); 6382 6383 spin_lock_irqsave(&task_group_lock, flags); 6384 list_del_rcu(&tg->list); 6385 list_del_rcu(&tg->siblings); 6386 spin_unlock_irqrestore(&task_group_lock, flags); 6387 } 6388 6389 static void sched_change_group(struct task_struct *tsk, int type) 6390 { 6391 struct task_group *tg; 6392 6393 /* 6394 * All callers are synchronized by task_rq_lock(); we do not use RCU 6395 * which is pointless here. Thus, we pass "true" to task_css_check() 6396 * to prevent lockdep warnings. 6397 */ 6398 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6399 struct task_group, css); 6400 tg = autogroup_task_group(tsk, tg); 6401 tsk->sched_task_group = tg; 6402 6403 #ifdef CONFIG_FAIR_GROUP_SCHED 6404 if (tsk->sched_class->task_change_group) 6405 tsk->sched_class->task_change_group(tsk, type); 6406 else 6407 #endif 6408 set_task_rq(tsk, task_cpu(tsk)); 6409 } 6410 6411 /* 6412 * Change task's runqueue when it moves between groups. 6413 * 6414 * The caller of this function should have put the task in its new group by 6415 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6416 * its new group. 6417 */ 6418 void sched_move_task(struct task_struct *tsk) 6419 { 6420 int queued, running, queue_flags = 6421 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6422 struct rq_flags rf; 6423 struct rq *rq; 6424 6425 rq = task_rq_lock(tsk, &rf); 6426 update_rq_clock(rq); 6427 6428 running = task_current(rq, tsk); 6429 queued = task_on_rq_queued(tsk); 6430 6431 if (queued) 6432 dequeue_task(rq, tsk, queue_flags); 6433 if (running) 6434 put_prev_task(rq, tsk); 6435 6436 sched_change_group(tsk, TASK_MOVE_GROUP); 6437 6438 if (queued) 6439 enqueue_task(rq, tsk, queue_flags); 6440 if (running) 6441 set_curr_task(rq, tsk); 6442 6443 task_rq_unlock(rq, tsk, &rf); 6444 } 6445 6446 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6447 { 6448 return css ? container_of(css, struct task_group, css) : NULL; 6449 } 6450 6451 static struct cgroup_subsys_state * 6452 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6453 { 6454 struct task_group *parent = css_tg(parent_css); 6455 struct task_group *tg; 6456 6457 if (!parent) { 6458 /* This is early initialization for the top cgroup */ 6459 return &root_task_group.css; 6460 } 6461 6462 tg = sched_create_group(parent); 6463 if (IS_ERR(tg)) 6464 return ERR_PTR(-ENOMEM); 6465 6466 return &tg->css; 6467 } 6468 6469 /* Expose task group only after completing cgroup initialization */ 6470 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6471 { 6472 struct task_group *tg = css_tg(css); 6473 struct task_group *parent = css_tg(css->parent); 6474 6475 if (parent) 6476 sched_online_group(tg, parent); 6477 return 0; 6478 } 6479 6480 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6481 { 6482 struct task_group *tg = css_tg(css); 6483 6484 sched_offline_group(tg); 6485 } 6486 6487 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6488 { 6489 struct task_group *tg = css_tg(css); 6490 6491 /* 6492 * Relies on the RCU grace period between css_released() and this. 6493 */ 6494 sched_free_group(tg); 6495 } 6496 6497 /* 6498 * This is called before wake_up_new_task(), therefore we really only 6499 * have to set its group bits, all the other stuff does not apply. 6500 */ 6501 static void cpu_cgroup_fork(struct task_struct *task) 6502 { 6503 struct rq_flags rf; 6504 struct rq *rq; 6505 6506 rq = task_rq_lock(task, &rf); 6507 6508 update_rq_clock(rq); 6509 sched_change_group(task, TASK_SET_GROUP); 6510 6511 task_rq_unlock(rq, task, &rf); 6512 } 6513 6514 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6515 { 6516 struct task_struct *task; 6517 struct cgroup_subsys_state *css; 6518 int ret = 0; 6519 6520 cgroup_taskset_for_each(task, css, tset) { 6521 #ifdef CONFIG_RT_GROUP_SCHED 6522 if (!sched_rt_can_attach(css_tg(css), task)) 6523 return -EINVAL; 6524 #else 6525 /* We don't support RT-tasks being in separate groups */ 6526 if (task->sched_class != &fair_sched_class) 6527 return -EINVAL; 6528 #endif 6529 /* 6530 * Serialize against wake_up_new_task() such that if its 6531 * running, we're sure to observe its full state. 6532 */ 6533 raw_spin_lock_irq(&task->pi_lock); 6534 /* 6535 * Avoid calling sched_move_task() before wake_up_new_task() 6536 * has happened. This would lead to problems with PELT, due to 6537 * move wanting to detach+attach while we're not attached yet. 6538 */ 6539 if (task->state == TASK_NEW) 6540 ret = -EINVAL; 6541 raw_spin_unlock_irq(&task->pi_lock); 6542 6543 if (ret) 6544 break; 6545 } 6546 return ret; 6547 } 6548 6549 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6550 { 6551 struct task_struct *task; 6552 struct cgroup_subsys_state *css; 6553 6554 cgroup_taskset_for_each(task, css, tset) 6555 sched_move_task(task); 6556 } 6557 6558 #ifdef CONFIG_FAIR_GROUP_SCHED 6559 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6560 struct cftype *cftype, u64 shareval) 6561 { 6562 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6563 } 6564 6565 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6566 struct cftype *cft) 6567 { 6568 struct task_group *tg = css_tg(css); 6569 6570 return (u64) scale_load_down(tg->shares); 6571 } 6572 6573 #ifdef CONFIG_CFS_BANDWIDTH 6574 static DEFINE_MUTEX(cfs_constraints_mutex); 6575 6576 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6577 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6578 6579 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6580 6581 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6582 { 6583 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6584 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6585 6586 if (tg == &root_task_group) 6587 return -EINVAL; 6588 6589 /* 6590 * Ensure we have at some amount of bandwidth every period. This is 6591 * to prevent reaching a state of large arrears when throttled via 6592 * entity_tick() resulting in prolonged exit starvation. 6593 */ 6594 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6595 return -EINVAL; 6596 6597 /* 6598 * Likewise, bound things on the otherside by preventing insane quota 6599 * periods. This also allows us to normalize in computing quota 6600 * feasibility. 6601 */ 6602 if (period > max_cfs_quota_period) 6603 return -EINVAL; 6604 6605 /* 6606 * Prevent race between setting of cfs_rq->runtime_enabled and 6607 * unthrottle_offline_cfs_rqs(). 6608 */ 6609 get_online_cpus(); 6610 mutex_lock(&cfs_constraints_mutex); 6611 ret = __cfs_schedulable(tg, period, quota); 6612 if (ret) 6613 goto out_unlock; 6614 6615 runtime_enabled = quota != RUNTIME_INF; 6616 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6617 /* 6618 * If we need to toggle cfs_bandwidth_used, off->on must occur 6619 * before making related changes, and on->off must occur afterwards 6620 */ 6621 if (runtime_enabled && !runtime_was_enabled) 6622 cfs_bandwidth_usage_inc(); 6623 raw_spin_lock_irq(&cfs_b->lock); 6624 cfs_b->period = ns_to_ktime(period); 6625 cfs_b->quota = quota; 6626 6627 __refill_cfs_bandwidth_runtime(cfs_b); 6628 6629 /* Restart the period timer (if active) to handle new period expiry: */ 6630 if (runtime_enabled) 6631 start_cfs_bandwidth(cfs_b); 6632 6633 raw_spin_unlock_irq(&cfs_b->lock); 6634 6635 for_each_online_cpu(i) { 6636 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6637 struct rq *rq = cfs_rq->rq; 6638 struct rq_flags rf; 6639 6640 rq_lock_irq(rq, &rf); 6641 cfs_rq->runtime_enabled = runtime_enabled; 6642 cfs_rq->runtime_remaining = 0; 6643 6644 if (cfs_rq->throttled) 6645 unthrottle_cfs_rq(cfs_rq); 6646 rq_unlock_irq(rq, &rf); 6647 } 6648 if (runtime_was_enabled && !runtime_enabled) 6649 cfs_bandwidth_usage_dec(); 6650 out_unlock: 6651 mutex_unlock(&cfs_constraints_mutex); 6652 put_online_cpus(); 6653 6654 return ret; 6655 } 6656 6657 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6658 { 6659 u64 quota, period; 6660 6661 period = ktime_to_ns(tg->cfs_bandwidth.period); 6662 if (cfs_quota_us < 0) 6663 quota = RUNTIME_INF; 6664 else 6665 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6666 6667 return tg_set_cfs_bandwidth(tg, period, quota); 6668 } 6669 6670 long tg_get_cfs_quota(struct task_group *tg) 6671 { 6672 u64 quota_us; 6673 6674 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6675 return -1; 6676 6677 quota_us = tg->cfs_bandwidth.quota; 6678 do_div(quota_us, NSEC_PER_USEC); 6679 6680 return quota_us; 6681 } 6682 6683 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6684 { 6685 u64 quota, period; 6686 6687 period = (u64)cfs_period_us * NSEC_PER_USEC; 6688 quota = tg->cfs_bandwidth.quota; 6689 6690 return tg_set_cfs_bandwidth(tg, period, quota); 6691 } 6692 6693 long tg_get_cfs_period(struct task_group *tg) 6694 { 6695 u64 cfs_period_us; 6696 6697 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6698 do_div(cfs_period_us, NSEC_PER_USEC); 6699 6700 return cfs_period_us; 6701 } 6702 6703 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6704 struct cftype *cft) 6705 { 6706 return tg_get_cfs_quota(css_tg(css)); 6707 } 6708 6709 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6710 struct cftype *cftype, s64 cfs_quota_us) 6711 { 6712 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6713 } 6714 6715 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6716 struct cftype *cft) 6717 { 6718 return tg_get_cfs_period(css_tg(css)); 6719 } 6720 6721 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6722 struct cftype *cftype, u64 cfs_period_us) 6723 { 6724 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6725 } 6726 6727 struct cfs_schedulable_data { 6728 struct task_group *tg; 6729 u64 period, quota; 6730 }; 6731 6732 /* 6733 * normalize group quota/period to be quota/max_period 6734 * note: units are usecs 6735 */ 6736 static u64 normalize_cfs_quota(struct task_group *tg, 6737 struct cfs_schedulable_data *d) 6738 { 6739 u64 quota, period; 6740 6741 if (tg == d->tg) { 6742 period = d->period; 6743 quota = d->quota; 6744 } else { 6745 period = tg_get_cfs_period(tg); 6746 quota = tg_get_cfs_quota(tg); 6747 } 6748 6749 /* note: these should typically be equivalent */ 6750 if (quota == RUNTIME_INF || quota == -1) 6751 return RUNTIME_INF; 6752 6753 return to_ratio(period, quota); 6754 } 6755 6756 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6757 { 6758 struct cfs_schedulable_data *d = data; 6759 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6760 s64 quota = 0, parent_quota = -1; 6761 6762 if (!tg->parent) { 6763 quota = RUNTIME_INF; 6764 } else { 6765 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6766 6767 quota = normalize_cfs_quota(tg, d); 6768 parent_quota = parent_b->hierarchical_quota; 6769 6770 /* 6771 * Ensure max(child_quota) <= parent_quota. On cgroup2, 6772 * always take the min. On cgroup1, only inherit when no 6773 * limit is set: 6774 */ 6775 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 6776 quota = min(quota, parent_quota); 6777 } else { 6778 if (quota == RUNTIME_INF) 6779 quota = parent_quota; 6780 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6781 return -EINVAL; 6782 } 6783 } 6784 cfs_b->hierarchical_quota = quota; 6785 6786 return 0; 6787 } 6788 6789 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6790 { 6791 int ret; 6792 struct cfs_schedulable_data data = { 6793 .tg = tg, 6794 .period = period, 6795 .quota = quota, 6796 }; 6797 6798 if (quota != RUNTIME_INF) { 6799 do_div(data.period, NSEC_PER_USEC); 6800 do_div(data.quota, NSEC_PER_USEC); 6801 } 6802 6803 rcu_read_lock(); 6804 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6805 rcu_read_unlock(); 6806 6807 return ret; 6808 } 6809 6810 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6811 { 6812 struct task_group *tg = css_tg(seq_css(sf)); 6813 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6814 6815 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6816 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6817 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6818 6819 if (schedstat_enabled() && tg != &root_task_group) { 6820 u64 ws = 0; 6821 int i; 6822 6823 for_each_possible_cpu(i) 6824 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 6825 6826 seq_printf(sf, "wait_sum %llu\n", ws); 6827 } 6828 6829 return 0; 6830 } 6831 #endif /* CONFIG_CFS_BANDWIDTH */ 6832 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6833 6834 #ifdef CONFIG_RT_GROUP_SCHED 6835 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6836 struct cftype *cft, s64 val) 6837 { 6838 return sched_group_set_rt_runtime(css_tg(css), val); 6839 } 6840 6841 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6842 struct cftype *cft) 6843 { 6844 return sched_group_rt_runtime(css_tg(css)); 6845 } 6846 6847 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6848 struct cftype *cftype, u64 rt_period_us) 6849 { 6850 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6851 } 6852 6853 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6854 struct cftype *cft) 6855 { 6856 return sched_group_rt_period(css_tg(css)); 6857 } 6858 #endif /* CONFIG_RT_GROUP_SCHED */ 6859 6860 static struct cftype cpu_legacy_files[] = { 6861 #ifdef CONFIG_FAIR_GROUP_SCHED 6862 { 6863 .name = "shares", 6864 .read_u64 = cpu_shares_read_u64, 6865 .write_u64 = cpu_shares_write_u64, 6866 }, 6867 #endif 6868 #ifdef CONFIG_CFS_BANDWIDTH 6869 { 6870 .name = "cfs_quota_us", 6871 .read_s64 = cpu_cfs_quota_read_s64, 6872 .write_s64 = cpu_cfs_quota_write_s64, 6873 }, 6874 { 6875 .name = "cfs_period_us", 6876 .read_u64 = cpu_cfs_period_read_u64, 6877 .write_u64 = cpu_cfs_period_write_u64, 6878 }, 6879 { 6880 .name = "stat", 6881 .seq_show = cpu_cfs_stat_show, 6882 }, 6883 #endif 6884 #ifdef CONFIG_RT_GROUP_SCHED 6885 { 6886 .name = "rt_runtime_us", 6887 .read_s64 = cpu_rt_runtime_read, 6888 .write_s64 = cpu_rt_runtime_write, 6889 }, 6890 { 6891 .name = "rt_period_us", 6892 .read_u64 = cpu_rt_period_read_uint, 6893 .write_u64 = cpu_rt_period_write_uint, 6894 }, 6895 #endif 6896 { } /* Terminate */ 6897 }; 6898 6899 static int cpu_extra_stat_show(struct seq_file *sf, 6900 struct cgroup_subsys_state *css) 6901 { 6902 #ifdef CONFIG_CFS_BANDWIDTH 6903 { 6904 struct task_group *tg = css_tg(css); 6905 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6906 u64 throttled_usec; 6907 6908 throttled_usec = cfs_b->throttled_time; 6909 do_div(throttled_usec, NSEC_PER_USEC); 6910 6911 seq_printf(sf, "nr_periods %d\n" 6912 "nr_throttled %d\n" 6913 "throttled_usec %llu\n", 6914 cfs_b->nr_periods, cfs_b->nr_throttled, 6915 throttled_usec); 6916 } 6917 #endif 6918 return 0; 6919 } 6920 6921 #ifdef CONFIG_FAIR_GROUP_SCHED 6922 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6923 struct cftype *cft) 6924 { 6925 struct task_group *tg = css_tg(css); 6926 u64 weight = scale_load_down(tg->shares); 6927 6928 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6929 } 6930 6931 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6932 struct cftype *cft, u64 weight) 6933 { 6934 /* 6935 * cgroup weight knobs should use the common MIN, DFL and MAX 6936 * values which are 1, 100 and 10000 respectively. While it loses 6937 * a bit of range on both ends, it maps pretty well onto the shares 6938 * value used by scheduler and the round-trip conversions preserve 6939 * the original value over the entire range. 6940 */ 6941 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6942 return -ERANGE; 6943 6944 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6945 6946 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6947 } 6948 6949 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6950 struct cftype *cft) 6951 { 6952 unsigned long weight = scale_load_down(css_tg(css)->shares); 6953 int last_delta = INT_MAX; 6954 int prio, delta; 6955 6956 /* find the closest nice value to the current weight */ 6957 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6958 delta = abs(sched_prio_to_weight[prio] - weight); 6959 if (delta >= last_delta) 6960 break; 6961 last_delta = delta; 6962 } 6963 6964 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6965 } 6966 6967 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6968 struct cftype *cft, s64 nice) 6969 { 6970 unsigned long weight; 6971 int idx; 6972 6973 if (nice < MIN_NICE || nice > MAX_NICE) 6974 return -ERANGE; 6975 6976 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 6977 idx = array_index_nospec(idx, 40); 6978 weight = sched_prio_to_weight[idx]; 6979 6980 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6981 } 6982 #endif 6983 6984 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6985 long period, long quota) 6986 { 6987 if (quota < 0) 6988 seq_puts(sf, "max"); 6989 else 6990 seq_printf(sf, "%ld", quota); 6991 6992 seq_printf(sf, " %ld\n", period); 6993 } 6994 6995 /* caller should put the current value in *@periodp before calling */ 6996 static int __maybe_unused cpu_period_quota_parse(char *buf, 6997 u64 *periodp, u64 *quotap) 6998 { 6999 char tok[21]; /* U64_MAX */ 7000 7001 if (!sscanf(buf, "%s %llu", tok, periodp)) 7002 return -EINVAL; 7003 7004 *periodp *= NSEC_PER_USEC; 7005 7006 if (sscanf(tok, "%llu", quotap)) 7007 *quotap *= NSEC_PER_USEC; 7008 else if (!strcmp(tok, "max")) 7009 *quotap = RUNTIME_INF; 7010 else 7011 return -EINVAL; 7012 7013 return 0; 7014 } 7015 7016 #ifdef CONFIG_CFS_BANDWIDTH 7017 static int cpu_max_show(struct seq_file *sf, void *v) 7018 { 7019 struct task_group *tg = css_tg(seq_css(sf)); 7020 7021 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 7022 return 0; 7023 } 7024 7025 static ssize_t cpu_max_write(struct kernfs_open_file *of, 7026 char *buf, size_t nbytes, loff_t off) 7027 { 7028 struct task_group *tg = css_tg(of_css(of)); 7029 u64 period = tg_get_cfs_period(tg); 7030 u64 quota; 7031 int ret; 7032 7033 ret = cpu_period_quota_parse(buf, &period, "a); 7034 if (!ret) 7035 ret = tg_set_cfs_bandwidth(tg, period, quota); 7036 return ret ?: nbytes; 7037 } 7038 #endif 7039 7040 static struct cftype cpu_files[] = { 7041 #ifdef CONFIG_FAIR_GROUP_SCHED 7042 { 7043 .name = "weight", 7044 .flags = CFTYPE_NOT_ON_ROOT, 7045 .read_u64 = cpu_weight_read_u64, 7046 .write_u64 = cpu_weight_write_u64, 7047 }, 7048 { 7049 .name = "weight.nice", 7050 .flags = CFTYPE_NOT_ON_ROOT, 7051 .read_s64 = cpu_weight_nice_read_s64, 7052 .write_s64 = cpu_weight_nice_write_s64, 7053 }, 7054 #endif 7055 #ifdef CONFIG_CFS_BANDWIDTH 7056 { 7057 .name = "max", 7058 .flags = CFTYPE_NOT_ON_ROOT, 7059 .seq_show = cpu_max_show, 7060 .write = cpu_max_write, 7061 }, 7062 #endif 7063 { } /* terminate */ 7064 }; 7065 7066 struct cgroup_subsys cpu_cgrp_subsys = { 7067 .css_alloc = cpu_cgroup_css_alloc, 7068 .css_online = cpu_cgroup_css_online, 7069 .css_released = cpu_cgroup_css_released, 7070 .css_free = cpu_cgroup_css_free, 7071 .css_extra_stat_show = cpu_extra_stat_show, 7072 .fork = cpu_cgroup_fork, 7073 .can_attach = cpu_cgroup_can_attach, 7074 .attach = cpu_cgroup_attach, 7075 .legacy_cftypes = cpu_legacy_files, 7076 .dfl_cftypes = cpu_files, 7077 .early_init = true, 7078 .threaded = true, 7079 }; 7080 7081 #endif /* CONFIG_CGROUP_SCHED */ 7082 7083 void dump_cpu_task(int cpu) 7084 { 7085 pr_info("Task dump for CPU %d:\n", cpu); 7086 sched_show_task(cpu_curr(cpu)); 7087 } 7088 7089 /* 7090 * Nice levels are multiplicative, with a gentle 10% change for every 7091 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7092 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7093 * that remained on nice 0. 7094 * 7095 * The "10% effect" is relative and cumulative: from _any_ nice level, 7096 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7097 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7098 * If a task goes up by ~10% and another task goes down by ~10% then 7099 * the relative distance between them is ~25%.) 7100 */ 7101 const int sched_prio_to_weight[40] = { 7102 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7103 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7104 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7105 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7106 /* 0 */ 1024, 820, 655, 526, 423, 7107 /* 5 */ 335, 272, 215, 172, 137, 7108 /* 10 */ 110, 87, 70, 56, 45, 7109 /* 15 */ 36, 29, 23, 18, 15, 7110 }; 7111 7112 /* 7113 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7114 * 7115 * In cases where the weight does not change often, we can use the 7116 * precalculated inverse to speed up arithmetics by turning divisions 7117 * into multiplications: 7118 */ 7119 const u32 sched_prio_to_wmult[40] = { 7120 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7121 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7122 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7123 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7124 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7125 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7126 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7127 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7128 }; 7129 7130 #undef CREATE_TRACE_POINTS 7131