xref: /linux/kernel/sched/core.c (revision 1e26c5e28ca5821a824e90dd359556f5e9e7b89f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 
70 #ifdef CONFIG_PREEMPT_DYNAMIC
71 # ifdef CONFIG_GENERIC_ENTRY
72 #  include <linux/entry-common.h>
73 # endif
74 #endif
75 
76 #include <uapi/linux/sched/types.h>
77 
78 #include <asm/irq_regs.h>
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 
82 #define CREATE_TRACE_POINTS
83 #include <linux/sched/rseq_api.h>
84 #include <trace/events/sched.h>
85 #include <trace/events/ipi.h>
86 #undef CREATE_TRACE_POINTS
87 
88 #include "sched.h"
89 #include "stats.h"
90 
91 #include "autogroup.h"
92 #include "pelt.h"
93 #include "smp.h"
94 
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101 
102 /*
103  * Export tracepoints that act as a bare tracehook (ie: have no trace event
104  * associated with them) to allow external modules to probe them.
105  */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
118 
119 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
120 
121 /*
122  * Debugging: various feature bits
123  *
124  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125  * sysctl_sched_features, defined in sched.h, to allow constants propagation
126  * at compile time and compiler optimization based on features default.
127  */
128 #define SCHED_FEAT(name, enabled)	\
129 	(1UL << __SCHED_FEAT_##name) * enabled |
130 __read_mostly unsigned int sysctl_sched_features =
131 #include "features.h"
132 	0;
133 #undef SCHED_FEAT
134 
135 /*
136  * Print a warning if need_resched is set for the given duration (if
137  * LATENCY_WARN is enabled).
138  *
139  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140  * per boot.
141  */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 
145 /*
146  * Number of tasks to iterate in a single balance run.
147  * Limited because this is done with IRQs disabled.
148  */
149 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
150 
151 __read_mostly int scheduler_running;
152 
153 #ifdef CONFIG_SCHED_CORE
154 
155 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
156 
157 /* kernel prio, less is more */
158 static inline int __task_prio(const struct task_struct *p)
159 {
160 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
161 		return -2;
162 
163 	if (p->dl_server)
164 		return -1; /* deadline */
165 
166 	if (rt_or_dl_prio(p->prio))
167 		return p->prio; /* [-1, 99] */
168 
169 	if (p->sched_class == &idle_sched_class)
170 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
171 
172 	if (task_on_scx(p))
173 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
174 
175 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
176 }
177 
178 /*
179  * l(a,b)
180  * le(a,b) := !l(b,a)
181  * g(a,b)  := l(b,a)
182  * ge(a,b) := !l(a,b)
183  */
184 
185 /* real prio, less is less */
186 static inline bool prio_less(const struct task_struct *a,
187 			     const struct task_struct *b, bool in_fi)
188 {
189 
190 	int pa = __task_prio(a), pb = __task_prio(b);
191 
192 	if (-pa < -pb)
193 		return true;
194 
195 	if (-pb < -pa)
196 		return false;
197 
198 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
199 		const struct sched_dl_entity *a_dl, *b_dl;
200 
201 		a_dl = &a->dl;
202 		/*
203 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
204 		 * __task_prio() can return -1 (for DL) even for those. In that
205 		 * case, get to the dl_server's DL entity.
206 		 */
207 		if (a->dl_server)
208 			a_dl = a->dl_server;
209 
210 		b_dl = &b->dl;
211 		if (b->dl_server)
212 			b_dl = b->dl_server;
213 
214 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
215 	}
216 
217 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
218 		return cfs_prio_less(a, b, in_fi);
219 
220 #ifdef CONFIG_SCHED_CLASS_EXT
221 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
222 		return scx_prio_less(a, b, in_fi);
223 #endif
224 
225 	return false;
226 }
227 
228 static inline bool __sched_core_less(const struct task_struct *a,
229 				     const struct task_struct *b)
230 {
231 	if (a->core_cookie < b->core_cookie)
232 		return true;
233 
234 	if (a->core_cookie > b->core_cookie)
235 		return false;
236 
237 	/* flip prio, so high prio is leftmost */
238 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
239 		return true;
240 
241 	return false;
242 }
243 
244 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
245 
246 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
247 {
248 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
249 }
250 
251 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
252 {
253 	const struct task_struct *p = __node_2_sc(node);
254 	unsigned long cookie = (unsigned long)key;
255 
256 	if (cookie < p->core_cookie)
257 		return -1;
258 
259 	if (cookie > p->core_cookie)
260 		return 1;
261 
262 	return 0;
263 }
264 
265 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
266 {
267 	if (p->se.sched_delayed)
268 		return;
269 
270 	rq->core->core_task_seq++;
271 
272 	if (!p->core_cookie)
273 		return;
274 
275 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
276 }
277 
278 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
279 {
280 	if (p->se.sched_delayed)
281 		return;
282 
283 	rq->core->core_task_seq++;
284 
285 	if (sched_core_enqueued(p)) {
286 		rb_erase(&p->core_node, &rq->core_tree);
287 		RB_CLEAR_NODE(&p->core_node);
288 	}
289 
290 	/*
291 	 * Migrating the last task off the cpu, with the cpu in forced idle
292 	 * state. Reschedule to create an accounting edge for forced idle,
293 	 * and re-examine whether the core is still in forced idle state.
294 	 */
295 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
296 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
297 		resched_curr(rq);
298 }
299 
300 static int sched_task_is_throttled(struct task_struct *p, int cpu)
301 {
302 	if (p->sched_class->task_is_throttled)
303 		return p->sched_class->task_is_throttled(p, cpu);
304 
305 	return 0;
306 }
307 
308 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
309 {
310 	struct rb_node *node = &p->core_node;
311 	int cpu = task_cpu(p);
312 
313 	do {
314 		node = rb_next(node);
315 		if (!node)
316 			return NULL;
317 
318 		p = __node_2_sc(node);
319 		if (p->core_cookie != cookie)
320 			return NULL;
321 
322 	} while (sched_task_is_throttled(p, cpu));
323 
324 	return p;
325 }
326 
327 /*
328  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
329  * If no suitable task is found, NULL will be returned.
330  */
331 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
332 {
333 	struct task_struct *p;
334 	struct rb_node *node;
335 
336 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
337 	if (!node)
338 		return NULL;
339 
340 	p = __node_2_sc(node);
341 	if (!sched_task_is_throttled(p, rq->cpu))
342 		return p;
343 
344 	return sched_core_next(p, cookie);
345 }
346 
347 /*
348  * Magic required such that:
349  *
350  *	raw_spin_rq_lock(rq);
351  *	...
352  *	raw_spin_rq_unlock(rq);
353  *
354  * ends up locking and unlocking the _same_ lock, and all CPUs
355  * always agree on what rq has what lock.
356  *
357  * XXX entirely possible to selectively enable cores, don't bother for now.
358  */
359 
360 static DEFINE_MUTEX(sched_core_mutex);
361 static atomic_t sched_core_count;
362 static struct cpumask sched_core_mask;
363 
364 static void sched_core_lock(int cpu, unsigned long *flags)
365 {
366 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
367 	int t, i = 0;
368 
369 	local_irq_save(*flags);
370 	for_each_cpu(t, smt_mask)
371 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
372 }
373 
374 static void sched_core_unlock(int cpu, unsigned long *flags)
375 {
376 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
377 	int t;
378 
379 	for_each_cpu(t, smt_mask)
380 		raw_spin_unlock(&cpu_rq(t)->__lock);
381 	local_irq_restore(*flags);
382 }
383 
384 static void __sched_core_flip(bool enabled)
385 {
386 	unsigned long flags;
387 	int cpu, t;
388 
389 	cpus_read_lock();
390 
391 	/*
392 	 * Toggle the online cores, one by one.
393 	 */
394 	cpumask_copy(&sched_core_mask, cpu_online_mask);
395 	for_each_cpu(cpu, &sched_core_mask) {
396 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
397 
398 		sched_core_lock(cpu, &flags);
399 
400 		for_each_cpu(t, smt_mask)
401 			cpu_rq(t)->core_enabled = enabled;
402 
403 		cpu_rq(cpu)->core->core_forceidle_start = 0;
404 
405 		sched_core_unlock(cpu, &flags);
406 
407 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
408 	}
409 
410 	/*
411 	 * Toggle the offline CPUs.
412 	 */
413 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
414 		cpu_rq(cpu)->core_enabled = enabled;
415 
416 	cpus_read_unlock();
417 }
418 
419 static void sched_core_assert_empty(void)
420 {
421 	int cpu;
422 
423 	for_each_possible_cpu(cpu)
424 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
425 }
426 
427 static void __sched_core_enable(void)
428 {
429 	static_branch_enable(&__sched_core_enabled);
430 	/*
431 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
432 	 * and future ones will observe !sched_core_disabled().
433 	 */
434 	synchronize_rcu();
435 	__sched_core_flip(true);
436 	sched_core_assert_empty();
437 }
438 
439 static void __sched_core_disable(void)
440 {
441 	sched_core_assert_empty();
442 	__sched_core_flip(false);
443 	static_branch_disable(&__sched_core_enabled);
444 }
445 
446 void sched_core_get(void)
447 {
448 	if (atomic_inc_not_zero(&sched_core_count))
449 		return;
450 
451 	mutex_lock(&sched_core_mutex);
452 	if (!atomic_read(&sched_core_count))
453 		__sched_core_enable();
454 
455 	smp_mb__before_atomic();
456 	atomic_inc(&sched_core_count);
457 	mutex_unlock(&sched_core_mutex);
458 }
459 
460 static void __sched_core_put(struct work_struct *work)
461 {
462 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
463 		__sched_core_disable();
464 		mutex_unlock(&sched_core_mutex);
465 	}
466 }
467 
468 void sched_core_put(void)
469 {
470 	static DECLARE_WORK(_work, __sched_core_put);
471 
472 	/*
473 	 * "There can be only one"
474 	 *
475 	 * Either this is the last one, or we don't actually need to do any
476 	 * 'work'. If it is the last *again*, we rely on
477 	 * WORK_STRUCT_PENDING_BIT.
478 	 */
479 	if (!atomic_add_unless(&sched_core_count, -1, 1))
480 		schedule_work(&_work);
481 }
482 
483 #else /* !CONFIG_SCHED_CORE */
484 
485 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
486 static inline void
487 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
488 
489 #endif /* CONFIG_SCHED_CORE */
490 
491 /*
492  * Serialization rules:
493  *
494  * Lock order:
495  *
496  *   p->pi_lock
497  *     rq->lock
498  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
499  *
500  *  rq1->lock
501  *    rq2->lock  where: rq1 < rq2
502  *
503  * Regular state:
504  *
505  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
506  * local CPU's rq->lock, it optionally removes the task from the runqueue and
507  * always looks at the local rq data structures to find the most eligible task
508  * to run next.
509  *
510  * Task enqueue is also under rq->lock, possibly taken from another CPU.
511  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
512  * the local CPU to avoid bouncing the runqueue state around [ see
513  * ttwu_queue_wakelist() ]
514  *
515  * Task wakeup, specifically wakeups that involve migration, are horribly
516  * complicated to avoid having to take two rq->locks.
517  *
518  * Special state:
519  *
520  * System-calls and anything external will use task_rq_lock() which acquires
521  * both p->pi_lock and rq->lock. As a consequence the state they change is
522  * stable while holding either lock:
523  *
524  *  - sched_setaffinity()/
525  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
526  *  - set_user_nice():		p->se.load, p->*prio
527  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
528  *				p->se.load, p->rt_priority,
529  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
530  *  - sched_setnuma():		p->numa_preferred_nid
531  *  - sched_move_task():	p->sched_task_group
532  *  - uclamp_update_active()	p->uclamp*
533  *
534  * p->state <- TASK_*:
535  *
536  *   is changed locklessly using set_current_state(), __set_current_state() or
537  *   set_special_state(), see their respective comments, or by
538  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
539  *   concurrent self.
540  *
541  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
542  *
543  *   is set by activate_task() and cleared by deactivate_task(), under
544  *   rq->lock. Non-zero indicates the task is runnable, the special
545  *   ON_RQ_MIGRATING state is used for migration without holding both
546  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
547  *
548  *   Additionally it is possible to be ->on_rq but still be considered not
549  *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
550  *   but will be dequeued as soon as they get picked again. See the
551  *   task_is_runnable() helper.
552  *
553  * p->on_cpu <- { 0, 1 }:
554  *
555  *   is set by prepare_task() and cleared by finish_task() such that it will be
556  *   set before p is scheduled-in and cleared after p is scheduled-out, both
557  *   under rq->lock. Non-zero indicates the task is running on its CPU.
558  *
559  *   [ The astute reader will observe that it is possible for two tasks on one
560  *     CPU to have ->on_cpu = 1 at the same time. ]
561  *
562  * task_cpu(p): is changed by set_task_cpu(), the rules are:
563  *
564  *  - Don't call set_task_cpu() on a blocked task:
565  *
566  *    We don't care what CPU we're not running on, this simplifies hotplug,
567  *    the CPU assignment of blocked tasks isn't required to be valid.
568  *
569  *  - for try_to_wake_up(), called under p->pi_lock:
570  *
571  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
572  *
573  *  - for migration called under rq->lock:
574  *    [ see task_on_rq_migrating() in task_rq_lock() ]
575  *
576  *    o move_queued_task()
577  *    o detach_task()
578  *
579  *  - for migration called under double_rq_lock():
580  *
581  *    o __migrate_swap_task()
582  *    o push_rt_task() / pull_rt_task()
583  *    o push_dl_task() / pull_dl_task()
584  *    o dl_task_offline_migration()
585  *
586  */
587 
588 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
589 {
590 	raw_spinlock_t *lock;
591 
592 	/* Matches synchronize_rcu() in __sched_core_enable() */
593 	preempt_disable();
594 	if (sched_core_disabled()) {
595 		raw_spin_lock_nested(&rq->__lock, subclass);
596 		/* preempt_count *MUST* be > 1 */
597 		preempt_enable_no_resched();
598 		return;
599 	}
600 
601 	for (;;) {
602 		lock = __rq_lockp(rq);
603 		raw_spin_lock_nested(lock, subclass);
604 		if (likely(lock == __rq_lockp(rq))) {
605 			/* preempt_count *MUST* be > 1 */
606 			preempt_enable_no_resched();
607 			return;
608 		}
609 		raw_spin_unlock(lock);
610 	}
611 }
612 
613 bool raw_spin_rq_trylock(struct rq *rq)
614 {
615 	raw_spinlock_t *lock;
616 	bool ret;
617 
618 	/* Matches synchronize_rcu() in __sched_core_enable() */
619 	preempt_disable();
620 	if (sched_core_disabled()) {
621 		ret = raw_spin_trylock(&rq->__lock);
622 		preempt_enable();
623 		return ret;
624 	}
625 
626 	for (;;) {
627 		lock = __rq_lockp(rq);
628 		ret = raw_spin_trylock(lock);
629 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
630 			preempt_enable();
631 			return ret;
632 		}
633 		raw_spin_unlock(lock);
634 	}
635 }
636 
637 void raw_spin_rq_unlock(struct rq *rq)
638 {
639 	raw_spin_unlock(rq_lockp(rq));
640 }
641 
642 #ifdef CONFIG_SMP
643 /*
644  * double_rq_lock - safely lock two runqueues
645  */
646 void double_rq_lock(struct rq *rq1, struct rq *rq2)
647 {
648 	lockdep_assert_irqs_disabled();
649 
650 	if (rq_order_less(rq2, rq1))
651 		swap(rq1, rq2);
652 
653 	raw_spin_rq_lock(rq1);
654 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
655 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
656 
657 	double_rq_clock_clear_update(rq1, rq2);
658 }
659 #endif
660 
661 /*
662  * __task_rq_lock - lock the rq @p resides on.
663  */
664 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
665 	__acquires(rq->lock)
666 {
667 	struct rq *rq;
668 
669 	lockdep_assert_held(&p->pi_lock);
670 
671 	for (;;) {
672 		rq = task_rq(p);
673 		raw_spin_rq_lock(rq);
674 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
675 			rq_pin_lock(rq, rf);
676 			return rq;
677 		}
678 		raw_spin_rq_unlock(rq);
679 
680 		while (unlikely(task_on_rq_migrating(p)))
681 			cpu_relax();
682 	}
683 }
684 
685 /*
686  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
687  */
688 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
689 	__acquires(p->pi_lock)
690 	__acquires(rq->lock)
691 {
692 	struct rq *rq;
693 
694 	for (;;) {
695 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
696 		rq = task_rq(p);
697 		raw_spin_rq_lock(rq);
698 		/*
699 		 *	move_queued_task()		task_rq_lock()
700 		 *
701 		 *	ACQUIRE (rq->lock)
702 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
703 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
704 		 *	[S] ->cpu = new_cpu		[L] task_rq()
705 		 *					[L] ->on_rq
706 		 *	RELEASE (rq->lock)
707 		 *
708 		 * If we observe the old CPU in task_rq_lock(), the acquire of
709 		 * the old rq->lock will fully serialize against the stores.
710 		 *
711 		 * If we observe the new CPU in task_rq_lock(), the address
712 		 * dependency headed by '[L] rq = task_rq()' and the acquire
713 		 * will pair with the WMB to ensure we then also see migrating.
714 		 */
715 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
716 			rq_pin_lock(rq, rf);
717 			return rq;
718 		}
719 		raw_spin_rq_unlock(rq);
720 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
721 
722 		while (unlikely(task_on_rq_migrating(p)))
723 			cpu_relax();
724 	}
725 }
726 
727 /*
728  * RQ-clock updating methods:
729  */
730 
731 static void update_rq_clock_task(struct rq *rq, s64 delta)
732 {
733 /*
734  * In theory, the compile should just see 0 here, and optimize out the call
735  * to sched_rt_avg_update. But I don't trust it...
736  */
737 	s64 __maybe_unused steal = 0, irq_delta = 0;
738 
739 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
740 	if (irqtime_enabled()) {
741 		irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
742 
743 		/*
744 		 * Since irq_time is only updated on {soft,}irq_exit, we might run into
745 		 * this case when a previous update_rq_clock() happened inside a
746 		 * {soft,}IRQ region.
747 		 *
748 		 * When this happens, we stop ->clock_task and only update the
749 		 * prev_irq_time stamp to account for the part that fit, so that a next
750 		 * update will consume the rest. This ensures ->clock_task is
751 		 * monotonic.
752 		 *
753 		 * It does however cause some slight miss-attribution of {soft,}IRQ
754 		 * time, a more accurate solution would be to update the irq_time using
755 		 * the current rq->clock timestamp, except that would require using
756 		 * atomic ops.
757 		 */
758 		if (irq_delta > delta)
759 			irq_delta = delta;
760 
761 		rq->prev_irq_time += irq_delta;
762 		delta -= irq_delta;
763 		delayacct_irq(rq->curr, irq_delta);
764 	}
765 #endif
766 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
767 	if (static_key_false((&paravirt_steal_rq_enabled))) {
768 		u64 prev_steal;
769 
770 		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
771 		steal -= rq->prev_steal_time_rq;
772 
773 		if (unlikely(steal > delta))
774 			steal = delta;
775 
776 		rq->prev_steal_time_rq = prev_steal;
777 		delta -= steal;
778 	}
779 #endif
780 
781 	rq->clock_task += delta;
782 
783 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
784 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
785 		update_irq_load_avg(rq, irq_delta + steal);
786 #endif
787 	update_rq_clock_pelt(rq, delta);
788 }
789 
790 void update_rq_clock(struct rq *rq)
791 {
792 	s64 delta;
793 	u64 clock;
794 
795 	lockdep_assert_rq_held(rq);
796 
797 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
798 		return;
799 
800 	if (sched_feat(WARN_DOUBLE_CLOCK))
801 		WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED);
802 	rq->clock_update_flags |= RQCF_UPDATED;
803 
804 	clock = sched_clock_cpu(cpu_of(rq));
805 	scx_rq_clock_update(rq, clock);
806 
807 	delta = clock - rq->clock;
808 	if (delta < 0)
809 		return;
810 	rq->clock += delta;
811 
812 	update_rq_clock_task(rq, delta);
813 }
814 
815 #ifdef CONFIG_SCHED_HRTICK
816 /*
817  * Use HR-timers to deliver accurate preemption points.
818  */
819 
820 static void hrtick_clear(struct rq *rq)
821 {
822 	if (hrtimer_active(&rq->hrtick_timer))
823 		hrtimer_cancel(&rq->hrtick_timer);
824 }
825 
826 /*
827  * High-resolution timer tick.
828  * Runs from hardirq context with interrupts disabled.
829  */
830 static enum hrtimer_restart hrtick(struct hrtimer *timer)
831 {
832 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
833 	struct rq_flags rf;
834 
835 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
836 
837 	rq_lock(rq, &rf);
838 	update_rq_clock(rq);
839 	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
840 	rq_unlock(rq, &rf);
841 
842 	return HRTIMER_NORESTART;
843 }
844 
845 #ifdef CONFIG_SMP
846 
847 static void __hrtick_restart(struct rq *rq)
848 {
849 	struct hrtimer *timer = &rq->hrtick_timer;
850 	ktime_t time = rq->hrtick_time;
851 
852 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
853 }
854 
855 /*
856  * called from hardirq (IPI) context
857  */
858 static void __hrtick_start(void *arg)
859 {
860 	struct rq *rq = arg;
861 	struct rq_flags rf;
862 
863 	rq_lock(rq, &rf);
864 	__hrtick_restart(rq);
865 	rq_unlock(rq, &rf);
866 }
867 
868 /*
869  * Called to set the hrtick timer state.
870  *
871  * called with rq->lock held and IRQs disabled
872  */
873 void hrtick_start(struct rq *rq, u64 delay)
874 {
875 	struct hrtimer *timer = &rq->hrtick_timer;
876 	s64 delta;
877 
878 	/*
879 	 * Don't schedule slices shorter than 10000ns, that just
880 	 * doesn't make sense and can cause timer DoS.
881 	 */
882 	delta = max_t(s64, delay, 10000LL);
883 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
884 
885 	if (rq == this_rq())
886 		__hrtick_restart(rq);
887 	else
888 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
889 }
890 
891 #else
892 /*
893  * Called to set the hrtick timer state.
894  *
895  * called with rq->lock held and IRQs disabled
896  */
897 void hrtick_start(struct rq *rq, u64 delay)
898 {
899 	/*
900 	 * Don't schedule slices shorter than 10000ns, that just
901 	 * doesn't make sense. Rely on vruntime for fairness.
902 	 */
903 	delay = max_t(u64, delay, 10000LL);
904 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
905 		      HRTIMER_MODE_REL_PINNED_HARD);
906 }
907 
908 #endif /* CONFIG_SMP */
909 
910 static void hrtick_rq_init(struct rq *rq)
911 {
912 #ifdef CONFIG_SMP
913 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
914 #endif
915 	hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
916 }
917 #else	/* CONFIG_SCHED_HRTICK */
918 static inline void hrtick_clear(struct rq *rq)
919 {
920 }
921 
922 static inline void hrtick_rq_init(struct rq *rq)
923 {
924 }
925 #endif	/* CONFIG_SCHED_HRTICK */
926 
927 /*
928  * try_cmpxchg based fetch_or() macro so it works for different integer types:
929  */
930 #define fetch_or(ptr, mask)						\
931 	({								\
932 		typeof(ptr) _ptr = (ptr);				\
933 		typeof(mask) _mask = (mask);				\
934 		typeof(*_ptr) _val = *_ptr;				\
935 									\
936 		do {							\
937 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
938 	_val;								\
939 })
940 
941 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
942 /*
943  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
944  * this avoids any races wrt polling state changes and thereby avoids
945  * spurious IPIs.
946  */
947 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
948 {
949 	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
950 }
951 
952 /*
953  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
954  *
955  * If this returns true, then the idle task promises to call
956  * sched_ttwu_pending() and reschedule soon.
957  */
958 static bool set_nr_if_polling(struct task_struct *p)
959 {
960 	struct thread_info *ti = task_thread_info(p);
961 	typeof(ti->flags) val = READ_ONCE(ti->flags);
962 
963 	do {
964 		if (!(val & _TIF_POLLING_NRFLAG))
965 			return false;
966 		if (val & _TIF_NEED_RESCHED)
967 			return true;
968 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
969 
970 	return true;
971 }
972 
973 #else
974 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
975 {
976 	set_ti_thread_flag(ti, tif);
977 	return true;
978 }
979 
980 #ifdef CONFIG_SMP
981 static inline bool set_nr_if_polling(struct task_struct *p)
982 {
983 	return false;
984 }
985 #endif
986 #endif
987 
988 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
989 {
990 	struct wake_q_node *node = &task->wake_q;
991 
992 	/*
993 	 * Atomically grab the task, if ->wake_q is !nil already it means
994 	 * it's already queued (either by us or someone else) and will get the
995 	 * wakeup due to that.
996 	 *
997 	 * In order to ensure that a pending wakeup will observe our pending
998 	 * state, even in the failed case, an explicit smp_mb() must be used.
999 	 */
1000 	smp_mb__before_atomic();
1001 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1002 		return false;
1003 
1004 	/*
1005 	 * The head is context local, there can be no concurrency.
1006 	 */
1007 	*head->lastp = node;
1008 	head->lastp = &node->next;
1009 	return true;
1010 }
1011 
1012 /**
1013  * wake_q_add() - queue a wakeup for 'later' waking.
1014  * @head: the wake_q_head to add @task to
1015  * @task: the task to queue for 'later' wakeup
1016  *
1017  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1018  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1019  * instantly.
1020  *
1021  * This function must be used as-if it were wake_up_process(); IOW the task
1022  * must be ready to be woken at this location.
1023  */
1024 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1025 {
1026 	if (__wake_q_add(head, task))
1027 		get_task_struct(task);
1028 }
1029 
1030 /**
1031  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1032  * @head: the wake_q_head to add @task to
1033  * @task: the task to queue for 'later' wakeup
1034  *
1035  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1036  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1037  * instantly.
1038  *
1039  * This function must be used as-if it were wake_up_process(); IOW the task
1040  * must be ready to be woken at this location.
1041  *
1042  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1043  * that already hold reference to @task can call the 'safe' version and trust
1044  * wake_q to do the right thing depending whether or not the @task is already
1045  * queued for wakeup.
1046  */
1047 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1048 {
1049 	if (!__wake_q_add(head, task))
1050 		put_task_struct(task);
1051 }
1052 
1053 void wake_up_q(struct wake_q_head *head)
1054 {
1055 	struct wake_q_node *node = head->first;
1056 
1057 	while (node != WAKE_Q_TAIL) {
1058 		struct task_struct *task;
1059 
1060 		task = container_of(node, struct task_struct, wake_q);
1061 		node = node->next;
1062 		/* pairs with cmpxchg_relaxed() in __wake_q_add() */
1063 		WRITE_ONCE(task->wake_q.next, NULL);
1064 		/* Task can safely be re-inserted now. */
1065 
1066 		/*
1067 		 * wake_up_process() executes a full barrier, which pairs with
1068 		 * the queueing in wake_q_add() so as not to miss wakeups.
1069 		 */
1070 		wake_up_process(task);
1071 		put_task_struct(task);
1072 	}
1073 }
1074 
1075 /*
1076  * resched_curr - mark rq's current task 'to be rescheduled now'.
1077  *
1078  * On UP this means the setting of the need_resched flag, on SMP it
1079  * might also involve a cross-CPU call to trigger the scheduler on
1080  * the target CPU.
1081  */
1082 static void __resched_curr(struct rq *rq, int tif)
1083 {
1084 	struct task_struct *curr = rq->curr;
1085 	struct thread_info *cti = task_thread_info(curr);
1086 	int cpu;
1087 
1088 	lockdep_assert_rq_held(rq);
1089 
1090 	/*
1091 	 * Always immediately preempt the idle task; no point in delaying doing
1092 	 * actual work.
1093 	 */
1094 	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1095 		tif = TIF_NEED_RESCHED;
1096 
1097 	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1098 		return;
1099 
1100 	cpu = cpu_of(rq);
1101 
1102 	if (cpu == smp_processor_id()) {
1103 		set_ti_thread_flag(cti, tif);
1104 		if (tif == TIF_NEED_RESCHED)
1105 			set_preempt_need_resched();
1106 		return;
1107 	}
1108 
1109 	if (set_nr_and_not_polling(cti, tif)) {
1110 		if (tif == TIF_NEED_RESCHED)
1111 			smp_send_reschedule(cpu);
1112 	} else {
1113 		trace_sched_wake_idle_without_ipi(cpu);
1114 	}
1115 }
1116 
1117 void resched_curr(struct rq *rq)
1118 {
1119 	__resched_curr(rq, TIF_NEED_RESCHED);
1120 }
1121 
1122 #ifdef CONFIG_PREEMPT_DYNAMIC
1123 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
1124 static __always_inline bool dynamic_preempt_lazy(void)
1125 {
1126 	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1127 }
1128 #else
1129 static __always_inline bool dynamic_preempt_lazy(void)
1130 {
1131 	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1132 }
1133 #endif
1134 
1135 static __always_inline int get_lazy_tif_bit(void)
1136 {
1137 	if (dynamic_preempt_lazy())
1138 		return TIF_NEED_RESCHED_LAZY;
1139 
1140 	return TIF_NEED_RESCHED;
1141 }
1142 
1143 void resched_curr_lazy(struct rq *rq)
1144 {
1145 	__resched_curr(rq, get_lazy_tif_bit());
1146 }
1147 
1148 void resched_cpu(int cpu)
1149 {
1150 	struct rq *rq = cpu_rq(cpu);
1151 	unsigned long flags;
1152 
1153 	raw_spin_rq_lock_irqsave(rq, flags);
1154 	if (cpu_online(cpu) || cpu == smp_processor_id())
1155 		resched_curr(rq);
1156 	raw_spin_rq_unlock_irqrestore(rq, flags);
1157 }
1158 
1159 #ifdef CONFIG_SMP
1160 #ifdef CONFIG_NO_HZ_COMMON
1161 /*
1162  * In the semi idle case, use the nearest busy CPU for migrating timers
1163  * from an idle CPU.  This is good for power-savings.
1164  *
1165  * We don't do similar optimization for completely idle system, as
1166  * selecting an idle CPU will add more delays to the timers than intended
1167  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1168  */
1169 int get_nohz_timer_target(void)
1170 {
1171 	int i, cpu = smp_processor_id(), default_cpu = -1;
1172 	struct sched_domain *sd;
1173 	const struct cpumask *hk_mask;
1174 
1175 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
1176 		if (!idle_cpu(cpu))
1177 			return cpu;
1178 		default_cpu = cpu;
1179 	}
1180 
1181 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
1182 
1183 	guard(rcu)();
1184 
1185 	for_each_domain(cpu, sd) {
1186 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1187 			if (cpu == i)
1188 				continue;
1189 
1190 			if (!idle_cpu(i))
1191 				return i;
1192 		}
1193 	}
1194 
1195 	if (default_cpu == -1)
1196 		default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
1197 
1198 	return default_cpu;
1199 }
1200 
1201 /*
1202  * When add_timer_on() enqueues a timer into the timer wheel of an
1203  * idle CPU then this timer might expire before the next timer event
1204  * which is scheduled to wake up that CPU. In case of a completely
1205  * idle system the next event might even be infinite time into the
1206  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1207  * leaves the inner idle loop so the newly added timer is taken into
1208  * account when the CPU goes back to idle and evaluates the timer
1209  * wheel for the next timer event.
1210  */
1211 static void wake_up_idle_cpu(int cpu)
1212 {
1213 	struct rq *rq = cpu_rq(cpu);
1214 
1215 	if (cpu == smp_processor_id())
1216 		return;
1217 
1218 	/*
1219 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1220 	 * part of the idle loop. This forces an exit from the idle loop
1221 	 * and a round trip to schedule(). Now this could be optimized
1222 	 * because a simple new idle loop iteration is enough to
1223 	 * re-evaluate the next tick. Provided some re-ordering of tick
1224 	 * nohz functions that would need to follow TIF_NR_POLLING
1225 	 * clearing:
1226 	 *
1227 	 * - On most architectures, a simple fetch_or on ti::flags with a
1228 	 *   "0" value would be enough to know if an IPI needs to be sent.
1229 	 *
1230 	 * - x86 needs to perform a last need_resched() check between
1231 	 *   monitor and mwait which doesn't take timers into account.
1232 	 *   There a dedicated TIF_TIMER flag would be required to
1233 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1234 	 *   before mwait().
1235 	 *
1236 	 * However, remote timer enqueue is not such a frequent event
1237 	 * and testing of the above solutions didn't appear to report
1238 	 * much benefits.
1239 	 */
1240 	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1241 		smp_send_reschedule(cpu);
1242 	else
1243 		trace_sched_wake_idle_without_ipi(cpu);
1244 }
1245 
1246 static bool wake_up_full_nohz_cpu(int cpu)
1247 {
1248 	/*
1249 	 * We just need the target to call irq_exit() and re-evaluate
1250 	 * the next tick. The nohz full kick at least implies that.
1251 	 * If needed we can still optimize that later with an
1252 	 * empty IRQ.
1253 	 */
1254 	if (cpu_is_offline(cpu))
1255 		return true;  /* Don't try to wake offline CPUs. */
1256 	if (tick_nohz_full_cpu(cpu)) {
1257 		if (cpu != smp_processor_id() ||
1258 		    tick_nohz_tick_stopped())
1259 			tick_nohz_full_kick_cpu(cpu);
1260 		return true;
1261 	}
1262 
1263 	return false;
1264 }
1265 
1266 /*
1267  * Wake up the specified CPU.  If the CPU is going offline, it is the
1268  * caller's responsibility to deal with the lost wakeup, for example,
1269  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1270  */
1271 void wake_up_nohz_cpu(int cpu)
1272 {
1273 	if (!wake_up_full_nohz_cpu(cpu))
1274 		wake_up_idle_cpu(cpu);
1275 }
1276 
1277 static void nohz_csd_func(void *info)
1278 {
1279 	struct rq *rq = info;
1280 	int cpu = cpu_of(rq);
1281 	unsigned int flags;
1282 
1283 	/*
1284 	 * Release the rq::nohz_csd.
1285 	 */
1286 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1287 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1288 
1289 	rq->idle_balance = idle_cpu(cpu);
1290 	if (rq->idle_balance) {
1291 		rq->nohz_idle_balance = flags;
1292 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1293 	}
1294 }
1295 
1296 #endif /* CONFIG_NO_HZ_COMMON */
1297 
1298 #ifdef CONFIG_NO_HZ_FULL
1299 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1300 {
1301 	if (rq->nr_running != 1)
1302 		return false;
1303 
1304 	if (p->sched_class != &fair_sched_class)
1305 		return false;
1306 
1307 	if (!task_on_rq_queued(p))
1308 		return false;
1309 
1310 	return true;
1311 }
1312 
1313 bool sched_can_stop_tick(struct rq *rq)
1314 {
1315 	int fifo_nr_running;
1316 
1317 	/* Deadline tasks, even if single, need the tick */
1318 	if (rq->dl.dl_nr_running)
1319 		return false;
1320 
1321 	/*
1322 	 * If there are more than one RR tasks, we need the tick to affect the
1323 	 * actual RR behaviour.
1324 	 */
1325 	if (rq->rt.rr_nr_running) {
1326 		if (rq->rt.rr_nr_running == 1)
1327 			return true;
1328 		else
1329 			return false;
1330 	}
1331 
1332 	/*
1333 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1334 	 * forced preemption between FIFO tasks.
1335 	 */
1336 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1337 	if (fifo_nr_running)
1338 		return true;
1339 
1340 	/*
1341 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1342 	 * left. For CFS, if there's more than one we need the tick for
1343 	 * involuntary preemption. For SCX, ask.
1344 	 */
1345 	if (scx_enabled() && !scx_can_stop_tick(rq))
1346 		return false;
1347 
1348 	if (rq->cfs.h_nr_queued > 1)
1349 		return false;
1350 
1351 	/*
1352 	 * If there is one task and it has CFS runtime bandwidth constraints
1353 	 * and it's on the cpu now we don't want to stop the tick.
1354 	 * This check prevents clearing the bit if a newly enqueued task here is
1355 	 * dequeued by migrating while the constrained task continues to run.
1356 	 * E.g. going from 2->1 without going through pick_next_task().
1357 	 */
1358 	if (__need_bw_check(rq, rq->curr)) {
1359 		if (cfs_task_bw_constrained(rq->curr))
1360 			return false;
1361 	}
1362 
1363 	return true;
1364 }
1365 #endif /* CONFIG_NO_HZ_FULL */
1366 #endif /* CONFIG_SMP */
1367 
1368 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1369 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1370 /*
1371  * Iterate task_group tree rooted at *from, calling @down when first entering a
1372  * node and @up when leaving it for the final time.
1373  *
1374  * Caller must hold rcu_lock or sufficient equivalent.
1375  */
1376 int walk_tg_tree_from(struct task_group *from,
1377 			     tg_visitor down, tg_visitor up, void *data)
1378 {
1379 	struct task_group *parent, *child;
1380 	int ret;
1381 
1382 	parent = from;
1383 
1384 down:
1385 	ret = (*down)(parent, data);
1386 	if (ret)
1387 		goto out;
1388 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1389 		parent = child;
1390 		goto down;
1391 
1392 up:
1393 		continue;
1394 	}
1395 	ret = (*up)(parent, data);
1396 	if (ret || parent == from)
1397 		goto out;
1398 
1399 	child = parent;
1400 	parent = parent->parent;
1401 	if (parent)
1402 		goto up;
1403 out:
1404 	return ret;
1405 }
1406 
1407 int tg_nop(struct task_group *tg, void *data)
1408 {
1409 	return 0;
1410 }
1411 #endif
1412 
1413 void set_load_weight(struct task_struct *p, bool update_load)
1414 {
1415 	int prio = p->static_prio - MAX_RT_PRIO;
1416 	struct load_weight lw;
1417 
1418 	if (task_has_idle_policy(p)) {
1419 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1420 		lw.inv_weight = WMULT_IDLEPRIO;
1421 	} else {
1422 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1423 		lw.inv_weight = sched_prio_to_wmult[prio];
1424 	}
1425 
1426 	/*
1427 	 * SCHED_OTHER tasks have to update their load when changing their
1428 	 * weight
1429 	 */
1430 	if (update_load && p->sched_class->reweight_task)
1431 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1432 	else
1433 		p->se.load = lw;
1434 }
1435 
1436 #ifdef CONFIG_UCLAMP_TASK
1437 /*
1438  * Serializes updates of utilization clamp values
1439  *
1440  * The (slow-path) user-space triggers utilization clamp value updates which
1441  * can require updates on (fast-path) scheduler's data structures used to
1442  * support enqueue/dequeue operations.
1443  * While the per-CPU rq lock protects fast-path update operations, user-space
1444  * requests are serialized using a mutex to reduce the risk of conflicting
1445  * updates or API abuses.
1446  */
1447 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1448 
1449 /* Max allowed minimum utilization */
1450 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1451 
1452 /* Max allowed maximum utilization */
1453 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1454 
1455 /*
1456  * By default RT tasks run at the maximum performance point/capacity of the
1457  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1458  * SCHED_CAPACITY_SCALE.
1459  *
1460  * This knob allows admins to change the default behavior when uclamp is being
1461  * used. In battery powered devices, particularly, running at the maximum
1462  * capacity and frequency will increase energy consumption and shorten the
1463  * battery life.
1464  *
1465  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1466  *
1467  * This knob will not override the system default sched_util_clamp_min defined
1468  * above.
1469  */
1470 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1471 
1472 /* All clamps are required to be less or equal than these values */
1473 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1474 
1475 /*
1476  * This static key is used to reduce the uclamp overhead in the fast path. It
1477  * primarily disables the call to uclamp_rq_{inc, dec}() in
1478  * enqueue/dequeue_task().
1479  *
1480  * This allows users to continue to enable uclamp in their kernel config with
1481  * minimum uclamp overhead in the fast path.
1482  *
1483  * As soon as userspace modifies any of the uclamp knobs, the static key is
1484  * enabled, since we have an actual users that make use of uclamp
1485  * functionality.
1486  *
1487  * The knobs that would enable this static key are:
1488  *
1489  *   * A task modifying its uclamp value with sched_setattr().
1490  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1491  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1492  */
1493 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1494 
1495 static inline unsigned int
1496 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1497 		  unsigned int clamp_value)
1498 {
1499 	/*
1500 	 * Avoid blocked utilization pushing up the frequency when we go
1501 	 * idle (which drops the max-clamp) by retaining the last known
1502 	 * max-clamp.
1503 	 */
1504 	if (clamp_id == UCLAMP_MAX) {
1505 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1506 		return clamp_value;
1507 	}
1508 
1509 	return uclamp_none(UCLAMP_MIN);
1510 }
1511 
1512 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1513 				     unsigned int clamp_value)
1514 {
1515 	/* Reset max-clamp retention only on idle exit */
1516 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1517 		return;
1518 
1519 	uclamp_rq_set(rq, clamp_id, clamp_value);
1520 }
1521 
1522 static inline
1523 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1524 				   unsigned int clamp_value)
1525 {
1526 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1527 	int bucket_id = UCLAMP_BUCKETS - 1;
1528 
1529 	/*
1530 	 * Since both min and max clamps are max aggregated, find the
1531 	 * top most bucket with tasks in.
1532 	 */
1533 	for ( ; bucket_id >= 0; bucket_id--) {
1534 		if (!bucket[bucket_id].tasks)
1535 			continue;
1536 		return bucket[bucket_id].value;
1537 	}
1538 
1539 	/* No tasks -- default clamp values */
1540 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1541 }
1542 
1543 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1544 {
1545 	unsigned int default_util_min;
1546 	struct uclamp_se *uc_se;
1547 
1548 	lockdep_assert_held(&p->pi_lock);
1549 
1550 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1551 
1552 	/* Only sync if user didn't override the default */
1553 	if (uc_se->user_defined)
1554 		return;
1555 
1556 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1557 	uclamp_se_set(uc_se, default_util_min, false);
1558 }
1559 
1560 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1561 {
1562 	if (!rt_task(p))
1563 		return;
1564 
1565 	/* Protect updates to p->uclamp_* */
1566 	guard(task_rq_lock)(p);
1567 	__uclamp_update_util_min_rt_default(p);
1568 }
1569 
1570 static inline struct uclamp_se
1571 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1572 {
1573 	/* Copy by value as we could modify it */
1574 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1575 #ifdef CONFIG_UCLAMP_TASK_GROUP
1576 	unsigned int tg_min, tg_max, value;
1577 
1578 	/*
1579 	 * Tasks in autogroups or root task group will be
1580 	 * restricted by system defaults.
1581 	 */
1582 	if (task_group_is_autogroup(task_group(p)))
1583 		return uc_req;
1584 	if (task_group(p) == &root_task_group)
1585 		return uc_req;
1586 
1587 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1588 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1589 	value = uc_req.value;
1590 	value = clamp(value, tg_min, tg_max);
1591 	uclamp_se_set(&uc_req, value, false);
1592 #endif
1593 
1594 	return uc_req;
1595 }
1596 
1597 /*
1598  * The effective clamp bucket index of a task depends on, by increasing
1599  * priority:
1600  * - the task specific clamp value, when explicitly requested from userspace
1601  * - the task group effective clamp value, for tasks not either in the root
1602  *   group or in an autogroup
1603  * - the system default clamp value, defined by the sysadmin
1604  */
1605 static inline struct uclamp_se
1606 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1607 {
1608 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1609 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1610 
1611 	/* System default restrictions always apply */
1612 	if (unlikely(uc_req.value > uc_max.value))
1613 		return uc_max;
1614 
1615 	return uc_req;
1616 }
1617 
1618 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1619 {
1620 	struct uclamp_se uc_eff;
1621 
1622 	/* Task currently refcounted: use back-annotated (effective) value */
1623 	if (p->uclamp[clamp_id].active)
1624 		return (unsigned long)p->uclamp[clamp_id].value;
1625 
1626 	uc_eff = uclamp_eff_get(p, clamp_id);
1627 
1628 	return (unsigned long)uc_eff.value;
1629 }
1630 
1631 /*
1632  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1633  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1634  * updates the rq's clamp value if required.
1635  *
1636  * Tasks can have a task-specific value requested from user-space, track
1637  * within each bucket the maximum value for tasks refcounted in it.
1638  * This "local max aggregation" allows to track the exact "requested" value
1639  * for each bucket when all its RUNNABLE tasks require the same clamp.
1640  */
1641 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1642 				    enum uclamp_id clamp_id)
1643 {
1644 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1645 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1646 	struct uclamp_bucket *bucket;
1647 
1648 	lockdep_assert_rq_held(rq);
1649 
1650 	/* Update task effective clamp */
1651 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1652 
1653 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1654 	bucket->tasks++;
1655 	uc_se->active = true;
1656 
1657 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1658 
1659 	/*
1660 	 * Local max aggregation: rq buckets always track the max
1661 	 * "requested" clamp value of its RUNNABLE tasks.
1662 	 */
1663 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1664 		bucket->value = uc_se->value;
1665 
1666 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1667 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1668 }
1669 
1670 /*
1671  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1672  * is released. If this is the last task reference counting the rq's max
1673  * active clamp value, then the rq's clamp value is updated.
1674  *
1675  * Both refcounted tasks and rq's cached clamp values are expected to be
1676  * always valid. If it's detected they are not, as defensive programming,
1677  * enforce the expected state and warn.
1678  */
1679 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1680 				    enum uclamp_id clamp_id)
1681 {
1682 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1683 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1684 	struct uclamp_bucket *bucket;
1685 	unsigned int bkt_clamp;
1686 	unsigned int rq_clamp;
1687 
1688 	lockdep_assert_rq_held(rq);
1689 
1690 	/*
1691 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1692 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1693 	 *
1694 	 * In this case the uc_se->active flag should be false since no uclamp
1695 	 * accounting was performed at enqueue time and we can just return
1696 	 * here.
1697 	 *
1698 	 * Need to be careful of the following enqueue/dequeue ordering
1699 	 * problem too
1700 	 *
1701 	 *	enqueue(taskA)
1702 	 *	// sched_uclamp_used gets enabled
1703 	 *	enqueue(taskB)
1704 	 *	dequeue(taskA)
1705 	 *	// Must not decrement bucket->tasks here
1706 	 *	dequeue(taskB)
1707 	 *
1708 	 * where we could end up with stale data in uc_se and
1709 	 * bucket[uc_se->bucket_id].
1710 	 *
1711 	 * The following check here eliminates the possibility of such race.
1712 	 */
1713 	if (unlikely(!uc_se->active))
1714 		return;
1715 
1716 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1717 
1718 	WARN_ON_ONCE(!bucket->tasks);
1719 	if (likely(bucket->tasks))
1720 		bucket->tasks--;
1721 
1722 	uc_se->active = false;
1723 
1724 	/*
1725 	 * Keep "local max aggregation" simple and accept to (possibly)
1726 	 * overboost some RUNNABLE tasks in the same bucket.
1727 	 * The rq clamp bucket value is reset to its base value whenever
1728 	 * there are no more RUNNABLE tasks refcounting it.
1729 	 */
1730 	if (likely(bucket->tasks))
1731 		return;
1732 
1733 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1734 	/*
1735 	 * Defensive programming: this should never happen. If it happens,
1736 	 * e.g. due to future modification, warn and fix up the expected value.
1737 	 */
1738 	WARN_ON_ONCE(bucket->value > rq_clamp);
1739 	if (bucket->value >= rq_clamp) {
1740 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1741 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1742 	}
1743 }
1744 
1745 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1746 {
1747 	enum uclamp_id clamp_id;
1748 
1749 	/*
1750 	 * Avoid any overhead until uclamp is actually used by the userspace.
1751 	 *
1752 	 * The condition is constructed such that a NOP is generated when
1753 	 * sched_uclamp_used is disabled.
1754 	 */
1755 	if (!uclamp_is_used())
1756 		return;
1757 
1758 	if (unlikely(!p->sched_class->uclamp_enabled))
1759 		return;
1760 
1761 	if (p->se.sched_delayed)
1762 		return;
1763 
1764 	for_each_clamp_id(clamp_id)
1765 		uclamp_rq_inc_id(rq, p, clamp_id);
1766 
1767 	/* Reset clamp idle holding when there is one RUNNABLE task */
1768 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1769 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1770 }
1771 
1772 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1773 {
1774 	enum uclamp_id clamp_id;
1775 
1776 	/*
1777 	 * Avoid any overhead until uclamp is actually used by the userspace.
1778 	 *
1779 	 * The condition is constructed such that a NOP is generated when
1780 	 * sched_uclamp_used is disabled.
1781 	 */
1782 	if (!uclamp_is_used())
1783 		return;
1784 
1785 	if (unlikely(!p->sched_class->uclamp_enabled))
1786 		return;
1787 
1788 	if (p->se.sched_delayed)
1789 		return;
1790 
1791 	for_each_clamp_id(clamp_id)
1792 		uclamp_rq_dec_id(rq, p, clamp_id);
1793 }
1794 
1795 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1796 				      enum uclamp_id clamp_id)
1797 {
1798 	if (!p->uclamp[clamp_id].active)
1799 		return;
1800 
1801 	uclamp_rq_dec_id(rq, p, clamp_id);
1802 	uclamp_rq_inc_id(rq, p, clamp_id);
1803 
1804 	/*
1805 	 * Make sure to clear the idle flag if we've transiently reached 0
1806 	 * active tasks on rq.
1807 	 */
1808 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1809 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1810 }
1811 
1812 static inline void
1813 uclamp_update_active(struct task_struct *p)
1814 {
1815 	enum uclamp_id clamp_id;
1816 	struct rq_flags rf;
1817 	struct rq *rq;
1818 
1819 	/*
1820 	 * Lock the task and the rq where the task is (or was) queued.
1821 	 *
1822 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1823 	 * price to pay to safely serialize util_{min,max} updates with
1824 	 * enqueues, dequeues and migration operations.
1825 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1826 	 */
1827 	rq = task_rq_lock(p, &rf);
1828 
1829 	/*
1830 	 * Setting the clamp bucket is serialized by task_rq_lock().
1831 	 * If the task is not yet RUNNABLE and its task_struct is not
1832 	 * affecting a valid clamp bucket, the next time it's enqueued,
1833 	 * it will already see the updated clamp bucket value.
1834 	 */
1835 	for_each_clamp_id(clamp_id)
1836 		uclamp_rq_reinc_id(rq, p, clamp_id);
1837 
1838 	task_rq_unlock(rq, p, &rf);
1839 }
1840 
1841 #ifdef CONFIG_UCLAMP_TASK_GROUP
1842 static inline void
1843 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1844 {
1845 	struct css_task_iter it;
1846 	struct task_struct *p;
1847 
1848 	css_task_iter_start(css, 0, &it);
1849 	while ((p = css_task_iter_next(&it)))
1850 		uclamp_update_active(p);
1851 	css_task_iter_end(&it);
1852 }
1853 
1854 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1855 #endif
1856 
1857 #ifdef CONFIG_SYSCTL
1858 #ifdef CONFIG_UCLAMP_TASK_GROUP
1859 static void uclamp_update_root_tg(void)
1860 {
1861 	struct task_group *tg = &root_task_group;
1862 
1863 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1864 		      sysctl_sched_uclamp_util_min, false);
1865 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1866 		      sysctl_sched_uclamp_util_max, false);
1867 
1868 	guard(rcu)();
1869 	cpu_util_update_eff(&root_task_group.css);
1870 }
1871 #else
1872 static void uclamp_update_root_tg(void) { }
1873 #endif
1874 
1875 static void uclamp_sync_util_min_rt_default(void)
1876 {
1877 	struct task_struct *g, *p;
1878 
1879 	/*
1880 	 * copy_process()			sysctl_uclamp
1881 	 *					  uclamp_min_rt = X;
1882 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1883 	 *   // link thread			  smp_mb__after_spinlock()
1884 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1885 	 *   sched_post_fork()			  for_each_process_thread()
1886 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1887 	 *
1888 	 * Ensures that either sched_post_fork() will observe the new
1889 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1890 	 * task.
1891 	 */
1892 	read_lock(&tasklist_lock);
1893 	smp_mb__after_spinlock();
1894 	read_unlock(&tasklist_lock);
1895 
1896 	guard(rcu)();
1897 	for_each_process_thread(g, p)
1898 		uclamp_update_util_min_rt_default(p);
1899 }
1900 
1901 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1902 				void *buffer, size_t *lenp, loff_t *ppos)
1903 {
1904 	bool update_root_tg = false;
1905 	int old_min, old_max, old_min_rt;
1906 	int result;
1907 
1908 	guard(mutex)(&uclamp_mutex);
1909 
1910 	old_min = sysctl_sched_uclamp_util_min;
1911 	old_max = sysctl_sched_uclamp_util_max;
1912 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1913 
1914 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1915 	if (result)
1916 		goto undo;
1917 	if (!write)
1918 		return 0;
1919 
1920 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1921 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1922 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1923 
1924 		result = -EINVAL;
1925 		goto undo;
1926 	}
1927 
1928 	if (old_min != sysctl_sched_uclamp_util_min) {
1929 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1930 			      sysctl_sched_uclamp_util_min, false);
1931 		update_root_tg = true;
1932 	}
1933 	if (old_max != sysctl_sched_uclamp_util_max) {
1934 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1935 			      sysctl_sched_uclamp_util_max, false);
1936 		update_root_tg = true;
1937 	}
1938 
1939 	if (update_root_tg) {
1940 		sched_uclamp_enable();
1941 		uclamp_update_root_tg();
1942 	}
1943 
1944 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1945 		sched_uclamp_enable();
1946 		uclamp_sync_util_min_rt_default();
1947 	}
1948 
1949 	/*
1950 	 * We update all RUNNABLE tasks only when task groups are in use.
1951 	 * Otherwise, keep it simple and do just a lazy update at each next
1952 	 * task enqueue time.
1953 	 */
1954 	return 0;
1955 
1956 undo:
1957 	sysctl_sched_uclamp_util_min = old_min;
1958 	sysctl_sched_uclamp_util_max = old_max;
1959 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1960 	return result;
1961 }
1962 #endif
1963 
1964 static void uclamp_fork(struct task_struct *p)
1965 {
1966 	enum uclamp_id clamp_id;
1967 
1968 	/*
1969 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1970 	 * as the task is still at its early fork stages.
1971 	 */
1972 	for_each_clamp_id(clamp_id)
1973 		p->uclamp[clamp_id].active = false;
1974 
1975 	if (likely(!p->sched_reset_on_fork))
1976 		return;
1977 
1978 	for_each_clamp_id(clamp_id) {
1979 		uclamp_se_set(&p->uclamp_req[clamp_id],
1980 			      uclamp_none(clamp_id), false);
1981 	}
1982 }
1983 
1984 static void uclamp_post_fork(struct task_struct *p)
1985 {
1986 	uclamp_update_util_min_rt_default(p);
1987 }
1988 
1989 static void __init init_uclamp_rq(struct rq *rq)
1990 {
1991 	enum uclamp_id clamp_id;
1992 	struct uclamp_rq *uc_rq = rq->uclamp;
1993 
1994 	for_each_clamp_id(clamp_id) {
1995 		uc_rq[clamp_id] = (struct uclamp_rq) {
1996 			.value = uclamp_none(clamp_id)
1997 		};
1998 	}
1999 
2000 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2001 }
2002 
2003 static void __init init_uclamp(void)
2004 {
2005 	struct uclamp_se uc_max = {};
2006 	enum uclamp_id clamp_id;
2007 	int cpu;
2008 
2009 	for_each_possible_cpu(cpu)
2010 		init_uclamp_rq(cpu_rq(cpu));
2011 
2012 	for_each_clamp_id(clamp_id) {
2013 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2014 			      uclamp_none(clamp_id), false);
2015 	}
2016 
2017 	/* System defaults allow max clamp values for both indexes */
2018 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2019 	for_each_clamp_id(clamp_id) {
2020 		uclamp_default[clamp_id] = uc_max;
2021 #ifdef CONFIG_UCLAMP_TASK_GROUP
2022 		root_task_group.uclamp_req[clamp_id] = uc_max;
2023 		root_task_group.uclamp[clamp_id] = uc_max;
2024 #endif
2025 	}
2026 }
2027 
2028 #else /* !CONFIG_UCLAMP_TASK */
2029 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2030 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2031 static inline void uclamp_fork(struct task_struct *p) { }
2032 static inline void uclamp_post_fork(struct task_struct *p) { }
2033 static inline void init_uclamp(void) { }
2034 #endif /* CONFIG_UCLAMP_TASK */
2035 
2036 bool sched_task_on_rq(struct task_struct *p)
2037 {
2038 	return task_on_rq_queued(p);
2039 }
2040 
2041 unsigned long get_wchan(struct task_struct *p)
2042 {
2043 	unsigned long ip = 0;
2044 	unsigned int state;
2045 
2046 	if (!p || p == current)
2047 		return 0;
2048 
2049 	/* Only get wchan if task is blocked and we can keep it that way. */
2050 	raw_spin_lock_irq(&p->pi_lock);
2051 	state = READ_ONCE(p->__state);
2052 	smp_rmb(); /* see try_to_wake_up() */
2053 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2054 		ip = __get_wchan(p);
2055 	raw_spin_unlock_irq(&p->pi_lock);
2056 
2057 	return ip;
2058 }
2059 
2060 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2061 {
2062 	if (!(flags & ENQUEUE_NOCLOCK))
2063 		update_rq_clock(rq);
2064 
2065 	p->sched_class->enqueue_task(rq, p, flags);
2066 	/*
2067 	 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
2068 	 * ->sched_delayed.
2069 	 */
2070 	uclamp_rq_inc(rq, p);
2071 
2072 	psi_enqueue(p, flags);
2073 
2074 	if (!(flags & ENQUEUE_RESTORE))
2075 		sched_info_enqueue(rq, p);
2076 
2077 	if (sched_core_enabled(rq))
2078 		sched_core_enqueue(rq, p);
2079 }
2080 
2081 /*
2082  * Must only return false when DEQUEUE_SLEEP.
2083  */
2084 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2085 {
2086 	if (sched_core_enabled(rq))
2087 		sched_core_dequeue(rq, p, flags);
2088 
2089 	if (!(flags & DEQUEUE_NOCLOCK))
2090 		update_rq_clock(rq);
2091 
2092 	if (!(flags & DEQUEUE_SAVE))
2093 		sched_info_dequeue(rq, p);
2094 
2095 	psi_dequeue(p, flags);
2096 
2097 	/*
2098 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2099 	 * and mark the task ->sched_delayed.
2100 	 */
2101 	uclamp_rq_dec(rq, p);
2102 	return p->sched_class->dequeue_task(rq, p, flags);
2103 }
2104 
2105 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2106 {
2107 	if (task_on_rq_migrating(p))
2108 		flags |= ENQUEUE_MIGRATED;
2109 	if (flags & ENQUEUE_MIGRATED)
2110 		sched_mm_cid_migrate_to(rq, p);
2111 
2112 	enqueue_task(rq, p, flags);
2113 
2114 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2115 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2116 }
2117 
2118 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2119 {
2120 	WARN_ON_ONCE(flags & DEQUEUE_SLEEP);
2121 
2122 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2123 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2124 
2125 	/*
2126 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2127 	 * dequeue_task() and cleared *after* enqueue_task().
2128 	 */
2129 
2130 	dequeue_task(rq, p, flags);
2131 }
2132 
2133 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2134 {
2135 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2136 		__block_task(rq, p);
2137 }
2138 
2139 /**
2140  * task_curr - is this task currently executing on a CPU?
2141  * @p: the task in question.
2142  *
2143  * Return: 1 if the task is currently executing. 0 otherwise.
2144  */
2145 inline int task_curr(const struct task_struct *p)
2146 {
2147 	return cpu_curr(task_cpu(p)) == p;
2148 }
2149 
2150 /*
2151  * ->switching_to() is called with the pi_lock and rq_lock held and must not
2152  * mess with locking.
2153  */
2154 void check_class_changing(struct rq *rq, struct task_struct *p,
2155 			  const struct sched_class *prev_class)
2156 {
2157 	if (prev_class != p->sched_class && p->sched_class->switching_to)
2158 		p->sched_class->switching_to(rq, p);
2159 }
2160 
2161 /*
2162  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2163  * use the balance_callback list if you want balancing.
2164  *
2165  * this means any call to check_class_changed() must be followed by a call to
2166  * balance_callback().
2167  */
2168 void check_class_changed(struct rq *rq, struct task_struct *p,
2169 			 const struct sched_class *prev_class,
2170 			 int oldprio)
2171 {
2172 	if (prev_class != p->sched_class) {
2173 		if (prev_class->switched_from)
2174 			prev_class->switched_from(rq, p);
2175 
2176 		p->sched_class->switched_to(rq, p);
2177 	} else if (oldprio != p->prio || dl_task(p))
2178 		p->sched_class->prio_changed(rq, p, oldprio);
2179 }
2180 
2181 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2182 {
2183 	struct task_struct *donor = rq->donor;
2184 
2185 	if (p->sched_class == donor->sched_class)
2186 		donor->sched_class->wakeup_preempt(rq, p, flags);
2187 	else if (sched_class_above(p->sched_class, donor->sched_class))
2188 		resched_curr(rq);
2189 
2190 	/*
2191 	 * A queue event has occurred, and we're going to schedule.  In
2192 	 * this case, we can save a useless back to back clock update.
2193 	 */
2194 	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2195 		rq_clock_skip_update(rq);
2196 }
2197 
2198 static __always_inline
2199 int __task_state_match(struct task_struct *p, unsigned int state)
2200 {
2201 	if (READ_ONCE(p->__state) & state)
2202 		return 1;
2203 
2204 	if (READ_ONCE(p->saved_state) & state)
2205 		return -1;
2206 
2207 	return 0;
2208 }
2209 
2210 static __always_inline
2211 int task_state_match(struct task_struct *p, unsigned int state)
2212 {
2213 	/*
2214 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2215 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2216 	 */
2217 	guard(raw_spinlock_irq)(&p->pi_lock);
2218 	return __task_state_match(p, state);
2219 }
2220 
2221 /*
2222  * wait_task_inactive - wait for a thread to unschedule.
2223  *
2224  * Wait for the thread to block in any of the states set in @match_state.
2225  * If it changes, i.e. @p might have woken up, then return zero.  When we
2226  * succeed in waiting for @p to be off its CPU, we return a positive number
2227  * (its total switch count).  If a second call a short while later returns the
2228  * same number, the caller can be sure that @p has remained unscheduled the
2229  * whole time.
2230  *
2231  * The caller must ensure that the task *will* unschedule sometime soon,
2232  * else this function might spin for a *long* time. This function can't
2233  * be called with interrupts off, or it may introduce deadlock with
2234  * smp_call_function() if an IPI is sent by the same process we are
2235  * waiting to become inactive.
2236  */
2237 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2238 {
2239 	int running, queued, match;
2240 	struct rq_flags rf;
2241 	unsigned long ncsw;
2242 	struct rq *rq;
2243 
2244 	for (;;) {
2245 		/*
2246 		 * We do the initial early heuristics without holding
2247 		 * any task-queue locks at all. We'll only try to get
2248 		 * the runqueue lock when things look like they will
2249 		 * work out!
2250 		 */
2251 		rq = task_rq(p);
2252 
2253 		/*
2254 		 * If the task is actively running on another CPU
2255 		 * still, just relax and busy-wait without holding
2256 		 * any locks.
2257 		 *
2258 		 * NOTE! Since we don't hold any locks, it's not
2259 		 * even sure that "rq" stays as the right runqueue!
2260 		 * But we don't care, since "task_on_cpu()" will
2261 		 * return false if the runqueue has changed and p
2262 		 * is actually now running somewhere else!
2263 		 */
2264 		while (task_on_cpu(rq, p)) {
2265 			if (!task_state_match(p, match_state))
2266 				return 0;
2267 			cpu_relax();
2268 		}
2269 
2270 		/*
2271 		 * Ok, time to look more closely! We need the rq
2272 		 * lock now, to be *sure*. If we're wrong, we'll
2273 		 * just go back and repeat.
2274 		 */
2275 		rq = task_rq_lock(p, &rf);
2276 		trace_sched_wait_task(p);
2277 		running = task_on_cpu(rq, p);
2278 		queued = task_on_rq_queued(p);
2279 		ncsw = 0;
2280 		if ((match = __task_state_match(p, match_state))) {
2281 			/*
2282 			 * When matching on p->saved_state, consider this task
2283 			 * still queued so it will wait.
2284 			 */
2285 			if (match < 0)
2286 				queued = 1;
2287 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2288 		}
2289 		task_rq_unlock(rq, p, &rf);
2290 
2291 		/*
2292 		 * If it changed from the expected state, bail out now.
2293 		 */
2294 		if (unlikely(!ncsw))
2295 			break;
2296 
2297 		/*
2298 		 * Was it really running after all now that we
2299 		 * checked with the proper locks actually held?
2300 		 *
2301 		 * Oops. Go back and try again..
2302 		 */
2303 		if (unlikely(running)) {
2304 			cpu_relax();
2305 			continue;
2306 		}
2307 
2308 		/*
2309 		 * It's not enough that it's not actively running,
2310 		 * it must be off the runqueue _entirely_, and not
2311 		 * preempted!
2312 		 *
2313 		 * So if it was still runnable (but just not actively
2314 		 * running right now), it's preempted, and we should
2315 		 * yield - it could be a while.
2316 		 */
2317 		if (unlikely(queued)) {
2318 			ktime_t to = NSEC_PER_SEC / HZ;
2319 
2320 			set_current_state(TASK_UNINTERRUPTIBLE);
2321 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2322 			continue;
2323 		}
2324 
2325 		/*
2326 		 * Ahh, all good. It wasn't running, and it wasn't
2327 		 * runnable, which means that it will never become
2328 		 * running in the future either. We're all done!
2329 		 */
2330 		break;
2331 	}
2332 
2333 	return ncsw;
2334 }
2335 
2336 #ifdef CONFIG_SMP
2337 
2338 static void
2339 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2340 
2341 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2342 {
2343 	struct affinity_context ac = {
2344 		.new_mask  = cpumask_of(rq->cpu),
2345 		.flags     = SCA_MIGRATE_DISABLE,
2346 	};
2347 
2348 	if (likely(!p->migration_disabled))
2349 		return;
2350 
2351 	if (p->cpus_ptr != &p->cpus_mask)
2352 		return;
2353 
2354 	/*
2355 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2356 	 */
2357 	__do_set_cpus_allowed(p, &ac);
2358 }
2359 
2360 void migrate_disable(void)
2361 {
2362 	struct task_struct *p = current;
2363 
2364 	if (p->migration_disabled) {
2365 #ifdef CONFIG_DEBUG_PREEMPT
2366 		/*
2367 		 *Warn about overflow half-way through the range.
2368 		 */
2369 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2370 #endif
2371 		p->migration_disabled++;
2372 		return;
2373 	}
2374 
2375 	guard(preempt)();
2376 	this_rq()->nr_pinned++;
2377 	p->migration_disabled = 1;
2378 }
2379 EXPORT_SYMBOL_GPL(migrate_disable);
2380 
2381 void migrate_enable(void)
2382 {
2383 	struct task_struct *p = current;
2384 	struct affinity_context ac = {
2385 		.new_mask  = &p->cpus_mask,
2386 		.flags     = SCA_MIGRATE_ENABLE,
2387 	};
2388 
2389 #ifdef CONFIG_DEBUG_PREEMPT
2390 	/*
2391 	 * Check both overflow from migrate_disable() and superfluous
2392 	 * migrate_enable().
2393 	 */
2394 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2395 		return;
2396 #endif
2397 
2398 	if (p->migration_disabled > 1) {
2399 		p->migration_disabled--;
2400 		return;
2401 	}
2402 
2403 	/*
2404 	 * Ensure stop_task runs either before or after this, and that
2405 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2406 	 */
2407 	guard(preempt)();
2408 	if (p->cpus_ptr != &p->cpus_mask)
2409 		__set_cpus_allowed_ptr(p, &ac);
2410 	/*
2411 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2412 	 * regular cpus_mask, otherwise things that race (eg.
2413 	 * select_fallback_rq) get confused.
2414 	 */
2415 	barrier();
2416 	p->migration_disabled = 0;
2417 	this_rq()->nr_pinned--;
2418 }
2419 EXPORT_SYMBOL_GPL(migrate_enable);
2420 
2421 static inline bool rq_has_pinned_tasks(struct rq *rq)
2422 {
2423 	return rq->nr_pinned;
2424 }
2425 
2426 /*
2427  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2428  * __set_cpus_allowed_ptr() and select_fallback_rq().
2429  */
2430 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2431 {
2432 	/* When not in the task's cpumask, no point in looking further. */
2433 	if (!task_allowed_on_cpu(p, cpu))
2434 		return false;
2435 
2436 	/* migrate_disabled() must be allowed to finish. */
2437 	if (is_migration_disabled(p))
2438 		return cpu_online(cpu);
2439 
2440 	/* Non kernel threads are not allowed during either online or offline. */
2441 	if (!(p->flags & PF_KTHREAD))
2442 		return cpu_active(cpu);
2443 
2444 	/* KTHREAD_IS_PER_CPU is always allowed. */
2445 	if (kthread_is_per_cpu(p))
2446 		return cpu_online(cpu);
2447 
2448 	/* Regular kernel threads don't get to stay during offline. */
2449 	if (cpu_dying(cpu))
2450 		return false;
2451 
2452 	/* But are allowed during online. */
2453 	return cpu_online(cpu);
2454 }
2455 
2456 /*
2457  * This is how migration works:
2458  *
2459  * 1) we invoke migration_cpu_stop() on the target CPU using
2460  *    stop_one_cpu().
2461  * 2) stopper starts to run (implicitly forcing the migrated thread
2462  *    off the CPU)
2463  * 3) it checks whether the migrated task is still in the wrong runqueue.
2464  * 4) if it's in the wrong runqueue then the migration thread removes
2465  *    it and puts it into the right queue.
2466  * 5) stopper completes and stop_one_cpu() returns and the migration
2467  *    is done.
2468  */
2469 
2470 /*
2471  * move_queued_task - move a queued task to new rq.
2472  *
2473  * Returns (locked) new rq. Old rq's lock is released.
2474  */
2475 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2476 				   struct task_struct *p, int new_cpu)
2477 {
2478 	lockdep_assert_rq_held(rq);
2479 
2480 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2481 	set_task_cpu(p, new_cpu);
2482 	rq_unlock(rq, rf);
2483 
2484 	rq = cpu_rq(new_cpu);
2485 
2486 	rq_lock(rq, rf);
2487 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2488 	activate_task(rq, p, 0);
2489 	wakeup_preempt(rq, p, 0);
2490 
2491 	return rq;
2492 }
2493 
2494 struct migration_arg {
2495 	struct task_struct		*task;
2496 	int				dest_cpu;
2497 	struct set_affinity_pending	*pending;
2498 };
2499 
2500 /*
2501  * @refs: number of wait_for_completion()
2502  * @stop_pending: is @stop_work in use
2503  */
2504 struct set_affinity_pending {
2505 	refcount_t		refs;
2506 	unsigned int		stop_pending;
2507 	struct completion	done;
2508 	struct cpu_stop_work	stop_work;
2509 	struct migration_arg	arg;
2510 };
2511 
2512 /*
2513  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2514  * this because either it can't run here any more (set_cpus_allowed()
2515  * away from this CPU, or CPU going down), or because we're
2516  * attempting to rebalance this task on exec (sched_exec).
2517  *
2518  * So we race with normal scheduler movements, but that's OK, as long
2519  * as the task is no longer on this CPU.
2520  */
2521 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2522 				 struct task_struct *p, int dest_cpu)
2523 {
2524 	/* Affinity changed (again). */
2525 	if (!is_cpu_allowed(p, dest_cpu))
2526 		return rq;
2527 
2528 	rq = move_queued_task(rq, rf, p, dest_cpu);
2529 
2530 	return rq;
2531 }
2532 
2533 /*
2534  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2535  * and performs thread migration by bumping thread off CPU then
2536  * 'pushing' onto another runqueue.
2537  */
2538 static int migration_cpu_stop(void *data)
2539 {
2540 	struct migration_arg *arg = data;
2541 	struct set_affinity_pending *pending = arg->pending;
2542 	struct task_struct *p = arg->task;
2543 	struct rq *rq = this_rq();
2544 	bool complete = false;
2545 	struct rq_flags rf;
2546 
2547 	/*
2548 	 * The original target CPU might have gone down and we might
2549 	 * be on another CPU but it doesn't matter.
2550 	 */
2551 	local_irq_save(rf.flags);
2552 	/*
2553 	 * We need to explicitly wake pending tasks before running
2554 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2555 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2556 	 */
2557 	flush_smp_call_function_queue();
2558 
2559 	raw_spin_lock(&p->pi_lock);
2560 	rq_lock(rq, &rf);
2561 
2562 	/*
2563 	 * If we were passed a pending, then ->stop_pending was set, thus
2564 	 * p->migration_pending must have remained stable.
2565 	 */
2566 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2567 
2568 	/*
2569 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2570 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2571 	 * we're holding p->pi_lock.
2572 	 */
2573 	if (task_rq(p) == rq) {
2574 		if (is_migration_disabled(p))
2575 			goto out;
2576 
2577 		if (pending) {
2578 			p->migration_pending = NULL;
2579 			complete = true;
2580 
2581 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2582 				goto out;
2583 		}
2584 
2585 		if (task_on_rq_queued(p)) {
2586 			update_rq_clock(rq);
2587 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2588 		} else {
2589 			p->wake_cpu = arg->dest_cpu;
2590 		}
2591 
2592 		/*
2593 		 * XXX __migrate_task() can fail, at which point we might end
2594 		 * up running on a dodgy CPU, AFAICT this can only happen
2595 		 * during CPU hotplug, at which point we'll get pushed out
2596 		 * anyway, so it's probably not a big deal.
2597 		 */
2598 
2599 	} else if (pending) {
2600 		/*
2601 		 * This happens when we get migrated between migrate_enable()'s
2602 		 * preempt_enable() and scheduling the stopper task. At that
2603 		 * point we're a regular task again and not current anymore.
2604 		 *
2605 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2606 		 * more likely.
2607 		 */
2608 
2609 		/*
2610 		 * The task moved before the stopper got to run. We're holding
2611 		 * ->pi_lock, so the allowed mask is stable - if it got
2612 		 * somewhere allowed, we're done.
2613 		 */
2614 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2615 			p->migration_pending = NULL;
2616 			complete = true;
2617 			goto out;
2618 		}
2619 
2620 		/*
2621 		 * When migrate_enable() hits a rq mis-match we can't reliably
2622 		 * determine is_migration_disabled() and so have to chase after
2623 		 * it.
2624 		 */
2625 		WARN_ON_ONCE(!pending->stop_pending);
2626 		preempt_disable();
2627 		task_rq_unlock(rq, p, &rf);
2628 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2629 				    &pending->arg, &pending->stop_work);
2630 		preempt_enable();
2631 		return 0;
2632 	}
2633 out:
2634 	if (pending)
2635 		pending->stop_pending = false;
2636 	task_rq_unlock(rq, p, &rf);
2637 
2638 	if (complete)
2639 		complete_all(&pending->done);
2640 
2641 	return 0;
2642 }
2643 
2644 int push_cpu_stop(void *arg)
2645 {
2646 	struct rq *lowest_rq = NULL, *rq = this_rq();
2647 	struct task_struct *p = arg;
2648 
2649 	raw_spin_lock_irq(&p->pi_lock);
2650 	raw_spin_rq_lock(rq);
2651 
2652 	if (task_rq(p) != rq)
2653 		goto out_unlock;
2654 
2655 	if (is_migration_disabled(p)) {
2656 		p->migration_flags |= MDF_PUSH;
2657 		goto out_unlock;
2658 	}
2659 
2660 	p->migration_flags &= ~MDF_PUSH;
2661 
2662 	if (p->sched_class->find_lock_rq)
2663 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2664 
2665 	if (!lowest_rq)
2666 		goto out_unlock;
2667 
2668 	// XXX validate p is still the highest prio task
2669 	if (task_rq(p) == rq) {
2670 		move_queued_task_locked(rq, lowest_rq, p);
2671 		resched_curr(lowest_rq);
2672 	}
2673 
2674 	double_unlock_balance(rq, lowest_rq);
2675 
2676 out_unlock:
2677 	rq->push_busy = false;
2678 	raw_spin_rq_unlock(rq);
2679 	raw_spin_unlock_irq(&p->pi_lock);
2680 
2681 	put_task_struct(p);
2682 	return 0;
2683 }
2684 
2685 /*
2686  * sched_class::set_cpus_allowed must do the below, but is not required to
2687  * actually call this function.
2688  */
2689 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2690 {
2691 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2692 		p->cpus_ptr = ctx->new_mask;
2693 		return;
2694 	}
2695 
2696 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2697 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2698 
2699 	/*
2700 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2701 	 */
2702 	if (ctx->flags & SCA_USER)
2703 		swap(p->user_cpus_ptr, ctx->user_mask);
2704 }
2705 
2706 static void
2707 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2708 {
2709 	struct rq *rq = task_rq(p);
2710 	bool queued, running;
2711 
2712 	/*
2713 	 * This here violates the locking rules for affinity, since we're only
2714 	 * supposed to change these variables while holding both rq->lock and
2715 	 * p->pi_lock.
2716 	 *
2717 	 * HOWEVER, it magically works, because ttwu() is the only code that
2718 	 * accesses these variables under p->pi_lock and only does so after
2719 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2720 	 * before finish_task().
2721 	 *
2722 	 * XXX do further audits, this smells like something putrid.
2723 	 */
2724 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2725 		WARN_ON_ONCE(!p->on_cpu);
2726 	else
2727 		lockdep_assert_held(&p->pi_lock);
2728 
2729 	queued = task_on_rq_queued(p);
2730 	running = task_current_donor(rq, p);
2731 
2732 	if (queued) {
2733 		/*
2734 		 * Because __kthread_bind() calls this on blocked tasks without
2735 		 * holding rq->lock.
2736 		 */
2737 		lockdep_assert_rq_held(rq);
2738 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2739 	}
2740 	if (running)
2741 		put_prev_task(rq, p);
2742 
2743 	p->sched_class->set_cpus_allowed(p, ctx);
2744 	mm_set_cpus_allowed(p->mm, ctx->new_mask);
2745 
2746 	if (queued)
2747 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2748 	if (running)
2749 		set_next_task(rq, p);
2750 }
2751 
2752 /*
2753  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2754  * affinity (if any) should be destroyed too.
2755  */
2756 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2757 {
2758 	struct affinity_context ac = {
2759 		.new_mask  = new_mask,
2760 		.user_mask = NULL,
2761 		.flags     = SCA_USER,	/* clear the user requested mask */
2762 	};
2763 	union cpumask_rcuhead {
2764 		cpumask_t cpumask;
2765 		struct rcu_head rcu;
2766 	};
2767 
2768 	__do_set_cpus_allowed(p, &ac);
2769 
2770 	/*
2771 	 * Because this is called with p->pi_lock held, it is not possible
2772 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2773 	 * kfree_rcu().
2774 	 */
2775 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2776 }
2777 
2778 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2779 		      int node)
2780 {
2781 	cpumask_t *user_mask;
2782 	unsigned long flags;
2783 
2784 	/*
2785 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2786 	 * may differ by now due to racing.
2787 	 */
2788 	dst->user_cpus_ptr = NULL;
2789 
2790 	/*
2791 	 * This check is racy and losing the race is a valid situation.
2792 	 * It is not worth the extra overhead of taking the pi_lock on
2793 	 * every fork/clone.
2794 	 */
2795 	if (data_race(!src->user_cpus_ptr))
2796 		return 0;
2797 
2798 	user_mask = alloc_user_cpus_ptr(node);
2799 	if (!user_mask)
2800 		return -ENOMEM;
2801 
2802 	/*
2803 	 * Use pi_lock to protect content of user_cpus_ptr
2804 	 *
2805 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2806 	 * do_set_cpus_allowed().
2807 	 */
2808 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2809 	if (src->user_cpus_ptr) {
2810 		swap(dst->user_cpus_ptr, user_mask);
2811 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2812 	}
2813 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2814 
2815 	if (unlikely(user_mask))
2816 		kfree(user_mask);
2817 
2818 	return 0;
2819 }
2820 
2821 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2822 {
2823 	struct cpumask *user_mask = NULL;
2824 
2825 	swap(p->user_cpus_ptr, user_mask);
2826 
2827 	return user_mask;
2828 }
2829 
2830 void release_user_cpus_ptr(struct task_struct *p)
2831 {
2832 	kfree(clear_user_cpus_ptr(p));
2833 }
2834 
2835 /*
2836  * This function is wildly self concurrent; here be dragons.
2837  *
2838  *
2839  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2840  * designated task is enqueued on an allowed CPU. If that task is currently
2841  * running, we have to kick it out using the CPU stopper.
2842  *
2843  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2844  * Consider:
2845  *
2846  *     Initial conditions: P0->cpus_mask = [0, 1]
2847  *
2848  *     P0@CPU0                  P1
2849  *
2850  *     migrate_disable();
2851  *     <preempted>
2852  *                              set_cpus_allowed_ptr(P0, [1]);
2853  *
2854  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2855  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2856  * This means we need the following scheme:
2857  *
2858  *     P0@CPU0                  P1
2859  *
2860  *     migrate_disable();
2861  *     <preempted>
2862  *                              set_cpus_allowed_ptr(P0, [1]);
2863  *                                <blocks>
2864  *     <resumes>
2865  *     migrate_enable();
2866  *       __set_cpus_allowed_ptr();
2867  *       <wakes local stopper>
2868  *                         `--> <woken on migration completion>
2869  *
2870  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2871  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2872  * task p are serialized by p->pi_lock, which we can leverage: the one that
2873  * should come into effect at the end of the Migrate-Disable region is the last
2874  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2875  * but we still need to properly signal those waiting tasks at the appropriate
2876  * moment.
2877  *
2878  * This is implemented using struct set_affinity_pending. The first
2879  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2880  * setup an instance of that struct and install it on the targeted task_struct.
2881  * Any and all further callers will reuse that instance. Those then wait for
2882  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2883  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2884  *
2885  *
2886  * (1) In the cases covered above. There is one more where the completion is
2887  * signaled within affine_move_task() itself: when a subsequent affinity request
2888  * occurs after the stopper bailed out due to the targeted task still being
2889  * Migrate-Disable. Consider:
2890  *
2891  *     Initial conditions: P0->cpus_mask = [0, 1]
2892  *
2893  *     CPU0		  P1				P2
2894  *     <P0>
2895  *       migrate_disable();
2896  *       <preempted>
2897  *                        set_cpus_allowed_ptr(P0, [1]);
2898  *                          <blocks>
2899  *     <migration/0>
2900  *       migration_cpu_stop()
2901  *         is_migration_disabled()
2902  *           <bails>
2903  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2904  *                                                         <signal completion>
2905  *                          <awakes>
2906  *
2907  * Note that the above is safe vs a concurrent migrate_enable(), as any
2908  * pending affinity completion is preceded by an uninstallation of
2909  * p->migration_pending done with p->pi_lock held.
2910  */
2911 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2912 			    int dest_cpu, unsigned int flags)
2913 	__releases(rq->lock)
2914 	__releases(p->pi_lock)
2915 {
2916 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2917 	bool stop_pending, complete = false;
2918 
2919 	/* Can the task run on the task's current CPU? If so, we're done */
2920 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2921 		struct task_struct *push_task = NULL;
2922 
2923 		if ((flags & SCA_MIGRATE_ENABLE) &&
2924 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2925 			rq->push_busy = true;
2926 			push_task = get_task_struct(p);
2927 		}
2928 
2929 		/*
2930 		 * If there are pending waiters, but no pending stop_work,
2931 		 * then complete now.
2932 		 */
2933 		pending = p->migration_pending;
2934 		if (pending && !pending->stop_pending) {
2935 			p->migration_pending = NULL;
2936 			complete = true;
2937 		}
2938 
2939 		preempt_disable();
2940 		task_rq_unlock(rq, p, rf);
2941 		if (push_task) {
2942 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2943 					    p, &rq->push_work);
2944 		}
2945 		preempt_enable();
2946 
2947 		if (complete)
2948 			complete_all(&pending->done);
2949 
2950 		return 0;
2951 	}
2952 
2953 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2954 		/* serialized by p->pi_lock */
2955 		if (!p->migration_pending) {
2956 			/* Install the request */
2957 			refcount_set(&my_pending.refs, 1);
2958 			init_completion(&my_pending.done);
2959 			my_pending.arg = (struct migration_arg) {
2960 				.task = p,
2961 				.dest_cpu = dest_cpu,
2962 				.pending = &my_pending,
2963 			};
2964 
2965 			p->migration_pending = &my_pending;
2966 		} else {
2967 			pending = p->migration_pending;
2968 			refcount_inc(&pending->refs);
2969 			/*
2970 			 * Affinity has changed, but we've already installed a
2971 			 * pending. migration_cpu_stop() *must* see this, else
2972 			 * we risk a completion of the pending despite having a
2973 			 * task on a disallowed CPU.
2974 			 *
2975 			 * Serialized by p->pi_lock, so this is safe.
2976 			 */
2977 			pending->arg.dest_cpu = dest_cpu;
2978 		}
2979 	}
2980 	pending = p->migration_pending;
2981 	/*
2982 	 * - !MIGRATE_ENABLE:
2983 	 *   we'll have installed a pending if there wasn't one already.
2984 	 *
2985 	 * - MIGRATE_ENABLE:
2986 	 *   we're here because the current CPU isn't matching anymore,
2987 	 *   the only way that can happen is because of a concurrent
2988 	 *   set_cpus_allowed_ptr() call, which should then still be
2989 	 *   pending completion.
2990 	 *
2991 	 * Either way, we really should have a @pending here.
2992 	 */
2993 	if (WARN_ON_ONCE(!pending)) {
2994 		task_rq_unlock(rq, p, rf);
2995 		return -EINVAL;
2996 	}
2997 
2998 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2999 		/*
3000 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3001 		 * anything else we cannot do is_migration_disabled(), punt
3002 		 * and have the stopper function handle it all race-free.
3003 		 */
3004 		stop_pending = pending->stop_pending;
3005 		if (!stop_pending)
3006 			pending->stop_pending = true;
3007 
3008 		if (flags & SCA_MIGRATE_ENABLE)
3009 			p->migration_flags &= ~MDF_PUSH;
3010 
3011 		preempt_disable();
3012 		task_rq_unlock(rq, p, rf);
3013 		if (!stop_pending) {
3014 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3015 					    &pending->arg, &pending->stop_work);
3016 		}
3017 		preempt_enable();
3018 
3019 		if (flags & SCA_MIGRATE_ENABLE)
3020 			return 0;
3021 	} else {
3022 
3023 		if (!is_migration_disabled(p)) {
3024 			if (task_on_rq_queued(p))
3025 				rq = move_queued_task(rq, rf, p, dest_cpu);
3026 
3027 			if (!pending->stop_pending) {
3028 				p->migration_pending = NULL;
3029 				complete = true;
3030 			}
3031 		}
3032 		task_rq_unlock(rq, p, rf);
3033 
3034 		if (complete)
3035 			complete_all(&pending->done);
3036 	}
3037 
3038 	wait_for_completion(&pending->done);
3039 
3040 	if (refcount_dec_and_test(&pending->refs))
3041 		wake_up_var(&pending->refs); /* No UaF, just an address */
3042 
3043 	/*
3044 	 * Block the original owner of &pending until all subsequent callers
3045 	 * have seen the completion and decremented the refcount
3046 	 */
3047 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3048 
3049 	/* ARGH */
3050 	WARN_ON_ONCE(my_pending.stop_pending);
3051 
3052 	return 0;
3053 }
3054 
3055 /*
3056  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3057  */
3058 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3059 					 struct affinity_context *ctx,
3060 					 struct rq *rq,
3061 					 struct rq_flags *rf)
3062 	__releases(rq->lock)
3063 	__releases(p->pi_lock)
3064 {
3065 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3066 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3067 	bool kthread = p->flags & PF_KTHREAD;
3068 	unsigned int dest_cpu;
3069 	int ret = 0;
3070 
3071 	update_rq_clock(rq);
3072 
3073 	if (kthread || is_migration_disabled(p)) {
3074 		/*
3075 		 * Kernel threads are allowed on online && !active CPUs,
3076 		 * however, during cpu-hot-unplug, even these might get pushed
3077 		 * away if not KTHREAD_IS_PER_CPU.
3078 		 *
3079 		 * Specifically, migration_disabled() tasks must not fail the
3080 		 * cpumask_any_and_distribute() pick below, esp. so on
3081 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3082 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3083 		 */
3084 		cpu_valid_mask = cpu_online_mask;
3085 	}
3086 
3087 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3088 		ret = -EINVAL;
3089 		goto out;
3090 	}
3091 
3092 	/*
3093 	 * Must re-check here, to close a race against __kthread_bind(),
3094 	 * sched_setaffinity() is not guaranteed to observe the flag.
3095 	 */
3096 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3097 		ret = -EINVAL;
3098 		goto out;
3099 	}
3100 
3101 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3102 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3103 			if (ctx->flags & SCA_USER)
3104 				swap(p->user_cpus_ptr, ctx->user_mask);
3105 			goto out;
3106 		}
3107 
3108 		if (WARN_ON_ONCE(p == current &&
3109 				 is_migration_disabled(p) &&
3110 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3111 			ret = -EBUSY;
3112 			goto out;
3113 		}
3114 	}
3115 
3116 	/*
3117 	 * Picking a ~random cpu helps in cases where we are changing affinity
3118 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3119 	 * immediately required to distribute the tasks within their new mask.
3120 	 */
3121 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3122 	if (dest_cpu >= nr_cpu_ids) {
3123 		ret = -EINVAL;
3124 		goto out;
3125 	}
3126 
3127 	__do_set_cpus_allowed(p, ctx);
3128 
3129 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3130 
3131 out:
3132 	task_rq_unlock(rq, p, rf);
3133 
3134 	return ret;
3135 }
3136 
3137 /*
3138  * Change a given task's CPU affinity. Migrate the thread to a
3139  * proper CPU and schedule it away if the CPU it's executing on
3140  * is removed from the allowed bitmask.
3141  *
3142  * NOTE: the caller must have a valid reference to the task, the
3143  * task must not exit() & deallocate itself prematurely. The
3144  * call is not atomic; no spinlocks may be held.
3145  */
3146 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3147 {
3148 	struct rq_flags rf;
3149 	struct rq *rq;
3150 
3151 	rq = task_rq_lock(p, &rf);
3152 	/*
3153 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3154 	 * flags are set.
3155 	 */
3156 	if (p->user_cpus_ptr &&
3157 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3158 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3159 		ctx->new_mask = rq->scratch_mask;
3160 
3161 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3162 }
3163 
3164 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3165 {
3166 	struct affinity_context ac = {
3167 		.new_mask  = new_mask,
3168 		.flags     = 0,
3169 	};
3170 
3171 	return __set_cpus_allowed_ptr(p, &ac);
3172 }
3173 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3174 
3175 /*
3176  * Change a given task's CPU affinity to the intersection of its current
3177  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3178  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3179  * affinity or use cpu_online_mask instead.
3180  *
3181  * If the resulting mask is empty, leave the affinity unchanged and return
3182  * -EINVAL.
3183  */
3184 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3185 				     struct cpumask *new_mask,
3186 				     const struct cpumask *subset_mask)
3187 {
3188 	struct affinity_context ac = {
3189 		.new_mask  = new_mask,
3190 		.flags     = 0,
3191 	};
3192 	struct rq_flags rf;
3193 	struct rq *rq;
3194 	int err;
3195 
3196 	rq = task_rq_lock(p, &rf);
3197 
3198 	/*
3199 	 * Forcefully restricting the affinity of a deadline task is
3200 	 * likely to cause problems, so fail and noisily override the
3201 	 * mask entirely.
3202 	 */
3203 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3204 		err = -EPERM;
3205 		goto err_unlock;
3206 	}
3207 
3208 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3209 		err = -EINVAL;
3210 		goto err_unlock;
3211 	}
3212 
3213 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3214 
3215 err_unlock:
3216 	task_rq_unlock(rq, p, &rf);
3217 	return err;
3218 }
3219 
3220 /*
3221  * Restrict the CPU affinity of task @p so that it is a subset of
3222  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3223  * old affinity mask. If the resulting mask is empty, we warn and walk
3224  * up the cpuset hierarchy until we find a suitable mask.
3225  */
3226 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3227 {
3228 	cpumask_var_t new_mask;
3229 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3230 
3231 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3232 
3233 	/*
3234 	 * __migrate_task() can fail silently in the face of concurrent
3235 	 * offlining of the chosen destination CPU, so take the hotplug
3236 	 * lock to ensure that the migration succeeds.
3237 	 */
3238 	cpus_read_lock();
3239 	if (!cpumask_available(new_mask))
3240 		goto out_set_mask;
3241 
3242 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3243 		goto out_free_mask;
3244 
3245 	/*
3246 	 * We failed to find a valid subset of the affinity mask for the
3247 	 * task, so override it based on its cpuset hierarchy.
3248 	 */
3249 	cpuset_cpus_allowed(p, new_mask);
3250 	override_mask = new_mask;
3251 
3252 out_set_mask:
3253 	if (printk_ratelimit()) {
3254 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3255 				task_pid_nr(p), p->comm,
3256 				cpumask_pr_args(override_mask));
3257 	}
3258 
3259 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3260 out_free_mask:
3261 	cpus_read_unlock();
3262 	free_cpumask_var(new_mask);
3263 }
3264 
3265 /*
3266  * Restore the affinity of a task @p which was previously restricted by a
3267  * call to force_compatible_cpus_allowed_ptr().
3268  *
3269  * It is the caller's responsibility to serialise this with any calls to
3270  * force_compatible_cpus_allowed_ptr(@p).
3271  */
3272 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3273 {
3274 	struct affinity_context ac = {
3275 		.new_mask  = task_user_cpus(p),
3276 		.flags     = 0,
3277 	};
3278 	int ret;
3279 
3280 	/*
3281 	 * Try to restore the old affinity mask with __sched_setaffinity().
3282 	 * Cpuset masking will be done there too.
3283 	 */
3284 	ret = __sched_setaffinity(p, &ac);
3285 	WARN_ON_ONCE(ret);
3286 }
3287 
3288 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3289 {
3290 	unsigned int state = READ_ONCE(p->__state);
3291 
3292 	/*
3293 	 * We should never call set_task_cpu() on a blocked task,
3294 	 * ttwu() will sort out the placement.
3295 	 */
3296 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3297 
3298 	/*
3299 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3300 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3301 	 * time relying on p->on_rq.
3302 	 */
3303 	WARN_ON_ONCE(state == TASK_RUNNING &&
3304 		     p->sched_class == &fair_sched_class &&
3305 		     (p->on_rq && !task_on_rq_migrating(p)));
3306 
3307 #ifdef CONFIG_LOCKDEP
3308 	/*
3309 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3310 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3311 	 *
3312 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3313 	 * see task_group().
3314 	 *
3315 	 * Furthermore, all task_rq users should acquire both locks, see
3316 	 * task_rq_lock().
3317 	 */
3318 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3319 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3320 #endif
3321 	/*
3322 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3323 	 */
3324 	WARN_ON_ONCE(!cpu_online(new_cpu));
3325 
3326 	WARN_ON_ONCE(is_migration_disabled(p));
3327 
3328 	trace_sched_migrate_task(p, new_cpu);
3329 
3330 	if (task_cpu(p) != new_cpu) {
3331 		if (p->sched_class->migrate_task_rq)
3332 			p->sched_class->migrate_task_rq(p, new_cpu);
3333 		p->se.nr_migrations++;
3334 		rseq_migrate(p);
3335 		sched_mm_cid_migrate_from(p);
3336 		perf_event_task_migrate(p);
3337 	}
3338 
3339 	__set_task_cpu(p, new_cpu);
3340 }
3341 
3342 #ifdef CONFIG_NUMA_BALANCING
3343 static void __migrate_swap_task(struct task_struct *p, int cpu)
3344 {
3345 	if (task_on_rq_queued(p)) {
3346 		struct rq *src_rq, *dst_rq;
3347 		struct rq_flags srf, drf;
3348 
3349 		src_rq = task_rq(p);
3350 		dst_rq = cpu_rq(cpu);
3351 
3352 		rq_pin_lock(src_rq, &srf);
3353 		rq_pin_lock(dst_rq, &drf);
3354 
3355 		move_queued_task_locked(src_rq, dst_rq, p);
3356 		wakeup_preempt(dst_rq, p, 0);
3357 
3358 		rq_unpin_lock(dst_rq, &drf);
3359 		rq_unpin_lock(src_rq, &srf);
3360 
3361 	} else {
3362 		/*
3363 		 * Task isn't running anymore; make it appear like we migrated
3364 		 * it before it went to sleep. This means on wakeup we make the
3365 		 * previous CPU our target instead of where it really is.
3366 		 */
3367 		p->wake_cpu = cpu;
3368 	}
3369 }
3370 
3371 struct migration_swap_arg {
3372 	struct task_struct *src_task, *dst_task;
3373 	int src_cpu, dst_cpu;
3374 };
3375 
3376 static int migrate_swap_stop(void *data)
3377 {
3378 	struct migration_swap_arg *arg = data;
3379 	struct rq *src_rq, *dst_rq;
3380 
3381 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3382 		return -EAGAIN;
3383 
3384 	src_rq = cpu_rq(arg->src_cpu);
3385 	dst_rq = cpu_rq(arg->dst_cpu);
3386 
3387 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3388 	guard(double_rq_lock)(src_rq, dst_rq);
3389 
3390 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3391 		return -EAGAIN;
3392 
3393 	if (task_cpu(arg->src_task) != arg->src_cpu)
3394 		return -EAGAIN;
3395 
3396 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3397 		return -EAGAIN;
3398 
3399 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3400 		return -EAGAIN;
3401 
3402 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3403 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3404 
3405 	return 0;
3406 }
3407 
3408 /*
3409  * Cross migrate two tasks
3410  */
3411 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3412 		int target_cpu, int curr_cpu)
3413 {
3414 	struct migration_swap_arg arg;
3415 	int ret = -EINVAL;
3416 
3417 	arg = (struct migration_swap_arg){
3418 		.src_task = cur,
3419 		.src_cpu = curr_cpu,
3420 		.dst_task = p,
3421 		.dst_cpu = target_cpu,
3422 	};
3423 
3424 	if (arg.src_cpu == arg.dst_cpu)
3425 		goto out;
3426 
3427 	/*
3428 	 * These three tests are all lockless; this is OK since all of them
3429 	 * will be re-checked with proper locks held further down the line.
3430 	 */
3431 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3432 		goto out;
3433 
3434 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3435 		goto out;
3436 
3437 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3438 		goto out;
3439 
3440 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3441 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3442 
3443 out:
3444 	return ret;
3445 }
3446 #endif /* CONFIG_NUMA_BALANCING */
3447 
3448 /***
3449  * kick_process - kick a running thread to enter/exit the kernel
3450  * @p: the to-be-kicked thread
3451  *
3452  * Cause a process which is running on another CPU to enter
3453  * kernel-mode, without any delay. (to get signals handled.)
3454  *
3455  * NOTE: this function doesn't have to take the runqueue lock,
3456  * because all it wants to ensure is that the remote task enters
3457  * the kernel. If the IPI races and the task has been migrated
3458  * to another CPU then no harm is done and the purpose has been
3459  * achieved as well.
3460  */
3461 void kick_process(struct task_struct *p)
3462 {
3463 	guard(preempt)();
3464 	int cpu = task_cpu(p);
3465 
3466 	if ((cpu != smp_processor_id()) && task_curr(p))
3467 		smp_send_reschedule(cpu);
3468 }
3469 EXPORT_SYMBOL_GPL(kick_process);
3470 
3471 /*
3472  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3473  *
3474  * A few notes on cpu_active vs cpu_online:
3475  *
3476  *  - cpu_active must be a subset of cpu_online
3477  *
3478  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3479  *    see __set_cpus_allowed_ptr(). At this point the newly online
3480  *    CPU isn't yet part of the sched domains, and balancing will not
3481  *    see it.
3482  *
3483  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3484  *    avoid the load balancer to place new tasks on the to be removed
3485  *    CPU. Existing tasks will remain running there and will be taken
3486  *    off.
3487  *
3488  * This means that fallback selection must not select !active CPUs.
3489  * And can assume that any active CPU must be online. Conversely
3490  * select_task_rq() below may allow selection of !active CPUs in order
3491  * to satisfy the above rules.
3492  */
3493 static int select_fallback_rq(int cpu, struct task_struct *p)
3494 {
3495 	int nid = cpu_to_node(cpu);
3496 	const struct cpumask *nodemask = NULL;
3497 	enum { cpuset, possible, fail } state = cpuset;
3498 	int dest_cpu;
3499 
3500 	/*
3501 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3502 	 * will return -1. There is no CPU on the node, and we should
3503 	 * select the CPU on the other node.
3504 	 */
3505 	if (nid != -1) {
3506 		nodemask = cpumask_of_node(nid);
3507 
3508 		/* Look for allowed, online CPU in same node. */
3509 		for_each_cpu(dest_cpu, nodemask) {
3510 			if (is_cpu_allowed(p, dest_cpu))
3511 				return dest_cpu;
3512 		}
3513 	}
3514 
3515 	for (;;) {
3516 		/* Any allowed, online CPU? */
3517 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3518 			if (!is_cpu_allowed(p, dest_cpu))
3519 				continue;
3520 
3521 			goto out;
3522 		}
3523 
3524 		/* No more Mr. Nice Guy. */
3525 		switch (state) {
3526 		case cpuset:
3527 			if (cpuset_cpus_allowed_fallback(p)) {
3528 				state = possible;
3529 				break;
3530 			}
3531 			fallthrough;
3532 		case possible:
3533 			/*
3534 			 * XXX When called from select_task_rq() we only
3535 			 * hold p->pi_lock and again violate locking order.
3536 			 *
3537 			 * More yuck to audit.
3538 			 */
3539 			do_set_cpus_allowed(p, task_cpu_fallback_mask(p));
3540 			state = fail;
3541 			break;
3542 		case fail:
3543 			BUG();
3544 			break;
3545 		}
3546 	}
3547 
3548 out:
3549 	if (state != cpuset) {
3550 		/*
3551 		 * Don't tell them about moving exiting tasks or
3552 		 * kernel threads (both mm NULL), since they never
3553 		 * leave kernel.
3554 		 */
3555 		if (p->mm && printk_ratelimit()) {
3556 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3557 					task_pid_nr(p), p->comm, cpu);
3558 		}
3559 	}
3560 
3561 	return dest_cpu;
3562 }
3563 
3564 /*
3565  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3566  */
3567 static inline
3568 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3569 {
3570 	lockdep_assert_held(&p->pi_lock);
3571 
3572 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3573 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3574 		*wake_flags |= WF_RQ_SELECTED;
3575 	} else {
3576 		cpu = cpumask_any(p->cpus_ptr);
3577 	}
3578 
3579 	/*
3580 	 * In order not to call set_task_cpu() on a blocking task we need
3581 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3582 	 * CPU.
3583 	 *
3584 	 * Since this is common to all placement strategies, this lives here.
3585 	 *
3586 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3587 	 *   not worry about this generic constraint ]
3588 	 */
3589 	if (unlikely(!is_cpu_allowed(p, cpu)))
3590 		cpu = select_fallback_rq(task_cpu(p), p);
3591 
3592 	return cpu;
3593 }
3594 
3595 void sched_set_stop_task(int cpu, struct task_struct *stop)
3596 {
3597 	static struct lock_class_key stop_pi_lock;
3598 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3599 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3600 
3601 	if (stop) {
3602 		/*
3603 		 * Make it appear like a SCHED_FIFO task, its something
3604 		 * userspace knows about and won't get confused about.
3605 		 *
3606 		 * Also, it will make PI more or less work without too
3607 		 * much confusion -- but then, stop work should not
3608 		 * rely on PI working anyway.
3609 		 */
3610 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3611 
3612 		stop->sched_class = &stop_sched_class;
3613 
3614 		/*
3615 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3616 		 * adjust the effective priority of a task. As a result,
3617 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3618 		 * which can then trigger wakeups of the stop thread to push
3619 		 * around the current task.
3620 		 *
3621 		 * The stop task itself will never be part of the PI-chain, it
3622 		 * never blocks, therefore that ->pi_lock recursion is safe.
3623 		 * Tell lockdep about this by placing the stop->pi_lock in its
3624 		 * own class.
3625 		 */
3626 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3627 	}
3628 
3629 	cpu_rq(cpu)->stop = stop;
3630 
3631 	if (old_stop) {
3632 		/*
3633 		 * Reset it back to a normal scheduling class so that
3634 		 * it can die in pieces.
3635 		 */
3636 		old_stop->sched_class = &rt_sched_class;
3637 	}
3638 }
3639 
3640 #else /* CONFIG_SMP */
3641 
3642 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3643 
3644 static inline bool rq_has_pinned_tasks(struct rq *rq)
3645 {
3646 	return false;
3647 }
3648 
3649 #endif /* !CONFIG_SMP */
3650 
3651 static void
3652 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3653 {
3654 	struct rq *rq;
3655 
3656 	if (!schedstat_enabled())
3657 		return;
3658 
3659 	rq = this_rq();
3660 
3661 #ifdef CONFIG_SMP
3662 	if (cpu == rq->cpu) {
3663 		__schedstat_inc(rq->ttwu_local);
3664 		__schedstat_inc(p->stats.nr_wakeups_local);
3665 	} else {
3666 		struct sched_domain *sd;
3667 
3668 		__schedstat_inc(p->stats.nr_wakeups_remote);
3669 
3670 		guard(rcu)();
3671 		for_each_domain(rq->cpu, sd) {
3672 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3673 				__schedstat_inc(sd->ttwu_wake_remote);
3674 				break;
3675 			}
3676 		}
3677 	}
3678 
3679 	if (wake_flags & WF_MIGRATED)
3680 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3681 #endif /* CONFIG_SMP */
3682 
3683 	__schedstat_inc(rq->ttwu_count);
3684 	__schedstat_inc(p->stats.nr_wakeups);
3685 
3686 	if (wake_flags & WF_SYNC)
3687 		__schedstat_inc(p->stats.nr_wakeups_sync);
3688 }
3689 
3690 /*
3691  * Mark the task runnable.
3692  */
3693 static inline void ttwu_do_wakeup(struct task_struct *p)
3694 {
3695 	WRITE_ONCE(p->__state, TASK_RUNNING);
3696 	trace_sched_wakeup(p);
3697 }
3698 
3699 static void
3700 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3701 		 struct rq_flags *rf)
3702 {
3703 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3704 
3705 	lockdep_assert_rq_held(rq);
3706 
3707 	if (p->sched_contributes_to_load)
3708 		rq->nr_uninterruptible--;
3709 
3710 #ifdef CONFIG_SMP
3711 	if (wake_flags & WF_RQ_SELECTED)
3712 		en_flags |= ENQUEUE_RQ_SELECTED;
3713 	if (wake_flags & WF_MIGRATED)
3714 		en_flags |= ENQUEUE_MIGRATED;
3715 	else
3716 #endif
3717 	if (p->in_iowait) {
3718 		delayacct_blkio_end(p);
3719 		atomic_dec(&task_rq(p)->nr_iowait);
3720 	}
3721 
3722 	activate_task(rq, p, en_flags);
3723 	wakeup_preempt(rq, p, wake_flags);
3724 
3725 	ttwu_do_wakeup(p);
3726 
3727 #ifdef CONFIG_SMP
3728 	if (p->sched_class->task_woken) {
3729 		/*
3730 		 * Our task @p is fully woken up and running; so it's safe to
3731 		 * drop the rq->lock, hereafter rq is only used for statistics.
3732 		 */
3733 		rq_unpin_lock(rq, rf);
3734 		p->sched_class->task_woken(rq, p);
3735 		rq_repin_lock(rq, rf);
3736 	}
3737 
3738 	if (rq->idle_stamp) {
3739 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3740 		u64 max = 2*rq->max_idle_balance_cost;
3741 
3742 		update_avg(&rq->avg_idle, delta);
3743 
3744 		if (rq->avg_idle > max)
3745 			rq->avg_idle = max;
3746 
3747 		rq->idle_stamp = 0;
3748 	}
3749 #endif
3750 }
3751 
3752 /*
3753  * Consider @p being inside a wait loop:
3754  *
3755  *   for (;;) {
3756  *      set_current_state(TASK_UNINTERRUPTIBLE);
3757  *
3758  *      if (CONDITION)
3759  *         break;
3760  *
3761  *      schedule();
3762  *   }
3763  *   __set_current_state(TASK_RUNNING);
3764  *
3765  * between set_current_state() and schedule(). In this case @p is still
3766  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3767  * an atomic manner.
3768  *
3769  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3770  * then schedule() must still happen and p->state can be changed to
3771  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3772  * need to do a full wakeup with enqueue.
3773  *
3774  * Returns: %true when the wakeup is done,
3775  *          %false otherwise.
3776  */
3777 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3778 {
3779 	struct rq_flags rf;
3780 	struct rq *rq;
3781 	int ret = 0;
3782 
3783 	rq = __task_rq_lock(p, &rf);
3784 	if (task_on_rq_queued(p)) {
3785 		update_rq_clock(rq);
3786 		if (p->se.sched_delayed)
3787 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3788 		if (!task_on_cpu(rq, p)) {
3789 			/*
3790 			 * When on_rq && !on_cpu the task is preempted, see if
3791 			 * it should preempt the task that is current now.
3792 			 */
3793 			wakeup_preempt(rq, p, wake_flags);
3794 		}
3795 		ttwu_do_wakeup(p);
3796 		ret = 1;
3797 	}
3798 	__task_rq_unlock(rq, &rf);
3799 
3800 	return ret;
3801 }
3802 
3803 #ifdef CONFIG_SMP
3804 void sched_ttwu_pending(void *arg)
3805 {
3806 	struct llist_node *llist = arg;
3807 	struct rq *rq = this_rq();
3808 	struct task_struct *p, *t;
3809 	struct rq_flags rf;
3810 
3811 	if (!llist)
3812 		return;
3813 
3814 	rq_lock_irqsave(rq, &rf);
3815 	update_rq_clock(rq);
3816 
3817 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3818 		if (WARN_ON_ONCE(p->on_cpu))
3819 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3820 
3821 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3822 			set_task_cpu(p, cpu_of(rq));
3823 
3824 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3825 	}
3826 
3827 	/*
3828 	 * Must be after enqueueing at least once task such that
3829 	 * idle_cpu() does not observe a false-negative -- if it does,
3830 	 * it is possible for select_idle_siblings() to stack a number
3831 	 * of tasks on this CPU during that window.
3832 	 *
3833 	 * It is OK to clear ttwu_pending when another task pending.
3834 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3835 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3836 	 */
3837 	WRITE_ONCE(rq->ttwu_pending, 0);
3838 	rq_unlock_irqrestore(rq, &rf);
3839 }
3840 
3841 /*
3842  * Prepare the scene for sending an IPI for a remote smp_call
3843  *
3844  * Returns true if the caller can proceed with sending the IPI.
3845  * Returns false otherwise.
3846  */
3847 bool call_function_single_prep_ipi(int cpu)
3848 {
3849 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3850 		trace_sched_wake_idle_without_ipi(cpu);
3851 		return false;
3852 	}
3853 
3854 	return true;
3855 }
3856 
3857 /*
3858  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3859  * necessary. The wakee CPU on receipt of the IPI will queue the task
3860  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3861  * of the wakeup instead of the waker.
3862  */
3863 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3864 {
3865 	struct rq *rq = cpu_rq(cpu);
3866 
3867 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3868 
3869 	WRITE_ONCE(rq->ttwu_pending, 1);
3870 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3871 }
3872 
3873 void wake_up_if_idle(int cpu)
3874 {
3875 	struct rq *rq = cpu_rq(cpu);
3876 
3877 	guard(rcu)();
3878 	if (is_idle_task(rcu_dereference(rq->curr))) {
3879 		guard(rq_lock_irqsave)(rq);
3880 		if (is_idle_task(rq->curr))
3881 			resched_curr(rq);
3882 	}
3883 }
3884 
3885 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3886 {
3887 	if (!sched_asym_cpucap_active())
3888 		return true;
3889 
3890 	if (this_cpu == that_cpu)
3891 		return true;
3892 
3893 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3894 }
3895 
3896 bool cpus_share_cache(int this_cpu, int that_cpu)
3897 {
3898 	if (this_cpu == that_cpu)
3899 		return true;
3900 
3901 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3902 }
3903 
3904 /*
3905  * Whether CPUs are share cache resources, which means LLC on non-cluster
3906  * machines and LLC tag or L2 on machines with clusters.
3907  */
3908 bool cpus_share_resources(int this_cpu, int that_cpu)
3909 {
3910 	if (this_cpu == that_cpu)
3911 		return true;
3912 
3913 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3914 }
3915 
3916 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3917 {
3918 	/* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */
3919 	if (!scx_allow_ttwu_queue(p))
3920 		return false;
3921 
3922 	/*
3923 	 * Do not complicate things with the async wake_list while the CPU is
3924 	 * in hotplug state.
3925 	 */
3926 	if (!cpu_active(cpu))
3927 		return false;
3928 
3929 	/* Ensure the task will still be allowed to run on the CPU. */
3930 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3931 		return false;
3932 
3933 	/*
3934 	 * If the CPU does not share cache, then queue the task on the
3935 	 * remote rqs wakelist to avoid accessing remote data.
3936 	 */
3937 	if (!cpus_share_cache(smp_processor_id(), cpu))
3938 		return true;
3939 
3940 	if (cpu == smp_processor_id())
3941 		return false;
3942 
3943 	/*
3944 	 * If the wakee cpu is idle, or the task is descheduling and the
3945 	 * only running task on the CPU, then use the wakelist to offload
3946 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3947 	 * the current CPU is likely busy. nr_running is checked to
3948 	 * avoid unnecessary task stacking.
3949 	 *
3950 	 * Note that we can only get here with (wakee) p->on_rq=0,
3951 	 * p->on_cpu can be whatever, we've done the dequeue, so
3952 	 * the wakee has been accounted out of ->nr_running.
3953 	 */
3954 	if (!cpu_rq(cpu)->nr_running)
3955 		return true;
3956 
3957 	return false;
3958 }
3959 
3960 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3961 {
3962 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3963 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3964 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3965 		return true;
3966 	}
3967 
3968 	return false;
3969 }
3970 
3971 #else /* !CONFIG_SMP */
3972 
3973 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3974 {
3975 	return false;
3976 }
3977 
3978 #endif /* CONFIG_SMP */
3979 
3980 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3981 {
3982 	struct rq *rq = cpu_rq(cpu);
3983 	struct rq_flags rf;
3984 
3985 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3986 		return;
3987 
3988 	rq_lock(rq, &rf);
3989 	update_rq_clock(rq);
3990 	ttwu_do_activate(rq, p, wake_flags, &rf);
3991 	rq_unlock(rq, &rf);
3992 }
3993 
3994 /*
3995  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3996  *
3997  * The caller holds p::pi_lock if p != current or has preemption
3998  * disabled when p == current.
3999  *
4000  * The rules of saved_state:
4001  *
4002  *   The related locking code always holds p::pi_lock when updating
4003  *   p::saved_state, which means the code is fully serialized in both cases.
4004  *
4005  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4006  *   No other bits set. This allows to distinguish all wakeup scenarios.
4007  *
4008  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4009  *   allows us to prevent early wakeup of tasks before they can be run on
4010  *   asymmetric ISA architectures (eg ARMv9).
4011  */
4012 static __always_inline
4013 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4014 {
4015 	int match;
4016 
4017 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4018 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4019 			     state != TASK_RTLOCK_WAIT);
4020 	}
4021 
4022 	*success = !!(match = __task_state_match(p, state));
4023 
4024 	/*
4025 	 * Saved state preserves the task state across blocking on
4026 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4027 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4028 	 * because it waits for a lock wakeup or __thaw_task(). Also
4029 	 * indicate success because from the regular waker's point of
4030 	 * view this has succeeded.
4031 	 *
4032 	 * After acquiring the lock the task will restore p::__state
4033 	 * from p::saved_state which ensures that the regular
4034 	 * wakeup is not lost. The restore will also set
4035 	 * p::saved_state to TASK_RUNNING so any further tests will
4036 	 * not result in false positives vs. @success
4037 	 */
4038 	if (match < 0)
4039 		p->saved_state = TASK_RUNNING;
4040 
4041 	return match > 0;
4042 }
4043 
4044 /*
4045  * Notes on Program-Order guarantees on SMP systems.
4046  *
4047  *  MIGRATION
4048  *
4049  * The basic program-order guarantee on SMP systems is that when a task [t]
4050  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4051  * execution on its new CPU [c1].
4052  *
4053  * For migration (of runnable tasks) this is provided by the following means:
4054  *
4055  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4056  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4057  *     rq(c1)->lock (if not at the same time, then in that order).
4058  *  C) LOCK of the rq(c1)->lock scheduling in task
4059  *
4060  * Release/acquire chaining guarantees that B happens after A and C after B.
4061  * Note: the CPU doing B need not be c0 or c1
4062  *
4063  * Example:
4064  *
4065  *   CPU0            CPU1            CPU2
4066  *
4067  *   LOCK rq(0)->lock
4068  *   sched-out X
4069  *   sched-in Y
4070  *   UNLOCK rq(0)->lock
4071  *
4072  *                                   LOCK rq(0)->lock // orders against CPU0
4073  *                                   dequeue X
4074  *                                   UNLOCK rq(0)->lock
4075  *
4076  *                                   LOCK rq(1)->lock
4077  *                                   enqueue X
4078  *                                   UNLOCK rq(1)->lock
4079  *
4080  *                   LOCK rq(1)->lock // orders against CPU2
4081  *                   sched-out Z
4082  *                   sched-in X
4083  *                   UNLOCK rq(1)->lock
4084  *
4085  *
4086  *  BLOCKING -- aka. SLEEP + WAKEUP
4087  *
4088  * For blocking we (obviously) need to provide the same guarantee as for
4089  * migration. However the means are completely different as there is no lock
4090  * chain to provide order. Instead we do:
4091  *
4092  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4093  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4094  *
4095  * Example:
4096  *
4097  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4098  *
4099  *   LOCK rq(0)->lock LOCK X->pi_lock
4100  *   dequeue X
4101  *   sched-out X
4102  *   smp_store_release(X->on_cpu, 0);
4103  *
4104  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4105  *                    X->state = WAKING
4106  *                    set_task_cpu(X,2)
4107  *
4108  *                    LOCK rq(2)->lock
4109  *                    enqueue X
4110  *                    X->state = RUNNING
4111  *                    UNLOCK rq(2)->lock
4112  *
4113  *                                          LOCK rq(2)->lock // orders against CPU1
4114  *                                          sched-out Z
4115  *                                          sched-in X
4116  *                                          UNLOCK rq(2)->lock
4117  *
4118  *                    UNLOCK X->pi_lock
4119  *   UNLOCK rq(0)->lock
4120  *
4121  *
4122  * However, for wakeups there is a second guarantee we must provide, namely we
4123  * must ensure that CONDITION=1 done by the caller can not be reordered with
4124  * accesses to the task state; see try_to_wake_up() and set_current_state().
4125  */
4126 
4127 /**
4128  * try_to_wake_up - wake up a thread
4129  * @p: the thread to be awakened
4130  * @state: the mask of task states that can be woken
4131  * @wake_flags: wake modifier flags (WF_*)
4132  *
4133  * Conceptually does:
4134  *
4135  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4136  *
4137  * If the task was not queued/runnable, also place it back on a runqueue.
4138  *
4139  * This function is atomic against schedule() which would dequeue the task.
4140  *
4141  * It issues a full memory barrier before accessing @p->state, see the comment
4142  * with set_current_state().
4143  *
4144  * Uses p->pi_lock to serialize against concurrent wake-ups.
4145  *
4146  * Relies on p->pi_lock stabilizing:
4147  *  - p->sched_class
4148  *  - p->cpus_ptr
4149  *  - p->sched_task_group
4150  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4151  *
4152  * Tries really hard to only take one task_rq(p)->lock for performance.
4153  * Takes rq->lock in:
4154  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4155  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4156  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4157  *
4158  * As a consequence we race really badly with just about everything. See the
4159  * many memory barriers and their comments for details.
4160  *
4161  * Return: %true if @p->state changes (an actual wakeup was done),
4162  *	   %false otherwise.
4163  */
4164 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4165 {
4166 	guard(preempt)();
4167 	int cpu, success = 0;
4168 
4169 	wake_flags |= WF_TTWU;
4170 
4171 	if (p == current) {
4172 		/*
4173 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4174 		 * == smp_processor_id()'. Together this means we can special
4175 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4176 		 * without taking any locks.
4177 		 *
4178 		 * Specifically, given current runs ttwu() we must be before
4179 		 * schedule()'s block_task(), as such this must not observe
4180 		 * sched_delayed.
4181 		 *
4182 		 * In particular:
4183 		 *  - we rely on Program-Order guarantees for all the ordering,
4184 		 *  - we're serialized against set_special_state() by virtue of
4185 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4186 		 */
4187 		WARN_ON_ONCE(p->se.sched_delayed);
4188 		if (!ttwu_state_match(p, state, &success))
4189 			goto out;
4190 
4191 		trace_sched_waking(p);
4192 		ttwu_do_wakeup(p);
4193 		goto out;
4194 	}
4195 
4196 	/*
4197 	 * If we are going to wake up a thread waiting for CONDITION we
4198 	 * need to ensure that CONDITION=1 done by the caller can not be
4199 	 * reordered with p->state check below. This pairs with smp_store_mb()
4200 	 * in set_current_state() that the waiting thread does.
4201 	 */
4202 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4203 		smp_mb__after_spinlock();
4204 		if (!ttwu_state_match(p, state, &success))
4205 			break;
4206 
4207 		trace_sched_waking(p);
4208 
4209 		/*
4210 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4211 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4212 		 * in smp_cond_load_acquire() below.
4213 		 *
4214 		 * sched_ttwu_pending()			try_to_wake_up()
4215 		 *   STORE p->on_rq = 1			  LOAD p->state
4216 		 *   UNLOCK rq->lock
4217 		 *
4218 		 * __schedule() (switch to task 'p')
4219 		 *   LOCK rq->lock			  smp_rmb();
4220 		 *   smp_mb__after_spinlock();
4221 		 *   UNLOCK rq->lock
4222 		 *
4223 		 * [task p]
4224 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4225 		 *
4226 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4227 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4228 		 *
4229 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4230 		 */
4231 		smp_rmb();
4232 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4233 			break;
4234 
4235 #ifdef CONFIG_SMP
4236 		/*
4237 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4238 		 * possible to, falsely, observe p->on_cpu == 0.
4239 		 *
4240 		 * One must be running (->on_cpu == 1) in order to remove oneself
4241 		 * from the runqueue.
4242 		 *
4243 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4244 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4245 		 *   UNLOCK rq->lock
4246 		 *
4247 		 * __schedule() (put 'p' to sleep)
4248 		 *   LOCK rq->lock			  smp_rmb();
4249 		 *   smp_mb__after_spinlock();
4250 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4251 		 *
4252 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4253 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4254 		 *
4255 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4256 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4257 		 * care about it's own p->state. See the comment in __schedule().
4258 		 */
4259 		smp_acquire__after_ctrl_dep();
4260 
4261 		/*
4262 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4263 		 * == 0), which means we need to do an enqueue, change p->state to
4264 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4265 		 * enqueue, such as ttwu_queue_wakelist().
4266 		 */
4267 		WRITE_ONCE(p->__state, TASK_WAKING);
4268 
4269 		/*
4270 		 * If the owning (remote) CPU is still in the middle of schedule() with
4271 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4272 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4273 		 * let the waker make forward progress. This is safe because IRQs are
4274 		 * disabled and the IPI will deliver after on_cpu is cleared.
4275 		 *
4276 		 * Ensure we load task_cpu(p) after p->on_cpu:
4277 		 *
4278 		 * set_task_cpu(p, cpu);
4279 		 *   STORE p->cpu = @cpu
4280 		 * __schedule() (switch to task 'p')
4281 		 *   LOCK rq->lock
4282 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4283 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4284 		 *
4285 		 * to ensure we observe the correct CPU on which the task is currently
4286 		 * scheduling.
4287 		 */
4288 		if (smp_load_acquire(&p->on_cpu) &&
4289 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4290 			break;
4291 
4292 		/*
4293 		 * If the owning (remote) CPU is still in the middle of schedule() with
4294 		 * this task as prev, wait until it's done referencing the task.
4295 		 *
4296 		 * Pairs with the smp_store_release() in finish_task().
4297 		 *
4298 		 * This ensures that tasks getting woken will be fully ordered against
4299 		 * their previous state and preserve Program Order.
4300 		 */
4301 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4302 
4303 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4304 		if (task_cpu(p) != cpu) {
4305 			if (p->in_iowait) {
4306 				delayacct_blkio_end(p);
4307 				atomic_dec(&task_rq(p)->nr_iowait);
4308 			}
4309 
4310 			wake_flags |= WF_MIGRATED;
4311 			psi_ttwu_dequeue(p);
4312 			set_task_cpu(p, cpu);
4313 		}
4314 #else
4315 		cpu = task_cpu(p);
4316 #endif /* CONFIG_SMP */
4317 
4318 		ttwu_queue(p, cpu, wake_flags);
4319 	}
4320 out:
4321 	if (success)
4322 		ttwu_stat(p, task_cpu(p), wake_flags);
4323 
4324 	return success;
4325 }
4326 
4327 static bool __task_needs_rq_lock(struct task_struct *p)
4328 {
4329 	unsigned int state = READ_ONCE(p->__state);
4330 
4331 	/*
4332 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4333 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4334 	 * locks at the end, see ttwu_queue_wakelist().
4335 	 */
4336 	if (state == TASK_RUNNING || state == TASK_WAKING)
4337 		return true;
4338 
4339 	/*
4340 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4341 	 * possible to, falsely, observe p->on_rq == 0.
4342 	 *
4343 	 * See try_to_wake_up() for a longer comment.
4344 	 */
4345 	smp_rmb();
4346 	if (p->on_rq)
4347 		return true;
4348 
4349 #ifdef CONFIG_SMP
4350 	/*
4351 	 * Ensure the task has finished __schedule() and will not be referenced
4352 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4353 	 */
4354 	smp_rmb();
4355 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4356 #endif
4357 
4358 	return false;
4359 }
4360 
4361 /**
4362  * task_call_func - Invoke a function on task in fixed state
4363  * @p: Process for which the function is to be invoked, can be @current.
4364  * @func: Function to invoke.
4365  * @arg: Argument to function.
4366  *
4367  * Fix the task in it's current state by avoiding wakeups and or rq operations
4368  * and call @func(@arg) on it.  This function can use task_is_runnable() and
4369  * task_curr() to work out what the state is, if required.  Given that @func
4370  * can be invoked with a runqueue lock held, it had better be quite
4371  * lightweight.
4372  *
4373  * Returns:
4374  *   Whatever @func returns
4375  */
4376 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4377 {
4378 	struct rq *rq = NULL;
4379 	struct rq_flags rf;
4380 	int ret;
4381 
4382 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4383 
4384 	if (__task_needs_rq_lock(p))
4385 		rq = __task_rq_lock(p, &rf);
4386 
4387 	/*
4388 	 * At this point the task is pinned; either:
4389 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4390 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4391 	 *  - queued, and we're holding off schedule	 (rq->lock)
4392 	 *  - running, and we're holding off de-schedule (rq->lock)
4393 	 *
4394 	 * The called function (@func) can use: task_curr(), p->on_rq and
4395 	 * p->__state to differentiate between these states.
4396 	 */
4397 	ret = func(p, arg);
4398 
4399 	if (rq)
4400 		rq_unlock(rq, &rf);
4401 
4402 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4403 	return ret;
4404 }
4405 
4406 /**
4407  * cpu_curr_snapshot - Return a snapshot of the currently running task
4408  * @cpu: The CPU on which to snapshot the task.
4409  *
4410  * Returns the task_struct pointer of the task "currently" running on
4411  * the specified CPU.
4412  *
4413  * If the specified CPU was offline, the return value is whatever it
4414  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4415  * task, but there is no guarantee.  Callers wishing a useful return
4416  * value must take some action to ensure that the specified CPU remains
4417  * online throughout.
4418  *
4419  * This function executes full memory barriers before and after fetching
4420  * the pointer, which permits the caller to confine this function's fetch
4421  * with respect to the caller's accesses to other shared variables.
4422  */
4423 struct task_struct *cpu_curr_snapshot(int cpu)
4424 {
4425 	struct rq *rq = cpu_rq(cpu);
4426 	struct task_struct *t;
4427 	struct rq_flags rf;
4428 
4429 	rq_lock_irqsave(rq, &rf);
4430 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4431 	t = rcu_dereference(cpu_curr(cpu));
4432 	rq_unlock_irqrestore(rq, &rf);
4433 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4434 
4435 	return t;
4436 }
4437 
4438 /**
4439  * wake_up_process - Wake up a specific process
4440  * @p: The process to be woken up.
4441  *
4442  * Attempt to wake up the nominated process and move it to the set of runnable
4443  * processes.
4444  *
4445  * Return: 1 if the process was woken up, 0 if it was already running.
4446  *
4447  * This function executes a full memory barrier before accessing the task state.
4448  */
4449 int wake_up_process(struct task_struct *p)
4450 {
4451 	return try_to_wake_up(p, TASK_NORMAL, 0);
4452 }
4453 EXPORT_SYMBOL(wake_up_process);
4454 
4455 int wake_up_state(struct task_struct *p, unsigned int state)
4456 {
4457 	return try_to_wake_up(p, state, 0);
4458 }
4459 
4460 /*
4461  * Perform scheduler related setup for a newly forked process p.
4462  * p is forked by current.
4463  *
4464  * __sched_fork() is basic setup which is also used by sched_init() to
4465  * initialize the boot CPU's idle task.
4466  */
4467 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4468 {
4469 	p->on_rq			= 0;
4470 
4471 	p->se.on_rq			= 0;
4472 	p->se.exec_start		= 0;
4473 	p->se.sum_exec_runtime		= 0;
4474 	p->se.prev_sum_exec_runtime	= 0;
4475 	p->se.nr_migrations		= 0;
4476 	p->se.vruntime			= 0;
4477 	p->se.vlag			= 0;
4478 	INIT_LIST_HEAD(&p->se.group_node);
4479 
4480 	/* A delayed task cannot be in clone(). */
4481 	WARN_ON_ONCE(p->se.sched_delayed);
4482 
4483 #ifdef CONFIG_FAIR_GROUP_SCHED
4484 	p->se.cfs_rq			= NULL;
4485 #endif
4486 
4487 #ifdef CONFIG_SCHEDSTATS
4488 	/* Even if schedstat is disabled, there should not be garbage */
4489 	memset(&p->stats, 0, sizeof(p->stats));
4490 #endif
4491 
4492 	init_dl_entity(&p->dl);
4493 
4494 	INIT_LIST_HEAD(&p->rt.run_list);
4495 	p->rt.timeout		= 0;
4496 	p->rt.time_slice	= sched_rr_timeslice;
4497 	p->rt.on_rq		= 0;
4498 	p->rt.on_list		= 0;
4499 
4500 #ifdef CONFIG_SCHED_CLASS_EXT
4501 	init_scx_entity(&p->scx);
4502 #endif
4503 
4504 #ifdef CONFIG_PREEMPT_NOTIFIERS
4505 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4506 #endif
4507 
4508 #ifdef CONFIG_COMPACTION
4509 	p->capture_control = NULL;
4510 #endif
4511 	init_numa_balancing(clone_flags, p);
4512 #ifdef CONFIG_SMP
4513 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4514 	p->migration_pending = NULL;
4515 #endif
4516 	init_sched_mm_cid(p);
4517 }
4518 
4519 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4520 
4521 #ifdef CONFIG_NUMA_BALANCING
4522 
4523 int sysctl_numa_balancing_mode;
4524 
4525 static void __set_numabalancing_state(bool enabled)
4526 {
4527 	if (enabled)
4528 		static_branch_enable(&sched_numa_balancing);
4529 	else
4530 		static_branch_disable(&sched_numa_balancing);
4531 }
4532 
4533 void set_numabalancing_state(bool enabled)
4534 {
4535 	if (enabled)
4536 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4537 	else
4538 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4539 	__set_numabalancing_state(enabled);
4540 }
4541 
4542 #ifdef CONFIG_PROC_SYSCTL
4543 static void reset_memory_tiering(void)
4544 {
4545 	struct pglist_data *pgdat;
4546 
4547 	for_each_online_pgdat(pgdat) {
4548 		pgdat->nbp_threshold = 0;
4549 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4550 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4551 	}
4552 }
4553 
4554 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4555 			  void *buffer, size_t *lenp, loff_t *ppos)
4556 {
4557 	struct ctl_table t;
4558 	int err;
4559 	int state = sysctl_numa_balancing_mode;
4560 
4561 	if (write && !capable(CAP_SYS_ADMIN))
4562 		return -EPERM;
4563 
4564 	t = *table;
4565 	t.data = &state;
4566 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4567 	if (err < 0)
4568 		return err;
4569 	if (write) {
4570 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4571 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4572 			reset_memory_tiering();
4573 		sysctl_numa_balancing_mode = state;
4574 		__set_numabalancing_state(state);
4575 	}
4576 	return err;
4577 }
4578 #endif
4579 #endif
4580 
4581 #ifdef CONFIG_SCHEDSTATS
4582 
4583 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4584 
4585 static void set_schedstats(bool enabled)
4586 {
4587 	if (enabled)
4588 		static_branch_enable(&sched_schedstats);
4589 	else
4590 		static_branch_disable(&sched_schedstats);
4591 }
4592 
4593 void force_schedstat_enabled(void)
4594 {
4595 	if (!schedstat_enabled()) {
4596 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4597 		static_branch_enable(&sched_schedstats);
4598 	}
4599 }
4600 
4601 static int __init setup_schedstats(char *str)
4602 {
4603 	int ret = 0;
4604 	if (!str)
4605 		goto out;
4606 
4607 	if (!strcmp(str, "enable")) {
4608 		set_schedstats(true);
4609 		ret = 1;
4610 	} else if (!strcmp(str, "disable")) {
4611 		set_schedstats(false);
4612 		ret = 1;
4613 	}
4614 out:
4615 	if (!ret)
4616 		pr_warn("Unable to parse schedstats=\n");
4617 
4618 	return ret;
4619 }
4620 __setup("schedstats=", setup_schedstats);
4621 
4622 #ifdef CONFIG_PROC_SYSCTL
4623 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4624 		size_t *lenp, loff_t *ppos)
4625 {
4626 	struct ctl_table t;
4627 	int err;
4628 	int state = static_branch_likely(&sched_schedstats);
4629 
4630 	if (write && !capable(CAP_SYS_ADMIN))
4631 		return -EPERM;
4632 
4633 	t = *table;
4634 	t.data = &state;
4635 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4636 	if (err < 0)
4637 		return err;
4638 	if (write)
4639 		set_schedstats(state);
4640 	return err;
4641 }
4642 #endif /* CONFIG_PROC_SYSCTL */
4643 #endif /* CONFIG_SCHEDSTATS */
4644 
4645 #ifdef CONFIG_SYSCTL
4646 static const struct ctl_table sched_core_sysctls[] = {
4647 #ifdef CONFIG_SCHEDSTATS
4648 	{
4649 		.procname       = "sched_schedstats",
4650 		.data           = NULL,
4651 		.maxlen         = sizeof(unsigned int),
4652 		.mode           = 0644,
4653 		.proc_handler   = sysctl_schedstats,
4654 		.extra1         = SYSCTL_ZERO,
4655 		.extra2         = SYSCTL_ONE,
4656 	},
4657 #endif /* CONFIG_SCHEDSTATS */
4658 #ifdef CONFIG_UCLAMP_TASK
4659 	{
4660 		.procname       = "sched_util_clamp_min",
4661 		.data           = &sysctl_sched_uclamp_util_min,
4662 		.maxlen         = sizeof(unsigned int),
4663 		.mode           = 0644,
4664 		.proc_handler   = sysctl_sched_uclamp_handler,
4665 	},
4666 	{
4667 		.procname       = "sched_util_clamp_max",
4668 		.data           = &sysctl_sched_uclamp_util_max,
4669 		.maxlen         = sizeof(unsigned int),
4670 		.mode           = 0644,
4671 		.proc_handler   = sysctl_sched_uclamp_handler,
4672 	},
4673 	{
4674 		.procname       = "sched_util_clamp_min_rt_default",
4675 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4676 		.maxlen         = sizeof(unsigned int),
4677 		.mode           = 0644,
4678 		.proc_handler   = sysctl_sched_uclamp_handler,
4679 	},
4680 #endif /* CONFIG_UCLAMP_TASK */
4681 #ifdef CONFIG_NUMA_BALANCING
4682 	{
4683 		.procname	= "numa_balancing",
4684 		.data		= NULL, /* filled in by handler */
4685 		.maxlen		= sizeof(unsigned int),
4686 		.mode		= 0644,
4687 		.proc_handler	= sysctl_numa_balancing,
4688 		.extra1		= SYSCTL_ZERO,
4689 		.extra2		= SYSCTL_FOUR,
4690 	},
4691 #endif /* CONFIG_NUMA_BALANCING */
4692 };
4693 static int __init sched_core_sysctl_init(void)
4694 {
4695 	register_sysctl_init("kernel", sched_core_sysctls);
4696 	return 0;
4697 }
4698 late_initcall(sched_core_sysctl_init);
4699 #endif /* CONFIG_SYSCTL */
4700 
4701 /*
4702  * fork()/clone()-time setup:
4703  */
4704 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4705 {
4706 	__sched_fork(clone_flags, p);
4707 	/*
4708 	 * We mark the process as NEW here. This guarantees that
4709 	 * nobody will actually run it, and a signal or other external
4710 	 * event cannot wake it up and insert it on the runqueue either.
4711 	 */
4712 	p->__state = TASK_NEW;
4713 
4714 	/*
4715 	 * Make sure we do not leak PI boosting priority to the child.
4716 	 */
4717 	p->prio = current->normal_prio;
4718 
4719 	uclamp_fork(p);
4720 
4721 	/*
4722 	 * Revert to default priority/policy on fork if requested.
4723 	 */
4724 	if (unlikely(p->sched_reset_on_fork)) {
4725 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4726 			p->policy = SCHED_NORMAL;
4727 			p->static_prio = NICE_TO_PRIO(0);
4728 			p->rt_priority = 0;
4729 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4730 			p->static_prio = NICE_TO_PRIO(0);
4731 
4732 		p->prio = p->normal_prio = p->static_prio;
4733 		set_load_weight(p, false);
4734 		p->se.custom_slice = 0;
4735 		p->se.slice = sysctl_sched_base_slice;
4736 
4737 		/*
4738 		 * We don't need the reset flag anymore after the fork. It has
4739 		 * fulfilled its duty:
4740 		 */
4741 		p->sched_reset_on_fork = 0;
4742 	}
4743 
4744 	if (dl_prio(p->prio))
4745 		return -EAGAIN;
4746 
4747 	scx_pre_fork(p);
4748 
4749 	if (rt_prio(p->prio)) {
4750 		p->sched_class = &rt_sched_class;
4751 #ifdef CONFIG_SCHED_CLASS_EXT
4752 	} else if (task_should_scx(p->policy)) {
4753 		p->sched_class = &ext_sched_class;
4754 #endif
4755 	} else {
4756 		p->sched_class = &fair_sched_class;
4757 	}
4758 
4759 	init_entity_runnable_average(&p->se);
4760 
4761 
4762 #ifdef CONFIG_SCHED_INFO
4763 	if (likely(sched_info_on()))
4764 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4765 #endif
4766 #if defined(CONFIG_SMP)
4767 	p->on_cpu = 0;
4768 #endif
4769 	init_task_preempt_count(p);
4770 #ifdef CONFIG_SMP
4771 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4772 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4773 #endif
4774 	return 0;
4775 }
4776 
4777 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4778 {
4779 	unsigned long flags;
4780 
4781 	/*
4782 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4783 	 * required yet, but lockdep gets upset if rules are violated.
4784 	 */
4785 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4786 #ifdef CONFIG_CGROUP_SCHED
4787 	if (1) {
4788 		struct task_group *tg;
4789 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4790 				  struct task_group, css);
4791 		tg = autogroup_task_group(p, tg);
4792 		p->sched_task_group = tg;
4793 	}
4794 #endif
4795 	rseq_migrate(p);
4796 	/*
4797 	 * We're setting the CPU for the first time, we don't migrate,
4798 	 * so use __set_task_cpu().
4799 	 */
4800 	__set_task_cpu(p, smp_processor_id());
4801 	if (p->sched_class->task_fork)
4802 		p->sched_class->task_fork(p);
4803 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4804 
4805 	return scx_fork(p);
4806 }
4807 
4808 void sched_cancel_fork(struct task_struct *p)
4809 {
4810 	scx_cancel_fork(p);
4811 }
4812 
4813 void sched_post_fork(struct task_struct *p)
4814 {
4815 	uclamp_post_fork(p);
4816 	scx_post_fork(p);
4817 }
4818 
4819 unsigned long to_ratio(u64 period, u64 runtime)
4820 {
4821 	if (runtime == RUNTIME_INF)
4822 		return BW_UNIT;
4823 
4824 	/*
4825 	 * Doing this here saves a lot of checks in all
4826 	 * the calling paths, and returning zero seems
4827 	 * safe for them anyway.
4828 	 */
4829 	if (period == 0)
4830 		return 0;
4831 
4832 	return div64_u64(runtime << BW_SHIFT, period);
4833 }
4834 
4835 /*
4836  * wake_up_new_task - wake up a newly created task for the first time.
4837  *
4838  * This function will do some initial scheduler statistics housekeeping
4839  * that must be done for every newly created context, then puts the task
4840  * on the runqueue and wakes it.
4841  */
4842 void wake_up_new_task(struct task_struct *p)
4843 {
4844 	struct rq_flags rf;
4845 	struct rq *rq;
4846 	int wake_flags = WF_FORK;
4847 
4848 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4849 	WRITE_ONCE(p->__state, TASK_RUNNING);
4850 #ifdef CONFIG_SMP
4851 	/*
4852 	 * Fork balancing, do it here and not earlier because:
4853 	 *  - cpus_ptr can change in the fork path
4854 	 *  - any previously selected CPU might disappear through hotplug
4855 	 *
4856 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4857 	 * as we're not fully set-up yet.
4858 	 */
4859 	p->recent_used_cpu = task_cpu(p);
4860 	rseq_migrate(p);
4861 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4862 #endif
4863 	rq = __task_rq_lock(p, &rf);
4864 	update_rq_clock(rq);
4865 	post_init_entity_util_avg(p);
4866 
4867 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4868 	trace_sched_wakeup_new(p);
4869 	wakeup_preempt(rq, p, wake_flags);
4870 #ifdef CONFIG_SMP
4871 	if (p->sched_class->task_woken) {
4872 		/*
4873 		 * Nothing relies on rq->lock after this, so it's fine to
4874 		 * drop it.
4875 		 */
4876 		rq_unpin_lock(rq, &rf);
4877 		p->sched_class->task_woken(rq, p);
4878 		rq_repin_lock(rq, &rf);
4879 	}
4880 #endif
4881 	task_rq_unlock(rq, p, &rf);
4882 }
4883 
4884 #ifdef CONFIG_PREEMPT_NOTIFIERS
4885 
4886 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4887 
4888 void preempt_notifier_inc(void)
4889 {
4890 	static_branch_inc(&preempt_notifier_key);
4891 }
4892 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4893 
4894 void preempt_notifier_dec(void)
4895 {
4896 	static_branch_dec(&preempt_notifier_key);
4897 }
4898 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4899 
4900 /**
4901  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4902  * @notifier: notifier struct to register
4903  */
4904 void preempt_notifier_register(struct preempt_notifier *notifier)
4905 {
4906 	if (!static_branch_unlikely(&preempt_notifier_key))
4907 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4908 
4909 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4910 }
4911 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4912 
4913 /**
4914  * preempt_notifier_unregister - no longer interested in preemption notifications
4915  * @notifier: notifier struct to unregister
4916  *
4917  * This is *not* safe to call from within a preemption notifier.
4918  */
4919 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4920 {
4921 	hlist_del(&notifier->link);
4922 }
4923 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4924 
4925 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4926 {
4927 	struct preempt_notifier *notifier;
4928 
4929 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4930 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4931 }
4932 
4933 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4934 {
4935 	if (static_branch_unlikely(&preempt_notifier_key))
4936 		__fire_sched_in_preempt_notifiers(curr);
4937 }
4938 
4939 static void
4940 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4941 				   struct task_struct *next)
4942 {
4943 	struct preempt_notifier *notifier;
4944 
4945 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4946 		notifier->ops->sched_out(notifier, next);
4947 }
4948 
4949 static __always_inline void
4950 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4951 				 struct task_struct *next)
4952 {
4953 	if (static_branch_unlikely(&preempt_notifier_key))
4954 		__fire_sched_out_preempt_notifiers(curr, next);
4955 }
4956 
4957 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4958 
4959 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4960 {
4961 }
4962 
4963 static inline void
4964 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4965 				 struct task_struct *next)
4966 {
4967 }
4968 
4969 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4970 
4971 static inline void prepare_task(struct task_struct *next)
4972 {
4973 #ifdef CONFIG_SMP
4974 	/*
4975 	 * Claim the task as running, we do this before switching to it
4976 	 * such that any running task will have this set.
4977 	 *
4978 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4979 	 * its ordering comment.
4980 	 */
4981 	WRITE_ONCE(next->on_cpu, 1);
4982 #endif
4983 }
4984 
4985 static inline void finish_task(struct task_struct *prev)
4986 {
4987 #ifdef CONFIG_SMP
4988 	/*
4989 	 * This must be the very last reference to @prev from this CPU. After
4990 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4991 	 * must ensure this doesn't happen until the switch is completely
4992 	 * finished.
4993 	 *
4994 	 * In particular, the load of prev->state in finish_task_switch() must
4995 	 * happen before this.
4996 	 *
4997 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4998 	 */
4999 	smp_store_release(&prev->on_cpu, 0);
5000 #endif
5001 }
5002 
5003 #ifdef CONFIG_SMP
5004 
5005 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5006 {
5007 	void (*func)(struct rq *rq);
5008 	struct balance_callback *next;
5009 
5010 	lockdep_assert_rq_held(rq);
5011 
5012 	while (head) {
5013 		func = (void (*)(struct rq *))head->func;
5014 		next = head->next;
5015 		head->next = NULL;
5016 		head = next;
5017 
5018 		func(rq);
5019 	}
5020 }
5021 
5022 static void balance_push(struct rq *rq);
5023 
5024 /*
5025  * balance_push_callback is a right abuse of the callback interface and plays
5026  * by significantly different rules.
5027  *
5028  * Where the normal balance_callback's purpose is to be ran in the same context
5029  * that queued it (only later, when it's safe to drop rq->lock again),
5030  * balance_push_callback is specifically targeted at __schedule().
5031  *
5032  * This abuse is tolerated because it places all the unlikely/odd cases behind
5033  * a single test, namely: rq->balance_callback == NULL.
5034  */
5035 struct balance_callback balance_push_callback = {
5036 	.next = NULL,
5037 	.func = balance_push,
5038 };
5039 
5040 static inline struct balance_callback *
5041 __splice_balance_callbacks(struct rq *rq, bool split)
5042 {
5043 	struct balance_callback *head = rq->balance_callback;
5044 
5045 	if (likely(!head))
5046 		return NULL;
5047 
5048 	lockdep_assert_rq_held(rq);
5049 	/*
5050 	 * Must not take balance_push_callback off the list when
5051 	 * splice_balance_callbacks() and balance_callbacks() are not
5052 	 * in the same rq->lock section.
5053 	 *
5054 	 * In that case it would be possible for __schedule() to interleave
5055 	 * and observe the list empty.
5056 	 */
5057 	if (split && head == &balance_push_callback)
5058 		head = NULL;
5059 	else
5060 		rq->balance_callback = NULL;
5061 
5062 	return head;
5063 }
5064 
5065 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5066 {
5067 	return __splice_balance_callbacks(rq, true);
5068 }
5069 
5070 static void __balance_callbacks(struct rq *rq)
5071 {
5072 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5073 }
5074 
5075 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5076 {
5077 	unsigned long flags;
5078 
5079 	if (unlikely(head)) {
5080 		raw_spin_rq_lock_irqsave(rq, flags);
5081 		do_balance_callbacks(rq, head);
5082 		raw_spin_rq_unlock_irqrestore(rq, flags);
5083 	}
5084 }
5085 
5086 #else
5087 
5088 static inline void __balance_callbacks(struct rq *rq)
5089 {
5090 }
5091 
5092 #endif
5093 
5094 static inline void
5095 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5096 {
5097 	/*
5098 	 * Since the runqueue lock will be released by the next
5099 	 * task (which is an invalid locking op but in the case
5100 	 * of the scheduler it's an obvious special-case), so we
5101 	 * do an early lockdep release here:
5102 	 */
5103 	rq_unpin_lock(rq, rf);
5104 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5105 #ifdef CONFIG_DEBUG_SPINLOCK
5106 	/* this is a valid case when another task releases the spinlock */
5107 	rq_lockp(rq)->owner = next;
5108 #endif
5109 }
5110 
5111 static inline void finish_lock_switch(struct rq *rq)
5112 {
5113 	/*
5114 	 * If we are tracking spinlock dependencies then we have to
5115 	 * fix up the runqueue lock - which gets 'carried over' from
5116 	 * prev into current:
5117 	 */
5118 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5119 	__balance_callbacks(rq);
5120 	raw_spin_rq_unlock_irq(rq);
5121 }
5122 
5123 /*
5124  * NOP if the arch has not defined these:
5125  */
5126 
5127 #ifndef prepare_arch_switch
5128 # define prepare_arch_switch(next)	do { } while (0)
5129 #endif
5130 
5131 #ifndef finish_arch_post_lock_switch
5132 # define finish_arch_post_lock_switch()	do { } while (0)
5133 #endif
5134 
5135 static inline void kmap_local_sched_out(void)
5136 {
5137 #ifdef CONFIG_KMAP_LOCAL
5138 	if (unlikely(current->kmap_ctrl.idx))
5139 		__kmap_local_sched_out();
5140 #endif
5141 }
5142 
5143 static inline void kmap_local_sched_in(void)
5144 {
5145 #ifdef CONFIG_KMAP_LOCAL
5146 	if (unlikely(current->kmap_ctrl.idx))
5147 		__kmap_local_sched_in();
5148 #endif
5149 }
5150 
5151 /**
5152  * prepare_task_switch - prepare to switch tasks
5153  * @rq: the runqueue preparing to switch
5154  * @prev: the current task that is being switched out
5155  * @next: the task we are going to switch to.
5156  *
5157  * This is called with the rq lock held and interrupts off. It must
5158  * be paired with a subsequent finish_task_switch after the context
5159  * switch.
5160  *
5161  * prepare_task_switch sets up locking and calls architecture specific
5162  * hooks.
5163  */
5164 static inline void
5165 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5166 		    struct task_struct *next)
5167 {
5168 	kcov_prepare_switch(prev);
5169 	sched_info_switch(rq, prev, next);
5170 	perf_event_task_sched_out(prev, next);
5171 	rseq_preempt(prev);
5172 	fire_sched_out_preempt_notifiers(prev, next);
5173 	kmap_local_sched_out();
5174 	prepare_task(next);
5175 	prepare_arch_switch(next);
5176 }
5177 
5178 /**
5179  * finish_task_switch - clean up after a task-switch
5180  * @prev: the thread we just switched away from.
5181  *
5182  * finish_task_switch must be called after the context switch, paired
5183  * with a prepare_task_switch call before the context switch.
5184  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5185  * and do any other architecture-specific cleanup actions.
5186  *
5187  * Note that we may have delayed dropping an mm in context_switch(). If
5188  * so, we finish that here outside of the runqueue lock. (Doing it
5189  * with the lock held can cause deadlocks; see schedule() for
5190  * details.)
5191  *
5192  * The context switch have flipped the stack from under us and restored the
5193  * local variables which were saved when this task called schedule() in the
5194  * past. 'prev == current' is still correct but we need to recalculate this_rq
5195  * because prev may have moved to another CPU.
5196  */
5197 static struct rq *finish_task_switch(struct task_struct *prev)
5198 	__releases(rq->lock)
5199 {
5200 	struct rq *rq = this_rq();
5201 	struct mm_struct *mm = rq->prev_mm;
5202 	unsigned int prev_state;
5203 
5204 	/*
5205 	 * The previous task will have left us with a preempt_count of 2
5206 	 * because it left us after:
5207 	 *
5208 	 *	schedule()
5209 	 *	  preempt_disable();			// 1
5210 	 *	  __schedule()
5211 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5212 	 *
5213 	 * Also, see FORK_PREEMPT_COUNT.
5214 	 */
5215 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5216 		      "corrupted preempt_count: %s/%d/0x%x\n",
5217 		      current->comm, current->pid, preempt_count()))
5218 		preempt_count_set(FORK_PREEMPT_COUNT);
5219 
5220 	rq->prev_mm = NULL;
5221 
5222 	/*
5223 	 * A task struct has one reference for the use as "current".
5224 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5225 	 * schedule one last time. The schedule call will never return, and
5226 	 * the scheduled task must drop that reference.
5227 	 *
5228 	 * We must observe prev->state before clearing prev->on_cpu (in
5229 	 * finish_task), otherwise a concurrent wakeup can get prev
5230 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5231 	 * transition, resulting in a double drop.
5232 	 */
5233 	prev_state = READ_ONCE(prev->__state);
5234 	vtime_task_switch(prev);
5235 	perf_event_task_sched_in(prev, current);
5236 	finish_task(prev);
5237 	tick_nohz_task_switch();
5238 	finish_lock_switch(rq);
5239 	finish_arch_post_lock_switch();
5240 	kcov_finish_switch(current);
5241 	/*
5242 	 * kmap_local_sched_out() is invoked with rq::lock held and
5243 	 * interrupts disabled. There is no requirement for that, but the
5244 	 * sched out code does not have an interrupt enabled section.
5245 	 * Restoring the maps on sched in does not require interrupts being
5246 	 * disabled either.
5247 	 */
5248 	kmap_local_sched_in();
5249 
5250 	fire_sched_in_preempt_notifiers(current);
5251 	/*
5252 	 * When switching through a kernel thread, the loop in
5253 	 * membarrier_{private,global}_expedited() may have observed that
5254 	 * kernel thread and not issued an IPI. It is therefore possible to
5255 	 * schedule between user->kernel->user threads without passing though
5256 	 * switch_mm(). Membarrier requires a barrier after storing to
5257 	 * rq->curr, before returning to userspace, so provide them here:
5258 	 *
5259 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5260 	 *   provided by mmdrop_lazy_tlb(),
5261 	 * - a sync_core for SYNC_CORE.
5262 	 */
5263 	if (mm) {
5264 		membarrier_mm_sync_core_before_usermode(mm);
5265 		mmdrop_lazy_tlb_sched(mm);
5266 	}
5267 
5268 	if (unlikely(prev_state == TASK_DEAD)) {
5269 		if (prev->sched_class->task_dead)
5270 			prev->sched_class->task_dead(prev);
5271 
5272 		/* Task is done with its stack. */
5273 		put_task_stack(prev);
5274 
5275 		put_task_struct_rcu_user(prev);
5276 	}
5277 
5278 	return rq;
5279 }
5280 
5281 /**
5282  * schedule_tail - first thing a freshly forked thread must call.
5283  * @prev: the thread we just switched away from.
5284  */
5285 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5286 	__releases(rq->lock)
5287 {
5288 	/*
5289 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5290 	 * finish_task_switch() for details.
5291 	 *
5292 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5293 	 * and the preempt_enable() will end up enabling preemption (on
5294 	 * PREEMPT_COUNT kernels).
5295 	 */
5296 
5297 	finish_task_switch(prev);
5298 	preempt_enable();
5299 
5300 	if (current->set_child_tid)
5301 		put_user(task_pid_vnr(current), current->set_child_tid);
5302 
5303 	calculate_sigpending();
5304 }
5305 
5306 /*
5307  * context_switch - switch to the new MM and the new thread's register state.
5308  */
5309 static __always_inline struct rq *
5310 context_switch(struct rq *rq, struct task_struct *prev,
5311 	       struct task_struct *next, struct rq_flags *rf)
5312 {
5313 	prepare_task_switch(rq, prev, next);
5314 
5315 	/*
5316 	 * For paravirt, this is coupled with an exit in switch_to to
5317 	 * combine the page table reload and the switch backend into
5318 	 * one hypercall.
5319 	 */
5320 	arch_start_context_switch(prev);
5321 
5322 	/*
5323 	 * kernel -> kernel   lazy + transfer active
5324 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5325 	 *
5326 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5327 	 *   user ->   user   switch
5328 	 *
5329 	 * switch_mm_cid() needs to be updated if the barriers provided
5330 	 * by context_switch() are modified.
5331 	 */
5332 	if (!next->mm) {                                // to kernel
5333 		enter_lazy_tlb(prev->active_mm, next);
5334 
5335 		next->active_mm = prev->active_mm;
5336 		if (prev->mm)                           // from user
5337 			mmgrab_lazy_tlb(prev->active_mm);
5338 		else
5339 			prev->active_mm = NULL;
5340 	} else {                                        // to user
5341 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5342 		/*
5343 		 * sys_membarrier() requires an smp_mb() between setting
5344 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5345 		 *
5346 		 * The below provides this either through switch_mm(), or in
5347 		 * case 'prev->active_mm == next->mm' through
5348 		 * finish_task_switch()'s mmdrop().
5349 		 */
5350 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5351 		lru_gen_use_mm(next->mm);
5352 
5353 		if (!prev->mm) {                        // from kernel
5354 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5355 			rq->prev_mm = prev->active_mm;
5356 			prev->active_mm = NULL;
5357 		}
5358 	}
5359 
5360 	/* switch_mm_cid() requires the memory barriers above. */
5361 	switch_mm_cid(rq, prev, next);
5362 
5363 	prepare_lock_switch(rq, next, rf);
5364 
5365 	/* Here we just switch the register state and the stack. */
5366 	switch_to(prev, next, prev);
5367 	barrier();
5368 
5369 	return finish_task_switch(prev);
5370 }
5371 
5372 /*
5373  * nr_running and nr_context_switches:
5374  *
5375  * externally visible scheduler statistics: current number of runnable
5376  * threads, total number of context switches performed since bootup.
5377  */
5378 unsigned int nr_running(void)
5379 {
5380 	unsigned int i, sum = 0;
5381 
5382 	for_each_online_cpu(i)
5383 		sum += cpu_rq(i)->nr_running;
5384 
5385 	return sum;
5386 }
5387 
5388 /*
5389  * Check if only the current task is running on the CPU.
5390  *
5391  * Caution: this function does not check that the caller has disabled
5392  * preemption, thus the result might have a time-of-check-to-time-of-use
5393  * race.  The caller is responsible to use it correctly, for example:
5394  *
5395  * - from a non-preemptible section (of course)
5396  *
5397  * - from a thread that is bound to a single CPU
5398  *
5399  * - in a loop with very short iterations (e.g. a polling loop)
5400  */
5401 bool single_task_running(void)
5402 {
5403 	return raw_rq()->nr_running == 1;
5404 }
5405 EXPORT_SYMBOL(single_task_running);
5406 
5407 unsigned long long nr_context_switches_cpu(int cpu)
5408 {
5409 	return cpu_rq(cpu)->nr_switches;
5410 }
5411 
5412 unsigned long long nr_context_switches(void)
5413 {
5414 	int i;
5415 	unsigned long long sum = 0;
5416 
5417 	for_each_possible_cpu(i)
5418 		sum += cpu_rq(i)->nr_switches;
5419 
5420 	return sum;
5421 }
5422 
5423 /*
5424  * Consumers of these two interfaces, like for example the cpuidle menu
5425  * governor, are using nonsensical data. Preferring shallow idle state selection
5426  * for a CPU that has IO-wait which might not even end up running the task when
5427  * it does become runnable.
5428  */
5429 
5430 unsigned int nr_iowait_cpu(int cpu)
5431 {
5432 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5433 }
5434 
5435 /*
5436  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5437  *
5438  * The idea behind IO-wait account is to account the idle time that we could
5439  * have spend running if it were not for IO. That is, if we were to improve the
5440  * storage performance, we'd have a proportional reduction in IO-wait time.
5441  *
5442  * This all works nicely on UP, where, when a task blocks on IO, we account
5443  * idle time as IO-wait, because if the storage were faster, it could've been
5444  * running and we'd not be idle.
5445  *
5446  * This has been extended to SMP, by doing the same for each CPU. This however
5447  * is broken.
5448  *
5449  * Imagine for instance the case where two tasks block on one CPU, only the one
5450  * CPU will have IO-wait accounted, while the other has regular idle. Even
5451  * though, if the storage were faster, both could've ran at the same time,
5452  * utilising both CPUs.
5453  *
5454  * This means, that when looking globally, the current IO-wait accounting on
5455  * SMP is a lower bound, by reason of under accounting.
5456  *
5457  * Worse, since the numbers are provided per CPU, they are sometimes
5458  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5459  * associated with any one particular CPU, it can wake to another CPU than it
5460  * blocked on. This means the per CPU IO-wait number is meaningless.
5461  *
5462  * Task CPU affinities can make all that even more 'interesting'.
5463  */
5464 
5465 unsigned int nr_iowait(void)
5466 {
5467 	unsigned int i, sum = 0;
5468 
5469 	for_each_possible_cpu(i)
5470 		sum += nr_iowait_cpu(i);
5471 
5472 	return sum;
5473 }
5474 
5475 #ifdef CONFIG_SMP
5476 
5477 /*
5478  * sched_exec - execve() is a valuable balancing opportunity, because at
5479  * this point the task has the smallest effective memory and cache footprint.
5480  */
5481 void sched_exec(void)
5482 {
5483 	struct task_struct *p = current;
5484 	struct migration_arg arg;
5485 	int dest_cpu;
5486 
5487 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5488 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5489 		if (dest_cpu == smp_processor_id())
5490 			return;
5491 
5492 		if (unlikely(!cpu_active(dest_cpu)))
5493 			return;
5494 
5495 		arg = (struct migration_arg){ p, dest_cpu };
5496 	}
5497 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5498 }
5499 
5500 #endif
5501 
5502 DEFINE_PER_CPU(struct kernel_stat, kstat);
5503 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5504 
5505 EXPORT_PER_CPU_SYMBOL(kstat);
5506 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5507 
5508 /*
5509  * The function fair_sched_class.update_curr accesses the struct curr
5510  * and its field curr->exec_start; when called from task_sched_runtime(),
5511  * we observe a high rate of cache misses in practice.
5512  * Prefetching this data results in improved performance.
5513  */
5514 static inline void prefetch_curr_exec_start(struct task_struct *p)
5515 {
5516 #ifdef CONFIG_FAIR_GROUP_SCHED
5517 	struct sched_entity *curr = p->se.cfs_rq->curr;
5518 #else
5519 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5520 #endif
5521 	prefetch(curr);
5522 	prefetch(&curr->exec_start);
5523 }
5524 
5525 /*
5526  * Return accounted runtime for the task.
5527  * In case the task is currently running, return the runtime plus current's
5528  * pending runtime that have not been accounted yet.
5529  */
5530 unsigned long long task_sched_runtime(struct task_struct *p)
5531 {
5532 	struct rq_flags rf;
5533 	struct rq *rq;
5534 	u64 ns;
5535 
5536 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5537 	/*
5538 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5539 	 * So we have a optimization chance when the task's delta_exec is 0.
5540 	 * Reading ->on_cpu is racy, but this is OK.
5541 	 *
5542 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5543 	 * If we race with it entering CPU, unaccounted time is 0. This is
5544 	 * indistinguishable from the read occurring a few cycles earlier.
5545 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5546 	 * been accounted, so we're correct here as well.
5547 	 */
5548 	if (!p->on_cpu || !task_on_rq_queued(p))
5549 		return p->se.sum_exec_runtime;
5550 #endif
5551 
5552 	rq = task_rq_lock(p, &rf);
5553 	/*
5554 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5555 	 * project cycles that may never be accounted to this
5556 	 * thread, breaking clock_gettime().
5557 	 */
5558 	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5559 		prefetch_curr_exec_start(p);
5560 		update_rq_clock(rq);
5561 		p->sched_class->update_curr(rq);
5562 	}
5563 	ns = p->se.sum_exec_runtime;
5564 	task_rq_unlock(rq, p, &rf);
5565 
5566 	return ns;
5567 }
5568 
5569 static u64 cpu_resched_latency(struct rq *rq)
5570 {
5571 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5572 	u64 resched_latency, now = rq_clock(rq);
5573 	static bool warned_once;
5574 
5575 	if (sysctl_resched_latency_warn_once && warned_once)
5576 		return 0;
5577 
5578 	if (!need_resched() || !latency_warn_ms)
5579 		return 0;
5580 
5581 	if (system_state == SYSTEM_BOOTING)
5582 		return 0;
5583 
5584 	if (!rq->last_seen_need_resched_ns) {
5585 		rq->last_seen_need_resched_ns = now;
5586 		rq->ticks_without_resched = 0;
5587 		return 0;
5588 	}
5589 
5590 	rq->ticks_without_resched++;
5591 	resched_latency = now - rq->last_seen_need_resched_ns;
5592 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5593 		return 0;
5594 
5595 	warned_once = true;
5596 
5597 	return resched_latency;
5598 }
5599 
5600 static int __init setup_resched_latency_warn_ms(char *str)
5601 {
5602 	long val;
5603 
5604 	if ((kstrtol(str, 0, &val))) {
5605 		pr_warn("Unable to set resched_latency_warn_ms\n");
5606 		return 1;
5607 	}
5608 
5609 	sysctl_resched_latency_warn_ms = val;
5610 	return 1;
5611 }
5612 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5613 
5614 /*
5615  * This function gets called by the timer code, with HZ frequency.
5616  * We call it with interrupts disabled.
5617  */
5618 void sched_tick(void)
5619 {
5620 	int cpu = smp_processor_id();
5621 	struct rq *rq = cpu_rq(cpu);
5622 	/* accounting goes to the donor task */
5623 	struct task_struct *donor;
5624 	struct rq_flags rf;
5625 	unsigned long hw_pressure;
5626 	u64 resched_latency;
5627 
5628 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5629 		arch_scale_freq_tick();
5630 
5631 	sched_clock_tick();
5632 
5633 	rq_lock(rq, &rf);
5634 	donor = rq->donor;
5635 
5636 	psi_account_irqtime(rq, donor, NULL);
5637 
5638 	update_rq_clock(rq);
5639 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5640 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5641 
5642 	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5643 		resched_curr(rq);
5644 
5645 	donor->sched_class->task_tick(rq, donor, 0);
5646 	if (sched_feat(LATENCY_WARN))
5647 		resched_latency = cpu_resched_latency(rq);
5648 	calc_global_load_tick(rq);
5649 	sched_core_tick(rq);
5650 	task_tick_mm_cid(rq, donor);
5651 	scx_tick(rq);
5652 
5653 	rq_unlock(rq, &rf);
5654 
5655 	if (sched_feat(LATENCY_WARN) && resched_latency)
5656 		resched_latency_warn(cpu, resched_latency);
5657 
5658 	perf_event_task_tick();
5659 
5660 	if (donor->flags & PF_WQ_WORKER)
5661 		wq_worker_tick(donor);
5662 
5663 #ifdef CONFIG_SMP
5664 	if (!scx_switched_all()) {
5665 		rq->idle_balance = idle_cpu(cpu);
5666 		sched_balance_trigger(rq);
5667 	}
5668 #endif
5669 }
5670 
5671 #ifdef CONFIG_NO_HZ_FULL
5672 
5673 struct tick_work {
5674 	int			cpu;
5675 	atomic_t		state;
5676 	struct delayed_work	work;
5677 };
5678 /* Values for ->state, see diagram below. */
5679 #define TICK_SCHED_REMOTE_OFFLINE	0
5680 #define TICK_SCHED_REMOTE_OFFLINING	1
5681 #define TICK_SCHED_REMOTE_RUNNING	2
5682 
5683 /*
5684  * State diagram for ->state:
5685  *
5686  *
5687  *          TICK_SCHED_REMOTE_OFFLINE
5688  *                    |   ^
5689  *                    |   |
5690  *                    |   | sched_tick_remote()
5691  *                    |   |
5692  *                    |   |
5693  *                    +--TICK_SCHED_REMOTE_OFFLINING
5694  *                    |   ^
5695  *                    |   |
5696  * sched_tick_start() |   | sched_tick_stop()
5697  *                    |   |
5698  *                    V   |
5699  *          TICK_SCHED_REMOTE_RUNNING
5700  *
5701  *
5702  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5703  * and sched_tick_start() are happy to leave the state in RUNNING.
5704  */
5705 
5706 static struct tick_work __percpu *tick_work_cpu;
5707 
5708 static void sched_tick_remote(struct work_struct *work)
5709 {
5710 	struct delayed_work *dwork = to_delayed_work(work);
5711 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5712 	int cpu = twork->cpu;
5713 	struct rq *rq = cpu_rq(cpu);
5714 	int os;
5715 
5716 	/*
5717 	 * Handle the tick only if it appears the remote CPU is running in full
5718 	 * dynticks mode. The check is racy by nature, but missing a tick or
5719 	 * having one too much is no big deal because the scheduler tick updates
5720 	 * statistics and checks timeslices in a time-independent way, regardless
5721 	 * of when exactly it is running.
5722 	 */
5723 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5724 		guard(rq_lock_irq)(rq);
5725 		struct task_struct *curr = rq->curr;
5726 
5727 		if (cpu_online(cpu)) {
5728 			/*
5729 			 * Since this is a remote tick for full dynticks mode,
5730 			 * we are always sure that there is no proxy (only a
5731 			 * single task is running).
5732 			 */
5733 			WARN_ON_ONCE(rq->curr != rq->donor);
5734 			update_rq_clock(rq);
5735 
5736 			if (!is_idle_task(curr)) {
5737 				/*
5738 				 * Make sure the next tick runs within a
5739 				 * reasonable amount of time.
5740 				 */
5741 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5742 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5743 			}
5744 			curr->sched_class->task_tick(rq, curr, 0);
5745 
5746 			calc_load_nohz_remote(rq);
5747 		}
5748 	}
5749 
5750 	/*
5751 	 * Run the remote tick once per second (1Hz). This arbitrary
5752 	 * frequency is large enough to avoid overload but short enough
5753 	 * to keep scheduler internal stats reasonably up to date.  But
5754 	 * first update state to reflect hotplug activity if required.
5755 	 */
5756 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5757 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5758 	if (os == TICK_SCHED_REMOTE_RUNNING)
5759 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5760 }
5761 
5762 static void sched_tick_start(int cpu)
5763 {
5764 	int os;
5765 	struct tick_work *twork;
5766 
5767 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5768 		return;
5769 
5770 	WARN_ON_ONCE(!tick_work_cpu);
5771 
5772 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5773 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5774 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5775 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5776 		twork->cpu = cpu;
5777 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5778 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5779 	}
5780 }
5781 
5782 #ifdef CONFIG_HOTPLUG_CPU
5783 static void sched_tick_stop(int cpu)
5784 {
5785 	struct tick_work *twork;
5786 	int os;
5787 
5788 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5789 		return;
5790 
5791 	WARN_ON_ONCE(!tick_work_cpu);
5792 
5793 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5794 	/* There cannot be competing actions, but don't rely on stop-machine. */
5795 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5796 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5797 	/* Don't cancel, as this would mess up the state machine. */
5798 }
5799 #endif /* CONFIG_HOTPLUG_CPU */
5800 
5801 int __init sched_tick_offload_init(void)
5802 {
5803 	tick_work_cpu = alloc_percpu(struct tick_work);
5804 	BUG_ON(!tick_work_cpu);
5805 	return 0;
5806 }
5807 
5808 #else /* !CONFIG_NO_HZ_FULL */
5809 static inline void sched_tick_start(int cpu) { }
5810 static inline void sched_tick_stop(int cpu) { }
5811 #endif
5812 
5813 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5814 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5815 /*
5816  * If the value passed in is equal to the current preempt count
5817  * then we just disabled preemption. Start timing the latency.
5818  */
5819 static inline void preempt_latency_start(int val)
5820 {
5821 	if (preempt_count() == val) {
5822 		unsigned long ip = get_lock_parent_ip();
5823 #ifdef CONFIG_DEBUG_PREEMPT
5824 		current->preempt_disable_ip = ip;
5825 #endif
5826 		trace_preempt_off(CALLER_ADDR0, ip);
5827 	}
5828 }
5829 
5830 void preempt_count_add(int val)
5831 {
5832 #ifdef CONFIG_DEBUG_PREEMPT
5833 	/*
5834 	 * Underflow?
5835 	 */
5836 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5837 		return;
5838 #endif
5839 	__preempt_count_add(val);
5840 #ifdef CONFIG_DEBUG_PREEMPT
5841 	/*
5842 	 * Spinlock count overflowing soon?
5843 	 */
5844 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5845 				PREEMPT_MASK - 10);
5846 #endif
5847 	preempt_latency_start(val);
5848 }
5849 EXPORT_SYMBOL(preempt_count_add);
5850 NOKPROBE_SYMBOL(preempt_count_add);
5851 
5852 /*
5853  * If the value passed in equals to the current preempt count
5854  * then we just enabled preemption. Stop timing the latency.
5855  */
5856 static inline void preempt_latency_stop(int val)
5857 {
5858 	if (preempt_count() == val)
5859 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5860 }
5861 
5862 void preempt_count_sub(int val)
5863 {
5864 #ifdef CONFIG_DEBUG_PREEMPT
5865 	/*
5866 	 * Underflow?
5867 	 */
5868 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5869 		return;
5870 	/*
5871 	 * Is the spinlock portion underflowing?
5872 	 */
5873 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5874 			!(preempt_count() & PREEMPT_MASK)))
5875 		return;
5876 #endif
5877 
5878 	preempt_latency_stop(val);
5879 	__preempt_count_sub(val);
5880 }
5881 EXPORT_SYMBOL(preempt_count_sub);
5882 NOKPROBE_SYMBOL(preempt_count_sub);
5883 
5884 #else
5885 static inline void preempt_latency_start(int val) { }
5886 static inline void preempt_latency_stop(int val) { }
5887 #endif
5888 
5889 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5890 {
5891 #ifdef CONFIG_DEBUG_PREEMPT
5892 	return p->preempt_disable_ip;
5893 #else
5894 	return 0;
5895 #endif
5896 }
5897 
5898 /*
5899  * Print scheduling while atomic bug:
5900  */
5901 static noinline void __schedule_bug(struct task_struct *prev)
5902 {
5903 	/* Save this before calling printk(), since that will clobber it */
5904 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5905 
5906 	if (oops_in_progress)
5907 		return;
5908 
5909 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5910 		prev->comm, prev->pid, preempt_count());
5911 
5912 	debug_show_held_locks(prev);
5913 	print_modules();
5914 	if (irqs_disabled())
5915 		print_irqtrace_events(prev);
5916 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5917 		pr_err("Preemption disabled at:");
5918 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5919 	}
5920 	check_panic_on_warn("scheduling while atomic");
5921 
5922 	dump_stack();
5923 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5924 }
5925 
5926 /*
5927  * Various schedule()-time debugging checks and statistics:
5928  */
5929 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5930 {
5931 #ifdef CONFIG_SCHED_STACK_END_CHECK
5932 	if (task_stack_end_corrupted(prev))
5933 		panic("corrupted stack end detected inside scheduler\n");
5934 
5935 	if (task_scs_end_corrupted(prev))
5936 		panic("corrupted shadow stack detected inside scheduler\n");
5937 #endif
5938 
5939 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5940 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5941 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5942 			prev->comm, prev->pid, prev->non_block_count);
5943 		dump_stack();
5944 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5945 	}
5946 #endif
5947 
5948 	if (unlikely(in_atomic_preempt_off())) {
5949 		__schedule_bug(prev);
5950 		preempt_count_set(PREEMPT_DISABLED);
5951 	}
5952 	rcu_sleep_check();
5953 	WARN_ON_ONCE(ct_state() == CT_STATE_USER);
5954 
5955 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5956 
5957 	schedstat_inc(this_rq()->sched_count);
5958 }
5959 
5960 static void prev_balance(struct rq *rq, struct task_struct *prev,
5961 			 struct rq_flags *rf)
5962 {
5963 	const struct sched_class *start_class = prev->sched_class;
5964 	const struct sched_class *class;
5965 
5966 #ifdef CONFIG_SCHED_CLASS_EXT
5967 	/*
5968 	 * SCX requires a balance() call before every pick_task() including when
5969 	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
5970 	 * SCX instead. Also, set a flag to detect missing balance() call.
5971 	 */
5972 	if (scx_enabled()) {
5973 		rq->scx.flags |= SCX_RQ_BAL_PENDING;
5974 		if (sched_class_above(&ext_sched_class, start_class))
5975 			start_class = &ext_sched_class;
5976 	}
5977 #endif
5978 
5979 	/*
5980 	 * We must do the balancing pass before put_prev_task(), such
5981 	 * that when we release the rq->lock the task is in the same
5982 	 * state as before we took rq->lock.
5983 	 *
5984 	 * We can terminate the balance pass as soon as we know there is
5985 	 * a runnable task of @class priority or higher.
5986 	 */
5987 	for_active_class_range(class, start_class, &idle_sched_class) {
5988 		if (class->balance && class->balance(rq, prev, rf))
5989 			break;
5990 	}
5991 }
5992 
5993 /*
5994  * Pick up the highest-prio task:
5995  */
5996 static inline struct task_struct *
5997 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5998 {
5999 	const struct sched_class *class;
6000 	struct task_struct *p;
6001 
6002 	rq->dl_server = NULL;
6003 
6004 	if (scx_enabled())
6005 		goto restart;
6006 
6007 	/*
6008 	 * Optimization: we know that if all tasks are in the fair class we can
6009 	 * call that function directly, but only if the @prev task wasn't of a
6010 	 * higher scheduling class, because otherwise those lose the
6011 	 * opportunity to pull in more work from other CPUs.
6012 	 */
6013 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6014 		   rq->nr_running == rq->cfs.h_nr_queued)) {
6015 
6016 		p = pick_next_task_fair(rq, prev, rf);
6017 		if (unlikely(p == RETRY_TASK))
6018 			goto restart;
6019 
6020 		/* Assume the next prioritized class is idle_sched_class */
6021 		if (!p) {
6022 			p = pick_task_idle(rq);
6023 			put_prev_set_next_task(rq, prev, p);
6024 		}
6025 
6026 		return p;
6027 	}
6028 
6029 restart:
6030 	prev_balance(rq, prev, rf);
6031 
6032 	for_each_active_class(class) {
6033 		if (class->pick_next_task) {
6034 			p = class->pick_next_task(rq, prev);
6035 			if (p)
6036 				return p;
6037 		} else {
6038 			p = class->pick_task(rq);
6039 			if (p) {
6040 				put_prev_set_next_task(rq, prev, p);
6041 				return p;
6042 			}
6043 		}
6044 	}
6045 
6046 	BUG(); /* The idle class should always have a runnable task. */
6047 }
6048 
6049 #ifdef CONFIG_SCHED_CORE
6050 static inline bool is_task_rq_idle(struct task_struct *t)
6051 {
6052 	return (task_rq(t)->idle == t);
6053 }
6054 
6055 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6056 {
6057 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6058 }
6059 
6060 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6061 {
6062 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6063 		return true;
6064 
6065 	return a->core_cookie == b->core_cookie;
6066 }
6067 
6068 static inline struct task_struct *pick_task(struct rq *rq)
6069 {
6070 	const struct sched_class *class;
6071 	struct task_struct *p;
6072 
6073 	rq->dl_server = NULL;
6074 
6075 	for_each_active_class(class) {
6076 		p = class->pick_task(rq);
6077 		if (p)
6078 			return p;
6079 	}
6080 
6081 	BUG(); /* The idle class should always have a runnable task. */
6082 }
6083 
6084 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6085 
6086 static void queue_core_balance(struct rq *rq);
6087 
6088 static struct task_struct *
6089 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6090 {
6091 	struct task_struct *next, *p, *max = NULL;
6092 	const struct cpumask *smt_mask;
6093 	bool fi_before = false;
6094 	bool core_clock_updated = (rq == rq->core);
6095 	unsigned long cookie;
6096 	int i, cpu, occ = 0;
6097 	struct rq *rq_i;
6098 	bool need_sync;
6099 
6100 	if (!sched_core_enabled(rq))
6101 		return __pick_next_task(rq, prev, rf);
6102 
6103 	cpu = cpu_of(rq);
6104 
6105 	/* Stopper task is switching into idle, no need core-wide selection. */
6106 	if (cpu_is_offline(cpu)) {
6107 		/*
6108 		 * Reset core_pick so that we don't enter the fastpath when
6109 		 * coming online. core_pick would already be migrated to
6110 		 * another cpu during offline.
6111 		 */
6112 		rq->core_pick = NULL;
6113 		rq->core_dl_server = NULL;
6114 		return __pick_next_task(rq, prev, rf);
6115 	}
6116 
6117 	/*
6118 	 * If there were no {en,de}queues since we picked (IOW, the task
6119 	 * pointers are all still valid), and we haven't scheduled the last
6120 	 * pick yet, do so now.
6121 	 *
6122 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6123 	 * it was either offline or went offline during a sibling's core-wide
6124 	 * selection. In this case, do a core-wide selection.
6125 	 */
6126 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6127 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6128 	    rq->core_pick) {
6129 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6130 
6131 		next = rq->core_pick;
6132 		rq->dl_server = rq->core_dl_server;
6133 		rq->core_pick = NULL;
6134 		rq->core_dl_server = NULL;
6135 		goto out_set_next;
6136 	}
6137 
6138 	prev_balance(rq, prev, rf);
6139 
6140 	smt_mask = cpu_smt_mask(cpu);
6141 	need_sync = !!rq->core->core_cookie;
6142 
6143 	/* reset state */
6144 	rq->core->core_cookie = 0UL;
6145 	if (rq->core->core_forceidle_count) {
6146 		if (!core_clock_updated) {
6147 			update_rq_clock(rq->core);
6148 			core_clock_updated = true;
6149 		}
6150 		sched_core_account_forceidle(rq);
6151 		/* reset after accounting force idle */
6152 		rq->core->core_forceidle_start = 0;
6153 		rq->core->core_forceidle_count = 0;
6154 		rq->core->core_forceidle_occupation = 0;
6155 		need_sync = true;
6156 		fi_before = true;
6157 	}
6158 
6159 	/*
6160 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6161 	 *
6162 	 * @task_seq guards the task state ({en,de}queues)
6163 	 * @pick_seq is the @task_seq we did a selection on
6164 	 * @sched_seq is the @pick_seq we scheduled
6165 	 *
6166 	 * However, preemptions can cause multiple picks on the same task set.
6167 	 * 'Fix' this by also increasing @task_seq for every pick.
6168 	 */
6169 	rq->core->core_task_seq++;
6170 
6171 	/*
6172 	 * Optimize for common case where this CPU has no cookies
6173 	 * and there are no cookied tasks running on siblings.
6174 	 */
6175 	if (!need_sync) {
6176 		next = pick_task(rq);
6177 		if (!next->core_cookie) {
6178 			rq->core_pick = NULL;
6179 			rq->core_dl_server = NULL;
6180 			/*
6181 			 * For robustness, update the min_vruntime_fi for
6182 			 * unconstrained picks as well.
6183 			 */
6184 			WARN_ON_ONCE(fi_before);
6185 			task_vruntime_update(rq, next, false);
6186 			goto out_set_next;
6187 		}
6188 	}
6189 
6190 	/*
6191 	 * For each thread: do the regular task pick and find the max prio task
6192 	 * amongst them.
6193 	 *
6194 	 * Tie-break prio towards the current CPU
6195 	 */
6196 	for_each_cpu_wrap(i, smt_mask, cpu) {
6197 		rq_i = cpu_rq(i);
6198 
6199 		/*
6200 		 * Current cpu always has its clock updated on entrance to
6201 		 * pick_next_task(). If the current cpu is not the core,
6202 		 * the core may also have been updated above.
6203 		 */
6204 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6205 			update_rq_clock(rq_i);
6206 
6207 		rq_i->core_pick = p = pick_task(rq_i);
6208 		rq_i->core_dl_server = rq_i->dl_server;
6209 
6210 		if (!max || prio_less(max, p, fi_before))
6211 			max = p;
6212 	}
6213 
6214 	cookie = rq->core->core_cookie = max->core_cookie;
6215 
6216 	/*
6217 	 * For each thread: try and find a runnable task that matches @max or
6218 	 * force idle.
6219 	 */
6220 	for_each_cpu(i, smt_mask) {
6221 		rq_i = cpu_rq(i);
6222 		p = rq_i->core_pick;
6223 
6224 		if (!cookie_equals(p, cookie)) {
6225 			p = NULL;
6226 			if (cookie)
6227 				p = sched_core_find(rq_i, cookie);
6228 			if (!p)
6229 				p = idle_sched_class.pick_task(rq_i);
6230 		}
6231 
6232 		rq_i->core_pick = p;
6233 		rq_i->core_dl_server = NULL;
6234 
6235 		if (p == rq_i->idle) {
6236 			if (rq_i->nr_running) {
6237 				rq->core->core_forceidle_count++;
6238 				if (!fi_before)
6239 					rq->core->core_forceidle_seq++;
6240 			}
6241 		} else {
6242 			occ++;
6243 		}
6244 	}
6245 
6246 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6247 		rq->core->core_forceidle_start = rq_clock(rq->core);
6248 		rq->core->core_forceidle_occupation = occ;
6249 	}
6250 
6251 	rq->core->core_pick_seq = rq->core->core_task_seq;
6252 	next = rq->core_pick;
6253 	rq->core_sched_seq = rq->core->core_pick_seq;
6254 
6255 	/* Something should have been selected for current CPU */
6256 	WARN_ON_ONCE(!next);
6257 
6258 	/*
6259 	 * Reschedule siblings
6260 	 *
6261 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6262 	 * sending an IPI (below) ensures the sibling will no longer be running
6263 	 * their task. This ensures there is no inter-sibling overlap between
6264 	 * non-matching user state.
6265 	 */
6266 	for_each_cpu(i, smt_mask) {
6267 		rq_i = cpu_rq(i);
6268 
6269 		/*
6270 		 * An online sibling might have gone offline before a task
6271 		 * could be picked for it, or it might be offline but later
6272 		 * happen to come online, but its too late and nothing was
6273 		 * picked for it.  That's Ok - it will pick tasks for itself,
6274 		 * so ignore it.
6275 		 */
6276 		if (!rq_i->core_pick)
6277 			continue;
6278 
6279 		/*
6280 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6281 		 * fi_before     fi      update?
6282 		 *  0            0       1
6283 		 *  0            1       1
6284 		 *  1            0       1
6285 		 *  1            1       0
6286 		 */
6287 		if (!(fi_before && rq->core->core_forceidle_count))
6288 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6289 
6290 		rq_i->core_pick->core_occupation = occ;
6291 
6292 		if (i == cpu) {
6293 			rq_i->core_pick = NULL;
6294 			rq_i->core_dl_server = NULL;
6295 			continue;
6296 		}
6297 
6298 		/* Did we break L1TF mitigation requirements? */
6299 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6300 
6301 		if (rq_i->curr == rq_i->core_pick) {
6302 			rq_i->core_pick = NULL;
6303 			rq_i->core_dl_server = NULL;
6304 			continue;
6305 		}
6306 
6307 		resched_curr(rq_i);
6308 	}
6309 
6310 out_set_next:
6311 	put_prev_set_next_task(rq, prev, next);
6312 	if (rq->core->core_forceidle_count && next == rq->idle)
6313 		queue_core_balance(rq);
6314 
6315 	return next;
6316 }
6317 
6318 static bool try_steal_cookie(int this, int that)
6319 {
6320 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6321 	struct task_struct *p;
6322 	unsigned long cookie;
6323 	bool success = false;
6324 
6325 	guard(irq)();
6326 	guard(double_rq_lock)(dst, src);
6327 
6328 	cookie = dst->core->core_cookie;
6329 	if (!cookie)
6330 		return false;
6331 
6332 	if (dst->curr != dst->idle)
6333 		return false;
6334 
6335 	p = sched_core_find(src, cookie);
6336 	if (!p)
6337 		return false;
6338 
6339 	do {
6340 		if (p == src->core_pick || p == src->curr)
6341 			goto next;
6342 
6343 		if (!is_cpu_allowed(p, this))
6344 			goto next;
6345 
6346 		if (p->core_occupation > dst->idle->core_occupation)
6347 			goto next;
6348 		/*
6349 		 * sched_core_find() and sched_core_next() will ensure
6350 		 * that task @p is not throttled now, we also need to
6351 		 * check whether the runqueue of the destination CPU is
6352 		 * being throttled.
6353 		 */
6354 		if (sched_task_is_throttled(p, this))
6355 			goto next;
6356 
6357 		move_queued_task_locked(src, dst, p);
6358 		resched_curr(dst);
6359 
6360 		success = true;
6361 		break;
6362 
6363 next:
6364 		p = sched_core_next(p, cookie);
6365 	} while (p);
6366 
6367 	return success;
6368 }
6369 
6370 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6371 {
6372 	int i;
6373 
6374 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6375 		if (i == cpu)
6376 			continue;
6377 
6378 		if (need_resched())
6379 			break;
6380 
6381 		if (try_steal_cookie(cpu, i))
6382 			return true;
6383 	}
6384 
6385 	return false;
6386 }
6387 
6388 static void sched_core_balance(struct rq *rq)
6389 {
6390 	struct sched_domain *sd;
6391 	int cpu = cpu_of(rq);
6392 
6393 	guard(preempt)();
6394 	guard(rcu)();
6395 
6396 	raw_spin_rq_unlock_irq(rq);
6397 	for_each_domain(cpu, sd) {
6398 		if (need_resched())
6399 			break;
6400 
6401 		if (steal_cookie_task(cpu, sd))
6402 			break;
6403 	}
6404 	raw_spin_rq_lock_irq(rq);
6405 }
6406 
6407 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6408 
6409 static void queue_core_balance(struct rq *rq)
6410 {
6411 	if (!sched_core_enabled(rq))
6412 		return;
6413 
6414 	if (!rq->core->core_cookie)
6415 		return;
6416 
6417 	if (!rq->nr_running) /* not forced idle */
6418 		return;
6419 
6420 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6421 }
6422 
6423 DEFINE_LOCK_GUARD_1(core_lock, int,
6424 		    sched_core_lock(*_T->lock, &_T->flags),
6425 		    sched_core_unlock(*_T->lock, &_T->flags),
6426 		    unsigned long flags)
6427 
6428 static void sched_core_cpu_starting(unsigned int cpu)
6429 {
6430 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6431 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6432 	int t;
6433 
6434 	guard(core_lock)(&cpu);
6435 
6436 	WARN_ON_ONCE(rq->core != rq);
6437 
6438 	/* if we're the first, we'll be our own leader */
6439 	if (cpumask_weight(smt_mask) == 1)
6440 		return;
6441 
6442 	/* find the leader */
6443 	for_each_cpu(t, smt_mask) {
6444 		if (t == cpu)
6445 			continue;
6446 		rq = cpu_rq(t);
6447 		if (rq->core == rq) {
6448 			core_rq = rq;
6449 			break;
6450 		}
6451 	}
6452 
6453 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6454 		return;
6455 
6456 	/* install and validate core_rq */
6457 	for_each_cpu(t, smt_mask) {
6458 		rq = cpu_rq(t);
6459 
6460 		if (t == cpu)
6461 			rq->core = core_rq;
6462 
6463 		WARN_ON_ONCE(rq->core != core_rq);
6464 	}
6465 }
6466 
6467 static void sched_core_cpu_deactivate(unsigned int cpu)
6468 {
6469 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6470 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6471 	int t;
6472 
6473 	guard(core_lock)(&cpu);
6474 
6475 	/* if we're the last man standing, nothing to do */
6476 	if (cpumask_weight(smt_mask) == 1) {
6477 		WARN_ON_ONCE(rq->core != rq);
6478 		return;
6479 	}
6480 
6481 	/* if we're not the leader, nothing to do */
6482 	if (rq->core != rq)
6483 		return;
6484 
6485 	/* find a new leader */
6486 	for_each_cpu(t, smt_mask) {
6487 		if (t == cpu)
6488 			continue;
6489 		core_rq = cpu_rq(t);
6490 		break;
6491 	}
6492 
6493 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6494 		return;
6495 
6496 	/* copy the shared state to the new leader */
6497 	core_rq->core_task_seq             = rq->core_task_seq;
6498 	core_rq->core_pick_seq             = rq->core_pick_seq;
6499 	core_rq->core_cookie               = rq->core_cookie;
6500 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6501 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6502 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6503 
6504 	/*
6505 	 * Accounting edge for forced idle is handled in pick_next_task().
6506 	 * Don't need another one here, since the hotplug thread shouldn't
6507 	 * have a cookie.
6508 	 */
6509 	core_rq->core_forceidle_start = 0;
6510 
6511 	/* install new leader */
6512 	for_each_cpu(t, smt_mask) {
6513 		rq = cpu_rq(t);
6514 		rq->core = core_rq;
6515 	}
6516 }
6517 
6518 static inline void sched_core_cpu_dying(unsigned int cpu)
6519 {
6520 	struct rq *rq = cpu_rq(cpu);
6521 
6522 	if (rq->core != rq)
6523 		rq->core = rq;
6524 }
6525 
6526 #else /* !CONFIG_SCHED_CORE */
6527 
6528 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6529 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6530 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6531 
6532 static struct task_struct *
6533 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6534 {
6535 	return __pick_next_task(rq, prev, rf);
6536 }
6537 
6538 #endif /* CONFIG_SCHED_CORE */
6539 
6540 /*
6541  * Constants for the sched_mode argument of __schedule().
6542  *
6543  * The mode argument allows RT enabled kernels to differentiate a
6544  * preemption from blocking on an 'sleeping' spin/rwlock.
6545  */
6546 #define SM_IDLE			(-1)
6547 #define SM_NONE			0
6548 #define SM_PREEMPT		1
6549 #define SM_RTLOCK_WAIT		2
6550 
6551 /*
6552  * Helper function for __schedule()
6553  *
6554  * If a task does not have signals pending, deactivate it
6555  * Otherwise marks the task's __state as RUNNING
6556  */
6557 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6558 			      unsigned long task_state)
6559 {
6560 	int flags = DEQUEUE_NOCLOCK;
6561 
6562 	if (signal_pending_state(task_state, p)) {
6563 		WRITE_ONCE(p->__state, TASK_RUNNING);
6564 		return false;
6565 	}
6566 
6567 	p->sched_contributes_to_load =
6568 		(task_state & TASK_UNINTERRUPTIBLE) &&
6569 		!(task_state & TASK_NOLOAD) &&
6570 		!(task_state & TASK_FROZEN);
6571 
6572 	if (unlikely(is_special_task_state(task_state)))
6573 		flags |= DEQUEUE_SPECIAL;
6574 
6575 	/*
6576 	 * __schedule()			ttwu()
6577 	 *   prev_state = prev->state;    if (p->on_rq && ...)
6578 	 *   if (prev_state)		    goto out;
6579 	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6580 	 *				  p->state = TASK_WAKING
6581 	 *
6582 	 * Where __schedule() and ttwu() have matching control dependencies.
6583 	 *
6584 	 * After this, schedule() must not care about p->state any more.
6585 	 */
6586 	block_task(rq, p, flags);
6587 	return true;
6588 }
6589 
6590 /*
6591  * __schedule() is the main scheduler function.
6592  *
6593  * The main means of driving the scheduler and thus entering this function are:
6594  *
6595  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6596  *
6597  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6598  *      paths. For example, see arch/x86/entry_64.S.
6599  *
6600  *      To drive preemption between tasks, the scheduler sets the flag in timer
6601  *      interrupt handler sched_tick().
6602  *
6603  *   3. Wakeups don't really cause entry into schedule(). They add a
6604  *      task to the run-queue and that's it.
6605  *
6606  *      Now, if the new task added to the run-queue preempts the current
6607  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6608  *      called on the nearest possible occasion:
6609  *
6610  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6611  *
6612  *         - in syscall or exception context, at the next outmost
6613  *           preempt_enable(). (this might be as soon as the wake_up()'s
6614  *           spin_unlock()!)
6615  *
6616  *         - in IRQ context, return from interrupt-handler to
6617  *           preemptible context
6618  *
6619  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6620  *         then at the next:
6621  *
6622  *          - cond_resched() call
6623  *          - explicit schedule() call
6624  *          - return from syscall or exception to user-space
6625  *          - return from interrupt-handler to user-space
6626  *
6627  * WARNING: must be called with preemption disabled!
6628  */
6629 static void __sched notrace __schedule(int sched_mode)
6630 {
6631 	struct task_struct *prev, *next;
6632 	/*
6633 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6634 	 * as a preemption by schedule_debug() and RCU.
6635 	 */
6636 	bool preempt = sched_mode > SM_NONE;
6637 	unsigned long *switch_count;
6638 	unsigned long prev_state;
6639 	struct rq_flags rf;
6640 	struct rq *rq;
6641 	int cpu;
6642 
6643 	cpu = smp_processor_id();
6644 	rq = cpu_rq(cpu);
6645 	prev = rq->curr;
6646 
6647 	schedule_debug(prev, preempt);
6648 
6649 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6650 		hrtick_clear(rq);
6651 
6652 	local_irq_disable();
6653 	rcu_note_context_switch(preempt);
6654 
6655 	/*
6656 	 * Make sure that signal_pending_state()->signal_pending() below
6657 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6658 	 * done by the caller to avoid the race with signal_wake_up():
6659 	 *
6660 	 * __set_current_state(@state)		signal_wake_up()
6661 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6662 	 *					  wake_up_state(p, state)
6663 	 *   LOCK rq->lock			    LOCK p->pi_state
6664 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6665 	 *     if (signal_pending_state())	    if (p->state & @state)
6666 	 *
6667 	 * Also, the membarrier system call requires a full memory barrier
6668 	 * after coming from user-space, before storing to rq->curr; this
6669 	 * barrier matches a full barrier in the proximity of the membarrier
6670 	 * system call exit.
6671 	 */
6672 	rq_lock(rq, &rf);
6673 	smp_mb__after_spinlock();
6674 
6675 	/* Promote REQ to ACT */
6676 	rq->clock_update_flags <<= 1;
6677 	update_rq_clock(rq);
6678 	rq->clock_update_flags = RQCF_UPDATED;
6679 
6680 	switch_count = &prev->nivcsw;
6681 
6682 	/* Task state changes only considers SM_PREEMPT as preemption */
6683 	preempt = sched_mode == SM_PREEMPT;
6684 
6685 	/*
6686 	 * We must load prev->state once (task_struct::state is volatile), such
6687 	 * that we form a control dependency vs deactivate_task() below.
6688 	 */
6689 	prev_state = READ_ONCE(prev->__state);
6690 	if (sched_mode == SM_IDLE) {
6691 		/* SCX must consult the BPF scheduler to tell if rq is empty */
6692 		if (!rq->nr_running && !scx_enabled()) {
6693 			next = prev;
6694 			goto picked;
6695 		}
6696 	} else if (!preempt && prev_state) {
6697 		try_to_block_task(rq, prev, prev_state);
6698 		switch_count = &prev->nvcsw;
6699 	}
6700 
6701 	next = pick_next_task(rq, prev, &rf);
6702 	rq_set_donor(rq, next);
6703 picked:
6704 	clear_tsk_need_resched(prev);
6705 	clear_preempt_need_resched();
6706 	rq->last_seen_need_resched_ns = 0;
6707 
6708 	if (likely(prev != next)) {
6709 		rq->nr_switches++;
6710 		/*
6711 		 * RCU users of rcu_dereference(rq->curr) may not see
6712 		 * changes to task_struct made by pick_next_task().
6713 		 */
6714 		RCU_INIT_POINTER(rq->curr, next);
6715 		/*
6716 		 * The membarrier system call requires each architecture
6717 		 * to have a full memory barrier after updating
6718 		 * rq->curr, before returning to user-space.
6719 		 *
6720 		 * Here are the schemes providing that barrier on the
6721 		 * various architectures:
6722 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6723 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6724 		 *   on PowerPC and on RISC-V.
6725 		 * - finish_lock_switch() for weakly-ordered
6726 		 *   architectures where spin_unlock is a full barrier,
6727 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6728 		 *   is a RELEASE barrier),
6729 		 *
6730 		 * The barrier matches a full barrier in the proximity of
6731 		 * the membarrier system call entry.
6732 		 *
6733 		 * On RISC-V, this barrier pairing is also needed for the
6734 		 * SYNC_CORE command when switching between processes, cf.
6735 		 * the inline comments in membarrier_arch_switch_mm().
6736 		 */
6737 		++*switch_count;
6738 
6739 		migrate_disable_switch(rq, prev);
6740 		psi_account_irqtime(rq, prev, next);
6741 		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6742 					     prev->se.sched_delayed);
6743 
6744 		trace_sched_switch(preempt, prev, next, prev_state);
6745 
6746 		/* Also unlocks the rq: */
6747 		rq = context_switch(rq, prev, next, &rf);
6748 	} else {
6749 		rq_unpin_lock(rq, &rf);
6750 		__balance_callbacks(rq);
6751 		raw_spin_rq_unlock_irq(rq);
6752 	}
6753 }
6754 
6755 void __noreturn do_task_dead(void)
6756 {
6757 	/* Causes final put_task_struct in finish_task_switch(): */
6758 	set_special_state(TASK_DEAD);
6759 
6760 	/* Tell freezer to ignore us: */
6761 	current->flags |= PF_NOFREEZE;
6762 
6763 	__schedule(SM_NONE);
6764 	BUG();
6765 
6766 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6767 	for (;;)
6768 		cpu_relax();
6769 }
6770 
6771 static inline void sched_submit_work(struct task_struct *tsk)
6772 {
6773 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6774 	unsigned int task_flags;
6775 
6776 	/*
6777 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6778 	 * will use a blocking primitive -- which would lead to recursion.
6779 	 */
6780 	lock_map_acquire_try(&sched_map);
6781 
6782 	task_flags = tsk->flags;
6783 	/*
6784 	 * If a worker goes to sleep, notify and ask workqueue whether it
6785 	 * wants to wake up a task to maintain concurrency.
6786 	 */
6787 	if (task_flags & PF_WQ_WORKER)
6788 		wq_worker_sleeping(tsk);
6789 	else if (task_flags & PF_IO_WORKER)
6790 		io_wq_worker_sleeping(tsk);
6791 
6792 	/*
6793 	 * spinlock and rwlock must not flush block requests.  This will
6794 	 * deadlock if the callback attempts to acquire a lock which is
6795 	 * already acquired.
6796 	 */
6797 	WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT);
6798 
6799 	/*
6800 	 * If we are going to sleep and we have plugged IO queued,
6801 	 * make sure to submit it to avoid deadlocks.
6802 	 */
6803 	blk_flush_plug(tsk->plug, true);
6804 
6805 	lock_map_release(&sched_map);
6806 }
6807 
6808 static void sched_update_worker(struct task_struct *tsk)
6809 {
6810 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6811 		if (tsk->flags & PF_BLOCK_TS)
6812 			blk_plug_invalidate_ts(tsk);
6813 		if (tsk->flags & PF_WQ_WORKER)
6814 			wq_worker_running(tsk);
6815 		else if (tsk->flags & PF_IO_WORKER)
6816 			io_wq_worker_running(tsk);
6817 	}
6818 }
6819 
6820 static __always_inline void __schedule_loop(int sched_mode)
6821 {
6822 	do {
6823 		preempt_disable();
6824 		__schedule(sched_mode);
6825 		sched_preempt_enable_no_resched();
6826 	} while (need_resched());
6827 }
6828 
6829 asmlinkage __visible void __sched schedule(void)
6830 {
6831 	struct task_struct *tsk = current;
6832 
6833 #ifdef CONFIG_RT_MUTEXES
6834 	lockdep_assert(!tsk->sched_rt_mutex);
6835 #endif
6836 
6837 	if (!task_is_running(tsk))
6838 		sched_submit_work(tsk);
6839 	__schedule_loop(SM_NONE);
6840 	sched_update_worker(tsk);
6841 }
6842 EXPORT_SYMBOL(schedule);
6843 
6844 /*
6845  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6846  * state (have scheduled out non-voluntarily) by making sure that all
6847  * tasks have either left the run queue or have gone into user space.
6848  * As idle tasks do not do either, they must not ever be preempted
6849  * (schedule out non-voluntarily).
6850  *
6851  * schedule_idle() is similar to schedule_preempt_disable() except that it
6852  * never enables preemption because it does not call sched_submit_work().
6853  */
6854 void __sched schedule_idle(void)
6855 {
6856 	/*
6857 	 * As this skips calling sched_submit_work(), which the idle task does
6858 	 * regardless because that function is a NOP when the task is in a
6859 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6860 	 * current task can be in any other state. Note, idle is always in the
6861 	 * TASK_RUNNING state.
6862 	 */
6863 	WARN_ON_ONCE(current->__state);
6864 	do {
6865 		__schedule(SM_IDLE);
6866 	} while (need_resched());
6867 }
6868 
6869 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6870 asmlinkage __visible void __sched schedule_user(void)
6871 {
6872 	/*
6873 	 * If we come here after a random call to set_need_resched(),
6874 	 * or we have been woken up remotely but the IPI has not yet arrived,
6875 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6876 	 * we find a better solution.
6877 	 *
6878 	 * NB: There are buggy callers of this function.  Ideally we
6879 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6880 	 * too frequently to make sense yet.
6881 	 */
6882 	enum ctx_state prev_state = exception_enter();
6883 	schedule();
6884 	exception_exit(prev_state);
6885 }
6886 #endif
6887 
6888 /**
6889  * schedule_preempt_disabled - called with preemption disabled
6890  *
6891  * Returns with preemption disabled. Note: preempt_count must be 1
6892  */
6893 void __sched schedule_preempt_disabled(void)
6894 {
6895 	sched_preempt_enable_no_resched();
6896 	schedule();
6897 	preempt_disable();
6898 }
6899 
6900 #ifdef CONFIG_PREEMPT_RT
6901 void __sched notrace schedule_rtlock(void)
6902 {
6903 	__schedule_loop(SM_RTLOCK_WAIT);
6904 }
6905 NOKPROBE_SYMBOL(schedule_rtlock);
6906 #endif
6907 
6908 static void __sched notrace preempt_schedule_common(void)
6909 {
6910 	do {
6911 		/*
6912 		 * Because the function tracer can trace preempt_count_sub()
6913 		 * and it also uses preempt_enable/disable_notrace(), if
6914 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6915 		 * by the function tracer will call this function again and
6916 		 * cause infinite recursion.
6917 		 *
6918 		 * Preemption must be disabled here before the function
6919 		 * tracer can trace. Break up preempt_disable() into two
6920 		 * calls. One to disable preemption without fear of being
6921 		 * traced. The other to still record the preemption latency,
6922 		 * which can also be traced by the function tracer.
6923 		 */
6924 		preempt_disable_notrace();
6925 		preempt_latency_start(1);
6926 		__schedule(SM_PREEMPT);
6927 		preempt_latency_stop(1);
6928 		preempt_enable_no_resched_notrace();
6929 
6930 		/*
6931 		 * Check again in case we missed a preemption opportunity
6932 		 * between schedule and now.
6933 		 */
6934 	} while (need_resched());
6935 }
6936 
6937 #ifdef CONFIG_PREEMPTION
6938 /*
6939  * This is the entry point to schedule() from in-kernel preemption
6940  * off of preempt_enable.
6941  */
6942 asmlinkage __visible void __sched notrace preempt_schedule(void)
6943 {
6944 	/*
6945 	 * If there is a non-zero preempt_count or interrupts are disabled,
6946 	 * we do not want to preempt the current task. Just return..
6947 	 */
6948 	if (likely(!preemptible()))
6949 		return;
6950 	preempt_schedule_common();
6951 }
6952 NOKPROBE_SYMBOL(preempt_schedule);
6953 EXPORT_SYMBOL(preempt_schedule);
6954 
6955 #ifdef CONFIG_PREEMPT_DYNAMIC
6956 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6957 #ifndef preempt_schedule_dynamic_enabled
6958 #define preempt_schedule_dynamic_enabled	preempt_schedule
6959 #define preempt_schedule_dynamic_disabled	NULL
6960 #endif
6961 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6962 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6963 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6964 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6965 void __sched notrace dynamic_preempt_schedule(void)
6966 {
6967 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6968 		return;
6969 	preempt_schedule();
6970 }
6971 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6972 EXPORT_SYMBOL(dynamic_preempt_schedule);
6973 #endif
6974 #endif
6975 
6976 /**
6977  * preempt_schedule_notrace - preempt_schedule called by tracing
6978  *
6979  * The tracing infrastructure uses preempt_enable_notrace to prevent
6980  * recursion and tracing preempt enabling caused by the tracing
6981  * infrastructure itself. But as tracing can happen in areas coming
6982  * from userspace or just about to enter userspace, a preempt enable
6983  * can occur before user_exit() is called. This will cause the scheduler
6984  * to be called when the system is still in usermode.
6985  *
6986  * To prevent this, the preempt_enable_notrace will use this function
6987  * instead of preempt_schedule() to exit user context if needed before
6988  * calling the scheduler.
6989  */
6990 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6991 {
6992 	enum ctx_state prev_ctx;
6993 
6994 	if (likely(!preemptible()))
6995 		return;
6996 
6997 	do {
6998 		/*
6999 		 * Because the function tracer can trace preempt_count_sub()
7000 		 * and it also uses preempt_enable/disable_notrace(), if
7001 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7002 		 * by the function tracer will call this function again and
7003 		 * cause infinite recursion.
7004 		 *
7005 		 * Preemption must be disabled here before the function
7006 		 * tracer can trace. Break up preempt_disable() into two
7007 		 * calls. One to disable preemption without fear of being
7008 		 * traced. The other to still record the preemption latency,
7009 		 * which can also be traced by the function tracer.
7010 		 */
7011 		preempt_disable_notrace();
7012 		preempt_latency_start(1);
7013 		/*
7014 		 * Needs preempt disabled in case user_exit() is traced
7015 		 * and the tracer calls preempt_enable_notrace() causing
7016 		 * an infinite recursion.
7017 		 */
7018 		prev_ctx = exception_enter();
7019 		__schedule(SM_PREEMPT);
7020 		exception_exit(prev_ctx);
7021 
7022 		preempt_latency_stop(1);
7023 		preempt_enable_no_resched_notrace();
7024 	} while (need_resched());
7025 }
7026 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7027 
7028 #ifdef CONFIG_PREEMPT_DYNAMIC
7029 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7030 #ifndef preempt_schedule_notrace_dynamic_enabled
7031 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7032 #define preempt_schedule_notrace_dynamic_disabled	NULL
7033 #endif
7034 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7035 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7036 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7037 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7038 void __sched notrace dynamic_preempt_schedule_notrace(void)
7039 {
7040 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7041 		return;
7042 	preempt_schedule_notrace();
7043 }
7044 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7045 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7046 #endif
7047 #endif
7048 
7049 #endif /* CONFIG_PREEMPTION */
7050 
7051 /*
7052  * This is the entry point to schedule() from kernel preemption
7053  * off of IRQ context.
7054  * Note, that this is called and return with IRQs disabled. This will
7055  * protect us against recursive calling from IRQ contexts.
7056  */
7057 asmlinkage __visible void __sched preempt_schedule_irq(void)
7058 {
7059 	enum ctx_state prev_state;
7060 
7061 	/* Catch callers which need to be fixed */
7062 	BUG_ON(preempt_count() || !irqs_disabled());
7063 
7064 	prev_state = exception_enter();
7065 
7066 	do {
7067 		preempt_disable();
7068 		local_irq_enable();
7069 		__schedule(SM_PREEMPT);
7070 		local_irq_disable();
7071 		sched_preempt_enable_no_resched();
7072 	} while (need_resched());
7073 
7074 	exception_exit(prev_state);
7075 }
7076 
7077 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7078 			  void *key)
7079 {
7080 	WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7081 	return try_to_wake_up(curr->private, mode, wake_flags);
7082 }
7083 EXPORT_SYMBOL(default_wake_function);
7084 
7085 const struct sched_class *__setscheduler_class(int policy, int prio)
7086 {
7087 	if (dl_prio(prio))
7088 		return &dl_sched_class;
7089 
7090 	if (rt_prio(prio))
7091 		return &rt_sched_class;
7092 
7093 #ifdef CONFIG_SCHED_CLASS_EXT
7094 	if (task_should_scx(policy))
7095 		return &ext_sched_class;
7096 #endif
7097 
7098 	return &fair_sched_class;
7099 }
7100 
7101 #ifdef CONFIG_RT_MUTEXES
7102 
7103 /*
7104  * Would be more useful with typeof()/auto_type but they don't mix with
7105  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7106  * name such that if someone were to implement this function we get to compare
7107  * notes.
7108  */
7109 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7110 
7111 void rt_mutex_pre_schedule(void)
7112 {
7113 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7114 	sched_submit_work(current);
7115 }
7116 
7117 void rt_mutex_schedule(void)
7118 {
7119 	lockdep_assert(current->sched_rt_mutex);
7120 	__schedule_loop(SM_NONE);
7121 }
7122 
7123 void rt_mutex_post_schedule(void)
7124 {
7125 	sched_update_worker(current);
7126 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7127 }
7128 
7129 /*
7130  * rt_mutex_setprio - set the current priority of a task
7131  * @p: task to boost
7132  * @pi_task: donor task
7133  *
7134  * This function changes the 'effective' priority of a task. It does
7135  * not touch ->normal_prio like __setscheduler().
7136  *
7137  * Used by the rt_mutex code to implement priority inheritance
7138  * logic. Call site only calls if the priority of the task changed.
7139  */
7140 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7141 {
7142 	int prio, oldprio, queued, running, queue_flag =
7143 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7144 	const struct sched_class *prev_class, *next_class;
7145 	struct rq_flags rf;
7146 	struct rq *rq;
7147 
7148 	/* XXX used to be waiter->prio, not waiter->task->prio */
7149 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7150 
7151 	/*
7152 	 * If nothing changed; bail early.
7153 	 */
7154 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7155 		return;
7156 
7157 	rq = __task_rq_lock(p, &rf);
7158 	update_rq_clock(rq);
7159 	/*
7160 	 * Set under pi_lock && rq->lock, such that the value can be used under
7161 	 * either lock.
7162 	 *
7163 	 * Note that there is loads of tricky to make this pointer cache work
7164 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7165 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7166 	 * task is allowed to run again (and can exit). This ensures the pointer
7167 	 * points to a blocked task -- which guarantees the task is present.
7168 	 */
7169 	p->pi_top_task = pi_task;
7170 
7171 	/*
7172 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7173 	 */
7174 	if (prio == p->prio && !dl_prio(prio))
7175 		goto out_unlock;
7176 
7177 	/*
7178 	 * Idle task boosting is a no-no in general. There is one
7179 	 * exception, when PREEMPT_RT and NOHZ is active:
7180 	 *
7181 	 * The idle task calls get_next_timer_interrupt() and holds
7182 	 * the timer wheel base->lock on the CPU and another CPU wants
7183 	 * to access the timer (probably to cancel it). We can safely
7184 	 * ignore the boosting request, as the idle CPU runs this code
7185 	 * with interrupts disabled and will complete the lock
7186 	 * protected section without being interrupted. So there is no
7187 	 * real need to boost.
7188 	 */
7189 	if (unlikely(p == rq->idle)) {
7190 		WARN_ON(p != rq->curr);
7191 		WARN_ON(p->pi_blocked_on);
7192 		goto out_unlock;
7193 	}
7194 
7195 	trace_sched_pi_setprio(p, pi_task);
7196 	oldprio = p->prio;
7197 
7198 	if (oldprio == prio)
7199 		queue_flag &= ~DEQUEUE_MOVE;
7200 
7201 	prev_class = p->sched_class;
7202 	next_class = __setscheduler_class(p->policy, prio);
7203 
7204 	if (prev_class != next_class && p->se.sched_delayed)
7205 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7206 
7207 	queued = task_on_rq_queued(p);
7208 	running = task_current_donor(rq, p);
7209 	if (queued)
7210 		dequeue_task(rq, p, queue_flag);
7211 	if (running)
7212 		put_prev_task(rq, p);
7213 
7214 	/*
7215 	 * Boosting condition are:
7216 	 * 1. -rt task is running and holds mutex A
7217 	 *      --> -dl task blocks on mutex A
7218 	 *
7219 	 * 2. -dl task is running and holds mutex A
7220 	 *      --> -dl task blocks on mutex A and could preempt the
7221 	 *          running task
7222 	 */
7223 	if (dl_prio(prio)) {
7224 		if (!dl_prio(p->normal_prio) ||
7225 		    (pi_task && dl_prio(pi_task->prio) &&
7226 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7227 			p->dl.pi_se = pi_task->dl.pi_se;
7228 			queue_flag |= ENQUEUE_REPLENISH;
7229 		} else {
7230 			p->dl.pi_se = &p->dl;
7231 		}
7232 	} else if (rt_prio(prio)) {
7233 		if (dl_prio(oldprio))
7234 			p->dl.pi_se = &p->dl;
7235 		if (oldprio < prio)
7236 			queue_flag |= ENQUEUE_HEAD;
7237 	} else {
7238 		if (dl_prio(oldprio))
7239 			p->dl.pi_se = &p->dl;
7240 		if (rt_prio(oldprio))
7241 			p->rt.timeout = 0;
7242 	}
7243 
7244 	p->sched_class = next_class;
7245 	p->prio = prio;
7246 
7247 	check_class_changing(rq, p, prev_class);
7248 
7249 	if (queued)
7250 		enqueue_task(rq, p, queue_flag);
7251 	if (running)
7252 		set_next_task(rq, p);
7253 
7254 	check_class_changed(rq, p, prev_class, oldprio);
7255 out_unlock:
7256 	/* Avoid rq from going away on us: */
7257 	preempt_disable();
7258 
7259 	rq_unpin_lock(rq, &rf);
7260 	__balance_callbacks(rq);
7261 	raw_spin_rq_unlock(rq);
7262 
7263 	preempt_enable();
7264 }
7265 #endif
7266 
7267 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7268 int __sched __cond_resched(void)
7269 {
7270 	if (should_resched(0) && !irqs_disabled()) {
7271 		preempt_schedule_common();
7272 		return 1;
7273 	}
7274 	/*
7275 	 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick
7276 	 * whether the current CPU is in an RCU read-side critical section,
7277 	 * so the tick can report quiescent states even for CPUs looping
7278 	 * in kernel context.  In contrast, in non-preemptible kernels,
7279 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7280 	 * processes executing in kernel context might never report an
7281 	 * RCU quiescent state.  Therefore, the following code causes
7282 	 * cond_resched() to report a quiescent state, but only when RCU
7283 	 * is in urgent need of one.
7284 	 * A third case, preemptible, but non-PREEMPT_RCU provides for
7285 	 * urgently needed quiescent states via rcu_flavor_sched_clock_irq().
7286 	 */
7287 #ifndef CONFIG_PREEMPT_RCU
7288 	rcu_all_qs();
7289 #endif
7290 	return 0;
7291 }
7292 EXPORT_SYMBOL(__cond_resched);
7293 #endif
7294 
7295 #ifdef CONFIG_PREEMPT_DYNAMIC
7296 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7297 #define cond_resched_dynamic_enabled	__cond_resched
7298 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7299 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7300 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7301 
7302 #define might_resched_dynamic_enabled	__cond_resched
7303 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7304 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7305 EXPORT_STATIC_CALL_TRAMP(might_resched);
7306 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7307 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7308 int __sched dynamic_cond_resched(void)
7309 {
7310 	klp_sched_try_switch();
7311 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7312 		return 0;
7313 	return __cond_resched();
7314 }
7315 EXPORT_SYMBOL(dynamic_cond_resched);
7316 
7317 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7318 int __sched dynamic_might_resched(void)
7319 {
7320 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7321 		return 0;
7322 	return __cond_resched();
7323 }
7324 EXPORT_SYMBOL(dynamic_might_resched);
7325 #endif
7326 #endif
7327 
7328 /*
7329  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7330  * call schedule, and on return reacquire the lock.
7331  *
7332  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7333  * operations here to prevent schedule() from being called twice (once via
7334  * spin_unlock(), once by hand).
7335  */
7336 int __cond_resched_lock(spinlock_t *lock)
7337 {
7338 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7339 	int ret = 0;
7340 
7341 	lockdep_assert_held(lock);
7342 
7343 	if (spin_needbreak(lock) || resched) {
7344 		spin_unlock(lock);
7345 		if (!_cond_resched())
7346 			cpu_relax();
7347 		ret = 1;
7348 		spin_lock(lock);
7349 	}
7350 	return ret;
7351 }
7352 EXPORT_SYMBOL(__cond_resched_lock);
7353 
7354 int __cond_resched_rwlock_read(rwlock_t *lock)
7355 {
7356 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7357 	int ret = 0;
7358 
7359 	lockdep_assert_held_read(lock);
7360 
7361 	if (rwlock_needbreak(lock) || resched) {
7362 		read_unlock(lock);
7363 		if (!_cond_resched())
7364 			cpu_relax();
7365 		ret = 1;
7366 		read_lock(lock);
7367 	}
7368 	return ret;
7369 }
7370 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7371 
7372 int __cond_resched_rwlock_write(rwlock_t *lock)
7373 {
7374 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7375 	int ret = 0;
7376 
7377 	lockdep_assert_held_write(lock);
7378 
7379 	if (rwlock_needbreak(lock) || resched) {
7380 		write_unlock(lock);
7381 		if (!_cond_resched())
7382 			cpu_relax();
7383 		ret = 1;
7384 		write_lock(lock);
7385 	}
7386 	return ret;
7387 }
7388 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7389 
7390 #ifdef CONFIG_PREEMPT_DYNAMIC
7391 
7392 #ifdef CONFIG_GENERIC_ENTRY
7393 #include <linux/entry-common.h>
7394 #endif
7395 
7396 /*
7397  * SC:cond_resched
7398  * SC:might_resched
7399  * SC:preempt_schedule
7400  * SC:preempt_schedule_notrace
7401  * SC:irqentry_exit_cond_resched
7402  *
7403  *
7404  * NONE:
7405  *   cond_resched               <- __cond_resched
7406  *   might_resched              <- RET0
7407  *   preempt_schedule           <- NOP
7408  *   preempt_schedule_notrace   <- NOP
7409  *   irqentry_exit_cond_resched <- NOP
7410  *   dynamic_preempt_lazy       <- false
7411  *
7412  * VOLUNTARY:
7413  *   cond_resched               <- __cond_resched
7414  *   might_resched              <- __cond_resched
7415  *   preempt_schedule           <- NOP
7416  *   preempt_schedule_notrace   <- NOP
7417  *   irqentry_exit_cond_resched <- NOP
7418  *   dynamic_preempt_lazy       <- false
7419  *
7420  * FULL:
7421  *   cond_resched               <- RET0
7422  *   might_resched              <- RET0
7423  *   preempt_schedule           <- preempt_schedule
7424  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7425  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7426  *   dynamic_preempt_lazy       <- false
7427  *
7428  * LAZY:
7429  *   cond_resched               <- RET0
7430  *   might_resched              <- RET0
7431  *   preempt_schedule           <- preempt_schedule
7432  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7433  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7434  *   dynamic_preempt_lazy       <- true
7435  */
7436 
7437 enum {
7438 	preempt_dynamic_undefined = -1,
7439 	preempt_dynamic_none,
7440 	preempt_dynamic_voluntary,
7441 	preempt_dynamic_full,
7442 	preempt_dynamic_lazy,
7443 };
7444 
7445 int preempt_dynamic_mode = preempt_dynamic_undefined;
7446 
7447 int sched_dynamic_mode(const char *str)
7448 {
7449 #ifndef CONFIG_PREEMPT_RT
7450 	if (!strcmp(str, "none"))
7451 		return preempt_dynamic_none;
7452 
7453 	if (!strcmp(str, "voluntary"))
7454 		return preempt_dynamic_voluntary;
7455 #endif
7456 
7457 	if (!strcmp(str, "full"))
7458 		return preempt_dynamic_full;
7459 
7460 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7461 	if (!strcmp(str, "lazy"))
7462 		return preempt_dynamic_lazy;
7463 #endif
7464 
7465 	return -EINVAL;
7466 }
7467 
7468 #define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7469 #define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7470 
7471 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7472 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7473 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7474 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7475 #define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
7476 #define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
7477 #else
7478 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7479 #endif
7480 
7481 static DEFINE_MUTEX(sched_dynamic_mutex);
7482 static bool klp_override;
7483 
7484 static void __sched_dynamic_update(int mode)
7485 {
7486 	/*
7487 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7488 	 * the ZERO state, which is invalid.
7489 	 */
7490 	if (!klp_override)
7491 		preempt_dynamic_enable(cond_resched);
7492 	preempt_dynamic_enable(might_resched);
7493 	preempt_dynamic_enable(preempt_schedule);
7494 	preempt_dynamic_enable(preempt_schedule_notrace);
7495 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7496 	preempt_dynamic_key_disable(preempt_lazy);
7497 
7498 	switch (mode) {
7499 	case preempt_dynamic_none:
7500 		if (!klp_override)
7501 			preempt_dynamic_enable(cond_resched);
7502 		preempt_dynamic_disable(might_resched);
7503 		preempt_dynamic_disable(preempt_schedule);
7504 		preempt_dynamic_disable(preempt_schedule_notrace);
7505 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7506 		preempt_dynamic_key_disable(preempt_lazy);
7507 		if (mode != preempt_dynamic_mode)
7508 			pr_info("Dynamic Preempt: none\n");
7509 		break;
7510 
7511 	case preempt_dynamic_voluntary:
7512 		if (!klp_override)
7513 			preempt_dynamic_enable(cond_resched);
7514 		preempt_dynamic_enable(might_resched);
7515 		preempt_dynamic_disable(preempt_schedule);
7516 		preempt_dynamic_disable(preempt_schedule_notrace);
7517 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7518 		preempt_dynamic_key_disable(preempt_lazy);
7519 		if (mode != preempt_dynamic_mode)
7520 			pr_info("Dynamic Preempt: voluntary\n");
7521 		break;
7522 
7523 	case preempt_dynamic_full:
7524 		if (!klp_override)
7525 			preempt_dynamic_disable(cond_resched);
7526 		preempt_dynamic_disable(might_resched);
7527 		preempt_dynamic_enable(preempt_schedule);
7528 		preempt_dynamic_enable(preempt_schedule_notrace);
7529 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7530 		preempt_dynamic_key_disable(preempt_lazy);
7531 		if (mode != preempt_dynamic_mode)
7532 			pr_info("Dynamic Preempt: full\n");
7533 		break;
7534 
7535 	case preempt_dynamic_lazy:
7536 		if (!klp_override)
7537 			preempt_dynamic_disable(cond_resched);
7538 		preempt_dynamic_disable(might_resched);
7539 		preempt_dynamic_enable(preempt_schedule);
7540 		preempt_dynamic_enable(preempt_schedule_notrace);
7541 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7542 		preempt_dynamic_key_enable(preempt_lazy);
7543 		if (mode != preempt_dynamic_mode)
7544 			pr_info("Dynamic Preempt: lazy\n");
7545 		break;
7546 	}
7547 
7548 	preempt_dynamic_mode = mode;
7549 }
7550 
7551 void sched_dynamic_update(int mode)
7552 {
7553 	mutex_lock(&sched_dynamic_mutex);
7554 	__sched_dynamic_update(mode);
7555 	mutex_unlock(&sched_dynamic_mutex);
7556 }
7557 
7558 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7559 
7560 static int klp_cond_resched(void)
7561 {
7562 	__klp_sched_try_switch();
7563 	return __cond_resched();
7564 }
7565 
7566 void sched_dynamic_klp_enable(void)
7567 {
7568 	mutex_lock(&sched_dynamic_mutex);
7569 
7570 	klp_override = true;
7571 	static_call_update(cond_resched, klp_cond_resched);
7572 
7573 	mutex_unlock(&sched_dynamic_mutex);
7574 }
7575 
7576 void sched_dynamic_klp_disable(void)
7577 {
7578 	mutex_lock(&sched_dynamic_mutex);
7579 
7580 	klp_override = false;
7581 	__sched_dynamic_update(preempt_dynamic_mode);
7582 
7583 	mutex_unlock(&sched_dynamic_mutex);
7584 }
7585 
7586 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
7587 
7588 static int __init setup_preempt_mode(char *str)
7589 {
7590 	int mode = sched_dynamic_mode(str);
7591 	if (mode < 0) {
7592 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7593 		return 0;
7594 	}
7595 
7596 	sched_dynamic_update(mode);
7597 	return 1;
7598 }
7599 __setup("preempt=", setup_preempt_mode);
7600 
7601 static void __init preempt_dynamic_init(void)
7602 {
7603 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7604 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7605 			sched_dynamic_update(preempt_dynamic_none);
7606 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7607 			sched_dynamic_update(preempt_dynamic_voluntary);
7608 		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7609 			sched_dynamic_update(preempt_dynamic_lazy);
7610 		} else {
7611 			/* Default static call setting, nothing to do */
7612 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7613 			preempt_dynamic_mode = preempt_dynamic_full;
7614 			pr_info("Dynamic Preempt: full\n");
7615 		}
7616 	}
7617 }
7618 
7619 #define PREEMPT_MODEL_ACCESSOR(mode) \
7620 	bool preempt_model_##mode(void)						 \
7621 	{									 \
7622 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7623 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7624 	}									 \
7625 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7626 
7627 PREEMPT_MODEL_ACCESSOR(none);
7628 PREEMPT_MODEL_ACCESSOR(voluntary);
7629 PREEMPT_MODEL_ACCESSOR(full);
7630 PREEMPT_MODEL_ACCESSOR(lazy);
7631 
7632 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7633 
7634 #define preempt_dynamic_mode -1
7635 
7636 static inline void preempt_dynamic_init(void) { }
7637 
7638 #endif /* CONFIG_PREEMPT_DYNAMIC */
7639 
7640 const char *preempt_modes[] = {
7641 	"none", "voluntary", "full", "lazy", NULL,
7642 };
7643 
7644 const char *preempt_model_str(void)
7645 {
7646 	bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) &&
7647 		(IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) ||
7648 		 IS_ENABLED(CONFIG_PREEMPT_LAZY));
7649 	static char buf[128];
7650 
7651 	if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) {
7652 		struct seq_buf s;
7653 
7654 		seq_buf_init(&s, buf, sizeof(buf));
7655 		seq_buf_puts(&s, "PREEMPT");
7656 
7657 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
7658 			seq_buf_printf(&s, "%sRT%s",
7659 				       brace ? "_{" : "_",
7660 				       brace ? "," : "");
7661 
7662 		if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) {
7663 			seq_buf_printf(&s, "(%s)%s",
7664 				       preempt_dynamic_mode > 0 ?
7665 				       preempt_modes[preempt_dynamic_mode] : "undef",
7666 				       brace ? "}" : "");
7667 			return seq_buf_str(&s);
7668 		}
7669 
7670 		if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7671 			seq_buf_printf(&s, "LAZY%s",
7672 				       brace ? "}" : "");
7673 			return seq_buf_str(&s);
7674 		}
7675 
7676 		return seq_buf_str(&s);
7677 	}
7678 
7679 	if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD))
7680 		return "VOLUNTARY";
7681 
7682 	return "NONE";
7683 }
7684 
7685 int io_schedule_prepare(void)
7686 {
7687 	int old_iowait = current->in_iowait;
7688 
7689 	current->in_iowait = 1;
7690 	blk_flush_plug(current->plug, true);
7691 	return old_iowait;
7692 }
7693 
7694 void io_schedule_finish(int token)
7695 {
7696 	current->in_iowait = token;
7697 }
7698 
7699 /*
7700  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7701  * that process accounting knows that this is a task in IO wait state.
7702  */
7703 long __sched io_schedule_timeout(long timeout)
7704 {
7705 	int token;
7706 	long ret;
7707 
7708 	token = io_schedule_prepare();
7709 	ret = schedule_timeout(timeout);
7710 	io_schedule_finish(token);
7711 
7712 	return ret;
7713 }
7714 EXPORT_SYMBOL(io_schedule_timeout);
7715 
7716 void __sched io_schedule(void)
7717 {
7718 	int token;
7719 
7720 	token = io_schedule_prepare();
7721 	schedule();
7722 	io_schedule_finish(token);
7723 }
7724 EXPORT_SYMBOL(io_schedule);
7725 
7726 void sched_show_task(struct task_struct *p)
7727 {
7728 	unsigned long free;
7729 	int ppid;
7730 
7731 	if (!try_get_task_stack(p))
7732 		return;
7733 
7734 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7735 
7736 	if (task_is_running(p))
7737 		pr_cont("  running task    ");
7738 	free = stack_not_used(p);
7739 	ppid = 0;
7740 	rcu_read_lock();
7741 	if (pid_alive(p))
7742 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7743 	rcu_read_unlock();
7744 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
7745 		free, task_pid_nr(p), task_tgid_nr(p),
7746 		ppid, p->flags, read_task_thread_flags(p));
7747 
7748 	print_worker_info(KERN_INFO, p);
7749 	print_stop_info(KERN_INFO, p);
7750 	print_scx_info(KERN_INFO, p);
7751 	show_stack(p, NULL, KERN_INFO);
7752 	put_task_stack(p);
7753 }
7754 EXPORT_SYMBOL_GPL(sched_show_task);
7755 
7756 static inline bool
7757 state_filter_match(unsigned long state_filter, struct task_struct *p)
7758 {
7759 	unsigned int state = READ_ONCE(p->__state);
7760 
7761 	/* no filter, everything matches */
7762 	if (!state_filter)
7763 		return true;
7764 
7765 	/* filter, but doesn't match */
7766 	if (!(state & state_filter))
7767 		return false;
7768 
7769 	/*
7770 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7771 	 * TASK_KILLABLE).
7772 	 */
7773 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7774 		return false;
7775 
7776 	return true;
7777 }
7778 
7779 
7780 void show_state_filter(unsigned int state_filter)
7781 {
7782 	struct task_struct *g, *p;
7783 
7784 	rcu_read_lock();
7785 	for_each_process_thread(g, p) {
7786 		/*
7787 		 * reset the NMI-timeout, listing all files on a slow
7788 		 * console might take a lot of time:
7789 		 * Also, reset softlockup watchdogs on all CPUs, because
7790 		 * another CPU might be blocked waiting for us to process
7791 		 * an IPI.
7792 		 */
7793 		touch_nmi_watchdog();
7794 		touch_all_softlockup_watchdogs();
7795 		if (state_filter_match(state_filter, p))
7796 			sched_show_task(p);
7797 	}
7798 
7799 	if (!state_filter)
7800 		sysrq_sched_debug_show();
7801 
7802 	rcu_read_unlock();
7803 	/*
7804 	 * Only show locks if all tasks are dumped:
7805 	 */
7806 	if (!state_filter)
7807 		debug_show_all_locks();
7808 }
7809 
7810 /**
7811  * init_idle - set up an idle thread for a given CPU
7812  * @idle: task in question
7813  * @cpu: CPU the idle task belongs to
7814  *
7815  * NOTE: this function does not set the idle thread's NEED_RESCHED
7816  * flag, to make booting more robust.
7817  */
7818 void __init init_idle(struct task_struct *idle, int cpu)
7819 {
7820 #ifdef CONFIG_SMP
7821 	struct affinity_context ac = (struct affinity_context) {
7822 		.new_mask  = cpumask_of(cpu),
7823 		.flags     = 0,
7824 	};
7825 #endif
7826 	struct rq *rq = cpu_rq(cpu);
7827 	unsigned long flags;
7828 
7829 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7830 	raw_spin_rq_lock(rq);
7831 
7832 	idle->__state = TASK_RUNNING;
7833 	idle->se.exec_start = sched_clock();
7834 	/*
7835 	 * PF_KTHREAD should already be set at this point; regardless, make it
7836 	 * look like a proper per-CPU kthread.
7837 	 */
7838 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7839 	kthread_set_per_cpu(idle, cpu);
7840 
7841 #ifdef CONFIG_SMP
7842 	/*
7843 	 * No validation and serialization required at boot time and for
7844 	 * setting up the idle tasks of not yet online CPUs.
7845 	 */
7846 	set_cpus_allowed_common(idle, &ac);
7847 #endif
7848 	/*
7849 	 * We're having a chicken and egg problem, even though we are
7850 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7851 	 * lockdep check in task_group() will fail.
7852 	 *
7853 	 * Similar case to sched_fork(). / Alternatively we could
7854 	 * use task_rq_lock() here and obtain the other rq->lock.
7855 	 *
7856 	 * Silence PROVE_RCU
7857 	 */
7858 	rcu_read_lock();
7859 	__set_task_cpu(idle, cpu);
7860 	rcu_read_unlock();
7861 
7862 	rq->idle = idle;
7863 	rq_set_donor(rq, idle);
7864 	rcu_assign_pointer(rq->curr, idle);
7865 	idle->on_rq = TASK_ON_RQ_QUEUED;
7866 #ifdef CONFIG_SMP
7867 	idle->on_cpu = 1;
7868 #endif
7869 	raw_spin_rq_unlock(rq);
7870 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7871 
7872 	/* Set the preempt count _outside_ the spinlocks! */
7873 	init_idle_preempt_count(idle, cpu);
7874 
7875 	/*
7876 	 * The idle tasks have their own, simple scheduling class:
7877 	 */
7878 	idle->sched_class = &idle_sched_class;
7879 	ftrace_graph_init_idle_task(idle, cpu);
7880 	vtime_init_idle(idle, cpu);
7881 #ifdef CONFIG_SMP
7882 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7883 #endif
7884 }
7885 
7886 #ifdef CONFIG_SMP
7887 
7888 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7889 			      const struct cpumask *trial)
7890 {
7891 	int ret = 1;
7892 
7893 	if (cpumask_empty(cur))
7894 		return ret;
7895 
7896 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7897 
7898 	return ret;
7899 }
7900 
7901 int task_can_attach(struct task_struct *p)
7902 {
7903 	int ret = 0;
7904 
7905 	/*
7906 	 * Kthreads which disallow setaffinity shouldn't be moved
7907 	 * to a new cpuset; we don't want to change their CPU
7908 	 * affinity and isolating such threads by their set of
7909 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7910 	 * applicable for such threads.  This prevents checking for
7911 	 * success of set_cpus_allowed_ptr() on all attached tasks
7912 	 * before cpus_mask may be changed.
7913 	 */
7914 	if (p->flags & PF_NO_SETAFFINITY)
7915 		ret = -EINVAL;
7916 
7917 	return ret;
7918 }
7919 
7920 bool sched_smp_initialized __read_mostly;
7921 
7922 #ifdef CONFIG_NUMA_BALANCING
7923 /* Migrate current task p to target_cpu */
7924 int migrate_task_to(struct task_struct *p, int target_cpu)
7925 {
7926 	struct migration_arg arg = { p, target_cpu };
7927 	int curr_cpu = task_cpu(p);
7928 
7929 	if (curr_cpu == target_cpu)
7930 		return 0;
7931 
7932 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7933 		return -EINVAL;
7934 
7935 	/* TODO: This is not properly updating schedstats */
7936 
7937 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7938 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7939 }
7940 
7941 /*
7942  * Requeue a task on a given node and accurately track the number of NUMA
7943  * tasks on the runqueues
7944  */
7945 void sched_setnuma(struct task_struct *p, int nid)
7946 {
7947 	bool queued, running;
7948 	struct rq_flags rf;
7949 	struct rq *rq;
7950 
7951 	rq = task_rq_lock(p, &rf);
7952 	queued = task_on_rq_queued(p);
7953 	running = task_current_donor(rq, p);
7954 
7955 	if (queued)
7956 		dequeue_task(rq, p, DEQUEUE_SAVE);
7957 	if (running)
7958 		put_prev_task(rq, p);
7959 
7960 	p->numa_preferred_nid = nid;
7961 
7962 	if (queued)
7963 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7964 	if (running)
7965 		set_next_task(rq, p);
7966 	task_rq_unlock(rq, p, &rf);
7967 }
7968 #endif /* CONFIG_NUMA_BALANCING */
7969 
7970 #ifdef CONFIG_HOTPLUG_CPU
7971 /*
7972  * Invoked on the outgoing CPU in context of the CPU hotplug thread
7973  * after ensuring that there are no user space tasks left on the CPU.
7974  *
7975  * If there is a lazy mm in use on the hotplug thread, drop it and
7976  * switch to init_mm.
7977  *
7978  * The reference count on init_mm is dropped in finish_cpu().
7979  */
7980 static void sched_force_init_mm(void)
7981 {
7982 	struct mm_struct *mm = current->active_mm;
7983 
7984 	if (mm != &init_mm) {
7985 		mmgrab_lazy_tlb(&init_mm);
7986 		local_irq_disable();
7987 		current->active_mm = &init_mm;
7988 		switch_mm_irqs_off(mm, &init_mm, current);
7989 		local_irq_enable();
7990 		finish_arch_post_lock_switch();
7991 		mmdrop_lazy_tlb(mm);
7992 	}
7993 
7994 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7995 }
7996 
7997 static int __balance_push_cpu_stop(void *arg)
7998 {
7999 	struct task_struct *p = arg;
8000 	struct rq *rq = this_rq();
8001 	struct rq_flags rf;
8002 	int cpu;
8003 
8004 	raw_spin_lock_irq(&p->pi_lock);
8005 	rq_lock(rq, &rf);
8006 
8007 	update_rq_clock(rq);
8008 
8009 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8010 		cpu = select_fallback_rq(rq->cpu, p);
8011 		rq = __migrate_task(rq, &rf, p, cpu);
8012 	}
8013 
8014 	rq_unlock(rq, &rf);
8015 	raw_spin_unlock_irq(&p->pi_lock);
8016 
8017 	put_task_struct(p);
8018 
8019 	return 0;
8020 }
8021 
8022 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8023 
8024 /*
8025  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8026  *
8027  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8028  * effective when the hotplug motion is down.
8029  */
8030 static void balance_push(struct rq *rq)
8031 {
8032 	struct task_struct *push_task = rq->curr;
8033 
8034 	lockdep_assert_rq_held(rq);
8035 
8036 	/*
8037 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8038 	 */
8039 	rq->balance_callback = &balance_push_callback;
8040 
8041 	/*
8042 	 * Only active while going offline and when invoked on the outgoing
8043 	 * CPU.
8044 	 */
8045 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8046 		return;
8047 
8048 	/*
8049 	 * Both the cpu-hotplug and stop task are in this case and are
8050 	 * required to complete the hotplug process.
8051 	 */
8052 	if (kthread_is_per_cpu(push_task) ||
8053 	    is_migration_disabled(push_task)) {
8054 
8055 		/*
8056 		 * If this is the idle task on the outgoing CPU try to wake
8057 		 * up the hotplug control thread which might wait for the
8058 		 * last task to vanish. The rcuwait_active() check is
8059 		 * accurate here because the waiter is pinned on this CPU
8060 		 * and can't obviously be running in parallel.
8061 		 *
8062 		 * On RT kernels this also has to check whether there are
8063 		 * pinned and scheduled out tasks on the runqueue. They
8064 		 * need to leave the migrate disabled section first.
8065 		 */
8066 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8067 		    rcuwait_active(&rq->hotplug_wait)) {
8068 			raw_spin_rq_unlock(rq);
8069 			rcuwait_wake_up(&rq->hotplug_wait);
8070 			raw_spin_rq_lock(rq);
8071 		}
8072 		return;
8073 	}
8074 
8075 	get_task_struct(push_task);
8076 	/*
8077 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8078 	 * Both preemption and IRQs are still disabled.
8079 	 */
8080 	preempt_disable();
8081 	raw_spin_rq_unlock(rq);
8082 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8083 			    this_cpu_ptr(&push_work));
8084 	preempt_enable();
8085 	/*
8086 	 * At this point need_resched() is true and we'll take the loop in
8087 	 * schedule(). The next pick is obviously going to be the stop task
8088 	 * which kthread_is_per_cpu() and will push this task away.
8089 	 */
8090 	raw_spin_rq_lock(rq);
8091 }
8092 
8093 static void balance_push_set(int cpu, bool on)
8094 {
8095 	struct rq *rq = cpu_rq(cpu);
8096 	struct rq_flags rf;
8097 
8098 	rq_lock_irqsave(rq, &rf);
8099 	if (on) {
8100 		WARN_ON_ONCE(rq->balance_callback);
8101 		rq->balance_callback = &balance_push_callback;
8102 	} else if (rq->balance_callback == &balance_push_callback) {
8103 		rq->balance_callback = NULL;
8104 	}
8105 	rq_unlock_irqrestore(rq, &rf);
8106 }
8107 
8108 /*
8109  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8110  * inactive. All tasks which are not per CPU kernel threads are either
8111  * pushed off this CPU now via balance_push() or placed on a different CPU
8112  * during wakeup. Wait until the CPU is quiescent.
8113  */
8114 static void balance_hotplug_wait(void)
8115 {
8116 	struct rq *rq = this_rq();
8117 
8118 	rcuwait_wait_event(&rq->hotplug_wait,
8119 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8120 			   TASK_UNINTERRUPTIBLE);
8121 }
8122 
8123 #else
8124 
8125 static inline void balance_push(struct rq *rq)
8126 {
8127 }
8128 
8129 static inline void balance_push_set(int cpu, bool on)
8130 {
8131 }
8132 
8133 static inline void balance_hotplug_wait(void)
8134 {
8135 }
8136 
8137 #endif /* CONFIG_HOTPLUG_CPU */
8138 
8139 void set_rq_online(struct rq *rq)
8140 {
8141 	if (!rq->online) {
8142 		const struct sched_class *class;
8143 
8144 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8145 		rq->online = 1;
8146 
8147 		for_each_class(class) {
8148 			if (class->rq_online)
8149 				class->rq_online(rq);
8150 		}
8151 	}
8152 }
8153 
8154 void set_rq_offline(struct rq *rq)
8155 {
8156 	if (rq->online) {
8157 		const struct sched_class *class;
8158 
8159 		update_rq_clock(rq);
8160 		for_each_class(class) {
8161 			if (class->rq_offline)
8162 				class->rq_offline(rq);
8163 		}
8164 
8165 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8166 		rq->online = 0;
8167 	}
8168 }
8169 
8170 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8171 {
8172 	struct rq_flags rf;
8173 
8174 	rq_lock_irqsave(rq, &rf);
8175 	if (rq->rd) {
8176 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8177 		set_rq_online(rq);
8178 	}
8179 	rq_unlock_irqrestore(rq, &rf);
8180 }
8181 
8182 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8183 {
8184 	struct rq_flags rf;
8185 
8186 	rq_lock_irqsave(rq, &rf);
8187 	if (rq->rd) {
8188 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8189 		set_rq_offline(rq);
8190 	}
8191 	rq_unlock_irqrestore(rq, &rf);
8192 }
8193 
8194 /*
8195  * used to mark begin/end of suspend/resume:
8196  */
8197 static int num_cpus_frozen;
8198 
8199 /*
8200  * Update cpusets according to cpu_active mask.  If cpusets are
8201  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8202  * around partition_sched_domains().
8203  *
8204  * If we come here as part of a suspend/resume, don't touch cpusets because we
8205  * want to restore it back to its original state upon resume anyway.
8206  */
8207 static void cpuset_cpu_active(void)
8208 {
8209 	if (cpuhp_tasks_frozen) {
8210 		/*
8211 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8212 		 * resume sequence. As long as this is not the last online
8213 		 * operation in the resume sequence, just build a single sched
8214 		 * domain, ignoring cpusets.
8215 		 */
8216 		cpuset_reset_sched_domains();
8217 		if (--num_cpus_frozen)
8218 			return;
8219 		/*
8220 		 * This is the last CPU online operation. So fall through and
8221 		 * restore the original sched domains by considering the
8222 		 * cpuset configurations.
8223 		 */
8224 		cpuset_force_rebuild();
8225 	}
8226 	cpuset_update_active_cpus();
8227 }
8228 
8229 static void cpuset_cpu_inactive(unsigned int cpu)
8230 {
8231 	if (!cpuhp_tasks_frozen) {
8232 		cpuset_update_active_cpus();
8233 	} else {
8234 		num_cpus_frozen++;
8235 		cpuset_reset_sched_domains();
8236 	}
8237 }
8238 
8239 static inline void sched_smt_present_inc(int cpu)
8240 {
8241 #ifdef CONFIG_SCHED_SMT
8242 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8243 		static_branch_inc_cpuslocked(&sched_smt_present);
8244 #endif
8245 }
8246 
8247 static inline void sched_smt_present_dec(int cpu)
8248 {
8249 #ifdef CONFIG_SCHED_SMT
8250 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8251 		static_branch_dec_cpuslocked(&sched_smt_present);
8252 #endif
8253 }
8254 
8255 int sched_cpu_activate(unsigned int cpu)
8256 {
8257 	struct rq *rq = cpu_rq(cpu);
8258 
8259 	/*
8260 	 * Clear the balance_push callback and prepare to schedule
8261 	 * regular tasks.
8262 	 */
8263 	balance_push_set(cpu, false);
8264 
8265 	/*
8266 	 * When going up, increment the number of cores with SMT present.
8267 	 */
8268 	sched_smt_present_inc(cpu);
8269 	set_cpu_active(cpu, true);
8270 
8271 	if (sched_smp_initialized) {
8272 		sched_update_numa(cpu, true);
8273 		sched_domains_numa_masks_set(cpu);
8274 		cpuset_cpu_active();
8275 	}
8276 
8277 	scx_rq_activate(rq);
8278 
8279 	/*
8280 	 * Put the rq online, if not already. This happens:
8281 	 *
8282 	 * 1) In the early boot process, because we build the real domains
8283 	 *    after all CPUs have been brought up.
8284 	 *
8285 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8286 	 *    domains.
8287 	 */
8288 	sched_set_rq_online(rq, cpu);
8289 
8290 	return 0;
8291 }
8292 
8293 int sched_cpu_deactivate(unsigned int cpu)
8294 {
8295 	struct rq *rq = cpu_rq(cpu);
8296 	int ret;
8297 
8298 	ret = dl_bw_deactivate(cpu);
8299 
8300 	if (ret)
8301 		return ret;
8302 
8303 	/*
8304 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8305 	 * load balancing when not active
8306 	 */
8307 	nohz_balance_exit_idle(rq);
8308 
8309 	set_cpu_active(cpu, false);
8310 
8311 	/*
8312 	 * From this point forward, this CPU will refuse to run any task that
8313 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8314 	 * push those tasks away until this gets cleared, see
8315 	 * sched_cpu_dying().
8316 	 */
8317 	balance_push_set(cpu, true);
8318 
8319 	/*
8320 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8321 	 * preempt-disabled and RCU users of this state to go away such that
8322 	 * all new such users will observe it.
8323 	 *
8324 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8325 	 * ttwu_queue_cond() and is_cpu_allowed().
8326 	 *
8327 	 * Do sync before park smpboot threads to take care the RCU boost case.
8328 	 */
8329 	synchronize_rcu();
8330 
8331 	sched_set_rq_offline(rq, cpu);
8332 
8333 	scx_rq_deactivate(rq);
8334 
8335 	/*
8336 	 * When going down, decrement the number of cores with SMT present.
8337 	 */
8338 	sched_smt_present_dec(cpu);
8339 
8340 #ifdef CONFIG_SCHED_SMT
8341 	sched_core_cpu_deactivate(cpu);
8342 #endif
8343 
8344 	if (!sched_smp_initialized)
8345 		return 0;
8346 
8347 	sched_update_numa(cpu, false);
8348 	cpuset_cpu_inactive(cpu);
8349 	sched_domains_numa_masks_clear(cpu);
8350 	return 0;
8351 }
8352 
8353 static void sched_rq_cpu_starting(unsigned int cpu)
8354 {
8355 	struct rq *rq = cpu_rq(cpu);
8356 
8357 	rq->calc_load_update = calc_load_update;
8358 	update_max_interval();
8359 }
8360 
8361 int sched_cpu_starting(unsigned int cpu)
8362 {
8363 	sched_core_cpu_starting(cpu);
8364 	sched_rq_cpu_starting(cpu);
8365 	sched_tick_start(cpu);
8366 	return 0;
8367 }
8368 
8369 #ifdef CONFIG_HOTPLUG_CPU
8370 
8371 /*
8372  * Invoked immediately before the stopper thread is invoked to bring the
8373  * CPU down completely. At this point all per CPU kthreads except the
8374  * hotplug thread (current) and the stopper thread (inactive) have been
8375  * either parked or have been unbound from the outgoing CPU. Ensure that
8376  * any of those which might be on the way out are gone.
8377  *
8378  * If after this point a bound task is being woken on this CPU then the
8379  * responsible hotplug callback has failed to do it's job.
8380  * sched_cpu_dying() will catch it with the appropriate fireworks.
8381  */
8382 int sched_cpu_wait_empty(unsigned int cpu)
8383 {
8384 	balance_hotplug_wait();
8385 	sched_force_init_mm();
8386 	return 0;
8387 }
8388 
8389 /*
8390  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8391  * might have. Called from the CPU stopper task after ensuring that the
8392  * stopper is the last running task on the CPU, so nr_active count is
8393  * stable. We need to take the tear-down thread which is calling this into
8394  * account, so we hand in adjust = 1 to the load calculation.
8395  *
8396  * Also see the comment "Global load-average calculations".
8397  */
8398 static void calc_load_migrate(struct rq *rq)
8399 {
8400 	long delta = calc_load_fold_active(rq, 1);
8401 
8402 	if (delta)
8403 		atomic_long_add(delta, &calc_load_tasks);
8404 }
8405 
8406 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8407 {
8408 	struct task_struct *g, *p;
8409 	int cpu = cpu_of(rq);
8410 
8411 	lockdep_assert_rq_held(rq);
8412 
8413 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8414 	for_each_process_thread(g, p) {
8415 		if (task_cpu(p) != cpu)
8416 			continue;
8417 
8418 		if (!task_on_rq_queued(p))
8419 			continue;
8420 
8421 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8422 	}
8423 }
8424 
8425 int sched_cpu_dying(unsigned int cpu)
8426 {
8427 	struct rq *rq = cpu_rq(cpu);
8428 	struct rq_flags rf;
8429 
8430 	/* Handle pending wakeups and then migrate everything off */
8431 	sched_tick_stop(cpu);
8432 
8433 	rq_lock_irqsave(rq, &rf);
8434 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8435 		WARN(true, "Dying CPU not properly vacated!");
8436 		dump_rq_tasks(rq, KERN_WARNING);
8437 	}
8438 	rq_unlock_irqrestore(rq, &rf);
8439 
8440 	calc_load_migrate(rq);
8441 	update_max_interval();
8442 	hrtick_clear(rq);
8443 	sched_core_cpu_dying(cpu);
8444 	return 0;
8445 }
8446 #endif
8447 
8448 void __init sched_init_smp(void)
8449 {
8450 	sched_init_numa(NUMA_NO_NODE);
8451 
8452 	/*
8453 	 * There's no userspace yet to cause hotplug operations; hence all the
8454 	 * CPU masks are stable and all blatant races in the below code cannot
8455 	 * happen.
8456 	 */
8457 	sched_domains_mutex_lock();
8458 	sched_init_domains(cpu_active_mask);
8459 	sched_domains_mutex_unlock();
8460 
8461 	/* Move init over to a non-isolated CPU */
8462 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8463 		BUG();
8464 	current->flags &= ~PF_NO_SETAFFINITY;
8465 	sched_init_granularity();
8466 
8467 	init_sched_rt_class();
8468 	init_sched_dl_class();
8469 
8470 	sched_smp_initialized = true;
8471 }
8472 
8473 static int __init migration_init(void)
8474 {
8475 	sched_cpu_starting(smp_processor_id());
8476 	return 0;
8477 }
8478 early_initcall(migration_init);
8479 
8480 #else
8481 void __init sched_init_smp(void)
8482 {
8483 	sched_init_granularity();
8484 }
8485 #endif /* CONFIG_SMP */
8486 
8487 int in_sched_functions(unsigned long addr)
8488 {
8489 	return in_lock_functions(addr) ||
8490 		(addr >= (unsigned long)__sched_text_start
8491 		&& addr < (unsigned long)__sched_text_end);
8492 }
8493 
8494 #ifdef CONFIG_CGROUP_SCHED
8495 /*
8496  * Default task group.
8497  * Every task in system belongs to this group at bootup.
8498  */
8499 struct task_group root_task_group;
8500 LIST_HEAD(task_groups);
8501 
8502 /* Cacheline aligned slab cache for task_group */
8503 static struct kmem_cache *task_group_cache __ro_after_init;
8504 #endif
8505 
8506 void __init sched_init(void)
8507 {
8508 	unsigned long ptr = 0;
8509 	int i;
8510 
8511 	/* Make sure the linker didn't screw up */
8512 #ifdef CONFIG_SMP
8513 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8514 #endif
8515 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8516 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8517 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8518 #ifdef CONFIG_SCHED_CLASS_EXT
8519 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8520 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8521 #endif
8522 
8523 	wait_bit_init();
8524 
8525 #ifdef CONFIG_FAIR_GROUP_SCHED
8526 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8527 #endif
8528 #ifdef CONFIG_RT_GROUP_SCHED
8529 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8530 #endif
8531 	if (ptr) {
8532 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8533 
8534 #ifdef CONFIG_FAIR_GROUP_SCHED
8535 		root_task_group.se = (struct sched_entity **)ptr;
8536 		ptr += nr_cpu_ids * sizeof(void **);
8537 
8538 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8539 		ptr += nr_cpu_ids * sizeof(void **);
8540 
8541 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8542 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8543 #endif /* CONFIG_FAIR_GROUP_SCHED */
8544 #ifdef CONFIG_EXT_GROUP_SCHED
8545 		root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
8546 #endif /* CONFIG_EXT_GROUP_SCHED */
8547 #ifdef CONFIG_RT_GROUP_SCHED
8548 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8549 		ptr += nr_cpu_ids * sizeof(void **);
8550 
8551 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8552 		ptr += nr_cpu_ids * sizeof(void **);
8553 
8554 #endif /* CONFIG_RT_GROUP_SCHED */
8555 	}
8556 
8557 #ifdef CONFIG_SMP
8558 	init_defrootdomain();
8559 #endif
8560 
8561 #ifdef CONFIG_RT_GROUP_SCHED
8562 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8563 			global_rt_period(), global_rt_runtime());
8564 #endif /* CONFIG_RT_GROUP_SCHED */
8565 
8566 #ifdef CONFIG_CGROUP_SCHED
8567 	task_group_cache = KMEM_CACHE(task_group, 0);
8568 
8569 	list_add(&root_task_group.list, &task_groups);
8570 	INIT_LIST_HEAD(&root_task_group.children);
8571 	INIT_LIST_HEAD(&root_task_group.siblings);
8572 	autogroup_init(&init_task);
8573 #endif /* CONFIG_CGROUP_SCHED */
8574 
8575 	for_each_possible_cpu(i) {
8576 		struct rq *rq;
8577 
8578 		rq = cpu_rq(i);
8579 		raw_spin_lock_init(&rq->__lock);
8580 		rq->nr_running = 0;
8581 		rq->calc_load_active = 0;
8582 		rq->calc_load_update = jiffies + LOAD_FREQ;
8583 		init_cfs_rq(&rq->cfs);
8584 		init_rt_rq(&rq->rt);
8585 		init_dl_rq(&rq->dl);
8586 #ifdef CONFIG_FAIR_GROUP_SCHED
8587 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8588 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8589 		/*
8590 		 * How much CPU bandwidth does root_task_group get?
8591 		 *
8592 		 * In case of task-groups formed through the cgroup filesystem, it
8593 		 * gets 100% of the CPU resources in the system. This overall
8594 		 * system CPU resource is divided among the tasks of
8595 		 * root_task_group and its child task-groups in a fair manner,
8596 		 * based on each entity's (task or task-group's) weight
8597 		 * (se->load.weight).
8598 		 *
8599 		 * In other words, if root_task_group has 10 tasks of weight
8600 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8601 		 * then A0's share of the CPU resource is:
8602 		 *
8603 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8604 		 *
8605 		 * We achieve this by letting root_task_group's tasks sit
8606 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8607 		 */
8608 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8609 #endif /* CONFIG_FAIR_GROUP_SCHED */
8610 
8611 #ifdef CONFIG_RT_GROUP_SCHED
8612 		/*
8613 		 * This is required for init cpu because rt.c:__enable_runtime()
8614 		 * starts working after scheduler_running, which is not the case
8615 		 * yet.
8616 		 */
8617 		rq->rt.rt_runtime = global_rt_runtime();
8618 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8619 #endif
8620 #ifdef CONFIG_SMP
8621 		rq->sd = NULL;
8622 		rq->rd = NULL;
8623 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8624 		rq->balance_callback = &balance_push_callback;
8625 		rq->active_balance = 0;
8626 		rq->next_balance = jiffies;
8627 		rq->push_cpu = 0;
8628 		rq->cpu = i;
8629 		rq->online = 0;
8630 		rq->idle_stamp = 0;
8631 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8632 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8633 
8634 		INIT_LIST_HEAD(&rq->cfs_tasks);
8635 
8636 		rq_attach_root(rq, &def_root_domain);
8637 #ifdef CONFIG_NO_HZ_COMMON
8638 		rq->last_blocked_load_update_tick = jiffies;
8639 		atomic_set(&rq->nohz_flags, 0);
8640 
8641 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8642 #endif
8643 #ifdef CONFIG_HOTPLUG_CPU
8644 		rcuwait_init(&rq->hotplug_wait);
8645 #endif
8646 #endif /* CONFIG_SMP */
8647 		hrtick_rq_init(rq);
8648 		atomic_set(&rq->nr_iowait, 0);
8649 		fair_server_init(rq);
8650 
8651 #ifdef CONFIG_SCHED_CORE
8652 		rq->core = rq;
8653 		rq->core_pick = NULL;
8654 		rq->core_dl_server = NULL;
8655 		rq->core_enabled = 0;
8656 		rq->core_tree = RB_ROOT;
8657 		rq->core_forceidle_count = 0;
8658 		rq->core_forceidle_occupation = 0;
8659 		rq->core_forceidle_start = 0;
8660 
8661 		rq->core_cookie = 0UL;
8662 #endif
8663 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8664 	}
8665 
8666 	set_load_weight(&init_task, false);
8667 	init_task.se.slice = sysctl_sched_base_slice,
8668 
8669 	/*
8670 	 * The boot idle thread does lazy MMU switching as well:
8671 	 */
8672 	mmgrab_lazy_tlb(&init_mm);
8673 	enter_lazy_tlb(&init_mm, current);
8674 
8675 	/*
8676 	 * The idle task doesn't need the kthread struct to function, but it
8677 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8678 	 * if we want to avoid special-casing it in code that deals with per-CPU
8679 	 * kthreads.
8680 	 */
8681 	WARN_ON(!set_kthread_struct(current));
8682 
8683 	/*
8684 	 * Make us the idle thread. Technically, schedule() should not be
8685 	 * called from this thread, however somewhere below it might be,
8686 	 * but because we are the idle thread, we just pick up running again
8687 	 * when this runqueue becomes "idle".
8688 	 */
8689 	__sched_fork(0, current);
8690 	init_idle(current, smp_processor_id());
8691 
8692 	calc_load_update = jiffies + LOAD_FREQ;
8693 
8694 #ifdef CONFIG_SMP
8695 	idle_thread_set_boot_cpu();
8696 	balance_push_set(smp_processor_id(), false);
8697 #endif
8698 	init_sched_fair_class();
8699 	init_sched_ext_class();
8700 
8701 	psi_init();
8702 
8703 	init_uclamp();
8704 
8705 	preempt_dynamic_init();
8706 
8707 	scheduler_running = 1;
8708 }
8709 
8710 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8711 
8712 void __might_sleep(const char *file, int line)
8713 {
8714 	unsigned int state = get_current_state();
8715 	/*
8716 	 * Blocking primitives will set (and therefore destroy) current->state,
8717 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8718 	 * otherwise we will destroy state.
8719 	 */
8720 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8721 			"do not call blocking ops when !TASK_RUNNING; "
8722 			"state=%x set at [<%p>] %pS\n", state,
8723 			(void *)current->task_state_change,
8724 			(void *)current->task_state_change);
8725 
8726 	__might_resched(file, line, 0);
8727 }
8728 EXPORT_SYMBOL(__might_sleep);
8729 
8730 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8731 {
8732 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8733 		return;
8734 
8735 	if (preempt_count() == preempt_offset)
8736 		return;
8737 
8738 	pr_err("Preemption disabled at:");
8739 	print_ip_sym(KERN_ERR, ip);
8740 }
8741 
8742 static inline bool resched_offsets_ok(unsigned int offsets)
8743 {
8744 	unsigned int nested = preempt_count();
8745 
8746 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8747 
8748 	return nested == offsets;
8749 }
8750 
8751 void __might_resched(const char *file, int line, unsigned int offsets)
8752 {
8753 	/* Ratelimiting timestamp: */
8754 	static unsigned long prev_jiffy;
8755 
8756 	unsigned long preempt_disable_ip;
8757 
8758 	/* WARN_ON_ONCE() by default, no rate limit required: */
8759 	rcu_sleep_check();
8760 
8761 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8762 	     !is_idle_task(current) && !current->non_block_count) ||
8763 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8764 	    oops_in_progress)
8765 		return;
8766 
8767 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8768 		return;
8769 	prev_jiffy = jiffies;
8770 
8771 	/* Save this before calling printk(), since that will clobber it: */
8772 	preempt_disable_ip = get_preempt_disable_ip(current);
8773 
8774 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8775 	       file, line);
8776 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8777 	       in_atomic(), irqs_disabled(), current->non_block_count,
8778 	       current->pid, current->comm);
8779 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8780 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8781 
8782 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8783 		pr_err("RCU nest depth: %d, expected: %u\n",
8784 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8785 	}
8786 
8787 	if (task_stack_end_corrupted(current))
8788 		pr_emerg("Thread overran stack, or stack corrupted\n");
8789 
8790 	debug_show_held_locks(current);
8791 	if (irqs_disabled())
8792 		print_irqtrace_events(current);
8793 
8794 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8795 				 preempt_disable_ip);
8796 
8797 	dump_stack();
8798 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8799 }
8800 EXPORT_SYMBOL(__might_resched);
8801 
8802 void __cant_sleep(const char *file, int line, int preempt_offset)
8803 {
8804 	static unsigned long prev_jiffy;
8805 
8806 	if (irqs_disabled())
8807 		return;
8808 
8809 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8810 		return;
8811 
8812 	if (preempt_count() > preempt_offset)
8813 		return;
8814 
8815 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8816 		return;
8817 	prev_jiffy = jiffies;
8818 
8819 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8820 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8821 			in_atomic(), irqs_disabled(),
8822 			current->pid, current->comm);
8823 
8824 	debug_show_held_locks(current);
8825 	dump_stack();
8826 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8827 }
8828 EXPORT_SYMBOL_GPL(__cant_sleep);
8829 
8830 #ifdef CONFIG_SMP
8831 void __cant_migrate(const char *file, int line)
8832 {
8833 	static unsigned long prev_jiffy;
8834 
8835 	if (irqs_disabled())
8836 		return;
8837 
8838 	if (is_migration_disabled(current))
8839 		return;
8840 
8841 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8842 		return;
8843 
8844 	if (preempt_count() > 0)
8845 		return;
8846 
8847 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8848 		return;
8849 	prev_jiffy = jiffies;
8850 
8851 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8852 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8853 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8854 	       current->pid, current->comm);
8855 
8856 	debug_show_held_locks(current);
8857 	dump_stack();
8858 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8859 }
8860 EXPORT_SYMBOL_GPL(__cant_migrate);
8861 #endif
8862 #endif
8863 
8864 #ifdef CONFIG_MAGIC_SYSRQ
8865 void normalize_rt_tasks(void)
8866 {
8867 	struct task_struct *g, *p;
8868 	struct sched_attr attr = {
8869 		.sched_policy = SCHED_NORMAL,
8870 	};
8871 
8872 	read_lock(&tasklist_lock);
8873 	for_each_process_thread(g, p) {
8874 		/*
8875 		 * Only normalize user tasks:
8876 		 */
8877 		if (p->flags & PF_KTHREAD)
8878 			continue;
8879 
8880 		p->se.exec_start = 0;
8881 		schedstat_set(p->stats.wait_start,  0);
8882 		schedstat_set(p->stats.sleep_start, 0);
8883 		schedstat_set(p->stats.block_start, 0);
8884 
8885 		if (!rt_or_dl_task(p)) {
8886 			/*
8887 			 * Renice negative nice level userspace
8888 			 * tasks back to 0:
8889 			 */
8890 			if (task_nice(p) < 0)
8891 				set_user_nice(p, 0);
8892 			continue;
8893 		}
8894 
8895 		__sched_setscheduler(p, &attr, false, false);
8896 	}
8897 	read_unlock(&tasklist_lock);
8898 }
8899 
8900 #endif /* CONFIG_MAGIC_SYSRQ */
8901 
8902 #if defined(CONFIG_KGDB_KDB)
8903 /*
8904  * These functions are only useful for KDB.
8905  *
8906  * They can only be called when the whole system has been
8907  * stopped - every CPU needs to be quiescent, and no scheduling
8908  * activity can take place. Using them for anything else would
8909  * be a serious bug, and as a result, they aren't even visible
8910  * under any other configuration.
8911  */
8912 
8913 /**
8914  * curr_task - return the current task for a given CPU.
8915  * @cpu: the processor in question.
8916  *
8917  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8918  *
8919  * Return: The current task for @cpu.
8920  */
8921 struct task_struct *curr_task(int cpu)
8922 {
8923 	return cpu_curr(cpu);
8924 }
8925 
8926 #endif /* defined(CONFIG_KGDB_KDB) */
8927 
8928 #ifdef CONFIG_CGROUP_SCHED
8929 /* task_group_lock serializes the addition/removal of task groups */
8930 static DEFINE_SPINLOCK(task_group_lock);
8931 
8932 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8933 					    struct task_group *parent)
8934 {
8935 #ifdef CONFIG_UCLAMP_TASK_GROUP
8936 	enum uclamp_id clamp_id;
8937 
8938 	for_each_clamp_id(clamp_id) {
8939 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8940 			      uclamp_none(clamp_id), false);
8941 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8942 	}
8943 #endif
8944 }
8945 
8946 static void sched_free_group(struct task_group *tg)
8947 {
8948 	free_fair_sched_group(tg);
8949 	free_rt_sched_group(tg);
8950 	autogroup_free(tg);
8951 	kmem_cache_free(task_group_cache, tg);
8952 }
8953 
8954 static void sched_free_group_rcu(struct rcu_head *rcu)
8955 {
8956 	sched_free_group(container_of(rcu, struct task_group, rcu));
8957 }
8958 
8959 static void sched_unregister_group(struct task_group *tg)
8960 {
8961 	unregister_fair_sched_group(tg);
8962 	unregister_rt_sched_group(tg);
8963 	/*
8964 	 * We have to wait for yet another RCU grace period to expire, as
8965 	 * print_cfs_stats() might run concurrently.
8966 	 */
8967 	call_rcu(&tg->rcu, sched_free_group_rcu);
8968 }
8969 
8970 /* allocate runqueue etc for a new task group */
8971 struct task_group *sched_create_group(struct task_group *parent)
8972 {
8973 	struct task_group *tg;
8974 
8975 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8976 	if (!tg)
8977 		return ERR_PTR(-ENOMEM);
8978 
8979 	if (!alloc_fair_sched_group(tg, parent))
8980 		goto err;
8981 
8982 	if (!alloc_rt_sched_group(tg, parent))
8983 		goto err;
8984 
8985 	scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
8986 	alloc_uclamp_sched_group(tg, parent);
8987 
8988 	return tg;
8989 
8990 err:
8991 	sched_free_group(tg);
8992 	return ERR_PTR(-ENOMEM);
8993 }
8994 
8995 void sched_online_group(struct task_group *tg, struct task_group *parent)
8996 {
8997 	unsigned long flags;
8998 
8999 	spin_lock_irqsave(&task_group_lock, flags);
9000 	list_add_rcu(&tg->list, &task_groups);
9001 
9002 	/* Root should already exist: */
9003 	WARN_ON(!parent);
9004 
9005 	tg->parent = parent;
9006 	INIT_LIST_HEAD(&tg->children);
9007 	list_add_rcu(&tg->siblings, &parent->children);
9008 	spin_unlock_irqrestore(&task_group_lock, flags);
9009 
9010 	online_fair_sched_group(tg);
9011 }
9012 
9013 /* RCU callback to free various structures associated with a task group */
9014 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9015 {
9016 	/* Now it should be safe to free those cfs_rqs: */
9017 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
9018 }
9019 
9020 void sched_destroy_group(struct task_group *tg)
9021 {
9022 	/* Wait for possible concurrent references to cfs_rqs complete: */
9023 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
9024 }
9025 
9026 void sched_release_group(struct task_group *tg)
9027 {
9028 	unsigned long flags;
9029 
9030 	/*
9031 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9032 	 * sched_cfs_period_timer()).
9033 	 *
9034 	 * For this to be effective, we have to wait for all pending users of
9035 	 * this task group to leave their RCU critical section to ensure no new
9036 	 * user will see our dying task group any more. Specifically ensure
9037 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9038 	 *
9039 	 * We therefore defer calling unregister_fair_sched_group() to
9040 	 * sched_unregister_group() which is guarantied to get called only after the
9041 	 * current RCU grace period has expired.
9042 	 */
9043 	spin_lock_irqsave(&task_group_lock, flags);
9044 	list_del_rcu(&tg->list);
9045 	list_del_rcu(&tg->siblings);
9046 	spin_unlock_irqrestore(&task_group_lock, flags);
9047 }
9048 
9049 static void sched_change_group(struct task_struct *tsk)
9050 {
9051 	struct task_group *tg;
9052 
9053 	/*
9054 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9055 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9056 	 * to prevent lockdep warnings.
9057 	 */
9058 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9059 			  struct task_group, css);
9060 	tg = autogroup_task_group(tsk, tg);
9061 	tsk->sched_task_group = tg;
9062 
9063 #ifdef CONFIG_FAIR_GROUP_SCHED
9064 	if (tsk->sched_class->task_change_group)
9065 		tsk->sched_class->task_change_group(tsk);
9066 	else
9067 #endif
9068 		set_task_rq(tsk, task_cpu(tsk));
9069 }
9070 
9071 /*
9072  * Change task's runqueue when it moves between groups.
9073  *
9074  * The caller of this function should have put the task in its new group by
9075  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9076  * its new group.
9077  */
9078 void sched_move_task(struct task_struct *tsk, bool for_autogroup)
9079 {
9080 	int queued, running, queue_flags =
9081 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9082 	struct rq *rq;
9083 
9084 	CLASS(task_rq_lock, rq_guard)(tsk);
9085 	rq = rq_guard.rq;
9086 
9087 	update_rq_clock(rq);
9088 
9089 	running = task_current_donor(rq, tsk);
9090 	queued = task_on_rq_queued(tsk);
9091 
9092 	if (queued)
9093 		dequeue_task(rq, tsk, queue_flags);
9094 	if (running)
9095 		put_prev_task(rq, tsk);
9096 
9097 	sched_change_group(tsk);
9098 	if (!for_autogroup)
9099 		scx_cgroup_move_task(tsk);
9100 
9101 	if (queued)
9102 		enqueue_task(rq, tsk, queue_flags);
9103 	if (running) {
9104 		set_next_task(rq, tsk);
9105 		/*
9106 		 * After changing group, the running task may have joined a
9107 		 * throttled one but it's still the running task. Trigger a
9108 		 * resched to make sure that task can still run.
9109 		 */
9110 		resched_curr(rq);
9111 	}
9112 }
9113 
9114 static struct cgroup_subsys_state *
9115 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9116 {
9117 	struct task_group *parent = css_tg(parent_css);
9118 	struct task_group *tg;
9119 
9120 	if (!parent) {
9121 		/* This is early initialization for the top cgroup */
9122 		return &root_task_group.css;
9123 	}
9124 
9125 	tg = sched_create_group(parent);
9126 	if (IS_ERR(tg))
9127 		return ERR_PTR(-ENOMEM);
9128 
9129 	return &tg->css;
9130 }
9131 
9132 /* Expose task group only after completing cgroup initialization */
9133 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9134 {
9135 	struct task_group *tg = css_tg(css);
9136 	struct task_group *parent = css_tg(css->parent);
9137 	int ret;
9138 
9139 	ret = scx_tg_online(tg);
9140 	if (ret)
9141 		return ret;
9142 
9143 	if (parent)
9144 		sched_online_group(tg, parent);
9145 
9146 #ifdef CONFIG_UCLAMP_TASK_GROUP
9147 	/* Propagate the effective uclamp value for the new group */
9148 	guard(mutex)(&uclamp_mutex);
9149 	guard(rcu)();
9150 	cpu_util_update_eff(css);
9151 #endif
9152 
9153 	return 0;
9154 }
9155 
9156 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9157 {
9158 	struct task_group *tg = css_tg(css);
9159 
9160 	scx_tg_offline(tg);
9161 }
9162 
9163 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9164 {
9165 	struct task_group *tg = css_tg(css);
9166 
9167 	sched_release_group(tg);
9168 }
9169 
9170 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9171 {
9172 	struct task_group *tg = css_tg(css);
9173 
9174 	/*
9175 	 * Relies on the RCU grace period between css_released() and this.
9176 	 */
9177 	sched_unregister_group(tg);
9178 }
9179 
9180 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9181 {
9182 #ifdef CONFIG_RT_GROUP_SCHED
9183 	struct task_struct *task;
9184 	struct cgroup_subsys_state *css;
9185 
9186 	cgroup_taskset_for_each(task, css, tset) {
9187 		if (!sched_rt_can_attach(css_tg(css), task))
9188 			return -EINVAL;
9189 	}
9190 #endif
9191 	return scx_cgroup_can_attach(tset);
9192 }
9193 
9194 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9195 {
9196 	struct task_struct *task;
9197 	struct cgroup_subsys_state *css;
9198 
9199 	cgroup_taskset_for_each(task, css, tset)
9200 		sched_move_task(task, false);
9201 
9202 	scx_cgroup_finish_attach();
9203 }
9204 
9205 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9206 {
9207 	scx_cgroup_cancel_attach(tset);
9208 }
9209 
9210 #ifdef CONFIG_UCLAMP_TASK_GROUP
9211 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9212 {
9213 	struct cgroup_subsys_state *top_css = css;
9214 	struct uclamp_se *uc_parent = NULL;
9215 	struct uclamp_se *uc_se = NULL;
9216 	unsigned int eff[UCLAMP_CNT];
9217 	enum uclamp_id clamp_id;
9218 	unsigned int clamps;
9219 
9220 	lockdep_assert_held(&uclamp_mutex);
9221 	WARN_ON_ONCE(!rcu_read_lock_held());
9222 
9223 	css_for_each_descendant_pre(css, top_css) {
9224 		uc_parent = css_tg(css)->parent
9225 			? css_tg(css)->parent->uclamp : NULL;
9226 
9227 		for_each_clamp_id(clamp_id) {
9228 			/* Assume effective clamps matches requested clamps */
9229 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9230 			/* Cap effective clamps with parent's effective clamps */
9231 			if (uc_parent &&
9232 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9233 				eff[clamp_id] = uc_parent[clamp_id].value;
9234 			}
9235 		}
9236 		/* Ensure protection is always capped by limit */
9237 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9238 
9239 		/* Propagate most restrictive effective clamps */
9240 		clamps = 0x0;
9241 		uc_se = css_tg(css)->uclamp;
9242 		for_each_clamp_id(clamp_id) {
9243 			if (eff[clamp_id] == uc_se[clamp_id].value)
9244 				continue;
9245 			uc_se[clamp_id].value = eff[clamp_id];
9246 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9247 			clamps |= (0x1 << clamp_id);
9248 		}
9249 		if (!clamps) {
9250 			css = css_rightmost_descendant(css);
9251 			continue;
9252 		}
9253 
9254 		/* Immediately update descendants RUNNABLE tasks */
9255 		uclamp_update_active_tasks(css);
9256 	}
9257 }
9258 
9259 /*
9260  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9261  * C expression. Since there is no way to convert a macro argument (N) into a
9262  * character constant, use two levels of macros.
9263  */
9264 #define _POW10(exp) ((unsigned int)1e##exp)
9265 #define POW10(exp) _POW10(exp)
9266 
9267 struct uclamp_request {
9268 #define UCLAMP_PERCENT_SHIFT	2
9269 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9270 	s64 percent;
9271 	u64 util;
9272 	int ret;
9273 };
9274 
9275 static inline struct uclamp_request
9276 capacity_from_percent(char *buf)
9277 {
9278 	struct uclamp_request req = {
9279 		.percent = UCLAMP_PERCENT_SCALE,
9280 		.util = SCHED_CAPACITY_SCALE,
9281 		.ret = 0,
9282 	};
9283 
9284 	buf = strim(buf);
9285 	if (strcmp(buf, "max")) {
9286 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9287 					     &req.percent);
9288 		if (req.ret)
9289 			return req;
9290 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9291 			req.ret = -ERANGE;
9292 			return req;
9293 		}
9294 
9295 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9296 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9297 	}
9298 
9299 	return req;
9300 }
9301 
9302 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9303 				size_t nbytes, loff_t off,
9304 				enum uclamp_id clamp_id)
9305 {
9306 	struct uclamp_request req;
9307 	struct task_group *tg;
9308 
9309 	req = capacity_from_percent(buf);
9310 	if (req.ret)
9311 		return req.ret;
9312 
9313 	sched_uclamp_enable();
9314 
9315 	guard(mutex)(&uclamp_mutex);
9316 	guard(rcu)();
9317 
9318 	tg = css_tg(of_css(of));
9319 	if (tg->uclamp_req[clamp_id].value != req.util)
9320 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9321 
9322 	/*
9323 	 * Because of not recoverable conversion rounding we keep track of the
9324 	 * exact requested value
9325 	 */
9326 	tg->uclamp_pct[clamp_id] = req.percent;
9327 
9328 	/* Update effective clamps to track the most restrictive value */
9329 	cpu_util_update_eff(of_css(of));
9330 
9331 	return nbytes;
9332 }
9333 
9334 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9335 				    char *buf, size_t nbytes,
9336 				    loff_t off)
9337 {
9338 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9339 }
9340 
9341 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9342 				    char *buf, size_t nbytes,
9343 				    loff_t off)
9344 {
9345 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9346 }
9347 
9348 static inline void cpu_uclamp_print(struct seq_file *sf,
9349 				    enum uclamp_id clamp_id)
9350 {
9351 	struct task_group *tg;
9352 	u64 util_clamp;
9353 	u64 percent;
9354 	u32 rem;
9355 
9356 	scoped_guard (rcu) {
9357 		tg = css_tg(seq_css(sf));
9358 		util_clamp = tg->uclamp_req[clamp_id].value;
9359 	}
9360 
9361 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9362 		seq_puts(sf, "max\n");
9363 		return;
9364 	}
9365 
9366 	percent = tg->uclamp_pct[clamp_id];
9367 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9368 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9369 }
9370 
9371 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9372 {
9373 	cpu_uclamp_print(sf, UCLAMP_MIN);
9374 	return 0;
9375 }
9376 
9377 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9378 {
9379 	cpu_uclamp_print(sf, UCLAMP_MAX);
9380 	return 0;
9381 }
9382 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9383 
9384 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9385 static unsigned long tg_weight(struct task_group *tg)
9386 {
9387 #ifdef CONFIG_FAIR_GROUP_SCHED
9388 	return scale_load_down(tg->shares);
9389 #else
9390 	return sched_weight_from_cgroup(tg->scx_weight);
9391 #endif
9392 }
9393 
9394 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9395 				struct cftype *cftype, u64 shareval)
9396 {
9397 	int ret;
9398 
9399 	if (shareval > scale_load_down(ULONG_MAX))
9400 		shareval = MAX_SHARES;
9401 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9402 	if (!ret)
9403 		scx_group_set_weight(css_tg(css),
9404 				     sched_weight_to_cgroup(shareval));
9405 	return ret;
9406 }
9407 
9408 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9409 			       struct cftype *cft)
9410 {
9411 	return tg_weight(css_tg(css));
9412 }
9413 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9414 
9415 #ifdef CONFIG_CFS_BANDWIDTH
9416 static DEFINE_MUTEX(cfs_constraints_mutex);
9417 
9418 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9419 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9420 /* More than 203 days if BW_SHIFT equals 20. */
9421 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9422 
9423 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9424 
9425 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9426 				u64 burst)
9427 {
9428 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9429 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9430 
9431 	if (tg == &root_task_group)
9432 		return -EINVAL;
9433 
9434 	/*
9435 	 * Ensure we have at some amount of bandwidth every period.  This is
9436 	 * to prevent reaching a state of large arrears when throttled via
9437 	 * entity_tick() resulting in prolonged exit starvation.
9438 	 */
9439 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9440 		return -EINVAL;
9441 
9442 	/*
9443 	 * Likewise, bound things on the other side by preventing insane quota
9444 	 * periods.  This also allows us to normalize in computing quota
9445 	 * feasibility.
9446 	 */
9447 	if (period > max_cfs_quota_period)
9448 		return -EINVAL;
9449 
9450 	/*
9451 	 * Bound quota to defend quota against overflow during bandwidth shift.
9452 	 */
9453 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9454 		return -EINVAL;
9455 
9456 	if (quota != RUNTIME_INF && (burst > quota ||
9457 				     burst + quota > max_cfs_runtime))
9458 		return -EINVAL;
9459 
9460 	/*
9461 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9462 	 * unthrottle_offline_cfs_rqs().
9463 	 */
9464 	guard(cpus_read_lock)();
9465 	guard(mutex)(&cfs_constraints_mutex);
9466 
9467 	ret = __cfs_schedulable(tg, period, quota);
9468 	if (ret)
9469 		return ret;
9470 
9471 	runtime_enabled = quota != RUNTIME_INF;
9472 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9473 	/*
9474 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9475 	 * before making related changes, and on->off must occur afterwards
9476 	 */
9477 	if (runtime_enabled && !runtime_was_enabled)
9478 		cfs_bandwidth_usage_inc();
9479 
9480 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9481 		cfs_b->period = ns_to_ktime(period);
9482 		cfs_b->quota = quota;
9483 		cfs_b->burst = burst;
9484 
9485 		__refill_cfs_bandwidth_runtime(cfs_b);
9486 
9487 		/*
9488 		 * Restart the period timer (if active) to handle new
9489 		 * period expiry:
9490 		 */
9491 		if (runtime_enabled)
9492 			start_cfs_bandwidth(cfs_b);
9493 	}
9494 
9495 	for_each_online_cpu(i) {
9496 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9497 		struct rq *rq = cfs_rq->rq;
9498 
9499 		guard(rq_lock_irq)(rq);
9500 		cfs_rq->runtime_enabled = runtime_enabled;
9501 		cfs_rq->runtime_remaining = 0;
9502 
9503 		if (cfs_rq->throttled)
9504 			unthrottle_cfs_rq(cfs_rq);
9505 	}
9506 
9507 	if (runtime_was_enabled && !runtime_enabled)
9508 		cfs_bandwidth_usage_dec();
9509 
9510 	return 0;
9511 }
9512 
9513 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9514 {
9515 	u64 quota, period, burst;
9516 
9517 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9518 	burst = tg->cfs_bandwidth.burst;
9519 	if (cfs_quota_us < 0)
9520 		quota = RUNTIME_INF;
9521 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9522 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9523 	else
9524 		return -EINVAL;
9525 
9526 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9527 }
9528 
9529 static long tg_get_cfs_quota(struct task_group *tg)
9530 {
9531 	u64 quota_us;
9532 
9533 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9534 		return -1;
9535 
9536 	quota_us = tg->cfs_bandwidth.quota;
9537 	do_div(quota_us, NSEC_PER_USEC);
9538 
9539 	return quota_us;
9540 }
9541 
9542 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9543 {
9544 	u64 quota, period, burst;
9545 
9546 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9547 		return -EINVAL;
9548 
9549 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9550 	quota = tg->cfs_bandwidth.quota;
9551 	burst = tg->cfs_bandwidth.burst;
9552 
9553 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9554 }
9555 
9556 static long tg_get_cfs_period(struct task_group *tg)
9557 {
9558 	u64 cfs_period_us;
9559 
9560 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9561 	do_div(cfs_period_us, NSEC_PER_USEC);
9562 
9563 	return cfs_period_us;
9564 }
9565 
9566 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9567 {
9568 	u64 quota, period, burst;
9569 
9570 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9571 		return -EINVAL;
9572 
9573 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9574 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9575 	quota = tg->cfs_bandwidth.quota;
9576 
9577 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9578 }
9579 
9580 static long tg_get_cfs_burst(struct task_group *tg)
9581 {
9582 	u64 burst_us;
9583 
9584 	burst_us = tg->cfs_bandwidth.burst;
9585 	do_div(burst_us, NSEC_PER_USEC);
9586 
9587 	return burst_us;
9588 }
9589 
9590 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9591 				  struct cftype *cft)
9592 {
9593 	return tg_get_cfs_quota(css_tg(css));
9594 }
9595 
9596 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9597 				   struct cftype *cftype, s64 cfs_quota_us)
9598 {
9599 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9600 }
9601 
9602 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9603 				   struct cftype *cft)
9604 {
9605 	return tg_get_cfs_period(css_tg(css));
9606 }
9607 
9608 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9609 				    struct cftype *cftype, u64 cfs_period_us)
9610 {
9611 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9612 }
9613 
9614 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9615 				  struct cftype *cft)
9616 {
9617 	return tg_get_cfs_burst(css_tg(css));
9618 }
9619 
9620 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9621 				   struct cftype *cftype, u64 cfs_burst_us)
9622 {
9623 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9624 }
9625 
9626 struct cfs_schedulable_data {
9627 	struct task_group *tg;
9628 	u64 period, quota;
9629 };
9630 
9631 /*
9632  * normalize group quota/period to be quota/max_period
9633  * note: units are usecs
9634  */
9635 static u64 normalize_cfs_quota(struct task_group *tg,
9636 			       struct cfs_schedulable_data *d)
9637 {
9638 	u64 quota, period;
9639 
9640 	if (tg == d->tg) {
9641 		period = d->period;
9642 		quota = d->quota;
9643 	} else {
9644 		period = tg_get_cfs_period(tg);
9645 		quota = tg_get_cfs_quota(tg);
9646 	}
9647 
9648 	/* note: these should typically be equivalent */
9649 	if (quota == RUNTIME_INF || quota == -1)
9650 		return RUNTIME_INF;
9651 
9652 	return to_ratio(period, quota);
9653 }
9654 
9655 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9656 {
9657 	struct cfs_schedulable_data *d = data;
9658 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9659 	s64 quota = 0, parent_quota = -1;
9660 
9661 	if (!tg->parent) {
9662 		quota = RUNTIME_INF;
9663 	} else {
9664 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9665 
9666 		quota = normalize_cfs_quota(tg, d);
9667 		parent_quota = parent_b->hierarchical_quota;
9668 
9669 		/*
9670 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9671 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9672 		 * inherit when no limit is set. In both cases this is used
9673 		 * by the scheduler to determine if a given CFS task has a
9674 		 * bandwidth constraint at some higher level.
9675 		 */
9676 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9677 			if (quota == RUNTIME_INF)
9678 				quota = parent_quota;
9679 			else if (parent_quota != RUNTIME_INF)
9680 				quota = min(quota, parent_quota);
9681 		} else {
9682 			if (quota == RUNTIME_INF)
9683 				quota = parent_quota;
9684 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9685 				return -EINVAL;
9686 		}
9687 	}
9688 	cfs_b->hierarchical_quota = quota;
9689 
9690 	return 0;
9691 }
9692 
9693 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9694 {
9695 	struct cfs_schedulable_data data = {
9696 		.tg = tg,
9697 		.period = period,
9698 		.quota = quota,
9699 	};
9700 
9701 	if (quota != RUNTIME_INF) {
9702 		do_div(data.period, NSEC_PER_USEC);
9703 		do_div(data.quota, NSEC_PER_USEC);
9704 	}
9705 
9706 	guard(rcu)();
9707 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9708 }
9709 
9710 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9711 {
9712 	struct task_group *tg = css_tg(seq_css(sf));
9713 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9714 
9715 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9716 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9717 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9718 
9719 	if (schedstat_enabled() && tg != &root_task_group) {
9720 		struct sched_statistics *stats;
9721 		u64 ws = 0;
9722 		int i;
9723 
9724 		for_each_possible_cpu(i) {
9725 			stats = __schedstats_from_se(tg->se[i]);
9726 			ws += schedstat_val(stats->wait_sum);
9727 		}
9728 
9729 		seq_printf(sf, "wait_sum %llu\n", ws);
9730 	}
9731 
9732 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9733 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9734 
9735 	return 0;
9736 }
9737 
9738 static u64 throttled_time_self(struct task_group *tg)
9739 {
9740 	int i;
9741 	u64 total = 0;
9742 
9743 	for_each_possible_cpu(i) {
9744 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9745 	}
9746 
9747 	return total;
9748 }
9749 
9750 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9751 {
9752 	struct task_group *tg = css_tg(seq_css(sf));
9753 
9754 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9755 
9756 	return 0;
9757 }
9758 #endif /* CONFIG_CFS_BANDWIDTH */
9759 
9760 #ifdef CONFIG_RT_GROUP_SCHED
9761 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9762 				struct cftype *cft, s64 val)
9763 {
9764 	return sched_group_set_rt_runtime(css_tg(css), val);
9765 }
9766 
9767 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9768 			       struct cftype *cft)
9769 {
9770 	return sched_group_rt_runtime(css_tg(css));
9771 }
9772 
9773 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9774 				    struct cftype *cftype, u64 rt_period_us)
9775 {
9776 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9777 }
9778 
9779 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9780 				   struct cftype *cft)
9781 {
9782 	return sched_group_rt_period(css_tg(css));
9783 }
9784 #endif /* CONFIG_RT_GROUP_SCHED */
9785 
9786 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9787 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9788 			       struct cftype *cft)
9789 {
9790 	return css_tg(css)->idle;
9791 }
9792 
9793 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9794 				struct cftype *cft, s64 idle)
9795 {
9796 	int ret;
9797 
9798 	ret = sched_group_set_idle(css_tg(css), idle);
9799 	if (!ret)
9800 		scx_group_set_idle(css_tg(css), idle);
9801 	return ret;
9802 }
9803 #endif
9804 
9805 static struct cftype cpu_legacy_files[] = {
9806 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9807 	{
9808 		.name = "shares",
9809 		.read_u64 = cpu_shares_read_u64,
9810 		.write_u64 = cpu_shares_write_u64,
9811 	},
9812 	{
9813 		.name = "idle",
9814 		.read_s64 = cpu_idle_read_s64,
9815 		.write_s64 = cpu_idle_write_s64,
9816 	},
9817 #endif
9818 #ifdef CONFIG_CFS_BANDWIDTH
9819 	{
9820 		.name = "cfs_quota_us",
9821 		.read_s64 = cpu_cfs_quota_read_s64,
9822 		.write_s64 = cpu_cfs_quota_write_s64,
9823 	},
9824 	{
9825 		.name = "cfs_period_us",
9826 		.read_u64 = cpu_cfs_period_read_u64,
9827 		.write_u64 = cpu_cfs_period_write_u64,
9828 	},
9829 	{
9830 		.name = "cfs_burst_us",
9831 		.read_u64 = cpu_cfs_burst_read_u64,
9832 		.write_u64 = cpu_cfs_burst_write_u64,
9833 	},
9834 	{
9835 		.name = "stat",
9836 		.seq_show = cpu_cfs_stat_show,
9837 	},
9838 	{
9839 		.name = "stat.local",
9840 		.seq_show = cpu_cfs_local_stat_show,
9841 	},
9842 #endif
9843 #ifdef CONFIG_RT_GROUP_SCHED
9844 	{
9845 		.name = "rt_runtime_us",
9846 		.read_s64 = cpu_rt_runtime_read,
9847 		.write_s64 = cpu_rt_runtime_write,
9848 	},
9849 	{
9850 		.name = "rt_period_us",
9851 		.read_u64 = cpu_rt_period_read_uint,
9852 		.write_u64 = cpu_rt_period_write_uint,
9853 	},
9854 #endif
9855 #ifdef CONFIG_UCLAMP_TASK_GROUP
9856 	{
9857 		.name = "uclamp.min",
9858 		.flags = CFTYPE_NOT_ON_ROOT,
9859 		.seq_show = cpu_uclamp_min_show,
9860 		.write = cpu_uclamp_min_write,
9861 	},
9862 	{
9863 		.name = "uclamp.max",
9864 		.flags = CFTYPE_NOT_ON_ROOT,
9865 		.seq_show = cpu_uclamp_max_show,
9866 		.write = cpu_uclamp_max_write,
9867 	},
9868 #endif
9869 	{ }	/* Terminate */
9870 };
9871 
9872 static int cpu_extra_stat_show(struct seq_file *sf,
9873 			       struct cgroup_subsys_state *css)
9874 {
9875 #ifdef CONFIG_CFS_BANDWIDTH
9876 	{
9877 		struct task_group *tg = css_tg(css);
9878 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9879 		u64 throttled_usec, burst_usec;
9880 
9881 		throttled_usec = cfs_b->throttled_time;
9882 		do_div(throttled_usec, NSEC_PER_USEC);
9883 		burst_usec = cfs_b->burst_time;
9884 		do_div(burst_usec, NSEC_PER_USEC);
9885 
9886 		seq_printf(sf, "nr_periods %d\n"
9887 			   "nr_throttled %d\n"
9888 			   "throttled_usec %llu\n"
9889 			   "nr_bursts %d\n"
9890 			   "burst_usec %llu\n",
9891 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9892 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9893 	}
9894 #endif
9895 	return 0;
9896 }
9897 
9898 static int cpu_local_stat_show(struct seq_file *sf,
9899 			       struct cgroup_subsys_state *css)
9900 {
9901 #ifdef CONFIG_CFS_BANDWIDTH
9902 	{
9903 		struct task_group *tg = css_tg(css);
9904 		u64 throttled_self_usec;
9905 
9906 		throttled_self_usec = throttled_time_self(tg);
9907 		do_div(throttled_self_usec, NSEC_PER_USEC);
9908 
9909 		seq_printf(sf, "throttled_usec %llu\n",
9910 			   throttled_self_usec);
9911 	}
9912 #endif
9913 	return 0;
9914 }
9915 
9916 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9917 
9918 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9919 			       struct cftype *cft)
9920 {
9921 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9922 }
9923 
9924 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9925 				struct cftype *cft, u64 cgrp_weight)
9926 {
9927 	unsigned long weight;
9928 	int ret;
9929 
9930 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9931 		return -ERANGE;
9932 
9933 	weight = sched_weight_from_cgroup(cgrp_weight);
9934 
9935 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9936 	if (!ret)
9937 		scx_group_set_weight(css_tg(css), cgrp_weight);
9938 	return ret;
9939 }
9940 
9941 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9942 				    struct cftype *cft)
9943 {
9944 	unsigned long weight = tg_weight(css_tg(css));
9945 	int last_delta = INT_MAX;
9946 	int prio, delta;
9947 
9948 	/* find the closest nice value to the current weight */
9949 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9950 		delta = abs(sched_prio_to_weight[prio] - weight);
9951 		if (delta >= last_delta)
9952 			break;
9953 		last_delta = delta;
9954 	}
9955 
9956 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9957 }
9958 
9959 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9960 				     struct cftype *cft, s64 nice)
9961 {
9962 	unsigned long weight;
9963 	int idx, ret;
9964 
9965 	if (nice < MIN_NICE || nice > MAX_NICE)
9966 		return -ERANGE;
9967 
9968 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9969 	idx = array_index_nospec(idx, 40);
9970 	weight = sched_prio_to_weight[idx];
9971 
9972 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9973 	if (!ret)
9974 		scx_group_set_weight(css_tg(css),
9975 				     sched_weight_to_cgroup(weight));
9976 	return ret;
9977 }
9978 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9979 
9980 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9981 						  long period, long quota)
9982 {
9983 	if (quota < 0)
9984 		seq_puts(sf, "max");
9985 	else
9986 		seq_printf(sf, "%ld", quota);
9987 
9988 	seq_printf(sf, " %ld\n", period);
9989 }
9990 
9991 /* caller should put the current value in *@periodp before calling */
9992 static int __maybe_unused cpu_period_quota_parse(char *buf,
9993 						 u64 *periodp, u64 *quotap)
9994 {
9995 	char tok[21];	/* U64_MAX */
9996 
9997 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9998 		return -EINVAL;
9999 
10000 	*periodp *= NSEC_PER_USEC;
10001 
10002 	if (sscanf(tok, "%llu", quotap))
10003 		*quotap *= NSEC_PER_USEC;
10004 	else if (!strcmp(tok, "max"))
10005 		*quotap = RUNTIME_INF;
10006 	else
10007 		return -EINVAL;
10008 
10009 	return 0;
10010 }
10011 
10012 #ifdef CONFIG_CFS_BANDWIDTH
10013 static int cpu_max_show(struct seq_file *sf, void *v)
10014 {
10015 	struct task_group *tg = css_tg(seq_css(sf));
10016 
10017 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10018 	return 0;
10019 }
10020 
10021 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10022 			     char *buf, size_t nbytes, loff_t off)
10023 {
10024 	struct task_group *tg = css_tg(of_css(of));
10025 	u64 period = tg_get_cfs_period(tg);
10026 	u64 burst = tg->cfs_bandwidth.burst;
10027 	u64 quota;
10028 	int ret;
10029 
10030 	ret = cpu_period_quota_parse(buf, &period, &quota);
10031 	if (!ret)
10032 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10033 	return ret ?: nbytes;
10034 }
10035 #endif
10036 
10037 static struct cftype cpu_files[] = {
10038 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10039 	{
10040 		.name = "weight",
10041 		.flags = CFTYPE_NOT_ON_ROOT,
10042 		.read_u64 = cpu_weight_read_u64,
10043 		.write_u64 = cpu_weight_write_u64,
10044 	},
10045 	{
10046 		.name = "weight.nice",
10047 		.flags = CFTYPE_NOT_ON_ROOT,
10048 		.read_s64 = cpu_weight_nice_read_s64,
10049 		.write_s64 = cpu_weight_nice_write_s64,
10050 	},
10051 	{
10052 		.name = "idle",
10053 		.flags = CFTYPE_NOT_ON_ROOT,
10054 		.read_s64 = cpu_idle_read_s64,
10055 		.write_s64 = cpu_idle_write_s64,
10056 	},
10057 #endif
10058 #ifdef CONFIG_CFS_BANDWIDTH
10059 	{
10060 		.name = "max",
10061 		.flags = CFTYPE_NOT_ON_ROOT,
10062 		.seq_show = cpu_max_show,
10063 		.write = cpu_max_write,
10064 	},
10065 	{
10066 		.name = "max.burst",
10067 		.flags = CFTYPE_NOT_ON_ROOT,
10068 		.read_u64 = cpu_cfs_burst_read_u64,
10069 		.write_u64 = cpu_cfs_burst_write_u64,
10070 	},
10071 #endif
10072 #ifdef CONFIG_UCLAMP_TASK_GROUP
10073 	{
10074 		.name = "uclamp.min",
10075 		.flags = CFTYPE_NOT_ON_ROOT,
10076 		.seq_show = cpu_uclamp_min_show,
10077 		.write = cpu_uclamp_min_write,
10078 	},
10079 	{
10080 		.name = "uclamp.max",
10081 		.flags = CFTYPE_NOT_ON_ROOT,
10082 		.seq_show = cpu_uclamp_max_show,
10083 		.write = cpu_uclamp_max_write,
10084 	},
10085 #endif
10086 	{ }	/* terminate */
10087 };
10088 
10089 struct cgroup_subsys cpu_cgrp_subsys = {
10090 	.css_alloc	= cpu_cgroup_css_alloc,
10091 	.css_online	= cpu_cgroup_css_online,
10092 	.css_offline	= cpu_cgroup_css_offline,
10093 	.css_released	= cpu_cgroup_css_released,
10094 	.css_free	= cpu_cgroup_css_free,
10095 	.css_extra_stat_show = cpu_extra_stat_show,
10096 	.css_local_stat_show = cpu_local_stat_show,
10097 	.can_attach	= cpu_cgroup_can_attach,
10098 	.attach		= cpu_cgroup_attach,
10099 	.cancel_attach	= cpu_cgroup_cancel_attach,
10100 	.legacy_cftypes	= cpu_legacy_files,
10101 	.dfl_cftypes	= cpu_files,
10102 	.early_init	= true,
10103 	.threaded	= true,
10104 };
10105 
10106 #endif	/* CONFIG_CGROUP_SCHED */
10107 
10108 void dump_cpu_task(int cpu)
10109 {
10110 	if (in_hardirq() && cpu == smp_processor_id()) {
10111 		struct pt_regs *regs;
10112 
10113 		regs = get_irq_regs();
10114 		if (regs) {
10115 			show_regs(regs);
10116 			return;
10117 		}
10118 	}
10119 
10120 	if (trigger_single_cpu_backtrace(cpu))
10121 		return;
10122 
10123 	pr_info("Task dump for CPU %d:\n", cpu);
10124 	sched_show_task(cpu_curr(cpu));
10125 }
10126 
10127 /*
10128  * Nice levels are multiplicative, with a gentle 10% change for every
10129  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10130  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10131  * that remained on nice 0.
10132  *
10133  * The "10% effect" is relative and cumulative: from _any_ nice level,
10134  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10135  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10136  * If a task goes up by ~10% and another task goes down by ~10% then
10137  * the relative distance between them is ~25%.)
10138  */
10139 const int sched_prio_to_weight[40] = {
10140  /* -20 */     88761,     71755,     56483,     46273,     36291,
10141  /* -15 */     29154,     23254,     18705,     14949,     11916,
10142  /* -10 */      9548,      7620,      6100,      4904,      3906,
10143  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10144  /*   0 */      1024,       820,       655,       526,       423,
10145  /*   5 */       335,       272,       215,       172,       137,
10146  /*  10 */       110,        87,        70,        56,        45,
10147  /*  15 */        36,        29,        23,        18,        15,
10148 };
10149 
10150 /*
10151  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10152  *
10153  * In cases where the weight does not change often, we can use the
10154  * pre-calculated inverse to speed up arithmetics by turning divisions
10155  * into multiplications:
10156  */
10157 const u32 sched_prio_to_wmult[40] = {
10158  /* -20 */     48388,     59856,     76040,     92818,    118348,
10159  /* -15 */    147320,    184698,    229616,    287308,    360437,
10160  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10161  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10162  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10163  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10164  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10165  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10166 };
10167 
10168 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10169 {
10170         trace_sched_update_nr_running_tp(rq, count);
10171 }
10172 
10173 #ifdef CONFIG_SCHED_MM_CID
10174 
10175 /*
10176  * @cid_lock: Guarantee forward-progress of cid allocation.
10177  *
10178  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10179  * is only used when contention is detected by the lock-free allocation so
10180  * forward progress can be guaranteed.
10181  */
10182 DEFINE_RAW_SPINLOCK(cid_lock);
10183 
10184 /*
10185  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10186  *
10187  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10188  * detected, it is set to 1 to ensure that all newly coming allocations are
10189  * serialized by @cid_lock until the allocation which detected contention
10190  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10191  * of a cid allocation.
10192  */
10193 int use_cid_lock;
10194 
10195 /*
10196  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10197  * concurrently with respect to the execution of the source runqueue context
10198  * switch.
10199  *
10200  * There is one basic properties we want to guarantee here:
10201  *
10202  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10203  * used by a task. That would lead to concurrent allocation of the cid and
10204  * userspace corruption.
10205  *
10206  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10207  * that a pair of loads observe at least one of a pair of stores, which can be
10208  * shown as:
10209  *
10210  *      X = Y = 0
10211  *
10212  *      w[X]=1          w[Y]=1
10213  *      MB              MB
10214  *      r[Y]=y          r[X]=x
10215  *
10216  * Which guarantees that x==0 && y==0 is impossible. But rather than using
10217  * values 0 and 1, this algorithm cares about specific state transitions of the
10218  * runqueue current task (as updated by the scheduler context switch), and the
10219  * per-mm/cpu cid value.
10220  *
10221  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10222  * task->mm != mm for the rest of the discussion. There are two scheduler state
10223  * transitions on context switch we care about:
10224  *
10225  * (TSA) Store to rq->curr with transition from (N) to (Y)
10226  *
10227  * (TSB) Store to rq->curr with transition from (Y) to (N)
10228  *
10229  * On the remote-clear side, there is one transition we care about:
10230  *
10231  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10232  *
10233  * There is also a transition to UNSET state which can be performed from all
10234  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10235  * guarantees that only a single thread will succeed:
10236  *
10237  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10238  *
10239  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10240  * when a thread is actively using the cid (property (1)).
10241  *
10242  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10243  *
10244  * Scenario A) (TSA)+(TMA) (from next task perspective)
10245  *
10246  * CPU0                                      CPU1
10247  *
10248  * Context switch CS-1                       Remote-clear
10249  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10250  *                                             (implied barrier after cmpxchg)
10251  *   - switch_mm_cid()
10252  *     - memory barrier (see switch_mm_cid()
10253  *       comment explaining how this barrier
10254  *       is combined with other scheduler
10255  *       barriers)
10256  *     - mm_cid_get (next)
10257  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10258  *
10259  * This Dekker ensures that either task (Y) is observed by the
10260  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10261  * observed.
10262  *
10263  * If task (Y) store is observed by rcu_dereference(), it means that there is
10264  * still an active task on the cpu. Remote-clear will therefore not transition
10265  * to UNSET, which fulfills property (1).
10266  *
10267  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10268  * it will move its state to UNSET, which clears the percpu cid perhaps
10269  * uselessly (which is not an issue for correctness). Because task (Y) is not
10270  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10271  * state to UNSET is done with a cmpxchg expecting that the old state has the
10272  * LAZY flag set, only one thread will successfully UNSET.
10273  *
10274  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10275  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10276  * CPU1 will observe task (Y) and do nothing more, which is fine.
10277  *
10278  * What we are effectively preventing with this Dekker is a scenario where
10279  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10280  * because this would UNSET a cid which is actively used.
10281  */
10282 
10283 void sched_mm_cid_migrate_from(struct task_struct *t)
10284 {
10285 	t->migrate_from_cpu = task_cpu(t);
10286 }
10287 
10288 static
10289 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10290 					  struct task_struct *t,
10291 					  struct mm_cid *src_pcpu_cid)
10292 {
10293 	struct mm_struct *mm = t->mm;
10294 	struct task_struct *src_task;
10295 	int src_cid, last_mm_cid;
10296 
10297 	if (!mm)
10298 		return -1;
10299 
10300 	last_mm_cid = t->last_mm_cid;
10301 	/*
10302 	 * If the migrated task has no last cid, or if the current
10303 	 * task on src rq uses the cid, it means the source cid does not need
10304 	 * to be moved to the destination cpu.
10305 	 */
10306 	if (last_mm_cid == -1)
10307 		return -1;
10308 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10309 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10310 		return -1;
10311 
10312 	/*
10313 	 * If we observe an active task using the mm on this rq, it means we
10314 	 * are not the last task to be migrated from this cpu for this mm, so
10315 	 * there is no need to move src_cid to the destination cpu.
10316 	 */
10317 	guard(rcu)();
10318 	src_task = rcu_dereference(src_rq->curr);
10319 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10320 		t->last_mm_cid = -1;
10321 		return -1;
10322 	}
10323 
10324 	return src_cid;
10325 }
10326 
10327 static
10328 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10329 					      struct task_struct *t,
10330 					      struct mm_cid *src_pcpu_cid,
10331 					      int src_cid)
10332 {
10333 	struct task_struct *src_task;
10334 	struct mm_struct *mm = t->mm;
10335 	int lazy_cid;
10336 
10337 	if (src_cid == -1)
10338 		return -1;
10339 
10340 	/*
10341 	 * Attempt to clear the source cpu cid to move it to the destination
10342 	 * cpu.
10343 	 */
10344 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10345 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10346 		return -1;
10347 
10348 	/*
10349 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10350 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10351 	 * between store to rq->curr and load of prev and next task's
10352 	 * per-mm/cpu cid.
10353 	 *
10354 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10355 	 * rq->curr->mm_cid_active matches the barrier in
10356 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10357 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10358 	 * load of per-mm/cpu cid.
10359 	 */
10360 
10361 	/*
10362 	 * If we observe an active task using the mm on this rq after setting
10363 	 * the lazy-put flag, this task will be responsible for transitioning
10364 	 * from lazy-put flag set to MM_CID_UNSET.
10365 	 */
10366 	scoped_guard (rcu) {
10367 		src_task = rcu_dereference(src_rq->curr);
10368 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10369 			/*
10370 			 * We observed an active task for this mm, there is therefore
10371 			 * no point in moving this cid to the destination cpu.
10372 			 */
10373 			t->last_mm_cid = -1;
10374 			return -1;
10375 		}
10376 	}
10377 
10378 	/*
10379 	 * The src_cid is unused, so it can be unset.
10380 	 */
10381 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10382 		return -1;
10383 	WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10384 	return src_cid;
10385 }
10386 
10387 /*
10388  * Migration to dst cpu. Called with dst_rq lock held.
10389  * Interrupts are disabled, which keeps the window of cid ownership without the
10390  * source rq lock held small.
10391  */
10392 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10393 {
10394 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10395 	struct mm_struct *mm = t->mm;
10396 	int src_cid, src_cpu;
10397 	bool dst_cid_is_set;
10398 	struct rq *src_rq;
10399 
10400 	lockdep_assert_rq_held(dst_rq);
10401 
10402 	if (!mm)
10403 		return;
10404 	src_cpu = t->migrate_from_cpu;
10405 	if (src_cpu == -1) {
10406 		t->last_mm_cid = -1;
10407 		return;
10408 	}
10409 	/*
10410 	 * Move the src cid if the dst cid is unset. This keeps id
10411 	 * allocation closest to 0 in cases where few threads migrate around
10412 	 * many CPUs.
10413 	 *
10414 	 * If destination cid or recent cid is already set, we may have
10415 	 * to just clear the src cid to ensure compactness in frequent
10416 	 * migrations scenarios.
10417 	 *
10418 	 * It is not useful to clear the src cid when the number of threads is
10419 	 * greater or equal to the number of allowed CPUs, because user-space
10420 	 * can expect that the number of allowed cids can reach the number of
10421 	 * allowed CPUs.
10422 	 */
10423 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10424 	dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10425 			 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10426 	if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10427 		return;
10428 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10429 	src_rq = cpu_rq(src_cpu);
10430 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10431 	if (src_cid == -1)
10432 		return;
10433 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10434 							    src_cid);
10435 	if (src_cid == -1)
10436 		return;
10437 	if (dst_cid_is_set) {
10438 		__mm_cid_put(mm, src_cid);
10439 		return;
10440 	}
10441 	/* Move src_cid to dst cpu. */
10442 	mm_cid_snapshot_time(dst_rq, mm);
10443 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10444 	WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10445 }
10446 
10447 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10448 				      int cpu)
10449 {
10450 	struct rq *rq = cpu_rq(cpu);
10451 	struct task_struct *t;
10452 	int cid, lazy_cid;
10453 
10454 	cid = READ_ONCE(pcpu_cid->cid);
10455 	if (!mm_cid_is_valid(cid))
10456 		return;
10457 
10458 	/*
10459 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10460 	 * there happens to be other tasks left on the source cpu using this
10461 	 * mm, the next task using this mm will reallocate its cid on context
10462 	 * switch.
10463 	 */
10464 	lazy_cid = mm_cid_set_lazy_put(cid);
10465 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10466 		return;
10467 
10468 	/*
10469 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10470 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10471 	 * between store to rq->curr and load of prev and next task's
10472 	 * per-mm/cpu cid.
10473 	 *
10474 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10475 	 * rq->curr->mm_cid_active matches the barrier in
10476 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10477 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10478 	 * load of per-mm/cpu cid.
10479 	 */
10480 
10481 	/*
10482 	 * If we observe an active task using the mm on this rq after setting
10483 	 * the lazy-put flag, that task will be responsible for transitioning
10484 	 * from lazy-put flag set to MM_CID_UNSET.
10485 	 */
10486 	scoped_guard (rcu) {
10487 		t = rcu_dereference(rq->curr);
10488 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10489 			return;
10490 	}
10491 
10492 	/*
10493 	 * The cid is unused, so it can be unset.
10494 	 * Disable interrupts to keep the window of cid ownership without rq
10495 	 * lock small.
10496 	 */
10497 	scoped_guard (irqsave) {
10498 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10499 			__mm_cid_put(mm, cid);
10500 	}
10501 }
10502 
10503 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10504 {
10505 	struct rq *rq = cpu_rq(cpu);
10506 	struct mm_cid *pcpu_cid;
10507 	struct task_struct *curr;
10508 	u64 rq_clock;
10509 
10510 	/*
10511 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10512 	 * while is irrelevant.
10513 	 */
10514 	rq_clock = READ_ONCE(rq->clock);
10515 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10516 
10517 	/*
10518 	 * In order to take care of infrequently scheduled tasks, bump the time
10519 	 * snapshot associated with this cid if an active task using the mm is
10520 	 * observed on this rq.
10521 	 */
10522 	scoped_guard (rcu) {
10523 		curr = rcu_dereference(rq->curr);
10524 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10525 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10526 			return;
10527 		}
10528 	}
10529 
10530 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10531 		return;
10532 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10533 }
10534 
10535 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10536 					     int weight)
10537 {
10538 	struct mm_cid *pcpu_cid;
10539 	int cid;
10540 
10541 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10542 	cid = READ_ONCE(pcpu_cid->cid);
10543 	if (!mm_cid_is_valid(cid) || cid < weight)
10544 		return;
10545 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10546 }
10547 
10548 static void task_mm_cid_work(struct callback_head *work)
10549 {
10550 	unsigned long now = jiffies, old_scan, next_scan;
10551 	struct task_struct *t = current;
10552 	struct cpumask *cidmask;
10553 	struct mm_struct *mm;
10554 	int weight, cpu;
10555 
10556 	WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work));
10557 
10558 	work->next = work;	/* Prevent double-add */
10559 	if (t->flags & PF_EXITING)
10560 		return;
10561 	mm = t->mm;
10562 	if (!mm)
10563 		return;
10564 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10565 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10566 	if (!old_scan) {
10567 		unsigned long res;
10568 
10569 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10570 		if (res != old_scan)
10571 			old_scan = res;
10572 		else
10573 			old_scan = next_scan;
10574 	}
10575 	if (time_before(now, old_scan))
10576 		return;
10577 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10578 		return;
10579 	cidmask = mm_cidmask(mm);
10580 	/* Clear cids that were not recently used. */
10581 	for_each_possible_cpu(cpu)
10582 		sched_mm_cid_remote_clear_old(mm, cpu);
10583 	weight = cpumask_weight(cidmask);
10584 	/*
10585 	 * Clear cids that are greater or equal to the cidmask weight to
10586 	 * recompact it.
10587 	 */
10588 	for_each_possible_cpu(cpu)
10589 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10590 }
10591 
10592 void init_sched_mm_cid(struct task_struct *t)
10593 {
10594 	struct mm_struct *mm = t->mm;
10595 	int mm_users = 0;
10596 
10597 	if (mm) {
10598 		mm_users = atomic_read(&mm->mm_users);
10599 		if (mm_users == 1)
10600 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10601 	}
10602 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10603 	init_task_work(&t->cid_work, task_mm_cid_work);
10604 }
10605 
10606 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10607 {
10608 	struct callback_head *work = &curr->cid_work;
10609 	unsigned long now = jiffies;
10610 
10611 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10612 	    work->next != work)
10613 		return;
10614 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10615 		return;
10616 
10617 	/* No page allocation under rq lock */
10618 	task_work_add(curr, work, TWA_RESUME);
10619 }
10620 
10621 void sched_mm_cid_exit_signals(struct task_struct *t)
10622 {
10623 	struct mm_struct *mm = t->mm;
10624 	struct rq *rq;
10625 
10626 	if (!mm)
10627 		return;
10628 
10629 	preempt_disable();
10630 	rq = this_rq();
10631 	guard(rq_lock_irqsave)(rq);
10632 	preempt_enable_no_resched();	/* holding spinlock */
10633 	WRITE_ONCE(t->mm_cid_active, 0);
10634 	/*
10635 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10636 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10637 	 */
10638 	smp_mb();
10639 	mm_cid_put(mm);
10640 	t->last_mm_cid = t->mm_cid = -1;
10641 }
10642 
10643 void sched_mm_cid_before_execve(struct task_struct *t)
10644 {
10645 	struct mm_struct *mm = t->mm;
10646 	struct rq *rq;
10647 
10648 	if (!mm)
10649 		return;
10650 
10651 	preempt_disable();
10652 	rq = this_rq();
10653 	guard(rq_lock_irqsave)(rq);
10654 	preempt_enable_no_resched();	/* holding spinlock */
10655 	WRITE_ONCE(t->mm_cid_active, 0);
10656 	/*
10657 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10658 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10659 	 */
10660 	smp_mb();
10661 	mm_cid_put(mm);
10662 	t->last_mm_cid = t->mm_cid = -1;
10663 }
10664 
10665 void sched_mm_cid_after_execve(struct task_struct *t)
10666 {
10667 	struct mm_struct *mm = t->mm;
10668 	struct rq *rq;
10669 
10670 	if (!mm)
10671 		return;
10672 
10673 	preempt_disable();
10674 	rq = this_rq();
10675 	scoped_guard (rq_lock_irqsave, rq) {
10676 		preempt_enable_no_resched();	/* holding spinlock */
10677 		WRITE_ONCE(t->mm_cid_active, 1);
10678 		/*
10679 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10680 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10681 		 */
10682 		smp_mb();
10683 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10684 	}
10685 	rseq_set_notify_resume(t);
10686 }
10687 
10688 void sched_mm_cid_fork(struct task_struct *t)
10689 {
10690 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10691 	t->mm_cid_active = 1;
10692 }
10693 #endif
10694 
10695 #ifdef CONFIG_SCHED_CLASS_EXT
10696 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10697 			    struct sched_enq_and_set_ctx *ctx)
10698 {
10699 	struct rq *rq = task_rq(p);
10700 
10701 	lockdep_assert_rq_held(rq);
10702 
10703 	*ctx = (struct sched_enq_and_set_ctx){
10704 		.p = p,
10705 		.queue_flags = queue_flags,
10706 		.queued = task_on_rq_queued(p),
10707 		.running = task_current(rq, p),
10708 	};
10709 
10710 	update_rq_clock(rq);
10711 	if (ctx->queued)
10712 		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10713 	if (ctx->running)
10714 		put_prev_task(rq, p);
10715 }
10716 
10717 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10718 {
10719 	struct rq *rq = task_rq(ctx->p);
10720 
10721 	lockdep_assert_rq_held(rq);
10722 
10723 	if (ctx->queued)
10724 		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10725 	if (ctx->running)
10726 		set_next_task(rq, ctx->p);
10727 }
10728 #endif	/* CONFIG_SCHED_CLASS_EXT */
10729