xref: /linux/kernel/sched/core.c (revision 1dce50698a5ceedaca806e0a78573886a363dc95)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #define INSTANTIATE_EXPORTED_MIGRATE_DISABLE
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hrtimer_api.h>
14 #include <linux/ktime_api.h>
15 #include <linux/sched/signal.h>
16 #include <linux/syscalls_api.h>
17 #include <linux/debug_locks.h>
18 #include <linux/prefetch.h>
19 #include <linux/capability.h>
20 #include <linux/pgtable_api.h>
21 #include <linux/wait_bit.h>
22 #include <linux/jiffies.h>
23 #include <linux/spinlock_api.h>
24 #include <linux/cpumask_api.h>
25 #include <linux/lockdep_api.h>
26 #include <linux/hardirq.h>
27 #include <linux/softirq.h>
28 #include <linux/refcount_api.h>
29 #include <linux/topology.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/cond_resched.h>
32 #include <linux/sched/cputime.h>
33 #include <linux/sched/debug.h>
34 #include <linux/sched/hotplug.h>
35 #include <linux/sched/init.h>
36 #include <linux/sched/isolation.h>
37 #include <linux/sched/loadavg.h>
38 #include <linux/sched/mm.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/rseq_api.h>
41 #include <linux/sched/rt.h>
42 
43 #include <linux/blkdev.h>
44 #include <linux/context_tracking.h>
45 #include <linux/cpuset.h>
46 #include <linux/delayacct.h>
47 #include <linux/init_task.h>
48 #include <linux/interrupt.h>
49 #include <linux/ioprio.h>
50 #include <linux/kallsyms.h>
51 #include <linux/kcov.h>
52 #include <linux/kprobes.h>
53 #include <linux/llist_api.h>
54 #include <linux/mmu_context.h>
55 #include <linux/mmzone.h>
56 #include <linux/mutex_api.h>
57 #include <linux/nmi.h>
58 #include <linux/nospec.h>
59 #include <linux/perf_event_api.h>
60 #include <linux/profile.h>
61 #include <linux/psi.h>
62 #include <linux/rcuwait_api.h>
63 #include <linux/rseq.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/scs.h>
66 #include <linux/slab.h>
67 #include <linux/syscalls.h>
68 #include <linux/vtime.h>
69 #include <linux/wait_api.h>
70 #include <linux/workqueue_api.h>
71 #include <linux/livepatch_sched.h>
72 
73 #ifdef CONFIG_PREEMPT_DYNAMIC
74 # ifdef CONFIG_GENERIC_IRQ_ENTRY
75 #  include <linux/irq-entry-common.h>
76 # endif
77 #endif
78 
79 #include <uapi/linux/sched/types.h>
80 
81 #include <asm/irq_regs.h>
82 #include <asm/switch_to.h>
83 #include <asm/tlb.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include <linux/sched/rseq_api.h>
87 #include <trace/events/sched.h>
88 #include <trace/events/ipi.h>
89 #undef CREATE_TRACE_POINTS
90 
91 #include "sched.h"
92 #include "stats.h"
93 
94 #include "autogroup.h"
95 #include "pelt.h"
96 #include "smp.h"
97 
98 #include "../workqueue_internal.h"
99 #include "../../io_uring/io-wq.h"
100 #include "../smpboot.h"
101 #include "../locking/mutex.h"
102 
103 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
105 
106 /*
107  * Export tracepoints that act as a bare tracehook (ie: have no trace event
108  * associated with them) to allow external modules to probe them.
109  */
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
120 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
121 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
122 
123 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
124 DEFINE_PER_CPU(struct rnd_state, sched_rnd_state);
125 
126 #ifdef CONFIG_SCHED_PROXY_EXEC
127 DEFINE_STATIC_KEY_TRUE(__sched_proxy_exec);
128 static int __init setup_proxy_exec(char *str)
129 {
130 	bool proxy_enable = true;
131 
132 	if (*str && kstrtobool(str + 1, &proxy_enable)) {
133 		pr_warn("Unable to parse sched_proxy_exec=\n");
134 		return 0;
135 	}
136 
137 	if (proxy_enable) {
138 		pr_info("sched_proxy_exec enabled via boot arg\n");
139 		static_branch_enable(&__sched_proxy_exec);
140 	} else {
141 		pr_info("sched_proxy_exec disabled via boot arg\n");
142 		static_branch_disable(&__sched_proxy_exec);
143 	}
144 	return 1;
145 }
146 #else
147 static int __init setup_proxy_exec(char *str)
148 {
149 	pr_warn("CONFIG_SCHED_PROXY_EXEC=n, so it cannot be enabled or disabled at boot time\n");
150 	return 0;
151 }
152 #endif
153 __setup("sched_proxy_exec", setup_proxy_exec);
154 
155 /*
156  * Debugging: various feature bits
157  *
158  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
159  * sysctl_sched_features, defined in sched.h, to allow constants propagation
160  * at compile time and compiler optimization based on features default.
161  */
162 #define SCHED_FEAT(name, enabled)	\
163 	(1UL << __SCHED_FEAT_##name) * enabled |
164 __read_mostly unsigned int sysctl_sched_features =
165 #include "features.h"
166 	0;
167 #undef SCHED_FEAT
168 
169 /*
170  * Print a warning if need_resched is set for the given duration (if
171  * LATENCY_WARN is enabled).
172  *
173  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
174  * per boot.
175  */
176 __read_mostly int sysctl_resched_latency_warn_ms = 100;
177 __read_mostly int sysctl_resched_latency_warn_once = 1;
178 
179 /*
180  * Number of tasks to iterate in a single balance run.
181  * Limited because this is done with IRQs disabled.
182  */
183 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
184 
185 __read_mostly int scheduler_running;
186 
187 #ifdef CONFIG_SCHED_CORE
188 
189 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
190 
191 /* kernel prio, less is more */
192 static inline int __task_prio(const struct task_struct *p)
193 {
194 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
195 		return -2;
196 
197 	if (p->dl_server)
198 		return -1; /* deadline */
199 
200 	if (rt_or_dl_prio(p->prio))
201 		return p->prio; /* [-1, 99] */
202 
203 	if (p->sched_class == &idle_sched_class)
204 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
205 
206 	if (task_on_scx(p))
207 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
208 
209 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
210 }
211 
212 /*
213  * l(a,b)
214  * le(a,b) := !l(b,a)
215  * g(a,b)  := l(b,a)
216  * ge(a,b) := !l(a,b)
217  */
218 
219 /* real prio, less is less */
220 static inline bool prio_less(const struct task_struct *a,
221 			     const struct task_struct *b, bool in_fi)
222 {
223 
224 	int pa = __task_prio(a), pb = __task_prio(b);
225 
226 	if (-pa < -pb)
227 		return true;
228 
229 	if (-pb < -pa)
230 		return false;
231 
232 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
233 		const struct sched_dl_entity *a_dl, *b_dl;
234 
235 		a_dl = &a->dl;
236 		/*
237 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
238 		 * __task_prio() can return -1 (for DL) even for those. In that
239 		 * case, get to the dl_server's DL entity.
240 		 */
241 		if (a->dl_server)
242 			a_dl = a->dl_server;
243 
244 		b_dl = &b->dl;
245 		if (b->dl_server)
246 			b_dl = b->dl_server;
247 
248 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
249 	}
250 
251 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
252 		return cfs_prio_less(a, b, in_fi);
253 
254 #ifdef CONFIG_SCHED_CLASS_EXT
255 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
256 		return scx_prio_less(a, b, in_fi);
257 #endif
258 
259 	return false;
260 }
261 
262 static inline bool __sched_core_less(const struct task_struct *a,
263 				     const struct task_struct *b)
264 {
265 	if (a->core_cookie < b->core_cookie)
266 		return true;
267 
268 	if (a->core_cookie > b->core_cookie)
269 		return false;
270 
271 	/* flip prio, so high prio is leftmost */
272 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
273 		return true;
274 
275 	return false;
276 }
277 
278 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
279 
280 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
281 {
282 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
283 }
284 
285 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
286 {
287 	const struct task_struct *p = __node_2_sc(node);
288 	unsigned long cookie = (unsigned long)key;
289 
290 	if (cookie < p->core_cookie)
291 		return -1;
292 
293 	if (cookie > p->core_cookie)
294 		return 1;
295 
296 	return 0;
297 }
298 
299 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
300 {
301 	if (p->se.sched_delayed)
302 		return;
303 
304 	rq->core->core_task_seq++;
305 
306 	if (!p->core_cookie)
307 		return;
308 
309 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
310 }
311 
312 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
313 {
314 	if (p->se.sched_delayed)
315 		return;
316 
317 	rq->core->core_task_seq++;
318 
319 	if (sched_core_enqueued(p)) {
320 		rb_erase(&p->core_node, &rq->core_tree);
321 		RB_CLEAR_NODE(&p->core_node);
322 	}
323 
324 	/*
325 	 * Migrating the last task off the cpu, with the cpu in forced idle
326 	 * state. Reschedule to create an accounting edge for forced idle,
327 	 * and re-examine whether the core is still in forced idle state.
328 	 */
329 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
330 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
331 		resched_curr(rq);
332 }
333 
334 static int sched_task_is_throttled(struct task_struct *p, int cpu)
335 {
336 	if (p->sched_class->task_is_throttled)
337 		return p->sched_class->task_is_throttled(p, cpu);
338 
339 	return 0;
340 }
341 
342 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
343 {
344 	struct rb_node *node = &p->core_node;
345 	int cpu = task_cpu(p);
346 
347 	do {
348 		node = rb_next(node);
349 		if (!node)
350 			return NULL;
351 
352 		p = __node_2_sc(node);
353 		if (p->core_cookie != cookie)
354 			return NULL;
355 
356 	} while (sched_task_is_throttled(p, cpu));
357 
358 	return p;
359 }
360 
361 /*
362  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
363  * If no suitable task is found, NULL will be returned.
364  */
365 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
366 {
367 	struct task_struct *p;
368 	struct rb_node *node;
369 
370 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
371 	if (!node)
372 		return NULL;
373 
374 	p = __node_2_sc(node);
375 	if (!sched_task_is_throttled(p, rq->cpu))
376 		return p;
377 
378 	return sched_core_next(p, cookie);
379 }
380 
381 /*
382  * Magic required such that:
383  *
384  *	raw_spin_rq_lock(rq);
385  *	...
386  *	raw_spin_rq_unlock(rq);
387  *
388  * ends up locking and unlocking the _same_ lock, and all CPUs
389  * always agree on what rq has what lock.
390  *
391  * XXX entirely possible to selectively enable cores, don't bother for now.
392  */
393 
394 static DEFINE_MUTEX(sched_core_mutex);
395 static atomic_t sched_core_count;
396 static struct cpumask sched_core_mask;
397 
398 static void sched_core_lock(int cpu, unsigned long *flags)
399 {
400 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
401 	int t, i = 0;
402 
403 	local_irq_save(*flags);
404 	for_each_cpu(t, smt_mask)
405 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
406 }
407 
408 static void sched_core_unlock(int cpu, unsigned long *flags)
409 {
410 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
411 	int t;
412 
413 	for_each_cpu(t, smt_mask)
414 		raw_spin_unlock(&cpu_rq(t)->__lock);
415 	local_irq_restore(*flags);
416 }
417 
418 static void __sched_core_flip(bool enabled)
419 {
420 	unsigned long flags;
421 	int cpu, t;
422 
423 	cpus_read_lock();
424 
425 	/*
426 	 * Toggle the online cores, one by one.
427 	 */
428 	cpumask_copy(&sched_core_mask, cpu_online_mask);
429 	for_each_cpu(cpu, &sched_core_mask) {
430 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
431 
432 		sched_core_lock(cpu, &flags);
433 
434 		for_each_cpu(t, smt_mask)
435 			cpu_rq(t)->core_enabled = enabled;
436 
437 		cpu_rq(cpu)->core->core_forceidle_start = 0;
438 
439 		sched_core_unlock(cpu, &flags);
440 
441 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
442 	}
443 
444 	/*
445 	 * Toggle the offline CPUs.
446 	 */
447 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
448 		cpu_rq(cpu)->core_enabled = enabled;
449 
450 	cpus_read_unlock();
451 }
452 
453 static void sched_core_assert_empty(void)
454 {
455 	int cpu;
456 
457 	for_each_possible_cpu(cpu)
458 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
459 }
460 
461 static void __sched_core_enable(void)
462 {
463 	static_branch_enable(&__sched_core_enabled);
464 	/*
465 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
466 	 * and future ones will observe !sched_core_disabled().
467 	 */
468 	synchronize_rcu();
469 	__sched_core_flip(true);
470 	sched_core_assert_empty();
471 }
472 
473 static void __sched_core_disable(void)
474 {
475 	sched_core_assert_empty();
476 	__sched_core_flip(false);
477 	static_branch_disable(&__sched_core_enabled);
478 }
479 
480 void sched_core_get(void)
481 {
482 	if (atomic_inc_not_zero(&sched_core_count))
483 		return;
484 
485 	mutex_lock(&sched_core_mutex);
486 	if (!atomic_read(&sched_core_count))
487 		__sched_core_enable();
488 
489 	smp_mb__before_atomic();
490 	atomic_inc(&sched_core_count);
491 	mutex_unlock(&sched_core_mutex);
492 }
493 
494 static void __sched_core_put(struct work_struct *work)
495 {
496 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
497 		__sched_core_disable();
498 		mutex_unlock(&sched_core_mutex);
499 	}
500 }
501 
502 void sched_core_put(void)
503 {
504 	static DECLARE_WORK(_work, __sched_core_put);
505 
506 	/*
507 	 * "There can be only one"
508 	 *
509 	 * Either this is the last one, or we don't actually need to do any
510 	 * 'work'. If it is the last *again*, we rely on
511 	 * WORK_STRUCT_PENDING_BIT.
512 	 */
513 	if (!atomic_add_unless(&sched_core_count, -1, 1))
514 		schedule_work(&_work);
515 }
516 
517 #else /* !CONFIG_SCHED_CORE: */
518 
519 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
520 static inline void
521 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
522 
523 #endif /* !CONFIG_SCHED_CORE */
524 
525 /* need a wrapper since we may need to trace from modules */
526 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp);
527 
528 /* Call via the helper macro trace_set_current_state. */
529 void __trace_set_current_state(int state_value)
530 {
531 	trace_sched_set_state_tp(current, state_value);
532 }
533 EXPORT_SYMBOL(__trace_set_current_state);
534 
535 /*
536  * Serialization rules:
537  *
538  * Lock order:
539  *
540  *   p->pi_lock
541  *     rq->lock
542  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
543  *
544  *  rq1->lock
545  *    rq2->lock  where: rq1 < rq2
546  *
547  * Regular state:
548  *
549  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
550  * local CPU's rq->lock, it optionally removes the task from the runqueue and
551  * always looks at the local rq data structures to find the most eligible task
552  * to run next.
553  *
554  * Task enqueue is also under rq->lock, possibly taken from another CPU.
555  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
556  * the local CPU to avoid bouncing the runqueue state around [ see
557  * ttwu_queue_wakelist() ]
558  *
559  * Task wakeup, specifically wakeups that involve migration, are horribly
560  * complicated to avoid having to take two rq->locks.
561  *
562  * Special state:
563  *
564  * System-calls and anything external will use task_rq_lock() which acquires
565  * both p->pi_lock and rq->lock. As a consequence the state they change is
566  * stable while holding either lock:
567  *
568  *  - sched_setaffinity()/
569  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
570  *  - set_user_nice():		p->se.load, p->*prio
571  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
572  *				p->se.load, p->rt_priority,
573  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
574  *  - sched_setnuma():		p->numa_preferred_nid
575  *  - sched_move_task():	p->sched_task_group
576  *  - uclamp_update_active()	p->uclamp*
577  *
578  * p->state <- TASK_*:
579  *
580  *   is changed locklessly using set_current_state(), __set_current_state() or
581  *   set_special_state(), see their respective comments, or by
582  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
583  *   concurrent self.
584  *
585  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
586  *
587  *   is set by activate_task() and cleared by deactivate_task()/block_task(),
588  *   under rq->lock. Non-zero indicates the task is runnable, the special
589  *   ON_RQ_MIGRATING state is used for migration without holding both
590  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
591  *
592  *   Additionally it is possible to be ->on_rq but still be considered not
593  *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
594  *   but will be dequeued as soon as they get picked again. See the
595  *   task_is_runnable() helper.
596  *
597  * p->on_cpu <- { 0, 1 }:
598  *
599  *   is set by prepare_task() and cleared by finish_task() such that it will be
600  *   set before p is scheduled-in and cleared after p is scheduled-out, both
601  *   under rq->lock. Non-zero indicates the task is running on its CPU.
602  *
603  *   [ The astute reader will observe that it is possible for two tasks on one
604  *     CPU to have ->on_cpu = 1 at the same time. ]
605  *
606  * task_cpu(p): is changed by set_task_cpu(), the rules are:
607  *
608  *  - Don't call set_task_cpu() on a blocked task:
609  *
610  *    We don't care what CPU we're not running on, this simplifies hotplug,
611  *    the CPU assignment of blocked tasks isn't required to be valid.
612  *
613  *  - for try_to_wake_up(), called under p->pi_lock:
614  *
615  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
616  *
617  *  - for migration called under rq->lock:
618  *    [ see task_on_rq_migrating() in task_rq_lock() ]
619  *
620  *    o move_queued_task()
621  *    o detach_task()
622  *
623  *  - for migration called under double_rq_lock():
624  *
625  *    o __migrate_swap_task()
626  *    o push_rt_task() / pull_rt_task()
627  *    o push_dl_task() / pull_dl_task()
628  *    o dl_task_offline_migration()
629  *
630  */
631 
632 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
633 {
634 	raw_spinlock_t *lock;
635 
636 	/* Matches synchronize_rcu() in __sched_core_enable() */
637 	preempt_disable();
638 	if (sched_core_disabled()) {
639 		raw_spin_lock_nested(&rq->__lock, subclass);
640 		/* preempt_count *MUST* be > 1 */
641 		preempt_enable_no_resched();
642 		return;
643 	}
644 
645 	for (;;) {
646 		lock = __rq_lockp(rq);
647 		raw_spin_lock_nested(lock, subclass);
648 		if (likely(lock == __rq_lockp(rq))) {
649 			/* preempt_count *MUST* be > 1 */
650 			preempt_enable_no_resched();
651 			return;
652 		}
653 		raw_spin_unlock(lock);
654 	}
655 }
656 
657 bool raw_spin_rq_trylock(struct rq *rq)
658 {
659 	raw_spinlock_t *lock;
660 	bool ret;
661 
662 	/* Matches synchronize_rcu() in __sched_core_enable() */
663 	preempt_disable();
664 	if (sched_core_disabled()) {
665 		ret = raw_spin_trylock(&rq->__lock);
666 		preempt_enable();
667 		return ret;
668 	}
669 
670 	for (;;) {
671 		lock = __rq_lockp(rq);
672 		ret = raw_spin_trylock(lock);
673 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
674 			preempt_enable();
675 			return ret;
676 		}
677 		raw_spin_unlock(lock);
678 	}
679 }
680 
681 void raw_spin_rq_unlock(struct rq *rq)
682 {
683 	raw_spin_unlock(rq_lockp(rq));
684 }
685 
686 /*
687  * double_rq_lock - safely lock two runqueues
688  */
689 void double_rq_lock(struct rq *rq1, struct rq *rq2)
690 {
691 	lockdep_assert_irqs_disabled();
692 
693 	if (rq_order_less(rq2, rq1))
694 		swap(rq1, rq2);
695 
696 	raw_spin_rq_lock(rq1);
697 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
698 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
699 
700 	double_rq_clock_clear_update(rq1, rq2);
701 }
702 
703 /*
704  * __task_rq_lock - lock the rq @p resides on.
705  */
706 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
707 	__acquires(rq->lock)
708 {
709 	struct rq *rq;
710 
711 	lockdep_assert_held(&p->pi_lock);
712 
713 	for (;;) {
714 		rq = task_rq(p);
715 		raw_spin_rq_lock(rq);
716 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
717 			rq_pin_lock(rq, rf);
718 			return rq;
719 		}
720 		raw_spin_rq_unlock(rq);
721 
722 		while (unlikely(task_on_rq_migrating(p)))
723 			cpu_relax();
724 	}
725 }
726 
727 /*
728  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
729  */
730 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
731 	__acquires(p->pi_lock)
732 	__acquires(rq->lock)
733 {
734 	struct rq *rq;
735 
736 	for (;;) {
737 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
738 		rq = task_rq(p);
739 		raw_spin_rq_lock(rq);
740 		/*
741 		 *	move_queued_task()		task_rq_lock()
742 		 *
743 		 *	ACQUIRE (rq->lock)
744 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
745 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
746 		 *	[S] ->cpu = new_cpu		[L] task_rq()
747 		 *					[L] ->on_rq
748 		 *	RELEASE (rq->lock)
749 		 *
750 		 * If we observe the old CPU in task_rq_lock(), the acquire of
751 		 * the old rq->lock will fully serialize against the stores.
752 		 *
753 		 * If we observe the new CPU in task_rq_lock(), the address
754 		 * dependency headed by '[L] rq = task_rq()' and the acquire
755 		 * will pair with the WMB to ensure we then also see migrating.
756 		 */
757 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
758 			rq_pin_lock(rq, rf);
759 			return rq;
760 		}
761 		raw_spin_rq_unlock(rq);
762 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
763 
764 		while (unlikely(task_on_rq_migrating(p)))
765 			cpu_relax();
766 	}
767 }
768 
769 /*
770  * RQ-clock updating methods:
771  */
772 
773 static void update_rq_clock_task(struct rq *rq, s64 delta)
774 {
775 /*
776  * In theory, the compile should just see 0 here, and optimize out the call
777  * to sched_rt_avg_update. But I don't trust it...
778  */
779 	s64 __maybe_unused steal = 0, irq_delta = 0;
780 
781 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
782 	if (irqtime_enabled()) {
783 		irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
784 
785 		/*
786 		 * Since irq_time is only updated on {soft,}irq_exit, we might run into
787 		 * this case when a previous update_rq_clock() happened inside a
788 		 * {soft,}IRQ region.
789 		 *
790 		 * When this happens, we stop ->clock_task and only update the
791 		 * prev_irq_time stamp to account for the part that fit, so that a next
792 		 * update will consume the rest. This ensures ->clock_task is
793 		 * monotonic.
794 		 *
795 		 * It does however cause some slight miss-attribution of {soft,}IRQ
796 		 * time, a more accurate solution would be to update the irq_time using
797 		 * the current rq->clock timestamp, except that would require using
798 		 * atomic ops.
799 		 */
800 		if (irq_delta > delta)
801 			irq_delta = delta;
802 
803 		rq->prev_irq_time += irq_delta;
804 		delta -= irq_delta;
805 		delayacct_irq(rq->curr, irq_delta);
806 	}
807 #endif
808 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
809 	if (static_key_false((&paravirt_steal_rq_enabled))) {
810 		u64 prev_steal;
811 
812 		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
813 		steal -= rq->prev_steal_time_rq;
814 
815 		if (unlikely(steal > delta))
816 			steal = delta;
817 
818 		rq->prev_steal_time_rq = prev_steal;
819 		delta -= steal;
820 	}
821 #endif
822 
823 	rq->clock_task += delta;
824 
825 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
826 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
827 		update_irq_load_avg(rq, irq_delta + steal);
828 #endif
829 	update_rq_clock_pelt(rq, delta);
830 }
831 
832 void update_rq_clock(struct rq *rq)
833 {
834 	s64 delta;
835 	u64 clock;
836 
837 	lockdep_assert_rq_held(rq);
838 
839 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
840 		return;
841 
842 	if (sched_feat(WARN_DOUBLE_CLOCK))
843 		WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED);
844 	rq->clock_update_flags |= RQCF_UPDATED;
845 
846 	clock = sched_clock_cpu(cpu_of(rq));
847 	scx_rq_clock_update(rq, clock);
848 
849 	delta = clock - rq->clock;
850 	if (delta < 0)
851 		return;
852 	rq->clock += delta;
853 
854 	update_rq_clock_task(rq, delta);
855 }
856 
857 #ifdef CONFIG_SCHED_HRTICK
858 /*
859  * Use HR-timers to deliver accurate preemption points.
860  */
861 
862 static void hrtick_clear(struct rq *rq)
863 {
864 	if (hrtimer_active(&rq->hrtick_timer))
865 		hrtimer_cancel(&rq->hrtick_timer);
866 }
867 
868 /*
869  * High-resolution timer tick.
870  * Runs from hardirq context with interrupts disabled.
871  */
872 static enum hrtimer_restart hrtick(struct hrtimer *timer)
873 {
874 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
875 	struct rq_flags rf;
876 
877 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
878 
879 	rq_lock(rq, &rf);
880 	update_rq_clock(rq);
881 	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
882 	rq_unlock(rq, &rf);
883 
884 	return HRTIMER_NORESTART;
885 }
886 
887 static void __hrtick_restart(struct rq *rq)
888 {
889 	struct hrtimer *timer = &rq->hrtick_timer;
890 	ktime_t time = rq->hrtick_time;
891 
892 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
893 }
894 
895 /*
896  * called from hardirq (IPI) context
897  */
898 static void __hrtick_start(void *arg)
899 {
900 	struct rq *rq = arg;
901 	struct rq_flags rf;
902 
903 	rq_lock(rq, &rf);
904 	__hrtick_restart(rq);
905 	rq_unlock(rq, &rf);
906 }
907 
908 /*
909  * Called to set the hrtick timer state.
910  *
911  * called with rq->lock held and IRQs disabled
912  */
913 void hrtick_start(struct rq *rq, u64 delay)
914 {
915 	struct hrtimer *timer = &rq->hrtick_timer;
916 	s64 delta;
917 
918 	/*
919 	 * Don't schedule slices shorter than 10000ns, that just
920 	 * doesn't make sense and can cause timer DoS.
921 	 */
922 	delta = max_t(s64, delay, 10000LL);
923 	rq->hrtick_time = ktime_add_ns(hrtimer_cb_get_time(timer), delta);
924 
925 	if (rq == this_rq())
926 		__hrtick_restart(rq);
927 	else
928 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
929 }
930 
931 static void hrtick_rq_init(struct rq *rq)
932 {
933 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
934 	hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
935 }
936 #else /* !CONFIG_SCHED_HRTICK: */
937 static inline void hrtick_clear(struct rq *rq)
938 {
939 }
940 
941 static inline void hrtick_rq_init(struct rq *rq)
942 {
943 }
944 #endif /* !CONFIG_SCHED_HRTICK */
945 
946 /*
947  * try_cmpxchg based fetch_or() macro so it works for different integer types:
948  */
949 #define fetch_or(ptr, mask)						\
950 	({								\
951 		typeof(ptr) _ptr = (ptr);				\
952 		typeof(mask) _mask = (mask);				\
953 		typeof(*_ptr) _val = *_ptr;				\
954 									\
955 		do {							\
956 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
957 	_val;								\
958 })
959 
960 #ifdef TIF_POLLING_NRFLAG
961 /*
962  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
963  * this avoids any races wrt polling state changes and thereby avoids
964  * spurious IPIs.
965  */
966 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
967 {
968 	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
969 }
970 
971 /*
972  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
973  *
974  * If this returns true, then the idle task promises to call
975  * sched_ttwu_pending() and reschedule soon.
976  */
977 static bool set_nr_if_polling(struct task_struct *p)
978 {
979 	struct thread_info *ti = task_thread_info(p);
980 	typeof(ti->flags) val = READ_ONCE(ti->flags);
981 
982 	do {
983 		if (!(val & _TIF_POLLING_NRFLAG))
984 			return false;
985 		if (val & _TIF_NEED_RESCHED)
986 			return true;
987 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
988 
989 	return true;
990 }
991 
992 #else
993 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
994 {
995 	set_ti_thread_flag(ti, tif);
996 	return true;
997 }
998 
999 static inline bool set_nr_if_polling(struct task_struct *p)
1000 {
1001 	return false;
1002 }
1003 #endif
1004 
1005 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
1006 {
1007 	struct wake_q_node *node = &task->wake_q;
1008 
1009 	/*
1010 	 * Atomically grab the task, if ->wake_q is !nil already it means
1011 	 * it's already queued (either by us or someone else) and will get the
1012 	 * wakeup due to that.
1013 	 *
1014 	 * In order to ensure that a pending wakeup will observe our pending
1015 	 * state, even in the failed case, an explicit smp_mb() must be used.
1016 	 */
1017 	smp_mb__before_atomic();
1018 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1019 		return false;
1020 
1021 	/*
1022 	 * The head is context local, there can be no concurrency.
1023 	 */
1024 	*head->lastp = node;
1025 	head->lastp = &node->next;
1026 	return true;
1027 }
1028 
1029 /**
1030  * wake_q_add() - queue a wakeup for 'later' waking.
1031  * @head: the wake_q_head to add @task to
1032  * @task: the task to queue for 'later' wakeup
1033  *
1034  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1035  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1036  * instantly.
1037  *
1038  * This function must be used as-if it were wake_up_process(); IOW the task
1039  * must be ready to be woken at this location.
1040  */
1041 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1042 {
1043 	if (__wake_q_add(head, task))
1044 		get_task_struct(task);
1045 }
1046 
1047 /**
1048  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1049  * @head: the wake_q_head to add @task to
1050  * @task: the task to queue for 'later' wakeup
1051  *
1052  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1053  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1054  * instantly.
1055  *
1056  * This function must be used as-if it were wake_up_process(); IOW the task
1057  * must be ready to be woken at this location.
1058  *
1059  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1060  * that already hold reference to @task can call the 'safe' version and trust
1061  * wake_q to do the right thing depending whether or not the @task is already
1062  * queued for wakeup.
1063  */
1064 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1065 {
1066 	if (!__wake_q_add(head, task))
1067 		put_task_struct(task);
1068 }
1069 
1070 void wake_up_q(struct wake_q_head *head)
1071 {
1072 	struct wake_q_node *node = head->first;
1073 
1074 	while (node != WAKE_Q_TAIL) {
1075 		struct task_struct *task;
1076 
1077 		task = container_of(node, struct task_struct, wake_q);
1078 		node = node->next;
1079 		/* pairs with cmpxchg_relaxed() in __wake_q_add() */
1080 		WRITE_ONCE(task->wake_q.next, NULL);
1081 		/* Task can safely be re-inserted now. */
1082 
1083 		/*
1084 		 * wake_up_process() executes a full barrier, which pairs with
1085 		 * the queueing in wake_q_add() so as not to miss wakeups.
1086 		 */
1087 		wake_up_process(task);
1088 		put_task_struct(task);
1089 	}
1090 }
1091 
1092 /*
1093  * resched_curr - mark rq's current task 'to be rescheduled now'.
1094  *
1095  * On UP this means the setting of the need_resched flag, on SMP it
1096  * might also involve a cross-CPU call to trigger the scheduler on
1097  * the target CPU.
1098  */
1099 static void __resched_curr(struct rq *rq, int tif)
1100 {
1101 	struct task_struct *curr = rq->curr;
1102 	struct thread_info *cti = task_thread_info(curr);
1103 	int cpu;
1104 
1105 	lockdep_assert_rq_held(rq);
1106 
1107 	/*
1108 	 * Always immediately preempt the idle task; no point in delaying doing
1109 	 * actual work.
1110 	 */
1111 	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1112 		tif = TIF_NEED_RESCHED;
1113 
1114 	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1115 		return;
1116 
1117 	cpu = cpu_of(rq);
1118 
1119 	trace_sched_set_need_resched_tp(curr, cpu, tif);
1120 	if (cpu == smp_processor_id()) {
1121 		set_ti_thread_flag(cti, tif);
1122 		if (tif == TIF_NEED_RESCHED)
1123 			set_preempt_need_resched();
1124 		return;
1125 	}
1126 
1127 	if (set_nr_and_not_polling(cti, tif)) {
1128 		if (tif == TIF_NEED_RESCHED)
1129 			smp_send_reschedule(cpu);
1130 	} else {
1131 		trace_sched_wake_idle_without_ipi(cpu);
1132 	}
1133 }
1134 
1135 void __trace_set_need_resched(struct task_struct *curr, int tif)
1136 {
1137 	trace_sched_set_need_resched_tp(curr, smp_processor_id(), tif);
1138 }
1139 
1140 void resched_curr(struct rq *rq)
1141 {
1142 	__resched_curr(rq, TIF_NEED_RESCHED);
1143 }
1144 
1145 #ifdef CONFIG_PREEMPT_DYNAMIC
1146 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
1147 static __always_inline bool dynamic_preempt_lazy(void)
1148 {
1149 	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1150 }
1151 #else
1152 static __always_inline bool dynamic_preempt_lazy(void)
1153 {
1154 	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1155 }
1156 #endif
1157 
1158 static __always_inline int get_lazy_tif_bit(void)
1159 {
1160 	if (dynamic_preempt_lazy())
1161 		return TIF_NEED_RESCHED_LAZY;
1162 
1163 	return TIF_NEED_RESCHED;
1164 }
1165 
1166 void resched_curr_lazy(struct rq *rq)
1167 {
1168 	__resched_curr(rq, get_lazy_tif_bit());
1169 }
1170 
1171 void resched_cpu(int cpu)
1172 {
1173 	struct rq *rq = cpu_rq(cpu);
1174 	unsigned long flags;
1175 
1176 	raw_spin_rq_lock_irqsave(rq, flags);
1177 	if (cpu_online(cpu) || cpu == smp_processor_id())
1178 		resched_curr(rq);
1179 	raw_spin_rq_unlock_irqrestore(rq, flags);
1180 }
1181 
1182 #ifdef CONFIG_NO_HZ_COMMON
1183 /*
1184  * In the semi idle case, use the nearest busy CPU for migrating timers
1185  * from an idle CPU.  This is good for power-savings.
1186  *
1187  * We don't do similar optimization for completely idle system, as
1188  * selecting an idle CPU will add more delays to the timers than intended
1189  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1190  */
1191 int get_nohz_timer_target(void)
1192 {
1193 	int i, cpu = smp_processor_id(), default_cpu = -1;
1194 	struct sched_domain *sd;
1195 	const struct cpumask *hk_mask;
1196 
1197 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
1198 		if (!idle_cpu(cpu))
1199 			return cpu;
1200 		default_cpu = cpu;
1201 	}
1202 
1203 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
1204 
1205 	guard(rcu)();
1206 
1207 	for_each_domain(cpu, sd) {
1208 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1209 			if (cpu == i)
1210 				continue;
1211 
1212 			if (!idle_cpu(i))
1213 				return i;
1214 		}
1215 	}
1216 
1217 	if (default_cpu == -1)
1218 		default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
1219 
1220 	return default_cpu;
1221 }
1222 
1223 /*
1224  * When add_timer_on() enqueues a timer into the timer wheel of an
1225  * idle CPU then this timer might expire before the next timer event
1226  * which is scheduled to wake up that CPU. In case of a completely
1227  * idle system the next event might even be infinite time into the
1228  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1229  * leaves the inner idle loop so the newly added timer is taken into
1230  * account when the CPU goes back to idle and evaluates the timer
1231  * wheel for the next timer event.
1232  */
1233 static void wake_up_idle_cpu(int cpu)
1234 {
1235 	struct rq *rq = cpu_rq(cpu);
1236 
1237 	if (cpu == smp_processor_id())
1238 		return;
1239 
1240 	/*
1241 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1242 	 * part of the idle loop. This forces an exit from the idle loop
1243 	 * and a round trip to schedule(). Now this could be optimized
1244 	 * because a simple new idle loop iteration is enough to
1245 	 * re-evaluate the next tick. Provided some re-ordering of tick
1246 	 * nohz functions that would need to follow TIF_NR_POLLING
1247 	 * clearing:
1248 	 *
1249 	 * - On most architectures, a simple fetch_or on ti::flags with a
1250 	 *   "0" value would be enough to know if an IPI needs to be sent.
1251 	 *
1252 	 * - x86 needs to perform a last need_resched() check between
1253 	 *   monitor and mwait which doesn't take timers into account.
1254 	 *   There a dedicated TIF_TIMER flag would be required to
1255 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1256 	 *   before mwait().
1257 	 *
1258 	 * However, remote timer enqueue is not such a frequent event
1259 	 * and testing of the above solutions didn't appear to report
1260 	 * much benefits.
1261 	 */
1262 	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1263 		smp_send_reschedule(cpu);
1264 	else
1265 		trace_sched_wake_idle_without_ipi(cpu);
1266 }
1267 
1268 static bool wake_up_full_nohz_cpu(int cpu)
1269 {
1270 	/*
1271 	 * We just need the target to call irq_exit() and re-evaluate
1272 	 * the next tick. The nohz full kick at least implies that.
1273 	 * If needed we can still optimize that later with an
1274 	 * empty IRQ.
1275 	 */
1276 	if (cpu_is_offline(cpu))
1277 		return true;  /* Don't try to wake offline CPUs. */
1278 	if (tick_nohz_full_cpu(cpu)) {
1279 		if (cpu != smp_processor_id() ||
1280 		    tick_nohz_tick_stopped())
1281 			tick_nohz_full_kick_cpu(cpu);
1282 		return true;
1283 	}
1284 
1285 	return false;
1286 }
1287 
1288 /*
1289  * Wake up the specified CPU.  If the CPU is going offline, it is the
1290  * caller's responsibility to deal with the lost wakeup, for example,
1291  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1292  */
1293 void wake_up_nohz_cpu(int cpu)
1294 {
1295 	if (!wake_up_full_nohz_cpu(cpu))
1296 		wake_up_idle_cpu(cpu);
1297 }
1298 
1299 static void nohz_csd_func(void *info)
1300 {
1301 	struct rq *rq = info;
1302 	int cpu = cpu_of(rq);
1303 	unsigned int flags;
1304 
1305 	/*
1306 	 * Release the rq::nohz_csd.
1307 	 */
1308 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1309 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1310 
1311 	rq->idle_balance = idle_cpu(cpu);
1312 	if (rq->idle_balance) {
1313 		rq->nohz_idle_balance = flags;
1314 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1315 	}
1316 }
1317 
1318 #endif /* CONFIG_NO_HZ_COMMON */
1319 
1320 #ifdef CONFIG_NO_HZ_FULL
1321 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1322 {
1323 	if (rq->nr_running != 1)
1324 		return false;
1325 
1326 	if (p->sched_class != &fair_sched_class)
1327 		return false;
1328 
1329 	if (!task_on_rq_queued(p))
1330 		return false;
1331 
1332 	return true;
1333 }
1334 
1335 bool sched_can_stop_tick(struct rq *rq)
1336 {
1337 	int fifo_nr_running;
1338 
1339 	/* Deadline tasks, even if single, need the tick */
1340 	if (rq->dl.dl_nr_running)
1341 		return false;
1342 
1343 	/*
1344 	 * If there are more than one RR tasks, we need the tick to affect the
1345 	 * actual RR behaviour.
1346 	 */
1347 	if (rq->rt.rr_nr_running) {
1348 		if (rq->rt.rr_nr_running == 1)
1349 			return true;
1350 		else
1351 			return false;
1352 	}
1353 
1354 	/*
1355 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1356 	 * forced preemption between FIFO tasks.
1357 	 */
1358 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1359 	if (fifo_nr_running)
1360 		return true;
1361 
1362 	/*
1363 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1364 	 * left. For CFS, if there's more than one we need the tick for
1365 	 * involuntary preemption. For SCX, ask.
1366 	 */
1367 	if (scx_enabled() && !scx_can_stop_tick(rq))
1368 		return false;
1369 
1370 	if (rq->cfs.h_nr_queued > 1)
1371 		return false;
1372 
1373 	/*
1374 	 * If there is one task and it has CFS runtime bandwidth constraints
1375 	 * and it's on the cpu now we don't want to stop the tick.
1376 	 * This check prevents clearing the bit if a newly enqueued task here is
1377 	 * dequeued by migrating while the constrained task continues to run.
1378 	 * E.g. going from 2->1 without going through pick_next_task().
1379 	 */
1380 	if (__need_bw_check(rq, rq->curr)) {
1381 		if (cfs_task_bw_constrained(rq->curr))
1382 			return false;
1383 	}
1384 
1385 	return true;
1386 }
1387 #endif /* CONFIG_NO_HZ_FULL */
1388 
1389 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED)
1390 /*
1391  * Iterate task_group tree rooted at *from, calling @down when first entering a
1392  * node and @up when leaving it for the final time.
1393  *
1394  * Caller must hold rcu_lock or sufficient equivalent.
1395  */
1396 int walk_tg_tree_from(struct task_group *from,
1397 			     tg_visitor down, tg_visitor up, void *data)
1398 {
1399 	struct task_group *parent, *child;
1400 	int ret;
1401 
1402 	parent = from;
1403 
1404 down:
1405 	ret = (*down)(parent, data);
1406 	if (ret)
1407 		goto out;
1408 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1409 		parent = child;
1410 		goto down;
1411 
1412 up:
1413 		continue;
1414 	}
1415 	ret = (*up)(parent, data);
1416 	if (ret || parent == from)
1417 		goto out;
1418 
1419 	child = parent;
1420 	parent = parent->parent;
1421 	if (parent)
1422 		goto up;
1423 out:
1424 	return ret;
1425 }
1426 
1427 int tg_nop(struct task_group *tg, void *data)
1428 {
1429 	return 0;
1430 }
1431 #endif
1432 
1433 void set_load_weight(struct task_struct *p, bool update_load)
1434 {
1435 	int prio = p->static_prio - MAX_RT_PRIO;
1436 	struct load_weight lw;
1437 
1438 	if (task_has_idle_policy(p)) {
1439 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1440 		lw.inv_weight = WMULT_IDLEPRIO;
1441 	} else {
1442 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1443 		lw.inv_weight = sched_prio_to_wmult[prio];
1444 	}
1445 
1446 	/*
1447 	 * SCHED_OTHER tasks have to update their load when changing their
1448 	 * weight
1449 	 */
1450 	if (update_load && p->sched_class->reweight_task)
1451 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1452 	else
1453 		p->se.load = lw;
1454 }
1455 
1456 #ifdef CONFIG_UCLAMP_TASK
1457 /*
1458  * Serializes updates of utilization clamp values
1459  *
1460  * The (slow-path) user-space triggers utilization clamp value updates which
1461  * can require updates on (fast-path) scheduler's data structures used to
1462  * support enqueue/dequeue operations.
1463  * While the per-CPU rq lock protects fast-path update operations, user-space
1464  * requests are serialized using a mutex to reduce the risk of conflicting
1465  * updates or API abuses.
1466  */
1467 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1468 
1469 /* Max allowed minimum utilization */
1470 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1471 
1472 /* Max allowed maximum utilization */
1473 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1474 
1475 /*
1476  * By default RT tasks run at the maximum performance point/capacity of the
1477  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1478  * SCHED_CAPACITY_SCALE.
1479  *
1480  * This knob allows admins to change the default behavior when uclamp is being
1481  * used. In battery powered devices, particularly, running at the maximum
1482  * capacity and frequency will increase energy consumption and shorten the
1483  * battery life.
1484  *
1485  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1486  *
1487  * This knob will not override the system default sched_util_clamp_min defined
1488  * above.
1489  */
1490 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1491 
1492 /* All clamps are required to be less or equal than these values */
1493 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1494 
1495 /*
1496  * This static key is used to reduce the uclamp overhead in the fast path. It
1497  * primarily disables the call to uclamp_rq_{inc, dec}() in
1498  * enqueue/dequeue_task().
1499  *
1500  * This allows users to continue to enable uclamp in their kernel config with
1501  * minimum uclamp overhead in the fast path.
1502  *
1503  * As soon as userspace modifies any of the uclamp knobs, the static key is
1504  * enabled, since we have an actual users that make use of uclamp
1505  * functionality.
1506  *
1507  * The knobs that would enable this static key are:
1508  *
1509  *   * A task modifying its uclamp value with sched_setattr().
1510  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1511  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1512  */
1513 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1514 
1515 static inline unsigned int
1516 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1517 		  unsigned int clamp_value)
1518 {
1519 	/*
1520 	 * Avoid blocked utilization pushing up the frequency when we go
1521 	 * idle (which drops the max-clamp) by retaining the last known
1522 	 * max-clamp.
1523 	 */
1524 	if (clamp_id == UCLAMP_MAX) {
1525 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1526 		return clamp_value;
1527 	}
1528 
1529 	return uclamp_none(UCLAMP_MIN);
1530 }
1531 
1532 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1533 				     unsigned int clamp_value)
1534 {
1535 	/* Reset max-clamp retention only on idle exit */
1536 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1537 		return;
1538 
1539 	uclamp_rq_set(rq, clamp_id, clamp_value);
1540 }
1541 
1542 static inline
1543 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1544 				   unsigned int clamp_value)
1545 {
1546 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1547 	int bucket_id = UCLAMP_BUCKETS - 1;
1548 
1549 	/*
1550 	 * Since both min and max clamps are max aggregated, find the
1551 	 * top most bucket with tasks in.
1552 	 */
1553 	for ( ; bucket_id >= 0; bucket_id--) {
1554 		if (!bucket[bucket_id].tasks)
1555 			continue;
1556 		return bucket[bucket_id].value;
1557 	}
1558 
1559 	/* No tasks -- default clamp values */
1560 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1561 }
1562 
1563 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1564 {
1565 	unsigned int default_util_min;
1566 	struct uclamp_se *uc_se;
1567 
1568 	lockdep_assert_held(&p->pi_lock);
1569 
1570 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1571 
1572 	/* Only sync if user didn't override the default */
1573 	if (uc_se->user_defined)
1574 		return;
1575 
1576 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1577 	uclamp_se_set(uc_se, default_util_min, false);
1578 }
1579 
1580 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1581 {
1582 	if (!rt_task(p))
1583 		return;
1584 
1585 	/* Protect updates to p->uclamp_* */
1586 	guard(task_rq_lock)(p);
1587 	__uclamp_update_util_min_rt_default(p);
1588 }
1589 
1590 static inline struct uclamp_se
1591 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1592 {
1593 	/* Copy by value as we could modify it */
1594 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1595 #ifdef CONFIG_UCLAMP_TASK_GROUP
1596 	unsigned int tg_min, tg_max, value;
1597 
1598 	/*
1599 	 * Tasks in autogroups or root task group will be
1600 	 * restricted by system defaults.
1601 	 */
1602 	if (task_group_is_autogroup(task_group(p)))
1603 		return uc_req;
1604 	if (task_group(p) == &root_task_group)
1605 		return uc_req;
1606 
1607 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1608 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1609 	value = uc_req.value;
1610 	value = clamp(value, tg_min, tg_max);
1611 	uclamp_se_set(&uc_req, value, false);
1612 #endif
1613 
1614 	return uc_req;
1615 }
1616 
1617 /*
1618  * The effective clamp bucket index of a task depends on, by increasing
1619  * priority:
1620  * - the task specific clamp value, when explicitly requested from userspace
1621  * - the task group effective clamp value, for tasks not either in the root
1622  *   group or in an autogroup
1623  * - the system default clamp value, defined by the sysadmin
1624  */
1625 static inline struct uclamp_se
1626 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1627 {
1628 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1629 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1630 
1631 	/* System default restrictions always apply */
1632 	if (unlikely(uc_req.value > uc_max.value))
1633 		return uc_max;
1634 
1635 	return uc_req;
1636 }
1637 
1638 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1639 {
1640 	struct uclamp_se uc_eff;
1641 
1642 	/* Task currently refcounted: use back-annotated (effective) value */
1643 	if (p->uclamp[clamp_id].active)
1644 		return (unsigned long)p->uclamp[clamp_id].value;
1645 
1646 	uc_eff = uclamp_eff_get(p, clamp_id);
1647 
1648 	return (unsigned long)uc_eff.value;
1649 }
1650 
1651 /*
1652  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1653  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1654  * updates the rq's clamp value if required.
1655  *
1656  * Tasks can have a task-specific value requested from user-space, track
1657  * within each bucket the maximum value for tasks refcounted in it.
1658  * This "local max aggregation" allows to track the exact "requested" value
1659  * for each bucket when all its RUNNABLE tasks require the same clamp.
1660  */
1661 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1662 				    enum uclamp_id clamp_id)
1663 {
1664 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1665 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1666 	struct uclamp_bucket *bucket;
1667 
1668 	lockdep_assert_rq_held(rq);
1669 
1670 	/* Update task effective clamp */
1671 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1672 
1673 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1674 	bucket->tasks++;
1675 	uc_se->active = true;
1676 
1677 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1678 
1679 	/*
1680 	 * Local max aggregation: rq buckets always track the max
1681 	 * "requested" clamp value of its RUNNABLE tasks.
1682 	 */
1683 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1684 		bucket->value = uc_se->value;
1685 
1686 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1687 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1688 }
1689 
1690 /*
1691  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1692  * is released. If this is the last task reference counting the rq's max
1693  * active clamp value, then the rq's clamp value is updated.
1694  *
1695  * Both refcounted tasks and rq's cached clamp values are expected to be
1696  * always valid. If it's detected they are not, as defensive programming,
1697  * enforce the expected state and warn.
1698  */
1699 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1700 				    enum uclamp_id clamp_id)
1701 {
1702 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1703 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1704 	struct uclamp_bucket *bucket;
1705 	unsigned int bkt_clamp;
1706 	unsigned int rq_clamp;
1707 
1708 	lockdep_assert_rq_held(rq);
1709 
1710 	/*
1711 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1712 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1713 	 *
1714 	 * In this case the uc_se->active flag should be false since no uclamp
1715 	 * accounting was performed at enqueue time and we can just return
1716 	 * here.
1717 	 *
1718 	 * Need to be careful of the following enqueue/dequeue ordering
1719 	 * problem too
1720 	 *
1721 	 *	enqueue(taskA)
1722 	 *	// sched_uclamp_used gets enabled
1723 	 *	enqueue(taskB)
1724 	 *	dequeue(taskA)
1725 	 *	// Must not decrement bucket->tasks here
1726 	 *	dequeue(taskB)
1727 	 *
1728 	 * where we could end up with stale data in uc_se and
1729 	 * bucket[uc_se->bucket_id].
1730 	 *
1731 	 * The following check here eliminates the possibility of such race.
1732 	 */
1733 	if (unlikely(!uc_se->active))
1734 		return;
1735 
1736 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1737 
1738 	WARN_ON_ONCE(!bucket->tasks);
1739 	if (likely(bucket->tasks))
1740 		bucket->tasks--;
1741 
1742 	uc_se->active = false;
1743 
1744 	/*
1745 	 * Keep "local max aggregation" simple and accept to (possibly)
1746 	 * overboost some RUNNABLE tasks in the same bucket.
1747 	 * The rq clamp bucket value is reset to its base value whenever
1748 	 * there are no more RUNNABLE tasks refcounting it.
1749 	 */
1750 	if (likely(bucket->tasks))
1751 		return;
1752 
1753 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1754 	/*
1755 	 * Defensive programming: this should never happen. If it happens,
1756 	 * e.g. due to future modification, warn and fix up the expected value.
1757 	 */
1758 	WARN_ON_ONCE(bucket->value > rq_clamp);
1759 	if (bucket->value >= rq_clamp) {
1760 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1761 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1762 	}
1763 }
1764 
1765 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags)
1766 {
1767 	enum uclamp_id clamp_id;
1768 
1769 	/*
1770 	 * Avoid any overhead until uclamp is actually used by the userspace.
1771 	 *
1772 	 * The condition is constructed such that a NOP is generated when
1773 	 * sched_uclamp_used is disabled.
1774 	 */
1775 	if (!uclamp_is_used())
1776 		return;
1777 
1778 	if (unlikely(!p->sched_class->uclamp_enabled))
1779 		return;
1780 
1781 	/* Only inc the delayed task which being woken up. */
1782 	if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED))
1783 		return;
1784 
1785 	for_each_clamp_id(clamp_id)
1786 		uclamp_rq_inc_id(rq, p, clamp_id);
1787 
1788 	/* Reset clamp idle holding when there is one RUNNABLE task */
1789 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1790 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1791 }
1792 
1793 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1794 {
1795 	enum uclamp_id clamp_id;
1796 
1797 	/*
1798 	 * Avoid any overhead until uclamp is actually used by the userspace.
1799 	 *
1800 	 * The condition is constructed such that a NOP is generated when
1801 	 * sched_uclamp_used is disabled.
1802 	 */
1803 	if (!uclamp_is_used())
1804 		return;
1805 
1806 	if (unlikely(!p->sched_class->uclamp_enabled))
1807 		return;
1808 
1809 	if (p->se.sched_delayed)
1810 		return;
1811 
1812 	for_each_clamp_id(clamp_id)
1813 		uclamp_rq_dec_id(rq, p, clamp_id);
1814 }
1815 
1816 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1817 				      enum uclamp_id clamp_id)
1818 {
1819 	if (!p->uclamp[clamp_id].active)
1820 		return;
1821 
1822 	uclamp_rq_dec_id(rq, p, clamp_id);
1823 	uclamp_rq_inc_id(rq, p, clamp_id);
1824 
1825 	/*
1826 	 * Make sure to clear the idle flag if we've transiently reached 0
1827 	 * active tasks on rq.
1828 	 */
1829 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1830 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1831 }
1832 
1833 static inline void
1834 uclamp_update_active(struct task_struct *p)
1835 {
1836 	enum uclamp_id clamp_id;
1837 	struct rq_flags rf;
1838 	struct rq *rq;
1839 
1840 	/*
1841 	 * Lock the task and the rq where the task is (or was) queued.
1842 	 *
1843 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1844 	 * price to pay to safely serialize util_{min,max} updates with
1845 	 * enqueues, dequeues and migration operations.
1846 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1847 	 */
1848 	rq = task_rq_lock(p, &rf);
1849 
1850 	/*
1851 	 * Setting the clamp bucket is serialized by task_rq_lock().
1852 	 * If the task is not yet RUNNABLE and its task_struct is not
1853 	 * affecting a valid clamp bucket, the next time it's enqueued,
1854 	 * it will already see the updated clamp bucket value.
1855 	 */
1856 	for_each_clamp_id(clamp_id)
1857 		uclamp_rq_reinc_id(rq, p, clamp_id);
1858 
1859 	task_rq_unlock(rq, p, &rf);
1860 }
1861 
1862 #ifdef CONFIG_UCLAMP_TASK_GROUP
1863 static inline void
1864 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1865 {
1866 	struct css_task_iter it;
1867 	struct task_struct *p;
1868 
1869 	css_task_iter_start(css, 0, &it);
1870 	while ((p = css_task_iter_next(&it)))
1871 		uclamp_update_active(p);
1872 	css_task_iter_end(&it);
1873 }
1874 
1875 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1876 #endif
1877 
1878 #ifdef CONFIG_SYSCTL
1879 #ifdef CONFIG_UCLAMP_TASK_GROUP
1880 static void uclamp_update_root_tg(void)
1881 {
1882 	struct task_group *tg = &root_task_group;
1883 
1884 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1885 		      sysctl_sched_uclamp_util_min, false);
1886 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1887 		      sysctl_sched_uclamp_util_max, false);
1888 
1889 	guard(rcu)();
1890 	cpu_util_update_eff(&root_task_group.css);
1891 }
1892 #else
1893 static void uclamp_update_root_tg(void) { }
1894 #endif
1895 
1896 static void uclamp_sync_util_min_rt_default(void)
1897 {
1898 	struct task_struct *g, *p;
1899 
1900 	/*
1901 	 * copy_process()			sysctl_uclamp
1902 	 *					  uclamp_min_rt = X;
1903 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1904 	 *   // link thread			  smp_mb__after_spinlock()
1905 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1906 	 *   sched_post_fork()			  for_each_process_thread()
1907 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1908 	 *
1909 	 * Ensures that either sched_post_fork() will observe the new
1910 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1911 	 * task.
1912 	 */
1913 	read_lock(&tasklist_lock);
1914 	smp_mb__after_spinlock();
1915 	read_unlock(&tasklist_lock);
1916 
1917 	guard(rcu)();
1918 	for_each_process_thread(g, p)
1919 		uclamp_update_util_min_rt_default(p);
1920 }
1921 
1922 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1923 				void *buffer, size_t *lenp, loff_t *ppos)
1924 {
1925 	bool update_root_tg = false;
1926 	int old_min, old_max, old_min_rt;
1927 	int result;
1928 
1929 	guard(mutex)(&uclamp_mutex);
1930 
1931 	old_min = sysctl_sched_uclamp_util_min;
1932 	old_max = sysctl_sched_uclamp_util_max;
1933 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1934 
1935 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1936 	if (result)
1937 		goto undo;
1938 	if (!write)
1939 		return 0;
1940 
1941 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1942 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1943 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1944 
1945 		result = -EINVAL;
1946 		goto undo;
1947 	}
1948 
1949 	if (old_min != sysctl_sched_uclamp_util_min) {
1950 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1951 			      sysctl_sched_uclamp_util_min, false);
1952 		update_root_tg = true;
1953 	}
1954 	if (old_max != sysctl_sched_uclamp_util_max) {
1955 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1956 			      sysctl_sched_uclamp_util_max, false);
1957 		update_root_tg = true;
1958 	}
1959 
1960 	if (update_root_tg) {
1961 		sched_uclamp_enable();
1962 		uclamp_update_root_tg();
1963 	}
1964 
1965 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1966 		sched_uclamp_enable();
1967 		uclamp_sync_util_min_rt_default();
1968 	}
1969 
1970 	/*
1971 	 * We update all RUNNABLE tasks only when task groups are in use.
1972 	 * Otherwise, keep it simple and do just a lazy update at each next
1973 	 * task enqueue time.
1974 	 */
1975 	return 0;
1976 
1977 undo:
1978 	sysctl_sched_uclamp_util_min = old_min;
1979 	sysctl_sched_uclamp_util_max = old_max;
1980 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1981 	return result;
1982 }
1983 #endif /* CONFIG_SYSCTL */
1984 
1985 static void uclamp_fork(struct task_struct *p)
1986 {
1987 	enum uclamp_id clamp_id;
1988 
1989 	/*
1990 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1991 	 * as the task is still at its early fork stages.
1992 	 */
1993 	for_each_clamp_id(clamp_id)
1994 		p->uclamp[clamp_id].active = false;
1995 
1996 	if (likely(!p->sched_reset_on_fork))
1997 		return;
1998 
1999 	for_each_clamp_id(clamp_id) {
2000 		uclamp_se_set(&p->uclamp_req[clamp_id],
2001 			      uclamp_none(clamp_id), false);
2002 	}
2003 }
2004 
2005 static void uclamp_post_fork(struct task_struct *p)
2006 {
2007 	uclamp_update_util_min_rt_default(p);
2008 }
2009 
2010 static void __init init_uclamp_rq(struct rq *rq)
2011 {
2012 	enum uclamp_id clamp_id;
2013 	struct uclamp_rq *uc_rq = rq->uclamp;
2014 
2015 	for_each_clamp_id(clamp_id) {
2016 		uc_rq[clamp_id] = (struct uclamp_rq) {
2017 			.value = uclamp_none(clamp_id)
2018 		};
2019 	}
2020 
2021 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2022 }
2023 
2024 static void __init init_uclamp(void)
2025 {
2026 	struct uclamp_se uc_max = {};
2027 	enum uclamp_id clamp_id;
2028 	int cpu;
2029 
2030 	for_each_possible_cpu(cpu)
2031 		init_uclamp_rq(cpu_rq(cpu));
2032 
2033 	for_each_clamp_id(clamp_id) {
2034 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2035 			      uclamp_none(clamp_id), false);
2036 	}
2037 
2038 	/* System defaults allow max clamp values for both indexes */
2039 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2040 	for_each_clamp_id(clamp_id) {
2041 		uclamp_default[clamp_id] = uc_max;
2042 #ifdef CONFIG_UCLAMP_TASK_GROUP
2043 		root_task_group.uclamp_req[clamp_id] = uc_max;
2044 		root_task_group.uclamp[clamp_id] = uc_max;
2045 #endif
2046 	}
2047 }
2048 
2049 #else /* !CONFIG_UCLAMP_TASK: */
2050 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { }
2051 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2052 static inline void uclamp_fork(struct task_struct *p) { }
2053 static inline void uclamp_post_fork(struct task_struct *p) { }
2054 static inline void init_uclamp(void) { }
2055 #endif /* !CONFIG_UCLAMP_TASK */
2056 
2057 bool sched_task_on_rq(struct task_struct *p)
2058 {
2059 	return task_on_rq_queued(p);
2060 }
2061 
2062 unsigned long get_wchan(struct task_struct *p)
2063 {
2064 	unsigned long ip = 0;
2065 	unsigned int state;
2066 
2067 	if (!p || p == current)
2068 		return 0;
2069 
2070 	/* Only get wchan if task is blocked and we can keep it that way. */
2071 	raw_spin_lock_irq(&p->pi_lock);
2072 	state = READ_ONCE(p->__state);
2073 	smp_rmb(); /* see try_to_wake_up() */
2074 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2075 		ip = __get_wchan(p);
2076 	raw_spin_unlock_irq(&p->pi_lock);
2077 
2078 	return ip;
2079 }
2080 
2081 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2082 {
2083 	if (!(flags & ENQUEUE_NOCLOCK))
2084 		update_rq_clock(rq);
2085 
2086 	/*
2087 	 * Can be before ->enqueue_task() because uclamp considers the
2088 	 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared
2089 	 * in ->enqueue_task().
2090 	 */
2091 	uclamp_rq_inc(rq, p, flags);
2092 
2093 	rq->queue_mask |= p->sched_class->queue_mask;
2094 	p->sched_class->enqueue_task(rq, p, flags);
2095 
2096 	psi_enqueue(p, flags);
2097 
2098 	if (!(flags & ENQUEUE_RESTORE))
2099 		sched_info_enqueue(rq, p);
2100 
2101 	if (sched_core_enabled(rq))
2102 		sched_core_enqueue(rq, p);
2103 }
2104 
2105 /*
2106  * Must only return false when DEQUEUE_SLEEP.
2107  */
2108 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2109 {
2110 	if (sched_core_enabled(rq))
2111 		sched_core_dequeue(rq, p, flags);
2112 
2113 	if (!(flags & DEQUEUE_NOCLOCK))
2114 		update_rq_clock(rq);
2115 
2116 	if (!(flags & DEQUEUE_SAVE))
2117 		sched_info_dequeue(rq, p);
2118 
2119 	psi_dequeue(p, flags);
2120 
2121 	/*
2122 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2123 	 * and mark the task ->sched_delayed.
2124 	 */
2125 	uclamp_rq_dec(rq, p);
2126 	rq->queue_mask |= p->sched_class->queue_mask;
2127 	return p->sched_class->dequeue_task(rq, p, flags);
2128 }
2129 
2130 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2131 {
2132 	if (task_on_rq_migrating(p))
2133 		flags |= ENQUEUE_MIGRATED;
2134 	if (flags & ENQUEUE_MIGRATED)
2135 		sched_mm_cid_migrate_to(rq, p);
2136 
2137 	enqueue_task(rq, p, flags);
2138 
2139 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2140 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2141 }
2142 
2143 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2144 {
2145 	WARN_ON_ONCE(flags & DEQUEUE_SLEEP);
2146 
2147 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2148 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2149 
2150 	/*
2151 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2152 	 * dequeue_task() and cleared *after* enqueue_task().
2153 	 */
2154 
2155 	dequeue_task(rq, p, flags);
2156 }
2157 
2158 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2159 {
2160 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2161 		__block_task(rq, p);
2162 }
2163 
2164 /**
2165  * task_curr - is this task currently executing on a CPU?
2166  * @p: the task in question.
2167  *
2168  * Return: 1 if the task is currently executing. 0 otherwise.
2169  */
2170 inline int task_curr(const struct task_struct *p)
2171 {
2172 	return cpu_curr(task_cpu(p)) == p;
2173 }
2174 
2175 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2176 {
2177 	struct task_struct *donor = rq->donor;
2178 
2179 	if (p->sched_class == donor->sched_class)
2180 		donor->sched_class->wakeup_preempt(rq, p, flags);
2181 	else if (sched_class_above(p->sched_class, donor->sched_class))
2182 		resched_curr(rq);
2183 
2184 	/*
2185 	 * A queue event has occurred, and we're going to schedule.  In
2186 	 * this case, we can save a useless back to back clock update.
2187 	 */
2188 	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2189 		rq_clock_skip_update(rq);
2190 }
2191 
2192 static __always_inline
2193 int __task_state_match(struct task_struct *p, unsigned int state)
2194 {
2195 	if (READ_ONCE(p->__state) & state)
2196 		return 1;
2197 
2198 	if (READ_ONCE(p->saved_state) & state)
2199 		return -1;
2200 
2201 	return 0;
2202 }
2203 
2204 static __always_inline
2205 int task_state_match(struct task_struct *p, unsigned int state)
2206 {
2207 	/*
2208 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2209 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2210 	 */
2211 	guard(raw_spinlock_irq)(&p->pi_lock);
2212 	return __task_state_match(p, state);
2213 }
2214 
2215 /*
2216  * wait_task_inactive - wait for a thread to unschedule.
2217  *
2218  * Wait for the thread to block in any of the states set in @match_state.
2219  * If it changes, i.e. @p might have woken up, then return zero.  When we
2220  * succeed in waiting for @p to be off its CPU, we return a positive number
2221  * (its total switch count).  If a second call a short while later returns the
2222  * same number, the caller can be sure that @p has remained unscheduled the
2223  * whole time.
2224  *
2225  * The caller must ensure that the task *will* unschedule sometime soon,
2226  * else this function might spin for a *long* time. This function can't
2227  * be called with interrupts off, or it may introduce deadlock with
2228  * smp_call_function() if an IPI is sent by the same process we are
2229  * waiting to become inactive.
2230  */
2231 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2232 {
2233 	int running, queued, match;
2234 	struct rq_flags rf;
2235 	unsigned long ncsw;
2236 	struct rq *rq;
2237 
2238 	for (;;) {
2239 		/*
2240 		 * We do the initial early heuristics without holding
2241 		 * any task-queue locks at all. We'll only try to get
2242 		 * the runqueue lock when things look like they will
2243 		 * work out!
2244 		 */
2245 		rq = task_rq(p);
2246 
2247 		/*
2248 		 * If the task is actively running on another CPU
2249 		 * still, just relax and busy-wait without holding
2250 		 * any locks.
2251 		 *
2252 		 * NOTE! Since we don't hold any locks, it's not
2253 		 * even sure that "rq" stays as the right runqueue!
2254 		 * But we don't care, since "task_on_cpu()" will
2255 		 * return false if the runqueue has changed and p
2256 		 * is actually now running somewhere else!
2257 		 */
2258 		while (task_on_cpu(rq, p)) {
2259 			if (!task_state_match(p, match_state))
2260 				return 0;
2261 			cpu_relax();
2262 		}
2263 
2264 		/*
2265 		 * Ok, time to look more closely! We need the rq
2266 		 * lock now, to be *sure*. If we're wrong, we'll
2267 		 * just go back and repeat.
2268 		 */
2269 		rq = task_rq_lock(p, &rf);
2270 		/*
2271 		 * If task is sched_delayed, force dequeue it, to avoid always
2272 		 * hitting the tick timeout in the queued case
2273 		 */
2274 		if (p->se.sched_delayed)
2275 			dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
2276 		trace_sched_wait_task(p);
2277 		running = task_on_cpu(rq, p);
2278 		queued = task_on_rq_queued(p);
2279 		ncsw = 0;
2280 		if ((match = __task_state_match(p, match_state))) {
2281 			/*
2282 			 * When matching on p->saved_state, consider this task
2283 			 * still queued so it will wait.
2284 			 */
2285 			if (match < 0)
2286 				queued = 1;
2287 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2288 		}
2289 		task_rq_unlock(rq, p, &rf);
2290 
2291 		/*
2292 		 * If it changed from the expected state, bail out now.
2293 		 */
2294 		if (unlikely(!ncsw))
2295 			break;
2296 
2297 		/*
2298 		 * Was it really running after all now that we
2299 		 * checked with the proper locks actually held?
2300 		 *
2301 		 * Oops. Go back and try again..
2302 		 */
2303 		if (unlikely(running)) {
2304 			cpu_relax();
2305 			continue;
2306 		}
2307 
2308 		/*
2309 		 * It's not enough that it's not actively running,
2310 		 * it must be off the runqueue _entirely_, and not
2311 		 * preempted!
2312 		 *
2313 		 * So if it was still runnable (but just not actively
2314 		 * running right now), it's preempted, and we should
2315 		 * yield - it could be a while.
2316 		 */
2317 		if (unlikely(queued)) {
2318 			ktime_t to = NSEC_PER_SEC / HZ;
2319 
2320 			set_current_state(TASK_UNINTERRUPTIBLE);
2321 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2322 			continue;
2323 		}
2324 
2325 		/*
2326 		 * Ahh, all good. It wasn't running, and it wasn't
2327 		 * runnable, which means that it will never become
2328 		 * running in the future either. We're all done!
2329 		 */
2330 		break;
2331 	}
2332 
2333 	return ncsw;
2334 }
2335 
2336 static void
2337 do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2338 
2339 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2340 {
2341 	struct affinity_context ac = {
2342 		.new_mask  = cpumask_of(rq->cpu),
2343 		.flags     = SCA_MIGRATE_DISABLE,
2344 	};
2345 
2346 	if (likely(!p->migration_disabled))
2347 		return;
2348 
2349 	if (p->cpus_ptr != &p->cpus_mask)
2350 		return;
2351 
2352 	scoped_guard (task_rq_lock, p)
2353 		do_set_cpus_allowed(p, &ac);
2354 }
2355 
2356 void ___migrate_enable(void)
2357 {
2358 	struct task_struct *p = current;
2359 	struct affinity_context ac = {
2360 		.new_mask  = &p->cpus_mask,
2361 		.flags     = SCA_MIGRATE_ENABLE,
2362 	};
2363 
2364 	__set_cpus_allowed_ptr(p, &ac);
2365 }
2366 EXPORT_SYMBOL_GPL(___migrate_enable);
2367 
2368 void migrate_disable(void)
2369 {
2370 	__migrate_disable();
2371 }
2372 EXPORT_SYMBOL_GPL(migrate_disable);
2373 
2374 void migrate_enable(void)
2375 {
2376 	__migrate_enable();
2377 }
2378 EXPORT_SYMBOL_GPL(migrate_enable);
2379 
2380 static inline bool rq_has_pinned_tasks(struct rq *rq)
2381 {
2382 	return rq->nr_pinned;
2383 }
2384 
2385 /*
2386  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2387  * __set_cpus_allowed_ptr() and select_fallback_rq().
2388  */
2389 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2390 {
2391 	/* When not in the task's cpumask, no point in looking further. */
2392 	if (!task_allowed_on_cpu(p, cpu))
2393 		return false;
2394 
2395 	/* migrate_disabled() must be allowed to finish. */
2396 	if (is_migration_disabled(p))
2397 		return cpu_online(cpu);
2398 
2399 	/* Non kernel threads are not allowed during either online or offline. */
2400 	if (!(p->flags & PF_KTHREAD))
2401 		return cpu_active(cpu);
2402 
2403 	/* KTHREAD_IS_PER_CPU is always allowed. */
2404 	if (kthread_is_per_cpu(p))
2405 		return cpu_online(cpu);
2406 
2407 	/* Regular kernel threads don't get to stay during offline. */
2408 	if (cpu_dying(cpu))
2409 		return false;
2410 
2411 	/* But are allowed during online. */
2412 	return cpu_online(cpu);
2413 }
2414 
2415 /*
2416  * This is how migration works:
2417  *
2418  * 1) we invoke migration_cpu_stop() on the target CPU using
2419  *    stop_one_cpu().
2420  * 2) stopper starts to run (implicitly forcing the migrated thread
2421  *    off the CPU)
2422  * 3) it checks whether the migrated task is still in the wrong runqueue.
2423  * 4) if it's in the wrong runqueue then the migration thread removes
2424  *    it and puts it into the right queue.
2425  * 5) stopper completes and stop_one_cpu() returns and the migration
2426  *    is done.
2427  */
2428 
2429 /*
2430  * move_queued_task - move a queued task to new rq.
2431  *
2432  * Returns (locked) new rq. Old rq's lock is released.
2433  */
2434 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2435 				   struct task_struct *p, int new_cpu)
2436 {
2437 	lockdep_assert_rq_held(rq);
2438 
2439 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2440 	set_task_cpu(p, new_cpu);
2441 	rq_unlock(rq, rf);
2442 
2443 	rq = cpu_rq(new_cpu);
2444 
2445 	rq_lock(rq, rf);
2446 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2447 	activate_task(rq, p, 0);
2448 	wakeup_preempt(rq, p, 0);
2449 
2450 	return rq;
2451 }
2452 
2453 struct migration_arg {
2454 	struct task_struct		*task;
2455 	int				dest_cpu;
2456 	struct set_affinity_pending	*pending;
2457 };
2458 
2459 /*
2460  * @refs: number of wait_for_completion()
2461  * @stop_pending: is @stop_work in use
2462  */
2463 struct set_affinity_pending {
2464 	refcount_t		refs;
2465 	unsigned int		stop_pending;
2466 	struct completion	done;
2467 	struct cpu_stop_work	stop_work;
2468 	struct migration_arg	arg;
2469 };
2470 
2471 /*
2472  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2473  * this because either it can't run here any more (set_cpus_allowed()
2474  * away from this CPU, or CPU going down), or because we're
2475  * attempting to rebalance this task on exec (sched_exec).
2476  *
2477  * So we race with normal scheduler movements, but that's OK, as long
2478  * as the task is no longer on this CPU.
2479  */
2480 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2481 				 struct task_struct *p, int dest_cpu)
2482 {
2483 	/* Affinity changed (again). */
2484 	if (!is_cpu_allowed(p, dest_cpu))
2485 		return rq;
2486 
2487 	rq = move_queued_task(rq, rf, p, dest_cpu);
2488 
2489 	return rq;
2490 }
2491 
2492 /*
2493  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2494  * and performs thread migration by bumping thread off CPU then
2495  * 'pushing' onto another runqueue.
2496  */
2497 static int migration_cpu_stop(void *data)
2498 {
2499 	struct migration_arg *arg = data;
2500 	struct set_affinity_pending *pending = arg->pending;
2501 	struct task_struct *p = arg->task;
2502 	struct rq *rq = this_rq();
2503 	bool complete = false;
2504 	struct rq_flags rf;
2505 
2506 	/*
2507 	 * The original target CPU might have gone down and we might
2508 	 * be on another CPU but it doesn't matter.
2509 	 */
2510 	local_irq_save(rf.flags);
2511 	/*
2512 	 * We need to explicitly wake pending tasks before running
2513 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2514 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2515 	 */
2516 	flush_smp_call_function_queue();
2517 
2518 	raw_spin_lock(&p->pi_lock);
2519 	rq_lock(rq, &rf);
2520 
2521 	/*
2522 	 * If we were passed a pending, then ->stop_pending was set, thus
2523 	 * p->migration_pending must have remained stable.
2524 	 */
2525 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2526 
2527 	/*
2528 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2529 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2530 	 * we're holding p->pi_lock.
2531 	 */
2532 	if (task_rq(p) == rq) {
2533 		if (is_migration_disabled(p))
2534 			goto out;
2535 
2536 		if (pending) {
2537 			p->migration_pending = NULL;
2538 			complete = true;
2539 
2540 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2541 				goto out;
2542 		}
2543 
2544 		if (task_on_rq_queued(p)) {
2545 			update_rq_clock(rq);
2546 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2547 		} else {
2548 			p->wake_cpu = arg->dest_cpu;
2549 		}
2550 
2551 		/*
2552 		 * XXX __migrate_task() can fail, at which point we might end
2553 		 * up running on a dodgy CPU, AFAICT this can only happen
2554 		 * during CPU hotplug, at which point we'll get pushed out
2555 		 * anyway, so it's probably not a big deal.
2556 		 */
2557 
2558 	} else if (pending) {
2559 		/*
2560 		 * This happens when we get migrated between migrate_enable()'s
2561 		 * preempt_enable() and scheduling the stopper task. At that
2562 		 * point we're a regular task again and not current anymore.
2563 		 *
2564 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2565 		 * more likely.
2566 		 */
2567 
2568 		/*
2569 		 * The task moved before the stopper got to run. We're holding
2570 		 * ->pi_lock, so the allowed mask is stable - if it got
2571 		 * somewhere allowed, we're done.
2572 		 */
2573 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2574 			p->migration_pending = NULL;
2575 			complete = true;
2576 			goto out;
2577 		}
2578 
2579 		/*
2580 		 * When migrate_enable() hits a rq mis-match we can't reliably
2581 		 * determine is_migration_disabled() and so have to chase after
2582 		 * it.
2583 		 */
2584 		WARN_ON_ONCE(!pending->stop_pending);
2585 		preempt_disable();
2586 		rq_unlock(rq, &rf);
2587 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2588 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2589 				    &pending->arg, &pending->stop_work);
2590 		preempt_enable();
2591 		return 0;
2592 	}
2593 out:
2594 	if (pending)
2595 		pending->stop_pending = false;
2596 	rq_unlock(rq, &rf);
2597 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2598 
2599 	if (complete)
2600 		complete_all(&pending->done);
2601 
2602 	return 0;
2603 }
2604 
2605 int push_cpu_stop(void *arg)
2606 {
2607 	struct rq *lowest_rq = NULL, *rq = this_rq();
2608 	struct task_struct *p = arg;
2609 
2610 	raw_spin_lock_irq(&p->pi_lock);
2611 	raw_spin_rq_lock(rq);
2612 
2613 	if (task_rq(p) != rq)
2614 		goto out_unlock;
2615 
2616 	if (is_migration_disabled(p)) {
2617 		p->migration_flags |= MDF_PUSH;
2618 		goto out_unlock;
2619 	}
2620 
2621 	p->migration_flags &= ~MDF_PUSH;
2622 
2623 	if (p->sched_class->find_lock_rq)
2624 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2625 
2626 	if (!lowest_rq)
2627 		goto out_unlock;
2628 
2629 	// XXX validate p is still the highest prio task
2630 	if (task_rq(p) == rq) {
2631 		move_queued_task_locked(rq, lowest_rq, p);
2632 		resched_curr(lowest_rq);
2633 	}
2634 
2635 	double_unlock_balance(rq, lowest_rq);
2636 
2637 out_unlock:
2638 	rq->push_busy = false;
2639 	raw_spin_rq_unlock(rq);
2640 	raw_spin_unlock_irq(&p->pi_lock);
2641 
2642 	put_task_struct(p);
2643 	return 0;
2644 }
2645 
2646 /*
2647  * sched_class::set_cpus_allowed must do the below, but is not required to
2648  * actually call this function.
2649  */
2650 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2651 {
2652 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2653 		p->cpus_ptr = ctx->new_mask;
2654 		return;
2655 	}
2656 
2657 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2658 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2659 
2660 	/*
2661 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2662 	 */
2663 	if (ctx->flags & SCA_USER)
2664 		swap(p->user_cpus_ptr, ctx->user_mask);
2665 }
2666 
2667 static void
2668 do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2669 {
2670 	scoped_guard (sched_change, p, DEQUEUE_SAVE) {
2671 		p->sched_class->set_cpus_allowed(p, ctx);
2672 		mm_set_cpus_allowed(p->mm, ctx->new_mask);
2673 	}
2674 }
2675 
2676 /*
2677  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2678  * affinity (if any) should be destroyed too.
2679  */
2680 void set_cpus_allowed_force(struct task_struct *p, const struct cpumask *new_mask)
2681 {
2682 	struct affinity_context ac = {
2683 		.new_mask  = new_mask,
2684 		.user_mask = NULL,
2685 		.flags     = SCA_USER,	/* clear the user requested mask */
2686 	};
2687 	union cpumask_rcuhead {
2688 		cpumask_t cpumask;
2689 		struct rcu_head rcu;
2690 	};
2691 
2692 	scoped_guard (__task_rq_lock, p)
2693 		do_set_cpus_allowed(p, &ac);
2694 
2695 	/*
2696 	 * Because this is called with p->pi_lock held, it is not possible
2697 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2698 	 * kfree_rcu().
2699 	 */
2700 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2701 }
2702 
2703 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2704 		      int node)
2705 {
2706 	cpumask_t *user_mask;
2707 	unsigned long flags;
2708 
2709 	/*
2710 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2711 	 * may differ by now due to racing.
2712 	 */
2713 	dst->user_cpus_ptr = NULL;
2714 
2715 	/*
2716 	 * This check is racy and losing the race is a valid situation.
2717 	 * It is not worth the extra overhead of taking the pi_lock on
2718 	 * every fork/clone.
2719 	 */
2720 	if (data_race(!src->user_cpus_ptr))
2721 		return 0;
2722 
2723 	user_mask = alloc_user_cpus_ptr(node);
2724 	if (!user_mask)
2725 		return -ENOMEM;
2726 
2727 	/*
2728 	 * Use pi_lock to protect content of user_cpus_ptr
2729 	 *
2730 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2731 	 * set_cpus_allowed_force().
2732 	 */
2733 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2734 	if (src->user_cpus_ptr) {
2735 		swap(dst->user_cpus_ptr, user_mask);
2736 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2737 	}
2738 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2739 
2740 	if (unlikely(user_mask))
2741 		kfree(user_mask);
2742 
2743 	return 0;
2744 }
2745 
2746 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2747 {
2748 	struct cpumask *user_mask = NULL;
2749 
2750 	swap(p->user_cpus_ptr, user_mask);
2751 
2752 	return user_mask;
2753 }
2754 
2755 void release_user_cpus_ptr(struct task_struct *p)
2756 {
2757 	kfree(clear_user_cpus_ptr(p));
2758 }
2759 
2760 /*
2761  * This function is wildly self concurrent; here be dragons.
2762  *
2763  *
2764  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2765  * designated task is enqueued on an allowed CPU. If that task is currently
2766  * running, we have to kick it out using the CPU stopper.
2767  *
2768  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2769  * Consider:
2770  *
2771  *     Initial conditions: P0->cpus_mask = [0, 1]
2772  *
2773  *     P0@CPU0                  P1
2774  *
2775  *     migrate_disable();
2776  *     <preempted>
2777  *                              set_cpus_allowed_ptr(P0, [1]);
2778  *
2779  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2780  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2781  * This means we need the following scheme:
2782  *
2783  *     P0@CPU0                  P1
2784  *
2785  *     migrate_disable();
2786  *     <preempted>
2787  *                              set_cpus_allowed_ptr(P0, [1]);
2788  *                                <blocks>
2789  *     <resumes>
2790  *     migrate_enable();
2791  *       __set_cpus_allowed_ptr();
2792  *       <wakes local stopper>
2793  *                         `--> <woken on migration completion>
2794  *
2795  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2796  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2797  * task p are serialized by p->pi_lock, which we can leverage: the one that
2798  * should come into effect at the end of the Migrate-Disable region is the last
2799  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2800  * but we still need to properly signal those waiting tasks at the appropriate
2801  * moment.
2802  *
2803  * This is implemented using struct set_affinity_pending. The first
2804  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2805  * setup an instance of that struct and install it on the targeted task_struct.
2806  * Any and all further callers will reuse that instance. Those then wait for
2807  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2808  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2809  *
2810  *
2811  * (1) In the cases covered above. There is one more where the completion is
2812  * signaled within affine_move_task() itself: when a subsequent affinity request
2813  * occurs after the stopper bailed out due to the targeted task still being
2814  * Migrate-Disable. Consider:
2815  *
2816  *     Initial conditions: P0->cpus_mask = [0, 1]
2817  *
2818  *     CPU0		  P1				P2
2819  *     <P0>
2820  *       migrate_disable();
2821  *       <preempted>
2822  *                        set_cpus_allowed_ptr(P0, [1]);
2823  *                          <blocks>
2824  *     <migration/0>
2825  *       migration_cpu_stop()
2826  *         is_migration_disabled()
2827  *           <bails>
2828  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2829  *                                                         <signal completion>
2830  *                          <awakes>
2831  *
2832  * Note that the above is safe vs a concurrent migrate_enable(), as any
2833  * pending affinity completion is preceded by an uninstallation of
2834  * p->migration_pending done with p->pi_lock held.
2835  */
2836 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2837 			    int dest_cpu, unsigned int flags)
2838 	__releases(rq->lock)
2839 	__releases(p->pi_lock)
2840 {
2841 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2842 	bool stop_pending, complete = false;
2843 
2844 	/*
2845 	 * Can the task run on the task's current CPU? If so, we're done
2846 	 *
2847 	 * We are also done if the task is the current donor, boosting a lock-
2848 	 * holding proxy, (and potentially has been migrated outside its
2849 	 * current or previous affinity mask)
2850 	 */
2851 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask) ||
2852 	    (task_current_donor(rq, p) && !task_current(rq, p))) {
2853 		struct task_struct *push_task = NULL;
2854 
2855 		if ((flags & SCA_MIGRATE_ENABLE) &&
2856 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2857 			rq->push_busy = true;
2858 			push_task = get_task_struct(p);
2859 		}
2860 
2861 		/*
2862 		 * If there are pending waiters, but no pending stop_work,
2863 		 * then complete now.
2864 		 */
2865 		pending = p->migration_pending;
2866 		if (pending && !pending->stop_pending) {
2867 			p->migration_pending = NULL;
2868 			complete = true;
2869 		}
2870 
2871 		preempt_disable();
2872 		task_rq_unlock(rq, p, rf);
2873 		if (push_task) {
2874 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2875 					    p, &rq->push_work);
2876 		}
2877 		preempt_enable();
2878 
2879 		if (complete)
2880 			complete_all(&pending->done);
2881 
2882 		return 0;
2883 	}
2884 
2885 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2886 		/* serialized by p->pi_lock */
2887 		if (!p->migration_pending) {
2888 			/* Install the request */
2889 			refcount_set(&my_pending.refs, 1);
2890 			init_completion(&my_pending.done);
2891 			my_pending.arg = (struct migration_arg) {
2892 				.task = p,
2893 				.dest_cpu = dest_cpu,
2894 				.pending = &my_pending,
2895 			};
2896 
2897 			p->migration_pending = &my_pending;
2898 		} else {
2899 			pending = p->migration_pending;
2900 			refcount_inc(&pending->refs);
2901 			/*
2902 			 * Affinity has changed, but we've already installed a
2903 			 * pending. migration_cpu_stop() *must* see this, else
2904 			 * we risk a completion of the pending despite having a
2905 			 * task on a disallowed CPU.
2906 			 *
2907 			 * Serialized by p->pi_lock, so this is safe.
2908 			 */
2909 			pending->arg.dest_cpu = dest_cpu;
2910 		}
2911 	}
2912 	pending = p->migration_pending;
2913 	/*
2914 	 * - !MIGRATE_ENABLE:
2915 	 *   we'll have installed a pending if there wasn't one already.
2916 	 *
2917 	 * - MIGRATE_ENABLE:
2918 	 *   we're here because the current CPU isn't matching anymore,
2919 	 *   the only way that can happen is because of a concurrent
2920 	 *   set_cpus_allowed_ptr() call, which should then still be
2921 	 *   pending completion.
2922 	 *
2923 	 * Either way, we really should have a @pending here.
2924 	 */
2925 	if (WARN_ON_ONCE(!pending)) {
2926 		task_rq_unlock(rq, p, rf);
2927 		return -EINVAL;
2928 	}
2929 
2930 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2931 		/*
2932 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2933 		 * anything else we cannot do is_migration_disabled(), punt
2934 		 * and have the stopper function handle it all race-free.
2935 		 */
2936 		stop_pending = pending->stop_pending;
2937 		if (!stop_pending)
2938 			pending->stop_pending = true;
2939 
2940 		if (flags & SCA_MIGRATE_ENABLE)
2941 			p->migration_flags &= ~MDF_PUSH;
2942 
2943 		preempt_disable();
2944 		task_rq_unlock(rq, p, rf);
2945 		if (!stop_pending) {
2946 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2947 					    &pending->arg, &pending->stop_work);
2948 		}
2949 		preempt_enable();
2950 
2951 		if (flags & SCA_MIGRATE_ENABLE)
2952 			return 0;
2953 	} else {
2954 
2955 		if (!is_migration_disabled(p)) {
2956 			if (task_on_rq_queued(p))
2957 				rq = move_queued_task(rq, rf, p, dest_cpu);
2958 
2959 			if (!pending->stop_pending) {
2960 				p->migration_pending = NULL;
2961 				complete = true;
2962 			}
2963 		}
2964 		task_rq_unlock(rq, p, rf);
2965 
2966 		if (complete)
2967 			complete_all(&pending->done);
2968 	}
2969 
2970 	wait_for_completion(&pending->done);
2971 
2972 	if (refcount_dec_and_test(&pending->refs))
2973 		wake_up_var(&pending->refs); /* No UaF, just an address */
2974 
2975 	/*
2976 	 * Block the original owner of &pending until all subsequent callers
2977 	 * have seen the completion and decremented the refcount
2978 	 */
2979 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2980 
2981 	/* ARGH */
2982 	WARN_ON_ONCE(my_pending.stop_pending);
2983 
2984 	return 0;
2985 }
2986 
2987 /*
2988  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2989  */
2990 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2991 					 struct affinity_context *ctx,
2992 					 struct rq *rq,
2993 					 struct rq_flags *rf)
2994 	__releases(rq->lock)
2995 	__releases(p->pi_lock)
2996 {
2997 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2998 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2999 	bool kthread = p->flags & PF_KTHREAD;
3000 	unsigned int dest_cpu;
3001 	int ret = 0;
3002 
3003 	if (kthread || is_migration_disabled(p)) {
3004 		/*
3005 		 * Kernel threads are allowed on online && !active CPUs,
3006 		 * however, during cpu-hot-unplug, even these might get pushed
3007 		 * away if not KTHREAD_IS_PER_CPU.
3008 		 *
3009 		 * Specifically, migration_disabled() tasks must not fail the
3010 		 * cpumask_any_and_distribute() pick below, esp. so on
3011 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3012 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3013 		 */
3014 		cpu_valid_mask = cpu_online_mask;
3015 	}
3016 
3017 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3018 		ret = -EINVAL;
3019 		goto out;
3020 	}
3021 
3022 	/*
3023 	 * Must re-check here, to close a race against __kthread_bind(),
3024 	 * sched_setaffinity() is not guaranteed to observe the flag.
3025 	 */
3026 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3027 		ret = -EINVAL;
3028 		goto out;
3029 	}
3030 
3031 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3032 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3033 			if (ctx->flags & SCA_USER)
3034 				swap(p->user_cpus_ptr, ctx->user_mask);
3035 			goto out;
3036 		}
3037 
3038 		if (WARN_ON_ONCE(p == current &&
3039 				 is_migration_disabled(p) &&
3040 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3041 			ret = -EBUSY;
3042 			goto out;
3043 		}
3044 	}
3045 
3046 	/*
3047 	 * Picking a ~random cpu helps in cases where we are changing affinity
3048 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3049 	 * immediately required to distribute the tasks within their new mask.
3050 	 */
3051 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3052 	if (dest_cpu >= nr_cpu_ids) {
3053 		ret = -EINVAL;
3054 		goto out;
3055 	}
3056 
3057 	do_set_cpus_allowed(p, ctx);
3058 
3059 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3060 
3061 out:
3062 	task_rq_unlock(rq, p, rf);
3063 
3064 	return ret;
3065 }
3066 
3067 /*
3068  * Change a given task's CPU affinity. Migrate the thread to a
3069  * proper CPU and schedule it away if the CPU it's executing on
3070  * is removed from the allowed bitmask.
3071  *
3072  * NOTE: the caller must have a valid reference to the task, the
3073  * task must not exit() & deallocate itself prematurely. The
3074  * call is not atomic; no spinlocks may be held.
3075  */
3076 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3077 {
3078 	struct rq_flags rf;
3079 	struct rq *rq;
3080 
3081 	rq = task_rq_lock(p, &rf);
3082 	/*
3083 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3084 	 * flags are set.
3085 	 */
3086 	if (p->user_cpus_ptr &&
3087 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3088 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3089 		ctx->new_mask = rq->scratch_mask;
3090 
3091 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3092 }
3093 
3094 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3095 {
3096 	struct affinity_context ac = {
3097 		.new_mask  = new_mask,
3098 		.flags     = 0,
3099 	};
3100 
3101 	return __set_cpus_allowed_ptr(p, &ac);
3102 }
3103 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3104 
3105 /*
3106  * Change a given task's CPU affinity to the intersection of its current
3107  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3108  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3109  * affinity or use cpu_online_mask instead.
3110  *
3111  * If the resulting mask is empty, leave the affinity unchanged and return
3112  * -EINVAL.
3113  */
3114 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3115 				     struct cpumask *new_mask,
3116 				     const struct cpumask *subset_mask)
3117 {
3118 	struct affinity_context ac = {
3119 		.new_mask  = new_mask,
3120 		.flags     = 0,
3121 	};
3122 	struct rq_flags rf;
3123 	struct rq *rq;
3124 	int err;
3125 
3126 	rq = task_rq_lock(p, &rf);
3127 
3128 	/*
3129 	 * Forcefully restricting the affinity of a deadline task is
3130 	 * likely to cause problems, so fail and noisily override the
3131 	 * mask entirely.
3132 	 */
3133 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3134 		err = -EPERM;
3135 		goto err_unlock;
3136 	}
3137 
3138 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3139 		err = -EINVAL;
3140 		goto err_unlock;
3141 	}
3142 
3143 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3144 
3145 err_unlock:
3146 	task_rq_unlock(rq, p, &rf);
3147 	return err;
3148 }
3149 
3150 /*
3151  * Restrict the CPU affinity of task @p so that it is a subset of
3152  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3153  * old affinity mask. If the resulting mask is empty, we warn and walk
3154  * up the cpuset hierarchy until we find a suitable mask.
3155  */
3156 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3157 {
3158 	cpumask_var_t new_mask;
3159 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3160 
3161 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3162 
3163 	/*
3164 	 * __migrate_task() can fail silently in the face of concurrent
3165 	 * offlining of the chosen destination CPU, so take the hotplug
3166 	 * lock to ensure that the migration succeeds.
3167 	 */
3168 	cpus_read_lock();
3169 	if (!cpumask_available(new_mask))
3170 		goto out_set_mask;
3171 
3172 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3173 		goto out_free_mask;
3174 
3175 	/*
3176 	 * We failed to find a valid subset of the affinity mask for the
3177 	 * task, so override it based on its cpuset hierarchy.
3178 	 */
3179 	cpuset_cpus_allowed(p, new_mask);
3180 	override_mask = new_mask;
3181 
3182 out_set_mask:
3183 	if (printk_ratelimit()) {
3184 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3185 				task_pid_nr(p), p->comm,
3186 				cpumask_pr_args(override_mask));
3187 	}
3188 
3189 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3190 out_free_mask:
3191 	cpus_read_unlock();
3192 	free_cpumask_var(new_mask);
3193 }
3194 
3195 /*
3196  * Restore the affinity of a task @p which was previously restricted by a
3197  * call to force_compatible_cpus_allowed_ptr().
3198  *
3199  * It is the caller's responsibility to serialise this with any calls to
3200  * force_compatible_cpus_allowed_ptr(@p).
3201  */
3202 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3203 {
3204 	struct affinity_context ac = {
3205 		.new_mask  = task_user_cpus(p),
3206 		.flags     = 0,
3207 	};
3208 	int ret;
3209 
3210 	/*
3211 	 * Try to restore the old affinity mask with __sched_setaffinity().
3212 	 * Cpuset masking will be done there too.
3213 	 */
3214 	ret = __sched_setaffinity(p, &ac);
3215 	WARN_ON_ONCE(ret);
3216 }
3217 
3218 #ifdef CONFIG_SMP
3219 
3220 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3221 {
3222 	unsigned int state = READ_ONCE(p->__state);
3223 
3224 	/*
3225 	 * We should never call set_task_cpu() on a blocked task,
3226 	 * ttwu() will sort out the placement.
3227 	 */
3228 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3229 
3230 	/*
3231 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3232 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3233 	 * time relying on p->on_rq.
3234 	 */
3235 	WARN_ON_ONCE(state == TASK_RUNNING &&
3236 		     p->sched_class == &fair_sched_class &&
3237 		     (p->on_rq && !task_on_rq_migrating(p)));
3238 
3239 #ifdef CONFIG_LOCKDEP
3240 	/*
3241 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3242 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3243 	 *
3244 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3245 	 * see task_group().
3246 	 *
3247 	 * Furthermore, all task_rq users should acquire both locks, see
3248 	 * task_rq_lock().
3249 	 */
3250 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3251 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3252 #endif
3253 	/*
3254 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3255 	 */
3256 	WARN_ON_ONCE(!cpu_online(new_cpu));
3257 
3258 	WARN_ON_ONCE(is_migration_disabled(p));
3259 
3260 	trace_sched_migrate_task(p, new_cpu);
3261 
3262 	if (task_cpu(p) != new_cpu) {
3263 		if (p->sched_class->migrate_task_rq)
3264 			p->sched_class->migrate_task_rq(p, new_cpu);
3265 		p->se.nr_migrations++;
3266 		rseq_migrate(p);
3267 		sched_mm_cid_migrate_from(p);
3268 		perf_event_task_migrate(p);
3269 	}
3270 
3271 	__set_task_cpu(p, new_cpu);
3272 }
3273 #endif /* CONFIG_SMP */
3274 
3275 #ifdef CONFIG_NUMA_BALANCING
3276 static void __migrate_swap_task(struct task_struct *p, int cpu)
3277 {
3278 	if (task_on_rq_queued(p)) {
3279 		struct rq *src_rq, *dst_rq;
3280 		struct rq_flags srf, drf;
3281 
3282 		src_rq = task_rq(p);
3283 		dst_rq = cpu_rq(cpu);
3284 
3285 		rq_pin_lock(src_rq, &srf);
3286 		rq_pin_lock(dst_rq, &drf);
3287 
3288 		move_queued_task_locked(src_rq, dst_rq, p);
3289 		wakeup_preempt(dst_rq, p, 0);
3290 
3291 		rq_unpin_lock(dst_rq, &drf);
3292 		rq_unpin_lock(src_rq, &srf);
3293 
3294 	} else {
3295 		/*
3296 		 * Task isn't running anymore; make it appear like we migrated
3297 		 * it before it went to sleep. This means on wakeup we make the
3298 		 * previous CPU our target instead of where it really is.
3299 		 */
3300 		p->wake_cpu = cpu;
3301 	}
3302 }
3303 
3304 struct migration_swap_arg {
3305 	struct task_struct *src_task, *dst_task;
3306 	int src_cpu, dst_cpu;
3307 };
3308 
3309 static int migrate_swap_stop(void *data)
3310 {
3311 	struct migration_swap_arg *arg = data;
3312 	struct rq *src_rq, *dst_rq;
3313 
3314 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3315 		return -EAGAIN;
3316 
3317 	src_rq = cpu_rq(arg->src_cpu);
3318 	dst_rq = cpu_rq(arg->dst_cpu);
3319 
3320 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3321 	guard(double_rq_lock)(src_rq, dst_rq);
3322 
3323 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3324 		return -EAGAIN;
3325 
3326 	if (task_cpu(arg->src_task) != arg->src_cpu)
3327 		return -EAGAIN;
3328 
3329 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3330 		return -EAGAIN;
3331 
3332 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3333 		return -EAGAIN;
3334 
3335 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3336 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3337 
3338 	return 0;
3339 }
3340 
3341 /*
3342  * Cross migrate two tasks
3343  */
3344 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3345 		int target_cpu, int curr_cpu)
3346 {
3347 	struct migration_swap_arg arg;
3348 	int ret = -EINVAL;
3349 
3350 	arg = (struct migration_swap_arg){
3351 		.src_task = cur,
3352 		.src_cpu = curr_cpu,
3353 		.dst_task = p,
3354 		.dst_cpu = target_cpu,
3355 	};
3356 
3357 	if (arg.src_cpu == arg.dst_cpu)
3358 		goto out;
3359 
3360 	/*
3361 	 * These three tests are all lockless; this is OK since all of them
3362 	 * will be re-checked with proper locks held further down the line.
3363 	 */
3364 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3365 		goto out;
3366 
3367 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3368 		goto out;
3369 
3370 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3371 		goto out;
3372 
3373 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3374 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3375 
3376 out:
3377 	return ret;
3378 }
3379 #endif /* CONFIG_NUMA_BALANCING */
3380 
3381 /***
3382  * kick_process - kick a running thread to enter/exit the kernel
3383  * @p: the to-be-kicked thread
3384  *
3385  * Cause a process which is running on another CPU to enter
3386  * kernel-mode, without any delay. (to get signals handled.)
3387  *
3388  * NOTE: this function doesn't have to take the runqueue lock,
3389  * because all it wants to ensure is that the remote task enters
3390  * the kernel. If the IPI races and the task has been migrated
3391  * to another CPU then no harm is done and the purpose has been
3392  * achieved as well.
3393  */
3394 void kick_process(struct task_struct *p)
3395 {
3396 	guard(preempt)();
3397 	int cpu = task_cpu(p);
3398 
3399 	if ((cpu != smp_processor_id()) && task_curr(p))
3400 		smp_send_reschedule(cpu);
3401 }
3402 EXPORT_SYMBOL_GPL(kick_process);
3403 
3404 /*
3405  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3406  *
3407  * A few notes on cpu_active vs cpu_online:
3408  *
3409  *  - cpu_active must be a subset of cpu_online
3410  *
3411  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3412  *    see __set_cpus_allowed_ptr(). At this point the newly online
3413  *    CPU isn't yet part of the sched domains, and balancing will not
3414  *    see it.
3415  *
3416  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3417  *    avoid the load balancer to place new tasks on the to be removed
3418  *    CPU. Existing tasks will remain running there and will be taken
3419  *    off.
3420  *
3421  * This means that fallback selection must not select !active CPUs.
3422  * And can assume that any active CPU must be online. Conversely
3423  * select_task_rq() below may allow selection of !active CPUs in order
3424  * to satisfy the above rules.
3425  */
3426 static int select_fallback_rq(int cpu, struct task_struct *p)
3427 {
3428 	int nid = cpu_to_node(cpu);
3429 	const struct cpumask *nodemask = NULL;
3430 	enum { cpuset, possible, fail } state = cpuset;
3431 	int dest_cpu;
3432 
3433 	/*
3434 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3435 	 * will return -1. There is no CPU on the node, and we should
3436 	 * select the CPU on the other node.
3437 	 */
3438 	if (nid != -1) {
3439 		nodemask = cpumask_of_node(nid);
3440 
3441 		/* Look for allowed, online CPU in same node. */
3442 		for_each_cpu(dest_cpu, nodemask) {
3443 			if (is_cpu_allowed(p, dest_cpu))
3444 				return dest_cpu;
3445 		}
3446 	}
3447 
3448 	for (;;) {
3449 		/* Any allowed, online CPU? */
3450 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3451 			if (!is_cpu_allowed(p, dest_cpu))
3452 				continue;
3453 
3454 			goto out;
3455 		}
3456 
3457 		/* No more Mr. Nice Guy. */
3458 		switch (state) {
3459 		case cpuset:
3460 			if (cpuset_cpus_allowed_fallback(p)) {
3461 				state = possible;
3462 				break;
3463 			}
3464 			fallthrough;
3465 		case possible:
3466 			set_cpus_allowed_force(p, task_cpu_fallback_mask(p));
3467 			state = fail;
3468 			break;
3469 		case fail:
3470 			BUG();
3471 			break;
3472 		}
3473 	}
3474 
3475 out:
3476 	if (state != cpuset) {
3477 		/*
3478 		 * Don't tell them about moving exiting tasks or
3479 		 * kernel threads (both mm NULL), since they never
3480 		 * leave kernel.
3481 		 */
3482 		if (p->mm && printk_ratelimit()) {
3483 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3484 					task_pid_nr(p), p->comm, cpu);
3485 		}
3486 	}
3487 
3488 	return dest_cpu;
3489 }
3490 
3491 /*
3492  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3493  */
3494 static inline
3495 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3496 {
3497 	lockdep_assert_held(&p->pi_lock);
3498 
3499 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3500 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3501 		*wake_flags |= WF_RQ_SELECTED;
3502 	} else {
3503 		cpu = cpumask_any(p->cpus_ptr);
3504 	}
3505 
3506 	/*
3507 	 * In order not to call set_task_cpu() on a blocking task we need
3508 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3509 	 * CPU.
3510 	 *
3511 	 * Since this is common to all placement strategies, this lives here.
3512 	 *
3513 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3514 	 *   not worry about this generic constraint ]
3515 	 */
3516 	if (unlikely(!is_cpu_allowed(p, cpu)))
3517 		cpu = select_fallback_rq(task_cpu(p), p);
3518 
3519 	return cpu;
3520 }
3521 
3522 void sched_set_stop_task(int cpu, struct task_struct *stop)
3523 {
3524 	static struct lock_class_key stop_pi_lock;
3525 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3526 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3527 
3528 	if (stop) {
3529 		/*
3530 		 * Make it appear like a SCHED_FIFO task, its something
3531 		 * userspace knows about and won't get confused about.
3532 		 *
3533 		 * Also, it will make PI more or less work without too
3534 		 * much confusion -- but then, stop work should not
3535 		 * rely on PI working anyway.
3536 		 */
3537 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3538 
3539 		stop->sched_class = &stop_sched_class;
3540 
3541 		/*
3542 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3543 		 * adjust the effective priority of a task. As a result,
3544 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3545 		 * which can then trigger wakeups of the stop thread to push
3546 		 * around the current task.
3547 		 *
3548 		 * The stop task itself will never be part of the PI-chain, it
3549 		 * never blocks, therefore that ->pi_lock recursion is safe.
3550 		 * Tell lockdep about this by placing the stop->pi_lock in its
3551 		 * own class.
3552 		 */
3553 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3554 	}
3555 
3556 	cpu_rq(cpu)->stop = stop;
3557 
3558 	if (old_stop) {
3559 		/*
3560 		 * Reset it back to a normal scheduling class so that
3561 		 * it can die in pieces.
3562 		 */
3563 		old_stop->sched_class = &rt_sched_class;
3564 	}
3565 }
3566 
3567 static void
3568 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3569 {
3570 	struct rq *rq;
3571 
3572 	if (!schedstat_enabled())
3573 		return;
3574 
3575 	rq = this_rq();
3576 
3577 	if (cpu == rq->cpu) {
3578 		__schedstat_inc(rq->ttwu_local);
3579 		__schedstat_inc(p->stats.nr_wakeups_local);
3580 	} else {
3581 		struct sched_domain *sd;
3582 
3583 		__schedstat_inc(p->stats.nr_wakeups_remote);
3584 
3585 		guard(rcu)();
3586 		for_each_domain(rq->cpu, sd) {
3587 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3588 				__schedstat_inc(sd->ttwu_wake_remote);
3589 				break;
3590 			}
3591 		}
3592 	}
3593 
3594 	if (wake_flags & WF_MIGRATED)
3595 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3596 
3597 	__schedstat_inc(rq->ttwu_count);
3598 	__schedstat_inc(p->stats.nr_wakeups);
3599 
3600 	if (wake_flags & WF_SYNC)
3601 		__schedstat_inc(p->stats.nr_wakeups_sync);
3602 }
3603 
3604 /*
3605  * Mark the task runnable.
3606  */
3607 static inline void ttwu_do_wakeup(struct task_struct *p)
3608 {
3609 	WRITE_ONCE(p->__state, TASK_RUNNING);
3610 	trace_sched_wakeup(p);
3611 }
3612 
3613 static void
3614 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3615 		 struct rq_flags *rf)
3616 {
3617 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3618 
3619 	lockdep_assert_rq_held(rq);
3620 
3621 	if (p->sched_contributes_to_load)
3622 		rq->nr_uninterruptible--;
3623 
3624 	if (wake_flags & WF_RQ_SELECTED)
3625 		en_flags |= ENQUEUE_RQ_SELECTED;
3626 	if (wake_flags & WF_MIGRATED)
3627 		en_flags |= ENQUEUE_MIGRATED;
3628 	else
3629 	if (p->in_iowait) {
3630 		delayacct_blkio_end(p);
3631 		atomic_dec(&task_rq(p)->nr_iowait);
3632 	}
3633 
3634 	activate_task(rq, p, en_flags);
3635 	wakeup_preempt(rq, p, wake_flags);
3636 
3637 	ttwu_do_wakeup(p);
3638 
3639 	if (p->sched_class->task_woken) {
3640 		/*
3641 		 * Our task @p is fully woken up and running; so it's safe to
3642 		 * drop the rq->lock, hereafter rq is only used for statistics.
3643 		 */
3644 		rq_unpin_lock(rq, rf);
3645 		p->sched_class->task_woken(rq, p);
3646 		rq_repin_lock(rq, rf);
3647 	}
3648 
3649 	if (rq->idle_stamp) {
3650 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3651 		u64 max = 2*rq->max_idle_balance_cost;
3652 
3653 		update_avg(&rq->avg_idle, delta);
3654 
3655 		if (rq->avg_idle > max)
3656 			rq->avg_idle = max;
3657 
3658 		rq->idle_stamp = 0;
3659 	}
3660 }
3661 
3662 /*
3663  * Consider @p being inside a wait loop:
3664  *
3665  *   for (;;) {
3666  *      set_current_state(TASK_UNINTERRUPTIBLE);
3667  *
3668  *      if (CONDITION)
3669  *         break;
3670  *
3671  *      schedule();
3672  *   }
3673  *   __set_current_state(TASK_RUNNING);
3674  *
3675  * between set_current_state() and schedule(). In this case @p is still
3676  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3677  * an atomic manner.
3678  *
3679  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3680  * then schedule() must still happen and p->state can be changed to
3681  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3682  * need to do a full wakeup with enqueue.
3683  *
3684  * Returns: %true when the wakeup is done,
3685  *          %false otherwise.
3686  */
3687 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3688 {
3689 	struct rq_flags rf;
3690 	struct rq *rq;
3691 	int ret = 0;
3692 
3693 	rq = __task_rq_lock(p, &rf);
3694 	if (task_on_rq_queued(p)) {
3695 		update_rq_clock(rq);
3696 		if (p->se.sched_delayed)
3697 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3698 		if (!task_on_cpu(rq, p)) {
3699 			/*
3700 			 * When on_rq && !on_cpu the task is preempted, see if
3701 			 * it should preempt the task that is current now.
3702 			 */
3703 			wakeup_preempt(rq, p, wake_flags);
3704 		}
3705 		ttwu_do_wakeup(p);
3706 		ret = 1;
3707 	}
3708 	__task_rq_unlock(rq, p, &rf);
3709 
3710 	return ret;
3711 }
3712 
3713 void sched_ttwu_pending(void *arg)
3714 {
3715 	struct llist_node *llist = arg;
3716 	struct rq *rq = this_rq();
3717 	struct task_struct *p, *t;
3718 	struct rq_flags rf;
3719 
3720 	if (!llist)
3721 		return;
3722 
3723 	rq_lock_irqsave(rq, &rf);
3724 	update_rq_clock(rq);
3725 
3726 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3727 		if (WARN_ON_ONCE(p->on_cpu))
3728 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3729 
3730 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3731 			set_task_cpu(p, cpu_of(rq));
3732 
3733 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3734 	}
3735 
3736 	/*
3737 	 * Must be after enqueueing at least once task such that
3738 	 * idle_cpu() does not observe a false-negative -- if it does,
3739 	 * it is possible for select_idle_siblings() to stack a number
3740 	 * of tasks on this CPU during that window.
3741 	 *
3742 	 * It is OK to clear ttwu_pending when another task pending.
3743 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3744 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3745 	 */
3746 	WRITE_ONCE(rq->ttwu_pending, 0);
3747 	rq_unlock_irqrestore(rq, &rf);
3748 }
3749 
3750 /*
3751  * Prepare the scene for sending an IPI for a remote smp_call
3752  *
3753  * Returns true if the caller can proceed with sending the IPI.
3754  * Returns false otherwise.
3755  */
3756 bool call_function_single_prep_ipi(int cpu)
3757 {
3758 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3759 		trace_sched_wake_idle_without_ipi(cpu);
3760 		return false;
3761 	}
3762 
3763 	return true;
3764 }
3765 
3766 /*
3767  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3768  * necessary. The wakee CPU on receipt of the IPI will queue the task
3769  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3770  * of the wakeup instead of the waker.
3771  */
3772 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3773 {
3774 	struct rq *rq = cpu_rq(cpu);
3775 
3776 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3777 
3778 	WRITE_ONCE(rq->ttwu_pending, 1);
3779 #ifdef CONFIG_SMP
3780 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3781 #endif
3782 }
3783 
3784 void wake_up_if_idle(int cpu)
3785 {
3786 	struct rq *rq = cpu_rq(cpu);
3787 
3788 	guard(rcu)();
3789 	if (is_idle_task(rcu_dereference(rq->curr))) {
3790 		guard(rq_lock_irqsave)(rq);
3791 		if (is_idle_task(rq->curr))
3792 			resched_curr(rq);
3793 	}
3794 }
3795 
3796 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3797 {
3798 	if (!sched_asym_cpucap_active())
3799 		return true;
3800 
3801 	if (this_cpu == that_cpu)
3802 		return true;
3803 
3804 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3805 }
3806 
3807 bool cpus_share_cache(int this_cpu, int that_cpu)
3808 {
3809 	if (this_cpu == that_cpu)
3810 		return true;
3811 
3812 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3813 }
3814 
3815 /*
3816  * Whether CPUs are share cache resources, which means LLC on non-cluster
3817  * machines and LLC tag or L2 on machines with clusters.
3818  */
3819 bool cpus_share_resources(int this_cpu, int that_cpu)
3820 {
3821 	if (this_cpu == that_cpu)
3822 		return true;
3823 
3824 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3825 }
3826 
3827 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3828 {
3829 	/* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */
3830 	if (!scx_allow_ttwu_queue(p))
3831 		return false;
3832 
3833 #ifdef CONFIG_SMP
3834 	if (p->sched_class == &stop_sched_class)
3835 		return false;
3836 #endif
3837 
3838 	/*
3839 	 * Do not complicate things with the async wake_list while the CPU is
3840 	 * in hotplug state.
3841 	 */
3842 	if (!cpu_active(cpu))
3843 		return false;
3844 
3845 	/* Ensure the task will still be allowed to run on the CPU. */
3846 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3847 		return false;
3848 
3849 	/*
3850 	 * If the CPU does not share cache, then queue the task on the
3851 	 * remote rqs wakelist to avoid accessing remote data.
3852 	 */
3853 	if (!cpus_share_cache(smp_processor_id(), cpu))
3854 		return true;
3855 
3856 	if (cpu == smp_processor_id())
3857 		return false;
3858 
3859 	/*
3860 	 * If the wakee cpu is idle, or the task is descheduling and the
3861 	 * only running task on the CPU, then use the wakelist to offload
3862 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3863 	 * the current CPU is likely busy. nr_running is checked to
3864 	 * avoid unnecessary task stacking.
3865 	 *
3866 	 * Note that we can only get here with (wakee) p->on_rq=0,
3867 	 * p->on_cpu can be whatever, we've done the dequeue, so
3868 	 * the wakee has been accounted out of ->nr_running.
3869 	 */
3870 	if (!cpu_rq(cpu)->nr_running)
3871 		return true;
3872 
3873 	return false;
3874 }
3875 
3876 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3877 {
3878 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3879 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3880 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3881 		return true;
3882 	}
3883 
3884 	return false;
3885 }
3886 
3887 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3888 {
3889 	struct rq *rq = cpu_rq(cpu);
3890 	struct rq_flags rf;
3891 
3892 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3893 		return;
3894 
3895 	rq_lock(rq, &rf);
3896 	update_rq_clock(rq);
3897 	ttwu_do_activate(rq, p, wake_flags, &rf);
3898 	rq_unlock(rq, &rf);
3899 }
3900 
3901 /*
3902  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3903  *
3904  * The caller holds p::pi_lock if p != current or has preemption
3905  * disabled when p == current.
3906  *
3907  * The rules of saved_state:
3908  *
3909  *   The related locking code always holds p::pi_lock when updating
3910  *   p::saved_state, which means the code is fully serialized in both cases.
3911  *
3912  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
3913  *   No other bits set. This allows to distinguish all wakeup scenarios.
3914  *
3915  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
3916  *   allows us to prevent early wakeup of tasks before they can be run on
3917  *   asymmetric ISA architectures (eg ARMv9).
3918  */
3919 static __always_inline
3920 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3921 {
3922 	int match;
3923 
3924 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3925 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3926 			     state != TASK_RTLOCK_WAIT);
3927 	}
3928 
3929 	*success = !!(match = __task_state_match(p, state));
3930 
3931 	/*
3932 	 * Saved state preserves the task state across blocking on
3933 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
3934 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
3935 	 * because it waits for a lock wakeup or __thaw_task(). Also
3936 	 * indicate success because from the regular waker's point of
3937 	 * view this has succeeded.
3938 	 *
3939 	 * After acquiring the lock the task will restore p::__state
3940 	 * from p::saved_state which ensures that the regular
3941 	 * wakeup is not lost. The restore will also set
3942 	 * p::saved_state to TASK_RUNNING so any further tests will
3943 	 * not result in false positives vs. @success
3944 	 */
3945 	if (match < 0)
3946 		p->saved_state = TASK_RUNNING;
3947 
3948 	return match > 0;
3949 }
3950 
3951 /*
3952  * Notes on Program-Order guarantees on SMP systems.
3953  *
3954  *  MIGRATION
3955  *
3956  * The basic program-order guarantee on SMP systems is that when a task [t]
3957  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3958  * execution on its new CPU [c1].
3959  *
3960  * For migration (of runnable tasks) this is provided by the following means:
3961  *
3962  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3963  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3964  *     rq(c1)->lock (if not at the same time, then in that order).
3965  *  C) LOCK of the rq(c1)->lock scheduling in task
3966  *
3967  * Release/acquire chaining guarantees that B happens after A and C after B.
3968  * Note: the CPU doing B need not be c0 or c1
3969  *
3970  * Example:
3971  *
3972  *   CPU0            CPU1            CPU2
3973  *
3974  *   LOCK rq(0)->lock
3975  *   sched-out X
3976  *   sched-in Y
3977  *   UNLOCK rq(0)->lock
3978  *
3979  *                                   LOCK rq(0)->lock // orders against CPU0
3980  *                                   dequeue X
3981  *                                   UNLOCK rq(0)->lock
3982  *
3983  *                                   LOCK rq(1)->lock
3984  *                                   enqueue X
3985  *                                   UNLOCK rq(1)->lock
3986  *
3987  *                   LOCK rq(1)->lock // orders against CPU2
3988  *                   sched-out Z
3989  *                   sched-in X
3990  *                   UNLOCK rq(1)->lock
3991  *
3992  *
3993  *  BLOCKING -- aka. SLEEP + WAKEUP
3994  *
3995  * For blocking we (obviously) need to provide the same guarantee as for
3996  * migration. However the means are completely different as there is no lock
3997  * chain to provide order. Instead we do:
3998  *
3999  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4000  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4001  *
4002  * Example:
4003  *
4004  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4005  *
4006  *   LOCK rq(0)->lock LOCK X->pi_lock
4007  *   dequeue X
4008  *   sched-out X
4009  *   smp_store_release(X->on_cpu, 0);
4010  *
4011  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4012  *                    X->state = WAKING
4013  *                    set_task_cpu(X,2)
4014  *
4015  *                    LOCK rq(2)->lock
4016  *                    enqueue X
4017  *                    X->state = RUNNING
4018  *                    UNLOCK rq(2)->lock
4019  *
4020  *                                          LOCK rq(2)->lock // orders against CPU1
4021  *                                          sched-out Z
4022  *                                          sched-in X
4023  *                                          UNLOCK rq(2)->lock
4024  *
4025  *                    UNLOCK X->pi_lock
4026  *   UNLOCK rq(0)->lock
4027  *
4028  *
4029  * However, for wakeups there is a second guarantee we must provide, namely we
4030  * must ensure that CONDITION=1 done by the caller can not be reordered with
4031  * accesses to the task state; see try_to_wake_up() and set_current_state().
4032  */
4033 
4034 /**
4035  * try_to_wake_up - wake up a thread
4036  * @p: the thread to be awakened
4037  * @state: the mask of task states that can be woken
4038  * @wake_flags: wake modifier flags (WF_*)
4039  *
4040  * Conceptually does:
4041  *
4042  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4043  *
4044  * If the task was not queued/runnable, also place it back on a runqueue.
4045  *
4046  * This function is atomic against schedule() which would dequeue the task.
4047  *
4048  * It issues a full memory barrier before accessing @p->state, see the comment
4049  * with set_current_state().
4050  *
4051  * Uses p->pi_lock to serialize against concurrent wake-ups.
4052  *
4053  * Relies on p->pi_lock stabilizing:
4054  *  - p->sched_class
4055  *  - p->cpus_ptr
4056  *  - p->sched_task_group
4057  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4058  *
4059  * Tries really hard to only take one task_rq(p)->lock for performance.
4060  * Takes rq->lock in:
4061  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4062  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4063  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4064  *
4065  * As a consequence we race really badly with just about everything. See the
4066  * many memory barriers and their comments for details.
4067  *
4068  * Return: %true if @p->state changes (an actual wakeup was done),
4069  *	   %false otherwise.
4070  */
4071 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4072 {
4073 	guard(preempt)();
4074 	int cpu, success = 0;
4075 
4076 	wake_flags |= WF_TTWU;
4077 
4078 	if (p == current) {
4079 		/*
4080 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4081 		 * == smp_processor_id()'. Together this means we can special
4082 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4083 		 * without taking any locks.
4084 		 *
4085 		 * Specifically, given current runs ttwu() we must be before
4086 		 * schedule()'s block_task(), as such this must not observe
4087 		 * sched_delayed.
4088 		 *
4089 		 * In particular:
4090 		 *  - we rely on Program-Order guarantees for all the ordering,
4091 		 *  - we're serialized against set_special_state() by virtue of
4092 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4093 		 */
4094 		WARN_ON_ONCE(p->se.sched_delayed);
4095 		if (!ttwu_state_match(p, state, &success))
4096 			goto out;
4097 
4098 		trace_sched_waking(p);
4099 		ttwu_do_wakeup(p);
4100 		goto out;
4101 	}
4102 
4103 	/*
4104 	 * If we are going to wake up a thread waiting for CONDITION we
4105 	 * need to ensure that CONDITION=1 done by the caller can not be
4106 	 * reordered with p->state check below. This pairs with smp_store_mb()
4107 	 * in set_current_state() that the waiting thread does.
4108 	 */
4109 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4110 		smp_mb__after_spinlock();
4111 		if (!ttwu_state_match(p, state, &success))
4112 			break;
4113 
4114 		trace_sched_waking(p);
4115 
4116 		/*
4117 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4118 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4119 		 * in smp_cond_load_acquire() below.
4120 		 *
4121 		 * sched_ttwu_pending()			try_to_wake_up()
4122 		 *   STORE p->on_rq = 1			  LOAD p->state
4123 		 *   UNLOCK rq->lock
4124 		 *
4125 		 * __schedule() (switch to task 'p')
4126 		 *   LOCK rq->lock			  smp_rmb();
4127 		 *   smp_mb__after_spinlock();
4128 		 *   UNLOCK rq->lock
4129 		 *
4130 		 * [task p]
4131 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4132 		 *
4133 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4134 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4135 		 *
4136 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4137 		 */
4138 		smp_rmb();
4139 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4140 			break;
4141 
4142 		/*
4143 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4144 		 * possible to, falsely, observe p->on_cpu == 0.
4145 		 *
4146 		 * One must be running (->on_cpu == 1) in order to remove oneself
4147 		 * from the runqueue.
4148 		 *
4149 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4150 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4151 		 *   UNLOCK rq->lock
4152 		 *
4153 		 * __schedule() (put 'p' to sleep)
4154 		 *   LOCK rq->lock			  smp_rmb();
4155 		 *   smp_mb__after_spinlock();
4156 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4157 		 *
4158 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4159 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4160 		 *
4161 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4162 		 * schedule()'s block_task() has 'happened' and p will no longer
4163 		 * care about it's own p->state. See the comment in __schedule().
4164 		 */
4165 		smp_acquire__after_ctrl_dep();
4166 
4167 		/*
4168 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4169 		 * == 0), which means we need to do an enqueue, change p->state to
4170 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4171 		 * enqueue, such as ttwu_queue_wakelist().
4172 		 */
4173 		WRITE_ONCE(p->__state, TASK_WAKING);
4174 
4175 		/*
4176 		 * If the owning (remote) CPU is still in the middle of schedule() with
4177 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4178 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4179 		 * let the waker make forward progress. This is safe because IRQs are
4180 		 * disabled and the IPI will deliver after on_cpu is cleared.
4181 		 *
4182 		 * Ensure we load task_cpu(p) after p->on_cpu:
4183 		 *
4184 		 * set_task_cpu(p, cpu);
4185 		 *   STORE p->cpu = @cpu
4186 		 * __schedule() (switch to task 'p')
4187 		 *   LOCK rq->lock
4188 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4189 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4190 		 *
4191 		 * to ensure we observe the correct CPU on which the task is currently
4192 		 * scheduling.
4193 		 */
4194 		if (smp_load_acquire(&p->on_cpu) &&
4195 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4196 			break;
4197 
4198 		/*
4199 		 * If the owning (remote) CPU is still in the middle of schedule() with
4200 		 * this task as prev, wait until it's done referencing the task.
4201 		 *
4202 		 * Pairs with the smp_store_release() in finish_task().
4203 		 *
4204 		 * This ensures that tasks getting woken will be fully ordered against
4205 		 * their previous state and preserve Program Order.
4206 		 */
4207 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4208 
4209 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4210 		if (task_cpu(p) != cpu) {
4211 			if (p->in_iowait) {
4212 				delayacct_blkio_end(p);
4213 				atomic_dec(&task_rq(p)->nr_iowait);
4214 			}
4215 
4216 			wake_flags |= WF_MIGRATED;
4217 			psi_ttwu_dequeue(p);
4218 			set_task_cpu(p, cpu);
4219 		}
4220 
4221 		ttwu_queue(p, cpu, wake_flags);
4222 	}
4223 out:
4224 	if (success)
4225 		ttwu_stat(p, task_cpu(p), wake_flags);
4226 
4227 	return success;
4228 }
4229 
4230 static bool __task_needs_rq_lock(struct task_struct *p)
4231 {
4232 	unsigned int state = READ_ONCE(p->__state);
4233 
4234 	/*
4235 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4236 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4237 	 * locks at the end, see ttwu_queue_wakelist().
4238 	 */
4239 	if (state == TASK_RUNNING || state == TASK_WAKING)
4240 		return true;
4241 
4242 	/*
4243 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4244 	 * possible to, falsely, observe p->on_rq == 0.
4245 	 *
4246 	 * See try_to_wake_up() for a longer comment.
4247 	 */
4248 	smp_rmb();
4249 	if (p->on_rq)
4250 		return true;
4251 
4252 	/*
4253 	 * Ensure the task has finished __schedule() and will not be referenced
4254 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4255 	 */
4256 	smp_rmb();
4257 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4258 
4259 	return false;
4260 }
4261 
4262 /**
4263  * task_call_func - Invoke a function on task in fixed state
4264  * @p: Process for which the function is to be invoked, can be @current.
4265  * @func: Function to invoke.
4266  * @arg: Argument to function.
4267  *
4268  * Fix the task in it's current state by avoiding wakeups and or rq operations
4269  * and call @func(@arg) on it.  This function can use task_is_runnable() and
4270  * task_curr() to work out what the state is, if required.  Given that @func
4271  * can be invoked with a runqueue lock held, it had better be quite
4272  * lightweight.
4273  *
4274  * Returns:
4275  *   Whatever @func returns
4276  */
4277 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4278 {
4279 	struct rq *rq = NULL;
4280 	struct rq_flags rf;
4281 	int ret;
4282 
4283 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4284 
4285 	if (__task_needs_rq_lock(p))
4286 		rq = __task_rq_lock(p, &rf);
4287 
4288 	/*
4289 	 * At this point the task is pinned; either:
4290 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4291 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4292 	 *  - queued, and we're holding off schedule	 (rq->lock)
4293 	 *  - running, and we're holding off de-schedule (rq->lock)
4294 	 *
4295 	 * The called function (@func) can use: task_curr(), p->on_rq and
4296 	 * p->__state to differentiate between these states.
4297 	 */
4298 	ret = func(p, arg);
4299 
4300 	if (rq)
4301 		__task_rq_unlock(rq, p, &rf);
4302 
4303 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4304 	return ret;
4305 }
4306 
4307 /**
4308  * cpu_curr_snapshot - Return a snapshot of the currently running task
4309  * @cpu: The CPU on which to snapshot the task.
4310  *
4311  * Returns the task_struct pointer of the task "currently" running on
4312  * the specified CPU.
4313  *
4314  * If the specified CPU was offline, the return value is whatever it
4315  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4316  * task, but there is no guarantee.  Callers wishing a useful return
4317  * value must take some action to ensure that the specified CPU remains
4318  * online throughout.
4319  *
4320  * This function executes full memory barriers before and after fetching
4321  * the pointer, which permits the caller to confine this function's fetch
4322  * with respect to the caller's accesses to other shared variables.
4323  */
4324 struct task_struct *cpu_curr_snapshot(int cpu)
4325 {
4326 	struct rq *rq = cpu_rq(cpu);
4327 	struct task_struct *t;
4328 	struct rq_flags rf;
4329 
4330 	rq_lock_irqsave(rq, &rf);
4331 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4332 	t = rcu_dereference(cpu_curr(cpu));
4333 	rq_unlock_irqrestore(rq, &rf);
4334 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4335 
4336 	return t;
4337 }
4338 
4339 /**
4340  * wake_up_process - Wake up a specific process
4341  * @p: The process to be woken up.
4342  *
4343  * Attempt to wake up the nominated process and move it to the set of runnable
4344  * processes.
4345  *
4346  * Return: 1 if the process was woken up, 0 if it was already running.
4347  *
4348  * This function executes a full memory barrier before accessing the task state.
4349  */
4350 int wake_up_process(struct task_struct *p)
4351 {
4352 	return try_to_wake_up(p, TASK_NORMAL, 0);
4353 }
4354 EXPORT_SYMBOL(wake_up_process);
4355 
4356 int wake_up_state(struct task_struct *p, unsigned int state)
4357 {
4358 	return try_to_wake_up(p, state, 0);
4359 }
4360 
4361 /*
4362  * Perform scheduler related setup for a newly forked process p.
4363  * p is forked by current.
4364  *
4365  * __sched_fork() is basic setup which is also used by sched_init() to
4366  * initialize the boot CPU's idle task.
4367  */
4368 static void __sched_fork(u64 clone_flags, struct task_struct *p)
4369 {
4370 	p->on_rq			= 0;
4371 
4372 	p->se.on_rq			= 0;
4373 	p->se.exec_start		= 0;
4374 	p->se.sum_exec_runtime		= 0;
4375 	p->se.prev_sum_exec_runtime	= 0;
4376 	p->se.nr_migrations		= 0;
4377 	p->se.vruntime			= 0;
4378 	p->se.vlag			= 0;
4379 	INIT_LIST_HEAD(&p->se.group_node);
4380 
4381 	/* A delayed task cannot be in clone(). */
4382 	WARN_ON_ONCE(p->se.sched_delayed);
4383 
4384 #ifdef CONFIG_FAIR_GROUP_SCHED
4385 	p->se.cfs_rq			= NULL;
4386 #ifdef CONFIG_CFS_BANDWIDTH
4387 	init_cfs_throttle_work(p);
4388 #endif
4389 #endif
4390 
4391 #ifdef CONFIG_SCHEDSTATS
4392 	/* Even if schedstat is disabled, there should not be garbage */
4393 	memset(&p->stats, 0, sizeof(p->stats));
4394 #endif
4395 
4396 	init_dl_entity(&p->dl);
4397 
4398 	INIT_LIST_HEAD(&p->rt.run_list);
4399 	p->rt.timeout		= 0;
4400 	p->rt.time_slice	= sched_rr_timeslice;
4401 	p->rt.on_rq		= 0;
4402 	p->rt.on_list		= 0;
4403 
4404 #ifdef CONFIG_SCHED_CLASS_EXT
4405 	init_scx_entity(&p->scx);
4406 #endif
4407 
4408 #ifdef CONFIG_PREEMPT_NOTIFIERS
4409 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4410 #endif
4411 
4412 #ifdef CONFIG_COMPACTION
4413 	p->capture_control = NULL;
4414 #endif
4415 	init_numa_balancing(clone_flags, p);
4416 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4417 	p->migration_pending = NULL;
4418 	init_sched_mm_cid(p);
4419 }
4420 
4421 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4422 
4423 #ifdef CONFIG_NUMA_BALANCING
4424 
4425 int sysctl_numa_balancing_mode;
4426 
4427 static void __set_numabalancing_state(bool enabled)
4428 {
4429 	if (enabled)
4430 		static_branch_enable(&sched_numa_balancing);
4431 	else
4432 		static_branch_disable(&sched_numa_balancing);
4433 }
4434 
4435 void set_numabalancing_state(bool enabled)
4436 {
4437 	if (enabled)
4438 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4439 	else
4440 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4441 	__set_numabalancing_state(enabled);
4442 }
4443 
4444 #ifdef CONFIG_PROC_SYSCTL
4445 static void reset_memory_tiering(void)
4446 {
4447 	struct pglist_data *pgdat;
4448 
4449 	for_each_online_pgdat(pgdat) {
4450 		pgdat->nbp_threshold = 0;
4451 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4452 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4453 	}
4454 }
4455 
4456 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4457 			  void *buffer, size_t *lenp, loff_t *ppos)
4458 {
4459 	struct ctl_table t;
4460 	int err;
4461 	int state = sysctl_numa_balancing_mode;
4462 
4463 	if (write && !capable(CAP_SYS_ADMIN))
4464 		return -EPERM;
4465 
4466 	t = *table;
4467 	t.data = &state;
4468 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4469 	if (err < 0)
4470 		return err;
4471 	if (write) {
4472 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4473 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4474 			reset_memory_tiering();
4475 		sysctl_numa_balancing_mode = state;
4476 		__set_numabalancing_state(state);
4477 	}
4478 	return err;
4479 }
4480 #endif /* CONFIG_PROC_SYSCTL */
4481 #endif /* CONFIG_NUMA_BALANCING */
4482 
4483 #ifdef CONFIG_SCHEDSTATS
4484 
4485 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4486 
4487 static void set_schedstats(bool enabled)
4488 {
4489 	if (enabled)
4490 		static_branch_enable(&sched_schedstats);
4491 	else
4492 		static_branch_disable(&sched_schedstats);
4493 }
4494 
4495 void force_schedstat_enabled(void)
4496 {
4497 	if (!schedstat_enabled()) {
4498 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4499 		static_branch_enable(&sched_schedstats);
4500 	}
4501 }
4502 
4503 static int __init setup_schedstats(char *str)
4504 {
4505 	int ret = 0;
4506 	if (!str)
4507 		goto out;
4508 
4509 	if (!strcmp(str, "enable")) {
4510 		set_schedstats(true);
4511 		ret = 1;
4512 	} else if (!strcmp(str, "disable")) {
4513 		set_schedstats(false);
4514 		ret = 1;
4515 	}
4516 out:
4517 	if (!ret)
4518 		pr_warn("Unable to parse schedstats=\n");
4519 
4520 	return ret;
4521 }
4522 __setup("schedstats=", setup_schedstats);
4523 
4524 #ifdef CONFIG_PROC_SYSCTL
4525 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4526 		size_t *lenp, loff_t *ppos)
4527 {
4528 	struct ctl_table t;
4529 	int err;
4530 	int state = static_branch_likely(&sched_schedstats);
4531 
4532 	if (write && !capable(CAP_SYS_ADMIN))
4533 		return -EPERM;
4534 
4535 	t = *table;
4536 	t.data = &state;
4537 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4538 	if (err < 0)
4539 		return err;
4540 	if (write)
4541 		set_schedstats(state);
4542 	return err;
4543 }
4544 #endif /* CONFIG_PROC_SYSCTL */
4545 #endif /* CONFIG_SCHEDSTATS */
4546 
4547 #ifdef CONFIG_SYSCTL
4548 static const struct ctl_table sched_core_sysctls[] = {
4549 #ifdef CONFIG_SCHEDSTATS
4550 	{
4551 		.procname       = "sched_schedstats",
4552 		.data           = NULL,
4553 		.maxlen         = sizeof(unsigned int),
4554 		.mode           = 0644,
4555 		.proc_handler   = sysctl_schedstats,
4556 		.extra1         = SYSCTL_ZERO,
4557 		.extra2         = SYSCTL_ONE,
4558 	},
4559 #endif /* CONFIG_SCHEDSTATS */
4560 #ifdef CONFIG_UCLAMP_TASK
4561 	{
4562 		.procname       = "sched_util_clamp_min",
4563 		.data           = &sysctl_sched_uclamp_util_min,
4564 		.maxlen         = sizeof(unsigned int),
4565 		.mode           = 0644,
4566 		.proc_handler   = sysctl_sched_uclamp_handler,
4567 	},
4568 	{
4569 		.procname       = "sched_util_clamp_max",
4570 		.data           = &sysctl_sched_uclamp_util_max,
4571 		.maxlen         = sizeof(unsigned int),
4572 		.mode           = 0644,
4573 		.proc_handler   = sysctl_sched_uclamp_handler,
4574 	},
4575 	{
4576 		.procname       = "sched_util_clamp_min_rt_default",
4577 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4578 		.maxlen         = sizeof(unsigned int),
4579 		.mode           = 0644,
4580 		.proc_handler   = sysctl_sched_uclamp_handler,
4581 	},
4582 #endif /* CONFIG_UCLAMP_TASK */
4583 #ifdef CONFIG_NUMA_BALANCING
4584 	{
4585 		.procname	= "numa_balancing",
4586 		.data		= NULL, /* filled in by handler */
4587 		.maxlen		= sizeof(unsigned int),
4588 		.mode		= 0644,
4589 		.proc_handler	= sysctl_numa_balancing,
4590 		.extra1		= SYSCTL_ZERO,
4591 		.extra2		= SYSCTL_FOUR,
4592 	},
4593 #endif /* CONFIG_NUMA_BALANCING */
4594 };
4595 static int __init sched_core_sysctl_init(void)
4596 {
4597 	register_sysctl_init("kernel", sched_core_sysctls);
4598 	return 0;
4599 }
4600 late_initcall(sched_core_sysctl_init);
4601 #endif /* CONFIG_SYSCTL */
4602 
4603 /*
4604  * fork()/clone()-time setup:
4605  */
4606 int sched_fork(u64 clone_flags, struct task_struct *p)
4607 {
4608 	__sched_fork(clone_flags, p);
4609 	/*
4610 	 * We mark the process as NEW here. This guarantees that
4611 	 * nobody will actually run it, and a signal or other external
4612 	 * event cannot wake it up and insert it on the runqueue either.
4613 	 */
4614 	p->__state = TASK_NEW;
4615 
4616 	/*
4617 	 * Make sure we do not leak PI boosting priority to the child.
4618 	 */
4619 	p->prio = current->normal_prio;
4620 
4621 	uclamp_fork(p);
4622 
4623 	/*
4624 	 * Revert to default priority/policy on fork if requested.
4625 	 */
4626 	if (unlikely(p->sched_reset_on_fork)) {
4627 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4628 			p->policy = SCHED_NORMAL;
4629 			p->static_prio = NICE_TO_PRIO(0);
4630 			p->rt_priority = 0;
4631 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4632 			p->static_prio = NICE_TO_PRIO(0);
4633 
4634 		p->prio = p->normal_prio = p->static_prio;
4635 		set_load_weight(p, false);
4636 		p->se.custom_slice = 0;
4637 		p->se.slice = sysctl_sched_base_slice;
4638 
4639 		/*
4640 		 * We don't need the reset flag anymore after the fork. It has
4641 		 * fulfilled its duty:
4642 		 */
4643 		p->sched_reset_on_fork = 0;
4644 	}
4645 
4646 	if (dl_prio(p->prio))
4647 		return -EAGAIN;
4648 
4649 	scx_pre_fork(p);
4650 
4651 	if (rt_prio(p->prio)) {
4652 		p->sched_class = &rt_sched_class;
4653 #ifdef CONFIG_SCHED_CLASS_EXT
4654 	} else if (task_should_scx(p->policy)) {
4655 		p->sched_class = &ext_sched_class;
4656 #endif
4657 	} else {
4658 		p->sched_class = &fair_sched_class;
4659 	}
4660 
4661 	init_entity_runnable_average(&p->se);
4662 
4663 
4664 #ifdef CONFIG_SCHED_INFO
4665 	if (likely(sched_info_on()))
4666 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4667 #endif
4668 	p->on_cpu = 0;
4669 	init_task_preempt_count(p);
4670 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4671 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4672 
4673 	return 0;
4674 }
4675 
4676 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4677 {
4678 	unsigned long flags;
4679 
4680 	/*
4681 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4682 	 * required yet, but lockdep gets upset if rules are violated.
4683 	 */
4684 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4685 #ifdef CONFIG_CGROUP_SCHED
4686 	if (1) {
4687 		struct task_group *tg;
4688 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4689 				  struct task_group, css);
4690 		tg = autogroup_task_group(p, tg);
4691 		p->sched_task_group = tg;
4692 	}
4693 #endif
4694 	rseq_migrate(p);
4695 	/*
4696 	 * We're setting the CPU for the first time, we don't migrate,
4697 	 * so use __set_task_cpu().
4698 	 */
4699 	__set_task_cpu(p, smp_processor_id());
4700 	if (p->sched_class->task_fork)
4701 		p->sched_class->task_fork(p);
4702 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4703 
4704 	return scx_fork(p);
4705 }
4706 
4707 void sched_cancel_fork(struct task_struct *p)
4708 {
4709 	scx_cancel_fork(p);
4710 }
4711 
4712 void sched_post_fork(struct task_struct *p)
4713 {
4714 	uclamp_post_fork(p);
4715 	scx_post_fork(p);
4716 }
4717 
4718 unsigned long to_ratio(u64 period, u64 runtime)
4719 {
4720 	if (runtime == RUNTIME_INF)
4721 		return BW_UNIT;
4722 
4723 	/*
4724 	 * Doing this here saves a lot of checks in all
4725 	 * the calling paths, and returning zero seems
4726 	 * safe for them anyway.
4727 	 */
4728 	if (period == 0)
4729 		return 0;
4730 
4731 	return div64_u64(runtime << BW_SHIFT, period);
4732 }
4733 
4734 /*
4735  * wake_up_new_task - wake up a newly created task for the first time.
4736  *
4737  * This function will do some initial scheduler statistics housekeeping
4738  * that must be done for every newly created context, then puts the task
4739  * on the runqueue and wakes it.
4740  */
4741 void wake_up_new_task(struct task_struct *p)
4742 {
4743 	struct rq_flags rf;
4744 	struct rq *rq;
4745 	int wake_flags = WF_FORK;
4746 
4747 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4748 	WRITE_ONCE(p->__state, TASK_RUNNING);
4749 	/*
4750 	 * Fork balancing, do it here and not earlier because:
4751 	 *  - cpus_ptr can change in the fork path
4752 	 *  - any previously selected CPU might disappear through hotplug
4753 	 *
4754 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4755 	 * as we're not fully set-up yet.
4756 	 */
4757 	p->recent_used_cpu = task_cpu(p);
4758 	rseq_migrate(p);
4759 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4760 	rq = __task_rq_lock(p, &rf);
4761 	update_rq_clock(rq);
4762 	post_init_entity_util_avg(p);
4763 
4764 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4765 	trace_sched_wakeup_new(p);
4766 	wakeup_preempt(rq, p, wake_flags);
4767 	if (p->sched_class->task_woken) {
4768 		/*
4769 		 * Nothing relies on rq->lock after this, so it's fine to
4770 		 * drop it.
4771 		 */
4772 		rq_unpin_lock(rq, &rf);
4773 		p->sched_class->task_woken(rq, p);
4774 		rq_repin_lock(rq, &rf);
4775 	}
4776 	task_rq_unlock(rq, p, &rf);
4777 }
4778 
4779 #ifdef CONFIG_PREEMPT_NOTIFIERS
4780 
4781 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4782 
4783 void preempt_notifier_inc(void)
4784 {
4785 	static_branch_inc(&preempt_notifier_key);
4786 }
4787 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4788 
4789 void preempt_notifier_dec(void)
4790 {
4791 	static_branch_dec(&preempt_notifier_key);
4792 }
4793 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4794 
4795 /**
4796  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4797  * @notifier: notifier struct to register
4798  */
4799 void preempt_notifier_register(struct preempt_notifier *notifier)
4800 {
4801 	if (!static_branch_unlikely(&preempt_notifier_key))
4802 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4803 
4804 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4805 }
4806 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4807 
4808 /**
4809  * preempt_notifier_unregister - no longer interested in preemption notifications
4810  * @notifier: notifier struct to unregister
4811  *
4812  * This is *not* safe to call from within a preemption notifier.
4813  */
4814 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4815 {
4816 	hlist_del(&notifier->link);
4817 }
4818 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4819 
4820 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4821 {
4822 	struct preempt_notifier *notifier;
4823 
4824 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4825 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4826 }
4827 
4828 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4829 {
4830 	if (static_branch_unlikely(&preempt_notifier_key))
4831 		__fire_sched_in_preempt_notifiers(curr);
4832 }
4833 
4834 static void
4835 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4836 				   struct task_struct *next)
4837 {
4838 	struct preempt_notifier *notifier;
4839 
4840 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4841 		notifier->ops->sched_out(notifier, next);
4842 }
4843 
4844 static __always_inline void
4845 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4846 				 struct task_struct *next)
4847 {
4848 	if (static_branch_unlikely(&preempt_notifier_key))
4849 		__fire_sched_out_preempt_notifiers(curr, next);
4850 }
4851 
4852 #else /* !CONFIG_PREEMPT_NOTIFIERS: */
4853 
4854 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4855 {
4856 }
4857 
4858 static inline void
4859 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4860 				 struct task_struct *next)
4861 {
4862 }
4863 
4864 #endif /* !CONFIG_PREEMPT_NOTIFIERS */
4865 
4866 static inline void prepare_task(struct task_struct *next)
4867 {
4868 	/*
4869 	 * Claim the task as running, we do this before switching to it
4870 	 * such that any running task will have this set.
4871 	 *
4872 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4873 	 * its ordering comment.
4874 	 */
4875 	WRITE_ONCE(next->on_cpu, 1);
4876 }
4877 
4878 static inline void finish_task(struct task_struct *prev)
4879 {
4880 	/*
4881 	 * This must be the very last reference to @prev from this CPU. After
4882 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4883 	 * must ensure this doesn't happen until the switch is completely
4884 	 * finished.
4885 	 *
4886 	 * In particular, the load of prev->state in finish_task_switch() must
4887 	 * happen before this.
4888 	 *
4889 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4890 	 */
4891 	smp_store_release(&prev->on_cpu, 0);
4892 }
4893 
4894 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4895 {
4896 	void (*func)(struct rq *rq);
4897 	struct balance_callback *next;
4898 
4899 	lockdep_assert_rq_held(rq);
4900 
4901 	while (head) {
4902 		func = (void (*)(struct rq *))head->func;
4903 		next = head->next;
4904 		head->next = NULL;
4905 		head = next;
4906 
4907 		func(rq);
4908 	}
4909 }
4910 
4911 static void balance_push(struct rq *rq);
4912 
4913 /*
4914  * balance_push_callback is a right abuse of the callback interface and plays
4915  * by significantly different rules.
4916  *
4917  * Where the normal balance_callback's purpose is to be ran in the same context
4918  * that queued it (only later, when it's safe to drop rq->lock again),
4919  * balance_push_callback is specifically targeted at __schedule().
4920  *
4921  * This abuse is tolerated because it places all the unlikely/odd cases behind
4922  * a single test, namely: rq->balance_callback == NULL.
4923  */
4924 struct balance_callback balance_push_callback = {
4925 	.next = NULL,
4926 	.func = balance_push,
4927 };
4928 
4929 static inline struct balance_callback *
4930 __splice_balance_callbacks(struct rq *rq, bool split)
4931 {
4932 	struct balance_callback *head = rq->balance_callback;
4933 
4934 	if (likely(!head))
4935 		return NULL;
4936 
4937 	lockdep_assert_rq_held(rq);
4938 	/*
4939 	 * Must not take balance_push_callback off the list when
4940 	 * splice_balance_callbacks() and balance_callbacks() are not
4941 	 * in the same rq->lock section.
4942 	 *
4943 	 * In that case it would be possible for __schedule() to interleave
4944 	 * and observe the list empty.
4945 	 */
4946 	if (split && head == &balance_push_callback)
4947 		head = NULL;
4948 	else
4949 		rq->balance_callback = NULL;
4950 
4951 	return head;
4952 }
4953 
4954 struct balance_callback *splice_balance_callbacks(struct rq *rq)
4955 {
4956 	return __splice_balance_callbacks(rq, true);
4957 }
4958 
4959 static void __balance_callbacks(struct rq *rq)
4960 {
4961 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4962 }
4963 
4964 void balance_callbacks(struct rq *rq, struct balance_callback *head)
4965 {
4966 	unsigned long flags;
4967 
4968 	if (unlikely(head)) {
4969 		raw_spin_rq_lock_irqsave(rq, flags);
4970 		do_balance_callbacks(rq, head);
4971 		raw_spin_rq_unlock_irqrestore(rq, flags);
4972 	}
4973 }
4974 
4975 static inline void
4976 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4977 {
4978 	/*
4979 	 * Since the runqueue lock will be released by the next
4980 	 * task (which is an invalid locking op but in the case
4981 	 * of the scheduler it's an obvious special-case), so we
4982 	 * do an early lockdep release here:
4983 	 */
4984 	rq_unpin_lock(rq, rf);
4985 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4986 #ifdef CONFIG_DEBUG_SPINLOCK
4987 	/* this is a valid case when another task releases the spinlock */
4988 	rq_lockp(rq)->owner = next;
4989 #endif
4990 }
4991 
4992 static inline void finish_lock_switch(struct rq *rq)
4993 {
4994 	/*
4995 	 * If we are tracking spinlock dependencies then we have to
4996 	 * fix up the runqueue lock - which gets 'carried over' from
4997 	 * prev into current:
4998 	 */
4999 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5000 	__balance_callbacks(rq);
5001 	raw_spin_rq_unlock_irq(rq);
5002 }
5003 
5004 /*
5005  * NOP if the arch has not defined these:
5006  */
5007 
5008 #ifndef prepare_arch_switch
5009 # define prepare_arch_switch(next)	do { } while (0)
5010 #endif
5011 
5012 #ifndef finish_arch_post_lock_switch
5013 # define finish_arch_post_lock_switch()	do { } while (0)
5014 #endif
5015 
5016 static inline void kmap_local_sched_out(void)
5017 {
5018 #ifdef CONFIG_KMAP_LOCAL
5019 	if (unlikely(current->kmap_ctrl.idx))
5020 		__kmap_local_sched_out();
5021 #endif
5022 }
5023 
5024 static inline void kmap_local_sched_in(void)
5025 {
5026 #ifdef CONFIG_KMAP_LOCAL
5027 	if (unlikely(current->kmap_ctrl.idx))
5028 		__kmap_local_sched_in();
5029 #endif
5030 }
5031 
5032 /**
5033  * prepare_task_switch - prepare to switch tasks
5034  * @rq: the runqueue preparing to switch
5035  * @prev: the current task that is being switched out
5036  * @next: the task we are going to switch to.
5037  *
5038  * This is called with the rq lock held and interrupts off. It must
5039  * be paired with a subsequent finish_task_switch after the context
5040  * switch.
5041  *
5042  * prepare_task_switch sets up locking and calls architecture specific
5043  * hooks.
5044  */
5045 static inline void
5046 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5047 		    struct task_struct *next)
5048 {
5049 	kcov_prepare_switch(prev);
5050 	sched_info_switch(rq, prev, next);
5051 	perf_event_task_sched_out(prev, next);
5052 	rseq_preempt(prev);
5053 	fire_sched_out_preempt_notifiers(prev, next);
5054 	kmap_local_sched_out();
5055 	prepare_task(next);
5056 	prepare_arch_switch(next);
5057 }
5058 
5059 /**
5060  * finish_task_switch - clean up after a task-switch
5061  * @prev: the thread we just switched away from.
5062  *
5063  * finish_task_switch must be called after the context switch, paired
5064  * with a prepare_task_switch call before the context switch.
5065  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5066  * and do any other architecture-specific cleanup actions.
5067  *
5068  * Note that we may have delayed dropping an mm in context_switch(). If
5069  * so, we finish that here outside of the runqueue lock. (Doing it
5070  * with the lock held can cause deadlocks; see schedule() for
5071  * details.)
5072  *
5073  * The context switch have flipped the stack from under us and restored the
5074  * local variables which were saved when this task called schedule() in the
5075  * past. 'prev == current' is still correct but we need to recalculate this_rq
5076  * because prev may have moved to another CPU.
5077  */
5078 static struct rq *finish_task_switch(struct task_struct *prev)
5079 	__releases(rq->lock)
5080 {
5081 	struct rq *rq = this_rq();
5082 	struct mm_struct *mm = rq->prev_mm;
5083 	unsigned int prev_state;
5084 
5085 	/*
5086 	 * The previous task will have left us with a preempt_count of 2
5087 	 * because it left us after:
5088 	 *
5089 	 *	schedule()
5090 	 *	  preempt_disable();			// 1
5091 	 *	  __schedule()
5092 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5093 	 *
5094 	 * Also, see FORK_PREEMPT_COUNT.
5095 	 */
5096 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5097 		      "corrupted preempt_count: %s/%d/0x%x\n",
5098 		      current->comm, current->pid, preempt_count()))
5099 		preempt_count_set(FORK_PREEMPT_COUNT);
5100 
5101 	rq->prev_mm = NULL;
5102 
5103 	/*
5104 	 * A task struct has one reference for the use as "current".
5105 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5106 	 * schedule one last time. The schedule call will never return, and
5107 	 * the scheduled task must drop that reference.
5108 	 *
5109 	 * We must observe prev->state before clearing prev->on_cpu (in
5110 	 * finish_task), otherwise a concurrent wakeup can get prev
5111 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5112 	 * transition, resulting in a double drop.
5113 	 */
5114 	prev_state = READ_ONCE(prev->__state);
5115 	vtime_task_switch(prev);
5116 	perf_event_task_sched_in(prev, current);
5117 	finish_task(prev);
5118 	tick_nohz_task_switch();
5119 	finish_lock_switch(rq);
5120 	finish_arch_post_lock_switch();
5121 	kcov_finish_switch(current);
5122 	/*
5123 	 * kmap_local_sched_out() is invoked with rq::lock held and
5124 	 * interrupts disabled. There is no requirement for that, but the
5125 	 * sched out code does not have an interrupt enabled section.
5126 	 * Restoring the maps on sched in does not require interrupts being
5127 	 * disabled either.
5128 	 */
5129 	kmap_local_sched_in();
5130 
5131 	fire_sched_in_preempt_notifiers(current);
5132 	/*
5133 	 * When switching through a kernel thread, the loop in
5134 	 * membarrier_{private,global}_expedited() may have observed that
5135 	 * kernel thread and not issued an IPI. It is therefore possible to
5136 	 * schedule between user->kernel->user threads without passing though
5137 	 * switch_mm(). Membarrier requires a barrier after storing to
5138 	 * rq->curr, before returning to userspace, so provide them here:
5139 	 *
5140 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5141 	 *   provided by mmdrop_lazy_tlb(),
5142 	 * - a sync_core for SYNC_CORE.
5143 	 */
5144 	if (mm) {
5145 		membarrier_mm_sync_core_before_usermode(mm);
5146 		mmdrop_lazy_tlb_sched(mm);
5147 	}
5148 
5149 	if (unlikely(prev_state == TASK_DEAD)) {
5150 		if (prev->sched_class->task_dead)
5151 			prev->sched_class->task_dead(prev);
5152 
5153 		/* Task is done with its stack. */
5154 		put_task_stack(prev);
5155 
5156 		put_task_struct_rcu_user(prev);
5157 	}
5158 
5159 	return rq;
5160 }
5161 
5162 /**
5163  * schedule_tail - first thing a freshly forked thread must call.
5164  * @prev: the thread we just switched away from.
5165  */
5166 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5167 	__releases(rq->lock)
5168 {
5169 	/*
5170 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5171 	 * finish_task_switch() for details.
5172 	 *
5173 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5174 	 * and the preempt_enable() will end up enabling preemption (on
5175 	 * PREEMPT_COUNT kernels).
5176 	 */
5177 
5178 	finish_task_switch(prev);
5179 	/*
5180 	 * This is a special case: the newly created task has just
5181 	 * switched the context for the first time. It is returning from
5182 	 * schedule for the first time in this path.
5183 	 */
5184 	trace_sched_exit_tp(true);
5185 	preempt_enable();
5186 
5187 	if (current->set_child_tid)
5188 		put_user(task_pid_vnr(current), current->set_child_tid);
5189 
5190 	calculate_sigpending();
5191 }
5192 
5193 /*
5194  * context_switch - switch to the new MM and the new thread's register state.
5195  */
5196 static __always_inline struct rq *
5197 context_switch(struct rq *rq, struct task_struct *prev,
5198 	       struct task_struct *next, struct rq_flags *rf)
5199 {
5200 	prepare_task_switch(rq, prev, next);
5201 
5202 	/*
5203 	 * For paravirt, this is coupled with an exit in switch_to to
5204 	 * combine the page table reload and the switch backend into
5205 	 * one hypercall.
5206 	 */
5207 	arch_start_context_switch(prev);
5208 
5209 	/*
5210 	 * kernel -> kernel   lazy + transfer active
5211 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5212 	 *
5213 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5214 	 *   user ->   user   switch
5215 	 *
5216 	 * switch_mm_cid() needs to be updated if the barriers provided
5217 	 * by context_switch() are modified.
5218 	 */
5219 	if (!next->mm) {                                // to kernel
5220 		enter_lazy_tlb(prev->active_mm, next);
5221 
5222 		next->active_mm = prev->active_mm;
5223 		if (prev->mm)                           // from user
5224 			mmgrab_lazy_tlb(prev->active_mm);
5225 		else
5226 			prev->active_mm = NULL;
5227 	} else {                                        // to user
5228 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5229 		/*
5230 		 * sys_membarrier() requires an smp_mb() between setting
5231 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5232 		 *
5233 		 * The below provides this either through switch_mm(), or in
5234 		 * case 'prev->active_mm == next->mm' through
5235 		 * finish_task_switch()'s mmdrop().
5236 		 */
5237 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5238 		lru_gen_use_mm(next->mm);
5239 
5240 		if (!prev->mm) {                        // from kernel
5241 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5242 			rq->prev_mm = prev->active_mm;
5243 			prev->active_mm = NULL;
5244 		}
5245 	}
5246 
5247 	/* switch_mm_cid() requires the memory barriers above. */
5248 	switch_mm_cid(rq, prev, next);
5249 
5250 	prepare_lock_switch(rq, next, rf);
5251 
5252 	/* Here we just switch the register state and the stack. */
5253 	switch_to(prev, next, prev);
5254 	barrier();
5255 
5256 	return finish_task_switch(prev);
5257 }
5258 
5259 /*
5260  * nr_running and nr_context_switches:
5261  *
5262  * externally visible scheduler statistics: current number of runnable
5263  * threads, total number of context switches performed since bootup.
5264  */
5265 unsigned int nr_running(void)
5266 {
5267 	unsigned int i, sum = 0;
5268 
5269 	for_each_online_cpu(i)
5270 		sum += cpu_rq(i)->nr_running;
5271 
5272 	return sum;
5273 }
5274 
5275 /*
5276  * Check if only the current task is running on the CPU.
5277  *
5278  * Caution: this function does not check that the caller has disabled
5279  * preemption, thus the result might have a time-of-check-to-time-of-use
5280  * race.  The caller is responsible to use it correctly, for example:
5281  *
5282  * - from a non-preemptible section (of course)
5283  *
5284  * - from a thread that is bound to a single CPU
5285  *
5286  * - in a loop with very short iterations (e.g. a polling loop)
5287  */
5288 bool single_task_running(void)
5289 {
5290 	return raw_rq()->nr_running == 1;
5291 }
5292 EXPORT_SYMBOL(single_task_running);
5293 
5294 unsigned long long nr_context_switches_cpu(int cpu)
5295 {
5296 	return cpu_rq(cpu)->nr_switches;
5297 }
5298 
5299 unsigned long long nr_context_switches(void)
5300 {
5301 	int i;
5302 	unsigned long long sum = 0;
5303 
5304 	for_each_possible_cpu(i)
5305 		sum += cpu_rq(i)->nr_switches;
5306 
5307 	return sum;
5308 }
5309 
5310 /*
5311  * Consumers of these two interfaces, like for example the cpuidle menu
5312  * governor, are using nonsensical data. Preferring shallow idle state selection
5313  * for a CPU that has IO-wait which might not even end up running the task when
5314  * it does become runnable.
5315  */
5316 
5317 unsigned int nr_iowait_cpu(int cpu)
5318 {
5319 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5320 }
5321 
5322 /*
5323  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5324  *
5325  * The idea behind IO-wait account is to account the idle time that we could
5326  * have spend running if it were not for IO. That is, if we were to improve the
5327  * storage performance, we'd have a proportional reduction in IO-wait time.
5328  *
5329  * This all works nicely on UP, where, when a task blocks on IO, we account
5330  * idle time as IO-wait, because if the storage were faster, it could've been
5331  * running and we'd not be idle.
5332  *
5333  * This has been extended to SMP, by doing the same for each CPU. This however
5334  * is broken.
5335  *
5336  * Imagine for instance the case where two tasks block on one CPU, only the one
5337  * CPU will have IO-wait accounted, while the other has regular idle. Even
5338  * though, if the storage were faster, both could've ran at the same time,
5339  * utilising both CPUs.
5340  *
5341  * This means, that when looking globally, the current IO-wait accounting on
5342  * SMP is a lower bound, by reason of under accounting.
5343  *
5344  * Worse, since the numbers are provided per CPU, they are sometimes
5345  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5346  * associated with any one particular CPU, it can wake to another CPU than it
5347  * blocked on. This means the per CPU IO-wait number is meaningless.
5348  *
5349  * Task CPU affinities can make all that even more 'interesting'.
5350  */
5351 
5352 unsigned int nr_iowait(void)
5353 {
5354 	unsigned int i, sum = 0;
5355 
5356 	for_each_possible_cpu(i)
5357 		sum += nr_iowait_cpu(i);
5358 
5359 	return sum;
5360 }
5361 
5362 /*
5363  * sched_exec - execve() is a valuable balancing opportunity, because at
5364  * this point the task has the smallest effective memory and cache footprint.
5365  */
5366 void sched_exec(void)
5367 {
5368 	struct task_struct *p = current;
5369 	struct migration_arg arg;
5370 	int dest_cpu;
5371 
5372 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5373 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5374 		if (dest_cpu == smp_processor_id())
5375 			return;
5376 
5377 		if (unlikely(!cpu_active(dest_cpu)))
5378 			return;
5379 
5380 		arg = (struct migration_arg){ p, dest_cpu };
5381 	}
5382 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5383 }
5384 
5385 DEFINE_PER_CPU(struct kernel_stat, kstat);
5386 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5387 
5388 EXPORT_PER_CPU_SYMBOL(kstat);
5389 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5390 
5391 /*
5392  * The function fair_sched_class.update_curr accesses the struct curr
5393  * and its field curr->exec_start; when called from task_sched_runtime(),
5394  * we observe a high rate of cache misses in practice.
5395  * Prefetching this data results in improved performance.
5396  */
5397 static inline void prefetch_curr_exec_start(struct task_struct *p)
5398 {
5399 #ifdef CONFIG_FAIR_GROUP_SCHED
5400 	struct sched_entity *curr = p->se.cfs_rq->curr;
5401 #else
5402 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5403 #endif
5404 	prefetch(curr);
5405 	prefetch(&curr->exec_start);
5406 }
5407 
5408 /*
5409  * Return accounted runtime for the task.
5410  * In case the task is currently running, return the runtime plus current's
5411  * pending runtime that have not been accounted yet.
5412  */
5413 unsigned long long task_sched_runtime(struct task_struct *p)
5414 {
5415 	struct rq_flags rf;
5416 	struct rq *rq;
5417 	u64 ns;
5418 
5419 #ifdef CONFIG_64BIT
5420 	/*
5421 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5422 	 * So we have a optimization chance when the task's delta_exec is 0.
5423 	 * Reading ->on_cpu is racy, but this is OK.
5424 	 *
5425 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5426 	 * If we race with it entering CPU, unaccounted time is 0. This is
5427 	 * indistinguishable from the read occurring a few cycles earlier.
5428 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5429 	 * been accounted, so we're correct here as well.
5430 	 */
5431 	if (!p->on_cpu || !task_on_rq_queued(p))
5432 		return p->se.sum_exec_runtime;
5433 #endif
5434 
5435 	rq = task_rq_lock(p, &rf);
5436 	/*
5437 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5438 	 * project cycles that may never be accounted to this
5439 	 * thread, breaking clock_gettime().
5440 	 */
5441 	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5442 		prefetch_curr_exec_start(p);
5443 		update_rq_clock(rq);
5444 		p->sched_class->update_curr(rq);
5445 	}
5446 	ns = p->se.sum_exec_runtime;
5447 	task_rq_unlock(rq, p, &rf);
5448 
5449 	return ns;
5450 }
5451 
5452 static u64 cpu_resched_latency(struct rq *rq)
5453 {
5454 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5455 	u64 resched_latency, now = rq_clock(rq);
5456 	static bool warned_once;
5457 
5458 	if (sysctl_resched_latency_warn_once && warned_once)
5459 		return 0;
5460 
5461 	if (!need_resched() || !latency_warn_ms)
5462 		return 0;
5463 
5464 	if (system_state == SYSTEM_BOOTING)
5465 		return 0;
5466 
5467 	if (!rq->last_seen_need_resched_ns) {
5468 		rq->last_seen_need_resched_ns = now;
5469 		rq->ticks_without_resched = 0;
5470 		return 0;
5471 	}
5472 
5473 	rq->ticks_without_resched++;
5474 	resched_latency = now - rq->last_seen_need_resched_ns;
5475 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5476 		return 0;
5477 
5478 	warned_once = true;
5479 
5480 	return resched_latency;
5481 }
5482 
5483 static int __init setup_resched_latency_warn_ms(char *str)
5484 {
5485 	long val;
5486 
5487 	if ((kstrtol(str, 0, &val))) {
5488 		pr_warn("Unable to set resched_latency_warn_ms\n");
5489 		return 1;
5490 	}
5491 
5492 	sysctl_resched_latency_warn_ms = val;
5493 	return 1;
5494 }
5495 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5496 
5497 /*
5498  * This function gets called by the timer code, with HZ frequency.
5499  * We call it with interrupts disabled.
5500  */
5501 void sched_tick(void)
5502 {
5503 	int cpu = smp_processor_id();
5504 	struct rq *rq = cpu_rq(cpu);
5505 	/* accounting goes to the donor task */
5506 	struct task_struct *donor;
5507 	struct rq_flags rf;
5508 	unsigned long hw_pressure;
5509 	u64 resched_latency;
5510 
5511 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5512 		arch_scale_freq_tick();
5513 
5514 	sched_clock_tick();
5515 
5516 	rq_lock(rq, &rf);
5517 	donor = rq->donor;
5518 
5519 	psi_account_irqtime(rq, donor, NULL);
5520 
5521 	update_rq_clock(rq);
5522 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5523 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5524 
5525 	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5526 		resched_curr(rq);
5527 
5528 	donor->sched_class->task_tick(rq, donor, 0);
5529 	if (sched_feat(LATENCY_WARN))
5530 		resched_latency = cpu_resched_latency(rq);
5531 	calc_global_load_tick(rq);
5532 	sched_core_tick(rq);
5533 	task_tick_mm_cid(rq, donor);
5534 	scx_tick(rq);
5535 
5536 	rq_unlock(rq, &rf);
5537 
5538 	if (sched_feat(LATENCY_WARN) && resched_latency)
5539 		resched_latency_warn(cpu, resched_latency);
5540 
5541 	perf_event_task_tick();
5542 
5543 	if (donor->flags & PF_WQ_WORKER)
5544 		wq_worker_tick(donor);
5545 
5546 	if (!scx_switched_all()) {
5547 		rq->idle_balance = idle_cpu(cpu);
5548 		sched_balance_trigger(rq);
5549 	}
5550 }
5551 
5552 #ifdef CONFIG_NO_HZ_FULL
5553 
5554 struct tick_work {
5555 	int			cpu;
5556 	atomic_t		state;
5557 	struct delayed_work	work;
5558 };
5559 /* Values for ->state, see diagram below. */
5560 #define TICK_SCHED_REMOTE_OFFLINE	0
5561 #define TICK_SCHED_REMOTE_OFFLINING	1
5562 #define TICK_SCHED_REMOTE_RUNNING	2
5563 
5564 /*
5565  * State diagram for ->state:
5566  *
5567  *
5568  *          TICK_SCHED_REMOTE_OFFLINE
5569  *                    |   ^
5570  *                    |   |
5571  *                    |   | sched_tick_remote()
5572  *                    |   |
5573  *                    |   |
5574  *                    +--TICK_SCHED_REMOTE_OFFLINING
5575  *                    |   ^
5576  *                    |   |
5577  * sched_tick_start() |   | sched_tick_stop()
5578  *                    |   |
5579  *                    V   |
5580  *          TICK_SCHED_REMOTE_RUNNING
5581  *
5582  *
5583  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5584  * and sched_tick_start() are happy to leave the state in RUNNING.
5585  */
5586 
5587 static struct tick_work __percpu *tick_work_cpu;
5588 
5589 static void sched_tick_remote(struct work_struct *work)
5590 {
5591 	struct delayed_work *dwork = to_delayed_work(work);
5592 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5593 	int cpu = twork->cpu;
5594 	struct rq *rq = cpu_rq(cpu);
5595 	int os;
5596 
5597 	/*
5598 	 * Handle the tick only if it appears the remote CPU is running in full
5599 	 * dynticks mode. The check is racy by nature, but missing a tick or
5600 	 * having one too much is no big deal because the scheduler tick updates
5601 	 * statistics and checks timeslices in a time-independent way, regardless
5602 	 * of when exactly it is running.
5603 	 */
5604 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5605 		guard(rq_lock_irq)(rq);
5606 		struct task_struct *curr = rq->curr;
5607 
5608 		if (cpu_online(cpu)) {
5609 			/*
5610 			 * Since this is a remote tick for full dynticks mode,
5611 			 * we are always sure that there is no proxy (only a
5612 			 * single task is running).
5613 			 */
5614 			WARN_ON_ONCE(rq->curr != rq->donor);
5615 			update_rq_clock(rq);
5616 
5617 			if (!is_idle_task(curr)) {
5618 				/*
5619 				 * Make sure the next tick runs within a
5620 				 * reasonable amount of time.
5621 				 */
5622 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5623 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 30);
5624 			}
5625 			curr->sched_class->task_tick(rq, curr, 0);
5626 
5627 			calc_load_nohz_remote(rq);
5628 		}
5629 	}
5630 
5631 	/*
5632 	 * Run the remote tick once per second (1Hz). This arbitrary
5633 	 * frequency is large enough to avoid overload but short enough
5634 	 * to keep scheduler internal stats reasonably up to date.  But
5635 	 * first update state to reflect hotplug activity if required.
5636 	 */
5637 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5638 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5639 	if (os == TICK_SCHED_REMOTE_RUNNING)
5640 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5641 }
5642 
5643 static void sched_tick_start(int cpu)
5644 {
5645 	int os;
5646 	struct tick_work *twork;
5647 
5648 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5649 		return;
5650 
5651 	WARN_ON_ONCE(!tick_work_cpu);
5652 
5653 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5654 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5655 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5656 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5657 		twork->cpu = cpu;
5658 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5659 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5660 	}
5661 }
5662 
5663 #ifdef CONFIG_HOTPLUG_CPU
5664 static void sched_tick_stop(int cpu)
5665 {
5666 	struct tick_work *twork;
5667 	int os;
5668 
5669 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5670 		return;
5671 
5672 	WARN_ON_ONCE(!tick_work_cpu);
5673 
5674 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5675 	/* There cannot be competing actions, but don't rely on stop-machine. */
5676 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5677 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5678 	/* Don't cancel, as this would mess up the state machine. */
5679 }
5680 #endif /* CONFIG_HOTPLUG_CPU */
5681 
5682 int __init sched_tick_offload_init(void)
5683 {
5684 	tick_work_cpu = alloc_percpu(struct tick_work);
5685 	BUG_ON(!tick_work_cpu);
5686 	return 0;
5687 }
5688 
5689 #else /* !CONFIG_NO_HZ_FULL: */
5690 static inline void sched_tick_start(int cpu) { }
5691 static inline void sched_tick_stop(int cpu) { }
5692 #endif /* !CONFIG_NO_HZ_FULL */
5693 
5694 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5695 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5696 /*
5697  * If the value passed in is equal to the current preempt count
5698  * then we just disabled preemption. Start timing the latency.
5699  */
5700 static inline void preempt_latency_start(int val)
5701 {
5702 	if (preempt_count() == val) {
5703 		unsigned long ip = get_lock_parent_ip();
5704 #ifdef CONFIG_DEBUG_PREEMPT
5705 		current->preempt_disable_ip = ip;
5706 #endif
5707 		trace_preempt_off(CALLER_ADDR0, ip);
5708 	}
5709 }
5710 
5711 void preempt_count_add(int val)
5712 {
5713 #ifdef CONFIG_DEBUG_PREEMPT
5714 	/*
5715 	 * Underflow?
5716 	 */
5717 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5718 		return;
5719 #endif
5720 	__preempt_count_add(val);
5721 #ifdef CONFIG_DEBUG_PREEMPT
5722 	/*
5723 	 * Spinlock count overflowing soon?
5724 	 */
5725 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5726 				PREEMPT_MASK - 10);
5727 #endif
5728 	preempt_latency_start(val);
5729 }
5730 EXPORT_SYMBOL(preempt_count_add);
5731 NOKPROBE_SYMBOL(preempt_count_add);
5732 
5733 /*
5734  * If the value passed in equals to the current preempt count
5735  * then we just enabled preemption. Stop timing the latency.
5736  */
5737 static inline void preempt_latency_stop(int val)
5738 {
5739 	if (preempt_count() == val)
5740 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5741 }
5742 
5743 void preempt_count_sub(int val)
5744 {
5745 #ifdef CONFIG_DEBUG_PREEMPT
5746 	/*
5747 	 * Underflow?
5748 	 */
5749 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5750 		return;
5751 	/*
5752 	 * Is the spinlock portion underflowing?
5753 	 */
5754 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5755 			!(preempt_count() & PREEMPT_MASK)))
5756 		return;
5757 #endif
5758 
5759 	preempt_latency_stop(val);
5760 	__preempt_count_sub(val);
5761 }
5762 EXPORT_SYMBOL(preempt_count_sub);
5763 NOKPROBE_SYMBOL(preempt_count_sub);
5764 
5765 #else
5766 static inline void preempt_latency_start(int val) { }
5767 static inline void preempt_latency_stop(int val) { }
5768 #endif
5769 
5770 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5771 {
5772 #ifdef CONFIG_DEBUG_PREEMPT
5773 	return p->preempt_disable_ip;
5774 #else
5775 	return 0;
5776 #endif
5777 }
5778 
5779 /*
5780  * Print scheduling while atomic bug:
5781  */
5782 static noinline void __schedule_bug(struct task_struct *prev)
5783 {
5784 	/* Save this before calling printk(), since that will clobber it */
5785 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5786 
5787 	if (oops_in_progress)
5788 		return;
5789 
5790 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5791 		prev->comm, prev->pid, preempt_count());
5792 
5793 	debug_show_held_locks(prev);
5794 	print_modules();
5795 	if (irqs_disabled())
5796 		print_irqtrace_events(prev);
5797 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5798 		pr_err("Preemption disabled at:");
5799 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5800 	}
5801 	check_panic_on_warn("scheduling while atomic");
5802 
5803 	dump_stack();
5804 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5805 }
5806 
5807 /*
5808  * Various schedule()-time debugging checks and statistics:
5809  */
5810 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5811 {
5812 #ifdef CONFIG_SCHED_STACK_END_CHECK
5813 	if (task_stack_end_corrupted(prev))
5814 		panic("corrupted stack end detected inside scheduler\n");
5815 
5816 	if (task_scs_end_corrupted(prev))
5817 		panic("corrupted shadow stack detected inside scheduler\n");
5818 #endif
5819 
5820 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5821 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5822 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5823 			prev->comm, prev->pid, prev->non_block_count);
5824 		dump_stack();
5825 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5826 	}
5827 #endif
5828 
5829 	if (unlikely(in_atomic_preempt_off())) {
5830 		__schedule_bug(prev);
5831 		preempt_count_set(PREEMPT_DISABLED);
5832 	}
5833 	rcu_sleep_check();
5834 	WARN_ON_ONCE(ct_state() == CT_STATE_USER);
5835 
5836 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5837 
5838 	schedstat_inc(this_rq()->sched_count);
5839 }
5840 
5841 static void prev_balance(struct rq *rq, struct task_struct *prev,
5842 			 struct rq_flags *rf)
5843 {
5844 	const struct sched_class *start_class = prev->sched_class;
5845 	const struct sched_class *class;
5846 
5847 	/*
5848 	 * We must do the balancing pass before put_prev_task(), such
5849 	 * that when we release the rq->lock the task is in the same
5850 	 * state as before we took rq->lock.
5851 	 *
5852 	 * We can terminate the balance pass as soon as we know there is
5853 	 * a runnable task of @class priority or higher.
5854 	 */
5855 	for_active_class_range(class, start_class, &idle_sched_class) {
5856 		if (class->balance && class->balance(rq, prev, rf))
5857 			break;
5858 	}
5859 }
5860 
5861 /*
5862  * Pick up the highest-prio task:
5863  */
5864 static inline struct task_struct *
5865 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5866 {
5867 	const struct sched_class *class;
5868 	struct task_struct *p;
5869 
5870 	rq->dl_server = NULL;
5871 
5872 	if (scx_enabled())
5873 		goto restart;
5874 
5875 	/*
5876 	 * Optimization: we know that if all tasks are in the fair class we can
5877 	 * call that function directly, but only if the @prev task wasn't of a
5878 	 * higher scheduling class, because otherwise those lose the
5879 	 * opportunity to pull in more work from other CPUs.
5880 	 */
5881 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5882 		   rq->nr_running == rq->cfs.h_nr_queued)) {
5883 
5884 		p = pick_next_task_fair(rq, prev, rf);
5885 		if (unlikely(p == RETRY_TASK))
5886 			goto restart;
5887 
5888 		/* Assume the next prioritized class is idle_sched_class */
5889 		if (!p) {
5890 			p = pick_task_idle(rq, rf);
5891 			put_prev_set_next_task(rq, prev, p);
5892 		}
5893 
5894 		return p;
5895 	}
5896 
5897 restart:
5898 	prev_balance(rq, prev, rf);
5899 
5900 	for_each_active_class(class) {
5901 		if (class->pick_next_task) {
5902 			p = class->pick_next_task(rq, prev, rf);
5903 			if (unlikely(p == RETRY_TASK))
5904 				goto restart;
5905 			if (p)
5906 				return p;
5907 		} else {
5908 			p = class->pick_task(rq, rf);
5909 			if (unlikely(p == RETRY_TASK))
5910 				goto restart;
5911 			if (p) {
5912 				put_prev_set_next_task(rq, prev, p);
5913 				return p;
5914 			}
5915 		}
5916 	}
5917 
5918 	BUG(); /* The idle class should always have a runnable task. */
5919 }
5920 
5921 #ifdef CONFIG_SCHED_CORE
5922 static inline bool is_task_rq_idle(struct task_struct *t)
5923 {
5924 	return (task_rq(t)->idle == t);
5925 }
5926 
5927 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5928 {
5929 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5930 }
5931 
5932 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5933 {
5934 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5935 		return true;
5936 
5937 	return a->core_cookie == b->core_cookie;
5938 }
5939 
5940 /*
5941  * Careful; this can return RETRY_TASK, it does not include the retry-loop
5942  * itself due to the whole SMT pick retry thing below.
5943  */
5944 static inline struct task_struct *pick_task(struct rq *rq, struct rq_flags *rf)
5945 {
5946 	const struct sched_class *class;
5947 	struct task_struct *p;
5948 
5949 	rq->dl_server = NULL;
5950 
5951 	for_each_active_class(class) {
5952 		p = class->pick_task(rq, rf);
5953 		if (p)
5954 			return p;
5955 	}
5956 
5957 	BUG(); /* The idle class should always have a runnable task. */
5958 }
5959 
5960 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5961 
5962 static void queue_core_balance(struct rq *rq);
5963 
5964 static struct task_struct *
5965 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5966 {
5967 	struct task_struct *next, *p, *max;
5968 	const struct cpumask *smt_mask;
5969 	bool fi_before = false;
5970 	bool core_clock_updated = (rq == rq->core);
5971 	unsigned long cookie;
5972 	int i, cpu, occ = 0;
5973 	struct rq *rq_i;
5974 	bool need_sync;
5975 
5976 	if (!sched_core_enabled(rq))
5977 		return __pick_next_task(rq, prev, rf);
5978 
5979 	cpu = cpu_of(rq);
5980 
5981 	/* Stopper task is switching into idle, no need core-wide selection. */
5982 	if (cpu_is_offline(cpu)) {
5983 		/*
5984 		 * Reset core_pick so that we don't enter the fastpath when
5985 		 * coming online. core_pick would already be migrated to
5986 		 * another cpu during offline.
5987 		 */
5988 		rq->core_pick = NULL;
5989 		rq->core_dl_server = NULL;
5990 		return __pick_next_task(rq, prev, rf);
5991 	}
5992 
5993 	/*
5994 	 * If there were no {en,de}queues since we picked (IOW, the task
5995 	 * pointers are all still valid), and we haven't scheduled the last
5996 	 * pick yet, do so now.
5997 	 *
5998 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5999 	 * it was either offline or went offline during a sibling's core-wide
6000 	 * selection. In this case, do a core-wide selection.
6001 	 */
6002 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6003 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6004 	    rq->core_pick) {
6005 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6006 
6007 		next = rq->core_pick;
6008 		rq->dl_server = rq->core_dl_server;
6009 		rq->core_pick = NULL;
6010 		rq->core_dl_server = NULL;
6011 		goto out_set_next;
6012 	}
6013 
6014 	prev_balance(rq, prev, rf);
6015 
6016 	smt_mask = cpu_smt_mask(cpu);
6017 	need_sync = !!rq->core->core_cookie;
6018 
6019 	/* reset state */
6020 	rq->core->core_cookie = 0UL;
6021 	if (rq->core->core_forceidle_count) {
6022 		if (!core_clock_updated) {
6023 			update_rq_clock(rq->core);
6024 			core_clock_updated = true;
6025 		}
6026 		sched_core_account_forceidle(rq);
6027 		/* reset after accounting force idle */
6028 		rq->core->core_forceidle_start = 0;
6029 		rq->core->core_forceidle_count = 0;
6030 		rq->core->core_forceidle_occupation = 0;
6031 		need_sync = true;
6032 		fi_before = true;
6033 	}
6034 
6035 	/*
6036 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6037 	 *
6038 	 * @task_seq guards the task state ({en,de}queues)
6039 	 * @pick_seq is the @task_seq we did a selection on
6040 	 * @sched_seq is the @pick_seq we scheduled
6041 	 *
6042 	 * However, preemptions can cause multiple picks on the same task set.
6043 	 * 'Fix' this by also increasing @task_seq for every pick.
6044 	 */
6045 	rq->core->core_task_seq++;
6046 
6047 	/*
6048 	 * Optimize for common case where this CPU has no cookies
6049 	 * and there are no cookied tasks running on siblings.
6050 	 */
6051 	if (!need_sync) {
6052 restart_single:
6053 		next = pick_task(rq, rf);
6054 		if (unlikely(next == RETRY_TASK))
6055 			goto restart_single;
6056 		if (!next->core_cookie) {
6057 			rq->core_pick = NULL;
6058 			rq->core_dl_server = NULL;
6059 			/*
6060 			 * For robustness, update the min_vruntime_fi for
6061 			 * unconstrained picks as well.
6062 			 */
6063 			WARN_ON_ONCE(fi_before);
6064 			task_vruntime_update(rq, next, false);
6065 			goto out_set_next;
6066 		}
6067 	}
6068 
6069 	/*
6070 	 * For each thread: do the regular task pick and find the max prio task
6071 	 * amongst them.
6072 	 *
6073 	 * Tie-break prio towards the current CPU
6074 	 */
6075 restart_multi:
6076 	max = NULL;
6077 	for_each_cpu_wrap(i, smt_mask, cpu) {
6078 		rq_i = cpu_rq(i);
6079 
6080 		/*
6081 		 * Current cpu always has its clock updated on entrance to
6082 		 * pick_next_task(). If the current cpu is not the core,
6083 		 * the core may also have been updated above.
6084 		 */
6085 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6086 			update_rq_clock(rq_i);
6087 
6088 		p = pick_task(rq_i, rf);
6089 		if (unlikely(p == RETRY_TASK))
6090 			goto restart_multi;
6091 
6092 		rq_i->core_pick = p;
6093 		rq_i->core_dl_server = rq_i->dl_server;
6094 
6095 		if (!max || prio_less(max, p, fi_before))
6096 			max = p;
6097 	}
6098 
6099 	cookie = rq->core->core_cookie = max->core_cookie;
6100 
6101 	/*
6102 	 * For each thread: try and find a runnable task that matches @max or
6103 	 * force idle.
6104 	 */
6105 	for_each_cpu(i, smt_mask) {
6106 		rq_i = cpu_rq(i);
6107 		p = rq_i->core_pick;
6108 
6109 		if (!cookie_equals(p, cookie)) {
6110 			p = NULL;
6111 			if (cookie)
6112 				p = sched_core_find(rq_i, cookie);
6113 			if (!p)
6114 				p = idle_sched_class.pick_task(rq_i, rf);
6115 		}
6116 
6117 		rq_i->core_pick = p;
6118 		rq_i->core_dl_server = NULL;
6119 
6120 		if (p == rq_i->idle) {
6121 			if (rq_i->nr_running) {
6122 				rq->core->core_forceidle_count++;
6123 				if (!fi_before)
6124 					rq->core->core_forceidle_seq++;
6125 			}
6126 		} else {
6127 			occ++;
6128 		}
6129 	}
6130 
6131 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6132 		rq->core->core_forceidle_start = rq_clock(rq->core);
6133 		rq->core->core_forceidle_occupation = occ;
6134 	}
6135 
6136 	rq->core->core_pick_seq = rq->core->core_task_seq;
6137 	next = rq->core_pick;
6138 	rq->core_sched_seq = rq->core->core_pick_seq;
6139 
6140 	/* Something should have been selected for current CPU */
6141 	WARN_ON_ONCE(!next);
6142 
6143 	/*
6144 	 * Reschedule siblings
6145 	 *
6146 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6147 	 * sending an IPI (below) ensures the sibling will no longer be running
6148 	 * their task. This ensures there is no inter-sibling overlap between
6149 	 * non-matching user state.
6150 	 */
6151 	for_each_cpu(i, smt_mask) {
6152 		rq_i = cpu_rq(i);
6153 
6154 		/*
6155 		 * An online sibling might have gone offline before a task
6156 		 * could be picked for it, or it might be offline but later
6157 		 * happen to come online, but its too late and nothing was
6158 		 * picked for it.  That's Ok - it will pick tasks for itself,
6159 		 * so ignore it.
6160 		 */
6161 		if (!rq_i->core_pick)
6162 			continue;
6163 
6164 		/*
6165 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6166 		 * fi_before     fi      update?
6167 		 *  0            0       1
6168 		 *  0            1       1
6169 		 *  1            0       1
6170 		 *  1            1       0
6171 		 */
6172 		if (!(fi_before && rq->core->core_forceidle_count))
6173 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6174 
6175 		rq_i->core_pick->core_occupation = occ;
6176 
6177 		if (i == cpu) {
6178 			rq_i->core_pick = NULL;
6179 			rq_i->core_dl_server = NULL;
6180 			continue;
6181 		}
6182 
6183 		/* Did we break L1TF mitigation requirements? */
6184 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6185 
6186 		if (rq_i->curr == rq_i->core_pick) {
6187 			rq_i->core_pick = NULL;
6188 			rq_i->core_dl_server = NULL;
6189 			continue;
6190 		}
6191 
6192 		resched_curr(rq_i);
6193 	}
6194 
6195 out_set_next:
6196 	put_prev_set_next_task(rq, prev, next);
6197 	if (rq->core->core_forceidle_count && next == rq->idle)
6198 		queue_core_balance(rq);
6199 
6200 	return next;
6201 }
6202 
6203 static bool try_steal_cookie(int this, int that)
6204 {
6205 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6206 	struct task_struct *p;
6207 	unsigned long cookie;
6208 	bool success = false;
6209 
6210 	guard(irq)();
6211 	guard(double_rq_lock)(dst, src);
6212 
6213 	cookie = dst->core->core_cookie;
6214 	if (!cookie)
6215 		return false;
6216 
6217 	if (dst->curr != dst->idle)
6218 		return false;
6219 
6220 	p = sched_core_find(src, cookie);
6221 	if (!p)
6222 		return false;
6223 
6224 	do {
6225 		if (p == src->core_pick || p == src->curr)
6226 			goto next;
6227 
6228 		if (!is_cpu_allowed(p, this))
6229 			goto next;
6230 
6231 		if (p->core_occupation > dst->idle->core_occupation)
6232 			goto next;
6233 		/*
6234 		 * sched_core_find() and sched_core_next() will ensure
6235 		 * that task @p is not throttled now, we also need to
6236 		 * check whether the runqueue of the destination CPU is
6237 		 * being throttled.
6238 		 */
6239 		if (sched_task_is_throttled(p, this))
6240 			goto next;
6241 
6242 		move_queued_task_locked(src, dst, p);
6243 		resched_curr(dst);
6244 
6245 		success = true;
6246 		break;
6247 
6248 next:
6249 		p = sched_core_next(p, cookie);
6250 	} while (p);
6251 
6252 	return success;
6253 }
6254 
6255 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6256 {
6257 	int i;
6258 
6259 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6260 		if (i == cpu)
6261 			continue;
6262 
6263 		if (need_resched())
6264 			break;
6265 
6266 		if (try_steal_cookie(cpu, i))
6267 			return true;
6268 	}
6269 
6270 	return false;
6271 }
6272 
6273 static void sched_core_balance(struct rq *rq)
6274 {
6275 	struct sched_domain *sd;
6276 	int cpu = cpu_of(rq);
6277 
6278 	guard(preempt)();
6279 	guard(rcu)();
6280 
6281 	raw_spin_rq_unlock_irq(rq);
6282 	for_each_domain(cpu, sd) {
6283 		if (need_resched())
6284 			break;
6285 
6286 		if (steal_cookie_task(cpu, sd))
6287 			break;
6288 	}
6289 	raw_spin_rq_lock_irq(rq);
6290 }
6291 
6292 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6293 
6294 static void queue_core_balance(struct rq *rq)
6295 {
6296 	if (!sched_core_enabled(rq))
6297 		return;
6298 
6299 	if (!rq->core->core_cookie)
6300 		return;
6301 
6302 	if (!rq->nr_running) /* not forced idle */
6303 		return;
6304 
6305 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6306 }
6307 
6308 DEFINE_LOCK_GUARD_1(core_lock, int,
6309 		    sched_core_lock(*_T->lock, &_T->flags),
6310 		    sched_core_unlock(*_T->lock, &_T->flags),
6311 		    unsigned long flags)
6312 
6313 static void sched_core_cpu_starting(unsigned int cpu)
6314 {
6315 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6316 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6317 	int t;
6318 
6319 	guard(core_lock)(&cpu);
6320 
6321 	WARN_ON_ONCE(rq->core != rq);
6322 
6323 	/* if we're the first, we'll be our own leader */
6324 	if (cpumask_weight(smt_mask) == 1)
6325 		return;
6326 
6327 	/* find the leader */
6328 	for_each_cpu(t, smt_mask) {
6329 		if (t == cpu)
6330 			continue;
6331 		rq = cpu_rq(t);
6332 		if (rq->core == rq) {
6333 			core_rq = rq;
6334 			break;
6335 		}
6336 	}
6337 
6338 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6339 		return;
6340 
6341 	/* install and validate core_rq */
6342 	for_each_cpu(t, smt_mask) {
6343 		rq = cpu_rq(t);
6344 
6345 		if (t == cpu)
6346 			rq->core = core_rq;
6347 
6348 		WARN_ON_ONCE(rq->core != core_rq);
6349 	}
6350 }
6351 
6352 static void sched_core_cpu_deactivate(unsigned int cpu)
6353 {
6354 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6355 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6356 	int t;
6357 
6358 	guard(core_lock)(&cpu);
6359 
6360 	/* if we're the last man standing, nothing to do */
6361 	if (cpumask_weight(smt_mask) == 1) {
6362 		WARN_ON_ONCE(rq->core != rq);
6363 		return;
6364 	}
6365 
6366 	/* if we're not the leader, nothing to do */
6367 	if (rq->core != rq)
6368 		return;
6369 
6370 	/* find a new leader */
6371 	for_each_cpu(t, smt_mask) {
6372 		if (t == cpu)
6373 			continue;
6374 		core_rq = cpu_rq(t);
6375 		break;
6376 	}
6377 
6378 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6379 		return;
6380 
6381 	/* copy the shared state to the new leader */
6382 	core_rq->core_task_seq             = rq->core_task_seq;
6383 	core_rq->core_pick_seq             = rq->core_pick_seq;
6384 	core_rq->core_cookie               = rq->core_cookie;
6385 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6386 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6387 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6388 
6389 	/*
6390 	 * Accounting edge for forced idle is handled in pick_next_task().
6391 	 * Don't need another one here, since the hotplug thread shouldn't
6392 	 * have a cookie.
6393 	 */
6394 	core_rq->core_forceidle_start = 0;
6395 
6396 	/* install new leader */
6397 	for_each_cpu(t, smt_mask) {
6398 		rq = cpu_rq(t);
6399 		rq->core = core_rq;
6400 	}
6401 }
6402 
6403 static inline void sched_core_cpu_dying(unsigned int cpu)
6404 {
6405 	struct rq *rq = cpu_rq(cpu);
6406 
6407 	if (rq->core != rq)
6408 		rq->core = rq;
6409 }
6410 
6411 #else /* !CONFIG_SCHED_CORE: */
6412 
6413 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6414 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6415 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6416 
6417 static struct task_struct *
6418 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6419 {
6420 	return __pick_next_task(rq, prev, rf);
6421 }
6422 
6423 #endif /* !CONFIG_SCHED_CORE */
6424 
6425 /*
6426  * Constants for the sched_mode argument of __schedule().
6427  *
6428  * The mode argument allows RT enabled kernels to differentiate a
6429  * preemption from blocking on an 'sleeping' spin/rwlock.
6430  */
6431 #define SM_IDLE			(-1)
6432 #define SM_NONE			0
6433 #define SM_PREEMPT		1
6434 #define SM_RTLOCK_WAIT		2
6435 
6436 /*
6437  * Helper function for __schedule()
6438  *
6439  * Tries to deactivate the task, unless the should_block arg
6440  * is false or if a signal is pending. In the case a signal
6441  * is pending, marks the task's __state as RUNNING (and clear
6442  * blocked_on).
6443  */
6444 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6445 			      unsigned long *task_state_p, bool should_block)
6446 {
6447 	unsigned long task_state = *task_state_p;
6448 	int flags = DEQUEUE_NOCLOCK;
6449 
6450 	if (signal_pending_state(task_state, p)) {
6451 		WRITE_ONCE(p->__state, TASK_RUNNING);
6452 		*task_state_p = TASK_RUNNING;
6453 		return false;
6454 	}
6455 
6456 	/*
6457 	 * We check should_block after signal_pending because we
6458 	 * will want to wake the task in that case. But if
6459 	 * should_block is false, its likely due to the task being
6460 	 * blocked on a mutex, and we want to keep it on the runqueue
6461 	 * to be selectable for proxy-execution.
6462 	 */
6463 	if (!should_block)
6464 		return false;
6465 
6466 	p->sched_contributes_to_load =
6467 		(task_state & TASK_UNINTERRUPTIBLE) &&
6468 		!(task_state & TASK_NOLOAD) &&
6469 		!(task_state & TASK_FROZEN);
6470 
6471 	if (unlikely(is_special_task_state(task_state)))
6472 		flags |= DEQUEUE_SPECIAL;
6473 
6474 	/*
6475 	 * __schedule()			ttwu()
6476 	 *   prev_state = prev->state;    if (p->on_rq && ...)
6477 	 *   if (prev_state)		    goto out;
6478 	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6479 	 *				  p->state = TASK_WAKING
6480 	 *
6481 	 * Where __schedule() and ttwu() have matching control dependencies.
6482 	 *
6483 	 * After this, schedule() must not care about p->state any more.
6484 	 */
6485 	block_task(rq, p, flags);
6486 	return true;
6487 }
6488 
6489 #ifdef CONFIG_SCHED_PROXY_EXEC
6490 static inline struct task_struct *proxy_resched_idle(struct rq *rq)
6491 {
6492 	put_prev_set_next_task(rq, rq->donor, rq->idle);
6493 	rq_set_donor(rq, rq->idle);
6494 	set_tsk_need_resched(rq->idle);
6495 	return rq->idle;
6496 }
6497 
6498 static bool __proxy_deactivate(struct rq *rq, struct task_struct *donor)
6499 {
6500 	unsigned long state = READ_ONCE(donor->__state);
6501 
6502 	/* Don't deactivate if the state has been changed to TASK_RUNNING */
6503 	if (state == TASK_RUNNING)
6504 		return false;
6505 	/*
6506 	 * Because we got donor from pick_next_task(), it is *crucial*
6507 	 * that we call proxy_resched_idle() before we deactivate it.
6508 	 * As once we deactivate donor, donor->on_rq is set to zero,
6509 	 * which allows ttwu() to immediately try to wake the task on
6510 	 * another rq. So we cannot use *any* references to donor
6511 	 * after that point. So things like cfs_rq->curr or rq->donor
6512 	 * need to be changed from next *before* we deactivate.
6513 	 */
6514 	proxy_resched_idle(rq);
6515 	return try_to_block_task(rq, donor, &state, true);
6516 }
6517 
6518 static struct task_struct *proxy_deactivate(struct rq *rq, struct task_struct *donor)
6519 {
6520 	if (!__proxy_deactivate(rq, donor)) {
6521 		/*
6522 		 * XXX: For now, if deactivation failed, set donor
6523 		 * as unblocked, as we aren't doing proxy-migrations
6524 		 * yet (more logic will be needed then).
6525 		 */
6526 		donor->blocked_on = NULL;
6527 	}
6528 	return NULL;
6529 }
6530 
6531 /*
6532  * Find runnable lock owner to proxy for mutex blocked donor
6533  *
6534  * Follow the blocked-on relation:
6535  *   task->blocked_on -> mutex->owner -> task...
6536  *
6537  * Lock order:
6538  *
6539  *   p->pi_lock
6540  *     rq->lock
6541  *       mutex->wait_lock
6542  *
6543  * Returns the task that is going to be used as execution context (the one
6544  * that is actually going to be run on cpu_of(rq)).
6545  */
6546 static struct task_struct *
6547 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf)
6548 {
6549 	struct task_struct *owner = NULL;
6550 	int this_cpu = cpu_of(rq);
6551 	struct task_struct *p;
6552 	struct mutex *mutex;
6553 
6554 	/* Follow blocked_on chain. */
6555 	for (p = donor; task_is_blocked(p); p = owner) {
6556 		mutex = p->blocked_on;
6557 		/* Something changed in the chain, so pick again */
6558 		if (!mutex)
6559 			return NULL;
6560 		/*
6561 		 * By taking mutex->wait_lock we hold off concurrent mutex_unlock()
6562 		 * and ensure @owner sticks around.
6563 		 */
6564 		guard(raw_spinlock)(&mutex->wait_lock);
6565 
6566 		/* Check again that p is blocked with wait_lock held */
6567 		if (mutex != __get_task_blocked_on(p)) {
6568 			/*
6569 			 * Something changed in the blocked_on chain and
6570 			 * we don't know if only at this level. So, let's
6571 			 * just bail out completely and let __schedule()
6572 			 * figure things out (pick_again loop).
6573 			 */
6574 			return NULL;
6575 		}
6576 
6577 		owner = __mutex_owner(mutex);
6578 		if (!owner) {
6579 			__clear_task_blocked_on(p, mutex);
6580 			return p;
6581 		}
6582 
6583 		if (!READ_ONCE(owner->on_rq) || owner->se.sched_delayed) {
6584 			/* XXX Don't handle blocked owners/delayed dequeue yet */
6585 			return proxy_deactivate(rq, donor);
6586 		}
6587 
6588 		if (task_cpu(owner) != this_cpu) {
6589 			/* XXX Don't handle migrations yet */
6590 			return proxy_deactivate(rq, donor);
6591 		}
6592 
6593 		if (task_on_rq_migrating(owner)) {
6594 			/*
6595 			 * One of the chain of mutex owners is currently migrating to this
6596 			 * CPU, but has not yet been enqueued because we are holding the
6597 			 * rq lock. As a simple solution, just schedule rq->idle to give
6598 			 * the migration a chance to complete. Much like the migrate_task
6599 			 * case we should end up back in find_proxy_task(), this time
6600 			 * hopefully with all relevant tasks already enqueued.
6601 			 */
6602 			return proxy_resched_idle(rq);
6603 		}
6604 
6605 		/*
6606 		 * Its possible to race where after we check owner->on_rq
6607 		 * but before we check (owner_cpu != this_cpu) that the
6608 		 * task on another cpu was migrated back to this cpu. In
6609 		 * that case it could slip by our  checks. So double check
6610 		 * we are still on this cpu and not migrating. If we get
6611 		 * inconsistent results, try again.
6612 		 */
6613 		if (!task_on_rq_queued(owner) || task_cpu(owner) != this_cpu)
6614 			return NULL;
6615 
6616 		if (owner == p) {
6617 			/*
6618 			 * It's possible we interleave with mutex_unlock like:
6619 			 *
6620 			 *				lock(&rq->lock);
6621 			 *				  find_proxy_task()
6622 			 * mutex_unlock()
6623 			 *   lock(&wait_lock);
6624 			 *   donor(owner) = current->blocked_donor;
6625 			 *   unlock(&wait_lock);
6626 			 *
6627 			 *   wake_up_q();
6628 			 *     ...
6629 			 *       ttwu_runnable()
6630 			 *         __task_rq_lock()
6631 			 *				  lock(&wait_lock);
6632 			 *				  owner == p
6633 			 *
6634 			 * Which leaves us to finish the ttwu_runnable() and make it go.
6635 			 *
6636 			 * So schedule rq->idle so that ttwu_runnable() can get the rq
6637 			 * lock and mark owner as running.
6638 			 */
6639 			return proxy_resched_idle(rq);
6640 		}
6641 		/*
6642 		 * OK, now we're absolutely sure @owner is on this
6643 		 * rq, therefore holding @rq->lock is sufficient to
6644 		 * guarantee its existence, as per ttwu_remote().
6645 		 */
6646 	}
6647 
6648 	WARN_ON_ONCE(owner && !owner->on_rq);
6649 	return owner;
6650 }
6651 #else /* SCHED_PROXY_EXEC */
6652 static struct task_struct *
6653 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf)
6654 {
6655 	WARN_ONCE(1, "This should never be called in the !SCHED_PROXY_EXEC case\n");
6656 	return donor;
6657 }
6658 #endif /* SCHED_PROXY_EXEC */
6659 
6660 static inline void proxy_tag_curr(struct rq *rq, struct task_struct *owner)
6661 {
6662 	if (!sched_proxy_exec())
6663 		return;
6664 	/*
6665 	 * pick_next_task() calls set_next_task() on the chosen task
6666 	 * at some point, which ensures it is not push/pullable.
6667 	 * However, the chosen/donor task *and* the mutex owner form an
6668 	 * atomic pair wrt push/pull.
6669 	 *
6670 	 * Make sure owner we run is not pushable. Unfortunately we can
6671 	 * only deal with that by means of a dequeue/enqueue cycle. :-/
6672 	 */
6673 	dequeue_task(rq, owner, DEQUEUE_NOCLOCK | DEQUEUE_SAVE);
6674 	enqueue_task(rq, owner, ENQUEUE_NOCLOCK | ENQUEUE_RESTORE);
6675 }
6676 
6677 /*
6678  * __schedule() is the main scheduler function.
6679  *
6680  * The main means of driving the scheduler and thus entering this function are:
6681  *
6682  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6683  *
6684  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6685  *      paths. For example, see arch/x86/entry_64.S.
6686  *
6687  *      To drive preemption between tasks, the scheduler sets the flag in timer
6688  *      interrupt handler sched_tick().
6689  *
6690  *   3. Wakeups don't really cause entry into schedule(). They add a
6691  *      task to the run-queue and that's it.
6692  *
6693  *      Now, if the new task added to the run-queue preempts the current
6694  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6695  *      called on the nearest possible occasion:
6696  *
6697  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6698  *
6699  *         - in syscall or exception context, at the next outmost
6700  *           preempt_enable(). (this might be as soon as the wake_up()'s
6701  *           spin_unlock()!)
6702  *
6703  *         - in IRQ context, return from interrupt-handler to
6704  *           preemptible context
6705  *
6706  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6707  *         then at the next:
6708  *
6709  *          - cond_resched() call
6710  *          - explicit schedule() call
6711  *          - return from syscall or exception to user-space
6712  *          - return from interrupt-handler to user-space
6713  *
6714  * WARNING: must be called with preemption disabled!
6715  */
6716 static void __sched notrace __schedule(int sched_mode)
6717 {
6718 	struct task_struct *prev, *next;
6719 	/*
6720 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6721 	 * as a preemption by schedule_debug() and RCU.
6722 	 */
6723 	bool preempt = sched_mode > SM_NONE;
6724 	bool is_switch = false;
6725 	unsigned long *switch_count;
6726 	unsigned long prev_state;
6727 	struct rq_flags rf;
6728 	struct rq *rq;
6729 	int cpu;
6730 
6731 	/* Trace preemptions consistently with task switches */
6732 	trace_sched_entry_tp(sched_mode == SM_PREEMPT);
6733 
6734 	cpu = smp_processor_id();
6735 	rq = cpu_rq(cpu);
6736 	prev = rq->curr;
6737 
6738 	schedule_debug(prev, preempt);
6739 
6740 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6741 		hrtick_clear(rq);
6742 
6743 	klp_sched_try_switch(prev);
6744 
6745 	local_irq_disable();
6746 	rcu_note_context_switch(preempt);
6747 	migrate_disable_switch(rq, prev);
6748 
6749 	/*
6750 	 * Make sure that signal_pending_state()->signal_pending() below
6751 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6752 	 * done by the caller to avoid the race with signal_wake_up():
6753 	 *
6754 	 * __set_current_state(@state)		signal_wake_up()
6755 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6756 	 *					  wake_up_state(p, state)
6757 	 *   LOCK rq->lock			    LOCK p->pi_state
6758 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6759 	 *     if (signal_pending_state())	    if (p->state & @state)
6760 	 *
6761 	 * Also, the membarrier system call requires a full memory barrier
6762 	 * after coming from user-space, before storing to rq->curr; this
6763 	 * barrier matches a full barrier in the proximity of the membarrier
6764 	 * system call exit.
6765 	 */
6766 	rq_lock(rq, &rf);
6767 	smp_mb__after_spinlock();
6768 
6769 	/* Promote REQ to ACT */
6770 	rq->clock_update_flags <<= 1;
6771 	update_rq_clock(rq);
6772 	rq->clock_update_flags = RQCF_UPDATED;
6773 
6774 	switch_count = &prev->nivcsw;
6775 
6776 	/* Task state changes only considers SM_PREEMPT as preemption */
6777 	preempt = sched_mode == SM_PREEMPT;
6778 
6779 	/*
6780 	 * We must load prev->state once (task_struct::state is volatile), such
6781 	 * that we form a control dependency vs deactivate_task() below.
6782 	 */
6783 	prev_state = READ_ONCE(prev->__state);
6784 	if (sched_mode == SM_IDLE) {
6785 		/* SCX must consult the BPF scheduler to tell if rq is empty */
6786 		if (!rq->nr_running && !scx_enabled()) {
6787 			next = prev;
6788 			goto picked;
6789 		}
6790 	} else if (!preempt && prev_state) {
6791 		/*
6792 		 * We pass task_is_blocked() as the should_block arg
6793 		 * in order to keep mutex-blocked tasks on the runqueue
6794 		 * for slection with proxy-exec (without proxy-exec
6795 		 * task_is_blocked() will always be false).
6796 		 */
6797 		try_to_block_task(rq, prev, &prev_state,
6798 				  !task_is_blocked(prev));
6799 		switch_count = &prev->nvcsw;
6800 	}
6801 
6802 pick_again:
6803 	next = pick_next_task(rq, rq->donor, &rf);
6804 	rq_set_donor(rq, next);
6805 	if (unlikely(task_is_blocked(next))) {
6806 		next = find_proxy_task(rq, next, &rf);
6807 		if (!next)
6808 			goto pick_again;
6809 		if (next == rq->idle)
6810 			goto keep_resched;
6811 	}
6812 picked:
6813 	clear_tsk_need_resched(prev);
6814 	clear_preempt_need_resched();
6815 keep_resched:
6816 	rq->last_seen_need_resched_ns = 0;
6817 
6818 	is_switch = prev != next;
6819 	if (likely(is_switch)) {
6820 		rq->nr_switches++;
6821 		/*
6822 		 * RCU users of rcu_dereference(rq->curr) may not see
6823 		 * changes to task_struct made by pick_next_task().
6824 		 */
6825 		RCU_INIT_POINTER(rq->curr, next);
6826 
6827 		if (!task_current_donor(rq, next))
6828 			proxy_tag_curr(rq, next);
6829 
6830 		/*
6831 		 * The membarrier system call requires each architecture
6832 		 * to have a full memory barrier after updating
6833 		 * rq->curr, before returning to user-space.
6834 		 *
6835 		 * Here are the schemes providing that barrier on the
6836 		 * various architectures:
6837 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6838 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6839 		 *   on PowerPC and on RISC-V.
6840 		 * - finish_lock_switch() for weakly-ordered
6841 		 *   architectures where spin_unlock is a full barrier,
6842 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6843 		 *   is a RELEASE barrier),
6844 		 *
6845 		 * The barrier matches a full barrier in the proximity of
6846 		 * the membarrier system call entry.
6847 		 *
6848 		 * On RISC-V, this barrier pairing is also needed for the
6849 		 * SYNC_CORE command when switching between processes, cf.
6850 		 * the inline comments in membarrier_arch_switch_mm().
6851 		 */
6852 		++*switch_count;
6853 
6854 		psi_account_irqtime(rq, prev, next);
6855 		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6856 					     prev->se.sched_delayed);
6857 
6858 		trace_sched_switch(preempt, prev, next, prev_state);
6859 
6860 		/* Also unlocks the rq: */
6861 		rq = context_switch(rq, prev, next, &rf);
6862 	} else {
6863 		/* In case next was already curr but just got blocked_donor */
6864 		if (!task_current_donor(rq, next))
6865 			proxy_tag_curr(rq, next);
6866 
6867 		rq_unpin_lock(rq, &rf);
6868 		__balance_callbacks(rq);
6869 		raw_spin_rq_unlock_irq(rq);
6870 	}
6871 	trace_sched_exit_tp(is_switch);
6872 }
6873 
6874 void __noreturn do_task_dead(void)
6875 {
6876 	/* Causes final put_task_struct in finish_task_switch(): */
6877 	set_special_state(TASK_DEAD);
6878 
6879 	/* Tell freezer to ignore us: */
6880 	current->flags |= PF_NOFREEZE;
6881 
6882 	__schedule(SM_NONE);
6883 	BUG();
6884 
6885 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6886 	for (;;)
6887 		cpu_relax();
6888 }
6889 
6890 static inline void sched_submit_work(struct task_struct *tsk)
6891 {
6892 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6893 	unsigned int task_flags;
6894 
6895 	/*
6896 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6897 	 * will use a blocking primitive -- which would lead to recursion.
6898 	 */
6899 	lock_map_acquire_try(&sched_map);
6900 
6901 	task_flags = tsk->flags;
6902 	/*
6903 	 * If a worker goes to sleep, notify and ask workqueue whether it
6904 	 * wants to wake up a task to maintain concurrency.
6905 	 */
6906 	if (task_flags & PF_WQ_WORKER)
6907 		wq_worker_sleeping(tsk);
6908 	else if (task_flags & PF_IO_WORKER)
6909 		io_wq_worker_sleeping(tsk);
6910 
6911 	/*
6912 	 * spinlock and rwlock must not flush block requests.  This will
6913 	 * deadlock if the callback attempts to acquire a lock which is
6914 	 * already acquired.
6915 	 */
6916 	WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT);
6917 
6918 	/*
6919 	 * If we are going to sleep and we have plugged IO queued,
6920 	 * make sure to submit it to avoid deadlocks.
6921 	 */
6922 	blk_flush_plug(tsk->plug, true);
6923 
6924 	lock_map_release(&sched_map);
6925 }
6926 
6927 static void sched_update_worker(struct task_struct *tsk)
6928 {
6929 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6930 		if (tsk->flags & PF_BLOCK_TS)
6931 			blk_plug_invalidate_ts(tsk);
6932 		if (tsk->flags & PF_WQ_WORKER)
6933 			wq_worker_running(tsk);
6934 		else if (tsk->flags & PF_IO_WORKER)
6935 			io_wq_worker_running(tsk);
6936 	}
6937 }
6938 
6939 static __always_inline void __schedule_loop(int sched_mode)
6940 {
6941 	do {
6942 		preempt_disable();
6943 		__schedule(sched_mode);
6944 		sched_preempt_enable_no_resched();
6945 	} while (need_resched());
6946 }
6947 
6948 asmlinkage __visible void __sched schedule(void)
6949 {
6950 	struct task_struct *tsk = current;
6951 
6952 #ifdef CONFIG_RT_MUTEXES
6953 	lockdep_assert(!tsk->sched_rt_mutex);
6954 #endif
6955 
6956 	if (!task_is_running(tsk))
6957 		sched_submit_work(tsk);
6958 	__schedule_loop(SM_NONE);
6959 	sched_update_worker(tsk);
6960 }
6961 EXPORT_SYMBOL(schedule);
6962 
6963 /*
6964  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6965  * state (have scheduled out non-voluntarily) by making sure that all
6966  * tasks have either left the run queue or have gone into user space.
6967  * As idle tasks do not do either, they must not ever be preempted
6968  * (schedule out non-voluntarily).
6969  *
6970  * schedule_idle() is similar to schedule_preempt_disable() except that it
6971  * never enables preemption because it does not call sched_submit_work().
6972  */
6973 void __sched schedule_idle(void)
6974 {
6975 	/*
6976 	 * As this skips calling sched_submit_work(), which the idle task does
6977 	 * regardless because that function is a NOP when the task is in a
6978 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6979 	 * current task can be in any other state. Note, idle is always in the
6980 	 * TASK_RUNNING state.
6981 	 */
6982 	WARN_ON_ONCE(current->__state);
6983 	do {
6984 		__schedule(SM_IDLE);
6985 	} while (need_resched());
6986 }
6987 
6988 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6989 asmlinkage __visible void __sched schedule_user(void)
6990 {
6991 	/*
6992 	 * If we come here after a random call to set_need_resched(),
6993 	 * or we have been woken up remotely but the IPI has not yet arrived,
6994 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6995 	 * we find a better solution.
6996 	 *
6997 	 * NB: There are buggy callers of this function.  Ideally we
6998 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6999 	 * too frequently to make sense yet.
7000 	 */
7001 	enum ctx_state prev_state = exception_enter();
7002 	schedule();
7003 	exception_exit(prev_state);
7004 }
7005 #endif
7006 
7007 /**
7008  * schedule_preempt_disabled - called with preemption disabled
7009  *
7010  * Returns with preemption disabled. Note: preempt_count must be 1
7011  */
7012 void __sched schedule_preempt_disabled(void)
7013 {
7014 	sched_preempt_enable_no_resched();
7015 	schedule();
7016 	preempt_disable();
7017 }
7018 
7019 #ifdef CONFIG_PREEMPT_RT
7020 void __sched notrace schedule_rtlock(void)
7021 {
7022 	__schedule_loop(SM_RTLOCK_WAIT);
7023 }
7024 NOKPROBE_SYMBOL(schedule_rtlock);
7025 #endif
7026 
7027 static void __sched notrace preempt_schedule_common(void)
7028 {
7029 	do {
7030 		/*
7031 		 * Because the function tracer can trace preempt_count_sub()
7032 		 * and it also uses preempt_enable/disable_notrace(), if
7033 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7034 		 * by the function tracer will call this function again and
7035 		 * cause infinite recursion.
7036 		 *
7037 		 * Preemption must be disabled here before the function
7038 		 * tracer can trace. Break up preempt_disable() into two
7039 		 * calls. One to disable preemption without fear of being
7040 		 * traced. The other to still record the preemption latency,
7041 		 * which can also be traced by the function tracer.
7042 		 */
7043 		preempt_disable_notrace();
7044 		preempt_latency_start(1);
7045 		__schedule(SM_PREEMPT);
7046 		preempt_latency_stop(1);
7047 		preempt_enable_no_resched_notrace();
7048 
7049 		/*
7050 		 * Check again in case we missed a preemption opportunity
7051 		 * between schedule and now.
7052 		 */
7053 	} while (need_resched());
7054 }
7055 
7056 #ifdef CONFIG_PREEMPTION
7057 /*
7058  * This is the entry point to schedule() from in-kernel preemption
7059  * off of preempt_enable.
7060  */
7061 asmlinkage __visible void __sched notrace preempt_schedule(void)
7062 {
7063 	/*
7064 	 * If there is a non-zero preempt_count or interrupts are disabled,
7065 	 * we do not want to preempt the current task. Just return..
7066 	 */
7067 	if (likely(!preemptible()))
7068 		return;
7069 	preempt_schedule_common();
7070 }
7071 NOKPROBE_SYMBOL(preempt_schedule);
7072 EXPORT_SYMBOL(preempt_schedule);
7073 
7074 #ifdef CONFIG_PREEMPT_DYNAMIC
7075 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7076 #  ifndef preempt_schedule_dynamic_enabled
7077 #   define preempt_schedule_dynamic_enabled	preempt_schedule
7078 #   define preempt_schedule_dynamic_disabled	NULL
7079 #  endif
7080 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
7081 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
7082 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7083 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
7084 void __sched notrace dynamic_preempt_schedule(void)
7085 {
7086 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
7087 		return;
7088 	preempt_schedule();
7089 }
7090 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
7091 EXPORT_SYMBOL(dynamic_preempt_schedule);
7092 # endif
7093 #endif /* CONFIG_PREEMPT_DYNAMIC */
7094 
7095 /**
7096  * preempt_schedule_notrace - preempt_schedule called by tracing
7097  *
7098  * The tracing infrastructure uses preempt_enable_notrace to prevent
7099  * recursion and tracing preempt enabling caused by the tracing
7100  * infrastructure itself. But as tracing can happen in areas coming
7101  * from userspace or just about to enter userspace, a preempt enable
7102  * can occur before user_exit() is called. This will cause the scheduler
7103  * to be called when the system is still in usermode.
7104  *
7105  * To prevent this, the preempt_enable_notrace will use this function
7106  * instead of preempt_schedule() to exit user context if needed before
7107  * calling the scheduler.
7108  */
7109 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7110 {
7111 	enum ctx_state prev_ctx;
7112 
7113 	if (likely(!preemptible()))
7114 		return;
7115 
7116 	do {
7117 		/*
7118 		 * Because the function tracer can trace preempt_count_sub()
7119 		 * and it also uses preempt_enable/disable_notrace(), if
7120 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7121 		 * by the function tracer will call this function again and
7122 		 * cause infinite recursion.
7123 		 *
7124 		 * Preemption must be disabled here before the function
7125 		 * tracer can trace. Break up preempt_disable() into two
7126 		 * calls. One to disable preemption without fear of being
7127 		 * traced. The other to still record the preemption latency,
7128 		 * which can also be traced by the function tracer.
7129 		 */
7130 		preempt_disable_notrace();
7131 		preempt_latency_start(1);
7132 		/*
7133 		 * Needs preempt disabled in case user_exit() is traced
7134 		 * and the tracer calls preempt_enable_notrace() causing
7135 		 * an infinite recursion.
7136 		 */
7137 		prev_ctx = exception_enter();
7138 		__schedule(SM_PREEMPT);
7139 		exception_exit(prev_ctx);
7140 
7141 		preempt_latency_stop(1);
7142 		preempt_enable_no_resched_notrace();
7143 	} while (need_resched());
7144 }
7145 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7146 
7147 #ifdef CONFIG_PREEMPT_DYNAMIC
7148 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7149 #  ifndef preempt_schedule_notrace_dynamic_enabled
7150 #   define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7151 #   define preempt_schedule_notrace_dynamic_disabled	NULL
7152 #  endif
7153 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7154 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7155 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7156 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7157 void __sched notrace dynamic_preempt_schedule_notrace(void)
7158 {
7159 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7160 		return;
7161 	preempt_schedule_notrace();
7162 }
7163 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7164 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7165 # endif
7166 #endif
7167 
7168 #endif /* CONFIG_PREEMPTION */
7169 
7170 /*
7171  * This is the entry point to schedule() from kernel preemption
7172  * off of IRQ context.
7173  * Note, that this is called and return with IRQs disabled. This will
7174  * protect us against recursive calling from IRQ contexts.
7175  */
7176 asmlinkage __visible void __sched preempt_schedule_irq(void)
7177 {
7178 	enum ctx_state prev_state;
7179 
7180 	/* Catch callers which need to be fixed */
7181 	BUG_ON(preempt_count() || !irqs_disabled());
7182 
7183 	prev_state = exception_enter();
7184 
7185 	do {
7186 		preempt_disable();
7187 		local_irq_enable();
7188 		__schedule(SM_PREEMPT);
7189 		local_irq_disable();
7190 		sched_preempt_enable_no_resched();
7191 	} while (need_resched());
7192 
7193 	exception_exit(prev_state);
7194 }
7195 
7196 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7197 			  void *key)
7198 {
7199 	WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7200 	return try_to_wake_up(curr->private, mode, wake_flags);
7201 }
7202 EXPORT_SYMBOL(default_wake_function);
7203 
7204 const struct sched_class *__setscheduler_class(int policy, int prio)
7205 {
7206 	if (dl_prio(prio))
7207 		return &dl_sched_class;
7208 
7209 	if (rt_prio(prio))
7210 		return &rt_sched_class;
7211 
7212 #ifdef CONFIG_SCHED_CLASS_EXT
7213 	if (task_should_scx(policy))
7214 		return &ext_sched_class;
7215 #endif
7216 
7217 	return &fair_sched_class;
7218 }
7219 
7220 #ifdef CONFIG_RT_MUTEXES
7221 
7222 /*
7223  * Would be more useful with typeof()/auto_type but they don't mix with
7224  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7225  * name such that if someone were to implement this function we get to compare
7226  * notes.
7227  */
7228 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7229 
7230 void rt_mutex_pre_schedule(void)
7231 {
7232 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7233 	sched_submit_work(current);
7234 }
7235 
7236 void rt_mutex_schedule(void)
7237 {
7238 	lockdep_assert(current->sched_rt_mutex);
7239 	__schedule_loop(SM_NONE);
7240 }
7241 
7242 void rt_mutex_post_schedule(void)
7243 {
7244 	sched_update_worker(current);
7245 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7246 }
7247 
7248 /*
7249  * rt_mutex_setprio - set the current priority of a task
7250  * @p: task to boost
7251  * @pi_task: donor task
7252  *
7253  * This function changes the 'effective' priority of a task. It does
7254  * not touch ->normal_prio like __setscheduler().
7255  *
7256  * Used by the rt_mutex code to implement priority inheritance
7257  * logic. Call site only calls if the priority of the task changed.
7258  */
7259 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7260 {
7261 	int prio, oldprio, queue_flag =
7262 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7263 	const struct sched_class *prev_class, *next_class;
7264 	struct rq_flags rf;
7265 	struct rq *rq;
7266 
7267 	/* XXX used to be waiter->prio, not waiter->task->prio */
7268 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7269 
7270 	/*
7271 	 * If nothing changed; bail early.
7272 	 */
7273 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7274 		return;
7275 
7276 	rq = __task_rq_lock(p, &rf);
7277 	update_rq_clock(rq);
7278 	/*
7279 	 * Set under pi_lock && rq->lock, such that the value can be used under
7280 	 * either lock.
7281 	 *
7282 	 * Note that there is loads of tricky to make this pointer cache work
7283 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7284 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7285 	 * task is allowed to run again (and can exit). This ensures the pointer
7286 	 * points to a blocked task -- which guarantees the task is present.
7287 	 */
7288 	p->pi_top_task = pi_task;
7289 
7290 	/*
7291 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7292 	 */
7293 	if (prio == p->prio && !dl_prio(prio))
7294 		goto out_unlock;
7295 
7296 	/*
7297 	 * Idle task boosting is a no-no in general. There is one
7298 	 * exception, when PREEMPT_RT and NOHZ is active:
7299 	 *
7300 	 * The idle task calls get_next_timer_interrupt() and holds
7301 	 * the timer wheel base->lock on the CPU and another CPU wants
7302 	 * to access the timer (probably to cancel it). We can safely
7303 	 * ignore the boosting request, as the idle CPU runs this code
7304 	 * with interrupts disabled and will complete the lock
7305 	 * protected section without being interrupted. So there is no
7306 	 * real need to boost.
7307 	 */
7308 	if (unlikely(p == rq->idle)) {
7309 		WARN_ON(p != rq->curr);
7310 		WARN_ON(p->pi_blocked_on);
7311 		goto out_unlock;
7312 	}
7313 
7314 	trace_sched_pi_setprio(p, pi_task);
7315 	oldprio = p->prio;
7316 
7317 	if (oldprio == prio)
7318 		queue_flag &= ~DEQUEUE_MOVE;
7319 
7320 	prev_class = p->sched_class;
7321 	next_class = __setscheduler_class(p->policy, prio);
7322 
7323 	if (prev_class != next_class)
7324 		queue_flag |= DEQUEUE_CLASS;
7325 
7326 	scoped_guard (sched_change, p, queue_flag) {
7327 		/*
7328 		 * Boosting condition are:
7329 		 * 1. -rt task is running and holds mutex A
7330 		 *      --> -dl task blocks on mutex A
7331 		 *
7332 		 * 2. -dl task is running and holds mutex A
7333 		 *      --> -dl task blocks on mutex A and could preempt the
7334 		 *          running task
7335 		 */
7336 		if (dl_prio(prio)) {
7337 			if (!dl_prio(p->normal_prio) ||
7338 			    (pi_task && dl_prio(pi_task->prio) &&
7339 			     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7340 				p->dl.pi_se = pi_task->dl.pi_se;
7341 				scope->flags |= ENQUEUE_REPLENISH;
7342 			} else {
7343 				p->dl.pi_se = &p->dl;
7344 			}
7345 		} else if (rt_prio(prio)) {
7346 			if (dl_prio(oldprio))
7347 				p->dl.pi_se = &p->dl;
7348 			if (oldprio < prio)
7349 				scope->flags |= ENQUEUE_HEAD;
7350 		} else {
7351 			if (dl_prio(oldprio))
7352 				p->dl.pi_se = &p->dl;
7353 			if (rt_prio(oldprio))
7354 				p->rt.timeout = 0;
7355 		}
7356 
7357 		p->sched_class = next_class;
7358 		p->prio = prio;
7359 	}
7360 out_unlock:
7361 	/* Avoid rq from going away on us: */
7362 	preempt_disable();
7363 
7364 	rq_unpin_lock(rq, &rf);
7365 	__balance_callbacks(rq);
7366 	rq_repin_lock(rq, &rf);
7367 	__task_rq_unlock(rq, p, &rf);
7368 
7369 	preempt_enable();
7370 }
7371 #endif /* CONFIG_RT_MUTEXES */
7372 
7373 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7374 int __sched __cond_resched(void)
7375 {
7376 	if (should_resched(0) && !irqs_disabled()) {
7377 		preempt_schedule_common();
7378 		return 1;
7379 	}
7380 	/*
7381 	 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick
7382 	 * whether the current CPU is in an RCU read-side critical section,
7383 	 * so the tick can report quiescent states even for CPUs looping
7384 	 * in kernel context.  In contrast, in non-preemptible kernels,
7385 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7386 	 * processes executing in kernel context might never report an
7387 	 * RCU quiescent state.  Therefore, the following code causes
7388 	 * cond_resched() to report a quiescent state, but only when RCU
7389 	 * is in urgent need of one.
7390 	 * A third case, preemptible, but non-PREEMPT_RCU provides for
7391 	 * urgently needed quiescent states via rcu_flavor_sched_clock_irq().
7392 	 */
7393 #ifndef CONFIG_PREEMPT_RCU
7394 	rcu_all_qs();
7395 #endif
7396 	return 0;
7397 }
7398 EXPORT_SYMBOL(__cond_resched);
7399 #endif
7400 
7401 #ifdef CONFIG_PREEMPT_DYNAMIC
7402 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7403 #  define cond_resched_dynamic_enabled	__cond_resched
7404 #  define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7405 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7406 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7407 
7408 #  define might_resched_dynamic_enabled	__cond_resched
7409 #  define might_resched_dynamic_disabled ((void *)&__static_call_return0)
7410 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7411 EXPORT_STATIC_CALL_TRAMP(might_resched);
7412 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7413 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7414 int __sched dynamic_cond_resched(void)
7415 {
7416 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7417 		return 0;
7418 	return __cond_resched();
7419 }
7420 EXPORT_SYMBOL(dynamic_cond_resched);
7421 
7422 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7423 int __sched dynamic_might_resched(void)
7424 {
7425 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7426 		return 0;
7427 	return __cond_resched();
7428 }
7429 EXPORT_SYMBOL(dynamic_might_resched);
7430 # endif
7431 #endif /* CONFIG_PREEMPT_DYNAMIC */
7432 
7433 /*
7434  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7435  * call schedule, and on return reacquire the lock.
7436  *
7437  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7438  * operations here to prevent schedule() from being called twice (once via
7439  * spin_unlock(), once by hand).
7440  */
7441 int __cond_resched_lock(spinlock_t *lock)
7442 {
7443 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7444 	int ret = 0;
7445 
7446 	lockdep_assert_held(lock);
7447 
7448 	if (spin_needbreak(lock) || resched) {
7449 		spin_unlock(lock);
7450 		if (!_cond_resched())
7451 			cpu_relax();
7452 		ret = 1;
7453 		spin_lock(lock);
7454 	}
7455 	return ret;
7456 }
7457 EXPORT_SYMBOL(__cond_resched_lock);
7458 
7459 int __cond_resched_rwlock_read(rwlock_t *lock)
7460 {
7461 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7462 	int ret = 0;
7463 
7464 	lockdep_assert_held_read(lock);
7465 
7466 	if (rwlock_needbreak(lock) || resched) {
7467 		read_unlock(lock);
7468 		if (!_cond_resched())
7469 			cpu_relax();
7470 		ret = 1;
7471 		read_lock(lock);
7472 	}
7473 	return ret;
7474 }
7475 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7476 
7477 int __cond_resched_rwlock_write(rwlock_t *lock)
7478 {
7479 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7480 	int ret = 0;
7481 
7482 	lockdep_assert_held_write(lock);
7483 
7484 	if (rwlock_needbreak(lock) || resched) {
7485 		write_unlock(lock);
7486 		if (!_cond_resched())
7487 			cpu_relax();
7488 		ret = 1;
7489 		write_lock(lock);
7490 	}
7491 	return ret;
7492 }
7493 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7494 
7495 #ifdef CONFIG_PREEMPT_DYNAMIC
7496 
7497 # ifdef CONFIG_GENERIC_IRQ_ENTRY
7498 #  include <linux/irq-entry-common.h>
7499 # endif
7500 
7501 /*
7502  * SC:cond_resched
7503  * SC:might_resched
7504  * SC:preempt_schedule
7505  * SC:preempt_schedule_notrace
7506  * SC:irqentry_exit_cond_resched
7507  *
7508  *
7509  * NONE:
7510  *   cond_resched               <- __cond_resched
7511  *   might_resched              <- RET0
7512  *   preempt_schedule           <- NOP
7513  *   preempt_schedule_notrace   <- NOP
7514  *   irqentry_exit_cond_resched <- NOP
7515  *   dynamic_preempt_lazy       <- false
7516  *
7517  * VOLUNTARY:
7518  *   cond_resched               <- __cond_resched
7519  *   might_resched              <- __cond_resched
7520  *   preempt_schedule           <- NOP
7521  *   preempt_schedule_notrace   <- NOP
7522  *   irqentry_exit_cond_resched <- NOP
7523  *   dynamic_preempt_lazy       <- false
7524  *
7525  * FULL:
7526  *   cond_resched               <- RET0
7527  *   might_resched              <- RET0
7528  *   preempt_schedule           <- preempt_schedule
7529  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7530  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7531  *   dynamic_preempt_lazy       <- false
7532  *
7533  * LAZY:
7534  *   cond_resched               <- RET0
7535  *   might_resched              <- RET0
7536  *   preempt_schedule           <- preempt_schedule
7537  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7538  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7539  *   dynamic_preempt_lazy       <- true
7540  */
7541 
7542 enum {
7543 	preempt_dynamic_undefined = -1,
7544 	preempt_dynamic_none,
7545 	preempt_dynamic_voluntary,
7546 	preempt_dynamic_full,
7547 	preempt_dynamic_lazy,
7548 };
7549 
7550 int preempt_dynamic_mode = preempt_dynamic_undefined;
7551 
7552 int sched_dynamic_mode(const char *str)
7553 {
7554 # ifndef CONFIG_PREEMPT_RT
7555 	if (!strcmp(str, "none"))
7556 		return preempt_dynamic_none;
7557 
7558 	if (!strcmp(str, "voluntary"))
7559 		return preempt_dynamic_voluntary;
7560 # endif
7561 
7562 	if (!strcmp(str, "full"))
7563 		return preempt_dynamic_full;
7564 
7565 # ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7566 	if (!strcmp(str, "lazy"))
7567 		return preempt_dynamic_lazy;
7568 # endif
7569 
7570 	return -EINVAL;
7571 }
7572 
7573 # define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7574 # define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7575 
7576 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7577 #  define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7578 #  define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7579 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7580 #  define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
7581 #  define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
7582 # else
7583 #  error "Unsupported PREEMPT_DYNAMIC mechanism"
7584 # endif
7585 
7586 static DEFINE_MUTEX(sched_dynamic_mutex);
7587 
7588 static void __sched_dynamic_update(int mode)
7589 {
7590 	/*
7591 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7592 	 * the ZERO state, which is invalid.
7593 	 */
7594 	preempt_dynamic_enable(cond_resched);
7595 	preempt_dynamic_enable(might_resched);
7596 	preempt_dynamic_enable(preempt_schedule);
7597 	preempt_dynamic_enable(preempt_schedule_notrace);
7598 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7599 	preempt_dynamic_key_disable(preempt_lazy);
7600 
7601 	switch (mode) {
7602 	case preempt_dynamic_none:
7603 		preempt_dynamic_enable(cond_resched);
7604 		preempt_dynamic_disable(might_resched);
7605 		preempt_dynamic_disable(preempt_schedule);
7606 		preempt_dynamic_disable(preempt_schedule_notrace);
7607 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7608 		preempt_dynamic_key_disable(preempt_lazy);
7609 		if (mode != preempt_dynamic_mode)
7610 			pr_info("Dynamic Preempt: none\n");
7611 		break;
7612 
7613 	case preempt_dynamic_voluntary:
7614 		preempt_dynamic_enable(cond_resched);
7615 		preempt_dynamic_enable(might_resched);
7616 		preempt_dynamic_disable(preempt_schedule);
7617 		preempt_dynamic_disable(preempt_schedule_notrace);
7618 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7619 		preempt_dynamic_key_disable(preempt_lazy);
7620 		if (mode != preempt_dynamic_mode)
7621 			pr_info("Dynamic Preempt: voluntary\n");
7622 		break;
7623 
7624 	case preempt_dynamic_full:
7625 		preempt_dynamic_disable(cond_resched);
7626 		preempt_dynamic_disable(might_resched);
7627 		preempt_dynamic_enable(preempt_schedule);
7628 		preempt_dynamic_enable(preempt_schedule_notrace);
7629 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7630 		preempt_dynamic_key_disable(preempt_lazy);
7631 		if (mode != preempt_dynamic_mode)
7632 			pr_info("Dynamic Preempt: full\n");
7633 		break;
7634 
7635 	case preempt_dynamic_lazy:
7636 		preempt_dynamic_disable(cond_resched);
7637 		preempt_dynamic_disable(might_resched);
7638 		preempt_dynamic_enable(preempt_schedule);
7639 		preempt_dynamic_enable(preempt_schedule_notrace);
7640 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7641 		preempt_dynamic_key_enable(preempt_lazy);
7642 		if (mode != preempt_dynamic_mode)
7643 			pr_info("Dynamic Preempt: lazy\n");
7644 		break;
7645 	}
7646 
7647 	preempt_dynamic_mode = mode;
7648 }
7649 
7650 void sched_dynamic_update(int mode)
7651 {
7652 	mutex_lock(&sched_dynamic_mutex);
7653 	__sched_dynamic_update(mode);
7654 	mutex_unlock(&sched_dynamic_mutex);
7655 }
7656 
7657 static int __init setup_preempt_mode(char *str)
7658 {
7659 	int mode = sched_dynamic_mode(str);
7660 	if (mode < 0) {
7661 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7662 		return 0;
7663 	}
7664 
7665 	sched_dynamic_update(mode);
7666 	return 1;
7667 }
7668 __setup("preempt=", setup_preempt_mode);
7669 
7670 static void __init preempt_dynamic_init(void)
7671 {
7672 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7673 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7674 			sched_dynamic_update(preempt_dynamic_none);
7675 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7676 			sched_dynamic_update(preempt_dynamic_voluntary);
7677 		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7678 			sched_dynamic_update(preempt_dynamic_lazy);
7679 		} else {
7680 			/* Default static call setting, nothing to do */
7681 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7682 			preempt_dynamic_mode = preempt_dynamic_full;
7683 			pr_info("Dynamic Preempt: full\n");
7684 		}
7685 	}
7686 }
7687 
7688 # define PREEMPT_MODEL_ACCESSOR(mode) \
7689 	bool preempt_model_##mode(void)						 \
7690 	{									 \
7691 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7692 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7693 	}									 \
7694 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7695 
7696 PREEMPT_MODEL_ACCESSOR(none);
7697 PREEMPT_MODEL_ACCESSOR(voluntary);
7698 PREEMPT_MODEL_ACCESSOR(full);
7699 PREEMPT_MODEL_ACCESSOR(lazy);
7700 
7701 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7702 
7703 #define preempt_dynamic_mode -1
7704 
7705 static inline void preempt_dynamic_init(void) { }
7706 
7707 #endif /* CONFIG_PREEMPT_DYNAMIC */
7708 
7709 const char *preempt_modes[] = {
7710 	"none", "voluntary", "full", "lazy", NULL,
7711 };
7712 
7713 const char *preempt_model_str(void)
7714 {
7715 	bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) &&
7716 		(IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) ||
7717 		 IS_ENABLED(CONFIG_PREEMPT_LAZY));
7718 	static char buf[128];
7719 
7720 	if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) {
7721 		struct seq_buf s;
7722 
7723 		seq_buf_init(&s, buf, sizeof(buf));
7724 		seq_buf_puts(&s, "PREEMPT");
7725 
7726 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
7727 			seq_buf_printf(&s, "%sRT%s",
7728 				       brace ? "_{" : "_",
7729 				       brace ? "," : "");
7730 
7731 		if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) {
7732 			seq_buf_printf(&s, "(%s)%s",
7733 				       preempt_dynamic_mode >= 0 ?
7734 				       preempt_modes[preempt_dynamic_mode] : "undef",
7735 				       brace ? "}" : "");
7736 			return seq_buf_str(&s);
7737 		}
7738 
7739 		if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7740 			seq_buf_printf(&s, "LAZY%s",
7741 				       brace ? "}" : "");
7742 			return seq_buf_str(&s);
7743 		}
7744 
7745 		return seq_buf_str(&s);
7746 	}
7747 
7748 	if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD))
7749 		return "VOLUNTARY";
7750 
7751 	return "NONE";
7752 }
7753 
7754 int io_schedule_prepare(void)
7755 {
7756 	int old_iowait = current->in_iowait;
7757 
7758 	current->in_iowait = 1;
7759 	blk_flush_plug(current->plug, true);
7760 	return old_iowait;
7761 }
7762 
7763 void io_schedule_finish(int token)
7764 {
7765 	current->in_iowait = token;
7766 }
7767 
7768 /*
7769  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7770  * that process accounting knows that this is a task in IO wait state.
7771  */
7772 long __sched io_schedule_timeout(long timeout)
7773 {
7774 	int token;
7775 	long ret;
7776 
7777 	token = io_schedule_prepare();
7778 	ret = schedule_timeout(timeout);
7779 	io_schedule_finish(token);
7780 
7781 	return ret;
7782 }
7783 EXPORT_SYMBOL(io_schedule_timeout);
7784 
7785 void __sched io_schedule(void)
7786 {
7787 	int token;
7788 
7789 	token = io_schedule_prepare();
7790 	schedule();
7791 	io_schedule_finish(token);
7792 }
7793 EXPORT_SYMBOL(io_schedule);
7794 
7795 void sched_show_task(struct task_struct *p)
7796 {
7797 	unsigned long free;
7798 	int ppid;
7799 
7800 	if (!try_get_task_stack(p))
7801 		return;
7802 
7803 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7804 
7805 	if (task_is_running(p))
7806 		pr_cont("  running task    ");
7807 	free = stack_not_used(p);
7808 	ppid = 0;
7809 	rcu_read_lock();
7810 	if (pid_alive(p))
7811 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7812 	rcu_read_unlock();
7813 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
7814 		free, task_pid_nr(p), task_tgid_nr(p),
7815 		ppid, p->flags, read_task_thread_flags(p));
7816 
7817 	print_worker_info(KERN_INFO, p);
7818 	print_stop_info(KERN_INFO, p);
7819 	print_scx_info(KERN_INFO, p);
7820 	show_stack(p, NULL, KERN_INFO);
7821 	put_task_stack(p);
7822 }
7823 EXPORT_SYMBOL_GPL(sched_show_task);
7824 
7825 static inline bool
7826 state_filter_match(unsigned long state_filter, struct task_struct *p)
7827 {
7828 	unsigned int state = READ_ONCE(p->__state);
7829 
7830 	/* no filter, everything matches */
7831 	if (!state_filter)
7832 		return true;
7833 
7834 	/* filter, but doesn't match */
7835 	if (!(state & state_filter))
7836 		return false;
7837 
7838 	/*
7839 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7840 	 * TASK_KILLABLE).
7841 	 */
7842 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7843 		return false;
7844 
7845 	return true;
7846 }
7847 
7848 
7849 void show_state_filter(unsigned int state_filter)
7850 {
7851 	struct task_struct *g, *p;
7852 
7853 	rcu_read_lock();
7854 	for_each_process_thread(g, p) {
7855 		/*
7856 		 * reset the NMI-timeout, listing all files on a slow
7857 		 * console might take a lot of time:
7858 		 * Also, reset softlockup watchdogs on all CPUs, because
7859 		 * another CPU might be blocked waiting for us to process
7860 		 * an IPI.
7861 		 */
7862 		touch_nmi_watchdog();
7863 		touch_all_softlockup_watchdogs();
7864 		if (state_filter_match(state_filter, p))
7865 			sched_show_task(p);
7866 	}
7867 
7868 	if (!state_filter)
7869 		sysrq_sched_debug_show();
7870 
7871 	rcu_read_unlock();
7872 	/*
7873 	 * Only show locks if all tasks are dumped:
7874 	 */
7875 	if (!state_filter)
7876 		debug_show_all_locks();
7877 }
7878 
7879 /**
7880  * init_idle - set up an idle thread for a given CPU
7881  * @idle: task in question
7882  * @cpu: CPU the idle task belongs to
7883  *
7884  * NOTE: this function does not set the idle thread's NEED_RESCHED
7885  * flag, to make booting more robust.
7886  */
7887 void __init init_idle(struct task_struct *idle, int cpu)
7888 {
7889 	struct affinity_context ac = (struct affinity_context) {
7890 		.new_mask  = cpumask_of(cpu),
7891 		.flags     = 0,
7892 	};
7893 	struct rq *rq = cpu_rq(cpu);
7894 	unsigned long flags;
7895 
7896 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7897 	raw_spin_rq_lock(rq);
7898 
7899 	idle->__state = TASK_RUNNING;
7900 	idle->se.exec_start = sched_clock();
7901 	/*
7902 	 * PF_KTHREAD should already be set at this point; regardless, make it
7903 	 * look like a proper per-CPU kthread.
7904 	 */
7905 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7906 	kthread_set_per_cpu(idle, cpu);
7907 
7908 	/*
7909 	 * No validation and serialization required at boot time and for
7910 	 * setting up the idle tasks of not yet online CPUs.
7911 	 */
7912 	set_cpus_allowed_common(idle, &ac);
7913 	/*
7914 	 * We're having a chicken and egg problem, even though we are
7915 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7916 	 * lockdep check in task_group() will fail.
7917 	 *
7918 	 * Similar case to sched_fork(). / Alternatively we could
7919 	 * use task_rq_lock() here and obtain the other rq->lock.
7920 	 *
7921 	 * Silence PROVE_RCU
7922 	 */
7923 	rcu_read_lock();
7924 	__set_task_cpu(idle, cpu);
7925 	rcu_read_unlock();
7926 
7927 	rq->idle = idle;
7928 	rq_set_donor(rq, idle);
7929 	rcu_assign_pointer(rq->curr, idle);
7930 	idle->on_rq = TASK_ON_RQ_QUEUED;
7931 	idle->on_cpu = 1;
7932 	raw_spin_rq_unlock(rq);
7933 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7934 
7935 	/* Set the preempt count _outside_ the spinlocks! */
7936 	init_idle_preempt_count(idle, cpu);
7937 
7938 	/*
7939 	 * The idle tasks have their own, simple scheduling class:
7940 	 */
7941 	idle->sched_class = &idle_sched_class;
7942 	ftrace_graph_init_idle_task(idle, cpu);
7943 	vtime_init_idle(idle, cpu);
7944 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7945 }
7946 
7947 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7948 			      const struct cpumask *trial)
7949 {
7950 	int ret = 1;
7951 
7952 	if (cpumask_empty(cur))
7953 		return ret;
7954 
7955 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7956 
7957 	return ret;
7958 }
7959 
7960 int task_can_attach(struct task_struct *p)
7961 {
7962 	int ret = 0;
7963 
7964 	/*
7965 	 * Kthreads which disallow setaffinity shouldn't be moved
7966 	 * to a new cpuset; we don't want to change their CPU
7967 	 * affinity and isolating such threads by their set of
7968 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7969 	 * applicable for such threads.  This prevents checking for
7970 	 * success of set_cpus_allowed_ptr() on all attached tasks
7971 	 * before cpus_mask may be changed.
7972 	 */
7973 	if (p->flags & PF_NO_SETAFFINITY)
7974 		ret = -EINVAL;
7975 
7976 	return ret;
7977 }
7978 
7979 bool sched_smp_initialized __read_mostly;
7980 
7981 #ifdef CONFIG_NUMA_BALANCING
7982 /* Migrate current task p to target_cpu */
7983 int migrate_task_to(struct task_struct *p, int target_cpu)
7984 {
7985 	struct migration_arg arg = { p, target_cpu };
7986 	int curr_cpu = task_cpu(p);
7987 
7988 	if (curr_cpu == target_cpu)
7989 		return 0;
7990 
7991 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7992 		return -EINVAL;
7993 
7994 	/* TODO: This is not properly updating schedstats */
7995 
7996 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7997 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7998 }
7999 
8000 /*
8001  * Requeue a task on a given node and accurately track the number of NUMA
8002  * tasks on the runqueues
8003  */
8004 void sched_setnuma(struct task_struct *p, int nid)
8005 {
8006 	guard(task_rq_lock)(p);
8007 	scoped_guard (sched_change, p, DEQUEUE_SAVE)
8008 		p->numa_preferred_nid = nid;
8009 }
8010 #endif /* CONFIG_NUMA_BALANCING */
8011 
8012 #ifdef CONFIG_HOTPLUG_CPU
8013 /*
8014  * Invoked on the outgoing CPU in context of the CPU hotplug thread
8015  * after ensuring that there are no user space tasks left on the CPU.
8016  *
8017  * If there is a lazy mm in use on the hotplug thread, drop it and
8018  * switch to init_mm.
8019  *
8020  * The reference count on init_mm is dropped in finish_cpu().
8021  */
8022 static void sched_force_init_mm(void)
8023 {
8024 	struct mm_struct *mm = current->active_mm;
8025 
8026 	if (mm != &init_mm) {
8027 		mmgrab_lazy_tlb(&init_mm);
8028 		local_irq_disable();
8029 		current->active_mm = &init_mm;
8030 		switch_mm_irqs_off(mm, &init_mm, current);
8031 		local_irq_enable();
8032 		finish_arch_post_lock_switch();
8033 		mmdrop_lazy_tlb(mm);
8034 	}
8035 
8036 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8037 }
8038 
8039 static int __balance_push_cpu_stop(void *arg)
8040 {
8041 	struct task_struct *p = arg;
8042 	struct rq *rq = this_rq();
8043 	struct rq_flags rf;
8044 	int cpu;
8045 
8046 	scoped_guard (raw_spinlock_irq, &p->pi_lock) {
8047 		cpu = select_fallback_rq(rq->cpu, p);
8048 
8049 		rq_lock(rq, &rf);
8050 		update_rq_clock(rq);
8051 		if (task_rq(p) == rq && task_on_rq_queued(p))
8052 			rq = __migrate_task(rq, &rf, p, cpu);
8053 		rq_unlock(rq, &rf);
8054 	}
8055 
8056 	put_task_struct(p);
8057 
8058 	return 0;
8059 }
8060 
8061 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8062 
8063 /*
8064  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8065  *
8066  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8067  * effective when the hotplug motion is down.
8068  */
8069 static void balance_push(struct rq *rq)
8070 {
8071 	struct task_struct *push_task = rq->curr;
8072 
8073 	lockdep_assert_rq_held(rq);
8074 
8075 	/*
8076 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8077 	 */
8078 	rq->balance_callback = &balance_push_callback;
8079 
8080 	/*
8081 	 * Only active while going offline and when invoked on the outgoing
8082 	 * CPU.
8083 	 */
8084 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8085 		return;
8086 
8087 	/*
8088 	 * Both the cpu-hotplug and stop task are in this case and are
8089 	 * required to complete the hotplug process.
8090 	 */
8091 	if (kthread_is_per_cpu(push_task) ||
8092 	    is_migration_disabled(push_task)) {
8093 
8094 		/*
8095 		 * If this is the idle task on the outgoing CPU try to wake
8096 		 * up the hotplug control thread which might wait for the
8097 		 * last task to vanish. The rcuwait_active() check is
8098 		 * accurate here because the waiter is pinned on this CPU
8099 		 * and can't obviously be running in parallel.
8100 		 *
8101 		 * On RT kernels this also has to check whether there are
8102 		 * pinned and scheduled out tasks on the runqueue. They
8103 		 * need to leave the migrate disabled section first.
8104 		 */
8105 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8106 		    rcuwait_active(&rq->hotplug_wait)) {
8107 			raw_spin_rq_unlock(rq);
8108 			rcuwait_wake_up(&rq->hotplug_wait);
8109 			raw_spin_rq_lock(rq);
8110 		}
8111 		return;
8112 	}
8113 
8114 	get_task_struct(push_task);
8115 	/*
8116 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8117 	 * Both preemption and IRQs are still disabled.
8118 	 */
8119 	preempt_disable();
8120 	raw_spin_rq_unlock(rq);
8121 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8122 			    this_cpu_ptr(&push_work));
8123 	preempt_enable();
8124 	/*
8125 	 * At this point need_resched() is true and we'll take the loop in
8126 	 * schedule(). The next pick is obviously going to be the stop task
8127 	 * which kthread_is_per_cpu() and will push this task away.
8128 	 */
8129 	raw_spin_rq_lock(rq);
8130 }
8131 
8132 static void balance_push_set(int cpu, bool on)
8133 {
8134 	struct rq *rq = cpu_rq(cpu);
8135 	struct rq_flags rf;
8136 
8137 	rq_lock_irqsave(rq, &rf);
8138 	if (on) {
8139 		WARN_ON_ONCE(rq->balance_callback);
8140 		rq->balance_callback = &balance_push_callback;
8141 	} else if (rq->balance_callback == &balance_push_callback) {
8142 		rq->balance_callback = NULL;
8143 	}
8144 	rq_unlock_irqrestore(rq, &rf);
8145 }
8146 
8147 /*
8148  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8149  * inactive. All tasks which are not per CPU kernel threads are either
8150  * pushed off this CPU now via balance_push() or placed on a different CPU
8151  * during wakeup. Wait until the CPU is quiescent.
8152  */
8153 static void balance_hotplug_wait(void)
8154 {
8155 	struct rq *rq = this_rq();
8156 
8157 	rcuwait_wait_event(&rq->hotplug_wait,
8158 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8159 			   TASK_UNINTERRUPTIBLE);
8160 }
8161 
8162 #else /* !CONFIG_HOTPLUG_CPU: */
8163 
8164 static inline void balance_push(struct rq *rq)
8165 {
8166 }
8167 
8168 static inline void balance_push_set(int cpu, bool on)
8169 {
8170 }
8171 
8172 static inline void balance_hotplug_wait(void)
8173 {
8174 }
8175 
8176 #endif /* !CONFIG_HOTPLUG_CPU */
8177 
8178 void set_rq_online(struct rq *rq)
8179 {
8180 	if (!rq->online) {
8181 		const struct sched_class *class;
8182 
8183 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8184 		rq->online = 1;
8185 
8186 		for_each_class(class) {
8187 			if (class->rq_online)
8188 				class->rq_online(rq);
8189 		}
8190 	}
8191 }
8192 
8193 void set_rq_offline(struct rq *rq)
8194 {
8195 	if (rq->online) {
8196 		const struct sched_class *class;
8197 
8198 		update_rq_clock(rq);
8199 		for_each_class(class) {
8200 			if (class->rq_offline)
8201 				class->rq_offline(rq);
8202 		}
8203 
8204 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8205 		rq->online = 0;
8206 	}
8207 }
8208 
8209 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8210 {
8211 	struct rq_flags rf;
8212 
8213 	rq_lock_irqsave(rq, &rf);
8214 	if (rq->rd) {
8215 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8216 		set_rq_online(rq);
8217 	}
8218 	rq_unlock_irqrestore(rq, &rf);
8219 }
8220 
8221 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8222 {
8223 	struct rq_flags rf;
8224 
8225 	rq_lock_irqsave(rq, &rf);
8226 	if (rq->rd) {
8227 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8228 		set_rq_offline(rq);
8229 	}
8230 	rq_unlock_irqrestore(rq, &rf);
8231 }
8232 
8233 /*
8234  * used to mark begin/end of suspend/resume:
8235  */
8236 static int num_cpus_frozen;
8237 
8238 /*
8239  * Update cpusets according to cpu_active mask.  If cpusets are
8240  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8241  * around partition_sched_domains().
8242  *
8243  * If we come here as part of a suspend/resume, don't touch cpusets because we
8244  * want to restore it back to its original state upon resume anyway.
8245  */
8246 static void cpuset_cpu_active(void)
8247 {
8248 	if (cpuhp_tasks_frozen) {
8249 		/*
8250 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8251 		 * resume sequence. As long as this is not the last online
8252 		 * operation in the resume sequence, just build a single sched
8253 		 * domain, ignoring cpusets.
8254 		 */
8255 		cpuset_reset_sched_domains();
8256 		if (--num_cpus_frozen)
8257 			return;
8258 		/*
8259 		 * This is the last CPU online operation. So fall through and
8260 		 * restore the original sched domains by considering the
8261 		 * cpuset configurations.
8262 		 */
8263 		cpuset_force_rebuild();
8264 	}
8265 	cpuset_update_active_cpus();
8266 }
8267 
8268 static void cpuset_cpu_inactive(unsigned int cpu)
8269 {
8270 	if (!cpuhp_tasks_frozen) {
8271 		cpuset_update_active_cpus();
8272 	} else {
8273 		num_cpus_frozen++;
8274 		cpuset_reset_sched_domains();
8275 	}
8276 }
8277 
8278 static inline void sched_smt_present_inc(int cpu)
8279 {
8280 #ifdef CONFIG_SCHED_SMT
8281 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8282 		static_branch_inc_cpuslocked(&sched_smt_present);
8283 #endif
8284 }
8285 
8286 static inline void sched_smt_present_dec(int cpu)
8287 {
8288 #ifdef CONFIG_SCHED_SMT
8289 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8290 		static_branch_dec_cpuslocked(&sched_smt_present);
8291 #endif
8292 }
8293 
8294 int sched_cpu_activate(unsigned int cpu)
8295 {
8296 	struct rq *rq = cpu_rq(cpu);
8297 
8298 	/*
8299 	 * Clear the balance_push callback and prepare to schedule
8300 	 * regular tasks.
8301 	 */
8302 	balance_push_set(cpu, false);
8303 
8304 	/*
8305 	 * When going up, increment the number of cores with SMT present.
8306 	 */
8307 	sched_smt_present_inc(cpu);
8308 	set_cpu_active(cpu, true);
8309 
8310 	if (sched_smp_initialized) {
8311 		sched_update_numa(cpu, true);
8312 		sched_domains_numa_masks_set(cpu);
8313 		cpuset_cpu_active();
8314 	}
8315 
8316 	scx_rq_activate(rq);
8317 
8318 	/*
8319 	 * Put the rq online, if not already. This happens:
8320 	 *
8321 	 * 1) In the early boot process, because we build the real domains
8322 	 *    after all CPUs have been brought up.
8323 	 *
8324 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8325 	 *    domains.
8326 	 */
8327 	sched_set_rq_online(rq, cpu);
8328 
8329 	return 0;
8330 }
8331 
8332 int sched_cpu_deactivate(unsigned int cpu)
8333 {
8334 	struct rq *rq = cpu_rq(cpu);
8335 	int ret;
8336 
8337 	ret = dl_bw_deactivate(cpu);
8338 
8339 	if (ret)
8340 		return ret;
8341 
8342 	/*
8343 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8344 	 * load balancing when not active
8345 	 */
8346 	nohz_balance_exit_idle(rq);
8347 
8348 	set_cpu_active(cpu, false);
8349 
8350 	/*
8351 	 * From this point forward, this CPU will refuse to run any task that
8352 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8353 	 * push those tasks away until this gets cleared, see
8354 	 * sched_cpu_dying().
8355 	 */
8356 	balance_push_set(cpu, true);
8357 
8358 	/*
8359 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8360 	 * preempt-disabled and RCU users of this state to go away such that
8361 	 * all new such users will observe it.
8362 	 *
8363 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8364 	 * ttwu_queue_cond() and is_cpu_allowed().
8365 	 *
8366 	 * Do sync before park smpboot threads to take care the RCU boost case.
8367 	 */
8368 	synchronize_rcu();
8369 
8370 	sched_set_rq_offline(rq, cpu);
8371 
8372 	scx_rq_deactivate(rq);
8373 
8374 	/*
8375 	 * When going down, decrement the number of cores with SMT present.
8376 	 */
8377 	sched_smt_present_dec(cpu);
8378 
8379 #ifdef CONFIG_SCHED_SMT
8380 	sched_core_cpu_deactivate(cpu);
8381 #endif
8382 
8383 	if (!sched_smp_initialized)
8384 		return 0;
8385 
8386 	sched_update_numa(cpu, false);
8387 	cpuset_cpu_inactive(cpu);
8388 	sched_domains_numa_masks_clear(cpu);
8389 	return 0;
8390 }
8391 
8392 static void sched_rq_cpu_starting(unsigned int cpu)
8393 {
8394 	struct rq *rq = cpu_rq(cpu);
8395 
8396 	rq->calc_load_update = calc_load_update;
8397 	update_max_interval();
8398 }
8399 
8400 int sched_cpu_starting(unsigned int cpu)
8401 {
8402 	sched_core_cpu_starting(cpu);
8403 	sched_rq_cpu_starting(cpu);
8404 	sched_tick_start(cpu);
8405 	return 0;
8406 }
8407 
8408 #ifdef CONFIG_HOTPLUG_CPU
8409 
8410 /*
8411  * Invoked immediately before the stopper thread is invoked to bring the
8412  * CPU down completely. At this point all per CPU kthreads except the
8413  * hotplug thread (current) and the stopper thread (inactive) have been
8414  * either parked or have been unbound from the outgoing CPU. Ensure that
8415  * any of those which might be on the way out are gone.
8416  *
8417  * If after this point a bound task is being woken on this CPU then the
8418  * responsible hotplug callback has failed to do it's job.
8419  * sched_cpu_dying() will catch it with the appropriate fireworks.
8420  */
8421 int sched_cpu_wait_empty(unsigned int cpu)
8422 {
8423 	balance_hotplug_wait();
8424 	sched_force_init_mm();
8425 	return 0;
8426 }
8427 
8428 /*
8429  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8430  * might have. Called from the CPU stopper task after ensuring that the
8431  * stopper is the last running task on the CPU, so nr_active count is
8432  * stable. We need to take the tear-down thread which is calling this into
8433  * account, so we hand in adjust = 1 to the load calculation.
8434  *
8435  * Also see the comment "Global load-average calculations".
8436  */
8437 static void calc_load_migrate(struct rq *rq)
8438 {
8439 	long delta = calc_load_fold_active(rq, 1);
8440 
8441 	if (delta)
8442 		atomic_long_add(delta, &calc_load_tasks);
8443 }
8444 
8445 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8446 {
8447 	struct task_struct *g, *p;
8448 	int cpu = cpu_of(rq);
8449 
8450 	lockdep_assert_rq_held(rq);
8451 
8452 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8453 	for_each_process_thread(g, p) {
8454 		if (task_cpu(p) != cpu)
8455 			continue;
8456 
8457 		if (!task_on_rq_queued(p))
8458 			continue;
8459 
8460 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8461 	}
8462 }
8463 
8464 int sched_cpu_dying(unsigned int cpu)
8465 {
8466 	struct rq *rq = cpu_rq(cpu);
8467 	struct rq_flags rf;
8468 
8469 	/* Handle pending wakeups and then migrate everything off */
8470 	sched_tick_stop(cpu);
8471 
8472 	rq_lock_irqsave(rq, &rf);
8473 	update_rq_clock(rq);
8474 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8475 		WARN(true, "Dying CPU not properly vacated!");
8476 		dump_rq_tasks(rq, KERN_WARNING);
8477 	}
8478 	dl_server_stop(&rq->fair_server);
8479 	rq_unlock_irqrestore(rq, &rf);
8480 
8481 	calc_load_migrate(rq);
8482 	update_max_interval();
8483 	hrtick_clear(rq);
8484 	sched_core_cpu_dying(cpu);
8485 	return 0;
8486 }
8487 #endif /* CONFIG_HOTPLUG_CPU */
8488 
8489 void __init sched_init_smp(void)
8490 {
8491 	sched_init_numa(NUMA_NO_NODE);
8492 
8493 	prandom_init_once(&sched_rnd_state);
8494 
8495 	/*
8496 	 * There's no userspace yet to cause hotplug operations; hence all the
8497 	 * CPU masks are stable and all blatant races in the below code cannot
8498 	 * happen.
8499 	 */
8500 	sched_domains_mutex_lock();
8501 	sched_init_domains(cpu_active_mask);
8502 	sched_domains_mutex_unlock();
8503 
8504 	/* Move init over to a non-isolated CPU */
8505 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8506 		BUG();
8507 	current->flags &= ~PF_NO_SETAFFINITY;
8508 	sched_init_granularity();
8509 
8510 	init_sched_rt_class();
8511 	init_sched_dl_class();
8512 
8513 	sched_init_dl_servers();
8514 
8515 	sched_smp_initialized = true;
8516 }
8517 
8518 static int __init migration_init(void)
8519 {
8520 	sched_cpu_starting(smp_processor_id());
8521 	return 0;
8522 }
8523 early_initcall(migration_init);
8524 
8525 int in_sched_functions(unsigned long addr)
8526 {
8527 	return in_lock_functions(addr) ||
8528 		(addr >= (unsigned long)__sched_text_start
8529 		&& addr < (unsigned long)__sched_text_end);
8530 }
8531 
8532 #ifdef CONFIG_CGROUP_SCHED
8533 /*
8534  * Default task group.
8535  * Every task in system belongs to this group at bootup.
8536  */
8537 struct task_group root_task_group;
8538 LIST_HEAD(task_groups);
8539 
8540 /* Cacheline aligned slab cache for task_group */
8541 static struct kmem_cache *task_group_cache __ro_after_init;
8542 #endif
8543 
8544 void __init sched_init(void)
8545 {
8546 	unsigned long ptr = 0;
8547 	int i;
8548 
8549 	/* Make sure the linker didn't screw up */
8550 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8551 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8552 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8553 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8554 #ifdef CONFIG_SCHED_CLASS_EXT
8555 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8556 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8557 #endif
8558 
8559 	wait_bit_init();
8560 
8561 #ifdef CONFIG_FAIR_GROUP_SCHED
8562 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8563 #endif
8564 #ifdef CONFIG_RT_GROUP_SCHED
8565 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8566 #endif
8567 	if (ptr) {
8568 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8569 
8570 #ifdef CONFIG_FAIR_GROUP_SCHED
8571 		root_task_group.se = (struct sched_entity **)ptr;
8572 		ptr += nr_cpu_ids * sizeof(void **);
8573 
8574 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8575 		ptr += nr_cpu_ids * sizeof(void **);
8576 
8577 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8578 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8579 #endif /* CONFIG_FAIR_GROUP_SCHED */
8580 #ifdef CONFIG_EXT_GROUP_SCHED
8581 		scx_tg_init(&root_task_group);
8582 #endif /* CONFIG_EXT_GROUP_SCHED */
8583 #ifdef CONFIG_RT_GROUP_SCHED
8584 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8585 		ptr += nr_cpu_ids * sizeof(void **);
8586 
8587 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8588 		ptr += nr_cpu_ids * sizeof(void **);
8589 
8590 #endif /* CONFIG_RT_GROUP_SCHED */
8591 	}
8592 
8593 	init_defrootdomain();
8594 
8595 #ifdef CONFIG_RT_GROUP_SCHED
8596 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8597 			global_rt_period(), global_rt_runtime());
8598 #endif /* CONFIG_RT_GROUP_SCHED */
8599 
8600 #ifdef CONFIG_CGROUP_SCHED
8601 	task_group_cache = KMEM_CACHE(task_group, 0);
8602 
8603 	list_add(&root_task_group.list, &task_groups);
8604 	INIT_LIST_HEAD(&root_task_group.children);
8605 	INIT_LIST_HEAD(&root_task_group.siblings);
8606 	autogroup_init(&init_task);
8607 #endif /* CONFIG_CGROUP_SCHED */
8608 
8609 	for_each_possible_cpu(i) {
8610 		struct rq *rq;
8611 
8612 		rq = cpu_rq(i);
8613 		raw_spin_lock_init(&rq->__lock);
8614 		rq->nr_running = 0;
8615 		rq->calc_load_active = 0;
8616 		rq->calc_load_update = jiffies + LOAD_FREQ;
8617 		init_cfs_rq(&rq->cfs);
8618 		init_rt_rq(&rq->rt);
8619 		init_dl_rq(&rq->dl);
8620 #ifdef CONFIG_FAIR_GROUP_SCHED
8621 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8622 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8623 		/*
8624 		 * How much CPU bandwidth does root_task_group get?
8625 		 *
8626 		 * In case of task-groups formed through the cgroup filesystem, it
8627 		 * gets 100% of the CPU resources in the system. This overall
8628 		 * system CPU resource is divided among the tasks of
8629 		 * root_task_group and its child task-groups in a fair manner,
8630 		 * based on each entity's (task or task-group's) weight
8631 		 * (se->load.weight).
8632 		 *
8633 		 * In other words, if root_task_group has 10 tasks of weight
8634 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8635 		 * then A0's share of the CPU resource is:
8636 		 *
8637 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8638 		 *
8639 		 * We achieve this by letting root_task_group's tasks sit
8640 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8641 		 */
8642 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8643 #endif /* CONFIG_FAIR_GROUP_SCHED */
8644 
8645 #ifdef CONFIG_RT_GROUP_SCHED
8646 		/*
8647 		 * This is required for init cpu because rt.c:__enable_runtime()
8648 		 * starts working after scheduler_running, which is not the case
8649 		 * yet.
8650 		 */
8651 		rq->rt.rt_runtime = global_rt_runtime();
8652 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8653 #endif
8654 		rq->sd = NULL;
8655 		rq->rd = NULL;
8656 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8657 		rq->balance_callback = &balance_push_callback;
8658 		rq->active_balance = 0;
8659 		rq->next_balance = jiffies;
8660 		rq->push_cpu = 0;
8661 		rq->cpu = i;
8662 		rq->online = 0;
8663 		rq->idle_stamp = 0;
8664 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8665 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8666 
8667 		INIT_LIST_HEAD(&rq->cfs_tasks);
8668 
8669 		rq_attach_root(rq, &def_root_domain);
8670 #ifdef CONFIG_NO_HZ_COMMON
8671 		rq->last_blocked_load_update_tick = jiffies;
8672 		atomic_set(&rq->nohz_flags, 0);
8673 
8674 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8675 #endif
8676 #ifdef CONFIG_HOTPLUG_CPU
8677 		rcuwait_init(&rq->hotplug_wait);
8678 #endif
8679 		hrtick_rq_init(rq);
8680 		atomic_set(&rq->nr_iowait, 0);
8681 		fair_server_init(rq);
8682 
8683 #ifdef CONFIG_SCHED_CORE
8684 		rq->core = rq;
8685 		rq->core_pick = NULL;
8686 		rq->core_dl_server = NULL;
8687 		rq->core_enabled = 0;
8688 		rq->core_tree = RB_ROOT;
8689 		rq->core_forceidle_count = 0;
8690 		rq->core_forceidle_occupation = 0;
8691 		rq->core_forceidle_start = 0;
8692 
8693 		rq->core_cookie = 0UL;
8694 #endif
8695 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8696 	}
8697 
8698 	set_load_weight(&init_task, false);
8699 	init_task.se.slice = sysctl_sched_base_slice,
8700 
8701 	/*
8702 	 * The boot idle thread does lazy MMU switching as well:
8703 	 */
8704 	mmgrab_lazy_tlb(&init_mm);
8705 	enter_lazy_tlb(&init_mm, current);
8706 
8707 	/*
8708 	 * The idle task doesn't need the kthread struct to function, but it
8709 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8710 	 * if we want to avoid special-casing it in code that deals with per-CPU
8711 	 * kthreads.
8712 	 */
8713 	WARN_ON(!set_kthread_struct(current));
8714 
8715 	/*
8716 	 * Make us the idle thread. Technically, schedule() should not be
8717 	 * called from this thread, however somewhere below it might be,
8718 	 * but because we are the idle thread, we just pick up running again
8719 	 * when this runqueue becomes "idle".
8720 	 */
8721 	__sched_fork(0, current);
8722 	init_idle(current, smp_processor_id());
8723 
8724 	calc_load_update = jiffies + LOAD_FREQ;
8725 
8726 	idle_thread_set_boot_cpu();
8727 
8728 	balance_push_set(smp_processor_id(), false);
8729 	init_sched_fair_class();
8730 	init_sched_ext_class();
8731 
8732 	psi_init();
8733 
8734 	init_uclamp();
8735 
8736 	preempt_dynamic_init();
8737 
8738 	scheduler_running = 1;
8739 }
8740 
8741 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8742 
8743 void __might_sleep(const char *file, int line)
8744 {
8745 	unsigned int state = get_current_state();
8746 	/*
8747 	 * Blocking primitives will set (and therefore destroy) current->state,
8748 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8749 	 * otherwise we will destroy state.
8750 	 */
8751 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8752 			"do not call blocking ops when !TASK_RUNNING; "
8753 			"state=%x set at [<%p>] %pS\n", state,
8754 			(void *)current->task_state_change,
8755 			(void *)current->task_state_change);
8756 
8757 	__might_resched(file, line, 0);
8758 }
8759 EXPORT_SYMBOL(__might_sleep);
8760 
8761 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8762 {
8763 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8764 		return;
8765 
8766 	if (preempt_count() == preempt_offset)
8767 		return;
8768 
8769 	pr_err("Preemption disabled at:");
8770 	print_ip_sym(KERN_ERR, ip);
8771 }
8772 
8773 static inline bool resched_offsets_ok(unsigned int offsets)
8774 {
8775 	unsigned int nested = preempt_count();
8776 
8777 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8778 
8779 	return nested == offsets;
8780 }
8781 
8782 void __might_resched(const char *file, int line, unsigned int offsets)
8783 {
8784 	/* Ratelimiting timestamp: */
8785 	static unsigned long prev_jiffy;
8786 
8787 	unsigned long preempt_disable_ip;
8788 
8789 	/* WARN_ON_ONCE() by default, no rate limit required: */
8790 	rcu_sleep_check();
8791 
8792 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8793 	     !is_idle_task(current) && !current->non_block_count) ||
8794 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8795 	    oops_in_progress)
8796 		return;
8797 
8798 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8799 		return;
8800 	prev_jiffy = jiffies;
8801 
8802 	/* Save this before calling printk(), since that will clobber it: */
8803 	preempt_disable_ip = get_preempt_disable_ip(current);
8804 
8805 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8806 	       file, line);
8807 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8808 	       in_atomic(), irqs_disabled(), current->non_block_count,
8809 	       current->pid, current->comm);
8810 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8811 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8812 
8813 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8814 		pr_err("RCU nest depth: %d, expected: %u\n",
8815 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8816 	}
8817 
8818 	if (task_stack_end_corrupted(current))
8819 		pr_emerg("Thread overran stack, or stack corrupted\n");
8820 
8821 	debug_show_held_locks(current);
8822 	if (irqs_disabled())
8823 		print_irqtrace_events(current);
8824 
8825 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8826 				 preempt_disable_ip);
8827 
8828 	dump_stack();
8829 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8830 }
8831 EXPORT_SYMBOL(__might_resched);
8832 
8833 void __cant_sleep(const char *file, int line, int preempt_offset)
8834 {
8835 	static unsigned long prev_jiffy;
8836 
8837 	if (irqs_disabled())
8838 		return;
8839 
8840 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8841 		return;
8842 
8843 	if (preempt_count() > preempt_offset)
8844 		return;
8845 
8846 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8847 		return;
8848 	prev_jiffy = jiffies;
8849 
8850 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8851 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8852 			in_atomic(), irqs_disabled(),
8853 			current->pid, current->comm);
8854 
8855 	debug_show_held_locks(current);
8856 	dump_stack();
8857 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8858 }
8859 EXPORT_SYMBOL_GPL(__cant_sleep);
8860 
8861 # ifdef CONFIG_SMP
8862 void __cant_migrate(const char *file, int line)
8863 {
8864 	static unsigned long prev_jiffy;
8865 
8866 	if (irqs_disabled())
8867 		return;
8868 
8869 	if (is_migration_disabled(current))
8870 		return;
8871 
8872 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8873 		return;
8874 
8875 	if (preempt_count() > 0)
8876 		return;
8877 
8878 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8879 		return;
8880 	prev_jiffy = jiffies;
8881 
8882 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8883 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8884 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8885 	       current->pid, current->comm);
8886 
8887 	debug_show_held_locks(current);
8888 	dump_stack();
8889 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8890 }
8891 EXPORT_SYMBOL_GPL(__cant_migrate);
8892 # endif /* CONFIG_SMP */
8893 #endif /* CONFIG_DEBUG_ATOMIC_SLEEP */
8894 
8895 #ifdef CONFIG_MAGIC_SYSRQ
8896 void normalize_rt_tasks(void)
8897 {
8898 	struct task_struct *g, *p;
8899 	struct sched_attr attr = {
8900 		.sched_policy = SCHED_NORMAL,
8901 	};
8902 
8903 	read_lock(&tasklist_lock);
8904 	for_each_process_thread(g, p) {
8905 		/*
8906 		 * Only normalize user tasks:
8907 		 */
8908 		if (p->flags & PF_KTHREAD)
8909 			continue;
8910 
8911 		p->se.exec_start = 0;
8912 		schedstat_set(p->stats.wait_start,  0);
8913 		schedstat_set(p->stats.sleep_start, 0);
8914 		schedstat_set(p->stats.block_start, 0);
8915 
8916 		if (!rt_or_dl_task(p)) {
8917 			/*
8918 			 * Renice negative nice level userspace
8919 			 * tasks back to 0:
8920 			 */
8921 			if (task_nice(p) < 0)
8922 				set_user_nice(p, 0);
8923 			continue;
8924 		}
8925 
8926 		__sched_setscheduler(p, &attr, false, false);
8927 	}
8928 	read_unlock(&tasklist_lock);
8929 }
8930 
8931 #endif /* CONFIG_MAGIC_SYSRQ */
8932 
8933 #ifdef CONFIG_KGDB_KDB
8934 /*
8935  * These functions are only useful for KDB.
8936  *
8937  * They can only be called when the whole system has been
8938  * stopped - every CPU needs to be quiescent, and no scheduling
8939  * activity can take place. Using them for anything else would
8940  * be a serious bug, and as a result, they aren't even visible
8941  * under any other configuration.
8942  */
8943 
8944 /**
8945  * curr_task - return the current task for a given CPU.
8946  * @cpu: the processor in question.
8947  *
8948  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8949  *
8950  * Return: The current task for @cpu.
8951  */
8952 struct task_struct *curr_task(int cpu)
8953 {
8954 	return cpu_curr(cpu);
8955 }
8956 
8957 #endif /* CONFIG_KGDB_KDB */
8958 
8959 #ifdef CONFIG_CGROUP_SCHED
8960 /* task_group_lock serializes the addition/removal of task groups */
8961 static DEFINE_SPINLOCK(task_group_lock);
8962 
8963 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8964 					    struct task_group *parent)
8965 {
8966 #ifdef CONFIG_UCLAMP_TASK_GROUP
8967 	enum uclamp_id clamp_id;
8968 
8969 	for_each_clamp_id(clamp_id) {
8970 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8971 			      uclamp_none(clamp_id), false);
8972 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8973 	}
8974 #endif
8975 }
8976 
8977 static void sched_free_group(struct task_group *tg)
8978 {
8979 	free_fair_sched_group(tg);
8980 	free_rt_sched_group(tg);
8981 	autogroup_free(tg);
8982 	kmem_cache_free(task_group_cache, tg);
8983 }
8984 
8985 static void sched_free_group_rcu(struct rcu_head *rcu)
8986 {
8987 	sched_free_group(container_of(rcu, struct task_group, rcu));
8988 }
8989 
8990 static void sched_unregister_group(struct task_group *tg)
8991 {
8992 	unregister_fair_sched_group(tg);
8993 	unregister_rt_sched_group(tg);
8994 	/*
8995 	 * We have to wait for yet another RCU grace period to expire, as
8996 	 * print_cfs_stats() might run concurrently.
8997 	 */
8998 	call_rcu(&tg->rcu, sched_free_group_rcu);
8999 }
9000 
9001 /* allocate runqueue etc for a new task group */
9002 struct task_group *sched_create_group(struct task_group *parent)
9003 {
9004 	struct task_group *tg;
9005 
9006 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9007 	if (!tg)
9008 		return ERR_PTR(-ENOMEM);
9009 
9010 	if (!alloc_fair_sched_group(tg, parent))
9011 		goto err;
9012 
9013 	if (!alloc_rt_sched_group(tg, parent))
9014 		goto err;
9015 
9016 	scx_tg_init(tg);
9017 	alloc_uclamp_sched_group(tg, parent);
9018 
9019 	return tg;
9020 
9021 err:
9022 	sched_free_group(tg);
9023 	return ERR_PTR(-ENOMEM);
9024 }
9025 
9026 void sched_online_group(struct task_group *tg, struct task_group *parent)
9027 {
9028 	unsigned long flags;
9029 
9030 	spin_lock_irqsave(&task_group_lock, flags);
9031 	list_add_tail_rcu(&tg->list, &task_groups);
9032 
9033 	/* Root should already exist: */
9034 	WARN_ON(!parent);
9035 
9036 	tg->parent = parent;
9037 	INIT_LIST_HEAD(&tg->children);
9038 	list_add_rcu(&tg->siblings, &parent->children);
9039 	spin_unlock_irqrestore(&task_group_lock, flags);
9040 
9041 	online_fair_sched_group(tg);
9042 }
9043 
9044 /* RCU callback to free various structures associated with a task group */
9045 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9046 {
9047 	/* Now it should be safe to free those cfs_rqs: */
9048 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
9049 }
9050 
9051 void sched_destroy_group(struct task_group *tg)
9052 {
9053 	/* Wait for possible concurrent references to cfs_rqs complete: */
9054 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
9055 }
9056 
9057 void sched_release_group(struct task_group *tg)
9058 {
9059 	unsigned long flags;
9060 
9061 	/*
9062 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9063 	 * sched_cfs_period_timer()).
9064 	 *
9065 	 * For this to be effective, we have to wait for all pending users of
9066 	 * this task group to leave their RCU critical section to ensure no new
9067 	 * user will see our dying task group any more. Specifically ensure
9068 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9069 	 *
9070 	 * We therefore defer calling unregister_fair_sched_group() to
9071 	 * sched_unregister_group() which is guarantied to get called only after the
9072 	 * current RCU grace period has expired.
9073 	 */
9074 	spin_lock_irqsave(&task_group_lock, flags);
9075 	list_del_rcu(&tg->list);
9076 	list_del_rcu(&tg->siblings);
9077 	spin_unlock_irqrestore(&task_group_lock, flags);
9078 }
9079 
9080 static void sched_change_group(struct task_struct *tsk)
9081 {
9082 	struct task_group *tg;
9083 
9084 	/*
9085 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9086 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9087 	 * to prevent lockdep warnings.
9088 	 */
9089 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9090 			  struct task_group, css);
9091 	tg = autogroup_task_group(tsk, tg);
9092 	tsk->sched_task_group = tg;
9093 
9094 #ifdef CONFIG_FAIR_GROUP_SCHED
9095 	if (tsk->sched_class->task_change_group)
9096 		tsk->sched_class->task_change_group(tsk);
9097 	else
9098 #endif
9099 		set_task_rq(tsk, task_cpu(tsk));
9100 }
9101 
9102 /*
9103  * Change task's runqueue when it moves between groups.
9104  *
9105  * The caller of this function should have put the task in its new group by
9106  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9107  * its new group.
9108  */
9109 void sched_move_task(struct task_struct *tsk, bool for_autogroup)
9110 {
9111 	unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
9112 	bool resched = false;
9113 	struct rq *rq;
9114 
9115 	CLASS(task_rq_lock, rq_guard)(tsk);
9116 	rq = rq_guard.rq;
9117 
9118 	scoped_guard (sched_change, tsk, queue_flags) {
9119 		sched_change_group(tsk);
9120 		if (!for_autogroup)
9121 			scx_cgroup_move_task(tsk);
9122 		if (scope->running)
9123 			resched = true;
9124 	}
9125 
9126 	if (resched)
9127 		resched_curr(rq);
9128 }
9129 
9130 static struct cgroup_subsys_state *
9131 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9132 {
9133 	struct task_group *parent = css_tg(parent_css);
9134 	struct task_group *tg;
9135 
9136 	if (!parent) {
9137 		/* This is early initialization for the top cgroup */
9138 		return &root_task_group.css;
9139 	}
9140 
9141 	tg = sched_create_group(parent);
9142 	if (IS_ERR(tg))
9143 		return ERR_PTR(-ENOMEM);
9144 
9145 	return &tg->css;
9146 }
9147 
9148 /* Expose task group only after completing cgroup initialization */
9149 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9150 {
9151 	struct task_group *tg = css_tg(css);
9152 	struct task_group *parent = css_tg(css->parent);
9153 	int ret;
9154 
9155 	ret = scx_tg_online(tg);
9156 	if (ret)
9157 		return ret;
9158 
9159 	if (parent)
9160 		sched_online_group(tg, parent);
9161 
9162 #ifdef CONFIG_UCLAMP_TASK_GROUP
9163 	/* Propagate the effective uclamp value for the new group */
9164 	guard(mutex)(&uclamp_mutex);
9165 	guard(rcu)();
9166 	cpu_util_update_eff(css);
9167 #endif
9168 
9169 	return 0;
9170 }
9171 
9172 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9173 {
9174 	struct task_group *tg = css_tg(css);
9175 
9176 	scx_tg_offline(tg);
9177 }
9178 
9179 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9180 {
9181 	struct task_group *tg = css_tg(css);
9182 
9183 	sched_release_group(tg);
9184 }
9185 
9186 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9187 {
9188 	struct task_group *tg = css_tg(css);
9189 
9190 	/*
9191 	 * Relies on the RCU grace period between css_released() and this.
9192 	 */
9193 	sched_unregister_group(tg);
9194 }
9195 
9196 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9197 {
9198 #ifdef CONFIG_RT_GROUP_SCHED
9199 	struct task_struct *task;
9200 	struct cgroup_subsys_state *css;
9201 
9202 	if (!rt_group_sched_enabled())
9203 		goto scx_check;
9204 
9205 	cgroup_taskset_for_each(task, css, tset) {
9206 		if (!sched_rt_can_attach(css_tg(css), task))
9207 			return -EINVAL;
9208 	}
9209 scx_check:
9210 #endif /* CONFIG_RT_GROUP_SCHED */
9211 	return scx_cgroup_can_attach(tset);
9212 }
9213 
9214 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9215 {
9216 	struct task_struct *task;
9217 	struct cgroup_subsys_state *css;
9218 
9219 	cgroup_taskset_for_each(task, css, tset)
9220 		sched_move_task(task, false);
9221 }
9222 
9223 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9224 {
9225 	scx_cgroup_cancel_attach(tset);
9226 }
9227 
9228 #ifdef CONFIG_UCLAMP_TASK_GROUP
9229 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9230 {
9231 	struct cgroup_subsys_state *top_css = css;
9232 	struct uclamp_se *uc_parent = NULL;
9233 	struct uclamp_se *uc_se = NULL;
9234 	unsigned int eff[UCLAMP_CNT];
9235 	enum uclamp_id clamp_id;
9236 	unsigned int clamps;
9237 
9238 	lockdep_assert_held(&uclamp_mutex);
9239 	WARN_ON_ONCE(!rcu_read_lock_held());
9240 
9241 	css_for_each_descendant_pre(css, top_css) {
9242 		uc_parent = css_tg(css)->parent
9243 			? css_tg(css)->parent->uclamp : NULL;
9244 
9245 		for_each_clamp_id(clamp_id) {
9246 			/* Assume effective clamps matches requested clamps */
9247 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9248 			/* Cap effective clamps with parent's effective clamps */
9249 			if (uc_parent &&
9250 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9251 				eff[clamp_id] = uc_parent[clamp_id].value;
9252 			}
9253 		}
9254 		/* Ensure protection is always capped by limit */
9255 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9256 
9257 		/* Propagate most restrictive effective clamps */
9258 		clamps = 0x0;
9259 		uc_se = css_tg(css)->uclamp;
9260 		for_each_clamp_id(clamp_id) {
9261 			if (eff[clamp_id] == uc_se[clamp_id].value)
9262 				continue;
9263 			uc_se[clamp_id].value = eff[clamp_id];
9264 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9265 			clamps |= (0x1 << clamp_id);
9266 		}
9267 		if (!clamps) {
9268 			css = css_rightmost_descendant(css);
9269 			continue;
9270 		}
9271 
9272 		/* Immediately update descendants RUNNABLE tasks */
9273 		uclamp_update_active_tasks(css);
9274 	}
9275 }
9276 
9277 /*
9278  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9279  * C expression. Since there is no way to convert a macro argument (N) into a
9280  * character constant, use two levels of macros.
9281  */
9282 #define _POW10(exp) ((unsigned int)1e##exp)
9283 #define POW10(exp) _POW10(exp)
9284 
9285 struct uclamp_request {
9286 #define UCLAMP_PERCENT_SHIFT	2
9287 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9288 	s64 percent;
9289 	u64 util;
9290 	int ret;
9291 };
9292 
9293 static inline struct uclamp_request
9294 capacity_from_percent(char *buf)
9295 {
9296 	struct uclamp_request req = {
9297 		.percent = UCLAMP_PERCENT_SCALE,
9298 		.util = SCHED_CAPACITY_SCALE,
9299 		.ret = 0,
9300 	};
9301 
9302 	buf = strim(buf);
9303 	if (strcmp(buf, "max")) {
9304 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9305 					     &req.percent);
9306 		if (req.ret)
9307 			return req;
9308 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9309 			req.ret = -ERANGE;
9310 			return req;
9311 		}
9312 
9313 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9314 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9315 	}
9316 
9317 	return req;
9318 }
9319 
9320 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9321 				size_t nbytes, loff_t off,
9322 				enum uclamp_id clamp_id)
9323 {
9324 	struct uclamp_request req;
9325 	struct task_group *tg;
9326 
9327 	req = capacity_from_percent(buf);
9328 	if (req.ret)
9329 		return req.ret;
9330 
9331 	sched_uclamp_enable();
9332 
9333 	guard(mutex)(&uclamp_mutex);
9334 	guard(rcu)();
9335 
9336 	tg = css_tg(of_css(of));
9337 	if (tg->uclamp_req[clamp_id].value != req.util)
9338 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9339 
9340 	/*
9341 	 * Because of not recoverable conversion rounding we keep track of the
9342 	 * exact requested value
9343 	 */
9344 	tg->uclamp_pct[clamp_id] = req.percent;
9345 
9346 	/* Update effective clamps to track the most restrictive value */
9347 	cpu_util_update_eff(of_css(of));
9348 
9349 	return nbytes;
9350 }
9351 
9352 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9353 				    char *buf, size_t nbytes,
9354 				    loff_t off)
9355 {
9356 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9357 }
9358 
9359 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9360 				    char *buf, size_t nbytes,
9361 				    loff_t off)
9362 {
9363 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9364 }
9365 
9366 static inline void cpu_uclamp_print(struct seq_file *sf,
9367 				    enum uclamp_id clamp_id)
9368 {
9369 	struct task_group *tg;
9370 	u64 util_clamp;
9371 	u64 percent;
9372 	u32 rem;
9373 
9374 	scoped_guard (rcu) {
9375 		tg = css_tg(seq_css(sf));
9376 		util_clamp = tg->uclamp_req[clamp_id].value;
9377 	}
9378 
9379 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9380 		seq_puts(sf, "max\n");
9381 		return;
9382 	}
9383 
9384 	percent = tg->uclamp_pct[clamp_id];
9385 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9386 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9387 }
9388 
9389 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9390 {
9391 	cpu_uclamp_print(sf, UCLAMP_MIN);
9392 	return 0;
9393 }
9394 
9395 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9396 {
9397 	cpu_uclamp_print(sf, UCLAMP_MAX);
9398 	return 0;
9399 }
9400 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9401 
9402 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9403 static unsigned long tg_weight(struct task_group *tg)
9404 {
9405 #ifdef CONFIG_FAIR_GROUP_SCHED
9406 	return scale_load_down(tg->shares);
9407 #else
9408 	return sched_weight_from_cgroup(tg->scx.weight);
9409 #endif
9410 }
9411 
9412 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9413 				struct cftype *cftype, u64 shareval)
9414 {
9415 	int ret;
9416 
9417 	if (shareval > scale_load_down(ULONG_MAX))
9418 		shareval = MAX_SHARES;
9419 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9420 	if (!ret)
9421 		scx_group_set_weight(css_tg(css),
9422 				     sched_weight_to_cgroup(shareval));
9423 	return ret;
9424 }
9425 
9426 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9427 			       struct cftype *cft)
9428 {
9429 	return tg_weight(css_tg(css));
9430 }
9431 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9432 
9433 #ifdef CONFIG_CFS_BANDWIDTH
9434 static DEFINE_MUTEX(cfs_constraints_mutex);
9435 
9436 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9437 
9438 static int tg_set_cfs_bandwidth(struct task_group *tg,
9439 				u64 period_us, u64 quota_us, u64 burst_us)
9440 {
9441 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9442 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9443 	u64 period, quota, burst;
9444 
9445 	period = (u64)period_us * NSEC_PER_USEC;
9446 
9447 	if (quota_us == RUNTIME_INF)
9448 		quota = RUNTIME_INF;
9449 	else
9450 		quota = (u64)quota_us * NSEC_PER_USEC;
9451 
9452 	burst = (u64)burst_us * NSEC_PER_USEC;
9453 
9454 	/*
9455 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9456 	 * unthrottle_offline_cfs_rqs().
9457 	 */
9458 	guard(cpus_read_lock)();
9459 	guard(mutex)(&cfs_constraints_mutex);
9460 
9461 	ret = __cfs_schedulable(tg, period, quota);
9462 	if (ret)
9463 		return ret;
9464 
9465 	runtime_enabled = quota != RUNTIME_INF;
9466 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9467 	/*
9468 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9469 	 * before making related changes, and on->off must occur afterwards
9470 	 */
9471 	if (runtime_enabled && !runtime_was_enabled)
9472 		cfs_bandwidth_usage_inc();
9473 
9474 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9475 		cfs_b->period = ns_to_ktime(period);
9476 		cfs_b->quota = quota;
9477 		cfs_b->burst = burst;
9478 
9479 		__refill_cfs_bandwidth_runtime(cfs_b);
9480 
9481 		/*
9482 		 * Restart the period timer (if active) to handle new
9483 		 * period expiry:
9484 		 */
9485 		if (runtime_enabled)
9486 			start_cfs_bandwidth(cfs_b);
9487 	}
9488 
9489 	for_each_online_cpu(i) {
9490 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9491 		struct rq *rq = cfs_rq->rq;
9492 
9493 		guard(rq_lock_irq)(rq);
9494 		cfs_rq->runtime_enabled = runtime_enabled;
9495 		cfs_rq->runtime_remaining = 1;
9496 
9497 		if (cfs_rq->throttled)
9498 			unthrottle_cfs_rq(cfs_rq);
9499 	}
9500 
9501 	if (runtime_was_enabled && !runtime_enabled)
9502 		cfs_bandwidth_usage_dec();
9503 
9504 	return 0;
9505 }
9506 
9507 static u64 tg_get_cfs_period(struct task_group *tg)
9508 {
9509 	u64 cfs_period_us;
9510 
9511 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9512 	do_div(cfs_period_us, NSEC_PER_USEC);
9513 
9514 	return cfs_period_us;
9515 }
9516 
9517 static u64 tg_get_cfs_quota(struct task_group *tg)
9518 {
9519 	u64 quota_us;
9520 
9521 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9522 		return RUNTIME_INF;
9523 
9524 	quota_us = tg->cfs_bandwidth.quota;
9525 	do_div(quota_us, NSEC_PER_USEC);
9526 
9527 	return quota_us;
9528 }
9529 
9530 static u64 tg_get_cfs_burst(struct task_group *tg)
9531 {
9532 	u64 burst_us;
9533 
9534 	burst_us = tg->cfs_bandwidth.burst;
9535 	do_div(burst_us, NSEC_PER_USEC);
9536 
9537 	return burst_us;
9538 }
9539 
9540 struct cfs_schedulable_data {
9541 	struct task_group *tg;
9542 	u64 period, quota;
9543 };
9544 
9545 /*
9546  * normalize group quota/period to be quota/max_period
9547  * note: units are usecs
9548  */
9549 static u64 normalize_cfs_quota(struct task_group *tg,
9550 			       struct cfs_schedulable_data *d)
9551 {
9552 	u64 quota, period;
9553 
9554 	if (tg == d->tg) {
9555 		period = d->period;
9556 		quota = d->quota;
9557 	} else {
9558 		period = tg_get_cfs_period(tg);
9559 		quota = tg_get_cfs_quota(tg);
9560 	}
9561 
9562 	/* note: these should typically be equivalent */
9563 	if (quota == RUNTIME_INF || quota == -1)
9564 		return RUNTIME_INF;
9565 
9566 	return to_ratio(period, quota);
9567 }
9568 
9569 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9570 {
9571 	struct cfs_schedulable_data *d = data;
9572 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9573 	s64 quota = 0, parent_quota = -1;
9574 
9575 	if (!tg->parent) {
9576 		quota = RUNTIME_INF;
9577 	} else {
9578 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9579 
9580 		quota = normalize_cfs_quota(tg, d);
9581 		parent_quota = parent_b->hierarchical_quota;
9582 
9583 		/*
9584 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9585 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9586 		 * inherit when no limit is set. In both cases this is used
9587 		 * by the scheduler to determine if a given CFS task has a
9588 		 * bandwidth constraint at some higher level.
9589 		 */
9590 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9591 			if (quota == RUNTIME_INF)
9592 				quota = parent_quota;
9593 			else if (parent_quota != RUNTIME_INF)
9594 				quota = min(quota, parent_quota);
9595 		} else {
9596 			if (quota == RUNTIME_INF)
9597 				quota = parent_quota;
9598 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9599 				return -EINVAL;
9600 		}
9601 	}
9602 	cfs_b->hierarchical_quota = quota;
9603 
9604 	return 0;
9605 }
9606 
9607 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9608 {
9609 	struct cfs_schedulable_data data = {
9610 		.tg = tg,
9611 		.period = period,
9612 		.quota = quota,
9613 	};
9614 
9615 	if (quota != RUNTIME_INF) {
9616 		do_div(data.period, NSEC_PER_USEC);
9617 		do_div(data.quota, NSEC_PER_USEC);
9618 	}
9619 
9620 	guard(rcu)();
9621 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9622 }
9623 
9624 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9625 {
9626 	struct task_group *tg = css_tg(seq_css(sf));
9627 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9628 
9629 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9630 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9631 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9632 
9633 	if (schedstat_enabled() && tg != &root_task_group) {
9634 		struct sched_statistics *stats;
9635 		u64 ws = 0;
9636 		int i;
9637 
9638 		for_each_possible_cpu(i) {
9639 			stats = __schedstats_from_se(tg->se[i]);
9640 			ws += schedstat_val(stats->wait_sum);
9641 		}
9642 
9643 		seq_printf(sf, "wait_sum %llu\n", ws);
9644 	}
9645 
9646 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9647 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9648 
9649 	return 0;
9650 }
9651 
9652 static u64 throttled_time_self(struct task_group *tg)
9653 {
9654 	int i;
9655 	u64 total = 0;
9656 
9657 	for_each_possible_cpu(i) {
9658 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9659 	}
9660 
9661 	return total;
9662 }
9663 
9664 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9665 {
9666 	struct task_group *tg = css_tg(seq_css(sf));
9667 
9668 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9669 
9670 	return 0;
9671 }
9672 #endif /* CONFIG_CFS_BANDWIDTH */
9673 
9674 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH
9675 const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */
9676 static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */
9677 /* More than 203 days if BW_SHIFT equals 20. */
9678 static const u64 max_bw_runtime_us = MAX_BW;
9679 
9680 static void tg_bandwidth(struct task_group *tg,
9681 			 u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p)
9682 {
9683 #ifdef CONFIG_CFS_BANDWIDTH
9684 	if (period_us_p)
9685 		*period_us_p = tg_get_cfs_period(tg);
9686 	if (quota_us_p)
9687 		*quota_us_p = tg_get_cfs_quota(tg);
9688 	if (burst_us_p)
9689 		*burst_us_p = tg_get_cfs_burst(tg);
9690 #else /* !CONFIG_CFS_BANDWIDTH */
9691 	if (period_us_p)
9692 		*period_us_p = tg->scx.bw_period_us;
9693 	if (quota_us_p)
9694 		*quota_us_p = tg->scx.bw_quota_us;
9695 	if (burst_us_p)
9696 		*burst_us_p = tg->scx.bw_burst_us;
9697 #endif /* CONFIG_CFS_BANDWIDTH */
9698 }
9699 
9700 static u64 cpu_period_read_u64(struct cgroup_subsys_state *css,
9701 			       struct cftype *cft)
9702 {
9703 	u64 period_us;
9704 
9705 	tg_bandwidth(css_tg(css), &period_us, NULL, NULL);
9706 	return period_us;
9707 }
9708 
9709 static int tg_set_bandwidth(struct task_group *tg,
9710 			    u64 period_us, u64 quota_us, u64 burst_us)
9711 {
9712 	const u64 max_usec = U64_MAX / NSEC_PER_USEC;
9713 	int ret = 0;
9714 
9715 	if (tg == &root_task_group)
9716 		return -EINVAL;
9717 
9718 	/* Values should survive translation to nsec */
9719 	if (period_us > max_usec ||
9720 	    (quota_us != RUNTIME_INF && quota_us > max_usec) ||
9721 	    burst_us > max_usec)
9722 		return -EINVAL;
9723 
9724 	/*
9725 	 * Ensure we have some amount of bandwidth every period. This is to
9726 	 * prevent reaching a state of large arrears when throttled via
9727 	 * entity_tick() resulting in prolonged exit starvation.
9728 	 */
9729 	if (quota_us < min_bw_quota_period_us ||
9730 	    period_us < min_bw_quota_period_us)
9731 		return -EINVAL;
9732 
9733 	/*
9734 	 * Likewise, bound things on the other side by preventing insane quota
9735 	 * periods.  This also allows us to normalize in computing quota
9736 	 * feasibility.
9737 	 */
9738 	if (period_us > max_bw_quota_period_us)
9739 		return -EINVAL;
9740 
9741 	/*
9742 	 * Bound quota to defend quota against overflow during bandwidth shift.
9743 	 */
9744 	if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us)
9745 		return -EINVAL;
9746 
9747 	if (quota_us != RUNTIME_INF && (burst_us > quota_us ||
9748 					burst_us + quota_us > max_bw_runtime_us))
9749 		return -EINVAL;
9750 
9751 #ifdef CONFIG_CFS_BANDWIDTH
9752 	ret = tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us);
9753 #endif /* CONFIG_CFS_BANDWIDTH */
9754 	if (!ret)
9755 		scx_group_set_bandwidth(tg, period_us, quota_us, burst_us);
9756 	return ret;
9757 }
9758 
9759 static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css,
9760 			      struct cftype *cft)
9761 {
9762 	u64 quota_us;
9763 
9764 	tg_bandwidth(css_tg(css), NULL, &quota_us, NULL);
9765 	return quota_us;	/* (s64)RUNTIME_INF becomes -1 */
9766 }
9767 
9768 static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css,
9769 			      struct cftype *cft)
9770 {
9771 	u64 burst_us;
9772 
9773 	tg_bandwidth(css_tg(css), NULL, NULL, &burst_us);
9774 	return burst_us;
9775 }
9776 
9777 static int cpu_period_write_u64(struct cgroup_subsys_state *css,
9778 				struct cftype *cftype, u64 period_us)
9779 {
9780 	struct task_group *tg = css_tg(css);
9781 	u64 quota_us, burst_us;
9782 
9783 	tg_bandwidth(tg, NULL, &quota_us, &burst_us);
9784 	return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9785 }
9786 
9787 static int cpu_quota_write_s64(struct cgroup_subsys_state *css,
9788 			       struct cftype *cftype, s64 quota_us)
9789 {
9790 	struct task_group *tg = css_tg(css);
9791 	u64 period_us, burst_us;
9792 
9793 	if (quota_us < 0)
9794 		quota_us = RUNTIME_INF;
9795 
9796 	tg_bandwidth(tg, &period_us, NULL, &burst_us);
9797 	return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9798 }
9799 
9800 static int cpu_burst_write_u64(struct cgroup_subsys_state *css,
9801 			       struct cftype *cftype, u64 burst_us)
9802 {
9803 	struct task_group *tg = css_tg(css);
9804 	u64 period_us, quota_us;
9805 
9806 	tg_bandwidth(tg, &period_us, &quota_us, NULL);
9807 	return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9808 }
9809 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */
9810 
9811 #ifdef CONFIG_RT_GROUP_SCHED
9812 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9813 				struct cftype *cft, s64 val)
9814 {
9815 	return sched_group_set_rt_runtime(css_tg(css), val);
9816 }
9817 
9818 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9819 			       struct cftype *cft)
9820 {
9821 	return sched_group_rt_runtime(css_tg(css));
9822 }
9823 
9824 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9825 				    struct cftype *cftype, u64 rt_period_us)
9826 {
9827 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9828 }
9829 
9830 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9831 				   struct cftype *cft)
9832 {
9833 	return sched_group_rt_period(css_tg(css));
9834 }
9835 #endif /* CONFIG_RT_GROUP_SCHED */
9836 
9837 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9838 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9839 			       struct cftype *cft)
9840 {
9841 	return css_tg(css)->idle;
9842 }
9843 
9844 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9845 				struct cftype *cft, s64 idle)
9846 {
9847 	int ret;
9848 
9849 	ret = sched_group_set_idle(css_tg(css), idle);
9850 	if (!ret)
9851 		scx_group_set_idle(css_tg(css), idle);
9852 	return ret;
9853 }
9854 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9855 
9856 static struct cftype cpu_legacy_files[] = {
9857 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9858 	{
9859 		.name = "shares",
9860 		.read_u64 = cpu_shares_read_u64,
9861 		.write_u64 = cpu_shares_write_u64,
9862 	},
9863 	{
9864 		.name = "idle",
9865 		.read_s64 = cpu_idle_read_s64,
9866 		.write_s64 = cpu_idle_write_s64,
9867 	},
9868 #endif
9869 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH
9870 	{
9871 		.name = "cfs_period_us",
9872 		.read_u64 = cpu_period_read_u64,
9873 		.write_u64 = cpu_period_write_u64,
9874 	},
9875 	{
9876 		.name = "cfs_quota_us",
9877 		.read_s64 = cpu_quota_read_s64,
9878 		.write_s64 = cpu_quota_write_s64,
9879 	},
9880 	{
9881 		.name = "cfs_burst_us",
9882 		.read_u64 = cpu_burst_read_u64,
9883 		.write_u64 = cpu_burst_write_u64,
9884 	},
9885 #endif
9886 #ifdef CONFIG_CFS_BANDWIDTH
9887 	{
9888 		.name = "stat",
9889 		.seq_show = cpu_cfs_stat_show,
9890 	},
9891 	{
9892 		.name = "stat.local",
9893 		.seq_show = cpu_cfs_local_stat_show,
9894 	},
9895 #endif
9896 #ifdef CONFIG_UCLAMP_TASK_GROUP
9897 	{
9898 		.name = "uclamp.min",
9899 		.flags = CFTYPE_NOT_ON_ROOT,
9900 		.seq_show = cpu_uclamp_min_show,
9901 		.write = cpu_uclamp_min_write,
9902 	},
9903 	{
9904 		.name = "uclamp.max",
9905 		.flags = CFTYPE_NOT_ON_ROOT,
9906 		.seq_show = cpu_uclamp_max_show,
9907 		.write = cpu_uclamp_max_write,
9908 	},
9909 #endif
9910 	{ }	/* Terminate */
9911 };
9912 
9913 #ifdef CONFIG_RT_GROUP_SCHED
9914 static struct cftype rt_group_files[] = {
9915 	{
9916 		.name = "rt_runtime_us",
9917 		.read_s64 = cpu_rt_runtime_read,
9918 		.write_s64 = cpu_rt_runtime_write,
9919 	},
9920 	{
9921 		.name = "rt_period_us",
9922 		.read_u64 = cpu_rt_period_read_uint,
9923 		.write_u64 = cpu_rt_period_write_uint,
9924 	},
9925 	{ }	/* Terminate */
9926 };
9927 
9928 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
9929 DEFINE_STATIC_KEY_FALSE(rt_group_sched);
9930 # else
9931 DEFINE_STATIC_KEY_TRUE(rt_group_sched);
9932 # endif
9933 
9934 static int __init setup_rt_group_sched(char *str)
9935 {
9936 	long val;
9937 
9938 	if (kstrtol(str, 0, &val) || val < 0 || val > 1) {
9939 		pr_warn("Unable to set rt_group_sched\n");
9940 		return 1;
9941 	}
9942 	if (val)
9943 		static_branch_enable(&rt_group_sched);
9944 	else
9945 		static_branch_disable(&rt_group_sched);
9946 
9947 	return 1;
9948 }
9949 __setup("rt_group_sched=", setup_rt_group_sched);
9950 
9951 static int __init cpu_rt_group_init(void)
9952 {
9953 	if (!rt_group_sched_enabled())
9954 		return 0;
9955 
9956 	WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files));
9957 	return 0;
9958 }
9959 subsys_initcall(cpu_rt_group_init);
9960 #endif /* CONFIG_RT_GROUP_SCHED */
9961 
9962 static int cpu_extra_stat_show(struct seq_file *sf,
9963 			       struct cgroup_subsys_state *css)
9964 {
9965 #ifdef CONFIG_CFS_BANDWIDTH
9966 	{
9967 		struct task_group *tg = css_tg(css);
9968 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9969 		u64 throttled_usec, burst_usec;
9970 
9971 		throttled_usec = cfs_b->throttled_time;
9972 		do_div(throttled_usec, NSEC_PER_USEC);
9973 		burst_usec = cfs_b->burst_time;
9974 		do_div(burst_usec, NSEC_PER_USEC);
9975 
9976 		seq_printf(sf, "nr_periods %d\n"
9977 			   "nr_throttled %d\n"
9978 			   "throttled_usec %llu\n"
9979 			   "nr_bursts %d\n"
9980 			   "burst_usec %llu\n",
9981 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9982 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9983 	}
9984 #endif /* CONFIG_CFS_BANDWIDTH */
9985 	return 0;
9986 }
9987 
9988 static int cpu_local_stat_show(struct seq_file *sf,
9989 			       struct cgroup_subsys_state *css)
9990 {
9991 #ifdef CONFIG_CFS_BANDWIDTH
9992 	{
9993 		struct task_group *tg = css_tg(css);
9994 		u64 throttled_self_usec;
9995 
9996 		throttled_self_usec = throttled_time_self(tg);
9997 		do_div(throttled_self_usec, NSEC_PER_USEC);
9998 
9999 		seq_printf(sf, "throttled_usec %llu\n",
10000 			   throttled_self_usec);
10001 	}
10002 #endif
10003 	return 0;
10004 }
10005 
10006 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10007 
10008 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10009 			       struct cftype *cft)
10010 {
10011 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
10012 }
10013 
10014 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10015 				struct cftype *cft, u64 cgrp_weight)
10016 {
10017 	unsigned long weight;
10018 	int ret;
10019 
10020 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
10021 		return -ERANGE;
10022 
10023 	weight = sched_weight_from_cgroup(cgrp_weight);
10024 
10025 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
10026 	if (!ret)
10027 		scx_group_set_weight(css_tg(css), cgrp_weight);
10028 	return ret;
10029 }
10030 
10031 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10032 				    struct cftype *cft)
10033 {
10034 	unsigned long weight = tg_weight(css_tg(css));
10035 	int last_delta = INT_MAX;
10036 	int prio, delta;
10037 
10038 	/* find the closest nice value to the current weight */
10039 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10040 		delta = abs(sched_prio_to_weight[prio] - weight);
10041 		if (delta >= last_delta)
10042 			break;
10043 		last_delta = delta;
10044 	}
10045 
10046 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10047 }
10048 
10049 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10050 				     struct cftype *cft, s64 nice)
10051 {
10052 	unsigned long weight;
10053 	int idx, ret;
10054 
10055 	if (nice < MIN_NICE || nice > MAX_NICE)
10056 		return -ERANGE;
10057 
10058 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10059 	idx = array_index_nospec(idx, 40);
10060 	weight = sched_prio_to_weight[idx];
10061 
10062 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
10063 	if (!ret)
10064 		scx_group_set_weight(css_tg(css),
10065 				     sched_weight_to_cgroup(weight));
10066 	return ret;
10067 }
10068 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
10069 
10070 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10071 						  long period, long quota)
10072 {
10073 	if (quota < 0)
10074 		seq_puts(sf, "max");
10075 	else
10076 		seq_printf(sf, "%ld", quota);
10077 
10078 	seq_printf(sf, " %ld\n", period);
10079 }
10080 
10081 /* caller should put the current value in *@periodp before calling */
10082 static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p,
10083 						 u64 *quota_us_p)
10084 {
10085 	char tok[21];	/* U64_MAX */
10086 
10087 	if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1)
10088 		return -EINVAL;
10089 
10090 	if (sscanf(tok, "%llu", quota_us_p) < 1) {
10091 		if (!strcmp(tok, "max"))
10092 			*quota_us_p = RUNTIME_INF;
10093 		else
10094 			return -EINVAL;
10095 	}
10096 
10097 	return 0;
10098 }
10099 
10100 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH
10101 static int cpu_max_show(struct seq_file *sf, void *v)
10102 {
10103 	struct task_group *tg = css_tg(seq_css(sf));
10104 	u64 period_us, quota_us;
10105 
10106 	tg_bandwidth(tg, &period_us, &quota_us, NULL);
10107 	cpu_period_quota_print(sf, period_us, quota_us);
10108 	return 0;
10109 }
10110 
10111 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10112 			     char *buf, size_t nbytes, loff_t off)
10113 {
10114 	struct task_group *tg = css_tg(of_css(of));
10115 	u64 period_us, quota_us, burst_us;
10116 	int ret;
10117 
10118 	tg_bandwidth(tg, &period_us, NULL, &burst_us);
10119 	ret = cpu_period_quota_parse(buf, &period_us, &quota_us);
10120 	if (!ret)
10121 		ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us);
10122 	return ret ?: nbytes;
10123 }
10124 #endif /* CONFIG_CFS_BANDWIDTH */
10125 
10126 static struct cftype cpu_files[] = {
10127 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10128 	{
10129 		.name = "weight",
10130 		.flags = CFTYPE_NOT_ON_ROOT,
10131 		.read_u64 = cpu_weight_read_u64,
10132 		.write_u64 = cpu_weight_write_u64,
10133 	},
10134 	{
10135 		.name = "weight.nice",
10136 		.flags = CFTYPE_NOT_ON_ROOT,
10137 		.read_s64 = cpu_weight_nice_read_s64,
10138 		.write_s64 = cpu_weight_nice_write_s64,
10139 	},
10140 	{
10141 		.name = "idle",
10142 		.flags = CFTYPE_NOT_ON_ROOT,
10143 		.read_s64 = cpu_idle_read_s64,
10144 		.write_s64 = cpu_idle_write_s64,
10145 	},
10146 #endif
10147 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH
10148 	{
10149 		.name = "max",
10150 		.flags = CFTYPE_NOT_ON_ROOT,
10151 		.seq_show = cpu_max_show,
10152 		.write = cpu_max_write,
10153 	},
10154 	{
10155 		.name = "max.burst",
10156 		.flags = CFTYPE_NOT_ON_ROOT,
10157 		.read_u64 = cpu_burst_read_u64,
10158 		.write_u64 = cpu_burst_write_u64,
10159 	},
10160 #endif /* CONFIG_CFS_BANDWIDTH */
10161 #ifdef CONFIG_UCLAMP_TASK_GROUP
10162 	{
10163 		.name = "uclamp.min",
10164 		.flags = CFTYPE_NOT_ON_ROOT,
10165 		.seq_show = cpu_uclamp_min_show,
10166 		.write = cpu_uclamp_min_write,
10167 	},
10168 	{
10169 		.name = "uclamp.max",
10170 		.flags = CFTYPE_NOT_ON_ROOT,
10171 		.seq_show = cpu_uclamp_max_show,
10172 		.write = cpu_uclamp_max_write,
10173 	},
10174 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10175 	{ }	/* terminate */
10176 };
10177 
10178 struct cgroup_subsys cpu_cgrp_subsys = {
10179 	.css_alloc	= cpu_cgroup_css_alloc,
10180 	.css_online	= cpu_cgroup_css_online,
10181 	.css_offline	= cpu_cgroup_css_offline,
10182 	.css_released	= cpu_cgroup_css_released,
10183 	.css_free	= cpu_cgroup_css_free,
10184 	.css_extra_stat_show = cpu_extra_stat_show,
10185 	.css_local_stat_show = cpu_local_stat_show,
10186 	.can_attach	= cpu_cgroup_can_attach,
10187 	.attach		= cpu_cgroup_attach,
10188 	.cancel_attach	= cpu_cgroup_cancel_attach,
10189 	.legacy_cftypes	= cpu_legacy_files,
10190 	.dfl_cftypes	= cpu_files,
10191 	.early_init	= true,
10192 	.threaded	= true,
10193 };
10194 
10195 #endif /* CONFIG_CGROUP_SCHED */
10196 
10197 void dump_cpu_task(int cpu)
10198 {
10199 	if (in_hardirq() && cpu == smp_processor_id()) {
10200 		struct pt_regs *regs;
10201 
10202 		regs = get_irq_regs();
10203 		if (regs) {
10204 			show_regs(regs);
10205 			return;
10206 		}
10207 	}
10208 
10209 	if (trigger_single_cpu_backtrace(cpu))
10210 		return;
10211 
10212 	pr_info("Task dump for CPU %d:\n", cpu);
10213 	sched_show_task(cpu_curr(cpu));
10214 }
10215 
10216 /*
10217  * Nice levels are multiplicative, with a gentle 10% change for every
10218  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10219  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10220  * that remained on nice 0.
10221  *
10222  * The "10% effect" is relative and cumulative: from _any_ nice level,
10223  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10224  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10225  * If a task goes up by ~10% and another task goes down by ~10% then
10226  * the relative distance between them is ~25%.)
10227  */
10228 const int sched_prio_to_weight[40] = {
10229  /* -20 */     88761,     71755,     56483,     46273,     36291,
10230  /* -15 */     29154,     23254,     18705,     14949,     11916,
10231  /* -10 */      9548,      7620,      6100,      4904,      3906,
10232  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10233  /*   0 */      1024,       820,       655,       526,       423,
10234  /*   5 */       335,       272,       215,       172,       137,
10235  /*  10 */       110,        87,        70,        56,        45,
10236  /*  15 */        36,        29,        23,        18,        15,
10237 };
10238 
10239 /*
10240  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10241  *
10242  * In cases where the weight does not change often, we can use the
10243  * pre-calculated inverse to speed up arithmetics by turning divisions
10244  * into multiplications:
10245  */
10246 const u32 sched_prio_to_wmult[40] = {
10247  /* -20 */     48388,     59856,     76040,     92818,    118348,
10248  /* -15 */    147320,    184698,    229616,    287308,    360437,
10249  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10250  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10251  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10252  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10253  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10254  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10255 };
10256 
10257 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10258 {
10259         trace_sched_update_nr_running_tp(rq, count);
10260 }
10261 
10262 #ifdef CONFIG_SCHED_MM_CID
10263 
10264 /*
10265  * @cid_lock: Guarantee forward-progress of cid allocation.
10266  *
10267  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10268  * is only used when contention is detected by the lock-free allocation so
10269  * forward progress can be guaranteed.
10270  */
10271 DEFINE_RAW_SPINLOCK(cid_lock);
10272 
10273 /*
10274  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10275  *
10276  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10277  * detected, it is set to 1 to ensure that all newly coming allocations are
10278  * serialized by @cid_lock until the allocation which detected contention
10279  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10280  * of a cid allocation.
10281  */
10282 int use_cid_lock;
10283 
10284 /*
10285  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10286  * concurrently with respect to the execution of the source runqueue context
10287  * switch.
10288  *
10289  * There is one basic properties we want to guarantee here:
10290  *
10291  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10292  * used by a task. That would lead to concurrent allocation of the cid and
10293  * userspace corruption.
10294  *
10295  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10296  * that a pair of loads observe at least one of a pair of stores, which can be
10297  * shown as:
10298  *
10299  *      X = Y = 0
10300  *
10301  *      w[X]=1          w[Y]=1
10302  *      MB              MB
10303  *      r[Y]=y          r[X]=x
10304  *
10305  * Which guarantees that x==0 && y==0 is impossible. But rather than using
10306  * values 0 and 1, this algorithm cares about specific state transitions of the
10307  * runqueue current task (as updated by the scheduler context switch), and the
10308  * per-mm/cpu cid value.
10309  *
10310  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10311  * task->mm != mm for the rest of the discussion. There are two scheduler state
10312  * transitions on context switch we care about:
10313  *
10314  * (TSA) Store to rq->curr with transition from (N) to (Y)
10315  *
10316  * (TSB) Store to rq->curr with transition from (Y) to (N)
10317  *
10318  * On the remote-clear side, there is one transition we care about:
10319  *
10320  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10321  *
10322  * There is also a transition to UNSET state which can be performed from all
10323  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10324  * guarantees that only a single thread will succeed:
10325  *
10326  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10327  *
10328  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10329  * when a thread is actively using the cid (property (1)).
10330  *
10331  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10332  *
10333  * Scenario A) (TSA)+(TMA) (from next task perspective)
10334  *
10335  * CPU0                                      CPU1
10336  *
10337  * Context switch CS-1                       Remote-clear
10338  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10339  *                                             (implied barrier after cmpxchg)
10340  *   - switch_mm_cid()
10341  *     - memory barrier (see switch_mm_cid()
10342  *       comment explaining how this barrier
10343  *       is combined with other scheduler
10344  *       barriers)
10345  *     - mm_cid_get (next)
10346  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10347  *
10348  * This Dekker ensures that either task (Y) is observed by the
10349  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10350  * observed.
10351  *
10352  * If task (Y) store is observed by rcu_dereference(), it means that there is
10353  * still an active task on the cpu. Remote-clear will therefore not transition
10354  * to UNSET, which fulfills property (1).
10355  *
10356  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10357  * it will move its state to UNSET, which clears the percpu cid perhaps
10358  * uselessly (which is not an issue for correctness). Because task (Y) is not
10359  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10360  * state to UNSET is done with a cmpxchg expecting that the old state has the
10361  * LAZY flag set, only one thread will successfully UNSET.
10362  *
10363  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10364  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10365  * CPU1 will observe task (Y) and do nothing more, which is fine.
10366  *
10367  * What we are effectively preventing with this Dekker is a scenario where
10368  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10369  * because this would UNSET a cid which is actively used.
10370  */
10371 
10372 void sched_mm_cid_migrate_from(struct task_struct *t)
10373 {
10374 	t->migrate_from_cpu = task_cpu(t);
10375 }
10376 
10377 static
10378 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10379 					  struct task_struct *t,
10380 					  struct mm_cid *src_pcpu_cid)
10381 {
10382 	struct mm_struct *mm = t->mm;
10383 	struct task_struct *src_task;
10384 	int src_cid, last_mm_cid;
10385 
10386 	if (!mm)
10387 		return -1;
10388 
10389 	last_mm_cid = t->last_mm_cid;
10390 	/*
10391 	 * If the migrated task has no last cid, or if the current
10392 	 * task on src rq uses the cid, it means the source cid does not need
10393 	 * to be moved to the destination cpu.
10394 	 */
10395 	if (last_mm_cid == -1)
10396 		return -1;
10397 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10398 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10399 		return -1;
10400 
10401 	/*
10402 	 * If we observe an active task using the mm on this rq, it means we
10403 	 * are not the last task to be migrated from this cpu for this mm, so
10404 	 * there is no need to move src_cid to the destination cpu.
10405 	 */
10406 	guard(rcu)();
10407 	src_task = rcu_dereference(src_rq->curr);
10408 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10409 		t->last_mm_cid = -1;
10410 		return -1;
10411 	}
10412 
10413 	return src_cid;
10414 }
10415 
10416 static
10417 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10418 					      struct task_struct *t,
10419 					      struct mm_cid *src_pcpu_cid,
10420 					      int src_cid)
10421 {
10422 	struct task_struct *src_task;
10423 	struct mm_struct *mm = t->mm;
10424 	int lazy_cid;
10425 
10426 	if (src_cid == -1)
10427 		return -1;
10428 
10429 	/*
10430 	 * Attempt to clear the source cpu cid to move it to the destination
10431 	 * cpu.
10432 	 */
10433 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10434 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10435 		return -1;
10436 
10437 	/*
10438 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10439 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10440 	 * between store to rq->curr and load of prev and next task's
10441 	 * per-mm/cpu cid.
10442 	 *
10443 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10444 	 * rq->curr->mm_cid_active matches the barrier in
10445 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10446 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10447 	 * load of per-mm/cpu cid.
10448 	 */
10449 
10450 	/*
10451 	 * If we observe an active task using the mm on this rq after setting
10452 	 * the lazy-put flag, this task will be responsible for transitioning
10453 	 * from lazy-put flag set to MM_CID_UNSET.
10454 	 */
10455 	scoped_guard (rcu) {
10456 		src_task = rcu_dereference(src_rq->curr);
10457 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10458 			/*
10459 			 * We observed an active task for this mm, there is therefore
10460 			 * no point in moving this cid to the destination cpu.
10461 			 */
10462 			t->last_mm_cid = -1;
10463 			return -1;
10464 		}
10465 	}
10466 
10467 	/*
10468 	 * The src_cid is unused, so it can be unset.
10469 	 */
10470 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10471 		return -1;
10472 	WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10473 	return src_cid;
10474 }
10475 
10476 /*
10477  * Migration to dst cpu. Called with dst_rq lock held.
10478  * Interrupts are disabled, which keeps the window of cid ownership without the
10479  * source rq lock held small.
10480  */
10481 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10482 {
10483 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10484 	struct mm_struct *mm = t->mm;
10485 	int src_cid, src_cpu;
10486 	bool dst_cid_is_set;
10487 	struct rq *src_rq;
10488 
10489 	lockdep_assert_rq_held(dst_rq);
10490 
10491 	if (!mm)
10492 		return;
10493 	src_cpu = t->migrate_from_cpu;
10494 	if (src_cpu == -1) {
10495 		t->last_mm_cid = -1;
10496 		return;
10497 	}
10498 	/*
10499 	 * Move the src cid if the dst cid is unset. This keeps id
10500 	 * allocation closest to 0 in cases where few threads migrate around
10501 	 * many CPUs.
10502 	 *
10503 	 * If destination cid or recent cid is already set, we may have
10504 	 * to just clear the src cid to ensure compactness in frequent
10505 	 * migrations scenarios.
10506 	 *
10507 	 * It is not useful to clear the src cid when the number of threads is
10508 	 * greater or equal to the number of allowed CPUs, because user-space
10509 	 * can expect that the number of allowed cids can reach the number of
10510 	 * allowed CPUs.
10511 	 */
10512 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10513 	dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10514 			 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10515 	if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10516 		return;
10517 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10518 	src_rq = cpu_rq(src_cpu);
10519 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10520 	if (src_cid == -1)
10521 		return;
10522 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10523 							    src_cid);
10524 	if (src_cid == -1)
10525 		return;
10526 	if (dst_cid_is_set) {
10527 		__mm_cid_put(mm, src_cid);
10528 		return;
10529 	}
10530 	/* Move src_cid to dst cpu. */
10531 	mm_cid_snapshot_time(dst_rq, mm);
10532 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10533 	WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10534 }
10535 
10536 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10537 				      int cpu)
10538 {
10539 	struct rq *rq = cpu_rq(cpu);
10540 	struct task_struct *t;
10541 	int cid, lazy_cid;
10542 
10543 	cid = READ_ONCE(pcpu_cid->cid);
10544 	if (!mm_cid_is_valid(cid))
10545 		return;
10546 
10547 	/*
10548 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10549 	 * there happens to be other tasks left on the source cpu using this
10550 	 * mm, the next task using this mm will reallocate its cid on context
10551 	 * switch.
10552 	 */
10553 	lazy_cid = mm_cid_set_lazy_put(cid);
10554 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10555 		return;
10556 
10557 	/*
10558 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10559 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10560 	 * between store to rq->curr and load of prev and next task's
10561 	 * per-mm/cpu cid.
10562 	 *
10563 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10564 	 * rq->curr->mm_cid_active matches the barrier in
10565 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10566 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10567 	 * load of per-mm/cpu cid.
10568 	 */
10569 
10570 	/*
10571 	 * If we observe an active task using the mm on this rq after setting
10572 	 * the lazy-put flag, that task will be responsible for transitioning
10573 	 * from lazy-put flag set to MM_CID_UNSET.
10574 	 */
10575 	scoped_guard (rcu) {
10576 		t = rcu_dereference(rq->curr);
10577 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10578 			return;
10579 	}
10580 
10581 	/*
10582 	 * The cid is unused, so it can be unset.
10583 	 * Disable interrupts to keep the window of cid ownership without rq
10584 	 * lock small.
10585 	 */
10586 	scoped_guard (irqsave) {
10587 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10588 			__mm_cid_put(mm, cid);
10589 	}
10590 }
10591 
10592 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10593 {
10594 	struct rq *rq = cpu_rq(cpu);
10595 	struct mm_cid *pcpu_cid;
10596 	struct task_struct *curr;
10597 	u64 rq_clock;
10598 
10599 	/*
10600 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10601 	 * while is irrelevant.
10602 	 */
10603 	rq_clock = READ_ONCE(rq->clock);
10604 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10605 
10606 	/*
10607 	 * In order to take care of infrequently scheduled tasks, bump the time
10608 	 * snapshot associated with this cid if an active task using the mm is
10609 	 * observed on this rq.
10610 	 */
10611 	scoped_guard (rcu) {
10612 		curr = rcu_dereference(rq->curr);
10613 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10614 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10615 			return;
10616 		}
10617 	}
10618 
10619 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10620 		return;
10621 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10622 }
10623 
10624 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10625 					     int weight)
10626 {
10627 	struct mm_cid *pcpu_cid;
10628 	int cid;
10629 
10630 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10631 	cid = READ_ONCE(pcpu_cid->cid);
10632 	if (!mm_cid_is_valid(cid) || cid < weight)
10633 		return;
10634 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10635 }
10636 
10637 static void task_mm_cid_work(struct callback_head *work)
10638 {
10639 	unsigned long now = jiffies, old_scan, next_scan;
10640 	struct task_struct *t = current;
10641 	struct cpumask *cidmask;
10642 	struct mm_struct *mm;
10643 	int weight, cpu;
10644 
10645 	WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work));
10646 
10647 	work->next = work;	/* Prevent double-add */
10648 	if (t->flags & PF_EXITING)
10649 		return;
10650 	mm = t->mm;
10651 	if (!mm)
10652 		return;
10653 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10654 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10655 	if (!old_scan) {
10656 		unsigned long res;
10657 
10658 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10659 		if (res != old_scan)
10660 			old_scan = res;
10661 		else
10662 			old_scan = next_scan;
10663 	}
10664 	if (time_before(now, old_scan))
10665 		return;
10666 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10667 		return;
10668 	cidmask = mm_cidmask(mm);
10669 	/* Clear cids that were not recently used. */
10670 	for_each_possible_cpu(cpu)
10671 		sched_mm_cid_remote_clear_old(mm, cpu);
10672 	weight = cpumask_weight(cidmask);
10673 	/*
10674 	 * Clear cids that are greater or equal to the cidmask weight to
10675 	 * recompact it.
10676 	 */
10677 	for_each_possible_cpu(cpu)
10678 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10679 }
10680 
10681 void init_sched_mm_cid(struct task_struct *t)
10682 {
10683 	struct mm_struct *mm = t->mm;
10684 	int mm_users = 0;
10685 
10686 	if (mm) {
10687 		mm_users = atomic_read(&mm->mm_users);
10688 		if (mm_users == 1)
10689 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10690 	}
10691 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10692 	init_task_work(&t->cid_work, task_mm_cid_work);
10693 }
10694 
10695 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10696 {
10697 	struct callback_head *work = &curr->cid_work;
10698 	unsigned long now = jiffies;
10699 
10700 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10701 	    work->next != work)
10702 		return;
10703 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10704 		return;
10705 
10706 	/* No page allocation under rq lock */
10707 	task_work_add(curr, work, TWA_RESUME);
10708 }
10709 
10710 void sched_mm_cid_exit_signals(struct task_struct *t)
10711 {
10712 	struct mm_struct *mm = t->mm;
10713 	struct rq *rq;
10714 
10715 	if (!mm)
10716 		return;
10717 
10718 	preempt_disable();
10719 	rq = this_rq();
10720 	guard(rq_lock_irqsave)(rq);
10721 	preempt_enable_no_resched();	/* holding spinlock */
10722 	WRITE_ONCE(t->mm_cid_active, 0);
10723 	/*
10724 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10725 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10726 	 */
10727 	smp_mb();
10728 	mm_cid_put(mm);
10729 	t->last_mm_cid = t->mm_cid = -1;
10730 }
10731 
10732 void sched_mm_cid_before_execve(struct task_struct *t)
10733 {
10734 	struct mm_struct *mm = t->mm;
10735 	struct rq *rq;
10736 
10737 	if (!mm)
10738 		return;
10739 
10740 	preempt_disable();
10741 	rq = this_rq();
10742 	guard(rq_lock_irqsave)(rq);
10743 	preempt_enable_no_resched();	/* holding spinlock */
10744 	WRITE_ONCE(t->mm_cid_active, 0);
10745 	/*
10746 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10747 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10748 	 */
10749 	smp_mb();
10750 	mm_cid_put(mm);
10751 	t->last_mm_cid = t->mm_cid = -1;
10752 }
10753 
10754 void sched_mm_cid_after_execve(struct task_struct *t)
10755 {
10756 	struct mm_struct *mm = t->mm;
10757 	struct rq *rq;
10758 
10759 	if (!mm)
10760 		return;
10761 
10762 	preempt_disable();
10763 	rq = this_rq();
10764 	scoped_guard (rq_lock_irqsave, rq) {
10765 		preempt_enable_no_resched();	/* holding spinlock */
10766 		WRITE_ONCE(t->mm_cid_active, 1);
10767 		/*
10768 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10769 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10770 		 */
10771 		smp_mb();
10772 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10773 	}
10774 }
10775 
10776 void sched_mm_cid_fork(struct task_struct *t)
10777 {
10778 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10779 	t->mm_cid_active = 1;
10780 }
10781 #endif /* CONFIG_SCHED_MM_CID */
10782 
10783 static DEFINE_PER_CPU(struct sched_change_ctx, sched_change_ctx);
10784 
10785 struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags)
10786 {
10787 	struct sched_change_ctx *ctx = this_cpu_ptr(&sched_change_ctx);
10788 	struct rq *rq = task_rq(p);
10789 
10790 	/*
10791 	 * Must exclusively use matched flags since this is both dequeue and
10792 	 * enqueue.
10793 	 */
10794 	WARN_ON_ONCE(flags & 0xFFFF0000);
10795 
10796 	lockdep_assert_rq_held(rq);
10797 
10798 	if (!(flags & DEQUEUE_NOCLOCK)) {
10799 		update_rq_clock(rq);
10800 		flags |= DEQUEUE_NOCLOCK;
10801 	}
10802 
10803 	if (flags & DEQUEUE_CLASS) {
10804 		if (p->sched_class->switching_from)
10805 			p->sched_class->switching_from(rq, p);
10806 	}
10807 
10808 	*ctx = (struct sched_change_ctx){
10809 		.p = p,
10810 		.flags = flags,
10811 		.queued = task_on_rq_queued(p),
10812 		.running = task_current_donor(rq, p),
10813 	};
10814 
10815 	if (!(flags & DEQUEUE_CLASS)) {
10816 		if (p->sched_class->get_prio)
10817 			ctx->prio = p->sched_class->get_prio(rq, p);
10818 		else
10819 			ctx->prio = p->prio;
10820 	}
10821 
10822 	if (ctx->queued)
10823 		dequeue_task(rq, p, flags);
10824 	if (ctx->running)
10825 		put_prev_task(rq, p);
10826 
10827 	if ((flags & DEQUEUE_CLASS) && p->sched_class->switched_from)
10828 		p->sched_class->switched_from(rq, p);
10829 
10830 	return ctx;
10831 }
10832 
10833 void sched_change_end(struct sched_change_ctx *ctx)
10834 {
10835 	struct task_struct *p = ctx->p;
10836 	struct rq *rq = task_rq(p);
10837 
10838 	lockdep_assert_rq_held(rq);
10839 
10840 	if ((ctx->flags & ENQUEUE_CLASS) && p->sched_class->switching_to)
10841 		p->sched_class->switching_to(rq, p);
10842 
10843 	if (ctx->queued)
10844 		enqueue_task(rq, p, ctx->flags);
10845 	if (ctx->running)
10846 		set_next_task(rq, p);
10847 
10848 	if (ctx->flags & ENQUEUE_CLASS) {
10849 		if (p->sched_class->switched_to)
10850 			p->sched_class->switched_to(rq, p);
10851 	} else {
10852 		p->sched_class->prio_changed(rq, p, ctx->prio);
10853 	}
10854 }
10855