1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 #include <linux/livepatch_sched.h> 70 71 #ifdef CONFIG_PREEMPT_DYNAMIC 72 # ifdef CONFIG_GENERIC_ENTRY 73 # include <linux/entry-common.h> 74 # endif 75 #endif 76 77 #include <uapi/linux/sched/types.h> 78 79 #include <asm/irq_regs.h> 80 #include <asm/switch_to.h> 81 #include <asm/tlb.h> 82 83 #define CREATE_TRACE_POINTS 84 #include <linux/sched/rseq_api.h> 85 #include <trace/events/sched.h> 86 #include <trace/events/ipi.h> 87 #undef CREATE_TRACE_POINTS 88 89 #include "sched.h" 90 #include "stats.h" 91 92 #include "autogroup.h" 93 #include "pelt.h" 94 #include "smp.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 /* 123 * Debugging: various feature bits 124 * 125 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 126 * sysctl_sched_features, defined in sched.h, to allow constants propagation 127 * at compile time and compiler optimization based on features default. 128 */ 129 #define SCHED_FEAT(name, enabled) \ 130 (1UL << __SCHED_FEAT_##name) * enabled | 131 __read_mostly unsigned int sysctl_sched_features = 132 #include "features.h" 133 0; 134 #undef SCHED_FEAT 135 136 /* 137 * Print a warning if need_resched is set for the given duration (if 138 * LATENCY_WARN is enabled). 139 * 140 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 141 * per boot. 142 */ 143 __read_mostly int sysctl_resched_latency_warn_ms = 100; 144 __read_mostly int sysctl_resched_latency_warn_once = 1; 145 146 /* 147 * Number of tasks to iterate in a single balance run. 148 * Limited because this is done with IRQs disabled. 149 */ 150 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 151 152 __read_mostly int scheduler_running; 153 154 #ifdef CONFIG_SCHED_CORE 155 156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 157 158 /* kernel prio, less is more */ 159 static inline int __task_prio(const struct task_struct *p) 160 { 161 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 162 return -2; 163 164 if (p->dl_server) 165 return -1; /* deadline */ 166 167 if (rt_or_dl_prio(p->prio)) 168 return p->prio; /* [-1, 99] */ 169 170 if (p->sched_class == &idle_sched_class) 171 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 172 173 if (task_on_scx(p)) 174 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 175 176 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 177 } 178 179 /* 180 * l(a,b) 181 * le(a,b) := !l(b,a) 182 * g(a,b) := l(b,a) 183 * ge(a,b) := !l(a,b) 184 */ 185 186 /* real prio, less is less */ 187 static inline bool prio_less(const struct task_struct *a, 188 const struct task_struct *b, bool in_fi) 189 { 190 191 int pa = __task_prio(a), pb = __task_prio(b); 192 193 if (-pa < -pb) 194 return true; 195 196 if (-pb < -pa) 197 return false; 198 199 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 200 const struct sched_dl_entity *a_dl, *b_dl; 201 202 a_dl = &a->dl; 203 /* 204 * Since,'a' and 'b' can be CFS tasks served by DL server, 205 * __task_prio() can return -1 (for DL) even for those. In that 206 * case, get to the dl_server's DL entity. 207 */ 208 if (a->dl_server) 209 a_dl = a->dl_server; 210 211 b_dl = &b->dl; 212 if (b->dl_server) 213 b_dl = b->dl_server; 214 215 return !dl_time_before(a_dl->deadline, b_dl->deadline); 216 } 217 218 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 219 return cfs_prio_less(a, b, in_fi); 220 221 #ifdef CONFIG_SCHED_CLASS_EXT 222 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 223 return scx_prio_less(a, b, in_fi); 224 #endif 225 226 return false; 227 } 228 229 static inline bool __sched_core_less(const struct task_struct *a, 230 const struct task_struct *b) 231 { 232 if (a->core_cookie < b->core_cookie) 233 return true; 234 235 if (a->core_cookie > b->core_cookie) 236 return false; 237 238 /* flip prio, so high prio is leftmost */ 239 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 240 return true; 241 242 return false; 243 } 244 245 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 246 247 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 248 { 249 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 250 } 251 252 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 253 { 254 const struct task_struct *p = __node_2_sc(node); 255 unsigned long cookie = (unsigned long)key; 256 257 if (cookie < p->core_cookie) 258 return -1; 259 260 if (cookie > p->core_cookie) 261 return 1; 262 263 return 0; 264 } 265 266 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 267 { 268 if (p->se.sched_delayed) 269 return; 270 271 rq->core->core_task_seq++; 272 273 if (!p->core_cookie) 274 return; 275 276 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 277 } 278 279 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 280 { 281 if (p->se.sched_delayed) 282 return; 283 284 rq->core->core_task_seq++; 285 286 if (sched_core_enqueued(p)) { 287 rb_erase(&p->core_node, &rq->core_tree); 288 RB_CLEAR_NODE(&p->core_node); 289 } 290 291 /* 292 * Migrating the last task off the cpu, with the cpu in forced idle 293 * state. Reschedule to create an accounting edge for forced idle, 294 * and re-examine whether the core is still in forced idle state. 295 */ 296 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 297 rq->core->core_forceidle_count && rq->curr == rq->idle) 298 resched_curr(rq); 299 } 300 301 static int sched_task_is_throttled(struct task_struct *p, int cpu) 302 { 303 if (p->sched_class->task_is_throttled) 304 return p->sched_class->task_is_throttled(p, cpu); 305 306 return 0; 307 } 308 309 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 310 { 311 struct rb_node *node = &p->core_node; 312 int cpu = task_cpu(p); 313 314 do { 315 node = rb_next(node); 316 if (!node) 317 return NULL; 318 319 p = __node_2_sc(node); 320 if (p->core_cookie != cookie) 321 return NULL; 322 323 } while (sched_task_is_throttled(p, cpu)); 324 325 return p; 326 } 327 328 /* 329 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 330 * If no suitable task is found, NULL will be returned. 331 */ 332 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 333 { 334 struct task_struct *p; 335 struct rb_node *node; 336 337 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 338 if (!node) 339 return NULL; 340 341 p = __node_2_sc(node); 342 if (!sched_task_is_throttled(p, rq->cpu)) 343 return p; 344 345 return sched_core_next(p, cookie); 346 } 347 348 /* 349 * Magic required such that: 350 * 351 * raw_spin_rq_lock(rq); 352 * ... 353 * raw_spin_rq_unlock(rq); 354 * 355 * ends up locking and unlocking the _same_ lock, and all CPUs 356 * always agree on what rq has what lock. 357 * 358 * XXX entirely possible to selectively enable cores, don't bother for now. 359 */ 360 361 static DEFINE_MUTEX(sched_core_mutex); 362 static atomic_t sched_core_count; 363 static struct cpumask sched_core_mask; 364 365 static void sched_core_lock(int cpu, unsigned long *flags) 366 { 367 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 368 int t, i = 0; 369 370 local_irq_save(*flags); 371 for_each_cpu(t, smt_mask) 372 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 373 } 374 375 static void sched_core_unlock(int cpu, unsigned long *flags) 376 { 377 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 378 int t; 379 380 for_each_cpu(t, smt_mask) 381 raw_spin_unlock(&cpu_rq(t)->__lock); 382 local_irq_restore(*flags); 383 } 384 385 static void __sched_core_flip(bool enabled) 386 { 387 unsigned long flags; 388 int cpu, t; 389 390 cpus_read_lock(); 391 392 /* 393 * Toggle the online cores, one by one. 394 */ 395 cpumask_copy(&sched_core_mask, cpu_online_mask); 396 for_each_cpu(cpu, &sched_core_mask) { 397 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 398 399 sched_core_lock(cpu, &flags); 400 401 for_each_cpu(t, smt_mask) 402 cpu_rq(t)->core_enabled = enabled; 403 404 cpu_rq(cpu)->core->core_forceidle_start = 0; 405 406 sched_core_unlock(cpu, &flags); 407 408 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 409 } 410 411 /* 412 * Toggle the offline CPUs. 413 */ 414 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 415 cpu_rq(cpu)->core_enabled = enabled; 416 417 cpus_read_unlock(); 418 } 419 420 static void sched_core_assert_empty(void) 421 { 422 int cpu; 423 424 for_each_possible_cpu(cpu) 425 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 426 } 427 428 static void __sched_core_enable(void) 429 { 430 static_branch_enable(&__sched_core_enabled); 431 /* 432 * Ensure all previous instances of raw_spin_rq_*lock() have finished 433 * and future ones will observe !sched_core_disabled(). 434 */ 435 synchronize_rcu(); 436 __sched_core_flip(true); 437 sched_core_assert_empty(); 438 } 439 440 static void __sched_core_disable(void) 441 { 442 sched_core_assert_empty(); 443 __sched_core_flip(false); 444 static_branch_disable(&__sched_core_enabled); 445 } 446 447 void sched_core_get(void) 448 { 449 if (atomic_inc_not_zero(&sched_core_count)) 450 return; 451 452 mutex_lock(&sched_core_mutex); 453 if (!atomic_read(&sched_core_count)) 454 __sched_core_enable(); 455 456 smp_mb__before_atomic(); 457 atomic_inc(&sched_core_count); 458 mutex_unlock(&sched_core_mutex); 459 } 460 461 static void __sched_core_put(struct work_struct *work) 462 { 463 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 464 __sched_core_disable(); 465 mutex_unlock(&sched_core_mutex); 466 } 467 } 468 469 void sched_core_put(void) 470 { 471 static DECLARE_WORK(_work, __sched_core_put); 472 473 /* 474 * "There can be only one" 475 * 476 * Either this is the last one, or we don't actually need to do any 477 * 'work'. If it is the last *again*, we rely on 478 * WORK_STRUCT_PENDING_BIT. 479 */ 480 if (!atomic_add_unless(&sched_core_count, -1, 1)) 481 schedule_work(&_work); 482 } 483 484 #else /* !CONFIG_SCHED_CORE */ 485 486 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 487 static inline void 488 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 489 490 #endif /* CONFIG_SCHED_CORE */ 491 492 /* need a wrapper since we may need to trace from modules */ 493 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp); 494 495 /* Call via the helper macro trace_set_current_state. */ 496 void __trace_set_current_state(int state_value) 497 { 498 trace_sched_set_state_tp(current, state_value); 499 } 500 EXPORT_SYMBOL(__trace_set_current_state); 501 502 /* 503 * Serialization rules: 504 * 505 * Lock order: 506 * 507 * p->pi_lock 508 * rq->lock 509 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 510 * 511 * rq1->lock 512 * rq2->lock where: rq1 < rq2 513 * 514 * Regular state: 515 * 516 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 517 * local CPU's rq->lock, it optionally removes the task from the runqueue and 518 * always looks at the local rq data structures to find the most eligible task 519 * to run next. 520 * 521 * Task enqueue is also under rq->lock, possibly taken from another CPU. 522 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 523 * the local CPU to avoid bouncing the runqueue state around [ see 524 * ttwu_queue_wakelist() ] 525 * 526 * Task wakeup, specifically wakeups that involve migration, are horribly 527 * complicated to avoid having to take two rq->locks. 528 * 529 * Special state: 530 * 531 * System-calls and anything external will use task_rq_lock() which acquires 532 * both p->pi_lock and rq->lock. As a consequence the state they change is 533 * stable while holding either lock: 534 * 535 * - sched_setaffinity()/ 536 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 537 * - set_user_nice(): p->se.load, p->*prio 538 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 539 * p->se.load, p->rt_priority, 540 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 541 * - sched_setnuma(): p->numa_preferred_nid 542 * - sched_move_task(): p->sched_task_group 543 * - uclamp_update_active() p->uclamp* 544 * 545 * p->state <- TASK_*: 546 * 547 * is changed locklessly using set_current_state(), __set_current_state() or 548 * set_special_state(), see their respective comments, or by 549 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 550 * concurrent self. 551 * 552 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 553 * 554 * is set by activate_task() and cleared by deactivate_task(), under 555 * rq->lock. Non-zero indicates the task is runnable, the special 556 * ON_RQ_MIGRATING state is used for migration without holding both 557 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 558 * 559 * Additionally it is possible to be ->on_rq but still be considered not 560 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 561 * but will be dequeued as soon as they get picked again. See the 562 * task_is_runnable() helper. 563 * 564 * p->on_cpu <- { 0, 1 }: 565 * 566 * is set by prepare_task() and cleared by finish_task() such that it will be 567 * set before p is scheduled-in and cleared after p is scheduled-out, both 568 * under rq->lock. Non-zero indicates the task is running on its CPU. 569 * 570 * [ The astute reader will observe that it is possible for two tasks on one 571 * CPU to have ->on_cpu = 1 at the same time. ] 572 * 573 * task_cpu(p): is changed by set_task_cpu(), the rules are: 574 * 575 * - Don't call set_task_cpu() on a blocked task: 576 * 577 * We don't care what CPU we're not running on, this simplifies hotplug, 578 * the CPU assignment of blocked tasks isn't required to be valid. 579 * 580 * - for try_to_wake_up(), called under p->pi_lock: 581 * 582 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 583 * 584 * - for migration called under rq->lock: 585 * [ see task_on_rq_migrating() in task_rq_lock() ] 586 * 587 * o move_queued_task() 588 * o detach_task() 589 * 590 * - for migration called under double_rq_lock(): 591 * 592 * o __migrate_swap_task() 593 * o push_rt_task() / pull_rt_task() 594 * o push_dl_task() / pull_dl_task() 595 * o dl_task_offline_migration() 596 * 597 */ 598 599 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 600 { 601 raw_spinlock_t *lock; 602 603 /* Matches synchronize_rcu() in __sched_core_enable() */ 604 preempt_disable(); 605 if (sched_core_disabled()) { 606 raw_spin_lock_nested(&rq->__lock, subclass); 607 /* preempt_count *MUST* be > 1 */ 608 preempt_enable_no_resched(); 609 return; 610 } 611 612 for (;;) { 613 lock = __rq_lockp(rq); 614 raw_spin_lock_nested(lock, subclass); 615 if (likely(lock == __rq_lockp(rq))) { 616 /* preempt_count *MUST* be > 1 */ 617 preempt_enable_no_resched(); 618 return; 619 } 620 raw_spin_unlock(lock); 621 } 622 } 623 624 bool raw_spin_rq_trylock(struct rq *rq) 625 { 626 raw_spinlock_t *lock; 627 bool ret; 628 629 /* Matches synchronize_rcu() in __sched_core_enable() */ 630 preempt_disable(); 631 if (sched_core_disabled()) { 632 ret = raw_spin_trylock(&rq->__lock); 633 preempt_enable(); 634 return ret; 635 } 636 637 for (;;) { 638 lock = __rq_lockp(rq); 639 ret = raw_spin_trylock(lock); 640 if (!ret || (likely(lock == __rq_lockp(rq)))) { 641 preempt_enable(); 642 return ret; 643 } 644 raw_spin_unlock(lock); 645 } 646 } 647 648 void raw_spin_rq_unlock(struct rq *rq) 649 { 650 raw_spin_unlock(rq_lockp(rq)); 651 } 652 653 #ifdef CONFIG_SMP 654 /* 655 * double_rq_lock - safely lock two runqueues 656 */ 657 void double_rq_lock(struct rq *rq1, struct rq *rq2) 658 { 659 lockdep_assert_irqs_disabled(); 660 661 if (rq_order_less(rq2, rq1)) 662 swap(rq1, rq2); 663 664 raw_spin_rq_lock(rq1); 665 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 666 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 667 668 double_rq_clock_clear_update(rq1, rq2); 669 } 670 #endif 671 672 /* 673 * __task_rq_lock - lock the rq @p resides on. 674 */ 675 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 676 __acquires(rq->lock) 677 { 678 struct rq *rq; 679 680 lockdep_assert_held(&p->pi_lock); 681 682 for (;;) { 683 rq = task_rq(p); 684 raw_spin_rq_lock(rq); 685 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 686 rq_pin_lock(rq, rf); 687 return rq; 688 } 689 raw_spin_rq_unlock(rq); 690 691 while (unlikely(task_on_rq_migrating(p))) 692 cpu_relax(); 693 } 694 } 695 696 /* 697 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 698 */ 699 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 700 __acquires(p->pi_lock) 701 __acquires(rq->lock) 702 { 703 struct rq *rq; 704 705 for (;;) { 706 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 707 rq = task_rq(p); 708 raw_spin_rq_lock(rq); 709 /* 710 * move_queued_task() task_rq_lock() 711 * 712 * ACQUIRE (rq->lock) 713 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 714 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 715 * [S] ->cpu = new_cpu [L] task_rq() 716 * [L] ->on_rq 717 * RELEASE (rq->lock) 718 * 719 * If we observe the old CPU in task_rq_lock(), the acquire of 720 * the old rq->lock will fully serialize against the stores. 721 * 722 * If we observe the new CPU in task_rq_lock(), the address 723 * dependency headed by '[L] rq = task_rq()' and the acquire 724 * will pair with the WMB to ensure we then also see migrating. 725 */ 726 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 727 rq_pin_lock(rq, rf); 728 return rq; 729 } 730 raw_spin_rq_unlock(rq); 731 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 732 733 while (unlikely(task_on_rq_migrating(p))) 734 cpu_relax(); 735 } 736 } 737 738 /* 739 * RQ-clock updating methods: 740 */ 741 742 static void update_rq_clock_task(struct rq *rq, s64 delta) 743 { 744 /* 745 * In theory, the compile should just see 0 here, and optimize out the call 746 * to sched_rt_avg_update. But I don't trust it... 747 */ 748 s64 __maybe_unused steal = 0, irq_delta = 0; 749 750 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 751 if (irqtime_enabled()) { 752 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 753 754 /* 755 * Since irq_time is only updated on {soft,}irq_exit, we might run into 756 * this case when a previous update_rq_clock() happened inside a 757 * {soft,}IRQ region. 758 * 759 * When this happens, we stop ->clock_task and only update the 760 * prev_irq_time stamp to account for the part that fit, so that a next 761 * update will consume the rest. This ensures ->clock_task is 762 * monotonic. 763 * 764 * It does however cause some slight miss-attribution of {soft,}IRQ 765 * time, a more accurate solution would be to update the irq_time using 766 * the current rq->clock timestamp, except that would require using 767 * atomic ops. 768 */ 769 if (irq_delta > delta) 770 irq_delta = delta; 771 772 rq->prev_irq_time += irq_delta; 773 delta -= irq_delta; 774 delayacct_irq(rq->curr, irq_delta); 775 } 776 #endif 777 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 778 if (static_key_false((¶virt_steal_rq_enabled))) { 779 u64 prev_steal; 780 781 steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); 782 steal -= rq->prev_steal_time_rq; 783 784 if (unlikely(steal > delta)) 785 steal = delta; 786 787 rq->prev_steal_time_rq = prev_steal; 788 delta -= steal; 789 } 790 #endif 791 792 rq->clock_task += delta; 793 794 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 795 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 796 update_irq_load_avg(rq, irq_delta + steal); 797 #endif 798 update_rq_clock_pelt(rq, delta); 799 } 800 801 void update_rq_clock(struct rq *rq) 802 { 803 s64 delta; 804 u64 clock; 805 806 lockdep_assert_rq_held(rq); 807 808 if (rq->clock_update_flags & RQCF_ACT_SKIP) 809 return; 810 811 if (sched_feat(WARN_DOUBLE_CLOCK)) 812 WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); 813 rq->clock_update_flags |= RQCF_UPDATED; 814 815 clock = sched_clock_cpu(cpu_of(rq)); 816 scx_rq_clock_update(rq, clock); 817 818 delta = clock - rq->clock; 819 if (delta < 0) 820 return; 821 rq->clock += delta; 822 823 update_rq_clock_task(rq, delta); 824 } 825 826 #ifdef CONFIG_SCHED_HRTICK 827 /* 828 * Use HR-timers to deliver accurate preemption points. 829 */ 830 831 static void hrtick_clear(struct rq *rq) 832 { 833 if (hrtimer_active(&rq->hrtick_timer)) 834 hrtimer_cancel(&rq->hrtick_timer); 835 } 836 837 /* 838 * High-resolution timer tick. 839 * Runs from hardirq context with interrupts disabled. 840 */ 841 static enum hrtimer_restart hrtick(struct hrtimer *timer) 842 { 843 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 844 struct rq_flags rf; 845 846 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 847 848 rq_lock(rq, &rf); 849 update_rq_clock(rq); 850 rq->donor->sched_class->task_tick(rq, rq->curr, 1); 851 rq_unlock(rq, &rf); 852 853 return HRTIMER_NORESTART; 854 } 855 856 #ifdef CONFIG_SMP 857 858 static void __hrtick_restart(struct rq *rq) 859 { 860 struct hrtimer *timer = &rq->hrtick_timer; 861 ktime_t time = rq->hrtick_time; 862 863 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 864 } 865 866 /* 867 * called from hardirq (IPI) context 868 */ 869 static void __hrtick_start(void *arg) 870 { 871 struct rq *rq = arg; 872 struct rq_flags rf; 873 874 rq_lock(rq, &rf); 875 __hrtick_restart(rq); 876 rq_unlock(rq, &rf); 877 } 878 879 /* 880 * Called to set the hrtick timer state. 881 * 882 * called with rq->lock held and IRQs disabled 883 */ 884 void hrtick_start(struct rq *rq, u64 delay) 885 { 886 struct hrtimer *timer = &rq->hrtick_timer; 887 s64 delta; 888 889 /* 890 * Don't schedule slices shorter than 10000ns, that just 891 * doesn't make sense and can cause timer DoS. 892 */ 893 delta = max_t(s64, delay, 10000LL); 894 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 895 896 if (rq == this_rq()) 897 __hrtick_restart(rq); 898 else 899 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 900 } 901 902 #else 903 /* 904 * Called to set the hrtick timer state. 905 * 906 * called with rq->lock held and IRQs disabled 907 */ 908 void hrtick_start(struct rq *rq, u64 delay) 909 { 910 /* 911 * Don't schedule slices shorter than 10000ns, that just 912 * doesn't make sense. Rely on vruntime for fairness. 913 */ 914 delay = max_t(u64, delay, 10000LL); 915 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 916 HRTIMER_MODE_REL_PINNED_HARD); 917 } 918 919 #endif /* CONFIG_SMP */ 920 921 static void hrtick_rq_init(struct rq *rq) 922 { 923 #ifdef CONFIG_SMP 924 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 925 #endif 926 hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 927 } 928 #else /* CONFIG_SCHED_HRTICK */ 929 static inline void hrtick_clear(struct rq *rq) 930 { 931 } 932 933 static inline void hrtick_rq_init(struct rq *rq) 934 { 935 } 936 #endif /* CONFIG_SCHED_HRTICK */ 937 938 /* 939 * try_cmpxchg based fetch_or() macro so it works for different integer types: 940 */ 941 #define fetch_or(ptr, mask) \ 942 ({ \ 943 typeof(ptr) _ptr = (ptr); \ 944 typeof(mask) _mask = (mask); \ 945 typeof(*_ptr) _val = *_ptr; \ 946 \ 947 do { \ 948 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 949 _val; \ 950 }) 951 952 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 953 /* 954 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 955 * this avoids any races wrt polling state changes and thereby avoids 956 * spurious IPIs. 957 */ 958 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 959 { 960 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 961 } 962 963 /* 964 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 965 * 966 * If this returns true, then the idle task promises to call 967 * sched_ttwu_pending() and reschedule soon. 968 */ 969 static bool set_nr_if_polling(struct task_struct *p) 970 { 971 struct thread_info *ti = task_thread_info(p); 972 typeof(ti->flags) val = READ_ONCE(ti->flags); 973 974 do { 975 if (!(val & _TIF_POLLING_NRFLAG)) 976 return false; 977 if (val & _TIF_NEED_RESCHED) 978 return true; 979 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 980 981 return true; 982 } 983 984 #else 985 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 986 { 987 set_ti_thread_flag(ti, tif); 988 return true; 989 } 990 991 #ifdef CONFIG_SMP 992 static inline bool set_nr_if_polling(struct task_struct *p) 993 { 994 return false; 995 } 996 #endif 997 #endif 998 999 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 1000 { 1001 struct wake_q_node *node = &task->wake_q; 1002 1003 /* 1004 * Atomically grab the task, if ->wake_q is !nil already it means 1005 * it's already queued (either by us or someone else) and will get the 1006 * wakeup due to that. 1007 * 1008 * In order to ensure that a pending wakeup will observe our pending 1009 * state, even in the failed case, an explicit smp_mb() must be used. 1010 */ 1011 smp_mb__before_atomic(); 1012 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 1013 return false; 1014 1015 /* 1016 * The head is context local, there can be no concurrency. 1017 */ 1018 *head->lastp = node; 1019 head->lastp = &node->next; 1020 return true; 1021 } 1022 1023 /** 1024 * wake_q_add() - queue a wakeup for 'later' waking. 1025 * @head: the wake_q_head to add @task to 1026 * @task: the task to queue for 'later' wakeup 1027 * 1028 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1029 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1030 * instantly. 1031 * 1032 * This function must be used as-if it were wake_up_process(); IOW the task 1033 * must be ready to be woken at this location. 1034 */ 1035 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1036 { 1037 if (__wake_q_add(head, task)) 1038 get_task_struct(task); 1039 } 1040 1041 /** 1042 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1043 * @head: the wake_q_head to add @task to 1044 * @task: the task to queue for 'later' wakeup 1045 * 1046 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1047 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1048 * instantly. 1049 * 1050 * This function must be used as-if it were wake_up_process(); IOW the task 1051 * must be ready to be woken at this location. 1052 * 1053 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1054 * that already hold reference to @task can call the 'safe' version and trust 1055 * wake_q to do the right thing depending whether or not the @task is already 1056 * queued for wakeup. 1057 */ 1058 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1059 { 1060 if (!__wake_q_add(head, task)) 1061 put_task_struct(task); 1062 } 1063 1064 void wake_up_q(struct wake_q_head *head) 1065 { 1066 struct wake_q_node *node = head->first; 1067 1068 while (node != WAKE_Q_TAIL) { 1069 struct task_struct *task; 1070 1071 task = container_of(node, struct task_struct, wake_q); 1072 node = node->next; 1073 /* pairs with cmpxchg_relaxed() in __wake_q_add() */ 1074 WRITE_ONCE(task->wake_q.next, NULL); 1075 /* Task can safely be re-inserted now. */ 1076 1077 /* 1078 * wake_up_process() executes a full barrier, which pairs with 1079 * the queueing in wake_q_add() so as not to miss wakeups. 1080 */ 1081 wake_up_process(task); 1082 put_task_struct(task); 1083 } 1084 } 1085 1086 /* 1087 * resched_curr - mark rq's current task 'to be rescheduled now'. 1088 * 1089 * On UP this means the setting of the need_resched flag, on SMP it 1090 * might also involve a cross-CPU call to trigger the scheduler on 1091 * the target CPU. 1092 */ 1093 static void __resched_curr(struct rq *rq, int tif) 1094 { 1095 struct task_struct *curr = rq->curr; 1096 struct thread_info *cti = task_thread_info(curr); 1097 int cpu; 1098 1099 lockdep_assert_rq_held(rq); 1100 1101 /* 1102 * Always immediately preempt the idle task; no point in delaying doing 1103 * actual work. 1104 */ 1105 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1106 tif = TIF_NEED_RESCHED; 1107 1108 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1109 return; 1110 1111 cpu = cpu_of(rq); 1112 1113 if (cpu == smp_processor_id()) { 1114 set_ti_thread_flag(cti, tif); 1115 if (tif == TIF_NEED_RESCHED) 1116 set_preempt_need_resched(); 1117 return; 1118 } 1119 1120 if (set_nr_and_not_polling(cti, tif)) { 1121 if (tif == TIF_NEED_RESCHED) 1122 smp_send_reschedule(cpu); 1123 } else { 1124 trace_sched_wake_idle_without_ipi(cpu); 1125 } 1126 } 1127 1128 void resched_curr(struct rq *rq) 1129 { 1130 __resched_curr(rq, TIF_NEED_RESCHED); 1131 } 1132 1133 #ifdef CONFIG_PREEMPT_DYNAMIC 1134 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1135 static __always_inline bool dynamic_preempt_lazy(void) 1136 { 1137 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1138 } 1139 #else 1140 static __always_inline bool dynamic_preempt_lazy(void) 1141 { 1142 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1143 } 1144 #endif 1145 1146 static __always_inline int get_lazy_tif_bit(void) 1147 { 1148 if (dynamic_preempt_lazy()) 1149 return TIF_NEED_RESCHED_LAZY; 1150 1151 return TIF_NEED_RESCHED; 1152 } 1153 1154 void resched_curr_lazy(struct rq *rq) 1155 { 1156 __resched_curr(rq, get_lazy_tif_bit()); 1157 } 1158 1159 void resched_cpu(int cpu) 1160 { 1161 struct rq *rq = cpu_rq(cpu); 1162 unsigned long flags; 1163 1164 raw_spin_rq_lock_irqsave(rq, flags); 1165 if (cpu_online(cpu) || cpu == smp_processor_id()) 1166 resched_curr(rq); 1167 raw_spin_rq_unlock_irqrestore(rq, flags); 1168 } 1169 1170 #ifdef CONFIG_SMP 1171 #ifdef CONFIG_NO_HZ_COMMON 1172 /* 1173 * In the semi idle case, use the nearest busy CPU for migrating timers 1174 * from an idle CPU. This is good for power-savings. 1175 * 1176 * We don't do similar optimization for completely idle system, as 1177 * selecting an idle CPU will add more delays to the timers than intended 1178 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1179 */ 1180 int get_nohz_timer_target(void) 1181 { 1182 int i, cpu = smp_processor_id(), default_cpu = -1; 1183 struct sched_domain *sd; 1184 const struct cpumask *hk_mask; 1185 1186 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { 1187 if (!idle_cpu(cpu)) 1188 return cpu; 1189 default_cpu = cpu; 1190 } 1191 1192 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 1193 1194 guard(rcu)(); 1195 1196 for_each_domain(cpu, sd) { 1197 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1198 if (cpu == i) 1199 continue; 1200 1201 if (!idle_cpu(i)) 1202 return i; 1203 } 1204 } 1205 1206 if (default_cpu == -1) 1207 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); 1208 1209 return default_cpu; 1210 } 1211 1212 /* 1213 * When add_timer_on() enqueues a timer into the timer wheel of an 1214 * idle CPU then this timer might expire before the next timer event 1215 * which is scheduled to wake up that CPU. In case of a completely 1216 * idle system the next event might even be infinite time into the 1217 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1218 * leaves the inner idle loop so the newly added timer is taken into 1219 * account when the CPU goes back to idle and evaluates the timer 1220 * wheel for the next timer event. 1221 */ 1222 static void wake_up_idle_cpu(int cpu) 1223 { 1224 struct rq *rq = cpu_rq(cpu); 1225 1226 if (cpu == smp_processor_id()) 1227 return; 1228 1229 /* 1230 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1231 * part of the idle loop. This forces an exit from the idle loop 1232 * and a round trip to schedule(). Now this could be optimized 1233 * because a simple new idle loop iteration is enough to 1234 * re-evaluate the next tick. Provided some re-ordering of tick 1235 * nohz functions that would need to follow TIF_NR_POLLING 1236 * clearing: 1237 * 1238 * - On most architectures, a simple fetch_or on ti::flags with a 1239 * "0" value would be enough to know if an IPI needs to be sent. 1240 * 1241 * - x86 needs to perform a last need_resched() check between 1242 * monitor and mwait which doesn't take timers into account. 1243 * There a dedicated TIF_TIMER flag would be required to 1244 * fetch_or here and be checked along with TIF_NEED_RESCHED 1245 * before mwait(). 1246 * 1247 * However, remote timer enqueue is not such a frequent event 1248 * and testing of the above solutions didn't appear to report 1249 * much benefits. 1250 */ 1251 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1252 smp_send_reschedule(cpu); 1253 else 1254 trace_sched_wake_idle_without_ipi(cpu); 1255 } 1256 1257 static bool wake_up_full_nohz_cpu(int cpu) 1258 { 1259 /* 1260 * We just need the target to call irq_exit() and re-evaluate 1261 * the next tick. The nohz full kick at least implies that. 1262 * If needed we can still optimize that later with an 1263 * empty IRQ. 1264 */ 1265 if (cpu_is_offline(cpu)) 1266 return true; /* Don't try to wake offline CPUs. */ 1267 if (tick_nohz_full_cpu(cpu)) { 1268 if (cpu != smp_processor_id() || 1269 tick_nohz_tick_stopped()) 1270 tick_nohz_full_kick_cpu(cpu); 1271 return true; 1272 } 1273 1274 return false; 1275 } 1276 1277 /* 1278 * Wake up the specified CPU. If the CPU is going offline, it is the 1279 * caller's responsibility to deal with the lost wakeup, for example, 1280 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1281 */ 1282 void wake_up_nohz_cpu(int cpu) 1283 { 1284 if (!wake_up_full_nohz_cpu(cpu)) 1285 wake_up_idle_cpu(cpu); 1286 } 1287 1288 static void nohz_csd_func(void *info) 1289 { 1290 struct rq *rq = info; 1291 int cpu = cpu_of(rq); 1292 unsigned int flags; 1293 1294 /* 1295 * Release the rq::nohz_csd. 1296 */ 1297 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1298 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1299 1300 rq->idle_balance = idle_cpu(cpu); 1301 if (rq->idle_balance) { 1302 rq->nohz_idle_balance = flags; 1303 __raise_softirq_irqoff(SCHED_SOFTIRQ); 1304 } 1305 } 1306 1307 #endif /* CONFIG_NO_HZ_COMMON */ 1308 1309 #ifdef CONFIG_NO_HZ_FULL 1310 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1311 { 1312 if (rq->nr_running != 1) 1313 return false; 1314 1315 if (p->sched_class != &fair_sched_class) 1316 return false; 1317 1318 if (!task_on_rq_queued(p)) 1319 return false; 1320 1321 return true; 1322 } 1323 1324 bool sched_can_stop_tick(struct rq *rq) 1325 { 1326 int fifo_nr_running; 1327 1328 /* Deadline tasks, even if single, need the tick */ 1329 if (rq->dl.dl_nr_running) 1330 return false; 1331 1332 /* 1333 * If there are more than one RR tasks, we need the tick to affect the 1334 * actual RR behaviour. 1335 */ 1336 if (rq->rt.rr_nr_running) { 1337 if (rq->rt.rr_nr_running == 1) 1338 return true; 1339 else 1340 return false; 1341 } 1342 1343 /* 1344 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1345 * forced preemption between FIFO tasks. 1346 */ 1347 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1348 if (fifo_nr_running) 1349 return true; 1350 1351 /* 1352 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1353 * left. For CFS, if there's more than one we need the tick for 1354 * involuntary preemption. For SCX, ask. 1355 */ 1356 if (scx_enabled() && !scx_can_stop_tick(rq)) 1357 return false; 1358 1359 if (rq->cfs.h_nr_queued > 1) 1360 return false; 1361 1362 /* 1363 * If there is one task and it has CFS runtime bandwidth constraints 1364 * and it's on the cpu now we don't want to stop the tick. 1365 * This check prevents clearing the bit if a newly enqueued task here is 1366 * dequeued by migrating while the constrained task continues to run. 1367 * E.g. going from 2->1 without going through pick_next_task(). 1368 */ 1369 if (__need_bw_check(rq, rq->curr)) { 1370 if (cfs_task_bw_constrained(rq->curr)) 1371 return false; 1372 } 1373 1374 return true; 1375 } 1376 #endif /* CONFIG_NO_HZ_FULL */ 1377 #endif /* CONFIG_SMP */ 1378 1379 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1380 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1381 /* 1382 * Iterate task_group tree rooted at *from, calling @down when first entering a 1383 * node and @up when leaving it for the final time. 1384 * 1385 * Caller must hold rcu_lock or sufficient equivalent. 1386 */ 1387 int walk_tg_tree_from(struct task_group *from, 1388 tg_visitor down, tg_visitor up, void *data) 1389 { 1390 struct task_group *parent, *child; 1391 int ret; 1392 1393 parent = from; 1394 1395 down: 1396 ret = (*down)(parent, data); 1397 if (ret) 1398 goto out; 1399 list_for_each_entry_rcu(child, &parent->children, siblings) { 1400 parent = child; 1401 goto down; 1402 1403 up: 1404 continue; 1405 } 1406 ret = (*up)(parent, data); 1407 if (ret || parent == from) 1408 goto out; 1409 1410 child = parent; 1411 parent = parent->parent; 1412 if (parent) 1413 goto up; 1414 out: 1415 return ret; 1416 } 1417 1418 int tg_nop(struct task_group *tg, void *data) 1419 { 1420 return 0; 1421 } 1422 #endif 1423 1424 void set_load_weight(struct task_struct *p, bool update_load) 1425 { 1426 int prio = p->static_prio - MAX_RT_PRIO; 1427 struct load_weight lw; 1428 1429 if (task_has_idle_policy(p)) { 1430 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1431 lw.inv_weight = WMULT_IDLEPRIO; 1432 } else { 1433 lw.weight = scale_load(sched_prio_to_weight[prio]); 1434 lw.inv_weight = sched_prio_to_wmult[prio]; 1435 } 1436 1437 /* 1438 * SCHED_OTHER tasks have to update their load when changing their 1439 * weight 1440 */ 1441 if (update_load && p->sched_class->reweight_task) 1442 p->sched_class->reweight_task(task_rq(p), p, &lw); 1443 else 1444 p->se.load = lw; 1445 } 1446 1447 #ifdef CONFIG_UCLAMP_TASK 1448 /* 1449 * Serializes updates of utilization clamp values 1450 * 1451 * The (slow-path) user-space triggers utilization clamp value updates which 1452 * can require updates on (fast-path) scheduler's data structures used to 1453 * support enqueue/dequeue operations. 1454 * While the per-CPU rq lock protects fast-path update operations, user-space 1455 * requests are serialized using a mutex to reduce the risk of conflicting 1456 * updates or API abuses. 1457 */ 1458 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1459 1460 /* Max allowed minimum utilization */ 1461 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1462 1463 /* Max allowed maximum utilization */ 1464 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1465 1466 /* 1467 * By default RT tasks run at the maximum performance point/capacity of the 1468 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1469 * SCHED_CAPACITY_SCALE. 1470 * 1471 * This knob allows admins to change the default behavior when uclamp is being 1472 * used. In battery powered devices, particularly, running at the maximum 1473 * capacity and frequency will increase energy consumption and shorten the 1474 * battery life. 1475 * 1476 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1477 * 1478 * This knob will not override the system default sched_util_clamp_min defined 1479 * above. 1480 */ 1481 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1482 1483 /* All clamps are required to be less or equal than these values */ 1484 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1485 1486 /* 1487 * This static key is used to reduce the uclamp overhead in the fast path. It 1488 * primarily disables the call to uclamp_rq_{inc, dec}() in 1489 * enqueue/dequeue_task(). 1490 * 1491 * This allows users to continue to enable uclamp in their kernel config with 1492 * minimum uclamp overhead in the fast path. 1493 * 1494 * As soon as userspace modifies any of the uclamp knobs, the static key is 1495 * enabled, since we have an actual users that make use of uclamp 1496 * functionality. 1497 * 1498 * The knobs that would enable this static key are: 1499 * 1500 * * A task modifying its uclamp value with sched_setattr(). 1501 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1502 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1503 */ 1504 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1505 1506 static inline unsigned int 1507 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1508 unsigned int clamp_value) 1509 { 1510 /* 1511 * Avoid blocked utilization pushing up the frequency when we go 1512 * idle (which drops the max-clamp) by retaining the last known 1513 * max-clamp. 1514 */ 1515 if (clamp_id == UCLAMP_MAX) { 1516 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1517 return clamp_value; 1518 } 1519 1520 return uclamp_none(UCLAMP_MIN); 1521 } 1522 1523 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1524 unsigned int clamp_value) 1525 { 1526 /* Reset max-clamp retention only on idle exit */ 1527 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1528 return; 1529 1530 uclamp_rq_set(rq, clamp_id, clamp_value); 1531 } 1532 1533 static inline 1534 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1535 unsigned int clamp_value) 1536 { 1537 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1538 int bucket_id = UCLAMP_BUCKETS - 1; 1539 1540 /* 1541 * Since both min and max clamps are max aggregated, find the 1542 * top most bucket with tasks in. 1543 */ 1544 for ( ; bucket_id >= 0; bucket_id--) { 1545 if (!bucket[bucket_id].tasks) 1546 continue; 1547 return bucket[bucket_id].value; 1548 } 1549 1550 /* No tasks -- default clamp values */ 1551 return uclamp_idle_value(rq, clamp_id, clamp_value); 1552 } 1553 1554 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1555 { 1556 unsigned int default_util_min; 1557 struct uclamp_se *uc_se; 1558 1559 lockdep_assert_held(&p->pi_lock); 1560 1561 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1562 1563 /* Only sync if user didn't override the default */ 1564 if (uc_se->user_defined) 1565 return; 1566 1567 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1568 uclamp_se_set(uc_se, default_util_min, false); 1569 } 1570 1571 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1572 { 1573 if (!rt_task(p)) 1574 return; 1575 1576 /* Protect updates to p->uclamp_* */ 1577 guard(task_rq_lock)(p); 1578 __uclamp_update_util_min_rt_default(p); 1579 } 1580 1581 static inline struct uclamp_se 1582 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1583 { 1584 /* Copy by value as we could modify it */ 1585 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1586 #ifdef CONFIG_UCLAMP_TASK_GROUP 1587 unsigned int tg_min, tg_max, value; 1588 1589 /* 1590 * Tasks in autogroups or root task group will be 1591 * restricted by system defaults. 1592 */ 1593 if (task_group_is_autogroup(task_group(p))) 1594 return uc_req; 1595 if (task_group(p) == &root_task_group) 1596 return uc_req; 1597 1598 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1599 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1600 value = uc_req.value; 1601 value = clamp(value, tg_min, tg_max); 1602 uclamp_se_set(&uc_req, value, false); 1603 #endif 1604 1605 return uc_req; 1606 } 1607 1608 /* 1609 * The effective clamp bucket index of a task depends on, by increasing 1610 * priority: 1611 * - the task specific clamp value, when explicitly requested from userspace 1612 * - the task group effective clamp value, for tasks not either in the root 1613 * group or in an autogroup 1614 * - the system default clamp value, defined by the sysadmin 1615 */ 1616 static inline struct uclamp_se 1617 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1618 { 1619 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1620 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1621 1622 /* System default restrictions always apply */ 1623 if (unlikely(uc_req.value > uc_max.value)) 1624 return uc_max; 1625 1626 return uc_req; 1627 } 1628 1629 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1630 { 1631 struct uclamp_se uc_eff; 1632 1633 /* Task currently refcounted: use back-annotated (effective) value */ 1634 if (p->uclamp[clamp_id].active) 1635 return (unsigned long)p->uclamp[clamp_id].value; 1636 1637 uc_eff = uclamp_eff_get(p, clamp_id); 1638 1639 return (unsigned long)uc_eff.value; 1640 } 1641 1642 /* 1643 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1644 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1645 * updates the rq's clamp value if required. 1646 * 1647 * Tasks can have a task-specific value requested from user-space, track 1648 * within each bucket the maximum value for tasks refcounted in it. 1649 * This "local max aggregation" allows to track the exact "requested" value 1650 * for each bucket when all its RUNNABLE tasks require the same clamp. 1651 */ 1652 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1653 enum uclamp_id clamp_id) 1654 { 1655 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1656 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1657 struct uclamp_bucket *bucket; 1658 1659 lockdep_assert_rq_held(rq); 1660 1661 /* Update task effective clamp */ 1662 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1663 1664 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1665 bucket->tasks++; 1666 uc_se->active = true; 1667 1668 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1669 1670 /* 1671 * Local max aggregation: rq buckets always track the max 1672 * "requested" clamp value of its RUNNABLE tasks. 1673 */ 1674 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1675 bucket->value = uc_se->value; 1676 1677 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1678 uclamp_rq_set(rq, clamp_id, uc_se->value); 1679 } 1680 1681 /* 1682 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1683 * is released. If this is the last task reference counting the rq's max 1684 * active clamp value, then the rq's clamp value is updated. 1685 * 1686 * Both refcounted tasks and rq's cached clamp values are expected to be 1687 * always valid. If it's detected they are not, as defensive programming, 1688 * enforce the expected state and warn. 1689 */ 1690 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1691 enum uclamp_id clamp_id) 1692 { 1693 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1694 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1695 struct uclamp_bucket *bucket; 1696 unsigned int bkt_clamp; 1697 unsigned int rq_clamp; 1698 1699 lockdep_assert_rq_held(rq); 1700 1701 /* 1702 * If sched_uclamp_used was enabled after task @p was enqueued, 1703 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1704 * 1705 * In this case the uc_se->active flag should be false since no uclamp 1706 * accounting was performed at enqueue time and we can just return 1707 * here. 1708 * 1709 * Need to be careful of the following enqueue/dequeue ordering 1710 * problem too 1711 * 1712 * enqueue(taskA) 1713 * // sched_uclamp_used gets enabled 1714 * enqueue(taskB) 1715 * dequeue(taskA) 1716 * // Must not decrement bucket->tasks here 1717 * dequeue(taskB) 1718 * 1719 * where we could end up with stale data in uc_se and 1720 * bucket[uc_se->bucket_id]. 1721 * 1722 * The following check here eliminates the possibility of such race. 1723 */ 1724 if (unlikely(!uc_se->active)) 1725 return; 1726 1727 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1728 1729 WARN_ON_ONCE(!bucket->tasks); 1730 if (likely(bucket->tasks)) 1731 bucket->tasks--; 1732 1733 uc_se->active = false; 1734 1735 /* 1736 * Keep "local max aggregation" simple and accept to (possibly) 1737 * overboost some RUNNABLE tasks in the same bucket. 1738 * The rq clamp bucket value is reset to its base value whenever 1739 * there are no more RUNNABLE tasks refcounting it. 1740 */ 1741 if (likely(bucket->tasks)) 1742 return; 1743 1744 rq_clamp = uclamp_rq_get(rq, clamp_id); 1745 /* 1746 * Defensive programming: this should never happen. If it happens, 1747 * e.g. due to future modification, warn and fix up the expected value. 1748 */ 1749 WARN_ON_ONCE(bucket->value > rq_clamp); 1750 if (bucket->value >= rq_clamp) { 1751 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1752 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1753 } 1754 } 1755 1756 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) 1757 { 1758 enum uclamp_id clamp_id; 1759 1760 /* 1761 * Avoid any overhead until uclamp is actually used by the userspace. 1762 * 1763 * The condition is constructed such that a NOP is generated when 1764 * sched_uclamp_used is disabled. 1765 */ 1766 if (!uclamp_is_used()) 1767 return; 1768 1769 if (unlikely(!p->sched_class->uclamp_enabled)) 1770 return; 1771 1772 /* Only inc the delayed task which being woken up. */ 1773 if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED)) 1774 return; 1775 1776 for_each_clamp_id(clamp_id) 1777 uclamp_rq_inc_id(rq, p, clamp_id); 1778 1779 /* Reset clamp idle holding when there is one RUNNABLE task */ 1780 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1781 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1782 } 1783 1784 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1785 { 1786 enum uclamp_id clamp_id; 1787 1788 /* 1789 * Avoid any overhead until uclamp is actually used by the userspace. 1790 * 1791 * The condition is constructed such that a NOP is generated when 1792 * sched_uclamp_used is disabled. 1793 */ 1794 if (!uclamp_is_used()) 1795 return; 1796 1797 if (unlikely(!p->sched_class->uclamp_enabled)) 1798 return; 1799 1800 if (p->se.sched_delayed) 1801 return; 1802 1803 for_each_clamp_id(clamp_id) 1804 uclamp_rq_dec_id(rq, p, clamp_id); 1805 } 1806 1807 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1808 enum uclamp_id clamp_id) 1809 { 1810 if (!p->uclamp[clamp_id].active) 1811 return; 1812 1813 uclamp_rq_dec_id(rq, p, clamp_id); 1814 uclamp_rq_inc_id(rq, p, clamp_id); 1815 1816 /* 1817 * Make sure to clear the idle flag if we've transiently reached 0 1818 * active tasks on rq. 1819 */ 1820 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1821 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1822 } 1823 1824 static inline void 1825 uclamp_update_active(struct task_struct *p) 1826 { 1827 enum uclamp_id clamp_id; 1828 struct rq_flags rf; 1829 struct rq *rq; 1830 1831 /* 1832 * Lock the task and the rq where the task is (or was) queued. 1833 * 1834 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1835 * price to pay to safely serialize util_{min,max} updates with 1836 * enqueues, dequeues and migration operations. 1837 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1838 */ 1839 rq = task_rq_lock(p, &rf); 1840 1841 /* 1842 * Setting the clamp bucket is serialized by task_rq_lock(). 1843 * If the task is not yet RUNNABLE and its task_struct is not 1844 * affecting a valid clamp bucket, the next time it's enqueued, 1845 * it will already see the updated clamp bucket value. 1846 */ 1847 for_each_clamp_id(clamp_id) 1848 uclamp_rq_reinc_id(rq, p, clamp_id); 1849 1850 task_rq_unlock(rq, p, &rf); 1851 } 1852 1853 #ifdef CONFIG_UCLAMP_TASK_GROUP 1854 static inline void 1855 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1856 { 1857 struct css_task_iter it; 1858 struct task_struct *p; 1859 1860 css_task_iter_start(css, 0, &it); 1861 while ((p = css_task_iter_next(&it))) 1862 uclamp_update_active(p); 1863 css_task_iter_end(&it); 1864 } 1865 1866 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1867 #endif 1868 1869 #ifdef CONFIG_SYSCTL 1870 #ifdef CONFIG_UCLAMP_TASK_GROUP 1871 static void uclamp_update_root_tg(void) 1872 { 1873 struct task_group *tg = &root_task_group; 1874 1875 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1876 sysctl_sched_uclamp_util_min, false); 1877 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1878 sysctl_sched_uclamp_util_max, false); 1879 1880 guard(rcu)(); 1881 cpu_util_update_eff(&root_task_group.css); 1882 } 1883 #else 1884 static void uclamp_update_root_tg(void) { } 1885 #endif 1886 1887 static void uclamp_sync_util_min_rt_default(void) 1888 { 1889 struct task_struct *g, *p; 1890 1891 /* 1892 * copy_process() sysctl_uclamp 1893 * uclamp_min_rt = X; 1894 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1895 * // link thread smp_mb__after_spinlock() 1896 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1897 * sched_post_fork() for_each_process_thread() 1898 * __uclamp_sync_rt() __uclamp_sync_rt() 1899 * 1900 * Ensures that either sched_post_fork() will observe the new 1901 * uclamp_min_rt or for_each_process_thread() will observe the new 1902 * task. 1903 */ 1904 read_lock(&tasklist_lock); 1905 smp_mb__after_spinlock(); 1906 read_unlock(&tasklist_lock); 1907 1908 guard(rcu)(); 1909 for_each_process_thread(g, p) 1910 uclamp_update_util_min_rt_default(p); 1911 } 1912 1913 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1914 void *buffer, size_t *lenp, loff_t *ppos) 1915 { 1916 bool update_root_tg = false; 1917 int old_min, old_max, old_min_rt; 1918 int result; 1919 1920 guard(mutex)(&uclamp_mutex); 1921 1922 old_min = sysctl_sched_uclamp_util_min; 1923 old_max = sysctl_sched_uclamp_util_max; 1924 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1925 1926 result = proc_dointvec(table, write, buffer, lenp, ppos); 1927 if (result) 1928 goto undo; 1929 if (!write) 1930 return 0; 1931 1932 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1933 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1934 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1935 1936 result = -EINVAL; 1937 goto undo; 1938 } 1939 1940 if (old_min != sysctl_sched_uclamp_util_min) { 1941 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1942 sysctl_sched_uclamp_util_min, false); 1943 update_root_tg = true; 1944 } 1945 if (old_max != sysctl_sched_uclamp_util_max) { 1946 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1947 sysctl_sched_uclamp_util_max, false); 1948 update_root_tg = true; 1949 } 1950 1951 if (update_root_tg) { 1952 sched_uclamp_enable(); 1953 uclamp_update_root_tg(); 1954 } 1955 1956 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1957 sched_uclamp_enable(); 1958 uclamp_sync_util_min_rt_default(); 1959 } 1960 1961 /* 1962 * We update all RUNNABLE tasks only when task groups are in use. 1963 * Otherwise, keep it simple and do just a lazy update at each next 1964 * task enqueue time. 1965 */ 1966 return 0; 1967 1968 undo: 1969 sysctl_sched_uclamp_util_min = old_min; 1970 sysctl_sched_uclamp_util_max = old_max; 1971 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1972 return result; 1973 } 1974 #endif 1975 1976 static void uclamp_fork(struct task_struct *p) 1977 { 1978 enum uclamp_id clamp_id; 1979 1980 /* 1981 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1982 * as the task is still at its early fork stages. 1983 */ 1984 for_each_clamp_id(clamp_id) 1985 p->uclamp[clamp_id].active = false; 1986 1987 if (likely(!p->sched_reset_on_fork)) 1988 return; 1989 1990 for_each_clamp_id(clamp_id) { 1991 uclamp_se_set(&p->uclamp_req[clamp_id], 1992 uclamp_none(clamp_id), false); 1993 } 1994 } 1995 1996 static void uclamp_post_fork(struct task_struct *p) 1997 { 1998 uclamp_update_util_min_rt_default(p); 1999 } 2000 2001 static void __init init_uclamp_rq(struct rq *rq) 2002 { 2003 enum uclamp_id clamp_id; 2004 struct uclamp_rq *uc_rq = rq->uclamp; 2005 2006 for_each_clamp_id(clamp_id) { 2007 uc_rq[clamp_id] = (struct uclamp_rq) { 2008 .value = uclamp_none(clamp_id) 2009 }; 2010 } 2011 2012 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2013 } 2014 2015 static void __init init_uclamp(void) 2016 { 2017 struct uclamp_se uc_max = {}; 2018 enum uclamp_id clamp_id; 2019 int cpu; 2020 2021 for_each_possible_cpu(cpu) 2022 init_uclamp_rq(cpu_rq(cpu)); 2023 2024 for_each_clamp_id(clamp_id) { 2025 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2026 uclamp_none(clamp_id), false); 2027 } 2028 2029 /* System defaults allow max clamp values for both indexes */ 2030 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2031 for_each_clamp_id(clamp_id) { 2032 uclamp_default[clamp_id] = uc_max; 2033 #ifdef CONFIG_UCLAMP_TASK_GROUP 2034 root_task_group.uclamp_req[clamp_id] = uc_max; 2035 root_task_group.uclamp[clamp_id] = uc_max; 2036 #endif 2037 } 2038 } 2039 2040 #else /* !CONFIG_UCLAMP_TASK */ 2041 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { } 2042 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2043 static inline void uclamp_fork(struct task_struct *p) { } 2044 static inline void uclamp_post_fork(struct task_struct *p) { } 2045 static inline void init_uclamp(void) { } 2046 #endif /* CONFIG_UCLAMP_TASK */ 2047 2048 bool sched_task_on_rq(struct task_struct *p) 2049 { 2050 return task_on_rq_queued(p); 2051 } 2052 2053 unsigned long get_wchan(struct task_struct *p) 2054 { 2055 unsigned long ip = 0; 2056 unsigned int state; 2057 2058 if (!p || p == current) 2059 return 0; 2060 2061 /* Only get wchan if task is blocked and we can keep it that way. */ 2062 raw_spin_lock_irq(&p->pi_lock); 2063 state = READ_ONCE(p->__state); 2064 smp_rmb(); /* see try_to_wake_up() */ 2065 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2066 ip = __get_wchan(p); 2067 raw_spin_unlock_irq(&p->pi_lock); 2068 2069 return ip; 2070 } 2071 2072 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2073 { 2074 if (!(flags & ENQUEUE_NOCLOCK)) 2075 update_rq_clock(rq); 2076 2077 /* 2078 * Can be before ->enqueue_task() because uclamp considers the 2079 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared 2080 * in ->enqueue_task(). 2081 */ 2082 uclamp_rq_inc(rq, p, flags); 2083 2084 p->sched_class->enqueue_task(rq, p, flags); 2085 2086 psi_enqueue(p, flags); 2087 2088 if (!(flags & ENQUEUE_RESTORE)) 2089 sched_info_enqueue(rq, p); 2090 2091 if (sched_core_enabled(rq)) 2092 sched_core_enqueue(rq, p); 2093 } 2094 2095 /* 2096 * Must only return false when DEQUEUE_SLEEP. 2097 */ 2098 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2099 { 2100 if (sched_core_enabled(rq)) 2101 sched_core_dequeue(rq, p, flags); 2102 2103 if (!(flags & DEQUEUE_NOCLOCK)) 2104 update_rq_clock(rq); 2105 2106 if (!(flags & DEQUEUE_SAVE)) 2107 sched_info_dequeue(rq, p); 2108 2109 psi_dequeue(p, flags); 2110 2111 /* 2112 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2113 * and mark the task ->sched_delayed. 2114 */ 2115 uclamp_rq_dec(rq, p); 2116 return p->sched_class->dequeue_task(rq, p, flags); 2117 } 2118 2119 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2120 { 2121 if (task_on_rq_migrating(p)) 2122 flags |= ENQUEUE_MIGRATED; 2123 if (flags & ENQUEUE_MIGRATED) 2124 sched_mm_cid_migrate_to(rq, p); 2125 2126 enqueue_task(rq, p, flags); 2127 2128 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2129 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2130 } 2131 2132 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2133 { 2134 WARN_ON_ONCE(flags & DEQUEUE_SLEEP); 2135 2136 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2137 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2138 2139 /* 2140 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2141 * dequeue_task() and cleared *after* enqueue_task(). 2142 */ 2143 2144 dequeue_task(rq, p, flags); 2145 } 2146 2147 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2148 { 2149 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2150 __block_task(rq, p); 2151 } 2152 2153 /** 2154 * task_curr - is this task currently executing on a CPU? 2155 * @p: the task in question. 2156 * 2157 * Return: 1 if the task is currently executing. 0 otherwise. 2158 */ 2159 inline int task_curr(const struct task_struct *p) 2160 { 2161 return cpu_curr(task_cpu(p)) == p; 2162 } 2163 2164 /* 2165 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2166 * mess with locking. 2167 */ 2168 void check_class_changing(struct rq *rq, struct task_struct *p, 2169 const struct sched_class *prev_class) 2170 { 2171 if (prev_class != p->sched_class && p->sched_class->switching_to) 2172 p->sched_class->switching_to(rq, p); 2173 } 2174 2175 /* 2176 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2177 * use the balance_callback list if you want balancing. 2178 * 2179 * this means any call to check_class_changed() must be followed by a call to 2180 * balance_callback(). 2181 */ 2182 void check_class_changed(struct rq *rq, struct task_struct *p, 2183 const struct sched_class *prev_class, 2184 int oldprio) 2185 { 2186 if (prev_class != p->sched_class) { 2187 if (prev_class->switched_from) 2188 prev_class->switched_from(rq, p); 2189 2190 p->sched_class->switched_to(rq, p); 2191 } else if (oldprio != p->prio || dl_task(p)) 2192 p->sched_class->prio_changed(rq, p, oldprio); 2193 } 2194 2195 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2196 { 2197 struct task_struct *donor = rq->donor; 2198 2199 if (p->sched_class == donor->sched_class) 2200 donor->sched_class->wakeup_preempt(rq, p, flags); 2201 else if (sched_class_above(p->sched_class, donor->sched_class)) 2202 resched_curr(rq); 2203 2204 /* 2205 * A queue event has occurred, and we're going to schedule. In 2206 * this case, we can save a useless back to back clock update. 2207 */ 2208 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2209 rq_clock_skip_update(rq); 2210 } 2211 2212 static __always_inline 2213 int __task_state_match(struct task_struct *p, unsigned int state) 2214 { 2215 if (READ_ONCE(p->__state) & state) 2216 return 1; 2217 2218 if (READ_ONCE(p->saved_state) & state) 2219 return -1; 2220 2221 return 0; 2222 } 2223 2224 static __always_inline 2225 int task_state_match(struct task_struct *p, unsigned int state) 2226 { 2227 /* 2228 * Serialize against current_save_and_set_rtlock_wait_state(), 2229 * current_restore_rtlock_saved_state(), and __refrigerator(). 2230 */ 2231 guard(raw_spinlock_irq)(&p->pi_lock); 2232 return __task_state_match(p, state); 2233 } 2234 2235 /* 2236 * wait_task_inactive - wait for a thread to unschedule. 2237 * 2238 * Wait for the thread to block in any of the states set in @match_state. 2239 * If it changes, i.e. @p might have woken up, then return zero. When we 2240 * succeed in waiting for @p to be off its CPU, we return a positive number 2241 * (its total switch count). If a second call a short while later returns the 2242 * same number, the caller can be sure that @p has remained unscheduled the 2243 * whole time. 2244 * 2245 * The caller must ensure that the task *will* unschedule sometime soon, 2246 * else this function might spin for a *long* time. This function can't 2247 * be called with interrupts off, or it may introduce deadlock with 2248 * smp_call_function() if an IPI is sent by the same process we are 2249 * waiting to become inactive. 2250 */ 2251 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2252 { 2253 int running, queued, match; 2254 struct rq_flags rf; 2255 unsigned long ncsw; 2256 struct rq *rq; 2257 2258 for (;;) { 2259 /* 2260 * We do the initial early heuristics without holding 2261 * any task-queue locks at all. We'll only try to get 2262 * the runqueue lock when things look like they will 2263 * work out! 2264 */ 2265 rq = task_rq(p); 2266 2267 /* 2268 * If the task is actively running on another CPU 2269 * still, just relax and busy-wait without holding 2270 * any locks. 2271 * 2272 * NOTE! Since we don't hold any locks, it's not 2273 * even sure that "rq" stays as the right runqueue! 2274 * But we don't care, since "task_on_cpu()" will 2275 * return false if the runqueue has changed and p 2276 * is actually now running somewhere else! 2277 */ 2278 while (task_on_cpu(rq, p)) { 2279 if (!task_state_match(p, match_state)) 2280 return 0; 2281 cpu_relax(); 2282 } 2283 2284 /* 2285 * Ok, time to look more closely! We need the rq 2286 * lock now, to be *sure*. If we're wrong, we'll 2287 * just go back and repeat. 2288 */ 2289 rq = task_rq_lock(p, &rf); 2290 /* 2291 * If task is sched_delayed, force dequeue it, to avoid always 2292 * hitting the tick timeout in the queued case 2293 */ 2294 if (p->se.sched_delayed) 2295 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 2296 trace_sched_wait_task(p); 2297 running = task_on_cpu(rq, p); 2298 queued = task_on_rq_queued(p); 2299 ncsw = 0; 2300 if ((match = __task_state_match(p, match_state))) { 2301 /* 2302 * When matching on p->saved_state, consider this task 2303 * still queued so it will wait. 2304 */ 2305 if (match < 0) 2306 queued = 1; 2307 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2308 } 2309 task_rq_unlock(rq, p, &rf); 2310 2311 /* 2312 * If it changed from the expected state, bail out now. 2313 */ 2314 if (unlikely(!ncsw)) 2315 break; 2316 2317 /* 2318 * Was it really running after all now that we 2319 * checked with the proper locks actually held? 2320 * 2321 * Oops. Go back and try again.. 2322 */ 2323 if (unlikely(running)) { 2324 cpu_relax(); 2325 continue; 2326 } 2327 2328 /* 2329 * It's not enough that it's not actively running, 2330 * it must be off the runqueue _entirely_, and not 2331 * preempted! 2332 * 2333 * So if it was still runnable (but just not actively 2334 * running right now), it's preempted, and we should 2335 * yield - it could be a while. 2336 */ 2337 if (unlikely(queued)) { 2338 ktime_t to = NSEC_PER_SEC / HZ; 2339 2340 set_current_state(TASK_UNINTERRUPTIBLE); 2341 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2342 continue; 2343 } 2344 2345 /* 2346 * Ahh, all good. It wasn't running, and it wasn't 2347 * runnable, which means that it will never become 2348 * running in the future either. We're all done! 2349 */ 2350 break; 2351 } 2352 2353 return ncsw; 2354 } 2355 2356 #ifdef CONFIG_SMP 2357 2358 static void 2359 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2360 2361 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2362 { 2363 struct affinity_context ac = { 2364 .new_mask = cpumask_of(rq->cpu), 2365 .flags = SCA_MIGRATE_DISABLE, 2366 }; 2367 2368 if (likely(!p->migration_disabled)) 2369 return; 2370 2371 if (p->cpus_ptr != &p->cpus_mask) 2372 return; 2373 2374 /* 2375 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2376 */ 2377 __do_set_cpus_allowed(p, &ac); 2378 } 2379 2380 void migrate_disable(void) 2381 { 2382 struct task_struct *p = current; 2383 2384 if (p->migration_disabled) { 2385 #ifdef CONFIG_DEBUG_PREEMPT 2386 /* 2387 *Warn about overflow half-way through the range. 2388 */ 2389 WARN_ON_ONCE((s16)p->migration_disabled < 0); 2390 #endif 2391 p->migration_disabled++; 2392 return; 2393 } 2394 2395 guard(preempt)(); 2396 this_rq()->nr_pinned++; 2397 p->migration_disabled = 1; 2398 } 2399 EXPORT_SYMBOL_GPL(migrate_disable); 2400 2401 void migrate_enable(void) 2402 { 2403 struct task_struct *p = current; 2404 struct affinity_context ac = { 2405 .new_mask = &p->cpus_mask, 2406 .flags = SCA_MIGRATE_ENABLE, 2407 }; 2408 2409 #ifdef CONFIG_DEBUG_PREEMPT 2410 /* 2411 * Check both overflow from migrate_disable() and superfluous 2412 * migrate_enable(). 2413 */ 2414 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) 2415 return; 2416 #endif 2417 2418 if (p->migration_disabled > 1) { 2419 p->migration_disabled--; 2420 return; 2421 } 2422 2423 /* 2424 * Ensure stop_task runs either before or after this, and that 2425 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2426 */ 2427 guard(preempt)(); 2428 if (p->cpus_ptr != &p->cpus_mask) 2429 __set_cpus_allowed_ptr(p, &ac); 2430 /* 2431 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2432 * regular cpus_mask, otherwise things that race (eg. 2433 * select_fallback_rq) get confused. 2434 */ 2435 barrier(); 2436 p->migration_disabled = 0; 2437 this_rq()->nr_pinned--; 2438 } 2439 EXPORT_SYMBOL_GPL(migrate_enable); 2440 2441 static inline bool rq_has_pinned_tasks(struct rq *rq) 2442 { 2443 return rq->nr_pinned; 2444 } 2445 2446 /* 2447 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2448 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2449 */ 2450 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2451 { 2452 /* When not in the task's cpumask, no point in looking further. */ 2453 if (!task_allowed_on_cpu(p, cpu)) 2454 return false; 2455 2456 /* migrate_disabled() must be allowed to finish. */ 2457 if (is_migration_disabled(p)) 2458 return cpu_online(cpu); 2459 2460 /* Non kernel threads are not allowed during either online or offline. */ 2461 if (!(p->flags & PF_KTHREAD)) 2462 return cpu_active(cpu); 2463 2464 /* KTHREAD_IS_PER_CPU is always allowed. */ 2465 if (kthread_is_per_cpu(p)) 2466 return cpu_online(cpu); 2467 2468 /* Regular kernel threads don't get to stay during offline. */ 2469 if (cpu_dying(cpu)) 2470 return false; 2471 2472 /* But are allowed during online. */ 2473 return cpu_online(cpu); 2474 } 2475 2476 /* 2477 * This is how migration works: 2478 * 2479 * 1) we invoke migration_cpu_stop() on the target CPU using 2480 * stop_one_cpu(). 2481 * 2) stopper starts to run (implicitly forcing the migrated thread 2482 * off the CPU) 2483 * 3) it checks whether the migrated task is still in the wrong runqueue. 2484 * 4) if it's in the wrong runqueue then the migration thread removes 2485 * it and puts it into the right queue. 2486 * 5) stopper completes and stop_one_cpu() returns and the migration 2487 * is done. 2488 */ 2489 2490 /* 2491 * move_queued_task - move a queued task to new rq. 2492 * 2493 * Returns (locked) new rq. Old rq's lock is released. 2494 */ 2495 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2496 struct task_struct *p, int new_cpu) 2497 { 2498 lockdep_assert_rq_held(rq); 2499 2500 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2501 set_task_cpu(p, new_cpu); 2502 rq_unlock(rq, rf); 2503 2504 rq = cpu_rq(new_cpu); 2505 2506 rq_lock(rq, rf); 2507 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2508 activate_task(rq, p, 0); 2509 wakeup_preempt(rq, p, 0); 2510 2511 return rq; 2512 } 2513 2514 struct migration_arg { 2515 struct task_struct *task; 2516 int dest_cpu; 2517 struct set_affinity_pending *pending; 2518 }; 2519 2520 /* 2521 * @refs: number of wait_for_completion() 2522 * @stop_pending: is @stop_work in use 2523 */ 2524 struct set_affinity_pending { 2525 refcount_t refs; 2526 unsigned int stop_pending; 2527 struct completion done; 2528 struct cpu_stop_work stop_work; 2529 struct migration_arg arg; 2530 }; 2531 2532 /* 2533 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2534 * this because either it can't run here any more (set_cpus_allowed() 2535 * away from this CPU, or CPU going down), or because we're 2536 * attempting to rebalance this task on exec (sched_exec). 2537 * 2538 * So we race with normal scheduler movements, but that's OK, as long 2539 * as the task is no longer on this CPU. 2540 */ 2541 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2542 struct task_struct *p, int dest_cpu) 2543 { 2544 /* Affinity changed (again). */ 2545 if (!is_cpu_allowed(p, dest_cpu)) 2546 return rq; 2547 2548 rq = move_queued_task(rq, rf, p, dest_cpu); 2549 2550 return rq; 2551 } 2552 2553 /* 2554 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2555 * and performs thread migration by bumping thread off CPU then 2556 * 'pushing' onto another runqueue. 2557 */ 2558 static int migration_cpu_stop(void *data) 2559 { 2560 struct migration_arg *arg = data; 2561 struct set_affinity_pending *pending = arg->pending; 2562 struct task_struct *p = arg->task; 2563 struct rq *rq = this_rq(); 2564 bool complete = false; 2565 struct rq_flags rf; 2566 2567 /* 2568 * The original target CPU might have gone down and we might 2569 * be on another CPU but it doesn't matter. 2570 */ 2571 local_irq_save(rf.flags); 2572 /* 2573 * We need to explicitly wake pending tasks before running 2574 * __migrate_task() such that we will not miss enforcing cpus_ptr 2575 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2576 */ 2577 flush_smp_call_function_queue(); 2578 2579 raw_spin_lock(&p->pi_lock); 2580 rq_lock(rq, &rf); 2581 2582 /* 2583 * If we were passed a pending, then ->stop_pending was set, thus 2584 * p->migration_pending must have remained stable. 2585 */ 2586 WARN_ON_ONCE(pending && pending != p->migration_pending); 2587 2588 /* 2589 * If task_rq(p) != rq, it cannot be migrated here, because we're 2590 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2591 * we're holding p->pi_lock. 2592 */ 2593 if (task_rq(p) == rq) { 2594 if (is_migration_disabled(p)) 2595 goto out; 2596 2597 if (pending) { 2598 p->migration_pending = NULL; 2599 complete = true; 2600 2601 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2602 goto out; 2603 } 2604 2605 if (task_on_rq_queued(p)) { 2606 update_rq_clock(rq); 2607 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2608 } else { 2609 p->wake_cpu = arg->dest_cpu; 2610 } 2611 2612 /* 2613 * XXX __migrate_task() can fail, at which point we might end 2614 * up running on a dodgy CPU, AFAICT this can only happen 2615 * during CPU hotplug, at which point we'll get pushed out 2616 * anyway, so it's probably not a big deal. 2617 */ 2618 2619 } else if (pending) { 2620 /* 2621 * This happens when we get migrated between migrate_enable()'s 2622 * preempt_enable() and scheduling the stopper task. At that 2623 * point we're a regular task again and not current anymore. 2624 * 2625 * A !PREEMPT kernel has a giant hole here, which makes it far 2626 * more likely. 2627 */ 2628 2629 /* 2630 * The task moved before the stopper got to run. We're holding 2631 * ->pi_lock, so the allowed mask is stable - if it got 2632 * somewhere allowed, we're done. 2633 */ 2634 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2635 p->migration_pending = NULL; 2636 complete = true; 2637 goto out; 2638 } 2639 2640 /* 2641 * When migrate_enable() hits a rq mis-match we can't reliably 2642 * determine is_migration_disabled() and so have to chase after 2643 * it. 2644 */ 2645 WARN_ON_ONCE(!pending->stop_pending); 2646 preempt_disable(); 2647 task_rq_unlock(rq, p, &rf); 2648 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2649 &pending->arg, &pending->stop_work); 2650 preempt_enable(); 2651 return 0; 2652 } 2653 out: 2654 if (pending) 2655 pending->stop_pending = false; 2656 task_rq_unlock(rq, p, &rf); 2657 2658 if (complete) 2659 complete_all(&pending->done); 2660 2661 return 0; 2662 } 2663 2664 int push_cpu_stop(void *arg) 2665 { 2666 struct rq *lowest_rq = NULL, *rq = this_rq(); 2667 struct task_struct *p = arg; 2668 2669 raw_spin_lock_irq(&p->pi_lock); 2670 raw_spin_rq_lock(rq); 2671 2672 if (task_rq(p) != rq) 2673 goto out_unlock; 2674 2675 if (is_migration_disabled(p)) { 2676 p->migration_flags |= MDF_PUSH; 2677 goto out_unlock; 2678 } 2679 2680 p->migration_flags &= ~MDF_PUSH; 2681 2682 if (p->sched_class->find_lock_rq) 2683 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2684 2685 if (!lowest_rq) 2686 goto out_unlock; 2687 2688 // XXX validate p is still the highest prio task 2689 if (task_rq(p) == rq) { 2690 move_queued_task_locked(rq, lowest_rq, p); 2691 resched_curr(lowest_rq); 2692 } 2693 2694 double_unlock_balance(rq, lowest_rq); 2695 2696 out_unlock: 2697 rq->push_busy = false; 2698 raw_spin_rq_unlock(rq); 2699 raw_spin_unlock_irq(&p->pi_lock); 2700 2701 put_task_struct(p); 2702 return 0; 2703 } 2704 2705 /* 2706 * sched_class::set_cpus_allowed must do the below, but is not required to 2707 * actually call this function. 2708 */ 2709 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2710 { 2711 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2712 p->cpus_ptr = ctx->new_mask; 2713 return; 2714 } 2715 2716 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2717 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2718 2719 /* 2720 * Swap in a new user_cpus_ptr if SCA_USER flag set 2721 */ 2722 if (ctx->flags & SCA_USER) 2723 swap(p->user_cpus_ptr, ctx->user_mask); 2724 } 2725 2726 static void 2727 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2728 { 2729 struct rq *rq = task_rq(p); 2730 bool queued, running; 2731 2732 /* 2733 * This here violates the locking rules for affinity, since we're only 2734 * supposed to change these variables while holding both rq->lock and 2735 * p->pi_lock. 2736 * 2737 * HOWEVER, it magically works, because ttwu() is the only code that 2738 * accesses these variables under p->pi_lock and only does so after 2739 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2740 * before finish_task(). 2741 * 2742 * XXX do further audits, this smells like something putrid. 2743 */ 2744 if (ctx->flags & SCA_MIGRATE_DISABLE) 2745 WARN_ON_ONCE(!p->on_cpu); 2746 else 2747 lockdep_assert_held(&p->pi_lock); 2748 2749 queued = task_on_rq_queued(p); 2750 running = task_current_donor(rq, p); 2751 2752 if (queued) { 2753 /* 2754 * Because __kthread_bind() calls this on blocked tasks without 2755 * holding rq->lock. 2756 */ 2757 lockdep_assert_rq_held(rq); 2758 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2759 } 2760 if (running) 2761 put_prev_task(rq, p); 2762 2763 p->sched_class->set_cpus_allowed(p, ctx); 2764 mm_set_cpus_allowed(p->mm, ctx->new_mask); 2765 2766 if (queued) 2767 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2768 if (running) 2769 set_next_task(rq, p); 2770 } 2771 2772 /* 2773 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2774 * affinity (if any) should be destroyed too. 2775 */ 2776 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2777 { 2778 struct affinity_context ac = { 2779 .new_mask = new_mask, 2780 .user_mask = NULL, 2781 .flags = SCA_USER, /* clear the user requested mask */ 2782 }; 2783 union cpumask_rcuhead { 2784 cpumask_t cpumask; 2785 struct rcu_head rcu; 2786 }; 2787 2788 __do_set_cpus_allowed(p, &ac); 2789 2790 /* 2791 * Because this is called with p->pi_lock held, it is not possible 2792 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2793 * kfree_rcu(). 2794 */ 2795 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2796 } 2797 2798 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2799 int node) 2800 { 2801 cpumask_t *user_mask; 2802 unsigned long flags; 2803 2804 /* 2805 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2806 * may differ by now due to racing. 2807 */ 2808 dst->user_cpus_ptr = NULL; 2809 2810 /* 2811 * This check is racy and losing the race is a valid situation. 2812 * It is not worth the extra overhead of taking the pi_lock on 2813 * every fork/clone. 2814 */ 2815 if (data_race(!src->user_cpus_ptr)) 2816 return 0; 2817 2818 user_mask = alloc_user_cpus_ptr(node); 2819 if (!user_mask) 2820 return -ENOMEM; 2821 2822 /* 2823 * Use pi_lock to protect content of user_cpus_ptr 2824 * 2825 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2826 * do_set_cpus_allowed(). 2827 */ 2828 raw_spin_lock_irqsave(&src->pi_lock, flags); 2829 if (src->user_cpus_ptr) { 2830 swap(dst->user_cpus_ptr, user_mask); 2831 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2832 } 2833 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2834 2835 if (unlikely(user_mask)) 2836 kfree(user_mask); 2837 2838 return 0; 2839 } 2840 2841 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2842 { 2843 struct cpumask *user_mask = NULL; 2844 2845 swap(p->user_cpus_ptr, user_mask); 2846 2847 return user_mask; 2848 } 2849 2850 void release_user_cpus_ptr(struct task_struct *p) 2851 { 2852 kfree(clear_user_cpus_ptr(p)); 2853 } 2854 2855 /* 2856 * This function is wildly self concurrent; here be dragons. 2857 * 2858 * 2859 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2860 * designated task is enqueued on an allowed CPU. If that task is currently 2861 * running, we have to kick it out using the CPU stopper. 2862 * 2863 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2864 * Consider: 2865 * 2866 * Initial conditions: P0->cpus_mask = [0, 1] 2867 * 2868 * P0@CPU0 P1 2869 * 2870 * migrate_disable(); 2871 * <preempted> 2872 * set_cpus_allowed_ptr(P0, [1]); 2873 * 2874 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2875 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2876 * This means we need the following scheme: 2877 * 2878 * P0@CPU0 P1 2879 * 2880 * migrate_disable(); 2881 * <preempted> 2882 * set_cpus_allowed_ptr(P0, [1]); 2883 * <blocks> 2884 * <resumes> 2885 * migrate_enable(); 2886 * __set_cpus_allowed_ptr(); 2887 * <wakes local stopper> 2888 * `--> <woken on migration completion> 2889 * 2890 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2891 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2892 * task p are serialized by p->pi_lock, which we can leverage: the one that 2893 * should come into effect at the end of the Migrate-Disable region is the last 2894 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2895 * but we still need to properly signal those waiting tasks at the appropriate 2896 * moment. 2897 * 2898 * This is implemented using struct set_affinity_pending. The first 2899 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2900 * setup an instance of that struct and install it on the targeted task_struct. 2901 * Any and all further callers will reuse that instance. Those then wait for 2902 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2903 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2904 * 2905 * 2906 * (1) In the cases covered above. There is one more where the completion is 2907 * signaled within affine_move_task() itself: when a subsequent affinity request 2908 * occurs after the stopper bailed out due to the targeted task still being 2909 * Migrate-Disable. Consider: 2910 * 2911 * Initial conditions: P0->cpus_mask = [0, 1] 2912 * 2913 * CPU0 P1 P2 2914 * <P0> 2915 * migrate_disable(); 2916 * <preempted> 2917 * set_cpus_allowed_ptr(P0, [1]); 2918 * <blocks> 2919 * <migration/0> 2920 * migration_cpu_stop() 2921 * is_migration_disabled() 2922 * <bails> 2923 * set_cpus_allowed_ptr(P0, [0, 1]); 2924 * <signal completion> 2925 * <awakes> 2926 * 2927 * Note that the above is safe vs a concurrent migrate_enable(), as any 2928 * pending affinity completion is preceded by an uninstallation of 2929 * p->migration_pending done with p->pi_lock held. 2930 */ 2931 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2932 int dest_cpu, unsigned int flags) 2933 __releases(rq->lock) 2934 __releases(p->pi_lock) 2935 { 2936 struct set_affinity_pending my_pending = { }, *pending = NULL; 2937 bool stop_pending, complete = false; 2938 2939 /* Can the task run on the task's current CPU? If so, we're done */ 2940 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2941 struct task_struct *push_task = NULL; 2942 2943 if ((flags & SCA_MIGRATE_ENABLE) && 2944 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2945 rq->push_busy = true; 2946 push_task = get_task_struct(p); 2947 } 2948 2949 /* 2950 * If there are pending waiters, but no pending stop_work, 2951 * then complete now. 2952 */ 2953 pending = p->migration_pending; 2954 if (pending && !pending->stop_pending) { 2955 p->migration_pending = NULL; 2956 complete = true; 2957 } 2958 2959 preempt_disable(); 2960 task_rq_unlock(rq, p, rf); 2961 if (push_task) { 2962 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2963 p, &rq->push_work); 2964 } 2965 preempt_enable(); 2966 2967 if (complete) 2968 complete_all(&pending->done); 2969 2970 return 0; 2971 } 2972 2973 if (!(flags & SCA_MIGRATE_ENABLE)) { 2974 /* serialized by p->pi_lock */ 2975 if (!p->migration_pending) { 2976 /* Install the request */ 2977 refcount_set(&my_pending.refs, 1); 2978 init_completion(&my_pending.done); 2979 my_pending.arg = (struct migration_arg) { 2980 .task = p, 2981 .dest_cpu = dest_cpu, 2982 .pending = &my_pending, 2983 }; 2984 2985 p->migration_pending = &my_pending; 2986 } else { 2987 pending = p->migration_pending; 2988 refcount_inc(&pending->refs); 2989 /* 2990 * Affinity has changed, but we've already installed a 2991 * pending. migration_cpu_stop() *must* see this, else 2992 * we risk a completion of the pending despite having a 2993 * task on a disallowed CPU. 2994 * 2995 * Serialized by p->pi_lock, so this is safe. 2996 */ 2997 pending->arg.dest_cpu = dest_cpu; 2998 } 2999 } 3000 pending = p->migration_pending; 3001 /* 3002 * - !MIGRATE_ENABLE: 3003 * we'll have installed a pending if there wasn't one already. 3004 * 3005 * - MIGRATE_ENABLE: 3006 * we're here because the current CPU isn't matching anymore, 3007 * the only way that can happen is because of a concurrent 3008 * set_cpus_allowed_ptr() call, which should then still be 3009 * pending completion. 3010 * 3011 * Either way, we really should have a @pending here. 3012 */ 3013 if (WARN_ON_ONCE(!pending)) { 3014 task_rq_unlock(rq, p, rf); 3015 return -EINVAL; 3016 } 3017 3018 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 3019 /* 3020 * MIGRATE_ENABLE gets here because 'p == current', but for 3021 * anything else we cannot do is_migration_disabled(), punt 3022 * and have the stopper function handle it all race-free. 3023 */ 3024 stop_pending = pending->stop_pending; 3025 if (!stop_pending) 3026 pending->stop_pending = true; 3027 3028 if (flags & SCA_MIGRATE_ENABLE) 3029 p->migration_flags &= ~MDF_PUSH; 3030 3031 preempt_disable(); 3032 task_rq_unlock(rq, p, rf); 3033 if (!stop_pending) { 3034 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 3035 &pending->arg, &pending->stop_work); 3036 } 3037 preempt_enable(); 3038 3039 if (flags & SCA_MIGRATE_ENABLE) 3040 return 0; 3041 } else { 3042 3043 if (!is_migration_disabled(p)) { 3044 if (task_on_rq_queued(p)) 3045 rq = move_queued_task(rq, rf, p, dest_cpu); 3046 3047 if (!pending->stop_pending) { 3048 p->migration_pending = NULL; 3049 complete = true; 3050 } 3051 } 3052 task_rq_unlock(rq, p, rf); 3053 3054 if (complete) 3055 complete_all(&pending->done); 3056 } 3057 3058 wait_for_completion(&pending->done); 3059 3060 if (refcount_dec_and_test(&pending->refs)) 3061 wake_up_var(&pending->refs); /* No UaF, just an address */ 3062 3063 /* 3064 * Block the original owner of &pending until all subsequent callers 3065 * have seen the completion and decremented the refcount 3066 */ 3067 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3068 3069 /* ARGH */ 3070 WARN_ON_ONCE(my_pending.stop_pending); 3071 3072 return 0; 3073 } 3074 3075 /* 3076 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3077 */ 3078 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3079 struct affinity_context *ctx, 3080 struct rq *rq, 3081 struct rq_flags *rf) 3082 __releases(rq->lock) 3083 __releases(p->pi_lock) 3084 { 3085 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3086 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3087 bool kthread = p->flags & PF_KTHREAD; 3088 unsigned int dest_cpu; 3089 int ret = 0; 3090 3091 update_rq_clock(rq); 3092 3093 if (kthread || is_migration_disabled(p)) { 3094 /* 3095 * Kernel threads are allowed on online && !active CPUs, 3096 * however, during cpu-hot-unplug, even these might get pushed 3097 * away if not KTHREAD_IS_PER_CPU. 3098 * 3099 * Specifically, migration_disabled() tasks must not fail the 3100 * cpumask_any_and_distribute() pick below, esp. so on 3101 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3102 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3103 */ 3104 cpu_valid_mask = cpu_online_mask; 3105 } 3106 3107 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3108 ret = -EINVAL; 3109 goto out; 3110 } 3111 3112 /* 3113 * Must re-check here, to close a race against __kthread_bind(), 3114 * sched_setaffinity() is not guaranteed to observe the flag. 3115 */ 3116 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3117 ret = -EINVAL; 3118 goto out; 3119 } 3120 3121 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3122 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3123 if (ctx->flags & SCA_USER) 3124 swap(p->user_cpus_ptr, ctx->user_mask); 3125 goto out; 3126 } 3127 3128 if (WARN_ON_ONCE(p == current && 3129 is_migration_disabled(p) && 3130 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3131 ret = -EBUSY; 3132 goto out; 3133 } 3134 } 3135 3136 /* 3137 * Picking a ~random cpu helps in cases where we are changing affinity 3138 * for groups of tasks (ie. cpuset), so that load balancing is not 3139 * immediately required to distribute the tasks within their new mask. 3140 */ 3141 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3142 if (dest_cpu >= nr_cpu_ids) { 3143 ret = -EINVAL; 3144 goto out; 3145 } 3146 3147 __do_set_cpus_allowed(p, ctx); 3148 3149 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3150 3151 out: 3152 task_rq_unlock(rq, p, rf); 3153 3154 return ret; 3155 } 3156 3157 /* 3158 * Change a given task's CPU affinity. Migrate the thread to a 3159 * proper CPU and schedule it away if the CPU it's executing on 3160 * is removed from the allowed bitmask. 3161 * 3162 * NOTE: the caller must have a valid reference to the task, the 3163 * task must not exit() & deallocate itself prematurely. The 3164 * call is not atomic; no spinlocks may be held. 3165 */ 3166 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3167 { 3168 struct rq_flags rf; 3169 struct rq *rq; 3170 3171 rq = task_rq_lock(p, &rf); 3172 /* 3173 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3174 * flags are set. 3175 */ 3176 if (p->user_cpus_ptr && 3177 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3178 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3179 ctx->new_mask = rq->scratch_mask; 3180 3181 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3182 } 3183 3184 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3185 { 3186 struct affinity_context ac = { 3187 .new_mask = new_mask, 3188 .flags = 0, 3189 }; 3190 3191 return __set_cpus_allowed_ptr(p, &ac); 3192 } 3193 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3194 3195 /* 3196 * Change a given task's CPU affinity to the intersection of its current 3197 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3198 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3199 * affinity or use cpu_online_mask instead. 3200 * 3201 * If the resulting mask is empty, leave the affinity unchanged and return 3202 * -EINVAL. 3203 */ 3204 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3205 struct cpumask *new_mask, 3206 const struct cpumask *subset_mask) 3207 { 3208 struct affinity_context ac = { 3209 .new_mask = new_mask, 3210 .flags = 0, 3211 }; 3212 struct rq_flags rf; 3213 struct rq *rq; 3214 int err; 3215 3216 rq = task_rq_lock(p, &rf); 3217 3218 /* 3219 * Forcefully restricting the affinity of a deadline task is 3220 * likely to cause problems, so fail and noisily override the 3221 * mask entirely. 3222 */ 3223 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3224 err = -EPERM; 3225 goto err_unlock; 3226 } 3227 3228 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3229 err = -EINVAL; 3230 goto err_unlock; 3231 } 3232 3233 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3234 3235 err_unlock: 3236 task_rq_unlock(rq, p, &rf); 3237 return err; 3238 } 3239 3240 /* 3241 * Restrict the CPU affinity of task @p so that it is a subset of 3242 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3243 * old affinity mask. If the resulting mask is empty, we warn and walk 3244 * up the cpuset hierarchy until we find a suitable mask. 3245 */ 3246 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3247 { 3248 cpumask_var_t new_mask; 3249 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3250 3251 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3252 3253 /* 3254 * __migrate_task() can fail silently in the face of concurrent 3255 * offlining of the chosen destination CPU, so take the hotplug 3256 * lock to ensure that the migration succeeds. 3257 */ 3258 cpus_read_lock(); 3259 if (!cpumask_available(new_mask)) 3260 goto out_set_mask; 3261 3262 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3263 goto out_free_mask; 3264 3265 /* 3266 * We failed to find a valid subset of the affinity mask for the 3267 * task, so override it based on its cpuset hierarchy. 3268 */ 3269 cpuset_cpus_allowed(p, new_mask); 3270 override_mask = new_mask; 3271 3272 out_set_mask: 3273 if (printk_ratelimit()) { 3274 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3275 task_pid_nr(p), p->comm, 3276 cpumask_pr_args(override_mask)); 3277 } 3278 3279 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3280 out_free_mask: 3281 cpus_read_unlock(); 3282 free_cpumask_var(new_mask); 3283 } 3284 3285 /* 3286 * Restore the affinity of a task @p which was previously restricted by a 3287 * call to force_compatible_cpus_allowed_ptr(). 3288 * 3289 * It is the caller's responsibility to serialise this with any calls to 3290 * force_compatible_cpus_allowed_ptr(@p). 3291 */ 3292 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3293 { 3294 struct affinity_context ac = { 3295 .new_mask = task_user_cpus(p), 3296 .flags = 0, 3297 }; 3298 int ret; 3299 3300 /* 3301 * Try to restore the old affinity mask with __sched_setaffinity(). 3302 * Cpuset masking will be done there too. 3303 */ 3304 ret = __sched_setaffinity(p, &ac); 3305 WARN_ON_ONCE(ret); 3306 } 3307 3308 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3309 { 3310 unsigned int state = READ_ONCE(p->__state); 3311 3312 /* 3313 * We should never call set_task_cpu() on a blocked task, 3314 * ttwu() will sort out the placement. 3315 */ 3316 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3317 3318 /* 3319 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3320 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3321 * time relying on p->on_rq. 3322 */ 3323 WARN_ON_ONCE(state == TASK_RUNNING && 3324 p->sched_class == &fair_sched_class && 3325 (p->on_rq && !task_on_rq_migrating(p))); 3326 3327 #ifdef CONFIG_LOCKDEP 3328 /* 3329 * The caller should hold either p->pi_lock or rq->lock, when changing 3330 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3331 * 3332 * sched_move_task() holds both and thus holding either pins the cgroup, 3333 * see task_group(). 3334 * 3335 * Furthermore, all task_rq users should acquire both locks, see 3336 * task_rq_lock(). 3337 */ 3338 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3339 lockdep_is_held(__rq_lockp(task_rq(p))))); 3340 #endif 3341 /* 3342 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3343 */ 3344 WARN_ON_ONCE(!cpu_online(new_cpu)); 3345 3346 WARN_ON_ONCE(is_migration_disabled(p)); 3347 3348 trace_sched_migrate_task(p, new_cpu); 3349 3350 if (task_cpu(p) != new_cpu) { 3351 if (p->sched_class->migrate_task_rq) 3352 p->sched_class->migrate_task_rq(p, new_cpu); 3353 p->se.nr_migrations++; 3354 rseq_migrate(p); 3355 sched_mm_cid_migrate_from(p); 3356 perf_event_task_migrate(p); 3357 } 3358 3359 __set_task_cpu(p, new_cpu); 3360 } 3361 3362 #ifdef CONFIG_NUMA_BALANCING 3363 static void __migrate_swap_task(struct task_struct *p, int cpu) 3364 { 3365 __schedstat_inc(p->stats.numa_task_swapped); 3366 count_vm_numa_event(NUMA_TASK_SWAP); 3367 count_memcg_event_mm(p->mm, NUMA_TASK_SWAP); 3368 3369 if (task_on_rq_queued(p)) { 3370 struct rq *src_rq, *dst_rq; 3371 struct rq_flags srf, drf; 3372 3373 src_rq = task_rq(p); 3374 dst_rq = cpu_rq(cpu); 3375 3376 rq_pin_lock(src_rq, &srf); 3377 rq_pin_lock(dst_rq, &drf); 3378 3379 move_queued_task_locked(src_rq, dst_rq, p); 3380 wakeup_preempt(dst_rq, p, 0); 3381 3382 rq_unpin_lock(dst_rq, &drf); 3383 rq_unpin_lock(src_rq, &srf); 3384 3385 } else { 3386 /* 3387 * Task isn't running anymore; make it appear like we migrated 3388 * it before it went to sleep. This means on wakeup we make the 3389 * previous CPU our target instead of where it really is. 3390 */ 3391 p->wake_cpu = cpu; 3392 } 3393 } 3394 3395 struct migration_swap_arg { 3396 struct task_struct *src_task, *dst_task; 3397 int src_cpu, dst_cpu; 3398 }; 3399 3400 static int migrate_swap_stop(void *data) 3401 { 3402 struct migration_swap_arg *arg = data; 3403 struct rq *src_rq, *dst_rq; 3404 3405 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3406 return -EAGAIN; 3407 3408 src_rq = cpu_rq(arg->src_cpu); 3409 dst_rq = cpu_rq(arg->dst_cpu); 3410 3411 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3412 guard(double_rq_lock)(src_rq, dst_rq); 3413 3414 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3415 return -EAGAIN; 3416 3417 if (task_cpu(arg->src_task) != arg->src_cpu) 3418 return -EAGAIN; 3419 3420 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3421 return -EAGAIN; 3422 3423 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3424 return -EAGAIN; 3425 3426 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3427 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3428 3429 return 0; 3430 } 3431 3432 /* 3433 * Cross migrate two tasks 3434 */ 3435 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3436 int target_cpu, int curr_cpu) 3437 { 3438 struct migration_swap_arg arg; 3439 int ret = -EINVAL; 3440 3441 arg = (struct migration_swap_arg){ 3442 .src_task = cur, 3443 .src_cpu = curr_cpu, 3444 .dst_task = p, 3445 .dst_cpu = target_cpu, 3446 }; 3447 3448 if (arg.src_cpu == arg.dst_cpu) 3449 goto out; 3450 3451 /* 3452 * These three tests are all lockless; this is OK since all of them 3453 * will be re-checked with proper locks held further down the line. 3454 */ 3455 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3456 goto out; 3457 3458 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3459 goto out; 3460 3461 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3462 goto out; 3463 3464 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3465 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3466 3467 out: 3468 return ret; 3469 } 3470 #endif /* CONFIG_NUMA_BALANCING */ 3471 3472 /*** 3473 * kick_process - kick a running thread to enter/exit the kernel 3474 * @p: the to-be-kicked thread 3475 * 3476 * Cause a process which is running on another CPU to enter 3477 * kernel-mode, without any delay. (to get signals handled.) 3478 * 3479 * NOTE: this function doesn't have to take the runqueue lock, 3480 * because all it wants to ensure is that the remote task enters 3481 * the kernel. If the IPI races and the task has been migrated 3482 * to another CPU then no harm is done and the purpose has been 3483 * achieved as well. 3484 */ 3485 void kick_process(struct task_struct *p) 3486 { 3487 guard(preempt)(); 3488 int cpu = task_cpu(p); 3489 3490 if ((cpu != smp_processor_id()) && task_curr(p)) 3491 smp_send_reschedule(cpu); 3492 } 3493 EXPORT_SYMBOL_GPL(kick_process); 3494 3495 /* 3496 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3497 * 3498 * A few notes on cpu_active vs cpu_online: 3499 * 3500 * - cpu_active must be a subset of cpu_online 3501 * 3502 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3503 * see __set_cpus_allowed_ptr(). At this point the newly online 3504 * CPU isn't yet part of the sched domains, and balancing will not 3505 * see it. 3506 * 3507 * - on CPU-down we clear cpu_active() to mask the sched domains and 3508 * avoid the load balancer to place new tasks on the to be removed 3509 * CPU. Existing tasks will remain running there and will be taken 3510 * off. 3511 * 3512 * This means that fallback selection must not select !active CPUs. 3513 * And can assume that any active CPU must be online. Conversely 3514 * select_task_rq() below may allow selection of !active CPUs in order 3515 * to satisfy the above rules. 3516 */ 3517 static int select_fallback_rq(int cpu, struct task_struct *p) 3518 { 3519 int nid = cpu_to_node(cpu); 3520 const struct cpumask *nodemask = NULL; 3521 enum { cpuset, possible, fail } state = cpuset; 3522 int dest_cpu; 3523 3524 /* 3525 * If the node that the CPU is on has been offlined, cpu_to_node() 3526 * will return -1. There is no CPU on the node, and we should 3527 * select the CPU on the other node. 3528 */ 3529 if (nid != -1) { 3530 nodemask = cpumask_of_node(nid); 3531 3532 /* Look for allowed, online CPU in same node. */ 3533 for_each_cpu(dest_cpu, nodemask) { 3534 if (is_cpu_allowed(p, dest_cpu)) 3535 return dest_cpu; 3536 } 3537 } 3538 3539 for (;;) { 3540 /* Any allowed, online CPU? */ 3541 for_each_cpu(dest_cpu, p->cpus_ptr) { 3542 if (!is_cpu_allowed(p, dest_cpu)) 3543 continue; 3544 3545 goto out; 3546 } 3547 3548 /* No more Mr. Nice Guy. */ 3549 switch (state) { 3550 case cpuset: 3551 if (cpuset_cpus_allowed_fallback(p)) { 3552 state = possible; 3553 break; 3554 } 3555 fallthrough; 3556 case possible: 3557 /* 3558 * XXX When called from select_task_rq() we only 3559 * hold p->pi_lock and again violate locking order. 3560 * 3561 * More yuck to audit. 3562 */ 3563 do_set_cpus_allowed(p, task_cpu_fallback_mask(p)); 3564 state = fail; 3565 break; 3566 case fail: 3567 BUG(); 3568 break; 3569 } 3570 } 3571 3572 out: 3573 if (state != cpuset) { 3574 /* 3575 * Don't tell them about moving exiting tasks or 3576 * kernel threads (both mm NULL), since they never 3577 * leave kernel. 3578 */ 3579 if (p->mm && printk_ratelimit()) { 3580 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3581 task_pid_nr(p), p->comm, cpu); 3582 } 3583 } 3584 3585 return dest_cpu; 3586 } 3587 3588 /* 3589 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3590 */ 3591 static inline 3592 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3593 { 3594 lockdep_assert_held(&p->pi_lock); 3595 3596 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3597 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3598 *wake_flags |= WF_RQ_SELECTED; 3599 } else { 3600 cpu = cpumask_any(p->cpus_ptr); 3601 } 3602 3603 /* 3604 * In order not to call set_task_cpu() on a blocking task we need 3605 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3606 * CPU. 3607 * 3608 * Since this is common to all placement strategies, this lives here. 3609 * 3610 * [ this allows ->select_task() to simply return task_cpu(p) and 3611 * not worry about this generic constraint ] 3612 */ 3613 if (unlikely(!is_cpu_allowed(p, cpu))) 3614 cpu = select_fallback_rq(task_cpu(p), p); 3615 3616 return cpu; 3617 } 3618 3619 void sched_set_stop_task(int cpu, struct task_struct *stop) 3620 { 3621 static struct lock_class_key stop_pi_lock; 3622 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3623 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3624 3625 if (stop) { 3626 /* 3627 * Make it appear like a SCHED_FIFO task, its something 3628 * userspace knows about and won't get confused about. 3629 * 3630 * Also, it will make PI more or less work without too 3631 * much confusion -- but then, stop work should not 3632 * rely on PI working anyway. 3633 */ 3634 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3635 3636 stop->sched_class = &stop_sched_class; 3637 3638 /* 3639 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3640 * adjust the effective priority of a task. As a result, 3641 * rt_mutex_setprio() can trigger (RT) balancing operations, 3642 * which can then trigger wakeups of the stop thread to push 3643 * around the current task. 3644 * 3645 * The stop task itself will never be part of the PI-chain, it 3646 * never blocks, therefore that ->pi_lock recursion is safe. 3647 * Tell lockdep about this by placing the stop->pi_lock in its 3648 * own class. 3649 */ 3650 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3651 } 3652 3653 cpu_rq(cpu)->stop = stop; 3654 3655 if (old_stop) { 3656 /* 3657 * Reset it back to a normal scheduling class so that 3658 * it can die in pieces. 3659 */ 3660 old_stop->sched_class = &rt_sched_class; 3661 } 3662 } 3663 3664 #else /* CONFIG_SMP */ 3665 3666 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3667 3668 static inline bool rq_has_pinned_tasks(struct rq *rq) 3669 { 3670 return false; 3671 } 3672 3673 #endif /* !CONFIG_SMP */ 3674 3675 static void 3676 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3677 { 3678 struct rq *rq; 3679 3680 if (!schedstat_enabled()) 3681 return; 3682 3683 rq = this_rq(); 3684 3685 #ifdef CONFIG_SMP 3686 if (cpu == rq->cpu) { 3687 __schedstat_inc(rq->ttwu_local); 3688 __schedstat_inc(p->stats.nr_wakeups_local); 3689 } else { 3690 struct sched_domain *sd; 3691 3692 __schedstat_inc(p->stats.nr_wakeups_remote); 3693 3694 guard(rcu)(); 3695 for_each_domain(rq->cpu, sd) { 3696 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3697 __schedstat_inc(sd->ttwu_wake_remote); 3698 break; 3699 } 3700 } 3701 } 3702 3703 if (wake_flags & WF_MIGRATED) 3704 __schedstat_inc(p->stats.nr_wakeups_migrate); 3705 #endif /* CONFIG_SMP */ 3706 3707 __schedstat_inc(rq->ttwu_count); 3708 __schedstat_inc(p->stats.nr_wakeups); 3709 3710 if (wake_flags & WF_SYNC) 3711 __schedstat_inc(p->stats.nr_wakeups_sync); 3712 } 3713 3714 /* 3715 * Mark the task runnable. 3716 */ 3717 static inline void ttwu_do_wakeup(struct task_struct *p) 3718 { 3719 WRITE_ONCE(p->__state, TASK_RUNNING); 3720 trace_sched_wakeup(p); 3721 } 3722 3723 static void 3724 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3725 struct rq_flags *rf) 3726 { 3727 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3728 3729 lockdep_assert_rq_held(rq); 3730 3731 if (p->sched_contributes_to_load) 3732 rq->nr_uninterruptible--; 3733 3734 #ifdef CONFIG_SMP 3735 if (wake_flags & WF_RQ_SELECTED) 3736 en_flags |= ENQUEUE_RQ_SELECTED; 3737 if (wake_flags & WF_MIGRATED) 3738 en_flags |= ENQUEUE_MIGRATED; 3739 else 3740 #endif 3741 if (p->in_iowait) { 3742 delayacct_blkio_end(p); 3743 atomic_dec(&task_rq(p)->nr_iowait); 3744 } 3745 3746 activate_task(rq, p, en_flags); 3747 wakeup_preempt(rq, p, wake_flags); 3748 3749 ttwu_do_wakeup(p); 3750 3751 #ifdef CONFIG_SMP 3752 if (p->sched_class->task_woken) { 3753 /* 3754 * Our task @p is fully woken up and running; so it's safe to 3755 * drop the rq->lock, hereafter rq is only used for statistics. 3756 */ 3757 rq_unpin_lock(rq, rf); 3758 p->sched_class->task_woken(rq, p); 3759 rq_repin_lock(rq, rf); 3760 } 3761 3762 if (rq->idle_stamp) { 3763 u64 delta = rq_clock(rq) - rq->idle_stamp; 3764 u64 max = 2*rq->max_idle_balance_cost; 3765 3766 update_avg(&rq->avg_idle, delta); 3767 3768 if (rq->avg_idle > max) 3769 rq->avg_idle = max; 3770 3771 rq->idle_stamp = 0; 3772 } 3773 #endif 3774 } 3775 3776 /* 3777 * Consider @p being inside a wait loop: 3778 * 3779 * for (;;) { 3780 * set_current_state(TASK_UNINTERRUPTIBLE); 3781 * 3782 * if (CONDITION) 3783 * break; 3784 * 3785 * schedule(); 3786 * } 3787 * __set_current_state(TASK_RUNNING); 3788 * 3789 * between set_current_state() and schedule(). In this case @p is still 3790 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3791 * an atomic manner. 3792 * 3793 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3794 * then schedule() must still happen and p->state can be changed to 3795 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3796 * need to do a full wakeup with enqueue. 3797 * 3798 * Returns: %true when the wakeup is done, 3799 * %false otherwise. 3800 */ 3801 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3802 { 3803 struct rq_flags rf; 3804 struct rq *rq; 3805 int ret = 0; 3806 3807 rq = __task_rq_lock(p, &rf); 3808 if (task_on_rq_queued(p)) { 3809 update_rq_clock(rq); 3810 if (p->se.sched_delayed) 3811 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3812 if (!task_on_cpu(rq, p)) { 3813 /* 3814 * When on_rq && !on_cpu the task is preempted, see if 3815 * it should preempt the task that is current now. 3816 */ 3817 wakeup_preempt(rq, p, wake_flags); 3818 } 3819 ttwu_do_wakeup(p); 3820 ret = 1; 3821 } 3822 __task_rq_unlock(rq, &rf); 3823 3824 return ret; 3825 } 3826 3827 #ifdef CONFIG_SMP 3828 void sched_ttwu_pending(void *arg) 3829 { 3830 struct llist_node *llist = arg; 3831 struct rq *rq = this_rq(); 3832 struct task_struct *p, *t; 3833 struct rq_flags rf; 3834 3835 if (!llist) 3836 return; 3837 3838 rq_lock_irqsave(rq, &rf); 3839 update_rq_clock(rq); 3840 3841 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3842 if (WARN_ON_ONCE(p->on_cpu)) 3843 smp_cond_load_acquire(&p->on_cpu, !VAL); 3844 3845 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3846 set_task_cpu(p, cpu_of(rq)); 3847 3848 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3849 } 3850 3851 /* 3852 * Must be after enqueueing at least once task such that 3853 * idle_cpu() does not observe a false-negative -- if it does, 3854 * it is possible for select_idle_siblings() to stack a number 3855 * of tasks on this CPU during that window. 3856 * 3857 * It is OK to clear ttwu_pending when another task pending. 3858 * We will receive IPI after local IRQ enabled and then enqueue it. 3859 * Since now nr_running > 0, idle_cpu() will always get correct result. 3860 */ 3861 WRITE_ONCE(rq->ttwu_pending, 0); 3862 rq_unlock_irqrestore(rq, &rf); 3863 } 3864 3865 /* 3866 * Prepare the scene for sending an IPI for a remote smp_call 3867 * 3868 * Returns true if the caller can proceed with sending the IPI. 3869 * Returns false otherwise. 3870 */ 3871 bool call_function_single_prep_ipi(int cpu) 3872 { 3873 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3874 trace_sched_wake_idle_without_ipi(cpu); 3875 return false; 3876 } 3877 3878 return true; 3879 } 3880 3881 /* 3882 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3883 * necessary. The wakee CPU on receipt of the IPI will queue the task 3884 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3885 * of the wakeup instead of the waker. 3886 */ 3887 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3888 { 3889 struct rq *rq = cpu_rq(cpu); 3890 3891 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3892 3893 WRITE_ONCE(rq->ttwu_pending, 1); 3894 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3895 } 3896 3897 void wake_up_if_idle(int cpu) 3898 { 3899 struct rq *rq = cpu_rq(cpu); 3900 3901 guard(rcu)(); 3902 if (is_idle_task(rcu_dereference(rq->curr))) { 3903 guard(rq_lock_irqsave)(rq); 3904 if (is_idle_task(rq->curr)) 3905 resched_curr(rq); 3906 } 3907 } 3908 3909 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3910 { 3911 if (!sched_asym_cpucap_active()) 3912 return true; 3913 3914 if (this_cpu == that_cpu) 3915 return true; 3916 3917 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3918 } 3919 3920 bool cpus_share_cache(int this_cpu, int that_cpu) 3921 { 3922 if (this_cpu == that_cpu) 3923 return true; 3924 3925 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3926 } 3927 3928 /* 3929 * Whether CPUs are share cache resources, which means LLC on non-cluster 3930 * machines and LLC tag or L2 on machines with clusters. 3931 */ 3932 bool cpus_share_resources(int this_cpu, int that_cpu) 3933 { 3934 if (this_cpu == that_cpu) 3935 return true; 3936 3937 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3938 } 3939 3940 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3941 { 3942 /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ 3943 if (!scx_allow_ttwu_queue(p)) 3944 return false; 3945 3946 #ifdef CONFIG_SMP 3947 if (p->sched_class == &stop_sched_class) 3948 return false; 3949 #endif 3950 3951 /* 3952 * Do not complicate things with the async wake_list while the CPU is 3953 * in hotplug state. 3954 */ 3955 if (!cpu_active(cpu)) 3956 return false; 3957 3958 /* Ensure the task will still be allowed to run on the CPU. */ 3959 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3960 return false; 3961 3962 /* 3963 * If the CPU does not share cache, then queue the task on the 3964 * remote rqs wakelist to avoid accessing remote data. 3965 */ 3966 if (!cpus_share_cache(smp_processor_id(), cpu)) 3967 return true; 3968 3969 if (cpu == smp_processor_id()) 3970 return false; 3971 3972 /* 3973 * If the wakee cpu is idle, or the task is descheduling and the 3974 * only running task on the CPU, then use the wakelist to offload 3975 * the task activation to the idle (or soon-to-be-idle) CPU as 3976 * the current CPU is likely busy. nr_running is checked to 3977 * avoid unnecessary task stacking. 3978 * 3979 * Note that we can only get here with (wakee) p->on_rq=0, 3980 * p->on_cpu can be whatever, we've done the dequeue, so 3981 * the wakee has been accounted out of ->nr_running. 3982 */ 3983 if (!cpu_rq(cpu)->nr_running) 3984 return true; 3985 3986 return false; 3987 } 3988 3989 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3990 { 3991 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3992 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3993 __ttwu_queue_wakelist(p, cpu, wake_flags); 3994 return true; 3995 } 3996 3997 return false; 3998 } 3999 4000 #else /* !CONFIG_SMP */ 4001 4002 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 4003 { 4004 return false; 4005 } 4006 4007 #endif /* CONFIG_SMP */ 4008 4009 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 4010 { 4011 struct rq *rq = cpu_rq(cpu); 4012 struct rq_flags rf; 4013 4014 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 4015 return; 4016 4017 rq_lock(rq, &rf); 4018 update_rq_clock(rq); 4019 ttwu_do_activate(rq, p, wake_flags, &rf); 4020 rq_unlock(rq, &rf); 4021 } 4022 4023 /* 4024 * Invoked from try_to_wake_up() to check whether the task can be woken up. 4025 * 4026 * The caller holds p::pi_lock if p != current or has preemption 4027 * disabled when p == current. 4028 * 4029 * The rules of saved_state: 4030 * 4031 * The related locking code always holds p::pi_lock when updating 4032 * p::saved_state, which means the code is fully serialized in both cases. 4033 * 4034 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 4035 * No other bits set. This allows to distinguish all wakeup scenarios. 4036 * 4037 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 4038 * allows us to prevent early wakeup of tasks before they can be run on 4039 * asymmetric ISA architectures (eg ARMv9). 4040 */ 4041 static __always_inline 4042 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 4043 { 4044 int match; 4045 4046 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 4047 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 4048 state != TASK_RTLOCK_WAIT); 4049 } 4050 4051 *success = !!(match = __task_state_match(p, state)); 4052 4053 /* 4054 * Saved state preserves the task state across blocking on 4055 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 4056 * set p::saved_state to TASK_RUNNING, but do not wake the task 4057 * because it waits for a lock wakeup or __thaw_task(). Also 4058 * indicate success because from the regular waker's point of 4059 * view this has succeeded. 4060 * 4061 * After acquiring the lock the task will restore p::__state 4062 * from p::saved_state which ensures that the regular 4063 * wakeup is not lost. The restore will also set 4064 * p::saved_state to TASK_RUNNING so any further tests will 4065 * not result in false positives vs. @success 4066 */ 4067 if (match < 0) 4068 p->saved_state = TASK_RUNNING; 4069 4070 return match > 0; 4071 } 4072 4073 /* 4074 * Notes on Program-Order guarantees on SMP systems. 4075 * 4076 * MIGRATION 4077 * 4078 * The basic program-order guarantee on SMP systems is that when a task [t] 4079 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4080 * execution on its new CPU [c1]. 4081 * 4082 * For migration (of runnable tasks) this is provided by the following means: 4083 * 4084 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4085 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4086 * rq(c1)->lock (if not at the same time, then in that order). 4087 * C) LOCK of the rq(c1)->lock scheduling in task 4088 * 4089 * Release/acquire chaining guarantees that B happens after A and C after B. 4090 * Note: the CPU doing B need not be c0 or c1 4091 * 4092 * Example: 4093 * 4094 * CPU0 CPU1 CPU2 4095 * 4096 * LOCK rq(0)->lock 4097 * sched-out X 4098 * sched-in Y 4099 * UNLOCK rq(0)->lock 4100 * 4101 * LOCK rq(0)->lock // orders against CPU0 4102 * dequeue X 4103 * UNLOCK rq(0)->lock 4104 * 4105 * LOCK rq(1)->lock 4106 * enqueue X 4107 * UNLOCK rq(1)->lock 4108 * 4109 * LOCK rq(1)->lock // orders against CPU2 4110 * sched-out Z 4111 * sched-in X 4112 * UNLOCK rq(1)->lock 4113 * 4114 * 4115 * BLOCKING -- aka. SLEEP + WAKEUP 4116 * 4117 * For blocking we (obviously) need to provide the same guarantee as for 4118 * migration. However the means are completely different as there is no lock 4119 * chain to provide order. Instead we do: 4120 * 4121 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4122 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4123 * 4124 * Example: 4125 * 4126 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4127 * 4128 * LOCK rq(0)->lock LOCK X->pi_lock 4129 * dequeue X 4130 * sched-out X 4131 * smp_store_release(X->on_cpu, 0); 4132 * 4133 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4134 * X->state = WAKING 4135 * set_task_cpu(X,2) 4136 * 4137 * LOCK rq(2)->lock 4138 * enqueue X 4139 * X->state = RUNNING 4140 * UNLOCK rq(2)->lock 4141 * 4142 * LOCK rq(2)->lock // orders against CPU1 4143 * sched-out Z 4144 * sched-in X 4145 * UNLOCK rq(2)->lock 4146 * 4147 * UNLOCK X->pi_lock 4148 * UNLOCK rq(0)->lock 4149 * 4150 * 4151 * However, for wakeups there is a second guarantee we must provide, namely we 4152 * must ensure that CONDITION=1 done by the caller can not be reordered with 4153 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4154 */ 4155 4156 /** 4157 * try_to_wake_up - wake up a thread 4158 * @p: the thread to be awakened 4159 * @state: the mask of task states that can be woken 4160 * @wake_flags: wake modifier flags (WF_*) 4161 * 4162 * Conceptually does: 4163 * 4164 * If (@state & @p->state) @p->state = TASK_RUNNING. 4165 * 4166 * If the task was not queued/runnable, also place it back on a runqueue. 4167 * 4168 * This function is atomic against schedule() which would dequeue the task. 4169 * 4170 * It issues a full memory barrier before accessing @p->state, see the comment 4171 * with set_current_state(). 4172 * 4173 * Uses p->pi_lock to serialize against concurrent wake-ups. 4174 * 4175 * Relies on p->pi_lock stabilizing: 4176 * - p->sched_class 4177 * - p->cpus_ptr 4178 * - p->sched_task_group 4179 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4180 * 4181 * Tries really hard to only take one task_rq(p)->lock for performance. 4182 * Takes rq->lock in: 4183 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4184 * - ttwu_queue() -- new rq, for enqueue of the task; 4185 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4186 * 4187 * As a consequence we race really badly with just about everything. See the 4188 * many memory barriers and their comments for details. 4189 * 4190 * Return: %true if @p->state changes (an actual wakeup was done), 4191 * %false otherwise. 4192 */ 4193 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4194 { 4195 guard(preempt)(); 4196 int cpu, success = 0; 4197 4198 wake_flags |= WF_TTWU; 4199 4200 if (p == current) { 4201 /* 4202 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4203 * == smp_processor_id()'. Together this means we can special 4204 * case the whole 'p->on_rq && ttwu_runnable()' case below 4205 * without taking any locks. 4206 * 4207 * Specifically, given current runs ttwu() we must be before 4208 * schedule()'s block_task(), as such this must not observe 4209 * sched_delayed. 4210 * 4211 * In particular: 4212 * - we rely on Program-Order guarantees for all the ordering, 4213 * - we're serialized against set_special_state() by virtue of 4214 * it disabling IRQs (this allows not taking ->pi_lock). 4215 */ 4216 WARN_ON_ONCE(p->se.sched_delayed); 4217 if (!ttwu_state_match(p, state, &success)) 4218 goto out; 4219 4220 trace_sched_waking(p); 4221 ttwu_do_wakeup(p); 4222 goto out; 4223 } 4224 4225 /* 4226 * If we are going to wake up a thread waiting for CONDITION we 4227 * need to ensure that CONDITION=1 done by the caller can not be 4228 * reordered with p->state check below. This pairs with smp_store_mb() 4229 * in set_current_state() that the waiting thread does. 4230 */ 4231 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4232 smp_mb__after_spinlock(); 4233 if (!ttwu_state_match(p, state, &success)) 4234 break; 4235 4236 trace_sched_waking(p); 4237 4238 /* 4239 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4240 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4241 * in smp_cond_load_acquire() below. 4242 * 4243 * sched_ttwu_pending() try_to_wake_up() 4244 * STORE p->on_rq = 1 LOAD p->state 4245 * UNLOCK rq->lock 4246 * 4247 * __schedule() (switch to task 'p') 4248 * LOCK rq->lock smp_rmb(); 4249 * smp_mb__after_spinlock(); 4250 * UNLOCK rq->lock 4251 * 4252 * [task p] 4253 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4254 * 4255 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4256 * __schedule(). See the comment for smp_mb__after_spinlock(). 4257 * 4258 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4259 */ 4260 smp_rmb(); 4261 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4262 break; 4263 4264 #ifdef CONFIG_SMP 4265 /* 4266 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4267 * possible to, falsely, observe p->on_cpu == 0. 4268 * 4269 * One must be running (->on_cpu == 1) in order to remove oneself 4270 * from the runqueue. 4271 * 4272 * __schedule() (switch to task 'p') try_to_wake_up() 4273 * STORE p->on_cpu = 1 LOAD p->on_rq 4274 * UNLOCK rq->lock 4275 * 4276 * __schedule() (put 'p' to sleep) 4277 * LOCK rq->lock smp_rmb(); 4278 * smp_mb__after_spinlock(); 4279 * STORE p->on_rq = 0 LOAD p->on_cpu 4280 * 4281 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4282 * __schedule(). See the comment for smp_mb__after_spinlock(). 4283 * 4284 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4285 * schedule()'s deactivate_task() has 'happened' and p will no longer 4286 * care about it's own p->state. See the comment in __schedule(). 4287 */ 4288 smp_acquire__after_ctrl_dep(); 4289 4290 /* 4291 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4292 * == 0), which means we need to do an enqueue, change p->state to 4293 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4294 * enqueue, such as ttwu_queue_wakelist(). 4295 */ 4296 WRITE_ONCE(p->__state, TASK_WAKING); 4297 4298 /* 4299 * If the owning (remote) CPU is still in the middle of schedule() with 4300 * this task as prev, considering queueing p on the remote CPUs wake_list 4301 * which potentially sends an IPI instead of spinning on p->on_cpu to 4302 * let the waker make forward progress. This is safe because IRQs are 4303 * disabled and the IPI will deliver after on_cpu is cleared. 4304 * 4305 * Ensure we load task_cpu(p) after p->on_cpu: 4306 * 4307 * set_task_cpu(p, cpu); 4308 * STORE p->cpu = @cpu 4309 * __schedule() (switch to task 'p') 4310 * LOCK rq->lock 4311 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4312 * STORE p->on_cpu = 1 LOAD p->cpu 4313 * 4314 * to ensure we observe the correct CPU on which the task is currently 4315 * scheduling. 4316 */ 4317 if (smp_load_acquire(&p->on_cpu) && 4318 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4319 break; 4320 4321 /* 4322 * If the owning (remote) CPU is still in the middle of schedule() with 4323 * this task as prev, wait until it's done referencing the task. 4324 * 4325 * Pairs with the smp_store_release() in finish_task(). 4326 * 4327 * This ensures that tasks getting woken will be fully ordered against 4328 * their previous state and preserve Program Order. 4329 */ 4330 smp_cond_load_acquire(&p->on_cpu, !VAL); 4331 4332 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4333 if (task_cpu(p) != cpu) { 4334 if (p->in_iowait) { 4335 delayacct_blkio_end(p); 4336 atomic_dec(&task_rq(p)->nr_iowait); 4337 } 4338 4339 wake_flags |= WF_MIGRATED; 4340 psi_ttwu_dequeue(p); 4341 set_task_cpu(p, cpu); 4342 } 4343 #else 4344 cpu = task_cpu(p); 4345 #endif /* CONFIG_SMP */ 4346 4347 ttwu_queue(p, cpu, wake_flags); 4348 } 4349 out: 4350 if (success) 4351 ttwu_stat(p, task_cpu(p), wake_flags); 4352 4353 return success; 4354 } 4355 4356 static bool __task_needs_rq_lock(struct task_struct *p) 4357 { 4358 unsigned int state = READ_ONCE(p->__state); 4359 4360 /* 4361 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4362 * the task is blocked. Make sure to check @state since ttwu() can drop 4363 * locks at the end, see ttwu_queue_wakelist(). 4364 */ 4365 if (state == TASK_RUNNING || state == TASK_WAKING) 4366 return true; 4367 4368 /* 4369 * Ensure we load p->on_rq after p->__state, otherwise it would be 4370 * possible to, falsely, observe p->on_rq == 0. 4371 * 4372 * See try_to_wake_up() for a longer comment. 4373 */ 4374 smp_rmb(); 4375 if (p->on_rq) 4376 return true; 4377 4378 #ifdef CONFIG_SMP 4379 /* 4380 * Ensure the task has finished __schedule() and will not be referenced 4381 * anymore. Again, see try_to_wake_up() for a longer comment. 4382 */ 4383 smp_rmb(); 4384 smp_cond_load_acquire(&p->on_cpu, !VAL); 4385 #endif 4386 4387 return false; 4388 } 4389 4390 /** 4391 * task_call_func - Invoke a function on task in fixed state 4392 * @p: Process for which the function is to be invoked, can be @current. 4393 * @func: Function to invoke. 4394 * @arg: Argument to function. 4395 * 4396 * Fix the task in it's current state by avoiding wakeups and or rq operations 4397 * and call @func(@arg) on it. This function can use task_is_runnable() and 4398 * task_curr() to work out what the state is, if required. Given that @func 4399 * can be invoked with a runqueue lock held, it had better be quite 4400 * lightweight. 4401 * 4402 * Returns: 4403 * Whatever @func returns 4404 */ 4405 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4406 { 4407 struct rq *rq = NULL; 4408 struct rq_flags rf; 4409 int ret; 4410 4411 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4412 4413 if (__task_needs_rq_lock(p)) 4414 rq = __task_rq_lock(p, &rf); 4415 4416 /* 4417 * At this point the task is pinned; either: 4418 * - blocked and we're holding off wakeups (pi->lock) 4419 * - woken, and we're holding off enqueue (rq->lock) 4420 * - queued, and we're holding off schedule (rq->lock) 4421 * - running, and we're holding off de-schedule (rq->lock) 4422 * 4423 * The called function (@func) can use: task_curr(), p->on_rq and 4424 * p->__state to differentiate between these states. 4425 */ 4426 ret = func(p, arg); 4427 4428 if (rq) 4429 rq_unlock(rq, &rf); 4430 4431 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4432 return ret; 4433 } 4434 4435 /** 4436 * cpu_curr_snapshot - Return a snapshot of the currently running task 4437 * @cpu: The CPU on which to snapshot the task. 4438 * 4439 * Returns the task_struct pointer of the task "currently" running on 4440 * the specified CPU. 4441 * 4442 * If the specified CPU was offline, the return value is whatever it 4443 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4444 * task, but there is no guarantee. Callers wishing a useful return 4445 * value must take some action to ensure that the specified CPU remains 4446 * online throughout. 4447 * 4448 * This function executes full memory barriers before and after fetching 4449 * the pointer, which permits the caller to confine this function's fetch 4450 * with respect to the caller's accesses to other shared variables. 4451 */ 4452 struct task_struct *cpu_curr_snapshot(int cpu) 4453 { 4454 struct rq *rq = cpu_rq(cpu); 4455 struct task_struct *t; 4456 struct rq_flags rf; 4457 4458 rq_lock_irqsave(rq, &rf); 4459 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4460 t = rcu_dereference(cpu_curr(cpu)); 4461 rq_unlock_irqrestore(rq, &rf); 4462 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4463 4464 return t; 4465 } 4466 4467 /** 4468 * wake_up_process - Wake up a specific process 4469 * @p: The process to be woken up. 4470 * 4471 * Attempt to wake up the nominated process and move it to the set of runnable 4472 * processes. 4473 * 4474 * Return: 1 if the process was woken up, 0 if it was already running. 4475 * 4476 * This function executes a full memory barrier before accessing the task state. 4477 */ 4478 int wake_up_process(struct task_struct *p) 4479 { 4480 return try_to_wake_up(p, TASK_NORMAL, 0); 4481 } 4482 EXPORT_SYMBOL(wake_up_process); 4483 4484 int wake_up_state(struct task_struct *p, unsigned int state) 4485 { 4486 return try_to_wake_up(p, state, 0); 4487 } 4488 4489 /* 4490 * Perform scheduler related setup for a newly forked process p. 4491 * p is forked by current. 4492 * 4493 * __sched_fork() is basic setup which is also used by sched_init() to 4494 * initialize the boot CPU's idle task. 4495 */ 4496 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4497 { 4498 p->on_rq = 0; 4499 4500 p->se.on_rq = 0; 4501 p->se.exec_start = 0; 4502 p->se.sum_exec_runtime = 0; 4503 p->se.prev_sum_exec_runtime = 0; 4504 p->se.nr_migrations = 0; 4505 p->se.vruntime = 0; 4506 p->se.vlag = 0; 4507 INIT_LIST_HEAD(&p->se.group_node); 4508 4509 /* A delayed task cannot be in clone(). */ 4510 WARN_ON_ONCE(p->se.sched_delayed); 4511 4512 #ifdef CONFIG_FAIR_GROUP_SCHED 4513 p->se.cfs_rq = NULL; 4514 #endif 4515 4516 #ifdef CONFIG_SCHEDSTATS 4517 /* Even if schedstat is disabled, there should not be garbage */ 4518 memset(&p->stats, 0, sizeof(p->stats)); 4519 #endif 4520 4521 init_dl_entity(&p->dl); 4522 4523 INIT_LIST_HEAD(&p->rt.run_list); 4524 p->rt.timeout = 0; 4525 p->rt.time_slice = sched_rr_timeslice; 4526 p->rt.on_rq = 0; 4527 p->rt.on_list = 0; 4528 4529 #ifdef CONFIG_SCHED_CLASS_EXT 4530 init_scx_entity(&p->scx); 4531 #endif 4532 4533 #ifdef CONFIG_PREEMPT_NOTIFIERS 4534 INIT_HLIST_HEAD(&p->preempt_notifiers); 4535 #endif 4536 4537 #ifdef CONFIG_COMPACTION 4538 p->capture_control = NULL; 4539 #endif 4540 init_numa_balancing(clone_flags, p); 4541 #ifdef CONFIG_SMP 4542 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4543 p->migration_pending = NULL; 4544 #endif 4545 init_sched_mm_cid(p); 4546 } 4547 4548 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4549 4550 #ifdef CONFIG_NUMA_BALANCING 4551 4552 int sysctl_numa_balancing_mode; 4553 4554 static void __set_numabalancing_state(bool enabled) 4555 { 4556 if (enabled) 4557 static_branch_enable(&sched_numa_balancing); 4558 else 4559 static_branch_disable(&sched_numa_balancing); 4560 } 4561 4562 void set_numabalancing_state(bool enabled) 4563 { 4564 if (enabled) 4565 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4566 else 4567 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4568 __set_numabalancing_state(enabled); 4569 } 4570 4571 #ifdef CONFIG_PROC_SYSCTL 4572 static void reset_memory_tiering(void) 4573 { 4574 struct pglist_data *pgdat; 4575 4576 for_each_online_pgdat(pgdat) { 4577 pgdat->nbp_threshold = 0; 4578 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4579 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4580 } 4581 } 4582 4583 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4584 void *buffer, size_t *lenp, loff_t *ppos) 4585 { 4586 struct ctl_table t; 4587 int err; 4588 int state = sysctl_numa_balancing_mode; 4589 4590 if (write && !capable(CAP_SYS_ADMIN)) 4591 return -EPERM; 4592 4593 t = *table; 4594 t.data = &state; 4595 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4596 if (err < 0) 4597 return err; 4598 if (write) { 4599 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4600 (state & NUMA_BALANCING_MEMORY_TIERING)) 4601 reset_memory_tiering(); 4602 sysctl_numa_balancing_mode = state; 4603 __set_numabalancing_state(state); 4604 } 4605 return err; 4606 } 4607 #endif 4608 #endif 4609 4610 #ifdef CONFIG_SCHEDSTATS 4611 4612 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4613 4614 static void set_schedstats(bool enabled) 4615 { 4616 if (enabled) 4617 static_branch_enable(&sched_schedstats); 4618 else 4619 static_branch_disable(&sched_schedstats); 4620 } 4621 4622 void force_schedstat_enabled(void) 4623 { 4624 if (!schedstat_enabled()) { 4625 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4626 static_branch_enable(&sched_schedstats); 4627 } 4628 } 4629 4630 static int __init setup_schedstats(char *str) 4631 { 4632 int ret = 0; 4633 if (!str) 4634 goto out; 4635 4636 if (!strcmp(str, "enable")) { 4637 set_schedstats(true); 4638 ret = 1; 4639 } else if (!strcmp(str, "disable")) { 4640 set_schedstats(false); 4641 ret = 1; 4642 } 4643 out: 4644 if (!ret) 4645 pr_warn("Unable to parse schedstats=\n"); 4646 4647 return ret; 4648 } 4649 __setup("schedstats=", setup_schedstats); 4650 4651 #ifdef CONFIG_PROC_SYSCTL 4652 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4653 size_t *lenp, loff_t *ppos) 4654 { 4655 struct ctl_table t; 4656 int err; 4657 int state = static_branch_likely(&sched_schedstats); 4658 4659 if (write && !capable(CAP_SYS_ADMIN)) 4660 return -EPERM; 4661 4662 t = *table; 4663 t.data = &state; 4664 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4665 if (err < 0) 4666 return err; 4667 if (write) 4668 set_schedstats(state); 4669 return err; 4670 } 4671 #endif /* CONFIG_PROC_SYSCTL */ 4672 #endif /* CONFIG_SCHEDSTATS */ 4673 4674 #ifdef CONFIG_SYSCTL 4675 static const struct ctl_table sched_core_sysctls[] = { 4676 #ifdef CONFIG_SCHEDSTATS 4677 { 4678 .procname = "sched_schedstats", 4679 .data = NULL, 4680 .maxlen = sizeof(unsigned int), 4681 .mode = 0644, 4682 .proc_handler = sysctl_schedstats, 4683 .extra1 = SYSCTL_ZERO, 4684 .extra2 = SYSCTL_ONE, 4685 }, 4686 #endif /* CONFIG_SCHEDSTATS */ 4687 #ifdef CONFIG_UCLAMP_TASK 4688 { 4689 .procname = "sched_util_clamp_min", 4690 .data = &sysctl_sched_uclamp_util_min, 4691 .maxlen = sizeof(unsigned int), 4692 .mode = 0644, 4693 .proc_handler = sysctl_sched_uclamp_handler, 4694 }, 4695 { 4696 .procname = "sched_util_clamp_max", 4697 .data = &sysctl_sched_uclamp_util_max, 4698 .maxlen = sizeof(unsigned int), 4699 .mode = 0644, 4700 .proc_handler = sysctl_sched_uclamp_handler, 4701 }, 4702 { 4703 .procname = "sched_util_clamp_min_rt_default", 4704 .data = &sysctl_sched_uclamp_util_min_rt_default, 4705 .maxlen = sizeof(unsigned int), 4706 .mode = 0644, 4707 .proc_handler = sysctl_sched_uclamp_handler, 4708 }, 4709 #endif /* CONFIG_UCLAMP_TASK */ 4710 #ifdef CONFIG_NUMA_BALANCING 4711 { 4712 .procname = "numa_balancing", 4713 .data = NULL, /* filled in by handler */ 4714 .maxlen = sizeof(unsigned int), 4715 .mode = 0644, 4716 .proc_handler = sysctl_numa_balancing, 4717 .extra1 = SYSCTL_ZERO, 4718 .extra2 = SYSCTL_FOUR, 4719 }, 4720 #endif /* CONFIG_NUMA_BALANCING */ 4721 }; 4722 static int __init sched_core_sysctl_init(void) 4723 { 4724 register_sysctl_init("kernel", sched_core_sysctls); 4725 return 0; 4726 } 4727 late_initcall(sched_core_sysctl_init); 4728 #endif /* CONFIG_SYSCTL */ 4729 4730 /* 4731 * fork()/clone()-time setup: 4732 */ 4733 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4734 { 4735 __sched_fork(clone_flags, p); 4736 /* 4737 * We mark the process as NEW here. This guarantees that 4738 * nobody will actually run it, and a signal or other external 4739 * event cannot wake it up and insert it on the runqueue either. 4740 */ 4741 p->__state = TASK_NEW; 4742 4743 /* 4744 * Make sure we do not leak PI boosting priority to the child. 4745 */ 4746 p->prio = current->normal_prio; 4747 4748 uclamp_fork(p); 4749 4750 /* 4751 * Revert to default priority/policy on fork if requested. 4752 */ 4753 if (unlikely(p->sched_reset_on_fork)) { 4754 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4755 p->policy = SCHED_NORMAL; 4756 p->static_prio = NICE_TO_PRIO(0); 4757 p->rt_priority = 0; 4758 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4759 p->static_prio = NICE_TO_PRIO(0); 4760 4761 p->prio = p->normal_prio = p->static_prio; 4762 set_load_weight(p, false); 4763 p->se.custom_slice = 0; 4764 p->se.slice = sysctl_sched_base_slice; 4765 4766 /* 4767 * We don't need the reset flag anymore after the fork. It has 4768 * fulfilled its duty: 4769 */ 4770 p->sched_reset_on_fork = 0; 4771 } 4772 4773 if (dl_prio(p->prio)) 4774 return -EAGAIN; 4775 4776 scx_pre_fork(p); 4777 4778 if (rt_prio(p->prio)) { 4779 p->sched_class = &rt_sched_class; 4780 #ifdef CONFIG_SCHED_CLASS_EXT 4781 } else if (task_should_scx(p->policy)) { 4782 p->sched_class = &ext_sched_class; 4783 #endif 4784 } else { 4785 p->sched_class = &fair_sched_class; 4786 } 4787 4788 init_entity_runnable_average(&p->se); 4789 4790 4791 #ifdef CONFIG_SCHED_INFO 4792 if (likely(sched_info_on())) 4793 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4794 #endif 4795 #if defined(CONFIG_SMP) 4796 p->on_cpu = 0; 4797 #endif 4798 init_task_preempt_count(p); 4799 #ifdef CONFIG_SMP 4800 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4801 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4802 #endif 4803 return 0; 4804 } 4805 4806 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4807 { 4808 unsigned long flags; 4809 4810 /* 4811 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4812 * required yet, but lockdep gets upset if rules are violated. 4813 */ 4814 raw_spin_lock_irqsave(&p->pi_lock, flags); 4815 #ifdef CONFIG_CGROUP_SCHED 4816 if (1) { 4817 struct task_group *tg; 4818 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4819 struct task_group, css); 4820 tg = autogroup_task_group(p, tg); 4821 p->sched_task_group = tg; 4822 } 4823 #endif 4824 rseq_migrate(p); 4825 /* 4826 * We're setting the CPU for the first time, we don't migrate, 4827 * so use __set_task_cpu(). 4828 */ 4829 __set_task_cpu(p, smp_processor_id()); 4830 if (p->sched_class->task_fork) 4831 p->sched_class->task_fork(p); 4832 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4833 4834 return scx_fork(p); 4835 } 4836 4837 void sched_cancel_fork(struct task_struct *p) 4838 { 4839 scx_cancel_fork(p); 4840 } 4841 4842 void sched_post_fork(struct task_struct *p) 4843 { 4844 uclamp_post_fork(p); 4845 scx_post_fork(p); 4846 } 4847 4848 unsigned long to_ratio(u64 period, u64 runtime) 4849 { 4850 if (runtime == RUNTIME_INF) 4851 return BW_UNIT; 4852 4853 /* 4854 * Doing this here saves a lot of checks in all 4855 * the calling paths, and returning zero seems 4856 * safe for them anyway. 4857 */ 4858 if (period == 0) 4859 return 0; 4860 4861 return div64_u64(runtime << BW_SHIFT, period); 4862 } 4863 4864 /* 4865 * wake_up_new_task - wake up a newly created task for the first time. 4866 * 4867 * This function will do some initial scheduler statistics housekeeping 4868 * that must be done for every newly created context, then puts the task 4869 * on the runqueue and wakes it. 4870 */ 4871 void wake_up_new_task(struct task_struct *p) 4872 { 4873 struct rq_flags rf; 4874 struct rq *rq; 4875 int wake_flags = WF_FORK; 4876 4877 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4878 WRITE_ONCE(p->__state, TASK_RUNNING); 4879 #ifdef CONFIG_SMP 4880 /* 4881 * Fork balancing, do it here and not earlier because: 4882 * - cpus_ptr can change in the fork path 4883 * - any previously selected CPU might disappear through hotplug 4884 * 4885 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4886 * as we're not fully set-up yet. 4887 */ 4888 p->recent_used_cpu = task_cpu(p); 4889 rseq_migrate(p); 4890 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4891 #endif 4892 rq = __task_rq_lock(p, &rf); 4893 update_rq_clock(rq); 4894 post_init_entity_util_avg(p); 4895 4896 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4897 trace_sched_wakeup_new(p); 4898 wakeup_preempt(rq, p, wake_flags); 4899 #ifdef CONFIG_SMP 4900 if (p->sched_class->task_woken) { 4901 /* 4902 * Nothing relies on rq->lock after this, so it's fine to 4903 * drop it. 4904 */ 4905 rq_unpin_lock(rq, &rf); 4906 p->sched_class->task_woken(rq, p); 4907 rq_repin_lock(rq, &rf); 4908 } 4909 #endif 4910 task_rq_unlock(rq, p, &rf); 4911 } 4912 4913 #ifdef CONFIG_PREEMPT_NOTIFIERS 4914 4915 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4916 4917 void preempt_notifier_inc(void) 4918 { 4919 static_branch_inc(&preempt_notifier_key); 4920 } 4921 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4922 4923 void preempt_notifier_dec(void) 4924 { 4925 static_branch_dec(&preempt_notifier_key); 4926 } 4927 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4928 4929 /** 4930 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4931 * @notifier: notifier struct to register 4932 */ 4933 void preempt_notifier_register(struct preempt_notifier *notifier) 4934 { 4935 if (!static_branch_unlikely(&preempt_notifier_key)) 4936 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4937 4938 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4939 } 4940 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4941 4942 /** 4943 * preempt_notifier_unregister - no longer interested in preemption notifications 4944 * @notifier: notifier struct to unregister 4945 * 4946 * This is *not* safe to call from within a preemption notifier. 4947 */ 4948 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4949 { 4950 hlist_del(¬ifier->link); 4951 } 4952 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4953 4954 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4955 { 4956 struct preempt_notifier *notifier; 4957 4958 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4959 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4960 } 4961 4962 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4963 { 4964 if (static_branch_unlikely(&preempt_notifier_key)) 4965 __fire_sched_in_preempt_notifiers(curr); 4966 } 4967 4968 static void 4969 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4970 struct task_struct *next) 4971 { 4972 struct preempt_notifier *notifier; 4973 4974 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4975 notifier->ops->sched_out(notifier, next); 4976 } 4977 4978 static __always_inline void 4979 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4980 struct task_struct *next) 4981 { 4982 if (static_branch_unlikely(&preempt_notifier_key)) 4983 __fire_sched_out_preempt_notifiers(curr, next); 4984 } 4985 4986 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4987 4988 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4989 { 4990 } 4991 4992 static inline void 4993 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4994 struct task_struct *next) 4995 { 4996 } 4997 4998 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4999 5000 static inline void prepare_task(struct task_struct *next) 5001 { 5002 #ifdef CONFIG_SMP 5003 /* 5004 * Claim the task as running, we do this before switching to it 5005 * such that any running task will have this set. 5006 * 5007 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 5008 * its ordering comment. 5009 */ 5010 WRITE_ONCE(next->on_cpu, 1); 5011 #endif 5012 } 5013 5014 static inline void finish_task(struct task_struct *prev) 5015 { 5016 #ifdef CONFIG_SMP 5017 /* 5018 * This must be the very last reference to @prev from this CPU. After 5019 * p->on_cpu is cleared, the task can be moved to a different CPU. We 5020 * must ensure this doesn't happen until the switch is completely 5021 * finished. 5022 * 5023 * In particular, the load of prev->state in finish_task_switch() must 5024 * happen before this. 5025 * 5026 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 5027 */ 5028 smp_store_release(&prev->on_cpu, 0); 5029 #endif 5030 } 5031 5032 #ifdef CONFIG_SMP 5033 5034 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 5035 { 5036 void (*func)(struct rq *rq); 5037 struct balance_callback *next; 5038 5039 lockdep_assert_rq_held(rq); 5040 5041 while (head) { 5042 func = (void (*)(struct rq *))head->func; 5043 next = head->next; 5044 head->next = NULL; 5045 head = next; 5046 5047 func(rq); 5048 } 5049 } 5050 5051 static void balance_push(struct rq *rq); 5052 5053 /* 5054 * balance_push_callback is a right abuse of the callback interface and plays 5055 * by significantly different rules. 5056 * 5057 * Where the normal balance_callback's purpose is to be ran in the same context 5058 * that queued it (only later, when it's safe to drop rq->lock again), 5059 * balance_push_callback is specifically targeted at __schedule(). 5060 * 5061 * This abuse is tolerated because it places all the unlikely/odd cases behind 5062 * a single test, namely: rq->balance_callback == NULL. 5063 */ 5064 struct balance_callback balance_push_callback = { 5065 .next = NULL, 5066 .func = balance_push, 5067 }; 5068 5069 static inline struct balance_callback * 5070 __splice_balance_callbacks(struct rq *rq, bool split) 5071 { 5072 struct balance_callback *head = rq->balance_callback; 5073 5074 if (likely(!head)) 5075 return NULL; 5076 5077 lockdep_assert_rq_held(rq); 5078 /* 5079 * Must not take balance_push_callback off the list when 5080 * splice_balance_callbacks() and balance_callbacks() are not 5081 * in the same rq->lock section. 5082 * 5083 * In that case it would be possible for __schedule() to interleave 5084 * and observe the list empty. 5085 */ 5086 if (split && head == &balance_push_callback) 5087 head = NULL; 5088 else 5089 rq->balance_callback = NULL; 5090 5091 return head; 5092 } 5093 5094 struct balance_callback *splice_balance_callbacks(struct rq *rq) 5095 { 5096 return __splice_balance_callbacks(rq, true); 5097 } 5098 5099 static void __balance_callbacks(struct rq *rq) 5100 { 5101 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5102 } 5103 5104 void balance_callbacks(struct rq *rq, struct balance_callback *head) 5105 { 5106 unsigned long flags; 5107 5108 if (unlikely(head)) { 5109 raw_spin_rq_lock_irqsave(rq, flags); 5110 do_balance_callbacks(rq, head); 5111 raw_spin_rq_unlock_irqrestore(rq, flags); 5112 } 5113 } 5114 5115 #else 5116 5117 static inline void __balance_callbacks(struct rq *rq) 5118 { 5119 } 5120 5121 #endif 5122 5123 static inline void 5124 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5125 { 5126 /* 5127 * Since the runqueue lock will be released by the next 5128 * task (which is an invalid locking op but in the case 5129 * of the scheduler it's an obvious special-case), so we 5130 * do an early lockdep release here: 5131 */ 5132 rq_unpin_lock(rq, rf); 5133 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5134 #ifdef CONFIG_DEBUG_SPINLOCK 5135 /* this is a valid case when another task releases the spinlock */ 5136 rq_lockp(rq)->owner = next; 5137 #endif 5138 } 5139 5140 static inline void finish_lock_switch(struct rq *rq) 5141 { 5142 /* 5143 * If we are tracking spinlock dependencies then we have to 5144 * fix up the runqueue lock - which gets 'carried over' from 5145 * prev into current: 5146 */ 5147 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5148 __balance_callbacks(rq); 5149 raw_spin_rq_unlock_irq(rq); 5150 } 5151 5152 /* 5153 * NOP if the arch has not defined these: 5154 */ 5155 5156 #ifndef prepare_arch_switch 5157 # define prepare_arch_switch(next) do { } while (0) 5158 #endif 5159 5160 #ifndef finish_arch_post_lock_switch 5161 # define finish_arch_post_lock_switch() do { } while (0) 5162 #endif 5163 5164 static inline void kmap_local_sched_out(void) 5165 { 5166 #ifdef CONFIG_KMAP_LOCAL 5167 if (unlikely(current->kmap_ctrl.idx)) 5168 __kmap_local_sched_out(); 5169 #endif 5170 } 5171 5172 static inline void kmap_local_sched_in(void) 5173 { 5174 #ifdef CONFIG_KMAP_LOCAL 5175 if (unlikely(current->kmap_ctrl.idx)) 5176 __kmap_local_sched_in(); 5177 #endif 5178 } 5179 5180 /** 5181 * prepare_task_switch - prepare to switch tasks 5182 * @rq: the runqueue preparing to switch 5183 * @prev: the current task that is being switched out 5184 * @next: the task we are going to switch to. 5185 * 5186 * This is called with the rq lock held and interrupts off. It must 5187 * be paired with a subsequent finish_task_switch after the context 5188 * switch. 5189 * 5190 * prepare_task_switch sets up locking and calls architecture specific 5191 * hooks. 5192 */ 5193 static inline void 5194 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5195 struct task_struct *next) 5196 { 5197 kcov_prepare_switch(prev); 5198 sched_info_switch(rq, prev, next); 5199 perf_event_task_sched_out(prev, next); 5200 rseq_preempt(prev); 5201 fire_sched_out_preempt_notifiers(prev, next); 5202 kmap_local_sched_out(); 5203 prepare_task(next); 5204 prepare_arch_switch(next); 5205 } 5206 5207 /** 5208 * finish_task_switch - clean up after a task-switch 5209 * @prev: the thread we just switched away from. 5210 * 5211 * finish_task_switch must be called after the context switch, paired 5212 * with a prepare_task_switch call before the context switch. 5213 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5214 * and do any other architecture-specific cleanup actions. 5215 * 5216 * Note that we may have delayed dropping an mm in context_switch(). If 5217 * so, we finish that here outside of the runqueue lock. (Doing it 5218 * with the lock held can cause deadlocks; see schedule() for 5219 * details.) 5220 * 5221 * The context switch have flipped the stack from under us and restored the 5222 * local variables which were saved when this task called schedule() in the 5223 * past. 'prev == current' is still correct but we need to recalculate this_rq 5224 * because prev may have moved to another CPU. 5225 */ 5226 static struct rq *finish_task_switch(struct task_struct *prev) 5227 __releases(rq->lock) 5228 { 5229 struct rq *rq = this_rq(); 5230 struct mm_struct *mm = rq->prev_mm; 5231 unsigned int prev_state; 5232 5233 /* 5234 * The previous task will have left us with a preempt_count of 2 5235 * because it left us after: 5236 * 5237 * schedule() 5238 * preempt_disable(); // 1 5239 * __schedule() 5240 * raw_spin_lock_irq(&rq->lock) // 2 5241 * 5242 * Also, see FORK_PREEMPT_COUNT. 5243 */ 5244 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5245 "corrupted preempt_count: %s/%d/0x%x\n", 5246 current->comm, current->pid, preempt_count())) 5247 preempt_count_set(FORK_PREEMPT_COUNT); 5248 5249 rq->prev_mm = NULL; 5250 5251 /* 5252 * A task struct has one reference for the use as "current". 5253 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5254 * schedule one last time. The schedule call will never return, and 5255 * the scheduled task must drop that reference. 5256 * 5257 * We must observe prev->state before clearing prev->on_cpu (in 5258 * finish_task), otherwise a concurrent wakeup can get prev 5259 * running on another CPU and we could rave with its RUNNING -> DEAD 5260 * transition, resulting in a double drop. 5261 */ 5262 prev_state = READ_ONCE(prev->__state); 5263 vtime_task_switch(prev); 5264 perf_event_task_sched_in(prev, current); 5265 finish_task(prev); 5266 tick_nohz_task_switch(); 5267 finish_lock_switch(rq); 5268 finish_arch_post_lock_switch(); 5269 kcov_finish_switch(current); 5270 /* 5271 * kmap_local_sched_out() is invoked with rq::lock held and 5272 * interrupts disabled. There is no requirement for that, but the 5273 * sched out code does not have an interrupt enabled section. 5274 * Restoring the maps on sched in does not require interrupts being 5275 * disabled either. 5276 */ 5277 kmap_local_sched_in(); 5278 5279 fire_sched_in_preempt_notifiers(current); 5280 /* 5281 * When switching through a kernel thread, the loop in 5282 * membarrier_{private,global}_expedited() may have observed that 5283 * kernel thread and not issued an IPI. It is therefore possible to 5284 * schedule between user->kernel->user threads without passing though 5285 * switch_mm(). Membarrier requires a barrier after storing to 5286 * rq->curr, before returning to userspace, so provide them here: 5287 * 5288 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5289 * provided by mmdrop_lazy_tlb(), 5290 * - a sync_core for SYNC_CORE. 5291 */ 5292 if (mm) { 5293 membarrier_mm_sync_core_before_usermode(mm); 5294 mmdrop_lazy_tlb_sched(mm); 5295 } 5296 5297 if (unlikely(prev_state == TASK_DEAD)) { 5298 if (prev->sched_class->task_dead) 5299 prev->sched_class->task_dead(prev); 5300 5301 /* Task is done with its stack. */ 5302 put_task_stack(prev); 5303 5304 put_task_struct_rcu_user(prev); 5305 } 5306 5307 return rq; 5308 } 5309 5310 /** 5311 * schedule_tail - first thing a freshly forked thread must call. 5312 * @prev: the thread we just switched away from. 5313 */ 5314 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5315 __releases(rq->lock) 5316 { 5317 /* 5318 * New tasks start with FORK_PREEMPT_COUNT, see there and 5319 * finish_task_switch() for details. 5320 * 5321 * finish_task_switch() will drop rq->lock() and lower preempt_count 5322 * and the preempt_enable() will end up enabling preemption (on 5323 * PREEMPT_COUNT kernels). 5324 */ 5325 5326 finish_task_switch(prev); 5327 /* 5328 * This is a special case: the newly created task has just 5329 * switched the context for the first time. It is returning from 5330 * schedule for the first time in this path. 5331 */ 5332 trace_sched_exit_tp(true, CALLER_ADDR0); 5333 preempt_enable(); 5334 5335 if (current->set_child_tid) 5336 put_user(task_pid_vnr(current), current->set_child_tid); 5337 5338 calculate_sigpending(); 5339 } 5340 5341 /* 5342 * context_switch - switch to the new MM and the new thread's register state. 5343 */ 5344 static __always_inline struct rq * 5345 context_switch(struct rq *rq, struct task_struct *prev, 5346 struct task_struct *next, struct rq_flags *rf) 5347 { 5348 prepare_task_switch(rq, prev, next); 5349 5350 /* 5351 * For paravirt, this is coupled with an exit in switch_to to 5352 * combine the page table reload and the switch backend into 5353 * one hypercall. 5354 */ 5355 arch_start_context_switch(prev); 5356 5357 /* 5358 * kernel -> kernel lazy + transfer active 5359 * user -> kernel lazy + mmgrab_lazy_tlb() active 5360 * 5361 * kernel -> user switch + mmdrop_lazy_tlb() active 5362 * user -> user switch 5363 * 5364 * switch_mm_cid() needs to be updated if the barriers provided 5365 * by context_switch() are modified. 5366 */ 5367 if (!next->mm) { // to kernel 5368 enter_lazy_tlb(prev->active_mm, next); 5369 5370 next->active_mm = prev->active_mm; 5371 if (prev->mm) // from user 5372 mmgrab_lazy_tlb(prev->active_mm); 5373 else 5374 prev->active_mm = NULL; 5375 } else { // to user 5376 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5377 /* 5378 * sys_membarrier() requires an smp_mb() between setting 5379 * rq->curr / membarrier_switch_mm() and returning to userspace. 5380 * 5381 * The below provides this either through switch_mm(), or in 5382 * case 'prev->active_mm == next->mm' through 5383 * finish_task_switch()'s mmdrop(). 5384 */ 5385 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5386 lru_gen_use_mm(next->mm); 5387 5388 if (!prev->mm) { // from kernel 5389 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5390 rq->prev_mm = prev->active_mm; 5391 prev->active_mm = NULL; 5392 } 5393 } 5394 5395 /* switch_mm_cid() requires the memory barriers above. */ 5396 switch_mm_cid(rq, prev, next); 5397 5398 prepare_lock_switch(rq, next, rf); 5399 5400 /* Here we just switch the register state and the stack. */ 5401 switch_to(prev, next, prev); 5402 barrier(); 5403 5404 return finish_task_switch(prev); 5405 } 5406 5407 /* 5408 * nr_running and nr_context_switches: 5409 * 5410 * externally visible scheduler statistics: current number of runnable 5411 * threads, total number of context switches performed since bootup. 5412 */ 5413 unsigned int nr_running(void) 5414 { 5415 unsigned int i, sum = 0; 5416 5417 for_each_online_cpu(i) 5418 sum += cpu_rq(i)->nr_running; 5419 5420 return sum; 5421 } 5422 5423 /* 5424 * Check if only the current task is running on the CPU. 5425 * 5426 * Caution: this function does not check that the caller has disabled 5427 * preemption, thus the result might have a time-of-check-to-time-of-use 5428 * race. The caller is responsible to use it correctly, for example: 5429 * 5430 * - from a non-preemptible section (of course) 5431 * 5432 * - from a thread that is bound to a single CPU 5433 * 5434 * - in a loop with very short iterations (e.g. a polling loop) 5435 */ 5436 bool single_task_running(void) 5437 { 5438 return raw_rq()->nr_running == 1; 5439 } 5440 EXPORT_SYMBOL(single_task_running); 5441 5442 unsigned long long nr_context_switches_cpu(int cpu) 5443 { 5444 return cpu_rq(cpu)->nr_switches; 5445 } 5446 5447 unsigned long long nr_context_switches(void) 5448 { 5449 int i; 5450 unsigned long long sum = 0; 5451 5452 for_each_possible_cpu(i) 5453 sum += cpu_rq(i)->nr_switches; 5454 5455 return sum; 5456 } 5457 5458 /* 5459 * Consumers of these two interfaces, like for example the cpuidle menu 5460 * governor, are using nonsensical data. Preferring shallow idle state selection 5461 * for a CPU that has IO-wait which might not even end up running the task when 5462 * it does become runnable. 5463 */ 5464 5465 unsigned int nr_iowait_cpu(int cpu) 5466 { 5467 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5468 } 5469 5470 /* 5471 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5472 * 5473 * The idea behind IO-wait account is to account the idle time that we could 5474 * have spend running if it were not for IO. That is, if we were to improve the 5475 * storage performance, we'd have a proportional reduction in IO-wait time. 5476 * 5477 * This all works nicely on UP, where, when a task blocks on IO, we account 5478 * idle time as IO-wait, because if the storage were faster, it could've been 5479 * running and we'd not be idle. 5480 * 5481 * This has been extended to SMP, by doing the same for each CPU. This however 5482 * is broken. 5483 * 5484 * Imagine for instance the case where two tasks block on one CPU, only the one 5485 * CPU will have IO-wait accounted, while the other has regular idle. Even 5486 * though, if the storage were faster, both could've ran at the same time, 5487 * utilising both CPUs. 5488 * 5489 * This means, that when looking globally, the current IO-wait accounting on 5490 * SMP is a lower bound, by reason of under accounting. 5491 * 5492 * Worse, since the numbers are provided per CPU, they are sometimes 5493 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5494 * associated with any one particular CPU, it can wake to another CPU than it 5495 * blocked on. This means the per CPU IO-wait number is meaningless. 5496 * 5497 * Task CPU affinities can make all that even more 'interesting'. 5498 */ 5499 5500 unsigned int nr_iowait(void) 5501 { 5502 unsigned int i, sum = 0; 5503 5504 for_each_possible_cpu(i) 5505 sum += nr_iowait_cpu(i); 5506 5507 return sum; 5508 } 5509 5510 #ifdef CONFIG_SMP 5511 5512 /* 5513 * sched_exec - execve() is a valuable balancing opportunity, because at 5514 * this point the task has the smallest effective memory and cache footprint. 5515 */ 5516 void sched_exec(void) 5517 { 5518 struct task_struct *p = current; 5519 struct migration_arg arg; 5520 int dest_cpu; 5521 5522 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5523 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5524 if (dest_cpu == smp_processor_id()) 5525 return; 5526 5527 if (unlikely(!cpu_active(dest_cpu))) 5528 return; 5529 5530 arg = (struct migration_arg){ p, dest_cpu }; 5531 } 5532 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5533 } 5534 5535 #endif 5536 5537 DEFINE_PER_CPU(struct kernel_stat, kstat); 5538 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5539 5540 EXPORT_PER_CPU_SYMBOL(kstat); 5541 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5542 5543 /* 5544 * The function fair_sched_class.update_curr accesses the struct curr 5545 * and its field curr->exec_start; when called from task_sched_runtime(), 5546 * we observe a high rate of cache misses in practice. 5547 * Prefetching this data results in improved performance. 5548 */ 5549 static inline void prefetch_curr_exec_start(struct task_struct *p) 5550 { 5551 #ifdef CONFIG_FAIR_GROUP_SCHED 5552 struct sched_entity *curr = p->se.cfs_rq->curr; 5553 #else 5554 struct sched_entity *curr = task_rq(p)->cfs.curr; 5555 #endif 5556 prefetch(curr); 5557 prefetch(&curr->exec_start); 5558 } 5559 5560 /* 5561 * Return accounted runtime for the task. 5562 * In case the task is currently running, return the runtime plus current's 5563 * pending runtime that have not been accounted yet. 5564 */ 5565 unsigned long long task_sched_runtime(struct task_struct *p) 5566 { 5567 struct rq_flags rf; 5568 struct rq *rq; 5569 u64 ns; 5570 5571 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5572 /* 5573 * 64-bit doesn't need locks to atomically read a 64-bit value. 5574 * So we have a optimization chance when the task's delta_exec is 0. 5575 * Reading ->on_cpu is racy, but this is OK. 5576 * 5577 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5578 * If we race with it entering CPU, unaccounted time is 0. This is 5579 * indistinguishable from the read occurring a few cycles earlier. 5580 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5581 * been accounted, so we're correct here as well. 5582 */ 5583 if (!p->on_cpu || !task_on_rq_queued(p)) 5584 return p->se.sum_exec_runtime; 5585 #endif 5586 5587 rq = task_rq_lock(p, &rf); 5588 /* 5589 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5590 * project cycles that may never be accounted to this 5591 * thread, breaking clock_gettime(). 5592 */ 5593 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5594 prefetch_curr_exec_start(p); 5595 update_rq_clock(rq); 5596 p->sched_class->update_curr(rq); 5597 } 5598 ns = p->se.sum_exec_runtime; 5599 task_rq_unlock(rq, p, &rf); 5600 5601 return ns; 5602 } 5603 5604 static u64 cpu_resched_latency(struct rq *rq) 5605 { 5606 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5607 u64 resched_latency, now = rq_clock(rq); 5608 static bool warned_once; 5609 5610 if (sysctl_resched_latency_warn_once && warned_once) 5611 return 0; 5612 5613 if (!need_resched() || !latency_warn_ms) 5614 return 0; 5615 5616 if (system_state == SYSTEM_BOOTING) 5617 return 0; 5618 5619 if (!rq->last_seen_need_resched_ns) { 5620 rq->last_seen_need_resched_ns = now; 5621 rq->ticks_without_resched = 0; 5622 return 0; 5623 } 5624 5625 rq->ticks_without_resched++; 5626 resched_latency = now - rq->last_seen_need_resched_ns; 5627 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5628 return 0; 5629 5630 warned_once = true; 5631 5632 return resched_latency; 5633 } 5634 5635 static int __init setup_resched_latency_warn_ms(char *str) 5636 { 5637 long val; 5638 5639 if ((kstrtol(str, 0, &val))) { 5640 pr_warn("Unable to set resched_latency_warn_ms\n"); 5641 return 1; 5642 } 5643 5644 sysctl_resched_latency_warn_ms = val; 5645 return 1; 5646 } 5647 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5648 5649 /* 5650 * This function gets called by the timer code, with HZ frequency. 5651 * We call it with interrupts disabled. 5652 */ 5653 void sched_tick(void) 5654 { 5655 int cpu = smp_processor_id(); 5656 struct rq *rq = cpu_rq(cpu); 5657 /* accounting goes to the donor task */ 5658 struct task_struct *donor; 5659 struct rq_flags rf; 5660 unsigned long hw_pressure; 5661 u64 resched_latency; 5662 5663 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5664 arch_scale_freq_tick(); 5665 5666 sched_clock_tick(); 5667 5668 rq_lock(rq, &rf); 5669 donor = rq->donor; 5670 5671 psi_account_irqtime(rq, donor, NULL); 5672 5673 update_rq_clock(rq); 5674 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5675 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5676 5677 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5678 resched_curr(rq); 5679 5680 donor->sched_class->task_tick(rq, donor, 0); 5681 if (sched_feat(LATENCY_WARN)) 5682 resched_latency = cpu_resched_latency(rq); 5683 calc_global_load_tick(rq); 5684 sched_core_tick(rq); 5685 task_tick_mm_cid(rq, donor); 5686 scx_tick(rq); 5687 5688 rq_unlock(rq, &rf); 5689 5690 if (sched_feat(LATENCY_WARN) && resched_latency) 5691 resched_latency_warn(cpu, resched_latency); 5692 5693 perf_event_task_tick(); 5694 5695 if (donor->flags & PF_WQ_WORKER) 5696 wq_worker_tick(donor); 5697 5698 #ifdef CONFIG_SMP 5699 if (!scx_switched_all()) { 5700 rq->idle_balance = idle_cpu(cpu); 5701 sched_balance_trigger(rq); 5702 } 5703 #endif 5704 } 5705 5706 #ifdef CONFIG_NO_HZ_FULL 5707 5708 struct tick_work { 5709 int cpu; 5710 atomic_t state; 5711 struct delayed_work work; 5712 }; 5713 /* Values for ->state, see diagram below. */ 5714 #define TICK_SCHED_REMOTE_OFFLINE 0 5715 #define TICK_SCHED_REMOTE_OFFLINING 1 5716 #define TICK_SCHED_REMOTE_RUNNING 2 5717 5718 /* 5719 * State diagram for ->state: 5720 * 5721 * 5722 * TICK_SCHED_REMOTE_OFFLINE 5723 * | ^ 5724 * | | 5725 * | | sched_tick_remote() 5726 * | | 5727 * | | 5728 * +--TICK_SCHED_REMOTE_OFFLINING 5729 * | ^ 5730 * | | 5731 * sched_tick_start() | | sched_tick_stop() 5732 * | | 5733 * V | 5734 * TICK_SCHED_REMOTE_RUNNING 5735 * 5736 * 5737 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5738 * and sched_tick_start() are happy to leave the state in RUNNING. 5739 */ 5740 5741 static struct tick_work __percpu *tick_work_cpu; 5742 5743 static void sched_tick_remote(struct work_struct *work) 5744 { 5745 struct delayed_work *dwork = to_delayed_work(work); 5746 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5747 int cpu = twork->cpu; 5748 struct rq *rq = cpu_rq(cpu); 5749 int os; 5750 5751 /* 5752 * Handle the tick only if it appears the remote CPU is running in full 5753 * dynticks mode. The check is racy by nature, but missing a tick or 5754 * having one too much is no big deal because the scheduler tick updates 5755 * statistics and checks timeslices in a time-independent way, regardless 5756 * of when exactly it is running. 5757 */ 5758 if (tick_nohz_tick_stopped_cpu(cpu)) { 5759 guard(rq_lock_irq)(rq); 5760 struct task_struct *curr = rq->curr; 5761 5762 if (cpu_online(cpu)) { 5763 /* 5764 * Since this is a remote tick for full dynticks mode, 5765 * we are always sure that there is no proxy (only a 5766 * single task is running). 5767 */ 5768 WARN_ON_ONCE(rq->curr != rq->donor); 5769 update_rq_clock(rq); 5770 5771 if (!is_idle_task(curr)) { 5772 /* 5773 * Make sure the next tick runs within a 5774 * reasonable amount of time. 5775 */ 5776 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5777 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5778 } 5779 curr->sched_class->task_tick(rq, curr, 0); 5780 5781 calc_load_nohz_remote(rq); 5782 } 5783 } 5784 5785 /* 5786 * Run the remote tick once per second (1Hz). This arbitrary 5787 * frequency is large enough to avoid overload but short enough 5788 * to keep scheduler internal stats reasonably up to date. But 5789 * first update state to reflect hotplug activity if required. 5790 */ 5791 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5792 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5793 if (os == TICK_SCHED_REMOTE_RUNNING) 5794 queue_delayed_work(system_unbound_wq, dwork, HZ); 5795 } 5796 5797 static void sched_tick_start(int cpu) 5798 { 5799 int os; 5800 struct tick_work *twork; 5801 5802 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5803 return; 5804 5805 WARN_ON_ONCE(!tick_work_cpu); 5806 5807 twork = per_cpu_ptr(tick_work_cpu, cpu); 5808 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5809 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5810 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5811 twork->cpu = cpu; 5812 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5813 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5814 } 5815 } 5816 5817 #ifdef CONFIG_HOTPLUG_CPU 5818 static void sched_tick_stop(int cpu) 5819 { 5820 struct tick_work *twork; 5821 int os; 5822 5823 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5824 return; 5825 5826 WARN_ON_ONCE(!tick_work_cpu); 5827 5828 twork = per_cpu_ptr(tick_work_cpu, cpu); 5829 /* There cannot be competing actions, but don't rely on stop-machine. */ 5830 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5831 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5832 /* Don't cancel, as this would mess up the state machine. */ 5833 } 5834 #endif /* CONFIG_HOTPLUG_CPU */ 5835 5836 int __init sched_tick_offload_init(void) 5837 { 5838 tick_work_cpu = alloc_percpu(struct tick_work); 5839 BUG_ON(!tick_work_cpu); 5840 return 0; 5841 } 5842 5843 #else /* !CONFIG_NO_HZ_FULL */ 5844 static inline void sched_tick_start(int cpu) { } 5845 static inline void sched_tick_stop(int cpu) { } 5846 #endif 5847 5848 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5849 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5850 /* 5851 * If the value passed in is equal to the current preempt count 5852 * then we just disabled preemption. Start timing the latency. 5853 */ 5854 static inline void preempt_latency_start(int val) 5855 { 5856 if (preempt_count() == val) { 5857 unsigned long ip = get_lock_parent_ip(); 5858 #ifdef CONFIG_DEBUG_PREEMPT 5859 current->preempt_disable_ip = ip; 5860 #endif 5861 trace_preempt_off(CALLER_ADDR0, ip); 5862 } 5863 } 5864 5865 void preempt_count_add(int val) 5866 { 5867 #ifdef CONFIG_DEBUG_PREEMPT 5868 /* 5869 * Underflow? 5870 */ 5871 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5872 return; 5873 #endif 5874 __preempt_count_add(val); 5875 #ifdef CONFIG_DEBUG_PREEMPT 5876 /* 5877 * Spinlock count overflowing soon? 5878 */ 5879 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5880 PREEMPT_MASK - 10); 5881 #endif 5882 preempt_latency_start(val); 5883 } 5884 EXPORT_SYMBOL(preempt_count_add); 5885 NOKPROBE_SYMBOL(preempt_count_add); 5886 5887 /* 5888 * If the value passed in equals to the current preempt count 5889 * then we just enabled preemption. Stop timing the latency. 5890 */ 5891 static inline void preempt_latency_stop(int val) 5892 { 5893 if (preempt_count() == val) 5894 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5895 } 5896 5897 void preempt_count_sub(int val) 5898 { 5899 #ifdef CONFIG_DEBUG_PREEMPT 5900 /* 5901 * Underflow? 5902 */ 5903 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5904 return; 5905 /* 5906 * Is the spinlock portion underflowing? 5907 */ 5908 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5909 !(preempt_count() & PREEMPT_MASK))) 5910 return; 5911 #endif 5912 5913 preempt_latency_stop(val); 5914 __preempt_count_sub(val); 5915 } 5916 EXPORT_SYMBOL(preempt_count_sub); 5917 NOKPROBE_SYMBOL(preempt_count_sub); 5918 5919 #else 5920 static inline void preempt_latency_start(int val) { } 5921 static inline void preempt_latency_stop(int val) { } 5922 #endif 5923 5924 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5925 { 5926 #ifdef CONFIG_DEBUG_PREEMPT 5927 return p->preempt_disable_ip; 5928 #else 5929 return 0; 5930 #endif 5931 } 5932 5933 /* 5934 * Print scheduling while atomic bug: 5935 */ 5936 static noinline void __schedule_bug(struct task_struct *prev) 5937 { 5938 /* Save this before calling printk(), since that will clobber it */ 5939 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5940 5941 if (oops_in_progress) 5942 return; 5943 5944 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5945 prev->comm, prev->pid, preempt_count()); 5946 5947 debug_show_held_locks(prev); 5948 print_modules(); 5949 if (irqs_disabled()) 5950 print_irqtrace_events(prev); 5951 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5952 pr_err("Preemption disabled at:"); 5953 print_ip_sym(KERN_ERR, preempt_disable_ip); 5954 } 5955 check_panic_on_warn("scheduling while atomic"); 5956 5957 dump_stack(); 5958 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5959 } 5960 5961 /* 5962 * Various schedule()-time debugging checks and statistics: 5963 */ 5964 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5965 { 5966 #ifdef CONFIG_SCHED_STACK_END_CHECK 5967 if (task_stack_end_corrupted(prev)) 5968 panic("corrupted stack end detected inside scheduler\n"); 5969 5970 if (task_scs_end_corrupted(prev)) 5971 panic("corrupted shadow stack detected inside scheduler\n"); 5972 #endif 5973 5974 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5975 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5976 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5977 prev->comm, prev->pid, prev->non_block_count); 5978 dump_stack(); 5979 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5980 } 5981 #endif 5982 5983 if (unlikely(in_atomic_preempt_off())) { 5984 __schedule_bug(prev); 5985 preempt_count_set(PREEMPT_DISABLED); 5986 } 5987 rcu_sleep_check(); 5988 WARN_ON_ONCE(ct_state() == CT_STATE_USER); 5989 5990 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5991 5992 schedstat_inc(this_rq()->sched_count); 5993 } 5994 5995 static void prev_balance(struct rq *rq, struct task_struct *prev, 5996 struct rq_flags *rf) 5997 { 5998 const struct sched_class *start_class = prev->sched_class; 5999 const struct sched_class *class; 6000 6001 #ifdef CONFIG_SCHED_CLASS_EXT 6002 /* 6003 * SCX requires a balance() call before every pick_task() including when 6004 * waking up from SCHED_IDLE. If @start_class is below SCX, start from 6005 * SCX instead. Also, set a flag to detect missing balance() call. 6006 */ 6007 if (scx_enabled()) { 6008 rq->scx.flags |= SCX_RQ_BAL_PENDING; 6009 if (sched_class_above(&ext_sched_class, start_class)) 6010 start_class = &ext_sched_class; 6011 } 6012 #endif 6013 6014 /* 6015 * We must do the balancing pass before put_prev_task(), such 6016 * that when we release the rq->lock the task is in the same 6017 * state as before we took rq->lock. 6018 * 6019 * We can terminate the balance pass as soon as we know there is 6020 * a runnable task of @class priority or higher. 6021 */ 6022 for_active_class_range(class, start_class, &idle_sched_class) { 6023 if (class->balance && class->balance(rq, prev, rf)) 6024 break; 6025 } 6026 } 6027 6028 /* 6029 * Pick up the highest-prio task: 6030 */ 6031 static inline struct task_struct * 6032 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6033 { 6034 const struct sched_class *class; 6035 struct task_struct *p; 6036 6037 rq->dl_server = NULL; 6038 6039 if (scx_enabled()) 6040 goto restart; 6041 6042 /* 6043 * Optimization: we know that if all tasks are in the fair class we can 6044 * call that function directly, but only if the @prev task wasn't of a 6045 * higher scheduling class, because otherwise those lose the 6046 * opportunity to pull in more work from other CPUs. 6047 */ 6048 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 6049 rq->nr_running == rq->cfs.h_nr_queued)) { 6050 6051 p = pick_next_task_fair(rq, prev, rf); 6052 if (unlikely(p == RETRY_TASK)) 6053 goto restart; 6054 6055 /* Assume the next prioritized class is idle_sched_class */ 6056 if (!p) { 6057 p = pick_task_idle(rq); 6058 put_prev_set_next_task(rq, prev, p); 6059 } 6060 6061 return p; 6062 } 6063 6064 restart: 6065 prev_balance(rq, prev, rf); 6066 6067 for_each_active_class(class) { 6068 if (class->pick_next_task) { 6069 p = class->pick_next_task(rq, prev); 6070 if (p) 6071 return p; 6072 } else { 6073 p = class->pick_task(rq); 6074 if (p) { 6075 put_prev_set_next_task(rq, prev, p); 6076 return p; 6077 } 6078 } 6079 } 6080 6081 BUG(); /* The idle class should always have a runnable task. */ 6082 } 6083 6084 #ifdef CONFIG_SCHED_CORE 6085 static inline bool is_task_rq_idle(struct task_struct *t) 6086 { 6087 return (task_rq(t)->idle == t); 6088 } 6089 6090 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 6091 { 6092 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6093 } 6094 6095 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6096 { 6097 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6098 return true; 6099 6100 return a->core_cookie == b->core_cookie; 6101 } 6102 6103 static inline struct task_struct *pick_task(struct rq *rq) 6104 { 6105 const struct sched_class *class; 6106 struct task_struct *p; 6107 6108 rq->dl_server = NULL; 6109 6110 for_each_active_class(class) { 6111 p = class->pick_task(rq); 6112 if (p) 6113 return p; 6114 } 6115 6116 BUG(); /* The idle class should always have a runnable task. */ 6117 } 6118 6119 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6120 6121 static void queue_core_balance(struct rq *rq); 6122 6123 static struct task_struct * 6124 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6125 { 6126 struct task_struct *next, *p, *max = NULL; 6127 const struct cpumask *smt_mask; 6128 bool fi_before = false; 6129 bool core_clock_updated = (rq == rq->core); 6130 unsigned long cookie; 6131 int i, cpu, occ = 0; 6132 struct rq *rq_i; 6133 bool need_sync; 6134 6135 if (!sched_core_enabled(rq)) 6136 return __pick_next_task(rq, prev, rf); 6137 6138 cpu = cpu_of(rq); 6139 6140 /* Stopper task is switching into idle, no need core-wide selection. */ 6141 if (cpu_is_offline(cpu)) { 6142 /* 6143 * Reset core_pick so that we don't enter the fastpath when 6144 * coming online. core_pick would already be migrated to 6145 * another cpu during offline. 6146 */ 6147 rq->core_pick = NULL; 6148 rq->core_dl_server = NULL; 6149 return __pick_next_task(rq, prev, rf); 6150 } 6151 6152 /* 6153 * If there were no {en,de}queues since we picked (IOW, the task 6154 * pointers are all still valid), and we haven't scheduled the last 6155 * pick yet, do so now. 6156 * 6157 * rq->core_pick can be NULL if no selection was made for a CPU because 6158 * it was either offline or went offline during a sibling's core-wide 6159 * selection. In this case, do a core-wide selection. 6160 */ 6161 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6162 rq->core->core_pick_seq != rq->core_sched_seq && 6163 rq->core_pick) { 6164 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6165 6166 next = rq->core_pick; 6167 rq->dl_server = rq->core_dl_server; 6168 rq->core_pick = NULL; 6169 rq->core_dl_server = NULL; 6170 goto out_set_next; 6171 } 6172 6173 prev_balance(rq, prev, rf); 6174 6175 smt_mask = cpu_smt_mask(cpu); 6176 need_sync = !!rq->core->core_cookie; 6177 6178 /* reset state */ 6179 rq->core->core_cookie = 0UL; 6180 if (rq->core->core_forceidle_count) { 6181 if (!core_clock_updated) { 6182 update_rq_clock(rq->core); 6183 core_clock_updated = true; 6184 } 6185 sched_core_account_forceidle(rq); 6186 /* reset after accounting force idle */ 6187 rq->core->core_forceidle_start = 0; 6188 rq->core->core_forceidle_count = 0; 6189 rq->core->core_forceidle_occupation = 0; 6190 need_sync = true; 6191 fi_before = true; 6192 } 6193 6194 /* 6195 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6196 * 6197 * @task_seq guards the task state ({en,de}queues) 6198 * @pick_seq is the @task_seq we did a selection on 6199 * @sched_seq is the @pick_seq we scheduled 6200 * 6201 * However, preemptions can cause multiple picks on the same task set. 6202 * 'Fix' this by also increasing @task_seq for every pick. 6203 */ 6204 rq->core->core_task_seq++; 6205 6206 /* 6207 * Optimize for common case where this CPU has no cookies 6208 * and there are no cookied tasks running on siblings. 6209 */ 6210 if (!need_sync) { 6211 next = pick_task(rq); 6212 if (!next->core_cookie) { 6213 rq->core_pick = NULL; 6214 rq->core_dl_server = NULL; 6215 /* 6216 * For robustness, update the min_vruntime_fi for 6217 * unconstrained picks as well. 6218 */ 6219 WARN_ON_ONCE(fi_before); 6220 task_vruntime_update(rq, next, false); 6221 goto out_set_next; 6222 } 6223 } 6224 6225 /* 6226 * For each thread: do the regular task pick and find the max prio task 6227 * amongst them. 6228 * 6229 * Tie-break prio towards the current CPU 6230 */ 6231 for_each_cpu_wrap(i, smt_mask, cpu) { 6232 rq_i = cpu_rq(i); 6233 6234 /* 6235 * Current cpu always has its clock updated on entrance to 6236 * pick_next_task(). If the current cpu is not the core, 6237 * the core may also have been updated above. 6238 */ 6239 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6240 update_rq_clock(rq_i); 6241 6242 rq_i->core_pick = p = pick_task(rq_i); 6243 rq_i->core_dl_server = rq_i->dl_server; 6244 6245 if (!max || prio_less(max, p, fi_before)) 6246 max = p; 6247 } 6248 6249 cookie = rq->core->core_cookie = max->core_cookie; 6250 6251 /* 6252 * For each thread: try and find a runnable task that matches @max or 6253 * force idle. 6254 */ 6255 for_each_cpu(i, smt_mask) { 6256 rq_i = cpu_rq(i); 6257 p = rq_i->core_pick; 6258 6259 if (!cookie_equals(p, cookie)) { 6260 p = NULL; 6261 if (cookie) 6262 p = sched_core_find(rq_i, cookie); 6263 if (!p) 6264 p = idle_sched_class.pick_task(rq_i); 6265 } 6266 6267 rq_i->core_pick = p; 6268 rq_i->core_dl_server = NULL; 6269 6270 if (p == rq_i->idle) { 6271 if (rq_i->nr_running) { 6272 rq->core->core_forceidle_count++; 6273 if (!fi_before) 6274 rq->core->core_forceidle_seq++; 6275 } 6276 } else { 6277 occ++; 6278 } 6279 } 6280 6281 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6282 rq->core->core_forceidle_start = rq_clock(rq->core); 6283 rq->core->core_forceidle_occupation = occ; 6284 } 6285 6286 rq->core->core_pick_seq = rq->core->core_task_seq; 6287 next = rq->core_pick; 6288 rq->core_sched_seq = rq->core->core_pick_seq; 6289 6290 /* Something should have been selected for current CPU */ 6291 WARN_ON_ONCE(!next); 6292 6293 /* 6294 * Reschedule siblings 6295 * 6296 * NOTE: L1TF -- at this point we're no longer running the old task and 6297 * sending an IPI (below) ensures the sibling will no longer be running 6298 * their task. This ensures there is no inter-sibling overlap between 6299 * non-matching user state. 6300 */ 6301 for_each_cpu(i, smt_mask) { 6302 rq_i = cpu_rq(i); 6303 6304 /* 6305 * An online sibling might have gone offline before a task 6306 * could be picked for it, or it might be offline but later 6307 * happen to come online, but its too late and nothing was 6308 * picked for it. That's Ok - it will pick tasks for itself, 6309 * so ignore it. 6310 */ 6311 if (!rq_i->core_pick) 6312 continue; 6313 6314 /* 6315 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6316 * fi_before fi update? 6317 * 0 0 1 6318 * 0 1 1 6319 * 1 0 1 6320 * 1 1 0 6321 */ 6322 if (!(fi_before && rq->core->core_forceidle_count)) 6323 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6324 6325 rq_i->core_pick->core_occupation = occ; 6326 6327 if (i == cpu) { 6328 rq_i->core_pick = NULL; 6329 rq_i->core_dl_server = NULL; 6330 continue; 6331 } 6332 6333 /* Did we break L1TF mitigation requirements? */ 6334 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6335 6336 if (rq_i->curr == rq_i->core_pick) { 6337 rq_i->core_pick = NULL; 6338 rq_i->core_dl_server = NULL; 6339 continue; 6340 } 6341 6342 resched_curr(rq_i); 6343 } 6344 6345 out_set_next: 6346 put_prev_set_next_task(rq, prev, next); 6347 if (rq->core->core_forceidle_count && next == rq->idle) 6348 queue_core_balance(rq); 6349 6350 return next; 6351 } 6352 6353 static bool try_steal_cookie(int this, int that) 6354 { 6355 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6356 struct task_struct *p; 6357 unsigned long cookie; 6358 bool success = false; 6359 6360 guard(irq)(); 6361 guard(double_rq_lock)(dst, src); 6362 6363 cookie = dst->core->core_cookie; 6364 if (!cookie) 6365 return false; 6366 6367 if (dst->curr != dst->idle) 6368 return false; 6369 6370 p = sched_core_find(src, cookie); 6371 if (!p) 6372 return false; 6373 6374 do { 6375 if (p == src->core_pick || p == src->curr) 6376 goto next; 6377 6378 if (!is_cpu_allowed(p, this)) 6379 goto next; 6380 6381 if (p->core_occupation > dst->idle->core_occupation) 6382 goto next; 6383 /* 6384 * sched_core_find() and sched_core_next() will ensure 6385 * that task @p is not throttled now, we also need to 6386 * check whether the runqueue of the destination CPU is 6387 * being throttled. 6388 */ 6389 if (sched_task_is_throttled(p, this)) 6390 goto next; 6391 6392 move_queued_task_locked(src, dst, p); 6393 resched_curr(dst); 6394 6395 success = true; 6396 break; 6397 6398 next: 6399 p = sched_core_next(p, cookie); 6400 } while (p); 6401 6402 return success; 6403 } 6404 6405 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6406 { 6407 int i; 6408 6409 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6410 if (i == cpu) 6411 continue; 6412 6413 if (need_resched()) 6414 break; 6415 6416 if (try_steal_cookie(cpu, i)) 6417 return true; 6418 } 6419 6420 return false; 6421 } 6422 6423 static void sched_core_balance(struct rq *rq) 6424 { 6425 struct sched_domain *sd; 6426 int cpu = cpu_of(rq); 6427 6428 guard(preempt)(); 6429 guard(rcu)(); 6430 6431 raw_spin_rq_unlock_irq(rq); 6432 for_each_domain(cpu, sd) { 6433 if (need_resched()) 6434 break; 6435 6436 if (steal_cookie_task(cpu, sd)) 6437 break; 6438 } 6439 raw_spin_rq_lock_irq(rq); 6440 } 6441 6442 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6443 6444 static void queue_core_balance(struct rq *rq) 6445 { 6446 if (!sched_core_enabled(rq)) 6447 return; 6448 6449 if (!rq->core->core_cookie) 6450 return; 6451 6452 if (!rq->nr_running) /* not forced idle */ 6453 return; 6454 6455 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6456 } 6457 6458 DEFINE_LOCK_GUARD_1(core_lock, int, 6459 sched_core_lock(*_T->lock, &_T->flags), 6460 sched_core_unlock(*_T->lock, &_T->flags), 6461 unsigned long flags) 6462 6463 static void sched_core_cpu_starting(unsigned int cpu) 6464 { 6465 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6466 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6467 int t; 6468 6469 guard(core_lock)(&cpu); 6470 6471 WARN_ON_ONCE(rq->core != rq); 6472 6473 /* if we're the first, we'll be our own leader */ 6474 if (cpumask_weight(smt_mask) == 1) 6475 return; 6476 6477 /* find the leader */ 6478 for_each_cpu(t, smt_mask) { 6479 if (t == cpu) 6480 continue; 6481 rq = cpu_rq(t); 6482 if (rq->core == rq) { 6483 core_rq = rq; 6484 break; 6485 } 6486 } 6487 6488 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6489 return; 6490 6491 /* install and validate core_rq */ 6492 for_each_cpu(t, smt_mask) { 6493 rq = cpu_rq(t); 6494 6495 if (t == cpu) 6496 rq->core = core_rq; 6497 6498 WARN_ON_ONCE(rq->core != core_rq); 6499 } 6500 } 6501 6502 static void sched_core_cpu_deactivate(unsigned int cpu) 6503 { 6504 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6505 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6506 int t; 6507 6508 guard(core_lock)(&cpu); 6509 6510 /* if we're the last man standing, nothing to do */ 6511 if (cpumask_weight(smt_mask) == 1) { 6512 WARN_ON_ONCE(rq->core != rq); 6513 return; 6514 } 6515 6516 /* if we're not the leader, nothing to do */ 6517 if (rq->core != rq) 6518 return; 6519 6520 /* find a new leader */ 6521 for_each_cpu(t, smt_mask) { 6522 if (t == cpu) 6523 continue; 6524 core_rq = cpu_rq(t); 6525 break; 6526 } 6527 6528 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6529 return; 6530 6531 /* copy the shared state to the new leader */ 6532 core_rq->core_task_seq = rq->core_task_seq; 6533 core_rq->core_pick_seq = rq->core_pick_seq; 6534 core_rq->core_cookie = rq->core_cookie; 6535 core_rq->core_forceidle_count = rq->core_forceidle_count; 6536 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6537 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6538 6539 /* 6540 * Accounting edge for forced idle is handled in pick_next_task(). 6541 * Don't need another one here, since the hotplug thread shouldn't 6542 * have a cookie. 6543 */ 6544 core_rq->core_forceidle_start = 0; 6545 6546 /* install new leader */ 6547 for_each_cpu(t, smt_mask) { 6548 rq = cpu_rq(t); 6549 rq->core = core_rq; 6550 } 6551 } 6552 6553 static inline void sched_core_cpu_dying(unsigned int cpu) 6554 { 6555 struct rq *rq = cpu_rq(cpu); 6556 6557 if (rq->core != rq) 6558 rq->core = rq; 6559 } 6560 6561 #else /* !CONFIG_SCHED_CORE */ 6562 6563 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6564 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6565 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6566 6567 static struct task_struct * 6568 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6569 { 6570 return __pick_next_task(rq, prev, rf); 6571 } 6572 6573 #endif /* CONFIG_SCHED_CORE */ 6574 6575 /* 6576 * Constants for the sched_mode argument of __schedule(). 6577 * 6578 * The mode argument allows RT enabled kernels to differentiate a 6579 * preemption from blocking on an 'sleeping' spin/rwlock. 6580 */ 6581 #define SM_IDLE (-1) 6582 #define SM_NONE 0 6583 #define SM_PREEMPT 1 6584 #define SM_RTLOCK_WAIT 2 6585 6586 /* 6587 * Helper function for __schedule() 6588 * 6589 * If a task does not have signals pending, deactivate it 6590 * Otherwise marks the task's __state as RUNNING 6591 */ 6592 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6593 unsigned long *task_state_p) 6594 { 6595 unsigned long task_state = *task_state_p; 6596 int flags = DEQUEUE_NOCLOCK; 6597 6598 if (signal_pending_state(task_state, p)) { 6599 WRITE_ONCE(p->__state, TASK_RUNNING); 6600 *task_state_p = TASK_RUNNING; 6601 return false; 6602 } 6603 6604 p->sched_contributes_to_load = 6605 (task_state & TASK_UNINTERRUPTIBLE) && 6606 !(task_state & TASK_NOLOAD) && 6607 !(task_state & TASK_FROZEN); 6608 6609 if (unlikely(is_special_task_state(task_state))) 6610 flags |= DEQUEUE_SPECIAL; 6611 6612 /* 6613 * __schedule() ttwu() 6614 * prev_state = prev->state; if (p->on_rq && ...) 6615 * if (prev_state) goto out; 6616 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6617 * p->state = TASK_WAKING 6618 * 6619 * Where __schedule() and ttwu() have matching control dependencies. 6620 * 6621 * After this, schedule() must not care about p->state any more. 6622 */ 6623 block_task(rq, p, flags); 6624 return true; 6625 } 6626 6627 /* 6628 * __schedule() is the main scheduler function. 6629 * 6630 * The main means of driving the scheduler and thus entering this function are: 6631 * 6632 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6633 * 6634 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6635 * paths. For example, see arch/x86/entry_64.S. 6636 * 6637 * To drive preemption between tasks, the scheduler sets the flag in timer 6638 * interrupt handler sched_tick(). 6639 * 6640 * 3. Wakeups don't really cause entry into schedule(). They add a 6641 * task to the run-queue and that's it. 6642 * 6643 * Now, if the new task added to the run-queue preempts the current 6644 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6645 * called on the nearest possible occasion: 6646 * 6647 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6648 * 6649 * - in syscall or exception context, at the next outmost 6650 * preempt_enable(). (this might be as soon as the wake_up()'s 6651 * spin_unlock()!) 6652 * 6653 * - in IRQ context, return from interrupt-handler to 6654 * preemptible context 6655 * 6656 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6657 * then at the next: 6658 * 6659 * - cond_resched() call 6660 * - explicit schedule() call 6661 * - return from syscall or exception to user-space 6662 * - return from interrupt-handler to user-space 6663 * 6664 * WARNING: must be called with preemption disabled! 6665 */ 6666 static void __sched notrace __schedule(int sched_mode) 6667 { 6668 struct task_struct *prev, *next; 6669 /* 6670 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6671 * as a preemption by schedule_debug() and RCU. 6672 */ 6673 bool preempt = sched_mode > SM_NONE; 6674 bool is_switch = false; 6675 unsigned long *switch_count; 6676 unsigned long prev_state; 6677 struct rq_flags rf; 6678 struct rq *rq; 6679 int cpu; 6680 6681 trace_sched_entry_tp(preempt, CALLER_ADDR0); 6682 6683 cpu = smp_processor_id(); 6684 rq = cpu_rq(cpu); 6685 prev = rq->curr; 6686 6687 schedule_debug(prev, preempt); 6688 6689 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6690 hrtick_clear(rq); 6691 6692 klp_sched_try_switch(prev); 6693 6694 local_irq_disable(); 6695 rcu_note_context_switch(preempt); 6696 6697 /* 6698 * Make sure that signal_pending_state()->signal_pending() below 6699 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6700 * done by the caller to avoid the race with signal_wake_up(): 6701 * 6702 * __set_current_state(@state) signal_wake_up() 6703 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6704 * wake_up_state(p, state) 6705 * LOCK rq->lock LOCK p->pi_state 6706 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6707 * if (signal_pending_state()) if (p->state & @state) 6708 * 6709 * Also, the membarrier system call requires a full memory barrier 6710 * after coming from user-space, before storing to rq->curr; this 6711 * barrier matches a full barrier in the proximity of the membarrier 6712 * system call exit. 6713 */ 6714 rq_lock(rq, &rf); 6715 smp_mb__after_spinlock(); 6716 6717 /* Promote REQ to ACT */ 6718 rq->clock_update_flags <<= 1; 6719 update_rq_clock(rq); 6720 rq->clock_update_flags = RQCF_UPDATED; 6721 6722 switch_count = &prev->nivcsw; 6723 6724 /* Task state changes only considers SM_PREEMPT as preemption */ 6725 preempt = sched_mode == SM_PREEMPT; 6726 6727 /* 6728 * We must load prev->state once (task_struct::state is volatile), such 6729 * that we form a control dependency vs deactivate_task() below. 6730 */ 6731 prev_state = READ_ONCE(prev->__state); 6732 if (sched_mode == SM_IDLE) { 6733 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6734 if (!rq->nr_running && !scx_enabled()) { 6735 next = prev; 6736 goto picked; 6737 } 6738 } else if (!preempt && prev_state) { 6739 try_to_block_task(rq, prev, &prev_state); 6740 switch_count = &prev->nvcsw; 6741 } 6742 6743 next = pick_next_task(rq, prev, &rf); 6744 rq_set_donor(rq, next); 6745 picked: 6746 clear_tsk_need_resched(prev); 6747 clear_preempt_need_resched(); 6748 rq->last_seen_need_resched_ns = 0; 6749 6750 is_switch = prev != next; 6751 if (likely(is_switch)) { 6752 rq->nr_switches++; 6753 /* 6754 * RCU users of rcu_dereference(rq->curr) may not see 6755 * changes to task_struct made by pick_next_task(). 6756 */ 6757 RCU_INIT_POINTER(rq->curr, next); 6758 /* 6759 * The membarrier system call requires each architecture 6760 * to have a full memory barrier after updating 6761 * rq->curr, before returning to user-space. 6762 * 6763 * Here are the schemes providing that barrier on the 6764 * various architectures: 6765 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6766 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6767 * on PowerPC and on RISC-V. 6768 * - finish_lock_switch() for weakly-ordered 6769 * architectures where spin_unlock is a full barrier, 6770 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6771 * is a RELEASE barrier), 6772 * 6773 * The barrier matches a full barrier in the proximity of 6774 * the membarrier system call entry. 6775 * 6776 * On RISC-V, this barrier pairing is also needed for the 6777 * SYNC_CORE command when switching between processes, cf. 6778 * the inline comments in membarrier_arch_switch_mm(). 6779 */ 6780 ++*switch_count; 6781 6782 migrate_disable_switch(rq, prev); 6783 psi_account_irqtime(rq, prev, next); 6784 psi_sched_switch(prev, next, !task_on_rq_queued(prev) || 6785 prev->se.sched_delayed); 6786 6787 trace_sched_switch(preempt, prev, next, prev_state); 6788 6789 /* Also unlocks the rq: */ 6790 rq = context_switch(rq, prev, next, &rf); 6791 } else { 6792 rq_unpin_lock(rq, &rf); 6793 __balance_callbacks(rq); 6794 raw_spin_rq_unlock_irq(rq); 6795 } 6796 trace_sched_exit_tp(is_switch, CALLER_ADDR0); 6797 } 6798 6799 void __noreturn do_task_dead(void) 6800 { 6801 /* Causes final put_task_struct in finish_task_switch(): */ 6802 set_special_state(TASK_DEAD); 6803 6804 /* Tell freezer to ignore us: */ 6805 current->flags |= PF_NOFREEZE; 6806 6807 __schedule(SM_NONE); 6808 BUG(); 6809 6810 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6811 for (;;) 6812 cpu_relax(); 6813 } 6814 6815 static inline void sched_submit_work(struct task_struct *tsk) 6816 { 6817 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6818 unsigned int task_flags; 6819 6820 /* 6821 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6822 * will use a blocking primitive -- which would lead to recursion. 6823 */ 6824 lock_map_acquire_try(&sched_map); 6825 6826 task_flags = tsk->flags; 6827 /* 6828 * If a worker goes to sleep, notify and ask workqueue whether it 6829 * wants to wake up a task to maintain concurrency. 6830 */ 6831 if (task_flags & PF_WQ_WORKER) 6832 wq_worker_sleeping(tsk); 6833 else if (task_flags & PF_IO_WORKER) 6834 io_wq_worker_sleeping(tsk); 6835 6836 /* 6837 * spinlock and rwlock must not flush block requests. This will 6838 * deadlock if the callback attempts to acquire a lock which is 6839 * already acquired. 6840 */ 6841 WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); 6842 6843 /* 6844 * If we are going to sleep and we have plugged IO queued, 6845 * make sure to submit it to avoid deadlocks. 6846 */ 6847 blk_flush_plug(tsk->plug, true); 6848 6849 lock_map_release(&sched_map); 6850 } 6851 6852 static void sched_update_worker(struct task_struct *tsk) 6853 { 6854 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6855 if (tsk->flags & PF_BLOCK_TS) 6856 blk_plug_invalidate_ts(tsk); 6857 if (tsk->flags & PF_WQ_WORKER) 6858 wq_worker_running(tsk); 6859 else if (tsk->flags & PF_IO_WORKER) 6860 io_wq_worker_running(tsk); 6861 } 6862 } 6863 6864 static __always_inline void __schedule_loop(int sched_mode) 6865 { 6866 do { 6867 preempt_disable(); 6868 __schedule(sched_mode); 6869 sched_preempt_enable_no_resched(); 6870 } while (need_resched()); 6871 } 6872 6873 asmlinkage __visible void __sched schedule(void) 6874 { 6875 struct task_struct *tsk = current; 6876 6877 #ifdef CONFIG_RT_MUTEXES 6878 lockdep_assert(!tsk->sched_rt_mutex); 6879 #endif 6880 6881 if (!task_is_running(tsk)) 6882 sched_submit_work(tsk); 6883 __schedule_loop(SM_NONE); 6884 sched_update_worker(tsk); 6885 } 6886 EXPORT_SYMBOL(schedule); 6887 6888 /* 6889 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6890 * state (have scheduled out non-voluntarily) by making sure that all 6891 * tasks have either left the run queue or have gone into user space. 6892 * As idle tasks do not do either, they must not ever be preempted 6893 * (schedule out non-voluntarily). 6894 * 6895 * schedule_idle() is similar to schedule_preempt_disable() except that it 6896 * never enables preemption because it does not call sched_submit_work(). 6897 */ 6898 void __sched schedule_idle(void) 6899 { 6900 /* 6901 * As this skips calling sched_submit_work(), which the idle task does 6902 * regardless because that function is a NOP when the task is in a 6903 * TASK_RUNNING state, make sure this isn't used someplace that the 6904 * current task can be in any other state. Note, idle is always in the 6905 * TASK_RUNNING state. 6906 */ 6907 WARN_ON_ONCE(current->__state); 6908 do { 6909 __schedule(SM_IDLE); 6910 } while (need_resched()); 6911 } 6912 6913 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6914 asmlinkage __visible void __sched schedule_user(void) 6915 { 6916 /* 6917 * If we come here after a random call to set_need_resched(), 6918 * or we have been woken up remotely but the IPI has not yet arrived, 6919 * we haven't yet exited the RCU idle mode. Do it here manually until 6920 * we find a better solution. 6921 * 6922 * NB: There are buggy callers of this function. Ideally we 6923 * should warn if prev_state != CT_STATE_USER, but that will trigger 6924 * too frequently to make sense yet. 6925 */ 6926 enum ctx_state prev_state = exception_enter(); 6927 schedule(); 6928 exception_exit(prev_state); 6929 } 6930 #endif 6931 6932 /** 6933 * schedule_preempt_disabled - called with preemption disabled 6934 * 6935 * Returns with preemption disabled. Note: preempt_count must be 1 6936 */ 6937 void __sched schedule_preempt_disabled(void) 6938 { 6939 sched_preempt_enable_no_resched(); 6940 schedule(); 6941 preempt_disable(); 6942 } 6943 6944 #ifdef CONFIG_PREEMPT_RT 6945 void __sched notrace schedule_rtlock(void) 6946 { 6947 __schedule_loop(SM_RTLOCK_WAIT); 6948 } 6949 NOKPROBE_SYMBOL(schedule_rtlock); 6950 #endif 6951 6952 static void __sched notrace preempt_schedule_common(void) 6953 { 6954 do { 6955 /* 6956 * Because the function tracer can trace preempt_count_sub() 6957 * and it also uses preempt_enable/disable_notrace(), if 6958 * NEED_RESCHED is set, the preempt_enable_notrace() called 6959 * by the function tracer will call this function again and 6960 * cause infinite recursion. 6961 * 6962 * Preemption must be disabled here before the function 6963 * tracer can trace. Break up preempt_disable() into two 6964 * calls. One to disable preemption without fear of being 6965 * traced. The other to still record the preemption latency, 6966 * which can also be traced by the function tracer. 6967 */ 6968 preempt_disable_notrace(); 6969 preempt_latency_start(1); 6970 __schedule(SM_PREEMPT); 6971 preempt_latency_stop(1); 6972 preempt_enable_no_resched_notrace(); 6973 6974 /* 6975 * Check again in case we missed a preemption opportunity 6976 * between schedule and now. 6977 */ 6978 } while (need_resched()); 6979 } 6980 6981 #ifdef CONFIG_PREEMPTION 6982 /* 6983 * This is the entry point to schedule() from in-kernel preemption 6984 * off of preempt_enable. 6985 */ 6986 asmlinkage __visible void __sched notrace preempt_schedule(void) 6987 { 6988 /* 6989 * If there is a non-zero preempt_count or interrupts are disabled, 6990 * we do not want to preempt the current task. Just return.. 6991 */ 6992 if (likely(!preemptible())) 6993 return; 6994 preempt_schedule_common(); 6995 } 6996 NOKPROBE_SYMBOL(preempt_schedule); 6997 EXPORT_SYMBOL(preempt_schedule); 6998 6999 #ifdef CONFIG_PREEMPT_DYNAMIC 7000 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7001 #ifndef preempt_schedule_dynamic_enabled 7002 #define preempt_schedule_dynamic_enabled preempt_schedule 7003 #define preempt_schedule_dynamic_disabled NULL 7004 #endif 7005 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 7006 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 7007 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7008 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 7009 void __sched notrace dynamic_preempt_schedule(void) 7010 { 7011 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 7012 return; 7013 preempt_schedule(); 7014 } 7015 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 7016 EXPORT_SYMBOL(dynamic_preempt_schedule); 7017 #endif 7018 #endif 7019 7020 /** 7021 * preempt_schedule_notrace - preempt_schedule called by tracing 7022 * 7023 * The tracing infrastructure uses preempt_enable_notrace to prevent 7024 * recursion and tracing preempt enabling caused by the tracing 7025 * infrastructure itself. But as tracing can happen in areas coming 7026 * from userspace or just about to enter userspace, a preempt enable 7027 * can occur before user_exit() is called. This will cause the scheduler 7028 * to be called when the system is still in usermode. 7029 * 7030 * To prevent this, the preempt_enable_notrace will use this function 7031 * instead of preempt_schedule() to exit user context if needed before 7032 * calling the scheduler. 7033 */ 7034 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 7035 { 7036 enum ctx_state prev_ctx; 7037 7038 if (likely(!preemptible())) 7039 return; 7040 7041 do { 7042 /* 7043 * Because the function tracer can trace preempt_count_sub() 7044 * and it also uses preempt_enable/disable_notrace(), if 7045 * NEED_RESCHED is set, the preempt_enable_notrace() called 7046 * by the function tracer will call this function again and 7047 * cause infinite recursion. 7048 * 7049 * Preemption must be disabled here before the function 7050 * tracer can trace. Break up preempt_disable() into two 7051 * calls. One to disable preemption without fear of being 7052 * traced. The other to still record the preemption latency, 7053 * which can also be traced by the function tracer. 7054 */ 7055 preempt_disable_notrace(); 7056 preempt_latency_start(1); 7057 /* 7058 * Needs preempt disabled in case user_exit() is traced 7059 * and the tracer calls preempt_enable_notrace() causing 7060 * an infinite recursion. 7061 */ 7062 prev_ctx = exception_enter(); 7063 __schedule(SM_PREEMPT); 7064 exception_exit(prev_ctx); 7065 7066 preempt_latency_stop(1); 7067 preempt_enable_no_resched_notrace(); 7068 } while (need_resched()); 7069 } 7070 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 7071 7072 #ifdef CONFIG_PREEMPT_DYNAMIC 7073 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7074 #ifndef preempt_schedule_notrace_dynamic_enabled 7075 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 7076 #define preempt_schedule_notrace_dynamic_disabled NULL 7077 #endif 7078 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 7079 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 7080 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7081 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 7082 void __sched notrace dynamic_preempt_schedule_notrace(void) 7083 { 7084 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 7085 return; 7086 preempt_schedule_notrace(); 7087 } 7088 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 7089 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 7090 #endif 7091 #endif 7092 7093 #endif /* CONFIG_PREEMPTION */ 7094 7095 /* 7096 * This is the entry point to schedule() from kernel preemption 7097 * off of IRQ context. 7098 * Note, that this is called and return with IRQs disabled. This will 7099 * protect us against recursive calling from IRQ contexts. 7100 */ 7101 asmlinkage __visible void __sched preempt_schedule_irq(void) 7102 { 7103 enum ctx_state prev_state; 7104 7105 /* Catch callers which need to be fixed */ 7106 BUG_ON(preempt_count() || !irqs_disabled()); 7107 7108 prev_state = exception_enter(); 7109 7110 do { 7111 preempt_disable(); 7112 local_irq_enable(); 7113 __schedule(SM_PREEMPT); 7114 local_irq_disable(); 7115 sched_preempt_enable_no_resched(); 7116 } while (need_resched()); 7117 7118 exception_exit(prev_state); 7119 } 7120 7121 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7122 void *key) 7123 { 7124 WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7125 return try_to_wake_up(curr->private, mode, wake_flags); 7126 } 7127 EXPORT_SYMBOL(default_wake_function); 7128 7129 const struct sched_class *__setscheduler_class(int policy, int prio) 7130 { 7131 if (dl_prio(prio)) 7132 return &dl_sched_class; 7133 7134 if (rt_prio(prio)) 7135 return &rt_sched_class; 7136 7137 #ifdef CONFIG_SCHED_CLASS_EXT 7138 if (task_should_scx(policy)) 7139 return &ext_sched_class; 7140 #endif 7141 7142 return &fair_sched_class; 7143 } 7144 7145 #ifdef CONFIG_RT_MUTEXES 7146 7147 /* 7148 * Would be more useful with typeof()/auto_type but they don't mix with 7149 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7150 * name such that if someone were to implement this function we get to compare 7151 * notes. 7152 */ 7153 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7154 7155 void rt_mutex_pre_schedule(void) 7156 { 7157 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7158 sched_submit_work(current); 7159 } 7160 7161 void rt_mutex_schedule(void) 7162 { 7163 lockdep_assert(current->sched_rt_mutex); 7164 __schedule_loop(SM_NONE); 7165 } 7166 7167 void rt_mutex_post_schedule(void) 7168 { 7169 sched_update_worker(current); 7170 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7171 } 7172 7173 /* 7174 * rt_mutex_setprio - set the current priority of a task 7175 * @p: task to boost 7176 * @pi_task: donor task 7177 * 7178 * This function changes the 'effective' priority of a task. It does 7179 * not touch ->normal_prio like __setscheduler(). 7180 * 7181 * Used by the rt_mutex code to implement priority inheritance 7182 * logic. Call site only calls if the priority of the task changed. 7183 */ 7184 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7185 { 7186 int prio, oldprio, queued, running, queue_flag = 7187 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7188 const struct sched_class *prev_class, *next_class; 7189 struct rq_flags rf; 7190 struct rq *rq; 7191 7192 /* XXX used to be waiter->prio, not waiter->task->prio */ 7193 prio = __rt_effective_prio(pi_task, p->normal_prio); 7194 7195 /* 7196 * If nothing changed; bail early. 7197 */ 7198 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7199 return; 7200 7201 rq = __task_rq_lock(p, &rf); 7202 update_rq_clock(rq); 7203 /* 7204 * Set under pi_lock && rq->lock, such that the value can be used under 7205 * either lock. 7206 * 7207 * Note that there is loads of tricky to make this pointer cache work 7208 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7209 * ensure a task is de-boosted (pi_task is set to NULL) before the 7210 * task is allowed to run again (and can exit). This ensures the pointer 7211 * points to a blocked task -- which guarantees the task is present. 7212 */ 7213 p->pi_top_task = pi_task; 7214 7215 /* 7216 * For FIFO/RR we only need to set prio, if that matches we're done. 7217 */ 7218 if (prio == p->prio && !dl_prio(prio)) 7219 goto out_unlock; 7220 7221 /* 7222 * Idle task boosting is a no-no in general. There is one 7223 * exception, when PREEMPT_RT and NOHZ is active: 7224 * 7225 * The idle task calls get_next_timer_interrupt() and holds 7226 * the timer wheel base->lock on the CPU and another CPU wants 7227 * to access the timer (probably to cancel it). We can safely 7228 * ignore the boosting request, as the idle CPU runs this code 7229 * with interrupts disabled and will complete the lock 7230 * protected section without being interrupted. So there is no 7231 * real need to boost. 7232 */ 7233 if (unlikely(p == rq->idle)) { 7234 WARN_ON(p != rq->curr); 7235 WARN_ON(p->pi_blocked_on); 7236 goto out_unlock; 7237 } 7238 7239 trace_sched_pi_setprio(p, pi_task); 7240 oldprio = p->prio; 7241 7242 if (oldprio == prio) 7243 queue_flag &= ~DEQUEUE_MOVE; 7244 7245 prev_class = p->sched_class; 7246 next_class = __setscheduler_class(p->policy, prio); 7247 7248 if (prev_class != next_class && p->se.sched_delayed) 7249 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 7250 7251 queued = task_on_rq_queued(p); 7252 running = task_current_donor(rq, p); 7253 if (queued) 7254 dequeue_task(rq, p, queue_flag); 7255 if (running) 7256 put_prev_task(rq, p); 7257 7258 /* 7259 * Boosting condition are: 7260 * 1. -rt task is running and holds mutex A 7261 * --> -dl task blocks on mutex A 7262 * 7263 * 2. -dl task is running and holds mutex A 7264 * --> -dl task blocks on mutex A and could preempt the 7265 * running task 7266 */ 7267 if (dl_prio(prio)) { 7268 if (!dl_prio(p->normal_prio) || 7269 (pi_task && dl_prio(pi_task->prio) && 7270 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7271 p->dl.pi_se = pi_task->dl.pi_se; 7272 queue_flag |= ENQUEUE_REPLENISH; 7273 } else { 7274 p->dl.pi_se = &p->dl; 7275 } 7276 } else if (rt_prio(prio)) { 7277 if (dl_prio(oldprio)) 7278 p->dl.pi_se = &p->dl; 7279 if (oldprio < prio) 7280 queue_flag |= ENQUEUE_HEAD; 7281 } else { 7282 if (dl_prio(oldprio)) 7283 p->dl.pi_se = &p->dl; 7284 if (rt_prio(oldprio)) 7285 p->rt.timeout = 0; 7286 } 7287 7288 p->sched_class = next_class; 7289 p->prio = prio; 7290 7291 check_class_changing(rq, p, prev_class); 7292 7293 if (queued) 7294 enqueue_task(rq, p, queue_flag); 7295 if (running) 7296 set_next_task(rq, p); 7297 7298 check_class_changed(rq, p, prev_class, oldprio); 7299 out_unlock: 7300 /* Avoid rq from going away on us: */ 7301 preempt_disable(); 7302 7303 rq_unpin_lock(rq, &rf); 7304 __balance_callbacks(rq); 7305 raw_spin_rq_unlock(rq); 7306 7307 preempt_enable(); 7308 } 7309 #endif 7310 7311 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7312 int __sched __cond_resched(void) 7313 { 7314 if (should_resched(0) && !irqs_disabled()) { 7315 preempt_schedule_common(); 7316 return 1; 7317 } 7318 /* 7319 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick 7320 * whether the current CPU is in an RCU read-side critical section, 7321 * so the tick can report quiescent states even for CPUs looping 7322 * in kernel context. In contrast, in non-preemptible kernels, 7323 * RCU readers leave no in-memory hints, which means that CPU-bound 7324 * processes executing in kernel context might never report an 7325 * RCU quiescent state. Therefore, the following code causes 7326 * cond_resched() to report a quiescent state, but only when RCU 7327 * is in urgent need of one. 7328 * A third case, preemptible, but non-PREEMPT_RCU provides for 7329 * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). 7330 */ 7331 #ifndef CONFIG_PREEMPT_RCU 7332 rcu_all_qs(); 7333 #endif 7334 return 0; 7335 } 7336 EXPORT_SYMBOL(__cond_resched); 7337 #endif 7338 7339 #ifdef CONFIG_PREEMPT_DYNAMIC 7340 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7341 #define cond_resched_dynamic_enabled __cond_resched 7342 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7343 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7344 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7345 7346 #define might_resched_dynamic_enabled __cond_resched 7347 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7348 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7349 EXPORT_STATIC_CALL_TRAMP(might_resched); 7350 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7351 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7352 int __sched dynamic_cond_resched(void) 7353 { 7354 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7355 return 0; 7356 return __cond_resched(); 7357 } 7358 EXPORT_SYMBOL(dynamic_cond_resched); 7359 7360 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7361 int __sched dynamic_might_resched(void) 7362 { 7363 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7364 return 0; 7365 return __cond_resched(); 7366 } 7367 EXPORT_SYMBOL(dynamic_might_resched); 7368 #endif 7369 #endif 7370 7371 /* 7372 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7373 * call schedule, and on return reacquire the lock. 7374 * 7375 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7376 * operations here to prevent schedule() from being called twice (once via 7377 * spin_unlock(), once by hand). 7378 */ 7379 int __cond_resched_lock(spinlock_t *lock) 7380 { 7381 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7382 int ret = 0; 7383 7384 lockdep_assert_held(lock); 7385 7386 if (spin_needbreak(lock) || resched) { 7387 spin_unlock(lock); 7388 if (!_cond_resched()) 7389 cpu_relax(); 7390 ret = 1; 7391 spin_lock(lock); 7392 } 7393 return ret; 7394 } 7395 EXPORT_SYMBOL(__cond_resched_lock); 7396 7397 int __cond_resched_rwlock_read(rwlock_t *lock) 7398 { 7399 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7400 int ret = 0; 7401 7402 lockdep_assert_held_read(lock); 7403 7404 if (rwlock_needbreak(lock) || resched) { 7405 read_unlock(lock); 7406 if (!_cond_resched()) 7407 cpu_relax(); 7408 ret = 1; 7409 read_lock(lock); 7410 } 7411 return ret; 7412 } 7413 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7414 7415 int __cond_resched_rwlock_write(rwlock_t *lock) 7416 { 7417 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7418 int ret = 0; 7419 7420 lockdep_assert_held_write(lock); 7421 7422 if (rwlock_needbreak(lock) || resched) { 7423 write_unlock(lock); 7424 if (!_cond_resched()) 7425 cpu_relax(); 7426 ret = 1; 7427 write_lock(lock); 7428 } 7429 return ret; 7430 } 7431 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7432 7433 #ifdef CONFIG_PREEMPT_DYNAMIC 7434 7435 #ifdef CONFIG_GENERIC_ENTRY 7436 #include <linux/entry-common.h> 7437 #endif 7438 7439 /* 7440 * SC:cond_resched 7441 * SC:might_resched 7442 * SC:preempt_schedule 7443 * SC:preempt_schedule_notrace 7444 * SC:irqentry_exit_cond_resched 7445 * 7446 * 7447 * NONE: 7448 * cond_resched <- __cond_resched 7449 * might_resched <- RET0 7450 * preempt_schedule <- NOP 7451 * preempt_schedule_notrace <- NOP 7452 * irqentry_exit_cond_resched <- NOP 7453 * dynamic_preempt_lazy <- false 7454 * 7455 * VOLUNTARY: 7456 * cond_resched <- __cond_resched 7457 * might_resched <- __cond_resched 7458 * preempt_schedule <- NOP 7459 * preempt_schedule_notrace <- NOP 7460 * irqentry_exit_cond_resched <- NOP 7461 * dynamic_preempt_lazy <- false 7462 * 7463 * FULL: 7464 * cond_resched <- RET0 7465 * might_resched <- RET0 7466 * preempt_schedule <- preempt_schedule 7467 * preempt_schedule_notrace <- preempt_schedule_notrace 7468 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7469 * dynamic_preempt_lazy <- false 7470 * 7471 * LAZY: 7472 * cond_resched <- RET0 7473 * might_resched <- RET0 7474 * preempt_schedule <- preempt_schedule 7475 * preempt_schedule_notrace <- preempt_schedule_notrace 7476 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7477 * dynamic_preempt_lazy <- true 7478 */ 7479 7480 enum { 7481 preempt_dynamic_undefined = -1, 7482 preempt_dynamic_none, 7483 preempt_dynamic_voluntary, 7484 preempt_dynamic_full, 7485 preempt_dynamic_lazy, 7486 }; 7487 7488 int preempt_dynamic_mode = preempt_dynamic_undefined; 7489 7490 int sched_dynamic_mode(const char *str) 7491 { 7492 #ifndef CONFIG_PREEMPT_RT 7493 if (!strcmp(str, "none")) 7494 return preempt_dynamic_none; 7495 7496 if (!strcmp(str, "voluntary")) 7497 return preempt_dynamic_voluntary; 7498 #endif 7499 7500 if (!strcmp(str, "full")) 7501 return preempt_dynamic_full; 7502 7503 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7504 if (!strcmp(str, "lazy")) 7505 return preempt_dynamic_lazy; 7506 #endif 7507 7508 return -EINVAL; 7509 } 7510 7511 #define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7512 #define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7513 7514 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7515 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7516 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7517 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7518 #define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7519 #define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7520 #else 7521 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7522 #endif 7523 7524 static DEFINE_MUTEX(sched_dynamic_mutex); 7525 7526 static void __sched_dynamic_update(int mode) 7527 { 7528 /* 7529 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7530 * the ZERO state, which is invalid. 7531 */ 7532 preempt_dynamic_enable(cond_resched); 7533 preempt_dynamic_enable(might_resched); 7534 preempt_dynamic_enable(preempt_schedule); 7535 preempt_dynamic_enable(preempt_schedule_notrace); 7536 preempt_dynamic_enable(irqentry_exit_cond_resched); 7537 preempt_dynamic_key_disable(preempt_lazy); 7538 7539 switch (mode) { 7540 case preempt_dynamic_none: 7541 preempt_dynamic_enable(cond_resched); 7542 preempt_dynamic_disable(might_resched); 7543 preempt_dynamic_disable(preempt_schedule); 7544 preempt_dynamic_disable(preempt_schedule_notrace); 7545 preempt_dynamic_disable(irqentry_exit_cond_resched); 7546 preempt_dynamic_key_disable(preempt_lazy); 7547 if (mode != preempt_dynamic_mode) 7548 pr_info("Dynamic Preempt: none\n"); 7549 break; 7550 7551 case preempt_dynamic_voluntary: 7552 preempt_dynamic_enable(cond_resched); 7553 preempt_dynamic_enable(might_resched); 7554 preempt_dynamic_disable(preempt_schedule); 7555 preempt_dynamic_disable(preempt_schedule_notrace); 7556 preempt_dynamic_disable(irqentry_exit_cond_resched); 7557 preempt_dynamic_key_disable(preempt_lazy); 7558 if (mode != preempt_dynamic_mode) 7559 pr_info("Dynamic Preempt: voluntary\n"); 7560 break; 7561 7562 case preempt_dynamic_full: 7563 preempt_dynamic_disable(cond_resched); 7564 preempt_dynamic_disable(might_resched); 7565 preempt_dynamic_enable(preempt_schedule); 7566 preempt_dynamic_enable(preempt_schedule_notrace); 7567 preempt_dynamic_enable(irqentry_exit_cond_resched); 7568 preempt_dynamic_key_disable(preempt_lazy); 7569 if (mode != preempt_dynamic_mode) 7570 pr_info("Dynamic Preempt: full\n"); 7571 break; 7572 7573 case preempt_dynamic_lazy: 7574 preempt_dynamic_disable(cond_resched); 7575 preempt_dynamic_disable(might_resched); 7576 preempt_dynamic_enable(preempt_schedule); 7577 preempt_dynamic_enable(preempt_schedule_notrace); 7578 preempt_dynamic_enable(irqentry_exit_cond_resched); 7579 preempt_dynamic_key_enable(preempt_lazy); 7580 if (mode != preempt_dynamic_mode) 7581 pr_info("Dynamic Preempt: lazy\n"); 7582 break; 7583 } 7584 7585 preempt_dynamic_mode = mode; 7586 } 7587 7588 void sched_dynamic_update(int mode) 7589 { 7590 mutex_lock(&sched_dynamic_mutex); 7591 __sched_dynamic_update(mode); 7592 mutex_unlock(&sched_dynamic_mutex); 7593 } 7594 7595 static int __init setup_preempt_mode(char *str) 7596 { 7597 int mode = sched_dynamic_mode(str); 7598 if (mode < 0) { 7599 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7600 return 0; 7601 } 7602 7603 sched_dynamic_update(mode); 7604 return 1; 7605 } 7606 __setup("preempt=", setup_preempt_mode); 7607 7608 static void __init preempt_dynamic_init(void) 7609 { 7610 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7611 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7612 sched_dynamic_update(preempt_dynamic_none); 7613 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7614 sched_dynamic_update(preempt_dynamic_voluntary); 7615 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7616 sched_dynamic_update(preempt_dynamic_lazy); 7617 } else { 7618 /* Default static call setting, nothing to do */ 7619 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7620 preempt_dynamic_mode = preempt_dynamic_full; 7621 pr_info("Dynamic Preempt: full\n"); 7622 } 7623 } 7624 } 7625 7626 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7627 bool preempt_model_##mode(void) \ 7628 { \ 7629 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7630 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7631 } \ 7632 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7633 7634 PREEMPT_MODEL_ACCESSOR(none); 7635 PREEMPT_MODEL_ACCESSOR(voluntary); 7636 PREEMPT_MODEL_ACCESSOR(full); 7637 PREEMPT_MODEL_ACCESSOR(lazy); 7638 7639 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7640 7641 #define preempt_dynamic_mode -1 7642 7643 static inline void preempt_dynamic_init(void) { } 7644 7645 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7646 7647 const char *preempt_modes[] = { 7648 "none", "voluntary", "full", "lazy", NULL, 7649 }; 7650 7651 const char *preempt_model_str(void) 7652 { 7653 bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && 7654 (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || 7655 IS_ENABLED(CONFIG_PREEMPT_LAZY)); 7656 static char buf[128]; 7657 7658 if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { 7659 struct seq_buf s; 7660 7661 seq_buf_init(&s, buf, sizeof(buf)); 7662 seq_buf_puts(&s, "PREEMPT"); 7663 7664 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 7665 seq_buf_printf(&s, "%sRT%s", 7666 brace ? "_{" : "_", 7667 brace ? "," : ""); 7668 7669 if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { 7670 seq_buf_printf(&s, "(%s)%s", 7671 preempt_dynamic_mode >= 0 ? 7672 preempt_modes[preempt_dynamic_mode] : "undef", 7673 brace ? "}" : ""); 7674 return seq_buf_str(&s); 7675 } 7676 7677 if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7678 seq_buf_printf(&s, "LAZY%s", 7679 brace ? "}" : ""); 7680 return seq_buf_str(&s); 7681 } 7682 7683 return seq_buf_str(&s); 7684 } 7685 7686 if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) 7687 return "VOLUNTARY"; 7688 7689 return "NONE"; 7690 } 7691 7692 int io_schedule_prepare(void) 7693 { 7694 int old_iowait = current->in_iowait; 7695 7696 current->in_iowait = 1; 7697 blk_flush_plug(current->plug, true); 7698 return old_iowait; 7699 } 7700 7701 void io_schedule_finish(int token) 7702 { 7703 current->in_iowait = token; 7704 } 7705 7706 /* 7707 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7708 * that process accounting knows that this is a task in IO wait state. 7709 */ 7710 long __sched io_schedule_timeout(long timeout) 7711 { 7712 int token; 7713 long ret; 7714 7715 token = io_schedule_prepare(); 7716 ret = schedule_timeout(timeout); 7717 io_schedule_finish(token); 7718 7719 return ret; 7720 } 7721 EXPORT_SYMBOL(io_schedule_timeout); 7722 7723 void __sched io_schedule(void) 7724 { 7725 int token; 7726 7727 token = io_schedule_prepare(); 7728 schedule(); 7729 io_schedule_finish(token); 7730 } 7731 EXPORT_SYMBOL(io_schedule); 7732 7733 void sched_show_task(struct task_struct *p) 7734 { 7735 unsigned long free; 7736 int ppid; 7737 7738 if (!try_get_task_stack(p)) 7739 return; 7740 7741 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7742 7743 if (task_is_running(p)) 7744 pr_cont(" running task "); 7745 free = stack_not_used(p); 7746 ppid = 0; 7747 rcu_read_lock(); 7748 if (pid_alive(p)) 7749 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7750 rcu_read_unlock(); 7751 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", 7752 free, task_pid_nr(p), task_tgid_nr(p), 7753 ppid, p->flags, read_task_thread_flags(p)); 7754 7755 print_worker_info(KERN_INFO, p); 7756 print_stop_info(KERN_INFO, p); 7757 print_scx_info(KERN_INFO, p); 7758 show_stack(p, NULL, KERN_INFO); 7759 put_task_stack(p); 7760 } 7761 EXPORT_SYMBOL_GPL(sched_show_task); 7762 7763 static inline bool 7764 state_filter_match(unsigned long state_filter, struct task_struct *p) 7765 { 7766 unsigned int state = READ_ONCE(p->__state); 7767 7768 /* no filter, everything matches */ 7769 if (!state_filter) 7770 return true; 7771 7772 /* filter, but doesn't match */ 7773 if (!(state & state_filter)) 7774 return false; 7775 7776 /* 7777 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7778 * TASK_KILLABLE). 7779 */ 7780 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7781 return false; 7782 7783 return true; 7784 } 7785 7786 7787 void show_state_filter(unsigned int state_filter) 7788 { 7789 struct task_struct *g, *p; 7790 7791 rcu_read_lock(); 7792 for_each_process_thread(g, p) { 7793 /* 7794 * reset the NMI-timeout, listing all files on a slow 7795 * console might take a lot of time: 7796 * Also, reset softlockup watchdogs on all CPUs, because 7797 * another CPU might be blocked waiting for us to process 7798 * an IPI. 7799 */ 7800 touch_nmi_watchdog(); 7801 touch_all_softlockup_watchdogs(); 7802 if (state_filter_match(state_filter, p)) 7803 sched_show_task(p); 7804 } 7805 7806 if (!state_filter) 7807 sysrq_sched_debug_show(); 7808 7809 rcu_read_unlock(); 7810 /* 7811 * Only show locks if all tasks are dumped: 7812 */ 7813 if (!state_filter) 7814 debug_show_all_locks(); 7815 } 7816 7817 /** 7818 * init_idle - set up an idle thread for a given CPU 7819 * @idle: task in question 7820 * @cpu: CPU the idle task belongs to 7821 * 7822 * NOTE: this function does not set the idle thread's NEED_RESCHED 7823 * flag, to make booting more robust. 7824 */ 7825 void __init init_idle(struct task_struct *idle, int cpu) 7826 { 7827 #ifdef CONFIG_SMP 7828 struct affinity_context ac = (struct affinity_context) { 7829 .new_mask = cpumask_of(cpu), 7830 .flags = 0, 7831 }; 7832 #endif 7833 struct rq *rq = cpu_rq(cpu); 7834 unsigned long flags; 7835 7836 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7837 raw_spin_rq_lock(rq); 7838 7839 idle->__state = TASK_RUNNING; 7840 idle->se.exec_start = sched_clock(); 7841 /* 7842 * PF_KTHREAD should already be set at this point; regardless, make it 7843 * look like a proper per-CPU kthread. 7844 */ 7845 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7846 kthread_set_per_cpu(idle, cpu); 7847 7848 #ifdef CONFIG_SMP 7849 /* 7850 * No validation and serialization required at boot time and for 7851 * setting up the idle tasks of not yet online CPUs. 7852 */ 7853 set_cpus_allowed_common(idle, &ac); 7854 #endif 7855 /* 7856 * We're having a chicken and egg problem, even though we are 7857 * holding rq->lock, the CPU isn't yet set to this CPU so the 7858 * lockdep check in task_group() will fail. 7859 * 7860 * Similar case to sched_fork(). / Alternatively we could 7861 * use task_rq_lock() here and obtain the other rq->lock. 7862 * 7863 * Silence PROVE_RCU 7864 */ 7865 rcu_read_lock(); 7866 __set_task_cpu(idle, cpu); 7867 rcu_read_unlock(); 7868 7869 rq->idle = idle; 7870 rq_set_donor(rq, idle); 7871 rcu_assign_pointer(rq->curr, idle); 7872 idle->on_rq = TASK_ON_RQ_QUEUED; 7873 #ifdef CONFIG_SMP 7874 idle->on_cpu = 1; 7875 #endif 7876 raw_spin_rq_unlock(rq); 7877 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7878 7879 /* Set the preempt count _outside_ the spinlocks! */ 7880 init_idle_preempt_count(idle, cpu); 7881 7882 /* 7883 * The idle tasks have their own, simple scheduling class: 7884 */ 7885 idle->sched_class = &idle_sched_class; 7886 ftrace_graph_init_idle_task(idle, cpu); 7887 vtime_init_idle(idle, cpu); 7888 #ifdef CONFIG_SMP 7889 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7890 #endif 7891 } 7892 7893 #ifdef CONFIG_SMP 7894 7895 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7896 const struct cpumask *trial) 7897 { 7898 int ret = 1; 7899 7900 if (cpumask_empty(cur)) 7901 return ret; 7902 7903 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7904 7905 return ret; 7906 } 7907 7908 int task_can_attach(struct task_struct *p) 7909 { 7910 int ret = 0; 7911 7912 /* 7913 * Kthreads which disallow setaffinity shouldn't be moved 7914 * to a new cpuset; we don't want to change their CPU 7915 * affinity and isolating such threads by their set of 7916 * allowed nodes is unnecessary. Thus, cpusets are not 7917 * applicable for such threads. This prevents checking for 7918 * success of set_cpus_allowed_ptr() on all attached tasks 7919 * before cpus_mask may be changed. 7920 */ 7921 if (p->flags & PF_NO_SETAFFINITY) 7922 ret = -EINVAL; 7923 7924 return ret; 7925 } 7926 7927 bool sched_smp_initialized __read_mostly; 7928 7929 #ifdef CONFIG_NUMA_BALANCING 7930 /* Migrate current task p to target_cpu */ 7931 int migrate_task_to(struct task_struct *p, int target_cpu) 7932 { 7933 struct migration_arg arg = { p, target_cpu }; 7934 int curr_cpu = task_cpu(p); 7935 7936 if (curr_cpu == target_cpu) 7937 return 0; 7938 7939 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7940 return -EINVAL; 7941 7942 __schedstat_inc(p->stats.numa_task_migrated); 7943 count_vm_numa_event(NUMA_TASK_MIGRATE); 7944 count_memcg_event_mm(p->mm, NUMA_TASK_MIGRATE); 7945 trace_sched_move_numa(p, curr_cpu, target_cpu); 7946 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7947 } 7948 7949 /* 7950 * Requeue a task on a given node and accurately track the number of NUMA 7951 * tasks on the runqueues 7952 */ 7953 void sched_setnuma(struct task_struct *p, int nid) 7954 { 7955 bool queued, running; 7956 struct rq_flags rf; 7957 struct rq *rq; 7958 7959 rq = task_rq_lock(p, &rf); 7960 queued = task_on_rq_queued(p); 7961 running = task_current_donor(rq, p); 7962 7963 if (queued) 7964 dequeue_task(rq, p, DEQUEUE_SAVE); 7965 if (running) 7966 put_prev_task(rq, p); 7967 7968 p->numa_preferred_nid = nid; 7969 7970 if (queued) 7971 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7972 if (running) 7973 set_next_task(rq, p); 7974 task_rq_unlock(rq, p, &rf); 7975 } 7976 #endif /* CONFIG_NUMA_BALANCING */ 7977 7978 #ifdef CONFIG_HOTPLUG_CPU 7979 /* 7980 * Invoked on the outgoing CPU in context of the CPU hotplug thread 7981 * after ensuring that there are no user space tasks left on the CPU. 7982 * 7983 * If there is a lazy mm in use on the hotplug thread, drop it and 7984 * switch to init_mm. 7985 * 7986 * The reference count on init_mm is dropped in finish_cpu(). 7987 */ 7988 static void sched_force_init_mm(void) 7989 { 7990 struct mm_struct *mm = current->active_mm; 7991 7992 if (mm != &init_mm) { 7993 mmgrab_lazy_tlb(&init_mm); 7994 local_irq_disable(); 7995 current->active_mm = &init_mm; 7996 switch_mm_irqs_off(mm, &init_mm, current); 7997 local_irq_enable(); 7998 finish_arch_post_lock_switch(); 7999 mmdrop_lazy_tlb(mm); 8000 } 8001 8002 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 8003 } 8004 8005 static int __balance_push_cpu_stop(void *arg) 8006 { 8007 struct task_struct *p = arg; 8008 struct rq *rq = this_rq(); 8009 struct rq_flags rf; 8010 int cpu; 8011 8012 raw_spin_lock_irq(&p->pi_lock); 8013 rq_lock(rq, &rf); 8014 8015 update_rq_clock(rq); 8016 8017 if (task_rq(p) == rq && task_on_rq_queued(p)) { 8018 cpu = select_fallback_rq(rq->cpu, p); 8019 rq = __migrate_task(rq, &rf, p, cpu); 8020 } 8021 8022 rq_unlock(rq, &rf); 8023 raw_spin_unlock_irq(&p->pi_lock); 8024 8025 put_task_struct(p); 8026 8027 return 0; 8028 } 8029 8030 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8031 8032 /* 8033 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8034 * 8035 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8036 * effective when the hotplug motion is down. 8037 */ 8038 static void balance_push(struct rq *rq) 8039 { 8040 struct task_struct *push_task = rq->curr; 8041 8042 lockdep_assert_rq_held(rq); 8043 8044 /* 8045 * Ensure the thing is persistent until balance_push_set(.on = false); 8046 */ 8047 rq->balance_callback = &balance_push_callback; 8048 8049 /* 8050 * Only active while going offline and when invoked on the outgoing 8051 * CPU. 8052 */ 8053 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8054 return; 8055 8056 /* 8057 * Both the cpu-hotplug and stop task are in this case and are 8058 * required to complete the hotplug process. 8059 */ 8060 if (kthread_is_per_cpu(push_task) || 8061 is_migration_disabled(push_task)) { 8062 8063 /* 8064 * If this is the idle task on the outgoing CPU try to wake 8065 * up the hotplug control thread which might wait for the 8066 * last task to vanish. The rcuwait_active() check is 8067 * accurate here because the waiter is pinned on this CPU 8068 * and can't obviously be running in parallel. 8069 * 8070 * On RT kernels this also has to check whether there are 8071 * pinned and scheduled out tasks on the runqueue. They 8072 * need to leave the migrate disabled section first. 8073 */ 8074 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8075 rcuwait_active(&rq->hotplug_wait)) { 8076 raw_spin_rq_unlock(rq); 8077 rcuwait_wake_up(&rq->hotplug_wait); 8078 raw_spin_rq_lock(rq); 8079 } 8080 return; 8081 } 8082 8083 get_task_struct(push_task); 8084 /* 8085 * Temporarily drop rq->lock such that we can wake-up the stop task. 8086 * Both preemption and IRQs are still disabled. 8087 */ 8088 preempt_disable(); 8089 raw_spin_rq_unlock(rq); 8090 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8091 this_cpu_ptr(&push_work)); 8092 preempt_enable(); 8093 /* 8094 * At this point need_resched() is true and we'll take the loop in 8095 * schedule(). The next pick is obviously going to be the stop task 8096 * which kthread_is_per_cpu() and will push this task away. 8097 */ 8098 raw_spin_rq_lock(rq); 8099 } 8100 8101 static void balance_push_set(int cpu, bool on) 8102 { 8103 struct rq *rq = cpu_rq(cpu); 8104 struct rq_flags rf; 8105 8106 rq_lock_irqsave(rq, &rf); 8107 if (on) { 8108 WARN_ON_ONCE(rq->balance_callback); 8109 rq->balance_callback = &balance_push_callback; 8110 } else if (rq->balance_callback == &balance_push_callback) { 8111 rq->balance_callback = NULL; 8112 } 8113 rq_unlock_irqrestore(rq, &rf); 8114 } 8115 8116 /* 8117 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8118 * inactive. All tasks which are not per CPU kernel threads are either 8119 * pushed off this CPU now via balance_push() or placed on a different CPU 8120 * during wakeup. Wait until the CPU is quiescent. 8121 */ 8122 static void balance_hotplug_wait(void) 8123 { 8124 struct rq *rq = this_rq(); 8125 8126 rcuwait_wait_event(&rq->hotplug_wait, 8127 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8128 TASK_UNINTERRUPTIBLE); 8129 } 8130 8131 #else 8132 8133 static inline void balance_push(struct rq *rq) 8134 { 8135 } 8136 8137 static inline void balance_push_set(int cpu, bool on) 8138 { 8139 } 8140 8141 static inline void balance_hotplug_wait(void) 8142 { 8143 } 8144 8145 #endif /* CONFIG_HOTPLUG_CPU */ 8146 8147 void set_rq_online(struct rq *rq) 8148 { 8149 if (!rq->online) { 8150 const struct sched_class *class; 8151 8152 cpumask_set_cpu(rq->cpu, rq->rd->online); 8153 rq->online = 1; 8154 8155 for_each_class(class) { 8156 if (class->rq_online) 8157 class->rq_online(rq); 8158 } 8159 } 8160 } 8161 8162 void set_rq_offline(struct rq *rq) 8163 { 8164 if (rq->online) { 8165 const struct sched_class *class; 8166 8167 update_rq_clock(rq); 8168 for_each_class(class) { 8169 if (class->rq_offline) 8170 class->rq_offline(rq); 8171 } 8172 8173 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8174 rq->online = 0; 8175 } 8176 } 8177 8178 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8179 { 8180 struct rq_flags rf; 8181 8182 rq_lock_irqsave(rq, &rf); 8183 if (rq->rd) { 8184 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8185 set_rq_online(rq); 8186 } 8187 rq_unlock_irqrestore(rq, &rf); 8188 } 8189 8190 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8191 { 8192 struct rq_flags rf; 8193 8194 rq_lock_irqsave(rq, &rf); 8195 if (rq->rd) { 8196 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8197 set_rq_offline(rq); 8198 } 8199 rq_unlock_irqrestore(rq, &rf); 8200 } 8201 8202 /* 8203 * used to mark begin/end of suspend/resume: 8204 */ 8205 static int num_cpus_frozen; 8206 8207 /* 8208 * Update cpusets according to cpu_active mask. If cpusets are 8209 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8210 * around partition_sched_domains(). 8211 * 8212 * If we come here as part of a suspend/resume, don't touch cpusets because we 8213 * want to restore it back to its original state upon resume anyway. 8214 */ 8215 static void cpuset_cpu_active(void) 8216 { 8217 if (cpuhp_tasks_frozen) { 8218 /* 8219 * num_cpus_frozen tracks how many CPUs are involved in suspend 8220 * resume sequence. As long as this is not the last online 8221 * operation in the resume sequence, just build a single sched 8222 * domain, ignoring cpusets. 8223 */ 8224 cpuset_reset_sched_domains(); 8225 if (--num_cpus_frozen) 8226 return; 8227 /* 8228 * This is the last CPU online operation. So fall through and 8229 * restore the original sched domains by considering the 8230 * cpuset configurations. 8231 */ 8232 cpuset_force_rebuild(); 8233 } 8234 cpuset_update_active_cpus(); 8235 } 8236 8237 static void cpuset_cpu_inactive(unsigned int cpu) 8238 { 8239 if (!cpuhp_tasks_frozen) { 8240 cpuset_update_active_cpus(); 8241 } else { 8242 num_cpus_frozen++; 8243 cpuset_reset_sched_domains(); 8244 } 8245 } 8246 8247 static inline void sched_smt_present_inc(int cpu) 8248 { 8249 #ifdef CONFIG_SCHED_SMT 8250 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8251 static_branch_inc_cpuslocked(&sched_smt_present); 8252 #endif 8253 } 8254 8255 static inline void sched_smt_present_dec(int cpu) 8256 { 8257 #ifdef CONFIG_SCHED_SMT 8258 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8259 static_branch_dec_cpuslocked(&sched_smt_present); 8260 #endif 8261 } 8262 8263 int sched_cpu_activate(unsigned int cpu) 8264 { 8265 struct rq *rq = cpu_rq(cpu); 8266 8267 /* 8268 * Clear the balance_push callback and prepare to schedule 8269 * regular tasks. 8270 */ 8271 balance_push_set(cpu, false); 8272 8273 /* 8274 * When going up, increment the number of cores with SMT present. 8275 */ 8276 sched_smt_present_inc(cpu); 8277 set_cpu_active(cpu, true); 8278 8279 if (sched_smp_initialized) { 8280 sched_update_numa(cpu, true); 8281 sched_domains_numa_masks_set(cpu); 8282 cpuset_cpu_active(); 8283 } 8284 8285 scx_rq_activate(rq); 8286 8287 /* 8288 * Put the rq online, if not already. This happens: 8289 * 8290 * 1) In the early boot process, because we build the real domains 8291 * after all CPUs have been brought up. 8292 * 8293 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8294 * domains. 8295 */ 8296 sched_set_rq_online(rq, cpu); 8297 8298 return 0; 8299 } 8300 8301 int sched_cpu_deactivate(unsigned int cpu) 8302 { 8303 struct rq *rq = cpu_rq(cpu); 8304 int ret; 8305 8306 ret = dl_bw_deactivate(cpu); 8307 8308 if (ret) 8309 return ret; 8310 8311 /* 8312 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8313 * load balancing when not active 8314 */ 8315 nohz_balance_exit_idle(rq); 8316 8317 set_cpu_active(cpu, false); 8318 8319 /* 8320 * From this point forward, this CPU will refuse to run any task that 8321 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8322 * push those tasks away until this gets cleared, see 8323 * sched_cpu_dying(). 8324 */ 8325 balance_push_set(cpu, true); 8326 8327 /* 8328 * We've cleared cpu_active_mask / set balance_push, wait for all 8329 * preempt-disabled and RCU users of this state to go away such that 8330 * all new such users will observe it. 8331 * 8332 * Specifically, we rely on ttwu to no longer target this CPU, see 8333 * ttwu_queue_cond() and is_cpu_allowed(). 8334 * 8335 * Do sync before park smpboot threads to take care the RCU boost case. 8336 */ 8337 synchronize_rcu(); 8338 8339 sched_set_rq_offline(rq, cpu); 8340 8341 scx_rq_deactivate(rq); 8342 8343 /* 8344 * When going down, decrement the number of cores with SMT present. 8345 */ 8346 sched_smt_present_dec(cpu); 8347 8348 #ifdef CONFIG_SCHED_SMT 8349 sched_core_cpu_deactivate(cpu); 8350 #endif 8351 8352 if (!sched_smp_initialized) 8353 return 0; 8354 8355 sched_update_numa(cpu, false); 8356 cpuset_cpu_inactive(cpu); 8357 sched_domains_numa_masks_clear(cpu); 8358 return 0; 8359 } 8360 8361 static void sched_rq_cpu_starting(unsigned int cpu) 8362 { 8363 struct rq *rq = cpu_rq(cpu); 8364 8365 rq->calc_load_update = calc_load_update; 8366 update_max_interval(); 8367 } 8368 8369 int sched_cpu_starting(unsigned int cpu) 8370 { 8371 sched_core_cpu_starting(cpu); 8372 sched_rq_cpu_starting(cpu); 8373 sched_tick_start(cpu); 8374 return 0; 8375 } 8376 8377 #ifdef CONFIG_HOTPLUG_CPU 8378 8379 /* 8380 * Invoked immediately before the stopper thread is invoked to bring the 8381 * CPU down completely. At this point all per CPU kthreads except the 8382 * hotplug thread (current) and the stopper thread (inactive) have been 8383 * either parked or have been unbound from the outgoing CPU. Ensure that 8384 * any of those which might be on the way out are gone. 8385 * 8386 * If after this point a bound task is being woken on this CPU then the 8387 * responsible hotplug callback has failed to do it's job. 8388 * sched_cpu_dying() will catch it with the appropriate fireworks. 8389 */ 8390 int sched_cpu_wait_empty(unsigned int cpu) 8391 { 8392 balance_hotplug_wait(); 8393 sched_force_init_mm(); 8394 return 0; 8395 } 8396 8397 /* 8398 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8399 * might have. Called from the CPU stopper task after ensuring that the 8400 * stopper is the last running task on the CPU, so nr_active count is 8401 * stable. We need to take the tear-down thread which is calling this into 8402 * account, so we hand in adjust = 1 to the load calculation. 8403 * 8404 * Also see the comment "Global load-average calculations". 8405 */ 8406 static void calc_load_migrate(struct rq *rq) 8407 { 8408 long delta = calc_load_fold_active(rq, 1); 8409 8410 if (delta) 8411 atomic_long_add(delta, &calc_load_tasks); 8412 } 8413 8414 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8415 { 8416 struct task_struct *g, *p; 8417 int cpu = cpu_of(rq); 8418 8419 lockdep_assert_rq_held(rq); 8420 8421 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8422 for_each_process_thread(g, p) { 8423 if (task_cpu(p) != cpu) 8424 continue; 8425 8426 if (!task_on_rq_queued(p)) 8427 continue; 8428 8429 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8430 } 8431 } 8432 8433 int sched_cpu_dying(unsigned int cpu) 8434 { 8435 struct rq *rq = cpu_rq(cpu); 8436 struct rq_flags rf; 8437 8438 /* Handle pending wakeups and then migrate everything off */ 8439 sched_tick_stop(cpu); 8440 8441 rq_lock_irqsave(rq, &rf); 8442 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8443 WARN(true, "Dying CPU not properly vacated!"); 8444 dump_rq_tasks(rq, KERN_WARNING); 8445 } 8446 rq_unlock_irqrestore(rq, &rf); 8447 8448 calc_load_migrate(rq); 8449 update_max_interval(); 8450 hrtick_clear(rq); 8451 sched_core_cpu_dying(cpu); 8452 return 0; 8453 } 8454 #endif 8455 8456 void __init sched_init_smp(void) 8457 { 8458 sched_init_numa(NUMA_NO_NODE); 8459 8460 /* 8461 * There's no userspace yet to cause hotplug operations; hence all the 8462 * CPU masks are stable and all blatant races in the below code cannot 8463 * happen. 8464 */ 8465 sched_domains_mutex_lock(); 8466 sched_init_domains(cpu_active_mask); 8467 sched_domains_mutex_unlock(); 8468 8469 /* Move init over to a non-isolated CPU */ 8470 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8471 BUG(); 8472 current->flags &= ~PF_NO_SETAFFINITY; 8473 sched_init_granularity(); 8474 8475 init_sched_rt_class(); 8476 init_sched_dl_class(); 8477 8478 sched_smp_initialized = true; 8479 } 8480 8481 static int __init migration_init(void) 8482 { 8483 sched_cpu_starting(smp_processor_id()); 8484 return 0; 8485 } 8486 early_initcall(migration_init); 8487 8488 #else 8489 void __init sched_init_smp(void) 8490 { 8491 sched_init_granularity(); 8492 } 8493 #endif /* CONFIG_SMP */ 8494 8495 int in_sched_functions(unsigned long addr) 8496 { 8497 return in_lock_functions(addr) || 8498 (addr >= (unsigned long)__sched_text_start 8499 && addr < (unsigned long)__sched_text_end); 8500 } 8501 8502 #ifdef CONFIG_CGROUP_SCHED 8503 /* 8504 * Default task group. 8505 * Every task in system belongs to this group at bootup. 8506 */ 8507 struct task_group root_task_group; 8508 LIST_HEAD(task_groups); 8509 8510 /* Cacheline aligned slab cache for task_group */ 8511 static struct kmem_cache *task_group_cache __ro_after_init; 8512 #endif 8513 8514 void __init sched_init(void) 8515 { 8516 unsigned long ptr = 0; 8517 int i; 8518 8519 /* Make sure the linker didn't screw up */ 8520 #ifdef CONFIG_SMP 8521 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8522 #endif 8523 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8524 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8525 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8526 #ifdef CONFIG_SCHED_CLASS_EXT 8527 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8528 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8529 #endif 8530 8531 wait_bit_init(); 8532 8533 #ifdef CONFIG_FAIR_GROUP_SCHED 8534 ptr += 2 * nr_cpu_ids * sizeof(void **); 8535 #endif 8536 #ifdef CONFIG_RT_GROUP_SCHED 8537 ptr += 2 * nr_cpu_ids * sizeof(void **); 8538 #endif 8539 if (ptr) { 8540 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8541 8542 #ifdef CONFIG_FAIR_GROUP_SCHED 8543 root_task_group.se = (struct sched_entity **)ptr; 8544 ptr += nr_cpu_ids * sizeof(void **); 8545 8546 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8547 ptr += nr_cpu_ids * sizeof(void **); 8548 8549 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8550 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8551 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8552 #ifdef CONFIG_EXT_GROUP_SCHED 8553 scx_tg_init(&root_task_group); 8554 #endif /* CONFIG_EXT_GROUP_SCHED */ 8555 #ifdef CONFIG_RT_GROUP_SCHED 8556 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8557 ptr += nr_cpu_ids * sizeof(void **); 8558 8559 root_task_group.rt_rq = (struct rt_rq **)ptr; 8560 ptr += nr_cpu_ids * sizeof(void **); 8561 8562 #endif /* CONFIG_RT_GROUP_SCHED */ 8563 } 8564 8565 #ifdef CONFIG_SMP 8566 init_defrootdomain(); 8567 #endif 8568 8569 #ifdef CONFIG_RT_GROUP_SCHED 8570 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8571 global_rt_period(), global_rt_runtime()); 8572 #endif /* CONFIG_RT_GROUP_SCHED */ 8573 8574 #ifdef CONFIG_CGROUP_SCHED 8575 task_group_cache = KMEM_CACHE(task_group, 0); 8576 8577 list_add(&root_task_group.list, &task_groups); 8578 INIT_LIST_HEAD(&root_task_group.children); 8579 INIT_LIST_HEAD(&root_task_group.siblings); 8580 autogroup_init(&init_task); 8581 #endif /* CONFIG_CGROUP_SCHED */ 8582 8583 for_each_possible_cpu(i) { 8584 struct rq *rq; 8585 8586 rq = cpu_rq(i); 8587 raw_spin_lock_init(&rq->__lock); 8588 rq->nr_running = 0; 8589 rq->calc_load_active = 0; 8590 rq->calc_load_update = jiffies + LOAD_FREQ; 8591 init_cfs_rq(&rq->cfs); 8592 init_rt_rq(&rq->rt); 8593 init_dl_rq(&rq->dl); 8594 #ifdef CONFIG_FAIR_GROUP_SCHED 8595 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8596 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8597 /* 8598 * How much CPU bandwidth does root_task_group get? 8599 * 8600 * In case of task-groups formed through the cgroup filesystem, it 8601 * gets 100% of the CPU resources in the system. This overall 8602 * system CPU resource is divided among the tasks of 8603 * root_task_group and its child task-groups in a fair manner, 8604 * based on each entity's (task or task-group's) weight 8605 * (se->load.weight). 8606 * 8607 * In other words, if root_task_group has 10 tasks of weight 8608 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8609 * then A0's share of the CPU resource is: 8610 * 8611 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8612 * 8613 * We achieve this by letting root_task_group's tasks sit 8614 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8615 */ 8616 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8617 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8618 8619 #ifdef CONFIG_RT_GROUP_SCHED 8620 /* 8621 * This is required for init cpu because rt.c:__enable_runtime() 8622 * starts working after scheduler_running, which is not the case 8623 * yet. 8624 */ 8625 rq->rt.rt_runtime = global_rt_runtime(); 8626 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8627 #endif 8628 #ifdef CONFIG_SMP 8629 rq->sd = NULL; 8630 rq->rd = NULL; 8631 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8632 rq->balance_callback = &balance_push_callback; 8633 rq->active_balance = 0; 8634 rq->next_balance = jiffies; 8635 rq->push_cpu = 0; 8636 rq->cpu = i; 8637 rq->online = 0; 8638 rq->idle_stamp = 0; 8639 rq->avg_idle = 2*sysctl_sched_migration_cost; 8640 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8641 8642 INIT_LIST_HEAD(&rq->cfs_tasks); 8643 8644 rq_attach_root(rq, &def_root_domain); 8645 #ifdef CONFIG_NO_HZ_COMMON 8646 rq->last_blocked_load_update_tick = jiffies; 8647 atomic_set(&rq->nohz_flags, 0); 8648 8649 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8650 #endif 8651 #ifdef CONFIG_HOTPLUG_CPU 8652 rcuwait_init(&rq->hotplug_wait); 8653 #endif 8654 #endif /* CONFIG_SMP */ 8655 hrtick_rq_init(rq); 8656 atomic_set(&rq->nr_iowait, 0); 8657 fair_server_init(rq); 8658 8659 #ifdef CONFIG_SCHED_CORE 8660 rq->core = rq; 8661 rq->core_pick = NULL; 8662 rq->core_dl_server = NULL; 8663 rq->core_enabled = 0; 8664 rq->core_tree = RB_ROOT; 8665 rq->core_forceidle_count = 0; 8666 rq->core_forceidle_occupation = 0; 8667 rq->core_forceidle_start = 0; 8668 8669 rq->core_cookie = 0UL; 8670 #endif 8671 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8672 } 8673 8674 set_load_weight(&init_task, false); 8675 init_task.se.slice = sysctl_sched_base_slice, 8676 8677 /* 8678 * The boot idle thread does lazy MMU switching as well: 8679 */ 8680 mmgrab_lazy_tlb(&init_mm); 8681 enter_lazy_tlb(&init_mm, current); 8682 8683 /* 8684 * The idle task doesn't need the kthread struct to function, but it 8685 * is dressed up as a per-CPU kthread and thus needs to play the part 8686 * if we want to avoid special-casing it in code that deals with per-CPU 8687 * kthreads. 8688 */ 8689 WARN_ON(!set_kthread_struct(current)); 8690 8691 /* 8692 * Make us the idle thread. Technically, schedule() should not be 8693 * called from this thread, however somewhere below it might be, 8694 * but because we are the idle thread, we just pick up running again 8695 * when this runqueue becomes "idle". 8696 */ 8697 __sched_fork(0, current); 8698 init_idle(current, smp_processor_id()); 8699 8700 calc_load_update = jiffies + LOAD_FREQ; 8701 8702 #ifdef CONFIG_SMP 8703 idle_thread_set_boot_cpu(); 8704 balance_push_set(smp_processor_id(), false); 8705 #endif 8706 init_sched_fair_class(); 8707 init_sched_ext_class(); 8708 8709 psi_init(); 8710 8711 init_uclamp(); 8712 8713 preempt_dynamic_init(); 8714 8715 scheduler_running = 1; 8716 } 8717 8718 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8719 8720 void __might_sleep(const char *file, int line) 8721 { 8722 unsigned int state = get_current_state(); 8723 /* 8724 * Blocking primitives will set (and therefore destroy) current->state, 8725 * since we will exit with TASK_RUNNING make sure we enter with it, 8726 * otherwise we will destroy state. 8727 */ 8728 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8729 "do not call blocking ops when !TASK_RUNNING; " 8730 "state=%x set at [<%p>] %pS\n", state, 8731 (void *)current->task_state_change, 8732 (void *)current->task_state_change); 8733 8734 __might_resched(file, line, 0); 8735 } 8736 EXPORT_SYMBOL(__might_sleep); 8737 8738 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8739 { 8740 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8741 return; 8742 8743 if (preempt_count() == preempt_offset) 8744 return; 8745 8746 pr_err("Preemption disabled at:"); 8747 print_ip_sym(KERN_ERR, ip); 8748 } 8749 8750 static inline bool resched_offsets_ok(unsigned int offsets) 8751 { 8752 unsigned int nested = preempt_count(); 8753 8754 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8755 8756 return nested == offsets; 8757 } 8758 8759 void __might_resched(const char *file, int line, unsigned int offsets) 8760 { 8761 /* Ratelimiting timestamp: */ 8762 static unsigned long prev_jiffy; 8763 8764 unsigned long preempt_disable_ip; 8765 8766 /* WARN_ON_ONCE() by default, no rate limit required: */ 8767 rcu_sleep_check(); 8768 8769 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8770 !is_idle_task(current) && !current->non_block_count) || 8771 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8772 oops_in_progress) 8773 return; 8774 8775 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8776 return; 8777 prev_jiffy = jiffies; 8778 8779 /* Save this before calling printk(), since that will clobber it: */ 8780 preempt_disable_ip = get_preempt_disable_ip(current); 8781 8782 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8783 file, line); 8784 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8785 in_atomic(), irqs_disabled(), current->non_block_count, 8786 current->pid, current->comm); 8787 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8788 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8789 8790 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8791 pr_err("RCU nest depth: %d, expected: %u\n", 8792 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8793 } 8794 8795 if (task_stack_end_corrupted(current)) 8796 pr_emerg("Thread overran stack, or stack corrupted\n"); 8797 8798 debug_show_held_locks(current); 8799 if (irqs_disabled()) 8800 print_irqtrace_events(current); 8801 8802 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8803 preempt_disable_ip); 8804 8805 dump_stack(); 8806 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8807 } 8808 EXPORT_SYMBOL(__might_resched); 8809 8810 void __cant_sleep(const char *file, int line, int preempt_offset) 8811 { 8812 static unsigned long prev_jiffy; 8813 8814 if (irqs_disabled()) 8815 return; 8816 8817 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8818 return; 8819 8820 if (preempt_count() > preempt_offset) 8821 return; 8822 8823 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8824 return; 8825 prev_jiffy = jiffies; 8826 8827 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8828 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8829 in_atomic(), irqs_disabled(), 8830 current->pid, current->comm); 8831 8832 debug_show_held_locks(current); 8833 dump_stack(); 8834 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8835 } 8836 EXPORT_SYMBOL_GPL(__cant_sleep); 8837 8838 #ifdef CONFIG_SMP 8839 void __cant_migrate(const char *file, int line) 8840 { 8841 static unsigned long prev_jiffy; 8842 8843 if (irqs_disabled()) 8844 return; 8845 8846 if (is_migration_disabled(current)) 8847 return; 8848 8849 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8850 return; 8851 8852 if (preempt_count() > 0) 8853 return; 8854 8855 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8856 return; 8857 prev_jiffy = jiffies; 8858 8859 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8860 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8861 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8862 current->pid, current->comm); 8863 8864 debug_show_held_locks(current); 8865 dump_stack(); 8866 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8867 } 8868 EXPORT_SYMBOL_GPL(__cant_migrate); 8869 #endif 8870 #endif 8871 8872 #ifdef CONFIG_MAGIC_SYSRQ 8873 void normalize_rt_tasks(void) 8874 { 8875 struct task_struct *g, *p; 8876 struct sched_attr attr = { 8877 .sched_policy = SCHED_NORMAL, 8878 }; 8879 8880 read_lock(&tasklist_lock); 8881 for_each_process_thread(g, p) { 8882 /* 8883 * Only normalize user tasks: 8884 */ 8885 if (p->flags & PF_KTHREAD) 8886 continue; 8887 8888 p->se.exec_start = 0; 8889 schedstat_set(p->stats.wait_start, 0); 8890 schedstat_set(p->stats.sleep_start, 0); 8891 schedstat_set(p->stats.block_start, 0); 8892 8893 if (!rt_or_dl_task(p)) { 8894 /* 8895 * Renice negative nice level userspace 8896 * tasks back to 0: 8897 */ 8898 if (task_nice(p) < 0) 8899 set_user_nice(p, 0); 8900 continue; 8901 } 8902 8903 __sched_setscheduler(p, &attr, false, false); 8904 } 8905 read_unlock(&tasklist_lock); 8906 } 8907 8908 #endif /* CONFIG_MAGIC_SYSRQ */ 8909 8910 #if defined(CONFIG_KGDB_KDB) 8911 /* 8912 * These functions are only useful for KDB. 8913 * 8914 * They can only be called when the whole system has been 8915 * stopped - every CPU needs to be quiescent, and no scheduling 8916 * activity can take place. Using them for anything else would 8917 * be a serious bug, and as a result, they aren't even visible 8918 * under any other configuration. 8919 */ 8920 8921 /** 8922 * curr_task - return the current task for a given CPU. 8923 * @cpu: the processor in question. 8924 * 8925 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8926 * 8927 * Return: The current task for @cpu. 8928 */ 8929 struct task_struct *curr_task(int cpu) 8930 { 8931 return cpu_curr(cpu); 8932 } 8933 8934 #endif /* defined(CONFIG_KGDB_KDB) */ 8935 8936 #ifdef CONFIG_CGROUP_SCHED 8937 /* task_group_lock serializes the addition/removal of task groups */ 8938 static DEFINE_SPINLOCK(task_group_lock); 8939 8940 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8941 struct task_group *parent) 8942 { 8943 #ifdef CONFIG_UCLAMP_TASK_GROUP 8944 enum uclamp_id clamp_id; 8945 8946 for_each_clamp_id(clamp_id) { 8947 uclamp_se_set(&tg->uclamp_req[clamp_id], 8948 uclamp_none(clamp_id), false); 8949 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8950 } 8951 #endif 8952 } 8953 8954 static void sched_free_group(struct task_group *tg) 8955 { 8956 free_fair_sched_group(tg); 8957 free_rt_sched_group(tg); 8958 autogroup_free(tg); 8959 kmem_cache_free(task_group_cache, tg); 8960 } 8961 8962 static void sched_free_group_rcu(struct rcu_head *rcu) 8963 { 8964 sched_free_group(container_of(rcu, struct task_group, rcu)); 8965 } 8966 8967 static void sched_unregister_group(struct task_group *tg) 8968 { 8969 unregister_fair_sched_group(tg); 8970 unregister_rt_sched_group(tg); 8971 /* 8972 * We have to wait for yet another RCU grace period to expire, as 8973 * print_cfs_stats() might run concurrently. 8974 */ 8975 call_rcu(&tg->rcu, sched_free_group_rcu); 8976 } 8977 8978 /* allocate runqueue etc for a new task group */ 8979 struct task_group *sched_create_group(struct task_group *parent) 8980 { 8981 struct task_group *tg; 8982 8983 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8984 if (!tg) 8985 return ERR_PTR(-ENOMEM); 8986 8987 if (!alloc_fair_sched_group(tg, parent)) 8988 goto err; 8989 8990 if (!alloc_rt_sched_group(tg, parent)) 8991 goto err; 8992 8993 scx_tg_init(tg); 8994 alloc_uclamp_sched_group(tg, parent); 8995 8996 return tg; 8997 8998 err: 8999 sched_free_group(tg); 9000 return ERR_PTR(-ENOMEM); 9001 } 9002 9003 void sched_online_group(struct task_group *tg, struct task_group *parent) 9004 { 9005 unsigned long flags; 9006 9007 spin_lock_irqsave(&task_group_lock, flags); 9008 list_add_tail_rcu(&tg->list, &task_groups); 9009 9010 /* Root should already exist: */ 9011 WARN_ON(!parent); 9012 9013 tg->parent = parent; 9014 INIT_LIST_HEAD(&tg->children); 9015 list_add_rcu(&tg->siblings, &parent->children); 9016 spin_unlock_irqrestore(&task_group_lock, flags); 9017 9018 online_fair_sched_group(tg); 9019 } 9020 9021 /* RCU callback to free various structures associated with a task group */ 9022 static void sched_unregister_group_rcu(struct rcu_head *rhp) 9023 { 9024 /* Now it should be safe to free those cfs_rqs: */ 9025 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 9026 } 9027 9028 void sched_destroy_group(struct task_group *tg) 9029 { 9030 /* Wait for possible concurrent references to cfs_rqs complete: */ 9031 call_rcu(&tg->rcu, sched_unregister_group_rcu); 9032 } 9033 9034 void sched_release_group(struct task_group *tg) 9035 { 9036 unsigned long flags; 9037 9038 /* 9039 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 9040 * sched_cfs_period_timer()). 9041 * 9042 * For this to be effective, we have to wait for all pending users of 9043 * this task group to leave their RCU critical section to ensure no new 9044 * user will see our dying task group any more. Specifically ensure 9045 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9046 * 9047 * We therefore defer calling unregister_fair_sched_group() to 9048 * sched_unregister_group() which is guarantied to get called only after the 9049 * current RCU grace period has expired. 9050 */ 9051 spin_lock_irqsave(&task_group_lock, flags); 9052 list_del_rcu(&tg->list); 9053 list_del_rcu(&tg->siblings); 9054 spin_unlock_irqrestore(&task_group_lock, flags); 9055 } 9056 9057 static void sched_change_group(struct task_struct *tsk) 9058 { 9059 struct task_group *tg; 9060 9061 /* 9062 * All callers are synchronized by task_rq_lock(); we do not use RCU 9063 * which is pointless here. Thus, we pass "true" to task_css_check() 9064 * to prevent lockdep warnings. 9065 */ 9066 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9067 struct task_group, css); 9068 tg = autogroup_task_group(tsk, tg); 9069 tsk->sched_task_group = tg; 9070 9071 #ifdef CONFIG_FAIR_GROUP_SCHED 9072 if (tsk->sched_class->task_change_group) 9073 tsk->sched_class->task_change_group(tsk); 9074 else 9075 #endif 9076 set_task_rq(tsk, task_cpu(tsk)); 9077 } 9078 9079 /* 9080 * Change task's runqueue when it moves between groups. 9081 * 9082 * The caller of this function should have put the task in its new group by 9083 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9084 * its new group. 9085 */ 9086 void sched_move_task(struct task_struct *tsk, bool for_autogroup) 9087 { 9088 int queued, running, queue_flags = 9089 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9090 struct rq *rq; 9091 9092 CLASS(task_rq_lock, rq_guard)(tsk); 9093 rq = rq_guard.rq; 9094 9095 update_rq_clock(rq); 9096 9097 running = task_current_donor(rq, tsk); 9098 queued = task_on_rq_queued(tsk); 9099 9100 if (queued) 9101 dequeue_task(rq, tsk, queue_flags); 9102 if (running) 9103 put_prev_task(rq, tsk); 9104 9105 sched_change_group(tsk); 9106 if (!for_autogroup) 9107 scx_cgroup_move_task(tsk); 9108 9109 if (queued) 9110 enqueue_task(rq, tsk, queue_flags); 9111 if (running) { 9112 set_next_task(rq, tsk); 9113 /* 9114 * After changing group, the running task may have joined a 9115 * throttled one but it's still the running task. Trigger a 9116 * resched to make sure that task can still run. 9117 */ 9118 resched_curr(rq); 9119 } 9120 } 9121 9122 static struct cgroup_subsys_state * 9123 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9124 { 9125 struct task_group *parent = css_tg(parent_css); 9126 struct task_group *tg; 9127 9128 if (!parent) { 9129 /* This is early initialization for the top cgroup */ 9130 return &root_task_group.css; 9131 } 9132 9133 tg = sched_create_group(parent); 9134 if (IS_ERR(tg)) 9135 return ERR_PTR(-ENOMEM); 9136 9137 return &tg->css; 9138 } 9139 9140 /* Expose task group only after completing cgroup initialization */ 9141 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9142 { 9143 struct task_group *tg = css_tg(css); 9144 struct task_group *parent = css_tg(css->parent); 9145 int ret; 9146 9147 ret = scx_tg_online(tg); 9148 if (ret) 9149 return ret; 9150 9151 if (parent) 9152 sched_online_group(tg, parent); 9153 9154 #ifdef CONFIG_UCLAMP_TASK_GROUP 9155 /* Propagate the effective uclamp value for the new group */ 9156 guard(mutex)(&uclamp_mutex); 9157 guard(rcu)(); 9158 cpu_util_update_eff(css); 9159 #endif 9160 9161 return 0; 9162 } 9163 9164 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9165 { 9166 struct task_group *tg = css_tg(css); 9167 9168 scx_tg_offline(tg); 9169 } 9170 9171 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9172 { 9173 struct task_group *tg = css_tg(css); 9174 9175 sched_release_group(tg); 9176 } 9177 9178 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9179 { 9180 struct task_group *tg = css_tg(css); 9181 9182 /* 9183 * Relies on the RCU grace period between css_released() and this. 9184 */ 9185 sched_unregister_group(tg); 9186 } 9187 9188 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9189 { 9190 #ifdef CONFIG_RT_GROUP_SCHED 9191 struct task_struct *task; 9192 struct cgroup_subsys_state *css; 9193 9194 if (!rt_group_sched_enabled()) 9195 goto scx_check; 9196 9197 cgroup_taskset_for_each(task, css, tset) { 9198 if (!sched_rt_can_attach(css_tg(css), task)) 9199 return -EINVAL; 9200 } 9201 scx_check: 9202 #endif /* CONFIG_RT_GROUP_SCHED */ 9203 return scx_cgroup_can_attach(tset); 9204 } 9205 9206 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9207 { 9208 struct task_struct *task; 9209 struct cgroup_subsys_state *css; 9210 9211 cgroup_taskset_for_each(task, css, tset) 9212 sched_move_task(task, false); 9213 9214 scx_cgroup_finish_attach(); 9215 } 9216 9217 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9218 { 9219 scx_cgroup_cancel_attach(tset); 9220 } 9221 9222 #ifdef CONFIG_UCLAMP_TASK_GROUP 9223 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9224 { 9225 struct cgroup_subsys_state *top_css = css; 9226 struct uclamp_se *uc_parent = NULL; 9227 struct uclamp_se *uc_se = NULL; 9228 unsigned int eff[UCLAMP_CNT]; 9229 enum uclamp_id clamp_id; 9230 unsigned int clamps; 9231 9232 lockdep_assert_held(&uclamp_mutex); 9233 WARN_ON_ONCE(!rcu_read_lock_held()); 9234 9235 css_for_each_descendant_pre(css, top_css) { 9236 uc_parent = css_tg(css)->parent 9237 ? css_tg(css)->parent->uclamp : NULL; 9238 9239 for_each_clamp_id(clamp_id) { 9240 /* Assume effective clamps matches requested clamps */ 9241 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9242 /* Cap effective clamps with parent's effective clamps */ 9243 if (uc_parent && 9244 eff[clamp_id] > uc_parent[clamp_id].value) { 9245 eff[clamp_id] = uc_parent[clamp_id].value; 9246 } 9247 } 9248 /* Ensure protection is always capped by limit */ 9249 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9250 9251 /* Propagate most restrictive effective clamps */ 9252 clamps = 0x0; 9253 uc_se = css_tg(css)->uclamp; 9254 for_each_clamp_id(clamp_id) { 9255 if (eff[clamp_id] == uc_se[clamp_id].value) 9256 continue; 9257 uc_se[clamp_id].value = eff[clamp_id]; 9258 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9259 clamps |= (0x1 << clamp_id); 9260 } 9261 if (!clamps) { 9262 css = css_rightmost_descendant(css); 9263 continue; 9264 } 9265 9266 /* Immediately update descendants RUNNABLE tasks */ 9267 uclamp_update_active_tasks(css); 9268 } 9269 } 9270 9271 /* 9272 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9273 * C expression. Since there is no way to convert a macro argument (N) into a 9274 * character constant, use two levels of macros. 9275 */ 9276 #define _POW10(exp) ((unsigned int)1e##exp) 9277 #define POW10(exp) _POW10(exp) 9278 9279 struct uclamp_request { 9280 #define UCLAMP_PERCENT_SHIFT 2 9281 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9282 s64 percent; 9283 u64 util; 9284 int ret; 9285 }; 9286 9287 static inline struct uclamp_request 9288 capacity_from_percent(char *buf) 9289 { 9290 struct uclamp_request req = { 9291 .percent = UCLAMP_PERCENT_SCALE, 9292 .util = SCHED_CAPACITY_SCALE, 9293 .ret = 0, 9294 }; 9295 9296 buf = strim(buf); 9297 if (strcmp(buf, "max")) { 9298 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9299 &req.percent); 9300 if (req.ret) 9301 return req; 9302 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9303 req.ret = -ERANGE; 9304 return req; 9305 } 9306 9307 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9308 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9309 } 9310 9311 return req; 9312 } 9313 9314 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9315 size_t nbytes, loff_t off, 9316 enum uclamp_id clamp_id) 9317 { 9318 struct uclamp_request req; 9319 struct task_group *tg; 9320 9321 req = capacity_from_percent(buf); 9322 if (req.ret) 9323 return req.ret; 9324 9325 sched_uclamp_enable(); 9326 9327 guard(mutex)(&uclamp_mutex); 9328 guard(rcu)(); 9329 9330 tg = css_tg(of_css(of)); 9331 if (tg->uclamp_req[clamp_id].value != req.util) 9332 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9333 9334 /* 9335 * Because of not recoverable conversion rounding we keep track of the 9336 * exact requested value 9337 */ 9338 tg->uclamp_pct[clamp_id] = req.percent; 9339 9340 /* Update effective clamps to track the most restrictive value */ 9341 cpu_util_update_eff(of_css(of)); 9342 9343 return nbytes; 9344 } 9345 9346 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9347 char *buf, size_t nbytes, 9348 loff_t off) 9349 { 9350 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9351 } 9352 9353 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9354 char *buf, size_t nbytes, 9355 loff_t off) 9356 { 9357 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9358 } 9359 9360 static inline void cpu_uclamp_print(struct seq_file *sf, 9361 enum uclamp_id clamp_id) 9362 { 9363 struct task_group *tg; 9364 u64 util_clamp; 9365 u64 percent; 9366 u32 rem; 9367 9368 scoped_guard (rcu) { 9369 tg = css_tg(seq_css(sf)); 9370 util_clamp = tg->uclamp_req[clamp_id].value; 9371 } 9372 9373 if (util_clamp == SCHED_CAPACITY_SCALE) { 9374 seq_puts(sf, "max\n"); 9375 return; 9376 } 9377 9378 percent = tg->uclamp_pct[clamp_id]; 9379 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9380 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9381 } 9382 9383 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9384 { 9385 cpu_uclamp_print(sf, UCLAMP_MIN); 9386 return 0; 9387 } 9388 9389 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9390 { 9391 cpu_uclamp_print(sf, UCLAMP_MAX); 9392 return 0; 9393 } 9394 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9395 9396 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9397 static unsigned long tg_weight(struct task_group *tg) 9398 { 9399 #ifdef CONFIG_FAIR_GROUP_SCHED 9400 return scale_load_down(tg->shares); 9401 #else 9402 return sched_weight_from_cgroup(tg->scx_weight); 9403 #endif 9404 } 9405 9406 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9407 struct cftype *cftype, u64 shareval) 9408 { 9409 int ret; 9410 9411 if (shareval > scale_load_down(ULONG_MAX)) 9412 shareval = MAX_SHARES; 9413 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9414 if (!ret) 9415 scx_group_set_weight(css_tg(css), 9416 sched_weight_to_cgroup(shareval)); 9417 return ret; 9418 } 9419 9420 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9421 struct cftype *cft) 9422 { 9423 return tg_weight(css_tg(css)); 9424 } 9425 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9426 9427 #ifdef CONFIG_CFS_BANDWIDTH 9428 static DEFINE_MUTEX(cfs_constraints_mutex); 9429 9430 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9431 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9432 /* More than 203 days if BW_SHIFT equals 20. */ 9433 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9434 9435 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9436 9437 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9438 u64 burst) 9439 { 9440 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9441 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9442 9443 if (tg == &root_task_group) 9444 return -EINVAL; 9445 9446 /* 9447 * Ensure we have at some amount of bandwidth every period. This is 9448 * to prevent reaching a state of large arrears when throttled via 9449 * entity_tick() resulting in prolonged exit starvation. 9450 */ 9451 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9452 return -EINVAL; 9453 9454 /* 9455 * Likewise, bound things on the other side by preventing insane quota 9456 * periods. This also allows us to normalize in computing quota 9457 * feasibility. 9458 */ 9459 if (period > max_cfs_quota_period) 9460 return -EINVAL; 9461 9462 /* 9463 * Bound quota to defend quota against overflow during bandwidth shift. 9464 */ 9465 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9466 return -EINVAL; 9467 9468 if (quota != RUNTIME_INF && (burst > quota || 9469 burst + quota > max_cfs_runtime)) 9470 return -EINVAL; 9471 9472 /* 9473 * Prevent race between setting of cfs_rq->runtime_enabled and 9474 * unthrottle_offline_cfs_rqs(). 9475 */ 9476 guard(cpus_read_lock)(); 9477 guard(mutex)(&cfs_constraints_mutex); 9478 9479 ret = __cfs_schedulable(tg, period, quota); 9480 if (ret) 9481 return ret; 9482 9483 runtime_enabled = quota != RUNTIME_INF; 9484 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9485 /* 9486 * If we need to toggle cfs_bandwidth_used, off->on must occur 9487 * before making related changes, and on->off must occur afterwards 9488 */ 9489 if (runtime_enabled && !runtime_was_enabled) 9490 cfs_bandwidth_usage_inc(); 9491 9492 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9493 cfs_b->period = ns_to_ktime(period); 9494 cfs_b->quota = quota; 9495 cfs_b->burst = burst; 9496 9497 __refill_cfs_bandwidth_runtime(cfs_b); 9498 9499 /* 9500 * Restart the period timer (if active) to handle new 9501 * period expiry: 9502 */ 9503 if (runtime_enabled) 9504 start_cfs_bandwidth(cfs_b); 9505 } 9506 9507 for_each_online_cpu(i) { 9508 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9509 struct rq *rq = cfs_rq->rq; 9510 9511 guard(rq_lock_irq)(rq); 9512 cfs_rq->runtime_enabled = runtime_enabled; 9513 cfs_rq->runtime_remaining = 0; 9514 9515 if (cfs_rq->throttled) 9516 unthrottle_cfs_rq(cfs_rq); 9517 } 9518 9519 if (runtime_was_enabled && !runtime_enabled) 9520 cfs_bandwidth_usage_dec(); 9521 9522 return 0; 9523 } 9524 9525 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9526 { 9527 u64 quota, period, burst; 9528 9529 period = ktime_to_ns(tg->cfs_bandwidth.period); 9530 burst = tg->cfs_bandwidth.burst; 9531 if (cfs_quota_us < 0) 9532 quota = RUNTIME_INF; 9533 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9534 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9535 else 9536 return -EINVAL; 9537 9538 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9539 } 9540 9541 static long tg_get_cfs_quota(struct task_group *tg) 9542 { 9543 u64 quota_us; 9544 9545 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9546 return -1; 9547 9548 quota_us = tg->cfs_bandwidth.quota; 9549 do_div(quota_us, NSEC_PER_USEC); 9550 9551 return quota_us; 9552 } 9553 9554 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9555 { 9556 u64 quota, period, burst; 9557 9558 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9559 return -EINVAL; 9560 9561 period = (u64)cfs_period_us * NSEC_PER_USEC; 9562 quota = tg->cfs_bandwidth.quota; 9563 burst = tg->cfs_bandwidth.burst; 9564 9565 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9566 } 9567 9568 static long tg_get_cfs_period(struct task_group *tg) 9569 { 9570 u64 cfs_period_us; 9571 9572 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9573 do_div(cfs_period_us, NSEC_PER_USEC); 9574 9575 return cfs_period_us; 9576 } 9577 9578 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9579 { 9580 u64 quota, period, burst; 9581 9582 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9583 return -EINVAL; 9584 9585 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9586 period = ktime_to_ns(tg->cfs_bandwidth.period); 9587 quota = tg->cfs_bandwidth.quota; 9588 9589 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9590 } 9591 9592 static long tg_get_cfs_burst(struct task_group *tg) 9593 { 9594 u64 burst_us; 9595 9596 burst_us = tg->cfs_bandwidth.burst; 9597 do_div(burst_us, NSEC_PER_USEC); 9598 9599 return burst_us; 9600 } 9601 9602 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9603 struct cftype *cft) 9604 { 9605 return tg_get_cfs_quota(css_tg(css)); 9606 } 9607 9608 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9609 struct cftype *cftype, s64 cfs_quota_us) 9610 { 9611 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9612 } 9613 9614 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9615 struct cftype *cft) 9616 { 9617 return tg_get_cfs_period(css_tg(css)); 9618 } 9619 9620 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9621 struct cftype *cftype, u64 cfs_period_us) 9622 { 9623 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9624 } 9625 9626 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9627 struct cftype *cft) 9628 { 9629 return tg_get_cfs_burst(css_tg(css)); 9630 } 9631 9632 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9633 struct cftype *cftype, u64 cfs_burst_us) 9634 { 9635 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9636 } 9637 9638 struct cfs_schedulable_data { 9639 struct task_group *tg; 9640 u64 period, quota; 9641 }; 9642 9643 /* 9644 * normalize group quota/period to be quota/max_period 9645 * note: units are usecs 9646 */ 9647 static u64 normalize_cfs_quota(struct task_group *tg, 9648 struct cfs_schedulable_data *d) 9649 { 9650 u64 quota, period; 9651 9652 if (tg == d->tg) { 9653 period = d->period; 9654 quota = d->quota; 9655 } else { 9656 period = tg_get_cfs_period(tg); 9657 quota = tg_get_cfs_quota(tg); 9658 } 9659 9660 /* note: these should typically be equivalent */ 9661 if (quota == RUNTIME_INF || quota == -1) 9662 return RUNTIME_INF; 9663 9664 return to_ratio(period, quota); 9665 } 9666 9667 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9668 { 9669 struct cfs_schedulable_data *d = data; 9670 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9671 s64 quota = 0, parent_quota = -1; 9672 9673 if (!tg->parent) { 9674 quota = RUNTIME_INF; 9675 } else { 9676 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9677 9678 quota = normalize_cfs_quota(tg, d); 9679 parent_quota = parent_b->hierarchical_quota; 9680 9681 /* 9682 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9683 * always take the non-RUNTIME_INF min. On cgroup1, only 9684 * inherit when no limit is set. In both cases this is used 9685 * by the scheduler to determine if a given CFS task has a 9686 * bandwidth constraint at some higher level. 9687 */ 9688 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9689 if (quota == RUNTIME_INF) 9690 quota = parent_quota; 9691 else if (parent_quota != RUNTIME_INF) 9692 quota = min(quota, parent_quota); 9693 } else { 9694 if (quota == RUNTIME_INF) 9695 quota = parent_quota; 9696 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9697 return -EINVAL; 9698 } 9699 } 9700 cfs_b->hierarchical_quota = quota; 9701 9702 return 0; 9703 } 9704 9705 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9706 { 9707 struct cfs_schedulable_data data = { 9708 .tg = tg, 9709 .period = period, 9710 .quota = quota, 9711 }; 9712 9713 if (quota != RUNTIME_INF) { 9714 do_div(data.period, NSEC_PER_USEC); 9715 do_div(data.quota, NSEC_PER_USEC); 9716 } 9717 9718 guard(rcu)(); 9719 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9720 } 9721 9722 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9723 { 9724 struct task_group *tg = css_tg(seq_css(sf)); 9725 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9726 9727 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9728 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9729 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9730 9731 if (schedstat_enabled() && tg != &root_task_group) { 9732 struct sched_statistics *stats; 9733 u64 ws = 0; 9734 int i; 9735 9736 for_each_possible_cpu(i) { 9737 stats = __schedstats_from_se(tg->se[i]); 9738 ws += schedstat_val(stats->wait_sum); 9739 } 9740 9741 seq_printf(sf, "wait_sum %llu\n", ws); 9742 } 9743 9744 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9745 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9746 9747 return 0; 9748 } 9749 9750 static u64 throttled_time_self(struct task_group *tg) 9751 { 9752 int i; 9753 u64 total = 0; 9754 9755 for_each_possible_cpu(i) { 9756 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9757 } 9758 9759 return total; 9760 } 9761 9762 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9763 { 9764 struct task_group *tg = css_tg(seq_css(sf)); 9765 9766 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9767 9768 return 0; 9769 } 9770 #endif /* CONFIG_CFS_BANDWIDTH */ 9771 9772 #ifdef CONFIG_RT_GROUP_SCHED 9773 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9774 struct cftype *cft, s64 val) 9775 { 9776 return sched_group_set_rt_runtime(css_tg(css), val); 9777 } 9778 9779 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9780 struct cftype *cft) 9781 { 9782 return sched_group_rt_runtime(css_tg(css)); 9783 } 9784 9785 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9786 struct cftype *cftype, u64 rt_period_us) 9787 { 9788 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9789 } 9790 9791 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9792 struct cftype *cft) 9793 { 9794 return sched_group_rt_period(css_tg(css)); 9795 } 9796 #endif /* CONFIG_RT_GROUP_SCHED */ 9797 9798 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9799 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9800 struct cftype *cft) 9801 { 9802 return css_tg(css)->idle; 9803 } 9804 9805 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9806 struct cftype *cft, s64 idle) 9807 { 9808 int ret; 9809 9810 ret = sched_group_set_idle(css_tg(css), idle); 9811 if (!ret) 9812 scx_group_set_idle(css_tg(css), idle); 9813 return ret; 9814 } 9815 #endif 9816 9817 static struct cftype cpu_legacy_files[] = { 9818 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9819 { 9820 .name = "shares", 9821 .read_u64 = cpu_shares_read_u64, 9822 .write_u64 = cpu_shares_write_u64, 9823 }, 9824 { 9825 .name = "idle", 9826 .read_s64 = cpu_idle_read_s64, 9827 .write_s64 = cpu_idle_write_s64, 9828 }, 9829 #endif 9830 #ifdef CONFIG_CFS_BANDWIDTH 9831 { 9832 .name = "cfs_quota_us", 9833 .read_s64 = cpu_cfs_quota_read_s64, 9834 .write_s64 = cpu_cfs_quota_write_s64, 9835 }, 9836 { 9837 .name = "cfs_period_us", 9838 .read_u64 = cpu_cfs_period_read_u64, 9839 .write_u64 = cpu_cfs_period_write_u64, 9840 }, 9841 { 9842 .name = "cfs_burst_us", 9843 .read_u64 = cpu_cfs_burst_read_u64, 9844 .write_u64 = cpu_cfs_burst_write_u64, 9845 }, 9846 { 9847 .name = "stat", 9848 .seq_show = cpu_cfs_stat_show, 9849 }, 9850 { 9851 .name = "stat.local", 9852 .seq_show = cpu_cfs_local_stat_show, 9853 }, 9854 #endif 9855 #ifdef CONFIG_UCLAMP_TASK_GROUP 9856 { 9857 .name = "uclamp.min", 9858 .flags = CFTYPE_NOT_ON_ROOT, 9859 .seq_show = cpu_uclamp_min_show, 9860 .write = cpu_uclamp_min_write, 9861 }, 9862 { 9863 .name = "uclamp.max", 9864 .flags = CFTYPE_NOT_ON_ROOT, 9865 .seq_show = cpu_uclamp_max_show, 9866 .write = cpu_uclamp_max_write, 9867 }, 9868 #endif 9869 { } /* Terminate */ 9870 }; 9871 9872 #ifdef CONFIG_RT_GROUP_SCHED 9873 static struct cftype rt_group_files[] = { 9874 { 9875 .name = "rt_runtime_us", 9876 .read_s64 = cpu_rt_runtime_read, 9877 .write_s64 = cpu_rt_runtime_write, 9878 }, 9879 { 9880 .name = "rt_period_us", 9881 .read_u64 = cpu_rt_period_read_uint, 9882 .write_u64 = cpu_rt_period_write_uint, 9883 }, 9884 { } /* Terminate */ 9885 }; 9886 9887 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 9888 DEFINE_STATIC_KEY_FALSE(rt_group_sched); 9889 # else 9890 DEFINE_STATIC_KEY_TRUE(rt_group_sched); 9891 # endif 9892 9893 static int __init setup_rt_group_sched(char *str) 9894 { 9895 long val; 9896 9897 if (kstrtol(str, 0, &val) || val < 0 || val > 1) { 9898 pr_warn("Unable to set rt_group_sched\n"); 9899 return 1; 9900 } 9901 if (val) 9902 static_branch_enable(&rt_group_sched); 9903 else 9904 static_branch_disable(&rt_group_sched); 9905 9906 return 1; 9907 } 9908 __setup("rt_group_sched=", setup_rt_group_sched); 9909 9910 static int __init cpu_rt_group_init(void) 9911 { 9912 if (!rt_group_sched_enabled()) 9913 return 0; 9914 9915 WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files)); 9916 return 0; 9917 } 9918 subsys_initcall(cpu_rt_group_init); 9919 #endif /* CONFIG_RT_GROUP_SCHED */ 9920 9921 static int cpu_extra_stat_show(struct seq_file *sf, 9922 struct cgroup_subsys_state *css) 9923 { 9924 #ifdef CONFIG_CFS_BANDWIDTH 9925 { 9926 struct task_group *tg = css_tg(css); 9927 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9928 u64 throttled_usec, burst_usec; 9929 9930 throttled_usec = cfs_b->throttled_time; 9931 do_div(throttled_usec, NSEC_PER_USEC); 9932 burst_usec = cfs_b->burst_time; 9933 do_div(burst_usec, NSEC_PER_USEC); 9934 9935 seq_printf(sf, "nr_periods %d\n" 9936 "nr_throttled %d\n" 9937 "throttled_usec %llu\n" 9938 "nr_bursts %d\n" 9939 "burst_usec %llu\n", 9940 cfs_b->nr_periods, cfs_b->nr_throttled, 9941 throttled_usec, cfs_b->nr_burst, burst_usec); 9942 } 9943 #endif 9944 return 0; 9945 } 9946 9947 static int cpu_local_stat_show(struct seq_file *sf, 9948 struct cgroup_subsys_state *css) 9949 { 9950 #ifdef CONFIG_CFS_BANDWIDTH 9951 { 9952 struct task_group *tg = css_tg(css); 9953 u64 throttled_self_usec; 9954 9955 throttled_self_usec = throttled_time_self(tg); 9956 do_div(throttled_self_usec, NSEC_PER_USEC); 9957 9958 seq_printf(sf, "throttled_usec %llu\n", 9959 throttled_self_usec); 9960 } 9961 #endif 9962 return 0; 9963 } 9964 9965 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9966 9967 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9968 struct cftype *cft) 9969 { 9970 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9971 } 9972 9973 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9974 struct cftype *cft, u64 cgrp_weight) 9975 { 9976 unsigned long weight; 9977 int ret; 9978 9979 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9980 return -ERANGE; 9981 9982 weight = sched_weight_from_cgroup(cgrp_weight); 9983 9984 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9985 if (!ret) 9986 scx_group_set_weight(css_tg(css), cgrp_weight); 9987 return ret; 9988 } 9989 9990 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9991 struct cftype *cft) 9992 { 9993 unsigned long weight = tg_weight(css_tg(css)); 9994 int last_delta = INT_MAX; 9995 int prio, delta; 9996 9997 /* find the closest nice value to the current weight */ 9998 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9999 delta = abs(sched_prio_to_weight[prio] - weight); 10000 if (delta >= last_delta) 10001 break; 10002 last_delta = delta; 10003 } 10004 10005 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10006 } 10007 10008 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10009 struct cftype *cft, s64 nice) 10010 { 10011 unsigned long weight; 10012 int idx, ret; 10013 10014 if (nice < MIN_NICE || nice > MAX_NICE) 10015 return -ERANGE; 10016 10017 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10018 idx = array_index_nospec(idx, 40); 10019 weight = sched_prio_to_weight[idx]; 10020 10021 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 10022 if (!ret) 10023 scx_group_set_weight(css_tg(css), 10024 sched_weight_to_cgroup(weight)); 10025 return ret; 10026 } 10027 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 10028 10029 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10030 long period, long quota) 10031 { 10032 if (quota < 0) 10033 seq_puts(sf, "max"); 10034 else 10035 seq_printf(sf, "%ld", quota); 10036 10037 seq_printf(sf, " %ld\n", period); 10038 } 10039 10040 /* caller should put the current value in *@periodp before calling */ 10041 static int __maybe_unused cpu_period_quota_parse(char *buf, 10042 u64 *periodp, u64 *quotap) 10043 { 10044 char tok[21]; /* U64_MAX */ 10045 10046 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 10047 return -EINVAL; 10048 10049 *periodp *= NSEC_PER_USEC; 10050 10051 if (sscanf(tok, "%llu", quotap)) 10052 *quotap *= NSEC_PER_USEC; 10053 else if (!strcmp(tok, "max")) 10054 *quotap = RUNTIME_INF; 10055 else 10056 return -EINVAL; 10057 10058 return 0; 10059 } 10060 10061 #ifdef CONFIG_CFS_BANDWIDTH 10062 static int cpu_max_show(struct seq_file *sf, void *v) 10063 { 10064 struct task_group *tg = css_tg(seq_css(sf)); 10065 10066 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 10067 return 0; 10068 } 10069 10070 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10071 char *buf, size_t nbytes, loff_t off) 10072 { 10073 struct task_group *tg = css_tg(of_css(of)); 10074 u64 period = tg_get_cfs_period(tg); 10075 u64 burst = tg->cfs_bandwidth.burst; 10076 u64 quota; 10077 int ret; 10078 10079 ret = cpu_period_quota_parse(buf, &period, "a); 10080 if (!ret) 10081 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 10082 return ret ?: nbytes; 10083 } 10084 #endif 10085 10086 static struct cftype cpu_files[] = { 10087 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10088 { 10089 .name = "weight", 10090 .flags = CFTYPE_NOT_ON_ROOT, 10091 .read_u64 = cpu_weight_read_u64, 10092 .write_u64 = cpu_weight_write_u64, 10093 }, 10094 { 10095 .name = "weight.nice", 10096 .flags = CFTYPE_NOT_ON_ROOT, 10097 .read_s64 = cpu_weight_nice_read_s64, 10098 .write_s64 = cpu_weight_nice_write_s64, 10099 }, 10100 { 10101 .name = "idle", 10102 .flags = CFTYPE_NOT_ON_ROOT, 10103 .read_s64 = cpu_idle_read_s64, 10104 .write_s64 = cpu_idle_write_s64, 10105 }, 10106 #endif 10107 #ifdef CONFIG_CFS_BANDWIDTH 10108 { 10109 .name = "max", 10110 .flags = CFTYPE_NOT_ON_ROOT, 10111 .seq_show = cpu_max_show, 10112 .write = cpu_max_write, 10113 }, 10114 { 10115 .name = "max.burst", 10116 .flags = CFTYPE_NOT_ON_ROOT, 10117 .read_u64 = cpu_cfs_burst_read_u64, 10118 .write_u64 = cpu_cfs_burst_write_u64, 10119 }, 10120 #endif 10121 #ifdef CONFIG_UCLAMP_TASK_GROUP 10122 { 10123 .name = "uclamp.min", 10124 .flags = CFTYPE_NOT_ON_ROOT, 10125 .seq_show = cpu_uclamp_min_show, 10126 .write = cpu_uclamp_min_write, 10127 }, 10128 { 10129 .name = "uclamp.max", 10130 .flags = CFTYPE_NOT_ON_ROOT, 10131 .seq_show = cpu_uclamp_max_show, 10132 .write = cpu_uclamp_max_write, 10133 }, 10134 #endif 10135 { } /* terminate */ 10136 }; 10137 10138 struct cgroup_subsys cpu_cgrp_subsys = { 10139 .css_alloc = cpu_cgroup_css_alloc, 10140 .css_online = cpu_cgroup_css_online, 10141 .css_offline = cpu_cgroup_css_offline, 10142 .css_released = cpu_cgroup_css_released, 10143 .css_free = cpu_cgroup_css_free, 10144 .css_extra_stat_show = cpu_extra_stat_show, 10145 .css_local_stat_show = cpu_local_stat_show, 10146 .can_attach = cpu_cgroup_can_attach, 10147 .attach = cpu_cgroup_attach, 10148 .cancel_attach = cpu_cgroup_cancel_attach, 10149 .legacy_cftypes = cpu_legacy_files, 10150 .dfl_cftypes = cpu_files, 10151 .early_init = true, 10152 .threaded = true, 10153 }; 10154 10155 #endif /* CONFIG_CGROUP_SCHED */ 10156 10157 void dump_cpu_task(int cpu) 10158 { 10159 if (in_hardirq() && cpu == smp_processor_id()) { 10160 struct pt_regs *regs; 10161 10162 regs = get_irq_regs(); 10163 if (regs) { 10164 show_regs(regs); 10165 return; 10166 } 10167 } 10168 10169 if (trigger_single_cpu_backtrace(cpu)) 10170 return; 10171 10172 pr_info("Task dump for CPU %d:\n", cpu); 10173 sched_show_task(cpu_curr(cpu)); 10174 } 10175 10176 /* 10177 * Nice levels are multiplicative, with a gentle 10% change for every 10178 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10179 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10180 * that remained on nice 0. 10181 * 10182 * The "10% effect" is relative and cumulative: from _any_ nice level, 10183 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10184 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10185 * If a task goes up by ~10% and another task goes down by ~10% then 10186 * the relative distance between them is ~25%.) 10187 */ 10188 const int sched_prio_to_weight[40] = { 10189 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10190 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10191 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10192 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10193 /* 0 */ 1024, 820, 655, 526, 423, 10194 /* 5 */ 335, 272, 215, 172, 137, 10195 /* 10 */ 110, 87, 70, 56, 45, 10196 /* 15 */ 36, 29, 23, 18, 15, 10197 }; 10198 10199 /* 10200 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10201 * 10202 * In cases where the weight does not change often, we can use the 10203 * pre-calculated inverse to speed up arithmetics by turning divisions 10204 * into multiplications: 10205 */ 10206 const u32 sched_prio_to_wmult[40] = { 10207 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10208 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10209 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10210 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10211 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10212 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10213 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10214 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10215 }; 10216 10217 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10218 { 10219 trace_sched_update_nr_running_tp(rq, count); 10220 } 10221 10222 #ifdef CONFIG_SCHED_MM_CID 10223 10224 /* 10225 * @cid_lock: Guarantee forward-progress of cid allocation. 10226 * 10227 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 10228 * is only used when contention is detected by the lock-free allocation so 10229 * forward progress can be guaranteed. 10230 */ 10231 DEFINE_RAW_SPINLOCK(cid_lock); 10232 10233 /* 10234 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 10235 * 10236 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 10237 * detected, it is set to 1 to ensure that all newly coming allocations are 10238 * serialized by @cid_lock until the allocation which detected contention 10239 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 10240 * of a cid allocation. 10241 */ 10242 int use_cid_lock; 10243 10244 /* 10245 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 10246 * concurrently with respect to the execution of the source runqueue context 10247 * switch. 10248 * 10249 * There is one basic properties we want to guarantee here: 10250 * 10251 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 10252 * used by a task. That would lead to concurrent allocation of the cid and 10253 * userspace corruption. 10254 * 10255 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 10256 * that a pair of loads observe at least one of a pair of stores, which can be 10257 * shown as: 10258 * 10259 * X = Y = 0 10260 * 10261 * w[X]=1 w[Y]=1 10262 * MB MB 10263 * r[Y]=y r[X]=x 10264 * 10265 * Which guarantees that x==0 && y==0 is impossible. But rather than using 10266 * values 0 and 1, this algorithm cares about specific state transitions of the 10267 * runqueue current task (as updated by the scheduler context switch), and the 10268 * per-mm/cpu cid value. 10269 * 10270 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 10271 * task->mm != mm for the rest of the discussion. There are two scheduler state 10272 * transitions on context switch we care about: 10273 * 10274 * (TSA) Store to rq->curr with transition from (N) to (Y) 10275 * 10276 * (TSB) Store to rq->curr with transition from (Y) to (N) 10277 * 10278 * On the remote-clear side, there is one transition we care about: 10279 * 10280 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 10281 * 10282 * There is also a transition to UNSET state which can be performed from all 10283 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 10284 * guarantees that only a single thread will succeed: 10285 * 10286 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 10287 * 10288 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 10289 * when a thread is actively using the cid (property (1)). 10290 * 10291 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 10292 * 10293 * Scenario A) (TSA)+(TMA) (from next task perspective) 10294 * 10295 * CPU0 CPU1 10296 * 10297 * Context switch CS-1 Remote-clear 10298 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 10299 * (implied barrier after cmpxchg) 10300 * - switch_mm_cid() 10301 * - memory barrier (see switch_mm_cid() 10302 * comment explaining how this barrier 10303 * is combined with other scheduler 10304 * barriers) 10305 * - mm_cid_get (next) 10306 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 10307 * 10308 * This Dekker ensures that either task (Y) is observed by the 10309 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 10310 * observed. 10311 * 10312 * If task (Y) store is observed by rcu_dereference(), it means that there is 10313 * still an active task on the cpu. Remote-clear will therefore not transition 10314 * to UNSET, which fulfills property (1). 10315 * 10316 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 10317 * it will move its state to UNSET, which clears the percpu cid perhaps 10318 * uselessly (which is not an issue for correctness). Because task (Y) is not 10319 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 10320 * state to UNSET is done with a cmpxchg expecting that the old state has the 10321 * LAZY flag set, only one thread will successfully UNSET. 10322 * 10323 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 10324 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 10325 * CPU1 will observe task (Y) and do nothing more, which is fine. 10326 * 10327 * What we are effectively preventing with this Dekker is a scenario where 10328 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 10329 * because this would UNSET a cid which is actively used. 10330 */ 10331 10332 void sched_mm_cid_migrate_from(struct task_struct *t) 10333 { 10334 t->migrate_from_cpu = task_cpu(t); 10335 } 10336 10337 static 10338 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 10339 struct task_struct *t, 10340 struct mm_cid *src_pcpu_cid) 10341 { 10342 struct mm_struct *mm = t->mm; 10343 struct task_struct *src_task; 10344 int src_cid, last_mm_cid; 10345 10346 if (!mm) 10347 return -1; 10348 10349 last_mm_cid = t->last_mm_cid; 10350 /* 10351 * If the migrated task has no last cid, or if the current 10352 * task on src rq uses the cid, it means the source cid does not need 10353 * to be moved to the destination cpu. 10354 */ 10355 if (last_mm_cid == -1) 10356 return -1; 10357 src_cid = READ_ONCE(src_pcpu_cid->cid); 10358 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10359 return -1; 10360 10361 /* 10362 * If we observe an active task using the mm on this rq, it means we 10363 * are not the last task to be migrated from this cpu for this mm, so 10364 * there is no need to move src_cid to the destination cpu. 10365 */ 10366 guard(rcu)(); 10367 src_task = rcu_dereference(src_rq->curr); 10368 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10369 t->last_mm_cid = -1; 10370 return -1; 10371 } 10372 10373 return src_cid; 10374 } 10375 10376 static 10377 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10378 struct task_struct *t, 10379 struct mm_cid *src_pcpu_cid, 10380 int src_cid) 10381 { 10382 struct task_struct *src_task; 10383 struct mm_struct *mm = t->mm; 10384 int lazy_cid; 10385 10386 if (src_cid == -1) 10387 return -1; 10388 10389 /* 10390 * Attempt to clear the source cpu cid to move it to the destination 10391 * cpu. 10392 */ 10393 lazy_cid = mm_cid_set_lazy_put(src_cid); 10394 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10395 return -1; 10396 10397 /* 10398 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10399 * rq->curr->mm matches the scheduler barrier in context_switch() 10400 * between store to rq->curr and load of prev and next task's 10401 * per-mm/cpu cid. 10402 * 10403 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10404 * rq->curr->mm_cid_active matches the barrier in 10405 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10406 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10407 * load of per-mm/cpu cid. 10408 */ 10409 10410 /* 10411 * If we observe an active task using the mm on this rq after setting 10412 * the lazy-put flag, this task will be responsible for transitioning 10413 * from lazy-put flag set to MM_CID_UNSET. 10414 */ 10415 scoped_guard (rcu) { 10416 src_task = rcu_dereference(src_rq->curr); 10417 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10418 /* 10419 * We observed an active task for this mm, there is therefore 10420 * no point in moving this cid to the destination cpu. 10421 */ 10422 t->last_mm_cid = -1; 10423 return -1; 10424 } 10425 } 10426 10427 /* 10428 * The src_cid is unused, so it can be unset. 10429 */ 10430 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10431 return -1; 10432 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); 10433 return src_cid; 10434 } 10435 10436 /* 10437 * Migration to dst cpu. Called with dst_rq lock held. 10438 * Interrupts are disabled, which keeps the window of cid ownership without the 10439 * source rq lock held small. 10440 */ 10441 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10442 { 10443 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10444 struct mm_struct *mm = t->mm; 10445 int src_cid, src_cpu; 10446 bool dst_cid_is_set; 10447 struct rq *src_rq; 10448 10449 lockdep_assert_rq_held(dst_rq); 10450 10451 if (!mm) 10452 return; 10453 src_cpu = t->migrate_from_cpu; 10454 if (src_cpu == -1) { 10455 t->last_mm_cid = -1; 10456 return; 10457 } 10458 /* 10459 * Move the src cid if the dst cid is unset. This keeps id 10460 * allocation closest to 0 in cases where few threads migrate around 10461 * many CPUs. 10462 * 10463 * If destination cid or recent cid is already set, we may have 10464 * to just clear the src cid to ensure compactness in frequent 10465 * migrations scenarios. 10466 * 10467 * It is not useful to clear the src cid when the number of threads is 10468 * greater or equal to the number of allowed CPUs, because user-space 10469 * can expect that the number of allowed cids can reach the number of 10470 * allowed CPUs. 10471 */ 10472 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10473 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || 10474 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); 10475 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) 10476 return; 10477 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10478 src_rq = cpu_rq(src_cpu); 10479 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10480 if (src_cid == -1) 10481 return; 10482 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10483 src_cid); 10484 if (src_cid == -1) 10485 return; 10486 if (dst_cid_is_set) { 10487 __mm_cid_put(mm, src_cid); 10488 return; 10489 } 10490 /* Move src_cid to dst cpu. */ 10491 mm_cid_snapshot_time(dst_rq, mm); 10492 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10493 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); 10494 } 10495 10496 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10497 int cpu) 10498 { 10499 struct rq *rq = cpu_rq(cpu); 10500 struct task_struct *t; 10501 int cid, lazy_cid; 10502 10503 cid = READ_ONCE(pcpu_cid->cid); 10504 if (!mm_cid_is_valid(cid)) 10505 return; 10506 10507 /* 10508 * Clear the cpu cid if it is set to keep cid allocation compact. If 10509 * there happens to be other tasks left on the source cpu using this 10510 * mm, the next task using this mm will reallocate its cid on context 10511 * switch. 10512 */ 10513 lazy_cid = mm_cid_set_lazy_put(cid); 10514 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10515 return; 10516 10517 /* 10518 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10519 * rq->curr->mm matches the scheduler barrier in context_switch() 10520 * between store to rq->curr and load of prev and next task's 10521 * per-mm/cpu cid. 10522 * 10523 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10524 * rq->curr->mm_cid_active matches the barrier in 10525 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10526 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10527 * load of per-mm/cpu cid. 10528 */ 10529 10530 /* 10531 * If we observe an active task using the mm on this rq after setting 10532 * the lazy-put flag, that task will be responsible for transitioning 10533 * from lazy-put flag set to MM_CID_UNSET. 10534 */ 10535 scoped_guard (rcu) { 10536 t = rcu_dereference(rq->curr); 10537 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10538 return; 10539 } 10540 10541 /* 10542 * The cid is unused, so it can be unset. 10543 * Disable interrupts to keep the window of cid ownership without rq 10544 * lock small. 10545 */ 10546 scoped_guard (irqsave) { 10547 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10548 __mm_cid_put(mm, cid); 10549 } 10550 } 10551 10552 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10553 { 10554 struct rq *rq = cpu_rq(cpu); 10555 struct mm_cid *pcpu_cid; 10556 struct task_struct *curr; 10557 u64 rq_clock; 10558 10559 /* 10560 * rq->clock load is racy on 32-bit but one spurious clear once in a 10561 * while is irrelevant. 10562 */ 10563 rq_clock = READ_ONCE(rq->clock); 10564 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10565 10566 /* 10567 * In order to take care of infrequently scheduled tasks, bump the time 10568 * snapshot associated with this cid if an active task using the mm is 10569 * observed on this rq. 10570 */ 10571 scoped_guard (rcu) { 10572 curr = rcu_dereference(rq->curr); 10573 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10574 WRITE_ONCE(pcpu_cid->time, rq_clock); 10575 return; 10576 } 10577 } 10578 10579 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10580 return; 10581 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10582 } 10583 10584 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10585 int weight) 10586 { 10587 struct mm_cid *pcpu_cid; 10588 int cid; 10589 10590 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10591 cid = READ_ONCE(pcpu_cid->cid); 10592 if (!mm_cid_is_valid(cid) || cid < weight) 10593 return; 10594 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10595 } 10596 10597 static void task_mm_cid_work(struct callback_head *work) 10598 { 10599 unsigned long now = jiffies, old_scan, next_scan; 10600 struct task_struct *t = current; 10601 struct cpumask *cidmask; 10602 struct mm_struct *mm; 10603 int weight, cpu; 10604 10605 WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work)); 10606 10607 work->next = work; /* Prevent double-add */ 10608 if (t->flags & PF_EXITING) 10609 return; 10610 mm = t->mm; 10611 if (!mm) 10612 return; 10613 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10614 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10615 if (!old_scan) { 10616 unsigned long res; 10617 10618 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10619 if (res != old_scan) 10620 old_scan = res; 10621 else 10622 old_scan = next_scan; 10623 } 10624 if (time_before(now, old_scan)) 10625 return; 10626 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10627 return; 10628 cidmask = mm_cidmask(mm); 10629 /* Clear cids that were not recently used. */ 10630 for_each_possible_cpu(cpu) 10631 sched_mm_cid_remote_clear_old(mm, cpu); 10632 weight = cpumask_weight(cidmask); 10633 /* 10634 * Clear cids that are greater or equal to the cidmask weight to 10635 * recompact it. 10636 */ 10637 for_each_possible_cpu(cpu) 10638 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10639 } 10640 10641 void init_sched_mm_cid(struct task_struct *t) 10642 { 10643 struct mm_struct *mm = t->mm; 10644 int mm_users = 0; 10645 10646 if (mm) { 10647 mm_users = atomic_read(&mm->mm_users); 10648 if (mm_users == 1) 10649 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10650 } 10651 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10652 init_task_work(&t->cid_work, task_mm_cid_work); 10653 } 10654 10655 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10656 { 10657 struct callback_head *work = &curr->cid_work; 10658 unsigned long now = jiffies; 10659 10660 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10661 work->next != work) 10662 return; 10663 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10664 return; 10665 10666 /* No page allocation under rq lock */ 10667 task_work_add(curr, work, TWA_RESUME); 10668 } 10669 10670 void sched_mm_cid_exit_signals(struct task_struct *t) 10671 { 10672 struct mm_struct *mm = t->mm; 10673 struct rq *rq; 10674 10675 if (!mm) 10676 return; 10677 10678 preempt_disable(); 10679 rq = this_rq(); 10680 guard(rq_lock_irqsave)(rq); 10681 preempt_enable_no_resched(); /* holding spinlock */ 10682 WRITE_ONCE(t->mm_cid_active, 0); 10683 /* 10684 * Store t->mm_cid_active before loading per-mm/cpu cid. 10685 * Matches barrier in sched_mm_cid_remote_clear_old(). 10686 */ 10687 smp_mb(); 10688 mm_cid_put(mm); 10689 t->last_mm_cid = t->mm_cid = -1; 10690 } 10691 10692 void sched_mm_cid_before_execve(struct task_struct *t) 10693 { 10694 struct mm_struct *mm = t->mm; 10695 struct rq *rq; 10696 10697 if (!mm) 10698 return; 10699 10700 preempt_disable(); 10701 rq = this_rq(); 10702 guard(rq_lock_irqsave)(rq); 10703 preempt_enable_no_resched(); /* holding spinlock */ 10704 WRITE_ONCE(t->mm_cid_active, 0); 10705 /* 10706 * Store t->mm_cid_active before loading per-mm/cpu cid. 10707 * Matches barrier in sched_mm_cid_remote_clear_old(). 10708 */ 10709 smp_mb(); 10710 mm_cid_put(mm); 10711 t->last_mm_cid = t->mm_cid = -1; 10712 } 10713 10714 void sched_mm_cid_after_execve(struct task_struct *t) 10715 { 10716 struct mm_struct *mm = t->mm; 10717 struct rq *rq; 10718 10719 if (!mm) 10720 return; 10721 10722 preempt_disable(); 10723 rq = this_rq(); 10724 scoped_guard (rq_lock_irqsave, rq) { 10725 preempt_enable_no_resched(); /* holding spinlock */ 10726 WRITE_ONCE(t->mm_cid_active, 1); 10727 /* 10728 * Store t->mm_cid_active before loading per-mm/cpu cid. 10729 * Matches barrier in sched_mm_cid_remote_clear_old(). 10730 */ 10731 smp_mb(); 10732 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); 10733 } 10734 } 10735 10736 void sched_mm_cid_fork(struct task_struct *t) 10737 { 10738 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10739 t->mm_cid_active = 1; 10740 } 10741 #endif 10742 10743 #ifdef CONFIG_SCHED_CLASS_EXT 10744 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10745 struct sched_enq_and_set_ctx *ctx) 10746 { 10747 struct rq *rq = task_rq(p); 10748 10749 lockdep_assert_rq_held(rq); 10750 10751 *ctx = (struct sched_enq_and_set_ctx){ 10752 .p = p, 10753 .queue_flags = queue_flags, 10754 .queued = task_on_rq_queued(p), 10755 .running = task_current(rq, p), 10756 }; 10757 10758 update_rq_clock(rq); 10759 if (ctx->queued) 10760 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10761 if (ctx->running) 10762 put_prev_task(rq, p); 10763 } 10764 10765 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10766 { 10767 struct rq *rq = task_rq(ctx->p); 10768 10769 lockdep_assert_rq_held(rq); 10770 10771 if (ctx->queued) 10772 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10773 if (ctx->running) 10774 set_next_task(rq, ctx->p); 10775 } 10776 #endif /* CONFIG_SCHED_CLASS_EXT */ 10777