xref: /linux/kernel/sched/core.c (revision 1698872b5c772aebc5c43ca445cc0a79f12b9fcc)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 #include <linux/frame.h>
78 
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86 
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90 
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93 
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96 
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98 
99 void update_rq_clock(struct rq *rq)
100 {
101 	s64 delta;
102 
103 	lockdep_assert_held(&rq->lock);
104 
105 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 		return;
107 
108 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 	if (delta < 0)
110 		return;
111 	rq->clock += delta;
112 	update_rq_clock_task(rq, delta);
113 }
114 
115 /*
116  * Debugging: various feature bits
117  */
118 
119 #define SCHED_FEAT(name, enabled)	\
120 	(1UL << __SCHED_FEAT_##name) * enabled |
121 
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 	0;
125 
126 #undef SCHED_FEAT
127 
128 #ifdef CONFIG_SCHED_DEBUG
129 #define SCHED_FEAT(name, enabled)	\
130 	#name ,
131 
132 static const char * const sched_feat_names[] = {
133 #include "features.h"
134 };
135 
136 #undef SCHED_FEAT
137 
138 static int sched_feat_show(struct seq_file *m, void *v)
139 {
140 	int i;
141 
142 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
143 		if (!(sysctl_sched_features & (1UL << i)))
144 			seq_puts(m, "NO_");
145 		seq_printf(m, "%s ", sched_feat_names[i]);
146 	}
147 	seq_puts(m, "\n");
148 
149 	return 0;
150 }
151 
152 #ifdef HAVE_JUMP_LABEL
153 
154 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
155 #define jump_label_key__false STATIC_KEY_INIT_FALSE
156 
157 #define SCHED_FEAT(name, enabled)	\
158 	jump_label_key__##enabled ,
159 
160 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
161 #include "features.h"
162 };
163 
164 #undef SCHED_FEAT
165 
166 static void sched_feat_disable(int i)
167 {
168 	static_key_disable(&sched_feat_keys[i]);
169 }
170 
171 static void sched_feat_enable(int i)
172 {
173 	static_key_enable(&sched_feat_keys[i]);
174 }
175 #else
176 static void sched_feat_disable(int i) { };
177 static void sched_feat_enable(int i) { };
178 #endif /* HAVE_JUMP_LABEL */
179 
180 static int sched_feat_set(char *cmp)
181 {
182 	int i;
183 	int neg = 0;
184 
185 	if (strncmp(cmp, "NO_", 3) == 0) {
186 		neg = 1;
187 		cmp += 3;
188 	}
189 
190 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
191 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
192 			if (neg) {
193 				sysctl_sched_features &= ~(1UL << i);
194 				sched_feat_disable(i);
195 			} else {
196 				sysctl_sched_features |= (1UL << i);
197 				sched_feat_enable(i);
198 			}
199 			break;
200 		}
201 	}
202 
203 	return i;
204 }
205 
206 static ssize_t
207 sched_feat_write(struct file *filp, const char __user *ubuf,
208 		size_t cnt, loff_t *ppos)
209 {
210 	char buf[64];
211 	char *cmp;
212 	int i;
213 	struct inode *inode;
214 
215 	if (cnt > 63)
216 		cnt = 63;
217 
218 	if (copy_from_user(&buf, ubuf, cnt))
219 		return -EFAULT;
220 
221 	buf[cnt] = 0;
222 	cmp = strstrip(buf);
223 
224 	/* Ensure the static_key remains in a consistent state */
225 	inode = file_inode(filp);
226 	inode_lock(inode);
227 	i = sched_feat_set(cmp);
228 	inode_unlock(inode);
229 	if (i == __SCHED_FEAT_NR)
230 		return -EINVAL;
231 
232 	*ppos += cnt;
233 
234 	return cnt;
235 }
236 
237 static int sched_feat_open(struct inode *inode, struct file *filp)
238 {
239 	return single_open(filp, sched_feat_show, NULL);
240 }
241 
242 static const struct file_operations sched_feat_fops = {
243 	.open		= sched_feat_open,
244 	.write		= sched_feat_write,
245 	.read		= seq_read,
246 	.llseek		= seq_lseek,
247 	.release	= single_release,
248 };
249 
250 static __init int sched_init_debug(void)
251 {
252 	debugfs_create_file("sched_features", 0644, NULL, NULL,
253 			&sched_feat_fops);
254 
255 	return 0;
256 }
257 late_initcall(sched_init_debug);
258 #endif /* CONFIG_SCHED_DEBUG */
259 
260 /*
261  * Number of tasks to iterate in a single balance run.
262  * Limited because this is done with IRQs disabled.
263  */
264 const_debug unsigned int sysctl_sched_nr_migrate = 32;
265 
266 /*
267  * period over which we average the RT time consumption, measured
268  * in ms.
269  *
270  * default: 1s
271  */
272 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
273 
274 /*
275  * period over which we measure -rt task cpu usage in us.
276  * default: 1s
277  */
278 unsigned int sysctl_sched_rt_period = 1000000;
279 
280 __read_mostly int scheduler_running;
281 
282 /*
283  * part of the period that we allow rt tasks to run in us.
284  * default: 0.95s
285  */
286 int sysctl_sched_rt_runtime = 950000;
287 
288 /* cpus with isolated domains */
289 cpumask_var_t cpu_isolated_map;
290 
291 /*
292  * this_rq_lock - lock this runqueue and disable interrupts.
293  */
294 static struct rq *this_rq_lock(void)
295 	__acquires(rq->lock)
296 {
297 	struct rq *rq;
298 
299 	local_irq_disable();
300 	rq = this_rq();
301 	raw_spin_lock(&rq->lock);
302 
303 	return rq;
304 }
305 
306 #ifdef CONFIG_SCHED_HRTICK
307 /*
308  * Use HR-timers to deliver accurate preemption points.
309  */
310 
311 static void hrtick_clear(struct rq *rq)
312 {
313 	if (hrtimer_active(&rq->hrtick_timer))
314 		hrtimer_cancel(&rq->hrtick_timer);
315 }
316 
317 /*
318  * High-resolution timer tick.
319  * Runs from hardirq context with interrupts disabled.
320  */
321 static enum hrtimer_restart hrtick(struct hrtimer *timer)
322 {
323 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
324 
325 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
326 
327 	raw_spin_lock(&rq->lock);
328 	update_rq_clock(rq);
329 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
330 	raw_spin_unlock(&rq->lock);
331 
332 	return HRTIMER_NORESTART;
333 }
334 
335 #ifdef CONFIG_SMP
336 
337 static void __hrtick_restart(struct rq *rq)
338 {
339 	struct hrtimer *timer = &rq->hrtick_timer;
340 
341 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
342 }
343 
344 /*
345  * called from hardirq (IPI) context
346  */
347 static void __hrtick_start(void *arg)
348 {
349 	struct rq *rq = arg;
350 
351 	raw_spin_lock(&rq->lock);
352 	__hrtick_restart(rq);
353 	rq->hrtick_csd_pending = 0;
354 	raw_spin_unlock(&rq->lock);
355 }
356 
357 /*
358  * Called to set the hrtick timer state.
359  *
360  * called with rq->lock held and irqs disabled
361  */
362 void hrtick_start(struct rq *rq, u64 delay)
363 {
364 	struct hrtimer *timer = &rq->hrtick_timer;
365 	ktime_t time;
366 	s64 delta;
367 
368 	/*
369 	 * Don't schedule slices shorter than 10000ns, that just
370 	 * doesn't make sense and can cause timer DoS.
371 	 */
372 	delta = max_t(s64, delay, 10000LL);
373 	time = ktime_add_ns(timer->base->get_time(), delta);
374 
375 	hrtimer_set_expires(timer, time);
376 
377 	if (rq == this_rq()) {
378 		__hrtick_restart(rq);
379 	} else if (!rq->hrtick_csd_pending) {
380 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
381 		rq->hrtick_csd_pending = 1;
382 	}
383 }
384 
385 static int
386 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
387 {
388 	int cpu = (int)(long)hcpu;
389 
390 	switch (action) {
391 	case CPU_UP_CANCELED:
392 	case CPU_UP_CANCELED_FROZEN:
393 	case CPU_DOWN_PREPARE:
394 	case CPU_DOWN_PREPARE_FROZEN:
395 	case CPU_DEAD:
396 	case CPU_DEAD_FROZEN:
397 		hrtick_clear(cpu_rq(cpu));
398 		return NOTIFY_OK;
399 	}
400 
401 	return NOTIFY_DONE;
402 }
403 
404 static __init void init_hrtick(void)
405 {
406 	hotcpu_notifier(hotplug_hrtick, 0);
407 }
408 #else
409 /*
410  * Called to set the hrtick timer state.
411  *
412  * called with rq->lock held and irqs disabled
413  */
414 void hrtick_start(struct rq *rq, u64 delay)
415 {
416 	/*
417 	 * Don't schedule slices shorter than 10000ns, that just
418 	 * doesn't make sense. Rely on vruntime for fairness.
419 	 */
420 	delay = max_t(u64, delay, 10000LL);
421 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
422 		      HRTIMER_MODE_REL_PINNED);
423 }
424 
425 static inline void init_hrtick(void)
426 {
427 }
428 #endif /* CONFIG_SMP */
429 
430 static void init_rq_hrtick(struct rq *rq)
431 {
432 #ifdef CONFIG_SMP
433 	rq->hrtick_csd_pending = 0;
434 
435 	rq->hrtick_csd.flags = 0;
436 	rq->hrtick_csd.func = __hrtick_start;
437 	rq->hrtick_csd.info = rq;
438 #endif
439 
440 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
441 	rq->hrtick_timer.function = hrtick;
442 }
443 #else	/* CONFIG_SCHED_HRTICK */
444 static inline void hrtick_clear(struct rq *rq)
445 {
446 }
447 
448 static inline void init_rq_hrtick(struct rq *rq)
449 {
450 }
451 
452 static inline void init_hrtick(void)
453 {
454 }
455 #endif	/* CONFIG_SCHED_HRTICK */
456 
457 /*
458  * cmpxchg based fetch_or, macro so it works for different integer types
459  */
460 #define fetch_or(ptr, val)						\
461 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
462  	for (;;) {							\
463  		__old = cmpxchg((ptr), __val, __val | (val));		\
464  		if (__old == __val)					\
465  			break;						\
466  		__val = __old;						\
467  	}								\
468  	__old;								\
469 })
470 
471 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
472 /*
473  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
474  * this avoids any races wrt polling state changes and thereby avoids
475  * spurious IPIs.
476  */
477 static bool set_nr_and_not_polling(struct task_struct *p)
478 {
479 	struct thread_info *ti = task_thread_info(p);
480 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
481 }
482 
483 /*
484  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
485  *
486  * If this returns true, then the idle task promises to call
487  * sched_ttwu_pending() and reschedule soon.
488  */
489 static bool set_nr_if_polling(struct task_struct *p)
490 {
491 	struct thread_info *ti = task_thread_info(p);
492 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
493 
494 	for (;;) {
495 		if (!(val & _TIF_POLLING_NRFLAG))
496 			return false;
497 		if (val & _TIF_NEED_RESCHED)
498 			return true;
499 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
500 		if (old == val)
501 			break;
502 		val = old;
503 	}
504 	return true;
505 }
506 
507 #else
508 static bool set_nr_and_not_polling(struct task_struct *p)
509 {
510 	set_tsk_need_resched(p);
511 	return true;
512 }
513 
514 #ifdef CONFIG_SMP
515 static bool set_nr_if_polling(struct task_struct *p)
516 {
517 	return false;
518 }
519 #endif
520 #endif
521 
522 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
523 {
524 	struct wake_q_node *node = &task->wake_q;
525 
526 	/*
527 	 * Atomically grab the task, if ->wake_q is !nil already it means
528 	 * its already queued (either by us or someone else) and will get the
529 	 * wakeup due to that.
530 	 *
531 	 * This cmpxchg() implies a full barrier, which pairs with the write
532 	 * barrier implied by the wakeup in wake_up_list().
533 	 */
534 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
535 		return;
536 
537 	get_task_struct(task);
538 
539 	/*
540 	 * The head is context local, there can be no concurrency.
541 	 */
542 	*head->lastp = node;
543 	head->lastp = &node->next;
544 }
545 
546 void wake_up_q(struct wake_q_head *head)
547 {
548 	struct wake_q_node *node = head->first;
549 
550 	while (node != WAKE_Q_TAIL) {
551 		struct task_struct *task;
552 
553 		task = container_of(node, struct task_struct, wake_q);
554 		BUG_ON(!task);
555 		/* task can safely be re-inserted now */
556 		node = node->next;
557 		task->wake_q.next = NULL;
558 
559 		/*
560 		 * wake_up_process() implies a wmb() to pair with the queueing
561 		 * in wake_q_add() so as not to miss wakeups.
562 		 */
563 		wake_up_process(task);
564 		put_task_struct(task);
565 	}
566 }
567 
568 /*
569  * resched_curr - mark rq's current task 'to be rescheduled now'.
570  *
571  * On UP this means the setting of the need_resched flag, on SMP it
572  * might also involve a cross-CPU call to trigger the scheduler on
573  * the target CPU.
574  */
575 void resched_curr(struct rq *rq)
576 {
577 	struct task_struct *curr = rq->curr;
578 	int cpu;
579 
580 	lockdep_assert_held(&rq->lock);
581 
582 	if (test_tsk_need_resched(curr))
583 		return;
584 
585 	cpu = cpu_of(rq);
586 
587 	if (cpu == smp_processor_id()) {
588 		set_tsk_need_resched(curr);
589 		set_preempt_need_resched();
590 		return;
591 	}
592 
593 	if (set_nr_and_not_polling(curr))
594 		smp_send_reschedule(cpu);
595 	else
596 		trace_sched_wake_idle_without_ipi(cpu);
597 }
598 
599 void resched_cpu(int cpu)
600 {
601 	struct rq *rq = cpu_rq(cpu);
602 	unsigned long flags;
603 
604 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
605 		return;
606 	resched_curr(rq);
607 	raw_spin_unlock_irqrestore(&rq->lock, flags);
608 }
609 
610 #ifdef CONFIG_SMP
611 #ifdef CONFIG_NO_HZ_COMMON
612 /*
613  * In the semi idle case, use the nearest busy cpu for migrating timers
614  * from an idle cpu.  This is good for power-savings.
615  *
616  * We don't do similar optimization for completely idle system, as
617  * selecting an idle cpu will add more delays to the timers than intended
618  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
619  */
620 int get_nohz_timer_target(void)
621 {
622 	int i, cpu = smp_processor_id();
623 	struct sched_domain *sd;
624 
625 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
626 		return cpu;
627 
628 	rcu_read_lock();
629 	for_each_domain(cpu, sd) {
630 		for_each_cpu(i, sched_domain_span(sd)) {
631 			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
632 				cpu = i;
633 				goto unlock;
634 			}
635 		}
636 	}
637 
638 	if (!is_housekeeping_cpu(cpu))
639 		cpu = housekeeping_any_cpu();
640 unlock:
641 	rcu_read_unlock();
642 	return cpu;
643 }
644 /*
645  * When add_timer_on() enqueues a timer into the timer wheel of an
646  * idle CPU then this timer might expire before the next timer event
647  * which is scheduled to wake up that CPU. In case of a completely
648  * idle system the next event might even be infinite time into the
649  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
650  * leaves the inner idle loop so the newly added timer is taken into
651  * account when the CPU goes back to idle and evaluates the timer
652  * wheel for the next timer event.
653  */
654 static void wake_up_idle_cpu(int cpu)
655 {
656 	struct rq *rq = cpu_rq(cpu);
657 
658 	if (cpu == smp_processor_id())
659 		return;
660 
661 	if (set_nr_and_not_polling(rq->idle))
662 		smp_send_reschedule(cpu);
663 	else
664 		trace_sched_wake_idle_without_ipi(cpu);
665 }
666 
667 static bool wake_up_full_nohz_cpu(int cpu)
668 {
669 	/*
670 	 * We just need the target to call irq_exit() and re-evaluate
671 	 * the next tick. The nohz full kick at least implies that.
672 	 * If needed we can still optimize that later with an
673 	 * empty IRQ.
674 	 */
675 	if (tick_nohz_full_cpu(cpu)) {
676 		if (cpu != smp_processor_id() ||
677 		    tick_nohz_tick_stopped())
678 			tick_nohz_full_kick_cpu(cpu);
679 		return true;
680 	}
681 
682 	return false;
683 }
684 
685 void wake_up_nohz_cpu(int cpu)
686 {
687 	if (!wake_up_full_nohz_cpu(cpu))
688 		wake_up_idle_cpu(cpu);
689 }
690 
691 static inline bool got_nohz_idle_kick(void)
692 {
693 	int cpu = smp_processor_id();
694 
695 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
696 		return false;
697 
698 	if (idle_cpu(cpu) && !need_resched())
699 		return true;
700 
701 	/*
702 	 * We can't run Idle Load Balance on this CPU for this time so we
703 	 * cancel it and clear NOHZ_BALANCE_KICK
704 	 */
705 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
706 	return false;
707 }
708 
709 #else /* CONFIG_NO_HZ_COMMON */
710 
711 static inline bool got_nohz_idle_kick(void)
712 {
713 	return false;
714 }
715 
716 #endif /* CONFIG_NO_HZ_COMMON */
717 
718 #ifdef CONFIG_NO_HZ_FULL
719 bool sched_can_stop_tick(void)
720 {
721 	/*
722 	 * FIFO realtime policy runs the highest priority task. Other runnable
723 	 * tasks are of a lower priority. The scheduler tick does nothing.
724 	 */
725 	if (current->policy == SCHED_FIFO)
726 		return true;
727 
728 	/*
729 	 * Round-robin realtime tasks time slice with other tasks at the same
730 	 * realtime priority. Is this task the only one at this priority?
731 	 */
732 	if (current->policy == SCHED_RR) {
733 		struct sched_rt_entity *rt_se = &current->rt;
734 
735 		return list_is_singular(&rt_se->run_list);
736 	}
737 
738 	/*
739 	 * More than one running task need preemption.
740 	 * nr_running update is assumed to be visible
741 	 * after IPI is sent from wakers.
742 	 */
743 	if (this_rq()->nr_running > 1)
744 		return false;
745 
746 	return true;
747 }
748 #endif /* CONFIG_NO_HZ_FULL */
749 
750 void sched_avg_update(struct rq *rq)
751 {
752 	s64 period = sched_avg_period();
753 
754 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
755 		/*
756 		 * Inline assembly required to prevent the compiler
757 		 * optimising this loop into a divmod call.
758 		 * See __iter_div_u64_rem() for another example of this.
759 		 */
760 		asm("" : "+rm" (rq->age_stamp));
761 		rq->age_stamp += period;
762 		rq->rt_avg /= 2;
763 	}
764 }
765 
766 #endif /* CONFIG_SMP */
767 
768 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
769 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
770 /*
771  * Iterate task_group tree rooted at *from, calling @down when first entering a
772  * node and @up when leaving it for the final time.
773  *
774  * Caller must hold rcu_lock or sufficient equivalent.
775  */
776 int walk_tg_tree_from(struct task_group *from,
777 			     tg_visitor down, tg_visitor up, void *data)
778 {
779 	struct task_group *parent, *child;
780 	int ret;
781 
782 	parent = from;
783 
784 down:
785 	ret = (*down)(parent, data);
786 	if (ret)
787 		goto out;
788 	list_for_each_entry_rcu(child, &parent->children, siblings) {
789 		parent = child;
790 		goto down;
791 
792 up:
793 		continue;
794 	}
795 	ret = (*up)(parent, data);
796 	if (ret || parent == from)
797 		goto out;
798 
799 	child = parent;
800 	parent = parent->parent;
801 	if (parent)
802 		goto up;
803 out:
804 	return ret;
805 }
806 
807 int tg_nop(struct task_group *tg, void *data)
808 {
809 	return 0;
810 }
811 #endif
812 
813 static void set_load_weight(struct task_struct *p)
814 {
815 	int prio = p->static_prio - MAX_RT_PRIO;
816 	struct load_weight *load = &p->se.load;
817 
818 	/*
819 	 * SCHED_IDLE tasks get minimal weight:
820 	 */
821 	if (idle_policy(p->policy)) {
822 		load->weight = scale_load(WEIGHT_IDLEPRIO);
823 		load->inv_weight = WMULT_IDLEPRIO;
824 		return;
825 	}
826 
827 	load->weight = scale_load(sched_prio_to_weight[prio]);
828 	load->inv_weight = sched_prio_to_wmult[prio];
829 }
830 
831 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
832 {
833 	update_rq_clock(rq);
834 	if (!(flags & ENQUEUE_RESTORE))
835 		sched_info_queued(rq, p);
836 	p->sched_class->enqueue_task(rq, p, flags);
837 }
838 
839 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
840 {
841 	update_rq_clock(rq);
842 	if (!(flags & DEQUEUE_SAVE))
843 		sched_info_dequeued(rq, p);
844 	p->sched_class->dequeue_task(rq, p, flags);
845 }
846 
847 void activate_task(struct rq *rq, struct task_struct *p, int flags)
848 {
849 	if (task_contributes_to_load(p))
850 		rq->nr_uninterruptible--;
851 
852 	enqueue_task(rq, p, flags);
853 }
854 
855 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
856 {
857 	if (task_contributes_to_load(p))
858 		rq->nr_uninterruptible++;
859 
860 	dequeue_task(rq, p, flags);
861 }
862 
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
864 {
865 /*
866  * In theory, the compile should just see 0 here, and optimize out the call
867  * to sched_rt_avg_update. But I don't trust it...
868  */
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 	s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874 
875 	/*
876 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 	 * this case when a previous update_rq_clock() happened inside a
878 	 * {soft,}irq region.
879 	 *
880 	 * When this happens, we stop ->clock_task and only update the
881 	 * prev_irq_time stamp to account for the part that fit, so that a next
882 	 * update will consume the rest. This ensures ->clock_task is
883 	 * monotonic.
884 	 *
885 	 * It does however cause some slight miss-attribution of {soft,}irq
886 	 * time, a more accurate solution would be to update the irq_time using
887 	 * the current rq->clock timestamp, except that would require using
888 	 * atomic ops.
889 	 */
890 	if (irq_delta > delta)
891 		irq_delta = delta;
892 
893 	rq->prev_irq_time += irq_delta;
894 	delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 	if (static_key_false((&paravirt_steal_rq_enabled))) {
898 		steal = paravirt_steal_clock(cpu_of(rq));
899 		steal -= rq->prev_steal_time_rq;
900 
901 		if (unlikely(steal > delta))
902 			steal = delta;
903 
904 		rq->prev_steal_time_rq += steal;
905 		delta -= steal;
906 	}
907 #endif
908 
909 	rq->clock_task += delta;
910 
911 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
912 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
913 		sched_rt_avg_update(rq, irq_delta + steal);
914 #endif
915 }
916 
917 void sched_set_stop_task(int cpu, struct task_struct *stop)
918 {
919 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
920 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
921 
922 	if (stop) {
923 		/*
924 		 * Make it appear like a SCHED_FIFO task, its something
925 		 * userspace knows about and won't get confused about.
926 		 *
927 		 * Also, it will make PI more or less work without too
928 		 * much confusion -- but then, stop work should not
929 		 * rely on PI working anyway.
930 		 */
931 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
932 
933 		stop->sched_class = &stop_sched_class;
934 	}
935 
936 	cpu_rq(cpu)->stop = stop;
937 
938 	if (old_stop) {
939 		/*
940 		 * Reset it back to a normal scheduling class so that
941 		 * it can die in pieces.
942 		 */
943 		old_stop->sched_class = &rt_sched_class;
944 	}
945 }
946 
947 /*
948  * __normal_prio - return the priority that is based on the static prio
949  */
950 static inline int __normal_prio(struct task_struct *p)
951 {
952 	return p->static_prio;
953 }
954 
955 /*
956  * Calculate the expected normal priority: i.e. priority
957  * without taking RT-inheritance into account. Might be
958  * boosted by interactivity modifiers. Changes upon fork,
959  * setprio syscalls, and whenever the interactivity
960  * estimator recalculates.
961  */
962 static inline int normal_prio(struct task_struct *p)
963 {
964 	int prio;
965 
966 	if (task_has_dl_policy(p))
967 		prio = MAX_DL_PRIO-1;
968 	else if (task_has_rt_policy(p))
969 		prio = MAX_RT_PRIO-1 - p->rt_priority;
970 	else
971 		prio = __normal_prio(p);
972 	return prio;
973 }
974 
975 /*
976  * Calculate the current priority, i.e. the priority
977  * taken into account by the scheduler. This value might
978  * be boosted by RT tasks, or might be boosted by
979  * interactivity modifiers. Will be RT if the task got
980  * RT-boosted. If not then it returns p->normal_prio.
981  */
982 static int effective_prio(struct task_struct *p)
983 {
984 	p->normal_prio = normal_prio(p);
985 	/*
986 	 * If we are RT tasks or we were boosted to RT priority,
987 	 * keep the priority unchanged. Otherwise, update priority
988 	 * to the normal priority:
989 	 */
990 	if (!rt_prio(p->prio))
991 		return p->normal_prio;
992 	return p->prio;
993 }
994 
995 /**
996  * task_curr - is this task currently executing on a CPU?
997  * @p: the task in question.
998  *
999  * Return: 1 if the task is currently executing. 0 otherwise.
1000  */
1001 inline int task_curr(const struct task_struct *p)
1002 {
1003 	return cpu_curr(task_cpu(p)) == p;
1004 }
1005 
1006 /*
1007  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1008  * use the balance_callback list if you want balancing.
1009  *
1010  * this means any call to check_class_changed() must be followed by a call to
1011  * balance_callback().
1012  */
1013 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1014 				       const struct sched_class *prev_class,
1015 				       int oldprio)
1016 {
1017 	if (prev_class != p->sched_class) {
1018 		if (prev_class->switched_from)
1019 			prev_class->switched_from(rq, p);
1020 
1021 		p->sched_class->switched_to(rq, p);
1022 	} else if (oldprio != p->prio || dl_task(p))
1023 		p->sched_class->prio_changed(rq, p, oldprio);
1024 }
1025 
1026 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1027 {
1028 	const struct sched_class *class;
1029 
1030 	if (p->sched_class == rq->curr->sched_class) {
1031 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1032 	} else {
1033 		for_each_class(class) {
1034 			if (class == rq->curr->sched_class)
1035 				break;
1036 			if (class == p->sched_class) {
1037 				resched_curr(rq);
1038 				break;
1039 			}
1040 		}
1041 	}
1042 
1043 	/*
1044 	 * A queue event has occurred, and we're going to schedule.  In
1045 	 * this case, we can save a useless back to back clock update.
1046 	 */
1047 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1048 		rq_clock_skip_update(rq, true);
1049 }
1050 
1051 #ifdef CONFIG_SMP
1052 /*
1053  * This is how migration works:
1054  *
1055  * 1) we invoke migration_cpu_stop() on the target CPU using
1056  *    stop_one_cpu().
1057  * 2) stopper starts to run (implicitly forcing the migrated thread
1058  *    off the CPU)
1059  * 3) it checks whether the migrated task is still in the wrong runqueue.
1060  * 4) if it's in the wrong runqueue then the migration thread removes
1061  *    it and puts it into the right queue.
1062  * 5) stopper completes and stop_one_cpu() returns and the migration
1063  *    is done.
1064  */
1065 
1066 /*
1067  * move_queued_task - move a queued task to new rq.
1068  *
1069  * Returns (locked) new rq. Old rq's lock is released.
1070  */
1071 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1072 {
1073 	lockdep_assert_held(&rq->lock);
1074 
1075 	p->on_rq = TASK_ON_RQ_MIGRATING;
1076 	dequeue_task(rq, p, 0);
1077 	set_task_cpu(p, new_cpu);
1078 	raw_spin_unlock(&rq->lock);
1079 
1080 	rq = cpu_rq(new_cpu);
1081 
1082 	raw_spin_lock(&rq->lock);
1083 	BUG_ON(task_cpu(p) != new_cpu);
1084 	enqueue_task(rq, p, 0);
1085 	p->on_rq = TASK_ON_RQ_QUEUED;
1086 	check_preempt_curr(rq, p, 0);
1087 
1088 	return rq;
1089 }
1090 
1091 struct migration_arg {
1092 	struct task_struct *task;
1093 	int dest_cpu;
1094 };
1095 
1096 /*
1097  * Move (not current) task off this cpu, onto dest cpu. We're doing
1098  * this because either it can't run here any more (set_cpus_allowed()
1099  * away from this CPU, or CPU going down), or because we're
1100  * attempting to rebalance this task on exec (sched_exec).
1101  *
1102  * So we race with normal scheduler movements, but that's OK, as long
1103  * as the task is no longer on this CPU.
1104  */
1105 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1106 {
1107 	if (unlikely(!cpu_active(dest_cpu)))
1108 		return rq;
1109 
1110 	/* Affinity changed (again). */
1111 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1112 		return rq;
1113 
1114 	rq = move_queued_task(rq, p, dest_cpu);
1115 
1116 	return rq;
1117 }
1118 
1119 /*
1120  * migration_cpu_stop - this will be executed by a highprio stopper thread
1121  * and performs thread migration by bumping thread off CPU then
1122  * 'pushing' onto another runqueue.
1123  */
1124 static int migration_cpu_stop(void *data)
1125 {
1126 	struct migration_arg *arg = data;
1127 	struct task_struct *p = arg->task;
1128 	struct rq *rq = this_rq();
1129 
1130 	/*
1131 	 * The original target cpu might have gone down and we might
1132 	 * be on another cpu but it doesn't matter.
1133 	 */
1134 	local_irq_disable();
1135 	/*
1136 	 * We need to explicitly wake pending tasks before running
1137 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1138 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1139 	 */
1140 	sched_ttwu_pending();
1141 
1142 	raw_spin_lock(&p->pi_lock);
1143 	raw_spin_lock(&rq->lock);
1144 	/*
1145 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1146 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1147 	 * we're holding p->pi_lock.
1148 	 */
1149 	if (task_rq(p) == rq && task_on_rq_queued(p))
1150 		rq = __migrate_task(rq, p, arg->dest_cpu);
1151 	raw_spin_unlock(&rq->lock);
1152 	raw_spin_unlock(&p->pi_lock);
1153 
1154 	local_irq_enable();
1155 	return 0;
1156 }
1157 
1158 /*
1159  * sched_class::set_cpus_allowed must do the below, but is not required to
1160  * actually call this function.
1161  */
1162 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1163 {
1164 	cpumask_copy(&p->cpus_allowed, new_mask);
1165 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1166 }
1167 
1168 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1169 {
1170 	struct rq *rq = task_rq(p);
1171 	bool queued, running;
1172 
1173 	lockdep_assert_held(&p->pi_lock);
1174 
1175 	queued = task_on_rq_queued(p);
1176 	running = task_current(rq, p);
1177 
1178 	if (queued) {
1179 		/*
1180 		 * Because __kthread_bind() calls this on blocked tasks without
1181 		 * holding rq->lock.
1182 		 */
1183 		lockdep_assert_held(&rq->lock);
1184 		dequeue_task(rq, p, DEQUEUE_SAVE);
1185 	}
1186 	if (running)
1187 		put_prev_task(rq, p);
1188 
1189 	p->sched_class->set_cpus_allowed(p, new_mask);
1190 
1191 	if (running)
1192 		p->sched_class->set_curr_task(rq);
1193 	if (queued)
1194 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1195 }
1196 
1197 /*
1198  * Change a given task's CPU affinity. Migrate the thread to a
1199  * proper CPU and schedule it away if the CPU it's executing on
1200  * is removed from the allowed bitmask.
1201  *
1202  * NOTE: the caller must have a valid reference to the task, the
1203  * task must not exit() & deallocate itself prematurely. The
1204  * call is not atomic; no spinlocks may be held.
1205  */
1206 static int __set_cpus_allowed_ptr(struct task_struct *p,
1207 				  const struct cpumask *new_mask, bool check)
1208 {
1209 	unsigned long flags;
1210 	struct rq *rq;
1211 	unsigned int dest_cpu;
1212 	int ret = 0;
1213 
1214 	rq = task_rq_lock(p, &flags);
1215 
1216 	/*
1217 	 * Must re-check here, to close a race against __kthread_bind(),
1218 	 * sched_setaffinity() is not guaranteed to observe the flag.
1219 	 */
1220 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1221 		ret = -EINVAL;
1222 		goto out;
1223 	}
1224 
1225 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1226 		goto out;
1227 
1228 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1229 		ret = -EINVAL;
1230 		goto out;
1231 	}
1232 
1233 	do_set_cpus_allowed(p, new_mask);
1234 
1235 	/* Can the task run on the task's current CPU? If so, we're done */
1236 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1237 		goto out;
1238 
1239 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1240 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1241 		struct migration_arg arg = { p, dest_cpu };
1242 		/* Need help from migration thread: drop lock and wait. */
1243 		task_rq_unlock(rq, p, &flags);
1244 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1245 		tlb_migrate_finish(p->mm);
1246 		return 0;
1247 	} else if (task_on_rq_queued(p)) {
1248 		/*
1249 		 * OK, since we're going to drop the lock immediately
1250 		 * afterwards anyway.
1251 		 */
1252 		lockdep_unpin_lock(&rq->lock);
1253 		rq = move_queued_task(rq, p, dest_cpu);
1254 		lockdep_pin_lock(&rq->lock);
1255 	}
1256 out:
1257 	task_rq_unlock(rq, p, &flags);
1258 
1259 	return ret;
1260 }
1261 
1262 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1263 {
1264 	return __set_cpus_allowed_ptr(p, new_mask, false);
1265 }
1266 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1267 
1268 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1269 {
1270 #ifdef CONFIG_SCHED_DEBUG
1271 	/*
1272 	 * We should never call set_task_cpu() on a blocked task,
1273 	 * ttwu() will sort out the placement.
1274 	 */
1275 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1276 			!p->on_rq);
1277 
1278 	/*
1279 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1280 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1281 	 * time relying on p->on_rq.
1282 	 */
1283 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1284 		     p->sched_class == &fair_sched_class &&
1285 		     (p->on_rq && !task_on_rq_migrating(p)));
1286 
1287 #ifdef CONFIG_LOCKDEP
1288 	/*
1289 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1290 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1291 	 *
1292 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1293 	 * see task_group().
1294 	 *
1295 	 * Furthermore, all task_rq users should acquire both locks, see
1296 	 * task_rq_lock().
1297 	 */
1298 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1299 				      lockdep_is_held(&task_rq(p)->lock)));
1300 #endif
1301 #endif
1302 
1303 	trace_sched_migrate_task(p, new_cpu);
1304 
1305 	if (task_cpu(p) != new_cpu) {
1306 		if (p->sched_class->migrate_task_rq)
1307 			p->sched_class->migrate_task_rq(p);
1308 		p->se.nr_migrations++;
1309 		perf_event_task_migrate(p);
1310 	}
1311 
1312 	__set_task_cpu(p, new_cpu);
1313 }
1314 
1315 static void __migrate_swap_task(struct task_struct *p, int cpu)
1316 {
1317 	if (task_on_rq_queued(p)) {
1318 		struct rq *src_rq, *dst_rq;
1319 
1320 		src_rq = task_rq(p);
1321 		dst_rq = cpu_rq(cpu);
1322 
1323 		p->on_rq = TASK_ON_RQ_MIGRATING;
1324 		deactivate_task(src_rq, p, 0);
1325 		set_task_cpu(p, cpu);
1326 		activate_task(dst_rq, p, 0);
1327 		p->on_rq = TASK_ON_RQ_QUEUED;
1328 		check_preempt_curr(dst_rq, p, 0);
1329 	} else {
1330 		/*
1331 		 * Task isn't running anymore; make it appear like we migrated
1332 		 * it before it went to sleep. This means on wakeup we make the
1333 		 * previous cpu our targer instead of where it really is.
1334 		 */
1335 		p->wake_cpu = cpu;
1336 	}
1337 }
1338 
1339 struct migration_swap_arg {
1340 	struct task_struct *src_task, *dst_task;
1341 	int src_cpu, dst_cpu;
1342 };
1343 
1344 static int migrate_swap_stop(void *data)
1345 {
1346 	struct migration_swap_arg *arg = data;
1347 	struct rq *src_rq, *dst_rq;
1348 	int ret = -EAGAIN;
1349 
1350 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1351 		return -EAGAIN;
1352 
1353 	src_rq = cpu_rq(arg->src_cpu);
1354 	dst_rq = cpu_rq(arg->dst_cpu);
1355 
1356 	double_raw_lock(&arg->src_task->pi_lock,
1357 			&arg->dst_task->pi_lock);
1358 	double_rq_lock(src_rq, dst_rq);
1359 
1360 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1361 		goto unlock;
1362 
1363 	if (task_cpu(arg->src_task) != arg->src_cpu)
1364 		goto unlock;
1365 
1366 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1367 		goto unlock;
1368 
1369 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1370 		goto unlock;
1371 
1372 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1373 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1374 
1375 	ret = 0;
1376 
1377 unlock:
1378 	double_rq_unlock(src_rq, dst_rq);
1379 	raw_spin_unlock(&arg->dst_task->pi_lock);
1380 	raw_spin_unlock(&arg->src_task->pi_lock);
1381 
1382 	return ret;
1383 }
1384 
1385 /*
1386  * Cross migrate two tasks
1387  */
1388 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1389 {
1390 	struct migration_swap_arg arg;
1391 	int ret = -EINVAL;
1392 
1393 	arg = (struct migration_swap_arg){
1394 		.src_task = cur,
1395 		.src_cpu = task_cpu(cur),
1396 		.dst_task = p,
1397 		.dst_cpu = task_cpu(p),
1398 	};
1399 
1400 	if (arg.src_cpu == arg.dst_cpu)
1401 		goto out;
1402 
1403 	/*
1404 	 * These three tests are all lockless; this is OK since all of them
1405 	 * will be re-checked with proper locks held further down the line.
1406 	 */
1407 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1408 		goto out;
1409 
1410 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1411 		goto out;
1412 
1413 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1414 		goto out;
1415 
1416 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1417 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1418 
1419 out:
1420 	return ret;
1421 }
1422 
1423 /*
1424  * wait_task_inactive - wait for a thread to unschedule.
1425  *
1426  * If @match_state is nonzero, it's the @p->state value just checked and
1427  * not expected to change.  If it changes, i.e. @p might have woken up,
1428  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1429  * we return a positive number (its total switch count).  If a second call
1430  * a short while later returns the same number, the caller can be sure that
1431  * @p has remained unscheduled the whole time.
1432  *
1433  * The caller must ensure that the task *will* unschedule sometime soon,
1434  * else this function might spin for a *long* time. This function can't
1435  * be called with interrupts off, or it may introduce deadlock with
1436  * smp_call_function() if an IPI is sent by the same process we are
1437  * waiting to become inactive.
1438  */
1439 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1440 {
1441 	unsigned long flags;
1442 	int running, queued;
1443 	unsigned long ncsw;
1444 	struct rq *rq;
1445 
1446 	for (;;) {
1447 		/*
1448 		 * We do the initial early heuristics without holding
1449 		 * any task-queue locks at all. We'll only try to get
1450 		 * the runqueue lock when things look like they will
1451 		 * work out!
1452 		 */
1453 		rq = task_rq(p);
1454 
1455 		/*
1456 		 * If the task is actively running on another CPU
1457 		 * still, just relax and busy-wait without holding
1458 		 * any locks.
1459 		 *
1460 		 * NOTE! Since we don't hold any locks, it's not
1461 		 * even sure that "rq" stays as the right runqueue!
1462 		 * But we don't care, since "task_running()" will
1463 		 * return false if the runqueue has changed and p
1464 		 * is actually now running somewhere else!
1465 		 */
1466 		while (task_running(rq, p)) {
1467 			if (match_state && unlikely(p->state != match_state))
1468 				return 0;
1469 			cpu_relax();
1470 		}
1471 
1472 		/*
1473 		 * Ok, time to look more closely! We need the rq
1474 		 * lock now, to be *sure*. If we're wrong, we'll
1475 		 * just go back and repeat.
1476 		 */
1477 		rq = task_rq_lock(p, &flags);
1478 		trace_sched_wait_task(p);
1479 		running = task_running(rq, p);
1480 		queued = task_on_rq_queued(p);
1481 		ncsw = 0;
1482 		if (!match_state || p->state == match_state)
1483 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1484 		task_rq_unlock(rq, p, &flags);
1485 
1486 		/*
1487 		 * If it changed from the expected state, bail out now.
1488 		 */
1489 		if (unlikely(!ncsw))
1490 			break;
1491 
1492 		/*
1493 		 * Was it really running after all now that we
1494 		 * checked with the proper locks actually held?
1495 		 *
1496 		 * Oops. Go back and try again..
1497 		 */
1498 		if (unlikely(running)) {
1499 			cpu_relax();
1500 			continue;
1501 		}
1502 
1503 		/*
1504 		 * It's not enough that it's not actively running,
1505 		 * it must be off the runqueue _entirely_, and not
1506 		 * preempted!
1507 		 *
1508 		 * So if it was still runnable (but just not actively
1509 		 * running right now), it's preempted, and we should
1510 		 * yield - it could be a while.
1511 		 */
1512 		if (unlikely(queued)) {
1513 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1514 
1515 			set_current_state(TASK_UNINTERRUPTIBLE);
1516 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1517 			continue;
1518 		}
1519 
1520 		/*
1521 		 * Ahh, all good. It wasn't running, and it wasn't
1522 		 * runnable, which means that it will never become
1523 		 * running in the future either. We're all done!
1524 		 */
1525 		break;
1526 	}
1527 
1528 	return ncsw;
1529 }
1530 
1531 /***
1532  * kick_process - kick a running thread to enter/exit the kernel
1533  * @p: the to-be-kicked thread
1534  *
1535  * Cause a process which is running on another CPU to enter
1536  * kernel-mode, without any delay. (to get signals handled.)
1537  *
1538  * NOTE: this function doesn't have to take the runqueue lock,
1539  * because all it wants to ensure is that the remote task enters
1540  * the kernel. If the IPI races and the task has been migrated
1541  * to another CPU then no harm is done and the purpose has been
1542  * achieved as well.
1543  */
1544 void kick_process(struct task_struct *p)
1545 {
1546 	int cpu;
1547 
1548 	preempt_disable();
1549 	cpu = task_cpu(p);
1550 	if ((cpu != smp_processor_id()) && task_curr(p))
1551 		smp_send_reschedule(cpu);
1552 	preempt_enable();
1553 }
1554 EXPORT_SYMBOL_GPL(kick_process);
1555 
1556 /*
1557  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1558  */
1559 static int select_fallback_rq(int cpu, struct task_struct *p)
1560 {
1561 	int nid = cpu_to_node(cpu);
1562 	const struct cpumask *nodemask = NULL;
1563 	enum { cpuset, possible, fail } state = cpuset;
1564 	int dest_cpu;
1565 
1566 	/*
1567 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1568 	 * will return -1. There is no cpu on the node, and we should
1569 	 * select the cpu on the other node.
1570 	 */
1571 	if (nid != -1) {
1572 		nodemask = cpumask_of_node(nid);
1573 
1574 		/* Look for allowed, online CPU in same node. */
1575 		for_each_cpu(dest_cpu, nodemask) {
1576 			if (!cpu_online(dest_cpu))
1577 				continue;
1578 			if (!cpu_active(dest_cpu))
1579 				continue;
1580 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1581 				return dest_cpu;
1582 		}
1583 	}
1584 
1585 	for (;;) {
1586 		/* Any allowed, online CPU? */
1587 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1588 			if (!cpu_online(dest_cpu))
1589 				continue;
1590 			if (!cpu_active(dest_cpu))
1591 				continue;
1592 			goto out;
1593 		}
1594 
1595 		/* No more Mr. Nice Guy. */
1596 		switch (state) {
1597 		case cpuset:
1598 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1599 				cpuset_cpus_allowed_fallback(p);
1600 				state = possible;
1601 				break;
1602 			}
1603 			/* fall-through */
1604 		case possible:
1605 			do_set_cpus_allowed(p, cpu_possible_mask);
1606 			state = fail;
1607 			break;
1608 
1609 		case fail:
1610 			BUG();
1611 			break;
1612 		}
1613 	}
1614 
1615 out:
1616 	if (state != cpuset) {
1617 		/*
1618 		 * Don't tell them about moving exiting tasks or
1619 		 * kernel threads (both mm NULL), since they never
1620 		 * leave kernel.
1621 		 */
1622 		if (p->mm && printk_ratelimit()) {
1623 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1624 					task_pid_nr(p), p->comm, cpu);
1625 		}
1626 	}
1627 
1628 	return dest_cpu;
1629 }
1630 
1631 /*
1632  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1633  */
1634 static inline
1635 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1636 {
1637 	lockdep_assert_held(&p->pi_lock);
1638 
1639 	if (p->nr_cpus_allowed > 1)
1640 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1641 
1642 	/*
1643 	 * In order not to call set_task_cpu() on a blocking task we need
1644 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1645 	 * cpu.
1646 	 *
1647 	 * Since this is common to all placement strategies, this lives here.
1648 	 *
1649 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1650 	 *   not worry about this generic constraint ]
1651 	 */
1652 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1653 		     !cpu_online(cpu)))
1654 		cpu = select_fallback_rq(task_cpu(p), p);
1655 
1656 	return cpu;
1657 }
1658 
1659 static void update_avg(u64 *avg, u64 sample)
1660 {
1661 	s64 diff = sample - *avg;
1662 	*avg += diff >> 3;
1663 }
1664 
1665 #else
1666 
1667 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1668 					 const struct cpumask *new_mask, bool check)
1669 {
1670 	return set_cpus_allowed_ptr(p, new_mask);
1671 }
1672 
1673 #endif /* CONFIG_SMP */
1674 
1675 static void
1676 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1677 {
1678 #ifdef CONFIG_SCHEDSTATS
1679 	struct rq *rq = this_rq();
1680 
1681 #ifdef CONFIG_SMP
1682 	int this_cpu = smp_processor_id();
1683 
1684 	if (cpu == this_cpu) {
1685 		schedstat_inc(rq, ttwu_local);
1686 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1687 	} else {
1688 		struct sched_domain *sd;
1689 
1690 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1691 		rcu_read_lock();
1692 		for_each_domain(this_cpu, sd) {
1693 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1694 				schedstat_inc(sd, ttwu_wake_remote);
1695 				break;
1696 			}
1697 		}
1698 		rcu_read_unlock();
1699 	}
1700 
1701 	if (wake_flags & WF_MIGRATED)
1702 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1703 
1704 #endif /* CONFIG_SMP */
1705 
1706 	schedstat_inc(rq, ttwu_count);
1707 	schedstat_inc(p, se.statistics.nr_wakeups);
1708 
1709 	if (wake_flags & WF_SYNC)
1710 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1711 
1712 #endif /* CONFIG_SCHEDSTATS */
1713 }
1714 
1715 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1716 {
1717 	activate_task(rq, p, en_flags);
1718 	p->on_rq = TASK_ON_RQ_QUEUED;
1719 
1720 	/* if a worker is waking up, notify workqueue */
1721 	if (p->flags & PF_WQ_WORKER)
1722 		wq_worker_waking_up(p, cpu_of(rq));
1723 }
1724 
1725 /*
1726  * Mark the task runnable and perform wakeup-preemption.
1727  */
1728 static void
1729 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1730 {
1731 	check_preempt_curr(rq, p, wake_flags);
1732 	p->state = TASK_RUNNING;
1733 	trace_sched_wakeup(p);
1734 
1735 #ifdef CONFIG_SMP
1736 	if (p->sched_class->task_woken) {
1737 		/*
1738 		 * Our task @p is fully woken up and running; so its safe to
1739 		 * drop the rq->lock, hereafter rq is only used for statistics.
1740 		 */
1741 		lockdep_unpin_lock(&rq->lock);
1742 		p->sched_class->task_woken(rq, p);
1743 		lockdep_pin_lock(&rq->lock);
1744 	}
1745 
1746 	if (rq->idle_stamp) {
1747 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1748 		u64 max = 2*rq->max_idle_balance_cost;
1749 
1750 		update_avg(&rq->avg_idle, delta);
1751 
1752 		if (rq->avg_idle > max)
1753 			rq->avg_idle = max;
1754 
1755 		rq->idle_stamp = 0;
1756 	}
1757 #endif
1758 }
1759 
1760 static void
1761 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1762 {
1763 	lockdep_assert_held(&rq->lock);
1764 
1765 #ifdef CONFIG_SMP
1766 	if (p->sched_contributes_to_load)
1767 		rq->nr_uninterruptible--;
1768 #endif
1769 
1770 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1771 	ttwu_do_wakeup(rq, p, wake_flags);
1772 }
1773 
1774 /*
1775  * Called in case the task @p isn't fully descheduled from its runqueue,
1776  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1777  * since all we need to do is flip p->state to TASK_RUNNING, since
1778  * the task is still ->on_rq.
1779  */
1780 static int ttwu_remote(struct task_struct *p, int wake_flags)
1781 {
1782 	struct rq *rq;
1783 	int ret = 0;
1784 
1785 	rq = __task_rq_lock(p);
1786 	if (task_on_rq_queued(p)) {
1787 		/* check_preempt_curr() may use rq clock */
1788 		update_rq_clock(rq);
1789 		ttwu_do_wakeup(rq, p, wake_flags);
1790 		ret = 1;
1791 	}
1792 	__task_rq_unlock(rq);
1793 
1794 	return ret;
1795 }
1796 
1797 #ifdef CONFIG_SMP
1798 void sched_ttwu_pending(void)
1799 {
1800 	struct rq *rq = this_rq();
1801 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1802 	struct task_struct *p;
1803 	unsigned long flags;
1804 
1805 	if (!llist)
1806 		return;
1807 
1808 	raw_spin_lock_irqsave(&rq->lock, flags);
1809 	lockdep_pin_lock(&rq->lock);
1810 
1811 	while (llist) {
1812 		p = llist_entry(llist, struct task_struct, wake_entry);
1813 		llist = llist_next(llist);
1814 		ttwu_do_activate(rq, p, 0);
1815 	}
1816 
1817 	lockdep_unpin_lock(&rq->lock);
1818 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1819 }
1820 
1821 void scheduler_ipi(void)
1822 {
1823 	/*
1824 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1825 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1826 	 * this IPI.
1827 	 */
1828 	preempt_fold_need_resched();
1829 
1830 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1831 		return;
1832 
1833 	/*
1834 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1835 	 * traditionally all their work was done from the interrupt return
1836 	 * path. Now that we actually do some work, we need to make sure
1837 	 * we do call them.
1838 	 *
1839 	 * Some archs already do call them, luckily irq_enter/exit nest
1840 	 * properly.
1841 	 *
1842 	 * Arguably we should visit all archs and update all handlers,
1843 	 * however a fair share of IPIs are still resched only so this would
1844 	 * somewhat pessimize the simple resched case.
1845 	 */
1846 	irq_enter();
1847 	sched_ttwu_pending();
1848 
1849 	/*
1850 	 * Check if someone kicked us for doing the nohz idle load balance.
1851 	 */
1852 	if (unlikely(got_nohz_idle_kick())) {
1853 		this_rq()->idle_balance = 1;
1854 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1855 	}
1856 	irq_exit();
1857 }
1858 
1859 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1860 {
1861 	struct rq *rq = cpu_rq(cpu);
1862 
1863 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1864 		if (!set_nr_if_polling(rq->idle))
1865 			smp_send_reschedule(cpu);
1866 		else
1867 			trace_sched_wake_idle_without_ipi(cpu);
1868 	}
1869 }
1870 
1871 void wake_up_if_idle(int cpu)
1872 {
1873 	struct rq *rq = cpu_rq(cpu);
1874 	unsigned long flags;
1875 
1876 	rcu_read_lock();
1877 
1878 	if (!is_idle_task(rcu_dereference(rq->curr)))
1879 		goto out;
1880 
1881 	if (set_nr_if_polling(rq->idle)) {
1882 		trace_sched_wake_idle_without_ipi(cpu);
1883 	} else {
1884 		raw_spin_lock_irqsave(&rq->lock, flags);
1885 		if (is_idle_task(rq->curr))
1886 			smp_send_reschedule(cpu);
1887 		/* Else cpu is not in idle, do nothing here */
1888 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1889 	}
1890 
1891 out:
1892 	rcu_read_unlock();
1893 }
1894 
1895 bool cpus_share_cache(int this_cpu, int that_cpu)
1896 {
1897 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1898 }
1899 #endif /* CONFIG_SMP */
1900 
1901 static void ttwu_queue(struct task_struct *p, int cpu)
1902 {
1903 	struct rq *rq = cpu_rq(cpu);
1904 
1905 #if defined(CONFIG_SMP)
1906 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1907 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1908 		ttwu_queue_remote(p, cpu);
1909 		return;
1910 	}
1911 #endif
1912 
1913 	raw_spin_lock(&rq->lock);
1914 	lockdep_pin_lock(&rq->lock);
1915 	ttwu_do_activate(rq, p, 0);
1916 	lockdep_unpin_lock(&rq->lock);
1917 	raw_spin_unlock(&rq->lock);
1918 }
1919 
1920 /*
1921  * Notes on Program-Order guarantees on SMP systems.
1922  *
1923  *  MIGRATION
1924  *
1925  * The basic program-order guarantee on SMP systems is that when a task [t]
1926  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1927  * execution on its new cpu [c1].
1928  *
1929  * For migration (of runnable tasks) this is provided by the following means:
1930  *
1931  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1932  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1933  *     rq(c1)->lock (if not at the same time, then in that order).
1934  *  C) LOCK of the rq(c1)->lock scheduling in task
1935  *
1936  * Transitivity guarantees that B happens after A and C after B.
1937  * Note: we only require RCpc transitivity.
1938  * Note: the cpu doing B need not be c0 or c1
1939  *
1940  * Example:
1941  *
1942  *   CPU0            CPU1            CPU2
1943  *
1944  *   LOCK rq(0)->lock
1945  *   sched-out X
1946  *   sched-in Y
1947  *   UNLOCK rq(0)->lock
1948  *
1949  *                                   LOCK rq(0)->lock // orders against CPU0
1950  *                                   dequeue X
1951  *                                   UNLOCK rq(0)->lock
1952  *
1953  *                                   LOCK rq(1)->lock
1954  *                                   enqueue X
1955  *                                   UNLOCK rq(1)->lock
1956  *
1957  *                   LOCK rq(1)->lock // orders against CPU2
1958  *                   sched-out Z
1959  *                   sched-in X
1960  *                   UNLOCK rq(1)->lock
1961  *
1962  *
1963  *  BLOCKING -- aka. SLEEP + WAKEUP
1964  *
1965  * For blocking we (obviously) need to provide the same guarantee as for
1966  * migration. However the means are completely different as there is no lock
1967  * chain to provide order. Instead we do:
1968  *
1969  *   1) smp_store_release(X->on_cpu, 0)
1970  *   2) smp_cond_acquire(!X->on_cpu)
1971  *
1972  * Example:
1973  *
1974  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1975  *
1976  *   LOCK rq(0)->lock LOCK X->pi_lock
1977  *   dequeue X
1978  *   sched-out X
1979  *   smp_store_release(X->on_cpu, 0);
1980  *
1981  *                    smp_cond_acquire(!X->on_cpu);
1982  *                    X->state = WAKING
1983  *                    set_task_cpu(X,2)
1984  *
1985  *                    LOCK rq(2)->lock
1986  *                    enqueue X
1987  *                    X->state = RUNNING
1988  *                    UNLOCK rq(2)->lock
1989  *
1990  *                                          LOCK rq(2)->lock // orders against CPU1
1991  *                                          sched-out Z
1992  *                                          sched-in X
1993  *                                          UNLOCK rq(2)->lock
1994  *
1995  *                    UNLOCK X->pi_lock
1996  *   UNLOCK rq(0)->lock
1997  *
1998  *
1999  * However; for wakeups there is a second guarantee we must provide, namely we
2000  * must observe the state that lead to our wakeup. That is, not only must our
2001  * task observe its own prior state, it must also observe the stores prior to
2002  * its wakeup.
2003  *
2004  * This means that any means of doing remote wakeups must order the CPU doing
2005  * the wakeup against the CPU the task is going to end up running on. This,
2006  * however, is already required for the regular Program-Order guarantee above,
2007  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
2008  *
2009  */
2010 
2011 /**
2012  * try_to_wake_up - wake up a thread
2013  * @p: the thread to be awakened
2014  * @state: the mask of task states that can be woken
2015  * @wake_flags: wake modifier flags (WF_*)
2016  *
2017  * Put it on the run-queue if it's not already there. The "current"
2018  * thread is always on the run-queue (except when the actual
2019  * re-schedule is in progress), and as such you're allowed to do
2020  * the simpler "current->state = TASK_RUNNING" to mark yourself
2021  * runnable without the overhead of this.
2022  *
2023  * Return: %true if @p was woken up, %false if it was already running.
2024  * or @state didn't match @p's state.
2025  */
2026 static int
2027 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2028 {
2029 	unsigned long flags;
2030 	int cpu, success = 0;
2031 
2032 	/*
2033 	 * If we are going to wake up a thread waiting for CONDITION we
2034 	 * need to ensure that CONDITION=1 done by the caller can not be
2035 	 * reordered with p->state check below. This pairs with mb() in
2036 	 * set_current_state() the waiting thread does.
2037 	 */
2038 	smp_mb__before_spinlock();
2039 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2040 	if (!(p->state & state))
2041 		goto out;
2042 
2043 	trace_sched_waking(p);
2044 
2045 	success = 1; /* we're going to change ->state */
2046 	cpu = task_cpu(p);
2047 
2048 	if (p->on_rq && ttwu_remote(p, wake_flags))
2049 		goto stat;
2050 
2051 #ifdef CONFIG_SMP
2052 	/*
2053 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2054 	 * possible to, falsely, observe p->on_cpu == 0.
2055 	 *
2056 	 * One must be running (->on_cpu == 1) in order to remove oneself
2057 	 * from the runqueue.
2058 	 *
2059 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2060 	 *      UNLOCK rq->lock
2061 	 *			RMB
2062 	 *      LOCK   rq->lock
2063 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2064 	 *
2065 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2066 	 * from the consecutive calls to schedule(); the first switching to our
2067 	 * task, the second putting it to sleep.
2068 	 */
2069 	smp_rmb();
2070 
2071 	/*
2072 	 * If the owning (remote) cpu is still in the middle of schedule() with
2073 	 * this task as prev, wait until its done referencing the task.
2074 	 *
2075 	 * Pairs with the smp_store_release() in finish_lock_switch().
2076 	 *
2077 	 * This ensures that tasks getting woken will be fully ordered against
2078 	 * their previous state and preserve Program Order.
2079 	 */
2080 	smp_cond_acquire(!p->on_cpu);
2081 
2082 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2083 	p->state = TASK_WAKING;
2084 
2085 	if (p->sched_class->task_waking)
2086 		p->sched_class->task_waking(p);
2087 
2088 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2089 	if (task_cpu(p) != cpu) {
2090 		wake_flags |= WF_MIGRATED;
2091 		set_task_cpu(p, cpu);
2092 	}
2093 #endif /* CONFIG_SMP */
2094 
2095 	ttwu_queue(p, cpu);
2096 stat:
2097 	ttwu_stat(p, cpu, wake_flags);
2098 out:
2099 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2100 
2101 	return success;
2102 }
2103 
2104 /**
2105  * try_to_wake_up_local - try to wake up a local task with rq lock held
2106  * @p: the thread to be awakened
2107  *
2108  * Put @p on the run-queue if it's not already there. The caller must
2109  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2110  * the current task.
2111  */
2112 static void try_to_wake_up_local(struct task_struct *p)
2113 {
2114 	struct rq *rq = task_rq(p);
2115 
2116 	if (WARN_ON_ONCE(rq != this_rq()) ||
2117 	    WARN_ON_ONCE(p == current))
2118 		return;
2119 
2120 	lockdep_assert_held(&rq->lock);
2121 
2122 	if (!raw_spin_trylock(&p->pi_lock)) {
2123 		/*
2124 		 * This is OK, because current is on_cpu, which avoids it being
2125 		 * picked for load-balance and preemption/IRQs are still
2126 		 * disabled avoiding further scheduler activity on it and we've
2127 		 * not yet picked a replacement task.
2128 		 */
2129 		lockdep_unpin_lock(&rq->lock);
2130 		raw_spin_unlock(&rq->lock);
2131 		raw_spin_lock(&p->pi_lock);
2132 		raw_spin_lock(&rq->lock);
2133 		lockdep_pin_lock(&rq->lock);
2134 	}
2135 
2136 	if (!(p->state & TASK_NORMAL))
2137 		goto out;
2138 
2139 	trace_sched_waking(p);
2140 
2141 	if (!task_on_rq_queued(p))
2142 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2143 
2144 	ttwu_do_wakeup(rq, p, 0);
2145 	ttwu_stat(p, smp_processor_id(), 0);
2146 out:
2147 	raw_spin_unlock(&p->pi_lock);
2148 }
2149 
2150 /**
2151  * wake_up_process - Wake up a specific process
2152  * @p: The process to be woken up.
2153  *
2154  * Attempt to wake up the nominated process and move it to the set of runnable
2155  * processes.
2156  *
2157  * Return: 1 if the process was woken up, 0 if it was already running.
2158  *
2159  * It may be assumed that this function implies a write memory barrier before
2160  * changing the task state if and only if any tasks are woken up.
2161  */
2162 int wake_up_process(struct task_struct *p)
2163 {
2164 	return try_to_wake_up(p, TASK_NORMAL, 0);
2165 }
2166 EXPORT_SYMBOL(wake_up_process);
2167 
2168 int wake_up_state(struct task_struct *p, unsigned int state)
2169 {
2170 	return try_to_wake_up(p, state, 0);
2171 }
2172 
2173 /*
2174  * This function clears the sched_dl_entity static params.
2175  */
2176 void __dl_clear_params(struct task_struct *p)
2177 {
2178 	struct sched_dl_entity *dl_se = &p->dl;
2179 
2180 	dl_se->dl_runtime = 0;
2181 	dl_se->dl_deadline = 0;
2182 	dl_se->dl_period = 0;
2183 	dl_se->flags = 0;
2184 	dl_se->dl_bw = 0;
2185 
2186 	dl_se->dl_throttled = 0;
2187 	dl_se->dl_new = 1;
2188 	dl_se->dl_yielded = 0;
2189 }
2190 
2191 /*
2192  * Perform scheduler related setup for a newly forked process p.
2193  * p is forked by current.
2194  *
2195  * __sched_fork() is basic setup used by init_idle() too:
2196  */
2197 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2198 {
2199 	p->on_rq			= 0;
2200 
2201 	p->se.on_rq			= 0;
2202 	p->se.exec_start		= 0;
2203 	p->se.sum_exec_runtime		= 0;
2204 	p->se.prev_sum_exec_runtime	= 0;
2205 	p->se.nr_migrations		= 0;
2206 	p->se.vruntime			= 0;
2207 	INIT_LIST_HEAD(&p->se.group_node);
2208 
2209 #ifdef CONFIG_FAIR_GROUP_SCHED
2210 	p->se.cfs_rq			= NULL;
2211 #endif
2212 
2213 #ifdef CONFIG_SCHEDSTATS
2214 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2215 #endif
2216 
2217 	RB_CLEAR_NODE(&p->dl.rb_node);
2218 	init_dl_task_timer(&p->dl);
2219 	__dl_clear_params(p);
2220 
2221 	INIT_LIST_HEAD(&p->rt.run_list);
2222 
2223 #ifdef CONFIG_PREEMPT_NOTIFIERS
2224 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2225 #endif
2226 
2227 #ifdef CONFIG_NUMA_BALANCING
2228 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2229 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2230 		p->mm->numa_scan_seq = 0;
2231 	}
2232 
2233 	if (clone_flags & CLONE_VM)
2234 		p->numa_preferred_nid = current->numa_preferred_nid;
2235 	else
2236 		p->numa_preferred_nid = -1;
2237 
2238 	p->node_stamp = 0ULL;
2239 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2240 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2241 	p->numa_work.next = &p->numa_work;
2242 	p->numa_faults = NULL;
2243 	p->last_task_numa_placement = 0;
2244 	p->last_sum_exec_runtime = 0;
2245 
2246 	p->numa_group = NULL;
2247 #endif /* CONFIG_NUMA_BALANCING */
2248 }
2249 
2250 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2251 
2252 #ifdef CONFIG_NUMA_BALANCING
2253 
2254 void set_numabalancing_state(bool enabled)
2255 {
2256 	if (enabled)
2257 		static_branch_enable(&sched_numa_balancing);
2258 	else
2259 		static_branch_disable(&sched_numa_balancing);
2260 }
2261 
2262 #ifdef CONFIG_PROC_SYSCTL
2263 int sysctl_numa_balancing(struct ctl_table *table, int write,
2264 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2265 {
2266 	struct ctl_table t;
2267 	int err;
2268 	int state = static_branch_likely(&sched_numa_balancing);
2269 
2270 	if (write && !capable(CAP_SYS_ADMIN))
2271 		return -EPERM;
2272 
2273 	t = *table;
2274 	t.data = &state;
2275 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2276 	if (err < 0)
2277 		return err;
2278 	if (write)
2279 		set_numabalancing_state(state);
2280 	return err;
2281 }
2282 #endif
2283 #endif
2284 
2285 /*
2286  * fork()/clone()-time setup:
2287  */
2288 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2289 {
2290 	unsigned long flags;
2291 	int cpu = get_cpu();
2292 
2293 	__sched_fork(clone_flags, p);
2294 	/*
2295 	 * We mark the process as running here. This guarantees that
2296 	 * nobody will actually run it, and a signal or other external
2297 	 * event cannot wake it up and insert it on the runqueue either.
2298 	 */
2299 	p->state = TASK_RUNNING;
2300 
2301 	/*
2302 	 * Make sure we do not leak PI boosting priority to the child.
2303 	 */
2304 	p->prio = current->normal_prio;
2305 
2306 	/*
2307 	 * Revert to default priority/policy on fork if requested.
2308 	 */
2309 	if (unlikely(p->sched_reset_on_fork)) {
2310 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2311 			p->policy = SCHED_NORMAL;
2312 			p->static_prio = NICE_TO_PRIO(0);
2313 			p->rt_priority = 0;
2314 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2315 			p->static_prio = NICE_TO_PRIO(0);
2316 
2317 		p->prio = p->normal_prio = __normal_prio(p);
2318 		set_load_weight(p);
2319 
2320 		/*
2321 		 * We don't need the reset flag anymore after the fork. It has
2322 		 * fulfilled its duty:
2323 		 */
2324 		p->sched_reset_on_fork = 0;
2325 	}
2326 
2327 	if (dl_prio(p->prio)) {
2328 		put_cpu();
2329 		return -EAGAIN;
2330 	} else if (rt_prio(p->prio)) {
2331 		p->sched_class = &rt_sched_class;
2332 	} else {
2333 		p->sched_class = &fair_sched_class;
2334 	}
2335 
2336 	if (p->sched_class->task_fork)
2337 		p->sched_class->task_fork(p);
2338 
2339 	/*
2340 	 * The child is not yet in the pid-hash so no cgroup attach races,
2341 	 * and the cgroup is pinned to this child due to cgroup_fork()
2342 	 * is ran before sched_fork().
2343 	 *
2344 	 * Silence PROVE_RCU.
2345 	 */
2346 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2347 	set_task_cpu(p, cpu);
2348 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2349 
2350 #ifdef CONFIG_SCHED_INFO
2351 	if (likely(sched_info_on()))
2352 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2353 #endif
2354 #if defined(CONFIG_SMP)
2355 	p->on_cpu = 0;
2356 #endif
2357 	init_task_preempt_count(p);
2358 #ifdef CONFIG_SMP
2359 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2360 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2361 #endif
2362 
2363 	put_cpu();
2364 	return 0;
2365 }
2366 
2367 unsigned long to_ratio(u64 period, u64 runtime)
2368 {
2369 	if (runtime == RUNTIME_INF)
2370 		return 1ULL << 20;
2371 
2372 	/*
2373 	 * Doing this here saves a lot of checks in all
2374 	 * the calling paths, and returning zero seems
2375 	 * safe for them anyway.
2376 	 */
2377 	if (period == 0)
2378 		return 0;
2379 
2380 	return div64_u64(runtime << 20, period);
2381 }
2382 
2383 #ifdef CONFIG_SMP
2384 inline struct dl_bw *dl_bw_of(int i)
2385 {
2386 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2387 			 "sched RCU must be held");
2388 	return &cpu_rq(i)->rd->dl_bw;
2389 }
2390 
2391 static inline int dl_bw_cpus(int i)
2392 {
2393 	struct root_domain *rd = cpu_rq(i)->rd;
2394 	int cpus = 0;
2395 
2396 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2397 			 "sched RCU must be held");
2398 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2399 		cpus++;
2400 
2401 	return cpus;
2402 }
2403 #else
2404 inline struct dl_bw *dl_bw_of(int i)
2405 {
2406 	return &cpu_rq(i)->dl.dl_bw;
2407 }
2408 
2409 static inline int dl_bw_cpus(int i)
2410 {
2411 	return 1;
2412 }
2413 #endif
2414 
2415 /*
2416  * We must be sure that accepting a new task (or allowing changing the
2417  * parameters of an existing one) is consistent with the bandwidth
2418  * constraints. If yes, this function also accordingly updates the currently
2419  * allocated bandwidth to reflect the new situation.
2420  *
2421  * This function is called while holding p's rq->lock.
2422  *
2423  * XXX we should delay bw change until the task's 0-lag point, see
2424  * __setparam_dl().
2425  */
2426 static int dl_overflow(struct task_struct *p, int policy,
2427 		       const struct sched_attr *attr)
2428 {
2429 
2430 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2431 	u64 period = attr->sched_period ?: attr->sched_deadline;
2432 	u64 runtime = attr->sched_runtime;
2433 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2434 	int cpus, err = -1;
2435 
2436 	if (new_bw == p->dl.dl_bw)
2437 		return 0;
2438 
2439 	/*
2440 	 * Either if a task, enters, leave, or stays -deadline but changes
2441 	 * its parameters, we may need to update accordingly the total
2442 	 * allocated bandwidth of the container.
2443 	 */
2444 	raw_spin_lock(&dl_b->lock);
2445 	cpus = dl_bw_cpus(task_cpu(p));
2446 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2447 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2448 		__dl_add(dl_b, new_bw);
2449 		err = 0;
2450 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2451 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2452 		__dl_clear(dl_b, p->dl.dl_bw);
2453 		__dl_add(dl_b, new_bw);
2454 		err = 0;
2455 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2456 		__dl_clear(dl_b, p->dl.dl_bw);
2457 		err = 0;
2458 	}
2459 	raw_spin_unlock(&dl_b->lock);
2460 
2461 	return err;
2462 }
2463 
2464 extern void init_dl_bw(struct dl_bw *dl_b);
2465 
2466 /*
2467  * wake_up_new_task - wake up a newly created task for the first time.
2468  *
2469  * This function will do some initial scheduler statistics housekeeping
2470  * that must be done for every newly created context, then puts the task
2471  * on the runqueue and wakes it.
2472  */
2473 void wake_up_new_task(struct task_struct *p)
2474 {
2475 	unsigned long flags;
2476 	struct rq *rq;
2477 
2478 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2479 	/* Initialize new task's runnable average */
2480 	init_entity_runnable_average(&p->se);
2481 #ifdef CONFIG_SMP
2482 	/*
2483 	 * Fork balancing, do it here and not earlier because:
2484 	 *  - cpus_allowed can change in the fork path
2485 	 *  - any previously selected cpu might disappear through hotplug
2486 	 */
2487 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2488 #endif
2489 
2490 	rq = __task_rq_lock(p);
2491 	activate_task(rq, p, 0);
2492 	p->on_rq = TASK_ON_RQ_QUEUED;
2493 	trace_sched_wakeup_new(p);
2494 	check_preempt_curr(rq, p, WF_FORK);
2495 #ifdef CONFIG_SMP
2496 	if (p->sched_class->task_woken) {
2497 		/*
2498 		 * Nothing relies on rq->lock after this, so its fine to
2499 		 * drop it.
2500 		 */
2501 		lockdep_unpin_lock(&rq->lock);
2502 		p->sched_class->task_woken(rq, p);
2503 		lockdep_pin_lock(&rq->lock);
2504 	}
2505 #endif
2506 	task_rq_unlock(rq, p, &flags);
2507 }
2508 
2509 #ifdef CONFIG_PREEMPT_NOTIFIERS
2510 
2511 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2512 
2513 void preempt_notifier_inc(void)
2514 {
2515 	static_key_slow_inc(&preempt_notifier_key);
2516 }
2517 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2518 
2519 void preempt_notifier_dec(void)
2520 {
2521 	static_key_slow_dec(&preempt_notifier_key);
2522 }
2523 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2524 
2525 /**
2526  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2527  * @notifier: notifier struct to register
2528  */
2529 void preempt_notifier_register(struct preempt_notifier *notifier)
2530 {
2531 	if (!static_key_false(&preempt_notifier_key))
2532 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2533 
2534 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2535 }
2536 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2537 
2538 /**
2539  * preempt_notifier_unregister - no longer interested in preemption notifications
2540  * @notifier: notifier struct to unregister
2541  *
2542  * This is *not* safe to call from within a preemption notifier.
2543  */
2544 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2545 {
2546 	hlist_del(&notifier->link);
2547 }
2548 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2549 
2550 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2551 {
2552 	struct preempt_notifier *notifier;
2553 
2554 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2555 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2556 }
2557 
2558 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2559 {
2560 	if (static_key_false(&preempt_notifier_key))
2561 		__fire_sched_in_preempt_notifiers(curr);
2562 }
2563 
2564 static void
2565 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2566 				   struct task_struct *next)
2567 {
2568 	struct preempt_notifier *notifier;
2569 
2570 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2571 		notifier->ops->sched_out(notifier, next);
2572 }
2573 
2574 static __always_inline void
2575 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2576 				 struct task_struct *next)
2577 {
2578 	if (static_key_false(&preempt_notifier_key))
2579 		__fire_sched_out_preempt_notifiers(curr, next);
2580 }
2581 
2582 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2583 
2584 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2585 {
2586 }
2587 
2588 static inline void
2589 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2590 				 struct task_struct *next)
2591 {
2592 }
2593 
2594 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2595 
2596 /**
2597  * prepare_task_switch - prepare to switch tasks
2598  * @rq: the runqueue preparing to switch
2599  * @prev: the current task that is being switched out
2600  * @next: the task we are going to switch to.
2601  *
2602  * This is called with the rq lock held and interrupts off. It must
2603  * be paired with a subsequent finish_task_switch after the context
2604  * switch.
2605  *
2606  * prepare_task_switch sets up locking and calls architecture specific
2607  * hooks.
2608  */
2609 static inline void
2610 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2611 		    struct task_struct *next)
2612 {
2613 	sched_info_switch(rq, prev, next);
2614 	perf_event_task_sched_out(prev, next);
2615 	fire_sched_out_preempt_notifiers(prev, next);
2616 	prepare_lock_switch(rq, next);
2617 	prepare_arch_switch(next);
2618 }
2619 
2620 /**
2621  * finish_task_switch - clean up after a task-switch
2622  * @prev: the thread we just switched away from.
2623  *
2624  * finish_task_switch must be called after the context switch, paired
2625  * with a prepare_task_switch call before the context switch.
2626  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2627  * and do any other architecture-specific cleanup actions.
2628  *
2629  * Note that we may have delayed dropping an mm in context_switch(). If
2630  * so, we finish that here outside of the runqueue lock. (Doing it
2631  * with the lock held can cause deadlocks; see schedule() for
2632  * details.)
2633  *
2634  * The context switch have flipped the stack from under us and restored the
2635  * local variables which were saved when this task called schedule() in the
2636  * past. prev == current is still correct but we need to recalculate this_rq
2637  * because prev may have moved to another CPU.
2638  */
2639 static struct rq *finish_task_switch(struct task_struct *prev)
2640 	__releases(rq->lock)
2641 {
2642 	struct rq *rq = this_rq();
2643 	struct mm_struct *mm = rq->prev_mm;
2644 	long prev_state;
2645 
2646 	/*
2647 	 * The previous task will have left us with a preempt_count of 2
2648 	 * because it left us after:
2649 	 *
2650 	 *	schedule()
2651 	 *	  preempt_disable();			// 1
2652 	 *	  __schedule()
2653 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2654 	 *
2655 	 * Also, see FORK_PREEMPT_COUNT.
2656 	 */
2657 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2658 		      "corrupted preempt_count: %s/%d/0x%x\n",
2659 		      current->comm, current->pid, preempt_count()))
2660 		preempt_count_set(FORK_PREEMPT_COUNT);
2661 
2662 	rq->prev_mm = NULL;
2663 
2664 	/*
2665 	 * A task struct has one reference for the use as "current".
2666 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2667 	 * schedule one last time. The schedule call will never return, and
2668 	 * the scheduled task must drop that reference.
2669 	 *
2670 	 * We must observe prev->state before clearing prev->on_cpu (in
2671 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2672 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2673 	 * transition, resulting in a double drop.
2674 	 */
2675 	prev_state = prev->state;
2676 	vtime_task_switch(prev);
2677 	perf_event_task_sched_in(prev, current);
2678 	finish_lock_switch(rq, prev);
2679 	finish_arch_post_lock_switch();
2680 
2681 	fire_sched_in_preempt_notifiers(current);
2682 	if (mm)
2683 		mmdrop(mm);
2684 	if (unlikely(prev_state == TASK_DEAD)) {
2685 		if (prev->sched_class->task_dead)
2686 			prev->sched_class->task_dead(prev);
2687 
2688 		/*
2689 		 * Remove function-return probe instances associated with this
2690 		 * task and put them back on the free list.
2691 		 */
2692 		kprobe_flush_task(prev);
2693 		put_task_struct(prev);
2694 	}
2695 
2696 	tick_nohz_task_switch();
2697 	return rq;
2698 }
2699 
2700 #ifdef CONFIG_SMP
2701 
2702 /* rq->lock is NOT held, but preemption is disabled */
2703 static void __balance_callback(struct rq *rq)
2704 {
2705 	struct callback_head *head, *next;
2706 	void (*func)(struct rq *rq);
2707 	unsigned long flags;
2708 
2709 	raw_spin_lock_irqsave(&rq->lock, flags);
2710 	head = rq->balance_callback;
2711 	rq->balance_callback = NULL;
2712 	while (head) {
2713 		func = (void (*)(struct rq *))head->func;
2714 		next = head->next;
2715 		head->next = NULL;
2716 		head = next;
2717 
2718 		func(rq);
2719 	}
2720 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2721 }
2722 
2723 static inline void balance_callback(struct rq *rq)
2724 {
2725 	if (unlikely(rq->balance_callback))
2726 		__balance_callback(rq);
2727 }
2728 
2729 #else
2730 
2731 static inline void balance_callback(struct rq *rq)
2732 {
2733 }
2734 
2735 #endif
2736 
2737 /**
2738  * schedule_tail - first thing a freshly forked thread must call.
2739  * @prev: the thread we just switched away from.
2740  */
2741 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2742 	__releases(rq->lock)
2743 {
2744 	struct rq *rq;
2745 
2746 	/*
2747 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2748 	 * finish_task_switch() for details.
2749 	 *
2750 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2751 	 * and the preempt_enable() will end up enabling preemption (on
2752 	 * PREEMPT_COUNT kernels).
2753 	 */
2754 
2755 	rq = finish_task_switch(prev);
2756 	balance_callback(rq);
2757 	preempt_enable();
2758 
2759 	if (current->set_child_tid)
2760 		put_user(task_pid_vnr(current), current->set_child_tid);
2761 }
2762 
2763 /*
2764  * context_switch - switch to the new MM and the new thread's register state.
2765  */
2766 static __always_inline struct rq *
2767 context_switch(struct rq *rq, struct task_struct *prev,
2768 	       struct task_struct *next)
2769 {
2770 	struct mm_struct *mm, *oldmm;
2771 
2772 	prepare_task_switch(rq, prev, next);
2773 
2774 	mm = next->mm;
2775 	oldmm = prev->active_mm;
2776 	/*
2777 	 * For paravirt, this is coupled with an exit in switch_to to
2778 	 * combine the page table reload and the switch backend into
2779 	 * one hypercall.
2780 	 */
2781 	arch_start_context_switch(prev);
2782 
2783 	if (!mm) {
2784 		next->active_mm = oldmm;
2785 		atomic_inc(&oldmm->mm_count);
2786 		enter_lazy_tlb(oldmm, next);
2787 	} else
2788 		switch_mm(oldmm, mm, next);
2789 
2790 	if (!prev->mm) {
2791 		prev->active_mm = NULL;
2792 		rq->prev_mm = oldmm;
2793 	}
2794 	/*
2795 	 * Since the runqueue lock will be released by the next
2796 	 * task (which is an invalid locking op but in the case
2797 	 * of the scheduler it's an obvious special-case), so we
2798 	 * do an early lockdep release here:
2799 	 */
2800 	lockdep_unpin_lock(&rq->lock);
2801 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2802 
2803 	/* Here we just switch the register state and the stack. */
2804 	switch_to(prev, next, prev);
2805 	barrier();
2806 
2807 	return finish_task_switch(prev);
2808 }
2809 
2810 /*
2811  * nr_running and nr_context_switches:
2812  *
2813  * externally visible scheduler statistics: current number of runnable
2814  * threads, total number of context switches performed since bootup.
2815  */
2816 unsigned long nr_running(void)
2817 {
2818 	unsigned long i, sum = 0;
2819 
2820 	for_each_online_cpu(i)
2821 		sum += cpu_rq(i)->nr_running;
2822 
2823 	return sum;
2824 }
2825 
2826 /*
2827  * Check if only the current task is running on the cpu.
2828  *
2829  * Caution: this function does not check that the caller has disabled
2830  * preemption, thus the result might have a time-of-check-to-time-of-use
2831  * race.  The caller is responsible to use it correctly, for example:
2832  *
2833  * - from a non-preemptable section (of course)
2834  *
2835  * - from a thread that is bound to a single CPU
2836  *
2837  * - in a loop with very short iterations (e.g. a polling loop)
2838  */
2839 bool single_task_running(void)
2840 {
2841 	return raw_rq()->nr_running == 1;
2842 }
2843 EXPORT_SYMBOL(single_task_running);
2844 
2845 unsigned long long nr_context_switches(void)
2846 {
2847 	int i;
2848 	unsigned long long sum = 0;
2849 
2850 	for_each_possible_cpu(i)
2851 		sum += cpu_rq(i)->nr_switches;
2852 
2853 	return sum;
2854 }
2855 
2856 unsigned long nr_iowait(void)
2857 {
2858 	unsigned long i, sum = 0;
2859 
2860 	for_each_possible_cpu(i)
2861 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2862 
2863 	return sum;
2864 }
2865 
2866 unsigned long nr_iowait_cpu(int cpu)
2867 {
2868 	struct rq *this = cpu_rq(cpu);
2869 	return atomic_read(&this->nr_iowait);
2870 }
2871 
2872 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2873 {
2874 	struct rq *rq = this_rq();
2875 	*nr_waiters = atomic_read(&rq->nr_iowait);
2876 	*load = rq->load.weight;
2877 }
2878 
2879 #ifdef CONFIG_SMP
2880 
2881 /*
2882  * sched_exec - execve() is a valuable balancing opportunity, because at
2883  * this point the task has the smallest effective memory and cache footprint.
2884  */
2885 void sched_exec(void)
2886 {
2887 	struct task_struct *p = current;
2888 	unsigned long flags;
2889 	int dest_cpu;
2890 
2891 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2892 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2893 	if (dest_cpu == smp_processor_id())
2894 		goto unlock;
2895 
2896 	if (likely(cpu_active(dest_cpu))) {
2897 		struct migration_arg arg = { p, dest_cpu };
2898 
2899 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2900 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2901 		return;
2902 	}
2903 unlock:
2904 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2905 }
2906 
2907 #endif
2908 
2909 DEFINE_PER_CPU(struct kernel_stat, kstat);
2910 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2911 
2912 EXPORT_PER_CPU_SYMBOL(kstat);
2913 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2914 
2915 /*
2916  * Return accounted runtime for the task.
2917  * In case the task is currently running, return the runtime plus current's
2918  * pending runtime that have not been accounted yet.
2919  */
2920 unsigned long long task_sched_runtime(struct task_struct *p)
2921 {
2922 	unsigned long flags;
2923 	struct rq *rq;
2924 	u64 ns;
2925 
2926 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2927 	/*
2928 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2929 	 * So we have a optimization chance when the task's delta_exec is 0.
2930 	 * Reading ->on_cpu is racy, but this is ok.
2931 	 *
2932 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2933 	 * If we race with it entering cpu, unaccounted time is 0. This is
2934 	 * indistinguishable from the read occurring a few cycles earlier.
2935 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2936 	 * been accounted, so we're correct here as well.
2937 	 */
2938 	if (!p->on_cpu || !task_on_rq_queued(p))
2939 		return p->se.sum_exec_runtime;
2940 #endif
2941 
2942 	rq = task_rq_lock(p, &flags);
2943 	/*
2944 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2945 	 * project cycles that may never be accounted to this
2946 	 * thread, breaking clock_gettime().
2947 	 */
2948 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2949 		update_rq_clock(rq);
2950 		p->sched_class->update_curr(rq);
2951 	}
2952 	ns = p->se.sum_exec_runtime;
2953 	task_rq_unlock(rq, p, &flags);
2954 
2955 	return ns;
2956 }
2957 
2958 /*
2959  * This function gets called by the timer code, with HZ frequency.
2960  * We call it with interrupts disabled.
2961  */
2962 void scheduler_tick(void)
2963 {
2964 	int cpu = smp_processor_id();
2965 	struct rq *rq = cpu_rq(cpu);
2966 	struct task_struct *curr = rq->curr;
2967 
2968 	sched_clock_tick();
2969 
2970 	raw_spin_lock(&rq->lock);
2971 	update_rq_clock(rq);
2972 	curr->sched_class->task_tick(rq, curr, 0);
2973 	update_cpu_load_active(rq);
2974 	calc_global_load_tick(rq);
2975 	raw_spin_unlock(&rq->lock);
2976 
2977 	perf_event_task_tick();
2978 
2979 #ifdef CONFIG_SMP
2980 	rq->idle_balance = idle_cpu(cpu);
2981 	trigger_load_balance(rq);
2982 #endif
2983 	rq_last_tick_reset(rq);
2984 }
2985 
2986 #ifdef CONFIG_NO_HZ_FULL
2987 /**
2988  * scheduler_tick_max_deferment
2989  *
2990  * Keep at least one tick per second when a single
2991  * active task is running because the scheduler doesn't
2992  * yet completely support full dynticks environment.
2993  *
2994  * This makes sure that uptime, CFS vruntime, load
2995  * balancing, etc... continue to move forward, even
2996  * with a very low granularity.
2997  *
2998  * Return: Maximum deferment in nanoseconds.
2999  */
3000 u64 scheduler_tick_max_deferment(void)
3001 {
3002 	struct rq *rq = this_rq();
3003 	unsigned long next, now = READ_ONCE(jiffies);
3004 
3005 	next = rq->last_sched_tick + HZ;
3006 
3007 	if (time_before_eq(next, now))
3008 		return 0;
3009 
3010 	return jiffies_to_nsecs(next - now);
3011 }
3012 #endif
3013 
3014 notrace unsigned long get_parent_ip(unsigned long addr)
3015 {
3016 	if (in_lock_functions(addr)) {
3017 		addr = CALLER_ADDR2;
3018 		if (in_lock_functions(addr))
3019 			addr = CALLER_ADDR3;
3020 	}
3021 	return addr;
3022 }
3023 
3024 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3025 				defined(CONFIG_PREEMPT_TRACER))
3026 
3027 void preempt_count_add(int val)
3028 {
3029 #ifdef CONFIG_DEBUG_PREEMPT
3030 	/*
3031 	 * Underflow?
3032 	 */
3033 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3034 		return;
3035 #endif
3036 	__preempt_count_add(val);
3037 #ifdef CONFIG_DEBUG_PREEMPT
3038 	/*
3039 	 * Spinlock count overflowing soon?
3040 	 */
3041 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3042 				PREEMPT_MASK - 10);
3043 #endif
3044 	if (preempt_count() == val) {
3045 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
3046 #ifdef CONFIG_DEBUG_PREEMPT
3047 		current->preempt_disable_ip = ip;
3048 #endif
3049 		trace_preempt_off(CALLER_ADDR0, ip);
3050 	}
3051 }
3052 EXPORT_SYMBOL(preempt_count_add);
3053 NOKPROBE_SYMBOL(preempt_count_add);
3054 
3055 void preempt_count_sub(int val)
3056 {
3057 #ifdef CONFIG_DEBUG_PREEMPT
3058 	/*
3059 	 * Underflow?
3060 	 */
3061 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3062 		return;
3063 	/*
3064 	 * Is the spinlock portion underflowing?
3065 	 */
3066 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3067 			!(preempt_count() & PREEMPT_MASK)))
3068 		return;
3069 #endif
3070 
3071 	if (preempt_count() == val)
3072 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3073 	__preempt_count_sub(val);
3074 }
3075 EXPORT_SYMBOL(preempt_count_sub);
3076 NOKPROBE_SYMBOL(preempt_count_sub);
3077 
3078 #endif
3079 
3080 /*
3081  * Print scheduling while atomic bug:
3082  */
3083 static noinline void __schedule_bug(struct task_struct *prev)
3084 {
3085 	if (oops_in_progress)
3086 		return;
3087 
3088 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3089 		prev->comm, prev->pid, preempt_count());
3090 
3091 	debug_show_held_locks(prev);
3092 	print_modules();
3093 	if (irqs_disabled())
3094 		print_irqtrace_events(prev);
3095 #ifdef CONFIG_DEBUG_PREEMPT
3096 	if (in_atomic_preempt_off()) {
3097 		pr_err("Preemption disabled at:");
3098 		print_ip_sym(current->preempt_disable_ip);
3099 		pr_cont("\n");
3100 	}
3101 #endif
3102 	dump_stack();
3103 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3104 }
3105 
3106 /*
3107  * Various schedule()-time debugging checks and statistics:
3108  */
3109 static inline void schedule_debug(struct task_struct *prev)
3110 {
3111 #ifdef CONFIG_SCHED_STACK_END_CHECK
3112 	BUG_ON(task_stack_end_corrupted(prev));
3113 #endif
3114 
3115 	if (unlikely(in_atomic_preempt_off())) {
3116 		__schedule_bug(prev);
3117 		preempt_count_set(PREEMPT_DISABLED);
3118 	}
3119 	rcu_sleep_check();
3120 
3121 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3122 
3123 	schedstat_inc(this_rq(), sched_count);
3124 }
3125 
3126 /*
3127  * Pick up the highest-prio task:
3128  */
3129 static inline struct task_struct *
3130 pick_next_task(struct rq *rq, struct task_struct *prev)
3131 {
3132 	const struct sched_class *class = &fair_sched_class;
3133 	struct task_struct *p;
3134 
3135 	/*
3136 	 * Optimization: we know that if all tasks are in
3137 	 * the fair class we can call that function directly:
3138 	 */
3139 	if (likely(prev->sched_class == class &&
3140 		   rq->nr_running == rq->cfs.h_nr_running)) {
3141 		p = fair_sched_class.pick_next_task(rq, prev);
3142 		if (unlikely(p == RETRY_TASK))
3143 			goto again;
3144 
3145 		/* assumes fair_sched_class->next == idle_sched_class */
3146 		if (unlikely(!p))
3147 			p = idle_sched_class.pick_next_task(rq, prev);
3148 
3149 		return p;
3150 	}
3151 
3152 again:
3153 	for_each_class(class) {
3154 		p = class->pick_next_task(rq, prev);
3155 		if (p) {
3156 			if (unlikely(p == RETRY_TASK))
3157 				goto again;
3158 			return p;
3159 		}
3160 	}
3161 
3162 	BUG(); /* the idle class will always have a runnable task */
3163 }
3164 
3165 /*
3166  * __schedule() is the main scheduler function.
3167  *
3168  * The main means of driving the scheduler and thus entering this function are:
3169  *
3170  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3171  *
3172  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3173  *      paths. For example, see arch/x86/entry_64.S.
3174  *
3175  *      To drive preemption between tasks, the scheduler sets the flag in timer
3176  *      interrupt handler scheduler_tick().
3177  *
3178  *   3. Wakeups don't really cause entry into schedule(). They add a
3179  *      task to the run-queue and that's it.
3180  *
3181  *      Now, if the new task added to the run-queue preempts the current
3182  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3183  *      called on the nearest possible occasion:
3184  *
3185  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3186  *
3187  *         - in syscall or exception context, at the next outmost
3188  *           preempt_enable(). (this might be as soon as the wake_up()'s
3189  *           spin_unlock()!)
3190  *
3191  *         - in IRQ context, return from interrupt-handler to
3192  *           preemptible context
3193  *
3194  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3195  *         then at the next:
3196  *
3197  *          - cond_resched() call
3198  *          - explicit schedule() call
3199  *          - return from syscall or exception to user-space
3200  *          - return from interrupt-handler to user-space
3201  *
3202  * WARNING: must be called with preemption disabled!
3203  */
3204 static void __sched notrace __schedule(bool preempt)
3205 {
3206 	struct task_struct *prev, *next;
3207 	unsigned long *switch_count;
3208 	struct rq *rq;
3209 	int cpu;
3210 
3211 	cpu = smp_processor_id();
3212 	rq = cpu_rq(cpu);
3213 	prev = rq->curr;
3214 
3215 	/*
3216 	 * do_exit() calls schedule() with preemption disabled as an exception;
3217 	 * however we must fix that up, otherwise the next task will see an
3218 	 * inconsistent (higher) preempt count.
3219 	 *
3220 	 * It also avoids the below schedule_debug() test from complaining
3221 	 * about this.
3222 	 */
3223 	if (unlikely(prev->state == TASK_DEAD))
3224 		preempt_enable_no_resched_notrace();
3225 
3226 	schedule_debug(prev);
3227 
3228 	if (sched_feat(HRTICK))
3229 		hrtick_clear(rq);
3230 
3231 	local_irq_disable();
3232 	rcu_note_context_switch();
3233 
3234 	/*
3235 	 * Make sure that signal_pending_state()->signal_pending() below
3236 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3237 	 * done by the caller to avoid the race with signal_wake_up().
3238 	 */
3239 	smp_mb__before_spinlock();
3240 	raw_spin_lock(&rq->lock);
3241 	lockdep_pin_lock(&rq->lock);
3242 
3243 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3244 
3245 	switch_count = &prev->nivcsw;
3246 	if (!preempt && prev->state) {
3247 		if (unlikely(signal_pending_state(prev->state, prev))) {
3248 			prev->state = TASK_RUNNING;
3249 		} else {
3250 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3251 			prev->on_rq = 0;
3252 
3253 			/*
3254 			 * If a worker went to sleep, notify and ask workqueue
3255 			 * whether it wants to wake up a task to maintain
3256 			 * concurrency.
3257 			 */
3258 			if (prev->flags & PF_WQ_WORKER) {
3259 				struct task_struct *to_wakeup;
3260 
3261 				to_wakeup = wq_worker_sleeping(prev, cpu);
3262 				if (to_wakeup)
3263 					try_to_wake_up_local(to_wakeup);
3264 			}
3265 		}
3266 		switch_count = &prev->nvcsw;
3267 	}
3268 
3269 	if (task_on_rq_queued(prev))
3270 		update_rq_clock(rq);
3271 
3272 	next = pick_next_task(rq, prev);
3273 	clear_tsk_need_resched(prev);
3274 	clear_preempt_need_resched();
3275 	rq->clock_skip_update = 0;
3276 
3277 	if (likely(prev != next)) {
3278 		rq->nr_switches++;
3279 		rq->curr = next;
3280 		++*switch_count;
3281 
3282 		trace_sched_switch(preempt, prev, next);
3283 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3284 		cpu = cpu_of(rq);
3285 	} else {
3286 		lockdep_unpin_lock(&rq->lock);
3287 		raw_spin_unlock_irq(&rq->lock);
3288 	}
3289 
3290 	balance_callback(rq);
3291 }
3292 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3293 
3294 static inline void sched_submit_work(struct task_struct *tsk)
3295 {
3296 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3297 		return;
3298 	/*
3299 	 * If we are going to sleep and we have plugged IO queued,
3300 	 * make sure to submit it to avoid deadlocks.
3301 	 */
3302 	if (blk_needs_flush_plug(tsk))
3303 		blk_schedule_flush_plug(tsk);
3304 }
3305 
3306 asmlinkage __visible void __sched schedule(void)
3307 {
3308 	struct task_struct *tsk = current;
3309 
3310 	sched_submit_work(tsk);
3311 	do {
3312 		preempt_disable();
3313 		__schedule(false);
3314 		sched_preempt_enable_no_resched();
3315 	} while (need_resched());
3316 }
3317 EXPORT_SYMBOL(schedule);
3318 
3319 #ifdef CONFIG_CONTEXT_TRACKING
3320 asmlinkage __visible void __sched schedule_user(void)
3321 {
3322 	/*
3323 	 * If we come here after a random call to set_need_resched(),
3324 	 * or we have been woken up remotely but the IPI has not yet arrived,
3325 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3326 	 * we find a better solution.
3327 	 *
3328 	 * NB: There are buggy callers of this function.  Ideally we
3329 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3330 	 * too frequently to make sense yet.
3331 	 */
3332 	enum ctx_state prev_state = exception_enter();
3333 	schedule();
3334 	exception_exit(prev_state);
3335 }
3336 #endif
3337 
3338 /**
3339  * schedule_preempt_disabled - called with preemption disabled
3340  *
3341  * Returns with preemption disabled. Note: preempt_count must be 1
3342  */
3343 void __sched schedule_preempt_disabled(void)
3344 {
3345 	sched_preempt_enable_no_resched();
3346 	schedule();
3347 	preempt_disable();
3348 }
3349 
3350 static void __sched notrace preempt_schedule_common(void)
3351 {
3352 	do {
3353 		preempt_disable_notrace();
3354 		__schedule(true);
3355 		preempt_enable_no_resched_notrace();
3356 
3357 		/*
3358 		 * Check again in case we missed a preemption opportunity
3359 		 * between schedule and now.
3360 		 */
3361 	} while (need_resched());
3362 }
3363 
3364 #ifdef CONFIG_PREEMPT
3365 /*
3366  * this is the entry point to schedule() from in-kernel preemption
3367  * off of preempt_enable. Kernel preemptions off return from interrupt
3368  * occur there and call schedule directly.
3369  */
3370 asmlinkage __visible void __sched notrace preempt_schedule(void)
3371 {
3372 	/*
3373 	 * If there is a non-zero preempt_count or interrupts are disabled,
3374 	 * we do not want to preempt the current task. Just return..
3375 	 */
3376 	if (likely(!preemptible()))
3377 		return;
3378 
3379 	preempt_schedule_common();
3380 }
3381 NOKPROBE_SYMBOL(preempt_schedule);
3382 EXPORT_SYMBOL(preempt_schedule);
3383 
3384 /**
3385  * preempt_schedule_notrace - preempt_schedule called by tracing
3386  *
3387  * The tracing infrastructure uses preempt_enable_notrace to prevent
3388  * recursion and tracing preempt enabling caused by the tracing
3389  * infrastructure itself. But as tracing can happen in areas coming
3390  * from userspace or just about to enter userspace, a preempt enable
3391  * can occur before user_exit() is called. This will cause the scheduler
3392  * to be called when the system is still in usermode.
3393  *
3394  * To prevent this, the preempt_enable_notrace will use this function
3395  * instead of preempt_schedule() to exit user context if needed before
3396  * calling the scheduler.
3397  */
3398 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3399 {
3400 	enum ctx_state prev_ctx;
3401 
3402 	if (likely(!preemptible()))
3403 		return;
3404 
3405 	do {
3406 		preempt_disable_notrace();
3407 		/*
3408 		 * Needs preempt disabled in case user_exit() is traced
3409 		 * and the tracer calls preempt_enable_notrace() causing
3410 		 * an infinite recursion.
3411 		 */
3412 		prev_ctx = exception_enter();
3413 		__schedule(true);
3414 		exception_exit(prev_ctx);
3415 
3416 		preempt_enable_no_resched_notrace();
3417 	} while (need_resched());
3418 }
3419 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3420 
3421 #endif /* CONFIG_PREEMPT */
3422 
3423 /*
3424  * this is the entry point to schedule() from kernel preemption
3425  * off of irq context.
3426  * Note, that this is called and return with irqs disabled. This will
3427  * protect us against recursive calling from irq.
3428  */
3429 asmlinkage __visible void __sched preempt_schedule_irq(void)
3430 {
3431 	enum ctx_state prev_state;
3432 
3433 	/* Catch callers which need to be fixed */
3434 	BUG_ON(preempt_count() || !irqs_disabled());
3435 
3436 	prev_state = exception_enter();
3437 
3438 	do {
3439 		preempt_disable();
3440 		local_irq_enable();
3441 		__schedule(true);
3442 		local_irq_disable();
3443 		sched_preempt_enable_no_resched();
3444 	} while (need_resched());
3445 
3446 	exception_exit(prev_state);
3447 }
3448 
3449 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3450 			  void *key)
3451 {
3452 	return try_to_wake_up(curr->private, mode, wake_flags);
3453 }
3454 EXPORT_SYMBOL(default_wake_function);
3455 
3456 #ifdef CONFIG_RT_MUTEXES
3457 
3458 /*
3459  * rt_mutex_setprio - set the current priority of a task
3460  * @p: task
3461  * @prio: prio value (kernel-internal form)
3462  *
3463  * This function changes the 'effective' priority of a task. It does
3464  * not touch ->normal_prio like __setscheduler().
3465  *
3466  * Used by the rt_mutex code to implement priority inheritance
3467  * logic. Call site only calls if the priority of the task changed.
3468  */
3469 void rt_mutex_setprio(struct task_struct *p, int prio)
3470 {
3471 	int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3472 	struct rq *rq;
3473 	const struct sched_class *prev_class;
3474 
3475 	BUG_ON(prio > MAX_PRIO);
3476 
3477 	rq = __task_rq_lock(p);
3478 
3479 	/*
3480 	 * Idle task boosting is a nono in general. There is one
3481 	 * exception, when PREEMPT_RT and NOHZ is active:
3482 	 *
3483 	 * The idle task calls get_next_timer_interrupt() and holds
3484 	 * the timer wheel base->lock on the CPU and another CPU wants
3485 	 * to access the timer (probably to cancel it). We can safely
3486 	 * ignore the boosting request, as the idle CPU runs this code
3487 	 * with interrupts disabled and will complete the lock
3488 	 * protected section without being interrupted. So there is no
3489 	 * real need to boost.
3490 	 */
3491 	if (unlikely(p == rq->idle)) {
3492 		WARN_ON(p != rq->curr);
3493 		WARN_ON(p->pi_blocked_on);
3494 		goto out_unlock;
3495 	}
3496 
3497 	trace_sched_pi_setprio(p, prio);
3498 	oldprio = p->prio;
3499 	prev_class = p->sched_class;
3500 	queued = task_on_rq_queued(p);
3501 	running = task_current(rq, p);
3502 	if (queued)
3503 		dequeue_task(rq, p, DEQUEUE_SAVE);
3504 	if (running)
3505 		put_prev_task(rq, p);
3506 
3507 	/*
3508 	 * Boosting condition are:
3509 	 * 1. -rt task is running and holds mutex A
3510 	 *      --> -dl task blocks on mutex A
3511 	 *
3512 	 * 2. -dl task is running and holds mutex A
3513 	 *      --> -dl task blocks on mutex A and could preempt the
3514 	 *          running task
3515 	 */
3516 	if (dl_prio(prio)) {
3517 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3518 		if (!dl_prio(p->normal_prio) ||
3519 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3520 			p->dl.dl_boosted = 1;
3521 			enqueue_flag |= ENQUEUE_REPLENISH;
3522 		} else
3523 			p->dl.dl_boosted = 0;
3524 		p->sched_class = &dl_sched_class;
3525 	} else if (rt_prio(prio)) {
3526 		if (dl_prio(oldprio))
3527 			p->dl.dl_boosted = 0;
3528 		if (oldprio < prio)
3529 			enqueue_flag |= ENQUEUE_HEAD;
3530 		p->sched_class = &rt_sched_class;
3531 	} else {
3532 		if (dl_prio(oldprio))
3533 			p->dl.dl_boosted = 0;
3534 		if (rt_prio(oldprio))
3535 			p->rt.timeout = 0;
3536 		p->sched_class = &fair_sched_class;
3537 	}
3538 
3539 	p->prio = prio;
3540 
3541 	if (running)
3542 		p->sched_class->set_curr_task(rq);
3543 	if (queued)
3544 		enqueue_task(rq, p, enqueue_flag);
3545 
3546 	check_class_changed(rq, p, prev_class, oldprio);
3547 out_unlock:
3548 	preempt_disable(); /* avoid rq from going away on us */
3549 	__task_rq_unlock(rq);
3550 
3551 	balance_callback(rq);
3552 	preempt_enable();
3553 }
3554 #endif
3555 
3556 void set_user_nice(struct task_struct *p, long nice)
3557 {
3558 	int old_prio, delta, queued;
3559 	unsigned long flags;
3560 	struct rq *rq;
3561 
3562 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3563 		return;
3564 	/*
3565 	 * We have to be careful, if called from sys_setpriority(),
3566 	 * the task might be in the middle of scheduling on another CPU.
3567 	 */
3568 	rq = task_rq_lock(p, &flags);
3569 	/*
3570 	 * The RT priorities are set via sched_setscheduler(), but we still
3571 	 * allow the 'normal' nice value to be set - but as expected
3572 	 * it wont have any effect on scheduling until the task is
3573 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3574 	 */
3575 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3576 		p->static_prio = NICE_TO_PRIO(nice);
3577 		goto out_unlock;
3578 	}
3579 	queued = task_on_rq_queued(p);
3580 	if (queued)
3581 		dequeue_task(rq, p, DEQUEUE_SAVE);
3582 
3583 	p->static_prio = NICE_TO_PRIO(nice);
3584 	set_load_weight(p);
3585 	old_prio = p->prio;
3586 	p->prio = effective_prio(p);
3587 	delta = p->prio - old_prio;
3588 
3589 	if (queued) {
3590 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3591 		/*
3592 		 * If the task increased its priority or is running and
3593 		 * lowered its priority, then reschedule its CPU:
3594 		 */
3595 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3596 			resched_curr(rq);
3597 	}
3598 out_unlock:
3599 	task_rq_unlock(rq, p, &flags);
3600 }
3601 EXPORT_SYMBOL(set_user_nice);
3602 
3603 /*
3604  * can_nice - check if a task can reduce its nice value
3605  * @p: task
3606  * @nice: nice value
3607  */
3608 int can_nice(const struct task_struct *p, const int nice)
3609 {
3610 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3611 	int nice_rlim = nice_to_rlimit(nice);
3612 
3613 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3614 		capable(CAP_SYS_NICE));
3615 }
3616 
3617 #ifdef __ARCH_WANT_SYS_NICE
3618 
3619 /*
3620  * sys_nice - change the priority of the current process.
3621  * @increment: priority increment
3622  *
3623  * sys_setpriority is a more generic, but much slower function that
3624  * does similar things.
3625  */
3626 SYSCALL_DEFINE1(nice, int, increment)
3627 {
3628 	long nice, retval;
3629 
3630 	/*
3631 	 * Setpriority might change our priority at the same moment.
3632 	 * We don't have to worry. Conceptually one call occurs first
3633 	 * and we have a single winner.
3634 	 */
3635 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3636 	nice = task_nice(current) + increment;
3637 
3638 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3639 	if (increment < 0 && !can_nice(current, nice))
3640 		return -EPERM;
3641 
3642 	retval = security_task_setnice(current, nice);
3643 	if (retval)
3644 		return retval;
3645 
3646 	set_user_nice(current, nice);
3647 	return 0;
3648 }
3649 
3650 #endif
3651 
3652 /**
3653  * task_prio - return the priority value of a given task.
3654  * @p: the task in question.
3655  *
3656  * Return: The priority value as seen by users in /proc.
3657  * RT tasks are offset by -200. Normal tasks are centered
3658  * around 0, value goes from -16 to +15.
3659  */
3660 int task_prio(const struct task_struct *p)
3661 {
3662 	return p->prio - MAX_RT_PRIO;
3663 }
3664 
3665 /**
3666  * idle_cpu - is a given cpu idle currently?
3667  * @cpu: the processor in question.
3668  *
3669  * Return: 1 if the CPU is currently idle. 0 otherwise.
3670  */
3671 int idle_cpu(int cpu)
3672 {
3673 	struct rq *rq = cpu_rq(cpu);
3674 
3675 	if (rq->curr != rq->idle)
3676 		return 0;
3677 
3678 	if (rq->nr_running)
3679 		return 0;
3680 
3681 #ifdef CONFIG_SMP
3682 	if (!llist_empty(&rq->wake_list))
3683 		return 0;
3684 #endif
3685 
3686 	return 1;
3687 }
3688 
3689 /**
3690  * idle_task - return the idle task for a given cpu.
3691  * @cpu: the processor in question.
3692  *
3693  * Return: The idle task for the cpu @cpu.
3694  */
3695 struct task_struct *idle_task(int cpu)
3696 {
3697 	return cpu_rq(cpu)->idle;
3698 }
3699 
3700 /**
3701  * find_process_by_pid - find a process with a matching PID value.
3702  * @pid: the pid in question.
3703  *
3704  * The task of @pid, if found. %NULL otherwise.
3705  */
3706 static struct task_struct *find_process_by_pid(pid_t pid)
3707 {
3708 	return pid ? find_task_by_vpid(pid) : current;
3709 }
3710 
3711 /*
3712  * This function initializes the sched_dl_entity of a newly becoming
3713  * SCHED_DEADLINE task.
3714  *
3715  * Only the static values are considered here, the actual runtime and the
3716  * absolute deadline will be properly calculated when the task is enqueued
3717  * for the first time with its new policy.
3718  */
3719 static void
3720 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3721 {
3722 	struct sched_dl_entity *dl_se = &p->dl;
3723 
3724 	dl_se->dl_runtime = attr->sched_runtime;
3725 	dl_se->dl_deadline = attr->sched_deadline;
3726 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3727 	dl_se->flags = attr->sched_flags;
3728 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3729 
3730 	/*
3731 	 * Changing the parameters of a task is 'tricky' and we're not doing
3732 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3733 	 *
3734 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3735 	 * point. This would include retaining the task_struct until that time
3736 	 * and change dl_overflow() to not immediately decrement the current
3737 	 * amount.
3738 	 *
3739 	 * Instead we retain the current runtime/deadline and let the new
3740 	 * parameters take effect after the current reservation period lapses.
3741 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3742 	 * before the current scheduling deadline.
3743 	 *
3744 	 * We can still have temporary overloads because we do not delay the
3745 	 * change in bandwidth until that time; so admission control is
3746 	 * not on the safe side. It does however guarantee tasks will never
3747 	 * consume more than promised.
3748 	 */
3749 }
3750 
3751 /*
3752  * sched_setparam() passes in -1 for its policy, to let the functions
3753  * it calls know not to change it.
3754  */
3755 #define SETPARAM_POLICY	-1
3756 
3757 static void __setscheduler_params(struct task_struct *p,
3758 		const struct sched_attr *attr)
3759 {
3760 	int policy = attr->sched_policy;
3761 
3762 	if (policy == SETPARAM_POLICY)
3763 		policy = p->policy;
3764 
3765 	p->policy = policy;
3766 
3767 	if (dl_policy(policy))
3768 		__setparam_dl(p, attr);
3769 	else if (fair_policy(policy))
3770 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3771 
3772 	/*
3773 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3774 	 * !rt_policy. Always setting this ensures that things like
3775 	 * getparam()/getattr() don't report silly values for !rt tasks.
3776 	 */
3777 	p->rt_priority = attr->sched_priority;
3778 	p->normal_prio = normal_prio(p);
3779 	set_load_weight(p);
3780 }
3781 
3782 /* Actually do priority change: must hold pi & rq lock. */
3783 static void __setscheduler(struct rq *rq, struct task_struct *p,
3784 			   const struct sched_attr *attr, bool keep_boost)
3785 {
3786 	__setscheduler_params(p, attr);
3787 
3788 	/*
3789 	 * Keep a potential priority boosting if called from
3790 	 * sched_setscheduler().
3791 	 */
3792 	if (keep_boost)
3793 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3794 	else
3795 		p->prio = normal_prio(p);
3796 
3797 	if (dl_prio(p->prio))
3798 		p->sched_class = &dl_sched_class;
3799 	else if (rt_prio(p->prio))
3800 		p->sched_class = &rt_sched_class;
3801 	else
3802 		p->sched_class = &fair_sched_class;
3803 }
3804 
3805 static void
3806 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3807 {
3808 	struct sched_dl_entity *dl_se = &p->dl;
3809 
3810 	attr->sched_priority = p->rt_priority;
3811 	attr->sched_runtime = dl_se->dl_runtime;
3812 	attr->sched_deadline = dl_se->dl_deadline;
3813 	attr->sched_period = dl_se->dl_period;
3814 	attr->sched_flags = dl_se->flags;
3815 }
3816 
3817 /*
3818  * This function validates the new parameters of a -deadline task.
3819  * We ask for the deadline not being zero, and greater or equal
3820  * than the runtime, as well as the period of being zero or
3821  * greater than deadline. Furthermore, we have to be sure that
3822  * user parameters are above the internal resolution of 1us (we
3823  * check sched_runtime only since it is always the smaller one) and
3824  * below 2^63 ns (we have to check both sched_deadline and
3825  * sched_period, as the latter can be zero).
3826  */
3827 static bool
3828 __checkparam_dl(const struct sched_attr *attr)
3829 {
3830 	/* deadline != 0 */
3831 	if (attr->sched_deadline == 0)
3832 		return false;
3833 
3834 	/*
3835 	 * Since we truncate DL_SCALE bits, make sure we're at least
3836 	 * that big.
3837 	 */
3838 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3839 		return false;
3840 
3841 	/*
3842 	 * Since we use the MSB for wrap-around and sign issues, make
3843 	 * sure it's not set (mind that period can be equal to zero).
3844 	 */
3845 	if (attr->sched_deadline & (1ULL << 63) ||
3846 	    attr->sched_period & (1ULL << 63))
3847 		return false;
3848 
3849 	/* runtime <= deadline <= period (if period != 0) */
3850 	if ((attr->sched_period != 0 &&
3851 	     attr->sched_period < attr->sched_deadline) ||
3852 	    attr->sched_deadline < attr->sched_runtime)
3853 		return false;
3854 
3855 	return true;
3856 }
3857 
3858 /*
3859  * check the target process has a UID that matches the current process's
3860  */
3861 static bool check_same_owner(struct task_struct *p)
3862 {
3863 	const struct cred *cred = current_cred(), *pcred;
3864 	bool match;
3865 
3866 	rcu_read_lock();
3867 	pcred = __task_cred(p);
3868 	match = (uid_eq(cred->euid, pcred->euid) ||
3869 		 uid_eq(cred->euid, pcred->uid));
3870 	rcu_read_unlock();
3871 	return match;
3872 }
3873 
3874 static bool dl_param_changed(struct task_struct *p,
3875 		const struct sched_attr *attr)
3876 {
3877 	struct sched_dl_entity *dl_se = &p->dl;
3878 
3879 	if (dl_se->dl_runtime != attr->sched_runtime ||
3880 		dl_se->dl_deadline != attr->sched_deadline ||
3881 		dl_se->dl_period != attr->sched_period ||
3882 		dl_se->flags != attr->sched_flags)
3883 		return true;
3884 
3885 	return false;
3886 }
3887 
3888 static int __sched_setscheduler(struct task_struct *p,
3889 				const struct sched_attr *attr,
3890 				bool user, bool pi)
3891 {
3892 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3893 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3894 	int retval, oldprio, oldpolicy = -1, queued, running;
3895 	int new_effective_prio, policy = attr->sched_policy;
3896 	unsigned long flags;
3897 	const struct sched_class *prev_class;
3898 	struct rq *rq;
3899 	int reset_on_fork;
3900 
3901 	/* may grab non-irq protected spin_locks */
3902 	BUG_ON(in_interrupt());
3903 recheck:
3904 	/* double check policy once rq lock held */
3905 	if (policy < 0) {
3906 		reset_on_fork = p->sched_reset_on_fork;
3907 		policy = oldpolicy = p->policy;
3908 	} else {
3909 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3910 
3911 		if (!valid_policy(policy))
3912 			return -EINVAL;
3913 	}
3914 
3915 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3916 		return -EINVAL;
3917 
3918 	/*
3919 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3920 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3921 	 * SCHED_BATCH and SCHED_IDLE is 0.
3922 	 */
3923 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3924 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3925 		return -EINVAL;
3926 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3927 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3928 		return -EINVAL;
3929 
3930 	/*
3931 	 * Allow unprivileged RT tasks to decrease priority:
3932 	 */
3933 	if (user && !capable(CAP_SYS_NICE)) {
3934 		if (fair_policy(policy)) {
3935 			if (attr->sched_nice < task_nice(p) &&
3936 			    !can_nice(p, attr->sched_nice))
3937 				return -EPERM;
3938 		}
3939 
3940 		if (rt_policy(policy)) {
3941 			unsigned long rlim_rtprio =
3942 					task_rlimit(p, RLIMIT_RTPRIO);
3943 
3944 			/* can't set/change the rt policy */
3945 			if (policy != p->policy && !rlim_rtprio)
3946 				return -EPERM;
3947 
3948 			/* can't increase priority */
3949 			if (attr->sched_priority > p->rt_priority &&
3950 			    attr->sched_priority > rlim_rtprio)
3951 				return -EPERM;
3952 		}
3953 
3954 		 /*
3955 		  * Can't set/change SCHED_DEADLINE policy at all for now
3956 		  * (safest behavior); in the future we would like to allow
3957 		  * unprivileged DL tasks to increase their relative deadline
3958 		  * or reduce their runtime (both ways reducing utilization)
3959 		  */
3960 		if (dl_policy(policy))
3961 			return -EPERM;
3962 
3963 		/*
3964 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3965 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3966 		 */
3967 		if (idle_policy(p->policy) && !idle_policy(policy)) {
3968 			if (!can_nice(p, task_nice(p)))
3969 				return -EPERM;
3970 		}
3971 
3972 		/* can't change other user's priorities */
3973 		if (!check_same_owner(p))
3974 			return -EPERM;
3975 
3976 		/* Normal users shall not reset the sched_reset_on_fork flag */
3977 		if (p->sched_reset_on_fork && !reset_on_fork)
3978 			return -EPERM;
3979 	}
3980 
3981 	if (user) {
3982 		retval = security_task_setscheduler(p);
3983 		if (retval)
3984 			return retval;
3985 	}
3986 
3987 	/*
3988 	 * make sure no PI-waiters arrive (or leave) while we are
3989 	 * changing the priority of the task:
3990 	 *
3991 	 * To be able to change p->policy safely, the appropriate
3992 	 * runqueue lock must be held.
3993 	 */
3994 	rq = task_rq_lock(p, &flags);
3995 
3996 	/*
3997 	 * Changing the policy of the stop threads its a very bad idea
3998 	 */
3999 	if (p == rq->stop) {
4000 		task_rq_unlock(rq, p, &flags);
4001 		return -EINVAL;
4002 	}
4003 
4004 	/*
4005 	 * If not changing anything there's no need to proceed further,
4006 	 * but store a possible modification of reset_on_fork.
4007 	 */
4008 	if (unlikely(policy == p->policy)) {
4009 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4010 			goto change;
4011 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4012 			goto change;
4013 		if (dl_policy(policy) && dl_param_changed(p, attr))
4014 			goto change;
4015 
4016 		p->sched_reset_on_fork = reset_on_fork;
4017 		task_rq_unlock(rq, p, &flags);
4018 		return 0;
4019 	}
4020 change:
4021 
4022 	if (user) {
4023 #ifdef CONFIG_RT_GROUP_SCHED
4024 		/*
4025 		 * Do not allow realtime tasks into groups that have no runtime
4026 		 * assigned.
4027 		 */
4028 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4029 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4030 				!task_group_is_autogroup(task_group(p))) {
4031 			task_rq_unlock(rq, p, &flags);
4032 			return -EPERM;
4033 		}
4034 #endif
4035 #ifdef CONFIG_SMP
4036 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4037 			cpumask_t *span = rq->rd->span;
4038 
4039 			/*
4040 			 * Don't allow tasks with an affinity mask smaller than
4041 			 * the entire root_domain to become SCHED_DEADLINE. We
4042 			 * will also fail if there's no bandwidth available.
4043 			 */
4044 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4045 			    rq->rd->dl_bw.bw == 0) {
4046 				task_rq_unlock(rq, p, &flags);
4047 				return -EPERM;
4048 			}
4049 		}
4050 #endif
4051 	}
4052 
4053 	/* recheck policy now with rq lock held */
4054 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4055 		policy = oldpolicy = -1;
4056 		task_rq_unlock(rq, p, &flags);
4057 		goto recheck;
4058 	}
4059 
4060 	/*
4061 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4062 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4063 	 * is available.
4064 	 */
4065 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4066 		task_rq_unlock(rq, p, &flags);
4067 		return -EBUSY;
4068 	}
4069 
4070 	p->sched_reset_on_fork = reset_on_fork;
4071 	oldprio = p->prio;
4072 
4073 	if (pi) {
4074 		/*
4075 		 * Take priority boosted tasks into account. If the new
4076 		 * effective priority is unchanged, we just store the new
4077 		 * normal parameters and do not touch the scheduler class and
4078 		 * the runqueue. This will be done when the task deboost
4079 		 * itself.
4080 		 */
4081 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4082 		if (new_effective_prio == oldprio) {
4083 			__setscheduler_params(p, attr);
4084 			task_rq_unlock(rq, p, &flags);
4085 			return 0;
4086 		}
4087 	}
4088 
4089 	queued = task_on_rq_queued(p);
4090 	running = task_current(rq, p);
4091 	if (queued)
4092 		dequeue_task(rq, p, DEQUEUE_SAVE);
4093 	if (running)
4094 		put_prev_task(rq, p);
4095 
4096 	prev_class = p->sched_class;
4097 	__setscheduler(rq, p, attr, pi);
4098 
4099 	if (running)
4100 		p->sched_class->set_curr_task(rq);
4101 	if (queued) {
4102 		int enqueue_flags = ENQUEUE_RESTORE;
4103 		/*
4104 		 * We enqueue to tail when the priority of a task is
4105 		 * increased (user space view).
4106 		 */
4107 		if (oldprio <= p->prio)
4108 			enqueue_flags |= ENQUEUE_HEAD;
4109 
4110 		enqueue_task(rq, p, enqueue_flags);
4111 	}
4112 
4113 	check_class_changed(rq, p, prev_class, oldprio);
4114 	preempt_disable(); /* avoid rq from going away on us */
4115 	task_rq_unlock(rq, p, &flags);
4116 
4117 	if (pi)
4118 		rt_mutex_adjust_pi(p);
4119 
4120 	/*
4121 	 * Run balance callbacks after we've adjusted the PI chain.
4122 	 */
4123 	balance_callback(rq);
4124 	preempt_enable();
4125 
4126 	return 0;
4127 }
4128 
4129 static int _sched_setscheduler(struct task_struct *p, int policy,
4130 			       const struct sched_param *param, bool check)
4131 {
4132 	struct sched_attr attr = {
4133 		.sched_policy   = policy,
4134 		.sched_priority = param->sched_priority,
4135 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4136 	};
4137 
4138 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4139 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4140 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4141 		policy &= ~SCHED_RESET_ON_FORK;
4142 		attr.sched_policy = policy;
4143 	}
4144 
4145 	return __sched_setscheduler(p, &attr, check, true);
4146 }
4147 /**
4148  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4149  * @p: the task in question.
4150  * @policy: new policy.
4151  * @param: structure containing the new RT priority.
4152  *
4153  * Return: 0 on success. An error code otherwise.
4154  *
4155  * NOTE that the task may be already dead.
4156  */
4157 int sched_setscheduler(struct task_struct *p, int policy,
4158 		       const struct sched_param *param)
4159 {
4160 	return _sched_setscheduler(p, policy, param, true);
4161 }
4162 EXPORT_SYMBOL_GPL(sched_setscheduler);
4163 
4164 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4165 {
4166 	return __sched_setscheduler(p, attr, true, true);
4167 }
4168 EXPORT_SYMBOL_GPL(sched_setattr);
4169 
4170 /**
4171  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4172  * @p: the task in question.
4173  * @policy: new policy.
4174  * @param: structure containing the new RT priority.
4175  *
4176  * Just like sched_setscheduler, only don't bother checking if the
4177  * current context has permission.  For example, this is needed in
4178  * stop_machine(): we create temporary high priority worker threads,
4179  * but our caller might not have that capability.
4180  *
4181  * Return: 0 on success. An error code otherwise.
4182  */
4183 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4184 			       const struct sched_param *param)
4185 {
4186 	return _sched_setscheduler(p, policy, param, false);
4187 }
4188 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4189 
4190 static int
4191 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4192 {
4193 	struct sched_param lparam;
4194 	struct task_struct *p;
4195 	int retval;
4196 
4197 	if (!param || pid < 0)
4198 		return -EINVAL;
4199 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4200 		return -EFAULT;
4201 
4202 	rcu_read_lock();
4203 	retval = -ESRCH;
4204 	p = find_process_by_pid(pid);
4205 	if (p != NULL)
4206 		retval = sched_setscheduler(p, policy, &lparam);
4207 	rcu_read_unlock();
4208 
4209 	return retval;
4210 }
4211 
4212 /*
4213  * Mimics kernel/events/core.c perf_copy_attr().
4214  */
4215 static int sched_copy_attr(struct sched_attr __user *uattr,
4216 			   struct sched_attr *attr)
4217 {
4218 	u32 size;
4219 	int ret;
4220 
4221 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4222 		return -EFAULT;
4223 
4224 	/*
4225 	 * zero the full structure, so that a short copy will be nice.
4226 	 */
4227 	memset(attr, 0, sizeof(*attr));
4228 
4229 	ret = get_user(size, &uattr->size);
4230 	if (ret)
4231 		return ret;
4232 
4233 	if (size > PAGE_SIZE)	/* silly large */
4234 		goto err_size;
4235 
4236 	if (!size)		/* abi compat */
4237 		size = SCHED_ATTR_SIZE_VER0;
4238 
4239 	if (size < SCHED_ATTR_SIZE_VER0)
4240 		goto err_size;
4241 
4242 	/*
4243 	 * If we're handed a bigger struct than we know of,
4244 	 * ensure all the unknown bits are 0 - i.e. new
4245 	 * user-space does not rely on any kernel feature
4246 	 * extensions we dont know about yet.
4247 	 */
4248 	if (size > sizeof(*attr)) {
4249 		unsigned char __user *addr;
4250 		unsigned char __user *end;
4251 		unsigned char val;
4252 
4253 		addr = (void __user *)uattr + sizeof(*attr);
4254 		end  = (void __user *)uattr + size;
4255 
4256 		for (; addr < end; addr++) {
4257 			ret = get_user(val, addr);
4258 			if (ret)
4259 				return ret;
4260 			if (val)
4261 				goto err_size;
4262 		}
4263 		size = sizeof(*attr);
4264 	}
4265 
4266 	ret = copy_from_user(attr, uattr, size);
4267 	if (ret)
4268 		return -EFAULT;
4269 
4270 	/*
4271 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4272 	 * to be strict and return an error on out-of-bounds values?
4273 	 */
4274 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4275 
4276 	return 0;
4277 
4278 err_size:
4279 	put_user(sizeof(*attr), &uattr->size);
4280 	return -E2BIG;
4281 }
4282 
4283 /**
4284  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4285  * @pid: the pid in question.
4286  * @policy: new policy.
4287  * @param: structure containing the new RT priority.
4288  *
4289  * Return: 0 on success. An error code otherwise.
4290  */
4291 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4292 		struct sched_param __user *, param)
4293 {
4294 	/* negative values for policy are not valid */
4295 	if (policy < 0)
4296 		return -EINVAL;
4297 
4298 	return do_sched_setscheduler(pid, policy, param);
4299 }
4300 
4301 /**
4302  * sys_sched_setparam - set/change the RT priority of a thread
4303  * @pid: the pid in question.
4304  * @param: structure containing the new RT priority.
4305  *
4306  * Return: 0 on success. An error code otherwise.
4307  */
4308 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4309 {
4310 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4311 }
4312 
4313 /**
4314  * sys_sched_setattr - same as above, but with extended sched_attr
4315  * @pid: the pid in question.
4316  * @uattr: structure containing the extended parameters.
4317  * @flags: for future extension.
4318  */
4319 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4320 			       unsigned int, flags)
4321 {
4322 	struct sched_attr attr;
4323 	struct task_struct *p;
4324 	int retval;
4325 
4326 	if (!uattr || pid < 0 || flags)
4327 		return -EINVAL;
4328 
4329 	retval = sched_copy_attr(uattr, &attr);
4330 	if (retval)
4331 		return retval;
4332 
4333 	if ((int)attr.sched_policy < 0)
4334 		return -EINVAL;
4335 
4336 	rcu_read_lock();
4337 	retval = -ESRCH;
4338 	p = find_process_by_pid(pid);
4339 	if (p != NULL)
4340 		retval = sched_setattr(p, &attr);
4341 	rcu_read_unlock();
4342 
4343 	return retval;
4344 }
4345 
4346 /**
4347  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4348  * @pid: the pid in question.
4349  *
4350  * Return: On success, the policy of the thread. Otherwise, a negative error
4351  * code.
4352  */
4353 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4354 {
4355 	struct task_struct *p;
4356 	int retval;
4357 
4358 	if (pid < 0)
4359 		return -EINVAL;
4360 
4361 	retval = -ESRCH;
4362 	rcu_read_lock();
4363 	p = find_process_by_pid(pid);
4364 	if (p) {
4365 		retval = security_task_getscheduler(p);
4366 		if (!retval)
4367 			retval = p->policy
4368 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4369 	}
4370 	rcu_read_unlock();
4371 	return retval;
4372 }
4373 
4374 /**
4375  * sys_sched_getparam - get the RT priority of a thread
4376  * @pid: the pid in question.
4377  * @param: structure containing the RT priority.
4378  *
4379  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4380  * code.
4381  */
4382 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4383 {
4384 	struct sched_param lp = { .sched_priority = 0 };
4385 	struct task_struct *p;
4386 	int retval;
4387 
4388 	if (!param || pid < 0)
4389 		return -EINVAL;
4390 
4391 	rcu_read_lock();
4392 	p = find_process_by_pid(pid);
4393 	retval = -ESRCH;
4394 	if (!p)
4395 		goto out_unlock;
4396 
4397 	retval = security_task_getscheduler(p);
4398 	if (retval)
4399 		goto out_unlock;
4400 
4401 	if (task_has_rt_policy(p))
4402 		lp.sched_priority = p->rt_priority;
4403 	rcu_read_unlock();
4404 
4405 	/*
4406 	 * This one might sleep, we cannot do it with a spinlock held ...
4407 	 */
4408 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4409 
4410 	return retval;
4411 
4412 out_unlock:
4413 	rcu_read_unlock();
4414 	return retval;
4415 }
4416 
4417 static int sched_read_attr(struct sched_attr __user *uattr,
4418 			   struct sched_attr *attr,
4419 			   unsigned int usize)
4420 {
4421 	int ret;
4422 
4423 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4424 		return -EFAULT;
4425 
4426 	/*
4427 	 * If we're handed a smaller struct than we know of,
4428 	 * ensure all the unknown bits are 0 - i.e. old
4429 	 * user-space does not get uncomplete information.
4430 	 */
4431 	if (usize < sizeof(*attr)) {
4432 		unsigned char *addr;
4433 		unsigned char *end;
4434 
4435 		addr = (void *)attr + usize;
4436 		end  = (void *)attr + sizeof(*attr);
4437 
4438 		for (; addr < end; addr++) {
4439 			if (*addr)
4440 				return -EFBIG;
4441 		}
4442 
4443 		attr->size = usize;
4444 	}
4445 
4446 	ret = copy_to_user(uattr, attr, attr->size);
4447 	if (ret)
4448 		return -EFAULT;
4449 
4450 	return 0;
4451 }
4452 
4453 /**
4454  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4455  * @pid: the pid in question.
4456  * @uattr: structure containing the extended parameters.
4457  * @size: sizeof(attr) for fwd/bwd comp.
4458  * @flags: for future extension.
4459  */
4460 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4461 		unsigned int, size, unsigned int, flags)
4462 {
4463 	struct sched_attr attr = {
4464 		.size = sizeof(struct sched_attr),
4465 	};
4466 	struct task_struct *p;
4467 	int retval;
4468 
4469 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4470 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4471 		return -EINVAL;
4472 
4473 	rcu_read_lock();
4474 	p = find_process_by_pid(pid);
4475 	retval = -ESRCH;
4476 	if (!p)
4477 		goto out_unlock;
4478 
4479 	retval = security_task_getscheduler(p);
4480 	if (retval)
4481 		goto out_unlock;
4482 
4483 	attr.sched_policy = p->policy;
4484 	if (p->sched_reset_on_fork)
4485 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4486 	if (task_has_dl_policy(p))
4487 		__getparam_dl(p, &attr);
4488 	else if (task_has_rt_policy(p))
4489 		attr.sched_priority = p->rt_priority;
4490 	else
4491 		attr.sched_nice = task_nice(p);
4492 
4493 	rcu_read_unlock();
4494 
4495 	retval = sched_read_attr(uattr, &attr, size);
4496 	return retval;
4497 
4498 out_unlock:
4499 	rcu_read_unlock();
4500 	return retval;
4501 }
4502 
4503 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4504 {
4505 	cpumask_var_t cpus_allowed, new_mask;
4506 	struct task_struct *p;
4507 	int retval;
4508 
4509 	rcu_read_lock();
4510 
4511 	p = find_process_by_pid(pid);
4512 	if (!p) {
4513 		rcu_read_unlock();
4514 		return -ESRCH;
4515 	}
4516 
4517 	/* Prevent p going away */
4518 	get_task_struct(p);
4519 	rcu_read_unlock();
4520 
4521 	if (p->flags & PF_NO_SETAFFINITY) {
4522 		retval = -EINVAL;
4523 		goto out_put_task;
4524 	}
4525 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4526 		retval = -ENOMEM;
4527 		goto out_put_task;
4528 	}
4529 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4530 		retval = -ENOMEM;
4531 		goto out_free_cpus_allowed;
4532 	}
4533 	retval = -EPERM;
4534 	if (!check_same_owner(p)) {
4535 		rcu_read_lock();
4536 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4537 			rcu_read_unlock();
4538 			goto out_free_new_mask;
4539 		}
4540 		rcu_read_unlock();
4541 	}
4542 
4543 	retval = security_task_setscheduler(p);
4544 	if (retval)
4545 		goto out_free_new_mask;
4546 
4547 
4548 	cpuset_cpus_allowed(p, cpus_allowed);
4549 	cpumask_and(new_mask, in_mask, cpus_allowed);
4550 
4551 	/*
4552 	 * Since bandwidth control happens on root_domain basis,
4553 	 * if admission test is enabled, we only admit -deadline
4554 	 * tasks allowed to run on all the CPUs in the task's
4555 	 * root_domain.
4556 	 */
4557 #ifdef CONFIG_SMP
4558 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4559 		rcu_read_lock();
4560 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4561 			retval = -EBUSY;
4562 			rcu_read_unlock();
4563 			goto out_free_new_mask;
4564 		}
4565 		rcu_read_unlock();
4566 	}
4567 #endif
4568 again:
4569 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4570 
4571 	if (!retval) {
4572 		cpuset_cpus_allowed(p, cpus_allowed);
4573 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4574 			/*
4575 			 * We must have raced with a concurrent cpuset
4576 			 * update. Just reset the cpus_allowed to the
4577 			 * cpuset's cpus_allowed
4578 			 */
4579 			cpumask_copy(new_mask, cpus_allowed);
4580 			goto again;
4581 		}
4582 	}
4583 out_free_new_mask:
4584 	free_cpumask_var(new_mask);
4585 out_free_cpus_allowed:
4586 	free_cpumask_var(cpus_allowed);
4587 out_put_task:
4588 	put_task_struct(p);
4589 	return retval;
4590 }
4591 
4592 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4593 			     struct cpumask *new_mask)
4594 {
4595 	if (len < cpumask_size())
4596 		cpumask_clear(new_mask);
4597 	else if (len > cpumask_size())
4598 		len = cpumask_size();
4599 
4600 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4601 }
4602 
4603 /**
4604  * sys_sched_setaffinity - set the cpu affinity of a process
4605  * @pid: pid of the process
4606  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4607  * @user_mask_ptr: user-space pointer to the new cpu mask
4608  *
4609  * Return: 0 on success. An error code otherwise.
4610  */
4611 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4612 		unsigned long __user *, user_mask_ptr)
4613 {
4614 	cpumask_var_t new_mask;
4615 	int retval;
4616 
4617 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4618 		return -ENOMEM;
4619 
4620 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4621 	if (retval == 0)
4622 		retval = sched_setaffinity(pid, new_mask);
4623 	free_cpumask_var(new_mask);
4624 	return retval;
4625 }
4626 
4627 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4628 {
4629 	struct task_struct *p;
4630 	unsigned long flags;
4631 	int retval;
4632 
4633 	rcu_read_lock();
4634 
4635 	retval = -ESRCH;
4636 	p = find_process_by_pid(pid);
4637 	if (!p)
4638 		goto out_unlock;
4639 
4640 	retval = security_task_getscheduler(p);
4641 	if (retval)
4642 		goto out_unlock;
4643 
4644 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4645 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4646 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4647 
4648 out_unlock:
4649 	rcu_read_unlock();
4650 
4651 	return retval;
4652 }
4653 
4654 /**
4655  * sys_sched_getaffinity - get the cpu affinity of a process
4656  * @pid: pid of the process
4657  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4658  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4659  *
4660  * Return: 0 on success. An error code otherwise.
4661  */
4662 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4663 		unsigned long __user *, user_mask_ptr)
4664 {
4665 	int ret;
4666 	cpumask_var_t mask;
4667 
4668 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4669 		return -EINVAL;
4670 	if (len & (sizeof(unsigned long)-1))
4671 		return -EINVAL;
4672 
4673 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4674 		return -ENOMEM;
4675 
4676 	ret = sched_getaffinity(pid, mask);
4677 	if (ret == 0) {
4678 		size_t retlen = min_t(size_t, len, cpumask_size());
4679 
4680 		if (copy_to_user(user_mask_ptr, mask, retlen))
4681 			ret = -EFAULT;
4682 		else
4683 			ret = retlen;
4684 	}
4685 	free_cpumask_var(mask);
4686 
4687 	return ret;
4688 }
4689 
4690 /**
4691  * sys_sched_yield - yield the current processor to other threads.
4692  *
4693  * This function yields the current CPU to other tasks. If there are no
4694  * other threads running on this CPU then this function will return.
4695  *
4696  * Return: 0.
4697  */
4698 SYSCALL_DEFINE0(sched_yield)
4699 {
4700 	struct rq *rq = this_rq_lock();
4701 
4702 	schedstat_inc(rq, yld_count);
4703 	current->sched_class->yield_task(rq);
4704 
4705 	/*
4706 	 * Since we are going to call schedule() anyway, there's
4707 	 * no need to preempt or enable interrupts:
4708 	 */
4709 	__release(rq->lock);
4710 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4711 	do_raw_spin_unlock(&rq->lock);
4712 	sched_preempt_enable_no_resched();
4713 
4714 	schedule();
4715 
4716 	return 0;
4717 }
4718 
4719 int __sched _cond_resched(void)
4720 {
4721 	if (should_resched(0)) {
4722 		preempt_schedule_common();
4723 		return 1;
4724 	}
4725 	return 0;
4726 }
4727 EXPORT_SYMBOL(_cond_resched);
4728 
4729 /*
4730  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4731  * call schedule, and on return reacquire the lock.
4732  *
4733  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4734  * operations here to prevent schedule() from being called twice (once via
4735  * spin_unlock(), once by hand).
4736  */
4737 int __cond_resched_lock(spinlock_t *lock)
4738 {
4739 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4740 	int ret = 0;
4741 
4742 	lockdep_assert_held(lock);
4743 
4744 	if (spin_needbreak(lock) || resched) {
4745 		spin_unlock(lock);
4746 		if (resched)
4747 			preempt_schedule_common();
4748 		else
4749 			cpu_relax();
4750 		ret = 1;
4751 		spin_lock(lock);
4752 	}
4753 	return ret;
4754 }
4755 EXPORT_SYMBOL(__cond_resched_lock);
4756 
4757 int __sched __cond_resched_softirq(void)
4758 {
4759 	BUG_ON(!in_softirq());
4760 
4761 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4762 		local_bh_enable();
4763 		preempt_schedule_common();
4764 		local_bh_disable();
4765 		return 1;
4766 	}
4767 	return 0;
4768 }
4769 EXPORT_SYMBOL(__cond_resched_softirq);
4770 
4771 /**
4772  * yield - yield the current processor to other threads.
4773  *
4774  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4775  *
4776  * The scheduler is at all times free to pick the calling task as the most
4777  * eligible task to run, if removing the yield() call from your code breaks
4778  * it, its already broken.
4779  *
4780  * Typical broken usage is:
4781  *
4782  * while (!event)
4783  * 	yield();
4784  *
4785  * where one assumes that yield() will let 'the other' process run that will
4786  * make event true. If the current task is a SCHED_FIFO task that will never
4787  * happen. Never use yield() as a progress guarantee!!
4788  *
4789  * If you want to use yield() to wait for something, use wait_event().
4790  * If you want to use yield() to be 'nice' for others, use cond_resched().
4791  * If you still want to use yield(), do not!
4792  */
4793 void __sched yield(void)
4794 {
4795 	set_current_state(TASK_RUNNING);
4796 	sys_sched_yield();
4797 }
4798 EXPORT_SYMBOL(yield);
4799 
4800 /**
4801  * yield_to - yield the current processor to another thread in
4802  * your thread group, or accelerate that thread toward the
4803  * processor it's on.
4804  * @p: target task
4805  * @preempt: whether task preemption is allowed or not
4806  *
4807  * It's the caller's job to ensure that the target task struct
4808  * can't go away on us before we can do any checks.
4809  *
4810  * Return:
4811  *	true (>0) if we indeed boosted the target task.
4812  *	false (0) if we failed to boost the target.
4813  *	-ESRCH if there's no task to yield to.
4814  */
4815 int __sched yield_to(struct task_struct *p, bool preempt)
4816 {
4817 	struct task_struct *curr = current;
4818 	struct rq *rq, *p_rq;
4819 	unsigned long flags;
4820 	int yielded = 0;
4821 
4822 	local_irq_save(flags);
4823 	rq = this_rq();
4824 
4825 again:
4826 	p_rq = task_rq(p);
4827 	/*
4828 	 * If we're the only runnable task on the rq and target rq also
4829 	 * has only one task, there's absolutely no point in yielding.
4830 	 */
4831 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4832 		yielded = -ESRCH;
4833 		goto out_irq;
4834 	}
4835 
4836 	double_rq_lock(rq, p_rq);
4837 	if (task_rq(p) != p_rq) {
4838 		double_rq_unlock(rq, p_rq);
4839 		goto again;
4840 	}
4841 
4842 	if (!curr->sched_class->yield_to_task)
4843 		goto out_unlock;
4844 
4845 	if (curr->sched_class != p->sched_class)
4846 		goto out_unlock;
4847 
4848 	if (task_running(p_rq, p) || p->state)
4849 		goto out_unlock;
4850 
4851 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4852 	if (yielded) {
4853 		schedstat_inc(rq, yld_count);
4854 		/*
4855 		 * Make p's CPU reschedule; pick_next_entity takes care of
4856 		 * fairness.
4857 		 */
4858 		if (preempt && rq != p_rq)
4859 			resched_curr(p_rq);
4860 	}
4861 
4862 out_unlock:
4863 	double_rq_unlock(rq, p_rq);
4864 out_irq:
4865 	local_irq_restore(flags);
4866 
4867 	if (yielded > 0)
4868 		schedule();
4869 
4870 	return yielded;
4871 }
4872 EXPORT_SYMBOL_GPL(yield_to);
4873 
4874 /*
4875  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4876  * that process accounting knows that this is a task in IO wait state.
4877  */
4878 long __sched io_schedule_timeout(long timeout)
4879 {
4880 	int old_iowait = current->in_iowait;
4881 	struct rq *rq;
4882 	long ret;
4883 
4884 	current->in_iowait = 1;
4885 	blk_schedule_flush_plug(current);
4886 
4887 	delayacct_blkio_start();
4888 	rq = raw_rq();
4889 	atomic_inc(&rq->nr_iowait);
4890 	ret = schedule_timeout(timeout);
4891 	current->in_iowait = old_iowait;
4892 	atomic_dec(&rq->nr_iowait);
4893 	delayacct_blkio_end();
4894 
4895 	return ret;
4896 }
4897 EXPORT_SYMBOL(io_schedule_timeout);
4898 
4899 /**
4900  * sys_sched_get_priority_max - return maximum RT priority.
4901  * @policy: scheduling class.
4902  *
4903  * Return: On success, this syscall returns the maximum
4904  * rt_priority that can be used by a given scheduling class.
4905  * On failure, a negative error code is returned.
4906  */
4907 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4908 {
4909 	int ret = -EINVAL;
4910 
4911 	switch (policy) {
4912 	case SCHED_FIFO:
4913 	case SCHED_RR:
4914 		ret = MAX_USER_RT_PRIO-1;
4915 		break;
4916 	case SCHED_DEADLINE:
4917 	case SCHED_NORMAL:
4918 	case SCHED_BATCH:
4919 	case SCHED_IDLE:
4920 		ret = 0;
4921 		break;
4922 	}
4923 	return ret;
4924 }
4925 
4926 /**
4927  * sys_sched_get_priority_min - return minimum RT priority.
4928  * @policy: scheduling class.
4929  *
4930  * Return: On success, this syscall returns the minimum
4931  * rt_priority that can be used by a given scheduling class.
4932  * On failure, a negative error code is returned.
4933  */
4934 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4935 {
4936 	int ret = -EINVAL;
4937 
4938 	switch (policy) {
4939 	case SCHED_FIFO:
4940 	case SCHED_RR:
4941 		ret = 1;
4942 		break;
4943 	case SCHED_DEADLINE:
4944 	case SCHED_NORMAL:
4945 	case SCHED_BATCH:
4946 	case SCHED_IDLE:
4947 		ret = 0;
4948 	}
4949 	return ret;
4950 }
4951 
4952 /**
4953  * sys_sched_rr_get_interval - return the default timeslice of a process.
4954  * @pid: pid of the process.
4955  * @interval: userspace pointer to the timeslice value.
4956  *
4957  * this syscall writes the default timeslice value of a given process
4958  * into the user-space timespec buffer. A value of '0' means infinity.
4959  *
4960  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4961  * an error code.
4962  */
4963 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4964 		struct timespec __user *, interval)
4965 {
4966 	struct task_struct *p;
4967 	unsigned int time_slice;
4968 	unsigned long flags;
4969 	struct rq *rq;
4970 	int retval;
4971 	struct timespec t;
4972 
4973 	if (pid < 0)
4974 		return -EINVAL;
4975 
4976 	retval = -ESRCH;
4977 	rcu_read_lock();
4978 	p = find_process_by_pid(pid);
4979 	if (!p)
4980 		goto out_unlock;
4981 
4982 	retval = security_task_getscheduler(p);
4983 	if (retval)
4984 		goto out_unlock;
4985 
4986 	rq = task_rq_lock(p, &flags);
4987 	time_slice = 0;
4988 	if (p->sched_class->get_rr_interval)
4989 		time_slice = p->sched_class->get_rr_interval(rq, p);
4990 	task_rq_unlock(rq, p, &flags);
4991 
4992 	rcu_read_unlock();
4993 	jiffies_to_timespec(time_slice, &t);
4994 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4995 	return retval;
4996 
4997 out_unlock:
4998 	rcu_read_unlock();
4999 	return retval;
5000 }
5001 
5002 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5003 
5004 void sched_show_task(struct task_struct *p)
5005 {
5006 	unsigned long free = 0;
5007 	int ppid;
5008 	unsigned long state = p->state;
5009 
5010 	if (state)
5011 		state = __ffs(state) + 1;
5012 	printk(KERN_INFO "%-15.15s %c", p->comm,
5013 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5014 #if BITS_PER_LONG == 32
5015 	if (state == TASK_RUNNING)
5016 		printk(KERN_CONT " running  ");
5017 	else
5018 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5019 #else
5020 	if (state == TASK_RUNNING)
5021 		printk(KERN_CONT "  running task    ");
5022 	else
5023 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5024 #endif
5025 #ifdef CONFIG_DEBUG_STACK_USAGE
5026 	free = stack_not_used(p);
5027 #endif
5028 	ppid = 0;
5029 	rcu_read_lock();
5030 	if (pid_alive(p))
5031 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5032 	rcu_read_unlock();
5033 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5034 		task_pid_nr(p), ppid,
5035 		(unsigned long)task_thread_info(p)->flags);
5036 
5037 	print_worker_info(KERN_INFO, p);
5038 	show_stack(p, NULL);
5039 }
5040 
5041 void show_state_filter(unsigned long state_filter)
5042 {
5043 	struct task_struct *g, *p;
5044 
5045 #if BITS_PER_LONG == 32
5046 	printk(KERN_INFO
5047 		"  task                PC stack   pid father\n");
5048 #else
5049 	printk(KERN_INFO
5050 		"  task                        PC stack   pid father\n");
5051 #endif
5052 	rcu_read_lock();
5053 	for_each_process_thread(g, p) {
5054 		/*
5055 		 * reset the NMI-timeout, listing all files on a slow
5056 		 * console might take a lot of time:
5057 		 */
5058 		touch_nmi_watchdog();
5059 		if (!state_filter || (p->state & state_filter))
5060 			sched_show_task(p);
5061 	}
5062 
5063 	touch_all_softlockup_watchdogs();
5064 
5065 #ifdef CONFIG_SCHED_DEBUG
5066 	sysrq_sched_debug_show();
5067 #endif
5068 	rcu_read_unlock();
5069 	/*
5070 	 * Only show locks if all tasks are dumped:
5071 	 */
5072 	if (!state_filter)
5073 		debug_show_all_locks();
5074 }
5075 
5076 void init_idle_bootup_task(struct task_struct *idle)
5077 {
5078 	idle->sched_class = &idle_sched_class;
5079 }
5080 
5081 /**
5082  * init_idle - set up an idle thread for a given CPU
5083  * @idle: task in question
5084  * @cpu: cpu the idle task belongs to
5085  *
5086  * NOTE: this function does not set the idle thread's NEED_RESCHED
5087  * flag, to make booting more robust.
5088  */
5089 void init_idle(struct task_struct *idle, int cpu)
5090 {
5091 	struct rq *rq = cpu_rq(cpu);
5092 	unsigned long flags;
5093 
5094 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5095 	raw_spin_lock(&rq->lock);
5096 
5097 	__sched_fork(0, idle);
5098 	idle->state = TASK_RUNNING;
5099 	idle->se.exec_start = sched_clock();
5100 
5101 #ifdef CONFIG_SMP
5102 	/*
5103 	 * Its possible that init_idle() gets called multiple times on a task,
5104 	 * in that case do_set_cpus_allowed() will not do the right thing.
5105 	 *
5106 	 * And since this is boot we can forgo the serialization.
5107 	 */
5108 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5109 #endif
5110 	/*
5111 	 * We're having a chicken and egg problem, even though we are
5112 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5113 	 * lockdep check in task_group() will fail.
5114 	 *
5115 	 * Similar case to sched_fork(). / Alternatively we could
5116 	 * use task_rq_lock() here and obtain the other rq->lock.
5117 	 *
5118 	 * Silence PROVE_RCU
5119 	 */
5120 	rcu_read_lock();
5121 	__set_task_cpu(idle, cpu);
5122 	rcu_read_unlock();
5123 
5124 	rq->curr = rq->idle = idle;
5125 	idle->on_rq = TASK_ON_RQ_QUEUED;
5126 #ifdef CONFIG_SMP
5127 	idle->on_cpu = 1;
5128 #endif
5129 	raw_spin_unlock(&rq->lock);
5130 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5131 
5132 	/* Set the preempt count _outside_ the spinlocks! */
5133 	init_idle_preempt_count(idle, cpu);
5134 
5135 	/*
5136 	 * The idle tasks have their own, simple scheduling class:
5137 	 */
5138 	idle->sched_class = &idle_sched_class;
5139 	ftrace_graph_init_idle_task(idle, cpu);
5140 	vtime_init_idle(idle, cpu);
5141 #ifdef CONFIG_SMP
5142 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5143 #endif
5144 }
5145 
5146 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5147 			      const struct cpumask *trial)
5148 {
5149 	int ret = 1, trial_cpus;
5150 	struct dl_bw *cur_dl_b;
5151 	unsigned long flags;
5152 
5153 	if (!cpumask_weight(cur))
5154 		return ret;
5155 
5156 	rcu_read_lock_sched();
5157 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5158 	trial_cpus = cpumask_weight(trial);
5159 
5160 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5161 	if (cur_dl_b->bw != -1 &&
5162 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5163 		ret = 0;
5164 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5165 	rcu_read_unlock_sched();
5166 
5167 	return ret;
5168 }
5169 
5170 int task_can_attach(struct task_struct *p,
5171 		    const struct cpumask *cs_cpus_allowed)
5172 {
5173 	int ret = 0;
5174 
5175 	/*
5176 	 * Kthreads which disallow setaffinity shouldn't be moved
5177 	 * to a new cpuset; we don't want to change their cpu
5178 	 * affinity and isolating such threads by their set of
5179 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5180 	 * applicable for such threads.  This prevents checking for
5181 	 * success of set_cpus_allowed_ptr() on all attached tasks
5182 	 * before cpus_allowed may be changed.
5183 	 */
5184 	if (p->flags & PF_NO_SETAFFINITY) {
5185 		ret = -EINVAL;
5186 		goto out;
5187 	}
5188 
5189 #ifdef CONFIG_SMP
5190 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5191 					      cs_cpus_allowed)) {
5192 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5193 							cs_cpus_allowed);
5194 		struct dl_bw *dl_b;
5195 		bool overflow;
5196 		int cpus;
5197 		unsigned long flags;
5198 
5199 		rcu_read_lock_sched();
5200 		dl_b = dl_bw_of(dest_cpu);
5201 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5202 		cpus = dl_bw_cpus(dest_cpu);
5203 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5204 		if (overflow)
5205 			ret = -EBUSY;
5206 		else {
5207 			/*
5208 			 * We reserve space for this task in the destination
5209 			 * root_domain, as we can't fail after this point.
5210 			 * We will free resources in the source root_domain
5211 			 * later on (see set_cpus_allowed_dl()).
5212 			 */
5213 			__dl_add(dl_b, p->dl.dl_bw);
5214 		}
5215 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5216 		rcu_read_unlock_sched();
5217 
5218 	}
5219 #endif
5220 out:
5221 	return ret;
5222 }
5223 
5224 #ifdef CONFIG_SMP
5225 
5226 #ifdef CONFIG_NUMA_BALANCING
5227 /* Migrate current task p to target_cpu */
5228 int migrate_task_to(struct task_struct *p, int target_cpu)
5229 {
5230 	struct migration_arg arg = { p, target_cpu };
5231 	int curr_cpu = task_cpu(p);
5232 
5233 	if (curr_cpu == target_cpu)
5234 		return 0;
5235 
5236 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5237 		return -EINVAL;
5238 
5239 	/* TODO: This is not properly updating schedstats */
5240 
5241 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5242 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5243 }
5244 
5245 /*
5246  * Requeue a task on a given node and accurately track the number of NUMA
5247  * tasks on the runqueues
5248  */
5249 void sched_setnuma(struct task_struct *p, int nid)
5250 {
5251 	struct rq *rq;
5252 	unsigned long flags;
5253 	bool queued, running;
5254 
5255 	rq = task_rq_lock(p, &flags);
5256 	queued = task_on_rq_queued(p);
5257 	running = task_current(rq, p);
5258 
5259 	if (queued)
5260 		dequeue_task(rq, p, DEQUEUE_SAVE);
5261 	if (running)
5262 		put_prev_task(rq, p);
5263 
5264 	p->numa_preferred_nid = nid;
5265 
5266 	if (running)
5267 		p->sched_class->set_curr_task(rq);
5268 	if (queued)
5269 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5270 	task_rq_unlock(rq, p, &flags);
5271 }
5272 #endif /* CONFIG_NUMA_BALANCING */
5273 
5274 #ifdef CONFIG_HOTPLUG_CPU
5275 /*
5276  * Ensures that the idle task is using init_mm right before its cpu goes
5277  * offline.
5278  */
5279 void idle_task_exit(void)
5280 {
5281 	struct mm_struct *mm = current->active_mm;
5282 
5283 	BUG_ON(cpu_online(smp_processor_id()));
5284 
5285 	if (mm != &init_mm) {
5286 		switch_mm(mm, &init_mm, current);
5287 		finish_arch_post_lock_switch();
5288 	}
5289 	mmdrop(mm);
5290 }
5291 
5292 /*
5293  * Since this CPU is going 'away' for a while, fold any nr_active delta
5294  * we might have. Assumes we're called after migrate_tasks() so that the
5295  * nr_active count is stable.
5296  *
5297  * Also see the comment "Global load-average calculations".
5298  */
5299 static void calc_load_migrate(struct rq *rq)
5300 {
5301 	long delta = calc_load_fold_active(rq);
5302 	if (delta)
5303 		atomic_long_add(delta, &calc_load_tasks);
5304 }
5305 
5306 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5307 {
5308 }
5309 
5310 static const struct sched_class fake_sched_class = {
5311 	.put_prev_task = put_prev_task_fake,
5312 };
5313 
5314 static struct task_struct fake_task = {
5315 	/*
5316 	 * Avoid pull_{rt,dl}_task()
5317 	 */
5318 	.prio = MAX_PRIO + 1,
5319 	.sched_class = &fake_sched_class,
5320 };
5321 
5322 /*
5323  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5324  * try_to_wake_up()->select_task_rq().
5325  *
5326  * Called with rq->lock held even though we'er in stop_machine() and
5327  * there's no concurrency possible, we hold the required locks anyway
5328  * because of lock validation efforts.
5329  */
5330 static void migrate_tasks(struct rq *dead_rq)
5331 {
5332 	struct rq *rq = dead_rq;
5333 	struct task_struct *next, *stop = rq->stop;
5334 	int dest_cpu;
5335 
5336 	/*
5337 	 * Fudge the rq selection such that the below task selection loop
5338 	 * doesn't get stuck on the currently eligible stop task.
5339 	 *
5340 	 * We're currently inside stop_machine() and the rq is either stuck
5341 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5342 	 * either way we should never end up calling schedule() until we're
5343 	 * done here.
5344 	 */
5345 	rq->stop = NULL;
5346 
5347 	/*
5348 	 * put_prev_task() and pick_next_task() sched
5349 	 * class method both need to have an up-to-date
5350 	 * value of rq->clock[_task]
5351 	 */
5352 	update_rq_clock(rq);
5353 
5354 	for (;;) {
5355 		/*
5356 		 * There's this thread running, bail when that's the only
5357 		 * remaining thread.
5358 		 */
5359 		if (rq->nr_running == 1)
5360 			break;
5361 
5362 		/*
5363 		 * pick_next_task assumes pinned rq->lock.
5364 		 */
5365 		lockdep_pin_lock(&rq->lock);
5366 		next = pick_next_task(rq, &fake_task);
5367 		BUG_ON(!next);
5368 		next->sched_class->put_prev_task(rq, next);
5369 
5370 		/*
5371 		 * Rules for changing task_struct::cpus_allowed are holding
5372 		 * both pi_lock and rq->lock, such that holding either
5373 		 * stabilizes the mask.
5374 		 *
5375 		 * Drop rq->lock is not quite as disastrous as it usually is
5376 		 * because !cpu_active at this point, which means load-balance
5377 		 * will not interfere. Also, stop-machine.
5378 		 */
5379 		lockdep_unpin_lock(&rq->lock);
5380 		raw_spin_unlock(&rq->lock);
5381 		raw_spin_lock(&next->pi_lock);
5382 		raw_spin_lock(&rq->lock);
5383 
5384 		/*
5385 		 * Since we're inside stop-machine, _nothing_ should have
5386 		 * changed the task, WARN if weird stuff happened, because in
5387 		 * that case the above rq->lock drop is a fail too.
5388 		 */
5389 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5390 			raw_spin_unlock(&next->pi_lock);
5391 			continue;
5392 		}
5393 
5394 		/* Find suitable destination for @next, with force if needed. */
5395 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5396 
5397 		rq = __migrate_task(rq, next, dest_cpu);
5398 		if (rq != dead_rq) {
5399 			raw_spin_unlock(&rq->lock);
5400 			rq = dead_rq;
5401 			raw_spin_lock(&rq->lock);
5402 		}
5403 		raw_spin_unlock(&next->pi_lock);
5404 	}
5405 
5406 	rq->stop = stop;
5407 }
5408 #endif /* CONFIG_HOTPLUG_CPU */
5409 
5410 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5411 
5412 static struct ctl_table sd_ctl_dir[] = {
5413 	{
5414 		.procname	= "sched_domain",
5415 		.mode		= 0555,
5416 	},
5417 	{}
5418 };
5419 
5420 static struct ctl_table sd_ctl_root[] = {
5421 	{
5422 		.procname	= "kernel",
5423 		.mode		= 0555,
5424 		.child		= sd_ctl_dir,
5425 	},
5426 	{}
5427 };
5428 
5429 static struct ctl_table *sd_alloc_ctl_entry(int n)
5430 {
5431 	struct ctl_table *entry =
5432 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5433 
5434 	return entry;
5435 }
5436 
5437 static void sd_free_ctl_entry(struct ctl_table **tablep)
5438 {
5439 	struct ctl_table *entry;
5440 
5441 	/*
5442 	 * In the intermediate directories, both the child directory and
5443 	 * procname are dynamically allocated and could fail but the mode
5444 	 * will always be set. In the lowest directory the names are
5445 	 * static strings and all have proc handlers.
5446 	 */
5447 	for (entry = *tablep; entry->mode; entry++) {
5448 		if (entry->child)
5449 			sd_free_ctl_entry(&entry->child);
5450 		if (entry->proc_handler == NULL)
5451 			kfree(entry->procname);
5452 	}
5453 
5454 	kfree(*tablep);
5455 	*tablep = NULL;
5456 }
5457 
5458 static int min_load_idx = 0;
5459 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5460 
5461 static void
5462 set_table_entry(struct ctl_table *entry,
5463 		const char *procname, void *data, int maxlen,
5464 		umode_t mode, proc_handler *proc_handler,
5465 		bool load_idx)
5466 {
5467 	entry->procname = procname;
5468 	entry->data = data;
5469 	entry->maxlen = maxlen;
5470 	entry->mode = mode;
5471 	entry->proc_handler = proc_handler;
5472 
5473 	if (load_idx) {
5474 		entry->extra1 = &min_load_idx;
5475 		entry->extra2 = &max_load_idx;
5476 	}
5477 }
5478 
5479 static struct ctl_table *
5480 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5481 {
5482 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5483 
5484 	if (table == NULL)
5485 		return NULL;
5486 
5487 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5488 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5489 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5490 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5491 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5492 		sizeof(int), 0644, proc_dointvec_minmax, true);
5493 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5494 		sizeof(int), 0644, proc_dointvec_minmax, true);
5495 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5496 		sizeof(int), 0644, proc_dointvec_minmax, true);
5497 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5498 		sizeof(int), 0644, proc_dointvec_minmax, true);
5499 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5500 		sizeof(int), 0644, proc_dointvec_minmax, true);
5501 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5502 		sizeof(int), 0644, proc_dointvec_minmax, false);
5503 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5504 		sizeof(int), 0644, proc_dointvec_minmax, false);
5505 	set_table_entry(&table[9], "cache_nice_tries",
5506 		&sd->cache_nice_tries,
5507 		sizeof(int), 0644, proc_dointvec_minmax, false);
5508 	set_table_entry(&table[10], "flags", &sd->flags,
5509 		sizeof(int), 0644, proc_dointvec_minmax, false);
5510 	set_table_entry(&table[11], "max_newidle_lb_cost",
5511 		&sd->max_newidle_lb_cost,
5512 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5513 	set_table_entry(&table[12], "name", sd->name,
5514 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5515 	/* &table[13] is terminator */
5516 
5517 	return table;
5518 }
5519 
5520 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5521 {
5522 	struct ctl_table *entry, *table;
5523 	struct sched_domain *sd;
5524 	int domain_num = 0, i;
5525 	char buf[32];
5526 
5527 	for_each_domain(cpu, sd)
5528 		domain_num++;
5529 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5530 	if (table == NULL)
5531 		return NULL;
5532 
5533 	i = 0;
5534 	for_each_domain(cpu, sd) {
5535 		snprintf(buf, 32, "domain%d", i);
5536 		entry->procname = kstrdup(buf, GFP_KERNEL);
5537 		entry->mode = 0555;
5538 		entry->child = sd_alloc_ctl_domain_table(sd);
5539 		entry++;
5540 		i++;
5541 	}
5542 	return table;
5543 }
5544 
5545 static struct ctl_table_header *sd_sysctl_header;
5546 static void register_sched_domain_sysctl(void)
5547 {
5548 	int i, cpu_num = num_possible_cpus();
5549 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5550 	char buf[32];
5551 
5552 	WARN_ON(sd_ctl_dir[0].child);
5553 	sd_ctl_dir[0].child = entry;
5554 
5555 	if (entry == NULL)
5556 		return;
5557 
5558 	for_each_possible_cpu(i) {
5559 		snprintf(buf, 32, "cpu%d", i);
5560 		entry->procname = kstrdup(buf, GFP_KERNEL);
5561 		entry->mode = 0555;
5562 		entry->child = sd_alloc_ctl_cpu_table(i);
5563 		entry++;
5564 	}
5565 
5566 	WARN_ON(sd_sysctl_header);
5567 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5568 }
5569 
5570 /* may be called multiple times per register */
5571 static void unregister_sched_domain_sysctl(void)
5572 {
5573 	unregister_sysctl_table(sd_sysctl_header);
5574 	sd_sysctl_header = NULL;
5575 	if (sd_ctl_dir[0].child)
5576 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5577 }
5578 #else
5579 static void register_sched_domain_sysctl(void)
5580 {
5581 }
5582 static void unregister_sched_domain_sysctl(void)
5583 {
5584 }
5585 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5586 
5587 static void set_rq_online(struct rq *rq)
5588 {
5589 	if (!rq->online) {
5590 		const struct sched_class *class;
5591 
5592 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5593 		rq->online = 1;
5594 
5595 		for_each_class(class) {
5596 			if (class->rq_online)
5597 				class->rq_online(rq);
5598 		}
5599 	}
5600 }
5601 
5602 static void set_rq_offline(struct rq *rq)
5603 {
5604 	if (rq->online) {
5605 		const struct sched_class *class;
5606 
5607 		for_each_class(class) {
5608 			if (class->rq_offline)
5609 				class->rq_offline(rq);
5610 		}
5611 
5612 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5613 		rq->online = 0;
5614 	}
5615 }
5616 
5617 /*
5618  * migration_call - callback that gets triggered when a CPU is added.
5619  * Here we can start up the necessary migration thread for the new CPU.
5620  */
5621 static int
5622 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5623 {
5624 	int cpu = (long)hcpu;
5625 	unsigned long flags;
5626 	struct rq *rq = cpu_rq(cpu);
5627 
5628 	switch (action & ~CPU_TASKS_FROZEN) {
5629 
5630 	case CPU_UP_PREPARE:
5631 		rq->calc_load_update = calc_load_update;
5632 		break;
5633 
5634 	case CPU_ONLINE:
5635 		/* Update our root-domain */
5636 		raw_spin_lock_irqsave(&rq->lock, flags);
5637 		if (rq->rd) {
5638 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5639 
5640 			set_rq_online(rq);
5641 		}
5642 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5643 		break;
5644 
5645 #ifdef CONFIG_HOTPLUG_CPU
5646 	case CPU_DYING:
5647 		sched_ttwu_pending();
5648 		/* Update our root-domain */
5649 		raw_spin_lock_irqsave(&rq->lock, flags);
5650 		if (rq->rd) {
5651 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5652 			set_rq_offline(rq);
5653 		}
5654 		migrate_tasks(rq);
5655 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5656 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5657 		break;
5658 
5659 	case CPU_DEAD:
5660 		calc_load_migrate(rq);
5661 		break;
5662 #endif
5663 	}
5664 
5665 	update_max_interval();
5666 
5667 	return NOTIFY_OK;
5668 }
5669 
5670 /*
5671  * Register at high priority so that task migration (migrate_all_tasks)
5672  * happens before everything else.  This has to be lower priority than
5673  * the notifier in the perf_event subsystem, though.
5674  */
5675 static struct notifier_block migration_notifier = {
5676 	.notifier_call = migration_call,
5677 	.priority = CPU_PRI_MIGRATION,
5678 };
5679 
5680 static void set_cpu_rq_start_time(void)
5681 {
5682 	int cpu = smp_processor_id();
5683 	struct rq *rq = cpu_rq(cpu);
5684 	rq->age_stamp = sched_clock_cpu(cpu);
5685 }
5686 
5687 static int sched_cpu_active(struct notifier_block *nfb,
5688 				      unsigned long action, void *hcpu)
5689 {
5690 	int cpu = (long)hcpu;
5691 
5692 	switch (action & ~CPU_TASKS_FROZEN) {
5693 	case CPU_STARTING:
5694 		set_cpu_rq_start_time();
5695 		return NOTIFY_OK;
5696 
5697 	case CPU_ONLINE:
5698 		/*
5699 		 * At this point a starting CPU has marked itself as online via
5700 		 * set_cpu_online(). But it might not yet have marked itself
5701 		 * as active, which is essential from here on.
5702 		 */
5703 		set_cpu_active(cpu, true);
5704 		stop_machine_unpark(cpu);
5705 		return NOTIFY_OK;
5706 
5707 	case CPU_DOWN_FAILED:
5708 		set_cpu_active(cpu, true);
5709 		return NOTIFY_OK;
5710 
5711 	default:
5712 		return NOTIFY_DONE;
5713 	}
5714 }
5715 
5716 static int sched_cpu_inactive(struct notifier_block *nfb,
5717 					unsigned long action, void *hcpu)
5718 {
5719 	switch (action & ~CPU_TASKS_FROZEN) {
5720 	case CPU_DOWN_PREPARE:
5721 		set_cpu_active((long)hcpu, false);
5722 		return NOTIFY_OK;
5723 	default:
5724 		return NOTIFY_DONE;
5725 	}
5726 }
5727 
5728 static int __init migration_init(void)
5729 {
5730 	void *cpu = (void *)(long)smp_processor_id();
5731 	int err;
5732 
5733 	/* Initialize migration for the boot CPU */
5734 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5735 	BUG_ON(err == NOTIFY_BAD);
5736 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5737 	register_cpu_notifier(&migration_notifier);
5738 
5739 	/* Register cpu active notifiers */
5740 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5741 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5742 
5743 	return 0;
5744 }
5745 early_initcall(migration_init);
5746 
5747 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5748 
5749 #ifdef CONFIG_SCHED_DEBUG
5750 
5751 static __read_mostly int sched_debug_enabled;
5752 
5753 static int __init sched_debug_setup(char *str)
5754 {
5755 	sched_debug_enabled = 1;
5756 
5757 	return 0;
5758 }
5759 early_param("sched_debug", sched_debug_setup);
5760 
5761 static inline bool sched_debug(void)
5762 {
5763 	return sched_debug_enabled;
5764 }
5765 
5766 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5767 				  struct cpumask *groupmask)
5768 {
5769 	struct sched_group *group = sd->groups;
5770 
5771 	cpumask_clear(groupmask);
5772 
5773 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5774 
5775 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5776 		printk("does not load-balance\n");
5777 		if (sd->parent)
5778 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5779 					" has parent");
5780 		return -1;
5781 	}
5782 
5783 	printk(KERN_CONT "span %*pbl level %s\n",
5784 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5785 
5786 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5787 		printk(KERN_ERR "ERROR: domain->span does not contain "
5788 				"CPU%d\n", cpu);
5789 	}
5790 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5791 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5792 				" CPU%d\n", cpu);
5793 	}
5794 
5795 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5796 	do {
5797 		if (!group) {
5798 			printk("\n");
5799 			printk(KERN_ERR "ERROR: group is NULL\n");
5800 			break;
5801 		}
5802 
5803 		if (!cpumask_weight(sched_group_cpus(group))) {
5804 			printk(KERN_CONT "\n");
5805 			printk(KERN_ERR "ERROR: empty group\n");
5806 			break;
5807 		}
5808 
5809 		if (!(sd->flags & SD_OVERLAP) &&
5810 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5811 			printk(KERN_CONT "\n");
5812 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5813 			break;
5814 		}
5815 
5816 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5817 
5818 		printk(KERN_CONT " %*pbl",
5819 		       cpumask_pr_args(sched_group_cpus(group)));
5820 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5821 			printk(KERN_CONT " (cpu_capacity = %d)",
5822 				group->sgc->capacity);
5823 		}
5824 
5825 		group = group->next;
5826 	} while (group != sd->groups);
5827 	printk(KERN_CONT "\n");
5828 
5829 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5830 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5831 
5832 	if (sd->parent &&
5833 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5834 		printk(KERN_ERR "ERROR: parent span is not a superset "
5835 			"of domain->span\n");
5836 	return 0;
5837 }
5838 
5839 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5840 {
5841 	int level = 0;
5842 
5843 	if (!sched_debug_enabled)
5844 		return;
5845 
5846 	if (!sd) {
5847 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5848 		return;
5849 	}
5850 
5851 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5852 
5853 	for (;;) {
5854 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5855 			break;
5856 		level++;
5857 		sd = sd->parent;
5858 		if (!sd)
5859 			break;
5860 	}
5861 }
5862 #else /* !CONFIG_SCHED_DEBUG */
5863 # define sched_domain_debug(sd, cpu) do { } while (0)
5864 static inline bool sched_debug(void)
5865 {
5866 	return false;
5867 }
5868 #endif /* CONFIG_SCHED_DEBUG */
5869 
5870 static int sd_degenerate(struct sched_domain *sd)
5871 {
5872 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5873 		return 1;
5874 
5875 	/* Following flags need at least 2 groups */
5876 	if (sd->flags & (SD_LOAD_BALANCE |
5877 			 SD_BALANCE_NEWIDLE |
5878 			 SD_BALANCE_FORK |
5879 			 SD_BALANCE_EXEC |
5880 			 SD_SHARE_CPUCAPACITY |
5881 			 SD_SHARE_PKG_RESOURCES |
5882 			 SD_SHARE_POWERDOMAIN)) {
5883 		if (sd->groups != sd->groups->next)
5884 			return 0;
5885 	}
5886 
5887 	/* Following flags don't use groups */
5888 	if (sd->flags & (SD_WAKE_AFFINE))
5889 		return 0;
5890 
5891 	return 1;
5892 }
5893 
5894 static int
5895 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5896 {
5897 	unsigned long cflags = sd->flags, pflags = parent->flags;
5898 
5899 	if (sd_degenerate(parent))
5900 		return 1;
5901 
5902 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5903 		return 0;
5904 
5905 	/* Flags needing groups don't count if only 1 group in parent */
5906 	if (parent->groups == parent->groups->next) {
5907 		pflags &= ~(SD_LOAD_BALANCE |
5908 				SD_BALANCE_NEWIDLE |
5909 				SD_BALANCE_FORK |
5910 				SD_BALANCE_EXEC |
5911 				SD_SHARE_CPUCAPACITY |
5912 				SD_SHARE_PKG_RESOURCES |
5913 				SD_PREFER_SIBLING |
5914 				SD_SHARE_POWERDOMAIN);
5915 		if (nr_node_ids == 1)
5916 			pflags &= ~SD_SERIALIZE;
5917 	}
5918 	if (~cflags & pflags)
5919 		return 0;
5920 
5921 	return 1;
5922 }
5923 
5924 static void free_rootdomain(struct rcu_head *rcu)
5925 {
5926 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5927 
5928 	cpupri_cleanup(&rd->cpupri);
5929 	cpudl_cleanup(&rd->cpudl);
5930 	free_cpumask_var(rd->dlo_mask);
5931 	free_cpumask_var(rd->rto_mask);
5932 	free_cpumask_var(rd->online);
5933 	free_cpumask_var(rd->span);
5934 	kfree(rd);
5935 }
5936 
5937 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5938 {
5939 	struct root_domain *old_rd = NULL;
5940 	unsigned long flags;
5941 
5942 	raw_spin_lock_irqsave(&rq->lock, flags);
5943 
5944 	if (rq->rd) {
5945 		old_rd = rq->rd;
5946 
5947 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5948 			set_rq_offline(rq);
5949 
5950 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5951 
5952 		/*
5953 		 * If we dont want to free the old_rd yet then
5954 		 * set old_rd to NULL to skip the freeing later
5955 		 * in this function:
5956 		 */
5957 		if (!atomic_dec_and_test(&old_rd->refcount))
5958 			old_rd = NULL;
5959 	}
5960 
5961 	atomic_inc(&rd->refcount);
5962 	rq->rd = rd;
5963 
5964 	cpumask_set_cpu(rq->cpu, rd->span);
5965 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5966 		set_rq_online(rq);
5967 
5968 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5969 
5970 	if (old_rd)
5971 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5972 }
5973 
5974 static int init_rootdomain(struct root_domain *rd)
5975 {
5976 	memset(rd, 0, sizeof(*rd));
5977 
5978 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5979 		goto out;
5980 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5981 		goto free_span;
5982 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5983 		goto free_online;
5984 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5985 		goto free_dlo_mask;
5986 
5987 	init_dl_bw(&rd->dl_bw);
5988 	if (cpudl_init(&rd->cpudl) != 0)
5989 		goto free_dlo_mask;
5990 
5991 	if (cpupri_init(&rd->cpupri) != 0)
5992 		goto free_rto_mask;
5993 	return 0;
5994 
5995 free_rto_mask:
5996 	free_cpumask_var(rd->rto_mask);
5997 free_dlo_mask:
5998 	free_cpumask_var(rd->dlo_mask);
5999 free_online:
6000 	free_cpumask_var(rd->online);
6001 free_span:
6002 	free_cpumask_var(rd->span);
6003 out:
6004 	return -ENOMEM;
6005 }
6006 
6007 /*
6008  * By default the system creates a single root-domain with all cpus as
6009  * members (mimicking the global state we have today).
6010  */
6011 struct root_domain def_root_domain;
6012 
6013 static void init_defrootdomain(void)
6014 {
6015 	init_rootdomain(&def_root_domain);
6016 
6017 	atomic_set(&def_root_domain.refcount, 1);
6018 }
6019 
6020 static struct root_domain *alloc_rootdomain(void)
6021 {
6022 	struct root_domain *rd;
6023 
6024 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6025 	if (!rd)
6026 		return NULL;
6027 
6028 	if (init_rootdomain(rd) != 0) {
6029 		kfree(rd);
6030 		return NULL;
6031 	}
6032 
6033 	return rd;
6034 }
6035 
6036 static void free_sched_groups(struct sched_group *sg, int free_sgc)
6037 {
6038 	struct sched_group *tmp, *first;
6039 
6040 	if (!sg)
6041 		return;
6042 
6043 	first = sg;
6044 	do {
6045 		tmp = sg->next;
6046 
6047 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
6048 			kfree(sg->sgc);
6049 
6050 		kfree(sg);
6051 		sg = tmp;
6052 	} while (sg != first);
6053 }
6054 
6055 static void free_sched_domain(struct rcu_head *rcu)
6056 {
6057 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6058 
6059 	/*
6060 	 * If its an overlapping domain it has private groups, iterate and
6061 	 * nuke them all.
6062 	 */
6063 	if (sd->flags & SD_OVERLAP) {
6064 		free_sched_groups(sd->groups, 1);
6065 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6066 		kfree(sd->groups->sgc);
6067 		kfree(sd->groups);
6068 	}
6069 	kfree(sd);
6070 }
6071 
6072 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6073 {
6074 	call_rcu(&sd->rcu, free_sched_domain);
6075 }
6076 
6077 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6078 {
6079 	for (; sd; sd = sd->parent)
6080 		destroy_sched_domain(sd, cpu);
6081 }
6082 
6083 /*
6084  * Keep a special pointer to the highest sched_domain that has
6085  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6086  * allows us to avoid some pointer chasing select_idle_sibling().
6087  *
6088  * Also keep a unique ID per domain (we use the first cpu number in
6089  * the cpumask of the domain), this allows us to quickly tell if
6090  * two cpus are in the same cache domain, see cpus_share_cache().
6091  */
6092 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6093 DEFINE_PER_CPU(int, sd_llc_size);
6094 DEFINE_PER_CPU(int, sd_llc_id);
6095 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6096 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
6097 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6098 
6099 static void update_top_cache_domain(int cpu)
6100 {
6101 	struct sched_domain *sd;
6102 	struct sched_domain *busy_sd = NULL;
6103 	int id = cpu;
6104 	int size = 1;
6105 
6106 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6107 	if (sd) {
6108 		id = cpumask_first(sched_domain_span(sd));
6109 		size = cpumask_weight(sched_domain_span(sd));
6110 		busy_sd = sd->parent; /* sd_busy */
6111 	}
6112 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
6113 
6114 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6115 	per_cpu(sd_llc_size, cpu) = size;
6116 	per_cpu(sd_llc_id, cpu) = id;
6117 
6118 	sd = lowest_flag_domain(cpu, SD_NUMA);
6119 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6120 
6121 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6122 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6123 }
6124 
6125 /*
6126  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6127  * hold the hotplug lock.
6128  */
6129 static void
6130 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6131 {
6132 	struct rq *rq = cpu_rq(cpu);
6133 	struct sched_domain *tmp;
6134 
6135 	/* Remove the sched domains which do not contribute to scheduling. */
6136 	for (tmp = sd; tmp; ) {
6137 		struct sched_domain *parent = tmp->parent;
6138 		if (!parent)
6139 			break;
6140 
6141 		if (sd_parent_degenerate(tmp, parent)) {
6142 			tmp->parent = parent->parent;
6143 			if (parent->parent)
6144 				parent->parent->child = tmp;
6145 			/*
6146 			 * Transfer SD_PREFER_SIBLING down in case of a
6147 			 * degenerate parent; the spans match for this
6148 			 * so the property transfers.
6149 			 */
6150 			if (parent->flags & SD_PREFER_SIBLING)
6151 				tmp->flags |= SD_PREFER_SIBLING;
6152 			destroy_sched_domain(parent, cpu);
6153 		} else
6154 			tmp = tmp->parent;
6155 	}
6156 
6157 	if (sd && sd_degenerate(sd)) {
6158 		tmp = sd;
6159 		sd = sd->parent;
6160 		destroy_sched_domain(tmp, cpu);
6161 		if (sd)
6162 			sd->child = NULL;
6163 	}
6164 
6165 	sched_domain_debug(sd, cpu);
6166 
6167 	rq_attach_root(rq, rd);
6168 	tmp = rq->sd;
6169 	rcu_assign_pointer(rq->sd, sd);
6170 	destroy_sched_domains(tmp, cpu);
6171 
6172 	update_top_cache_domain(cpu);
6173 }
6174 
6175 /* Setup the mask of cpus configured for isolated domains */
6176 static int __init isolated_cpu_setup(char *str)
6177 {
6178 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6179 	cpulist_parse(str, cpu_isolated_map);
6180 	return 1;
6181 }
6182 
6183 __setup("isolcpus=", isolated_cpu_setup);
6184 
6185 struct s_data {
6186 	struct sched_domain ** __percpu sd;
6187 	struct root_domain	*rd;
6188 };
6189 
6190 enum s_alloc {
6191 	sa_rootdomain,
6192 	sa_sd,
6193 	sa_sd_storage,
6194 	sa_none,
6195 };
6196 
6197 /*
6198  * Build an iteration mask that can exclude certain CPUs from the upwards
6199  * domain traversal.
6200  *
6201  * Asymmetric node setups can result in situations where the domain tree is of
6202  * unequal depth, make sure to skip domains that already cover the entire
6203  * range.
6204  *
6205  * In that case build_sched_domains() will have terminated the iteration early
6206  * and our sibling sd spans will be empty. Domains should always include the
6207  * cpu they're built on, so check that.
6208  *
6209  */
6210 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6211 {
6212 	const struct cpumask *span = sched_domain_span(sd);
6213 	struct sd_data *sdd = sd->private;
6214 	struct sched_domain *sibling;
6215 	int i;
6216 
6217 	for_each_cpu(i, span) {
6218 		sibling = *per_cpu_ptr(sdd->sd, i);
6219 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6220 			continue;
6221 
6222 		cpumask_set_cpu(i, sched_group_mask(sg));
6223 	}
6224 }
6225 
6226 /*
6227  * Return the canonical balance cpu for this group, this is the first cpu
6228  * of this group that's also in the iteration mask.
6229  */
6230 int group_balance_cpu(struct sched_group *sg)
6231 {
6232 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6233 }
6234 
6235 static int
6236 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6237 {
6238 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6239 	const struct cpumask *span = sched_domain_span(sd);
6240 	struct cpumask *covered = sched_domains_tmpmask;
6241 	struct sd_data *sdd = sd->private;
6242 	struct sched_domain *sibling;
6243 	int i;
6244 
6245 	cpumask_clear(covered);
6246 
6247 	for_each_cpu(i, span) {
6248 		struct cpumask *sg_span;
6249 
6250 		if (cpumask_test_cpu(i, covered))
6251 			continue;
6252 
6253 		sibling = *per_cpu_ptr(sdd->sd, i);
6254 
6255 		/* See the comment near build_group_mask(). */
6256 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6257 			continue;
6258 
6259 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6260 				GFP_KERNEL, cpu_to_node(cpu));
6261 
6262 		if (!sg)
6263 			goto fail;
6264 
6265 		sg_span = sched_group_cpus(sg);
6266 		if (sibling->child)
6267 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6268 		else
6269 			cpumask_set_cpu(i, sg_span);
6270 
6271 		cpumask_or(covered, covered, sg_span);
6272 
6273 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6274 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6275 			build_group_mask(sd, sg);
6276 
6277 		/*
6278 		 * Initialize sgc->capacity such that even if we mess up the
6279 		 * domains and no possible iteration will get us here, we won't
6280 		 * die on a /0 trap.
6281 		 */
6282 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6283 
6284 		/*
6285 		 * Make sure the first group of this domain contains the
6286 		 * canonical balance cpu. Otherwise the sched_domain iteration
6287 		 * breaks. See update_sg_lb_stats().
6288 		 */
6289 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6290 		    group_balance_cpu(sg) == cpu)
6291 			groups = sg;
6292 
6293 		if (!first)
6294 			first = sg;
6295 		if (last)
6296 			last->next = sg;
6297 		last = sg;
6298 		last->next = first;
6299 	}
6300 	sd->groups = groups;
6301 
6302 	return 0;
6303 
6304 fail:
6305 	free_sched_groups(first, 0);
6306 
6307 	return -ENOMEM;
6308 }
6309 
6310 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6311 {
6312 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6313 	struct sched_domain *child = sd->child;
6314 
6315 	if (child)
6316 		cpu = cpumask_first(sched_domain_span(child));
6317 
6318 	if (sg) {
6319 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6320 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6321 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6322 	}
6323 
6324 	return cpu;
6325 }
6326 
6327 /*
6328  * build_sched_groups will build a circular linked list of the groups
6329  * covered by the given span, and will set each group's ->cpumask correctly,
6330  * and ->cpu_capacity to 0.
6331  *
6332  * Assumes the sched_domain tree is fully constructed
6333  */
6334 static int
6335 build_sched_groups(struct sched_domain *sd, int cpu)
6336 {
6337 	struct sched_group *first = NULL, *last = NULL;
6338 	struct sd_data *sdd = sd->private;
6339 	const struct cpumask *span = sched_domain_span(sd);
6340 	struct cpumask *covered;
6341 	int i;
6342 
6343 	get_group(cpu, sdd, &sd->groups);
6344 	atomic_inc(&sd->groups->ref);
6345 
6346 	if (cpu != cpumask_first(span))
6347 		return 0;
6348 
6349 	lockdep_assert_held(&sched_domains_mutex);
6350 	covered = sched_domains_tmpmask;
6351 
6352 	cpumask_clear(covered);
6353 
6354 	for_each_cpu(i, span) {
6355 		struct sched_group *sg;
6356 		int group, j;
6357 
6358 		if (cpumask_test_cpu(i, covered))
6359 			continue;
6360 
6361 		group = get_group(i, sdd, &sg);
6362 		cpumask_setall(sched_group_mask(sg));
6363 
6364 		for_each_cpu(j, span) {
6365 			if (get_group(j, sdd, NULL) != group)
6366 				continue;
6367 
6368 			cpumask_set_cpu(j, covered);
6369 			cpumask_set_cpu(j, sched_group_cpus(sg));
6370 		}
6371 
6372 		if (!first)
6373 			first = sg;
6374 		if (last)
6375 			last->next = sg;
6376 		last = sg;
6377 	}
6378 	last->next = first;
6379 
6380 	return 0;
6381 }
6382 
6383 /*
6384  * Initialize sched groups cpu_capacity.
6385  *
6386  * cpu_capacity indicates the capacity of sched group, which is used while
6387  * distributing the load between different sched groups in a sched domain.
6388  * Typically cpu_capacity for all the groups in a sched domain will be same
6389  * unless there are asymmetries in the topology. If there are asymmetries,
6390  * group having more cpu_capacity will pickup more load compared to the
6391  * group having less cpu_capacity.
6392  */
6393 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6394 {
6395 	struct sched_group *sg = sd->groups;
6396 
6397 	WARN_ON(!sg);
6398 
6399 	do {
6400 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6401 		sg = sg->next;
6402 	} while (sg != sd->groups);
6403 
6404 	if (cpu != group_balance_cpu(sg))
6405 		return;
6406 
6407 	update_group_capacity(sd, cpu);
6408 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6409 }
6410 
6411 /*
6412  * Initializers for schedule domains
6413  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6414  */
6415 
6416 static int default_relax_domain_level = -1;
6417 int sched_domain_level_max;
6418 
6419 static int __init setup_relax_domain_level(char *str)
6420 {
6421 	if (kstrtoint(str, 0, &default_relax_domain_level))
6422 		pr_warn("Unable to set relax_domain_level\n");
6423 
6424 	return 1;
6425 }
6426 __setup("relax_domain_level=", setup_relax_domain_level);
6427 
6428 static void set_domain_attribute(struct sched_domain *sd,
6429 				 struct sched_domain_attr *attr)
6430 {
6431 	int request;
6432 
6433 	if (!attr || attr->relax_domain_level < 0) {
6434 		if (default_relax_domain_level < 0)
6435 			return;
6436 		else
6437 			request = default_relax_domain_level;
6438 	} else
6439 		request = attr->relax_domain_level;
6440 	if (request < sd->level) {
6441 		/* turn off idle balance on this domain */
6442 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6443 	} else {
6444 		/* turn on idle balance on this domain */
6445 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6446 	}
6447 }
6448 
6449 static void __sdt_free(const struct cpumask *cpu_map);
6450 static int __sdt_alloc(const struct cpumask *cpu_map);
6451 
6452 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6453 				 const struct cpumask *cpu_map)
6454 {
6455 	switch (what) {
6456 	case sa_rootdomain:
6457 		if (!atomic_read(&d->rd->refcount))
6458 			free_rootdomain(&d->rd->rcu); /* fall through */
6459 	case sa_sd:
6460 		free_percpu(d->sd); /* fall through */
6461 	case sa_sd_storage:
6462 		__sdt_free(cpu_map); /* fall through */
6463 	case sa_none:
6464 		break;
6465 	}
6466 }
6467 
6468 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6469 						   const struct cpumask *cpu_map)
6470 {
6471 	memset(d, 0, sizeof(*d));
6472 
6473 	if (__sdt_alloc(cpu_map))
6474 		return sa_sd_storage;
6475 	d->sd = alloc_percpu(struct sched_domain *);
6476 	if (!d->sd)
6477 		return sa_sd_storage;
6478 	d->rd = alloc_rootdomain();
6479 	if (!d->rd)
6480 		return sa_sd;
6481 	return sa_rootdomain;
6482 }
6483 
6484 /*
6485  * NULL the sd_data elements we've used to build the sched_domain and
6486  * sched_group structure so that the subsequent __free_domain_allocs()
6487  * will not free the data we're using.
6488  */
6489 static void claim_allocations(int cpu, struct sched_domain *sd)
6490 {
6491 	struct sd_data *sdd = sd->private;
6492 
6493 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6494 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6495 
6496 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6497 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6498 
6499 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6500 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6501 }
6502 
6503 #ifdef CONFIG_NUMA
6504 static int sched_domains_numa_levels;
6505 enum numa_topology_type sched_numa_topology_type;
6506 static int *sched_domains_numa_distance;
6507 int sched_max_numa_distance;
6508 static struct cpumask ***sched_domains_numa_masks;
6509 static int sched_domains_curr_level;
6510 #endif
6511 
6512 /*
6513  * SD_flags allowed in topology descriptions.
6514  *
6515  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6516  * SD_SHARE_PKG_RESOURCES - describes shared caches
6517  * SD_NUMA                - describes NUMA topologies
6518  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6519  *
6520  * Odd one out:
6521  * SD_ASYM_PACKING        - describes SMT quirks
6522  */
6523 #define TOPOLOGY_SD_FLAGS		\
6524 	(SD_SHARE_CPUCAPACITY |		\
6525 	 SD_SHARE_PKG_RESOURCES |	\
6526 	 SD_NUMA |			\
6527 	 SD_ASYM_PACKING |		\
6528 	 SD_SHARE_POWERDOMAIN)
6529 
6530 static struct sched_domain *
6531 sd_init(struct sched_domain_topology_level *tl, int cpu)
6532 {
6533 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6534 	int sd_weight, sd_flags = 0;
6535 
6536 #ifdef CONFIG_NUMA
6537 	/*
6538 	 * Ugly hack to pass state to sd_numa_mask()...
6539 	 */
6540 	sched_domains_curr_level = tl->numa_level;
6541 #endif
6542 
6543 	sd_weight = cpumask_weight(tl->mask(cpu));
6544 
6545 	if (tl->sd_flags)
6546 		sd_flags = (*tl->sd_flags)();
6547 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6548 			"wrong sd_flags in topology description\n"))
6549 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6550 
6551 	*sd = (struct sched_domain){
6552 		.min_interval		= sd_weight,
6553 		.max_interval		= 2*sd_weight,
6554 		.busy_factor		= 32,
6555 		.imbalance_pct		= 125,
6556 
6557 		.cache_nice_tries	= 0,
6558 		.busy_idx		= 0,
6559 		.idle_idx		= 0,
6560 		.newidle_idx		= 0,
6561 		.wake_idx		= 0,
6562 		.forkexec_idx		= 0,
6563 
6564 		.flags			= 1*SD_LOAD_BALANCE
6565 					| 1*SD_BALANCE_NEWIDLE
6566 					| 1*SD_BALANCE_EXEC
6567 					| 1*SD_BALANCE_FORK
6568 					| 0*SD_BALANCE_WAKE
6569 					| 1*SD_WAKE_AFFINE
6570 					| 0*SD_SHARE_CPUCAPACITY
6571 					| 0*SD_SHARE_PKG_RESOURCES
6572 					| 0*SD_SERIALIZE
6573 					| 0*SD_PREFER_SIBLING
6574 					| 0*SD_NUMA
6575 					| sd_flags
6576 					,
6577 
6578 		.last_balance		= jiffies,
6579 		.balance_interval	= sd_weight,
6580 		.smt_gain		= 0,
6581 		.max_newidle_lb_cost	= 0,
6582 		.next_decay_max_lb_cost	= jiffies,
6583 #ifdef CONFIG_SCHED_DEBUG
6584 		.name			= tl->name,
6585 #endif
6586 	};
6587 
6588 	/*
6589 	 * Convert topological properties into behaviour.
6590 	 */
6591 
6592 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6593 		sd->flags |= SD_PREFER_SIBLING;
6594 		sd->imbalance_pct = 110;
6595 		sd->smt_gain = 1178; /* ~15% */
6596 
6597 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6598 		sd->imbalance_pct = 117;
6599 		sd->cache_nice_tries = 1;
6600 		sd->busy_idx = 2;
6601 
6602 #ifdef CONFIG_NUMA
6603 	} else if (sd->flags & SD_NUMA) {
6604 		sd->cache_nice_tries = 2;
6605 		sd->busy_idx = 3;
6606 		sd->idle_idx = 2;
6607 
6608 		sd->flags |= SD_SERIALIZE;
6609 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6610 			sd->flags &= ~(SD_BALANCE_EXEC |
6611 				       SD_BALANCE_FORK |
6612 				       SD_WAKE_AFFINE);
6613 		}
6614 
6615 #endif
6616 	} else {
6617 		sd->flags |= SD_PREFER_SIBLING;
6618 		sd->cache_nice_tries = 1;
6619 		sd->busy_idx = 2;
6620 		sd->idle_idx = 1;
6621 	}
6622 
6623 	sd->private = &tl->data;
6624 
6625 	return sd;
6626 }
6627 
6628 /*
6629  * Topology list, bottom-up.
6630  */
6631 static struct sched_domain_topology_level default_topology[] = {
6632 #ifdef CONFIG_SCHED_SMT
6633 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6634 #endif
6635 #ifdef CONFIG_SCHED_MC
6636 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6637 #endif
6638 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6639 	{ NULL, },
6640 };
6641 
6642 static struct sched_domain_topology_level *sched_domain_topology =
6643 	default_topology;
6644 
6645 #define for_each_sd_topology(tl)			\
6646 	for (tl = sched_domain_topology; tl->mask; tl++)
6647 
6648 void set_sched_topology(struct sched_domain_topology_level *tl)
6649 {
6650 	sched_domain_topology = tl;
6651 }
6652 
6653 #ifdef CONFIG_NUMA
6654 
6655 static const struct cpumask *sd_numa_mask(int cpu)
6656 {
6657 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6658 }
6659 
6660 static void sched_numa_warn(const char *str)
6661 {
6662 	static int done = false;
6663 	int i,j;
6664 
6665 	if (done)
6666 		return;
6667 
6668 	done = true;
6669 
6670 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6671 
6672 	for (i = 0; i < nr_node_ids; i++) {
6673 		printk(KERN_WARNING "  ");
6674 		for (j = 0; j < nr_node_ids; j++)
6675 			printk(KERN_CONT "%02d ", node_distance(i,j));
6676 		printk(KERN_CONT "\n");
6677 	}
6678 	printk(KERN_WARNING "\n");
6679 }
6680 
6681 bool find_numa_distance(int distance)
6682 {
6683 	int i;
6684 
6685 	if (distance == node_distance(0, 0))
6686 		return true;
6687 
6688 	for (i = 0; i < sched_domains_numa_levels; i++) {
6689 		if (sched_domains_numa_distance[i] == distance)
6690 			return true;
6691 	}
6692 
6693 	return false;
6694 }
6695 
6696 /*
6697  * A system can have three types of NUMA topology:
6698  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6699  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6700  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6701  *
6702  * The difference between a glueless mesh topology and a backplane
6703  * topology lies in whether communication between not directly
6704  * connected nodes goes through intermediary nodes (where programs
6705  * could run), or through backplane controllers. This affects
6706  * placement of programs.
6707  *
6708  * The type of topology can be discerned with the following tests:
6709  * - If the maximum distance between any nodes is 1 hop, the system
6710  *   is directly connected.
6711  * - If for two nodes A and B, located N > 1 hops away from each other,
6712  *   there is an intermediary node C, which is < N hops away from both
6713  *   nodes A and B, the system is a glueless mesh.
6714  */
6715 static void init_numa_topology_type(void)
6716 {
6717 	int a, b, c, n;
6718 
6719 	n = sched_max_numa_distance;
6720 
6721 	if (sched_domains_numa_levels <= 1) {
6722 		sched_numa_topology_type = NUMA_DIRECT;
6723 		return;
6724 	}
6725 
6726 	for_each_online_node(a) {
6727 		for_each_online_node(b) {
6728 			/* Find two nodes furthest removed from each other. */
6729 			if (node_distance(a, b) < n)
6730 				continue;
6731 
6732 			/* Is there an intermediary node between a and b? */
6733 			for_each_online_node(c) {
6734 				if (node_distance(a, c) < n &&
6735 				    node_distance(b, c) < n) {
6736 					sched_numa_topology_type =
6737 							NUMA_GLUELESS_MESH;
6738 					return;
6739 				}
6740 			}
6741 
6742 			sched_numa_topology_type = NUMA_BACKPLANE;
6743 			return;
6744 		}
6745 	}
6746 }
6747 
6748 static void sched_init_numa(void)
6749 {
6750 	int next_distance, curr_distance = node_distance(0, 0);
6751 	struct sched_domain_topology_level *tl;
6752 	int level = 0;
6753 	int i, j, k;
6754 
6755 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6756 	if (!sched_domains_numa_distance)
6757 		return;
6758 
6759 	/*
6760 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6761 	 * unique distances in the node_distance() table.
6762 	 *
6763 	 * Assumes node_distance(0,j) includes all distances in
6764 	 * node_distance(i,j) in order to avoid cubic time.
6765 	 */
6766 	next_distance = curr_distance;
6767 	for (i = 0; i < nr_node_ids; i++) {
6768 		for (j = 0; j < nr_node_ids; j++) {
6769 			for (k = 0; k < nr_node_ids; k++) {
6770 				int distance = node_distance(i, k);
6771 
6772 				if (distance > curr_distance &&
6773 				    (distance < next_distance ||
6774 				     next_distance == curr_distance))
6775 					next_distance = distance;
6776 
6777 				/*
6778 				 * While not a strong assumption it would be nice to know
6779 				 * about cases where if node A is connected to B, B is not
6780 				 * equally connected to A.
6781 				 */
6782 				if (sched_debug() && node_distance(k, i) != distance)
6783 					sched_numa_warn("Node-distance not symmetric");
6784 
6785 				if (sched_debug() && i && !find_numa_distance(distance))
6786 					sched_numa_warn("Node-0 not representative");
6787 			}
6788 			if (next_distance != curr_distance) {
6789 				sched_domains_numa_distance[level++] = next_distance;
6790 				sched_domains_numa_levels = level;
6791 				curr_distance = next_distance;
6792 			} else break;
6793 		}
6794 
6795 		/*
6796 		 * In case of sched_debug() we verify the above assumption.
6797 		 */
6798 		if (!sched_debug())
6799 			break;
6800 	}
6801 
6802 	if (!level)
6803 		return;
6804 
6805 	/*
6806 	 * 'level' contains the number of unique distances, excluding the
6807 	 * identity distance node_distance(i,i).
6808 	 *
6809 	 * The sched_domains_numa_distance[] array includes the actual distance
6810 	 * numbers.
6811 	 */
6812 
6813 	/*
6814 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6815 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6816 	 * the array will contain less then 'level' members. This could be
6817 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6818 	 * in other functions.
6819 	 *
6820 	 * We reset it to 'level' at the end of this function.
6821 	 */
6822 	sched_domains_numa_levels = 0;
6823 
6824 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6825 	if (!sched_domains_numa_masks)
6826 		return;
6827 
6828 	/*
6829 	 * Now for each level, construct a mask per node which contains all
6830 	 * cpus of nodes that are that many hops away from us.
6831 	 */
6832 	for (i = 0; i < level; i++) {
6833 		sched_domains_numa_masks[i] =
6834 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6835 		if (!sched_domains_numa_masks[i])
6836 			return;
6837 
6838 		for (j = 0; j < nr_node_ids; j++) {
6839 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6840 			if (!mask)
6841 				return;
6842 
6843 			sched_domains_numa_masks[i][j] = mask;
6844 
6845 			for_each_node(k) {
6846 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6847 					continue;
6848 
6849 				cpumask_or(mask, mask, cpumask_of_node(k));
6850 			}
6851 		}
6852 	}
6853 
6854 	/* Compute default topology size */
6855 	for (i = 0; sched_domain_topology[i].mask; i++);
6856 
6857 	tl = kzalloc((i + level + 1) *
6858 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6859 	if (!tl)
6860 		return;
6861 
6862 	/*
6863 	 * Copy the default topology bits..
6864 	 */
6865 	for (i = 0; sched_domain_topology[i].mask; i++)
6866 		tl[i] = sched_domain_topology[i];
6867 
6868 	/*
6869 	 * .. and append 'j' levels of NUMA goodness.
6870 	 */
6871 	for (j = 0; j < level; i++, j++) {
6872 		tl[i] = (struct sched_domain_topology_level){
6873 			.mask = sd_numa_mask,
6874 			.sd_flags = cpu_numa_flags,
6875 			.flags = SDTL_OVERLAP,
6876 			.numa_level = j,
6877 			SD_INIT_NAME(NUMA)
6878 		};
6879 	}
6880 
6881 	sched_domain_topology = tl;
6882 
6883 	sched_domains_numa_levels = level;
6884 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6885 
6886 	init_numa_topology_type();
6887 }
6888 
6889 static void sched_domains_numa_masks_set(int cpu)
6890 {
6891 	int i, j;
6892 	int node = cpu_to_node(cpu);
6893 
6894 	for (i = 0; i < sched_domains_numa_levels; i++) {
6895 		for (j = 0; j < nr_node_ids; j++) {
6896 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6897 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6898 		}
6899 	}
6900 }
6901 
6902 static void sched_domains_numa_masks_clear(int cpu)
6903 {
6904 	int i, j;
6905 	for (i = 0; i < sched_domains_numa_levels; i++) {
6906 		for (j = 0; j < nr_node_ids; j++)
6907 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6908 	}
6909 }
6910 
6911 /*
6912  * Update sched_domains_numa_masks[level][node] array when new cpus
6913  * are onlined.
6914  */
6915 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6916 					   unsigned long action,
6917 					   void *hcpu)
6918 {
6919 	int cpu = (long)hcpu;
6920 
6921 	switch (action & ~CPU_TASKS_FROZEN) {
6922 	case CPU_ONLINE:
6923 		sched_domains_numa_masks_set(cpu);
6924 		break;
6925 
6926 	case CPU_DEAD:
6927 		sched_domains_numa_masks_clear(cpu);
6928 		break;
6929 
6930 	default:
6931 		return NOTIFY_DONE;
6932 	}
6933 
6934 	return NOTIFY_OK;
6935 }
6936 #else
6937 static inline void sched_init_numa(void)
6938 {
6939 }
6940 
6941 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6942 					   unsigned long action,
6943 					   void *hcpu)
6944 {
6945 	return 0;
6946 }
6947 #endif /* CONFIG_NUMA */
6948 
6949 static int __sdt_alloc(const struct cpumask *cpu_map)
6950 {
6951 	struct sched_domain_topology_level *tl;
6952 	int j;
6953 
6954 	for_each_sd_topology(tl) {
6955 		struct sd_data *sdd = &tl->data;
6956 
6957 		sdd->sd = alloc_percpu(struct sched_domain *);
6958 		if (!sdd->sd)
6959 			return -ENOMEM;
6960 
6961 		sdd->sg = alloc_percpu(struct sched_group *);
6962 		if (!sdd->sg)
6963 			return -ENOMEM;
6964 
6965 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6966 		if (!sdd->sgc)
6967 			return -ENOMEM;
6968 
6969 		for_each_cpu(j, cpu_map) {
6970 			struct sched_domain *sd;
6971 			struct sched_group *sg;
6972 			struct sched_group_capacity *sgc;
6973 
6974 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6975 					GFP_KERNEL, cpu_to_node(j));
6976 			if (!sd)
6977 				return -ENOMEM;
6978 
6979 			*per_cpu_ptr(sdd->sd, j) = sd;
6980 
6981 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6982 					GFP_KERNEL, cpu_to_node(j));
6983 			if (!sg)
6984 				return -ENOMEM;
6985 
6986 			sg->next = sg;
6987 
6988 			*per_cpu_ptr(sdd->sg, j) = sg;
6989 
6990 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6991 					GFP_KERNEL, cpu_to_node(j));
6992 			if (!sgc)
6993 				return -ENOMEM;
6994 
6995 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6996 		}
6997 	}
6998 
6999 	return 0;
7000 }
7001 
7002 static void __sdt_free(const struct cpumask *cpu_map)
7003 {
7004 	struct sched_domain_topology_level *tl;
7005 	int j;
7006 
7007 	for_each_sd_topology(tl) {
7008 		struct sd_data *sdd = &tl->data;
7009 
7010 		for_each_cpu(j, cpu_map) {
7011 			struct sched_domain *sd;
7012 
7013 			if (sdd->sd) {
7014 				sd = *per_cpu_ptr(sdd->sd, j);
7015 				if (sd && (sd->flags & SD_OVERLAP))
7016 					free_sched_groups(sd->groups, 0);
7017 				kfree(*per_cpu_ptr(sdd->sd, j));
7018 			}
7019 
7020 			if (sdd->sg)
7021 				kfree(*per_cpu_ptr(sdd->sg, j));
7022 			if (sdd->sgc)
7023 				kfree(*per_cpu_ptr(sdd->sgc, j));
7024 		}
7025 		free_percpu(sdd->sd);
7026 		sdd->sd = NULL;
7027 		free_percpu(sdd->sg);
7028 		sdd->sg = NULL;
7029 		free_percpu(sdd->sgc);
7030 		sdd->sgc = NULL;
7031 	}
7032 }
7033 
7034 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7035 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7036 		struct sched_domain *child, int cpu)
7037 {
7038 	struct sched_domain *sd = sd_init(tl, cpu);
7039 	if (!sd)
7040 		return child;
7041 
7042 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7043 	if (child) {
7044 		sd->level = child->level + 1;
7045 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
7046 		child->parent = sd;
7047 		sd->child = child;
7048 
7049 		if (!cpumask_subset(sched_domain_span(child),
7050 				    sched_domain_span(sd))) {
7051 			pr_err("BUG: arch topology borken\n");
7052 #ifdef CONFIG_SCHED_DEBUG
7053 			pr_err("     the %s domain not a subset of the %s domain\n",
7054 					child->name, sd->name);
7055 #endif
7056 			/* Fixup, ensure @sd has at least @child cpus. */
7057 			cpumask_or(sched_domain_span(sd),
7058 				   sched_domain_span(sd),
7059 				   sched_domain_span(child));
7060 		}
7061 
7062 	}
7063 	set_domain_attribute(sd, attr);
7064 
7065 	return sd;
7066 }
7067 
7068 /*
7069  * Build sched domains for a given set of cpus and attach the sched domains
7070  * to the individual cpus
7071  */
7072 static int build_sched_domains(const struct cpumask *cpu_map,
7073 			       struct sched_domain_attr *attr)
7074 {
7075 	enum s_alloc alloc_state;
7076 	struct sched_domain *sd;
7077 	struct s_data d;
7078 	int i, ret = -ENOMEM;
7079 
7080 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7081 	if (alloc_state != sa_rootdomain)
7082 		goto error;
7083 
7084 	/* Set up domains for cpus specified by the cpu_map. */
7085 	for_each_cpu(i, cpu_map) {
7086 		struct sched_domain_topology_level *tl;
7087 
7088 		sd = NULL;
7089 		for_each_sd_topology(tl) {
7090 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7091 			if (tl == sched_domain_topology)
7092 				*per_cpu_ptr(d.sd, i) = sd;
7093 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7094 				sd->flags |= SD_OVERLAP;
7095 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7096 				break;
7097 		}
7098 	}
7099 
7100 	/* Build the groups for the domains */
7101 	for_each_cpu(i, cpu_map) {
7102 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7103 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7104 			if (sd->flags & SD_OVERLAP) {
7105 				if (build_overlap_sched_groups(sd, i))
7106 					goto error;
7107 			} else {
7108 				if (build_sched_groups(sd, i))
7109 					goto error;
7110 			}
7111 		}
7112 	}
7113 
7114 	/* Calculate CPU capacity for physical packages and nodes */
7115 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
7116 		if (!cpumask_test_cpu(i, cpu_map))
7117 			continue;
7118 
7119 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7120 			claim_allocations(i, sd);
7121 			init_sched_groups_capacity(i, sd);
7122 		}
7123 	}
7124 
7125 	/* Attach the domains */
7126 	rcu_read_lock();
7127 	for_each_cpu(i, cpu_map) {
7128 		sd = *per_cpu_ptr(d.sd, i);
7129 		cpu_attach_domain(sd, d.rd, i);
7130 	}
7131 	rcu_read_unlock();
7132 
7133 	ret = 0;
7134 error:
7135 	__free_domain_allocs(&d, alloc_state, cpu_map);
7136 	return ret;
7137 }
7138 
7139 static cpumask_var_t *doms_cur;	/* current sched domains */
7140 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7141 static struct sched_domain_attr *dattr_cur;
7142 				/* attribues of custom domains in 'doms_cur' */
7143 
7144 /*
7145  * Special case: If a kmalloc of a doms_cur partition (array of
7146  * cpumask) fails, then fallback to a single sched domain,
7147  * as determined by the single cpumask fallback_doms.
7148  */
7149 static cpumask_var_t fallback_doms;
7150 
7151 /*
7152  * arch_update_cpu_topology lets virtualized architectures update the
7153  * cpu core maps. It is supposed to return 1 if the topology changed
7154  * or 0 if it stayed the same.
7155  */
7156 int __weak arch_update_cpu_topology(void)
7157 {
7158 	return 0;
7159 }
7160 
7161 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7162 {
7163 	int i;
7164 	cpumask_var_t *doms;
7165 
7166 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7167 	if (!doms)
7168 		return NULL;
7169 	for (i = 0; i < ndoms; i++) {
7170 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7171 			free_sched_domains(doms, i);
7172 			return NULL;
7173 		}
7174 	}
7175 	return doms;
7176 }
7177 
7178 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7179 {
7180 	unsigned int i;
7181 	for (i = 0; i < ndoms; i++)
7182 		free_cpumask_var(doms[i]);
7183 	kfree(doms);
7184 }
7185 
7186 /*
7187  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7188  * For now this just excludes isolated cpus, but could be used to
7189  * exclude other special cases in the future.
7190  */
7191 static int init_sched_domains(const struct cpumask *cpu_map)
7192 {
7193 	int err;
7194 
7195 	arch_update_cpu_topology();
7196 	ndoms_cur = 1;
7197 	doms_cur = alloc_sched_domains(ndoms_cur);
7198 	if (!doms_cur)
7199 		doms_cur = &fallback_doms;
7200 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7201 	err = build_sched_domains(doms_cur[0], NULL);
7202 	register_sched_domain_sysctl();
7203 
7204 	return err;
7205 }
7206 
7207 /*
7208  * Detach sched domains from a group of cpus specified in cpu_map
7209  * These cpus will now be attached to the NULL domain
7210  */
7211 static void detach_destroy_domains(const struct cpumask *cpu_map)
7212 {
7213 	int i;
7214 
7215 	rcu_read_lock();
7216 	for_each_cpu(i, cpu_map)
7217 		cpu_attach_domain(NULL, &def_root_domain, i);
7218 	rcu_read_unlock();
7219 }
7220 
7221 /* handle null as "default" */
7222 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7223 			struct sched_domain_attr *new, int idx_new)
7224 {
7225 	struct sched_domain_attr tmp;
7226 
7227 	/* fast path */
7228 	if (!new && !cur)
7229 		return 1;
7230 
7231 	tmp = SD_ATTR_INIT;
7232 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7233 			new ? (new + idx_new) : &tmp,
7234 			sizeof(struct sched_domain_attr));
7235 }
7236 
7237 /*
7238  * Partition sched domains as specified by the 'ndoms_new'
7239  * cpumasks in the array doms_new[] of cpumasks. This compares
7240  * doms_new[] to the current sched domain partitioning, doms_cur[].
7241  * It destroys each deleted domain and builds each new domain.
7242  *
7243  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7244  * The masks don't intersect (don't overlap.) We should setup one
7245  * sched domain for each mask. CPUs not in any of the cpumasks will
7246  * not be load balanced. If the same cpumask appears both in the
7247  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7248  * it as it is.
7249  *
7250  * The passed in 'doms_new' should be allocated using
7251  * alloc_sched_domains.  This routine takes ownership of it and will
7252  * free_sched_domains it when done with it. If the caller failed the
7253  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7254  * and partition_sched_domains() will fallback to the single partition
7255  * 'fallback_doms', it also forces the domains to be rebuilt.
7256  *
7257  * If doms_new == NULL it will be replaced with cpu_online_mask.
7258  * ndoms_new == 0 is a special case for destroying existing domains,
7259  * and it will not create the default domain.
7260  *
7261  * Call with hotplug lock held
7262  */
7263 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7264 			     struct sched_domain_attr *dattr_new)
7265 {
7266 	int i, j, n;
7267 	int new_topology;
7268 
7269 	mutex_lock(&sched_domains_mutex);
7270 
7271 	/* always unregister in case we don't destroy any domains */
7272 	unregister_sched_domain_sysctl();
7273 
7274 	/* Let architecture update cpu core mappings. */
7275 	new_topology = arch_update_cpu_topology();
7276 
7277 	n = doms_new ? ndoms_new : 0;
7278 
7279 	/* Destroy deleted domains */
7280 	for (i = 0; i < ndoms_cur; i++) {
7281 		for (j = 0; j < n && !new_topology; j++) {
7282 			if (cpumask_equal(doms_cur[i], doms_new[j])
7283 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7284 				goto match1;
7285 		}
7286 		/* no match - a current sched domain not in new doms_new[] */
7287 		detach_destroy_domains(doms_cur[i]);
7288 match1:
7289 		;
7290 	}
7291 
7292 	n = ndoms_cur;
7293 	if (doms_new == NULL) {
7294 		n = 0;
7295 		doms_new = &fallback_doms;
7296 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7297 		WARN_ON_ONCE(dattr_new);
7298 	}
7299 
7300 	/* Build new domains */
7301 	for (i = 0; i < ndoms_new; i++) {
7302 		for (j = 0; j < n && !new_topology; j++) {
7303 			if (cpumask_equal(doms_new[i], doms_cur[j])
7304 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7305 				goto match2;
7306 		}
7307 		/* no match - add a new doms_new */
7308 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7309 match2:
7310 		;
7311 	}
7312 
7313 	/* Remember the new sched domains */
7314 	if (doms_cur != &fallback_doms)
7315 		free_sched_domains(doms_cur, ndoms_cur);
7316 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7317 	doms_cur = doms_new;
7318 	dattr_cur = dattr_new;
7319 	ndoms_cur = ndoms_new;
7320 
7321 	register_sched_domain_sysctl();
7322 
7323 	mutex_unlock(&sched_domains_mutex);
7324 }
7325 
7326 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7327 
7328 /*
7329  * Update cpusets according to cpu_active mask.  If cpusets are
7330  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7331  * around partition_sched_domains().
7332  *
7333  * If we come here as part of a suspend/resume, don't touch cpusets because we
7334  * want to restore it back to its original state upon resume anyway.
7335  */
7336 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7337 			     void *hcpu)
7338 {
7339 	switch (action) {
7340 	case CPU_ONLINE_FROZEN:
7341 	case CPU_DOWN_FAILED_FROZEN:
7342 
7343 		/*
7344 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7345 		 * resume sequence. As long as this is not the last online
7346 		 * operation in the resume sequence, just build a single sched
7347 		 * domain, ignoring cpusets.
7348 		 */
7349 		num_cpus_frozen--;
7350 		if (likely(num_cpus_frozen)) {
7351 			partition_sched_domains(1, NULL, NULL);
7352 			break;
7353 		}
7354 
7355 		/*
7356 		 * This is the last CPU online operation. So fall through and
7357 		 * restore the original sched domains by considering the
7358 		 * cpuset configurations.
7359 		 */
7360 
7361 	case CPU_ONLINE:
7362 		cpuset_update_active_cpus(true);
7363 		break;
7364 	default:
7365 		return NOTIFY_DONE;
7366 	}
7367 	return NOTIFY_OK;
7368 }
7369 
7370 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7371 			       void *hcpu)
7372 {
7373 	unsigned long flags;
7374 	long cpu = (long)hcpu;
7375 	struct dl_bw *dl_b;
7376 	bool overflow;
7377 	int cpus;
7378 
7379 	switch (action) {
7380 	case CPU_DOWN_PREPARE:
7381 		rcu_read_lock_sched();
7382 		dl_b = dl_bw_of(cpu);
7383 
7384 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7385 		cpus = dl_bw_cpus(cpu);
7386 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7387 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7388 
7389 		rcu_read_unlock_sched();
7390 
7391 		if (overflow)
7392 			return notifier_from_errno(-EBUSY);
7393 		cpuset_update_active_cpus(false);
7394 		break;
7395 	case CPU_DOWN_PREPARE_FROZEN:
7396 		num_cpus_frozen++;
7397 		partition_sched_domains(1, NULL, NULL);
7398 		break;
7399 	default:
7400 		return NOTIFY_DONE;
7401 	}
7402 	return NOTIFY_OK;
7403 }
7404 
7405 void __init sched_init_smp(void)
7406 {
7407 	cpumask_var_t non_isolated_cpus;
7408 
7409 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7410 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7411 
7412 	sched_init_numa();
7413 
7414 	/*
7415 	 * There's no userspace yet to cause hotplug operations; hence all the
7416 	 * cpu masks are stable and all blatant races in the below code cannot
7417 	 * happen.
7418 	 */
7419 	mutex_lock(&sched_domains_mutex);
7420 	init_sched_domains(cpu_active_mask);
7421 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7422 	if (cpumask_empty(non_isolated_cpus))
7423 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7424 	mutex_unlock(&sched_domains_mutex);
7425 
7426 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7427 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7428 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7429 
7430 	init_hrtick();
7431 
7432 	/* Move init over to a non-isolated CPU */
7433 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7434 		BUG();
7435 	sched_init_granularity();
7436 	free_cpumask_var(non_isolated_cpus);
7437 
7438 	init_sched_rt_class();
7439 	init_sched_dl_class();
7440 }
7441 #else
7442 void __init sched_init_smp(void)
7443 {
7444 	sched_init_granularity();
7445 }
7446 #endif /* CONFIG_SMP */
7447 
7448 int in_sched_functions(unsigned long addr)
7449 {
7450 	return in_lock_functions(addr) ||
7451 		(addr >= (unsigned long)__sched_text_start
7452 		&& addr < (unsigned long)__sched_text_end);
7453 }
7454 
7455 #ifdef CONFIG_CGROUP_SCHED
7456 /*
7457  * Default task group.
7458  * Every task in system belongs to this group at bootup.
7459  */
7460 struct task_group root_task_group;
7461 LIST_HEAD(task_groups);
7462 
7463 /* Cacheline aligned slab cache for task_group */
7464 static struct kmem_cache *task_group_cache __read_mostly;
7465 #endif
7466 
7467 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7468 
7469 void __init sched_init(void)
7470 {
7471 	int i, j;
7472 	unsigned long alloc_size = 0, ptr;
7473 
7474 #ifdef CONFIG_FAIR_GROUP_SCHED
7475 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7476 #endif
7477 #ifdef CONFIG_RT_GROUP_SCHED
7478 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7479 #endif
7480 	if (alloc_size) {
7481 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7482 
7483 #ifdef CONFIG_FAIR_GROUP_SCHED
7484 		root_task_group.se = (struct sched_entity **)ptr;
7485 		ptr += nr_cpu_ids * sizeof(void **);
7486 
7487 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7488 		ptr += nr_cpu_ids * sizeof(void **);
7489 
7490 #endif /* CONFIG_FAIR_GROUP_SCHED */
7491 #ifdef CONFIG_RT_GROUP_SCHED
7492 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7493 		ptr += nr_cpu_ids * sizeof(void **);
7494 
7495 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7496 		ptr += nr_cpu_ids * sizeof(void **);
7497 
7498 #endif /* CONFIG_RT_GROUP_SCHED */
7499 	}
7500 #ifdef CONFIG_CPUMASK_OFFSTACK
7501 	for_each_possible_cpu(i) {
7502 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7503 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7504 	}
7505 #endif /* CONFIG_CPUMASK_OFFSTACK */
7506 
7507 	init_rt_bandwidth(&def_rt_bandwidth,
7508 			global_rt_period(), global_rt_runtime());
7509 	init_dl_bandwidth(&def_dl_bandwidth,
7510 			global_rt_period(), global_rt_runtime());
7511 
7512 #ifdef CONFIG_SMP
7513 	init_defrootdomain();
7514 #endif
7515 
7516 #ifdef CONFIG_RT_GROUP_SCHED
7517 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7518 			global_rt_period(), global_rt_runtime());
7519 #endif /* CONFIG_RT_GROUP_SCHED */
7520 
7521 #ifdef CONFIG_CGROUP_SCHED
7522 	task_group_cache = KMEM_CACHE(task_group, 0);
7523 
7524 	list_add(&root_task_group.list, &task_groups);
7525 	INIT_LIST_HEAD(&root_task_group.children);
7526 	INIT_LIST_HEAD(&root_task_group.siblings);
7527 	autogroup_init(&init_task);
7528 #endif /* CONFIG_CGROUP_SCHED */
7529 
7530 	for_each_possible_cpu(i) {
7531 		struct rq *rq;
7532 
7533 		rq = cpu_rq(i);
7534 		raw_spin_lock_init(&rq->lock);
7535 		rq->nr_running = 0;
7536 		rq->calc_load_active = 0;
7537 		rq->calc_load_update = jiffies + LOAD_FREQ;
7538 		init_cfs_rq(&rq->cfs);
7539 		init_rt_rq(&rq->rt);
7540 		init_dl_rq(&rq->dl);
7541 #ifdef CONFIG_FAIR_GROUP_SCHED
7542 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7543 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7544 		/*
7545 		 * How much cpu bandwidth does root_task_group get?
7546 		 *
7547 		 * In case of task-groups formed thr' the cgroup filesystem, it
7548 		 * gets 100% of the cpu resources in the system. This overall
7549 		 * system cpu resource is divided among the tasks of
7550 		 * root_task_group and its child task-groups in a fair manner,
7551 		 * based on each entity's (task or task-group's) weight
7552 		 * (se->load.weight).
7553 		 *
7554 		 * In other words, if root_task_group has 10 tasks of weight
7555 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7556 		 * then A0's share of the cpu resource is:
7557 		 *
7558 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7559 		 *
7560 		 * We achieve this by letting root_task_group's tasks sit
7561 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7562 		 */
7563 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7564 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7565 #endif /* CONFIG_FAIR_GROUP_SCHED */
7566 
7567 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7568 #ifdef CONFIG_RT_GROUP_SCHED
7569 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7570 #endif
7571 
7572 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7573 			rq->cpu_load[j] = 0;
7574 
7575 		rq->last_load_update_tick = jiffies;
7576 
7577 #ifdef CONFIG_SMP
7578 		rq->sd = NULL;
7579 		rq->rd = NULL;
7580 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7581 		rq->balance_callback = NULL;
7582 		rq->active_balance = 0;
7583 		rq->next_balance = jiffies;
7584 		rq->push_cpu = 0;
7585 		rq->cpu = i;
7586 		rq->online = 0;
7587 		rq->idle_stamp = 0;
7588 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7589 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7590 
7591 		INIT_LIST_HEAD(&rq->cfs_tasks);
7592 
7593 		rq_attach_root(rq, &def_root_domain);
7594 #ifdef CONFIG_NO_HZ_COMMON
7595 		rq->nohz_flags = 0;
7596 #endif
7597 #ifdef CONFIG_NO_HZ_FULL
7598 		rq->last_sched_tick = 0;
7599 #endif
7600 #endif
7601 		init_rq_hrtick(rq);
7602 		atomic_set(&rq->nr_iowait, 0);
7603 	}
7604 
7605 	set_load_weight(&init_task);
7606 
7607 #ifdef CONFIG_PREEMPT_NOTIFIERS
7608 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7609 #endif
7610 
7611 	/*
7612 	 * The boot idle thread does lazy MMU switching as well:
7613 	 */
7614 	atomic_inc(&init_mm.mm_count);
7615 	enter_lazy_tlb(&init_mm, current);
7616 
7617 	/*
7618 	 * During early bootup we pretend to be a normal task:
7619 	 */
7620 	current->sched_class = &fair_sched_class;
7621 
7622 	/*
7623 	 * Make us the idle thread. Technically, schedule() should not be
7624 	 * called from this thread, however somewhere below it might be,
7625 	 * but because we are the idle thread, we just pick up running again
7626 	 * when this runqueue becomes "idle".
7627 	 */
7628 	init_idle(current, smp_processor_id());
7629 
7630 	calc_load_update = jiffies + LOAD_FREQ;
7631 
7632 #ifdef CONFIG_SMP
7633 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7634 	/* May be allocated at isolcpus cmdline parse time */
7635 	if (cpu_isolated_map == NULL)
7636 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7637 	idle_thread_set_boot_cpu();
7638 	set_cpu_rq_start_time();
7639 #endif
7640 	init_sched_fair_class();
7641 
7642 	scheduler_running = 1;
7643 }
7644 
7645 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7646 static inline int preempt_count_equals(int preempt_offset)
7647 {
7648 	int nested = preempt_count() + rcu_preempt_depth();
7649 
7650 	return (nested == preempt_offset);
7651 }
7652 
7653 void __might_sleep(const char *file, int line, int preempt_offset)
7654 {
7655 	/*
7656 	 * Blocking primitives will set (and therefore destroy) current->state,
7657 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7658 	 * otherwise we will destroy state.
7659 	 */
7660 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7661 			"do not call blocking ops when !TASK_RUNNING; "
7662 			"state=%lx set at [<%p>] %pS\n",
7663 			current->state,
7664 			(void *)current->task_state_change,
7665 			(void *)current->task_state_change);
7666 
7667 	___might_sleep(file, line, preempt_offset);
7668 }
7669 EXPORT_SYMBOL(__might_sleep);
7670 
7671 void ___might_sleep(const char *file, int line, int preempt_offset)
7672 {
7673 	static unsigned long prev_jiffy;	/* ratelimiting */
7674 
7675 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7676 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7677 	     !is_idle_task(current)) ||
7678 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7679 		return;
7680 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7681 		return;
7682 	prev_jiffy = jiffies;
7683 
7684 	printk(KERN_ERR
7685 		"BUG: sleeping function called from invalid context at %s:%d\n",
7686 			file, line);
7687 	printk(KERN_ERR
7688 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7689 			in_atomic(), irqs_disabled(),
7690 			current->pid, current->comm);
7691 
7692 	if (task_stack_end_corrupted(current))
7693 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7694 
7695 	debug_show_held_locks(current);
7696 	if (irqs_disabled())
7697 		print_irqtrace_events(current);
7698 #ifdef CONFIG_DEBUG_PREEMPT
7699 	if (!preempt_count_equals(preempt_offset)) {
7700 		pr_err("Preemption disabled at:");
7701 		print_ip_sym(current->preempt_disable_ip);
7702 		pr_cont("\n");
7703 	}
7704 #endif
7705 	dump_stack();
7706 }
7707 EXPORT_SYMBOL(___might_sleep);
7708 #endif
7709 
7710 #ifdef CONFIG_MAGIC_SYSRQ
7711 void normalize_rt_tasks(void)
7712 {
7713 	struct task_struct *g, *p;
7714 	struct sched_attr attr = {
7715 		.sched_policy = SCHED_NORMAL,
7716 	};
7717 
7718 	read_lock(&tasklist_lock);
7719 	for_each_process_thread(g, p) {
7720 		/*
7721 		 * Only normalize user tasks:
7722 		 */
7723 		if (p->flags & PF_KTHREAD)
7724 			continue;
7725 
7726 		p->se.exec_start		= 0;
7727 #ifdef CONFIG_SCHEDSTATS
7728 		p->se.statistics.wait_start	= 0;
7729 		p->se.statistics.sleep_start	= 0;
7730 		p->se.statistics.block_start	= 0;
7731 #endif
7732 
7733 		if (!dl_task(p) && !rt_task(p)) {
7734 			/*
7735 			 * Renice negative nice level userspace
7736 			 * tasks back to 0:
7737 			 */
7738 			if (task_nice(p) < 0)
7739 				set_user_nice(p, 0);
7740 			continue;
7741 		}
7742 
7743 		__sched_setscheduler(p, &attr, false, false);
7744 	}
7745 	read_unlock(&tasklist_lock);
7746 }
7747 
7748 #endif /* CONFIG_MAGIC_SYSRQ */
7749 
7750 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7751 /*
7752  * These functions are only useful for the IA64 MCA handling, or kdb.
7753  *
7754  * They can only be called when the whole system has been
7755  * stopped - every CPU needs to be quiescent, and no scheduling
7756  * activity can take place. Using them for anything else would
7757  * be a serious bug, and as a result, they aren't even visible
7758  * under any other configuration.
7759  */
7760 
7761 /**
7762  * curr_task - return the current task for a given cpu.
7763  * @cpu: the processor in question.
7764  *
7765  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7766  *
7767  * Return: The current task for @cpu.
7768  */
7769 struct task_struct *curr_task(int cpu)
7770 {
7771 	return cpu_curr(cpu);
7772 }
7773 
7774 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7775 
7776 #ifdef CONFIG_IA64
7777 /**
7778  * set_curr_task - set the current task for a given cpu.
7779  * @cpu: the processor in question.
7780  * @p: the task pointer to set.
7781  *
7782  * Description: This function must only be used when non-maskable interrupts
7783  * are serviced on a separate stack. It allows the architecture to switch the
7784  * notion of the current task on a cpu in a non-blocking manner. This function
7785  * must be called with all CPU's synchronized, and interrupts disabled, the
7786  * and caller must save the original value of the current task (see
7787  * curr_task() above) and restore that value before reenabling interrupts and
7788  * re-starting the system.
7789  *
7790  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7791  */
7792 void set_curr_task(int cpu, struct task_struct *p)
7793 {
7794 	cpu_curr(cpu) = p;
7795 }
7796 
7797 #endif
7798 
7799 #ifdef CONFIG_CGROUP_SCHED
7800 /* task_group_lock serializes the addition/removal of task groups */
7801 static DEFINE_SPINLOCK(task_group_lock);
7802 
7803 static void free_sched_group(struct task_group *tg)
7804 {
7805 	free_fair_sched_group(tg);
7806 	free_rt_sched_group(tg);
7807 	autogroup_free(tg);
7808 	kmem_cache_free(task_group_cache, tg);
7809 }
7810 
7811 /* allocate runqueue etc for a new task group */
7812 struct task_group *sched_create_group(struct task_group *parent)
7813 {
7814 	struct task_group *tg;
7815 
7816 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7817 	if (!tg)
7818 		return ERR_PTR(-ENOMEM);
7819 
7820 	if (!alloc_fair_sched_group(tg, parent))
7821 		goto err;
7822 
7823 	if (!alloc_rt_sched_group(tg, parent))
7824 		goto err;
7825 
7826 	return tg;
7827 
7828 err:
7829 	free_sched_group(tg);
7830 	return ERR_PTR(-ENOMEM);
7831 }
7832 
7833 void sched_online_group(struct task_group *tg, struct task_group *parent)
7834 {
7835 	unsigned long flags;
7836 
7837 	spin_lock_irqsave(&task_group_lock, flags);
7838 	list_add_rcu(&tg->list, &task_groups);
7839 
7840 	WARN_ON(!parent); /* root should already exist */
7841 
7842 	tg->parent = parent;
7843 	INIT_LIST_HEAD(&tg->children);
7844 	list_add_rcu(&tg->siblings, &parent->children);
7845 	spin_unlock_irqrestore(&task_group_lock, flags);
7846 }
7847 
7848 /* rcu callback to free various structures associated with a task group */
7849 static void free_sched_group_rcu(struct rcu_head *rhp)
7850 {
7851 	/* now it should be safe to free those cfs_rqs */
7852 	free_sched_group(container_of(rhp, struct task_group, rcu));
7853 }
7854 
7855 /* Destroy runqueue etc associated with a task group */
7856 void sched_destroy_group(struct task_group *tg)
7857 {
7858 	/* wait for possible concurrent references to cfs_rqs complete */
7859 	call_rcu(&tg->rcu, free_sched_group_rcu);
7860 }
7861 
7862 void sched_offline_group(struct task_group *tg)
7863 {
7864 	unsigned long flags;
7865 	int i;
7866 
7867 	/* end participation in shares distribution */
7868 	for_each_possible_cpu(i)
7869 		unregister_fair_sched_group(tg, i);
7870 
7871 	spin_lock_irqsave(&task_group_lock, flags);
7872 	list_del_rcu(&tg->list);
7873 	list_del_rcu(&tg->siblings);
7874 	spin_unlock_irqrestore(&task_group_lock, flags);
7875 }
7876 
7877 /* change task's runqueue when it moves between groups.
7878  *	The caller of this function should have put the task in its new group
7879  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7880  *	reflect its new group.
7881  */
7882 void sched_move_task(struct task_struct *tsk)
7883 {
7884 	struct task_group *tg;
7885 	int queued, running;
7886 	unsigned long flags;
7887 	struct rq *rq;
7888 
7889 	rq = task_rq_lock(tsk, &flags);
7890 
7891 	running = task_current(rq, tsk);
7892 	queued = task_on_rq_queued(tsk);
7893 
7894 	if (queued)
7895 		dequeue_task(rq, tsk, DEQUEUE_SAVE);
7896 	if (unlikely(running))
7897 		put_prev_task(rq, tsk);
7898 
7899 	/*
7900 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7901 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7902 	 * to prevent lockdep warnings.
7903 	 */
7904 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7905 			  struct task_group, css);
7906 	tg = autogroup_task_group(tsk, tg);
7907 	tsk->sched_task_group = tg;
7908 
7909 #ifdef CONFIG_FAIR_GROUP_SCHED
7910 	if (tsk->sched_class->task_move_group)
7911 		tsk->sched_class->task_move_group(tsk);
7912 	else
7913 #endif
7914 		set_task_rq(tsk, task_cpu(tsk));
7915 
7916 	if (unlikely(running))
7917 		tsk->sched_class->set_curr_task(rq);
7918 	if (queued)
7919 		enqueue_task(rq, tsk, ENQUEUE_RESTORE);
7920 
7921 	task_rq_unlock(rq, tsk, &flags);
7922 }
7923 #endif /* CONFIG_CGROUP_SCHED */
7924 
7925 #ifdef CONFIG_RT_GROUP_SCHED
7926 /*
7927  * Ensure that the real time constraints are schedulable.
7928  */
7929 static DEFINE_MUTEX(rt_constraints_mutex);
7930 
7931 /* Must be called with tasklist_lock held */
7932 static inline int tg_has_rt_tasks(struct task_group *tg)
7933 {
7934 	struct task_struct *g, *p;
7935 
7936 	/*
7937 	 * Autogroups do not have RT tasks; see autogroup_create().
7938 	 */
7939 	if (task_group_is_autogroup(tg))
7940 		return 0;
7941 
7942 	for_each_process_thread(g, p) {
7943 		if (rt_task(p) && task_group(p) == tg)
7944 			return 1;
7945 	}
7946 
7947 	return 0;
7948 }
7949 
7950 struct rt_schedulable_data {
7951 	struct task_group *tg;
7952 	u64 rt_period;
7953 	u64 rt_runtime;
7954 };
7955 
7956 static int tg_rt_schedulable(struct task_group *tg, void *data)
7957 {
7958 	struct rt_schedulable_data *d = data;
7959 	struct task_group *child;
7960 	unsigned long total, sum = 0;
7961 	u64 period, runtime;
7962 
7963 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7964 	runtime = tg->rt_bandwidth.rt_runtime;
7965 
7966 	if (tg == d->tg) {
7967 		period = d->rt_period;
7968 		runtime = d->rt_runtime;
7969 	}
7970 
7971 	/*
7972 	 * Cannot have more runtime than the period.
7973 	 */
7974 	if (runtime > period && runtime != RUNTIME_INF)
7975 		return -EINVAL;
7976 
7977 	/*
7978 	 * Ensure we don't starve existing RT tasks.
7979 	 */
7980 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7981 		return -EBUSY;
7982 
7983 	total = to_ratio(period, runtime);
7984 
7985 	/*
7986 	 * Nobody can have more than the global setting allows.
7987 	 */
7988 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7989 		return -EINVAL;
7990 
7991 	/*
7992 	 * The sum of our children's runtime should not exceed our own.
7993 	 */
7994 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7995 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7996 		runtime = child->rt_bandwidth.rt_runtime;
7997 
7998 		if (child == d->tg) {
7999 			period = d->rt_period;
8000 			runtime = d->rt_runtime;
8001 		}
8002 
8003 		sum += to_ratio(period, runtime);
8004 	}
8005 
8006 	if (sum > total)
8007 		return -EINVAL;
8008 
8009 	return 0;
8010 }
8011 
8012 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8013 {
8014 	int ret;
8015 
8016 	struct rt_schedulable_data data = {
8017 		.tg = tg,
8018 		.rt_period = period,
8019 		.rt_runtime = runtime,
8020 	};
8021 
8022 	rcu_read_lock();
8023 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8024 	rcu_read_unlock();
8025 
8026 	return ret;
8027 }
8028 
8029 static int tg_set_rt_bandwidth(struct task_group *tg,
8030 		u64 rt_period, u64 rt_runtime)
8031 {
8032 	int i, err = 0;
8033 
8034 	/*
8035 	 * Disallowing the root group RT runtime is BAD, it would disallow the
8036 	 * kernel creating (and or operating) RT threads.
8037 	 */
8038 	if (tg == &root_task_group && rt_runtime == 0)
8039 		return -EINVAL;
8040 
8041 	/* No period doesn't make any sense. */
8042 	if (rt_period == 0)
8043 		return -EINVAL;
8044 
8045 	mutex_lock(&rt_constraints_mutex);
8046 	read_lock(&tasklist_lock);
8047 	err = __rt_schedulable(tg, rt_period, rt_runtime);
8048 	if (err)
8049 		goto unlock;
8050 
8051 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8052 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8053 	tg->rt_bandwidth.rt_runtime = rt_runtime;
8054 
8055 	for_each_possible_cpu(i) {
8056 		struct rt_rq *rt_rq = tg->rt_rq[i];
8057 
8058 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8059 		rt_rq->rt_runtime = rt_runtime;
8060 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8061 	}
8062 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8063 unlock:
8064 	read_unlock(&tasklist_lock);
8065 	mutex_unlock(&rt_constraints_mutex);
8066 
8067 	return err;
8068 }
8069 
8070 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8071 {
8072 	u64 rt_runtime, rt_period;
8073 
8074 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8075 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8076 	if (rt_runtime_us < 0)
8077 		rt_runtime = RUNTIME_INF;
8078 
8079 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8080 }
8081 
8082 static long sched_group_rt_runtime(struct task_group *tg)
8083 {
8084 	u64 rt_runtime_us;
8085 
8086 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8087 		return -1;
8088 
8089 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8090 	do_div(rt_runtime_us, NSEC_PER_USEC);
8091 	return rt_runtime_us;
8092 }
8093 
8094 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8095 {
8096 	u64 rt_runtime, rt_period;
8097 
8098 	rt_period = rt_period_us * NSEC_PER_USEC;
8099 	rt_runtime = tg->rt_bandwidth.rt_runtime;
8100 
8101 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8102 }
8103 
8104 static long sched_group_rt_period(struct task_group *tg)
8105 {
8106 	u64 rt_period_us;
8107 
8108 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8109 	do_div(rt_period_us, NSEC_PER_USEC);
8110 	return rt_period_us;
8111 }
8112 #endif /* CONFIG_RT_GROUP_SCHED */
8113 
8114 #ifdef CONFIG_RT_GROUP_SCHED
8115 static int sched_rt_global_constraints(void)
8116 {
8117 	int ret = 0;
8118 
8119 	mutex_lock(&rt_constraints_mutex);
8120 	read_lock(&tasklist_lock);
8121 	ret = __rt_schedulable(NULL, 0, 0);
8122 	read_unlock(&tasklist_lock);
8123 	mutex_unlock(&rt_constraints_mutex);
8124 
8125 	return ret;
8126 }
8127 
8128 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8129 {
8130 	/* Don't accept realtime tasks when there is no way for them to run */
8131 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8132 		return 0;
8133 
8134 	return 1;
8135 }
8136 
8137 #else /* !CONFIG_RT_GROUP_SCHED */
8138 static int sched_rt_global_constraints(void)
8139 {
8140 	unsigned long flags;
8141 	int i, ret = 0;
8142 
8143 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8144 	for_each_possible_cpu(i) {
8145 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8146 
8147 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8148 		rt_rq->rt_runtime = global_rt_runtime();
8149 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8150 	}
8151 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8152 
8153 	return ret;
8154 }
8155 #endif /* CONFIG_RT_GROUP_SCHED */
8156 
8157 static int sched_dl_global_validate(void)
8158 {
8159 	u64 runtime = global_rt_runtime();
8160 	u64 period = global_rt_period();
8161 	u64 new_bw = to_ratio(period, runtime);
8162 	struct dl_bw *dl_b;
8163 	int cpu, ret = 0;
8164 	unsigned long flags;
8165 
8166 	/*
8167 	 * Here we want to check the bandwidth not being set to some
8168 	 * value smaller than the currently allocated bandwidth in
8169 	 * any of the root_domains.
8170 	 *
8171 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8172 	 * cycling on root_domains... Discussion on different/better
8173 	 * solutions is welcome!
8174 	 */
8175 	for_each_possible_cpu(cpu) {
8176 		rcu_read_lock_sched();
8177 		dl_b = dl_bw_of(cpu);
8178 
8179 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8180 		if (new_bw < dl_b->total_bw)
8181 			ret = -EBUSY;
8182 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8183 
8184 		rcu_read_unlock_sched();
8185 
8186 		if (ret)
8187 			break;
8188 	}
8189 
8190 	return ret;
8191 }
8192 
8193 static void sched_dl_do_global(void)
8194 {
8195 	u64 new_bw = -1;
8196 	struct dl_bw *dl_b;
8197 	int cpu;
8198 	unsigned long flags;
8199 
8200 	def_dl_bandwidth.dl_period = global_rt_period();
8201 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8202 
8203 	if (global_rt_runtime() != RUNTIME_INF)
8204 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8205 
8206 	/*
8207 	 * FIXME: As above...
8208 	 */
8209 	for_each_possible_cpu(cpu) {
8210 		rcu_read_lock_sched();
8211 		dl_b = dl_bw_of(cpu);
8212 
8213 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8214 		dl_b->bw = new_bw;
8215 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8216 
8217 		rcu_read_unlock_sched();
8218 	}
8219 }
8220 
8221 static int sched_rt_global_validate(void)
8222 {
8223 	if (sysctl_sched_rt_period <= 0)
8224 		return -EINVAL;
8225 
8226 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8227 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8228 		return -EINVAL;
8229 
8230 	return 0;
8231 }
8232 
8233 static void sched_rt_do_global(void)
8234 {
8235 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8236 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8237 }
8238 
8239 int sched_rt_handler(struct ctl_table *table, int write,
8240 		void __user *buffer, size_t *lenp,
8241 		loff_t *ppos)
8242 {
8243 	int old_period, old_runtime;
8244 	static DEFINE_MUTEX(mutex);
8245 	int ret;
8246 
8247 	mutex_lock(&mutex);
8248 	old_period = sysctl_sched_rt_period;
8249 	old_runtime = sysctl_sched_rt_runtime;
8250 
8251 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8252 
8253 	if (!ret && write) {
8254 		ret = sched_rt_global_validate();
8255 		if (ret)
8256 			goto undo;
8257 
8258 		ret = sched_dl_global_validate();
8259 		if (ret)
8260 			goto undo;
8261 
8262 		ret = sched_rt_global_constraints();
8263 		if (ret)
8264 			goto undo;
8265 
8266 		sched_rt_do_global();
8267 		sched_dl_do_global();
8268 	}
8269 	if (0) {
8270 undo:
8271 		sysctl_sched_rt_period = old_period;
8272 		sysctl_sched_rt_runtime = old_runtime;
8273 	}
8274 	mutex_unlock(&mutex);
8275 
8276 	return ret;
8277 }
8278 
8279 int sched_rr_handler(struct ctl_table *table, int write,
8280 		void __user *buffer, size_t *lenp,
8281 		loff_t *ppos)
8282 {
8283 	int ret;
8284 	static DEFINE_MUTEX(mutex);
8285 
8286 	mutex_lock(&mutex);
8287 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8288 	/* make sure that internally we keep jiffies */
8289 	/* also, writing zero resets timeslice to default */
8290 	if (!ret && write) {
8291 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8292 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8293 	}
8294 	mutex_unlock(&mutex);
8295 	return ret;
8296 }
8297 
8298 #ifdef CONFIG_CGROUP_SCHED
8299 
8300 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8301 {
8302 	return css ? container_of(css, struct task_group, css) : NULL;
8303 }
8304 
8305 static struct cgroup_subsys_state *
8306 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8307 {
8308 	struct task_group *parent = css_tg(parent_css);
8309 	struct task_group *tg;
8310 
8311 	if (!parent) {
8312 		/* This is early initialization for the top cgroup */
8313 		return &root_task_group.css;
8314 	}
8315 
8316 	tg = sched_create_group(parent);
8317 	if (IS_ERR(tg))
8318 		return ERR_PTR(-ENOMEM);
8319 
8320 	return &tg->css;
8321 }
8322 
8323 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8324 {
8325 	struct task_group *tg = css_tg(css);
8326 	struct task_group *parent = css_tg(css->parent);
8327 
8328 	if (parent)
8329 		sched_online_group(tg, parent);
8330 	return 0;
8331 }
8332 
8333 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8334 {
8335 	struct task_group *tg = css_tg(css);
8336 
8337 	sched_destroy_group(tg);
8338 }
8339 
8340 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8341 {
8342 	struct task_group *tg = css_tg(css);
8343 
8344 	sched_offline_group(tg);
8345 }
8346 
8347 static void cpu_cgroup_fork(struct task_struct *task)
8348 {
8349 	sched_move_task(task);
8350 }
8351 
8352 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8353 {
8354 	struct task_struct *task;
8355 	struct cgroup_subsys_state *css;
8356 
8357 	cgroup_taskset_for_each(task, css, tset) {
8358 #ifdef CONFIG_RT_GROUP_SCHED
8359 		if (!sched_rt_can_attach(css_tg(css), task))
8360 			return -EINVAL;
8361 #else
8362 		/* We don't support RT-tasks being in separate groups */
8363 		if (task->sched_class != &fair_sched_class)
8364 			return -EINVAL;
8365 #endif
8366 	}
8367 	return 0;
8368 }
8369 
8370 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8371 {
8372 	struct task_struct *task;
8373 	struct cgroup_subsys_state *css;
8374 
8375 	cgroup_taskset_for_each(task, css, tset)
8376 		sched_move_task(task);
8377 }
8378 
8379 #ifdef CONFIG_FAIR_GROUP_SCHED
8380 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8381 				struct cftype *cftype, u64 shareval)
8382 {
8383 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8384 }
8385 
8386 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8387 			       struct cftype *cft)
8388 {
8389 	struct task_group *tg = css_tg(css);
8390 
8391 	return (u64) scale_load_down(tg->shares);
8392 }
8393 
8394 #ifdef CONFIG_CFS_BANDWIDTH
8395 static DEFINE_MUTEX(cfs_constraints_mutex);
8396 
8397 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8398 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8399 
8400 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8401 
8402 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8403 {
8404 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8405 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8406 
8407 	if (tg == &root_task_group)
8408 		return -EINVAL;
8409 
8410 	/*
8411 	 * Ensure we have at some amount of bandwidth every period.  This is
8412 	 * to prevent reaching a state of large arrears when throttled via
8413 	 * entity_tick() resulting in prolonged exit starvation.
8414 	 */
8415 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8416 		return -EINVAL;
8417 
8418 	/*
8419 	 * Likewise, bound things on the otherside by preventing insane quota
8420 	 * periods.  This also allows us to normalize in computing quota
8421 	 * feasibility.
8422 	 */
8423 	if (period > max_cfs_quota_period)
8424 		return -EINVAL;
8425 
8426 	/*
8427 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8428 	 * unthrottle_offline_cfs_rqs().
8429 	 */
8430 	get_online_cpus();
8431 	mutex_lock(&cfs_constraints_mutex);
8432 	ret = __cfs_schedulable(tg, period, quota);
8433 	if (ret)
8434 		goto out_unlock;
8435 
8436 	runtime_enabled = quota != RUNTIME_INF;
8437 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8438 	/*
8439 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8440 	 * before making related changes, and on->off must occur afterwards
8441 	 */
8442 	if (runtime_enabled && !runtime_was_enabled)
8443 		cfs_bandwidth_usage_inc();
8444 	raw_spin_lock_irq(&cfs_b->lock);
8445 	cfs_b->period = ns_to_ktime(period);
8446 	cfs_b->quota = quota;
8447 
8448 	__refill_cfs_bandwidth_runtime(cfs_b);
8449 	/* restart the period timer (if active) to handle new period expiry */
8450 	if (runtime_enabled)
8451 		start_cfs_bandwidth(cfs_b);
8452 	raw_spin_unlock_irq(&cfs_b->lock);
8453 
8454 	for_each_online_cpu(i) {
8455 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8456 		struct rq *rq = cfs_rq->rq;
8457 
8458 		raw_spin_lock_irq(&rq->lock);
8459 		cfs_rq->runtime_enabled = runtime_enabled;
8460 		cfs_rq->runtime_remaining = 0;
8461 
8462 		if (cfs_rq->throttled)
8463 			unthrottle_cfs_rq(cfs_rq);
8464 		raw_spin_unlock_irq(&rq->lock);
8465 	}
8466 	if (runtime_was_enabled && !runtime_enabled)
8467 		cfs_bandwidth_usage_dec();
8468 out_unlock:
8469 	mutex_unlock(&cfs_constraints_mutex);
8470 	put_online_cpus();
8471 
8472 	return ret;
8473 }
8474 
8475 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8476 {
8477 	u64 quota, period;
8478 
8479 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8480 	if (cfs_quota_us < 0)
8481 		quota = RUNTIME_INF;
8482 	else
8483 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8484 
8485 	return tg_set_cfs_bandwidth(tg, period, quota);
8486 }
8487 
8488 long tg_get_cfs_quota(struct task_group *tg)
8489 {
8490 	u64 quota_us;
8491 
8492 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8493 		return -1;
8494 
8495 	quota_us = tg->cfs_bandwidth.quota;
8496 	do_div(quota_us, NSEC_PER_USEC);
8497 
8498 	return quota_us;
8499 }
8500 
8501 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8502 {
8503 	u64 quota, period;
8504 
8505 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8506 	quota = tg->cfs_bandwidth.quota;
8507 
8508 	return tg_set_cfs_bandwidth(tg, period, quota);
8509 }
8510 
8511 long tg_get_cfs_period(struct task_group *tg)
8512 {
8513 	u64 cfs_period_us;
8514 
8515 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8516 	do_div(cfs_period_us, NSEC_PER_USEC);
8517 
8518 	return cfs_period_us;
8519 }
8520 
8521 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8522 				  struct cftype *cft)
8523 {
8524 	return tg_get_cfs_quota(css_tg(css));
8525 }
8526 
8527 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8528 				   struct cftype *cftype, s64 cfs_quota_us)
8529 {
8530 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8531 }
8532 
8533 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8534 				   struct cftype *cft)
8535 {
8536 	return tg_get_cfs_period(css_tg(css));
8537 }
8538 
8539 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8540 				    struct cftype *cftype, u64 cfs_period_us)
8541 {
8542 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8543 }
8544 
8545 struct cfs_schedulable_data {
8546 	struct task_group *tg;
8547 	u64 period, quota;
8548 };
8549 
8550 /*
8551  * normalize group quota/period to be quota/max_period
8552  * note: units are usecs
8553  */
8554 static u64 normalize_cfs_quota(struct task_group *tg,
8555 			       struct cfs_schedulable_data *d)
8556 {
8557 	u64 quota, period;
8558 
8559 	if (tg == d->tg) {
8560 		period = d->period;
8561 		quota = d->quota;
8562 	} else {
8563 		period = tg_get_cfs_period(tg);
8564 		quota = tg_get_cfs_quota(tg);
8565 	}
8566 
8567 	/* note: these should typically be equivalent */
8568 	if (quota == RUNTIME_INF || quota == -1)
8569 		return RUNTIME_INF;
8570 
8571 	return to_ratio(period, quota);
8572 }
8573 
8574 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8575 {
8576 	struct cfs_schedulable_data *d = data;
8577 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8578 	s64 quota = 0, parent_quota = -1;
8579 
8580 	if (!tg->parent) {
8581 		quota = RUNTIME_INF;
8582 	} else {
8583 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8584 
8585 		quota = normalize_cfs_quota(tg, d);
8586 		parent_quota = parent_b->hierarchical_quota;
8587 
8588 		/*
8589 		 * ensure max(child_quota) <= parent_quota, inherit when no
8590 		 * limit is set
8591 		 */
8592 		if (quota == RUNTIME_INF)
8593 			quota = parent_quota;
8594 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8595 			return -EINVAL;
8596 	}
8597 	cfs_b->hierarchical_quota = quota;
8598 
8599 	return 0;
8600 }
8601 
8602 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8603 {
8604 	int ret;
8605 	struct cfs_schedulable_data data = {
8606 		.tg = tg,
8607 		.period = period,
8608 		.quota = quota,
8609 	};
8610 
8611 	if (quota != RUNTIME_INF) {
8612 		do_div(data.period, NSEC_PER_USEC);
8613 		do_div(data.quota, NSEC_PER_USEC);
8614 	}
8615 
8616 	rcu_read_lock();
8617 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8618 	rcu_read_unlock();
8619 
8620 	return ret;
8621 }
8622 
8623 static int cpu_stats_show(struct seq_file *sf, void *v)
8624 {
8625 	struct task_group *tg = css_tg(seq_css(sf));
8626 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8627 
8628 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8629 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8630 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8631 
8632 	return 0;
8633 }
8634 #endif /* CONFIG_CFS_BANDWIDTH */
8635 #endif /* CONFIG_FAIR_GROUP_SCHED */
8636 
8637 #ifdef CONFIG_RT_GROUP_SCHED
8638 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8639 				struct cftype *cft, s64 val)
8640 {
8641 	return sched_group_set_rt_runtime(css_tg(css), val);
8642 }
8643 
8644 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8645 			       struct cftype *cft)
8646 {
8647 	return sched_group_rt_runtime(css_tg(css));
8648 }
8649 
8650 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8651 				    struct cftype *cftype, u64 rt_period_us)
8652 {
8653 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8654 }
8655 
8656 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8657 				   struct cftype *cft)
8658 {
8659 	return sched_group_rt_period(css_tg(css));
8660 }
8661 #endif /* CONFIG_RT_GROUP_SCHED */
8662 
8663 static struct cftype cpu_files[] = {
8664 #ifdef CONFIG_FAIR_GROUP_SCHED
8665 	{
8666 		.name = "shares",
8667 		.read_u64 = cpu_shares_read_u64,
8668 		.write_u64 = cpu_shares_write_u64,
8669 	},
8670 #endif
8671 #ifdef CONFIG_CFS_BANDWIDTH
8672 	{
8673 		.name = "cfs_quota_us",
8674 		.read_s64 = cpu_cfs_quota_read_s64,
8675 		.write_s64 = cpu_cfs_quota_write_s64,
8676 	},
8677 	{
8678 		.name = "cfs_period_us",
8679 		.read_u64 = cpu_cfs_period_read_u64,
8680 		.write_u64 = cpu_cfs_period_write_u64,
8681 	},
8682 	{
8683 		.name = "stat",
8684 		.seq_show = cpu_stats_show,
8685 	},
8686 #endif
8687 #ifdef CONFIG_RT_GROUP_SCHED
8688 	{
8689 		.name = "rt_runtime_us",
8690 		.read_s64 = cpu_rt_runtime_read,
8691 		.write_s64 = cpu_rt_runtime_write,
8692 	},
8693 	{
8694 		.name = "rt_period_us",
8695 		.read_u64 = cpu_rt_period_read_uint,
8696 		.write_u64 = cpu_rt_period_write_uint,
8697 	},
8698 #endif
8699 	{ }	/* terminate */
8700 };
8701 
8702 struct cgroup_subsys cpu_cgrp_subsys = {
8703 	.css_alloc	= cpu_cgroup_css_alloc,
8704 	.css_free	= cpu_cgroup_css_free,
8705 	.css_online	= cpu_cgroup_css_online,
8706 	.css_offline	= cpu_cgroup_css_offline,
8707 	.fork		= cpu_cgroup_fork,
8708 	.can_attach	= cpu_cgroup_can_attach,
8709 	.attach		= cpu_cgroup_attach,
8710 	.legacy_cftypes	= cpu_files,
8711 	.early_init	= 1,
8712 };
8713 
8714 #endif	/* CONFIG_CGROUP_SCHED */
8715 
8716 void dump_cpu_task(int cpu)
8717 {
8718 	pr_info("Task dump for CPU %d:\n", cpu);
8719 	sched_show_task(cpu_curr(cpu));
8720 }
8721 
8722 /*
8723  * Nice levels are multiplicative, with a gentle 10% change for every
8724  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8725  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8726  * that remained on nice 0.
8727  *
8728  * The "10% effect" is relative and cumulative: from _any_ nice level,
8729  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8730  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8731  * If a task goes up by ~10% and another task goes down by ~10% then
8732  * the relative distance between them is ~25%.)
8733  */
8734 const int sched_prio_to_weight[40] = {
8735  /* -20 */     88761,     71755,     56483,     46273,     36291,
8736  /* -15 */     29154,     23254,     18705,     14949,     11916,
8737  /* -10 */      9548,      7620,      6100,      4904,      3906,
8738  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8739  /*   0 */      1024,       820,       655,       526,       423,
8740  /*   5 */       335,       272,       215,       172,       137,
8741  /*  10 */       110,        87,        70,        56,        45,
8742  /*  15 */        36,        29,        23,        18,        15,
8743 };
8744 
8745 /*
8746  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8747  *
8748  * In cases where the weight does not change often, we can use the
8749  * precalculated inverse to speed up arithmetics by turning divisions
8750  * into multiplications:
8751  */
8752 const u32 sched_prio_to_wmult[40] = {
8753  /* -20 */     48388,     59856,     76040,     92818,    118348,
8754  /* -15 */    147320,    184698,    229616,    287308,    360437,
8755  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8756  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8757  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8758  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8759  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8760  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8761 };
8762