1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include "sched.h" 10 11 #include <linux/nospec.h> 12 13 #include <linux/kcov.h> 14 15 #include <asm/switch_to.h> 16 #include <asm/tlb.h> 17 18 #include "../workqueue_internal.h" 19 #include "../../fs/io-wq.h" 20 #include "../smpboot.h" 21 22 #include "pelt.h" 23 24 #define CREATE_TRACE_POINTS 25 #include <trace/events/sched.h> 26 27 /* 28 * Export tracepoints that act as a bare tracehook (ie: have no trace event 29 * associated with them) to allow external modules to probe them. 30 */ 31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 37 38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 39 40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 41 /* 42 * Debugging: various feature bits 43 * 44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 45 * sysctl_sched_features, defined in sched.h, to allow constants propagation 46 * at compile time and compiler optimization based on features default. 47 */ 48 #define SCHED_FEAT(name, enabled) \ 49 (1UL << __SCHED_FEAT_##name) * enabled | 50 const_debug unsigned int sysctl_sched_features = 51 #include "features.h" 52 0; 53 #undef SCHED_FEAT 54 #endif 55 56 /* 57 * Number of tasks to iterate in a single balance run. 58 * Limited because this is done with IRQs disabled. 59 */ 60 const_debug unsigned int sysctl_sched_nr_migrate = 32; 61 62 /* 63 * period over which we measure -rt task CPU usage in us. 64 * default: 1s 65 */ 66 unsigned int sysctl_sched_rt_period = 1000000; 67 68 __read_mostly int scheduler_running; 69 70 /* 71 * part of the period that we allow rt tasks to run in us. 72 * default: 0.95s 73 */ 74 int sysctl_sched_rt_runtime = 950000; 75 76 /* 77 * __task_rq_lock - lock the rq @p resides on. 78 */ 79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 80 __acquires(rq->lock) 81 { 82 struct rq *rq; 83 84 lockdep_assert_held(&p->pi_lock); 85 86 for (;;) { 87 rq = task_rq(p); 88 raw_spin_lock(&rq->lock); 89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 90 rq_pin_lock(rq, rf); 91 return rq; 92 } 93 raw_spin_unlock(&rq->lock); 94 95 while (unlikely(task_on_rq_migrating(p))) 96 cpu_relax(); 97 } 98 } 99 100 /* 101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 102 */ 103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 104 __acquires(p->pi_lock) 105 __acquires(rq->lock) 106 { 107 struct rq *rq; 108 109 for (;;) { 110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 111 rq = task_rq(p); 112 raw_spin_lock(&rq->lock); 113 /* 114 * move_queued_task() task_rq_lock() 115 * 116 * ACQUIRE (rq->lock) 117 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 119 * [S] ->cpu = new_cpu [L] task_rq() 120 * [L] ->on_rq 121 * RELEASE (rq->lock) 122 * 123 * If we observe the old CPU in task_rq_lock(), the acquire of 124 * the old rq->lock will fully serialize against the stores. 125 * 126 * If we observe the new CPU in task_rq_lock(), the address 127 * dependency headed by '[L] rq = task_rq()' and the acquire 128 * will pair with the WMB to ensure we then also see migrating. 129 */ 130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 131 rq_pin_lock(rq, rf); 132 return rq; 133 } 134 raw_spin_unlock(&rq->lock); 135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 136 137 while (unlikely(task_on_rq_migrating(p))) 138 cpu_relax(); 139 } 140 } 141 142 /* 143 * RQ-clock updating methods: 144 */ 145 146 static void update_rq_clock_task(struct rq *rq, s64 delta) 147 { 148 /* 149 * In theory, the compile should just see 0 here, and optimize out the call 150 * to sched_rt_avg_update. But I don't trust it... 151 */ 152 s64 __maybe_unused steal = 0, irq_delta = 0; 153 154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 156 157 /* 158 * Since irq_time is only updated on {soft,}irq_exit, we might run into 159 * this case when a previous update_rq_clock() happened inside a 160 * {soft,}irq region. 161 * 162 * When this happens, we stop ->clock_task and only update the 163 * prev_irq_time stamp to account for the part that fit, so that a next 164 * update will consume the rest. This ensures ->clock_task is 165 * monotonic. 166 * 167 * It does however cause some slight miss-attribution of {soft,}irq 168 * time, a more accurate solution would be to update the irq_time using 169 * the current rq->clock timestamp, except that would require using 170 * atomic ops. 171 */ 172 if (irq_delta > delta) 173 irq_delta = delta; 174 175 rq->prev_irq_time += irq_delta; 176 delta -= irq_delta; 177 #endif 178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 179 if (static_key_false((¶virt_steal_rq_enabled))) { 180 steal = paravirt_steal_clock(cpu_of(rq)); 181 steal -= rq->prev_steal_time_rq; 182 183 if (unlikely(steal > delta)) 184 steal = delta; 185 186 rq->prev_steal_time_rq += steal; 187 delta -= steal; 188 } 189 #endif 190 191 rq->clock_task += delta; 192 193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 195 update_irq_load_avg(rq, irq_delta + steal); 196 #endif 197 update_rq_clock_pelt(rq, delta); 198 } 199 200 void update_rq_clock(struct rq *rq) 201 { 202 s64 delta; 203 204 lockdep_assert_held(&rq->lock); 205 206 if (rq->clock_update_flags & RQCF_ACT_SKIP) 207 return; 208 209 #ifdef CONFIG_SCHED_DEBUG 210 if (sched_feat(WARN_DOUBLE_CLOCK)) 211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 212 rq->clock_update_flags |= RQCF_UPDATED; 213 #endif 214 215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 216 if (delta < 0) 217 return; 218 rq->clock += delta; 219 update_rq_clock_task(rq, delta); 220 } 221 222 223 #ifdef CONFIG_SCHED_HRTICK 224 /* 225 * Use HR-timers to deliver accurate preemption points. 226 */ 227 228 static void hrtick_clear(struct rq *rq) 229 { 230 if (hrtimer_active(&rq->hrtick_timer)) 231 hrtimer_cancel(&rq->hrtick_timer); 232 } 233 234 /* 235 * High-resolution timer tick. 236 * Runs from hardirq context with interrupts disabled. 237 */ 238 static enum hrtimer_restart hrtick(struct hrtimer *timer) 239 { 240 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 241 struct rq_flags rf; 242 243 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 244 245 rq_lock(rq, &rf); 246 update_rq_clock(rq); 247 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 248 rq_unlock(rq, &rf); 249 250 return HRTIMER_NORESTART; 251 } 252 253 #ifdef CONFIG_SMP 254 255 static void __hrtick_restart(struct rq *rq) 256 { 257 struct hrtimer *timer = &rq->hrtick_timer; 258 259 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 260 } 261 262 /* 263 * called from hardirq (IPI) context 264 */ 265 static void __hrtick_start(void *arg) 266 { 267 struct rq *rq = arg; 268 struct rq_flags rf; 269 270 rq_lock(rq, &rf); 271 __hrtick_restart(rq); 272 rq_unlock(rq, &rf); 273 } 274 275 /* 276 * Called to set the hrtick timer state. 277 * 278 * called with rq->lock held and irqs disabled 279 */ 280 void hrtick_start(struct rq *rq, u64 delay) 281 { 282 struct hrtimer *timer = &rq->hrtick_timer; 283 ktime_t time; 284 s64 delta; 285 286 /* 287 * Don't schedule slices shorter than 10000ns, that just 288 * doesn't make sense and can cause timer DoS. 289 */ 290 delta = max_t(s64, delay, 10000LL); 291 time = ktime_add_ns(timer->base->get_time(), delta); 292 293 hrtimer_set_expires(timer, time); 294 295 if (rq == this_rq()) 296 __hrtick_restart(rq); 297 else 298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 299 } 300 301 #else 302 /* 303 * Called to set the hrtick timer state. 304 * 305 * called with rq->lock held and irqs disabled 306 */ 307 void hrtick_start(struct rq *rq, u64 delay) 308 { 309 /* 310 * Don't schedule slices shorter than 10000ns, that just 311 * doesn't make sense. Rely on vruntime for fairness. 312 */ 313 delay = max_t(u64, delay, 10000LL); 314 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 315 HRTIMER_MODE_REL_PINNED_HARD); 316 } 317 #endif /* CONFIG_SMP */ 318 319 static void hrtick_rq_init(struct rq *rq) 320 { 321 #ifdef CONFIG_SMP 322 rq->hrtick_csd.flags = 0; 323 rq->hrtick_csd.func = __hrtick_start; 324 rq->hrtick_csd.info = rq; 325 #endif 326 327 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 328 rq->hrtick_timer.function = hrtick; 329 } 330 #else /* CONFIG_SCHED_HRTICK */ 331 static inline void hrtick_clear(struct rq *rq) 332 { 333 } 334 335 static inline void hrtick_rq_init(struct rq *rq) 336 { 337 } 338 #endif /* CONFIG_SCHED_HRTICK */ 339 340 /* 341 * cmpxchg based fetch_or, macro so it works for different integer types 342 */ 343 #define fetch_or(ptr, mask) \ 344 ({ \ 345 typeof(ptr) _ptr = (ptr); \ 346 typeof(mask) _mask = (mask); \ 347 typeof(*_ptr) _old, _val = *_ptr; \ 348 \ 349 for (;;) { \ 350 _old = cmpxchg(_ptr, _val, _val | _mask); \ 351 if (_old == _val) \ 352 break; \ 353 _val = _old; \ 354 } \ 355 _old; \ 356 }) 357 358 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 359 /* 360 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 361 * this avoids any races wrt polling state changes and thereby avoids 362 * spurious IPIs. 363 */ 364 static bool set_nr_and_not_polling(struct task_struct *p) 365 { 366 struct thread_info *ti = task_thread_info(p); 367 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 368 } 369 370 /* 371 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 372 * 373 * If this returns true, then the idle task promises to call 374 * sched_ttwu_pending() and reschedule soon. 375 */ 376 static bool set_nr_if_polling(struct task_struct *p) 377 { 378 struct thread_info *ti = task_thread_info(p); 379 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 380 381 for (;;) { 382 if (!(val & _TIF_POLLING_NRFLAG)) 383 return false; 384 if (val & _TIF_NEED_RESCHED) 385 return true; 386 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 387 if (old == val) 388 break; 389 val = old; 390 } 391 return true; 392 } 393 394 #else 395 static bool set_nr_and_not_polling(struct task_struct *p) 396 { 397 set_tsk_need_resched(p); 398 return true; 399 } 400 401 #ifdef CONFIG_SMP 402 static bool set_nr_if_polling(struct task_struct *p) 403 { 404 return false; 405 } 406 #endif 407 #endif 408 409 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 410 { 411 struct wake_q_node *node = &task->wake_q; 412 413 /* 414 * Atomically grab the task, if ->wake_q is !nil already it means 415 * its already queued (either by us or someone else) and will get the 416 * wakeup due to that. 417 * 418 * In order to ensure that a pending wakeup will observe our pending 419 * state, even in the failed case, an explicit smp_mb() must be used. 420 */ 421 smp_mb__before_atomic(); 422 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 423 return false; 424 425 /* 426 * The head is context local, there can be no concurrency. 427 */ 428 *head->lastp = node; 429 head->lastp = &node->next; 430 return true; 431 } 432 433 /** 434 * wake_q_add() - queue a wakeup for 'later' waking. 435 * @head: the wake_q_head to add @task to 436 * @task: the task to queue for 'later' wakeup 437 * 438 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 439 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 440 * instantly. 441 * 442 * This function must be used as-if it were wake_up_process(); IOW the task 443 * must be ready to be woken at this location. 444 */ 445 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 446 { 447 if (__wake_q_add(head, task)) 448 get_task_struct(task); 449 } 450 451 /** 452 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 453 * @head: the wake_q_head to add @task to 454 * @task: the task to queue for 'later' wakeup 455 * 456 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 457 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 458 * instantly. 459 * 460 * This function must be used as-if it were wake_up_process(); IOW the task 461 * must be ready to be woken at this location. 462 * 463 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 464 * that already hold reference to @task can call the 'safe' version and trust 465 * wake_q to do the right thing depending whether or not the @task is already 466 * queued for wakeup. 467 */ 468 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 469 { 470 if (!__wake_q_add(head, task)) 471 put_task_struct(task); 472 } 473 474 void wake_up_q(struct wake_q_head *head) 475 { 476 struct wake_q_node *node = head->first; 477 478 while (node != WAKE_Q_TAIL) { 479 struct task_struct *task; 480 481 task = container_of(node, struct task_struct, wake_q); 482 BUG_ON(!task); 483 /* Task can safely be re-inserted now: */ 484 node = node->next; 485 task->wake_q.next = NULL; 486 487 /* 488 * wake_up_process() executes a full barrier, which pairs with 489 * the queueing in wake_q_add() so as not to miss wakeups. 490 */ 491 wake_up_process(task); 492 put_task_struct(task); 493 } 494 } 495 496 /* 497 * resched_curr - mark rq's current task 'to be rescheduled now'. 498 * 499 * On UP this means the setting of the need_resched flag, on SMP it 500 * might also involve a cross-CPU call to trigger the scheduler on 501 * the target CPU. 502 */ 503 void resched_curr(struct rq *rq) 504 { 505 struct task_struct *curr = rq->curr; 506 int cpu; 507 508 lockdep_assert_held(&rq->lock); 509 510 if (test_tsk_need_resched(curr)) 511 return; 512 513 cpu = cpu_of(rq); 514 515 if (cpu == smp_processor_id()) { 516 set_tsk_need_resched(curr); 517 set_preempt_need_resched(); 518 return; 519 } 520 521 if (set_nr_and_not_polling(curr)) 522 smp_send_reschedule(cpu); 523 else 524 trace_sched_wake_idle_without_ipi(cpu); 525 } 526 527 void resched_cpu(int cpu) 528 { 529 struct rq *rq = cpu_rq(cpu); 530 unsigned long flags; 531 532 raw_spin_lock_irqsave(&rq->lock, flags); 533 if (cpu_online(cpu) || cpu == smp_processor_id()) 534 resched_curr(rq); 535 raw_spin_unlock_irqrestore(&rq->lock, flags); 536 } 537 538 #ifdef CONFIG_SMP 539 #ifdef CONFIG_NO_HZ_COMMON 540 /* 541 * In the semi idle case, use the nearest busy CPU for migrating timers 542 * from an idle CPU. This is good for power-savings. 543 * 544 * We don't do similar optimization for completely idle system, as 545 * selecting an idle CPU will add more delays to the timers than intended 546 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 547 */ 548 int get_nohz_timer_target(void) 549 { 550 int i, cpu = smp_processor_id(), default_cpu = -1; 551 struct sched_domain *sd; 552 553 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 554 if (!idle_cpu(cpu)) 555 return cpu; 556 default_cpu = cpu; 557 } 558 559 rcu_read_lock(); 560 for_each_domain(cpu, sd) { 561 for_each_cpu_and(i, sched_domain_span(sd), 562 housekeeping_cpumask(HK_FLAG_TIMER)) { 563 if (cpu == i) 564 continue; 565 566 if (!idle_cpu(i)) { 567 cpu = i; 568 goto unlock; 569 } 570 } 571 } 572 573 if (default_cpu == -1) 574 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 575 cpu = default_cpu; 576 unlock: 577 rcu_read_unlock(); 578 return cpu; 579 } 580 581 /* 582 * When add_timer_on() enqueues a timer into the timer wheel of an 583 * idle CPU then this timer might expire before the next timer event 584 * which is scheduled to wake up that CPU. In case of a completely 585 * idle system the next event might even be infinite time into the 586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 587 * leaves the inner idle loop so the newly added timer is taken into 588 * account when the CPU goes back to idle and evaluates the timer 589 * wheel for the next timer event. 590 */ 591 static void wake_up_idle_cpu(int cpu) 592 { 593 struct rq *rq = cpu_rq(cpu); 594 595 if (cpu == smp_processor_id()) 596 return; 597 598 if (set_nr_and_not_polling(rq->idle)) 599 smp_send_reschedule(cpu); 600 else 601 trace_sched_wake_idle_without_ipi(cpu); 602 } 603 604 static bool wake_up_full_nohz_cpu(int cpu) 605 { 606 /* 607 * We just need the target to call irq_exit() and re-evaluate 608 * the next tick. The nohz full kick at least implies that. 609 * If needed we can still optimize that later with an 610 * empty IRQ. 611 */ 612 if (cpu_is_offline(cpu)) 613 return true; /* Don't try to wake offline CPUs. */ 614 if (tick_nohz_full_cpu(cpu)) { 615 if (cpu != smp_processor_id() || 616 tick_nohz_tick_stopped()) 617 tick_nohz_full_kick_cpu(cpu); 618 return true; 619 } 620 621 return false; 622 } 623 624 /* 625 * Wake up the specified CPU. If the CPU is going offline, it is the 626 * caller's responsibility to deal with the lost wakeup, for example, 627 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 628 */ 629 void wake_up_nohz_cpu(int cpu) 630 { 631 if (!wake_up_full_nohz_cpu(cpu)) 632 wake_up_idle_cpu(cpu); 633 } 634 635 static inline bool got_nohz_idle_kick(void) 636 { 637 int cpu = smp_processor_id(); 638 639 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 640 return false; 641 642 if (idle_cpu(cpu) && !need_resched()) 643 return true; 644 645 /* 646 * We can't run Idle Load Balance on this CPU for this time so we 647 * cancel it and clear NOHZ_BALANCE_KICK 648 */ 649 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 650 return false; 651 } 652 653 #else /* CONFIG_NO_HZ_COMMON */ 654 655 static inline bool got_nohz_idle_kick(void) 656 { 657 return false; 658 } 659 660 #endif /* CONFIG_NO_HZ_COMMON */ 661 662 #ifdef CONFIG_NO_HZ_FULL 663 bool sched_can_stop_tick(struct rq *rq) 664 { 665 int fifo_nr_running; 666 667 /* Deadline tasks, even if single, need the tick */ 668 if (rq->dl.dl_nr_running) 669 return false; 670 671 /* 672 * If there are more than one RR tasks, we need the tick to effect the 673 * actual RR behaviour. 674 */ 675 if (rq->rt.rr_nr_running) { 676 if (rq->rt.rr_nr_running == 1) 677 return true; 678 else 679 return false; 680 } 681 682 /* 683 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 684 * forced preemption between FIFO tasks. 685 */ 686 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 687 if (fifo_nr_running) 688 return true; 689 690 /* 691 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 692 * if there's more than one we need the tick for involuntary 693 * preemption. 694 */ 695 if (rq->nr_running > 1) 696 return false; 697 698 return true; 699 } 700 #endif /* CONFIG_NO_HZ_FULL */ 701 #endif /* CONFIG_SMP */ 702 703 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 704 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 705 /* 706 * Iterate task_group tree rooted at *from, calling @down when first entering a 707 * node and @up when leaving it for the final time. 708 * 709 * Caller must hold rcu_lock or sufficient equivalent. 710 */ 711 int walk_tg_tree_from(struct task_group *from, 712 tg_visitor down, tg_visitor up, void *data) 713 { 714 struct task_group *parent, *child; 715 int ret; 716 717 parent = from; 718 719 down: 720 ret = (*down)(parent, data); 721 if (ret) 722 goto out; 723 list_for_each_entry_rcu(child, &parent->children, siblings) { 724 parent = child; 725 goto down; 726 727 up: 728 continue; 729 } 730 ret = (*up)(parent, data); 731 if (ret || parent == from) 732 goto out; 733 734 child = parent; 735 parent = parent->parent; 736 if (parent) 737 goto up; 738 out: 739 return ret; 740 } 741 742 int tg_nop(struct task_group *tg, void *data) 743 { 744 return 0; 745 } 746 #endif 747 748 static void set_load_weight(struct task_struct *p, bool update_load) 749 { 750 int prio = p->static_prio - MAX_RT_PRIO; 751 struct load_weight *load = &p->se.load; 752 753 /* 754 * SCHED_IDLE tasks get minimal weight: 755 */ 756 if (task_has_idle_policy(p)) { 757 load->weight = scale_load(WEIGHT_IDLEPRIO); 758 load->inv_weight = WMULT_IDLEPRIO; 759 return; 760 } 761 762 /* 763 * SCHED_OTHER tasks have to update their load when changing their 764 * weight 765 */ 766 if (update_load && p->sched_class == &fair_sched_class) { 767 reweight_task(p, prio); 768 } else { 769 load->weight = scale_load(sched_prio_to_weight[prio]); 770 load->inv_weight = sched_prio_to_wmult[prio]; 771 } 772 } 773 774 #ifdef CONFIG_UCLAMP_TASK 775 /* 776 * Serializes updates of utilization clamp values 777 * 778 * The (slow-path) user-space triggers utilization clamp value updates which 779 * can require updates on (fast-path) scheduler's data structures used to 780 * support enqueue/dequeue operations. 781 * While the per-CPU rq lock protects fast-path update operations, user-space 782 * requests are serialized using a mutex to reduce the risk of conflicting 783 * updates or API abuses. 784 */ 785 static DEFINE_MUTEX(uclamp_mutex); 786 787 /* Max allowed minimum utilization */ 788 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 789 790 /* Max allowed maximum utilization */ 791 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 792 793 /* All clamps are required to be less or equal than these values */ 794 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 795 796 /* Integer rounded range for each bucket */ 797 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 798 799 #define for_each_clamp_id(clamp_id) \ 800 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 801 802 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 803 { 804 return clamp_value / UCLAMP_BUCKET_DELTA; 805 } 806 807 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value) 808 { 809 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value); 810 } 811 812 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 813 { 814 if (clamp_id == UCLAMP_MIN) 815 return 0; 816 return SCHED_CAPACITY_SCALE; 817 } 818 819 static inline void uclamp_se_set(struct uclamp_se *uc_se, 820 unsigned int value, bool user_defined) 821 { 822 uc_se->value = value; 823 uc_se->bucket_id = uclamp_bucket_id(value); 824 uc_se->user_defined = user_defined; 825 } 826 827 static inline unsigned int 828 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 829 unsigned int clamp_value) 830 { 831 /* 832 * Avoid blocked utilization pushing up the frequency when we go 833 * idle (which drops the max-clamp) by retaining the last known 834 * max-clamp. 835 */ 836 if (clamp_id == UCLAMP_MAX) { 837 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 838 return clamp_value; 839 } 840 841 return uclamp_none(UCLAMP_MIN); 842 } 843 844 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 845 unsigned int clamp_value) 846 { 847 /* Reset max-clamp retention only on idle exit */ 848 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 849 return; 850 851 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 852 } 853 854 static inline 855 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 856 unsigned int clamp_value) 857 { 858 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 859 int bucket_id = UCLAMP_BUCKETS - 1; 860 861 /* 862 * Since both min and max clamps are max aggregated, find the 863 * top most bucket with tasks in. 864 */ 865 for ( ; bucket_id >= 0; bucket_id--) { 866 if (!bucket[bucket_id].tasks) 867 continue; 868 return bucket[bucket_id].value; 869 } 870 871 /* No tasks -- default clamp values */ 872 return uclamp_idle_value(rq, clamp_id, clamp_value); 873 } 874 875 static inline struct uclamp_se 876 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 877 { 878 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 879 #ifdef CONFIG_UCLAMP_TASK_GROUP 880 struct uclamp_se uc_max; 881 882 /* 883 * Tasks in autogroups or root task group will be 884 * restricted by system defaults. 885 */ 886 if (task_group_is_autogroup(task_group(p))) 887 return uc_req; 888 if (task_group(p) == &root_task_group) 889 return uc_req; 890 891 uc_max = task_group(p)->uclamp[clamp_id]; 892 if (uc_req.value > uc_max.value || !uc_req.user_defined) 893 return uc_max; 894 #endif 895 896 return uc_req; 897 } 898 899 /* 900 * The effective clamp bucket index of a task depends on, by increasing 901 * priority: 902 * - the task specific clamp value, when explicitly requested from userspace 903 * - the task group effective clamp value, for tasks not either in the root 904 * group or in an autogroup 905 * - the system default clamp value, defined by the sysadmin 906 */ 907 static inline struct uclamp_se 908 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 909 { 910 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 911 struct uclamp_se uc_max = uclamp_default[clamp_id]; 912 913 /* System default restrictions always apply */ 914 if (unlikely(uc_req.value > uc_max.value)) 915 return uc_max; 916 917 return uc_req; 918 } 919 920 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 921 { 922 struct uclamp_se uc_eff; 923 924 /* Task currently refcounted: use back-annotated (effective) value */ 925 if (p->uclamp[clamp_id].active) 926 return (unsigned long)p->uclamp[clamp_id].value; 927 928 uc_eff = uclamp_eff_get(p, clamp_id); 929 930 return (unsigned long)uc_eff.value; 931 } 932 933 /* 934 * When a task is enqueued on a rq, the clamp bucket currently defined by the 935 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 936 * updates the rq's clamp value if required. 937 * 938 * Tasks can have a task-specific value requested from user-space, track 939 * within each bucket the maximum value for tasks refcounted in it. 940 * This "local max aggregation" allows to track the exact "requested" value 941 * for each bucket when all its RUNNABLE tasks require the same clamp. 942 */ 943 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 944 enum uclamp_id clamp_id) 945 { 946 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 947 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 948 struct uclamp_bucket *bucket; 949 950 lockdep_assert_held(&rq->lock); 951 952 /* Update task effective clamp */ 953 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 954 955 bucket = &uc_rq->bucket[uc_se->bucket_id]; 956 bucket->tasks++; 957 uc_se->active = true; 958 959 uclamp_idle_reset(rq, clamp_id, uc_se->value); 960 961 /* 962 * Local max aggregation: rq buckets always track the max 963 * "requested" clamp value of its RUNNABLE tasks. 964 */ 965 if (bucket->tasks == 1 || uc_se->value > bucket->value) 966 bucket->value = uc_se->value; 967 968 if (uc_se->value > READ_ONCE(uc_rq->value)) 969 WRITE_ONCE(uc_rq->value, uc_se->value); 970 } 971 972 /* 973 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 974 * is released. If this is the last task reference counting the rq's max 975 * active clamp value, then the rq's clamp value is updated. 976 * 977 * Both refcounted tasks and rq's cached clamp values are expected to be 978 * always valid. If it's detected they are not, as defensive programming, 979 * enforce the expected state and warn. 980 */ 981 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 982 enum uclamp_id clamp_id) 983 { 984 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 985 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 986 struct uclamp_bucket *bucket; 987 unsigned int bkt_clamp; 988 unsigned int rq_clamp; 989 990 lockdep_assert_held(&rq->lock); 991 992 bucket = &uc_rq->bucket[uc_se->bucket_id]; 993 SCHED_WARN_ON(!bucket->tasks); 994 if (likely(bucket->tasks)) 995 bucket->tasks--; 996 uc_se->active = false; 997 998 /* 999 * Keep "local max aggregation" simple and accept to (possibly) 1000 * overboost some RUNNABLE tasks in the same bucket. 1001 * The rq clamp bucket value is reset to its base value whenever 1002 * there are no more RUNNABLE tasks refcounting it. 1003 */ 1004 if (likely(bucket->tasks)) 1005 return; 1006 1007 rq_clamp = READ_ONCE(uc_rq->value); 1008 /* 1009 * Defensive programming: this should never happen. If it happens, 1010 * e.g. due to future modification, warn and fixup the expected value. 1011 */ 1012 SCHED_WARN_ON(bucket->value > rq_clamp); 1013 if (bucket->value >= rq_clamp) { 1014 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1015 WRITE_ONCE(uc_rq->value, bkt_clamp); 1016 } 1017 } 1018 1019 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1020 { 1021 enum uclamp_id clamp_id; 1022 1023 if (unlikely(!p->sched_class->uclamp_enabled)) 1024 return; 1025 1026 for_each_clamp_id(clamp_id) 1027 uclamp_rq_inc_id(rq, p, clamp_id); 1028 1029 /* Reset clamp idle holding when there is one RUNNABLE task */ 1030 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1031 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1032 } 1033 1034 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1035 { 1036 enum uclamp_id clamp_id; 1037 1038 if (unlikely(!p->sched_class->uclamp_enabled)) 1039 return; 1040 1041 for_each_clamp_id(clamp_id) 1042 uclamp_rq_dec_id(rq, p, clamp_id); 1043 } 1044 1045 static inline void 1046 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1047 { 1048 struct rq_flags rf; 1049 struct rq *rq; 1050 1051 /* 1052 * Lock the task and the rq where the task is (or was) queued. 1053 * 1054 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1055 * price to pay to safely serialize util_{min,max} updates with 1056 * enqueues, dequeues and migration operations. 1057 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1058 */ 1059 rq = task_rq_lock(p, &rf); 1060 1061 /* 1062 * Setting the clamp bucket is serialized by task_rq_lock(). 1063 * If the task is not yet RUNNABLE and its task_struct is not 1064 * affecting a valid clamp bucket, the next time it's enqueued, 1065 * it will already see the updated clamp bucket value. 1066 */ 1067 if (p->uclamp[clamp_id].active) { 1068 uclamp_rq_dec_id(rq, p, clamp_id); 1069 uclamp_rq_inc_id(rq, p, clamp_id); 1070 } 1071 1072 task_rq_unlock(rq, p, &rf); 1073 } 1074 1075 #ifdef CONFIG_UCLAMP_TASK_GROUP 1076 static inline void 1077 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1078 unsigned int clamps) 1079 { 1080 enum uclamp_id clamp_id; 1081 struct css_task_iter it; 1082 struct task_struct *p; 1083 1084 css_task_iter_start(css, 0, &it); 1085 while ((p = css_task_iter_next(&it))) { 1086 for_each_clamp_id(clamp_id) { 1087 if ((0x1 << clamp_id) & clamps) 1088 uclamp_update_active(p, clamp_id); 1089 } 1090 } 1091 css_task_iter_end(&it); 1092 } 1093 1094 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1095 static void uclamp_update_root_tg(void) 1096 { 1097 struct task_group *tg = &root_task_group; 1098 1099 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1100 sysctl_sched_uclamp_util_min, false); 1101 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1102 sysctl_sched_uclamp_util_max, false); 1103 1104 rcu_read_lock(); 1105 cpu_util_update_eff(&root_task_group.css); 1106 rcu_read_unlock(); 1107 } 1108 #else 1109 static void uclamp_update_root_tg(void) { } 1110 #endif 1111 1112 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1113 void __user *buffer, size_t *lenp, 1114 loff_t *ppos) 1115 { 1116 bool update_root_tg = false; 1117 int old_min, old_max; 1118 int result; 1119 1120 mutex_lock(&uclamp_mutex); 1121 old_min = sysctl_sched_uclamp_util_min; 1122 old_max = sysctl_sched_uclamp_util_max; 1123 1124 result = proc_dointvec(table, write, buffer, lenp, ppos); 1125 if (result) 1126 goto undo; 1127 if (!write) 1128 goto done; 1129 1130 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1131 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) { 1132 result = -EINVAL; 1133 goto undo; 1134 } 1135 1136 if (old_min != sysctl_sched_uclamp_util_min) { 1137 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1138 sysctl_sched_uclamp_util_min, false); 1139 update_root_tg = true; 1140 } 1141 if (old_max != sysctl_sched_uclamp_util_max) { 1142 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1143 sysctl_sched_uclamp_util_max, false); 1144 update_root_tg = true; 1145 } 1146 1147 if (update_root_tg) 1148 uclamp_update_root_tg(); 1149 1150 /* 1151 * We update all RUNNABLE tasks only when task groups are in use. 1152 * Otherwise, keep it simple and do just a lazy update at each next 1153 * task enqueue time. 1154 */ 1155 1156 goto done; 1157 1158 undo: 1159 sysctl_sched_uclamp_util_min = old_min; 1160 sysctl_sched_uclamp_util_max = old_max; 1161 done: 1162 mutex_unlock(&uclamp_mutex); 1163 1164 return result; 1165 } 1166 1167 static int uclamp_validate(struct task_struct *p, 1168 const struct sched_attr *attr) 1169 { 1170 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value; 1171 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value; 1172 1173 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) 1174 lower_bound = attr->sched_util_min; 1175 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) 1176 upper_bound = attr->sched_util_max; 1177 1178 if (lower_bound > upper_bound) 1179 return -EINVAL; 1180 if (upper_bound > SCHED_CAPACITY_SCALE) 1181 return -EINVAL; 1182 1183 return 0; 1184 } 1185 1186 static void __setscheduler_uclamp(struct task_struct *p, 1187 const struct sched_attr *attr) 1188 { 1189 enum uclamp_id clamp_id; 1190 1191 /* 1192 * On scheduling class change, reset to default clamps for tasks 1193 * without a task-specific value. 1194 */ 1195 for_each_clamp_id(clamp_id) { 1196 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1197 unsigned int clamp_value = uclamp_none(clamp_id); 1198 1199 /* Keep using defined clamps across class changes */ 1200 if (uc_se->user_defined) 1201 continue; 1202 1203 /* By default, RT tasks always get 100% boost */ 1204 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1205 clamp_value = uclamp_none(UCLAMP_MAX); 1206 1207 uclamp_se_set(uc_se, clamp_value, false); 1208 } 1209 1210 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1211 return; 1212 1213 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1214 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1215 attr->sched_util_min, true); 1216 } 1217 1218 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1219 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1220 attr->sched_util_max, true); 1221 } 1222 } 1223 1224 static void uclamp_fork(struct task_struct *p) 1225 { 1226 enum uclamp_id clamp_id; 1227 1228 for_each_clamp_id(clamp_id) 1229 p->uclamp[clamp_id].active = false; 1230 1231 if (likely(!p->sched_reset_on_fork)) 1232 return; 1233 1234 for_each_clamp_id(clamp_id) { 1235 uclamp_se_set(&p->uclamp_req[clamp_id], 1236 uclamp_none(clamp_id), false); 1237 } 1238 } 1239 1240 static void __init init_uclamp(void) 1241 { 1242 struct uclamp_se uc_max = {}; 1243 enum uclamp_id clamp_id; 1244 int cpu; 1245 1246 mutex_init(&uclamp_mutex); 1247 1248 for_each_possible_cpu(cpu) { 1249 memset(&cpu_rq(cpu)->uclamp, 0, 1250 sizeof(struct uclamp_rq)*UCLAMP_CNT); 1251 cpu_rq(cpu)->uclamp_flags = 0; 1252 } 1253 1254 for_each_clamp_id(clamp_id) { 1255 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1256 uclamp_none(clamp_id), false); 1257 } 1258 1259 /* System defaults allow max clamp values for both indexes */ 1260 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1261 for_each_clamp_id(clamp_id) { 1262 uclamp_default[clamp_id] = uc_max; 1263 #ifdef CONFIG_UCLAMP_TASK_GROUP 1264 root_task_group.uclamp_req[clamp_id] = uc_max; 1265 root_task_group.uclamp[clamp_id] = uc_max; 1266 #endif 1267 } 1268 } 1269 1270 #else /* CONFIG_UCLAMP_TASK */ 1271 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1272 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1273 static inline int uclamp_validate(struct task_struct *p, 1274 const struct sched_attr *attr) 1275 { 1276 return -EOPNOTSUPP; 1277 } 1278 static void __setscheduler_uclamp(struct task_struct *p, 1279 const struct sched_attr *attr) { } 1280 static inline void uclamp_fork(struct task_struct *p) { } 1281 static inline void init_uclamp(void) { } 1282 #endif /* CONFIG_UCLAMP_TASK */ 1283 1284 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1285 { 1286 if (!(flags & ENQUEUE_NOCLOCK)) 1287 update_rq_clock(rq); 1288 1289 if (!(flags & ENQUEUE_RESTORE)) { 1290 sched_info_queued(rq, p); 1291 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1292 } 1293 1294 uclamp_rq_inc(rq, p); 1295 p->sched_class->enqueue_task(rq, p, flags); 1296 } 1297 1298 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1299 { 1300 if (!(flags & DEQUEUE_NOCLOCK)) 1301 update_rq_clock(rq); 1302 1303 if (!(flags & DEQUEUE_SAVE)) { 1304 sched_info_dequeued(rq, p); 1305 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1306 } 1307 1308 uclamp_rq_dec(rq, p); 1309 p->sched_class->dequeue_task(rq, p, flags); 1310 } 1311 1312 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1313 { 1314 if (task_contributes_to_load(p)) 1315 rq->nr_uninterruptible--; 1316 1317 enqueue_task(rq, p, flags); 1318 1319 p->on_rq = TASK_ON_RQ_QUEUED; 1320 } 1321 1322 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1323 { 1324 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1325 1326 if (task_contributes_to_load(p)) 1327 rq->nr_uninterruptible++; 1328 1329 dequeue_task(rq, p, flags); 1330 } 1331 1332 /* 1333 * __normal_prio - return the priority that is based on the static prio 1334 */ 1335 static inline int __normal_prio(struct task_struct *p) 1336 { 1337 return p->static_prio; 1338 } 1339 1340 /* 1341 * Calculate the expected normal priority: i.e. priority 1342 * without taking RT-inheritance into account. Might be 1343 * boosted by interactivity modifiers. Changes upon fork, 1344 * setprio syscalls, and whenever the interactivity 1345 * estimator recalculates. 1346 */ 1347 static inline int normal_prio(struct task_struct *p) 1348 { 1349 int prio; 1350 1351 if (task_has_dl_policy(p)) 1352 prio = MAX_DL_PRIO-1; 1353 else if (task_has_rt_policy(p)) 1354 prio = MAX_RT_PRIO-1 - p->rt_priority; 1355 else 1356 prio = __normal_prio(p); 1357 return prio; 1358 } 1359 1360 /* 1361 * Calculate the current priority, i.e. the priority 1362 * taken into account by the scheduler. This value might 1363 * be boosted by RT tasks, or might be boosted by 1364 * interactivity modifiers. Will be RT if the task got 1365 * RT-boosted. If not then it returns p->normal_prio. 1366 */ 1367 static int effective_prio(struct task_struct *p) 1368 { 1369 p->normal_prio = normal_prio(p); 1370 /* 1371 * If we are RT tasks or we were boosted to RT priority, 1372 * keep the priority unchanged. Otherwise, update priority 1373 * to the normal priority: 1374 */ 1375 if (!rt_prio(p->prio)) 1376 return p->normal_prio; 1377 return p->prio; 1378 } 1379 1380 /** 1381 * task_curr - is this task currently executing on a CPU? 1382 * @p: the task in question. 1383 * 1384 * Return: 1 if the task is currently executing. 0 otherwise. 1385 */ 1386 inline int task_curr(const struct task_struct *p) 1387 { 1388 return cpu_curr(task_cpu(p)) == p; 1389 } 1390 1391 /* 1392 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1393 * use the balance_callback list if you want balancing. 1394 * 1395 * this means any call to check_class_changed() must be followed by a call to 1396 * balance_callback(). 1397 */ 1398 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1399 const struct sched_class *prev_class, 1400 int oldprio) 1401 { 1402 if (prev_class != p->sched_class) { 1403 if (prev_class->switched_from) 1404 prev_class->switched_from(rq, p); 1405 1406 p->sched_class->switched_to(rq, p); 1407 } else if (oldprio != p->prio || dl_task(p)) 1408 p->sched_class->prio_changed(rq, p, oldprio); 1409 } 1410 1411 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1412 { 1413 const struct sched_class *class; 1414 1415 if (p->sched_class == rq->curr->sched_class) { 1416 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1417 } else { 1418 for_each_class(class) { 1419 if (class == rq->curr->sched_class) 1420 break; 1421 if (class == p->sched_class) { 1422 resched_curr(rq); 1423 break; 1424 } 1425 } 1426 } 1427 1428 /* 1429 * A queue event has occurred, and we're going to schedule. In 1430 * this case, we can save a useless back to back clock update. 1431 */ 1432 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1433 rq_clock_skip_update(rq); 1434 } 1435 1436 #ifdef CONFIG_SMP 1437 1438 /* 1439 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1440 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1441 */ 1442 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1443 { 1444 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1445 return false; 1446 1447 if (is_per_cpu_kthread(p)) 1448 return cpu_online(cpu); 1449 1450 return cpu_active(cpu); 1451 } 1452 1453 /* 1454 * This is how migration works: 1455 * 1456 * 1) we invoke migration_cpu_stop() on the target CPU using 1457 * stop_one_cpu(). 1458 * 2) stopper starts to run (implicitly forcing the migrated thread 1459 * off the CPU) 1460 * 3) it checks whether the migrated task is still in the wrong runqueue. 1461 * 4) if it's in the wrong runqueue then the migration thread removes 1462 * it and puts it into the right queue. 1463 * 5) stopper completes and stop_one_cpu() returns and the migration 1464 * is done. 1465 */ 1466 1467 /* 1468 * move_queued_task - move a queued task to new rq. 1469 * 1470 * Returns (locked) new rq. Old rq's lock is released. 1471 */ 1472 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1473 struct task_struct *p, int new_cpu) 1474 { 1475 lockdep_assert_held(&rq->lock); 1476 1477 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 1478 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 1479 set_task_cpu(p, new_cpu); 1480 rq_unlock(rq, rf); 1481 1482 rq = cpu_rq(new_cpu); 1483 1484 rq_lock(rq, rf); 1485 BUG_ON(task_cpu(p) != new_cpu); 1486 enqueue_task(rq, p, 0); 1487 p->on_rq = TASK_ON_RQ_QUEUED; 1488 check_preempt_curr(rq, p, 0); 1489 1490 return rq; 1491 } 1492 1493 struct migration_arg { 1494 struct task_struct *task; 1495 int dest_cpu; 1496 }; 1497 1498 /* 1499 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1500 * this because either it can't run here any more (set_cpus_allowed() 1501 * away from this CPU, or CPU going down), or because we're 1502 * attempting to rebalance this task on exec (sched_exec). 1503 * 1504 * So we race with normal scheduler movements, but that's OK, as long 1505 * as the task is no longer on this CPU. 1506 */ 1507 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1508 struct task_struct *p, int dest_cpu) 1509 { 1510 /* Affinity changed (again). */ 1511 if (!is_cpu_allowed(p, dest_cpu)) 1512 return rq; 1513 1514 update_rq_clock(rq); 1515 rq = move_queued_task(rq, rf, p, dest_cpu); 1516 1517 return rq; 1518 } 1519 1520 /* 1521 * migration_cpu_stop - this will be executed by a highprio stopper thread 1522 * and performs thread migration by bumping thread off CPU then 1523 * 'pushing' onto another runqueue. 1524 */ 1525 static int migration_cpu_stop(void *data) 1526 { 1527 struct migration_arg *arg = data; 1528 struct task_struct *p = arg->task; 1529 struct rq *rq = this_rq(); 1530 struct rq_flags rf; 1531 1532 /* 1533 * The original target CPU might have gone down and we might 1534 * be on another CPU but it doesn't matter. 1535 */ 1536 local_irq_disable(); 1537 /* 1538 * We need to explicitly wake pending tasks before running 1539 * __migrate_task() such that we will not miss enforcing cpus_ptr 1540 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1541 */ 1542 sched_ttwu_pending(); 1543 1544 raw_spin_lock(&p->pi_lock); 1545 rq_lock(rq, &rf); 1546 /* 1547 * If task_rq(p) != rq, it cannot be migrated here, because we're 1548 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1549 * we're holding p->pi_lock. 1550 */ 1551 if (task_rq(p) == rq) { 1552 if (task_on_rq_queued(p)) 1553 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1554 else 1555 p->wake_cpu = arg->dest_cpu; 1556 } 1557 rq_unlock(rq, &rf); 1558 raw_spin_unlock(&p->pi_lock); 1559 1560 local_irq_enable(); 1561 return 0; 1562 } 1563 1564 /* 1565 * sched_class::set_cpus_allowed must do the below, but is not required to 1566 * actually call this function. 1567 */ 1568 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1569 { 1570 cpumask_copy(&p->cpus_mask, new_mask); 1571 p->nr_cpus_allowed = cpumask_weight(new_mask); 1572 } 1573 1574 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1575 { 1576 struct rq *rq = task_rq(p); 1577 bool queued, running; 1578 1579 lockdep_assert_held(&p->pi_lock); 1580 1581 queued = task_on_rq_queued(p); 1582 running = task_current(rq, p); 1583 1584 if (queued) { 1585 /* 1586 * Because __kthread_bind() calls this on blocked tasks without 1587 * holding rq->lock. 1588 */ 1589 lockdep_assert_held(&rq->lock); 1590 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1591 } 1592 if (running) 1593 put_prev_task(rq, p); 1594 1595 p->sched_class->set_cpus_allowed(p, new_mask); 1596 1597 if (queued) 1598 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1599 if (running) 1600 set_next_task(rq, p); 1601 } 1602 1603 /* 1604 * Change a given task's CPU affinity. Migrate the thread to a 1605 * proper CPU and schedule it away if the CPU it's executing on 1606 * is removed from the allowed bitmask. 1607 * 1608 * NOTE: the caller must have a valid reference to the task, the 1609 * task must not exit() & deallocate itself prematurely. The 1610 * call is not atomic; no spinlocks may be held. 1611 */ 1612 static int __set_cpus_allowed_ptr(struct task_struct *p, 1613 const struct cpumask *new_mask, bool check) 1614 { 1615 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1616 unsigned int dest_cpu; 1617 struct rq_flags rf; 1618 struct rq *rq; 1619 int ret = 0; 1620 1621 rq = task_rq_lock(p, &rf); 1622 update_rq_clock(rq); 1623 1624 if (p->flags & PF_KTHREAD) { 1625 /* 1626 * Kernel threads are allowed on online && !active CPUs 1627 */ 1628 cpu_valid_mask = cpu_online_mask; 1629 } 1630 1631 /* 1632 * Must re-check here, to close a race against __kthread_bind(), 1633 * sched_setaffinity() is not guaranteed to observe the flag. 1634 */ 1635 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1636 ret = -EINVAL; 1637 goto out; 1638 } 1639 1640 if (cpumask_equal(p->cpus_ptr, new_mask)) 1641 goto out; 1642 1643 /* 1644 * Picking a ~random cpu helps in cases where we are changing affinity 1645 * for groups of tasks (ie. cpuset), so that load balancing is not 1646 * immediately required to distribute the tasks within their new mask. 1647 */ 1648 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 1649 if (dest_cpu >= nr_cpu_ids) { 1650 ret = -EINVAL; 1651 goto out; 1652 } 1653 1654 do_set_cpus_allowed(p, new_mask); 1655 1656 if (p->flags & PF_KTHREAD) { 1657 /* 1658 * For kernel threads that do indeed end up on online && 1659 * !active we want to ensure they are strict per-CPU threads. 1660 */ 1661 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1662 !cpumask_intersects(new_mask, cpu_active_mask) && 1663 p->nr_cpus_allowed != 1); 1664 } 1665 1666 /* Can the task run on the task's current CPU? If so, we're done */ 1667 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1668 goto out; 1669 1670 if (task_running(rq, p) || p->state == TASK_WAKING) { 1671 struct migration_arg arg = { p, dest_cpu }; 1672 /* Need help from migration thread: drop lock and wait. */ 1673 task_rq_unlock(rq, p, &rf); 1674 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1675 return 0; 1676 } else if (task_on_rq_queued(p)) { 1677 /* 1678 * OK, since we're going to drop the lock immediately 1679 * afterwards anyway. 1680 */ 1681 rq = move_queued_task(rq, &rf, p, dest_cpu); 1682 } 1683 out: 1684 task_rq_unlock(rq, p, &rf); 1685 1686 return ret; 1687 } 1688 1689 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1690 { 1691 return __set_cpus_allowed_ptr(p, new_mask, false); 1692 } 1693 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1694 1695 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1696 { 1697 #ifdef CONFIG_SCHED_DEBUG 1698 /* 1699 * We should never call set_task_cpu() on a blocked task, 1700 * ttwu() will sort out the placement. 1701 */ 1702 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1703 !p->on_rq); 1704 1705 /* 1706 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1707 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1708 * time relying on p->on_rq. 1709 */ 1710 WARN_ON_ONCE(p->state == TASK_RUNNING && 1711 p->sched_class == &fair_sched_class && 1712 (p->on_rq && !task_on_rq_migrating(p))); 1713 1714 #ifdef CONFIG_LOCKDEP 1715 /* 1716 * The caller should hold either p->pi_lock or rq->lock, when changing 1717 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1718 * 1719 * sched_move_task() holds both and thus holding either pins the cgroup, 1720 * see task_group(). 1721 * 1722 * Furthermore, all task_rq users should acquire both locks, see 1723 * task_rq_lock(). 1724 */ 1725 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1726 lockdep_is_held(&task_rq(p)->lock))); 1727 #endif 1728 /* 1729 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1730 */ 1731 WARN_ON_ONCE(!cpu_online(new_cpu)); 1732 #endif 1733 1734 trace_sched_migrate_task(p, new_cpu); 1735 1736 if (task_cpu(p) != new_cpu) { 1737 if (p->sched_class->migrate_task_rq) 1738 p->sched_class->migrate_task_rq(p, new_cpu); 1739 p->se.nr_migrations++; 1740 rseq_migrate(p); 1741 perf_event_task_migrate(p); 1742 } 1743 1744 __set_task_cpu(p, new_cpu); 1745 } 1746 1747 #ifdef CONFIG_NUMA_BALANCING 1748 static void __migrate_swap_task(struct task_struct *p, int cpu) 1749 { 1750 if (task_on_rq_queued(p)) { 1751 struct rq *src_rq, *dst_rq; 1752 struct rq_flags srf, drf; 1753 1754 src_rq = task_rq(p); 1755 dst_rq = cpu_rq(cpu); 1756 1757 rq_pin_lock(src_rq, &srf); 1758 rq_pin_lock(dst_rq, &drf); 1759 1760 deactivate_task(src_rq, p, 0); 1761 set_task_cpu(p, cpu); 1762 activate_task(dst_rq, p, 0); 1763 check_preempt_curr(dst_rq, p, 0); 1764 1765 rq_unpin_lock(dst_rq, &drf); 1766 rq_unpin_lock(src_rq, &srf); 1767 1768 } else { 1769 /* 1770 * Task isn't running anymore; make it appear like we migrated 1771 * it before it went to sleep. This means on wakeup we make the 1772 * previous CPU our target instead of where it really is. 1773 */ 1774 p->wake_cpu = cpu; 1775 } 1776 } 1777 1778 struct migration_swap_arg { 1779 struct task_struct *src_task, *dst_task; 1780 int src_cpu, dst_cpu; 1781 }; 1782 1783 static int migrate_swap_stop(void *data) 1784 { 1785 struct migration_swap_arg *arg = data; 1786 struct rq *src_rq, *dst_rq; 1787 int ret = -EAGAIN; 1788 1789 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1790 return -EAGAIN; 1791 1792 src_rq = cpu_rq(arg->src_cpu); 1793 dst_rq = cpu_rq(arg->dst_cpu); 1794 1795 double_raw_lock(&arg->src_task->pi_lock, 1796 &arg->dst_task->pi_lock); 1797 double_rq_lock(src_rq, dst_rq); 1798 1799 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1800 goto unlock; 1801 1802 if (task_cpu(arg->src_task) != arg->src_cpu) 1803 goto unlock; 1804 1805 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 1806 goto unlock; 1807 1808 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 1809 goto unlock; 1810 1811 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1812 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1813 1814 ret = 0; 1815 1816 unlock: 1817 double_rq_unlock(src_rq, dst_rq); 1818 raw_spin_unlock(&arg->dst_task->pi_lock); 1819 raw_spin_unlock(&arg->src_task->pi_lock); 1820 1821 return ret; 1822 } 1823 1824 /* 1825 * Cross migrate two tasks 1826 */ 1827 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1828 int target_cpu, int curr_cpu) 1829 { 1830 struct migration_swap_arg arg; 1831 int ret = -EINVAL; 1832 1833 arg = (struct migration_swap_arg){ 1834 .src_task = cur, 1835 .src_cpu = curr_cpu, 1836 .dst_task = p, 1837 .dst_cpu = target_cpu, 1838 }; 1839 1840 if (arg.src_cpu == arg.dst_cpu) 1841 goto out; 1842 1843 /* 1844 * These three tests are all lockless; this is OK since all of them 1845 * will be re-checked with proper locks held further down the line. 1846 */ 1847 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1848 goto out; 1849 1850 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 1851 goto out; 1852 1853 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 1854 goto out; 1855 1856 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1857 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1858 1859 out: 1860 return ret; 1861 } 1862 #endif /* CONFIG_NUMA_BALANCING */ 1863 1864 /* 1865 * wait_task_inactive - wait for a thread to unschedule. 1866 * 1867 * If @match_state is nonzero, it's the @p->state value just checked and 1868 * not expected to change. If it changes, i.e. @p might have woken up, 1869 * then return zero. When we succeed in waiting for @p to be off its CPU, 1870 * we return a positive number (its total switch count). If a second call 1871 * a short while later returns the same number, the caller can be sure that 1872 * @p has remained unscheduled the whole time. 1873 * 1874 * The caller must ensure that the task *will* unschedule sometime soon, 1875 * else this function might spin for a *long* time. This function can't 1876 * be called with interrupts off, or it may introduce deadlock with 1877 * smp_call_function() if an IPI is sent by the same process we are 1878 * waiting to become inactive. 1879 */ 1880 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1881 { 1882 int running, queued; 1883 struct rq_flags rf; 1884 unsigned long ncsw; 1885 struct rq *rq; 1886 1887 for (;;) { 1888 /* 1889 * We do the initial early heuristics without holding 1890 * any task-queue locks at all. We'll only try to get 1891 * the runqueue lock when things look like they will 1892 * work out! 1893 */ 1894 rq = task_rq(p); 1895 1896 /* 1897 * If the task is actively running on another CPU 1898 * still, just relax and busy-wait without holding 1899 * any locks. 1900 * 1901 * NOTE! Since we don't hold any locks, it's not 1902 * even sure that "rq" stays as the right runqueue! 1903 * But we don't care, since "task_running()" will 1904 * return false if the runqueue has changed and p 1905 * is actually now running somewhere else! 1906 */ 1907 while (task_running(rq, p)) { 1908 if (match_state && unlikely(p->state != match_state)) 1909 return 0; 1910 cpu_relax(); 1911 } 1912 1913 /* 1914 * Ok, time to look more closely! We need the rq 1915 * lock now, to be *sure*. If we're wrong, we'll 1916 * just go back and repeat. 1917 */ 1918 rq = task_rq_lock(p, &rf); 1919 trace_sched_wait_task(p); 1920 running = task_running(rq, p); 1921 queued = task_on_rq_queued(p); 1922 ncsw = 0; 1923 if (!match_state || p->state == match_state) 1924 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1925 task_rq_unlock(rq, p, &rf); 1926 1927 /* 1928 * If it changed from the expected state, bail out now. 1929 */ 1930 if (unlikely(!ncsw)) 1931 break; 1932 1933 /* 1934 * Was it really running after all now that we 1935 * checked with the proper locks actually held? 1936 * 1937 * Oops. Go back and try again.. 1938 */ 1939 if (unlikely(running)) { 1940 cpu_relax(); 1941 continue; 1942 } 1943 1944 /* 1945 * It's not enough that it's not actively running, 1946 * it must be off the runqueue _entirely_, and not 1947 * preempted! 1948 * 1949 * So if it was still runnable (but just not actively 1950 * running right now), it's preempted, and we should 1951 * yield - it could be a while. 1952 */ 1953 if (unlikely(queued)) { 1954 ktime_t to = NSEC_PER_SEC / HZ; 1955 1956 set_current_state(TASK_UNINTERRUPTIBLE); 1957 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1958 continue; 1959 } 1960 1961 /* 1962 * Ahh, all good. It wasn't running, and it wasn't 1963 * runnable, which means that it will never become 1964 * running in the future either. We're all done! 1965 */ 1966 break; 1967 } 1968 1969 return ncsw; 1970 } 1971 1972 /*** 1973 * kick_process - kick a running thread to enter/exit the kernel 1974 * @p: the to-be-kicked thread 1975 * 1976 * Cause a process which is running on another CPU to enter 1977 * kernel-mode, without any delay. (to get signals handled.) 1978 * 1979 * NOTE: this function doesn't have to take the runqueue lock, 1980 * because all it wants to ensure is that the remote task enters 1981 * the kernel. If the IPI races and the task has been migrated 1982 * to another CPU then no harm is done and the purpose has been 1983 * achieved as well. 1984 */ 1985 void kick_process(struct task_struct *p) 1986 { 1987 int cpu; 1988 1989 preempt_disable(); 1990 cpu = task_cpu(p); 1991 if ((cpu != smp_processor_id()) && task_curr(p)) 1992 smp_send_reschedule(cpu); 1993 preempt_enable(); 1994 } 1995 EXPORT_SYMBOL_GPL(kick_process); 1996 1997 /* 1998 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 1999 * 2000 * A few notes on cpu_active vs cpu_online: 2001 * 2002 * - cpu_active must be a subset of cpu_online 2003 * 2004 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2005 * see __set_cpus_allowed_ptr(). At this point the newly online 2006 * CPU isn't yet part of the sched domains, and balancing will not 2007 * see it. 2008 * 2009 * - on CPU-down we clear cpu_active() to mask the sched domains and 2010 * avoid the load balancer to place new tasks on the to be removed 2011 * CPU. Existing tasks will remain running there and will be taken 2012 * off. 2013 * 2014 * This means that fallback selection must not select !active CPUs. 2015 * And can assume that any active CPU must be online. Conversely 2016 * select_task_rq() below may allow selection of !active CPUs in order 2017 * to satisfy the above rules. 2018 */ 2019 static int select_fallback_rq(int cpu, struct task_struct *p) 2020 { 2021 int nid = cpu_to_node(cpu); 2022 const struct cpumask *nodemask = NULL; 2023 enum { cpuset, possible, fail } state = cpuset; 2024 int dest_cpu; 2025 2026 /* 2027 * If the node that the CPU is on has been offlined, cpu_to_node() 2028 * will return -1. There is no CPU on the node, and we should 2029 * select the CPU on the other node. 2030 */ 2031 if (nid != -1) { 2032 nodemask = cpumask_of_node(nid); 2033 2034 /* Look for allowed, online CPU in same node. */ 2035 for_each_cpu(dest_cpu, nodemask) { 2036 if (!cpu_active(dest_cpu)) 2037 continue; 2038 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2039 return dest_cpu; 2040 } 2041 } 2042 2043 for (;;) { 2044 /* Any allowed, online CPU? */ 2045 for_each_cpu(dest_cpu, p->cpus_ptr) { 2046 if (!is_cpu_allowed(p, dest_cpu)) 2047 continue; 2048 2049 goto out; 2050 } 2051 2052 /* No more Mr. Nice Guy. */ 2053 switch (state) { 2054 case cpuset: 2055 if (IS_ENABLED(CONFIG_CPUSETS)) { 2056 cpuset_cpus_allowed_fallback(p); 2057 state = possible; 2058 break; 2059 } 2060 /* Fall-through */ 2061 case possible: 2062 do_set_cpus_allowed(p, cpu_possible_mask); 2063 state = fail; 2064 break; 2065 2066 case fail: 2067 BUG(); 2068 break; 2069 } 2070 } 2071 2072 out: 2073 if (state != cpuset) { 2074 /* 2075 * Don't tell them about moving exiting tasks or 2076 * kernel threads (both mm NULL), since they never 2077 * leave kernel. 2078 */ 2079 if (p->mm && printk_ratelimit()) { 2080 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2081 task_pid_nr(p), p->comm, cpu); 2082 } 2083 } 2084 2085 return dest_cpu; 2086 } 2087 2088 /* 2089 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2090 */ 2091 static inline 2092 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 2093 { 2094 lockdep_assert_held(&p->pi_lock); 2095 2096 if (p->nr_cpus_allowed > 1) 2097 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 2098 else 2099 cpu = cpumask_any(p->cpus_ptr); 2100 2101 /* 2102 * In order not to call set_task_cpu() on a blocking task we need 2103 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2104 * CPU. 2105 * 2106 * Since this is common to all placement strategies, this lives here. 2107 * 2108 * [ this allows ->select_task() to simply return task_cpu(p) and 2109 * not worry about this generic constraint ] 2110 */ 2111 if (unlikely(!is_cpu_allowed(p, cpu))) 2112 cpu = select_fallback_rq(task_cpu(p), p); 2113 2114 return cpu; 2115 } 2116 2117 void sched_set_stop_task(int cpu, struct task_struct *stop) 2118 { 2119 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2120 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2121 2122 if (stop) { 2123 /* 2124 * Make it appear like a SCHED_FIFO task, its something 2125 * userspace knows about and won't get confused about. 2126 * 2127 * Also, it will make PI more or less work without too 2128 * much confusion -- but then, stop work should not 2129 * rely on PI working anyway. 2130 */ 2131 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2132 2133 stop->sched_class = &stop_sched_class; 2134 } 2135 2136 cpu_rq(cpu)->stop = stop; 2137 2138 if (old_stop) { 2139 /* 2140 * Reset it back to a normal scheduling class so that 2141 * it can die in pieces. 2142 */ 2143 old_stop->sched_class = &rt_sched_class; 2144 } 2145 } 2146 2147 #else 2148 2149 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2150 const struct cpumask *new_mask, bool check) 2151 { 2152 return set_cpus_allowed_ptr(p, new_mask); 2153 } 2154 2155 #endif /* CONFIG_SMP */ 2156 2157 static void 2158 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2159 { 2160 struct rq *rq; 2161 2162 if (!schedstat_enabled()) 2163 return; 2164 2165 rq = this_rq(); 2166 2167 #ifdef CONFIG_SMP 2168 if (cpu == rq->cpu) { 2169 __schedstat_inc(rq->ttwu_local); 2170 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2171 } else { 2172 struct sched_domain *sd; 2173 2174 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2175 rcu_read_lock(); 2176 for_each_domain(rq->cpu, sd) { 2177 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2178 __schedstat_inc(sd->ttwu_wake_remote); 2179 break; 2180 } 2181 } 2182 rcu_read_unlock(); 2183 } 2184 2185 if (wake_flags & WF_MIGRATED) 2186 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2187 #endif /* CONFIG_SMP */ 2188 2189 __schedstat_inc(rq->ttwu_count); 2190 __schedstat_inc(p->se.statistics.nr_wakeups); 2191 2192 if (wake_flags & WF_SYNC) 2193 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2194 } 2195 2196 /* 2197 * Mark the task runnable and perform wakeup-preemption. 2198 */ 2199 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2200 struct rq_flags *rf) 2201 { 2202 check_preempt_curr(rq, p, wake_flags); 2203 p->state = TASK_RUNNING; 2204 trace_sched_wakeup(p); 2205 2206 #ifdef CONFIG_SMP 2207 if (p->sched_class->task_woken) { 2208 /* 2209 * Our task @p is fully woken up and running; so its safe to 2210 * drop the rq->lock, hereafter rq is only used for statistics. 2211 */ 2212 rq_unpin_lock(rq, rf); 2213 p->sched_class->task_woken(rq, p); 2214 rq_repin_lock(rq, rf); 2215 } 2216 2217 if (rq->idle_stamp) { 2218 u64 delta = rq_clock(rq) - rq->idle_stamp; 2219 u64 max = 2*rq->max_idle_balance_cost; 2220 2221 update_avg(&rq->avg_idle, delta); 2222 2223 if (rq->avg_idle > max) 2224 rq->avg_idle = max; 2225 2226 rq->idle_stamp = 0; 2227 } 2228 #endif 2229 } 2230 2231 static void 2232 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2233 struct rq_flags *rf) 2234 { 2235 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2236 2237 lockdep_assert_held(&rq->lock); 2238 2239 #ifdef CONFIG_SMP 2240 if (p->sched_contributes_to_load) 2241 rq->nr_uninterruptible--; 2242 2243 if (wake_flags & WF_MIGRATED) 2244 en_flags |= ENQUEUE_MIGRATED; 2245 #endif 2246 2247 activate_task(rq, p, en_flags); 2248 ttwu_do_wakeup(rq, p, wake_flags, rf); 2249 } 2250 2251 /* 2252 * Called in case the task @p isn't fully descheduled from its runqueue, 2253 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 2254 * since all we need to do is flip p->state to TASK_RUNNING, since 2255 * the task is still ->on_rq. 2256 */ 2257 static int ttwu_remote(struct task_struct *p, int wake_flags) 2258 { 2259 struct rq_flags rf; 2260 struct rq *rq; 2261 int ret = 0; 2262 2263 rq = __task_rq_lock(p, &rf); 2264 if (task_on_rq_queued(p)) { 2265 /* check_preempt_curr() may use rq clock */ 2266 update_rq_clock(rq); 2267 ttwu_do_wakeup(rq, p, wake_flags, &rf); 2268 ret = 1; 2269 } 2270 __task_rq_unlock(rq, &rf); 2271 2272 return ret; 2273 } 2274 2275 #ifdef CONFIG_SMP 2276 void sched_ttwu_pending(void) 2277 { 2278 struct rq *rq = this_rq(); 2279 struct llist_node *llist = llist_del_all(&rq->wake_list); 2280 struct task_struct *p, *t; 2281 struct rq_flags rf; 2282 2283 if (!llist) 2284 return; 2285 2286 rq_lock_irqsave(rq, &rf); 2287 update_rq_clock(rq); 2288 2289 llist_for_each_entry_safe(p, t, llist, wake_entry) 2290 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 2291 2292 rq_unlock_irqrestore(rq, &rf); 2293 } 2294 2295 void scheduler_ipi(void) 2296 { 2297 /* 2298 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 2299 * TIF_NEED_RESCHED remotely (for the first time) will also send 2300 * this IPI. 2301 */ 2302 preempt_fold_need_resched(); 2303 2304 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 2305 return; 2306 2307 /* 2308 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 2309 * traditionally all their work was done from the interrupt return 2310 * path. Now that we actually do some work, we need to make sure 2311 * we do call them. 2312 * 2313 * Some archs already do call them, luckily irq_enter/exit nest 2314 * properly. 2315 * 2316 * Arguably we should visit all archs and update all handlers, 2317 * however a fair share of IPIs are still resched only so this would 2318 * somewhat pessimize the simple resched case. 2319 */ 2320 irq_enter(); 2321 sched_ttwu_pending(); 2322 2323 /* 2324 * Check if someone kicked us for doing the nohz idle load balance. 2325 */ 2326 if (unlikely(got_nohz_idle_kick())) { 2327 this_rq()->idle_balance = 1; 2328 raise_softirq_irqoff(SCHED_SOFTIRQ); 2329 } 2330 irq_exit(); 2331 } 2332 2333 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 2334 { 2335 struct rq *rq = cpu_rq(cpu); 2336 2337 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 2338 2339 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 2340 if (!set_nr_if_polling(rq->idle)) 2341 smp_send_reschedule(cpu); 2342 else 2343 trace_sched_wake_idle_without_ipi(cpu); 2344 } 2345 } 2346 2347 void wake_up_if_idle(int cpu) 2348 { 2349 struct rq *rq = cpu_rq(cpu); 2350 struct rq_flags rf; 2351 2352 rcu_read_lock(); 2353 2354 if (!is_idle_task(rcu_dereference(rq->curr))) 2355 goto out; 2356 2357 if (set_nr_if_polling(rq->idle)) { 2358 trace_sched_wake_idle_without_ipi(cpu); 2359 } else { 2360 rq_lock_irqsave(rq, &rf); 2361 if (is_idle_task(rq->curr)) 2362 smp_send_reschedule(cpu); 2363 /* Else CPU is not idle, do nothing here: */ 2364 rq_unlock_irqrestore(rq, &rf); 2365 } 2366 2367 out: 2368 rcu_read_unlock(); 2369 } 2370 2371 bool cpus_share_cache(int this_cpu, int that_cpu) 2372 { 2373 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 2374 } 2375 #endif /* CONFIG_SMP */ 2376 2377 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 2378 { 2379 struct rq *rq = cpu_rq(cpu); 2380 struct rq_flags rf; 2381 2382 #if defined(CONFIG_SMP) 2383 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 2384 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 2385 ttwu_queue_remote(p, cpu, wake_flags); 2386 return; 2387 } 2388 #endif 2389 2390 rq_lock(rq, &rf); 2391 update_rq_clock(rq); 2392 ttwu_do_activate(rq, p, wake_flags, &rf); 2393 rq_unlock(rq, &rf); 2394 } 2395 2396 /* 2397 * Notes on Program-Order guarantees on SMP systems. 2398 * 2399 * MIGRATION 2400 * 2401 * The basic program-order guarantee on SMP systems is that when a task [t] 2402 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 2403 * execution on its new CPU [c1]. 2404 * 2405 * For migration (of runnable tasks) this is provided by the following means: 2406 * 2407 * A) UNLOCK of the rq(c0)->lock scheduling out task t 2408 * B) migration for t is required to synchronize *both* rq(c0)->lock and 2409 * rq(c1)->lock (if not at the same time, then in that order). 2410 * C) LOCK of the rq(c1)->lock scheduling in task 2411 * 2412 * Release/acquire chaining guarantees that B happens after A and C after B. 2413 * Note: the CPU doing B need not be c0 or c1 2414 * 2415 * Example: 2416 * 2417 * CPU0 CPU1 CPU2 2418 * 2419 * LOCK rq(0)->lock 2420 * sched-out X 2421 * sched-in Y 2422 * UNLOCK rq(0)->lock 2423 * 2424 * LOCK rq(0)->lock // orders against CPU0 2425 * dequeue X 2426 * UNLOCK rq(0)->lock 2427 * 2428 * LOCK rq(1)->lock 2429 * enqueue X 2430 * UNLOCK rq(1)->lock 2431 * 2432 * LOCK rq(1)->lock // orders against CPU2 2433 * sched-out Z 2434 * sched-in X 2435 * UNLOCK rq(1)->lock 2436 * 2437 * 2438 * BLOCKING -- aka. SLEEP + WAKEUP 2439 * 2440 * For blocking we (obviously) need to provide the same guarantee as for 2441 * migration. However the means are completely different as there is no lock 2442 * chain to provide order. Instead we do: 2443 * 2444 * 1) smp_store_release(X->on_cpu, 0) 2445 * 2) smp_cond_load_acquire(!X->on_cpu) 2446 * 2447 * Example: 2448 * 2449 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 2450 * 2451 * LOCK rq(0)->lock LOCK X->pi_lock 2452 * dequeue X 2453 * sched-out X 2454 * smp_store_release(X->on_cpu, 0); 2455 * 2456 * smp_cond_load_acquire(&X->on_cpu, !VAL); 2457 * X->state = WAKING 2458 * set_task_cpu(X,2) 2459 * 2460 * LOCK rq(2)->lock 2461 * enqueue X 2462 * X->state = RUNNING 2463 * UNLOCK rq(2)->lock 2464 * 2465 * LOCK rq(2)->lock // orders against CPU1 2466 * sched-out Z 2467 * sched-in X 2468 * UNLOCK rq(2)->lock 2469 * 2470 * UNLOCK X->pi_lock 2471 * UNLOCK rq(0)->lock 2472 * 2473 * 2474 * However, for wakeups there is a second guarantee we must provide, namely we 2475 * must ensure that CONDITION=1 done by the caller can not be reordered with 2476 * accesses to the task state; see try_to_wake_up() and set_current_state(). 2477 */ 2478 2479 /** 2480 * try_to_wake_up - wake up a thread 2481 * @p: the thread to be awakened 2482 * @state: the mask of task states that can be woken 2483 * @wake_flags: wake modifier flags (WF_*) 2484 * 2485 * If (@state & @p->state) @p->state = TASK_RUNNING. 2486 * 2487 * If the task was not queued/runnable, also place it back on a runqueue. 2488 * 2489 * Atomic against schedule() which would dequeue a task, also see 2490 * set_current_state(). 2491 * 2492 * This function executes a full memory barrier before accessing the task 2493 * state; see set_current_state(). 2494 * 2495 * Return: %true if @p->state changes (an actual wakeup was done), 2496 * %false otherwise. 2497 */ 2498 static int 2499 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 2500 { 2501 unsigned long flags; 2502 int cpu, success = 0; 2503 2504 preempt_disable(); 2505 if (p == current) { 2506 /* 2507 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 2508 * == smp_processor_id()'. Together this means we can special 2509 * case the whole 'p->on_rq && ttwu_remote()' case below 2510 * without taking any locks. 2511 * 2512 * In particular: 2513 * - we rely on Program-Order guarantees for all the ordering, 2514 * - we're serialized against set_special_state() by virtue of 2515 * it disabling IRQs (this allows not taking ->pi_lock). 2516 */ 2517 if (!(p->state & state)) 2518 goto out; 2519 2520 success = 1; 2521 cpu = task_cpu(p); 2522 trace_sched_waking(p); 2523 p->state = TASK_RUNNING; 2524 trace_sched_wakeup(p); 2525 goto out; 2526 } 2527 2528 /* 2529 * If we are going to wake up a thread waiting for CONDITION we 2530 * need to ensure that CONDITION=1 done by the caller can not be 2531 * reordered with p->state check below. This pairs with mb() in 2532 * set_current_state() the waiting thread does. 2533 */ 2534 raw_spin_lock_irqsave(&p->pi_lock, flags); 2535 smp_mb__after_spinlock(); 2536 if (!(p->state & state)) 2537 goto unlock; 2538 2539 trace_sched_waking(p); 2540 2541 /* We're going to change ->state: */ 2542 success = 1; 2543 cpu = task_cpu(p); 2544 2545 /* 2546 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2547 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2548 * in smp_cond_load_acquire() below. 2549 * 2550 * sched_ttwu_pending() try_to_wake_up() 2551 * STORE p->on_rq = 1 LOAD p->state 2552 * UNLOCK rq->lock 2553 * 2554 * __schedule() (switch to task 'p') 2555 * LOCK rq->lock smp_rmb(); 2556 * smp_mb__after_spinlock(); 2557 * UNLOCK rq->lock 2558 * 2559 * [task p] 2560 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2561 * 2562 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2563 * __schedule(). See the comment for smp_mb__after_spinlock(). 2564 */ 2565 smp_rmb(); 2566 if (p->on_rq && ttwu_remote(p, wake_flags)) 2567 goto unlock; 2568 2569 #ifdef CONFIG_SMP 2570 /* 2571 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2572 * possible to, falsely, observe p->on_cpu == 0. 2573 * 2574 * One must be running (->on_cpu == 1) in order to remove oneself 2575 * from the runqueue. 2576 * 2577 * __schedule() (switch to task 'p') try_to_wake_up() 2578 * STORE p->on_cpu = 1 LOAD p->on_rq 2579 * UNLOCK rq->lock 2580 * 2581 * __schedule() (put 'p' to sleep) 2582 * LOCK rq->lock smp_rmb(); 2583 * smp_mb__after_spinlock(); 2584 * STORE p->on_rq = 0 LOAD p->on_cpu 2585 * 2586 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2587 * __schedule(). See the comment for smp_mb__after_spinlock(). 2588 */ 2589 smp_rmb(); 2590 2591 /* 2592 * If the owning (remote) CPU is still in the middle of schedule() with 2593 * this task as prev, wait until its done referencing the task. 2594 * 2595 * Pairs with the smp_store_release() in finish_task(). 2596 * 2597 * This ensures that tasks getting woken will be fully ordered against 2598 * their previous state and preserve Program Order. 2599 */ 2600 smp_cond_load_acquire(&p->on_cpu, !VAL); 2601 2602 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2603 p->state = TASK_WAKING; 2604 2605 if (p->in_iowait) { 2606 delayacct_blkio_end(p); 2607 atomic_dec(&task_rq(p)->nr_iowait); 2608 } 2609 2610 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2611 if (task_cpu(p) != cpu) { 2612 wake_flags |= WF_MIGRATED; 2613 psi_ttwu_dequeue(p); 2614 set_task_cpu(p, cpu); 2615 } 2616 2617 #else /* CONFIG_SMP */ 2618 2619 if (p->in_iowait) { 2620 delayacct_blkio_end(p); 2621 atomic_dec(&task_rq(p)->nr_iowait); 2622 } 2623 2624 #endif /* CONFIG_SMP */ 2625 2626 ttwu_queue(p, cpu, wake_flags); 2627 unlock: 2628 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2629 out: 2630 if (success) 2631 ttwu_stat(p, cpu, wake_flags); 2632 preempt_enable(); 2633 2634 return success; 2635 } 2636 2637 /** 2638 * wake_up_process - Wake up a specific process 2639 * @p: The process to be woken up. 2640 * 2641 * Attempt to wake up the nominated process and move it to the set of runnable 2642 * processes. 2643 * 2644 * Return: 1 if the process was woken up, 0 if it was already running. 2645 * 2646 * This function executes a full memory barrier before accessing the task state. 2647 */ 2648 int wake_up_process(struct task_struct *p) 2649 { 2650 return try_to_wake_up(p, TASK_NORMAL, 0); 2651 } 2652 EXPORT_SYMBOL(wake_up_process); 2653 2654 int wake_up_state(struct task_struct *p, unsigned int state) 2655 { 2656 return try_to_wake_up(p, state, 0); 2657 } 2658 2659 /* 2660 * Perform scheduler related setup for a newly forked process p. 2661 * p is forked by current. 2662 * 2663 * __sched_fork() is basic setup used by init_idle() too: 2664 */ 2665 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2666 { 2667 p->on_rq = 0; 2668 2669 p->se.on_rq = 0; 2670 p->se.exec_start = 0; 2671 p->se.sum_exec_runtime = 0; 2672 p->se.prev_sum_exec_runtime = 0; 2673 p->se.nr_migrations = 0; 2674 p->se.vruntime = 0; 2675 INIT_LIST_HEAD(&p->se.group_node); 2676 2677 #ifdef CONFIG_FAIR_GROUP_SCHED 2678 p->se.cfs_rq = NULL; 2679 #endif 2680 2681 #ifdef CONFIG_SCHEDSTATS 2682 /* Even if schedstat is disabled, there should not be garbage */ 2683 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2684 #endif 2685 2686 RB_CLEAR_NODE(&p->dl.rb_node); 2687 init_dl_task_timer(&p->dl); 2688 init_dl_inactive_task_timer(&p->dl); 2689 __dl_clear_params(p); 2690 2691 INIT_LIST_HEAD(&p->rt.run_list); 2692 p->rt.timeout = 0; 2693 p->rt.time_slice = sched_rr_timeslice; 2694 p->rt.on_rq = 0; 2695 p->rt.on_list = 0; 2696 2697 #ifdef CONFIG_PREEMPT_NOTIFIERS 2698 INIT_HLIST_HEAD(&p->preempt_notifiers); 2699 #endif 2700 2701 #ifdef CONFIG_COMPACTION 2702 p->capture_control = NULL; 2703 #endif 2704 init_numa_balancing(clone_flags, p); 2705 } 2706 2707 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2708 2709 #ifdef CONFIG_NUMA_BALANCING 2710 2711 void set_numabalancing_state(bool enabled) 2712 { 2713 if (enabled) 2714 static_branch_enable(&sched_numa_balancing); 2715 else 2716 static_branch_disable(&sched_numa_balancing); 2717 } 2718 2719 #ifdef CONFIG_PROC_SYSCTL 2720 int sysctl_numa_balancing(struct ctl_table *table, int write, 2721 void __user *buffer, size_t *lenp, loff_t *ppos) 2722 { 2723 struct ctl_table t; 2724 int err; 2725 int state = static_branch_likely(&sched_numa_balancing); 2726 2727 if (write && !capable(CAP_SYS_ADMIN)) 2728 return -EPERM; 2729 2730 t = *table; 2731 t.data = &state; 2732 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2733 if (err < 0) 2734 return err; 2735 if (write) 2736 set_numabalancing_state(state); 2737 return err; 2738 } 2739 #endif 2740 #endif 2741 2742 #ifdef CONFIG_SCHEDSTATS 2743 2744 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2745 static bool __initdata __sched_schedstats = false; 2746 2747 static void set_schedstats(bool enabled) 2748 { 2749 if (enabled) 2750 static_branch_enable(&sched_schedstats); 2751 else 2752 static_branch_disable(&sched_schedstats); 2753 } 2754 2755 void force_schedstat_enabled(void) 2756 { 2757 if (!schedstat_enabled()) { 2758 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2759 static_branch_enable(&sched_schedstats); 2760 } 2761 } 2762 2763 static int __init setup_schedstats(char *str) 2764 { 2765 int ret = 0; 2766 if (!str) 2767 goto out; 2768 2769 /* 2770 * This code is called before jump labels have been set up, so we can't 2771 * change the static branch directly just yet. Instead set a temporary 2772 * variable so init_schedstats() can do it later. 2773 */ 2774 if (!strcmp(str, "enable")) { 2775 __sched_schedstats = true; 2776 ret = 1; 2777 } else if (!strcmp(str, "disable")) { 2778 __sched_schedstats = false; 2779 ret = 1; 2780 } 2781 out: 2782 if (!ret) 2783 pr_warn("Unable to parse schedstats=\n"); 2784 2785 return ret; 2786 } 2787 __setup("schedstats=", setup_schedstats); 2788 2789 static void __init init_schedstats(void) 2790 { 2791 set_schedstats(__sched_schedstats); 2792 } 2793 2794 #ifdef CONFIG_PROC_SYSCTL 2795 int sysctl_schedstats(struct ctl_table *table, int write, 2796 void __user *buffer, size_t *lenp, loff_t *ppos) 2797 { 2798 struct ctl_table t; 2799 int err; 2800 int state = static_branch_likely(&sched_schedstats); 2801 2802 if (write && !capable(CAP_SYS_ADMIN)) 2803 return -EPERM; 2804 2805 t = *table; 2806 t.data = &state; 2807 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2808 if (err < 0) 2809 return err; 2810 if (write) 2811 set_schedstats(state); 2812 return err; 2813 } 2814 #endif /* CONFIG_PROC_SYSCTL */ 2815 #else /* !CONFIG_SCHEDSTATS */ 2816 static inline void init_schedstats(void) {} 2817 #endif /* CONFIG_SCHEDSTATS */ 2818 2819 /* 2820 * fork()/clone()-time setup: 2821 */ 2822 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2823 { 2824 unsigned long flags; 2825 2826 __sched_fork(clone_flags, p); 2827 /* 2828 * We mark the process as NEW here. This guarantees that 2829 * nobody will actually run it, and a signal or other external 2830 * event cannot wake it up and insert it on the runqueue either. 2831 */ 2832 p->state = TASK_NEW; 2833 2834 /* 2835 * Make sure we do not leak PI boosting priority to the child. 2836 */ 2837 p->prio = current->normal_prio; 2838 2839 uclamp_fork(p); 2840 2841 /* 2842 * Revert to default priority/policy on fork if requested. 2843 */ 2844 if (unlikely(p->sched_reset_on_fork)) { 2845 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2846 p->policy = SCHED_NORMAL; 2847 p->static_prio = NICE_TO_PRIO(0); 2848 p->rt_priority = 0; 2849 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2850 p->static_prio = NICE_TO_PRIO(0); 2851 2852 p->prio = p->normal_prio = __normal_prio(p); 2853 set_load_weight(p, false); 2854 2855 /* 2856 * We don't need the reset flag anymore after the fork. It has 2857 * fulfilled its duty: 2858 */ 2859 p->sched_reset_on_fork = 0; 2860 } 2861 2862 if (dl_prio(p->prio)) 2863 return -EAGAIN; 2864 else if (rt_prio(p->prio)) 2865 p->sched_class = &rt_sched_class; 2866 else 2867 p->sched_class = &fair_sched_class; 2868 2869 init_entity_runnable_average(&p->se); 2870 2871 /* 2872 * The child is not yet in the pid-hash so no cgroup attach races, 2873 * and the cgroup is pinned to this child due to cgroup_fork() 2874 * is ran before sched_fork(). 2875 * 2876 * Silence PROVE_RCU. 2877 */ 2878 raw_spin_lock_irqsave(&p->pi_lock, flags); 2879 /* 2880 * We're setting the CPU for the first time, we don't migrate, 2881 * so use __set_task_cpu(). 2882 */ 2883 __set_task_cpu(p, smp_processor_id()); 2884 if (p->sched_class->task_fork) 2885 p->sched_class->task_fork(p); 2886 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2887 2888 #ifdef CONFIG_SCHED_INFO 2889 if (likely(sched_info_on())) 2890 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2891 #endif 2892 #if defined(CONFIG_SMP) 2893 p->on_cpu = 0; 2894 #endif 2895 init_task_preempt_count(p); 2896 #ifdef CONFIG_SMP 2897 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2898 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2899 #endif 2900 return 0; 2901 } 2902 2903 unsigned long to_ratio(u64 period, u64 runtime) 2904 { 2905 if (runtime == RUNTIME_INF) 2906 return BW_UNIT; 2907 2908 /* 2909 * Doing this here saves a lot of checks in all 2910 * the calling paths, and returning zero seems 2911 * safe for them anyway. 2912 */ 2913 if (period == 0) 2914 return 0; 2915 2916 return div64_u64(runtime << BW_SHIFT, period); 2917 } 2918 2919 /* 2920 * wake_up_new_task - wake up a newly created task for the first time. 2921 * 2922 * This function will do some initial scheduler statistics housekeeping 2923 * that must be done for every newly created context, then puts the task 2924 * on the runqueue and wakes it. 2925 */ 2926 void wake_up_new_task(struct task_struct *p) 2927 { 2928 struct rq_flags rf; 2929 struct rq *rq; 2930 2931 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2932 p->state = TASK_RUNNING; 2933 #ifdef CONFIG_SMP 2934 /* 2935 * Fork balancing, do it here and not earlier because: 2936 * - cpus_ptr can change in the fork path 2937 * - any previously selected CPU might disappear through hotplug 2938 * 2939 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2940 * as we're not fully set-up yet. 2941 */ 2942 p->recent_used_cpu = task_cpu(p); 2943 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2944 #endif 2945 rq = __task_rq_lock(p, &rf); 2946 update_rq_clock(rq); 2947 post_init_entity_util_avg(p); 2948 2949 activate_task(rq, p, ENQUEUE_NOCLOCK); 2950 trace_sched_wakeup_new(p); 2951 check_preempt_curr(rq, p, WF_FORK); 2952 #ifdef CONFIG_SMP 2953 if (p->sched_class->task_woken) { 2954 /* 2955 * Nothing relies on rq->lock after this, so its fine to 2956 * drop it. 2957 */ 2958 rq_unpin_lock(rq, &rf); 2959 p->sched_class->task_woken(rq, p); 2960 rq_repin_lock(rq, &rf); 2961 } 2962 #endif 2963 task_rq_unlock(rq, p, &rf); 2964 } 2965 2966 #ifdef CONFIG_PREEMPT_NOTIFIERS 2967 2968 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2969 2970 void preempt_notifier_inc(void) 2971 { 2972 static_branch_inc(&preempt_notifier_key); 2973 } 2974 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2975 2976 void preempt_notifier_dec(void) 2977 { 2978 static_branch_dec(&preempt_notifier_key); 2979 } 2980 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2981 2982 /** 2983 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2984 * @notifier: notifier struct to register 2985 */ 2986 void preempt_notifier_register(struct preempt_notifier *notifier) 2987 { 2988 if (!static_branch_unlikely(&preempt_notifier_key)) 2989 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2990 2991 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2992 } 2993 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2994 2995 /** 2996 * preempt_notifier_unregister - no longer interested in preemption notifications 2997 * @notifier: notifier struct to unregister 2998 * 2999 * This is *not* safe to call from within a preemption notifier. 3000 */ 3001 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3002 { 3003 hlist_del(¬ifier->link); 3004 } 3005 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3006 3007 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3008 { 3009 struct preempt_notifier *notifier; 3010 3011 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3012 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3013 } 3014 3015 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3016 { 3017 if (static_branch_unlikely(&preempt_notifier_key)) 3018 __fire_sched_in_preempt_notifiers(curr); 3019 } 3020 3021 static void 3022 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3023 struct task_struct *next) 3024 { 3025 struct preempt_notifier *notifier; 3026 3027 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3028 notifier->ops->sched_out(notifier, next); 3029 } 3030 3031 static __always_inline void 3032 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3033 struct task_struct *next) 3034 { 3035 if (static_branch_unlikely(&preempt_notifier_key)) 3036 __fire_sched_out_preempt_notifiers(curr, next); 3037 } 3038 3039 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3040 3041 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3042 { 3043 } 3044 3045 static inline void 3046 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3047 struct task_struct *next) 3048 { 3049 } 3050 3051 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3052 3053 static inline void prepare_task(struct task_struct *next) 3054 { 3055 #ifdef CONFIG_SMP 3056 /* 3057 * Claim the task as running, we do this before switching to it 3058 * such that any running task will have this set. 3059 */ 3060 next->on_cpu = 1; 3061 #endif 3062 } 3063 3064 static inline void finish_task(struct task_struct *prev) 3065 { 3066 #ifdef CONFIG_SMP 3067 /* 3068 * After ->on_cpu is cleared, the task can be moved to a different CPU. 3069 * We must ensure this doesn't happen until the switch is completely 3070 * finished. 3071 * 3072 * In particular, the load of prev->state in finish_task_switch() must 3073 * happen before this. 3074 * 3075 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3076 */ 3077 smp_store_release(&prev->on_cpu, 0); 3078 #endif 3079 } 3080 3081 static inline void 3082 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 3083 { 3084 /* 3085 * Since the runqueue lock will be released by the next 3086 * task (which is an invalid locking op but in the case 3087 * of the scheduler it's an obvious special-case), so we 3088 * do an early lockdep release here: 3089 */ 3090 rq_unpin_lock(rq, rf); 3091 spin_release(&rq->lock.dep_map, _THIS_IP_); 3092 #ifdef CONFIG_DEBUG_SPINLOCK 3093 /* this is a valid case when another task releases the spinlock */ 3094 rq->lock.owner = next; 3095 #endif 3096 } 3097 3098 static inline void finish_lock_switch(struct rq *rq) 3099 { 3100 /* 3101 * If we are tracking spinlock dependencies then we have to 3102 * fix up the runqueue lock - which gets 'carried over' from 3103 * prev into current: 3104 */ 3105 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 3106 raw_spin_unlock_irq(&rq->lock); 3107 } 3108 3109 /* 3110 * NOP if the arch has not defined these: 3111 */ 3112 3113 #ifndef prepare_arch_switch 3114 # define prepare_arch_switch(next) do { } while (0) 3115 #endif 3116 3117 #ifndef finish_arch_post_lock_switch 3118 # define finish_arch_post_lock_switch() do { } while (0) 3119 #endif 3120 3121 /** 3122 * prepare_task_switch - prepare to switch tasks 3123 * @rq: the runqueue preparing to switch 3124 * @prev: the current task that is being switched out 3125 * @next: the task we are going to switch to. 3126 * 3127 * This is called with the rq lock held and interrupts off. It must 3128 * be paired with a subsequent finish_task_switch after the context 3129 * switch. 3130 * 3131 * prepare_task_switch sets up locking and calls architecture specific 3132 * hooks. 3133 */ 3134 static inline void 3135 prepare_task_switch(struct rq *rq, struct task_struct *prev, 3136 struct task_struct *next) 3137 { 3138 kcov_prepare_switch(prev); 3139 sched_info_switch(rq, prev, next); 3140 perf_event_task_sched_out(prev, next); 3141 rseq_preempt(prev); 3142 fire_sched_out_preempt_notifiers(prev, next); 3143 prepare_task(next); 3144 prepare_arch_switch(next); 3145 } 3146 3147 /** 3148 * finish_task_switch - clean up after a task-switch 3149 * @prev: the thread we just switched away from. 3150 * 3151 * finish_task_switch must be called after the context switch, paired 3152 * with a prepare_task_switch call before the context switch. 3153 * finish_task_switch will reconcile locking set up by prepare_task_switch, 3154 * and do any other architecture-specific cleanup actions. 3155 * 3156 * Note that we may have delayed dropping an mm in context_switch(). If 3157 * so, we finish that here outside of the runqueue lock. (Doing it 3158 * with the lock held can cause deadlocks; see schedule() for 3159 * details.) 3160 * 3161 * The context switch have flipped the stack from under us and restored the 3162 * local variables which were saved when this task called schedule() in the 3163 * past. prev == current is still correct but we need to recalculate this_rq 3164 * because prev may have moved to another CPU. 3165 */ 3166 static struct rq *finish_task_switch(struct task_struct *prev) 3167 __releases(rq->lock) 3168 { 3169 struct rq *rq = this_rq(); 3170 struct mm_struct *mm = rq->prev_mm; 3171 long prev_state; 3172 3173 /* 3174 * The previous task will have left us with a preempt_count of 2 3175 * because it left us after: 3176 * 3177 * schedule() 3178 * preempt_disable(); // 1 3179 * __schedule() 3180 * raw_spin_lock_irq(&rq->lock) // 2 3181 * 3182 * Also, see FORK_PREEMPT_COUNT. 3183 */ 3184 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 3185 "corrupted preempt_count: %s/%d/0x%x\n", 3186 current->comm, current->pid, preempt_count())) 3187 preempt_count_set(FORK_PREEMPT_COUNT); 3188 3189 rq->prev_mm = NULL; 3190 3191 /* 3192 * A task struct has one reference for the use as "current". 3193 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 3194 * schedule one last time. The schedule call will never return, and 3195 * the scheduled task must drop that reference. 3196 * 3197 * We must observe prev->state before clearing prev->on_cpu (in 3198 * finish_task), otherwise a concurrent wakeup can get prev 3199 * running on another CPU and we could rave with its RUNNING -> DEAD 3200 * transition, resulting in a double drop. 3201 */ 3202 prev_state = prev->state; 3203 vtime_task_switch(prev); 3204 perf_event_task_sched_in(prev, current); 3205 finish_task(prev); 3206 finish_lock_switch(rq); 3207 finish_arch_post_lock_switch(); 3208 kcov_finish_switch(current); 3209 3210 fire_sched_in_preempt_notifiers(current); 3211 /* 3212 * When switching through a kernel thread, the loop in 3213 * membarrier_{private,global}_expedited() may have observed that 3214 * kernel thread and not issued an IPI. It is therefore possible to 3215 * schedule between user->kernel->user threads without passing though 3216 * switch_mm(). Membarrier requires a barrier after storing to 3217 * rq->curr, before returning to userspace, so provide them here: 3218 * 3219 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 3220 * provided by mmdrop(), 3221 * - a sync_core for SYNC_CORE. 3222 */ 3223 if (mm) { 3224 membarrier_mm_sync_core_before_usermode(mm); 3225 mmdrop(mm); 3226 } 3227 if (unlikely(prev_state == TASK_DEAD)) { 3228 if (prev->sched_class->task_dead) 3229 prev->sched_class->task_dead(prev); 3230 3231 /* 3232 * Remove function-return probe instances associated with this 3233 * task and put them back on the free list. 3234 */ 3235 kprobe_flush_task(prev); 3236 3237 /* Task is done with its stack. */ 3238 put_task_stack(prev); 3239 3240 put_task_struct_rcu_user(prev); 3241 } 3242 3243 tick_nohz_task_switch(); 3244 return rq; 3245 } 3246 3247 #ifdef CONFIG_SMP 3248 3249 /* rq->lock is NOT held, but preemption is disabled */ 3250 static void __balance_callback(struct rq *rq) 3251 { 3252 struct callback_head *head, *next; 3253 void (*func)(struct rq *rq); 3254 unsigned long flags; 3255 3256 raw_spin_lock_irqsave(&rq->lock, flags); 3257 head = rq->balance_callback; 3258 rq->balance_callback = NULL; 3259 while (head) { 3260 func = (void (*)(struct rq *))head->func; 3261 next = head->next; 3262 head->next = NULL; 3263 head = next; 3264 3265 func(rq); 3266 } 3267 raw_spin_unlock_irqrestore(&rq->lock, flags); 3268 } 3269 3270 static inline void balance_callback(struct rq *rq) 3271 { 3272 if (unlikely(rq->balance_callback)) 3273 __balance_callback(rq); 3274 } 3275 3276 #else 3277 3278 static inline void balance_callback(struct rq *rq) 3279 { 3280 } 3281 3282 #endif 3283 3284 /** 3285 * schedule_tail - first thing a freshly forked thread must call. 3286 * @prev: the thread we just switched away from. 3287 */ 3288 asmlinkage __visible void schedule_tail(struct task_struct *prev) 3289 __releases(rq->lock) 3290 { 3291 struct rq *rq; 3292 3293 /* 3294 * New tasks start with FORK_PREEMPT_COUNT, see there and 3295 * finish_task_switch() for details. 3296 * 3297 * finish_task_switch() will drop rq->lock() and lower preempt_count 3298 * and the preempt_enable() will end up enabling preemption (on 3299 * PREEMPT_COUNT kernels). 3300 */ 3301 3302 rq = finish_task_switch(prev); 3303 balance_callback(rq); 3304 preempt_enable(); 3305 3306 if (current->set_child_tid) 3307 put_user(task_pid_vnr(current), current->set_child_tid); 3308 3309 calculate_sigpending(); 3310 } 3311 3312 /* 3313 * context_switch - switch to the new MM and the new thread's register state. 3314 */ 3315 static __always_inline struct rq * 3316 context_switch(struct rq *rq, struct task_struct *prev, 3317 struct task_struct *next, struct rq_flags *rf) 3318 { 3319 prepare_task_switch(rq, prev, next); 3320 3321 /* 3322 * For paravirt, this is coupled with an exit in switch_to to 3323 * combine the page table reload and the switch backend into 3324 * one hypercall. 3325 */ 3326 arch_start_context_switch(prev); 3327 3328 /* 3329 * kernel -> kernel lazy + transfer active 3330 * user -> kernel lazy + mmgrab() active 3331 * 3332 * kernel -> user switch + mmdrop() active 3333 * user -> user switch 3334 */ 3335 if (!next->mm) { // to kernel 3336 enter_lazy_tlb(prev->active_mm, next); 3337 3338 next->active_mm = prev->active_mm; 3339 if (prev->mm) // from user 3340 mmgrab(prev->active_mm); 3341 else 3342 prev->active_mm = NULL; 3343 } else { // to user 3344 membarrier_switch_mm(rq, prev->active_mm, next->mm); 3345 /* 3346 * sys_membarrier() requires an smp_mb() between setting 3347 * rq->curr / membarrier_switch_mm() and returning to userspace. 3348 * 3349 * The below provides this either through switch_mm(), or in 3350 * case 'prev->active_mm == next->mm' through 3351 * finish_task_switch()'s mmdrop(). 3352 */ 3353 switch_mm_irqs_off(prev->active_mm, next->mm, next); 3354 3355 if (!prev->mm) { // from kernel 3356 /* will mmdrop() in finish_task_switch(). */ 3357 rq->prev_mm = prev->active_mm; 3358 prev->active_mm = NULL; 3359 } 3360 } 3361 3362 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3363 3364 prepare_lock_switch(rq, next, rf); 3365 3366 /* Here we just switch the register state and the stack. */ 3367 switch_to(prev, next, prev); 3368 barrier(); 3369 3370 return finish_task_switch(prev); 3371 } 3372 3373 /* 3374 * nr_running and nr_context_switches: 3375 * 3376 * externally visible scheduler statistics: current number of runnable 3377 * threads, total number of context switches performed since bootup. 3378 */ 3379 unsigned long nr_running(void) 3380 { 3381 unsigned long i, sum = 0; 3382 3383 for_each_online_cpu(i) 3384 sum += cpu_rq(i)->nr_running; 3385 3386 return sum; 3387 } 3388 3389 /* 3390 * Check if only the current task is running on the CPU. 3391 * 3392 * Caution: this function does not check that the caller has disabled 3393 * preemption, thus the result might have a time-of-check-to-time-of-use 3394 * race. The caller is responsible to use it correctly, for example: 3395 * 3396 * - from a non-preemptible section (of course) 3397 * 3398 * - from a thread that is bound to a single CPU 3399 * 3400 * - in a loop with very short iterations (e.g. a polling loop) 3401 */ 3402 bool single_task_running(void) 3403 { 3404 return raw_rq()->nr_running == 1; 3405 } 3406 EXPORT_SYMBOL(single_task_running); 3407 3408 unsigned long long nr_context_switches(void) 3409 { 3410 int i; 3411 unsigned long long sum = 0; 3412 3413 for_each_possible_cpu(i) 3414 sum += cpu_rq(i)->nr_switches; 3415 3416 return sum; 3417 } 3418 3419 /* 3420 * Consumers of these two interfaces, like for example the cpuidle menu 3421 * governor, are using nonsensical data. Preferring shallow idle state selection 3422 * for a CPU that has IO-wait which might not even end up running the task when 3423 * it does become runnable. 3424 */ 3425 3426 unsigned long nr_iowait_cpu(int cpu) 3427 { 3428 return atomic_read(&cpu_rq(cpu)->nr_iowait); 3429 } 3430 3431 /* 3432 * IO-wait accounting, and how its mostly bollocks (on SMP). 3433 * 3434 * The idea behind IO-wait account is to account the idle time that we could 3435 * have spend running if it were not for IO. That is, if we were to improve the 3436 * storage performance, we'd have a proportional reduction in IO-wait time. 3437 * 3438 * This all works nicely on UP, where, when a task blocks on IO, we account 3439 * idle time as IO-wait, because if the storage were faster, it could've been 3440 * running and we'd not be idle. 3441 * 3442 * This has been extended to SMP, by doing the same for each CPU. This however 3443 * is broken. 3444 * 3445 * Imagine for instance the case where two tasks block on one CPU, only the one 3446 * CPU will have IO-wait accounted, while the other has regular idle. Even 3447 * though, if the storage were faster, both could've ran at the same time, 3448 * utilising both CPUs. 3449 * 3450 * This means, that when looking globally, the current IO-wait accounting on 3451 * SMP is a lower bound, by reason of under accounting. 3452 * 3453 * Worse, since the numbers are provided per CPU, they are sometimes 3454 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 3455 * associated with any one particular CPU, it can wake to another CPU than it 3456 * blocked on. This means the per CPU IO-wait number is meaningless. 3457 * 3458 * Task CPU affinities can make all that even more 'interesting'. 3459 */ 3460 3461 unsigned long nr_iowait(void) 3462 { 3463 unsigned long i, sum = 0; 3464 3465 for_each_possible_cpu(i) 3466 sum += nr_iowait_cpu(i); 3467 3468 return sum; 3469 } 3470 3471 #ifdef CONFIG_SMP 3472 3473 /* 3474 * sched_exec - execve() is a valuable balancing opportunity, because at 3475 * this point the task has the smallest effective memory and cache footprint. 3476 */ 3477 void sched_exec(void) 3478 { 3479 struct task_struct *p = current; 3480 unsigned long flags; 3481 int dest_cpu; 3482 3483 raw_spin_lock_irqsave(&p->pi_lock, flags); 3484 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3485 if (dest_cpu == smp_processor_id()) 3486 goto unlock; 3487 3488 if (likely(cpu_active(dest_cpu))) { 3489 struct migration_arg arg = { p, dest_cpu }; 3490 3491 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3492 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3493 return; 3494 } 3495 unlock: 3496 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3497 } 3498 3499 #endif 3500 3501 DEFINE_PER_CPU(struct kernel_stat, kstat); 3502 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3503 3504 EXPORT_PER_CPU_SYMBOL(kstat); 3505 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3506 3507 /* 3508 * The function fair_sched_class.update_curr accesses the struct curr 3509 * and its field curr->exec_start; when called from task_sched_runtime(), 3510 * we observe a high rate of cache misses in practice. 3511 * Prefetching this data results in improved performance. 3512 */ 3513 static inline void prefetch_curr_exec_start(struct task_struct *p) 3514 { 3515 #ifdef CONFIG_FAIR_GROUP_SCHED 3516 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3517 #else 3518 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3519 #endif 3520 prefetch(curr); 3521 prefetch(&curr->exec_start); 3522 } 3523 3524 /* 3525 * Return accounted runtime for the task. 3526 * In case the task is currently running, return the runtime plus current's 3527 * pending runtime that have not been accounted yet. 3528 */ 3529 unsigned long long task_sched_runtime(struct task_struct *p) 3530 { 3531 struct rq_flags rf; 3532 struct rq *rq; 3533 u64 ns; 3534 3535 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3536 /* 3537 * 64-bit doesn't need locks to atomically read a 64-bit value. 3538 * So we have a optimization chance when the task's delta_exec is 0. 3539 * Reading ->on_cpu is racy, but this is ok. 3540 * 3541 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3542 * If we race with it entering CPU, unaccounted time is 0. This is 3543 * indistinguishable from the read occurring a few cycles earlier. 3544 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3545 * been accounted, so we're correct here as well. 3546 */ 3547 if (!p->on_cpu || !task_on_rq_queued(p)) 3548 return p->se.sum_exec_runtime; 3549 #endif 3550 3551 rq = task_rq_lock(p, &rf); 3552 /* 3553 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3554 * project cycles that may never be accounted to this 3555 * thread, breaking clock_gettime(). 3556 */ 3557 if (task_current(rq, p) && task_on_rq_queued(p)) { 3558 prefetch_curr_exec_start(p); 3559 update_rq_clock(rq); 3560 p->sched_class->update_curr(rq); 3561 } 3562 ns = p->se.sum_exec_runtime; 3563 task_rq_unlock(rq, p, &rf); 3564 3565 return ns; 3566 } 3567 3568 DEFINE_PER_CPU(unsigned long, thermal_pressure); 3569 3570 void arch_set_thermal_pressure(struct cpumask *cpus, 3571 unsigned long th_pressure) 3572 { 3573 int cpu; 3574 3575 for_each_cpu(cpu, cpus) 3576 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); 3577 } 3578 3579 /* 3580 * This function gets called by the timer code, with HZ frequency. 3581 * We call it with interrupts disabled. 3582 */ 3583 void scheduler_tick(void) 3584 { 3585 int cpu = smp_processor_id(); 3586 struct rq *rq = cpu_rq(cpu); 3587 struct task_struct *curr = rq->curr; 3588 struct rq_flags rf; 3589 unsigned long thermal_pressure; 3590 3591 arch_scale_freq_tick(); 3592 sched_clock_tick(); 3593 3594 rq_lock(rq, &rf); 3595 3596 update_rq_clock(rq); 3597 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 3598 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 3599 curr->sched_class->task_tick(rq, curr, 0); 3600 calc_global_load_tick(rq); 3601 psi_task_tick(rq); 3602 3603 rq_unlock(rq, &rf); 3604 3605 perf_event_task_tick(); 3606 3607 #ifdef CONFIG_SMP 3608 rq->idle_balance = idle_cpu(cpu); 3609 trigger_load_balance(rq); 3610 #endif 3611 } 3612 3613 #ifdef CONFIG_NO_HZ_FULL 3614 3615 struct tick_work { 3616 int cpu; 3617 atomic_t state; 3618 struct delayed_work work; 3619 }; 3620 /* Values for ->state, see diagram below. */ 3621 #define TICK_SCHED_REMOTE_OFFLINE 0 3622 #define TICK_SCHED_REMOTE_OFFLINING 1 3623 #define TICK_SCHED_REMOTE_RUNNING 2 3624 3625 /* 3626 * State diagram for ->state: 3627 * 3628 * 3629 * TICK_SCHED_REMOTE_OFFLINE 3630 * | ^ 3631 * | | 3632 * | | sched_tick_remote() 3633 * | | 3634 * | | 3635 * +--TICK_SCHED_REMOTE_OFFLINING 3636 * | ^ 3637 * | | 3638 * sched_tick_start() | | sched_tick_stop() 3639 * | | 3640 * V | 3641 * TICK_SCHED_REMOTE_RUNNING 3642 * 3643 * 3644 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 3645 * and sched_tick_start() are happy to leave the state in RUNNING. 3646 */ 3647 3648 static struct tick_work __percpu *tick_work_cpu; 3649 3650 static void sched_tick_remote(struct work_struct *work) 3651 { 3652 struct delayed_work *dwork = to_delayed_work(work); 3653 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3654 int cpu = twork->cpu; 3655 struct rq *rq = cpu_rq(cpu); 3656 struct task_struct *curr; 3657 struct rq_flags rf; 3658 u64 delta; 3659 int os; 3660 3661 /* 3662 * Handle the tick only if it appears the remote CPU is running in full 3663 * dynticks mode. The check is racy by nature, but missing a tick or 3664 * having one too much is no big deal because the scheduler tick updates 3665 * statistics and checks timeslices in a time-independent way, regardless 3666 * of when exactly it is running. 3667 */ 3668 if (!tick_nohz_tick_stopped_cpu(cpu)) 3669 goto out_requeue; 3670 3671 rq_lock_irq(rq, &rf); 3672 curr = rq->curr; 3673 if (cpu_is_offline(cpu)) 3674 goto out_unlock; 3675 3676 update_rq_clock(rq); 3677 3678 if (!is_idle_task(curr)) { 3679 /* 3680 * Make sure the next tick runs within a reasonable 3681 * amount of time. 3682 */ 3683 delta = rq_clock_task(rq) - curr->se.exec_start; 3684 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3685 } 3686 curr->sched_class->task_tick(rq, curr, 0); 3687 3688 calc_load_nohz_remote(rq); 3689 out_unlock: 3690 rq_unlock_irq(rq, &rf); 3691 out_requeue: 3692 3693 /* 3694 * Run the remote tick once per second (1Hz). This arbitrary 3695 * frequency is large enough to avoid overload but short enough 3696 * to keep scheduler internal stats reasonably up to date. But 3697 * first update state to reflect hotplug activity if required. 3698 */ 3699 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 3700 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 3701 if (os == TICK_SCHED_REMOTE_RUNNING) 3702 queue_delayed_work(system_unbound_wq, dwork, HZ); 3703 } 3704 3705 static void sched_tick_start(int cpu) 3706 { 3707 int os; 3708 struct tick_work *twork; 3709 3710 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3711 return; 3712 3713 WARN_ON_ONCE(!tick_work_cpu); 3714 3715 twork = per_cpu_ptr(tick_work_cpu, cpu); 3716 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 3717 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 3718 if (os == TICK_SCHED_REMOTE_OFFLINE) { 3719 twork->cpu = cpu; 3720 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3721 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3722 } 3723 } 3724 3725 #ifdef CONFIG_HOTPLUG_CPU 3726 static void sched_tick_stop(int cpu) 3727 { 3728 struct tick_work *twork; 3729 int os; 3730 3731 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3732 return; 3733 3734 WARN_ON_ONCE(!tick_work_cpu); 3735 3736 twork = per_cpu_ptr(tick_work_cpu, cpu); 3737 /* There cannot be competing actions, but don't rely on stop-machine. */ 3738 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 3739 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 3740 /* Don't cancel, as this would mess up the state machine. */ 3741 } 3742 #endif /* CONFIG_HOTPLUG_CPU */ 3743 3744 int __init sched_tick_offload_init(void) 3745 { 3746 tick_work_cpu = alloc_percpu(struct tick_work); 3747 BUG_ON(!tick_work_cpu); 3748 return 0; 3749 } 3750 3751 #else /* !CONFIG_NO_HZ_FULL */ 3752 static inline void sched_tick_start(int cpu) { } 3753 static inline void sched_tick_stop(int cpu) { } 3754 #endif 3755 3756 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3757 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3758 /* 3759 * If the value passed in is equal to the current preempt count 3760 * then we just disabled preemption. Start timing the latency. 3761 */ 3762 static inline void preempt_latency_start(int val) 3763 { 3764 if (preempt_count() == val) { 3765 unsigned long ip = get_lock_parent_ip(); 3766 #ifdef CONFIG_DEBUG_PREEMPT 3767 current->preempt_disable_ip = ip; 3768 #endif 3769 trace_preempt_off(CALLER_ADDR0, ip); 3770 } 3771 } 3772 3773 void preempt_count_add(int val) 3774 { 3775 #ifdef CONFIG_DEBUG_PREEMPT 3776 /* 3777 * Underflow? 3778 */ 3779 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3780 return; 3781 #endif 3782 __preempt_count_add(val); 3783 #ifdef CONFIG_DEBUG_PREEMPT 3784 /* 3785 * Spinlock count overflowing soon? 3786 */ 3787 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3788 PREEMPT_MASK - 10); 3789 #endif 3790 preempt_latency_start(val); 3791 } 3792 EXPORT_SYMBOL(preempt_count_add); 3793 NOKPROBE_SYMBOL(preempt_count_add); 3794 3795 /* 3796 * If the value passed in equals to the current preempt count 3797 * then we just enabled preemption. Stop timing the latency. 3798 */ 3799 static inline void preempt_latency_stop(int val) 3800 { 3801 if (preempt_count() == val) 3802 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3803 } 3804 3805 void preempt_count_sub(int val) 3806 { 3807 #ifdef CONFIG_DEBUG_PREEMPT 3808 /* 3809 * Underflow? 3810 */ 3811 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3812 return; 3813 /* 3814 * Is the spinlock portion underflowing? 3815 */ 3816 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3817 !(preempt_count() & PREEMPT_MASK))) 3818 return; 3819 #endif 3820 3821 preempt_latency_stop(val); 3822 __preempt_count_sub(val); 3823 } 3824 EXPORT_SYMBOL(preempt_count_sub); 3825 NOKPROBE_SYMBOL(preempt_count_sub); 3826 3827 #else 3828 static inline void preempt_latency_start(int val) { } 3829 static inline void preempt_latency_stop(int val) { } 3830 #endif 3831 3832 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3833 { 3834 #ifdef CONFIG_DEBUG_PREEMPT 3835 return p->preempt_disable_ip; 3836 #else 3837 return 0; 3838 #endif 3839 } 3840 3841 /* 3842 * Print scheduling while atomic bug: 3843 */ 3844 static noinline void __schedule_bug(struct task_struct *prev) 3845 { 3846 /* Save this before calling printk(), since that will clobber it */ 3847 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3848 3849 if (oops_in_progress) 3850 return; 3851 3852 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3853 prev->comm, prev->pid, preempt_count()); 3854 3855 debug_show_held_locks(prev); 3856 print_modules(); 3857 if (irqs_disabled()) 3858 print_irqtrace_events(prev); 3859 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3860 && in_atomic_preempt_off()) { 3861 pr_err("Preemption disabled at:"); 3862 print_ip_sym(preempt_disable_ip); 3863 pr_cont("\n"); 3864 } 3865 if (panic_on_warn) 3866 panic("scheduling while atomic\n"); 3867 3868 dump_stack(); 3869 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3870 } 3871 3872 /* 3873 * Various schedule()-time debugging checks and statistics: 3874 */ 3875 static inline void schedule_debug(struct task_struct *prev, bool preempt) 3876 { 3877 #ifdef CONFIG_SCHED_STACK_END_CHECK 3878 if (task_stack_end_corrupted(prev)) 3879 panic("corrupted stack end detected inside scheduler\n"); 3880 #endif 3881 3882 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 3883 if (!preempt && prev->state && prev->non_block_count) { 3884 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 3885 prev->comm, prev->pid, prev->non_block_count); 3886 dump_stack(); 3887 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3888 } 3889 #endif 3890 3891 if (unlikely(in_atomic_preempt_off())) { 3892 __schedule_bug(prev); 3893 preempt_count_set(PREEMPT_DISABLED); 3894 } 3895 rcu_sleep_check(); 3896 3897 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3898 3899 schedstat_inc(this_rq()->sched_count); 3900 } 3901 3902 /* 3903 * Pick up the highest-prio task: 3904 */ 3905 static inline struct task_struct * 3906 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3907 { 3908 const struct sched_class *class; 3909 struct task_struct *p; 3910 3911 /* 3912 * Optimization: we know that if all tasks are in the fair class we can 3913 * call that function directly, but only if the @prev task wasn't of a 3914 * higher scheduling class, because otherwise those loose the 3915 * opportunity to pull in more work from other CPUs. 3916 */ 3917 if (likely((prev->sched_class == &idle_sched_class || 3918 prev->sched_class == &fair_sched_class) && 3919 rq->nr_running == rq->cfs.h_nr_running)) { 3920 3921 p = pick_next_task_fair(rq, prev, rf); 3922 if (unlikely(p == RETRY_TASK)) 3923 goto restart; 3924 3925 /* Assumes fair_sched_class->next == idle_sched_class */ 3926 if (!p) { 3927 put_prev_task(rq, prev); 3928 p = pick_next_task_idle(rq); 3929 } 3930 3931 return p; 3932 } 3933 3934 restart: 3935 #ifdef CONFIG_SMP 3936 /* 3937 * We must do the balancing pass before put_next_task(), such 3938 * that when we release the rq->lock the task is in the same 3939 * state as before we took rq->lock. 3940 * 3941 * We can terminate the balance pass as soon as we know there is 3942 * a runnable task of @class priority or higher. 3943 */ 3944 for_class_range(class, prev->sched_class, &idle_sched_class) { 3945 if (class->balance(rq, prev, rf)) 3946 break; 3947 } 3948 #endif 3949 3950 put_prev_task(rq, prev); 3951 3952 for_each_class(class) { 3953 p = class->pick_next_task(rq); 3954 if (p) 3955 return p; 3956 } 3957 3958 /* The idle class should always have a runnable task: */ 3959 BUG(); 3960 } 3961 3962 /* 3963 * __schedule() is the main scheduler function. 3964 * 3965 * The main means of driving the scheduler and thus entering this function are: 3966 * 3967 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3968 * 3969 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3970 * paths. For example, see arch/x86/entry_64.S. 3971 * 3972 * To drive preemption between tasks, the scheduler sets the flag in timer 3973 * interrupt handler scheduler_tick(). 3974 * 3975 * 3. Wakeups don't really cause entry into schedule(). They add a 3976 * task to the run-queue and that's it. 3977 * 3978 * Now, if the new task added to the run-queue preempts the current 3979 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3980 * called on the nearest possible occasion: 3981 * 3982 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 3983 * 3984 * - in syscall or exception context, at the next outmost 3985 * preempt_enable(). (this might be as soon as the wake_up()'s 3986 * spin_unlock()!) 3987 * 3988 * - in IRQ context, return from interrupt-handler to 3989 * preemptible context 3990 * 3991 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 3992 * then at the next: 3993 * 3994 * - cond_resched() call 3995 * - explicit schedule() call 3996 * - return from syscall or exception to user-space 3997 * - return from interrupt-handler to user-space 3998 * 3999 * WARNING: must be called with preemption disabled! 4000 */ 4001 static void __sched notrace __schedule(bool preempt) 4002 { 4003 struct task_struct *prev, *next; 4004 unsigned long *switch_count; 4005 struct rq_flags rf; 4006 struct rq *rq; 4007 int cpu; 4008 4009 cpu = smp_processor_id(); 4010 rq = cpu_rq(cpu); 4011 prev = rq->curr; 4012 4013 schedule_debug(prev, preempt); 4014 4015 if (sched_feat(HRTICK)) 4016 hrtick_clear(rq); 4017 4018 local_irq_disable(); 4019 rcu_note_context_switch(preempt); 4020 4021 /* 4022 * Make sure that signal_pending_state()->signal_pending() below 4023 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4024 * done by the caller to avoid the race with signal_wake_up(). 4025 * 4026 * The membarrier system call requires a full memory barrier 4027 * after coming from user-space, before storing to rq->curr. 4028 */ 4029 rq_lock(rq, &rf); 4030 smp_mb__after_spinlock(); 4031 4032 /* Promote REQ to ACT */ 4033 rq->clock_update_flags <<= 1; 4034 update_rq_clock(rq); 4035 4036 switch_count = &prev->nivcsw; 4037 if (!preempt && prev->state) { 4038 if (signal_pending_state(prev->state, prev)) { 4039 prev->state = TASK_RUNNING; 4040 } else { 4041 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 4042 4043 if (prev->in_iowait) { 4044 atomic_inc(&rq->nr_iowait); 4045 delayacct_blkio_start(); 4046 } 4047 } 4048 switch_count = &prev->nvcsw; 4049 } 4050 4051 next = pick_next_task(rq, prev, &rf); 4052 clear_tsk_need_resched(prev); 4053 clear_preempt_need_resched(); 4054 4055 if (likely(prev != next)) { 4056 rq->nr_switches++; 4057 /* 4058 * RCU users of rcu_dereference(rq->curr) may not see 4059 * changes to task_struct made by pick_next_task(). 4060 */ 4061 RCU_INIT_POINTER(rq->curr, next); 4062 /* 4063 * The membarrier system call requires each architecture 4064 * to have a full memory barrier after updating 4065 * rq->curr, before returning to user-space. 4066 * 4067 * Here are the schemes providing that barrier on the 4068 * various architectures: 4069 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 4070 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 4071 * - finish_lock_switch() for weakly-ordered 4072 * architectures where spin_unlock is a full barrier, 4073 * - switch_to() for arm64 (weakly-ordered, spin_unlock 4074 * is a RELEASE barrier), 4075 */ 4076 ++*switch_count; 4077 4078 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 4079 4080 trace_sched_switch(preempt, prev, next); 4081 4082 /* Also unlocks the rq: */ 4083 rq = context_switch(rq, prev, next, &rf); 4084 } else { 4085 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4086 rq_unlock_irq(rq, &rf); 4087 } 4088 4089 balance_callback(rq); 4090 } 4091 4092 void __noreturn do_task_dead(void) 4093 { 4094 /* Causes final put_task_struct in finish_task_switch(): */ 4095 set_special_state(TASK_DEAD); 4096 4097 /* Tell freezer to ignore us: */ 4098 current->flags |= PF_NOFREEZE; 4099 4100 __schedule(false); 4101 BUG(); 4102 4103 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 4104 for (;;) 4105 cpu_relax(); 4106 } 4107 4108 static inline void sched_submit_work(struct task_struct *tsk) 4109 { 4110 if (!tsk->state) 4111 return; 4112 4113 /* 4114 * If a worker went to sleep, notify and ask workqueue whether 4115 * it wants to wake up a task to maintain concurrency. 4116 * As this function is called inside the schedule() context, 4117 * we disable preemption to avoid it calling schedule() again 4118 * in the possible wakeup of a kworker and because wq_worker_sleeping() 4119 * requires it. 4120 */ 4121 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4122 preempt_disable(); 4123 if (tsk->flags & PF_WQ_WORKER) 4124 wq_worker_sleeping(tsk); 4125 else 4126 io_wq_worker_sleeping(tsk); 4127 preempt_enable_no_resched(); 4128 } 4129 4130 if (tsk_is_pi_blocked(tsk)) 4131 return; 4132 4133 /* 4134 * If we are going to sleep and we have plugged IO queued, 4135 * make sure to submit it to avoid deadlocks. 4136 */ 4137 if (blk_needs_flush_plug(tsk)) 4138 blk_schedule_flush_plug(tsk); 4139 } 4140 4141 static void sched_update_worker(struct task_struct *tsk) 4142 { 4143 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4144 if (tsk->flags & PF_WQ_WORKER) 4145 wq_worker_running(tsk); 4146 else 4147 io_wq_worker_running(tsk); 4148 } 4149 } 4150 4151 asmlinkage __visible void __sched schedule(void) 4152 { 4153 struct task_struct *tsk = current; 4154 4155 sched_submit_work(tsk); 4156 do { 4157 preempt_disable(); 4158 __schedule(false); 4159 sched_preempt_enable_no_resched(); 4160 } while (need_resched()); 4161 sched_update_worker(tsk); 4162 } 4163 EXPORT_SYMBOL(schedule); 4164 4165 /* 4166 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 4167 * state (have scheduled out non-voluntarily) by making sure that all 4168 * tasks have either left the run queue or have gone into user space. 4169 * As idle tasks do not do either, they must not ever be preempted 4170 * (schedule out non-voluntarily). 4171 * 4172 * schedule_idle() is similar to schedule_preempt_disable() except that it 4173 * never enables preemption because it does not call sched_submit_work(). 4174 */ 4175 void __sched schedule_idle(void) 4176 { 4177 /* 4178 * As this skips calling sched_submit_work(), which the idle task does 4179 * regardless because that function is a nop when the task is in a 4180 * TASK_RUNNING state, make sure this isn't used someplace that the 4181 * current task can be in any other state. Note, idle is always in the 4182 * TASK_RUNNING state. 4183 */ 4184 WARN_ON_ONCE(current->state); 4185 do { 4186 __schedule(false); 4187 } while (need_resched()); 4188 } 4189 4190 #ifdef CONFIG_CONTEXT_TRACKING 4191 asmlinkage __visible void __sched schedule_user(void) 4192 { 4193 /* 4194 * If we come here after a random call to set_need_resched(), 4195 * or we have been woken up remotely but the IPI has not yet arrived, 4196 * we haven't yet exited the RCU idle mode. Do it here manually until 4197 * we find a better solution. 4198 * 4199 * NB: There are buggy callers of this function. Ideally we 4200 * should warn if prev_state != CONTEXT_USER, but that will trigger 4201 * too frequently to make sense yet. 4202 */ 4203 enum ctx_state prev_state = exception_enter(); 4204 schedule(); 4205 exception_exit(prev_state); 4206 } 4207 #endif 4208 4209 /** 4210 * schedule_preempt_disabled - called with preemption disabled 4211 * 4212 * Returns with preemption disabled. Note: preempt_count must be 1 4213 */ 4214 void __sched schedule_preempt_disabled(void) 4215 { 4216 sched_preempt_enable_no_resched(); 4217 schedule(); 4218 preempt_disable(); 4219 } 4220 4221 static void __sched notrace preempt_schedule_common(void) 4222 { 4223 do { 4224 /* 4225 * Because the function tracer can trace preempt_count_sub() 4226 * and it also uses preempt_enable/disable_notrace(), if 4227 * NEED_RESCHED is set, the preempt_enable_notrace() called 4228 * by the function tracer will call this function again and 4229 * cause infinite recursion. 4230 * 4231 * Preemption must be disabled here before the function 4232 * tracer can trace. Break up preempt_disable() into two 4233 * calls. One to disable preemption without fear of being 4234 * traced. The other to still record the preemption latency, 4235 * which can also be traced by the function tracer. 4236 */ 4237 preempt_disable_notrace(); 4238 preempt_latency_start(1); 4239 __schedule(true); 4240 preempt_latency_stop(1); 4241 preempt_enable_no_resched_notrace(); 4242 4243 /* 4244 * Check again in case we missed a preemption opportunity 4245 * between schedule and now. 4246 */ 4247 } while (need_resched()); 4248 } 4249 4250 #ifdef CONFIG_PREEMPTION 4251 /* 4252 * This is the entry point to schedule() from in-kernel preemption 4253 * off of preempt_enable. 4254 */ 4255 asmlinkage __visible void __sched notrace preempt_schedule(void) 4256 { 4257 /* 4258 * If there is a non-zero preempt_count or interrupts are disabled, 4259 * we do not want to preempt the current task. Just return.. 4260 */ 4261 if (likely(!preemptible())) 4262 return; 4263 4264 preempt_schedule_common(); 4265 } 4266 NOKPROBE_SYMBOL(preempt_schedule); 4267 EXPORT_SYMBOL(preempt_schedule); 4268 4269 /** 4270 * preempt_schedule_notrace - preempt_schedule called by tracing 4271 * 4272 * The tracing infrastructure uses preempt_enable_notrace to prevent 4273 * recursion and tracing preempt enabling caused by the tracing 4274 * infrastructure itself. But as tracing can happen in areas coming 4275 * from userspace or just about to enter userspace, a preempt enable 4276 * can occur before user_exit() is called. This will cause the scheduler 4277 * to be called when the system is still in usermode. 4278 * 4279 * To prevent this, the preempt_enable_notrace will use this function 4280 * instead of preempt_schedule() to exit user context if needed before 4281 * calling the scheduler. 4282 */ 4283 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 4284 { 4285 enum ctx_state prev_ctx; 4286 4287 if (likely(!preemptible())) 4288 return; 4289 4290 do { 4291 /* 4292 * Because the function tracer can trace preempt_count_sub() 4293 * and it also uses preempt_enable/disable_notrace(), if 4294 * NEED_RESCHED is set, the preempt_enable_notrace() called 4295 * by the function tracer will call this function again and 4296 * cause infinite recursion. 4297 * 4298 * Preemption must be disabled here before the function 4299 * tracer can trace. Break up preempt_disable() into two 4300 * calls. One to disable preemption without fear of being 4301 * traced. The other to still record the preemption latency, 4302 * which can also be traced by the function tracer. 4303 */ 4304 preempt_disable_notrace(); 4305 preempt_latency_start(1); 4306 /* 4307 * Needs preempt disabled in case user_exit() is traced 4308 * and the tracer calls preempt_enable_notrace() causing 4309 * an infinite recursion. 4310 */ 4311 prev_ctx = exception_enter(); 4312 __schedule(true); 4313 exception_exit(prev_ctx); 4314 4315 preempt_latency_stop(1); 4316 preempt_enable_no_resched_notrace(); 4317 } while (need_resched()); 4318 } 4319 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 4320 4321 #endif /* CONFIG_PREEMPTION */ 4322 4323 /* 4324 * This is the entry point to schedule() from kernel preemption 4325 * off of irq context. 4326 * Note, that this is called and return with irqs disabled. This will 4327 * protect us against recursive calling from irq. 4328 */ 4329 asmlinkage __visible void __sched preempt_schedule_irq(void) 4330 { 4331 enum ctx_state prev_state; 4332 4333 /* Catch callers which need to be fixed */ 4334 BUG_ON(preempt_count() || !irqs_disabled()); 4335 4336 prev_state = exception_enter(); 4337 4338 do { 4339 preempt_disable(); 4340 local_irq_enable(); 4341 __schedule(true); 4342 local_irq_disable(); 4343 sched_preempt_enable_no_resched(); 4344 } while (need_resched()); 4345 4346 exception_exit(prev_state); 4347 } 4348 4349 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 4350 void *key) 4351 { 4352 return try_to_wake_up(curr->private, mode, wake_flags); 4353 } 4354 EXPORT_SYMBOL(default_wake_function); 4355 4356 #ifdef CONFIG_RT_MUTEXES 4357 4358 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 4359 { 4360 if (pi_task) 4361 prio = min(prio, pi_task->prio); 4362 4363 return prio; 4364 } 4365 4366 static inline int rt_effective_prio(struct task_struct *p, int prio) 4367 { 4368 struct task_struct *pi_task = rt_mutex_get_top_task(p); 4369 4370 return __rt_effective_prio(pi_task, prio); 4371 } 4372 4373 /* 4374 * rt_mutex_setprio - set the current priority of a task 4375 * @p: task to boost 4376 * @pi_task: donor task 4377 * 4378 * This function changes the 'effective' priority of a task. It does 4379 * not touch ->normal_prio like __setscheduler(). 4380 * 4381 * Used by the rt_mutex code to implement priority inheritance 4382 * logic. Call site only calls if the priority of the task changed. 4383 */ 4384 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 4385 { 4386 int prio, oldprio, queued, running, queue_flag = 4387 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4388 const struct sched_class *prev_class; 4389 struct rq_flags rf; 4390 struct rq *rq; 4391 4392 /* XXX used to be waiter->prio, not waiter->task->prio */ 4393 prio = __rt_effective_prio(pi_task, p->normal_prio); 4394 4395 /* 4396 * If nothing changed; bail early. 4397 */ 4398 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 4399 return; 4400 4401 rq = __task_rq_lock(p, &rf); 4402 update_rq_clock(rq); 4403 /* 4404 * Set under pi_lock && rq->lock, such that the value can be used under 4405 * either lock. 4406 * 4407 * Note that there is loads of tricky to make this pointer cache work 4408 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 4409 * ensure a task is de-boosted (pi_task is set to NULL) before the 4410 * task is allowed to run again (and can exit). This ensures the pointer 4411 * points to a blocked task -- which guaratees the task is present. 4412 */ 4413 p->pi_top_task = pi_task; 4414 4415 /* 4416 * For FIFO/RR we only need to set prio, if that matches we're done. 4417 */ 4418 if (prio == p->prio && !dl_prio(prio)) 4419 goto out_unlock; 4420 4421 /* 4422 * Idle task boosting is a nono in general. There is one 4423 * exception, when PREEMPT_RT and NOHZ is active: 4424 * 4425 * The idle task calls get_next_timer_interrupt() and holds 4426 * the timer wheel base->lock on the CPU and another CPU wants 4427 * to access the timer (probably to cancel it). We can safely 4428 * ignore the boosting request, as the idle CPU runs this code 4429 * with interrupts disabled and will complete the lock 4430 * protected section without being interrupted. So there is no 4431 * real need to boost. 4432 */ 4433 if (unlikely(p == rq->idle)) { 4434 WARN_ON(p != rq->curr); 4435 WARN_ON(p->pi_blocked_on); 4436 goto out_unlock; 4437 } 4438 4439 trace_sched_pi_setprio(p, pi_task); 4440 oldprio = p->prio; 4441 4442 if (oldprio == prio) 4443 queue_flag &= ~DEQUEUE_MOVE; 4444 4445 prev_class = p->sched_class; 4446 queued = task_on_rq_queued(p); 4447 running = task_current(rq, p); 4448 if (queued) 4449 dequeue_task(rq, p, queue_flag); 4450 if (running) 4451 put_prev_task(rq, p); 4452 4453 /* 4454 * Boosting condition are: 4455 * 1. -rt task is running and holds mutex A 4456 * --> -dl task blocks on mutex A 4457 * 4458 * 2. -dl task is running and holds mutex A 4459 * --> -dl task blocks on mutex A and could preempt the 4460 * running task 4461 */ 4462 if (dl_prio(prio)) { 4463 if (!dl_prio(p->normal_prio) || 4464 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 4465 p->dl.dl_boosted = 1; 4466 queue_flag |= ENQUEUE_REPLENISH; 4467 } else 4468 p->dl.dl_boosted = 0; 4469 p->sched_class = &dl_sched_class; 4470 } else if (rt_prio(prio)) { 4471 if (dl_prio(oldprio)) 4472 p->dl.dl_boosted = 0; 4473 if (oldprio < prio) 4474 queue_flag |= ENQUEUE_HEAD; 4475 p->sched_class = &rt_sched_class; 4476 } else { 4477 if (dl_prio(oldprio)) 4478 p->dl.dl_boosted = 0; 4479 if (rt_prio(oldprio)) 4480 p->rt.timeout = 0; 4481 p->sched_class = &fair_sched_class; 4482 } 4483 4484 p->prio = prio; 4485 4486 if (queued) 4487 enqueue_task(rq, p, queue_flag); 4488 if (running) 4489 set_next_task(rq, p); 4490 4491 check_class_changed(rq, p, prev_class, oldprio); 4492 out_unlock: 4493 /* Avoid rq from going away on us: */ 4494 preempt_disable(); 4495 __task_rq_unlock(rq, &rf); 4496 4497 balance_callback(rq); 4498 preempt_enable(); 4499 } 4500 #else 4501 static inline int rt_effective_prio(struct task_struct *p, int prio) 4502 { 4503 return prio; 4504 } 4505 #endif 4506 4507 void set_user_nice(struct task_struct *p, long nice) 4508 { 4509 bool queued, running; 4510 int old_prio; 4511 struct rq_flags rf; 4512 struct rq *rq; 4513 4514 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 4515 return; 4516 /* 4517 * We have to be careful, if called from sys_setpriority(), 4518 * the task might be in the middle of scheduling on another CPU. 4519 */ 4520 rq = task_rq_lock(p, &rf); 4521 update_rq_clock(rq); 4522 4523 /* 4524 * The RT priorities are set via sched_setscheduler(), but we still 4525 * allow the 'normal' nice value to be set - but as expected 4526 * it wont have any effect on scheduling until the task is 4527 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 4528 */ 4529 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4530 p->static_prio = NICE_TO_PRIO(nice); 4531 goto out_unlock; 4532 } 4533 queued = task_on_rq_queued(p); 4534 running = task_current(rq, p); 4535 if (queued) 4536 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 4537 if (running) 4538 put_prev_task(rq, p); 4539 4540 p->static_prio = NICE_TO_PRIO(nice); 4541 set_load_weight(p, true); 4542 old_prio = p->prio; 4543 p->prio = effective_prio(p); 4544 4545 if (queued) 4546 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 4547 if (running) 4548 set_next_task(rq, p); 4549 4550 /* 4551 * If the task increased its priority or is running and 4552 * lowered its priority, then reschedule its CPU: 4553 */ 4554 p->sched_class->prio_changed(rq, p, old_prio); 4555 4556 out_unlock: 4557 task_rq_unlock(rq, p, &rf); 4558 } 4559 EXPORT_SYMBOL(set_user_nice); 4560 4561 /* 4562 * can_nice - check if a task can reduce its nice value 4563 * @p: task 4564 * @nice: nice value 4565 */ 4566 int can_nice(const struct task_struct *p, const int nice) 4567 { 4568 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 4569 int nice_rlim = nice_to_rlimit(nice); 4570 4571 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 4572 capable(CAP_SYS_NICE)); 4573 } 4574 4575 #ifdef __ARCH_WANT_SYS_NICE 4576 4577 /* 4578 * sys_nice - change the priority of the current process. 4579 * @increment: priority increment 4580 * 4581 * sys_setpriority is a more generic, but much slower function that 4582 * does similar things. 4583 */ 4584 SYSCALL_DEFINE1(nice, int, increment) 4585 { 4586 long nice, retval; 4587 4588 /* 4589 * Setpriority might change our priority at the same moment. 4590 * We don't have to worry. Conceptually one call occurs first 4591 * and we have a single winner. 4592 */ 4593 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 4594 nice = task_nice(current) + increment; 4595 4596 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 4597 if (increment < 0 && !can_nice(current, nice)) 4598 return -EPERM; 4599 4600 retval = security_task_setnice(current, nice); 4601 if (retval) 4602 return retval; 4603 4604 set_user_nice(current, nice); 4605 return 0; 4606 } 4607 4608 #endif 4609 4610 /** 4611 * task_prio - return the priority value of a given task. 4612 * @p: the task in question. 4613 * 4614 * Return: The priority value as seen by users in /proc. 4615 * RT tasks are offset by -200. Normal tasks are centered 4616 * around 0, value goes from -16 to +15. 4617 */ 4618 int task_prio(const struct task_struct *p) 4619 { 4620 return p->prio - MAX_RT_PRIO; 4621 } 4622 4623 /** 4624 * idle_cpu - is a given CPU idle currently? 4625 * @cpu: the processor in question. 4626 * 4627 * Return: 1 if the CPU is currently idle. 0 otherwise. 4628 */ 4629 int idle_cpu(int cpu) 4630 { 4631 struct rq *rq = cpu_rq(cpu); 4632 4633 if (rq->curr != rq->idle) 4634 return 0; 4635 4636 if (rq->nr_running) 4637 return 0; 4638 4639 #ifdef CONFIG_SMP 4640 if (!llist_empty(&rq->wake_list)) 4641 return 0; 4642 #endif 4643 4644 return 1; 4645 } 4646 4647 /** 4648 * available_idle_cpu - is a given CPU idle for enqueuing work. 4649 * @cpu: the CPU in question. 4650 * 4651 * Return: 1 if the CPU is currently idle. 0 otherwise. 4652 */ 4653 int available_idle_cpu(int cpu) 4654 { 4655 if (!idle_cpu(cpu)) 4656 return 0; 4657 4658 if (vcpu_is_preempted(cpu)) 4659 return 0; 4660 4661 return 1; 4662 } 4663 4664 /** 4665 * idle_task - return the idle task for a given CPU. 4666 * @cpu: the processor in question. 4667 * 4668 * Return: The idle task for the CPU @cpu. 4669 */ 4670 struct task_struct *idle_task(int cpu) 4671 { 4672 return cpu_rq(cpu)->idle; 4673 } 4674 4675 /** 4676 * find_process_by_pid - find a process with a matching PID value. 4677 * @pid: the pid in question. 4678 * 4679 * The task of @pid, if found. %NULL otherwise. 4680 */ 4681 static struct task_struct *find_process_by_pid(pid_t pid) 4682 { 4683 return pid ? find_task_by_vpid(pid) : current; 4684 } 4685 4686 /* 4687 * sched_setparam() passes in -1 for its policy, to let the functions 4688 * it calls know not to change it. 4689 */ 4690 #define SETPARAM_POLICY -1 4691 4692 static void __setscheduler_params(struct task_struct *p, 4693 const struct sched_attr *attr) 4694 { 4695 int policy = attr->sched_policy; 4696 4697 if (policy == SETPARAM_POLICY) 4698 policy = p->policy; 4699 4700 p->policy = policy; 4701 4702 if (dl_policy(policy)) 4703 __setparam_dl(p, attr); 4704 else if (fair_policy(policy)) 4705 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4706 4707 /* 4708 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4709 * !rt_policy. Always setting this ensures that things like 4710 * getparam()/getattr() don't report silly values for !rt tasks. 4711 */ 4712 p->rt_priority = attr->sched_priority; 4713 p->normal_prio = normal_prio(p); 4714 set_load_weight(p, true); 4715 } 4716 4717 /* Actually do priority change: must hold pi & rq lock. */ 4718 static void __setscheduler(struct rq *rq, struct task_struct *p, 4719 const struct sched_attr *attr, bool keep_boost) 4720 { 4721 /* 4722 * If params can't change scheduling class changes aren't allowed 4723 * either. 4724 */ 4725 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 4726 return; 4727 4728 __setscheduler_params(p, attr); 4729 4730 /* 4731 * Keep a potential priority boosting if called from 4732 * sched_setscheduler(). 4733 */ 4734 p->prio = normal_prio(p); 4735 if (keep_boost) 4736 p->prio = rt_effective_prio(p, p->prio); 4737 4738 if (dl_prio(p->prio)) 4739 p->sched_class = &dl_sched_class; 4740 else if (rt_prio(p->prio)) 4741 p->sched_class = &rt_sched_class; 4742 else 4743 p->sched_class = &fair_sched_class; 4744 } 4745 4746 /* 4747 * Check the target process has a UID that matches the current process's: 4748 */ 4749 static bool check_same_owner(struct task_struct *p) 4750 { 4751 const struct cred *cred = current_cred(), *pcred; 4752 bool match; 4753 4754 rcu_read_lock(); 4755 pcred = __task_cred(p); 4756 match = (uid_eq(cred->euid, pcred->euid) || 4757 uid_eq(cred->euid, pcred->uid)); 4758 rcu_read_unlock(); 4759 return match; 4760 } 4761 4762 static int __sched_setscheduler(struct task_struct *p, 4763 const struct sched_attr *attr, 4764 bool user, bool pi) 4765 { 4766 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4767 MAX_RT_PRIO - 1 - attr->sched_priority; 4768 int retval, oldprio, oldpolicy = -1, queued, running; 4769 int new_effective_prio, policy = attr->sched_policy; 4770 const struct sched_class *prev_class; 4771 struct rq_flags rf; 4772 int reset_on_fork; 4773 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4774 struct rq *rq; 4775 4776 /* The pi code expects interrupts enabled */ 4777 BUG_ON(pi && in_interrupt()); 4778 recheck: 4779 /* Double check policy once rq lock held: */ 4780 if (policy < 0) { 4781 reset_on_fork = p->sched_reset_on_fork; 4782 policy = oldpolicy = p->policy; 4783 } else { 4784 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4785 4786 if (!valid_policy(policy)) 4787 return -EINVAL; 4788 } 4789 4790 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4791 return -EINVAL; 4792 4793 /* 4794 * Valid priorities for SCHED_FIFO and SCHED_RR are 4795 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4796 * SCHED_BATCH and SCHED_IDLE is 0. 4797 */ 4798 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4799 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4800 return -EINVAL; 4801 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4802 (rt_policy(policy) != (attr->sched_priority != 0))) 4803 return -EINVAL; 4804 4805 /* 4806 * Allow unprivileged RT tasks to decrease priority: 4807 */ 4808 if (user && !capable(CAP_SYS_NICE)) { 4809 if (fair_policy(policy)) { 4810 if (attr->sched_nice < task_nice(p) && 4811 !can_nice(p, attr->sched_nice)) 4812 return -EPERM; 4813 } 4814 4815 if (rt_policy(policy)) { 4816 unsigned long rlim_rtprio = 4817 task_rlimit(p, RLIMIT_RTPRIO); 4818 4819 /* Can't set/change the rt policy: */ 4820 if (policy != p->policy && !rlim_rtprio) 4821 return -EPERM; 4822 4823 /* Can't increase priority: */ 4824 if (attr->sched_priority > p->rt_priority && 4825 attr->sched_priority > rlim_rtprio) 4826 return -EPERM; 4827 } 4828 4829 /* 4830 * Can't set/change SCHED_DEADLINE policy at all for now 4831 * (safest behavior); in the future we would like to allow 4832 * unprivileged DL tasks to increase their relative deadline 4833 * or reduce their runtime (both ways reducing utilization) 4834 */ 4835 if (dl_policy(policy)) 4836 return -EPERM; 4837 4838 /* 4839 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4840 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4841 */ 4842 if (task_has_idle_policy(p) && !idle_policy(policy)) { 4843 if (!can_nice(p, task_nice(p))) 4844 return -EPERM; 4845 } 4846 4847 /* Can't change other user's priorities: */ 4848 if (!check_same_owner(p)) 4849 return -EPERM; 4850 4851 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4852 if (p->sched_reset_on_fork && !reset_on_fork) 4853 return -EPERM; 4854 } 4855 4856 if (user) { 4857 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4858 return -EINVAL; 4859 4860 retval = security_task_setscheduler(p); 4861 if (retval) 4862 return retval; 4863 } 4864 4865 /* Update task specific "requested" clamps */ 4866 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 4867 retval = uclamp_validate(p, attr); 4868 if (retval) 4869 return retval; 4870 } 4871 4872 if (pi) 4873 cpuset_read_lock(); 4874 4875 /* 4876 * Make sure no PI-waiters arrive (or leave) while we are 4877 * changing the priority of the task: 4878 * 4879 * To be able to change p->policy safely, the appropriate 4880 * runqueue lock must be held. 4881 */ 4882 rq = task_rq_lock(p, &rf); 4883 update_rq_clock(rq); 4884 4885 /* 4886 * Changing the policy of the stop threads its a very bad idea: 4887 */ 4888 if (p == rq->stop) { 4889 retval = -EINVAL; 4890 goto unlock; 4891 } 4892 4893 /* 4894 * If not changing anything there's no need to proceed further, 4895 * but store a possible modification of reset_on_fork. 4896 */ 4897 if (unlikely(policy == p->policy)) { 4898 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4899 goto change; 4900 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4901 goto change; 4902 if (dl_policy(policy) && dl_param_changed(p, attr)) 4903 goto change; 4904 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 4905 goto change; 4906 4907 p->sched_reset_on_fork = reset_on_fork; 4908 retval = 0; 4909 goto unlock; 4910 } 4911 change: 4912 4913 if (user) { 4914 #ifdef CONFIG_RT_GROUP_SCHED 4915 /* 4916 * Do not allow realtime tasks into groups that have no runtime 4917 * assigned. 4918 */ 4919 if (rt_bandwidth_enabled() && rt_policy(policy) && 4920 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4921 !task_group_is_autogroup(task_group(p))) { 4922 retval = -EPERM; 4923 goto unlock; 4924 } 4925 #endif 4926 #ifdef CONFIG_SMP 4927 if (dl_bandwidth_enabled() && dl_policy(policy) && 4928 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4929 cpumask_t *span = rq->rd->span; 4930 4931 /* 4932 * Don't allow tasks with an affinity mask smaller than 4933 * the entire root_domain to become SCHED_DEADLINE. We 4934 * will also fail if there's no bandwidth available. 4935 */ 4936 if (!cpumask_subset(span, p->cpus_ptr) || 4937 rq->rd->dl_bw.bw == 0) { 4938 retval = -EPERM; 4939 goto unlock; 4940 } 4941 } 4942 #endif 4943 } 4944 4945 /* Re-check policy now with rq lock held: */ 4946 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4947 policy = oldpolicy = -1; 4948 task_rq_unlock(rq, p, &rf); 4949 if (pi) 4950 cpuset_read_unlock(); 4951 goto recheck; 4952 } 4953 4954 /* 4955 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4956 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4957 * is available. 4958 */ 4959 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4960 retval = -EBUSY; 4961 goto unlock; 4962 } 4963 4964 p->sched_reset_on_fork = reset_on_fork; 4965 oldprio = p->prio; 4966 4967 if (pi) { 4968 /* 4969 * Take priority boosted tasks into account. If the new 4970 * effective priority is unchanged, we just store the new 4971 * normal parameters and do not touch the scheduler class and 4972 * the runqueue. This will be done when the task deboost 4973 * itself. 4974 */ 4975 new_effective_prio = rt_effective_prio(p, newprio); 4976 if (new_effective_prio == oldprio) 4977 queue_flags &= ~DEQUEUE_MOVE; 4978 } 4979 4980 queued = task_on_rq_queued(p); 4981 running = task_current(rq, p); 4982 if (queued) 4983 dequeue_task(rq, p, queue_flags); 4984 if (running) 4985 put_prev_task(rq, p); 4986 4987 prev_class = p->sched_class; 4988 4989 __setscheduler(rq, p, attr, pi); 4990 __setscheduler_uclamp(p, attr); 4991 4992 if (queued) { 4993 /* 4994 * We enqueue to tail when the priority of a task is 4995 * increased (user space view). 4996 */ 4997 if (oldprio < p->prio) 4998 queue_flags |= ENQUEUE_HEAD; 4999 5000 enqueue_task(rq, p, queue_flags); 5001 } 5002 if (running) 5003 set_next_task(rq, p); 5004 5005 check_class_changed(rq, p, prev_class, oldprio); 5006 5007 /* Avoid rq from going away on us: */ 5008 preempt_disable(); 5009 task_rq_unlock(rq, p, &rf); 5010 5011 if (pi) { 5012 cpuset_read_unlock(); 5013 rt_mutex_adjust_pi(p); 5014 } 5015 5016 /* Run balance callbacks after we've adjusted the PI chain: */ 5017 balance_callback(rq); 5018 preempt_enable(); 5019 5020 return 0; 5021 5022 unlock: 5023 task_rq_unlock(rq, p, &rf); 5024 if (pi) 5025 cpuset_read_unlock(); 5026 return retval; 5027 } 5028 5029 static int _sched_setscheduler(struct task_struct *p, int policy, 5030 const struct sched_param *param, bool check) 5031 { 5032 struct sched_attr attr = { 5033 .sched_policy = policy, 5034 .sched_priority = param->sched_priority, 5035 .sched_nice = PRIO_TO_NICE(p->static_prio), 5036 }; 5037 5038 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 5039 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 5040 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5041 policy &= ~SCHED_RESET_ON_FORK; 5042 attr.sched_policy = policy; 5043 } 5044 5045 return __sched_setscheduler(p, &attr, check, true); 5046 } 5047 /** 5048 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 5049 * @p: the task in question. 5050 * @policy: new policy. 5051 * @param: structure containing the new RT priority. 5052 * 5053 * Return: 0 on success. An error code otherwise. 5054 * 5055 * NOTE that the task may be already dead. 5056 */ 5057 int sched_setscheduler(struct task_struct *p, int policy, 5058 const struct sched_param *param) 5059 { 5060 return _sched_setscheduler(p, policy, param, true); 5061 } 5062 EXPORT_SYMBOL_GPL(sched_setscheduler); 5063 5064 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 5065 { 5066 return __sched_setscheduler(p, attr, true, true); 5067 } 5068 EXPORT_SYMBOL_GPL(sched_setattr); 5069 5070 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 5071 { 5072 return __sched_setscheduler(p, attr, false, true); 5073 } 5074 5075 /** 5076 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 5077 * @p: the task in question. 5078 * @policy: new policy. 5079 * @param: structure containing the new RT priority. 5080 * 5081 * Just like sched_setscheduler, only don't bother checking if the 5082 * current context has permission. For example, this is needed in 5083 * stop_machine(): we create temporary high priority worker threads, 5084 * but our caller might not have that capability. 5085 * 5086 * Return: 0 on success. An error code otherwise. 5087 */ 5088 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 5089 const struct sched_param *param) 5090 { 5091 return _sched_setscheduler(p, policy, param, false); 5092 } 5093 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 5094 5095 static int 5096 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 5097 { 5098 struct sched_param lparam; 5099 struct task_struct *p; 5100 int retval; 5101 5102 if (!param || pid < 0) 5103 return -EINVAL; 5104 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 5105 return -EFAULT; 5106 5107 rcu_read_lock(); 5108 retval = -ESRCH; 5109 p = find_process_by_pid(pid); 5110 if (likely(p)) 5111 get_task_struct(p); 5112 rcu_read_unlock(); 5113 5114 if (likely(p)) { 5115 retval = sched_setscheduler(p, policy, &lparam); 5116 put_task_struct(p); 5117 } 5118 5119 return retval; 5120 } 5121 5122 /* 5123 * Mimics kernel/events/core.c perf_copy_attr(). 5124 */ 5125 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 5126 { 5127 u32 size; 5128 int ret; 5129 5130 /* Zero the full structure, so that a short copy will be nice: */ 5131 memset(attr, 0, sizeof(*attr)); 5132 5133 ret = get_user(size, &uattr->size); 5134 if (ret) 5135 return ret; 5136 5137 /* ABI compatibility quirk: */ 5138 if (!size) 5139 size = SCHED_ATTR_SIZE_VER0; 5140 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 5141 goto err_size; 5142 5143 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 5144 if (ret) { 5145 if (ret == -E2BIG) 5146 goto err_size; 5147 return ret; 5148 } 5149 5150 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 5151 size < SCHED_ATTR_SIZE_VER1) 5152 return -EINVAL; 5153 5154 /* 5155 * XXX: Do we want to be lenient like existing syscalls; or do we want 5156 * to be strict and return an error on out-of-bounds values? 5157 */ 5158 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 5159 5160 return 0; 5161 5162 err_size: 5163 put_user(sizeof(*attr), &uattr->size); 5164 return -E2BIG; 5165 } 5166 5167 /** 5168 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 5169 * @pid: the pid in question. 5170 * @policy: new policy. 5171 * @param: structure containing the new RT priority. 5172 * 5173 * Return: 0 on success. An error code otherwise. 5174 */ 5175 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 5176 { 5177 if (policy < 0) 5178 return -EINVAL; 5179 5180 return do_sched_setscheduler(pid, policy, param); 5181 } 5182 5183 /** 5184 * sys_sched_setparam - set/change the RT priority of a thread 5185 * @pid: the pid in question. 5186 * @param: structure containing the new RT priority. 5187 * 5188 * Return: 0 on success. An error code otherwise. 5189 */ 5190 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 5191 { 5192 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 5193 } 5194 5195 /** 5196 * sys_sched_setattr - same as above, but with extended sched_attr 5197 * @pid: the pid in question. 5198 * @uattr: structure containing the extended parameters. 5199 * @flags: for future extension. 5200 */ 5201 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 5202 unsigned int, flags) 5203 { 5204 struct sched_attr attr; 5205 struct task_struct *p; 5206 int retval; 5207 5208 if (!uattr || pid < 0 || flags) 5209 return -EINVAL; 5210 5211 retval = sched_copy_attr(uattr, &attr); 5212 if (retval) 5213 return retval; 5214 5215 if ((int)attr.sched_policy < 0) 5216 return -EINVAL; 5217 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 5218 attr.sched_policy = SETPARAM_POLICY; 5219 5220 rcu_read_lock(); 5221 retval = -ESRCH; 5222 p = find_process_by_pid(pid); 5223 if (likely(p)) 5224 get_task_struct(p); 5225 rcu_read_unlock(); 5226 5227 if (likely(p)) { 5228 retval = sched_setattr(p, &attr); 5229 put_task_struct(p); 5230 } 5231 5232 return retval; 5233 } 5234 5235 /** 5236 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 5237 * @pid: the pid in question. 5238 * 5239 * Return: On success, the policy of the thread. Otherwise, a negative error 5240 * code. 5241 */ 5242 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 5243 { 5244 struct task_struct *p; 5245 int retval; 5246 5247 if (pid < 0) 5248 return -EINVAL; 5249 5250 retval = -ESRCH; 5251 rcu_read_lock(); 5252 p = find_process_by_pid(pid); 5253 if (p) { 5254 retval = security_task_getscheduler(p); 5255 if (!retval) 5256 retval = p->policy 5257 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 5258 } 5259 rcu_read_unlock(); 5260 return retval; 5261 } 5262 5263 /** 5264 * sys_sched_getparam - get the RT priority of a thread 5265 * @pid: the pid in question. 5266 * @param: structure containing the RT priority. 5267 * 5268 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 5269 * code. 5270 */ 5271 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 5272 { 5273 struct sched_param lp = { .sched_priority = 0 }; 5274 struct task_struct *p; 5275 int retval; 5276 5277 if (!param || pid < 0) 5278 return -EINVAL; 5279 5280 rcu_read_lock(); 5281 p = find_process_by_pid(pid); 5282 retval = -ESRCH; 5283 if (!p) 5284 goto out_unlock; 5285 5286 retval = security_task_getscheduler(p); 5287 if (retval) 5288 goto out_unlock; 5289 5290 if (task_has_rt_policy(p)) 5291 lp.sched_priority = p->rt_priority; 5292 rcu_read_unlock(); 5293 5294 /* 5295 * This one might sleep, we cannot do it with a spinlock held ... 5296 */ 5297 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 5298 5299 return retval; 5300 5301 out_unlock: 5302 rcu_read_unlock(); 5303 return retval; 5304 } 5305 5306 /* 5307 * Copy the kernel size attribute structure (which might be larger 5308 * than what user-space knows about) to user-space. 5309 * 5310 * Note that all cases are valid: user-space buffer can be larger or 5311 * smaller than the kernel-space buffer. The usual case is that both 5312 * have the same size. 5313 */ 5314 static int 5315 sched_attr_copy_to_user(struct sched_attr __user *uattr, 5316 struct sched_attr *kattr, 5317 unsigned int usize) 5318 { 5319 unsigned int ksize = sizeof(*kattr); 5320 5321 if (!access_ok(uattr, usize)) 5322 return -EFAULT; 5323 5324 /* 5325 * sched_getattr() ABI forwards and backwards compatibility: 5326 * 5327 * If usize == ksize then we just copy everything to user-space and all is good. 5328 * 5329 * If usize < ksize then we only copy as much as user-space has space for, 5330 * this keeps ABI compatibility as well. We skip the rest. 5331 * 5332 * If usize > ksize then user-space is using a newer version of the ABI, 5333 * which part the kernel doesn't know about. Just ignore it - tooling can 5334 * detect the kernel's knowledge of attributes from the attr->size value 5335 * which is set to ksize in this case. 5336 */ 5337 kattr->size = min(usize, ksize); 5338 5339 if (copy_to_user(uattr, kattr, kattr->size)) 5340 return -EFAULT; 5341 5342 return 0; 5343 } 5344 5345 /** 5346 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 5347 * @pid: the pid in question. 5348 * @uattr: structure containing the extended parameters. 5349 * @usize: sizeof(attr) for fwd/bwd comp. 5350 * @flags: for future extension. 5351 */ 5352 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 5353 unsigned int, usize, unsigned int, flags) 5354 { 5355 struct sched_attr kattr = { }; 5356 struct task_struct *p; 5357 int retval; 5358 5359 if (!uattr || pid < 0 || usize > PAGE_SIZE || 5360 usize < SCHED_ATTR_SIZE_VER0 || flags) 5361 return -EINVAL; 5362 5363 rcu_read_lock(); 5364 p = find_process_by_pid(pid); 5365 retval = -ESRCH; 5366 if (!p) 5367 goto out_unlock; 5368 5369 retval = security_task_getscheduler(p); 5370 if (retval) 5371 goto out_unlock; 5372 5373 kattr.sched_policy = p->policy; 5374 if (p->sched_reset_on_fork) 5375 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5376 if (task_has_dl_policy(p)) 5377 __getparam_dl(p, &kattr); 5378 else if (task_has_rt_policy(p)) 5379 kattr.sched_priority = p->rt_priority; 5380 else 5381 kattr.sched_nice = task_nice(p); 5382 5383 #ifdef CONFIG_UCLAMP_TASK 5384 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 5385 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 5386 #endif 5387 5388 rcu_read_unlock(); 5389 5390 return sched_attr_copy_to_user(uattr, &kattr, usize); 5391 5392 out_unlock: 5393 rcu_read_unlock(); 5394 return retval; 5395 } 5396 5397 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 5398 { 5399 cpumask_var_t cpus_allowed, new_mask; 5400 struct task_struct *p; 5401 int retval; 5402 5403 rcu_read_lock(); 5404 5405 p = find_process_by_pid(pid); 5406 if (!p) { 5407 rcu_read_unlock(); 5408 return -ESRCH; 5409 } 5410 5411 /* Prevent p going away */ 5412 get_task_struct(p); 5413 rcu_read_unlock(); 5414 5415 if (p->flags & PF_NO_SETAFFINITY) { 5416 retval = -EINVAL; 5417 goto out_put_task; 5418 } 5419 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 5420 retval = -ENOMEM; 5421 goto out_put_task; 5422 } 5423 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 5424 retval = -ENOMEM; 5425 goto out_free_cpus_allowed; 5426 } 5427 retval = -EPERM; 5428 if (!check_same_owner(p)) { 5429 rcu_read_lock(); 5430 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 5431 rcu_read_unlock(); 5432 goto out_free_new_mask; 5433 } 5434 rcu_read_unlock(); 5435 } 5436 5437 retval = security_task_setscheduler(p); 5438 if (retval) 5439 goto out_free_new_mask; 5440 5441 5442 cpuset_cpus_allowed(p, cpus_allowed); 5443 cpumask_and(new_mask, in_mask, cpus_allowed); 5444 5445 /* 5446 * Since bandwidth control happens on root_domain basis, 5447 * if admission test is enabled, we only admit -deadline 5448 * tasks allowed to run on all the CPUs in the task's 5449 * root_domain. 5450 */ 5451 #ifdef CONFIG_SMP 5452 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 5453 rcu_read_lock(); 5454 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 5455 retval = -EBUSY; 5456 rcu_read_unlock(); 5457 goto out_free_new_mask; 5458 } 5459 rcu_read_unlock(); 5460 } 5461 #endif 5462 again: 5463 retval = __set_cpus_allowed_ptr(p, new_mask, true); 5464 5465 if (!retval) { 5466 cpuset_cpus_allowed(p, cpus_allowed); 5467 if (!cpumask_subset(new_mask, cpus_allowed)) { 5468 /* 5469 * We must have raced with a concurrent cpuset 5470 * update. Just reset the cpus_allowed to the 5471 * cpuset's cpus_allowed 5472 */ 5473 cpumask_copy(new_mask, cpus_allowed); 5474 goto again; 5475 } 5476 } 5477 out_free_new_mask: 5478 free_cpumask_var(new_mask); 5479 out_free_cpus_allowed: 5480 free_cpumask_var(cpus_allowed); 5481 out_put_task: 5482 put_task_struct(p); 5483 return retval; 5484 } 5485 5486 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 5487 struct cpumask *new_mask) 5488 { 5489 if (len < cpumask_size()) 5490 cpumask_clear(new_mask); 5491 else if (len > cpumask_size()) 5492 len = cpumask_size(); 5493 5494 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 5495 } 5496 5497 /** 5498 * sys_sched_setaffinity - set the CPU affinity of a process 5499 * @pid: pid of the process 5500 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5501 * @user_mask_ptr: user-space pointer to the new CPU mask 5502 * 5503 * Return: 0 on success. An error code otherwise. 5504 */ 5505 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 5506 unsigned long __user *, user_mask_ptr) 5507 { 5508 cpumask_var_t new_mask; 5509 int retval; 5510 5511 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 5512 return -ENOMEM; 5513 5514 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 5515 if (retval == 0) 5516 retval = sched_setaffinity(pid, new_mask); 5517 free_cpumask_var(new_mask); 5518 return retval; 5519 } 5520 5521 long sched_getaffinity(pid_t pid, struct cpumask *mask) 5522 { 5523 struct task_struct *p; 5524 unsigned long flags; 5525 int retval; 5526 5527 rcu_read_lock(); 5528 5529 retval = -ESRCH; 5530 p = find_process_by_pid(pid); 5531 if (!p) 5532 goto out_unlock; 5533 5534 retval = security_task_getscheduler(p); 5535 if (retval) 5536 goto out_unlock; 5537 5538 raw_spin_lock_irqsave(&p->pi_lock, flags); 5539 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 5540 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5541 5542 out_unlock: 5543 rcu_read_unlock(); 5544 5545 return retval; 5546 } 5547 5548 /** 5549 * sys_sched_getaffinity - get the CPU affinity of a process 5550 * @pid: pid of the process 5551 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5552 * @user_mask_ptr: user-space pointer to hold the current CPU mask 5553 * 5554 * Return: size of CPU mask copied to user_mask_ptr on success. An 5555 * error code otherwise. 5556 */ 5557 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 5558 unsigned long __user *, user_mask_ptr) 5559 { 5560 int ret; 5561 cpumask_var_t mask; 5562 5563 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 5564 return -EINVAL; 5565 if (len & (sizeof(unsigned long)-1)) 5566 return -EINVAL; 5567 5568 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 5569 return -ENOMEM; 5570 5571 ret = sched_getaffinity(pid, mask); 5572 if (ret == 0) { 5573 unsigned int retlen = min(len, cpumask_size()); 5574 5575 if (copy_to_user(user_mask_ptr, mask, retlen)) 5576 ret = -EFAULT; 5577 else 5578 ret = retlen; 5579 } 5580 free_cpumask_var(mask); 5581 5582 return ret; 5583 } 5584 5585 /** 5586 * sys_sched_yield - yield the current processor to other threads. 5587 * 5588 * This function yields the current CPU to other tasks. If there are no 5589 * other threads running on this CPU then this function will return. 5590 * 5591 * Return: 0. 5592 */ 5593 static void do_sched_yield(void) 5594 { 5595 struct rq_flags rf; 5596 struct rq *rq; 5597 5598 rq = this_rq_lock_irq(&rf); 5599 5600 schedstat_inc(rq->yld_count); 5601 current->sched_class->yield_task(rq); 5602 5603 /* 5604 * Since we are going to call schedule() anyway, there's 5605 * no need to preempt or enable interrupts: 5606 */ 5607 preempt_disable(); 5608 rq_unlock(rq, &rf); 5609 sched_preempt_enable_no_resched(); 5610 5611 schedule(); 5612 } 5613 5614 SYSCALL_DEFINE0(sched_yield) 5615 { 5616 do_sched_yield(); 5617 return 0; 5618 } 5619 5620 #ifndef CONFIG_PREEMPTION 5621 int __sched _cond_resched(void) 5622 { 5623 if (should_resched(0)) { 5624 preempt_schedule_common(); 5625 return 1; 5626 } 5627 rcu_all_qs(); 5628 return 0; 5629 } 5630 EXPORT_SYMBOL(_cond_resched); 5631 #endif 5632 5633 /* 5634 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5635 * call schedule, and on return reacquire the lock. 5636 * 5637 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 5638 * operations here to prevent schedule() from being called twice (once via 5639 * spin_unlock(), once by hand). 5640 */ 5641 int __cond_resched_lock(spinlock_t *lock) 5642 { 5643 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5644 int ret = 0; 5645 5646 lockdep_assert_held(lock); 5647 5648 if (spin_needbreak(lock) || resched) { 5649 spin_unlock(lock); 5650 if (resched) 5651 preempt_schedule_common(); 5652 else 5653 cpu_relax(); 5654 ret = 1; 5655 spin_lock(lock); 5656 } 5657 return ret; 5658 } 5659 EXPORT_SYMBOL(__cond_resched_lock); 5660 5661 /** 5662 * yield - yield the current processor to other threads. 5663 * 5664 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5665 * 5666 * The scheduler is at all times free to pick the calling task as the most 5667 * eligible task to run, if removing the yield() call from your code breaks 5668 * it, its already broken. 5669 * 5670 * Typical broken usage is: 5671 * 5672 * while (!event) 5673 * yield(); 5674 * 5675 * where one assumes that yield() will let 'the other' process run that will 5676 * make event true. If the current task is a SCHED_FIFO task that will never 5677 * happen. Never use yield() as a progress guarantee!! 5678 * 5679 * If you want to use yield() to wait for something, use wait_event(). 5680 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5681 * If you still want to use yield(), do not! 5682 */ 5683 void __sched yield(void) 5684 { 5685 set_current_state(TASK_RUNNING); 5686 do_sched_yield(); 5687 } 5688 EXPORT_SYMBOL(yield); 5689 5690 /** 5691 * yield_to - yield the current processor to another thread in 5692 * your thread group, or accelerate that thread toward the 5693 * processor it's on. 5694 * @p: target task 5695 * @preempt: whether task preemption is allowed or not 5696 * 5697 * It's the caller's job to ensure that the target task struct 5698 * can't go away on us before we can do any checks. 5699 * 5700 * Return: 5701 * true (>0) if we indeed boosted the target task. 5702 * false (0) if we failed to boost the target. 5703 * -ESRCH if there's no task to yield to. 5704 */ 5705 int __sched yield_to(struct task_struct *p, bool preempt) 5706 { 5707 struct task_struct *curr = current; 5708 struct rq *rq, *p_rq; 5709 unsigned long flags; 5710 int yielded = 0; 5711 5712 local_irq_save(flags); 5713 rq = this_rq(); 5714 5715 again: 5716 p_rq = task_rq(p); 5717 /* 5718 * If we're the only runnable task on the rq and target rq also 5719 * has only one task, there's absolutely no point in yielding. 5720 */ 5721 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5722 yielded = -ESRCH; 5723 goto out_irq; 5724 } 5725 5726 double_rq_lock(rq, p_rq); 5727 if (task_rq(p) != p_rq) { 5728 double_rq_unlock(rq, p_rq); 5729 goto again; 5730 } 5731 5732 if (!curr->sched_class->yield_to_task) 5733 goto out_unlock; 5734 5735 if (curr->sched_class != p->sched_class) 5736 goto out_unlock; 5737 5738 if (task_running(p_rq, p) || p->state) 5739 goto out_unlock; 5740 5741 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5742 if (yielded) { 5743 schedstat_inc(rq->yld_count); 5744 /* 5745 * Make p's CPU reschedule; pick_next_entity takes care of 5746 * fairness. 5747 */ 5748 if (preempt && rq != p_rq) 5749 resched_curr(p_rq); 5750 } 5751 5752 out_unlock: 5753 double_rq_unlock(rq, p_rq); 5754 out_irq: 5755 local_irq_restore(flags); 5756 5757 if (yielded > 0) 5758 schedule(); 5759 5760 return yielded; 5761 } 5762 EXPORT_SYMBOL_GPL(yield_to); 5763 5764 int io_schedule_prepare(void) 5765 { 5766 int old_iowait = current->in_iowait; 5767 5768 current->in_iowait = 1; 5769 blk_schedule_flush_plug(current); 5770 5771 return old_iowait; 5772 } 5773 5774 void io_schedule_finish(int token) 5775 { 5776 current->in_iowait = token; 5777 } 5778 5779 /* 5780 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5781 * that process accounting knows that this is a task in IO wait state. 5782 */ 5783 long __sched io_schedule_timeout(long timeout) 5784 { 5785 int token; 5786 long ret; 5787 5788 token = io_schedule_prepare(); 5789 ret = schedule_timeout(timeout); 5790 io_schedule_finish(token); 5791 5792 return ret; 5793 } 5794 EXPORT_SYMBOL(io_schedule_timeout); 5795 5796 void __sched io_schedule(void) 5797 { 5798 int token; 5799 5800 token = io_schedule_prepare(); 5801 schedule(); 5802 io_schedule_finish(token); 5803 } 5804 EXPORT_SYMBOL(io_schedule); 5805 5806 /** 5807 * sys_sched_get_priority_max - return maximum RT priority. 5808 * @policy: scheduling class. 5809 * 5810 * Return: On success, this syscall returns the maximum 5811 * rt_priority that can be used by a given scheduling class. 5812 * On failure, a negative error code is returned. 5813 */ 5814 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5815 { 5816 int ret = -EINVAL; 5817 5818 switch (policy) { 5819 case SCHED_FIFO: 5820 case SCHED_RR: 5821 ret = MAX_USER_RT_PRIO-1; 5822 break; 5823 case SCHED_DEADLINE: 5824 case SCHED_NORMAL: 5825 case SCHED_BATCH: 5826 case SCHED_IDLE: 5827 ret = 0; 5828 break; 5829 } 5830 return ret; 5831 } 5832 5833 /** 5834 * sys_sched_get_priority_min - return minimum RT priority. 5835 * @policy: scheduling class. 5836 * 5837 * Return: On success, this syscall returns the minimum 5838 * rt_priority that can be used by a given scheduling class. 5839 * On failure, a negative error code is returned. 5840 */ 5841 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5842 { 5843 int ret = -EINVAL; 5844 5845 switch (policy) { 5846 case SCHED_FIFO: 5847 case SCHED_RR: 5848 ret = 1; 5849 break; 5850 case SCHED_DEADLINE: 5851 case SCHED_NORMAL: 5852 case SCHED_BATCH: 5853 case SCHED_IDLE: 5854 ret = 0; 5855 } 5856 return ret; 5857 } 5858 5859 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5860 { 5861 struct task_struct *p; 5862 unsigned int time_slice; 5863 struct rq_flags rf; 5864 struct rq *rq; 5865 int retval; 5866 5867 if (pid < 0) 5868 return -EINVAL; 5869 5870 retval = -ESRCH; 5871 rcu_read_lock(); 5872 p = find_process_by_pid(pid); 5873 if (!p) 5874 goto out_unlock; 5875 5876 retval = security_task_getscheduler(p); 5877 if (retval) 5878 goto out_unlock; 5879 5880 rq = task_rq_lock(p, &rf); 5881 time_slice = 0; 5882 if (p->sched_class->get_rr_interval) 5883 time_slice = p->sched_class->get_rr_interval(rq, p); 5884 task_rq_unlock(rq, p, &rf); 5885 5886 rcu_read_unlock(); 5887 jiffies_to_timespec64(time_slice, t); 5888 return 0; 5889 5890 out_unlock: 5891 rcu_read_unlock(); 5892 return retval; 5893 } 5894 5895 /** 5896 * sys_sched_rr_get_interval - return the default timeslice of a process. 5897 * @pid: pid of the process. 5898 * @interval: userspace pointer to the timeslice value. 5899 * 5900 * this syscall writes the default timeslice value of a given process 5901 * into the user-space timespec buffer. A value of '0' means infinity. 5902 * 5903 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5904 * an error code. 5905 */ 5906 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5907 struct __kernel_timespec __user *, interval) 5908 { 5909 struct timespec64 t; 5910 int retval = sched_rr_get_interval(pid, &t); 5911 5912 if (retval == 0) 5913 retval = put_timespec64(&t, interval); 5914 5915 return retval; 5916 } 5917 5918 #ifdef CONFIG_COMPAT_32BIT_TIME 5919 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 5920 struct old_timespec32 __user *, interval) 5921 { 5922 struct timespec64 t; 5923 int retval = sched_rr_get_interval(pid, &t); 5924 5925 if (retval == 0) 5926 retval = put_old_timespec32(&t, interval); 5927 return retval; 5928 } 5929 #endif 5930 5931 void sched_show_task(struct task_struct *p) 5932 { 5933 unsigned long free = 0; 5934 int ppid; 5935 5936 if (!try_get_task_stack(p)) 5937 return; 5938 5939 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5940 5941 if (p->state == TASK_RUNNING) 5942 printk(KERN_CONT " running task "); 5943 #ifdef CONFIG_DEBUG_STACK_USAGE 5944 free = stack_not_used(p); 5945 #endif 5946 ppid = 0; 5947 rcu_read_lock(); 5948 if (pid_alive(p)) 5949 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5950 rcu_read_unlock(); 5951 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5952 task_pid_nr(p), ppid, 5953 (unsigned long)task_thread_info(p)->flags); 5954 5955 print_worker_info(KERN_INFO, p); 5956 show_stack(p, NULL); 5957 put_task_stack(p); 5958 } 5959 EXPORT_SYMBOL_GPL(sched_show_task); 5960 5961 static inline bool 5962 state_filter_match(unsigned long state_filter, struct task_struct *p) 5963 { 5964 /* no filter, everything matches */ 5965 if (!state_filter) 5966 return true; 5967 5968 /* filter, but doesn't match */ 5969 if (!(p->state & state_filter)) 5970 return false; 5971 5972 /* 5973 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5974 * TASK_KILLABLE). 5975 */ 5976 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5977 return false; 5978 5979 return true; 5980 } 5981 5982 5983 void show_state_filter(unsigned long state_filter) 5984 { 5985 struct task_struct *g, *p; 5986 5987 #if BITS_PER_LONG == 32 5988 printk(KERN_INFO 5989 " task PC stack pid father\n"); 5990 #else 5991 printk(KERN_INFO 5992 " task PC stack pid father\n"); 5993 #endif 5994 rcu_read_lock(); 5995 for_each_process_thread(g, p) { 5996 /* 5997 * reset the NMI-timeout, listing all files on a slow 5998 * console might take a lot of time: 5999 * Also, reset softlockup watchdogs on all CPUs, because 6000 * another CPU might be blocked waiting for us to process 6001 * an IPI. 6002 */ 6003 touch_nmi_watchdog(); 6004 touch_all_softlockup_watchdogs(); 6005 if (state_filter_match(state_filter, p)) 6006 sched_show_task(p); 6007 } 6008 6009 #ifdef CONFIG_SCHED_DEBUG 6010 if (!state_filter) 6011 sysrq_sched_debug_show(); 6012 #endif 6013 rcu_read_unlock(); 6014 /* 6015 * Only show locks if all tasks are dumped: 6016 */ 6017 if (!state_filter) 6018 debug_show_all_locks(); 6019 } 6020 6021 /** 6022 * init_idle - set up an idle thread for a given CPU 6023 * @idle: task in question 6024 * @cpu: CPU the idle task belongs to 6025 * 6026 * NOTE: this function does not set the idle thread's NEED_RESCHED 6027 * flag, to make booting more robust. 6028 */ 6029 void init_idle(struct task_struct *idle, int cpu) 6030 { 6031 struct rq *rq = cpu_rq(cpu); 6032 unsigned long flags; 6033 6034 __sched_fork(0, idle); 6035 6036 raw_spin_lock_irqsave(&idle->pi_lock, flags); 6037 raw_spin_lock(&rq->lock); 6038 6039 idle->state = TASK_RUNNING; 6040 idle->se.exec_start = sched_clock(); 6041 idle->flags |= PF_IDLE; 6042 6043 kasan_unpoison_task_stack(idle); 6044 6045 #ifdef CONFIG_SMP 6046 /* 6047 * Its possible that init_idle() gets called multiple times on a task, 6048 * in that case do_set_cpus_allowed() will not do the right thing. 6049 * 6050 * And since this is boot we can forgo the serialization. 6051 */ 6052 set_cpus_allowed_common(idle, cpumask_of(cpu)); 6053 #endif 6054 /* 6055 * We're having a chicken and egg problem, even though we are 6056 * holding rq->lock, the CPU isn't yet set to this CPU so the 6057 * lockdep check in task_group() will fail. 6058 * 6059 * Similar case to sched_fork(). / Alternatively we could 6060 * use task_rq_lock() here and obtain the other rq->lock. 6061 * 6062 * Silence PROVE_RCU 6063 */ 6064 rcu_read_lock(); 6065 __set_task_cpu(idle, cpu); 6066 rcu_read_unlock(); 6067 6068 rq->idle = idle; 6069 rcu_assign_pointer(rq->curr, idle); 6070 idle->on_rq = TASK_ON_RQ_QUEUED; 6071 #ifdef CONFIG_SMP 6072 idle->on_cpu = 1; 6073 #endif 6074 raw_spin_unlock(&rq->lock); 6075 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 6076 6077 /* Set the preempt count _outside_ the spinlocks! */ 6078 init_idle_preempt_count(idle, cpu); 6079 6080 /* 6081 * The idle tasks have their own, simple scheduling class: 6082 */ 6083 idle->sched_class = &idle_sched_class; 6084 ftrace_graph_init_idle_task(idle, cpu); 6085 vtime_init_idle(idle, cpu); 6086 #ifdef CONFIG_SMP 6087 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 6088 #endif 6089 } 6090 6091 #ifdef CONFIG_SMP 6092 6093 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 6094 const struct cpumask *trial) 6095 { 6096 int ret = 1; 6097 6098 if (!cpumask_weight(cur)) 6099 return ret; 6100 6101 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 6102 6103 return ret; 6104 } 6105 6106 int task_can_attach(struct task_struct *p, 6107 const struct cpumask *cs_cpus_allowed) 6108 { 6109 int ret = 0; 6110 6111 /* 6112 * Kthreads which disallow setaffinity shouldn't be moved 6113 * to a new cpuset; we don't want to change their CPU 6114 * affinity and isolating such threads by their set of 6115 * allowed nodes is unnecessary. Thus, cpusets are not 6116 * applicable for such threads. This prevents checking for 6117 * success of set_cpus_allowed_ptr() on all attached tasks 6118 * before cpus_mask may be changed. 6119 */ 6120 if (p->flags & PF_NO_SETAFFINITY) { 6121 ret = -EINVAL; 6122 goto out; 6123 } 6124 6125 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 6126 cs_cpus_allowed)) 6127 ret = dl_task_can_attach(p, cs_cpus_allowed); 6128 6129 out: 6130 return ret; 6131 } 6132 6133 bool sched_smp_initialized __read_mostly; 6134 6135 #ifdef CONFIG_NUMA_BALANCING 6136 /* Migrate current task p to target_cpu */ 6137 int migrate_task_to(struct task_struct *p, int target_cpu) 6138 { 6139 struct migration_arg arg = { p, target_cpu }; 6140 int curr_cpu = task_cpu(p); 6141 6142 if (curr_cpu == target_cpu) 6143 return 0; 6144 6145 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 6146 return -EINVAL; 6147 6148 /* TODO: This is not properly updating schedstats */ 6149 6150 trace_sched_move_numa(p, curr_cpu, target_cpu); 6151 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 6152 } 6153 6154 /* 6155 * Requeue a task on a given node and accurately track the number of NUMA 6156 * tasks on the runqueues 6157 */ 6158 void sched_setnuma(struct task_struct *p, int nid) 6159 { 6160 bool queued, running; 6161 struct rq_flags rf; 6162 struct rq *rq; 6163 6164 rq = task_rq_lock(p, &rf); 6165 queued = task_on_rq_queued(p); 6166 running = task_current(rq, p); 6167 6168 if (queued) 6169 dequeue_task(rq, p, DEQUEUE_SAVE); 6170 if (running) 6171 put_prev_task(rq, p); 6172 6173 p->numa_preferred_nid = nid; 6174 6175 if (queued) 6176 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6177 if (running) 6178 set_next_task(rq, p); 6179 task_rq_unlock(rq, p, &rf); 6180 } 6181 #endif /* CONFIG_NUMA_BALANCING */ 6182 6183 #ifdef CONFIG_HOTPLUG_CPU 6184 /* 6185 * Ensure that the idle task is using init_mm right before its CPU goes 6186 * offline. 6187 */ 6188 void idle_task_exit(void) 6189 { 6190 struct mm_struct *mm = current->active_mm; 6191 6192 BUG_ON(cpu_online(smp_processor_id())); 6193 6194 if (mm != &init_mm) { 6195 switch_mm(mm, &init_mm, current); 6196 current->active_mm = &init_mm; 6197 finish_arch_post_lock_switch(); 6198 } 6199 mmdrop(mm); 6200 } 6201 6202 /* 6203 * Since this CPU is going 'away' for a while, fold any nr_active delta 6204 * we might have. Assumes we're called after migrate_tasks() so that the 6205 * nr_active count is stable. We need to take the teardown thread which 6206 * is calling this into account, so we hand in adjust = 1 to the load 6207 * calculation. 6208 * 6209 * Also see the comment "Global load-average calculations". 6210 */ 6211 static void calc_load_migrate(struct rq *rq) 6212 { 6213 long delta = calc_load_fold_active(rq, 1); 6214 if (delta) 6215 atomic_long_add(delta, &calc_load_tasks); 6216 } 6217 6218 static struct task_struct *__pick_migrate_task(struct rq *rq) 6219 { 6220 const struct sched_class *class; 6221 struct task_struct *next; 6222 6223 for_each_class(class) { 6224 next = class->pick_next_task(rq); 6225 if (next) { 6226 next->sched_class->put_prev_task(rq, next); 6227 return next; 6228 } 6229 } 6230 6231 /* The idle class should always have a runnable task */ 6232 BUG(); 6233 } 6234 6235 /* 6236 * Migrate all tasks from the rq, sleeping tasks will be migrated by 6237 * try_to_wake_up()->select_task_rq(). 6238 * 6239 * Called with rq->lock held even though we'er in stop_machine() and 6240 * there's no concurrency possible, we hold the required locks anyway 6241 * because of lock validation efforts. 6242 */ 6243 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 6244 { 6245 struct rq *rq = dead_rq; 6246 struct task_struct *next, *stop = rq->stop; 6247 struct rq_flags orf = *rf; 6248 int dest_cpu; 6249 6250 /* 6251 * Fudge the rq selection such that the below task selection loop 6252 * doesn't get stuck on the currently eligible stop task. 6253 * 6254 * We're currently inside stop_machine() and the rq is either stuck 6255 * in the stop_machine_cpu_stop() loop, or we're executing this code, 6256 * either way we should never end up calling schedule() until we're 6257 * done here. 6258 */ 6259 rq->stop = NULL; 6260 6261 /* 6262 * put_prev_task() and pick_next_task() sched 6263 * class method both need to have an up-to-date 6264 * value of rq->clock[_task] 6265 */ 6266 update_rq_clock(rq); 6267 6268 for (;;) { 6269 /* 6270 * There's this thread running, bail when that's the only 6271 * remaining thread: 6272 */ 6273 if (rq->nr_running == 1) 6274 break; 6275 6276 next = __pick_migrate_task(rq); 6277 6278 /* 6279 * Rules for changing task_struct::cpus_mask are holding 6280 * both pi_lock and rq->lock, such that holding either 6281 * stabilizes the mask. 6282 * 6283 * Drop rq->lock is not quite as disastrous as it usually is 6284 * because !cpu_active at this point, which means load-balance 6285 * will not interfere. Also, stop-machine. 6286 */ 6287 rq_unlock(rq, rf); 6288 raw_spin_lock(&next->pi_lock); 6289 rq_relock(rq, rf); 6290 6291 /* 6292 * Since we're inside stop-machine, _nothing_ should have 6293 * changed the task, WARN if weird stuff happened, because in 6294 * that case the above rq->lock drop is a fail too. 6295 */ 6296 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 6297 raw_spin_unlock(&next->pi_lock); 6298 continue; 6299 } 6300 6301 /* Find suitable destination for @next, with force if needed. */ 6302 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 6303 rq = __migrate_task(rq, rf, next, dest_cpu); 6304 if (rq != dead_rq) { 6305 rq_unlock(rq, rf); 6306 rq = dead_rq; 6307 *rf = orf; 6308 rq_relock(rq, rf); 6309 } 6310 raw_spin_unlock(&next->pi_lock); 6311 } 6312 6313 rq->stop = stop; 6314 } 6315 #endif /* CONFIG_HOTPLUG_CPU */ 6316 6317 void set_rq_online(struct rq *rq) 6318 { 6319 if (!rq->online) { 6320 const struct sched_class *class; 6321 6322 cpumask_set_cpu(rq->cpu, rq->rd->online); 6323 rq->online = 1; 6324 6325 for_each_class(class) { 6326 if (class->rq_online) 6327 class->rq_online(rq); 6328 } 6329 } 6330 } 6331 6332 void set_rq_offline(struct rq *rq) 6333 { 6334 if (rq->online) { 6335 const struct sched_class *class; 6336 6337 for_each_class(class) { 6338 if (class->rq_offline) 6339 class->rq_offline(rq); 6340 } 6341 6342 cpumask_clear_cpu(rq->cpu, rq->rd->online); 6343 rq->online = 0; 6344 } 6345 } 6346 6347 /* 6348 * used to mark begin/end of suspend/resume: 6349 */ 6350 static int num_cpus_frozen; 6351 6352 /* 6353 * Update cpusets according to cpu_active mask. If cpusets are 6354 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6355 * around partition_sched_domains(). 6356 * 6357 * If we come here as part of a suspend/resume, don't touch cpusets because we 6358 * want to restore it back to its original state upon resume anyway. 6359 */ 6360 static void cpuset_cpu_active(void) 6361 { 6362 if (cpuhp_tasks_frozen) { 6363 /* 6364 * num_cpus_frozen tracks how many CPUs are involved in suspend 6365 * resume sequence. As long as this is not the last online 6366 * operation in the resume sequence, just build a single sched 6367 * domain, ignoring cpusets. 6368 */ 6369 partition_sched_domains(1, NULL, NULL); 6370 if (--num_cpus_frozen) 6371 return; 6372 /* 6373 * This is the last CPU online operation. So fall through and 6374 * restore the original sched domains by considering the 6375 * cpuset configurations. 6376 */ 6377 cpuset_force_rebuild(); 6378 } 6379 cpuset_update_active_cpus(); 6380 } 6381 6382 static int cpuset_cpu_inactive(unsigned int cpu) 6383 { 6384 if (!cpuhp_tasks_frozen) { 6385 if (dl_cpu_busy(cpu)) 6386 return -EBUSY; 6387 cpuset_update_active_cpus(); 6388 } else { 6389 num_cpus_frozen++; 6390 partition_sched_domains(1, NULL, NULL); 6391 } 6392 return 0; 6393 } 6394 6395 int sched_cpu_activate(unsigned int cpu) 6396 { 6397 struct rq *rq = cpu_rq(cpu); 6398 struct rq_flags rf; 6399 6400 #ifdef CONFIG_SCHED_SMT 6401 /* 6402 * When going up, increment the number of cores with SMT present. 6403 */ 6404 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6405 static_branch_inc_cpuslocked(&sched_smt_present); 6406 #endif 6407 set_cpu_active(cpu, true); 6408 6409 if (sched_smp_initialized) { 6410 sched_domains_numa_masks_set(cpu); 6411 cpuset_cpu_active(); 6412 } 6413 6414 /* 6415 * Put the rq online, if not already. This happens: 6416 * 6417 * 1) In the early boot process, because we build the real domains 6418 * after all CPUs have been brought up. 6419 * 6420 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 6421 * domains. 6422 */ 6423 rq_lock_irqsave(rq, &rf); 6424 if (rq->rd) { 6425 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6426 set_rq_online(rq); 6427 } 6428 rq_unlock_irqrestore(rq, &rf); 6429 6430 return 0; 6431 } 6432 6433 int sched_cpu_deactivate(unsigned int cpu) 6434 { 6435 int ret; 6436 6437 set_cpu_active(cpu, false); 6438 /* 6439 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 6440 * users of this state to go away such that all new such users will 6441 * observe it. 6442 * 6443 * Do sync before park smpboot threads to take care the rcu boost case. 6444 */ 6445 synchronize_rcu(); 6446 6447 #ifdef CONFIG_SCHED_SMT 6448 /* 6449 * When going down, decrement the number of cores with SMT present. 6450 */ 6451 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6452 static_branch_dec_cpuslocked(&sched_smt_present); 6453 #endif 6454 6455 if (!sched_smp_initialized) 6456 return 0; 6457 6458 ret = cpuset_cpu_inactive(cpu); 6459 if (ret) { 6460 set_cpu_active(cpu, true); 6461 return ret; 6462 } 6463 sched_domains_numa_masks_clear(cpu); 6464 return 0; 6465 } 6466 6467 static void sched_rq_cpu_starting(unsigned int cpu) 6468 { 6469 struct rq *rq = cpu_rq(cpu); 6470 6471 rq->calc_load_update = calc_load_update; 6472 update_max_interval(); 6473 } 6474 6475 int sched_cpu_starting(unsigned int cpu) 6476 { 6477 sched_rq_cpu_starting(cpu); 6478 sched_tick_start(cpu); 6479 return 0; 6480 } 6481 6482 #ifdef CONFIG_HOTPLUG_CPU 6483 int sched_cpu_dying(unsigned int cpu) 6484 { 6485 struct rq *rq = cpu_rq(cpu); 6486 struct rq_flags rf; 6487 6488 /* Handle pending wakeups and then migrate everything off */ 6489 sched_ttwu_pending(); 6490 sched_tick_stop(cpu); 6491 6492 rq_lock_irqsave(rq, &rf); 6493 if (rq->rd) { 6494 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6495 set_rq_offline(rq); 6496 } 6497 migrate_tasks(rq, &rf); 6498 BUG_ON(rq->nr_running != 1); 6499 rq_unlock_irqrestore(rq, &rf); 6500 6501 calc_load_migrate(rq); 6502 update_max_interval(); 6503 nohz_balance_exit_idle(rq); 6504 hrtick_clear(rq); 6505 return 0; 6506 } 6507 #endif 6508 6509 void __init sched_init_smp(void) 6510 { 6511 sched_init_numa(); 6512 6513 /* 6514 * There's no userspace yet to cause hotplug operations; hence all the 6515 * CPU masks are stable and all blatant races in the below code cannot 6516 * happen. 6517 */ 6518 mutex_lock(&sched_domains_mutex); 6519 sched_init_domains(cpu_active_mask); 6520 mutex_unlock(&sched_domains_mutex); 6521 6522 /* Move init over to a non-isolated CPU */ 6523 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 6524 BUG(); 6525 sched_init_granularity(); 6526 6527 init_sched_rt_class(); 6528 init_sched_dl_class(); 6529 6530 sched_smp_initialized = true; 6531 } 6532 6533 static int __init migration_init(void) 6534 { 6535 sched_cpu_starting(smp_processor_id()); 6536 return 0; 6537 } 6538 early_initcall(migration_init); 6539 6540 #else 6541 void __init sched_init_smp(void) 6542 { 6543 sched_init_granularity(); 6544 } 6545 #endif /* CONFIG_SMP */ 6546 6547 int in_sched_functions(unsigned long addr) 6548 { 6549 return in_lock_functions(addr) || 6550 (addr >= (unsigned long)__sched_text_start 6551 && addr < (unsigned long)__sched_text_end); 6552 } 6553 6554 #ifdef CONFIG_CGROUP_SCHED 6555 /* 6556 * Default task group. 6557 * Every task in system belongs to this group at bootup. 6558 */ 6559 struct task_group root_task_group; 6560 LIST_HEAD(task_groups); 6561 6562 /* Cacheline aligned slab cache for task_group */ 6563 static struct kmem_cache *task_group_cache __read_mostly; 6564 #endif 6565 6566 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6567 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 6568 6569 void __init sched_init(void) 6570 { 6571 unsigned long ptr = 0; 6572 int i; 6573 6574 wait_bit_init(); 6575 6576 #ifdef CONFIG_FAIR_GROUP_SCHED 6577 ptr += 2 * nr_cpu_ids * sizeof(void **); 6578 #endif 6579 #ifdef CONFIG_RT_GROUP_SCHED 6580 ptr += 2 * nr_cpu_ids * sizeof(void **); 6581 #endif 6582 if (ptr) { 6583 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 6584 6585 #ifdef CONFIG_FAIR_GROUP_SCHED 6586 root_task_group.se = (struct sched_entity **)ptr; 6587 ptr += nr_cpu_ids * sizeof(void **); 6588 6589 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6590 ptr += nr_cpu_ids * sizeof(void **); 6591 6592 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6593 #ifdef CONFIG_RT_GROUP_SCHED 6594 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6595 ptr += nr_cpu_ids * sizeof(void **); 6596 6597 root_task_group.rt_rq = (struct rt_rq **)ptr; 6598 ptr += nr_cpu_ids * sizeof(void **); 6599 6600 #endif /* CONFIG_RT_GROUP_SCHED */ 6601 } 6602 #ifdef CONFIG_CPUMASK_OFFSTACK 6603 for_each_possible_cpu(i) { 6604 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 6605 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6606 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 6607 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6608 } 6609 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6610 6611 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 6612 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 6613 6614 #ifdef CONFIG_SMP 6615 init_defrootdomain(); 6616 #endif 6617 6618 #ifdef CONFIG_RT_GROUP_SCHED 6619 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6620 global_rt_period(), global_rt_runtime()); 6621 #endif /* CONFIG_RT_GROUP_SCHED */ 6622 6623 #ifdef CONFIG_CGROUP_SCHED 6624 task_group_cache = KMEM_CACHE(task_group, 0); 6625 6626 list_add(&root_task_group.list, &task_groups); 6627 INIT_LIST_HEAD(&root_task_group.children); 6628 INIT_LIST_HEAD(&root_task_group.siblings); 6629 autogroup_init(&init_task); 6630 #endif /* CONFIG_CGROUP_SCHED */ 6631 6632 for_each_possible_cpu(i) { 6633 struct rq *rq; 6634 6635 rq = cpu_rq(i); 6636 raw_spin_lock_init(&rq->lock); 6637 rq->nr_running = 0; 6638 rq->calc_load_active = 0; 6639 rq->calc_load_update = jiffies + LOAD_FREQ; 6640 init_cfs_rq(&rq->cfs); 6641 init_rt_rq(&rq->rt); 6642 init_dl_rq(&rq->dl); 6643 #ifdef CONFIG_FAIR_GROUP_SCHED 6644 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6645 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6646 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6647 /* 6648 * How much CPU bandwidth does root_task_group get? 6649 * 6650 * In case of task-groups formed thr' the cgroup filesystem, it 6651 * gets 100% of the CPU resources in the system. This overall 6652 * system CPU resource is divided among the tasks of 6653 * root_task_group and its child task-groups in a fair manner, 6654 * based on each entity's (task or task-group's) weight 6655 * (se->load.weight). 6656 * 6657 * In other words, if root_task_group has 10 tasks of weight 6658 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6659 * then A0's share of the CPU resource is: 6660 * 6661 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6662 * 6663 * We achieve this by letting root_task_group's tasks sit 6664 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6665 */ 6666 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6667 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6668 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6669 6670 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6671 #ifdef CONFIG_RT_GROUP_SCHED 6672 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6673 #endif 6674 #ifdef CONFIG_SMP 6675 rq->sd = NULL; 6676 rq->rd = NULL; 6677 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6678 rq->balance_callback = NULL; 6679 rq->active_balance = 0; 6680 rq->next_balance = jiffies; 6681 rq->push_cpu = 0; 6682 rq->cpu = i; 6683 rq->online = 0; 6684 rq->idle_stamp = 0; 6685 rq->avg_idle = 2*sysctl_sched_migration_cost; 6686 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6687 6688 INIT_LIST_HEAD(&rq->cfs_tasks); 6689 6690 rq_attach_root(rq, &def_root_domain); 6691 #ifdef CONFIG_NO_HZ_COMMON 6692 rq->last_blocked_load_update_tick = jiffies; 6693 atomic_set(&rq->nohz_flags, 0); 6694 #endif 6695 #endif /* CONFIG_SMP */ 6696 hrtick_rq_init(rq); 6697 atomic_set(&rq->nr_iowait, 0); 6698 } 6699 6700 set_load_weight(&init_task, false); 6701 6702 /* 6703 * The boot idle thread does lazy MMU switching as well: 6704 */ 6705 mmgrab(&init_mm); 6706 enter_lazy_tlb(&init_mm, current); 6707 6708 /* 6709 * Make us the idle thread. Technically, schedule() should not be 6710 * called from this thread, however somewhere below it might be, 6711 * but because we are the idle thread, we just pick up running again 6712 * when this runqueue becomes "idle". 6713 */ 6714 init_idle(current, smp_processor_id()); 6715 6716 calc_load_update = jiffies + LOAD_FREQ; 6717 6718 #ifdef CONFIG_SMP 6719 idle_thread_set_boot_cpu(); 6720 #endif 6721 init_sched_fair_class(); 6722 6723 init_schedstats(); 6724 6725 psi_init(); 6726 6727 init_uclamp(); 6728 6729 scheduler_running = 1; 6730 } 6731 6732 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6733 static inline int preempt_count_equals(int preempt_offset) 6734 { 6735 int nested = preempt_count() + rcu_preempt_depth(); 6736 6737 return (nested == preempt_offset); 6738 } 6739 6740 void __might_sleep(const char *file, int line, int preempt_offset) 6741 { 6742 /* 6743 * Blocking primitives will set (and therefore destroy) current->state, 6744 * since we will exit with TASK_RUNNING make sure we enter with it, 6745 * otherwise we will destroy state. 6746 */ 6747 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6748 "do not call blocking ops when !TASK_RUNNING; " 6749 "state=%lx set at [<%p>] %pS\n", 6750 current->state, 6751 (void *)current->task_state_change, 6752 (void *)current->task_state_change); 6753 6754 ___might_sleep(file, line, preempt_offset); 6755 } 6756 EXPORT_SYMBOL(__might_sleep); 6757 6758 void ___might_sleep(const char *file, int line, int preempt_offset) 6759 { 6760 /* Ratelimiting timestamp: */ 6761 static unsigned long prev_jiffy; 6762 6763 unsigned long preempt_disable_ip; 6764 6765 /* WARN_ON_ONCE() by default, no rate limit required: */ 6766 rcu_sleep_check(); 6767 6768 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6769 !is_idle_task(current) && !current->non_block_count) || 6770 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6771 oops_in_progress) 6772 return; 6773 6774 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6775 return; 6776 prev_jiffy = jiffies; 6777 6778 /* Save this before calling printk(), since that will clobber it: */ 6779 preempt_disable_ip = get_preempt_disable_ip(current); 6780 6781 printk(KERN_ERR 6782 "BUG: sleeping function called from invalid context at %s:%d\n", 6783 file, line); 6784 printk(KERN_ERR 6785 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 6786 in_atomic(), irqs_disabled(), current->non_block_count, 6787 current->pid, current->comm); 6788 6789 if (task_stack_end_corrupted(current)) 6790 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6791 6792 debug_show_held_locks(current); 6793 if (irqs_disabled()) 6794 print_irqtrace_events(current); 6795 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6796 && !preempt_count_equals(preempt_offset)) { 6797 pr_err("Preemption disabled at:"); 6798 print_ip_sym(preempt_disable_ip); 6799 pr_cont("\n"); 6800 } 6801 dump_stack(); 6802 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6803 } 6804 EXPORT_SYMBOL(___might_sleep); 6805 6806 void __cant_sleep(const char *file, int line, int preempt_offset) 6807 { 6808 static unsigned long prev_jiffy; 6809 6810 if (irqs_disabled()) 6811 return; 6812 6813 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 6814 return; 6815 6816 if (preempt_count() > preempt_offset) 6817 return; 6818 6819 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6820 return; 6821 prev_jiffy = jiffies; 6822 6823 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 6824 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6825 in_atomic(), irqs_disabled(), 6826 current->pid, current->comm); 6827 6828 debug_show_held_locks(current); 6829 dump_stack(); 6830 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6831 } 6832 EXPORT_SYMBOL_GPL(__cant_sleep); 6833 #endif 6834 6835 #ifdef CONFIG_MAGIC_SYSRQ 6836 void normalize_rt_tasks(void) 6837 { 6838 struct task_struct *g, *p; 6839 struct sched_attr attr = { 6840 .sched_policy = SCHED_NORMAL, 6841 }; 6842 6843 read_lock(&tasklist_lock); 6844 for_each_process_thread(g, p) { 6845 /* 6846 * Only normalize user tasks: 6847 */ 6848 if (p->flags & PF_KTHREAD) 6849 continue; 6850 6851 p->se.exec_start = 0; 6852 schedstat_set(p->se.statistics.wait_start, 0); 6853 schedstat_set(p->se.statistics.sleep_start, 0); 6854 schedstat_set(p->se.statistics.block_start, 0); 6855 6856 if (!dl_task(p) && !rt_task(p)) { 6857 /* 6858 * Renice negative nice level userspace 6859 * tasks back to 0: 6860 */ 6861 if (task_nice(p) < 0) 6862 set_user_nice(p, 0); 6863 continue; 6864 } 6865 6866 __sched_setscheduler(p, &attr, false, false); 6867 } 6868 read_unlock(&tasklist_lock); 6869 } 6870 6871 #endif /* CONFIG_MAGIC_SYSRQ */ 6872 6873 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6874 /* 6875 * These functions are only useful for the IA64 MCA handling, or kdb. 6876 * 6877 * They can only be called when the whole system has been 6878 * stopped - every CPU needs to be quiescent, and no scheduling 6879 * activity can take place. Using them for anything else would 6880 * be a serious bug, and as a result, they aren't even visible 6881 * under any other configuration. 6882 */ 6883 6884 /** 6885 * curr_task - return the current task for a given CPU. 6886 * @cpu: the processor in question. 6887 * 6888 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6889 * 6890 * Return: The current task for @cpu. 6891 */ 6892 struct task_struct *curr_task(int cpu) 6893 { 6894 return cpu_curr(cpu); 6895 } 6896 6897 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6898 6899 #ifdef CONFIG_IA64 6900 /** 6901 * ia64_set_curr_task - set the current task for a given CPU. 6902 * @cpu: the processor in question. 6903 * @p: the task pointer to set. 6904 * 6905 * Description: This function must only be used when non-maskable interrupts 6906 * are serviced on a separate stack. It allows the architecture to switch the 6907 * notion of the current task on a CPU in a non-blocking manner. This function 6908 * must be called with all CPU's synchronized, and interrupts disabled, the 6909 * and caller must save the original value of the current task (see 6910 * curr_task() above) and restore that value before reenabling interrupts and 6911 * re-starting the system. 6912 * 6913 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6914 */ 6915 void ia64_set_curr_task(int cpu, struct task_struct *p) 6916 { 6917 cpu_curr(cpu) = p; 6918 } 6919 6920 #endif 6921 6922 #ifdef CONFIG_CGROUP_SCHED 6923 /* task_group_lock serializes the addition/removal of task groups */ 6924 static DEFINE_SPINLOCK(task_group_lock); 6925 6926 static inline void alloc_uclamp_sched_group(struct task_group *tg, 6927 struct task_group *parent) 6928 { 6929 #ifdef CONFIG_UCLAMP_TASK_GROUP 6930 enum uclamp_id clamp_id; 6931 6932 for_each_clamp_id(clamp_id) { 6933 uclamp_se_set(&tg->uclamp_req[clamp_id], 6934 uclamp_none(clamp_id), false); 6935 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 6936 } 6937 #endif 6938 } 6939 6940 static void sched_free_group(struct task_group *tg) 6941 { 6942 free_fair_sched_group(tg); 6943 free_rt_sched_group(tg); 6944 autogroup_free(tg); 6945 kmem_cache_free(task_group_cache, tg); 6946 } 6947 6948 /* allocate runqueue etc for a new task group */ 6949 struct task_group *sched_create_group(struct task_group *parent) 6950 { 6951 struct task_group *tg; 6952 6953 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6954 if (!tg) 6955 return ERR_PTR(-ENOMEM); 6956 6957 if (!alloc_fair_sched_group(tg, parent)) 6958 goto err; 6959 6960 if (!alloc_rt_sched_group(tg, parent)) 6961 goto err; 6962 6963 alloc_uclamp_sched_group(tg, parent); 6964 6965 return tg; 6966 6967 err: 6968 sched_free_group(tg); 6969 return ERR_PTR(-ENOMEM); 6970 } 6971 6972 void sched_online_group(struct task_group *tg, struct task_group *parent) 6973 { 6974 unsigned long flags; 6975 6976 spin_lock_irqsave(&task_group_lock, flags); 6977 list_add_rcu(&tg->list, &task_groups); 6978 6979 /* Root should already exist: */ 6980 WARN_ON(!parent); 6981 6982 tg->parent = parent; 6983 INIT_LIST_HEAD(&tg->children); 6984 list_add_rcu(&tg->siblings, &parent->children); 6985 spin_unlock_irqrestore(&task_group_lock, flags); 6986 6987 online_fair_sched_group(tg); 6988 } 6989 6990 /* rcu callback to free various structures associated with a task group */ 6991 static void sched_free_group_rcu(struct rcu_head *rhp) 6992 { 6993 /* Now it should be safe to free those cfs_rqs: */ 6994 sched_free_group(container_of(rhp, struct task_group, rcu)); 6995 } 6996 6997 void sched_destroy_group(struct task_group *tg) 6998 { 6999 /* Wait for possible concurrent references to cfs_rqs complete: */ 7000 call_rcu(&tg->rcu, sched_free_group_rcu); 7001 } 7002 7003 void sched_offline_group(struct task_group *tg) 7004 { 7005 unsigned long flags; 7006 7007 /* End participation in shares distribution: */ 7008 unregister_fair_sched_group(tg); 7009 7010 spin_lock_irqsave(&task_group_lock, flags); 7011 list_del_rcu(&tg->list); 7012 list_del_rcu(&tg->siblings); 7013 spin_unlock_irqrestore(&task_group_lock, flags); 7014 } 7015 7016 static void sched_change_group(struct task_struct *tsk, int type) 7017 { 7018 struct task_group *tg; 7019 7020 /* 7021 * All callers are synchronized by task_rq_lock(); we do not use RCU 7022 * which is pointless here. Thus, we pass "true" to task_css_check() 7023 * to prevent lockdep warnings. 7024 */ 7025 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7026 struct task_group, css); 7027 tg = autogroup_task_group(tsk, tg); 7028 tsk->sched_task_group = tg; 7029 7030 #ifdef CONFIG_FAIR_GROUP_SCHED 7031 if (tsk->sched_class->task_change_group) 7032 tsk->sched_class->task_change_group(tsk, type); 7033 else 7034 #endif 7035 set_task_rq(tsk, task_cpu(tsk)); 7036 } 7037 7038 /* 7039 * Change task's runqueue when it moves between groups. 7040 * 7041 * The caller of this function should have put the task in its new group by 7042 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 7043 * its new group. 7044 */ 7045 void sched_move_task(struct task_struct *tsk) 7046 { 7047 int queued, running, queue_flags = 7048 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7049 struct rq_flags rf; 7050 struct rq *rq; 7051 7052 rq = task_rq_lock(tsk, &rf); 7053 update_rq_clock(rq); 7054 7055 running = task_current(rq, tsk); 7056 queued = task_on_rq_queued(tsk); 7057 7058 if (queued) 7059 dequeue_task(rq, tsk, queue_flags); 7060 if (running) 7061 put_prev_task(rq, tsk); 7062 7063 sched_change_group(tsk, TASK_MOVE_GROUP); 7064 7065 if (queued) 7066 enqueue_task(rq, tsk, queue_flags); 7067 if (running) { 7068 set_next_task(rq, tsk); 7069 /* 7070 * After changing group, the running task may have joined a 7071 * throttled one but it's still the running task. Trigger a 7072 * resched to make sure that task can still run. 7073 */ 7074 resched_curr(rq); 7075 } 7076 7077 task_rq_unlock(rq, tsk, &rf); 7078 } 7079 7080 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7081 { 7082 return css ? container_of(css, struct task_group, css) : NULL; 7083 } 7084 7085 static struct cgroup_subsys_state * 7086 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7087 { 7088 struct task_group *parent = css_tg(parent_css); 7089 struct task_group *tg; 7090 7091 if (!parent) { 7092 /* This is early initialization for the top cgroup */ 7093 return &root_task_group.css; 7094 } 7095 7096 tg = sched_create_group(parent); 7097 if (IS_ERR(tg)) 7098 return ERR_PTR(-ENOMEM); 7099 7100 return &tg->css; 7101 } 7102 7103 /* Expose task group only after completing cgroup initialization */ 7104 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7105 { 7106 struct task_group *tg = css_tg(css); 7107 struct task_group *parent = css_tg(css->parent); 7108 7109 if (parent) 7110 sched_online_group(tg, parent); 7111 7112 #ifdef CONFIG_UCLAMP_TASK_GROUP 7113 /* Propagate the effective uclamp value for the new group */ 7114 cpu_util_update_eff(css); 7115 #endif 7116 7117 return 0; 7118 } 7119 7120 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 7121 { 7122 struct task_group *tg = css_tg(css); 7123 7124 sched_offline_group(tg); 7125 } 7126 7127 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7128 { 7129 struct task_group *tg = css_tg(css); 7130 7131 /* 7132 * Relies on the RCU grace period between css_released() and this. 7133 */ 7134 sched_free_group(tg); 7135 } 7136 7137 /* 7138 * This is called before wake_up_new_task(), therefore we really only 7139 * have to set its group bits, all the other stuff does not apply. 7140 */ 7141 static void cpu_cgroup_fork(struct task_struct *task) 7142 { 7143 struct rq_flags rf; 7144 struct rq *rq; 7145 7146 rq = task_rq_lock(task, &rf); 7147 7148 update_rq_clock(rq); 7149 sched_change_group(task, TASK_SET_GROUP); 7150 7151 task_rq_unlock(rq, task, &rf); 7152 } 7153 7154 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 7155 { 7156 struct task_struct *task; 7157 struct cgroup_subsys_state *css; 7158 int ret = 0; 7159 7160 cgroup_taskset_for_each(task, css, tset) { 7161 #ifdef CONFIG_RT_GROUP_SCHED 7162 if (!sched_rt_can_attach(css_tg(css), task)) 7163 return -EINVAL; 7164 #endif 7165 /* 7166 * Serialize against wake_up_new_task() such that if its 7167 * running, we're sure to observe its full state. 7168 */ 7169 raw_spin_lock_irq(&task->pi_lock); 7170 /* 7171 * Avoid calling sched_move_task() before wake_up_new_task() 7172 * has happened. This would lead to problems with PELT, due to 7173 * move wanting to detach+attach while we're not attached yet. 7174 */ 7175 if (task->state == TASK_NEW) 7176 ret = -EINVAL; 7177 raw_spin_unlock_irq(&task->pi_lock); 7178 7179 if (ret) 7180 break; 7181 } 7182 return ret; 7183 } 7184 7185 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 7186 { 7187 struct task_struct *task; 7188 struct cgroup_subsys_state *css; 7189 7190 cgroup_taskset_for_each(task, css, tset) 7191 sched_move_task(task); 7192 } 7193 7194 #ifdef CONFIG_UCLAMP_TASK_GROUP 7195 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 7196 { 7197 struct cgroup_subsys_state *top_css = css; 7198 struct uclamp_se *uc_parent = NULL; 7199 struct uclamp_se *uc_se = NULL; 7200 unsigned int eff[UCLAMP_CNT]; 7201 enum uclamp_id clamp_id; 7202 unsigned int clamps; 7203 7204 css_for_each_descendant_pre(css, top_css) { 7205 uc_parent = css_tg(css)->parent 7206 ? css_tg(css)->parent->uclamp : NULL; 7207 7208 for_each_clamp_id(clamp_id) { 7209 /* Assume effective clamps matches requested clamps */ 7210 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 7211 /* Cap effective clamps with parent's effective clamps */ 7212 if (uc_parent && 7213 eff[clamp_id] > uc_parent[clamp_id].value) { 7214 eff[clamp_id] = uc_parent[clamp_id].value; 7215 } 7216 } 7217 /* Ensure protection is always capped by limit */ 7218 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 7219 7220 /* Propagate most restrictive effective clamps */ 7221 clamps = 0x0; 7222 uc_se = css_tg(css)->uclamp; 7223 for_each_clamp_id(clamp_id) { 7224 if (eff[clamp_id] == uc_se[clamp_id].value) 7225 continue; 7226 uc_se[clamp_id].value = eff[clamp_id]; 7227 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 7228 clamps |= (0x1 << clamp_id); 7229 } 7230 if (!clamps) { 7231 css = css_rightmost_descendant(css); 7232 continue; 7233 } 7234 7235 /* Immediately update descendants RUNNABLE tasks */ 7236 uclamp_update_active_tasks(css, clamps); 7237 } 7238 } 7239 7240 /* 7241 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 7242 * C expression. Since there is no way to convert a macro argument (N) into a 7243 * character constant, use two levels of macros. 7244 */ 7245 #define _POW10(exp) ((unsigned int)1e##exp) 7246 #define POW10(exp) _POW10(exp) 7247 7248 struct uclamp_request { 7249 #define UCLAMP_PERCENT_SHIFT 2 7250 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 7251 s64 percent; 7252 u64 util; 7253 int ret; 7254 }; 7255 7256 static inline struct uclamp_request 7257 capacity_from_percent(char *buf) 7258 { 7259 struct uclamp_request req = { 7260 .percent = UCLAMP_PERCENT_SCALE, 7261 .util = SCHED_CAPACITY_SCALE, 7262 .ret = 0, 7263 }; 7264 7265 buf = strim(buf); 7266 if (strcmp(buf, "max")) { 7267 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 7268 &req.percent); 7269 if (req.ret) 7270 return req; 7271 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 7272 req.ret = -ERANGE; 7273 return req; 7274 } 7275 7276 req.util = req.percent << SCHED_CAPACITY_SHIFT; 7277 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 7278 } 7279 7280 return req; 7281 } 7282 7283 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 7284 size_t nbytes, loff_t off, 7285 enum uclamp_id clamp_id) 7286 { 7287 struct uclamp_request req; 7288 struct task_group *tg; 7289 7290 req = capacity_from_percent(buf); 7291 if (req.ret) 7292 return req.ret; 7293 7294 mutex_lock(&uclamp_mutex); 7295 rcu_read_lock(); 7296 7297 tg = css_tg(of_css(of)); 7298 if (tg->uclamp_req[clamp_id].value != req.util) 7299 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 7300 7301 /* 7302 * Because of not recoverable conversion rounding we keep track of the 7303 * exact requested value 7304 */ 7305 tg->uclamp_pct[clamp_id] = req.percent; 7306 7307 /* Update effective clamps to track the most restrictive value */ 7308 cpu_util_update_eff(of_css(of)); 7309 7310 rcu_read_unlock(); 7311 mutex_unlock(&uclamp_mutex); 7312 7313 return nbytes; 7314 } 7315 7316 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 7317 char *buf, size_t nbytes, 7318 loff_t off) 7319 { 7320 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 7321 } 7322 7323 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 7324 char *buf, size_t nbytes, 7325 loff_t off) 7326 { 7327 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 7328 } 7329 7330 static inline void cpu_uclamp_print(struct seq_file *sf, 7331 enum uclamp_id clamp_id) 7332 { 7333 struct task_group *tg; 7334 u64 util_clamp; 7335 u64 percent; 7336 u32 rem; 7337 7338 rcu_read_lock(); 7339 tg = css_tg(seq_css(sf)); 7340 util_clamp = tg->uclamp_req[clamp_id].value; 7341 rcu_read_unlock(); 7342 7343 if (util_clamp == SCHED_CAPACITY_SCALE) { 7344 seq_puts(sf, "max\n"); 7345 return; 7346 } 7347 7348 percent = tg->uclamp_pct[clamp_id]; 7349 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 7350 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 7351 } 7352 7353 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 7354 { 7355 cpu_uclamp_print(sf, UCLAMP_MIN); 7356 return 0; 7357 } 7358 7359 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 7360 { 7361 cpu_uclamp_print(sf, UCLAMP_MAX); 7362 return 0; 7363 } 7364 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 7365 7366 #ifdef CONFIG_FAIR_GROUP_SCHED 7367 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7368 struct cftype *cftype, u64 shareval) 7369 { 7370 if (shareval > scale_load_down(ULONG_MAX)) 7371 shareval = MAX_SHARES; 7372 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7373 } 7374 7375 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7376 struct cftype *cft) 7377 { 7378 struct task_group *tg = css_tg(css); 7379 7380 return (u64) scale_load_down(tg->shares); 7381 } 7382 7383 #ifdef CONFIG_CFS_BANDWIDTH 7384 static DEFINE_MUTEX(cfs_constraints_mutex); 7385 7386 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7387 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7388 7389 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7390 7391 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7392 { 7393 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7394 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7395 7396 if (tg == &root_task_group) 7397 return -EINVAL; 7398 7399 /* 7400 * Ensure we have at some amount of bandwidth every period. This is 7401 * to prevent reaching a state of large arrears when throttled via 7402 * entity_tick() resulting in prolonged exit starvation. 7403 */ 7404 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7405 return -EINVAL; 7406 7407 /* 7408 * Likewise, bound things on the otherside by preventing insane quota 7409 * periods. This also allows us to normalize in computing quota 7410 * feasibility. 7411 */ 7412 if (period > max_cfs_quota_period) 7413 return -EINVAL; 7414 7415 /* 7416 * Prevent race between setting of cfs_rq->runtime_enabled and 7417 * unthrottle_offline_cfs_rqs(). 7418 */ 7419 get_online_cpus(); 7420 mutex_lock(&cfs_constraints_mutex); 7421 ret = __cfs_schedulable(tg, period, quota); 7422 if (ret) 7423 goto out_unlock; 7424 7425 runtime_enabled = quota != RUNTIME_INF; 7426 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7427 /* 7428 * If we need to toggle cfs_bandwidth_used, off->on must occur 7429 * before making related changes, and on->off must occur afterwards 7430 */ 7431 if (runtime_enabled && !runtime_was_enabled) 7432 cfs_bandwidth_usage_inc(); 7433 raw_spin_lock_irq(&cfs_b->lock); 7434 cfs_b->period = ns_to_ktime(period); 7435 cfs_b->quota = quota; 7436 7437 __refill_cfs_bandwidth_runtime(cfs_b); 7438 7439 /* Restart the period timer (if active) to handle new period expiry: */ 7440 if (runtime_enabled) 7441 start_cfs_bandwidth(cfs_b); 7442 7443 raw_spin_unlock_irq(&cfs_b->lock); 7444 7445 for_each_online_cpu(i) { 7446 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7447 struct rq *rq = cfs_rq->rq; 7448 struct rq_flags rf; 7449 7450 rq_lock_irq(rq, &rf); 7451 cfs_rq->runtime_enabled = runtime_enabled; 7452 cfs_rq->runtime_remaining = 0; 7453 7454 if (cfs_rq->throttled) 7455 unthrottle_cfs_rq(cfs_rq); 7456 rq_unlock_irq(rq, &rf); 7457 } 7458 if (runtime_was_enabled && !runtime_enabled) 7459 cfs_bandwidth_usage_dec(); 7460 out_unlock: 7461 mutex_unlock(&cfs_constraints_mutex); 7462 put_online_cpus(); 7463 7464 return ret; 7465 } 7466 7467 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7468 { 7469 u64 quota, period; 7470 7471 period = ktime_to_ns(tg->cfs_bandwidth.period); 7472 if (cfs_quota_us < 0) 7473 quota = RUNTIME_INF; 7474 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 7475 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7476 else 7477 return -EINVAL; 7478 7479 return tg_set_cfs_bandwidth(tg, period, quota); 7480 } 7481 7482 static long tg_get_cfs_quota(struct task_group *tg) 7483 { 7484 u64 quota_us; 7485 7486 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7487 return -1; 7488 7489 quota_us = tg->cfs_bandwidth.quota; 7490 do_div(quota_us, NSEC_PER_USEC); 7491 7492 return quota_us; 7493 } 7494 7495 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7496 { 7497 u64 quota, period; 7498 7499 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 7500 return -EINVAL; 7501 7502 period = (u64)cfs_period_us * NSEC_PER_USEC; 7503 quota = tg->cfs_bandwidth.quota; 7504 7505 return tg_set_cfs_bandwidth(tg, period, quota); 7506 } 7507 7508 static long tg_get_cfs_period(struct task_group *tg) 7509 { 7510 u64 cfs_period_us; 7511 7512 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7513 do_div(cfs_period_us, NSEC_PER_USEC); 7514 7515 return cfs_period_us; 7516 } 7517 7518 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7519 struct cftype *cft) 7520 { 7521 return tg_get_cfs_quota(css_tg(css)); 7522 } 7523 7524 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7525 struct cftype *cftype, s64 cfs_quota_us) 7526 { 7527 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7528 } 7529 7530 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7531 struct cftype *cft) 7532 { 7533 return tg_get_cfs_period(css_tg(css)); 7534 } 7535 7536 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7537 struct cftype *cftype, u64 cfs_period_us) 7538 { 7539 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7540 } 7541 7542 struct cfs_schedulable_data { 7543 struct task_group *tg; 7544 u64 period, quota; 7545 }; 7546 7547 /* 7548 * normalize group quota/period to be quota/max_period 7549 * note: units are usecs 7550 */ 7551 static u64 normalize_cfs_quota(struct task_group *tg, 7552 struct cfs_schedulable_data *d) 7553 { 7554 u64 quota, period; 7555 7556 if (tg == d->tg) { 7557 period = d->period; 7558 quota = d->quota; 7559 } else { 7560 period = tg_get_cfs_period(tg); 7561 quota = tg_get_cfs_quota(tg); 7562 } 7563 7564 /* note: these should typically be equivalent */ 7565 if (quota == RUNTIME_INF || quota == -1) 7566 return RUNTIME_INF; 7567 7568 return to_ratio(period, quota); 7569 } 7570 7571 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7572 { 7573 struct cfs_schedulable_data *d = data; 7574 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7575 s64 quota = 0, parent_quota = -1; 7576 7577 if (!tg->parent) { 7578 quota = RUNTIME_INF; 7579 } else { 7580 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7581 7582 quota = normalize_cfs_quota(tg, d); 7583 parent_quota = parent_b->hierarchical_quota; 7584 7585 /* 7586 * Ensure max(child_quota) <= parent_quota. On cgroup2, 7587 * always take the min. On cgroup1, only inherit when no 7588 * limit is set: 7589 */ 7590 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 7591 quota = min(quota, parent_quota); 7592 } else { 7593 if (quota == RUNTIME_INF) 7594 quota = parent_quota; 7595 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7596 return -EINVAL; 7597 } 7598 } 7599 cfs_b->hierarchical_quota = quota; 7600 7601 return 0; 7602 } 7603 7604 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7605 { 7606 int ret; 7607 struct cfs_schedulable_data data = { 7608 .tg = tg, 7609 .period = period, 7610 .quota = quota, 7611 }; 7612 7613 if (quota != RUNTIME_INF) { 7614 do_div(data.period, NSEC_PER_USEC); 7615 do_div(data.quota, NSEC_PER_USEC); 7616 } 7617 7618 rcu_read_lock(); 7619 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7620 rcu_read_unlock(); 7621 7622 return ret; 7623 } 7624 7625 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 7626 { 7627 struct task_group *tg = css_tg(seq_css(sf)); 7628 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7629 7630 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7631 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7632 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7633 7634 if (schedstat_enabled() && tg != &root_task_group) { 7635 u64 ws = 0; 7636 int i; 7637 7638 for_each_possible_cpu(i) 7639 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 7640 7641 seq_printf(sf, "wait_sum %llu\n", ws); 7642 } 7643 7644 return 0; 7645 } 7646 #endif /* CONFIG_CFS_BANDWIDTH */ 7647 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7648 7649 #ifdef CONFIG_RT_GROUP_SCHED 7650 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7651 struct cftype *cft, s64 val) 7652 { 7653 return sched_group_set_rt_runtime(css_tg(css), val); 7654 } 7655 7656 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7657 struct cftype *cft) 7658 { 7659 return sched_group_rt_runtime(css_tg(css)); 7660 } 7661 7662 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7663 struct cftype *cftype, u64 rt_period_us) 7664 { 7665 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7666 } 7667 7668 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7669 struct cftype *cft) 7670 { 7671 return sched_group_rt_period(css_tg(css)); 7672 } 7673 #endif /* CONFIG_RT_GROUP_SCHED */ 7674 7675 static struct cftype cpu_legacy_files[] = { 7676 #ifdef CONFIG_FAIR_GROUP_SCHED 7677 { 7678 .name = "shares", 7679 .read_u64 = cpu_shares_read_u64, 7680 .write_u64 = cpu_shares_write_u64, 7681 }, 7682 #endif 7683 #ifdef CONFIG_CFS_BANDWIDTH 7684 { 7685 .name = "cfs_quota_us", 7686 .read_s64 = cpu_cfs_quota_read_s64, 7687 .write_s64 = cpu_cfs_quota_write_s64, 7688 }, 7689 { 7690 .name = "cfs_period_us", 7691 .read_u64 = cpu_cfs_period_read_u64, 7692 .write_u64 = cpu_cfs_period_write_u64, 7693 }, 7694 { 7695 .name = "stat", 7696 .seq_show = cpu_cfs_stat_show, 7697 }, 7698 #endif 7699 #ifdef CONFIG_RT_GROUP_SCHED 7700 { 7701 .name = "rt_runtime_us", 7702 .read_s64 = cpu_rt_runtime_read, 7703 .write_s64 = cpu_rt_runtime_write, 7704 }, 7705 { 7706 .name = "rt_period_us", 7707 .read_u64 = cpu_rt_period_read_uint, 7708 .write_u64 = cpu_rt_period_write_uint, 7709 }, 7710 #endif 7711 #ifdef CONFIG_UCLAMP_TASK_GROUP 7712 { 7713 .name = "uclamp.min", 7714 .flags = CFTYPE_NOT_ON_ROOT, 7715 .seq_show = cpu_uclamp_min_show, 7716 .write = cpu_uclamp_min_write, 7717 }, 7718 { 7719 .name = "uclamp.max", 7720 .flags = CFTYPE_NOT_ON_ROOT, 7721 .seq_show = cpu_uclamp_max_show, 7722 .write = cpu_uclamp_max_write, 7723 }, 7724 #endif 7725 { } /* Terminate */ 7726 }; 7727 7728 static int cpu_extra_stat_show(struct seq_file *sf, 7729 struct cgroup_subsys_state *css) 7730 { 7731 #ifdef CONFIG_CFS_BANDWIDTH 7732 { 7733 struct task_group *tg = css_tg(css); 7734 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7735 u64 throttled_usec; 7736 7737 throttled_usec = cfs_b->throttled_time; 7738 do_div(throttled_usec, NSEC_PER_USEC); 7739 7740 seq_printf(sf, "nr_periods %d\n" 7741 "nr_throttled %d\n" 7742 "throttled_usec %llu\n", 7743 cfs_b->nr_periods, cfs_b->nr_throttled, 7744 throttled_usec); 7745 } 7746 #endif 7747 return 0; 7748 } 7749 7750 #ifdef CONFIG_FAIR_GROUP_SCHED 7751 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 7752 struct cftype *cft) 7753 { 7754 struct task_group *tg = css_tg(css); 7755 u64 weight = scale_load_down(tg->shares); 7756 7757 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 7758 } 7759 7760 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 7761 struct cftype *cft, u64 weight) 7762 { 7763 /* 7764 * cgroup weight knobs should use the common MIN, DFL and MAX 7765 * values which are 1, 100 and 10000 respectively. While it loses 7766 * a bit of range on both ends, it maps pretty well onto the shares 7767 * value used by scheduler and the round-trip conversions preserve 7768 * the original value over the entire range. 7769 */ 7770 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 7771 return -ERANGE; 7772 7773 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 7774 7775 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7776 } 7777 7778 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 7779 struct cftype *cft) 7780 { 7781 unsigned long weight = scale_load_down(css_tg(css)->shares); 7782 int last_delta = INT_MAX; 7783 int prio, delta; 7784 7785 /* find the closest nice value to the current weight */ 7786 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 7787 delta = abs(sched_prio_to_weight[prio] - weight); 7788 if (delta >= last_delta) 7789 break; 7790 last_delta = delta; 7791 } 7792 7793 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 7794 } 7795 7796 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 7797 struct cftype *cft, s64 nice) 7798 { 7799 unsigned long weight; 7800 int idx; 7801 7802 if (nice < MIN_NICE || nice > MAX_NICE) 7803 return -ERANGE; 7804 7805 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 7806 idx = array_index_nospec(idx, 40); 7807 weight = sched_prio_to_weight[idx]; 7808 7809 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7810 } 7811 #endif 7812 7813 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 7814 long period, long quota) 7815 { 7816 if (quota < 0) 7817 seq_puts(sf, "max"); 7818 else 7819 seq_printf(sf, "%ld", quota); 7820 7821 seq_printf(sf, " %ld\n", period); 7822 } 7823 7824 /* caller should put the current value in *@periodp before calling */ 7825 static int __maybe_unused cpu_period_quota_parse(char *buf, 7826 u64 *periodp, u64 *quotap) 7827 { 7828 char tok[21]; /* U64_MAX */ 7829 7830 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 7831 return -EINVAL; 7832 7833 *periodp *= NSEC_PER_USEC; 7834 7835 if (sscanf(tok, "%llu", quotap)) 7836 *quotap *= NSEC_PER_USEC; 7837 else if (!strcmp(tok, "max")) 7838 *quotap = RUNTIME_INF; 7839 else 7840 return -EINVAL; 7841 7842 return 0; 7843 } 7844 7845 #ifdef CONFIG_CFS_BANDWIDTH 7846 static int cpu_max_show(struct seq_file *sf, void *v) 7847 { 7848 struct task_group *tg = css_tg(seq_css(sf)); 7849 7850 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 7851 return 0; 7852 } 7853 7854 static ssize_t cpu_max_write(struct kernfs_open_file *of, 7855 char *buf, size_t nbytes, loff_t off) 7856 { 7857 struct task_group *tg = css_tg(of_css(of)); 7858 u64 period = tg_get_cfs_period(tg); 7859 u64 quota; 7860 int ret; 7861 7862 ret = cpu_period_quota_parse(buf, &period, "a); 7863 if (!ret) 7864 ret = tg_set_cfs_bandwidth(tg, period, quota); 7865 return ret ?: nbytes; 7866 } 7867 #endif 7868 7869 static struct cftype cpu_files[] = { 7870 #ifdef CONFIG_FAIR_GROUP_SCHED 7871 { 7872 .name = "weight", 7873 .flags = CFTYPE_NOT_ON_ROOT, 7874 .read_u64 = cpu_weight_read_u64, 7875 .write_u64 = cpu_weight_write_u64, 7876 }, 7877 { 7878 .name = "weight.nice", 7879 .flags = CFTYPE_NOT_ON_ROOT, 7880 .read_s64 = cpu_weight_nice_read_s64, 7881 .write_s64 = cpu_weight_nice_write_s64, 7882 }, 7883 #endif 7884 #ifdef CONFIG_CFS_BANDWIDTH 7885 { 7886 .name = "max", 7887 .flags = CFTYPE_NOT_ON_ROOT, 7888 .seq_show = cpu_max_show, 7889 .write = cpu_max_write, 7890 }, 7891 #endif 7892 #ifdef CONFIG_UCLAMP_TASK_GROUP 7893 { 7894 .name = "uclamp.min", 7895 .flags = CFTYPE_NOT_ON_ROOT, 7896 .seq_show = cpu_uclamp_min_show, 7897 .write = cpu_uclamp_min_write, 7898 }, 7899 { 7900 .name = "uclamp.max", 7901 .flags = CFTYPE_NOT_ON_ROOT, 7902 .seq_show = cpu_uclamp_max_show, 7903 .write = cpu_uclamp_max_write, 7904 }, 7905 #endif 7906 { } /* terminate */ 7907 }; 7908 7909 struct cgroup_subsys cpu_cgrp_subsys = { 7910 .css_alloc = cpu_cgroup_css_alloc, 7911 .css_online = cpu_cgroup_css_online, 7912 .css_released = cpu_cgroup_css_released, 7913 .css_free = cpu_cgroup_css_free, 7914 .css_extra_stat_show = cpu_extra_stat_show, 7915 .fork = cpu_cgroup_fork, 7916 .can_attach = cpu_cgroup_can_attach, 7917 .attach = cpu_cgroup_attach, 7918 .legacy_cftypes = cpu_legacy_files, 7919 .dfl_cftypes = cpu_files, 7920 .early_init = true, 7921 .threaded = true, 7922 }; 7923 7924 #endif /* CONFIG_CGROUP_SCHED */ 7925 7926 void dump_cpu_task(int cpu) 7927 { 7928 pr_info("Task dump for CPU %d:\n", cpu); 7929 sched_show_task(cpu_curr(cpu)); 7930 } 7931 7932 /* 7933 * Nice levels are multiplicative, with a gentle 10% change for every 7934 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7935 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7936 * that remained on nice 0. 7937 * 7938 * The "10% effect" is relative and cumulative: from _any_ nice level, 7939 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7940 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7941 * If a task goes up by ~10% and another task goes down by ~10% then 7942 * the relative distance between them is ~25%.) 7943 */ 7944 const int sched_prio_to_weight[40] = { 7945 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7946 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7947 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7948 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7949 /* 0 */ 1024, 820, 655, 526, 423, 7950 /* 5 */ 335, 272, 215, 172, 137, 7951 /* 10 */ 110, 87, 70, 56, 45, 7952 /* 15 */ 36, 29, 23, 18, 15, 7953 }; 7954 7955 /* 7956 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7957 * 7958 * In cases where the weight does not change often, we can use the 7959 * precalculated inverse to speed up arithmetics by turning divisions 7960 * into multiplications: 7961 */ 7962 const u32 sched_prio_to_wmult[40] = { 7963 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7964 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7965 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7966 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7967 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7968 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7969 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7970 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7971 }; 7972 7973 #undef CREATE_TRACE_POINTS 7974