xref: /linux/kernel/sched/core.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17 
18 #include "../workqueue_internal.h"
19 #include "../../fs/io-wq.h"
20 #include "../smpboot.h"
21 
22 #include "pelt.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
26 
27 /*
28  * Export tracepoints that act as a bare tracehook (ie: have no trace event
29  * associated with them) to allow external modules to probe them.
30  */
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37 
38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39 
40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
41 /*
42  * Debugging: various feature bits
43  *
44  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45  * sysctl_sched_features, defined in sched.h, to allow constants propagation
46  * at compile time and compiler optimization based on features default.
47  */
48 #define SCHED_FEAT(name, enabled)	\
49 	(1UL << __SCHED_FEAT_##name) * enabled |
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
52 	0;
53 #undef SCHED_FEAT
54 #endif
55 
56 /*
57  * Number of tasks to iterate in a single balance run.
58  * Limited because this is done with IRQs disabled.
59  */
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
61 
62 /*
63  * period over which we measure -rt task CPU usage in us.
64  * default: 1s
65  */
66 unsigned int sysctl_sched_rt_period = 1000000;
67 
68 __read_mostly int scheduler_running;
69 
70 /*
71  * part of the period that we allow rt tasks to run in us.
72  * default: 0.95s
73  */
74 int sysctl_sched_rt_runtime = 950000;
75 
76 /*
77  * __task_rq_lock - lock the rq @p resides on.
78  */
79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
80 	__acquires(rq->lock)
81 {
82 	struct rq *rq;
83 
84 	lockdep_assert_held(&p->pi_lock);
85 
86 	for (;;) {
87 		rq = task_rq(p);
88 		raw_spin_lock(&rq->lock);
89 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
90 			rq_pin_lock(rq, rf);
91 			return rq;
92 		}
93 		raw_spin_unlock(&rq->lock);
94 
95 		while (unlikely(task_on_rq_migrating(p)))
96 			cpu_relax();
97 	}
98 }
99 
100 /*
101  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102  */
103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
104 	__acquires(p->pi_lock)
105 	__acquires(rq->lock)
106 {
107 	struct rq *rq;
108 
109 	for (;;) {
110 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 		rq = task_rq(p);
112 		raw_spin_lock(&rq->lock);
113 		/*
114 		 *	move_queued_task()		task_rq_lock()
115 		 *
116 		 *	ACQUIRE (rq->lock)
117 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
118 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
119 		 *	[S] ->cpu = new_cpu		[L] task_rq()
120 		 *					[L] ->on_rq
121 		 *	RELEASE (rq->lock)
122 		 *
123 		 * If we observe the old CPU in task_rq_lock(), the acquire of
124 		 * the old rq->lock will fully serialize against the stores.
125 		 *
126 		 * If we observe the new CPU in task_rq_lock(), the address
127 		 * dependency headed by '[L] rq = task_rq()' and the acquire
128 		 * will pair with the WMB to ensure we then also see migrating.
129 		 */
130 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
131 			rq_pin_lock(rq, rf);
132 			return rq;
133 		}
134 		raw_spin_unlock(&rq->lock);
135 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
136 
137 		while (unlikely(task_on_rq_migrating(p)))
138 			cpu_relax();
139 	}
140 }
141 
142 /*
143  * RQ-clock updating methods:
144  */
145 
146 static void update_rq_clock_task(struct rq *rq, s64 delta)
147 {
148 /*
149  * In theory, the compile should just see 0 here, and optimize out the call
150  * to sched_rt_avg_update. But I don't trust it...
151  */
152 	s64 __maybe_unused steal = 0, irq_delta = 0;
153 
154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156 
157 	/*
158 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 	 * this case when a previous update_rq_clock() happened inside a
160 	 * {soft,}irq region.
161 	 *
162 	 * When this happens, we stop ->clock_task and only update the
163 	 * prev_irq_time stamp to account for the part that fit, so that a next
164 	 * update will consume the rest. This ensures ->clock_task is
165 	 * monotonic.
166 	 *
167 	 * It does however cause some slight miss-attribution of {soft,}irq
168 	 * time, a more accurate solution would be to update the irq_time using
169 	 * the current rq->clock timestamp, except that would require using
170 	 * atomic ops.
171 	 */
172 	if (irq_delta > delta)
173 		irq_delta = delta;
174 
175 	rq->prev_irq_time += irq_delta;
176 	delta -= irq_delta;
177 #endif
178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 	if (static_key_false((&paravirt_steal_rq_enabled))) {
180 		steal = paravirt_steal_clock(cpu_of(rq));
181 		steal -= rq->prev_steal_time_rq;
182 
183 		if (unlikely(steal > delta))
184 			steal = delta;
185 
186 		rq->prev_steal_time_rq += steal;
187 		delta -= steal;
188 	}
189 #endif
190 
191 	rq->clock_task += delta;
192 
193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
194 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
195 		update_irq_load_avg(rq, irq_delta + steal);
196 #endif
197 	update_rq_clock_pelt(rq, delta);
198 }
199 
200 void update_rq_clock(struct rq *rq)
201 {
202 	s64 delta;
203 
204 	lockdep_assert_held(&rq->lock);
205 
206 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 		return;
208 
209 #ifdef CONFIG_SCHED_DEBUG
210 	if (sched_feat(WARN_DOUBLE_CLOCK))
211 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
212 	rq->clock_update_flags |= RQCF_UPDATED;
213 #endif
214 
215 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 	if (delta < 0)
217 		return;
218 	rq->clock += delta;
219 	update_rq_clock_task(rq, delta);
220 }
221 
222 
223 #ifdef CONFIG_SCHED_HRTICK
224 /*
225  * Use HR-timers to deliver accurate preemption points.
226  */
227 
228 static void hrtick_clear(struct rq *rq)
229 {
230 	if (hrtimer_active(&rq->hrtick_timer))
231 		hrtimer_cancel(&rq->hrtick_timer);
232 }
233 
234 /*
235  * High-resolution timer tick.
236  * Runs from hardirq context with interrupts disabled.
237  */
238 static enum hrtimer_restart hrtick(struct hrtimer *timer)
239 {
240 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
241 	struct rq_flags rf;
242 
243 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
244 
245 	rq_lock(rq, &rf);
246 	update_rq_clock(rq);
247 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
248 	rq_unlock(rq, &rf);
249 
250 	return HRTIMER_NORESTART;
251 }
252 
253 #ifdef CONFIG_SMP
254 
255 static void __hrtick_restart(struct rq *rq)
256 {
257 	struct hrtimer *timer = &rq->hrtick_timer;
258 
259 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
260 }
261 
262 /*
263  * called from hardirq (IPI) context
264  */
265 static void __hrtick_start(void *arg)
266 {
267 	struct rq *rq = arg;
268 	struct rq_flags rf;
269 
270 	rq_lock(rq, &rf);
271 	__hrtick_restart(rq);
272 	rq->hrtick_csd_pending = 0;
273 	rq_unlock(rq, &rf);
274 }
275 
276 /*
277  * Called to set the hrtick timer state.
278  *
279  * called with rq->lock held and irqs disabled
280  */
281 void hrtick_start(struct rq *rq, u64 delay)
282 {
283 	struct hrtimer *timer = &rq->hrtick_timer;
284 	ktime_t time;
285 	s64 delta;
286 
287 	/*
288 	 * Don't schedule slices shorter than 10000ns, that just
289 	 * doesn't make sense and can cause timer DoS.
290 	 */
291 	delta = max_t(s64, delay, 10000LL);
292 	time = ktime_add_ns(timer->base->get_time(), delta);
293 
294 	hrtimer_set_expires(timer, time);
295 
296 	if (rq == this_rq()) {
297 		__hrtick_restart(rq);
298 	} else if (!rq->hrtick_csd_pending) {
299 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
300 		rq->hrtick_csd_pending = 1;
301 	}
302 }
303 
304 #else
305 /*
306  * Called to set the hrtick timer state.
307  *
308  * called with rq->lock held and irqs disabled
309  */
310 void hrtick_start(struct rq *rq, u64 delay)
311 {
312 	/*
313 	 * Don't schedule slices shorter than 10000ns, that just
314 	 * doesn't make sense. Rely on vruntime for fairness.
315 	 */
316 	delay = max_t(u64, delay, 10000LL);
317 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
318 		      HRTIMER_MODE_REL_PINNED_HARD);
319 }
320 #endif /* CONFIG_SMP */
321 
322 static void hrtick_rq_init(struct rq *rq)
323 {
324 #ifdef CONFIG_SMP
325 	rq->hrtick_csd_pending = 0;
326 
327 	rq->hrtick_csd.flags = 0;
328 	rq->hrtick_csd.func = __hrtick_start;
329 	rq->hrtick_csd.info = rq;
330 #endif
331 
332 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
333 	rq->hrtick_timer.function = hrtick;
334 }
335 #else	/* CONFIG_SCHED_HRTICK */
336 static inline void hrtick_clear(struct rq *rq)
337 {
338 }
339 
340 static inline void hrtick_rq_init(struct rq *rq)
341 {
342 }
343 #endif	/* CONFIG_SCHED_HRTICK */
344 
345 /*
346  * cmpxchg based fetch_or, macro so it works for different integer types
347  */
348 #define fetch_or(ptr, mask)						\
349 	({								\
350 		typeof(ptr) _ptr = (ptr);				\
351 		typeof(mask) _mask = (mask);				\
352 		typeof(*_ptr) _old, _val = *_ptr;			\
353 									\
354 		for (;;) {						\
355 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
356 			if (_old == _val)				\
357 				break;					\
358 			_val = _old;					\
359 		}							\
360 	_old;								\
361 })
362 
363 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
364 /*
365  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
366  * this avoids any races wrt polling state changes and thereby avoids
367  * spurious IPIs.
368  */
369 static bool set_nr_and_not_polling(struct task_struct *p)
370 {
371 	struct thread_info *ti = task_thread_info(p);
372 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
373 }
374 
375 /*
376  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
377  *
378  * If this returns true, then the idle task promises to call
379  * sched_ttwu_pending() and reschedule soon.
380  */
381 static bool set_nr_if_polling(struct task_struct *p)
382 {
383 	struct thread_info *ti = task_thread_info(p);
384 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
385 
386 	for (;;) {
387 		if (!(val & _TIF_POLLING_NRFLAG))
388 			return false;
389 		if (val & _TIF_NEED_RESCHED)
390 			return true;
391 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
392 		if (old == val)
393 			break;
394 		val = old;
395 	}
396 	return true;
397 }
398 
399 #else
400 static bool set_nr_and_not_polling(struct task_struct *p)
401 {
402 	set_tsk_need_resched(p);
403 	return true;
404 }
405 
406 #ifdef CONFIG_SMP
407 static bool set_nr_if_polling(struct task_struct *p)
408 {
409 	return false;
410 }
411 #endif
412 #endif
413 
414 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
415 {
416 	struct wake_q_node *node = &task->wake_q;
417 
418 	/*
419 	 * Atomically grab the task, if ->wake_q is !nil already it means
420 	 * its already queued (either by us or someone else) and will get the
421 	 * wakeup due to that.
422 	 *
423 	 * In order to ensure that a pending wakeup will observe our pending
424 	 * state, even in the failed case, an explicit smp_mb() must be used.
425 	 */
426 	smp_mb__before_atomic();
427 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
428 		return false;
429 
430 	/*
431 	 * The head is context local, there can be no concurrency.
432 	 */
433 	*head->lastp = node;
434 	head->lastp = &node->next;
435 	return true;
436 }
437 
438 /**
439  * wake_q_add() - queue a wakeup for 'later' waking.
440  * @head: the wake_q_head to add @task to
441  * @task: the task to queue for 'later' wakeup
442  *
443  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
444  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
445  * instantly.
446  *
447  * This function must be used as-if it were wake_up_process(); IOW the task
448  * must be ready to be woken at this location.
449  */
450 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
451 {
452 	if (__wake_q_add(head, task))
453 		get_task_struct(task);
454 }
455 
456 /**
457  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
458  * @head: the wake_q_head to add @task to
459  * @task: the task to queue for 'later' wakeup
460  *
461  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
462  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
463  * instantly.
464  *
465  * This function must be used as-if it were wake_up_process(); IOW the task
466  * must be ready to be woken at this location.
467  *
468  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
469  * that already hold reference to @task can call the 'safe' version and trust
470  * wake_q to do the right thing depending whether or not the @task is already
471  * queued for wakeup.
472  */
473 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
474 {
475 	if (!__wake_q_add(head, task))
476 		put_task_struct(task);
477 }
478 
479 void wake_up_q(struct wake_q_head *head)
480 {
481 	struct wake_q_node *node = head->first;
482 
483 	while (node != WAKE_Q_TAIL) {
484 		struct task_struct *task;
485 
486 		task = container_of(node, struct task_struct, wake_q);
487 		BUG_ON(!task);
488 		/* Task can safely be re-inserted now: */
489 		node = node->next;
490 		task->wake_q.next = NULL;
491 
492 		/*
493 		 * wake_up_process() executes a full barrier, which pairs with
494 		 * the queueing in wake_q_add() so as not to miss wakeups.
495 		 */
496 		wake_up_process(task);
497 		put_task_struct(task);
498 	}
499 }
500 
501 /*
502  * resched_curr - mark rq's current task 'to be rescheduled now'.
503  *
504  * On UP this means the setting of the need_resched flag, on SMP it
505  * might also involve a cross-CPU call to trigger the scheduler on
506  * the target CPU.
507  */
508 void resched_curr(struct rq *rq)
509 {
510 	struct task_struct *curr = rq->curr;
511 	int cpu;
512 
513 	lockdep_assert_held(&rq->lock);
514 
515 	if (test_tsk_need_resched(curr))
516 		return;
517 
518 	cpu = cpu_of(rq);
519 
520 	if (cpu == smp_processor_id()) {
521 		set_tsk_need_resched(curr);
522 		set_preempt_need_resched();
523 		return;
524 	}
525 
526 	if (set_nr_and_not_polling(curr))
527 		smp_send_reschedule(cpu);
528 	else
529 		trace_sched_wake_idle_without_ipi(cpu);
530 }
531 
532 void resched_cpu(int cpu)
533 {
534 	struct rq *rq = cpu_rq(cpu);
535 	unsigned long flags;
536 
537 	raw_spin_lock_irqsave(&rq->lock, flags);
538 	if (cpu_online(cpu) || cpu == smp_processor_id())
539 		resched_curr(rq);
540 	raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542 
543 #ifdef CONFIG_SMP
544 #ifdef CONFIG_NO_HZ_COMMON
545 /*
546  * In the semi idle case, use the nearest busy CPU for migrating timers
547  * from an idle CPU.  This is good for power-savings.
548  *
549  * We don't do similar optimization for completely idle system, as
550  * selecting an idle CPU will add more delays to the timers than intended
551  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
552  */
553 int get_nohz_timer_target(void)
554 {
555 	int i, cpu = smp_processor_id(), default_cpu = -1;
556 	struct sched_domain *sd;
557 
558 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
559 		if (!idle_cpu(cpu))
560 			return cpu;
561 		default_cpu = cpu;
562 	}
563 
564 	rcu_read_lock();
565 	for_each_domain(cpu, sd) {
566 		for_each_cpu_and(i, sched_domain_span(sd),
567 			housekeeping_cpumask(HK_FLAG_TIMER)) {
568 			if (cpu == i)
569 				continue;
570 
571 			if (!idle_cpu(i)) {
572 				cpu = i;
573 				goto unlock;
574 			}
575 		}
576 	}
577 
578 	if (default_cpu == -1)
579 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
580 	cpu = default_cpu;
581 unlock:
582 	rcu_read_unlock();
583 	return cpu;
584 }
585 
586 /*
587  * When add_timer_on() enqueues a timer into the timer wheel of an
588  * idle CPU then this timer might expire before the next timer event
589  * which is scheduled to wake up that CPU. In case of a completely
590  * idle system the next event might even be infinite time into the
591  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
592  * leaves the inner idle loop so the newly added timer is taken into
593  * account when the CPU goes back to idle and evaluates the timer
594  * wheel for the next timer event.
595  */
596 static void wake_up_idle_cpu(int cpu)
597 {
598 	struct rq *rq = cpu_rq(cpu);
599 
600 	if (cpu == smp_processor_id())
601 		return;
602 
603 	if (set_nr_and_not_polling(rq->idle))
604 		smp_send_reschedule(cpu);
605 	else
606 		trace_sched_wake_idle_without_ipi(cpu);
607 }
608 
609 static bool wake_up_full_nohz_cpu(int cpu)
610 {
611 	/*
612 	 * We just need the target to call irq_exit() and re-evaluate
613 	 * the next tick. The nohz full kick at least implies that.
614 	 * If needed we can still optimize that later with an
615 	 * empty IRQ.
616 	 */
617 	if (cpu_is_offline(cpu))
618 		return true;  /* Don't try to wake offline CPUs. */
619 	if (tick_nohz_full_cpu(cpu)) {
620 		if (cpu != smp_processor_id() ||
621 		    tick_nohz_tick_stopped())
622 			tick_nohz_full_kick_cpu(cpu);
623 		return true;
624 	}
625 
626 	return false;
627 }
628 
629 /*
630  * Wake up the specified CPU.  If the CPU is going offline, it is the
631  * caller's responsibility to deal with the lost wakeup, for example,
632  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
633  */
634 void wake_up_nohz_cpu(int cpu)
635 {
636 	if (!wake_up_full_nohz_cpu(cpu))
637 		wake_up_idle_cpu(cpu);
638 }
639 
640 static inline bool got_nohz_idle_kick(void)
641 {
642 	int cpu = smp_processor_id();
643 
644 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
645 		return false;
646 
647 	if (idle_cpu(cpu) && !need_resched())
648 		return true;
649 
650 	/*
651 	 * We can't run Idle Load Balance on this CPU for this time so we
652 	 * cancel it and clear NOHZ_BALANCE_KICK
653 	 */
654 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
655 	return false;
656 }
657 
658 #else /* CONFIG_NO_HZ_COMMON */
659 
660 static inline bool got_nohz_idle_kick(void)
661 {
662 	return false;
663 }
664 
665 #endif /* CONFIG_NO_HZ_COMMON */
666 
667 #ifdef CONFIG_NO_HZ_FULL
668 bool sched_can_stop_tick(struct rq *rq)
669 {
670 	int fifo_nr_running;
671 
672 	/* Deadline tasks, even if single, need the tick */
673 	if (rq->dl.dl_nr_running)
674 		return false;
675 
676 	/*
677 	 * If there are more than one RR tasks, we need the tick to effect the
678 	 * actual RR behaviour.
679 	 */
680 	if (rq->rt.rr_nr_running) {
681 		if (rq->rt.rr_nr_running == 1)
682 			return true;
683 		else
684 			return false;
685 	}
686 
687 	/*
688 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
689 	 * forced preemption between FIFO tasks.
690 	 */
691 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
692 	if (fifo_nr_running)
693 		return true;
694 
695 	/*
696 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
697 	 * if there's more than one we need the tick for involuntary
698 	 * preemption.
699 	 */
700 	if (rq->nr_running > 1)
701 		return false;
702 
703 	return true;
704 }
705 #endif /* CONFIG_NO_HZ_FULL */
706 #endif /* CONFIG_SMP */
707 
708 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
709 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
710 /*
711  * Iterate task_group tree rooted at *from, calling @down when first entering a
712  * node and @up when leaving it for the final time.
713  *
714  * Caller must hold rcu_lock or sufficient equivalent.
715  */
716 int walk_tg_tree_from(struct task_group *from,
717 			     tg_visitor down, tg_visitor up, void *data)
718 {
719 	struct task_group *parent, *child;
720 	int ret;
721 
722 	parent = from;
723 
724 down:
725 	ret = (*down)(parent, data);
726 	if (ret)
727 		goto out;
728 	list_for_each_entry_rcu(child, &parent->children, siblings) {
729 		parent = child;
730 		goto down;
731 
732 up:
733 		continue;
734 	}
735 	ret = (*up)(parent, data);
736 	if (ret || parent == from)
737 		goto out;
738 
739 	child = parent;
740 	parent = parent->parent;
741 	if (parent)
742 		goto up;
743 out:
744 	return ret;
745 }
746 
747 int tg_nop(struct task_group *tg, void *data)
748 {
749 	return 0;
750 }
751 #endif
752 
753 static void set_load_weight(struct task_struct *p, bool update_load)
754 {
755 	int prio = p->static_prio - MAX_RT_PRIO;
756 	struct load_weight *load = &p->se.load;
757 
758 	/*
759 	 * SCHED_IDLE tasks get minimal weight:
760 	 */
761 	if (task_has_idle_policy(p)) {
762 		load->weight = scale_load(WEIGHT_IDLEPRIO);
763 		load->inv_weight = WMULT_IDLEPRIO;
764 		p->se.runnable_weight = load->weight;
765 		return;
766 	}
767 
768 	/*
769 	 * SCHED_OTHER tasks have to update their load when changing their
770 	 * weight
771 	 */
772 	if (update_load && p->sched_class == &fair_sched_class) {
773 		reweight_task(p, prio);
774 	} else {
775 		load->weight = scale_load(sched_prio_to_weight[prio]);
776 		load->inv_weight = sched_prio_to_wmult[prio];
777 		p->se.runnable_weight = load->weight;
778 	}
779 }
780 
781 #ifdef CONFIG_UCLAMP_TASK
782 /*
783  * Serializes updates of utilization clamp values
784  *
785  * The (slow-path) user-space triggers utilization clamp value updates which
786  * can require updates on (fast-path) scheduler's data structures used to
787  * support enqueue/dequeue operations.
788  * While the per-CPU rq lock protects fast-path update operations, user-space
789  * requests are serialized using a mutex to reduce the risk of conflicting
790  * updates or API abuses.
791  */
792 static DEFINE_MUTEX(uclamp_mutex);
793 
794 /* Max allowed minimum utilization */
795 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
796 
797 /* Max allowed maximum utilization */
798 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
799 
800 /* All clamps are required to be less or equal than these values */
801 static struct uclamp_se uclamp_default[UCLAMP_CNT];
802 
803 /* Integer rounded range for each bucket */
804 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
805 
806 #define for_each_clamp_id(clamp_id) \
807 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
808 
809 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
810 {
811 	return clamp_value / UCLAMP_BUCKET_DELTA;
812 }
813 
814 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
815 {
816 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
817 }
818 
819 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
820 {
821 	if (clamp_id == UCLAMP_MIN)
822 		return 0;
823 	return SCHED_CAPACITY_SCALE;
824 }
825 
826 static inline void uclamp_se_set(struct uclamp_se *uc_se,
827 				 unsigned int value, bool user_defined)
828 {
829 	uc_se->value = value;
830 	uc_se->bucket_id = uclamp_bucket_id(value);
831 	uc_se->user_defined = user_defined;
832 }
833 
834 static inline unsigned int
835 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
836 		  unsigned int clamp_value)
837 {
838 	/*
839 	 * Avoid blocked utilization pushing up the frequency when we go
840 	 * idle (which drops the max-clamp) by retaining the last known
841 	 * max-clamp.
842 	 */
843 	if (clamp_id == UCLAMP_MAX) {
844 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
845 		return clamp_value;
846 	}
847 
848 	return uclamp_none(UCLAMP_MIN);
849 }
850 
851 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
852 				     unsigned int clamp_value)
853 {
854 	/* Reset max-clamp retention only on idle exit */
855 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
856 		return;
857 
858 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
859 }
860 
861 static inline
862 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
863 				   unsigned int clamp_value)
864 {
865 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
866 	int bucket_id = UCLAMP_BUCKETS - 1;
867 
868 	/*
869 	 * Since both min and max clamps are max aggregated, find the
870 	 * top most bucket with tasks in.
871 	 */
872 	for ( ; bucket_id >= 0; bucket_id--) {
873 		if (!bucket[bucket_id].tasks)
874 			continue;
875 		return bucket[bucket_id].value;
876 	}
877 
878 	/* No tasks -- default clamp values */
879 	return uclamp_idle_value(rq, clamp_id, clamp_value);
880 }
881 
882 static inline struct uclamp_se
883 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
884 {
885 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
886 #ifdef CONFIG_UCLAMP_TASK_GROUP
887 	struct uclamp_se uc_max;
888 
889 	/*
890 	 * Tasks in autogroups or root task group will be
891 	 * restricted by system defaults.
892 	 */
893 	if (task_group_is_autogroup(task_group(p)))
894 		return uc_req;
895 	if (task_group(p) == &root_task_group)
896 		return uc_req;
897 
898 	uc_max = task_group(p)->uclamp[clamp_id];
899 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
900 		return uc_max;
901 #endif
902 
903 	return uc_req;
904 }
905 
906 /*
907  * The effective clamp bucket index of a task depends on, by increasing
908  * priority:
909  * - the task specific clamp value, when explicitly requested from userspace
910  * - the task group effective clamp value, for tasks not either in the root
911  *   group or in an autogroup
912  * - the system default clamp value, defined by the sysadmin
913  */
914 static inline struct uclamp_se
915 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
916 {
917 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
918 	struct uclamp_se uc_max = uclamp_default[clamp_id];
919 
920 	/* System default restrictions always apply */
921 	if (unlikely(uc_req.value > uc_max.value))
922 		return uc_max;
923 
924 	return uc_req;
925 }
926 
927 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
928 {
929 	struct uclamp_se uc_eff;
930 
931 	/* Task currently refcounted: use back-annotated (effective) value */
932 	if (p->uclamp[clamp_id].active)
933 		return (unsigned long)p->uclamp[clamp_id].value;
934 
935 	uc_eff = uclamp_eff_get(p, clamp_id);
936 
937 	return (unsigned long)uc_eff.value;
938 }
939 
940 /*
941  * When a task is enqueued on a rq, the clamp bucket currently defined by the
942  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
943  * updates the rq's clamp value if required.
944  *
945  * Tasks can have a task-specific value requested from user-space, track
946  * within each bucket the maximum value for tasks refcounted in it.
947  * This "local max aggregation" allows to track the exact "requested" value
948  * for each bucket when all its RUNNABLE tasks require the same clamp.
949  */
950 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
951 				    enum uclamp_id clamp_id)
952 {
953 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
954 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
955 	struct uclamp_bucket *bucket;
956 
957 	lockdep_assert_held(&rq->lock);
958 
959 	/* Update task effective clamp */
960 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
961 
962 	bucket = &uc_rq->bucket[uc_se->bucket_id];
963 	bucket->tasks++;
964 	uc_se->active = true;
965 
966 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
967 
968 	/*
969 	 * Local max aggregation: rq buckets always track the max
970 	 * "requested" clamp value of its RUNNABLE tasks.
971 	 */
972 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
973 		bucket->value = uc_se->value;
974 
975 	if (uc_se->value > READ_ONCE(uc_rq->value))
976 		WRITE_ONCE(uc_rq->value, uc_se->value);
977 }
978 
979 /*
980  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
981  * is released. If this is the last task reference counting the rq's max
982  * active clamp value, then the rq's clamp value is updated.
983  *
984  * Both refcounted tasks and rq's cached clamp values are expected to be
985  * always valid. If it's detected they are not, as defensive programming,
986  * enforce the expected state and warn.
987  */
988 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
989 				    enum uclamp_id clamp_id)
990 {
991 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
992 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
993 	struct uclamp_bucket *bucket;
994 	unsigned int bkt_clamp;
995 	unsigned int rq_clamp;
996 
997 	lockdep_assert_held(&rq->lock);
998 
999 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1000 	SCHED_WARN_ON(!bucket->tasks);
1001 	if (likely(bucket->tasks))
1002 		bucket->tasks--;
1003 	uc_se->active = false;
1004 
1005 	/*
1006 	 * Keep "local max aggregation" simple and accept to (possibly)
1007 	 * overboost some RUNNABLE tasks in the same bucket.
1008 	 * The rq clamp bucket value is reset to its base value whenever
1009 	 * there are no more RUNNABLE tasks refcounting it.
1010 	 */
1011 	if (likely(bucket->tasks))
1012 		return;
1013 
1014 	rq_clamp = READ_ONCE(uc_rq->value);
1015 	/*
1016 	 * Defensive programming: this should never happen. If it happens,
1017 	 * e.g. due to future modification, warn and fixup the expected value.
1018 	 */
1019 	SCHED_WARN_ON(bucket->value > rq_clamp);
1020 	if (bucket->value >= rq_clamp) {
1021 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1022 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1023 	}
1024 }
1025 
1026 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1027 {
1028 	enum uclamp_id clamp_id;
1029 
1030 	if (unlikely(!p->sched_class->uclamp_enabled))
1031 		return;
1032 
1033 	for_each_clamp_id(clamp_id)
1034 		uclamp_rq_inc_id(rq, p, clamp_id);
1035 
1036 	/* Reset clamp idle holding when there is one RUNNABLE task */
1037 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1038 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1039 }
1040 
1041 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1042 {
1043 	enum uclamp_id clamp_id;
1044 
1045 	if (unlikely(!p->sched_class->uclamp_enabled))
1046 		return;
1047 
1048 	for_each_clamp_id(clamp_id)
1049 		uclamp_rq_dec_id(rq, p, clamp_id);
1050 }
1051 
1052 static inline void
1053 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1054 {
1055 	struct rq_flags rf;
1056 	struct rq *rq;
1057 
1058 	/*
1059 	 * Lock the task and the rq where the task is (or was) queued.
1060 	 *
1061 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1062 	 * price to pay to safely serialize util_{min,max} updates with
1063 	 * enqueues, dequeues and migration operations.
1064 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1065 	 */
1066 	rq = task_rq_lock(p, &rf);
1067 
1068 	/*
1069 	 * Setting the clamp bucket is serialized by task_rq_lock().
1070 	 * If the task is not yet RUNNABLE and its task_struct is not
1071 	 * affecting a valid clamp bucket, the next time it's enqueued,
1072 	 * it will already see the updated clamp bucket value.
1073 	 */
1074 	if (p->uclamp[clamp_id].active) {
1075 		uclamp_rq_dec_id(rq, p, clamp_id);
1076 		uclamp_rq_inc_id(rq, p, clamp_id);
1077 	}
1078 
1079 	task_rq_unlock(rq, p, &rf);
1080 }
1081 
1082 #ifdef CONFIG_UCLAMP_TASK_GROUP
1083 static inline void
1084 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1085 			   unsigned int clamps)
1086 {
1087 	enum uclamp_id clamp_id;
1088 	struct css_task_iter it;
1089 	struct task_struct *p;
1090 
1091 	css_task_iter_start(css, 0, &it);
1092 	while ((p = css_task_iter_next(&it))) {
1093 		for_each_clamp_id(clamp_id) {
1094 			if ((0x1 << clamp_id) & clamps)
1095 				uclamp_update_active(p, clamp_id);
1096 		}
1097 	}
1098 	css_task_iter_end(&it);
1099 }
1100 
1101 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1102 static void uclamp_update_root_tg(void)
1103 {
1104 	struct task_group *tg = &root_task_group;
1105 
1106 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1107 		      sysctl_sched_uclamp_util_min, false);
1108 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1109 		      sysctl_sched_uclamp_util_max, false);
1110 
1111 	rcu_read_lock();
1112 	cpu_util_update_eff(&root_task_group.css);
1113 	rcu_read_unlock();
1114 }
1115 #else
1116 static void uclamp_update_root_tg(void) { }
1117 #endif
1118 
1119 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1120 				void __user *buffer, size_t *lenp,
1121 				loff_t *ppos)
1122 {
1123 	bool update_root_tg = false;
1124 	int old_min, old_max;
1125 	int result;
1126 
1127 	mutex_lock(&uclamp_mutex);
1128 	old_min = sysctl_sched_uclamp_util_min;
1129 	old_max = sysctl_sched_uclamp_util_max;
1130 
1131 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1132 	if (result)
1133 		goto undo;
1134 	if (!write)
1135 		goto done;
1136 
1137 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1138 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1139 		result = -EINVAL;
1140 		goto undo;
1141 	}
1142 
1143 	if (old_min != sysctl_sched_uclamp_util_min) {
1144 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1145 			      sysctl_sched_uclamp_util_min, false);
1146 		update_root_tg = true;
1147 	}
1148 	if (old_max != sysctl_sched_uclamp_util_max) {
1149 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1150 			      sysctl_sched_uclamp_util_max, false);
1151 		update_root_tg = true;
1152 	}
1153 
1154 	if (update_root_tg)
1155 		uclamp_update_root_tg();
1156 
1157 	/*
1158 	 * We update all RUNNABLE tasks only when task groups are in use.
1159 	 * Otherwise, keep it simple and do just a lazy update at each next
1160 	 * task enqueue time.
1161 	 */
1162 
1163 	goto done;
1164 
1165 undo:
1166 	sysctl_sched_uclamp_util_min = old_min;
1167 	sysctl_sched_uclamp_util_max = old_max;
1168 done:
1169 	mutex_unlock(&uclamp_mutex);
1170 
1171 	return result;
1172 }
1173 
1174 static int uclamp_validate(struct task_struct *p,
1175 			   const struct sched_attr *attr)
1176 {
1177 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1178 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1179 
1180 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1181 		lower_bound = attr->sched_util_min;
1182 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1183 		upper_bound = attr->sched_util_max;
1184 
1185 	if (lower_bound > upper_bound)
1186 		return -EINVAL;
1187 	if (upper_bound > SCHED_CAPACITY_SCALE)
1188 		return -EINVAL;
1189 
1190 	return 0;
1191 }
1192 
1193 static void __setscheduler_uclamp(struct task_struct *p,
1194 				  const struct sched_attr *attr)
1195 {
1196 	enum uclamp_id clamp_id;
1197 
1198 	/*
1199 	 * On scheduling class change, reset to default clamps for tasks
1200 	 * without a task-specific value.
1201 	 */
1202 	for_each_clamp_id(clamp_id) {
1203 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1204 		unsigned int clamp_value = uclamp_none(clamp_id);
1205 
1206 		/* Keep using defined clamps across class changes */
1207 		if (uc_se->user_defined)
1208 			continue;
1209 
1210 		/* By default, RT tasks always get 100% boost */
1211 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1212 			clamp_value = uclamp_none(UCLAMP_MAX);
1213 
1214 		uclamp_se_set(uc_se, clamp_value, false);
1215 	}
1216 
1217 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1218 		return;
1219 
1220 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1221 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1222 			      attr->sched_util_min, true);
1223 	}
1224 
1225 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1226 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1227 			      attr->sched_util_max, true);
1228 	}
1229 }
1230 
1231 static void uclamp_fork(struct task_struct *p)
1232 {
1233 	enum uclamp_id clamp_id;
1234 
1235 	for_each_clamp_id(clamp_id)
1236 		p->uclamp[clamp_id].active = false;
1237 
1238 	if (likely(!p->sched_reset_on_fork))
1239 		return;
1240 
1241 	for_each_clamp_id(clamp_id) {
1242 		unsigned int clamp_value = uclamp_none(clamp_id);
1243 
1244 		/* By default, RT tasks always get 100% boost */
1245 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1246 			clamp_value = uclamp_none(UCLAMP_MAX);
1247 
1248 		uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1249 	}
1250 }
1251 
1252 static void __init init_uclamp(void)
1253 {
1254 	struct uclamp_se uc_max = {};
1255 	enum uclamp_id clamp_id;
1256 	int cpu;
1257 
1258 	mutex_init(&uclamp_mutex);
1259 
1260 	for_each_possible_cpu(cpu) {
1261 		memset(&cpu_rq(cpu)->uclamp, 0,
1262 				sizeof(struct uclamp_rq)*UCLAMP_CNT);
1263 		cpu_rq(cpu)->uclamp_flags = 0;
1264 	}
1265 
1266 	for_each_clamp_id(clamp_id) {
1267 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1268 			      uclamp_none(clamp_id), false);
1269 	}
1270 
1271 	/* System defaults allow max clamp values for both indexes */
1272 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1273 	for_each_clamp_id(clamp_id) {
1274 		uclamp_default[clamp_id] = uc_max;
1275 #ifdef CONFIG_UCLAMP_TASK_GROUP
1276 		root_task_group.uclamp_req[clamp_id] = uc_max;
1277 		root_task_group.uclamp[clamp_id] = uc_max;
1278 #endif
1279 	}
1280 }
1281 
1282 #else /* CONFIG_UCLAMP_TASK */
1283 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1284 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1285 static inline int uclamp_validate(struct task_struct *p,
1286 				  const struct sched_attr *attr)
1287 {
1288 	return -EOPNOTSUPP;
1289 }
1290 static void __setscheduler_uclamp(struct task_struct *p,
1291 				  const struct sched_attr *attr) { }
1292 static inline void uclamp_fork(struct task_struct *p) { }
1293 static inline void init_uclamp(void) { }
1294 #endif /* CONFIG_UCLAMP_TASK */
1295 
1296 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1297 {
1298 	if (!(flags & ENQUEUE_NOCLOCK))
1299 		update_rq_clock(rq);
1300 
1301 	if (!(flags & ENQUEUE_RESTORE)) {
1302 		sched_info_queued(rq, p);
1303 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1304 	}
1305 
1306 	uclamp_rq_inc(rq, p);
1307 	p->sched_class->enqueue_task(rq, p, flags);
1308 }
1309 
1310 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1311 {
1312 	if (!(flags & DEQUEUE_NOCLOCK))
1313 		update_rq_clock(rq);
1314 
1315 	if (!(flags & DEQUEUE_SAVE)) {
1316 		sched_info_dequeued(rq, p);
1317 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1318 	}
1319 
1320 	uclamp_rq_dec(rq, p);
1321 	p->sched_class->dequeue_task(rq, p, flags);
1322 }
1323 
1324 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1325 {
1326 	if (task_contributes_to_load(p))
1327 		rq->nr_uninterruptible--;
1328 
1329 	enqueue_task(rq, p, flags);
1330 
1331 	p->on_rq = TASK_ON_RQ_QUEUED;
1332 }
1333 
1334 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1335 {
1336 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1337 
1338 	if (task_contributes_to_load(p))
1339 		rq->nr_uninterruptible++;
1340 
1341 	dequeue_task(rq, p, flags);
1342 }
1343 
1344 /*
1345  * __normal_prio - return the priority that is based on the static prio
1346  */
1347 static inline int __normal_prio(struct task_struct *p)
1348 {
1349 	return p->static_prio;
1350 }
1351 
1352 /*
1353  * Calculate the expected normal priority: i.e. priority
1354  * without taking RT-inheritance into account. Might be
1355  * boosted by interactivity modifiers. Changes upon fork,
1356  * setprio syscalls, and whenever the interactivity
1357  * estimator recalculates.
1358  */
1359 static inline int normal_prio(struct task_struct *p)
1360 {
1361 	int prio;
1362 
1363 	if (task_has_dl_policy(p))
1364 		prio = MAX_DL_PRIO-1;
1365 	else if (task_has_rt_policy(p))
1366 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1367 	else
1368 		prio = __normal_prio(p);
1369 	return prio;
1370 }
1371 
1372 /*
1373  * Calculate the current priority, i.e. the priority
1374  * taken into account by the scheduler. This value might
1375  * be boosted by RT tasks, or might be boosted by
1376  * interactivity modifiers. Will be RT if the task got
1377  * RT-boosted. If not then it returns p->normal_prio.
1378  */
1379 static int effective_prio(struct task_struct *p)
1380 {
1381 	p->normal_prio = normal_prio(p);
1382 	/*
1383 	 * If we are RT tasks or we were boosted to RT priority,
1384 	 * keep the priority unchanged. Otherwise, update priority
1385 	 * to the normal priority:
1386 	 */
1387 	if (!rt_prio(p->prio))
1388 		return p->normal_prio;
1389 	return p->prio;
1390 }
1391 
1392 /**
1393  * task_curr - is this task currently executing on a CPU?
1394  * @p: the task in question.
1395  *
1396  * Return: 1 if the task is currently executing. 0 otherwise.
1397  */
1398 inline int task_curr(const struct task_struct *p)
1399 {
1400 	return cpu_curr(task_cpu(p)) == p;
1401 }
1402 
1403 /*
1404  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1405  * use the balance_callback list if you want balancing.
1406  *
1407  * this means any call to check_class_changed() must be followed by a call to
1408  * balance_callback().
1409  */
1410 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1411 				       const struct sched_class *prev_class,
1412 				       int oldprio)
1413 {
1414 	if (prev_class != p->sched_class) {
1415 		if (prev_class->switched_from)
1416 			prev_class->switched_from(rq, p);
1417 
1418 		p->sched_class->switched_to(rq, p);
1419 	} else if (oldprio != p->prio || dl_task(p))
1420 		p->sched_class->prio_changed(rq, p, oldprio);
1421 }
1422 
1423 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1424 {
1425 	const struct sched_class *class;
1426 
1427 	if (p->sched_class == rq->curr->sched_class) {
1428 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1429 	} else {
1430 		for_each_class(class) {
1431 			if (class == rq->curr->sched_class)
1432 				break;
1433 			if (class == p->sched_class) {
1434 				resched_curr(rq);
1435 				break;
1436 			}
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * A queue event has occurred, and we're going to schedule.  In
1442 	 * this case, we can save a useless back to back clock update.
1443 	 */
1444 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1445 		rq_clock_skip_update(rq);
1446 }
1447 
1448 #ifdef CONFIG_SMP
1449 
1450 /*
1451  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1452  * __set_cpus_allowed_ptr() and select_fallback_rq().
1453  */
1454 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1455 {
1456 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1457 		return false;
1458 
1459 	if (is_per_cpu_kthread(p))
1460 		return cpu_online(cpu);
1461 
1462 	return cpu_active(cpu);
1463 }
1464 
1465 /*
1466  * This is how migration works:
1467  *
1468  * 1) we invoke migration_cpu_stop() on the target CPU using
1469  *    stop_one_cpu().
1470  * 2) stopper starts to run (implicitly forcing the migrated thread
1471  *    off the CPU)
1472  * 3) it checks whether the migrated task is still in the wrong runqueue.
1473  * 4) if it's in the wrong runqueue then the migration thread removes
1474  *    it and puts it into the right queue.
1475  * 5) stopper completes and stop_one_cpu() returns and the migration
1476  *    is done.
1477  */
1478 
1479 /*
1480  * move_queued_task - move a queued task to new rq.
1481  *
1482  * Returns (locked) new rq. Old rq's lock is released.
1483  */
1484 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1485 				   struct task_struct *p, int new_cpu)
1486 {
1487 	lockdep_assert_held(&rq->lock);
1488 
1489 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1490 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1491 	set_task_cpu(p, new_cpu);
1492 	rq_unlock(rq, rf);
1493 
1494 	rq = cpu_rq(new_cpu);
1495 
1496 	rq_lock(rq, rf);
1497 	BUG_ON(task_cpu(p) != new_cpu);
1498 	enqueue_task(rq, p, 0);
1499 	p->on_rq = TASK_ON_RQ_QUEUED;
1500 	check_preempt_curr(rq, p, 0);
1501 
1502 	return rq;
1503 }
1504 
1505 struct migration_arg {
1506 	struct task_struct *task;
1507 	int dest_cpu;
1508 };
1509 
1510 /*
1511  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1512  * this because either it can't run here any more (set_cpus_allowed()
1513  * away from this CPU, or CPU going down), or because we're
1514  * attempting to rebalance this task on exec (sched_exec).
1515  *
1516  * So we race with normal scheduler movements, but that's OK, as long
1517  * as the task is no longer on this CPU.
1518  */
1519 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1520 				 struct task_struct *p, int dest_cpu)
1521 {
1522 	/* Affinity changed (again). */
1523 	if (!is_cpu_allowed(p, dest_cpu))
1524 		return rq;
1525 
1526 	update_rq_clock(rq);
1527 	rq = move_queued_task(rq, rf, p, dest_cpu);
1528 
1529 	return rq;
1530 }
1531 
1532 /*
1533  * migration_cpu_stop - this will be executed by a highprio stopper thread
1534  * and performs thread migration by bumping thread off CPU then
1535  * 'pushing' onto another runqueue.
1536  */
1537 static int migration_cpu_stop(void *data)
1538 {
1539 	struct migration_arg *arg = data;
1540 	struct task_struct *p = arg->task;
1541 	struct rq *rq = this_rq();
1542 	struct rq_flags rf;
1543 
1544 	/*
1545 	 * The original target CPU might have gone down and we might
1546 	 * be on another CPU but it doesn't matter.
1547 	 */
1548 	local_irq_disable();
1549 	/*
1550 	 * We need to explicitly wake pending tasks before running
1551 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1552 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1553 	 */
1554 	sched_ttwu_pending();
1555 
1556 	raw_spin_lock(&p->pi_lock);
1557 	rq_lock(rq, &rf);
1558 	/*
1559 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1560 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1561 	 * we're holding p->pi_lock.
1562 	 */
1563 	if (task_rq(p) == rq) {
1564 		if (task_on_rq_queued(p))
1565 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1566 		else
1567 			p->wake_cpu = arg->dest_cpu;
1568 	}
1569 	rq_unlock(rq, &rf);
1570 	raw_spin_unlock(&p->pi_lock);
1571 
1572 	local_irq_enable();
1573 	return 0;
1574 }
1575 
1576 /*
1577  * sched_class::set_cpus_allowed must do the below, but is not required to
1578  * actually call this function.
1579  */
1580 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1581 {
1582 	cpumask_copy(&p->cpus_mask, new_mask);
1583 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1584 }
1585 
1586 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1587 {
1588 	struct rq *rq = task_rq(p);
1589 	bool queued, running;
1590 
1591 	lockdep_assert_held(&p->pi_lock);
1592 
1593 	queued = task_on_rq_queued(p);
1594 	running = task_current(rq, p);
1595 
1596 	if (queued) {
1597 		/*
1598 		 * Because __kthread_bind() calls this on blocked tasks without
1599 		 * holding rq->lock.
1600 		 */
1601 		lockdep_assert_held(&rq->lock);
1602 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1603 	}
1604 	if (running)
1605 		put_prev_task(rq, p);
1606 
1607 	p->sched_class->set_cpus_allowed(p, new_mask);
1608 
1609 	if (queued)
1610 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1611 	if (running)
1612 		set_next_task(rq, p);
1613 }
1614 
1615 /*
1616  * Change a given task's CPU affinity. Migrate the thread to a
1617  * proper CPU and schedule it away if the CPU it's executing on
1618  * is removed from the allowed bitmask.
1619  *
1620  * NOTE: the caller must have a valid reference to the task, the
1621  * task must not exit() & deallocate itself prematurely. The
1622  * call is not atomic; no spinlocks may be held.
1623  */
1624 static int __set_cpus_allowed_ptr(struct task_struct *p,
1625 				  const struct cpumask *new_mask, bool check)
1626 {
1627 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1628 	unsigned int dest_cpu;
1629 	struct rq_flags rf;
1630 	struct rq *rq;
1631 	int ret = 0;
1632 
1633 	rq = task_rq_lock(p, &rf);
1634 	update_rq_clock(rq);
1635 
1636 	if (p->flags & PF_KTHREAD) {
1637 		/*
1638 		 * Kernel threads are allowed on online && !active CPUs
1639 		 */
1640 		cpu_valid_mask = cpu_online_mask;
1641 	}
1642 
1643 	/*
1644 	 * Must re-check here, to close a race against __kthread_bind(),
1645 	 * sched_setaffinity() is not guaranteed to observe the flag.
1646 	 */
1647 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1648 		ret = -EINVAL;
1649 		goto out;
1650 	}
1651 
1652 	if (cpumask_equal(p->cpus_ptr, new_mask))
1653 		goto out;
1654 
1655 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1656 	if (dest_cpu >= nr_cpu_ids) {
1657 		ret = -EINVAL;
1658 		goto out;
1659 	}
1660 
1661 	do_set_cpus_allowed(p, new_mask);
1662 
1663 	if (p->flags & PF_KTHREAD) {
1664 		/*
1665 		 * For kernel threads that do indeed end up on online &&
1666 		 * !active we want to ensure they are strict per-CPU threads.
1667 		 */
1668 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1669 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1670 			p->nr_cpus_allowed != 1);
1671 	}
1672 
1673 	/* Can the task run on the task's current CPU? If so, we're done */
1674 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1675 		goto out;
1676 
1677 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1678 		struct migration_arg arg = { p, dest_cpu };
1679 		/* Need help from migration thread: drop lock and wait. */
1680 		task_rq_unlock(rq, p, &rf);
1681 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1682 		return 0;
1683 	} else if (task_on_rq_queued(p)) {
1684 		/*
1685 		 * OK, since we're going to drop the lock immediately
1686 		 * afterwards anyway.
1687 		 */
1688 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1689 	}
1690 out:
1691 	task_rq_unlock(rq, p, &rf);
1692 
1693 	return ret;
1694 }
1695 
1696 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1697 {
1698 	return __set_cpus_allowed_ptr(p, new_mask, false);
1699 }
1700 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1701 
1702 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1703 {
1704 #ifdef CONFIG_SCHED_DEBUG
1705 	/*
1706 	 * We should never call set_task_cpu() on a blocked task,
1707 	 * ttwu() will sort out the placement.
1708 	 */
1709 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1710 			!p->on_rq);
1711 
1712 	/*
1713 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1714 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1715 	 * time relying on p->on_rq.
1716 	 */
1717 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1718 		     p->sched_class == &fair_sched_class &&
1719 		     (p->on_rq && !task_on_rq_migrating(p)));
1720 
1721 #ifdef CONFIG_LOCKDEP
1722 	/*
1723 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1724 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1725 	 *
1726 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1727 	 * see task_group().
1728 	 *
1729 	 * Furthermore, all task_rq users should acquire both locks, see
1730 	 * task_rq_lock().
1731 	 */
1732 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1733 				      lockdep_is_held(&task_rq(p)->lock)));
1734 #endif
1735 	/*
1736 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1737 	 */
1738 	WARN_ON_ONCE(!cpu_online(new_cpu));
1739 #endif
1740 
1741 	trace_sched_migrate_task(p, new_cpu);
1742 
1743 	if (task_cpu(p) != new_cpu) {
1744 		if (p->sched_class->migrate_task_rq)
1745 			p->sched_class->migrate_task_rq(p, new_cpu);
1746 		p->se.nr_migrations++;
1747 		rseq_migrate(p);
1748 		perf_event_task_migrate(p);
1749 	}
1750 
1751 	__set_task_cpu(p, new_cpu);
1752 }
1753 
1754 #ifdef CONFIG_NUMA_BALANCING
1755 static void __migrate_swap_task(struct task_struct *p, int cpu)
1756 {
1757 	if (task_on_rq_queued(p)) {
1758 		struct rq *src_rq, *dst_rq;
1759 		struct rq_flags srf, drf;
1760 
1761 		src_rq = task_rq(p);
1762 		dst_rq = cpu_rq(cpu);
1763 
1764 		rq_pin_lock(src_rq, &srf);
1765 		rq_pin_lock(dst_rq, &drf);
1766 
1767 		deactivate_task(src_rq, p, 0);
1768 		set_task_cpu(p, cpu);
1769 		activate_task(dst_rq, p, 0);
1770 		check_preempt_curr(dst_rq, p, 0);
1771 
1772 		rq_unpin_lock(dst_rq, &drf);
1773 		rq_unpin_lock(src_rq, &srf);
1774 
1775 	} else {
1776 		/*
1777 		 * Task isn't running anymore; make it appear like we migrated
1778 		 * it before it went to sleep. This means on wakeup we make the
1779 		 * previous CPU our target instead of where it really is.
1780 		 */
1781 		p->wake_cpu = cpu;
1782 	}
1783 }
1784 
1785 struct migration_swap_arg {
1786 	struct task_struct *src_task, *dst_task;
1787 	int src_cpu, dst_cpu;
1788 };
1789 
1790 static int migrate_swap_stop(void *data)
1791 {
1792 	struct migration_swap_arg *arg = data;
1793 	struct rq *src_rq, *dst_rq;
1794 	int ret = -EAGAIN;
1795 
1796 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1797 		return -EAGAIN;
1798 
1799 	src_rq = cpu_rq(arg->src_cpu);
1800 	dst_rq = cpu_rq(arg->dst_cpu);
1801 
1802 	double_raw_lock(&arg->src_task->pi_lock,
1803 			&arg->dst_task->pi_lock);
1804 	double_rq_lock(src_rq, dst_rq);
1805 
1806 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1807 		goto unlock;
1808 
1809 	if (task_cpu(arg->src_task) != arg->src_cpu)
1810 		goto unlock;
1811 
1812 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1813 		goto unlock;
1814 
1815 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1816 		goto unlock;
1817 
1818 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1819 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1820 
1821 	ret = 0;
1822 
1823 unlock:
1824 	double_rq_unlock(src_rq, dst_rq);
1825 	raw_spin_unlock(&arg->dst_task->pi_lock);
1826 	raw_spin_unlock(&arg->src_task->pi_lock);
1827 
1828 	return ret;
1829 }
1830 
1831 /*
1832  * Cross migrate two tasks
1833  */
1834 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1835 		int target_cpu, int curr_cpu)
1836 {
1837 	struct migration_swap_arg arg;
1838 	int ret = -EINVAL;
1839 
1840 	arg = (struct migration_swap_arg){
1841 		.src_task = cur,
1842 		.src_cpu = curr_cpu,
1843 		.dst_task = p,
1844 		.dst_cpu = target_cpu,
1845 	};
1846 
1847 	if (arg.src_cpu == arg.dst_cpu)
1848 		goto out;
1849 
1850 	/*
1851 	 * These three tests are all lockless; this is OK since all of them
1852 	 * will be re-checked with proper locks held further down the line.
1853 	 */
1854 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1855 		goto out;
1856 
1857 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1858 		goto out;
1859 
1860 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1861 		goto out;
1862 
1863 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1864 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1865 
1866 out:
1867 	return ret;
1868 }
1869 #endif /* CONFIG_NUMA_BALANCING */
1870 
1871 /*
1872  * wait_task_inactive - wait for a thread to unschedule.
1873  *
1874  * If @match_state is nonzero, it's the @p->state value just checked and
1875  * not expected to change.  If it changes, i.e. @p might have woken up,
1876  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1877  * we return a positive number (its total switch count).  If a second call
1878  * a short while later returns the same number, the caller can be sure that
1879  * @p has remained unscheduled the whole time.
1880  *
1881  * The caller must ensure that the task *will* unschedule sometime soon,
1882  * else this function might spin for a *long* time. This function can't
1883  * be called with interrupts off, or it may introduce deadlock with
1884  * smp_call_function() if an IPI is sent by the same process we are
1885  * waiting to become inactive.
1886  */
1887 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1888 {
1889 	int running, queued;
1890 	struct rq_flags rf;
1891 	unsigned long ncsw;
1892 	struct rq *rq;
1893 
1894 	for (;;) {
1895 		/*
1896 		 * We do the initial early heuristics without holding
1897 		 * any task-queue locks at all. We'll only try to get
1898 		 * the runqueue lock when things look like they will
1899 		 * work out!
1900 		 */
1901 		rq = task_rq(p);
1902 
1903 		/*
1904 		 * If the task is actively running on another CPU
1905 		 * still, just relax and busy-wait without holding
1906 		 * any locks.
1907 		 *
1908 		 * NOTE! Since we don't hold any locks, it's not
1909 		 * even sure that "rq" stays as the right runqueue!
1910 		 * But we don't care, since "task_running()" will
1911 		 * return false if the runqueue has changed and p
1912 		 * is actually now running somewhere else!
1913 		 */
1914 		while (task_running(rq, p)) {
1915 			if (match_state && unlikely(p->state != match_state))
1916 				return 0;
1917 			cpu_relax();
1918 		}
1919 
1920 		/*
1921 		 * Ok, time to look more closely! We need the rq
1922 		 * lock now, to be *sure*. If we're wrong, we'll
1923 		 * just go back and repeat.
1924 		 */
1925 		rq = task_rq_lock(p, &rf);
1926 		trace_sched_wait_task(p);
1927 		running = task_running(rq, p);
1928 		queued = task_on_rq_queued(p);
1929 		ncsw = 0;
1930 		if (!match_state || p->state == match_state)
1931 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1932 		task_rq_unlock(rq, p, &rf);
1933 
1934 		/*
1935 		 * If it changed from the expected state, bail out now.
1936 		 */
1937 		if (unlikely(!ncsw))
1938 			break;
1939 
1940 		/*
1941 		 * Was it really running after all now that we
1942 		 * checked with the proper locks actually held?
1943 		 *
1944 		 * Oops. Go back and try again..
1945 		 */
1946 		if (unlikely(running)) {
1947 			cpu_relax();
1948 			continue;
1949 		}
1950 
1951 		/*
1952 		 * It's not enough that it's not actively running,
1953 		 * it must be off the runqueue _entirely_, and not
1954 		 * preempted!
1955 		 *
1956 		 * So if it was still runnable (but just not actively
1957 		 * running right now), it's preempted, and we should
1958 		 * yield - it could be a while.
1959 		 */
1960 		if (unlikely(queued)) {
1961 			ktime_t to = NSEC_PER_SEC / HZ;
1962 
1963 			set_current_state(TASK_UNINTERRUPTIBLE);
1964 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1965 			continue;
1966 		}
1967 
1968 		/*
1969 		 * Ahh, all good. It wasn't running, and it wasn't
1970 		 * runnable, which means that it will never become
1971 		 * running in the future either. We're all done!
1972 		 */
1973 		break;
1974 	}
1975 
1976 	return ncsw;
1977 }
1978 
1979 /***
1980  * kick_process - kick a running thread to enter/exit the kernel
1981  * @p: the to-be-kicked thread
1982  *
1983  * Cause a process which is running on another CPU to enter
1984  * kernel-mode, without any delay. (to get signals handled.)
1985  *
1986  * NOTE: this function doesn't have to take the runqueue lock,
1987  * because all it wants to ensure is that the remote task enters
1988  * the kernel. If the IPI races and the task has been migrated
1989  * to another CPU then no harm is done and the purpose has been
1990  * achieved as well.
1991  */
1992 void kick_process(struct task_struct *p)
1993 {
1994 	int cpu;
1995 
1996 	preempt_disable();
1997 	cpu = task_cpu(p);
1998 	if ((cpu != smp_processor_id()) && task_curr(p))
1999 		smp_send_reschedule(cpu);
2000 	preempt_enable();
2001 }
2002 EXPORT_SYMBOL_GPL(kick_process);
2003 
2004 /*
2005  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2006  *
2007  * A few notes on cpu_active vs cpu_online:
2008  *
2009  *  - cpu_active must be a subset of cpu_online
2010  *
2011  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2012  *    see __set_cpus_allowed_ptr(). At this point the newly online
2013  *    CPU isn't yet part of the sched domains, and balancing will not
2014  *    see it.
2015  *
2016  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2017  *    avoid the load balancer to place new tasks on the to be removed
2018  *    CPU. Existing tasks will remain running there and will be taken
2019  *    off.
2020  *
2021  * This means that fallback selection must not select !active CPUs.
2022  * And can assume that any active CPU must be online. Conversely
2023  * select_task_rq() below may allow selection of !active CPUs in order
2024  * to satisfy the above rules.
2025  */
2026 static int select_fallback_rq(int cpu, struct task_struct *p)
2027 {
2028 	int nid = cpu_to_node(cpu);
2029 	const struct cpumask *nodemask = NULL;
2030 	enum { cpuset, possible, fail } state = cpuset;
2031 	int dest_cpu;
2032 
2033 	/*
2034 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2035 	 * will return -1. There is no CPU on the node, and we should
2036 	 * select the CPU on the other node.
2037 	 */
2038 	if (nid != -1) {
2039 		nodemask = cpumask_of_node(nid);
2040 
2041 		/* Look for allowed, online CPU in same node. */
2042 		for_each_cpu(dest_cpu, nodemask) {
2043 			if (!cpu_active(dest_cpu))
2044 				continue;
2045 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2046 				return dest_cpu;
2047 		}
2048 	}
2049 
2050 	for (;;) {
2051 		/* Any allowed, online CPU? */
2052 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2053 			if (!is_cpu_allowed(p, dest_cpu))
2054 				continue;
2055 
2056 			goto out;
2057 		}
2058 
2059 		/* No more Mr. Nice Guy. */
2060 		switch (state) {
2061 		case cpuset:
2062 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2063 				cpuset_cpus_allowed_fallback(p);
2064 				state = possible;
2065 				break;
2066 			}
2067 			/* Fall-through */
2068 		case possible:
2069 			do_set_cpus_allowed(p, cpu_possible_mask);
2070 			state = fail;
2071 			break;
2072 
2073 		case fail:
2074 			BUG();
2075 			break;
2076 		}
2077 	}
2078 
2079 out:
2080 	if (state != cpuset) {
2081 		/*
2082 		 * Don't tell them about moving exiting tasks or
2083 		 * kernel threads (both mm NULL), since they never
2084 		 * leave kernel.
2085 		 */
2086 		if (p->mm && printk_ratelimit()) {
2087 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2088 					task_pid_nr(p), p->comm, cpu);
2089 		}
2090 	}
2091 
2092 	return dest_cpu;
2093 }
2094 
2095 /*
2096  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2097  */
2098 static inline
2099 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2100 {
2101 	lockdep_assert_held(&p->pi_lock);
2102 
2103 	if (p->nr_cpus_allowed > 1)
2104 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2105 	else
2106 		cpu = cpumask_any(p->cpus_ptr);
2107 
2108 	/*
2109 	 * In order not to call set_task_cpu() on a blocking task we need
2110 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2111 	 * CPU.
2112 	 *
2113 	 * Since this is common to all placement strategies, this lives here.
2114 	 *
2115 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2116 	 *   not worry about this generic constraint ]
2117 	 */
2118 	if (unlikely(!is_cpu_allowed(p, cpu)))
2119 		cpu = select_fallback_rq(task_cpu(p), p);
2120 
2121 	return cpu;
2122 }
2123 
2124 static void update_avg(u64 *avg, u64 sample)
2125 {
2126 	s64 diff = sample - *avg;
2127 	*avg += diff >> 3;
2128 }
2129 
2130 void sched_set_stop_task(int cpu, struct task_struct *stop)
2131 {
2132 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2133 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2134 
2135 	if (stop) {
2136 		/*
2137 		 * Make it appear like a SCHED_FIFO task, its something
2138 		 * userspace knows about and won't get confused about.
2139 		 *
2140 		 * Also, it will make PI more or less work without too
2141 		 * much confusion -- but then, stop work should not
2142 		 * rely on PI working anyway.
2143 		 */
2144 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2145 
2146 		stop->sched_class = &stop_sched_class;
2147 	}
2148 
2149 	cpu_rq(cpu)->stop = stop;
2150 
2151 	if (old_stop) {
2152 		/*
2153 		 * Reset it back to a normal scheduling class so that
2154 		 * it can die in pieces.
2155 		 */
2156 		old_stop->sched_class = &rt_sched_class;
2157 	}
2158 }
2159 
2160 #else
2161 
2162 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2163 					 const struct cpumask *new_mask, bool check)
2164 {
2165 	return set_cpus_allowed_ptr(p, new_mask);
2166 }
2167 
2168 #endif /* CONFIG_SMP */
2169 
2170 static void
2171 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2172 {
2173 	struct rq *rq;
2174 
2175 	if (!schedstat_enabled())
2176 		return;
2177 
2178 	rq = this_rq();
2179 
2180 #ifdef CONFIG_SMP
2181 	if (cpu == rq->cpu) {
2182 		__schedstat_inc(rq->ttwu_local);
2183 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2184 	} else {
2185 		struct sched_domain *sd;
2186 
2187 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2188 		rcu_read_lock();
2189 		for_each_domain(rq->cpu, sd) {
2190 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2191 				__schedstat_inc(sd->ttwu_wake_remote);
2192 				break;
2193 			}
2194 		}
2195 		rcu_read_unlock();
2196 	}
2197 
2198 	if (wake_flags & WF_MIGRATED)
2199 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2200 #endif /* CONFIG_SMP */
2201 
2202 	__schedstat_inc(rq->ttwu_count);
2203 	__schedstat_inc(p->se.statistics.nr_wakeups);
2204 
2205 	if (wake_flags & WF_SYNC)
2206 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2207 }
2208 
2209 /*
2210  * Mark the task runnable and perform wakeup-preemption.
2211  */
2212 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2213 			   struct rq_flags *rf)
2214 {
2215 	check_preempt_curr(rq, p, wake_flags);
2216 	p->state = TASK_RUNNING;
2217 	trace_sched_wakeup(p);
2218 
2219 #ifdef CONFIG_SMP
2220 	if (p->sched_class->task_woken) {
2221 		/*
2222 		 * Our task @p is fully woken up and running; so its safe to
2223 		 * drop the rq->lock, hereafter rq is only used for statistics.
2224 		 */
2225 		rq_unpin_lock(rq, rf);
2226 		p->sched_class->task_woken(rq, p);
2227 		rq_repin_lock(rq, rf);
2228 	}
2229 
2230 	if (rq->idle_stamp) {
2231 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2232 		u64 max = 2*rq->max_idle_balance_cost;
2233 
2234 		update_avg(&rq->avg_idle, delta);
2235 
2236 		if (rq->avg_idle > max)
2237 			rq->avg_idle = max;
2238 
2239 		rq->idle_stamp = 0;
2240 	}
2241 #endif
2242 }
2243 
2244 static void
2245 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2246 		 struct rq_flags *rf)
2247 {
2248 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2249 
2250 	lockdep_assert_held(&rq->lock);
2251 
2252 #ifdef CONFIG_SMP
2253 	if (p->sched_contributes_to_load)
2254 		rq->nr_uninterruptible--;
2255 
2256 	if (wake_flags & WF_MIGRATED)
2257 		en_flags |= ENQUEUE_MIGRATED;
2258 #endif
2259 
2260 	activate_task(rq, p, en_flags);
2261 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2262 }
2263 
2264 /*
2265  * Called in case the task @p isn't fully descheduled from its runqueue,
2266  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2267  * since all we need to do is flip p->state to TASK_RUNNING, since
2268  * the task is still ->on_rq.
2269  */
2270 static int ttwu_remote(struct task_struct *p, int wake_flags)
2271 {
2272 	struct rq_flags rf;
2273 	struct rq *rq;
2274 	int ret = 0;
2275 
2276 	rq = __task_rq_lock(p, &rf);
2277 	if (task_on_rq_queued(p)) {
2278 		/* check_preempt_curr() may use rq clock */
2279 		update_rq_clock(rq);
2280 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2281 		ret = 1;
2282 	}
2283 	__task_rq_unlock(rq, &rf);
2284 
2285 	return ret;
2286 }
2287 
2288 #ifdef CONFIG_SMP
2289 void sched_ttwu_pending(void)
2290 {
2291 	struct rq *rq = this_rq();
2292 	struct llist_node *llist = llist_del_all(&rq->wake_list);
2293 	struct task_struct *p, *t;
2294 	struct rq_flags rf;
2295 
2296 	if (!llist)
2297 		return;
2298 
2299 	rq_lock_irqsave(rq, &rf);
2300 	update_rq_clock(rq);
2301 
2302 	llist_for_each_entry_safe(p, t, llist, wake_entry)
2303 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2304 
2305 	rq_unlock_irqrestore(rq, &rf);
2306 }
2307 
2308 void scheduler_ipi(void)
2309 {
2310 	/*
2311 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2312 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2313 	 * this IPI.
2314 	 */
2315 	preempt_fold_need_resched();
2316 
2317 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2318 		return;
2319 
2320 	/*
2321 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2322 	 * traditionally all their work was done from the interrupt return
2323 	 * path. Now that we actually do some work, we need to make sure
2324 	 * we do call them.
2325 	 *
2326 	 * Some archs already do call them, luckily irq_enter/exit nest
2327 	 * properly.
2328 	 *
2329 	 * Arguably we should visit all archs and update all handlers,
2330 	 * however a fair share of IPIs are still resched only so this would
2331 	 * somewhat pessimize the simple resched case.
2332 	 */
2333 	irq_enter();
2334 	sched_ttwu_pending();
2335 
2336 	/*
2337 	 * Check if someone kicked us for doing the nohz idle load balance.
2338 	 */
2339 	if (unlikely(got_nohz_idle_kick())) {
2340 		this_rq()->idle_balance = 1;
2341 		raise_softirq_irqoff(SCHED_SOFTIRQ);
2342 	}
2343 	irq_exit();
2344 }
2345 
2346 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2347 {
2348 	struct rq *rq = cpu_rq(cpu);
2349 
2350 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2351 
2352 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2353 		if (!set_nr_if_polling(rq->idle))
2354 			smp_send_reschedule(cpu);
2355 		else
2356 			trace_sched_wake_idle_without_ipi(cpu);
2357 	}
2358 }
2359 
2360 void wake_up_if_idle(int cpu)
2361 {
2362 	struct rq *rq = cpu_rq(cpu);
2363 	struct rq_flags rf;
2364 
2365 	rcu_read_lock();
2366 
2367 	if (!is_idle_task(rcu_dereference(rq->curr)))
2368 		goto out;
2369 
2370 	if (set_nr_if_polling(rq->idle)) {
2371 		trace_sched_wake_idle_without_ipi(cpu);
2372 	} else {
2373 		rq_lock_irqsave(rq, &rf);
2374 		if (is_idle_task(rq->curr))
2375 			smp_send_reschedule(cpu);
2376 		/* Else CPU is not idle, do nothing here: */
2377 		rq_unlock_irqrestore(rq, &rf);
2378 	}
2379 
2380 out:
2381 	rcu_read_unlock();
2382 }
2383 
2384 bool cpus_share_cache(int this_cpu, int that_cpu)
2385 {
2386 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2387 }
2388 #endif /* CONFIG_SMP */
2389 
2390 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2391 {
2392 	struct rq *rq = cpu_rq(cpu);
2393 	struct rq_flags rf;
2394 
2395 #if defined(CONFIG_SMP)
2396 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2397 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2398 		ttwu_queue_remote(p, cpu, wake_flags);
2399 		return;
2400 	}
2401 #endif
2402 
2403 	rq_lock(rq, &rf);
2404 	update_rq_clock(rq);
2405 	ttwu_do_activate(rq, p, wake_flags, &rf);
2406 	rq_unlock(rq, &rf);
2407 }
2408 
2409 /*
2410  * Notes on Program-Order guarantees on SMP systems.
2411  *
2412  *  MIGRATION
2413  *
2414  * The basic program-order guarantee on SMP systems is that when a task [t]
2415  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2416  * execution on its new CPU [c1].
2417  *
2418  * For migration (of runnable tasks) this is provided by the following means:
2419  *
2420  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2421  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2422  *     rq(c1)->lock (if not at the same time, then in that order).
2423  *  C) LOCK of the rq(c1)->lock scheduling in task
2424  *
2425  * Release/acquire chaining guarantees that B happens after A and C after B.
2426  * Note: the CPU doing B need not be c0 or c1
2427  *
2428  * Example:
2429  *
2430  *   CPU0            CPU1            CPU2
2431  *
2432  *   LOCK rq(0)->lock
2433  *   sched-out X
2434  *   sched-in Y
2435  *   UNLOCK rq(0)->lock
2436  *
2437  *                                   LOCK rq(0)->lock // orders against CPU0
2438  *                                   dequeue X
2439  *                                   UNLOCK rq(0)->lock
2440  *
2441  *                                   LOCK rq(1)->lock
2442  *                                   enqueue X
2443  *                                   UNLOCK rq(1)->lock
2444  *
2445  *                   LOCK rq(1)->lock // orders against CPU2
2446  *                   sched-out Z
2447  *                   sched-in X
2448  *                   UNLOCK rq(1)->lock
2449  *
2450  *
2451  *  BLOCKING -- aka. SLEEP + WAKEUP
2452  *
2453  * For blocking we (obviously) need to provide the same guarantee as for
2454  * migration. However the means are completely different as there is no lock
2455  * chain to provide order. Instead we do:
2456  *
2457  *   1) smp_store_release(X->on_cpu, 0)
2458  *   2) smp_cond_load_acquire(!X->on_cpu)
2459  *
2460  * Example:
2461  *
2462  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2463  *
2464  *   LOCK rq(0)->lock LOCK X->pi_lock
2465  *   dequeue X
2466  *   sched-out X
2467  *   smp_store_release(X->on_cpu, 0);
2468  *
2469  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2470  *                    X->state = WAKING
2471  *                    set_task_cpu(X,2)
2472  *
2473  *                    LOCK rq(2)->lock
2474  *                    enqueue X
2475  *                    X->state = RUNNING
2476  *                    UNLOCK rq(2)->lock
2477  *
2478  *                                          LOCK rq(2)->lock // orders against CPU1
2479  *                                          sched-out Z
2480  *                                          sched-in X
2481  *                                          UNLOCK rq(2)->lock
2482  *
2483  *                    UNLOCK X->pi_lock
2484  *   UNLOCK rq(0)->lock
2485  *
2486  *
2487  * However, for wakeups there is a second guarantee we must provide, namely we
2488  * must ensure that CONDITION=1 done by the caller can not be reordered with
2489  * accesses to the task state; see try_to_wake_up() and set_current_state().
2490  */
2491 
2492 /**
2493  * try_to_wake_up - wake up a thread
2494  * @p: the thread to be awakened
2495  * @state: the mask of task states that can be woken
2496  * @wake_flags: wake modifier flags (WF_*)
2497  *
2498  * If (@state & @p->state) @p->state = TASK_RUNNING.
2499  *
2500  * If the task was not queued/runnable, also place it back on a runqueue.
2501  *
2502  * Atomic against schedule() which would dequeue a task, also see
2503  * set_current_state().
2504  *
2505  * This function executes a full memory barrier before accessing the task
2506  * state; see set_current_state().
2507  *
2508  * Return: %true if @p->state changes (an actual wakeup was done),
2509  *	   %false otherwise.
2510  */
2511 static int
2512 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2513 {
2514 	unsigned long flags;
2515 	int cpu, success = 0;
2516 
2517 	preempt_disable();
2518 	if (p == current) {
2519 		/*
2520 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2521 		 * == smp_processor_id()'. Together this means we can special
2522 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2523 		 * without taking any locks.
2524 		 *
2525 		 * In particular:
2526 		 *  - we rely on Program-Order guarantees for all the ordering,
2527 		 *  - we're serialized against set_special_state() by virtue of
2528 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2529 		 */
2530 		if (!(p->state & state))
2531 			goto out;
2532 
2533 		success = 1;
2534 		cpu = task_cpu(p);
2535 		trace_sched_waking(p);
2536 		p->state = TASK_RUNNING;
2537 		trace_sched_wakeup(p);
2538 		goto out;
2539 	}
2540 
2541 	/*
2542 	 * If we are going to wake up a thread waiting for CONDITION we
2543 	 * need to ensure that CONDITION=1 done by the caller can not be
2544 	 * reordered with p->state check below. This pairs with mb() in
2545 	 * set_current_state() the waiting thread does.
2546 	 */
2547 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2548 	smp_mb__after_spinlock();
2549 	if (!(p->state & state))
2550 		goto unlock;
2551 
2552 	trace_sched_waking(p);
2553 
2554 	/* We're going to change ->state: */
2555 	success = 1;
2556 	cpu = task_cpu(p);
2557 
2558 	/*
2559 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2560 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2561 	 * in smp_cond_load_acquire() below.
2562 	 *
2563 	 * sched_ttwu_pending()			try_to_wake_up()
2564 	 *   STORE p->on_rq = 1			  LOAD p->state
2565 	 *   UNLOCK rq->lock
2566 	 *
2567 	 * __schedule() (switch to task 'p')
2568 	 *   LOCK rq->lock			  smp_rmb();
2569 	 *   smp_mb__after_spinlock();
2570 	 *   UNLOCK rq->lock
2571 	 *
2572 	 * [task p]
2573 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2574 	 *
2575 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2576 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2577 	 */
2578 	smp_rmb();
2579 	if (p->on_rq && ttwu_remote(p, wake_flags))
2580 		goto unlock;
2581 
2582 #ifdef CONFIG_SMP
2583 	/*
2584 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2585 	 * possible to, falsely, observe p->on_cpu == 0.
2586 	 *
2587 	 * One must be running (->on_cpu == 1) in order to remove oneself
2588 	 * from the runqueue.
2589 	 *
2590 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2591 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2592 	 *   UNLOCK rq->lock
2593 	 *
2594 	 * __schedule() (put 'p' to sleep)
2595 	 *   LOCK rq->lock			  smp_rmb();
2596 	 *   smp_mb__after_spinlock();
2597 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2598 	 *
2599 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2600 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2601 	 */
2602 	smp_rmb();
2603 
2604 	/*
2605 	 * If the owning (remote) CPU is still in the middle of schedule() with
2606 	 * this task as prev, wait until its done referencing the task.
2607 	 *
2608 	 * Pairs with the smp_store_release() in finish_task().
2609 	 *
2610 	 * This ensures that tasks getting woken will be fully ordered against
2611 	 * their previous state and preserve Program Order.
2612 	 */
2613 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2614 
2615 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2616 	p->state = TASK_WAKING;
2617 
2618 	if (p->in_iowait) {
2619 		delayacct_blkio_end(p);
2620 		atomic_dec(&task_rq(p)->nr_iowait);
2621 	}
2622 
2623 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2624 	if (task_cpu(p) != cpu) {
2625 		wake_flags |= WF_MIGRATED;
2626 		psi_ttwu_dequeue(p);
2627 		set_task_cpu(p, cpu);
2628 	}
2629 
2630 #else /* CONFIG_SMP */
2631 
2632 	if (p->in_iowait) {
2633 		delayacct_blkio_end(p);
2634 		atomic_dec(&task_rq(p)->nr_iowait);
2635 	}
2636 
2637 #endif /* CONFIG_SMP */
2638 
2639 	ttwu_queue(p, cpu, wake_flags);
2640 unlock:
2641 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2642 out:
2643 	if (success)
2644 		ttwu_stat(p, cpu, wake_flags);
2645 	preempt_enable();
2646 
2647 	return success;
2648 }
2649 
2650 /**
2651  * wake_up_process - Wake up a specific process
2652  * @p: The process to be woken up.
2653  *
2654  * Attempt to wake up the nominated process and move it to the set of runnable
2655  * processes.
2656  *
2657  * Return: 1 if the process was woken up, 0 if it was already running.
2658  *
2659  * This function executes a full memory barrier before accessing the task state.
2660  */
2661 int wake_up_process(struct task_struct *p)
2662 {
2663 	return try_to_wake_up(p, TASK_NORMAL, 0);
2664 }
2665 EXPORT_SYMBOL(wake_up_process);
2666 
2667 int wake_up_state(struct task_struct *p, unsigned int state)
2668 {
2669 	return try_to_wake_up(p, state, 0);
2670 }
2671 
2672 /*
2673  * Perform scheduler related setup for a newly forked process p.
2674  * p is forked by current.
2675  *
2676  * __sched_fork() is basic setup used by init_idle() too:
2677  */
2678 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2679 {
2680 	p->on_rq			= 0;
2681 
2682 	p->se.on_rq			= 0;
2683 	p->se.exec_start		= 0;
2684 	p->se.sum_exec_runtime		= 0;
2685 	p->se.prev_sum_exec_runtime	= 0;
2686 	p->se.nr_migrations		= 0;
2687 	p->se.vruntime			= 0;
2688 	INIT_LIST_HEAD(&p->se.group_node);
2689 
2690 #ifdef CONFIG_FAIR_GROUP_SCHED
2691 	p->se.cfs_rq			= NULL;
2692 #endif
2693 
2694 #ifdef CONFIG_SCHEDSTATS
2695 	/* Even if schedstat is disabled, there should not be garbage */
2696 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2697 #endif
2698 
2699 	RB_CLEAR_NODE(&p->dl.rb_node);
2700 	init_dl_task_timer(&p->dl);
2701 	init_dl_inactive_task_timer(&p->dl);
2702 	__dl_clear_params(p);
2703 
2704 	INIT_LIST_HEAD(&p->rt.run_list);
2705 	p->rt.timeout		= 0;
2706 	p->rt.time_slice	= sched_rr_timeslice;
2707 	p->rt.on_rq		= 0;
2708 	p->rt.on_list		= 0;
2709 
2710 #ifdef CONFIG_PREEMPT_NOTIFIERS
2711 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2712 #endif
2713 
2714 #ifdef CONFIG_COMPACTION
2715 	p->capture_control = NULL;
2716 #endif
2717 	init_numa_balancing(clone_flags, p);
2718 }
2719 
2720 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2721 
2722 #ifdef CONFIG_NUMA_BALANCING
2723 
2724 void set_numabalancing_state(bool enabled)
2725 {
2726 	if (enabled)
2727 		static_branch_enable(&sched_numa_balancing);
2728 	else
2729 		static_branch_disable(&sched_numa_balancing);
2730 }
2731 
2732 #ifdef CONFIG_PROC_SYSCTL
2733 int sysctl_numa_balancing(struct ctl_table *table, int write,
2734 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2735 {
2736 	struct ctl_table t;
2737 	int err;
2738 	int state = static_branch_likely(&sched_numa_balancing);
2739 
2740 	if (write && !capable(CAP_SYS_ADMIN))
2741 		return -EPERM;
2742 
2743 	t = *table;
2744 	t.data = &state;
2745 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2746 	if (err < 0)
2747 		return err;
2748 	if (write)
2749 		set_numabalancing_state(state);
2750 	return err;
2751 }
2752 #endif
2753 #endif
2754 
2755 #ifdef CONFIG_SCHEDSTATS
2756 
2757 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2758 static bool __initdata __sched_schedstats = false;
2759 
2760 static void set_schedstats(bool enabled)
2761 {
2762 	if (enabled)
2763 		static_branch_enable(&sched_schedstats);
2764 	else
2765 		static_branch_disable(&sched_schedstats);
2766 }
2767 
2768 void force_schedstat_enabled(void)
2769 {
2770 	if (!schedstat_enabled()) {
2771 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2772 		static_branch_enable(&sched_schedstats);
2773 	}
2774 }
2775 
2776 static int __init setup_schedstats(char *str)
2777 {
2778 	int ret = 0;
2779 	if (!str)
2780 		goto out;
2781 
2782 	/*
2783 	 * This code is called before jump labels have been set up, so we can't
2784 	 * change the static branch directly just yet.  Instead set a temporary
2785 	 * variable so init_schedstats() can do it later.
2786 	 */
2787 	if (!strcmp(str, "enable")) {
2788 		__sched_schedstats = true;
2789 		ret = 1;
2790 	} else if (!strcmp(str, "disable")) {
2791 		__sched_schedstats = false;
2792 		ret = 1;
2793 	}
2794 out:
2795 	if (!ret)
2796 		pr_warn("Unable to parse schedstats=\n");
2797 
2798 	return ret;
2799 }
2800 __setup("schedstats=", setup_schedstats);
2801 
2802 static void __init init_schedstats(void)
2803 {
2804 	set_schedstats(__sched_schedstats);
2805 }
2806 
2807 #ifdef CONFIG_PROC_SYSCTL
2808 int sysctl_schedstats(struct ctl_table *table, int write,
2809 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2810 {
2811 	struct ctl_table t;
2812 	int err;
2813 	int state = static_branch_likely(&sched_schedstats);
2814 
2815 	if (write && !capable(CAP_SYS_ADMIN))
2816 		return -EPERM;
2817 
2818 	t = *table;
2819 	t.data = &state;
2820 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2821 	if (err < 0)
2822 		return err;
2823 	if (write)
2824 		set_schedstats(state);
2825 	return err;
2826 }
2827 #endif /* CONFIG_PROC_SYSCTL */
2828 #else  /* !CONFIG_SCHEDSTATS */
2829 static inline void init_schedstats(void) {}
2830 #endif /* CONFIG_SCHEDSTATS */
2831 
2832 /*
2833  * fork()/clone()-time setup:
2834  */
2835 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2836 {
2837 	unsigned long flags;
2838 
2839 	__sched_fork(clone_flags, p);
2840 	/*
2841 	 * We mark the process as NEW here. This guarantees that
2842 	 * nobody will actually run it, and a signal or other external
2843 	 * event cannot wake it up and insert it on the runqueue either.
2844 	 */
2845 	p->state = TASK_NEW;
2846 
2847 	/*
2848 	 * Make sure we do not leak PI boosting priority to the child.
2849 	 */
2850 	p->prio = current->normal_prio;
2851 
2852 	uclamp_fork(p);
2853 
2854 	/*
2855 	 * Revert to default priority/policy on fork if requested.
2856 	 */
2857 	if (unlikely(p->sched_reset_on_fork)) {
2858 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2859 			p->policy = SCHED_NORMAL;
2860 			p->static_prio = NICE_TO_PRIO(0);
2861 			p->rt_priority = 0;
2862 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2863 			p->static_prio = NICE_TO_PRIO(0);
2864 
2865 		p->prio = p->normal_prio = __normal_prio(p);
2866 		set_load_weight(p, false);
2867 
2868 		/*
2869 		 * We don't need the reset flag anymore after the fork. It has
2870 		 * fulfilled its duty:
2871 		 */
2872 		p->sched_reset_on_fork = 0;
2873 	}
2874 
2875 	if (dl_prio(p->prio))
2876 		return -EAGAIN;
2877 	else if (rt_prio(p->prio))
2878 		p->sched_class = &rt_sched_class;
2879 	else
2880 		p->sched_class = &fair_sched_class;
2881 
2882 	init_entity_runnable_average(&p->se);
2883 
2884 	/*
2885 	 * The child is not yet in the pid-hash so no cgroup attach races,
2886 	 * and the cgroup is pinned to this child due to cgroup_fork()
2887 	 * is ran before sched_fork().
2888 	 *
2889 	 * Silence PROVE_RCU.
2890 	 */
2891 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2892 	/*
2893 	 * We're setting the CPU for the first time, we don't migrate,
2894 	 * so use __set_task_cpu().
2895 	 */
2896 	__set_task_cpu(p, smp_processor_id());
2897 	if (p->sched_class->task_fork)
2898 		p->sched_class->task_fork(p);
2899 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2900 
2901 #ifdef CONFIG_SCHED_INFO
2902 	if (likely(sched_info_on()))
2903 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2904 #endif
2905 #if defined(CONFIG_SMP)
2906 	p->on_cpu = 0;
2907 #endif
2908 	init_task_preempt_count(p);
2909 #ifdef CONFIG_SMP
2910 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2911 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2912 #endif
2913 	return 0;
2914 }
2915 
2916 unsigned long to_ratio(u64 period, u64 runtime)
2917 {
2918 	if (runtime == RUNTIME_INF)
2919 		return BW_UNIT;
2920 
2921 	/*
2922 	 * Doing this here saves a lot of checks in all
2923 	 * the calling paths, and returning zero seems
2924 	 * safe for them anyway.
2925 	 */
2926 	if (period == 0)
2927 		return 0;
2928 
2929 	return div64_u64(runtime << BW_SHIFT, period);
2930 }
2931 
2932 /*
2933  * wake_up_new_task - wake up a newly created task for the first time.
2934  *
2935  * This function will do some initial scheduler statistics housekeeping
2936  * that must be done for every newly created context, then puts the task
2937  * on the runqueue and wakes it.
2938  */
2939 void wake_up_new_task(struct task_struct *p)
2940 {
2941 	struct rq_flags rf;
2942 	struct rq *rq;
2943 
2944 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2945 	p->state = TASK_RUNNING;
2946 #ifdef CONFIG_SMP
2947 	/*
2948 	 * Fork balancing, do it here and not earlier because:
2949 	 *  - cpus_ptr can change in the fork path
2950 	 *  - any previously selected CPU might disappear through hotplug
2951 	 *
2952 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2953 	 * as we're not fully set-up yet.
2954 	 */
2955 	p->recent_used_cpu = task_cpu(p);
2956 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2957 #endif
2958 	rq = __task_rq_lock(p, &rf);
2959 	update_rq_clock(rq);
2960 	post_init_entity_util_avg(p);
2961 
2962 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2963 	trace_sched_wakeup_new(p);
2964 	check_preempt_curr(rq, p, WF_FORK);
2965 #ifdef CONFIG_SMP
2966 	if (p->sched_class->task_woken) {
2967 		/*
2968 		 * Nothing relies on rq->lock after this, so its fine to
2969 		 * drop it.
2970 		 */
2971 		rq_unpin_lock(rq, &rf);
2972 		p->sched_class->task_woken(rq, p);
2973 		rq_repin_lock(rq, &rf);
2974 	}
2975 #endif
2976 	task_rq_unlock(rq, p, &rf);
2977 }
2978 
2979 #ifdef CONFIG_PREEMPT_NOTIFIERS
2980 
2981 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2982 
2983 void preempt_notifier_inc(void)
2984 {
2985 	static_branch_inc(&preempt_notifier_key);
2986 }
2987 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2988 
2989 void preempt_notifier_dec(void)
2990 {
2991 	static_branch_dec(&preempt_notifier_key);
2992 }
2993 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2994 
2995 /**
2996  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2997  * @notifier: notifier struct to register
2998  */
2999 void preempt_notifier_register(struct preempt_notifier *notifier)
3000 {
3001 	if (!static_branch_unlikely(&preempt_notifier_key))
3002 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3003 
3004 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3005 }
3006 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3007 
3008 /**
3009  * preempt_notifier_unregister - no longer interested in preemption notifications
3010  * @notifier: notifier struct to unregister
3011  *
3012  * This is *not* safe to call from within a preemption notifier.
3013  */
3014 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3015 {
3016 	hlist_del(&notifier->link);
3017 }
3018 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3019 
3020 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3021 {
3022 	struct preempt_notifier *notifier;
3023 
3024 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3025 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3026 }
3027 
3028 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3029 {
3030 	if (static_branch_unlikely(&preempt_notifier_key))
3031 		__fire_sched_in_preempt_notifiers(curr);
3032 }
3033 
3034 static void
3035 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3036 				   struct task_struct *next)
3037 {
3038 	struct preempt_notifier *notifier;
3039 
3040 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3041 		notifier->ops->sched_out(notifier, next);
3042 }
3043 
3044 static __always_inline void
3045 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3046 				 struct task_struct *next)
3047 {
3048 	if (static_branch_unlikely(&preempt_notifier_key))
3049 		__fire_sched_out_preempt_notifiers(curr, next);
3050 }
3051 
3052 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3053 
3054 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3055 {
3056 }
3057 
3058 static inline void
3059 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3060 				 struct task_struct *next)
3061 {
3062 }
3063 
3064 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3065 
3066 static inline void prepare_task(struct task_struct *next)
3067 {
3068 #ifdef CONFIG_SMP
3069 	/*
3070 	 * Claim the task as running, we do this before switching to it
3071 	 * such that any running task will have this set.
3072 	 */
3073 	next->on_cpu = 1;
3074 #endif
3075 }
3076 
3077 static inline void finish_task(struct task_struct *prev)
3078 {
3079 #ifdef CONFIG_SMP
3080 	/*
3081 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3082 	 * We must ensure this doesn't happen until the switch is completely
3083 	 * finished.
3084 	 *
3085 	 * In particular, the load of prev->state in finish_task_switch() must
3086 	 * happen before this.
3087 	 *
3088 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3089 	 */
3090 	smp_store_release(&prev->on_cpu, 0);
3091 #endif
3092 }
3093 
3094 static inline void
3095 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3096 {
3097 	/*
3098 	 * Since the runqueue lock will be released by the next
3099 	 * task (which is an invalid locking op but in the case
3100 	 * of the scheduler it's an obvious special-case), so we
3101 	 * do an early lockdep release here:
3102 	 */
3103 	rq_unpin_lock(rq, rf);
3104 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3105 #ifdef CONFIG_DEBUG_SPINLOCK
3106 	/* this is a valid case when another task releases the spinlock */
3107 	rq->lock.owner = next;
3108 #endif
3109 }
3110 
3111 static inline void finish_lock_switch(struct rq *rq)
3112 {
3113 	/*
3114 	 * If we are tracking spinlock dependencies then we have to
3115 	 * fix up the runqueue lock - which gets 'carried over' from
3116 	 * prev into current:
3117 	 */
3118 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3119 	raw_spin_unlock_irq(&rq->lock);
3120 }
3121 
3122 /*
3123  * NOP if the arch has not defined these:
3124  */
3125 
3126 #ifndef prepare_arch_switch
3127 # define prepare_arch_switch(next)	do { } while (0)
3128 #endif
3129 
3130 #ifndef finish_arch_post_lock_switch
3131 # define finish_arch_post_lock_switch()	do { } while (0)
3132 #endif
3133 
3134 /**
3135  * prepare_task_switch - prepare to switch tasks
3136  * @rq: the runqueue preparing to switch
3137  * @prev: the current task that is being switched out
3138  * @next: the task we are going to switch to.
3139  *
3140  * This is called with the rq lock held and interrupts off. It must
3141  * be paired with a subsequent finish_task_switch after the context
3142  * switch.
3143  *
3144  * prepare_task_switch sets up locking and calls architecture specific
3145  * hooks.
3146  */
3147 static inline void
3148 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3149 		    struct task_struct *next)
3150 {
3151 	kcov_prepare_switch(prev);
3152 	sched_info_switch(rq, prev, next);
3153 	perf_event_task_sched_out(prev, next);
3154 	rseq_preempt(prev);
3155 	fire_sched_out_preempt_notifiers(prev, next);
3156 	prepare_task(next);
3157 	prepare_arch_switch(next);
3158 }
3159 
3160 /**
3161  * finish_task_switch - clean up after a task-switch
3162  * @prev: the thread we just switched away from.
3163  *
3164  * finish_task_switch must be called after the context switch, paired
3165  * with a prepare_task_switch call before the context switch.
3166  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3167  * and do any other architecture-specific cleanup actions.
3168  *
3169  * Note that we may have delayed dropping an mm in context_switch(). If
3170  * so, we finish that here outside of the runqueue lock. (Doing it
3171  * with the lock held can cause deadlocks; see schedule() for
3172  * details.)
3173  *
3174  * The context switch have flipped the stack from under us and restored the
3175  * local variables which were saved when this task called schedule() in the
3176  * past. prev == current is still correct but we need to recalculate this_rq
3177  * because prev may have moved to another CPU.
3178  */
3179 static struct rq *finish_task_switch(struct task_struct *prev)
3180 	__releases(rq->lock)
3181 {
3182 	struct rq *rq = this_rq();
3183 	struct mm_struct *mm = rq->prev_mm;
3184 	long prev_state;
3185 
3186 	/*
3187 	 * The previous task will have left us with a preempt_count of 2
3188 	 * because it left us after:
3189 	 *
3190 	 *	schedule()
3191 	 *	  preempt_disable();			// 1
3192 	 *	  __schedule()
3193 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3194 	 *
3195 	 * Also, see FORK_PREEMPT_COUNT.
3196 	 */
3197 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3198 		      "corrupted preempt_count: %s/%d/0x%x\n",
3199 		      current->comm, current->pid, preempt_count()))
3200 		preempt_count_set(FORK_PREEMPT_COUNT);
3201 
3202 	rq->prev_mm = NULL;
3203 
3204 	/*
3205 	 * A task struct has one reference for the use as "current".
3206 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3207 	 * schedule one last time. The schedule call will never return, and
3208 	 * the scheduled task must drop that reference.
3209 	 *
3210 	 * We must observe prev->state before clearing prev->on_cpu (in
3211 	 * finish_task), otherwise a concurrent wakeup can get prev
3212 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3213 	 * transition, resulting in a double drop.
3214 	 */
3215 	prev_state = prev->state;
3216 	vtime_task_switch(prev);
3217 	perf_event_task_sched_in(prev, current);
3218 	finish_task(prev);
3219 	finish_lock_switch(rq);
3220 	finish_arch_post_lock_switch();
3221 	kcov_finish_switch(current);
3222 
3223 	fire_sched_in_preempt_notifiers(current);
3224 	/*
3225 	 * When switching through a kernel thread, the loop in
3226 	 * membarrier_{private,global}_expedited() may have observed that
3227 	 * kernel thread and not issued an IPI. It is therefore possible to
3228 	 * schedule between user->kernel->user threads without passing though
3229 	 * switch_mm(). Membarrier requires a barrier after storing to
3230 	 * rq->curr, before returning to userspace, so provide them here:
3231 	 *
3232 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3233 	 *   provided by mmdrop(),
3234 	 * - a sync_core for SYNC_CORE.
3235 	 */
3236 	if (mm) {
3237 		membarrier_mm_sync_core_before_usermode(mm);
3238 		mmdrop(mm);
3239 	}
3240 	if (unlikely(prev_state == TASK_DEAD)) {
3241 		if (prev->sched_class->task_dead)
3242 			prev->sched_class->task_dead(prev);
3243 
3244 		/*
3245 		 * Remove function-return probe instances associated with this
3246 		 * task and put them back on the free list.
3247 		 */
3248 		kprobe_flush_task(prev);
3249 
3250 		/* Task is done with its stack. */
3251 		put_task_stack(prev);
3252 
3253 		put_task_struct_rcu_user(prev);
3254 	}
3255 
3256 	tick_nohz_task_switch();
3257 	return rq;
3258 }
3259 
3260 #ifdef CONFIG_SMP
3261 
3262 /* rq->lock is NOT held, but preemption is disabled */
3263 static void __balance_callback(struct rq *rq)
3264 {
3265 	struct callback_head *head, *next;
3266 	void (*func)(struct rq *rq);
3267 	unsigned long flags;
3268 
3269 	raw_spin_lock_irqsave(&rq->lock, flags);
3270 	head = rq->balance_callback;
3271 	rq->balance_callback = NULL;
3272 	while (head) {
3273 		func = (void (*)(struct rq *))head->func;
3274 		next = head->next;
3275 		head->next = NULL;
3276 		head = next;
3277 
3278 		func(rq);
3279 	}
3280 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3281 }
3282 
3283 static inline void balance_callback(struct rq *rq)
3284 {
3285 	if (unlikely(rq->balance_callback))
3286 		__balance_callback(rq);
3287 }
3288 
3289 #else
3290 
3291 static inline void balance_callback(struct rq *rq)
3292 {
3293 }
3294 
3295 #endif
3296 
3297 /**
3298  * schedule_tail - first thing a freshly forked thread must call.
3299  * @prev: the thread we just switched away from.
3300  */
3301 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3302 	__releases(rq->lock)
3303 {
3304 	struct rq *rq;
3305 
3306 	/*
3307 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3308 	 * finish_task_switch() for details.
3309 	 *
3310 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3311 	 * and the preempt_enable() will end up enabling preemption (on
3312 	 * PREEMPT_COUNT kernels).
3313 	 */
3314 
3315 	rq = finish_task_switch(prev);
3316 	balance_callback(rq);
3317 	preempt_enable();
3318 
3319 	if (current->set_child_tid)
3320 		put_user(task_pid_vnr(current), current->set_child_tid);
3321 
3322 	calculate_sigpending();
3323 }
3324 
3325 /*
3326  * context_switch - switch to the new MM and the new thread's register state.
3327  */
3328 static __always_inline struct rq *
3329 context_switch(struct rq *rq, struct task_struct *prev,
3330 	       struct task_struct *next, struct rq_flags *rf)
3331 {
3332 	prepare_task_switch(rq, prev, next);
3333 
3334 	/*
3335 	 * For paravirt, this is coupled with an exit in switch_to to
3336 	 * combine the page table reload and the switch backend into
3337 	 * one hypercall.
3338 	 */
3339 	arch_start_context_switch(prev);
3340 
3341 	/*
3342 	 * kernel -> kernel   lazy + transfer active
3343 	 *   user -> kernel   lazy + mmgrab() active
3344 	 *
3345 	 * kernel ->   user   switch + mmdrop() active
3346 	 *   user ->   user   switch
3347 	 */
3348 	if (!next->mm) {                                // to kernel
3349 		enter_lazy_tlb(prev->active_mm, next);
3350 
3351 		next->active_mm = prev->active_mm;
3352 		if (prev->mm)                           // from user
3353 			mmgrab(prev->active_mm);
3354 		else
3355 			prev->active_mm = NULL;
3356 	} else {                                        // to user
3357 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3358 		/*
3359 		 * sys_membarrier() requires an smp_mb() between setting
3360 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3361 		 *
3362 		 * The below provides this either through switch_mm(), or in
3363 		 * case 'prev->active_mm == next->mm' through
3364 		 * finish_task_switch()'s mmdrop().
3365 		 */
3366 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3367 
3368 		if (!prev->mm) {                        // from kernel
3369 			/* will mmdrop() in finish_task_switch(). */
3370 			rq->prev_mm = prev->active_mm;
3371 			prev->active_mm = NULL;
3372 		}
3373 	}
3374 
3375 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3376 
3377 	prepare_lock_switch(rq, next, rf);
3378 
3379 	/* Here we just switch the register state and the stack. */
3380 	switch_to(prev, next, prev);
3381 	barrier();
3382 
3383 	return finish_task_switch(prev);
3384 }
3385 
3386 /*
3387  * nr_running and nr_context_switches:
3388  *
3389  * externally visible scheduler statistics: current number of runnable
3390  * threads, total number of context switches performed since bootup.
3391  */
3392 unsigned long nr_running(void)
3393 {
3394 	unsigned long i, sum = 0;
3395 
3396 	for_each_online_cpu(i)
3397 		sum += cpu_rq(i)->nr_running;
3398 
3399 	return sum;
3400 }
3401 
3402 /*
3403  * Check if only the current task is running on the CPU.
3404  *
3405  * Caution: this function does not check that the caller has disabled
3406  * preemption, thus the result might have a time-of-check-to-time-of-use
3407  * race.  The caller is responsible to use it correctly, for example:
3408  *
3409  * - from a non-preemptible section (of course)
3410  *
3411  * - from a thread that is bound to a single CPU
3412  *
3413  * - in a loop with very short iterations (e.g. a polling loop)
3414  */
3415 bool single_task_running(void)
3416 {
3417 	return raw_rq()->nr_running == 1;
3418 }
3419 EXPORT_SYMBOL(single_task_running);
3420 
3421 unsigned long long nr_context_switches(void)
3422 {
3423 	int i;
3424 	unsigned long long sum = 0;
3425 
3426 	for_each_possible_cpu(i)
3427 		sum += cpu_rq(i)->nr_switches;
3428 
3429 	return sum;
3430 }
3431 
3432 /*
3433  * Consumers of these two interfaces, like for example the cpuidle menu
3434  * governor, are using nonsensical data. Preferring shallow idle state selection
3435  * for a CPU that has IO-wait which might not even end up running the task when
3436  * it does become runnable.
3437  */
3438 
3439 unsigned long nr_iowait_cpu(int cpu)
3440 {
3441 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3442 }
3443 
3444 /*
3445  * IO-wait accounting, and how its mostly bollocks (on SMP).
3446  *
3447  * The idea behind IO-wait account is to account the idle time that we could
3448  * have spend running if it were not for IO. That is, if we were to improve the
3449  * storage performance, we'd have a proportional reduction in IO-wait time.
3450  *
3451  * This all works nicely on UP, where, when a task blocks on IO, we account
3452  * idle time as IO-wait, because if the storage were faster, it could've been
3453  * running and we'd not be idle.
3454  *
3455  * This has been extended to SMP, by doing the same for each CPU. This however
3456  * is broken.
3457  *
3458  * Imagine for instance the case where two tasks block on one CPU, only the one
3459  * CPU will have IO-wait accounted, while the other has regular idle. Even
3460  * though, if the storage were faster, both could've ran at the same time,
3461  * utilising both CPUs.
3462  *
3463  * This means, that when looking globally, the current IO-wait accounting on
3464  * SMP is a lower bound, by reason of under accounting.
3465  *
3466  * Worse, since the numbers are provided per CPU, they are sometimes
3467  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3468  * associated with any one particular CPU, it can wake to another CPU than it
3469  * blocked on. This means the per CPU IO-wait number is meaningless.
3470  *
3471  * Task CPU affinities can make all that even more 'interesting'.
3472  */
3473 
3474 unsigned long nr_iowait(void)
3475 {
3476 	unsigned long i, sum = 0;
3477 
3478 	for_each_possible_cpu(i)
3479 		sum += nr_iowait_cpu(i);
3480 
3481 	return sum;
3482 }
3483 
3484 #ifdef CONFIG_SMP
3485 
3486 /*
3487  * sched_exec - execve() is a valuable balancing opportunity, because at
3488  * this point the task has the smallest effective memory and cache footprint.
3489  */
3490 void sched_exec(void)
3491 {
3492 	struct task_struct *p = current;
3493 	unsigned long flags;
3494 	int dest_cpu;
3495 
3496 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3497 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3498 	if (dest_cpu == smp_processor_id())
3499 		goto unlock;
3500 
3501 	if (likely(cpu_active(dest_cpu))) {
3502 		struct migration_arg arg = { p, dest_cpu };
3503 
3504 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3505 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3506 		return;
3507 	}
3508 unlock:
3509 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3510 }
3511 
3512 #endif
3513 
3514 DEFINE_PER_CPU(struct kernel_stat, kstat);
3515 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3516 
3517 EXPORT_PER_CPU_SYMBOL(kstat);
3518 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3519 
3520 /*
3521  * The function fair_sched_class.update_curr accesses the struct curr
3522  * and its field curr->exec_start; when called from task_sched_runtime(),
3523  * we observe a high rate of cache misses in practice.
3524  * Prefetching this data results in improved performance.
3525  */
3526 static inline void prefetch_curr_exec_start(struct task_struct *p)
3527 {
3528 #ifdef CONFIG_FAIR_GROUP_SCHED
3529 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3530 #else
3531 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3532 #endif
3533 	prefetch(curr);
3534 	prefetch(&curr->exec_start);
3535 }
3536 
3537 /*
3538  * Return accounted runtime for the task.
3539  * In case the task is currently running, return the runtime plus current's
3540  * pending runtime that have not been accounted yet.
3541  */
3542 unsigned long long task_sched_runtime(struct task_struct *p)
3543 {
3544 	struct rq_flags rf;
3545 	struct rq *rq;
3546 	u64 ns;
3547 
3548 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3549 	/*
3550 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3551 	 * So we have a optimization chance when the task's delta_exec is 0.
3552 	 * Reading ->on_cpu is racy, but this is ok.
3553 	 *
3554 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3555 	 * If we race with it entering CPU, unaccounted time is 0. This is
3556 	 * indistinguishable from the read occurring a few cycles earlier.
3557 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3558 	 * been accounted, so we're correct here as well.
3559 	 */
3560 	if (!p->on_cpu || !task_on_rq_queued(p))
3561 		return p->se.sum_exec_runtime;
3562 #endif
3563 
3564 	rq = task_rq_lock(p, &rf);
3565 	/*
3566 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3567 	 * project cycles that may never be accounted to this
3568 	 * thread, breaking clock_gettime().
3569 	 */
3570 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3571 		prefetch_curr_exec_start(p);
3572 		update_rq_clock(rq);
3573 		p->sched_class->update_curr(rq);
3574 	}
3575 	ns = p->se.sum_exec_runtime;
3576 	task_rq_unlock(rq, p, &rf);
3577 
3578 	return ns;
3579 }
3580 
3581 /*
3582  * This function gets called by the timer code, with HZ frequency.
3583  * We call it with interrupts disabled.
3584  */
3585 void scheduler_tick(void)
3586 {
3587 	int cpu = smp_processor_id();
3588 	struct rq *rq = cpu_rq(cpu);
3589 	struct task_struct *curr = rq->curr;
3590 	struct rq_flags rf;
3591 
3592 	sched_clock_tick();
3593 
3594 	rq_lock(rq, &rf);
3595 
3596 	update_rq_clock(rq);
3597 	curr->sched_class->task_tick(rq, curr, 0);
3598 	calc_global_load_tick(rq);
3599 	psi_task_tick(rq);
3600 
3601 	rq_unlock(rq, &rf);
3602 
3603 	perf_event_task_tick();
3604 
3605 #ifdef CONFIG_SMP
3606 	rq->idle_balance = idle_cpu(cpu);
3607 	trigger_load_balance(rq);
3608 #endif
3609 }
3610 
3611 #ifdef CONFIG_NO_HZ_FULL
3612 
3613 struct tick_work {
3614 	int			cpu;
3615 	atomic_t		state;
3616 	struct delayed_work	work;
3617 };
3618 /* Values for ->state, see diagram below. */
3619 #define TICK_SCHED_REMOTE_OFFLINE	0
3620 #define TICK_SCHED_REMOTE_OFFLINING	1
3621 #define TICK_SCHED_REMOTE_RUNNING	2
3622 
3623 /*
3624  * State diagram for ->state:
3625  *
3626  *
3627  *          TICK_SCHED_REMOTE_OFFLINE
3628  *                    |   ^
3629  *                    |   |
3630  *                    |   | sched_tick_remote()
3631  *                    |   |
3632  *                    |   |
3633  *                    +--TICK_SCHED_REMOTE_OFFLINING
3634  *                    |   ^
3635  *                    |   |
3636  * sched_tick_start() |   | sched_tick_stop()
3637  *                    |   |
3638  *                    V   |
3639  *          TICK_SCHED_REMOTE_RUNNING
3640  *
3641  *
3642  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3643  * and sched_tick_start() are happy to leave the state in RUNNING.
3644  */
3645 
3646 static struct tick_work __percpu *tick_work_cpu;
3647 
3648 static void sched_tick_remote(struct work_struct *work)
3649 {
3650 	struct delayed_work *dwork = to_delayed_work(work);
3651 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3652 	int cpu = twork->cpu;
3653 	struct rq *rq = cpu_rq(cpu);
3654 	struct task_struct *curr;
3655 	struct rq_flags rf;
3656 	u64 delta;
3657 	int os;
3658 
3659 	/*
3660 	 * Handle the tick only if it appears the remote CPU is running in full
3661 	 * dynticks mode. The check is racy by nature, but missing a tick or
3662 	 * having one too much is no big deal because the scheduler tick updates
3663 	 * statistics and checks timeslices in a time-independent way, regardless
3664 	 * of when exactly it is running.
3665 	 */
3666 	if (!tick_nohz_tick_stopped_cpu(cpu))
3667 		goto out_requeue;
3668 
3669 	rq_lock_irq(rq, &rf);
3670 	curr = rq->curr;
3671 	if (cpu_is_offline(cpu))
3672 		goto out_unlock;
3673 
3674 	curr = rq->curr;
3675 	update_rq_clock(rq);
3676 
3677 	if (!is_idle_task(curr)) {
3678 		/*
3679 		 * Make sure the next tick runs within a reasonable
3680 		 * amount of time.
3681 		 */
3682 		delta = rq_clock_task(rq) - curr->se.exec_start;
3683 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3684 	}
3685 	curr->sched_class->task_tick(rq, curr, 0);
3686 
3687 	calc_load_nohz_remote(rq);
3688 out_unlock:
3689 	rq_unlock_irq(rq, &rf);
3690 out_requeue:
3691 
3692 	/*
3693 	 * Run the remote tick once per second (1Hz). This arbitrary
3694 	 * frequency is large enough to avoid overload but short enough
3695 	 * to keep scheduler internal stats reasonably up to date.  But
3696 	 * first update state to reflect hotplug activity if required.
3697 	 */
3698 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3699 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3700 	if (os == TICK_SCHED_REMOTE_RUNNING)
3701 		queue_delayed_work(system_unbound_wq, dwork, HZ);
3702 }
3703 
3704 static void sched_tick_start(int cpu)
3705 {
3706 	int os;
3707 	struct tick_work *twork;
3708 
3709 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3710 		return;
3711 
3712 	WARN_ON_ONCE(!tick_work_cpu);
3713 
3714 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3715 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3716 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3717 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
3718 		twork->cpu = cpu;
3719 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3720 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3721 	}
3722 }
3723 
3724 #ifdef CONFIG_HOTPLUG_CPU
3725 static void sched_tick_stop(int cpu)
3726 {
3727 	struct tick_work *twork;
3728 	int os;
3729 
3730 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3731 		return;
3732 
3733 	WARN_ON_ONCE(!tick_work_cpu);
3734 
3735 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3736 	/* There cannot be competing actions, but don't rely on stop-machine. */
3737 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3738 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3739 	/* Don't cancel, as this would mess up the state machine. */
3740 }
3741 #endif /* CONFIG_HOTPLUG_CPU */
3742 
3743 int __init sched_tick_offload_init(void)
3744 {
3745 	tick_work_cpu = alloc_percpu(struct tick_work);
3746 	BUG_ON(!tick_work_cpu);
3747 	return 0;
3748 }
3749 
3750 #else /* !CONFIG_NO_HZ_FULL */
3751 static inline void sched_tick_start(int cpu) { }
3752 static inline void sched_tick_stop(int cpu) { }
3753 #endif
3754 
3755 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3756 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3757 /*
3758  * If the value passed in is equal to the current preempt count
3759  * then we just disabled preemption. Start timing the latency.
3760  */
3761 static inline void preempt_latency_start(int val)
3762 {
3763 	if (preempt_count() == val) {
3764 		unsigned long ip = get_lock_parent_ip();
3765 #ifdef CONFIG_DEBUG_PREEMPT
3766 		current->preempt_disable_ip = ip;
3767 #endif
3768 		trace_preempt_off(CALLER_ADDR0, ip);
3769 	}
3770 }
3771 
3772 void preempt_count_add(int val)
3773 {
3774 #ifdef CONFIG_DEBUG_PREEMPT
3775 	/*
3776 	 * Underflow?
3777 	 */
3778 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3779 		return;
3780 #endif
3781 	__preempt_count_add(val);
3782 #ifdef CONFIG_DEBUG_PREEMPT
3783 	/*
3784 	 * Spinlock count overflowing soon?
3785 	 */
3786 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3787 				PREEMPT_MASK - 10);
3788 #endif
3789 	preempt_latency_start(val);
3790 }
3791 EXPORT_SYMBOL(preempt_count_add);
3792 NOKPROBE_SYMBOL(preempt_count_add);
3793 
3794 /*
3795  * If the value passed in equals to the current preempt count
3796  * then we just enabled preemption. Stop timing the latency.
3797  */
3798 static inline void preempt_latency_stop(int val)
3799 {
3800 	if (preempt_count() == val)
3801 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3802 }
3803 
3804 void preempt_count_sub(int val)
3805 {
3806 #ifdef CONFIG_DEBUG_PREEMPT
3807 	/*
3808 	 * Underflow?
3809 	 */
3810 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3811 		return;
3812 	/*
3813 	 * Is the spinlock portion underflowing?
3814 	 */
3815 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3816 			!(preempt_count() & PREEMPT_MASK)))
3817 		return;
3818 #endif
3819 
3820 	preempt_latency_stop(val);
3821 	__preempt_count_sub(val);
3822 }
3823 EXPORT_SYMBOL(preempt_count_sub);
3824 NOKPROBE_SYMBOL(preempt_count_sub);
3825 
3826 #else
3827 static inline void preempt_latency_start(int val) { }
3828 static inline void preempt_latency_stop(int val) { }
3829 #endif
3830 
3831 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3832 {
3833 #ifdef CONFIG_DEBUG_PREEMPT
3834 	return p->preempt_disable_ip;
3835 #else
3836 	return 0;
3837 #endif
3838 }
3839 
3840 /*
3841  * Print scheduling while atomic bug:
3842  */
3843 static noinline void __schedule_bug(struct task_struct *prev)
3844 {
3845 	/* Save this before calling printk(), since that will clobber it */
3846 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3847 
3848 	if (oops_in_progress)
3849 		return;
3850 
3851 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3852 		prev->comm, prev->pid, preempt_count());
3853 
3854 	debug_show_held_locks(prev);
3855 	print_modules();
3856 	if (irqs_disabled())
3857 		print_irqtrace_events(prev);
3858 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3859 	    && in_atomic_preempt_off()) {
3860 		pr_err("Preemption disabled at:");
3861 		print_ip_sym(preempt_disable_ip);
3862 		pr_cont("\n");
3863 	}
3864 	if (panic_on_warn)
3865 		panic("scheduling while atomic\n");
3866 
3867 	dump_stack();
3868 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3869 }
3870 
3871 /*
3872  * Various schedule()-time debugging checks and statistics:
3873  */
3874 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3875 {
3876 #ifdef CONFIG_SCHED_STACK_END_CHECK
3877 	if (task_stack_end_corrupted(prev))
3878 		panic("corrupted stack end detected inside scheduler\n");
3879 #endif
3880 
3881 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3882 	if (!preempt && prev->state && prev->non_block_count) {
3883 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3884 			prev->comm, prev->pid, prev->non_block_count);
3885 		dump_stack();
3886 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3887 	}
3888 #endif
3889 
3890 	if (unlikely(in_atomic_preempt_off())) {
3891 		__schedule_bug(prev);
3892 		preempt_count_set(PREEMPT_DISABLED);
3893 	}
3894 	rcu_sleep_check();
3895 
3896 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3897 
3898 	schedstat_inc(this_rq()->sched_count);
3899 }
3900 
3901 /*
3902  * Pick up the highest-prio task:
3903  */
3904 static inline struct task_struct *
3905 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3906 {
3907 	const struct sched_class *class;
3908 	struct task_struct *p;
3909 
3910 	/*
3911 	 * Optimization: we know that if all tasks are in the fair class we can
3912 	 * call that function directly, but only if the @prev task wasn't of a
3913 	 * higher scheduling class, because otherwise those loose the
3914 	 * opportunity to pull in more work from other CPUs.
3915 	 */
3916 	if (likely((prev->sched_class == &idle_sched_class ||
3917 		    prev->sched_class == &fair_sched_class) &&
3918 		   rq->nr_running == rq->cfs.h_nr_running)) {
3919 
3920 		p = pick_next_task_fair(rq, prev, rf);
3921 		if (unlikely(p == RETRY_TASK))
3922 			goto restart;
3923 
3924 		/* Assumes fair_sched_class->next == idle_sched_class */
3925 		if (!p) {
3926 			put_prev_task(rq, prev);
3927 			p = pick_next_task_idle(rq);
3928 		}
3929 
3930 		return p;
3931 	}
3932 
3933 restart:
3934 #ifdef CONFIG_SMP
3935 	/*
3936 	 * We must do the balancing pass before put_next_task(), such
3937 	 * that when we release the rq->lock the task is in the same
3938 	 * state as before we took rq->lock.
3939 	 *
3940 	 * We can terminate the balance pass as soon as we know there is
3941 	 * a runnable task of @class priority or higher.
3942 	 */
3943 	for_class_range(class, prev->sched_class, &idle_sched_class) {
3944 		if (class->balance(rq, prev, rf))
3945 			break;
3946 	}
3947 #endif
3948 
3949 	put_prev_task(rq, prev);
3950 
3951 	for_each_class(class) {
3952 		p = class->pick_next_task(rq);
3953 		if (p)
3954 			return p;
3955 	}
3956 
3957 	/* The idle class should always have a runnable task: */
3958 	BUG();
3959 }
3960 
3961 /*
3962  * __schedule() is the main scheduler function.
3963  *
3964  * The main means of driving the scheduler and thus entering this function are:
3965  *
3966  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3967  *
3968  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3969  *      paths. For example, see arch/x86/entry_64.S.
3970  *
3971  *      To drive preemption between tasks, the scheduler sets the flag in timer
3972  *      interrupt handler scheduler_tick().
3973  *
3974  *   3. Wakeups don't really cause entry into schedule(). They add a
3975  *      task to the run-queue and that's it.
3976  *
3977  *      Now, if the new task added to the run-queue preempts the current
3978  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3979  *      called on the nearest possible occasion:
3980  *
3981  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3982  *
3983  *         - in syscall or exception context, at the next outmost
3984  *           preempt_enable(). (this might be as soon as the wake_up()'s
3985  *           spin_unlock()!)
3986  *
3987  *         - in IRQ context, return from interrupt-handler to
3988  *           preemptible context
3989  *
3990  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
3991  *         then at the next:
3992  *
3993  *          - cond_resched() call
3994  *          - explicit schedule() call
3995  *          - return from syscall or exception to user-space
3996  *          - return from interrupt-handler to user-space
3997  *
3998  * WARNING: must be called with preemption disabled!
3999  */
4000 static void __sched notrace __schedule(bool preempt)
4001 {
4002 	struct task_struct *prev, *next;
4003 	unsigned long *switch_count;
4004 	struct rq_flags rf;
4005 	struct rq *rq;
4006 	int cpu;
4007 
4008 	cpu = smp_processor_id();
4009 	rq = cpu_rq(cpu);
4010 	prev = rq->curr;
4011 
4012 	schedule_debug(prev, preempt);
4013 
4014 	if (sched_feat(HRTICK))
4015 		hrtick_clear(rq);
4016 
4017 	local_irq_disable();
4018 	rcu_note_context_switch(preempt);
4019 
4020 	/*
4021 	 * Make sure that signal_pending_state()->signal_pending() below
4022 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4023 	 * done by the caller to avoid the race with signal_wake_up().
4024 	 *
4025 	 * The membarrier system call requires a full memory barrier
4026 	 * after coming from user-space, before storing to rq->curr.
4027 	 */
4028 	rq_lock(rq, &rf);
4029 	smp_mb__after_spinlock();
4030 
4031 	/* Promote REQ to ACT */
4032 	rq->clock_update_flags <<= 1;
4033 	update_rq_clock(rq);
4034 
4035 	switch_count = &prev->nivcsw;
4036 	if (!preempt && prev->state) {
4037 		if (signal_pending_state(prev->state, prev)) {
4038 			prev->state = TASK_RUNNING;
4039 		} else {
4040 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4041 
4042 			if (prev->in_iowait) {
4043 				atomic_inc(&rq->nr_iowait);
4044 				delayacct_blkio_start();
4045 			}
4046 		}
4047 		switch_count = &prev->nvcsw;
4048 	}
4049 
4050 	next = pick_next_task(rq, prev, &rf);
4051 	clear_tsk_need_resched(prev);
4052 	clear_preempt_need_resched();
4053 
4054 	if (likely(prev != next)) {
4055 		rq->nr_switches++;
4056 		/*
4057 		 * RCU users of rcu_dereference(rq->curr) may not see
4058 		 * changes to task_struct made by pick_next_task().
4059 		 */
4060 		RCU_INIT_POINTER(rq->curr, next);
4061 		/*
4062 		 * The membarrier system call requires each architecture
4063 		 * to have a full memory barrier after updating
4064 		 * rq->curr, before returning to user-space.
4065 		 *
4066 		 * Here are the schemes providing that barrier on the
4067 		 * various architectures:
4068 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4069 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4070 		 * - finish_lock_switch() for weakly-ordered
4071 		 *   architectures where spin_unlock is a full barrier,
4072 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4073 		 *   is a RELEASE barrier),
4074 		 */
4075 		++*switch_count;
4076 
4077 		trace_sched_switch(preempt, prev, next);
4078 
4079 		/* Also unlocks the rq: */
4080 		rq = context_switch(rq, prev, next, &rf);
4081 	} else {
4082 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4083 		rq_unlock_irq(rq, &rf);
4084 	}
4085 
4086 	balance_callback(rq);
4087 }
4088 
4089 void __noreturn do_task_dead(void)
4090 {
4091 	/* Causes final put_task_struct in finish_task_switch(): */
4092 	set_special_state(TASK_DEAD);
4093 
4094 	/* Tell freezer to ignore us: */
4095 	current->flags |= PF_NOFREEZE;
4096 
4097 	__schedule(false);
4098 	BUG();
4099 
4100 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4101 	for (;;)
4102 		cpu_relax();
4103 }
4104 
4105 static inline void sched_submit_work(struct task_struct *tsk)
4106 {
4107 	if (!tsk->state)
4108 		return;
4109 
4110 	/*
4111 	 * If a worker went to sleep, notify and ask workqueue whether
4112 	 * it wants to wake up a task to maintain concurrency.
4113 	 * As this function is called inside the schedule() context,
4114 	 * we disable preemption to avoid it calling schedule() again
4115 	 * in the possible wakeup of a kworker.
4116 	 */
4117 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4118 		preempt_disable();
4119 		if (tsk->flags & PF_WQ_WORKER)
4120 			wq_worker_sleeping(tsk);
4121 		else
4122 			io_wq_worker_sleeping(tsk);
4123 		preempt_enable_no_resched();
4124 	}
4125 
4126 	if (tsk_is_pi_blocked(tsk))
4127 		return;
4128 
4129 	/*
4130 	 * If we are going to sleep and we have plugged IO queued,
4131 	 * make sure to submit it to avoid deadlocks.
4132 	 */
4133 	if (blk_needs_flush_plug(tsk))
4134 		blk_schedule_flush_plug(tsk);
4135 }
4136 
4137 static void sched_update_worker(struct task_struct *tsk)
4138 {
4139 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4140 		if (tsk->flags & PF_WQ_WORKER)
4141 			wq_worker_running(tsk);
4142 		else
4143 			io_wq_worker_running(tsk);
4144 	}
4145 }
4146 
4147 asmlinkage __visible void __sched schedule(void)
4148 {
4149 	struct task_struct *tsk = current;
4150 
4151 	sched_submit_work(tsk);
4152 	do {
4153 		preempt_disable();
4154 		__schedule(false);
4155 		sched_preempt_enable_no_resched();
4156 	} while (need_resched());
4157 	sched_update_worker(tsk);
4158 }
4159 EXPORT_SYMBOL(schedule);
4160 
4161 /*
4162  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4163  * state (have scheduled out non-voluntarily) by making sure that all
4164  * tasks have either left the run queue or have gone into user space.
4165  * As idle tasks do not do either, they must not ever be preempted
4166  * (schedule out non-voluntarily).
4167  *
4168  * schedule_idle() is similar to schedule_preempt_disable() except that it
4169  * never enables preemption because it does not call sched_submit_work().
4170  */
4171 void __sched schedule_idle(void)
4172 {
4173 	/*
4174 	 * As this skips calling sched_submit_work(), which the idle task does
4175 	 * regardless because that function is a nop when the task is in a
4176 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4177 	 * current task can be in any other state. Note, idle is always in the
4178 	 * TASK_RUNNING state.
4179 	 */
4180 	WARN_ON_ONCE(current->state);
4181 	do {
4182 		__schedule(false);
4183 	} while (need_resched());
4184 }
4185 
4186 #ifdef CONFIG_CONTEXT_TRACKING
4187 asmlinkage __visible void __sched schedule_user(void)
4188 {
4189 	/*
4190 	 * If we come here after a random call to set_need_resched(),
4191 	 * or we have been woken up remotely but the IPI has not yet arrived,
4192 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4193 	 * we find a better solution.
4194 	 *
4195 	 * NB: There are buggy callers of this function.  Ideally we
4196 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4197 	 * too frequently to make sense yet.
4198 	 */
4199 	enum ctx_state prev_state = exception_enter();
4200 	schedule();
4201 	exception_exit(prev_state);
4202 }
4203 #endif
4204 
4205 /**
4206  * schedule_preempt_disabled - called with preemption disabled
4207  *
4208  * Returns with preemption disabled. Note: preempt_count must be 1
4209  */
4210 void __sched schedule_preempt_disabled(void)
4211 {
4212 	sched_preempt_enable_no_resched();
4213 	schedule();
4214 	preempt_disable();
4215 }
4216 
4217 static void __sched notrace preempt_schedule_common(void)
4218 {
4219 	do {
4220 		/*
4221 		 * Because the function tracer can trace preempt_count_sub()
4222 		 * and it also uses preempt_enable/disable_notrace(), if
4223 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4224 		 * by the function tracer will call this function again and
4225 		 * cause infinite recursion.
4226 		 *
4227 		 * Preemption must be disabled here before the function
4228 		 * tracer can trace. Break up preempt_disable() into two
4229 		 * calls. One to disable preemption without fear of being
4230 		 * traced. The other to still record the preemption latency,
4231 		 * which can also be traced by the function tracer.
4232 		 */
4233 		preempt_disable_notrace();
4234 		preempt_latency_start(1);
4235 		__schedule(true);
4236 		preempt_latency_stop(1);
4237 		preempt_enable_no_resched_notrace();
4238 
4239 		/*
4240 		 * Check again in case we missed a preemption opportunity
4241 		 * between schedule and now.
4242 		 */
4243 	} while (need_resched());
4244 }
4245 
4246 #ifdef CONFIG_PREEMPTION
4247 /*
4248  * This is the entry point to schedule() from in-kernel preemption
4249  * off of preempt_enable.
4250  */
4251 asmlinkage __visible void __sched notrace preempt_schedule(void)
4252 {
4253 	/*
4254 	 * If there is a non-zero preempt_count or interrupts are disabled,
4255 	 * we do not want to preempt the current task. Just return..
4256 	 */
4257 	if (likely(!preemptible()))
4258 		return;
4259 
4260 	preempt_schedule_common();
4261 }
4262 NOKPROBE_SYMBOL(preempt_schedule);
4263 EXPORT_SYMBOL(preempt_schedule);
4264 
4265 /**
4266  * preempt_schedule_notrace - preempt_schedule called by tracing
4267  *
4268  * The tracing infrastructure uses preempt_enable_notrace to prevent
4269  * recursion and tracing preempt enabling caused by the tracing
4270  * infrastructure itself. But as tracing can happen in areas coming
4271  * from userspace or just about to enter userspace, a preempt enable
4272  * can occur before user_exit() is called. This will cause the scheduler
4273  * to be called when the system is still in usermode.
4274  *
4275  * To prevent this, the preempt_enable_notrace will use this function
4276  * instead of preempt_schedule() to exit user context if needed before
4277  * calling the scheduler.
4278  */
4279 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4280 {
4281 	enum ctx_state prev_ctx;
4282 
4283 	if (likely(!preemptible()))
4284 		return;
4285 
4286 	do {
4287 		/*
4288 		 * Because the function tracer can trace preempt_count_sub()
4289 		 * and it also uses preempt_enable/disable_notrace(), if
4290 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4291 		 * by the function tracer will call this function again and
4292 		 * cause infinite recursion.
4293 		 *
4294 		 * Preemption must be disabled here before the function
4295 		 * tracer can trace. Break up preempt_disable() into two
4296 		 * calls. One to disable preemption without fear of being
4297 		 * traced. The other to still record the preemption latency,
4298 		 * which can also be traced by the function tracer.
4299 		 */
4300 		preempt_disable_notrace();
4301 		preempt_latency_start(1);
4302 		/*
4303 		 * Needs preempt disabled in case user_exit() is traced
4304 		 * and the tracer calls preempt_enable_notrace() causing
4305 		 * an infinite recursion.
4306 		 */
4307 		prev_ctx = exception_enter();
4308 		__schedule(true);
4309 		exception_exit(prev_ctx);
4310 
4311 		preempt_latency_stop(1);
4312 		preempt_enable_no_resched_notrace();
4313 	} while (need_resched());
4314 }
4315 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4316 
4317 #endif /* CONFIG_PREEMPTION */
4318 
4319 /*
4320  * This is the entry point to schedule() from kernel preemption
4321  * off of irq context.
4322  * Note, that this is called and return with irqs disabled. This will
4323  * protect us against recursive calling from irq.
4324  */
4325 asmlinkage __visible void __sched preempt_schedule_irq(void)
4326 {
4327 	enum ctx_state prev_state;
4328 
4329 	/* Catch callers which need to be fixed */
4330 	BUG_ON(preempt_count() || !irqs_disabled());
4331 
4332 	prev_state = exception_enter();
4333 
4334 	do {
4335 		preempt_disable();
4336 		local_irq_enable();
4337 		__schedule(true);
4338 		local_irq_disable();
4339 		sched_preempt_enable_no_resched();
4340 	} while (need_resched());
4341 
4342 	exception_exit(prev_state);
4343 }
4344 
4345 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4346 			  void *key)
4347 {
4348 	return try_to_wake_up(curr->private, mode, wake_flags);
4349 }
4350 EXPORT_SYMBOL(default_wake_function);
4351 
4352 #ifdef CONFIG_RT_MUTEXES
4353 
4354 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4355 {
4356 	if (pi_task)
4357 		prio = min(prio, pi_task->prio);
4358 
4359 	return prio;
4360 }
4361 
4362 static inline int rt_effective_prio(struct task_struct *p, int prio)
4363 {
4364 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4365 
4366 	return __rt_effective_prio(pi_task, prio);
4367 }
4368 
4369 /*
4370  * rt_mutex_setprio - set the current priority of a task
4371  * @p: task to boost
4372  * @pi_task: donor task
4373  *
4374  * This function changes the 'effective' priority of a task. It does
4375  * not touch ->normal_prio like __setscheduler().
4376  *
4377  * Used by the rt_mutex code to implement priority inheritance
4378  * logic. Call site only calls if the priority of the task changed.
4379  */
4380 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4381 {
4382 	int prio, oldprio, queued, running, queue_flag =
4383 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4384 	const struct sched_class *prev_class;
4385 	struct rq_flags rf;
4386 	struct rq *rq;
4387 
4388 	/* XXX used to be waiter->prio, not waiter->task->prio */
4389 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4390 
4391 	/*
4392 	 * If nothing changed; bail early.
4393 	 */
4394 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4395 		return;
4396 
4397 	rq = __task_rq_lock(p, &rf);
4398 	update_rq_clock(rq);
4399 	/*
4400 	 * Set under pi_lock && rq->lock, such that the value can be used under
4401 	 * either lock.
4402 	 *
4403 	 * Note that there is loads of tricky to make this pointer cache work
4404 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4405 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4406 	 * task is allowed to run again (and can exit). This ensures the pointer
4407 	 * points to a blocked task -- which guaratees the task is present.
4408 	 */
4409 	p->pi_top_task = pi_task;
4410 
4411 	/*
4412 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4413 	 */
4414 	if (prio == p->prio && !dl_prio(prio))
4415 		goto out_unlock;
4416 
4417 	/*
4418 	 * Idle task boosting is a nono in general. There is one
4419 	 * exception, when PREEMPT_RT and NOHZ is active:
4420 	 *
4421 	 * The idle task calls get_next_timer_interrupt() and holds
4422 	 * the timer wheel base->lock on the CPU and another CPU wants
4423 	 * to access the timer (probably to cancel it). We can safely
4424 	 * ignore the boosting request, as the idle CPU runs this code
4425 	 * with interrupts disabled and will complete the lock
4426 	 * protected section without being interrupted. So there is no
4427 	 * real need to boost.
4428 	 */
4429 	if (unlikely(p == rq->idle)) {
4430 		WARN_ON(p != rq->curr);
4431 		WARN_ON(p->pi_blocked_on);
4432 		goto out_unlock;
4433 	}
4434 
4435 	trace_sched_pi_setprio(p, pi_task);
4436 	oldprio = p->prio;
4437 
4438 	if (oldprio == prio)
4439 		queue_flag &= ~DEQUEUE_MOVE;
4440 
4441 	prev_class = p->sched_class;
4442 	queued = task_on_rq_queued(p);
4443 	running = task_current(rq, p);
4444 	if (queued)
4445 		dequeue_task(rq, p, queue_flag);
4446 	if (running)
4447 		put_prev_task(rq, p);
4448 
4449 	/*
4450 	 * Boosting condition are:
4451 	 * 1. -rt task is running and holds mutex A
4452 	 *      --> -dl task blocks on mutex A
4453 	 *
4454 	 * 2. -dl task is running and holds mutex A
4455 	 *      --> -dl task blocks on mutex A and could preempt the
4456 	 *          running task
4457 	 */
4458 	if (dl_prio(prio)) {
4459 		if (!dl_prio(p->normal_prio) ||
4460 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4461 			p->dl.dl_boosted = 1;
4462 			queue_flag |= ENQUEUE_REPLENISH;
4463 		} else
4464 			p->dl.dl_boosted = 0;
4465 		p->sched_class = &dl_sched_class;
4466 	} else if (rt_prio(prio)) {
4467 		if (dl_prio(oldprio))
4468 			p->dl.dl_boosted = 0;
4469 		if (oldprio < prio)
4470 			queue_flag |= ENQUEUE_HEAD;
4471 		p->sched_class = &rt_sched_class;
4472 	} else {
4473 		if (dl_prio(oldprio))
4474 			p->dl.dl_boosted = 0;
4475 		if (rt_prio(oldprio))
4476 			p->rt.timeout = 0;
4477 		p->sched_class = &fair_sched_class;
4478 	}
4479 
4480 	p->prio = prio;
4481 
4482 	if (queued)
4483 		enqueue_task(rq, p, queue_flag);
4484 	if (running)
4485 		set_next_task(rq, p);
4486 
4487 	check_class_changed(rq, p, prev_class, oldprio);
4488 out_unlock:
4489 	/* Avoid rq from going away on us: */
4490 	preempt_disable();
4491 	__task_rq_unlock(rq, &rf);
4492 
4493 	balance_callback(rq);
4494 	preempt_enable();
4495 }
4496 #else
4497 static inline int rt_effective_prio(struct task_struct *p, int prio)
4498 {
4499 	return prio;
4500 }
4501 #endif
4502 
4503 void set_user_nice(struct task_struct *p, long nice)
4504 {
4505 	bool queued, running;
4506 	int old_prio;
4507 	struct rq_flags rf;
4508 	struct rq *rq;
4509 
4510 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4511 		return;
4512 	/*
4513 	 * We have to be careful, if called from sys_setpriority(),
4514 	 * the task might be in the middle of scheduling on another CPU.
4515 	 */
4516 	rq = task_rq_lock(p, &rf);
4517 	update_rq_clock(rq);
4518 
4519 	/*
4520 	 * The RT priorities are set via sched_setscheduler(), but we still
4521 	 * allow the 'normal' nice value to be set - but as expected
4522 	 * it wont have any effect on scheduling until the task is
4523 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4524 	 */
4525 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4526 		p->static_prio = NICE_TO_PRIO(nice);
4527 		goto out_unlock;
4528 	}
4529 	queued = task_on_rq_queued(p);
4530 	running = task_current(rq, p);
4531 	if (queued)
4532 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4533 	if (running)
4534 		put_prev_task(rq, p);
4535 
4536 	p->static_prio = NICE_TO_PRIO(nice);
4537 	set_load_weight(p, true);
4538 	old_prio = p->prio;
4539 	p->prio = effective_prio(p);
4540 
4541 	if (queued)
4542 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4543 	if (running)
4544 		set_next_task(rq, p);
4545 
4546 	/*
4547 	 * If the task increased its priority or is running and
4548 	 * lowered its priority, then reschedule its CPU:
4549 	 */
4550 	p->sched_class->prio_changed(rq, p, old_prio);
4551 
4552 out_unlock:
4553 	task_rq_unlock(rq, p, &rf);
4554 }
4555 EXPORT_SYMBOL(set_user_nice);
4556 
4557 /*
4558  * can_nice - check if a task can reduce its nice value
4559  * @p: task
4560  * @nice: nice value
4561  */
4562 int can_nice(const struct task_struct *p, const int nice)
4563 {
4564 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4565 	int nice_rlim = nice_to_rlimit(nice);
4566 
4567 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4568 		capable(CAP_SYS_NICE));
4569 }
4570 
4571 #ifdef __ARCH_WANT_SYS_NICE
4572 
4573 /*
4574  * sys_nice - change the priority of the current process.
4575  * @increment: priority increment
4576  *
4577  * sys_setpriority is a more generic, but much slower function that
4578  * does similar things.
4579  */
4580 SYSCALL_DEFINE1(nice, int, increment)
4581 {
4582 	long nice, retval;
4583 
4584 	/*
4585 	 * Setpriority might change our priority at the same moment.
4586 	 * We don't have to worry. Conceptually one call occurs first
4587 	 * and we have a single winner.
4588 	 */
4589 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4590 	nice = task_nice(current) + increment;
4591 
4592 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4593 	if (increment < 0 && !can_nice(current, nice))
4594 		return -EPERM;
4595 
4596 	retval = security_task_setnice(current, nice);
4597 	if (retval)
4598 		return retval;
4599 
4600 	set_user_nice(current, nice);
4601 	return 0;
4602 }
4603 
4604 #endif
4605 
4606 /**
4607  * task_prio - return the priority value of a given task.
4608  * @p: the task in question.
4609  *
4610  * Return: The priority value as seen by users in /proc.
4611  * RT tasks are offset by -200. Normal tasks are centered
4612  * around 0, value goes from -16 to +15.
4613  */
4614 int task_prio(const struct task_struct *p)
4615 {
4616 	return p->prio - MAX_RT_PRIO;
4617 }
4618 
4619 /**
4620  * idle_cpu - is a given CPU idle currently?
4621  * @cpu: the processor in question.
4622  *
4623  * Return: 1 if the CPU is currently idle. 0 otherwise.
4624  */
4625 int idle_cpu(int cpu)
4626 {
4627 	struct rq *rq = cpu_rq(cpu);
4628 
4629 	if (rq->curr != rq->idle)
4630 		return 0;
4631 
4632 	if (rq->nr_running)
4633 		return 0;
4634 
4635 #ifdef CONFIG_SMP
4636 	if (!llist_empty(&rq->wake_list))
4637 		return 0;
4638 #endif
4639 
4640 	return 1;
4641 }
4642 
4643 /**
4644  * available_idle_cpu - is a given CPU idle for enqueuing work.
4645  * @cpu: the CPU in question.
4646  *
4647  * Return: 1 if the CPU is currently idle. 0 otherwise.
4648  */
4649 int available_idle_cpu(int cpu)
4650 {
4651 	if (!idle_cpu(cpu))
4652 		return 0;
4653 
4654 	if (vcpu_is_preempted(cpu))
4655 		return 0;
4656 
4657 	return 1;
4658 }
4659 
4660 /**
4661  * idle_task - return the idle task for a given CPU.
4662  * @cpu: the processor in question.
4663  *
4664  * Return: The idle task for the CPU @cpu.
4665  */
4666 struct task_struct *idle_task(int cpu)
4667 {
4668 	return cpu_rq(cpu)->idle;
4669 }
4670 
4671 /**
4672  * find_process_by_pid - find a process with a matching PID value.
4673  * @pid: the pid in question.
4674  *
4675  * The task of @pid, if found. %NULL otherwise.
4676  */
4677 static struct task_struct *find_process_by_pid(pid_t pid)
4678 {
4679 	return pid ? find_task_by_vpid(pid) : current;
4680 }
4681 
4682 /*
4683  * sched_setparam() passes in -1 for its policy, to let the functions
4684  * it calls know not to change it.
4685  */
4686 #define SETPARAM_POLICY	-1
4687 
4688 static void __setscheduler_params(struct task_struct *p,
4689 		const struct sched_attr *attr)
4690 {
4691 	int policy = attr->sched_policy;
4692 
4693 	if (policy == SETPARAM_POLICY)
4694 		policy = p->policy;
4695 
4696 	p->policy = policy;
4697 
4698 	if (dl_policy(policy))
4699 		__setparam_dl(p, attr);
4700 	else if (fair_policy(policy))
4701 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4702 
4703 	/*
4704 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4705 	 * !rt_policy. Always setting this ensures that things like
4706 	 * getparam()/getattr() don't report silly values for !rt tasks.
4707 	 */
4708 	p->rt_priority = attr->sched_priority;
4709 	p->normal_prio = normal_prio(p);
4710 	set_load_weight(p, true);
4711 }
4712 
4713 /* Actually do priority change: must hold pi & rq lock. */
4714 static void __setscheduler(struct rq *rq, struct task_struct *p,
4715 			   const struct sched_attr *attr, bool keep_boost)
4716 {
4717 	/*
4718 	 * If params can't change scheduling class changes aren't allowed
4719 	 * either.
4720 	 */
4721 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4722 		return;
4723 
4724 	__setscheduler_params(p, attr);
4725 
4726 	/*
4727 	 * Keep a potential priority boosting if called from
4728 	 * sched_setscheduler().
4729 	 */
4730 	p->prio = normal_prio(p);
4731 	if (keep_boost)
4732 		p->prio = rt_effective_prio(p, p->prio);
4733 
4734 	if (dl_prio(p->prio))
4735 		p->sched_class = &dl_sched_class;
4736 	else if (rt_prio(p->prio))
4737 		p->sched_class = &rt_sched_class;
4738 	else
4739 		p->sched_class = &fair_sched_class;
4740 }
4741 
4742 /*
4743  * Check the target process has a UID that matches the current process's:
4744  */
4745 static bool check_same_owner(struct task_struct *p)
4746 {
4747 	const struct cred *cred = current_cred(), *pcred;
4748 	bool match;
4749 
4750 	rcu_read_lock();
4751 	pcred = __task_cred(p);
4752 	match = (uid_eq(cred->euid, pcred->euid) ||
4753 		 uid_eq(cred->euid, pcred->uid));
4754 	rcu_read_unlock();
4755 	return match;
4756 }
4757 
4758 static int __sched_setscheduler(struct task_struct *p,
4759 				const struct sched_attr *attr,
4760 				bool user, bool pi)
4761 {
4762 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4763 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4764 	int retval, oldprio, oldpolicy = -1, queued, running;
4765 	int new_effective_prio, policy = attr->sched_policy;
4766 	const struct sched_class *prev_class;
4767 	struct rq_flags rf;
4768 	int reset_on_fork;
4769 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4770 	struct rq *rq;
4771 
4772 	/* The pi code expects interrupts enabled */
4773 	BUG_ON(pi && in_interrupt());
4774 recheck:
4775 	/* Double check policy once rq lock held: */
4776 	if (policy < 0) {
4777 		reset_on_fork = p->sched_reset_on_fork;
4778 		policy = oldpolicy = p->policy;
4779 	} else {
4780 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4781 
4782 		if (!valid_policy(policy))
4783 			return -EINVAL;
4784 	}
4785 
4786 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4787 		return -EINVAL;
4788 
4789 	/*
4790 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4791 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4792 	 * SCHED_BATCH and SCHED_IDLE is 0.
4793 	 */
4794 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4795 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4796 		return -EINVAL;
4797 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4798 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4799 		return -EINVAL;
4800 
4801 	/*
4802 	 * Allow unprivileged RT tasks to decrease priority:
4803 	 */
4804 	if (user && !capable(CAP_SYS_NICE)) {
4805 		if (fair_policy(policy)) {
4806 			if (attr->sched_nice < task_nice(p) &&
4807 			    !can_nice(p, attr->sched_nice))
4808 				return -EPERM;
4809 		}
4810 
4811 		if (rt_policy(policy)) {
4812 			unsigned long rlim_rtprio =
4813 					task_rlimit(p, RLIMIT_RTPRIO);
4814 
4815 			/* Can't set/change the rt policy: */
4816 			if (policy != p->policy && !rlim_rtprio)
4817 				return -EPERM;
4818 
4819 			/* Can't increase priority: */
4820 			if (attr->sched_priority > p->rt_priority &&
4821 			    attr->sched_priority > rlim_rtprio)
4822 				return -EPERM;
4823 		}
4824 
4825 		 /*
4826 		  * Can't set/change SCHED_DEADLINE policy at all for now
4827 		  * (safest behavior); in the future we would like to allow
4828 		  * unprivileged DL tasks to increase their relative deadline
4829 		  * or reduce their runtime (both ways reducing utilization)
4830 		  */
4831 		if (dl_policy(policy))
4832 			return -EPERM;
4833 
4834 		/*
4835 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4836 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4837 		 */
4838 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4839 			if (!can_nice(p, task_nice(p)))
4840 				return -EPERM;
4841 		}
4842 
4843 		/* Can't change other user's priorities: */
4844 		if (!check_same_owner(p))
4845 			return -EPERM;
4846 
4847 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4848 		if (p->sched_reset_on_fork && !reset_on_fork)
4849 			return -EPERM;
4850 	}
4851 
4852 	if (user) {
4853 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4854 			return -EINVAL;
4855 
4856 		retval = security_task_setscheduler(p);
4857 		if (retval)
4858 			return retval;
4859 	}
4860 
4861 	/* Update task specific "requested" clamps */
4862 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4863 		retval = uclamp_validate(p, attr);
4864 		if (retval)
4865 			return retval;
4866 	}
4867 
4868 	if (pi)
4869 		cpuset_read_lock();
4870 
4871 	/*
4872 	 * Make sure no PI-waiters arrive (or leave) while we are
4873 	 * changing the priority of the task:
4874 	 *
4875 	 * To be able to change p->policy safely, the appropriate
4876 	 * runqueue lock must be held.
4877 	 */
4878 	rq = task_rq_lock(p, &rf);
4879 	update_rq_clock(rq);
4880 
4881 	/*
4882 	 * Changing the policy of the stop threads its a very bad idea:
4883 	 */
4884 	if (p == rq->stop) {
4885 		retval = -EINVAL;
4886 		goto unlock;
4887 	}
4888 
4889 	/*
4890 	 * If not changing anything there's no need to proceed further,
4891 	 * but store a possible modification of reset_on_fork.
4892 	 */
4893 	if (unlikely(policy == p->policy)) {
4894 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4895 			goto change;
4896 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4897 			goto change;
4898 		if (dl_policy(policy) && dl_param_changed(p, attr))
4899 			goto change;
4900 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4901 			goto change;
4902 
4903 		p->sched_reset_on_fork = reset_on_fork;
4904 		retval = 0;
4905 		goto unlock;
4906 	}
4907 change:
4908 
4909 	if (user) {
4910 #ifdef CONFIG_RT_GROUP_SCHED
4911 		/*
4912 		 * Do not allow realtime tasks into groups that have no runtime
4913 		 * assigned.
4914 		 */
4915 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4916 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4917 				!task_group_is_autogroup(task_group(p))) {
4918 			retval = -EPERM;
4919 			goto unlock;
4920 		}
4921 #endif
4922 #ifdef CONFIG_SMP
4923 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4924 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4925 			cpumask_t *span = rq->rd->span;
4926 
4927 			/*
4928 			 * Don't allow tasks with an affinity mask smaller than
4929 			 * the entire root_domain to become SCHED_DEADLINE. We
4930 			 * will also fail if there's no bandwidth available.
4931 			 */
4932 			if (!cpumask_subset(span, p->cpus_ptr) ||
4933 			    rq->rd->dl_bw.bw == 0) {
4934 				retval = -EPERM;
4935 				goto unlock;
4936 			}
4937 		}
4938 #endif
4939 	}
4940 
4941 	/* Re-check policy now with rq lock held: */
4942 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4943 		policy = oldpolicy = -1;
4944 		task_rq_unlock(rq, p, &rf);
4945 		if (pi)
4946 			cpuset_read_unlock();
4947 		goto recheck;
4948 	}
4949 
4950 	/*
4951 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4952 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4953 	 * is available.
4954 	 */
4955 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4956 		retval = -EBUSY;
4957 		goto unlock;
4958 	}
4959 
4960 	p->sched_reset_on_fork = reset_on_fork;
4961 	oldprio = p->prio;
4962 
4963 	if (pi) {
4964 		/*
4965 		 * Take priority boosted tasks into account. If the new
4966 		 * effective priority is unchanged, we just store the new
4967 		 * normal parameters and do not touch the scheduler class and
4968 		 * the runqueue. This will be done when the task deboost
4969 		 * itself.
4970 		 */
4971 		new_effective_prio = rt_effective_prio(p, newprio);
4972 		if (new_effective_prio == oldprio)
4973 			queue_flags &= ~DEQUEUE_MOVE;
4974 	}
4975 
4976 	queued = task_on_rq_queued(p);
4977 	running = task_current(rq, p);
4978 	if (queued)
4979 		dequeue_task(rq, p, queue_flags);
4980 	if (running)
4981 		put_prev_task(rq, p);
4982 
4983 	prev_class = p->sched_class;
4984 
4985 	__setscheduler(rq, p, attr, pi);
4986 	__setscheduler_uclamp(p, attr);
4987 
4988 	if (queued) {
4989 		/*
4990 		 * We enqueue to tail when the priority of a task is
4991 		 * increased (user space view).
4992 		 */
4993 		if (oldprio < p->prio)
4994 			queue_flags |= ENQUEUE_HEAD;
4995 
4996 		enqueue_task(rq, p, queue_flags);
4997 	}
4998 	if (running)
4999 		set_next_task(rq, p);
5000 
5001 	check_class_changed(rq, p, prev_class, oldprio);
5002 
5003 	/* Avoid rq from going away on us: */
5004 	preempt_disable();
5005 	task_rq_unlock(rq, p, &rf);
5006 
5007 	if (pi) {
5008 		cpuset_read_unlock();
5009 		rt_mutex_adjust_pi(p);
5010 	}
5011 
5012 	/* Run balance callbacks after we've adjusted the PI chain: */
5013 	balance_callback(rq);
5014 	preempt_enable();
5015 
5016 	return 0;
5017 
5018 unlock:
5019 	task_rq_unlock(rq, p, &rf);
5020 	if (pi)
5021 		cpuset_read_unlock();
5022 	return retval;
5023 }
5024 
5025 static int _sched_setscheduler(struct task_struct *p, int policy,
5026 			       const struct sched_param *param, bool check)
5027 {
5028 	struct sched_attr attr = {
5029 		.sched_policy   = policy,
5030 		.sched_priority = param->sched_priority,
5031 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5032 	};
5033 
5034 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5035 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5036 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5037 		policy &= ~SCHED_RESET_ON_FORK;
5038 		attr.sched_policy = policy;
5039 	}
5040 
5041 	return __sched_setscheduler(p, &attr, check, true);
5042 }
5043 /**
5044  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5045  * @p: the task in question.
5046  * @policy: new policy.
5047  * @param: structure containing the new RT priority.
5048  *
5049  * Return: 0 on success. An error code otherwise.
5050  *
5051  * NOTE that the task may be already dead.
5052  */
5053 int sched_setscheduler(struct task_struct *p, int policy,
5054 		       const struct sched_param *param)
5055 {
5056 	return _sched_setscheduler(p, policy, param, true);
5057 }
5058 EXPORT_SYMBOL_GPL(sched_setscheduler);
5059 
5060 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5061 {
5062 	return __sched_setscheduler(p, attr, true, true);
5063 }
5064 EXPORT_SYMBOL_GPL(sched_setattr);
5065 
5066 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5067 {
5068 	return __sched_setscheduler(p, attr, false, true);
5069 }
5070 
5071 /**
5072  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5073  * @p: the task in question.
5074  * @policy: new policy.
5075  * @param: structure containing the new RT priority.
5076  *
5077  * Just like sched_setscheduler, only don't bother checking if the
5078  * current context has permission.  For example, this is needed in
5079  * stop_machine(): we create temporary high priority worker threads,
5080  * but our caller might not have that capability.
5081  *
5082  * Return: 0 on success. An error code otherwise.
5083  */
5084 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5085 			       const struct sched_param *param)
5086 {
5087 	return _sched_setscheduler(p, policy, param, false);
5088 }
5089 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5090 
5091 static int
5092 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5093 {
5094 	struct sched_param lparam;
5095 	struct task_struct *p;
5096 	int retval;
5097 
5098 	if (!param || pid < 0)
5099 		return -EINVAL;
5100 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5101 		return -EFAULT;
5102 
5103 	rcu_read_lock();
5104 	retval = -ESRCH;
5105 	p = find_process_by_pid(pid);
5106 	if (likely(p))
5107 		get_task_struct(p);
5108 	rcu_read_unlock();
5109 
5110 	if (likely(p)) {
5111 		retval = sched_setscheduler(p, policy, &lparam);
5112 		put_task_struct(p);
5113 	}
5114 
5115 	return retval;
5116 }
5117 
5118 /*
5119  * Mimics kernel/events/core.c perf_copy_attr().
5120  */
5121 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5122 {
5123 	u32 size;
5124 	int ret;
5125 
5126 	/* Zero the full structure, so that a short copy will be nice: */
5127 	memset(attr, 0, sizeof(*attr));
5128 
5129 	ret = get_user(size, &uattr->size);
5130 	if (ret)
5131 		return ret;
5132 
5133 	/* ABI compatibility quirk: */
5134 	if (!size)
5135 		size = SCHED_ATTR_SIZE_VER0;
5136 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5137 		goto err_size;
5138 
5139 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5140 	if (ret) {
5141 		if (ret == -E2BIG)
5142 			goto err_size;
5143 		return ret;
5144 	}
5145 
5146 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5147 	    size < SCHED_ATTR_SIZE_VER1)
5148 		return -EINVAL;
5149 
5150 	/*
5151 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5152 	 * to be strict and return an error on out-of-bounds values?
5153 	 */
5154 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5155 
5156 	return 0;
5157 
5158 err_size:
5159 	put_user(sizeof(*attr), &uattr->size);
5160 	return -E2BIG;
5161 }
5162 
5163 /**
5164  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5165  * @pid: the pid in question.
5166  * @policy: new policy.
5167  * @param: structure containing the new RT priority.
5168  *
5169  * Return: 0 on success. An error code otherwise.
5170  */
5171 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5172 {
5173 	if (policy < 0)
5174 		return -EINVAL;
5175 
5176 	return do_sched_setscheduler(pid, policy, param);
5177 }
5178 
5179 /**
5180  * sys_sched_setparam - set/change the RT priority of a thread
5181  * @pid: the pid in question.
5182  * @param: structure containing the new RT priority.
5183  *
5184  * Return: 0 on success. An error code otherwise.
5185  */
5186 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5187 {
5188 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5189 }
5190 
5191 /**
5192  * sys_sched_setattr - same as above, but with extended sched_attr
5193  * @pid: the pid in question.
5194  * @uattr: structure containing the extended parameters.
5195  * @flags: for future extension.
5196  */
5197 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5198 			       unsigned int, flags)
5199 {
5200 	struct sched_attr attr;
5201 	struct task_struct *p;
5202 	int retval;
5203 
5204 	if (!uattr || pid < 0 || flags)
5205 		return -EINVAL;
5206 
5207 	retval = sched_copy_attr(uattr, &attr);
5208 	if (retval)
5209 		return retval;
5210 
5211 	if ((int)attr.sched_policy < 0)
5212 		return -EINVAL;
5213 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5214 		attr.sched_policy = SETPARAM_POLICY;
5215 
5216 	rcu_read_lock();
5217 	retval = -ESRCH;
5218 	p = find_process_by_pid(pid);
5219 	if (likely(p))
5220 		get_task_struct(p);
5221 	rcu_read_unlock();
5222 
5223 	if (likely(p)) {
5224 		retval = sched_setattr(p, &attr);
5225 		put_task_struct(p);
5226 	}
5227 
5228 	return retval;
5229 }
5230 
5231 /**
5232  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5233  * @pid: the pid in question.
5234  *
5235  * Return: On success, the policy of the thread. Otherwise, a negative error
5236  * code.
5237  */
5238 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5239 {
5240 	struct task_struct *p;
5241 	int retval;
5242 
5243 	if (pid < 0)
5244 		return -EINVAL;
5245 
5246 	retval = -ESRCH;
5247 	rcu_read_lock();
5248 	p = find_process_by_pid(pid);
5249 	if (p) {
5250 		retval = security_task_getscheduler(p);
5251 		if (!retval)
5252 			retval = p->policy
5253 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5254 	}
5255 	rcu_read_unlock();
5256 	return retval;
5257 }
5258 
5259 /**
5260  * sys_sched_getparam - get the RT priority of a thread
5261  * @pid: the pid in question.
5262  * @param: structure containing the RT priority.
5263  *
5264  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5265  * code.
5266  */
5267 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5268 {
5269 	struct sched_param lp = { .sched_priority = 0 };
5270 	struct task_struct *p;
5271 	int retval;
5272 
5273 	if (!param || pid < 0)
5274 		return -EINVAL;
5275 
5276 	rcu_read_lock();
5277 	p = find_process_by_pid(pid);
5278 	retval = -ESRCH;
5279 	if (!p)
5280 		goto out_unlock;
5281 
5282 	retval = security_task_getscheduler(p);
5283 	if (retval)
5284 		goto out_unlock;
5285 
5286 	if (task_has_rt_policy(p))
5287 		lp.sched_priority = p->rt_priority;
5288 	rcu_read_unlock();
5289 
5290 	/*
5291 	 * This one might sleep, we cannot do it with a spinlock held ...
5292 	 */
5293 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5294 
5295 	return retval;
5296 
5297 out_unlock:
5298 	rcu_read_unlock();
5299 	return retval;
5300 }
5301 
5302 /*
5303  * Copy the kernel size attribute structure (which might be larger
5304  * than what user-space knows about) to user-space.
5305  *
5306  * Note that all cases are valid: user-space buffer can be larger or
5307  * smaller than the kernel-space buffer. The usual case is that both
5308  * have the same size.
5309  */
5310 static int
5311 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5312 			struct sched_attr *kattr,
5313 			unsigned int usize)
5314 {
5315 	unsigned int ksize = sizeof(*kattr);
5316 
5317 	if (!access_ok(uattr, usize))
5318 		return -EFAULT;
5319 
5320 	/*
5321 	 * sched_getattr() ABI forwards and backwards compatibility:
5322 	 *
5323 	 * If usize == ksize then we just copy everything to user-space and all is good.
5324 	 *
5325 	 * If usize < ksize then we only copy as much as user-space has space for,
5326 	 * this keeps ABI compatibility as well. We skip the rest.
5327 	 *
5328 	 * If usize > ksize then user-space is using a newer version of the ABI,
5329 	 * which part the kernel doesn't know about. Just ignore it - tooling can
5330 	 * detect the kernel's knowledge of attributes from the attr->size value
5331 	 * which is set to ksize in this case.
5332 	 */
5333 	kattr->size = min(usize, ksize);
5334 
5335 	if (copy_to_user(uattr, kattr, kattr->size))
5336 		return -EFAULT;
5337 
5338 	return 0;
5339 }
5340 
5341 /**
5342  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5343  * @pid: the pid in question.
5344  * @uattr: structure containing the extended parameters.
5345  * @usize: sizeof(attr) for fwd/bwd comp.
5346  * @flags: for future extension.
5347  */
5348 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5349 		unsigned int, usize, unsigned int, flags)
5350 {
5351 	struct sched_attr kattr = { };
5352 	struct task_struct *p;
5353 	int retval;
5354 
5355 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5356 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5357 		return -EINVAL;
5358 
5359 	rcu_read_lock();
5360 	p = find_process_by_pid(pid);
5361 	retval = -ESRCH;
5362 	if (!p)
5363 		goto out_unlock;
5364 
5365 	retval = security_task_getscheduler(p);
5366 	if (retval)
5367 		goto out_unlock;
5368 
5369 	kattr.sched_policy = p->policy;
5370 	if (p->sched_reset_on_fork)
5371 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5372 	if (task_has_dl_policy(p))
5373 		__getparam_dl(p, &kattr);
5374 	else if (task_has_rt_policy(p))
5375 		kattr.sched_priority = p->rt_priority;
5376 	else
5377 		kattr.sched_nice = task_nice(p);
5378 
5379 #ifdef CONFIG_UCLAMP_TASK
5380 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5381 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5382 #endif
5383 
5384 	rcu_read_unlock();
5385 
5386 	return sched_attr_copy_to_user(uattr, &kattr, usize);
5387 
5388 out_unlock:
5389 	rcu_read_unlock();
5390 	return retval;
5391 }
5392 
5393 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5394 {
5395 	cpumask_var_t cpus_allowed, new_mask;
5396 	struct task_struct *p;
5397 	int retval;
5398 
5399 	rcu_read_lock();
5400 
5401 	p = find_process_by_pid(pid);
5402 	if (!p) {
5403 		rcu_read_unlock();
5404 		return -ESRCH;
5405 	}
5406 
5407 	/* Prevent p going away */
5408 	get_task_struct(p);
5409 	rcu_read_unlock();
5410 
5411 	if (p->flags & PF_NO_SETAFFINITY) {
5412 		retval = -EINVAL;
5413 		goto out_put_task;
5414 	}
5415 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5416 		retval = -ENOMEM;
5417 		goto out_put_task;
5418 	}
5419 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5420 		retval = -ENOMEM;
5421 		goto out_free_cpus_allowed;
5422 	}
5423 	retval = -EPERM;
5424 	if (!check_same_owner(p)) {
5425 		rcu_read_lock();
5426 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5427 			rcu_read_unlock();
5428 			goto out_free_new_mask;
5429 		}
5430 		rcu_read_unlock();
5431 	}
5432 
5433 	retval = security_task_setscheduler(p);
5434 	if (retval)
5435 		goto out_free_new_mask;
5436 
5437 
5438 	cpuset_cpus_allowed(p, cpus_allowed);
5439 	cpumask_and(new_mask, in_mask, cpus_allowed);
5440 
5441 	/*
5442 	 * Since bandwidth control happens on root_domain basis,
5443 	 * if admission test is enabled, we only admit -deadline
5444 	 * tasks allowed to run on all the CPUs in the task's
5445 	 * root_domain.
5446 	 */
5447 #ifdef CONFIG_SMP
5448 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5449 		rcu_read_lock();
5450 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5451 			retval = -EBUSY;
5452 			rcu_read_unlock();
5453 			goto out_free_new_mask;
5454 		}
5455 		rcu_read_unlock();
5456 	}
5457 #endif
5458 again:
5459 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5460 
5461 	if (!retval) {
5462 		cpuset_cpus_allowed(p, cpus_allowed);
5463 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5464 			/*
5465 			 * We must have raced with a concurrent cpuset
5466 			 * update. Just reset the cpus_allowed to the
5467 			 * cpuset's cpus_allowed
5468 			 */
5469 			cpumask_copy(new_mask, cpus_allowed);
5470 			goto again;
5471 		}
5472 	}
5473 out_free_new_mask:
5474 	free_cpumask_var(new_mask);
5475 out_free_cpus_allowed:
5476 	free_cpumask_var(cpus_allowed);
5477 out_put_task:
5478 	put_task_struct(p);
5479 	return retval;
5480 }
5481 
5482 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5483 			     struct cpumask *new_mask)
5484 {
5485 	if (len < cpumask_size())
5486 		cpumask_clear(new_mask);
5487 	else if (len > cpumask_size())
5488 		len = cpumask_size();
5489 
5490 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5491 }
5492 
5493 /**
5494  * sys_sched_setaffinity - set the CPU affinity of a process
5495  * @pid: pid of the process
5496  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5497  * @user_mask_ptr: user-space pointer to the new CPU mask
5498  *
5499  * Return: 0 on success. An error code otherwise.
5500  */
5501 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5502 		unsigned long __user *, user_mask_ptr)
5503 {
5504 	cpumask_var_t new_mask;
5505 	int retval;
5506 
5507 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5508 		return -ENOMEM;
5509 
5510 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5511 	if (retval == 0)
5512 		retval = sched_setaffinity(pid, new_mask);
5513 	free_cpumask_var(new_mask);
5514 	return retval;
5515 }
5516 
5517 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5518 {
5519 	struct task_struct *p;
5520 	unsigned long flags;
5521 	int retval;
5522 
5523 	rcu_read_lock();
5524 
5525 	retval = -ESRCH;
5526 	p = find_process_by_pid(pid);
5527 	if (!p)
5528 		goto out_unlock;
5529 
5530 	retval = security_task_getscheduler(p);
5531 	if (retval)
5532 		goto out_unlock;
5533 
5534 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5535 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5536 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5537 
5538 out_unlock:
5539 	rcu_read_unlock();
5540 
5541 	return retval;
5542 }
5543 
5544 /**
5545  * sys_sched_getaffinity - get the CPU affinity of a process
5546  * @pid: pid of the process
5547  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5548  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5549  *
5550  * Return: size of CPU mask copied to user_mask_ptr on success. An
5551  * error code otherwise.
5552  */
5553 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5554 		unsigned long __user *, user_mask_ptr)
5555 {
5556 	int ret;
5557 	cpumask_var_t mask;
5558 
5559 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5560 		return -EINVAL;
5561 	if (len & (sizeof(unsigned long)-1))
5562 		return -EINVAL;
5563 
5564 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5565 		return -ENOMEM;
5566 
5567 	ret = sched_getaffinity(pid, mask);
5568 	if (ret == 0) {
5569 		unsigned int retlen = min(len, cpumask_size());
5570 
5571 		if (copy_to_user(user_mask_ptr, mask, retlen))
5572 			ret = -EFAULT;
5573 		else
5574 			ret = retlen;
5575 	}
5576 	free_cpumask_var(mask);
5577 
5578 	return ret;
5579 }
5580 
5581 /**
5582  * sys_sched_yield - yield the current processor to other threads.
5583  *
5584  * This function yields the current CPU to other tasks. If there are no
5585  * other threads running on this CPU then this function will return.
5586  *
5587  * Return: 0.
5588  */
5589 static void do_sched_yield(void)
5590 {
5591 	struct rq_flags rf;
5592 	struct rq *rq;
5593 
5594 	rq = this_rq_lock_irq(&rf);
5595 
5596 	schedstat_inc(rq->yld_count);
5597 	current->sched_class->yield_task(rq);
5598 
5599 	/*
5600 	 * Since we are going to call schedule() anyway, there's
5601 	 * no need to preempt or enable interrupts:
5602 	 */
5603 	preempt_disable();
5604 	rq_unlock(rq, &rf);
5605 	sched_preempt_enable_no_resched();
5606 
5607 	schedule();
5608 }
5609 
5610 SYSCALL_DEFINE0(sched_yield)
5611 {
5612 	do_sched_yield();
5613 	return 0;
5614 }
5615 
5616 #ifndef CONFIG_PREEMPTION
5617 int __sched _cond_resched(void)
5618 {
5619 	if (should_resched(0)) {
5620 		preempt_schedule_common();
5621 		return 1;
5622 	}
5623 	rcu_all_qs();
5624 	return 0;
5625 }
5626 EXPORT_SYMBOL(_cond_resched);
5627 #endif
5628 
5629 /*
5630  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5631  * call schedule, and on return reacquire the lock.
5632  *
5633  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5634  * operations here to prevent schedule() from being called twice (once via
5635  * spin_unlock(), once by hand).
5636  */
5637 int __cond_resched_lock(spinlock_t *lock)
5638 {
5639 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5640 	int ret = 0;
5641 
5642 	lockdep_assert_held(lock);
5643 
5644 	if (spin_needbreak(lock) || resched) {
5645 		spin_unlock(lock);
5646 		if (resched)
5647 			preempt_schedule_common();
5648 		else
5649 			cpu_relax();
5650 		ret = 1;
5651 		spin_lock(lock);
5652 	}
5653 	return ret;
5654 }
5655 EXPORT_SYMBOL(__cond_resched_lock);
5656 
5657 /**
5658  * yield - yield the current processor to other threads.
5659  *
5660  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5661  *
5662  * The scheduler is at all times free to pick the calling task as the most
5663  * eligible task to run, if removing the yield() call from your code breaks
5664  * it, its already broken.
5665  *
5666  * Typical broken usage is:
5667  *
5668  * while (!event)
5669  *	yield();
5670  *
5671  * where one assumes that yield() will let 'the other' process run that will
5672  * make event true. If the current task is a SCHED_FIFO task that will never
5673  * happen. Never use yield() as a progress guarantee!!
5674  *
5675  * If you want to use yield() to wait for something, use wait_event().
5676  * If you want to use yield() to be 'nice' for others, use cond_resched().
5677  * If you still want to use yield(), do not!
5678  */
5679 void __sched yield(void)
5680 {
5681 	set_current_state(TASK_RUNNING);
5682 	do_sched_yield();
5683 }
5684 EXPORT_SYMBOL(yield);
5685 
5686 /**
5687  * yield_to - yield the current processor to another thread in
5688  * your thread group, or accelerate that thread toward the
5689  * processor it's on.
5690  * @p: target task
5691  * @preempt: whether task preemption is allowed or not
5692  *
5693  * It's the caller's job to ensure that the target task struct
5694  * can't go away on us before we can do any checks.
5695  *
5696  * Return:
5697  *	true (>0) if we indeed boosted the target task.
5698  *	false (0) if we failed to boost the target.
5699  *	-ESRCH if there's no task to yield to.
5700  */
5701 int __sched yield_to(struct task_struct *p, bool preempt)
5702 {
5703 	struct task_struct *curr = current;
5704 	struct rq *rq, *p_rq;
5705 	unsigned long flags;
5706 	int yielded = 0;
5707 
5708 	local_irq_save(flags);
5709 	rq = this_rq();
5710 
5711 again:
5712 	p_rq = task_rq(p);
5713 	/*
5714 	 * If we're the only runnable task on the rq and target rq also
5715 	 * has only one task, there's absolutely no point in yielding.
5716 	 */
5717 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5718 		yielded = -ESRCH;
5719 		goto out_irq;
5720 	}
5721 
5722 	double_rq_lock(rq, p_rq);
5723 	if (task_rq(p) != p_rq) {
5724 		double_rq_unlock(rq, p_rq);
5725 		goto again;
5726 	}
5727 
5728 	if (!curr->sched_class->yield_to_task)
5729 		goto out_unlock;
5730 
5731 	if (curr->sched_class != p->sched_class)
5732 		goto out_unlock;
5733 
5734 	if (task_running(p_rq, p) || p->state)
5735 		goto out_unlock;
5736 
5737 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5738 	if (yielded) {
5739 		schedstat_inc(rq->yld_count);
5740 		/*
5741 		 * Make p's CPU reschedule; pick_next_entity takes care of
5742 		 * fairness.
5743 		 */
5744 		if (preempt && rq != p_rq)
5745 			resched_curr(p_rq);
5746 	}
5747 
5748 out_unlock:
5749 	double_rq_unlock(rq, p_rq);
5750 out_irq:
5751 	local_irq_restore(flags);
5752 
5753 	if (yielded > 0)
5754 		schedule();
5755 
5756 	return yielded;
5757 }
5758 EXPORT_SYMBOL_GPL(yield_to);
5759 
5760 int io_schedule_prepare(void)
5761 {
5762 	int old_iowait = current->in_iowait;
5763 
5764 	current->in_iowait = 1;
5765 	blk_schedule_flush_plug(current);
5766 
5767 	return old_iowait;
5768 }
5769 
5770 void io_schedule_finish(int token)
5771 {
5772 	current->in_iowait = token;
5773 }
5774 
5775 /*
5776  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5777  * that process accounting knows that this is a task in IO wait state.
5778  */
5779 long __sched io_schedule_timeout(long timeout)
5780 {
5781 	int token;
5782 	long ret;
5783 
5784 	token = io_schedule_prepare();
5785 	ret = schedule_timeout(timeout);
5786 	io_schedule_finish(token);
5787 
5788 	return ret;
5789 }
5790 EXPORT_SYMBOL(io_schedule_timeout);
5791 
5792 void __sched io_schedule(void)
5793 {
5794 	int token;
5795 
5796 	token = io_schedule_prepare();
5797 	schedule();
5798 	io_schedule_finish(token);
5799 }
5800 EXPORT_SYMBOL(io_schedule);
5801 
5802 /**
5803  * sys_sched_get_priority_max - return maximum RT priority.
5804  * @policy: scheduling class.
5805  *
5806  * Return: On success, this syscall returns the maximum
5807  * rt_priority that can be used by a given scheduling class.
5808  * On failure, a negative error code is returned.
5809  */
5810 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5811 {
5812 	int ret = -EINVAL;
5813 
5814 	switch (policy) {
5815 	case SCHED_FIFO:
5816 	case SCHED_RR:
5817 		ret = MAX_USER_RT_PRIO-1;
5818 		break;
5819 	case SCHED_DEADLINE:
5820 	case SCHED_NORMAL:
5821 	case SCHED_BATCH:
5822 	case SCHED_IDLE:
5823 		ret = 0;
5824 		break;
5825 	}
5826 	return ret;
5827 }
5828 
5829 /**
5830  * sys_sched_get_priority_min - return minimum RT priority.
5831  * @policy: scheduling class.
5832  *
5833  * Return: On success, this syscall returns the minimum
5834  * rt_priority that can be used by a given scheduling class.
5835  * On failure, a negative error code is returned.
5836  */
5837 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5838 {
5839 	int ret = -EINVAL;
5840 
5841 	switch (policy) {
5842 	case SCHED_FIFO:
5843 	case SCHED_RR:
5844 		ret = 1;
5845 		break;
5846 	case SCHED_DEADLINE:
5847 	case SCHED_NORMAL:
5848 	case SCHED_BATCH:
5849 	case SCHED_IDLE:
5850 		ret = 0;
5851 	}
5852 	return ret;
5853 }
5854 
5855 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5856 {
5857 	struct task_struct *p;
5858 	unsigned int time_slice;
5859 	struct rq_flags rf;
5860 	struct rq *rq;
5861 	int retval;
5862 
5863 	if (pid < 0)
5864 		return -EINVAL;
5865 
5866 	retval = -ESRCH;
5867 	rcu_read_lock();
5868 	p = find_process_by_pid(pid);
5869 	if (!p)
5870 		goto out_unlock;
5871 
5872 	retval = security_task_getscheduler(p);
5873 	if (retval)
5874 		goto out_unlock;
5875 
5876 	rq = task_rq_lock(p, &rf);
5877 	time_slice = 0;
5878 	if (p->sched_class->get_rr_interval)
5879 		time_slice = p->sched_class->get_rr_interval(rq, p);
5880 	task_rq_unlock(rq, p, &rf);
5881 
5882 	rcu_read_unlock();
5883 	jiffies_to_timespec64(time_slice, t);
5884 	return 0;
5885 
5886 out_unlock:
5887 	rcu_read_unlock();
5888 	return retval;
5889 }
5890 
5891 /**
5892  * sys_sched_rr_get_interval - return the default timeslice of a process.
5893  * @pid: pid of the process.
5894  * @interval: userspace pointer to the timeslice value.
5895  *
5896  * this syscall writes the default timeslice value of a given process
5897  * into the user-space timespec buffer. A value of '0' means infinity.
5898  *
5899  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5900  * an error code.
5901  */
5902 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5903 		struct __kernel_timespec __user *, interval)
5904 {
5905 	struct timespec64 t;
5906 	int retval = sched_rr_get_interval(pid, &t);
5907 
5908 	if (retval == 0)
5909 		retval = put_timespec64(&t, interval);
5910 
5911 	return retval;
5912 }
5913 
5914 #ifdef CONFIG_COMPAT_32BIT_TIME
5915 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5916 		struct old_timespec32 __user *, interval)
5917 {
5918 	struct timespec64 t;
5919 	int retval = sched_rr_get_interval(pid, &t);
5920 
5921 	if (retval == 0)
5922 		retval = put_old_timespec32(&t, interval);
5923 	return retval;
5924 }
5925 #endif
5926 
5927 void sched_show_task(struct task_struct *p)
5928 {
5929 	unsigned long free = 0;
5930 	int ppid;
5931 
5932 	if (!try_get_task_stack(p))
5933 		return;
5934 
5935 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5936 
5937 	if (p->state == TASK_RUNNING)
5938 		printk(KERN_CONT "  running task    ");
5939 #ifdef CONFIG_DEBUG_STACK_USAGE
5940 	free = stack_not_used(p);
5941 #endif
5942 	ppid = 0;
5943 	rcu_read_lock();
5944 	if (pid_alive(p))
5945 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5946 	rcu_read_unlock();
5947 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5948 		task_pid_nr(p), ppid,
5949 		(unsigned long)task_thread_info(p)->flags);
5950 
5951 	print_worker_info(KERN_INFO, p);
5952 	show_stack(p, NULL);
5953 	put_task_stack(p);
5954 }
5955 EXPORT_SYMBOL_GPL(sched_show_task);
5956 
5957 static inline bool
5958 state_filter_match(unsigned long state_filter, struct task_struct *p)
5959 {
5960 	/* no filter, everything matches */
5961 	if (!state_filter)
5962 		return true;
5963 
5964 	/* filter, but doesn't match */
5965 	if (!(p->state & state_filter))
5966 		return false;
5967 
5968 	/*
5969 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5970 	 * TASK_KILLABLE).
5971 	 */
5972 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5973 		return false;
5974 
5975 	return true;
5976 }
5977 
5978 
5979 void show_state_filter(unsigned long state_filter)
5980 {
5981 	struct task_struct *g, *p;
5982 
5983 #if BITS_PER_LONG == 32
5984 	printk(KERN_INFO
5985 		"  task                PC stack   pid father\n");
5986 #else
5987 	printk(KERN_INFO
5988 		"  task                        PC stack   pid father\n");
5989 #endif
5990 	rcu_read_lock();
5991 	for_each_process_thread(g, p) {
5992 		/*
5993 		 * reset the NMI-timeout, listing all files on a slow
5994 		 * console might take a lot of time:
5995 		 * Also, reset softlockup watchdogs on all CPUs, because
5996 		 * another CPU might be blocked waiting for us to process
5997 		 * an IPI.
5998 		 */
5999 		touch_nmi_watchdog();
6000 		touch_all_softlockup_watchdogs();
6001 		if (state_filter_match(state_filter, p))
6002 			sched_show_task(p);
6003 	}
6004 
6005 #ifdef CONFIG_SCHED_DEBUG
6006 	if (!state_filter)
6007 		sysrq_sched_debug_show();
6008 #endif
6009 	rcu_read_unlock();
6010 	/*
6011 	 * Only show locks if all tasks are dumped:
6012 	 */
6013 	if (!state_filter)
6014 		debug_show_all_locks();
6015 }
6016 
6017 /**
6018  * init_idle - set up an idle thread for a given CPU
6019  * @idle: task in question
6020  * @cpu: CPU the idle task belongs to
6021  *
6022  * NOTE: this function does not set the idle thread's NEED_RESCHED
6023  * flag, to make booting more robust.
6024  */
6025 void init_idle(struct task_struct *idle, int cpu)
6026 {
6027 	struct rq *rq = cpu_rq(cpu);
6028 	unsigned long flags;
6029 
6030 	__sched_fork(0, idle);
6031 
6032 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6033 	raw_spin_lock(&rq->lock);
6034 
6035 	idle->state = TASK_RUNNING;
6036 	idle->se.exec_start = sched_clock();
6037 	idle->flags |= PF_IDLE;
6038 
6039 	kasan_unpoison_task_stack(idle);
6040 
6041 #ifdef CONFIG_SMP
6042 	/*
6043 	 * Its possible that init_idle() gets called multiple times on a task,
6044 	 * in that case do_set_cpus_allowed() will not do the right thing.
6045 	 *
6046 	 * And since this is boot we can forgo the serialization.
6047 	 */
6048 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6049 #endif
6050 	/*
6051 	 * We're having a chicken and egg problem, even though we are
6052 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6053 	 * lockdep check in task_group() will fail.
6054 	 *
6055 	 * Similar case to sched_fork(). / Alternatively we could
6056 	 * use task_rq_lock() here and obtain the other rq->lock.
6057 	 *
6058 	 * Silence PROVE_RCU
6059 	 */
6060 	rcu_read_lock();
6061 	__set_task_cpu(idle, cpu);
6062 	rcu_read_unlock();
6063 
6064 	rq->idle = idle;
6065 	rcu_assign_pointer(rq->curr, idle);
6066 	idle->on_rq = TASK_ON_RQ_QUEUED;
6067 #ifdef CONFIG_SMP
6068 	idle->on_cpu = 1;
6069 #endif
6070 	raw_spin_unlock(&rq->lock);
6071 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6072 
6073 	/* Set the preempt count _outside_ the spinlocks! */
6074 	init_idle_preempt_count(idle, cpu);
6075 
6076 	/*
6077 	 * The idle tasks have their own, simple scheduling class:
6078 	 */
6079 	idle->sched_class = &idle_sched_class;
6080 	ftrace_graph_init_idle_task(idle, cpu);
6081 	vtime_init_idle(idle, cpu);
6082 #ifdef CONFIG_SMP
6083 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6084 #endif
6085 }
6086 
6087 #ifdef CONFIG_SMP
6088 
6089 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6090 			      const struct cpumask *trial)
6091 {
6092 	int ret = 1;
6093 
6094 	if (!cpumask_weight(cur))
6095 		return ret;
6096 
6097 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6098 
6099 	return ret;
6100 }
6101 
6102 int task_can_attach(struct task_struct *p,
6103 		    const struct cpumask *cs_cpus_allowed)
6104 {
6105 	int ret = 0;
6106 
6107 	/*
6108 	 * Kthreads which disallow setaffinity shouldn't be moved
6109 	 * to a new cpuset; we don't want to change their CPU
6110 	 * affinity and isolating such threads by their set of
6111 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6112 	 * applicable for such threads.  This prevents checking for
6113 	 * success of set_cpus_allowed_ptr() on all attached tasks
6114 	 * before cpus_mask may be changed.
6115 	 */
6116 	if (p->flags & PF_NO_SETAFFINITY) {
6117 		ret = -EINVAL;
6118 		goto out;
6119 	}
6120 
6121 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6122 					      cs_cpus_allowed))
6123 		ret = dl_task_can_attach(p, cs_cpus_allowed);
6124 
6125 out:
6126 	return ret;
6127 }
6128 
6129 bool sched_smp_initialized __read_mostly;
6130 
6131 #ifdef CONFIG_NUMA_BALANCING
6132 /* Migrate current task p to target_cpu */
6133 int migrate_task_to(struct task_struct *p, int target_cpu)
6134 {
6135 	struct migration_arg arg = { p, target_cpu };
6136 	int curr_cpu = task_cpu(p);
6137 
6138 	if (curr_cpu == target_cpu)
6139 		return 0;
6140 
6141 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6142 		return -EINVAL;
6143 
6144 	/* TODO: This is not properly updating schedstats */
6145 
6146 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6147 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6148 }
6149 
6150 /*
6151  * Requeue a task on a given node and accurately track the number of NUMA
6152  * tasks on the runqueues
6153  */
6154 void sched_setnuma(struct task_struct *p, int nid)
6155 {
6156 	bool queued, running;
6157 	struct rq_flags rf;
6158 	struct rq *rq;
6159 
6160 	rq = task_rq_lock(p, &rf);
6161 	queued = task_on_rq_queued(p);
6162 	running = task_current(rq, p);
6163 
6164 	if (queued)
6165 		dequeue_task(rq, p, DEQUEUE_SAVE);
6166 	if (running)
6167 		put_prev_task(rq, p);
6168 
6169 	p->numa_preferred_nid = nid;
6170 
6171 	if (queued)
6172 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6173 	if (running)
6174 		set_next_task(rq, p);
6175 	task_rq_unlock(rq, p, &rf);
6176 }
6177 #endif /* CONFIG_NUMA_BALANCING */
6178 
6179 #ifdef CONFIG_HOTPLUG_CPU
6180 /*
6181  * Ensure that the idle task is using init_mm right before its CPU goes
6182  * offline.
6183  */
6184 void idle_task_exit(void)
6185 {
6186 	struct mm_struct *mm = current->active_mm;
6187 
6188 	BUG_ON(cpu_online(smp_processor_id()));
6189 
6190 	if (mm != &init_mm) {
6191 		switch_mm(mm, &init_mm, current);
6192 		current->active_mm = &init_mm;
6193 		finish_arch_post_lock_switch();
6194 	}
6195 	mmdrop(mm);
6196 }
6197 
6198 /*
6199  * Since this CPU is going 'away' for a while, fold any nr_active delta
6200  * we might have. Assumes we're called after migrate_tasks() so that the
6201  * nr_active count is stable. We need to take the teardown thread which
6202  * is calling this into account, so we hand in adjust = 1 to the load
6203  * calculation.
6204  *
6205  * Also see the comment "Global load-average calculations".
6206  */
6207 static void calc_load_migrate(struct rq *rq)
6208 {
6209 	long delta = calc_load_fold_active(rq, 1);
6210 	if (delta)
6211 		atomic_long_add(delta, &calc_load_tasks);
6212 }
6213 
6214 static struct task_struct *__pick_migrate_task(struct rq *rq)
6215 {
6216 	const struct sched_class *class;
6217 	struct task_struct *next;
6218 
6219 	for_each_class(class) {
6220 		next = class->pick_next_task(rq);
6221 		if (next) {
6222 			next->sched_class->put_prev_task(rq, next);
6223 			return next;
6224 		}
6225 	}
6226 
6227 	/* The idle class should always have a runnable task */
6228 	BUG();
6229 }
6230 
6231 /*
6232  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6233  * try_to_wake_up()->select_task_rq().
6234  *
6235  * Called with rq->lock held even though we'er in stop_machine() and
6236  * there's no concurrency possible, we hold the required locks anyway
6237  * because of lock validation efforts.
6238  */
6239 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6240 {
6241 	struct rq *rq = dead_rq;
6242 	struct task_struct *next, *stop = rq->stop;
6243 	struct rq_flags orf = *rf;
6244 	int dest_cpu;
6245 
6246 	/*
6247 	 * Fudge the rq selection such that the below task selection loop
6248 	 * doesn't get stuck on the currently eligible stop task.
6249 	 *
6250 	 * We're currently inside stop_machine() and the rq is either stuck
6251 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6252 	 * either way we should never end up calling schedule() until we're
6253 	 * done here.
6254 	 */
6255 	rq->stop = NULL;
6256 
6257 	/*
6258 	 * put_prev_task() and pick_next_task() sched
6259 	 * class method both need to have an up-to-date
6260 	 * value of rq->clock[_task]
6261 	 */
6262 	update_rq_clock(rq);
6263 
6264 	for (;;) {
6265 		/*
6266 		 * There's this thread running, bail when that's the only
6267 		 * remaining thread:
6268 		 */
6269 		if (rq->nr_running == 1)
6270 			break;
6271 
6272 		next = __pick_migrate_task(rq);
6273 
6274 		/*
6275 		 * Rules for changing task_struct::cpus_mask are holding
6276 		 * both pi_lock and rq->lock, such that holding either
6277 		 * stabilizes the mask.
6278 		 *
6279 		 * Drop rq->lock is not quite as disastrous as it usually is
6280 		 * because !cpu_active at this point, which means load-balance
6281 		 * will not interfere. Also, stop-machine.
6282 		 */
6283 		rq_unlock(rq, rf);
6284 		raw_spin_lock(&next->pi_lock);
6285 		rq_relock(rq, rf);
6286 
6287 		/*
6288 		 * Since we're inside stop-machine, _nothing_ should have
6289 		 * changed the task, WARN if weird stuff happened, because in
6290 		 * that case the above rq->lock drop is a fail too.
6291 		 */
6292 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6293 			raw_spin_unlock(&next->pi_lock);
6294 			continue;
6295 		}
6296 
6297 		/* Find suitable destination for @next, with force if needed. */
6298 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6299 		rq = __migrate_task(rq, rf, next, dest_cpu);
6300 		if (rq != dead_rq) {
6301 			rq_unlock(rq, rf);
6302 			rq = dead_rq;
6303 			*rf = orf;
6304 			rq_relock(rq, rf);
6305 		}
6306 		raw_spin_unlock(&next->pi_lock);
6307 	}
6308 
6309 	rq->stop = stop;
6310 }
6311 #endif /* CONFIG_HOTPLUG_CPU */
6312 
6313 void set_rq_online(struct rq *rq)
6314 {
6315 	if (!rq->online) {
6316 		const struct sched_class *class;
6317 
6318 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6319 		rq->online = 1;
6320 
6321 		for_each_class(class) {
6322 			if (class->rq_online)
6323 				class->rq_online(rq);
6324 		}
6325 	}
6326 }
6327 
6328 void set_rq_offline(struct rq *rq)
6329 {
6330 	if (rq->online) {
6331 		const struct sched_class *class;
6332 
6333 		for_each_class(class) {
6334 			if (class->rq_offline)
6335 				class->rq_offline(rq);
6336 		}
6337 
6338 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6339 		rq->online = 0;
6340 	}
6341 }
6342 
6343 /*
6344  * used to mark begin/end of suspend/resume:
6345  */
6346 static int num_cpus_frozen;
6347 
6348 /*
6349  * Update cpusets according to cpu_active mask.  If cpusets are
6350  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6351  * around partition_sched_domains().
6352  *
6353  * If we come here as part of a suspend/resume, don't touch cpusets because we
6354  * want to restore it back to its original state upon resume anyway.
6355  */
6356 static void cpuset_cpu_active(void)
6357 {
6358 	if (cpuhp_tasks_frozen) {
6359 		/*
6360 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6361 		 * resume sequence. As long as this is not the last online
6362 		 * operation in the resume sequence, just build a single sched
6363 		 * domain, ignoring cpusets.
6364 		 */
6365 		partition_sched_domains(1, NULL, NULL);
6366 		if (--num_cpus_frozen)
6367 			return;
6368 		/*
6369 		 * This is the last CPU online operation. So fall through and
6370 		 * restore the original sched domains by considering the
6371 		 * cpuset configurations.
6372 		 */
6373 		cpuset_force_rebuild();
6374 	}
6375 	cpuset_update_active_cpus();
6376 }
6377 
6378 static int cpuset_cpu_inactive(unsigned int cpu)
6379 {
6380 	if (!cpuhp_tasks_frozen) {
6381 		if (dl_cpu_busy(cpu))
6382 			return -EBUSY;
6383 		cpuset_update_active_cpus();
6384 	} else {
6385 		num_cpus_frozen++;
6386 		partition_sched_domains(1, NULL, NULL);
6387 	}
6388 	return 0;
6389 }
6390 
6391 int sched_cpu_activate(unsigned int cpu)
6392 {
6393 	struct rq *rq = cpu_rq(cpu);
6394 	struct rq_flags rf;
6395 
6396 #ifdef CONFIG_SCHED_SMT
6397 	/*
6398 	 * When going up, increment the number of cores with SMT present.
6399 	 */
6400 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6401 		static_branch_inc_cpuslocked(&sched_smt_present);
6402 #endif
6403 	set_cpu_active(cpu, true);
6404 
6405 	if (sched_smp_initialized) {
6406 		sched_domains_numa_masks_set(cpu);
6407 		cpuset_cpu_active();
6408 	}
6409 
6410 	/*
6411 	 * Put the rq online, if not already. This happens:
6412 	 *
6413 	 * 1) In the early boot process, because we build the real domains
6414 	 *    after all CPUs have been brought up.
6415 	 *
6416 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6417 	 *    domains.
6418 	 */
6419 	rq_lock_irqsave(rq, &rf);
6420 	if (rq->rd) {
6421 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6422 		set_rq_online(rq);
6423 	}
6424 	rq_unlock_irqrestore(rq, &rf);
6425 
6426 	return 0;
6427 }
6428 
6429 int sched_cpu_deactivate(unsigned int cpu)
6430 {
6431 	int ret;
6432 
6433 	set_cpu_active(cpu, false);
6434 	/*
6435 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6436 	 * users of this state to go away such that all new such users will
6437 	 * observe it.
6438 	 *
6439 	 * Do sync before park smpboot threads to take care the rcu boost case.
6440 	 */
6441 	synchronize_rcu();
6442 
6443 #ifdef CONFIG_SCHED_SMT
6444 	/*
6445 	 * When going down, decrement the number of cores with SMT present.
6446 	 */
6447 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6448 		static_branch_dec_cpuslocked(&sched_smt_present);
6449 #endif
6450 
6451 	if (!sched_smp_initialized)
6452 		return 0;
6453 
6454 	ret = cpuset_cpu_inactive(cpu);
6455 	if (ret) {
6456 		set_cpu_active(cpu, true);
6457 		return ret;
6458 	}
6459 	sched_domains_numa_masks_clear(cpu);
6460 	return 0;
6461 }
6462 
6463 static void sched_rq_cpu_starting(unsigned int cpu)
6464 {
6465 	struct rq *rq = cpu_rq(cpu);
6466 
6467 	rq->calc_load_update = calc_load_update;
6468 	update_max_interval();
6469 }
6470 
6471 int sched_cpu_starting(unsigned int cpu)
6472 {
6473 	sched_rq_cpu_starting(cpu);
6474 	sched_tick_start(cpu);
6475 	return 0;
6476 }
6477 
6478 #ifdef CONFIG_HOTPLUG_CPU
6479 int sched_cpu_dying(unsigned int cpu)
6480 {
6481 	struct rq *rq = cpu_rq(cpu);
6482 	struct rq_flags rf;
6483 
6484 	/* Handle pending wakeups and then migrate everything off */
6485 	sched_ttwu_pending();
6486 	sched_tick_stop(cpu);
6487 
6488 	rq_lock_irqsave(rq, &rf);
6489 	if (rq->rd) {
6490 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6491 		set_rq_offline(rq);
6492 	}
6493 	migrate_tasks(rq, &rf);
6494 	BUG_ON(rq->nr_running != 1);
6495 	rq_unlock_irqrestore(rq, &rf);
6496 
6497 	calc_load_migrate(rq);
6498 	update_max_interval();
6499 	nohz_balance_exit_idle(rq);
6500 	hrtick_clear(rq);
6501 	return 0;
6502 }
6503 #endif
6504 
6505 void __init sched_init_smp(void)
6506 {
6507 	sched_init_numa();
6508 
6509 	/*
6510 	 * There's no userspace yet to cause hotplug operations; hence all the
6511 	 * CPU masks are stable and all blatant races in the below code cannot
6512 	 * happen.
6513 	 */
6514 	mutex_lock(&sched_domains_mutex);
6515 	sched_init_domains(cpu_active_mask);
6516 	mutex_unlock(&sched_domains_mutex);
6517 
6518 	/* Move init over to a non-isolated CPU */
6519 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6520 		BUG();
6521 	sched_init_granularity();
6522 
6523 	init_sched_rt_class();
6524 	init_sched_dl_class();
6525 
6526 	sched_smp_initialized = true;
6527 }
6528 
6529 static int __init migration_init(void)
6530 {
6531 	sched_cpu_starting(smp_processor_id());
6532 	return 0;
6533 }
6534 early_initcall(migration_init);
6535 
6536 #else
6537 void __init sched_init_smp(void)
6538 {
6539 	sched_init_granularity();
6540 }
6541 #endif /* CONFIG_SMP */
6542 
6543 int in_sched_functions(unsigned long addr)
6544 {
6545 	return in_lock_functions(addr) ||
6546 		(addr >= (unsigned long)__sched_text_start
6547 		&& addr < (unsigned long)__sched_text_end);
6548 }
6549 
6550 #ifdef CONFIG_CGROUP_SCHED
6551 /*
6552  * Default task group.
6553  * Every task in system belongs to this group at bootup.
6554  */
6555 struct task_group root_task_group;
6556 LIST_HEAD(task_groups);
6557 
6558 /* Cacheline aligned slab cache for task_group */
6559 static struct kmem_cache *task_group_cache __read_mostly;
6560 #endif
6561 
6562 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6563 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6564 
6565 void __init sched_init(void)
6566 {
6567 	unsigned long ptr = 0;
6568 	int i;
6569 
6570 	wait_bit_init();
6571 
6572 #ifdef CONFIG_FAIR_GROUP_SCHED
6573 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6574 #endif
6575 #ifdef CONFIG_RT_GROUP_SCHED
6576 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6577 #endif
6578 	if (ptr) {
6579 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6580 
6581 #ifdef CONFIG_FAIR_GROUP_SCHED
6582 		root_task_group.se = (struct sched_entity **)ptr;
6583 		ptr += nr_cpu_ids * sizeof(void **);
6584 
6585 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6586 		ptr += nr_cpu_ids * sizeof(void **);
6587 
6588 #endif /* CONFIG_FAIR_GROUP_SCHED */
6589 #ifdef CONFIG_RT_GROUP_SCHED
6590 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6591 		ptr += nr_cpu_ids * sizeof(void **);
6592 
6593 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6594 		ptr += nr_cpu_ids * sizeof(void **);
6595 
6596 #endif /* CONFIG_RT_GROUP_SCHED */
6597 	}
6598 #ifdef CONFIG_CPUMASK_OFFSTACK
6599 	for_each_possible_cpu(i) {
6600 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6601 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6602 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6603 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6604 	}
6605 #endif /* CONFIG_CPUMASK_OFFSTACK */
6606 
6607 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6608 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6609 
6610 #ifdef CONFIG_SMP
6611 	init_defrootdomain();
6612 #endif
6613 
6614 #ifdef CONFIG_RT_GROUP_SCHED
6615 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6616 			global_rt_period(), global_rt_runtime());
6617 #endif /* CONFIG_RT_GROUP_SCHED */
6618 
6619 #ifdef CONFIG_CGROUP_SCHED
6620 	task_group_cache = KMEM_CACHE(task_group, 0);
6621 
6622 	list_add(&root_task_group.list, &task_groups);
6623 	INIT_LIST_HEAD(&root_task_group.children);
6624 	INIT_LIST_HEAD(&root_task_group.siblings);
6625 	autogroup_init(&init_task);
6626 #endif /* CONFIG_CGROUP_SCHED */
6627 
6628 	for_each_possible_cpu(i) {
6629 		struct rq *rq;
6630 
6631 		rq = cpu_rq(i);
6632 		raw_spin_lock_init(&rq->lock);
6633 		rq->nr_running = 0;
6634 		rq->calc_load_active = 0;
6635 		rq->calc_load_update = jiffies + LOAD_FREQ;
6636 		init_cfs_rq(&rq->cfs);
6637 		init_rt_rq(&rq->rt);
6638 		init_dl_rq(&rq->dl);
6639 #ifdef CONFIG_FAIR_GROUP_SCHED
6640 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6641 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6642 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6643 		/*
6644 		 * How much CPU bandwidth does root_task_group get?
6645 		 *
6646 		 * In case of task-groups formed thr' the cgroup filesystem, it
6647 		 * gets 100% of the CPU resources in the system. This overall
6648 		 * system CPU resource is divided among the tasks of
6649 		 * root_task_group and its child task-groups in a fair manner,
6650 		 * based on each entity's (task or task-group's) weight
6651 		 * (se->load.weight).
6652 		 *
6653 		 * In other words, if root_task_group has 10 tasks of weight
6654 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6655 		 * then A0's share of the CPU resource is:
6656 		 *
6657 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6658 		 *
6659 		 * We achieve this by letting root_task_group's tasks sit
6660 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6661 		 */
6662 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6663 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6664 #endif /* CONFIG_FAIR_GROUP_SCHED */
6665 
6666 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6667 #ifdef CONFIG_RT_GROUP_SCHED
6668 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6669 #endif
6670 #ifdef CONFIG_SMP
6671 		rq->sd = NULL;
6672 		rq->rd = NULL;
6673 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6674 		rq->balance_callback = NULL;
6675 		rq->active_balance = 0;
6676 		rq->next_balance = jiffies;
6677 		rq->push_cpu = 0;
6678 		rq->cpu = i;
6679 		rq->online = 0;
6680 		rq->idle_stamp = 0;
6681 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6682 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6683 
6684 		INIT_LIST_HEAD(&rq->cfs_tasks);
6685 
6686 		rq_attach_root(rq, &def_root_domain);
6687 #ifdef CONFIG_NO_HZ_COMMON
6688 		rq->last_load_update_tick = jiffies;
6689 		rq->last_blocked_load_update_tick = jiffies;
6690 		atomic_set(&rq->nohz_flags, 0);
6691 #endif
6692 #endif /* CONFIG_SMP */
6693 		hrtick_rq_init(rq);
6694 		atomic_set(&rq->nr_iowait, 0);
6695 	}
6696 
6697 	set_load_weight(&init_task, false);
6698 
6699 	/*
6700 	 * The boot idle thread does lazy MMU switching as well:
6701 	 */
6702 	mmgrab(&init_mm);
6703 	enter_lazy_tlb(&init_mm, current);
6704 
6705 	/*
6706 	 * Make us the idle thread. Technically, schedule() should not be
6707 	 * called from this thread, however somewhere below it might be,
6708 	 * but because we are the idle thread, we just pick up running again
6709 	 * when this runqueue becomes "idle".
6710 	 */
6711 	init_idle(current, smp_processor_id());
6712 
6713 	calc_load_update = jiffies + LOAD_FREQ;
6714 
6715 #ifdef CONFIG_SMP
6716 	idle_thread_set_boot_cpu();
6717 #endif
6718 	init_sched_fair_class();
6719 
6720 	init_schedstats();
6721 
6722 	psi_init();
6723 
6724 	init_uclamp();
6725 
6726 	scheduler_running = 1;
6727 }
6728 
6729 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6730 static inline int preempt_count_equals(int preempt_offset)
6731 {
6732 	int nested = preempt_count() + rcu_preempt_depth();
6733 
6734 	return (nested == preempt_offset);
6735 }
6736 
6737 void __might_sleep(const char *file, int line, int preempt_offset)
6738 {
6739 	/*
6740 	 * Blocking primitives will set (and therefore destroy) current->state,
6741 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6742 	 * otherwise we will destroy state.
6743 	 */
6744 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6745 			"do not call blocking ops when !TASK_RUNNING; "
6746 			"state=%lx set at [<%p>] %pS\n",
6747 			current->state,
6748 			(void *)current->task_state_change,
6749 			(void *)current->task_state_change);
6750 
6751 	___might_sleep(file, line, preempt_offset);
6752 }
6753 EXPORT_SYMBOL(__might_sleep);
6754 
6755 void ___might_sleep(const char *file, int line, int preempt_offset)
6756 {
6757 	/* Ratelimiting timestamp: */
6758 	static unsigned long prev_jiffy;
6759 
6760 	unsigned long preempt_disable_ip;
6761 
6762 	/* WARN_ON_ONCE() by default, no rate limit required: */
6763 	rcu_sleep_check();
6764 
6765 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6766 	     !is_idle_task(current) && !current->non_block_count) ||
6767 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6768 	    oops_in_progress)
6769 		return;
6770 
6771 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6772 		return;
6773 	prev_jiffy = jiffies;
6774 
6775 	/* Save this before calling printk(), since that will clobber it: */
6776 	preempt_disable_ip = get_preempt_disable_ip(current);
6777 
6778 	printk(KERN_ERR
6779 		"BUG: sleeping function called from invalid context at %s:%d\n",
6780 			file, line);
6781 	printk(KERN_ERR
6782 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6783 			in_atomic(), irqs_disabled(), current->non_block_count,
6784 			current->pid, current->comm);
6785 
6786 	if (task_stack_end_corrupted(current))
6787 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6788 
6789 	debug_show_held_locks(current);
6790 	if (irqs_disabled())
6791 		print_irqtrace_events(current);
6792 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6793 	    && !preempt_count_equals(preempt_offset)) {
6794 		pr_err("Preemption disabled at:");
6795 		print_ip_sym(preempt_disable_ip);
6796 		pr_cont("\n");
6797 	}
6798 	dump_stack();
6799 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6800 }
6801 EXPORT_SYMBOL(___might_sleep);
6802 
6803 void __cant_sleep(const char *file, int line, int preempt_offset)
6804 {
6805 	static unsigned long prev_jiffy;
6806 
6807 	if (irqs_disabled())
6808 		return;
6809 
6810 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6811 		return;
6812 
6813 	if (preempt_count() > preempt_offset)
6814 		return;
6815 
6816 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6817 		return;
6818 	prev_jiffy = jiffies;
6819 
6820 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6821 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6822 			in_atomic(), irqs_disabled(),
6823 			current->pid, current->comm);
6824 
6825 	debug_show_held_locks(current);
6826 	dump_stack();
6827 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6828 }
6829 EXPORT_SYMBOL_GPL(__cant_sleep);
6830 #endif
6831 
6832 #ifdef CONFIG_MAGIC_SYSRQ
6833 void normalize_rt_tasks(void)
6834 {
6835 	struct task_struct *g, *p;
6836 	struct sched_attr attr = {
6837 		.sched_policy = SCHED_NORMAL,
6838 	};
6839 
6840 	read_lock(&tasklist_lock);
6841 	for_each_process_thread(g, p) {
6842 		/*
6843 		 * Only normalize user tasks:
6844 		 */
6845 		if (p->flags & PF_KTHREAD)
6846 			continue;
6847 
6848 		p->se.exec_start = 0;
6849 		schedstat_set(p->se.statistics.wait_start,  0);
6850 		schedstat_set(p->se.statistics.sleep_start, 0);
6851 		schedstat_set(p->se.statistics.block_start, 0);
6852 
6853 		if (!dl_task(p) && !rt_task(p)) {
6854 			/*
6855 			 * Renice negative nice level userspace
6856 			 * tasks back to 0:
6857 			 */
6858 			if (task_nice(p) < 0)
6859 				set_user_nice(p, 0);
6860 			continue;
6861 		}
6862 
6863 		__sched_setscheduler(p, &attr, false, false);
6864 	}
6865 	read_unlock(&tasklist_lock);
6866 }
6867 
6868 #endif /* CONFIG_MAGIC_SYSRQ */
6869 
6870 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6871 /*
6872  * These functions are only useful for the IA64 MCA handling, or kdb.
6873  *
6874  * They can only be called when the whole system has been
6875  * stopped - every CPU needs to be quiescent, and no scheduling
6876  * activity can take place. Using them for anything else would
6877  * be a serious bug, and as a result, they aren't even visible
6878  * under any other configuration.
6879  */
6880 
6881 /**
6882  * curr_task - return the current task for a given CPU.
6883  * @cpu: the processor in question.
6884  *
6885  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6886  *
6887  * Return: The current task for @cpu.
6888  */
6889 struct task_struct *curr_task(int cpu)
6890 {
6891 	return cpu_curr(cpu);
6892 }
6893 
6894 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6895 
6896 #ifdef CONFIG_IA64
6897 /**
6898  * ia64_set_curr_task - set the current task for a given CPU.
6899  * @cpu: the processor in question.
6900  * @p: the task pointer to set.
6901  *
6902  * Description: This function must only be used when non-maskable interrupts
6903  * are serviced on a separate stack. It allows the architecture to switch the
6904  * notion of the current task on a CPU in a non-blocking manner. This function
6905  * must be called with all CPU's synchronized, and interrupts disabled, the
6906  * and caller must save the original value of the current task (see
6907  * curr_task() above) and restore that value before reenabling interrupts and
6908  * re-starting the system.
6909  *
6910  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6911  */
6912 void ia64_set_curr_task(int cpu, struct task_struct *p)
6913 {
6914 	cpu_curr(cpu) = p;
6915 }
6916 
6917 #endif
6918 
6919 #ifdef CONFIG_CGROUP_SCHED
6920 /* task_group_lock serializes the addition/removal of task groups */
6921 static DEFINE_SPINLOCK(task_group_lock);
6922 
6923 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6924 					    struct task_group *parent)
6925 {
6926 #ifdef CONFIG_UCLAMP_TASK_GROUP
6927 	enum uclamp_id clamp_id;
6928 
6929 	for_each_clamp_id(clamp_id) {
6930 		uclamp_se_set(&tg->uclamp_req[clamp_id],
6931 			      uclamp_none(clamp_id), false);
6932 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6933 	}
6934 #endif
6935 }
6936 
6937 static void sched_free_group(struct task_group *tg)
6938 {
6939 	free_fair_sched_group(tg);
6940 	free_rt_sched_group(tg);
6941 	autogroup_free(tg);
6942 	kmem_cache_free(task_group_cache, tg);
6943 }
6944 
6945 /* allocate runqueue etc for a new task group */
6946 struct task_group *sched_create_group(struct task_group *parent)
6947 {
6948 	struct task_group *tg;
6949 
6950 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6951 	if (!tg)
6952 		return ERR_PTR(-ENOMEM);
6953 
6954 	if (!alloc_fair_sched_group(tg, parent))
6955 		goto err;
6956 
6957 	if (!alloc_rt_sched_group(tg, parent))
6958 		goto err;
6959 
6960 	alloc_uclamp_sched_group(tg, parent);
6961 
6962 	return tg;
6963 
6964 err:
6965 	sched_free_group(tg);
6966 	return ERR_PTR(-ENOMEM);
6967 }
6968 
6969 void sched_online_group(struct task_group *tg, struct task_group *parent)
6970 {
6971 	unsigned long flags;
6972 
6973 	spin_lock_irqsave(&task_group_lock, flags);
6974 	list_add_rcu(&tg->list, &task_groups);
6975 
6976 	/* Root should already exist: */
6977 	WARN_ON(!parent);
6978 
6979 	tg->parent = parent;
6980 	INIT_LIST_HEAD(&tg->children);
6981 	list_add_rcu(&tg->siblings, &parent->children);
6982 	spin_unlock_irqrestore(&task_group_lock, flags);
6983 
6984 	online_fair_sched_group(tg);
6985 }
6986 
6987 /* rcu callback to free various structures associated with a task group */
6988 static void sched_free_group_rcu(struct rcu_head *rhp)
6989 {
6990 	/* Now it should be safe to free those cfs_rqs: */
6991 	sched_free_group(container_of(rhp, struct task_group, rcu));
6992 }
6993 
6994 void sched_destroy_group(struct task_group *tg)
6995 {
6996 	/* Wait for possible concurrent references to cfs_rqs complete: */
6997 	call_rcu(&tg->rcu, sched_free_group_rcu);
6998 }
6999 
7000 void sched_offline_group(struct task_group *tg)
7001 {
7002 	unsigned long flags;
7003 
7004 	/* End participation in shares distribution: */
7005 	unregister_fair_sched_group(tg);
7006 
7007 	spin_lock_irqsave(&task_group_lock, flags);
7008 	list_del_rcu(&tg->list);
7009 	list_del_rcu(&tg->siblings);
7010 	spin_unlock_irqrestore(&task_group_lock, flags);
7011 }
7012 
7013 static void sched_change_group(struct task_struct *tsk, int type)
7014 {
7015 	struct task_group *tg;
7016 
7017 	/*
7018 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7019 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7020 	 * to prevent lockdep warnings.
7021 	 */
7022 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7023 			  struct task_group, css);
7024 	tg = autogroup_task_group(tsk, tg);
7025 	tsk->sched_task_group = tg;
7026 
7027 #ifdef CONFIG_FAIR_GROUP_SCHED
7028 	if (tsk->sched_class->task_change_group)
7029 		tsk->sched_class->task_change_group(tsk, type);
7030 	else
7031 #endif
7032 		set_task_rq(tsk, task_cpu(tsk));
7033 }
7034 
7035 /*
7036  * Change task's runqueue when it moves between groups.
7037  *
7038  * The caller of this function should have put the task in its new group by
7039  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7040  * its new group.
7041  */
7042 void sched_move_task(struct task_struct *tsk)
7043 {
7044 	int queued, running, queue_flags =
7045 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7046 	struct rq_flags rf;
7047 	struct rq *rq;
7048 
7049 	rq = task_rq_lock(tsk, &rf);
7050 	update_rq_clock(rq);
7051 
7052 	running = task_current(rq, tsk);
7053 	queued = task_on_rq_queued(tsk);
7054 
7055 	if (queued)
7056 		dequeue_task(rq, tsk, queue_flags);
7057 	if (running)
7058 		put_prev_task(rq, tsk);
7059 
7060 	sched_change_group(tsk, TASK_MOVE_GROUP);
7061 
7062 	if (queued)
7063 		enqueue_task(rq, tsk, queue_flags);
7064 	if (running) {
7065 		set_next_task(rq, tsk);
7066 		/*
7067 		 * After changing group, the running task may have joined a
7068 		 * throttled one but it's still the running task. Trigger a
7069 		 * resched to make sure that task can still run.
7070 		 */
7071 		resched_curr(rq);
7072 	}
7073 
7074 	task_rq_unlock(rq, tsk, &rf);
7075 }
7076 
7077 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7078 {
7079 	return css ? container_of(css, struct task_group, css) : NULL;
7080 }
7081 
7082 static struct cgroup_subsys_state *
7083 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7084 {
7085 	struct task_group *parent = css_tg(parent_css);
7086 	struct task_group *tg;
7087 
7088 	if (!parent) {
7089 		/* This is early initialization for the top cgroup */
7090 		return &root_task_group.css;
7091 	}
7092 
7093 	tg = sched_create_group(parent);
7094 	if (IS_ERR(tg))
7095 		return ERR_PTR(-ENOMEM);
7096 
7097 	return &tg->css;
7098 }
7099 
7100 /* Expose task group only after completing cgroup initialization */
7101 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7102 {
7103 	struct task_group *tg = css_tg(css);
7104 	struct task_group *parent = css_tg(css->parent);
7105 
7106 	if (parent)
7107 		sched_online_group(tg, parent);
7108 
7109 #ifdef CONFIG_UCLAMP_TASK_GROUP
7110 	/* Propagate the effective uclamp value for the new group */
7111 	cpu_util_update_eff(css);
7112 #endif
7113 
7114 	return 0;
7115 }
7116 
7117 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7118 {
7119 	struct task_group *tg = css_tg(css);
7120 
7121 	sched_offline_group(tg);
7122 }
7123 
7124 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7125 {
7126 	struct task_group *tg = css_tg(css);
7127 
7128 	/*
7129 	 * Relies on the RCU grace period between css_released() and this.
7130 	 */
7131 	sched_free_group(tg);
7132 }
7133 
7134 /*
7135  * This is called before wake_up_new_task(), therefore we really only
7136  * have to set its group bits, all the other stuff does not apply.
7137  */
7138 static void cpu_cgroup_fork(struct task_struct *task)
7139 {
7140 	struct rq_flags rf;
7141 	struct rq *rq;
7142 
7143 	rq = task_rq_lock(task, &rf);
7144 
7145 	update_rq_clock(rq);
7146 	sched_change_group(task, TASK_SET_GROUP);
7147 
7148 	task_rq_unlock(rq, task, &rf);
7149 }
7150 
7151 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7152 {
7153 	struct task_struct *task;
7154 	struct cgroup_subsys_state *css;
7155 	int ret = 0;
7156 
7157 	cgroup_taskset_for_each(task, css, tset) {
7158 #ifdef CONFIG_RT_GROUP_SCHED
7159 		if (!sched_rt_can_attach(css_tg(css), task))
7160 			return -EINVAL;
7161 #endif
7162 		/*
7163 		 * Serialize against wake_up_new_task() such that if its
7164 		 * running, we're sure to observe its full state.
7165 		 */
7166 		raw_spin_lock_irq(&task->pi_lock);
7167 		/*
7168 		 * Avoid calling sched_move_task() before wake_up_new_task()
7169 		 * has happened. This would lead to problems with PELT, due to
7170 		 * move wanting to detach+attach while we're not attached yet.
7171 		 */
7172 		if (task->state == TASK_NEW)
7173 			ret = -EINVAL;
7174 		raw_spin_unlock_irq(&task->pi_lock);
7175 
7176 		if (ret)
7177 			break;
7178 	}
7179 	return ret;
7180 }
7181 
7182 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7183 {
7184 	struct task_struct *task;
7185 	struct cgroup_subsys_state *css;
7186 
7187 	cgroup_taskset_for_each(task, css, tset)
7188 		sched_move_task(task);
7189 }
7190 
7191 #ifdef CONFIG_UCLAMP_TASK_GROUP
7192 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7193 {
7194 	struct cgroup_subsys_state *top_css = css;
7195 	struct uclamp_se *uc_parent = NULL;
7196 	struct uclamp_se *uc_se = NULL;
7197 	unsigned int eff[UCLAMP_CNT];
7198 	enum uclamp_id clamp_id;
7199 	unsigned int clamps;
7200 
7201 	css_for_each_descendant_pre(css, top_css) {
7202 		uc_parent = css_tg(css)->parent
7203 			? css_tg(css)->parent->uclamp : NULL;
7204 
7205 		for_each_clamp_id(clamp_id) {
7206 			/* Assume effective clamps matches requested clamps */
7207 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7208 			/* Cap effective clamps with parent's effective clamps */
7209 			if (uc_parent &&
7210 			    eff[clamp_id] > uc_parent[clamp_id].value) {
7211 				eff[clamp_id] = uc_parent[clamp_id].value;
7212 			}
7213 		}
7214 		/* Ensure protection is always capped by limit */
7215 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7216 
7217 		/* Propagate most restrictive effective clamps */
7218 		clamps = 0x0;
7219 		uc_se = css_tg(css)->uclamp;
7220 		for_each_clamp_id(clamp_id) {
7221 			if (eff[clamp_id] == uc_se[clamp_id].value)
7222 				continue;
7223 			uc_se[clamp_id].value = eff[clamp_id];
7224 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7225 			clamps |= (0x1 << clamp_id);
7226 		}
7227 		if (!clamps) {
7228 			css = css_rightmost_descendant(css);
7229 			continue;
7230 		}
7231 
7232 		/* Immediately update descendants RUNNABLE tasks */
7233 		uclamp_update_active_tasks(css, clamps);
7234 	}
7235 }
7236 
7237 /*
7238  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7239  * C expression. Since there is no way to convert a macro argument (N) into a
7240  * character constant, use two levels of macros.
7241  */
7242 #define _POW10(exp) ((unsigned int)1e##exp)
7243 #define POW10(exp) _POW10(exp)
7244 
7245 struct uclamp_request {
7246 #define UCLAMP_PERCENT_SHIFT	2
7247 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7248 	s64 percent;
7249 	u64 util;
7250 	int ret;
7251 };
7252 
7253 static inline struct uclamp_request
7254 capacity_from_percent(char *buf)
7255 {
7256 	struct uclamp_request req = {
7257 		.percent = UCLAMP_PERCENT_SCALE,
7258 		.util = SCHED_CAPACITY_SCALE,
7259 		.ret = 0,
7260 	};
7261 
7262 	buf = strim(buf);
7263 	if (strcmp(buf, "max")) {
7264 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7265 					     &req.percent);
7266 		if (req.ret)
7267 			return req;
7268 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7269 			req.ret = -ERANGE;
7270 			return req;
7271 		}
7272 
7273 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7274 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7275 	}
7276 
7277 	return req;
7278 }
7279 
7280 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7281 				size_t nbytes, loff_t off,
7282 				enum uclamp_id clamp_id)
7283 {
7284 	struct uclamp_request req;
7285 	struct task_group *tg;
7286 
7287 	req = capacity_from_percent(buf);
7288 	if (req.ret)
7289 		return req.ret;
7290 
7291 	mutex_lock(&uclamp_mutex);
7292 	rcu_read_lock();
7293 
7294 	tg = css_tg(of_css(of));
7295 	if (tg->uclamp_req[clamp_id].value != req.util)
7296 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7297 
7298 	/*
7299 	 * Because of not recoverable conversion rounding we keep track of the
7300 	 * exact requested value
7301 	 */
7302 	tg->uclamp_pct[clamp_id] = req.percent;
7303 
7304 	/* Update effective clamps to track the most restrictive value */
7305 	cpu_util_update_eff(of_css(of));
7306 
7307 	rcu_read_unlock();
7308 	mutex_unlock(&uclamp_mutex);
7309 
7310 	return nbytes;
7311 }
7312 
7313 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7314 				    char *buf, size_t nbytes,
7315 				    loff_t off)
7316 {
7317 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7318 }
7319 
7320 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7321 				    char *buf, size_t nbytes,
7322 				    loff_t off)
7323 {
7324 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7325 }
7326 
7327 static inline void cpu_uclamp_print(struct seq_file *sf,
7328 				    enum uclamp_id clamp_id)
7329 {
7330 	struct task_group *tg;
7331 	u64 util_clamp;
7332 	u64 percent;
7333 	u32 rem;
7334 
7335 	rcu_read_lock();
7336 	tg = css_tg(seq_css(sf));
7337 	util_clamp = tg->uclamp_req[clamp_id].value;
7338 	rcu_read_unlock();
7339 
7340 	if (util_clamp == SCHED_CAPACITY_SCALE) {
7341 		seq_puts(sf, "max\n");
7342 		return;
7343 	}
7344 
7345 	percent = tg->uclamp_pct[clamp_id];
7346 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7347 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7348 }
7349 
7350 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7351 {
7352 	cpu_uclamp_print(sf, UCLAMP_MIN);
7353 	return 0;
7354 }
7355 
7356 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7357 {
7358 	cpu_uclamp_print(sf, UCLAMP_MAX);
7359 	return 0;
7360 }
7361 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7362 
7363 #ifdef CONFIG_FAIR_GROUP_SCHED
7364 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7365 				struct cftype *cftype, u64 shareval)
7366 {
7367 	if (shareval > scale_load_down(ULONG_MAX))
7368 		shareval = MAX_SHARES;
7369 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7370 }
7371 
7372 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7373 			       struct cftype *cft)
7374 {
7375 	struct task_group *tg = css_tg(css);
7376 
7377 	return (u64) scale_load_down(tg->shares);
7378 }
7379 
7380 #ifdef CONFIG_CFS_BANDWIDTH
7381 static DEFINE_MUTEX(cfs_constraints_mutex);
7382 
7383 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7384 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7385 
7386 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7387 
7388 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7389 {
7390 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7391 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7392 
7393 	if (tg == &root_task_group)
7394 		return -EINVAL;
7395 
7396 	/*
7397 	 * Ensure we have at some amount of bandwidth every period.  This is
7398 	 * to prevent reaching a state of large arrears when throttled via
7399 	 * entity_tick() resulting in prolonged exit starvation.
7400 	 */
7401 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7402 		return -EINVAL;
7403 
7404 	/*
7405 	 * Likewise, bound things on the otherside by preventing insane quota
7406 	 * periods.  This also allows us to normalize in computing quota
7407 	 * feasibility.
7408 	 */
7409 	if (period > max_cfs_quota_period)
7410 		return -EINVAL;
7411 
7412 	/*
7413 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7414 	 * unthrottle_offline_cfs_rqs().
7415 	 */
7416 	get_online_cpus();
7417 	mutex_lock(&cfs_constraints_mutex);
7418 	ret = __cfs_schedulable(tg, period, quota);
7419 	if (ret)
7420 		goto out_unlock;
7421 
7422 	runtime_enabled = quota != RUNTIME_INF;
7423 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7424 	/*
7425 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7426 	 * before making related changes, and on->off must occur afterwards
7427 	 */
7428 	if (runtime_enabled && !runtime_was_enabled)
7429 		cfs_bandwidth_usage_inc();
7430 	raw_spin_lock_irq(&cfs_b->lock);
7431 	cfs_b->period = ns_to_ktime(period);
7432 	cfs_b->quota = quota;
7433 
7434 	__refill_cfs_bandwidth_runtime(cfs_b);
7435 
7436 	/* Restart the period timer (if active) to handle new period expiry: */
7437 	if (runtime_enabled)
7438 		start_cfs_bandwidth(cfs_b);
7439 
7440 	raw_spin_unlock_irq(&cfs_b->lock);
7441 
7442 	for_each_online_cpu(i) {
7443 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7444 		struct rq *rq = cfs_rq->rq;
7445 		struct rq_flags rf;
7446 
7447 		rq_lock_irq(rq, &rf);
7448 		cfs_rq->runtime_enabled = runtime_enabled;
7449 		cfs_rq->runtime_remaining = 0;
7450 
7451 		if (cfs_rq->throttled)
7452 			unthrottle_cfs_rq(cfs_rq);
7453 		rq_unlock_irq(rq, &rf);
7454 	}
7455 	if (runtime_was_enabled && !runtime_enabled)
7456 		cfs_bandwidth_usage_dec();
7457 out_unlock:
7458 	mutex_unlock(&cfs_constraints_mutex);
7459 	put_online_cpus();
7460 
7461 	return ret;
7462 }
7463 
7464 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7465 {
7466 	u64 quota, period;
7467 
7468 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7469 	if (cfs_quota_us < 0)
7470 		quota = RUNTIME_INF;
7471 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7472 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7473 	else
7474 		return -EINVAL;
7475 
7476 	return tg_set_cfs_bandwidth(tg, period, quota);
7477 }
7478 
7479 static long tg_get_cfs_quota(struct task_group *tg)
7480 {
7481 	u64 quota_us;
7482 
7483 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7484 		return -1;
7485 
7486 	quota_us = tg->cfs_bandwidth.quota;
7487 	do_div(quota_us, NSEC_PER_USEC);
7488 
7489 	return quota_us;
7490 }
7491 
7492 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7493 {
7494 	u64 quota, period;
7495 
7496 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7497 		return -EINVAL;
7498 
7499 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7500 	quota = tg->cfs_bandwidth.quota;
7501 
7502 	return tg_set_cfs_bandwidth(tg, period, quota);
7503 }
7504 
7505 static long tg_get_cfs_period(struct task_group *tg)
7506 {
7507 	u64 cfs_period_us;
7508 
7509 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7510 	do_div(cfs_period_us, NSEC_PER_USEC);
7511 
7512 	return cfs_period_us;
7513 }
7514 
7515 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7516 				  struct cftype *cft)
7517 {
7518 	return tg_get_cfs_quota(css_tg(css));
7519 }
7520 
7521 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7522 				   struct cftype *cftype, s64 cfs_quota_us)
7523 {
7524 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7525 }
7526 
7527 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7528 				   struct cftype *cft)
7529 {
7530 	return tg_get_cfs_period(css_tg(css));
7531 }
7532 
7533 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7534 				    struct cftype *cftype, u64 cfs_period_us)
7535 {
7536 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7537 }
7538 
7539 struct cfs_schedulable_data {
7540 	struct task_group *tg;
7541 	u64 period, quota;
7542 };
7543 
7544 /*
7545  * normalize group quota/period to be quota/max_period
7546  * note: units are usecs
7547  */
7548 static u64 normalize_cfs_quota(struct task_group *tg,
7549 			       struct cfs_schedulable_data *d)
7550 {
7551 	u64 quota, period;
7552 
7553 	if (tg == d->tg) {
7554 		period = d->period;
7555 		quota = d->quota;
7556 	} else {
7557 		period = tg_get_cfs_period(tg);
7558 		quota = tg_get_cfs_quota(tg);
7559 	}
7560 
7561 	/* note: these should typically be equivalent */
7562 	if (quota == RUNTIME_INF || quota == -1)
7563 		return RUNTIME_INF;
7564 
7565 	return to_ratio(period, quota);
7566 }
7567 
7568 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7569 {
7570 	struct cfs_schedulable_data *d = data;
7571 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7572 	s64 quota = 0, parent_quota = -1;
7573 
7574 	if (!tg->parent) {
7575 		quota = RUNTIME_INF;
7576 	} else {
7577 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7578 
7579 		quota = normalize_cfs_quota(tg, d);
7580 		parent_quota = parent_b->hierarchical_quota;
7581 
7582 		/*
7583 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7584 		 * always take the min.  On cgroup1, only inherit when no
7585 		 * limit is set:
7586 		 */
7587 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7588 			quota = min(quota, parent_quota);
7589 		} else {
7590 			if (quota == RUNTIME_INF)
7591 				quota = parent_quota;
7592 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7593 				return -EINVAL;
7594 		}
7595 	}
7596 	cfs_b->hierarchical_quota = quota;
7597 
7598 	return 0;
7599 }
7600 
7601 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7602 {
7603 	int ret;
7604 	struct cfs_schedulable_data data = {
7605 		.tg = tg,
7606 		.period = period,
7607 		.quota = quota,
7608 	};
7609 
7610 	if (quota != RUNTIME_INF) {
7611 		do_div(data.period, NSEC_PER_USEC);
7612 		do_div(data.quota, NSEC_PER_USEC);
7613 	}
7614 
7615 	rcu_read_lock();
7616 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7617 	rcu_read_unlock();
7618 
7619 	return ret;
7620 }
7621 
7622 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7623 {
7624 	struct task_group *tg = css_tg(seq_css(sf));
7625 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7626 
7627 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7628 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7629 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7630 
7631 	if (schedstat_enabled() && tg != &root_task_group) {
7632 		u64 ws = 0;
7633 		int i;
7634 
7635 		for_each_possible_cpu(i)
7636 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7637 
7638 		seq_printf(sf, "wait_sum %llu\n", ws);
7639 	}
7640 
7641 	return 0;
7642 }
7643 #endif /* CONFIG_CFS_BANDWIDTH */
7644 #endif /* CONFIG_FAIR_GROUP_SCHED */
7645 
7646 #ifdef CONFIG_RT_GROUP_SCHED
7647 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7648 				struct cftype *cft, s64 val)
7649 {
7650 	return sched_group_set_rt_runtime(css_tg(css), val);
7651 }
7652 
7653 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7654 			       struct cftype *cft)
7655 {
7656 	return sched_group_rt_runtime(css_tg(css));
7657 }
7658 
7659 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7660 				    struct cftype *cftype, u64 rt_period_us)
7661 {
7662 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7663 }
7664 
7665 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7666 				   struct cftype *cft)
7667 {
7668 	return sched_group_rt_period(css_tg(css));
7669 }
7670 #endif /* CONFIG_RT_GROUP_SCHED */
7671 
7672 static struct cftype cpu_legacy_files[] = {
7673 #ifdef CONFIG_FAIR_GROUP_SCHED
7674 	{
7675 		.name = "shares",
7676 		.read_u64 = cpu_shares_read_u64,
7677 		.write_u64 = cpu_shares_write_u64,
7678 	},
7679 #endif
7680 #ifdef CONFIG_CFS_BANDWIDTH
7681 	{
7682 		.name = "cfs_quota_us",
7683 		.read_s64 = cpu_cfs_quota_read_s64,
7684 		.write_s64 = cpu_cfs_quota_write_s64,
7685 	},
7686 	{
7687 		.name = "cfs_period_us",
7688 		.read_u64 = cpu_cfs_period_read_u64,
7689 		.write_u64 = cpu_cfs_period_write_u64,
7690 	},
7691 	{
7692 		.name = "stat",
7693 		.seq_show = cpu_cfs_stat_show,
7694 	},
7695 #endif
7696 #ifdef CONFIG_RT_GROUP_SCHED
7697 	{
7698 		.name = "rt_runtime_us",
7699 		.read_s64 = cpu_rt_runtime_read,
7700 		.write_s64 = cpu_rt_runtime_write,
7701 	},
7702 	{
7703 		.name = "rt_period_us",
7704 		.read_u64 = cpu_rt_period_read_uint,
7705 		.write_u64 = cpu_rt_period_write_uint,
7706 	},
7707 #endif
7708 #ifdef CONFIG_UCLAMP_TASK_GROUP
7709 	{
7710 		.name = "uclamp.min",
7711 		.flags = CFTYPE_NOT_ON_ROOT,
7712 		.seq_show = cpu_uclamp_min_show,
7713 		.write = cpu_uclamp_min_write,
7714 	},
7715 	{
7716 		.name = "uclamp.max",
7717 		.flags = CFTYPE_NOT_ON_ROOT,
7718 		.seq_show = cpu_uclamp_max_show,
7719 		.write = cpu_uclamp_max_write,
7720 	},
7721 #endif
7722 	{ }	/* Terminate */
7723 };
7724 
7725 static int cpu_extra_stat_show(struct seq_file *sf,
7726 			       struct cgroup_subsys_state *css)
7727 {
7728 #ifdef CONFIG_CFS_BANDWIDTH
7729 	{
7730 		struct task_group *tg = css_tg(css);
7731 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7732 		u64 throttled_usec;
7733 
7734 		throttled_usec = cfs_b->throttled_time;
7735 		do_div(throttled_usec, NSEC_PER_USEC);
7736 
7737 		seq_printf(sf, "nr_periods %d\n"
7738 			   "nr_throttled %d\n"
7739 			   "throttled_usec %llu\n",
7740 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7741 			   throttled_usec);
7742 	}
7743 #endif
7744 	return 0;
7745 }
7746 
7747 #ifdef CONFIG_FAIR_GROUP_SCHED
7748 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7749 			       struct cftype *cft)
7750 {
7751 	struct task_group *tg = css_tg(css);
7752 	u64 weight = scale_load_down(tg->shares);
7753 
7754 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7755 }
7756 
7757 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7758 				struct cftype *cft, u64 weight)
7759 {
7760 	/*
7761 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7762 	 * values which are 1, 100 and 10000 respectively.  While it loses
7763 	 * a bit of range on both ends, it maps pretty well onto the shares
7764 	 * value used by scheduler and the round-trip conversions preserve
7765 	 * the original value over the entire range.
7766 	 */
7767 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7768 		return -ERANGE;
7769 
7770 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7771 
7772 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7773 }
7774 
7775 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7776 				    struct cftype *cft)
7777 {
7778 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7779 	int last_delta = INT_MAX;
7780 	int prio, delta;
7781 
7782 	/* find the closest nice value to the current weight */
7783 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7784 		delta = abs(sched_prio_to_weight[prio] - weight);
7785 		if (delta >= last_delta)
7786 			break;
7787 		last_delta = delta;
7788 	}
7789 
7790 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7791 }
7792 
7793 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7794 				     struct cftype *cft, s64 nice)
7795 {
7796 	unsigned long weight;
7797 	int idx;
7798 
7799 	if (nice < MIN_NICE || nice > MAX_NICE)
7800 		return -ERANGE;
7801 
7802 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7803 	idx = array_index_nospec(idx, 40);
7804 	weight = sched_prio_to_weight[idx];
7805 
7806 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7807 }
7808 #endif
7809 
7810 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7811 						  long period, long quota)
7812 {
7813 	if (quota < 0)
7814 		seq_puts(sf, "max");
7815 	else
7816 		seq_printf(sf, "%ld", quota);
7817 
7818 	seq_printf(sf, " %ld\n", period);
7819 }
7820 
7821 /* caller should put the current value in *@periodp before calling */
7822 static int __maybe_unused cpu_period_quota_parse(char *buf,
7823 						 u64 *periodp, u64 *quotap)
7824 {
7825 	char tok[21];	/* U64_MAX */
7826 
7827 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7828 		return -EINVAL;
7829 
7830 	*periodp *= NSEC_PER_USEC;
7831 
7832 	if (sscanf(tok, "%llu", quotap))
7833 		*quotap *= NSEC_PER_USEC;
7834 	else if (!strcmp(tok, "max"))
7835 		*quotap = RUNTIME_INF;
7836 	else
7837 		return -EINVAL;
7838 
7839 	return 0;
7840 }
7841 
7842 #ifdef CONFIG_CFS_BANDWIDTH
7843 static int cpu_max_show(struct seq_file *sf, void *v)
7844 {
7845 	struct task_group *tg = css_tg(seq_css(sf));
7846 
7847 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7848 	return 0;
7849 }
7850 
7851 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7852 			     char *buf, size_t nbytes, loff_t off)
7853 {
7854 	struct task_group *tg = css_tg(of_css(of));
7855 	u64 period = tg_get_cfs_period(tg);
7856 	u64 quota;
7857 	int ret;
7858 
7859 	ret = cpu_period_quota_parse(buf, &period, &quota);
7860 	if (!ret)
7861 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7862 	return ret ?: nbytes;
7863 }
7864 #endif
7865 
7866 static struct cftype cpu_files[] = {
7867 #ifdef CONFIG_FAIR_GROUP_SCHED
7868 	{
7869 		.name = "weight",
7870 		.flags = CFTYPE_NOT_ON_ROOT,
7871 		.read_u64 = cpu_weight_read_u64,
7872 		.write_u64 = cpu_weight_write_u64,
7873 	},
7874 	{
7875 		.name = "weight.nice",
7876 		.flags = CFTYPE_NOT_ON_ROOT,
7877 		.read_s64 = cpu_weight_nice_read_s64,
7878 		.write_s64 = cpu_weight_nice_write_s64,
7879 	},
7880 #endif
7881 #ifdef CONFIG_CFS_BANDWIDTH
7882 	{
7883 		.name = "max",
7884 		.flags = CFTYPE_NOT_ON_ROOT,
7885 		.seq_show = cpu_max_show,
7886 		.write = cpu_max_write,
7887 	},
7888 #endif
7889 #ifdef CONFIG_UCLAMP_TASK_GROUP
7890 	{
7891 		.name = "uclamp.min",
7892 		.flags = CFTYPE_NOT_ON_ROOT,
7893 		.seq_show = cpu_uclamp_min_show,
7894 		.write = cpu_uclamp_min_write,
7895 	},
7896 	{
7897 		.name = "uclamp.max",
7898 		.flags = CFTYPE_NOT_ON_ROOT,
7899 		.seq_show = cpu_uclamp_max_show,
7900 		.write = cpu_uclamp_max_write,
7901 	},
7902 #endif
7903 	{ }	/* terminate */
7904 };
7905 
7906 struct cgroup_subsys cpu_cgrp_subsys = {
7907 	.css_alloc	= cpu_cgroup_css_alloc,
7908 	.css_online	= cpu_cgroup_css_online,
7909 	.css_released	= cpu_cgroup_css_released,
7910 	.css_free	= cpu_cgroup_css_free,
7911 	.css_extra_stat_show = cpu_extra_stat_show,
7912 	.fork		= cpu_cgroup_fork,
7913 	.can_attach	= cpu_cgroup_can_attach,
7914 	.attach		= cpu_cgroup_attach,
7915 	.legacy_cftypes	= cpu_legacy_files,
7916 	.dfl_cftypes	= cpu_files,
7917 	.early_init	= true,
7918 	.threaded	= true,
7919 };
7920 
7921 #endif	/* CONFIG_CGROUP_SCHED */
7922 
7923 void dump_cpu_task(int cpu)
7924 {
7925 	pr_info("Task dump for CPU %d:\n", cpu);
7926 	sched_show_task(cpu_curr(cpu));
7927 }
7928 
7929 /*
7930  * Nice levels are multiplicative, with a gentle 10% change for every
7931  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7932  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7933  * that remained on nice 0.
7934  *
7935  * The "10% effect" is relative and cumulative: from _any_ nice level,
7936  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7937  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7938  * If a task goes up by ~10% and another task goes down by ~10% then
7939  * the relative distance between them is ~25%.)
7940  */
7941 const int sched_prio_to_weight[40] = {
7942  /* -20 */     88761,     71755,     56483,     46273,     36291,
7943  /* -15 */     29154,     23254,     18705,     14949,     11916,
7944  /* -10 */      9548,      7620,      6100,      4904,      3906,
7945  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7946  /*   0 */      1024,       820,       655,       526,       423,
7947  /*   5 */       335,       272,       215,       172,       137,
7948  /*  10 */       110,        87,        70,        56,        45,
7949  /*  15 */        36,        29,        23,        18,        15,
7950 };
7951 
7952 /*
7953  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7954  *
7955  * In cases where the weight does not change often, we can use the
7956  * precalculated inverse to speed up arithmetics by turning divisions
7957  * into multiplications:
7958  */
7959 const u32 sched_prio_to_wmult[40] = {
7960  /* -20 */     48388,     59856,     76040,     92818,    118348,
7961  /* -15 */    147320,    184698,    229616,    287308,    360437,
7962  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7963  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7964  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7965  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7966  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7967  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7968 };
7969 
7970 #undef CREATE_TRACE_POINTS
7971