xref: /linux/kernel/sched/core.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 	unsigned long delta;
95 	ktime_t soft, hard, now;
96 
97 	for (;;) {
98 		if (hrtimer_active(period_timer))
99 			break;
100 
101 		now = hrtimer_cb_get_time(period_timer);
102 		hrtimer_forward(period_timer, now, period);
103 
104 		soft = hrtimer_get_softexpires(period_timer);
105 		hard = hrtimer_get_expires(period_timer);
106 		delta = ktime_to_ns(ktime_sub(hard, soft));
107 		__hrtimer_start_range_ns(period_timer, soft, delta,
108 					 HRTIMER_MODE_ABS_PINNED, 0);
109 	}
110 }
111 
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 
117 void update_rq_clock(struct rq *rq)
118 {
119 	s64 delta;
120 
121 	if (rq->skip_clock_update > 0)
122 		return;
123 
124 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 	rq->clock += delta;
126 	update_rq_clock_task(rq, delta);
127 }
128 
129 /*
130  * Debugging: various feature bits
131  */
132 
133 #define SCHED_FEAT(name, enabled)	\
134 	(1UL << __SCHED_FEAT_##name) * enabled |
135 
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 
140 #undef SCHED_FEAT
141 
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled)	\
144 	#name ,
145 
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static int sched_feat_set(char *cmp)
197 {
198 	int i;
199 	int neg = 0;
200 
201 	if (strncmp(cmp, "NO_", 3) == 0) {
202 		neg = 1;
203 		cmp += 3;
204 	}
205 
206 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 			if (neg) {
209 				sysctl_sched_features &= ~(1UL << i);
210 				sched_feat_disable(i);
211 			} else {
212 				sysctl_sched_features |= (1UL << i);
213 				sched_feat_enable(i);
214 			}
215 			break;
216 		}
217 	}
218 
219 	return i;
220 }
221 
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 		size_t cnt, loff_t *ppos)
225 {
226 	char buf[64];
227 	char *cmp;
228 	int i;
229 
230 	if (cnt > 63)
231 		cnt = 63;
232 
233 	if (copy_from_user(&buf, ubuf, cnt))
234 		return -EFAULT;
235 
236 	buf[cnt] = 0;
237 	cmp = strstrip(buf);
238 
239 	i = sched_feat_set(cmp);
240 	if (i == __SCHED_FEAT_NR)
241 		return -EINVAL;
242 
243 	*ppos += cnt;
244 
245 	return cnt;
246 }
247 
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 	return single_open(filp, sched_feat_show, NULL);
251 }
252 
253 static const struct file_operations sched_feat_fops = {
254 	.open		= sched_feat_open,
255 	.write		= sched_feat_write,
256 	.read		= seq_read,
257 	.llseek		= seq_lseek,
258 	.release	= single_release,
259 };
260 
261 static __init int sched_init_debug(void)
262 {
263 	debugfs_create_file("sched_features", 0644, NULL, NULL,
264 			&sched_feat_fops);
265 
266 	return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270 
271 /*
272  * Number of tasks to iterate in a single balance run.
273  * Limited because this is done with IRQs disabled.
274  */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276 
277 /*
278  * period over which we average the RT time consumption, measured
279  * in ms.
280  *
281  * default: 1s
282  */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284 
285 /*
286  * period over which we measure -rt task cpu usage in us.
287  * default: 1s
288  */
289 unsigned int sysctl_sched_rt_period = 1000000;
290 
291 __read_mostly int scheduler_running;
292 
293 /*
294  * part of the period that we allow rt tasks to run in us.
295  * default: 0.95s
296  */
297 int sysctl_sched_rt_runtime = 950000;
298 
299 
300 
301 /*
302  * __task_rq_lock - lock the rq @p resides on.
303  */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 	__acquires(rq->lock)
306 {
307 	struct rq *rq;
308 
309 	lockdep_assert_held(&p->pi_lock);
310 
311 	for (;;) {
312 		rq = task_rq(p);
313 		raw_spin_lock(&rq->lock);
314 		if (likely(rq == task_rq(p)))
315 			return rq;
316 		raw_spin_unlock(&rq->lock);
317 	}
318 }
319 
320 /*
321  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322  */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 	__acquires(p->pi_lock)
325 	__acquires(rq->lock)
326 {
327 	struct rq *rq;
328 
329 	for (;;) {
330 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 		rq = task_rq(p);
332 		raw_spin_lock(&rq->lock);
333 		if (likely(rq == task_rq(p)))
334 			return rq;
335 		raw_spin_unlock(&rq->lock);
336 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 	}
338 }
339 
340 static void __task_rq_unlock(struct rq *rq)
341 	__releases(rq->lock)
342 {
343 	raw_spin_unlock(&rq->lock);
344 }
345 
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 	__releases(rq->lock)
349 	__releases(p->pi_lock)
350 {
351 	raw_spin_unlock(&rq->lock);
352 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354 
355 /*
356  * this_rq_lock - lock this runqueue and disable interrupts.
357  */
358 static struct rq *this_rq_lock(void)
359 	__acquires(rq->lock)
360 {
361 	struct rq *rq;
362 
363 	local_irq_disable();
364 	rq = this_rq();
365 	raw_spin_lock(&rq->lock);
366 
367 	return rq;
368 }
369 
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372  * Use HR-timers to deliver accurate preemption points.
373  */
374 
375 static void hrtick_clear(struct rq *rq)
376 {
377 	if (hrtimer_active(&rq->hrtick_timer))
378 		hrtimer_cancel(&rq->hrtick_timer);
379 }
380 
381 /*
382  * High-resolution timer tick.
383  * Runs from hardirq context with interrupts disabled.
384  */
385 static enum hrtimer_restart hrtick(struct hrtimer *timer)
386 {
387 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388 
389 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390 
391 	raw_spin_lock(&rq->lock);
392 	update_rq_clock(rq);
393 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394 	raw_spin_unlock(&rq->lock);
395 
396 	return HRTIMER_NORESTART;
397 }
398 
399 #ifdef CONFIG_SMP
400 
401 static int __hrtick_restart(struct rq *rq)
402 {
403 	struct hrtimer *timer = &rq->hrtick_timer;
404 	ktime_t time = hrtimer_get_softexpires(timer);
405 
406 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407 }
408 
409 /*
410  * called from hardirq (IPI) context
411  */
412 static void __hrtick_start(void *arg)
413 {
414 	struct rq *rq = arg;
415 
416 	raw_spin_lock(&rq->lock);
417 	__hrtick_restart(rq);
418 	rq->hrtick_csd_pending = 0;
419 	raw_spin_unlock(&rq->lock);
420 }
421 
422 /*
423  * Called to set the hrtick timer state.
424  *
425  * called with rq->lock held and irqs disabled
426  */
427 void hrtick_start(struct rq *rq, u64 delay)
428 {
429 	struct hrtimer *timer = &rq->hrtick_timer;
430 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431 
432 	hrtimer_set_expires(timer, time);
433 
434 	if (rq == this_rq()) {
435 		__hrtick_restart(rq);
436 	} else if (!rq->hrtick_csd_pending) {
437 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438 		rq->hrtick_csd_pending = 1;
439 	}
440 }
441 
442 static int
443 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444 {
445 	int cpu = (int)(long)hcpu;
446 
447 	switch (action) {
448 	case CPU_UP_CANCELED:
449 	case CPU_UP_CANCELED_FROZEN:
450 	case CPU_DOWN_PREPARE:
451 	case CPU_DOWN_PREPARE_FROZEN:
452 	case CPU_DEAD:
453 	case CPU_DEAD_FROZEN:
454 		hrtick_clear(cpu_rq(cpu));
455 		return NOTIFY_OK;
456 	}
457 
458 	return NOTIFY_DONE;
459 }
460 
461 static __init void init_hrtick(void)
462 {
463 	hotcpu_notifier(hotplug_hrtick, 0);
464 }
465 #else
466 /*
467  * Called to set the hrtick timer state.
468  *
469  * called with rq->lock held and irqs disabled
470  */
471 void hrtick_start(struct rq *rq, u64 delay)
472 {
473 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474 			HRTIMER_MODE_REL_PINNED, 0);
475 }
476 
477 static inline void init_hrtick(void)
478 {
479 }
480 #endif /* CONFIG_SMP */
481 
482 static void init_rq_hrtick(struct rq *rq)
483 {
484 #ifdef CONFIG_SMP
485 	rq->hrtick_csd_pending = 0;
486 
487 	rq->hrtick_csd.flags = 0;
488 	rq->hrtick_csd.func = __hrtick_start;
489 	rq->hrtick_csd.info = rq;
490 #endif
491 
492 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 	rq->hrtick_timer.function = hrtick;
494 }
495 #else	/* CONFIG_SCHED_HRTICK */
496 static inline void hrtick_clear(struct rq *rq)
497 {
498 }
499 
500 static inline void init_rq_hrtick(struct rq *rq)
501 {
502 }
503 
504 static inline void init_hrtick(void)
505 {
506 }
507 #endif	/* CONFIG_SCHED_HRTICK */
508 
509 /*
510  * resched_task - mark a task 'to be rescheduled now'.
511  *
512  * On UP this means the setting of the need_resched flag, on SMP it
513  * might also involve a cross-CPU call to trigger the scheduler on
514  * the target CPU.
515  */
516 #ifdef CONFIG_SMP
517 void resched_task(struct task_struct *p)
518 {
519 	int cpu;
520 
521 	assert_raw_spin_locked(&task_rq(p)->lock);
522 
523 	if (test_tsk_need_resched(p))
524 		return;
525 
526 	set_tsk_need_resched(p);
527 
528 	cpu = task_cpu(p);
529 	if (cpu == smp_processor_id())
530 		return;
531 
532 	/* NEED_RESCHED must be visible before we test polling */
533 	smp_mb();
534 	if (!tsk_is_polling(p))
535 		smp_send_reschedule(cpu);
536 }
537 
538 void resched_cpu(int cpu)
539 {
540 	struct rq *rq = cpu_rq(cpu);
541 	unsigned long flags;
542 
543 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544 		return;
545 	resched_task(cpu_curr(cpu));
546 	raw_spin_unlock_irqrestore(&rq->lock, flags);
547 }
548 
549 #ifdef CONFIG_NO_HZ_COMMON
550 /*
551  * In the semi idle case, use the nearest busy cpu for migrating timers
552  * from an idle cpu.  This is good for power-savings.
553  *
554  * We don't do similar optimization for completely idle system, as
555  * selecting an idle cpu will add more delays to the timers than intended
556  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557  */
558 int get_nohz_timer_target(void)
559 {
560 	int cpu = smp_processor_id();
561 	int i;
562 	struct sched_domain *sd;
563 
564 	rcu_read_lock();
565 	for_each_domain(cpu, sd) {
566 		for_each_cpu(i, sched_domain_span(sd)) {
567 			if (!idle_cpu(i)) {
568 				cpu = i;
569 				goto unlock;
570 			}
571 		}
572 	}
573 unlock:
574 	rcu_read_unlock();
575 	return cpu;
576 }
577 /*
578  * When add_timer_on() enqueues a timer into the timer wheel of an
579  * idle CPU then this timer might expire before the next timer event
580  * which is scheduled to wake up that CPU. In case of a completely
581  * idle system the next event might even be infinite time into the
582  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583  * leaves the inner idle loop so the newly added timer is taken into
584  * account when the CPU goes back to idle and evaluates the timer
585  * wheel for the next timer event.
586  */
587 static void wake_up_idle_cpu(int cpu)
588 {
589 	struct rq *rq = cpu_rq(cpu);
590 
591 	if (cpu == smp_processor_id())
592 		return;
593 
594 	/*
595 	 * This is safe, as this function is called with the timer
596 	 * wheel base lock of (cpu) held. When the CPU is on the way
597 	 * to idle and has not yet set rq->curr to idle then it will
598 	 * be serialized on the timer wheel base lock and take the new
599 	 * timer into account automatically.
600 	 */
601 	if (rq->curr != rq->idle)
602 		return;
603 
604 	/*
605 	 * We can set TIF_RESCHED on the idle task of the other CPU
606 	 * lockless. The worst case is that the other CPU runs the
607 	 * idle task through an additional NOOP schedule()
608 	 */
609 	set_tsk_need_resched(rq->idle);
610 
611 	/* NEED_RESCHED must be visible before we test polling */
612 	smp_mb();
613 	if (!tsk_is_polling(rq->idle))
614 		smp_send_reschedule(cpu);
615 }
616 
617 static bool wake_up_full_nohz_cpu(int cpu)
618 {
619 	if (tick_nohz_full_cpu(cpu)) {
620 		if (cpu != smp_processor_id() ||
621 		    tick_nohz_tick_stopped())
622 			smp_send_reschedule(cpu);
623 		return true;
624 	}
625 
626 	return false;
627 }
628 
629 void wake_up_nohz_cpu(int cpu)
630 {
631 	if (!wake_up_full_nohz_cpu(cpu))
632 		wake_up_idle_cpu(cpu);
633 }
634 
635 static inline bool got_nohz_idle_kick(void)
636 {
637 	int cpu = smp_processor_id();
638 
639 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 		return false;
641 
642 	if (idle_cpu(cpu) && !need_resched())
643 		return true;
644 
645 	/*
646 	 * We can't run Idle Load Balance on this CPU for this time so we
647 	 * cancel it and clear NOHZ_BALANCE_KICK
648 	 */
649 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 	return false;
651 }
652 
653 #else /* CONFIG_NO_HZ_COMMON */
654 
655 static inline bool got_nohz_idle_kick(void)
656 {
657 	return false;
658 }
659 
660 #endif /* CONFIG_NO_HZ_COMMON */
661 
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(void)
664 {
665        struct rq *rq;
666 
667        rq = this_rq();
668 
669        /* Make sure rq->nr_running update is visible after the IPI */
670        smp_rmb();
671 
672        /* More than one running task need preemption */
673        if (rq->nr_running > 1)
674                return false;
675 
676        return true;
677 }
678 #endif /* CONFIG_NO_HZ_FULL */
679 
680 void sched_avg_update(struct rq *rq)
681 {
682 	s64 period = sched_avg_period();
683 
684 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685 		/*
686 		 * Inline assembly required to prevent the compiler
687 		 * optimising this loop into a divmod call.
688 		 * See __iter_div_u64_rem() for another example of this.
689 		 */
690 		asm("" : "+rm" (rq->age_stamp));
691 		rq->age_stamp += period;
692 		rq->rt_avg /= 2;
693 	}
694 }
695 
696 #else /* !CONFIG_SMP */
697 void resched_task(struct task_struct *p)
698 {
699 	assert_raw_spin_locked(&task_rq(p)->lock);
700 	set_tsk_need_resched(p);
701 }
702 #endif /* CONFIG_SMP */
703 
704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
706 /*
707  * Iterate task_group tree rooted at *from, calling @down when first entering a
708  * node and @up when leaving it for the final time.
709  *
710  * Caller must hold rcu_lock or sufficient equivalent.
711  */
712 int walk_tg_tree_from(struct task_group *from,
713 			     tg_visitor down, tg_visitor up, void *data)
714 {
715 	struct task_group *parent, *child;
716 	int ret;
717 
718 	parent = from;
719 
720 down:
721 	ret = (*down)(parent, data);
722 	if (ret)
723 		goto out;
724 	list_for_each_entry_rcu(child, &parent->children, siblings) {
725 		parent = child;
726 		goto down;
727 
728 up:
729 		continue;
730 	}
731 	ret = (*up)(parent, data);
732 	if (ret || parent == from)
733 		goto out;
734 
735 	child = parent;
736 	parent = parent->parent;
737 	if (parent)
738 		goto up;
739 out:
740 	return ret;
741 }
742 
743 int tg_nop(struct task_group *tg, void *data)
744 {
745 	return 0;
746 }
747 #endif
748 
749 static void set_load_weight(struct task_struct *p)
750 {
751 	int prio = p->static_prio - MAX_RT_PRIO;
752 	struct load_weight *load = &p->se.load;
753 
754 	/*
755 	 * SCHED_IDLE tasks get minimal weight:
756 	 */
757 	if (p->policy == SCHED_IDLE) {
758 		load->weight = scale_load(WEIGHT_IDLEPRIO);
759 		load->inv_weight = WMULT_IDLEPRIO;
760 		return;
761 	}
762 
763 	load->weight = scale_load(prio_to_weight[prio]);
764 	load->inv_weight = prio_to_wmult[prio];
765 }
766 
767 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
768 {
769 	update_rq_clock(rq);
770 	sched_info_queued(p);
771 	p->sched_class->enqueue_task(rq, p, flags);
772 }
773 
774 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
775 {
776 	update_rq_clock(rq);
777 	sched_info_dequeued(p);
778 	p->sched_class->dequeue_task(rq, p, flags);
779 }
780 
781 void activate_task(struct rq *rq, struct task_struct *p, int flags)
782 {
783 	if (task_contributes_to_load(p))
784 		rq->nr_uninterruptible--;
785 
786 	enqueue_task(rq, p, flags);
787 }
788 
789 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
790 {
791 	if (task_contributes_to_load(p))
792 		rq->nr_uninterruptible++;
793 
794 	dequeue_task(rq, p, flags);
795 }
796 
797 static void update_rq_clock_task(struct rq *rq, s64 delta)
798 {
799 /*
800  * In theory, the compile should just see 0 here, and optimize out the call
801  * to sched_rt_avg_update. But I don't trust it...
802  */
803 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
804 	s64 steal = 0, irq_delta = 0;
805 #endif
806 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
807 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
808 
809 	/*
810 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
811 	 * this case when a previous update_rq_clock() happened inside a
812 	 * {soft,}irq region.
813 	 *
814 	 * When this happens, we stop ->clock_task and only update the
815 	 * prev_irq_time stamp to account for the part that fit, so that a next
816 	 * update will consume the rest. This ensures ->clock_task is
817 	 * monotonic.
818 	 *
819 	 * It does however cause some slight miss-attribution of {soft,}irq
820 	 * time, a more accurate solution would be to update the irq_time using
821 	 * the current rq->clock timestamp, except that would require using
822 	 * atomic ops.
823 	 */
824 	if (irq_delta > delta)
825 		irq_delta = delta;
826 
827 	rq->prev_irq_time += irq_delta;
828 	delta -= irq_delta;
829 #endif
830 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
831 	if (static_key_false((&paravirt_steal_rq_enabled))) {
832 		u64 st;
833 
834 		steal = paravirt_steal_clock(cpu_of(rq));
835 		steal -= rq->prev_steal_time_rq;
836 
837 		if (unlikely(steal > delta))
838 			steal = delta;
839 
840 		st = steal_ticks(steal);
841 		steal = st * TICK_NSEC;
842 
843 		rq->prev_steal_time_rq += steal;
844 
845 		delta -= steal;
846 	}
847 #endif
848 
849 	rq->clock_task += delta;
850 
851 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
852 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
853 		sched_rt_avg_update(rq, irq_delta + steal);
854 #endif
855 }
856 
857 void sched_set_stop_task(int cpu, struct task_struct *stop)
858 {
859 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
860 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
861 
862 	if (stop) {
863 		/*
864 		 * Make it appear like a SCHED_FIFO task, its something
865 		 * userspace knows about and won't get confused about.
866 		 *
867 		 * Also, it will make PI more or less work without too
868 		 * much confusion -- but then, stop work should not
869 		 * rely on PI working anyway.
870 		 */
871 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
872 
873 		stop->sched_class = &stop_sched_class;
874 	}
875 
876 	cpu_rq(cpu)->stop = stop;
877 
878 	if (old_stop) {
879 		/*
880 		 * Reset it back to a normal scheduling class so that
881 		 * it can die in pieces.
882 		 */
883 		old_stop->sched_class = &rt_sched_class;
884 	}
885 }
886 
887 /*
888  * __normal_prio - return the priority that is based on the static prio
889  */
890 static inline int __normal_prio(struct task_struct *p)
891 {
892 	return p->static_prio;
893 }
894 
895 /*
896  * Calculate the expected normal priority: i.e. priority
897  * without taking RT-inheritance into account. Might be
898  * boosted by interactivity modifiers. Changes upon fork,
899  * setprio syscalls, and whenever the interactivity
900  * estimator recalculates.
901  */
902 static inline int normal_prio(struct task_struct *p)
903 {
904 	int prio;
905 
906 	if (task_has_rt_policy(p))
907 		prio = MAX_RT_PRIO-1 - p->rt_priority;
908 	else
909 		prio = __normal_prio(p);
910 	return prio;
911 }
912 
913 /*
914  * Calculate the current priority, i.e. the priority
915  * taken into account by the scheduler. This value might
916  * be boosted by RT tasks, or might be boosted by
917  * interactivity modifiers. Will be RT if the task got
918  * RT-boosted. If not then it returns p->normal_prio.
919  */
920 static int effective_prio(struct task_struct *p)
921 {
922 	p->normal_prio = normal_prio(p);
923 	/*
924 	 * If we are RT tasks or we were boosted to RT priority,
925 	 * keep the priority unchanged. Otherwise, update priority
926 	 * to the normal priority:
927 	 */
928 	if (!rt_prio(p->prio))
929 		return p->normal_prio;
930 	return p->prio;
931 }
932 
933 /**
934  * task_curr - is this task currently executing on a CPU?
935  * @p: the task in question.
936  */
937 inline int task_curr(const struct task_struct *p)
938 {
939 	return cpu_curr(task_cpu(p)) == p;
940 }
941 
942 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
943 				       const struct sched_class *prev_class,
944 				       int oldprio)
945 {
946 	if (prev_class != p->sched_class) {
947 		if (prev_class->switched_from)
948 			prev_class->switched_from(rq, p);
949 		p->sched_class->switched_to(rq, p);
950 	} else if (oldprio != p->prio)
951 		p->sched_class->prio_changed(rq, p, oldprio);
952 }
953 
954 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
955 {
956 	const struct sched_class *class;
957 
958 	if (p->sched_class == rq->curr->sched_class) {
959 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
960 	} else {
961 		for_each_class(class) {
962 			if (class == rq->curr->sched_class)
963 				break;
964 			if (class == p->sched_class) {
965 				resched_task(rq->curr);
966 				break;
967 			}
968 		}
969 	}
970 
971 	/*
972 	 * A queue event has occurred, and we're going to schedule.  In
973 	 * this case, we can save a useless back to back clock update.
974 	 */
975 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
976 		rq->skip_clock_update = 1;
977 }
978 
979 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
980 
981 void register_task_migration_notifier(struct notifier_block *n)
982 {
983 	atomic_notifier_chain_register(&task_migration_notifier, n);
984 }
985 
986 #ifdef CONFIG_SMP
987 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
988 {
989 #ifdef CONFIG_SCHED_DEBUG
990 	/*
991 	 * We should never call set_task_cpu() on a blocked task,
992 	 * ttwu() will sort out the placement.
993 	 */
994 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
995 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
996 
997 #ifdef CONFIG_LOCKDEP
998 	/*
999 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1000 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1001 	 *
1002 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1003 	 * see task_group().
1004 	 *
1005 	 * Furthermore, all task_rq users should acquire both locks, see
1006 	 * task_rq_lock().
1007 	 */
1008 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1009 				      lockdep_is_held(&task_rq(p)->lock)));
1010 #endif
1011 #endif
1012 
1013 	trace_sched_migrate_task(p, new_cpu);
1014 
1015 	if (task_cpu(p) != new_cpu) {
1016 		struct task_migration_notifier tmn;
1017 
1018 		if (p->sched_class->migrate_task_rq)
1019 			p->sched_class->migrate_task_rq(p, new_cpu);
1020 		p->se.nr_migrations++;
1021 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1022 
1023 		tmn.task = p;
1024 		tmn.from_cpu = task_cpu(p);
1025 		tmn.to_cpu = new_cpu;
1026 
1027 		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1028 	}
1029 
1030 	__set_task_cpu(p, new_cpu);
1031 }
1032 
1033 struct migration_arg {
1034 	struct task_struct *task;
1035 	int dest_cpu;
1036 };
1037 
1038 static int migration_cpu_stop(void *data);
1039 
1040 /*
1041  * wait_task_inactive - wait for a thread to unschedule.
1042  *
1043  * If @match_state is nonzero, it's the @p->state value just checked and
1044  * not expected to change.  If it changes, i.e. @p might have woken up,
1045  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1046  * we return a positive number (its total switch count).  If a second call
1047  * a short while later returns the same number, the caller can be sure that
1048  * @p has remained unscheduled the whole time.
1049  *
1050  * The caller must ensure that the task *will* unschedule sometime soon,
1051  * else this function might spin for a *long* time. This function can't
1052  * be called with interrupts off, or it may introduce deadlock with
1053  * smp_call_function() if an IPI is sent by the same process we are
1054  * waiting to become inactive.
1055  */
1056 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1057 {
1058 	unsigned long flags;
1059 	int running, on_rq;
1060 	unsigned long ncsw;
1061 	struct rq *rq;
1062 
1063 	for (;;) {
1064 		/*
1065 		 * We do the initial early heuristics without holding
1066 		 * any task-queue locks at all. We'll only try to get
1067 		 * the runqueue lock when things look like they will
1068 		 * work out!
1069 		 */
1070 		rq = task_rq(p);
1071 
1072 		/*
1073 		 * If the task is actively running on another CPU
1074 		 * still, just relax and busy-wait without holding
1075 		 * any locks.
1076 		 *
1077 		 * NOTE! Since we don't hold any locks, it's not
1078 		 * even sure that "rq" stays as the right runqueue!
1079 		 * But we don't care, since "task_running()" will
1080 		 * return false if the runqueue has changed and p
1081 		 * is actually now running somewhere else!
1082 		 */
1083 		while (task_running(rq, p)) {
1084 			if (match_state && unlikely(p->state != match_state))
1085 				return 0;
1086 			cpu_relax();
1087 		}
1088 
1089 		/*
1090 		 * Ok, time to look more closely! We need the rq
1091 		 * lock now, to be *sure*. If we're wrong, we'll
1092 		 * just go back and repeat.
1093 		 */
1094 		rq = task_rq_lock(p, &flags);
1095 		trace_sched_wait_task(p);
1096 		running = task_running(rq, p);
1097 		on_rq = p->on_rq;
1098 		ncsw = 0;
1099 		if (!match_state || p->state == match_state)
1100 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1101 		task_rq_unlock(rq, p, &flags);
1102 
1103 		/*
1104 		 * If it changed from the expected state, bail out now.
1105 		 */
1106 		if (unlikely(!ncsw))
1107 			break;
1108 
1109 		/*
1110 		 * Was it really running after all now that we
1111 		 * checked with the proper locks actually held?
1112 		 *
1113 		 * Oops. Go back and try again..
1114 		 */
1115 		if (unlikely(running)) {
1116 			cpu_relax();
1117 			continue;
1118 		}
1119 
1120 		/*
1121 		 * It's not enough that it's not actively running,
1122 		 * it must be off the runqueue _entirely_, and not
1123 		 * preempted!
1124 		 *
1125 		 * So if it was still runnable (but just not actively
1126 		 * running right now), it's preempted, and we should
1127 		 * yield - it could be a while.
1128 		 */
1129 		if (unlikely(on_rq)) {
1130 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1131 
1132 			set_current_state(TASK_UNINTERRUPTIBLE);
1133 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1134 			continue;
1135 		}
1136 
1137 		/*
1138 		 * Ahh, all good. It wasn't running, and it wasn't
1139 		 * runnable, which means that it will never become
1140 		 * running in the future either. We're all done!
1141 		 */
1142 		break;
1143 	}
1144 
1145 	return ncsw;
1146 }
1147 
1148 /***
1149  * kick_process - kick a running thread to enter/exit the kernel
1150  * @p: the to-be-kicked thread
1151  *
1152  * Cause a process which is running on another CPU to enter
1153  * kernel-mode, without any delay. (to get signals handled.)
1154  *
1155  * NOTE: this function doesn't have to take the runqueue lock,
1156  * because all it wants to ensure is that the remote task enters
1157  * the kernel. If the IPI races and the task has been migrated
1158  * to another CPU then no harm is done and the purpose has been
1159  * achieved as well.
1160  */
1161 void kick_process(struct task_struct *p)
1162 {
1163 	int cpu;
1164 
1165 	preempt_disable();
1166 	cpu = task_cpu(p);
1167 	if ((cpu != smp_processor_id()) && task_curr(p))
1168 		smp_send_reschedule(cpu);
1169 	preempt_enable();
1170 }
1171 EXPORT_SYMBOL_GPL(kick_process);
1172 #endif /* CONFIG_SMP */
1173 
1174 #ifdef CONFIG_SMP
1175 /*
1176  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1177  */
1178 static int select_fallback_rq(int cpu, struct task_struct *p)
1179 {
1180 	int nid = cpu_to_node(cpu);
1181 	const struct cpumask *nodemask = NULL;
1182 	enum { cpuset, possible, fail } state = cpuset;
1183 	int dest_cpu;
1184 
1185 	/*
1186 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1187 	 * will return -1. There is no cpu on the node, and we should
1188 	 * select the cpu on the other node.
1189 	 */
1190 	if (nid != -1) {
1191 		nodemask = cpumask_of_node(nid);
1192 
1193 		/* Look for allowed, online CPU in same node. */
1194 		for_each_cpu(dest_cpu, nodemask) {
1195 			if (!cpu_online(dest_cpu))
1196 				continue;
1197 			if (!cpu_active(dest_cpu))
1198 				continue;
1199 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1200 				return dest_cpu;
1201 		}
1202 	}
1203 
1204 	for (;;) {
1205 		/* Any allowed, online CPU? */
1206 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1207 			if (!cpu_online(dest_cpu))
1208 				continue;
1209 			if (!cpu_active(dest_cpu))
1210 				continue;
1211 			goto out;
1212 		}
1213 
1214 		switch (state) {
1215 		case cpuset:
1216 			/* No more Mr. Nice Guy. */
1217 			cpuset_cpus_allowed_fallback(p);
1218 			state = possible;
1219 			break;
1220 
1221 		case possible:
1222 			do_set_cpus_allowed(p, cpu_possible_mask);
1223 			state = fail;
1224 			break;
1225 
1226 		case fail:
1227 			BUG();
1228 			break;
1229 		}
1230 	}
1231 
1232 out:
1233 	if (state != cpuset) {
1234 		/*
1235 		 * Don't tell them about moving exiting tasks or
1236 		 * kernel threads (both mm NULL), since they never
1237 		 * leave kernel.
1238 		 */
1239 		if (p->mm && printk_ratelimit()) {
1240 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1241 					task_pid_nr(p), p->comm, cpu);
1242 		}
1243 	}
1244 
1245 	return dest_cpu;
1246 }
1247 
1248 /*
1249  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1250  */
1251 static inline
1252 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1253 {
1254 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1255 
1256 	/*
1257 	 * In order not to call set_task_cpu() on a blocking task we need
1258 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1259 	 * cpu.
1260 	 *
1261 	 * Since this is common to all placement strategies, this lives here.
1262 	 *
1263 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1264 	 *   not worry about this generic constraint ]
1265 	 */
1266 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1267 		     !cpu_online(cpu)))
1268 		cpu = select_fallback_rq(task_cpu(p), p);
1269 
1270 	return cpu;
1271 }
1272 
1273 static void update_avg(u64 *avg, u64 sample)
1274 {
1275 	s64 diff = sample - *avg;
1276 	*avg += diff >> 3;
1277 }
1278 #endif
1279 
1280 static void
1281 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1282 {
1283 #ifdef CONFIG_SCHEDSTATS
1284 	struct rq *rq = this_rq();
1285 
1286 #ifdef CONFIG_SMP
1287 	int this_cpu = smp_processor_id();
1288 
1289 	if (cpu == this_cpu) {
1290 		schedstat_inc(rq, ttwu_local);
1291 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1292 	} else {
1293 		struct sched_domain *sd;
1294 
1295 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1296 		rcu_read_lock();
1297 		for_each_domain(this_cpu, sd) {
1298 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1299 				schedstat_inc(sd, ttwu_wake_remote);
1300 				break;
1301 			}
1302 		}
1303 		rcu_read_unlock();
1304 	}
1305 
1306 	if (wake_flags & WF_MIGRATED)
1307 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1308 
1309 #endif /* CONFIG_SMP */
1310 
1311 	schedstat_inc(rq, ttwu_count);
1312 	schedstat_inc(p, se.statistics.nr_wakeups);
1313 
1314 	if (wake_flags & WF_SYNC)
1315 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1316 
1317 #endif /* CONFIG_SCHEDSTATS */
1318 }
1319 
1320 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1321 {
1322 	activate_task(rq, p, en_flags);
1323 	p->on_rq = 1;
1324 
1325 	/* if a worker is waking up, notify workqueue */
1326 	if (p->flags & PF_WQ_WORKER)
1327 		wq_worker_waking_up(p, cpu_of(rq));
1328 }
1329 
1330 /*
1331  * Mark the task runnable and perform wakeup-preemption.
1332  */
1333 static void
1334 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1335 {
1336 	check_preempt_curr(rq, p, wake_flags);
1337 	trace_sched_wakeup(p, true);
1338 
1339 	p->state = TASK_RUNNING;
1340 #ifdef CONFIG_SMP
1341 	if (p->sched_class->task_woken)
1342 		p->sched_class->task_woken(rq, p);
1343 
1344 	if (rq->idle_stamp) {
1345 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1346 		u64 max = 2*sysctl_sched_migration_cost;
1347 
1348 		if (delta > max)
1349 			rq->avg_idle = max;
1350 		else
1351 			update_avg(&rq->avg_idle, delta);
1352 		rq->idle_stamp = 0;
1353 	}
1354 #endif
1355 }
1356 
1357 static void
1358 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1359 {
1360 #ifdef CONFIG_SMP
1361 	if (p->sched_contributes_to_load)
1362 		rq->nr_uninterruptible--;
1363 #endif
1364 
1365 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1366 	ttwu_do_wakeup(rq, p, wake_flags);
1367 }
1368 
1369 /*
1370  * Called in case the task @p isn't fully descheduled from its runqueue,
1371  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1372  * since all we need to do is flip p->state to TASK_RUNNING, since
1373  * the task is still ->on_rq.
1374  */
1375 static int ttwu_remote(struct task_struct *p, int wake_flags)
1376 {
1377 	struct rq *rq;
1378 	int ret = 0;
1379 
1380 	rq = __task_rq_lock(p);
1381 	if (p->on_rq) {
1382 		/* check_preempt_curr() may use rq clock */
1383 		update_rq_clock(rq);
1384 		ttwu_do_wakeup(rq, p, wake_flags);
1385 		ret = 1;
1386 	}
1387 	__task_rq_unlock(rq);
1388 
1389 	return ret;
1390 }
1391 
1392 #ifdef CONFIG_SMP
1393 static void sched_ttwu_pending(void)
1394 {
1395 	struct rq *rq = this_rq();
1396 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1397 	struct task_struct *p;
1398 
1399 	raw_spin_lock(&rq->lock);
1400 
1401 	while (llist) {
1402 		p = llist_entry(llist, struct task_struct, wake_entry);
1403 		llist = llist_next(llist);
1404 		ttwu_do_activate(rq, p, 0);
1405 	}
1406 
1407 	raw_spin_unlock(&rq->lock);
1408 }
1409 
1410 void scheduler_ipi(void)
1411 {
1412 	if (llist_empty(&this_rq()->wake_list)
1413 			&& !tick_nohz_full_cpu(smp_processor_id())
1414 			&& !got_nohz_idle_kick())
1415 		return;
1416 
1417 	/*
1418 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1419 	 * traditionally all their work was done from the interrupt return
1420 	 * path. Now that we actually do some work, we need to make sure
1421 	 * we do call them.
1422 	 *
1423 	 * Some archs already do call them, luckily irq_enter/exit nest
1424 	 * properly.
1425 	 *
1426 	 * Arguably we should visit all archs and update all handlers,
1427 	 * however a fair share of IPIs are still resched only so this would
1428 	 * somewhat pessimize the simple resched case.
1429 	 */
1430 	irq_enter();
1431 	tick_nohz_full_check();
1432 	sched_ttwu_pending();
1433 
1434 	/*
1435 	 * Check if someone kicked us for doing the nohz idle load balance.
1436 	 */
1437 	if (unlikely(got_nohz_idle_kick())) {
1438 		this_rq()->idle_balance = 1;
1439 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1440 	}
1441 	irq_exit();
1442 }
1443 
1444 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1445 {
1446 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1447 		smp_send_reschedule(cpu);
1448 }
1449 
1450 bool cpus_share_cache(int this_cpu, int that_cpu)
1451 {
1452 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1453 }
1454 #endif /* CONFIG_SMP */
1455 
1456 static void ttwu_queue(struct task_struct *p, int cpu)
1457 {
1458 	struct rq *rq = cpu_rq(cpu);
1459 
1460 #if defined(CONFIG_SMP)
1461 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1462 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1463 		ttwu_queue_remote(p, cpu);
1464 		return;
1465 	}
1466 #endif
1467 
1468 	raw_spin_lock(&rq->lock);
1469 	ttwu_do_activate(rq, p, 0);
1470 	raw_spin_unlock(&rq->lock);
1471 }
1472 
1473 /**
1474  * try_to_wake_up - wake up a thread
1475  * @p: the thread to be awakened
1476  * @state: the mask of task states that can be woken
1477  * @wake_flags: wake modifier flags (WF_*)
1478  *
1479  * Put it on the run-queue if it's not already there. The "current"
1480  * thread is always on the run-queue (except when the actual
1481  * re-schedule is in progress), and as such you're allowed to do
1482  * the simpler "current->state = TASK_RUNNING" to mark yourself
1483  * runnable without the overhead of this.
1484  *
1485  * Returns %true if @p was woken up, %false if it was already running
1486  * or @state didn't match @p's state.
1487  */
1488 static int
1489 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1490 {
1491 	unsigned long flags;
1492 	int cpu, success = 0;
1493 
1494 	smp_wmb();
1495 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1496 	if (!(p->state & state))
1497 		goto out;
1498 
1499 	success = 1; /* we're going to change ->state */
1500 	cpu = task_cpu(p);
1501 
1502 	if (p->on_rq && ttwu_remote(p, wake_flags))
1503 		goto stat;
1504 
1505 #ifdef CONFIG_SMP
1506 	/*
1507 	 * If the owning (remote) cpu is still in the middle of schedule() with
1508 	 * this task as prev, wait until its done referencing the task.
1509 	 */
1510 	while (p->on_cpu)
1511 		cpu_relax();
1512 	/*
1513 	 * Pairs with the smp_wmb() in finish_lock_switch().
1514 	 */
1515 	smp_rmb();
1516 
1517 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1518 	p->state = TASK_WAKING;
1519 
1520 	if (p->sched_class->task_waking)
1521 		p->sched_class->task_waking(p);
1522 
1523 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1524 	if (task_cpu(p) != cpu) {
1525 		wake_flags |= WF_MIGRATED;
1526 		set_task_cpu(p, cpu);
1527 	}
1528 #endif /* CONFIG_SMP */
1529 
1530 	ttwu_queue(p, cpu);
1531 stat:
1532 	ttwu_stat(p, cpu, wake_flags);
1533 out:
1534 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1535 
1536 	return success;
1537 }
1538 
1539 /**
1540  * try_to_wake_up_local - try to wake up a local task with rq lock held
1541  * @p: the thread to be awakened
1542  *
1543  * Put @p on the run-queue if it's not already there. The caller must
1544  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1545  * the current task.
1546  */
1547 static void try_to_wake_up_local(struct task_struct *p)
1548 {
1549 	struct rq *rq = task_rq(p);
1550 
1551 	if (WARN_ON_ONCE(rq != this_rq()) ||
1552 	    WARN_ON_ONCE(p == current))
1553 		return;
1554 
1555 	lockdep_assert_held(&rq->lock);
1556 
1557 	if (!raw_spin_trylock(&p->pi_lock)) {
1558 		raw_spin_unlock(&rq->lock);
1559 		raw_spin_lock(&p->pi_lock);
1560 		raw_spin_lock(&rq->lock);
1561 	}
1562 
1563 	if (!(p->state & TASK_NORMAL))
1564 		goto out;
1565 
1566 	if (!p->on_rq)
1567 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1568 
1569 	ttwu_do_wakeup(rq, p, 0);
1570 	ttwu_stat(p, smp_processor_id(), 0);
1571 out:
1572 	raw_spin_unlock(&p->pi_lock);
1573 }
1574 
1575 /**
1576  * wake_up_process - Wake up a specific process
1577  * @p: The process to be woken up.
1578  *
1579  * Attempt to wake up the nominated process and move it to the set of runnable
1580  * processes.  Returns 1 if the process was woken up, 0 if it was already
1581  * running.
1582  *
1583  * It may be assumed that this function implies a write memory barrier before
1584  * changing the task state if and only if any tasks are woken up.
1585  */
1586 int wake_up_process(struct task_struct *p)
1587 {
1588 	WARN_ON(task_is_stopped_or_traced(p));
1589 	return try_to_wake_up(p, TASK_NORMAL, 0);
1590 }
1591 EXPORT_SYMBOL(wake_up_process);
1592 
1593 int wake_up_state(struct task_struct *p, unsigned int state)
1594 {
1595 	return try_to_wake_up(p, state, 0);
1596 }
1597 
1598 /*
1599  * Perform scheduler related setup for a newly forked process p.
1600  * p is forked by current.
1601  *
1602  * __sched_fork() is basic setup used by init_idle() too:
1603  */
1604 static void __sched_fork(struct task_struct *p)
1605 {
1606 	p->on_rq			= 0;
1607 
1608 	p->se.on_rq			= 0;
1609 	p->se.exec_start		= 0;
1610 	p->se.sum_exec_runtime		= 0;
1611 	p->se.prev_sum_exec_runtime	= 0;
1612 	p->se.nr_migrations		= 0;
1613 	p->se.vruntime			= 0;
1614 	INIT_LIST_HEAD(&p->se.group_node);
1615 
1616 #ifdef CONFIG_SCHEDSTATS
1617 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1618 #endif
1619 
1620 	INIT_LIST_HEAD(&p->rt.run_list);
1621 
1622 #ifdef CONFIG_PREEMPT_NOTIFIERS
1623 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1624 #endif
1625 
1626 #ifdef CONFIG_NUMA_BALANCING
1627 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1628 		p->mm->numa_next_scan = jiffies;
1629 		p->mm->numa_next_reset = jiffies;
1630 		p->mm->numa_scan_seq = 0;
1631 	}
1632 
1633 	p->node_stamp = 0ULL;
1634 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1635 	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1636 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1637 	p->numa_work.next = &p->numa_work;
1638 #endif /* CONFIG_NUMA_BALANCING */
1639 }
1640 
1641 #ifdef CONFIG_NUMA_BALANCING
1642 #ifdef CONFIG_SCHED_DEBUG
1643 void set_numabalancing_state(bool enabled)
1644 {
1645 	if (enabled)
1646 		sched_feat_set("NUMA");
1647 	else
1648 		sched_feat_set("NO_NUMA");
1649 }
1650 #else
1651 __read_mostly bool numabalancing_enabled;
1652 
1653 void set_numabalancing_state(bool enabled)
1654 {
1655 	numabalancing_enabled = enabled;
1656 }
1657 #endif /* CONFIG_SCHED_DEBUG */
1658 #endif /* CONFIG_NUMA_BALANCING */
1659 
1660 /*
1661  * fork()/clone()-time setup:
1662  */
1663 void sched_fork(struct task_struct *p)
1664 {
1665 	unsigned long flags;
1666 	int cpu = get_cpu();
1667 
1668 	__sched_fork(p);
1669 	/*
1670 	 * We mark the process as running here. This guarantees that
1671 	 * nobody will actually run it, and a signal or other external
1672 	 * event cannot wake it up and insert it on the runqueue either.
1673 	 */
1674 	p->state = TASK_RUNNING;
1675 
1676 	/*
1677 	 * Make sure we do not leak PI boosting priority to the child.
1678 	 */
1679 	p->prio = current->normal_prio;
1680 
1681 	/*
1682 	 * Revert to default priority/policy on fork if requested.
1683 	 */
1684 	if (unlikely(p->sched_reset_on_fork)) {
1685 		if (task_has_rt_policy(p)) {
1686 			p->policy = SCHED_NORMAL;
1687 			p->static_prio = NICE_TO_PRIO(0);
1688 			p->rt_priority = 0;
1689 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1690 			p->static_prio = NICE_TO_PRIO(0);
1691 
1692 		p->prio = p->normal_prio = __normal_prio(p);
1693 		set_load_weight(p);
1694 
1695 		/*
1696 		 * We don't need the reset flag anymore after the fork. It has
1697 		 * fulfilled its duty:
1698 		 */
1699 		p->sched_reset_on_fork = 0;
1700 	}
1701 
1702 	if (!rt_prio(p->prio))
1703 		p->sched_class = &fair_sched_class;
1704 
1705 	if (p->sched_class->task_fork)
1706 		p->sched_class->task_fork(p);
1707 
1708 	/*
1709 	 * The child is not yet in the pid-hash so no cgroup attach races,
1710 	 * and the cgroup is pinned to this child due to cgroup_fork()
1711 	 * is ran before sched_fork().
1712 	 *
1713 	 * Silence PROVE_RCU.
1714 	 */
1715 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1716 	set_task_cpu(p, cpu);
1717 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1718 
1719 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1720 	if (likely(sched_info_on()))
1721 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1722 #endif
1723 #if defined(CONFIG_SMP)
1724 	p->on_cpu = 0;
1725 #endif
1726 #ifdef CONFIG_PREEMPT_COUNT
1727 	/* Want to start with kernel preemption disabled. */
1728 	task_thread_info(p)->preempt_count = 1;
1729 #endif
1730 #ifdef CONFIG_SMP
1731 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1732 #endif
1733 
1734 	put_cpu();
1735 }
1736 
1737 /*
1738  * wake_up_new_task - wake up a newly created task for the first time.
1739  *
1740  * This function will do some initial scheduler statistics housekeeping
1741  * that must be done for every newly created context, then puts the task
1742  * on the runqueue and wakes it.
1743  */
1744 void wake_up_new_task(struct task_struct *p)
1745 {
1746 	unsigned long flags;
1747 	struct rq *rq;
1748 
1749 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1750 #ifdef CONFIG_SMP
1751 	/*
1752 	 * Fork balancing, do it here and not earlier because:
1753 	 *  - cpus_allowed can change in the fork path
1754 	 *  - any previously selected cpu might disappear through hotplug
1755 	 */
1756 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1757 #endif
1758 
1759 	/* Initialize new task's runnable average */
1760 	init_task_runnable_average(p);
1761 	rq = __task_rq_lock(p);
1762 	activate_task(rq, p, 0);
1763 	p->on_rq = 1;
1764 	trace_sched_wakeup_new(p, true);
1765 	check_preempt_curr(rq, p, WF_FORK);
1766 #ifdef CONFIG_SMP
1767 	if (p->sched_class->task_woken)
1768 		p->sched_class->task_woken(rq, p);
1769 #endif
1770 	task_rq_unlock(rq, p, &flags);
1771 }
1772 
1773 #ifdef CONFIG_PREEMPT_NOTIFIERS
1774 
1775 /**
1776  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1777  * @notifier: notifier struct to register
1778  */
1779 void preempt_notifier_register(struct preempt_notifier *notifier)
1780 {
1781 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1782 }
1783 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1784 
1785 /**
1786  * preempt_notifier_unregister - no longer interested in preemption notifications
1787  * @notifier: notifier struct to unregister
1788  *
1789  * This is safe to call from within a preemption notifier.
1790  */
1791 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1792 {
1793 	hlist_del(&notifier->link);
1794 }
1795 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1796 
1797 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1798 {
1799 	struct preempt_notifier *notifier;
1800 
1801 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1802 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1803 }
1804 
1805 static void
1806 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1807 				 struct task_struct *next)
1808 {
1809 	struct preempt_notifier *notifier;
1810 
1811 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1812 		notifier->ops->sched_out(notifier, next);
1813 }
1814 
1815 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1816 
1817 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1818 {
1819 }
1820 
1821 static void
1822 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1823 				 struct task_struct *next)
1824 {
1825 }
1826 
1827 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1828 
1829 /**
1830  * prepare_task_switch - prepare to switch tasks
1831  * @rq: the runqueue preparing to switch
1832  * @prev: the current task that is being switched out
1833  * @next: the task we are going to switch to.
1834  *
1835  * This is called with the rq lock held and interrupts off. It must
1836  * be paired with a subsequent finish_task_switch after the context
1837  * switch.
1838  *
1839  * prepare_task_switch sets up locking and calls architecture specific
1840  * hooks.
1841  */
1842 static inline void
1843 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1844 		    struct task_struct *next)
1845 {
1846 	trace_sched_switch(prev, next);
1847 	sched_info_switch(prev, next);
1848 	perf_event_task_sched_out(prev, next);
1849 	fire_sched_out_preempt_notifiers(prev, next);
1850 	prepare_lock_switch(rq, next);
1851 	prepare_arch_switch(next);
1852 }
1853 
1854 /**
1855  * finish_task_switch - clean up after a task-switch
1856  * @rq: runqueue associated with task-switch
1857  * @prev: the thread we just switched away from.
1858  *
1859  * finish_task_switch must be called after the context switch, paired
1860  * with a prepare_task_switch call before the context switch.
1861  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1862  * and do any other architecture-specific cleanup actions.
1863  *
1864  * Note that we may have delayed dropping an mm in context_switch(). If
1865  * so, we finish that here outside of the runqueue lock. (Doing it
1866  * with the lock held can cause deadlocks; see schedule() for
1867  * details.)
1868  */
1869 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1870 	__releases(rq->lock)
1871 {
1872 	struct mm_struct *mm = rq->prev_mm;
1873 	long prev_state;
1874 
1875 	rq->prev_mm = NULL;
1876 
1877 	/*
1878 	 * A task struct has one reference for the use as "current".
1879 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1880 	 * schedule one last time. The schedule call will never return, and
1881 	 * the scheduled task must drop that reference.
1882 	 * The test for TASK_DEAD must occur while the runqueue locks are
1883 	 * still held, otherwise prev could be scheduled on another cpu, die
1884 	 * there before we look at prev->state, and then the reference would
1885 	 * be dropped twice.
1886 	 *		Manfred Spraul <manfred@colorfullife.com>
1887 	 */
1888 	prev_state = prev->state;
1889 	vtime_task_switch(prev);
1890 	finish_arch_switch(prev);
1891 	perf_event_task_sched_in(prev, current);
1892 	finish_lock_switch(rq, prev);
1893 	finish_arch_post_lock_switch();
1894 
1895 	fire_sched_in_preempt_notifiers(current);
1896 	if (mm)
1897 		mmdrop(mm);
1898 	if (unlikely(prev_state == TASK_DEAD)) {
1899 		/*
1900 		 * Remove function-return probe instances associated with this
1901 		 * task and put them back on the free list.
1902 		 */
1903 		kprobe_flush_task(prev);
1904 		put_task_struct(prev);
1905 	}
1906 
1907 	tick_nohz_task_switch(current);
1908 }
1909 
1910 #ifdef CONFIG_SMP
1911 
1912 /* assumes rq->lock is held */
1913 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1914 {
1915 	if (prev->sched_class->pre_schedule)
1916 		prev->sched_class->pre_schedule(rq, prev);
1917 }
1918 
1919 /* rq->lock is NOT held, but preemption is disabled */
1920 static inline void post_schedule(struct rq *rq)
1921 {
1922 	if (rq->post_schedule) {
1923 		unsigned long flags;
1924 
1925 		raw_spin_lock_irqsave(&rq->lock, flags);
1926 		if (rq->curr->sched_class->post_schedule)
1927 			rq->curr->sched_class->post_schedule(rq);
1928 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1929 
1930 		rq->post_schedule = 0;
1931 	}
1932 }
1933 
1934 #else
1935 
1936 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1937 {
1938 }
1939 
1940 static inline void post_schedule(struct rq *rq)
1941 {
1942 }
1943 
1944 #endif
1945 
1946 /**
1947  * schedule_tail - first thing a freshly forked thread must call.
1948  * @prev: the thread we just switched away from.
1949  */
1950 asmlinkage void schedule_tail(struct task_struct *prev)
1951 	__releases(rq->lock)
1952 {
1953 	struct rq *rq = this_rq();
1954 
1955 	finish_task_switch(rq, prev);
1956 
1957 	/*
1958 	 * FIXME: do we need to worry about rq being invalidated by the
1959 	 * task_switch?
1960 	 */
1961 	post_schedule(rq);
1962 
1963 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1964 	/* In this case, finish_task_switch does not reenable preemption */
1965 	preempt_enable();
1966 #endif
1967 	if (current->set_child_tid)
1968 		put_user(task_pid_vnr(current), current->set_child_tid);
1969 }
1970 
1971 /*
1972  * context_switch - switch to the new MM and the new
1973  * thread's register state.
1974  */
1975 static inline void
1976 context_switch(struct rq *rq, struct task_struct *prev,
1977 	       struct task_struct *next)
1978 {
1979 	struct mm_struct *mm, *oldmm;
1980 
1981 	prepare_task_switch(rq, prev, next);
1982 
1983 	mm = next->mm;
1984 	oldmm = prev->active_mm;
1985 	/*
1986 	 * For paravirt, this is coupled with an exit in switch_to to
1987 	 * combine the page table reload and the switch backend into
1988 	 * one hypercall.
1989 	 */
1990 	arch_start_context_switch(prev);
1991 
1992 	if (!mm) {
1993 		next->active_mm = oldmm;
1994 		atomic_inc(&oldmm->mm_count);
1995 		enter_lazy_tlb(oldmm, next);
1996 	} else
1997 		switch_mm(oldmm, mm, next);
1998 
1999 	if (!prev->mm) {
2000 		prev->active_mm = NULL;
2001 		rq->prev_mm = oldmm;
2002 	}
2003 	/*
2004 	 * Since the runqueue lock will be released by the next
2005 	 * task (which is an invalid locking op but in the case
2006 	 * of the scheduler it's an obvious special-case), so we
2007 	 * do an early lockdep release here:
2008 	 */
2009 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2010 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2011 #endif
2012 
2013 	context_tracking_task_switch(prev, next);
2014 	/* Here we just switch the register state and the stack. */
2015 	switch_to(prev, next, prev);
2016 
2017 	barrier();
2018 	/*
2019 	 * this_rq must be evaluated again because prev may have moved
2020 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2021 	 * frame will be invalid.
2022 	 */
2023 	finish_task_switch(this_rq(), prev);
2024 }
2025 
2026 /*
2027  * nr_running and nr_context_switches:
2028  *
2029  * externally visible scheduler statistics: current number of runnable
2030  * threads, total number of context switches performed since bootup.
2031  */
2032 unsigned long nr_running(void)
2033 {
2034 	unsigned long i, sum = 0;
2035 
2036 	for_each_online_cpu(i)
2037 		sum += cpu_rq(i)->nr_running;
2038 
2039 	return sum;
2040 }
2041 
2042 unsigned long long nr_context_switches(void)
2043 {
2044 	int i;
2045 	unsigned long long sum = 0;
2046 
2047 	for_each_possible_cpu(i)
2048 		sum += cpu_rq(i)->nr_switches;
2049 
2050 	return sum;
2051 }
2052 
2053 unsigned long nr_iowait(void)
2054 {
2055 	unsigned long i, sum = 0;
2056 
2057 	for_each_possible_cpu(i)
2058 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2059 
2060 	return sum;
2061 }
2062 
2063 unsigned long nr_iowait_cpu(int cpu)
2064 {
2065 	struct rq *this = cpu_rq(cpu);
2066 	return atomic_read(&this->nr_iowait);
2067 }
2068 
2069 #ifdef CONFIG_SMP
2070 
2071 /*
2072  * sched_exec - execve() is a valuable balancing opportunity, because at
2073  * this point the task has the smallest effective memory and cache footprint.
2074  */
2075 void sched_exec(void)
2076 {
2077 	struct task_struct *p = current;
2078 	unsigned long flags;
2079 	int dest_cpu;
2080 
2081 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2082 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2083 	if (dest_cpu == smp_processor_id())
2084 		goto unlock;
2085 
2086 	if (likely(cpu_active(dest_cpu))) {
2087 		struct migration_arg arg = { p, dest_cpu };
2088 
2089 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2090 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2091 		return;
2092 	}
2093 unlock:
2094 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2095 }
2096 
2097 #endif
2098 
2099 DEFINE_PER_CPU(struct kernel_stat, kstat);
2100 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2101 
2102 EXPORT_PER_CPU_SYMBOL(kstat);
2103 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2104 
2105 /*
2106  * Return any ns on the sched_clock that have not yet been accounted in
2107  * @p in case that task is currently running.
2108  *
2109  * Called with task_rq_lock() held on @rq.
2110  */
2111 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2112 {
2113 	u64 ns = 0;
2114 
2115 	if (task_current(rq, p)) {
2116 		update_rq_clock(rq);
2117 		ns = rq_clock_task(rq) - p->se.exec_start;
2118 		if ((s64)ns < 0)
2119 			ns = 0;
2120 	}
2121 
2122 	return ns;
2123 }
2124 
2125 unsigned long long task_delta_exec(struct task_struct *p)
2126 {
2127 	unsigned long flags;
2128 	struct rq *rq;
2129 	u64 ns = 0;
2130 
2131 	rq = task_rq_lock(p, &flags);
2132 	ns = do_task_delta_exec(p, rq);
2133 	task_rq_unlock(rq, p, &flags);
2134 
2135 	return ns;
2136 }
2137 
2138 /*
2139  * Return accounted runtime for the task.
2140  * In case the task is currently running, return the runtime plus current's
2141  * pending runtime that have not been accounted yet.
2142  */
2143 unsigned long long task_sched_runtime(struct task_struct *p)
2144 {
2145 	unsigned long flags;
2146 	struct rq *rq;
2147 	u64 ns = 0;
2148 
2149 	rq = task_rq_lock(p, &flags);
2150 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2151 	task_rq_unlock(rq, p, &flags);
2152 
2153 	return ns;
2154 }
2155 
2156 /*
2157  * This function gets called by the timer code, with HZ frequency.
2158  * We call it with interrupts disabled.
2159  */
2160 void scheduler_tick(void)
2161 {
2162 	int cpu = smp_processor_id();
2163 	struct rq *rq = cpu_rq(cpu);
2164 	struct task_struct *curr = rq->curr;
2165 
2166 	sched_clock_tick();
2167 
2168 	raw_spin_lock(&rq->lock);
2169 	update_rq_clock(rq);
2170 	curr->sched_class->task_tick(rq, curr, 0);
2171 	update_cpu_load_active(rq);
2172 	raw_spin_unlock(&rq->lock);
2173 
2174 	perf_event_task_tick();
2175 
2176 #ifdef CONFIG_SMP
2177 	rq->idle_balance = idle_cpu(cpu);
2178 	trigger_load_balance(rq, cpu);
2179 #endif
2180 	rq_last_tick_reset(rq);
2181 }
2182 
2183 #ifdef CONFIG_NO_HZ_FULL
2184 /**
2185  * scheduler_tick_max_deferment
2186  *
2187  * Keep at least one tick per second when a single
2188  * active task is running because the scheduler doesn't
2189  * yet completely support full dynticks environment.
2190  *
2191  * This makes sure that uptime, CFS vruntime, load
2192  * balancing, etc... continue to move forward, even
2193  * with a very low granularity.
2194  */
2195 u64 scheduler_tick_max_deferment(void)
2196 {
2197 	struct rq *rq = this_rq();
2198 	unsigned long next, now = ACCESS_ONCE(jiffies);
2199 
2200 	next = rq->last_sched_tick + HZ;
2201 
2202 	if (time_before_eq(next, now))
2203 		return 0;
2204 
2205 	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2206 }
2207 #endif
2208 
2209 notrace unsigned long get_parent_ip(unsigned long addr)
2210 {
2211 	if (in_lock_functions(addr)) {
2212 		addr = CALLER_ADDR2;
2213 		if (in_lock_functions(addr))
2214 			addr = CALLER_ADDR3;
2215 	}
2216 	return addr;
2217 }
2218 
2219 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2220 				defined(CONFIG_PREEMPT_TRACER))
2221 
2222 void __kprobes add_preempt_count(int val)
2223 {
2224 #ifdef CONFIG_DEBUG_PREEMPT
2225 	/*
2226 	 * Underflow?
2227 	 */
2228 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2229 		return;
2230 #endif
2231 	preempt_count() += val;
2232 #ifdef CONFIG_DEBUG_PREEMPT
2233 	/*
2234 	 * Spinlock count overflowing soon?
2235 	 */
2236 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2237 				PREEMPT_MASK - 10);
2238 #endif
2239 	if (preempt_count() == val)
2240 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2241 }
2242 EXPORT_SYMBOL(add_preempt_count);
2243 
2244 void __kprobes sub_preempt_count(int val)
2245 {
2246 #ifdef CONFIG_DEBUG_PREEMPT
2247 	/*
2248 	 * Underflow?
2249 	 */
2250 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2251 		return;
2252 	/*
2253 	 * Is the spinlock portion underflowing?
2254 	 */
2255 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2256 			!(preempt_count() & PREEMPT_MASK)))
2257 		return;
2258 #endif
2259 
2260 	if (preempt_count() == val)
2261 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2262 	preempt_count() -= val;
2263 }
2264 EXPORT_SYMBOL(sub_preempt_count);
2265 
2266 #endif
2267 
2268 /*
2269  * Print scheduling while atomic bug:
2270  */
2271 static noinline void __schedule_bug(struct task_struct *prev)
2272 {
2273 	if (oops_in_progress)
2274 		return;
2275 
2276 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2277 		prev->comm, prev->pid, preempt_count());
2278 
2279 	debug_show_held_locks(prev);
2280 	print_modules();
2281 	if (irqs_disabled())
2282 		print_irqtrace_events(prev);
2283 	dump_stack();
2284 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2285 }
2286 
2287 /*
2288  * Various schedule()-time debugging checks and statistics:
2289  */
2290 static inline void schedule_debug(struct task_struct *prev)
2291 {
2292 	/*
2293 	 * Test if we are atomic. Since do_exit() needs to call into
2294 	 * schedule() atomically, we ignore that path for now.
2295 	 * Otherwise, whine if we are scheduling when we should not be.
2296 	 */
2297 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2298 		__schedule_bug(prev);
2299 	rcu_sleep_check();
2300 
2301 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2302 
2303 	schedstat_inc(this_rq(), sched_count);
2304 }
2305 
2306 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2307 {
2308 	if (prev->on_rq || rq->skip_clock_update < 0)
2309 		update_rq_clock(rq);
2310 	prev->sched_class->put_prev_task(rq, prev);
2311 }
2312 
2313 /*
2314  * Pick up the highest-prio task:
2315  */
2316 static inline struct task_struct *
2317 pick_next_task(struct rq *rq)
2318 {
2319 	const struct sched_class *class;
2320 	struct task_struct *p;
2321 
2322 	/*
2323 	 * Optimization: we know that if all tasks are in
2324 	 * the fair class we can call that function directly:
2325 	 */
2326 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2327 		p = fair_sched_class.pick_next_task(rq);
2328 		if (likely(p))
2329 			return p;
2330 	}
2331 
2332 	for_each_class(class) {
2333 		p = class->pick_next_task(rq);
2334 		if (p)
2335 			return p;
2336 	}
2337 
2338 	BUG(); /* the idle class will always have a runnable task */
2339 }
2340 
2341 /*
2342  * __schedule() is the main scheduler function.
2343  *
2344  * The main means of driving the scheduler and thus entering this function are:
2345  *
2346  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2347  *
2348  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2349  *      paths. For example, see arch/x86/entry_64.S.
2350  *
2351  *      To drive preemption between tasks, the scheduler sets the flag in timer
2352  *      interrupt handler scheduler_tick().
2353  *
2354  *   3. Wakeups don't really cause entry into schedule(). They add a
2355  *      task to the run-queue and that's it.
2356  *
2357  *      Now, if the new task added to the run-queue preempts the current
2358  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2359  *      called on the nearest possible occasion:
2360  *
2361  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2362  *
2363  *         - in syscall or exception context, at the next outmost
2364  *           preempt_enable(). (this might be as soon as the wake_up()'s
2365  *           spin_unlock()!)
2366  *
2367  *         - in IRQ context, return from interrupt-handler to
2368  *           preemptible context
2369  *
2370  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2371  *         then at the next:
2372  *
2373  *          - cond_resched() call
2374  *          - explicit schedule() call
2375  *          - return from syscall or exception to user-space
2376  *          - return from interrupt-handler to user-space
2377  */
2378 static void __sched __schedule(void)
2379 {
2380 	struct task_struct *prev, *next;
2381 	unsigned long *switch_count;
2382 	struct rq *rq;
2383 	int cpu;
2384 
2385 need_resched:
2386 	preempt_disable();
2387 	cpu = smp_processor_id();
2388 	rq = cpu_rq(cpu);
2389 	rcu_note_context_switch(cpu);
2390 	prev = rq->curr;
2391 
2392 	schedule_debug(prev);
2393 
2394 	if (sched_feat(HRTICK))
2395 		hrtick_clear(rq);
2396 
2397 	raw_spin_lock_irq(&rq->lock);
2398 
2399 	switch_count = &prev->nivcsw;
2400 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2401 		if (unlikely(signal_pending_state(prev->state, prev))) {
2402 			prev->state = TASK_RUNNING;
2403 		} else {
2404 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2405 			prev->on_rq = 0;
2406 
2407 			/*
2408 			 * If a worker went to sleep, notify and ask workqueue
2409 			 * whether it wants to wake up a task to maintain
2410 			 * concurrency.
2411 			 */
2412 			if (prev->flags & PF_WQ_WORKER) {
2413 				struct task_struct *to_wakeup;
2414 
2415 				to_wakeup = wq_worker_sleeping(prev, cpu);
2416 				if (to_wakeup)
2417 					try_to_wake_up_local(to_wakeup);
2418 			}
2419 		}
2420 		switch_count = &prev->nvcsw;
2421 	}
2422 
2423 	pre_schedule(rq, prev);
2424 
2425 	if (unlikely(!rq->nr_running))
2426 		idle_balance(cpu, rq);
2427 
2428 	put_prev_task(rq, prev);
2429 	next = pick_next_task(rq);
2430 	clear_tsk_need_resched(prev);
2431 	rq->skip_clock_update = 0;
2432 
2433 	if (likely(prev != next)) {
2434 		rq->nr_switches++;
2435 		rq->curr = next;
2436 		++*switch_count;
2437 
2438 		context_switch(rq, prev, next); /* unlocks the rq */
2439 		/*
2440 		 * The context switch have flipped the stack from under us
2441 		 * and restored the local variables which were saved when
2442 		 * this task called schedule() in the past. prev == current
2443 		 * is still correct, but it can be moved to another cpu/rq.
2444 		 */
2445 		cpu = smp_processor_id();
2446 		rq = cpu_rq(cpu);
2447 	} else
2448 		raw_spin_unlock_irq(&rq->lock);
2449 
2450 	post_schedule(rq);
2451 
2452 	sched_preempt_enable_no_resched();
2453 	if (need_resched())
2454 		goto need_resched;
2455 }
2456 
2457 static inline void sched_submit_work(struct task_struct *tsk)
2458 {
2459 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2460 		return;
2461 	/*
2462 	 * If we are going to sleep and we have plugged IO queued,
2463 	 * make sure to submit it to avoid deadlocks.
2464 	 */
2465 	if (blk_needs_flush_plug(tsk))
2466 		blk_schedule_flush_plug(tsk);
2467 }
2468 
2469 asmlinkage void __sched schedule(void)
2470 {
2471 	struct task_struct *tsk = current;
2472 
2473 	sched_submit_work(tsk);
2474 	__schedule();
2475 }
2476 EXPORT_SYMBOL(schedule);
2477 
2478 #ifdef CONFIG_CONTEXT_TRACKING
2479 asmlinkage void __sched schedule_user(void)
2480 {
2481 	/*
2482 	 * If we come here after a random call to set_need_resched(),
2483 	 * or we have been woken up remotely but the IPI has not yet arrived,
2484 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2485 	 * we find a better solution.
2486 	 */
2487 	user_exit();
2488 	schedule();
2489 	user_enter();
2490 }
2491 #endif
2492 
2493 /**
2494  * schedule_preempt_disabled - called with preemption disabled
2495  *
2496  * Returns with preemption disabled. Note: preempt_count must be 1
2497  */
2498 void __sched schedule_preempt_disabled(void)
2499 {
2500 	sched_preempt_enable_no_resched();
2501 	schedule();
2502 	preempt_disable();
2503 }
2504 
2505 #ifdef CONFIG_PREEMPT
2506 /*
2507  * this is the entry point to schedule() from in-kernel preemption
2508  * off of preempt_enable. Kernel preemptions off return from interrupt
2509  * occur there and call schedule directly.
2510  */
2511 asmlinkage void __sched notrace preempt_schedule(void)
2512 {
2513 	struct thread_info *ti = current_thread_info();
2514 
2515 	/*
2516 	 * If there is a non-zero preempt_count or interrupts are disabled,
2517 	 * we do not want to preempt the current task. Just return..
2518 	 */
2519 	if (likely(ti->preempt_count || irqs_disabled()))
2520 		return;
2521 
2522 	do {
2523 		add_preempt_count_notrace(PREEMPT_ACTIVE);
2524 		__schedule();
2525 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
2526 
2527 		/*
2528 		 * Check again in case we missed a preemption opportunity
2529 		 * between schedule and now.
2530 		 */
2531 		barrier();
2532 	} while (need_resched());
2533 }
2534 EXPORT_SYMBOL(preempt_schedule);
2535 
2536 /*
2537  * this is the entry point to schedule() from kernel preemption
2538  * off of irq context.
2539  * Note, that this is called and return with irqs disabled. This will
2540  * protect us against recursive calling from irq.
2541  */
2542 asmlinkage void __sched preempt_schedule_irq(void)
2543 {
2544 	struct thread_info *ti = current_thread_info();
2545 	enum ctx_state prev_state;
2546 
2547 	/* Catch callers which need to be fixed */
2548 	BUG_ON(ti->preempt_count || !irqs_disabled());
2549 
2550 	prev_state = exception_enter();
2551 
2552 	do {
2553 		add_preempt_count(PREEMPT_ACTIVE);
2554 		local_irq_enable();
2555 		__schedule();
2556 		local_irq_disable();
2557 		sub_preempt_count(PREEMPT_ACTIVE);
2558 
2559 		/*
2560 		 * Check again in case we missed a preemption opportunity
2561 		 * between schedule and now.
2562 		 */
2563 		barrier();
2564 	} while (need_resched());
2565 
2566 	exception_exit(prev_state);
2567 }
2568 
2569 #endif /* CONFIG_PREEMPT */
2570 
2571 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2572 			  void *key)
2573 {
2574 	return try_to_wake_up(curr->private, mode, wake_flags);
2575 }
2576 EXPORT_SYMBOL(default_wake_function);
2577 
2578 /*
2579  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2580  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2581  * number) then we wake all the non-exclusive tasks and one exclusive task.
2582  *
2583  * There are circumstances in which we can try to wake a task which has already
2584  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2585  * zero in this (rare) case, and we handle it by continuing to scan the queue.
2586  */
2587 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2588 			int nr_exclusive, int wake_flags, void *key)
2589 {
2590 	wait_queue_t *curr, *next;
2591 
2592 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2593 		unsigned flags = curr->flags;
2594 
2595 		if (curr->func(curr, mode, wake_flags, key) &&
2596 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2597 			break;
2598 	}
2599 }
2600 
2601 /**
2602  * __wake_up - wake up threads blocked on a waitqueue.
2603  * @q: the waitqueue
2604  * @mode: which threads
2605  * @nr_exclusive: how many wake-one or wake-many threads to wake up
2606  * @key: is directly passed to the wakeup function
2607  *
2608  * It may be assumed that this function implies a write memory barrier before
2609  * changing the task state if and only if any tasks are woken up.
2610  */
2611 void __wake_up(wait_queue_head_t *q, unsigned int mode,
2612 			int nr_exclusive, void *key)
2613 {
2614 	unsigned long flags;
2615 
2616 	spin_lock_irqsave(&q->lock, flags);
2617 	__wake_up_common(q, mode, nr_exclusive, 0, key);
2618 	spin_unlock_irqrestore(&q->lock, flags);
2619 }
2620 EXPORT_SYMBOL(__wake_up);
2621 
2622 /*
2623  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2624  */
2625 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2626 {
2627 	__wake_up_common(q, mode, nr, 0, NULL);
2628 }
2629 EXPORT_SYMBOL_GPL(__wake_up_locked);
2630 
2631 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2632 {
2633 	__wake_up_common(q, mode, 1, 0, key);
2634 }
2635 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2636 
2637 /**
2638  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2639  * @q: the waitqueue
2640  * @mode: which threads
2641  * @nr_exclusive: how many wake-one or wake-many threads to wake up
2642  * @key: opaque value to be passed to wakeup targets
2643  *
2644  * The sync wakeup differs that the waker knows that it will schedule
2645  * away soon, so while the target thread will be woken up, it will not
2646  * be migrated to another CPU - ie. the two threads are 'synchronized'
2647  * with each other. This can prevent needless bouncing between CPUs.
2648  *
2649  * On UP it can prevent extra preemption.
2650  *
2651  * It may be assumed that this function implies a write memory barrier before
2652  * changing the task state if and only if any tasks are woken up.
2653  */
2654 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2655 			int nr_exclusive, void *key)
2656 {
2657 	unsigned long flags;
2658 	int wake_flags = WF_SYNC;
2659 
2660 	if (unlikely(!q))
2661 		return;
2662 
2663 	if (unlikely(!nr_exclusive))
2664 		wake_flags = 0;
2665 
2666 	spin_lock_irqsave(&q->lock, flags);
2667 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2668 	spin_unlock_irqrestore(&q->lock, flags);
2669 }
2670 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2671 
2672 /*
2673  * __wake_up_sync - see __wake_up_sync_key()
2674  */
2675 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2676 {
2677 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2678 }
2679 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2680 
2681 /**
2682  * complete: - signals a single thread waiting on this completion
2683  * @x:  holds the state of this particular completion
2684  *
2685  * This will wake up a single thread waiting on this completion. Threads will be
2686  * awakened in the same order in which they were queued.
2687  *
2688  * See also complete_all(), wait_for_completion() and related routines.
2689  *
2690  * It may be assumed that this function implies a write memory barrier before
2691  * changing the task state if and only if any tasks are woken up.
2692  */
2693 void complete(struct completion *x)
2694 {
2695 	unsigned long flags;
2696 
2697 	spin_lock_irqsave(&x->wait.lock, flags);
2698 	x->done++;
2699 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2700 	spin_unlock_irqrestore(&x->wait.lock, flags);
2701 }
2702 EXPORT_SYMBOL(complete);
2703 
2704 /**
2705  * complete_all: - signals all threads waiting on this completion
2706  * @x:  holds the state of this particular completion
2707  *
2708  * This will wake up all threads waiting on this particular completion event.
2709  *
2710  * It may be assumed that this function implies a write memory barrier before
2711  * changing the task state if and only if any tasks are woken up.
2712  */
2713 void complete_all(struct completion *x)
2714 {
2715 	unsigned long flags;
2716 
2717 	spin_lock_irqsave(&x->wait.lock, flags);
2718 	x->done += UINT_MAX/2;
2719 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2720 	spin_unlock_irqrestore(&x->wait.lock, flags);
2721 }
2722 EXPORT_SYMBOL(complete_all);
2723 
2724 static inline long __sched
2725 do_wait_for_common(struct completion *x,
2726 		   long (*action)(long), long timeout, int state)
2727 {
2728 	if (!x->done) {
2729 		DECLARE_WAITQUEUE(wait, current);
2730 
2731 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2732 		do {
2733 			if (signal_pending_state(state, current)) {
2734 				timeout = -ERESTARTSYS;
2735 				break;
2736 			}
2737 			__set_current_state(state);
2738 			spin_unlock_irq(&x->wait.lock);
2739 			timeout = action(timeout);
2740 			spin_lock_irq(&x->wait.lock);
2741 		} while (!x->done && timeout);
2742 		__remove_wait_queue(&x->wait, &wait);
2743 		if (!x->done)
2744 			return timeout;
2745 	}
2746 	x->done--;
2747 	return timeout ?: 1;
2748 }
2749 
2750 static inline long __sched
2751 __wait_for_common(struct completion *x,
2752 		  long (*action)(long), long timeout, int state)
2753 {
2754 	might_sleep();
2755 
2756 	spin_lock_irq(&x->wait.lock);
2757 	timeout = do_wait_for_common(x, action, timeout, state);
2758 	spin_unlock_irq(&x->wait.lock);
2759 	return timeout;
2760 }
2761 
2762 static long __sched
2763 wait_for_common(struct completion *x, long timeout, int state)
2764 {
2765 	return __wait_for_common(x, schedule_timeout, timeout, state);
2766 }
2767 
2768 static long __sched
2769 wait_for_common_io(struct completion *x, long timeout, int state)
2770 {
2771 	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2772 }
2773 
2774 /**
2775  * wait_for_completion: - waits for completion of a task
2776  * @x:  holds the state of this particular completion
2777  *
2778  * This waits to be signaled for completion of a specific task. It is NOT
2779  * interruptible and there is no timeout.
2780  *
2781  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2782  * and interrupt capability. Also see complete().
2783  */
2784 void __sched wait_for_completion(struct completion *x)
2785 {
2786 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2787 }
2788 EXPORT_SYMBOL(wait_for_completion);
2789 
2790 /**
2791  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2792  * @x:  holds the state of this particular completion
2793  * @timeout:  timeout value in jiffies
2794  *
2795  * This waits for either a completion of a specific task to be signaled or for a
2796  * specified timeout to expire. The timeout is in jiffies. It is not
2797  * interruptible.
2798  *
2799  * The return value is 0 if timed out, and positive (at least 1, or number of
2800  * jiffies left till timeout) if completed.
2801  */
2802 unsigned long __sched
2803 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2804 {
2805 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2806 }
2807 EXPORT_SYMBOL(wait_for_completion_timeout);
2808 
2809 /**
2810  * wait_for_completion_io: - waits for completion of a task
2811  * @x:  holds the state of this particular completion
2812  *
2813  * This waits to be signaled for completion of a specific task. It is NOT
2814  * interruptible and there is no timeout. The caller is accounted as waiting
2815  * for IO.
2816  */
2817 void __sched wait_for_completion_io(struct completion *x)
2818 {
2819 	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2820 }
2821 EXPORT_SYMBOL(wait_for_completion_io);
2822 
2823 /**
2824  * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2825  * @x:  holds the state of this particular completion
2826  * @timeout:  timeout value in jiffies
2827  *
2828  * This waits for either a completion of a specific task to be signaled or for a
2829  * specified timeout to expire. The timeout is in jiffies. It is not
2830  * interruptible. The caller is accounted as waiting for IO.
2831  *
2832  * The return value is 0 if timed out, and positive (at least 1, or number of
2833  * jiffies left till timeout) if completed.
2834  */
2835 unsigned long __sched
2836 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2837 {
2838 	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2839 }
2840 EXPORT_SYMBOL(wait_for_completion_io_timeout);
2841 
2842 /**
2843  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2844  * @x:  holds the state of this particular completion
2845  *
2846  * This waits for completion of a specific task to be signaled. It is
2847  * interruptible.
2848  *
2849  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2850  */
2851 int __sched wait_for_completion_interruptible(struct completion *x)
2852 {
2853 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2854 	if (t == -ERESTARTSYS)
2855 		return t;
2856 	return 0;
2857 }
2858 EXPORT_SYMBOL(wait_for_completion_interruptible);
2859 
2860 /**
2861  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2862  * @x:  holds the state of this particular completion
2863  * @timeout:  timeout value in jiffies
2864  *
2865  * This waits for either a completion of a specific task to be signaled or for a
2866  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2867  *
2868  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2869  * positive (at least 1, or number of jiffies left till timeout) if completed.
2870  */
2871 long __sched
2872 wait_for_completion_interruptible_timeout(struct completion *x,
2873 					  unsigned long timeout)
2874 {
2875 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2876 }
2877 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2878 
2879 /**
2880  * wait_for_completion_killable: - waits for completion of a task (killable)
2881  * @x:  holds the state of this particular completion
2882  *
2883  * This waits to be signaled for completion of a specific task. It can be
2884  * interrupted by a kill signal.
2885  *
2886  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2887  */
2888 int __sched wait_for_completion_killable(struct completion *x)
2889 {
2890 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2891 	if (t == -ERESTARTSYS)
2892 		return t;
2893 	return 0;
2894 }
2895 EXPORT_SYMBOL(wait_for_completion_killable);
2896 
2897 /**
2898  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2899  * @x:  holds the state of this particular completion
2900  * @timeout:  timeout value in jiffies
2901  *
2902  * This waits for either a completion of a specific task to be
2903  * signaled or for a specified timeout to expire. It can be
2904  * interrupted by a kill signal. The timeout is in jiffies.
2905  *
2906  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2907  * positive (at least 1, or number of jiffies left till timeout) if completed.
2908  */
2909 long __sched
2910 wait_for_completion_killable_timeout(struct completion *x,
2911 				     unsigned long timeout)
2912 {
2913 	return wait_for_common(x, timeout, TASK_KILLABLE);
2914 }
2915 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2916 
2917 /**
2918  *	try_wait_for_completion - try to decrement a completion without blocking
2919  *	@x:	completion structure
2920  *
2921  *	Returns: 0 if a decrement cannot be done without blocking
2922  *		 1 if a decrement succeeded.
2923  *
2924  *	If a completion is being used as a counting completion,
2925  *	attempt to decrement the counter without blocking. This
2926  *	enables us to avoid waiting if the resource the completion
2927  *	is protecting is not available.
2928  */
2929 bool try_wait_for_completion(struct completion *x)
2930 {
2931 	unsigned long flags;
2932 	int ret = 1;
2933 
2934 	spin_lock_irqsave(&x->wait.lock, flags);
2935 	if (!x->done)
2936 		ret = 0;
2937 	else
2938 		x->done--;
2939 	spin_unlock_irqrestore(&x->wait.lock, flags);
2940 	return ret;
2941 }
2942 EXPORT_SYMBOL(try_wait_for_completion);
2943 
2944 /**
2945  *	completion_done - Test to see if a completion has any waiters
2946  *	@x:	completion structure
2947  *
2948  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
2949  *		 1 if there are no waiters.
2950  *
2951  */
2952 bool completion_done(struct completion *x)
2953 {
2954 	unsigned long flags;
2955 	int ret = 1;
2956 
2957 	spin_lock_irqsave(&x->wait.lock, flags);
2958 	if (!x->done)
2959 		ret = 0;
2960 	spin_unlock_irqrestore(&x->wait.lock, flags);
2961 	return ret;
2962 }
2963 EXPORT_SYMBOL(completion_done);
2964 
2965 static long __sched
2966 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2967 {
2968 	unsigned long flags;
2969 	wait_queue_t wait;
2970 
2971 	init_waitqueue_entry(&wait, current);
2972 
2973 	__set_current_state(state);
2974 
2975 	spin_lock_irqsave(&q->lock, flags);
2976 	__add_wait_queue(q, &wait);
2977 	spin_unlock(&q->lock);
2978 	timeout = schedule_timeout(timeout);
2979 	spin_lock_irq(&q->lock);
2980 	__remove_wait_queue(q, &wait);
2981 	spin_unlock_irqrestore(&q->lock, flags);
2982 
2983 	return timeout;
2984 }
2985 
2986 void __sched interruptible_sleep_on(wait_queue_head_t *q)
2987 {
2988 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2989 }
2990 EXPORT_SYMBOL(interruptible_sleep_on);
2991 
2992 long __sched
2993 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2994 {
2995 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2996 }
2997 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2998 
2999 void __sched sleep_on(wait_queue_head_t *q)
3000 {
3001 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3002 }
3003 EXPORT_SYMBOL(sleep_on);
3004 
3005 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3006 {
3007 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3008 }
3009 EXPORT_SYMBOL(sleep_on_timeout);
3010 
3011 #ifdef CONFIG_RT_MUTEXES
3012 
3013 /*
3014  * rt_mutex_setprio - set the current priority of a task
3015  * @p: task
3016  * @prio: prio value (kernel-internal form)
3017  *
3018  * This function changes the 'effective' priority of a task. It does
3019  * not touch ->normal_prio like __setscheduler().
3020  *
3021  * Used by the rt_mutex code to implement priority inheritance logic.
3022  */
3023 void rt_mutex_setprio(struct task_struct *p, int prio)
3024 {
3025 	int oldprio, on_rq, running;
3026 	struct rq *rq;
3027 	const struct sched_class *prev_class;
3028 
3029 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3030 
3031 	rq = __task_rq_lock(p);
3032 
3033 	/*
3034 	 * Idle task boosting is a nono in general. There is one
3035 	 * exception, when PREEMPT_RT and NOHZ is active:
3036 	 *
3037 	 * The idle task calls get_next_timer_interrupt() and holds
3038 	 * the timer wheel base->lock on the CPU and another CPU wants
3039 	 * to access the timer (probably to cancel it). We can safely
3040 	 * ignore the boosting request, as the idle CPU runs this code
3041 	 * with interrupts disabled and will complete the lock
3042 	 * protected section without being interrupted. So there is no
3043 	 * real need to boost.
3044 	 */
3045 	if (unlikely(p == rq->idle)) {
3046 		WARN_ON(p != rq->curr);
3047 		WARN_ON(p->pi_blocked_on);
3048 		goto out_unlock;
3049 	}
3050 
3051 	trace_sched_pi_setprio(p, prio);
3052 	oldprio = p->prio;
3053 	prev_class = p->sched_class;
3054 	on_rq = p->on_rq;
3055 	running = task_current(rq, p);
3056 	if (on_rq)
3057 		dequeue_task(rq, p, 0);
3058 	if (running)
3059 		p->sched_class->put_prev_task(rq, p);
3060 
3061 	if (rt_prio(prio))
3062 		p->sched_class = &rt_sched_class;
3063 	else
3064 		p->sched_class = &fair_sched_class;
3065 
3066 	p->prio = prio;
3067 
3068 	if (running)
3069 		p->sched_class->set_curr_task(rq);
3070 	if (on_rq)
3071 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3072 
3073 	check_class_changed(rq, p, prev_class, oldprio);
3074 out_unlock:
3075 	__task_rq_unlock(rq);
3076 }
3077 #endif
3078 void set_user_nice(struct task_struct *p, long nice)
3079 {
3080 	int old_prio, delta, on_rq;
3081 	unsigned long flags;
3082 	struct rq *rq;
3083 
3084 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3085 		return;
3086 	/*
3087 	 * We have to be careful, if called from sys_setpriority(),
3088 	 * the task might be in the middle of scheduling on another CPU.
3089 	 */
3090 	rq = task_rq_lock(p, &flags);
3091 	/*
3092 	 * The RT priorities are set via sched_setscheduler(), but we still
3093 	 * allow the 'normal' nice value to be set - but as expected
3094 	 * it wont have any effect on scheduling until the task is
3095 	 * SCHED_FIFO/SCHED_RR:
3096 	 */
3097 	if (task_has_rt_policy(p)) {
3098 		p->static_prio = NICE_TO_PRIO(nice);
3099 		goto out_unlock;
3100 	}
3101 	on_rq = p->on_rq;
3102 	if (on_rq)
3103 		dequeue_task(rq, p, 0);
3104 
3105 	p->static_prio = NICE_TO_PRIO(nice);
3106 	set_load_weight(p);
3107 	old_prio = p->prio;
3108 	p->prio = effective_prio(p);
3109 	delta = p->prio - old_prio;
3110 
3111 	if (on_rq) {
3112 		enqueue_task(rq, p, 0);
3113 		/*
3114 		 * If the task increased its priority or is running and
3115 		 * lowered its priority, then reschedule its CPU:
3116 		 */
3117 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3118 			resched_task(rq->curr);
3119 	}
3120 out_unlock:
3121 	task_rq_unlock(rq, p, &flags);
3122 }
3123 EXPORT_SYMBOL(set_user_nice);
3124 
3125 /*
3126  * can_nice - check if a task can reduce its nice value
3127  * @p: task
3128  * @nice: nice value
3129  */
3130 int can_nice(const struct task_struct *p, const int nice)
3131 {
3132 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3133 	int nice_rlim = 20 - nice;
3134 
3135 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3136 		capable(CAP_SYS_NICE));
3137 }
3138 
3139 #ifdef __ARCH_WANT_SYS_NICE
3140 
3141 /*
3142  * sys_nice - change the priority of the current process.
3143  * @increment: priority increment
3144  *
3145  * sys_setpriority is a more generic, but much slower function that
3146  * does similar things.
3147  */
3148 SYSCALL_DEFINE1(nice, int, increment)
3149 {
3150 	long nice, retval;
3151 
3152 	/*
3153 	 * Setpriority might change our priority at the same moment.
3154 	 * We don't have to worry. Conceptually one call occurs first
3155 	 * and we have a single winner.
3156 	 */
3157 	if (increment < -40)
3158 		increment = -40;
3159 	if (increment > 40)
3160 		increment = 40;
3161 
3162 	nice = TASK_NICE(current) + increment;
3163 	if (nice < -20)
3164 		nice = -20;
3165 	if (nice > 19)
3166 		nice = 19;
3167 
3168 	if (increment < 0 && !can_nice(current, nice))
3169 		return -EPERM;
3170 
3171 	retval = security_task_setnice(current, nice);
3172 	if (retval)
3173 		return retval;
3174 
3175 	set_user_nice(current, nice);
3176 	return 0;
3177 }
3178 
3179 #endif
3180 
3181 /**
3182  * task_prio - return the priority value of a given task.
3183  * @p: the task in question.
3184  *
3185  * This is the priority value as seen by users in /proc.
3186  * RT tasks are offset by -200. Normal tasks are centered
3187  * around 0, value goes from -16 to +15.
3188  */
3189 int task_prio(const struct task_struct *p)
3190 {
3191 	return p->prio - MAX_RT_PRIO;
3192 }
3193 
3194 /**
3195  * task_nice - return the nice value of a given task.
3196  * @p: the task in question.
3197  */
3198 int task_nice(const struct task_struct *p)
3199 {
3200 	return TASK_NICE(p);
3201 }
3202 EXPORT_SYMBOL(task_nice);
3203 
3204 /**
3205  * idle_cpu - is a given cpu idle currently?
3206  * @cpu: the processor in question.
3207  */
3208 int idle_cpu(int cpu)
3209 {
3210 	struct rq *rq = cpu_rq(cpu);
3211 
3212 	if (rq->curr != rq->idle)
3213 		return 0;
3214 
3215 	if (rq->nr_running)
3216 		return 0;
3217 
3218 #ifdef CONFIG_SMP
3219 	if (!llist_empty(&rq->wake_list))
3220 		return 0;
3221 #endif
3222 
3223 	return 1;
3224 }
3225 
3226 /**
3227  * idle_task - return the idle task for a given cpu.
3228  * @cpu: the processor in question.
3229  */
3230 struct task_struct *idle_task(int cpu)
3231 {
3232 	return cpu_rq(cpu)->idle;
3233 }
3234 
3235 /**
3236  * find_process_by_pid - find a process with a matching PID value.
3237  * @pid: the pid in question.
3238  */
3239 static struct task_struct *find_process_by_pid(pid_t pid)
3240 {
3241 	return pid ? find_task_by_vpid(pid) : current;
3242 }
3243 
3244 /* Actually do priority change: must hold rq lock. */
3245 static void
3246 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3247 {
3248 	p->policy = policy;
3249 	p->rt_priority = prio;
3250 	p->normal_prio = normal_prio(p);
3251 	/* we are holding p->pi_lock already */
3252 	p->prio = rt_mutex_getprio(p);
3253 	if (rt_prio(p->prio))
3254 		p->sched_class = &rt_sched_class;
3255 	else
3256 		p->sched_class = &fair_sched_class;
3257 	set_load_weight(p);
3258 }
3259 
3260 /*
3261  * check the target process has a UID that matches the current process's
3262  */
3263 static bool check_same_owner(struct task_struct *p)
3264 {
3265 	const struct cred *cred = current_cred(), *pcred;
3266 	bool match;
3267 
3268 	rcu_read_lock();
3269 	pcred = __task_cred(p);
3270 	match = (uid_eq(cred->euid, pcred->euid) ||
3271 		 uid_eq(cred->euid, pcred->uid));
3272 	rcu_read_unlock();
3273 	return match;
3274 }
3275 
3276 static int __sched_setscheduler(struct task_struct *p, int policy,
3277 				const struct sched_param *param, bool user)
3278 {
3279 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3280 	unsigned long flags;
3281 	const struct sched_class *prev_class;
3282 	struct rq *rq;
3283 	int reset_on_fork;
3284 
3285 	/* may grab non-irq protected spin_locks */
3286 	BUG_ON(in_interrupt());
3287 recheck:
3288 	/* double check policy once rq lock held */
3289 	if (policy < 0) {
3290 		reset_on_fork = p->sched_reset_on_fork;
3291 		policy = oldpolicy = p->policy;
3292 	} else {
3293 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3294 		policy &= ~SCHED_RESET_ON_FORK;
3295 
3296 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3297 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3298 				policy != SCHED_IDLE)
3299 			return -EINVAL;
3300 	}
3301 
3302 	/*
3303 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3304 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3305 	 * SCHED_BATCH and SCHED_IDLE is 0.
3306 	 */
3307 	if (param->sched_priority < 0 ||
3308 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3309 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3310 		return -EINVAL;
3311 	if (rt_policy(policy) != (param->sched_priority != 0))
3312 		return -EINVAL;
3313 
3314 	/*
3315 	 * Allow unprivileged RT tasks to decrease priority:
3316 	 */
3317 	if (user && !capable(CAP_SYS_NICE)) {
3318 		if (rt_policy(policy)) {
3319 			unsigned long rlim_rtprio =
3320 					task_rlimit(p, RLIMIT_RTPRIO);
3321 
3322 			/* can't set/change the rt policy */
3323 			if (policy != p->policy && !rlim_rtprio)
3324 				return -EPERM;
3325 
3326 			/* can't increase priority */
3327 			if (param->sched_priority > p->rt_priority &&
3328 			    param->sched_priority > rlim_rtprio)
3329 				return -EPERM;
3330 		}
3331 
3332 		/*
3333 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3334 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3335 		 */
3336 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3337 			if (!can_nice(p, TASK_NICE(p)))
3338 				return -EPERM;
3339 		}
3340 
3341 		/* can't change other user's priorities */
3342 		if (!check_same_owner(p))
3343 			return -EPERM;
3344 
3345 		/* Normal users shall not reset the sched_reset_on_fork flag */
3346 		if (p->sched_reset_on_fork && !reset_on_fork)
3347 			return -EPERM;
3348 	}
3349 
3350 	if (user) {
3351 		retval = security_task_setscheduler(p);
3352 		if (retval)
3353 			return retval;
3354 	}
3355 
3356 	/*
3357 	 * make sure no PI-waiters arrive (or leave) while we are
3358 	 * changing the priority of the task:
3359 	 *
3360 	 * To be able to change p->policy safely, the appropriate
3361 	 * runqueue lock must be held.
3362 	 */
3363 	rq = task_rq_lock(p, &flags);
3364 
3365 	/*
3366 	 * Changing the policy of the stop threads its a very bad idea
3367 	 */
3368 	if (p == rq->stop) {
3369 		task_rq_unlock(rq, p, &flags);
3370 		return -EINVAL;
3371 	}
3372 
3373 	/*
3374 	 * If not changing anything there's no need to proceed further:
3375 	 */
3376 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3377 			param->sched_priority == p->rt_priority))) {
3378 		task_rq_unlock(rq, p, &flags);
3379 		return 0;
3380 	}
3381 
3382 #ifdef CONFIG_RT_GROUP_SCHED
3383 	if (user) {
3384 		/*
3385 		 * Do not allow realtime tasks into groups that have no runtime
3386 		 * assigned.
3387 		 */
3388 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3389 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3390 				!task_group_is_autogroup(task_group(p))) {
3391 			task_rq_unlock(rq, p, &flags);
3392 			return -EPERM;
3393 		}
3394 	}
3395 #endif
3396 
3397 	/* recheck policy now with rq lock held */
3398 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3399 		policy = oldpolicy = -1;
3400 		task_rq_unlock(rq, p, &flags);
3401 		goto recheck;
3402 	}
3403 	on_rq = p->on_rq;
3404 	running = task_current(rq, p);
3405 	if (on_rq)
3406 		dequeue_task(rq, p, 0);
3407 	if (running)
3408 		p->sched_class->put_prev_task(rq, p);
3409 
3410 	p->sched_reset_on_fork = reset_on_fork;
3411 
3412 	oldprio = p->prio;
3413 	prev_class = p->sched_class;
3414 	__setscheduler(rq, p, policy, param->sched_priority);
3415 
3416 	if (running)
3417 		p->sched_class->set_curr_task(rq);
3418 	if (on_rq)
3419 		enqueue_task(rq, p, 0);
3420 
3421 	check_class_changed(rq, p, prev_class, oldprio);
3422 	task_rq_unlock(rq, p, &flags);
3423 
3424 	rt_mutex_adjust_pi(p);
3425 
3426 	return 0;
3427 }
3428 
3429 /**
3430  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3431  * @p: the task in question.
3432  * @policy: new policy.
3433  * @param: structure containing the new RT priority.
3434  *
3435  * NOTE that the task may be already dead.
3436  */
3437 int sched_setscheduler(struct task_struct *p, int policy,
3438 		       const struct sched_param *param)
3439 {
3440 	return __sched_setscheduler(p, policy, param, true);
3441 }
3442 EXPORT_SYMBOL_GPL(sched_setscheduler);
3443 
3444 /**
3445  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3446  * @p: the task in question.
3447  * @policy: new policy.
3448  * @param: structure containing the new RT priority.
3449  *
3450  * Just like sched_setscheduler, only don't bother checking if the
3451  * current context has permission.  For example, this is needed in
3452  * stop_machine(): we create temporary high priority worker threads,
3453  * but our caller might not have that capability.
3454  */
3455 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3456 			       const struct sched_param *param)
3457 {
3458 	return __sched_setscheduler(p, policy, param, false);
3459 }
3460 
3461 static int
3462 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3463 {
3464 	struct sched_param lparam;
3465 	struct task_struct *p;
3466 	int retval;
3467 
3468 	if (!param || pid < 0)
3469 		return -EINVAL;
3470 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3471 		return -EFAULT;
3472 
3473 	rcu_read_lock();
3474 	retval = -ESRCH;
3475 	p = find_process_by_pid(pid);
3476 	if (p != NULL)
3477 		retval = sched_setscheduler(p, policy, &lparam);
3478 	rcu_read_unlock();
3479 
3480 	return retval;
3481 }
3482 
3483 /**
3484  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3485  * @pid: the pid in question.
3486  * @policy: new policy.
3487  * @param: structure containing the new RT priority.
3488  */
3489 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3490 		struct sched_param __user *, param)
3491 {
3492 	/* negative values for policy are not valid */
3493 	if (policy < 0)
3494 		return -EINVAL;
3495 
3496 	return do_sched_setscheduler(pid, policy, param);
3497 }
3498 
3499 /**
3500  * sys_sched_setparam - set/change the RT priority of a thread
3501  * @pid: the pid in question.
3502  * @param: structure containing the new RT priority.
3503  */
3504 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3505 {
3506 	return do_sched_setscheduler(pid, -1, param);
3507 }
3508 
3509 /**
3510  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3511  * @pid: the pid in question.
3512  */
3513 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3514 {
3515 	struct task_struct *p;
3516 	int retval;
3517 
3518 	if (pid < 0)
3519 		return -EINVAL;
3520 
3521 	retval = -ESRCH;
3522 	rcu_read_lock();
3523 	p = find_process_by_pid(pid);
3524 	if (p) {
3525 		retval = security_task_getscheduler(p);
3526 		if (!retval)
3527 			retval = p->policy
3528 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3529 	}
3530 	rcu_read_unlock();
3531 	return retval;
3532 }
3533 
3534 /**
3535  * sys_sched_getparam - get the RT priority of a thread
3536  * @pid: the pid in question.
3537  * @param: structure containing the RT priority.
3538  */
3539 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3540 {
3541 	struct sched_param lp;
3542 	struct task_struct *p;
3543 	int retval;
3544 
3545 	if (!param || pid < 0)
3546 		return -EINVAL;
3547 
3548 	rcu_read_lock();
3549 	p = find_process_by_pid(pid);
3550 	retval = -ESRCH;
3551 	if (!p)
3552 		goto out_unlock;
3553 
3554 	retval = security_task_getscheduler(p);
3555 	if (retval)
3556 		goto out_unlock;
3557 
3558 	lp.sched_priority = p->rt_priority;
3559 	rcu_read_unlock();
3560 
3561 	/*
3562 	 * This one might sleep, we cannot do it with a spinlock held ...
3563 	 */
3564 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3565 
3566 	return retval;
3567 
3568 out_unlock:
3569 	rcu_read_unlock();
3570 	return retval;
3571 }
3572 
3573 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3574 {
3575 	cpumask_var_t cpus_allowed, new_mask;
3576 	struct task_struct *p;
3577 	int retval;
3578 
3579 	get_online_cpus();
3580 	rcu_read_lock();
3581 
3582 	p = find_process_by_pid(pid);
3583 	if (!p) {
3584 		rcu_read_unlock();
3585 		put_online_cpus();
3586 		return -ESRCH;
3587 	}
3588 
3589 	/* Prevent p going away */
3590 	get_task_struct(p);
3591 	rcu_read_unlock();
3592 
3593 	if (p->flags & PF_NO_SETAFFINITY) {
3594 		retval = -EINVAL;
3595 		goto out_put_task;
3596 	}
3597 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3598 		retval = -ENOMEM;
3599 		goto out_put_task;
3600 	}
3601 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3602 		retval = -ENOMEM;
3603 		goto out_free_cpus_allowed;
3604 	}
3605 	retval = -EPERM;
3606 	if (!check_same_owner(p)) {
3607 		rcu_read_lock();
3608 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3609 			rcu_read_unlock();
3610 			goto out_unlock;
3611 		}
3612 		rcu_read_unlock();
3613 	}
3614 
3615 	retval = security_task_setscheduler(p);
3616 	if (retval)
3617 		goto out_unlock;
3618 
3619 	cpuset_cpus_allowed(p, cpus_allowed);
3620 	cpumask_and(new_mask, in_mask, cpus_allowed);
3621 again:
3622 	retval = set_cpus_allowed_ptr(p, new_mask);
3623 
3624 	if (!retval) {
3625 		cpuset_cpus_allowed(p, cpus_allowed);
3626 		if (!cpumask_subset(new_mask, cpus_allowed)) {
3627 			/*
3628 			 * We must have raced with a concurrent cpuset
3629 			 * update. Just reset the cpus_allowed to the
3630 			 * cpuset's cpus_allowed
3631 			 */
3632 			cpumask_copy(new_mask, cpus_allowed);
3633 			goto again;
3634 		}
3635 	}
3636 out_unlock:
3637 	free_cpumask_var(new_mask);
3638 out_free_cpus_allowed:
3639 	free_cpumask_var(cpus_allowed);
3640 out_put_task:
3641 	put_task_struct(p);
3642 	put_online_cpus();
3643 	return retval;
3644 }
3645 
3646 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3647 			     struct cpumask *new_mask)
3648 {
3649 	if (len < cpumask_size())
3650 		cpumask_clear(new_mask);
3651 	else if (len > cpumask_size())
3652 		len = cpumask_size();
3653 
3654 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3655 }
3656 
3657 /**
3658  * sys_sched_setaffinity - set the cpu affinity of a process
3659  * @pid: pid of the process
3660  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3661  * @user_mask_ptr: user-space pointer to the new cpu mask
3662  */
3663 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3664 		unsigned long __user *, user_mask_ptr)
3665 {
3666 	cpumask_var_t new_mask;
3667 	int retval;
3668 
3669 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3670 		return -ENOMEM;
3671 
3672 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3673 	if (retval == 0)
3674 		retval = sched_setaffinity(pid, new_mask);
3675 	free_cpumask_var(new_mask);
3676 	return retval;
3677 }
3678 
3679 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3680 {
3681 	struct task_struct *p;
3682 	unsigned long flags;
3683 	int retval;
3684 
3685 	get_online_cpus();
3686 	rcu_read_lock();
3687 
3688 	retval = -ESRCH;
3689 	p = find_process_by_pid(pid);
3690 	if (!p)
3691 		goto out_unlock;
3692 
3693 	retval = security_task_getscheduler(p);
3694 	if (retval)
3695 		goto out_unlock;
3696 
3697 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3698 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3699 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3700 
3701 out_unlock:
3702 	rcu_read_unlock();
3703 	put_online_cpus();
3704 
3705 	return retval;
3706 }
3707 
3708 /**
3709  * sys_sched_getaffinity - get the cpu affinity of a process
3710  * @pid: pid of the process
3711  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3712  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3713  */
3714 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3715 		unsigned long __user *, user_mask_ptr)
3716 {
3717 	int ret;
3718 	cpumask_var_t mask;
3719 
3720 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3721 		return -EINVAL;
3722 	if (len & (sizeof(unsigned long)-1))
3723 		return -EINVAL;
3724 
3725 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3726 		return -ENOMEM;
3727 
3728 	ret = sched_getaffinity(pid, mask);
3729 	if (ret == 0) {
3730 		size_t retlen = min_t(size_t, len, cpumask_size());
3731 
3732 		if (copy_to_user(user_mask_ptr, mask, retlen))
3733 			ret = -EFAULT;
3734 		else
3735 			ret = retlen;
3736 	}
3737 	free_cpumask_var(mask);
3738 
3739 	return ret;
3740 }
3741 
3742 /**
3743  * sys_sched_yield - yield the current processor to other threads.
3744  *
3745  * This function yields the current CPU to other tasks. If there are no
3746  * other threads running on this CPU then this function will return.
3747  */
3748 SYSCALL_DEFINE0(sched_yield)
3749 {
3750 	struct rq *rq = this_rq_lock();
3751 
3752 	schedstat_inc(rq, yld_count);
3753 	current->sched_class->yield_task(rq);
3754 
3755 	/*
3756 	 * Since we are going to call schedule() anyway, there's
3757 	 * no need to preempt or enable interrupts:
3758 	 */
3759 	__release(rq->lock);
3760 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3761 	do_raw_spin_unlock(&rq->lock);
3762 	sched_preempt_enable_no_resched();
3763 
3764 	schedule();
3765 
3766 	return 0;
3767 }
3768 
3769 static inline int should_resched(void)
3770 {
3771 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3772 }
3773 
3774 static void __cond_resched(void)
3775 {
3776 	add_preempt_count(PREEMPT_ACTIVE);
3777 	__schedule();
3778 	sub_preempt_count(PREEMPT_ACTIVE);
3779 }
3780 
3781 int __sched _cond_resched(void)
3782 {
3783 	if (should_resched()) {
3784 		__cond_resched();
3785 		return 1;
3786 	}
3787 	return 0;
3788 }
3789 EXPORT_SYMBOL(_cond_resched);
3790 
3791 /*
3792  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3793  * call schedule, and on return reacquire the lock.
3794  *
3795  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3796  * operations here to prevent schedule() from being called twice (once via
3797  * spin_unlock(), once by hand).
3798  */
3799 int __cond_resched_lock(spinlock_t *lock)
3800 {
3801 	int resched = should_resched();
3802 	int ret = 0;
3803 
3804 	lockdep_assert_held(lock);
3805 
3806 	if (spin_needbreak(lock) || resched) {
3807 		spin_unlock(lock);
3808 		if (resched)
3809 			__cond_resched();
3810 		else
3811 			cpu_relax();
3812 		ret = 1;
3813 		spin_lock(lock);
3814 	}
3815 	return ret;
3816 }
3817 EXPORT_SYMBOL(__cond_resched_lock);
3818 
3819 int __sched __cond_resched_softirq(void)
3820 {
3821 	BUG_ON(!in_softirq());
3822 
3823 	if (should_resched()) {
3824 		local_bh_enable();
3825 		__cond_resched();
3826 		local_bh_disable();
3827 		return 1;
3828 	}
3829 	return 0;
3830 }
3831 EXPORT_SYMBOL(__cond_resched_softirq);
3832 
3833 /**
3834  * yield - yield the current processor to other threads.
3835  *
3836  * Do not ever use this function, there's a 99% chance you're doing it wrong.
3837  *
3838  * The scheduler is at all times free to pick the calling task as the most
3839  * eligible task to run, if removing the yield() call from your code breaks
3840  * it, its already broken.
3841  *
3842  * Typical broken usage is:
3843  *
3844  * while (!event)
3845  * 	yield();
3846  *
3847  * where one assumes that yield() will let 'the other' process run that will
3848  * make event true. If the current task is a SCHED_FIFO task that will never
3849  * happen. Never use yield() as a progress guarantee!!
3850  *
3851  * If you want to use yield() to wait for something, use wait_event().
3852  * If you want to use yield() to be 'nice' for others, use cond_resched().
3853  * If you still want to use yield(), do not!
3854  */
3855 void __sched yield(void)
3856 {
3857 	set_current_state(TASK_RUNNING);
3858 	sys_sched_yield();
3859 }
3860 EXPORT_SYMBOL(yield);
3861 
3862 /**
3863  * yield_to - yield the current processor to another thread in
3864  * your thread group, or accelerate that thread toward the
3865  * processor it's on.
3866  * @p: target task
3867  * @preempt: whether task preemption is allowed or not
3868  *
3869  * It's the caller's job to ensure that the target task struct
3870  * can't go away on us before we can do any checks.
3871  *
3872  * Returns:
3873  *	true (>0) if we indeed boosted the target task.
3874  *	false (0) if we failed to boost the target.
3875  *	-ESRCH if there's no task to yield to.
3876  */
3877 bool __sched yield_to(struct task_struct *p, bool preempt)
3878 {
3879 	struct task_struct *curr = current;
3880 	struct rq *rq, *p_rq;
3881 	unsigned long flags;
3882 	int yielded = 0;
3883 
3884 	local_irq_save(flags);
3885 	rq = this_rq();
3886 
3887 again:
3888 	p_rq = task_rq(p);
3889 	/*
3890 	 * If we're the only runnable task on the rq and target rq also
3891 	 * has only one task, there's absolutely no point in yielding.
3892 	 */
3893 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3894 		yielded = -ESRCH;
3895 		goto out_irq;
3896 	}
3897 
3898 	double_rq_lock(rq, p_rq);
3899 	while (task_rq(p) != p_rq) {
3900 		double_rq_unlock(rq, p_rq);
3901 		goto again;
3902 	}
3903 
3904 	if (!curr->sched_class->yield_to_task)
3905 		goto out_unlock;
3906 
3907 	if (curr->sched_class != p->sched_class)
3908 		goto out_unlock;
3909 
3910 	if (task_running(p_rq, p) || p->state)
3911 		goto out_unlock;
3912 
3913 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3914 	if (yielded) {
3915 		schedstat_inc(rq, yld_count);
3916 		/*
3917 		 * Make p's CPU reschedule; pick_next_entity takes care of
3918 		 * fairness.
3919 		 */
3920 		if (preempt && rq != p_rq)
3921 			resched_task(p_rq->curr);
3922 	}
3923 
3924 out_unlock:
3925 	double_rq_unlock(rq, p_rq);
3926 out_irq:
3927 	local_irq_restore(flags);
3928 
3929 	if (yielded > 0)
3930 		schedule();
3931 
3932 	return yielded;
3933 }
3934 EXPORT_SYMBOL_GPL(yield_to);
3935 
3936 /*
3937  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3938  * that process accounting knows that this is a task in IO wait state.
3939  */
3940 void __sched io_schedule(void)
3941 {
3942 	struct rq *rq = raw_rq();
3943 
3944 	delayacct_blkio_start();
3945 	atomic_inc(&rq->nr_iowait);
3946 	blk_flush_plug(current);
3947 	current->in_iowait = 1;
3948 	schedule();
3949 	current->in_iowait = 0;
3950 	atomic_dec(&rq->nr_iowait);
3951 	delayacct_blkio_end();
3952 }
3953 EXPORT_SYMBOL(io_schedule);
3954 
3955 long __sched io_schedule_timeout(long timeout)
3956 {
3957 	struct rq *rq = raw_rq();
3958 	long ret;
3959 
3960 	delayacct_blkio_start();
3961 	atomic_inc(&rq->nr_iowait);
3962 	blk_flush_plug(current);
3963 	current->in_iowait = 1;
3964 	ret = schedule_timeout(timeout);
3965 	current->in_iowait = 0;
3966 	atomic_dec(&rq->nr_iowait);
3967 	delayacct_blkio_end();
3968 	return ret;
3969 }
3970 
3971 /**
3972  * sys_sched_get_priority_max - return maximum RT priority.
3973  * @policy: scheduling class.
3974  *
3975  * this syscall returns the maximum rt_priority that can be used
3976  * by a given scheduling class.
3977  */
3978 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
3979 {
3980 	int ret = -EINVAL;
3981 
3982 	switch (policy) {
3983 	case SCHED_FIFO:
3984 	case SCHED_RR:
3985 		ret = MAX_USER_RT_PRIO-1;
3986 		break;
3987 	case SCHED_NORMAL:
3988 	case SCHED_BATCH:
3989 	case SCHED_IDLE:
3990 		ret = 0;
3991 		break;
3992 	}
3993 	return ret;
3994 }
3995 
3996 /**
3997  * sys_sched_get_priority_min - return minimum RT priority.
3998  * @policy: scheduling class.
3999  *
4000  * this syscall returns the minimum rt_priority that can be used
4001  * by a given scheduling class.
4002  */
4003 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4004 {
4005 	int ret = -EINVAL;
4006 
4007 	switch (policy) {
4008 	case SCHED_FIFO:
4009 	case SCHED_RR:
4010 		ret = 1;
4011 		break;
4012 	case SCHED_NORMAL:
4013 	case SCHED_BATCH:
4014 	case SCHED_IDLE:
4015 		ret = 0;
4016 	}
4017 	return ret;
4018 }
4019 
4020 /**
4021  * sys_sched_rr_get_interval - return the default timeslice of a process.
4022  * @pid: pid of the process.
4023  * @interval: userspace pointer to the timeslice value.
4024  *
4025  * this syscall writes the default timeslice value of a given process
4026  * into the user-space timespec buffer. A value of '0' means infinity.
4027  */
4028 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4029 		struct timespec __user *, interval)
4030 {
4031 	struct task_struct *p;
4032 	unsigned int time_slice;
4033 	unsigned long flags;
4034 	struct rq *rq;
4035 	int retval;
4036 	struct timespec t;
4037 
4038 	if (pid < 0)
4039 		return -EINVAL;
4040 
4041 	retval = -ESRCH;
4042 	rcu_read_lock();
4043 	p = find_process_by_pid(pid);
4044 	if (!p)
4045 		goto out_unlock;
4046 
4047 	retval = security_task_getscheduler(p);
4048 	if (retval)
4049 		goto out_unlock;
4050 
4051 	rq = task_rq_lock(p, &flags);
4052 	time_slice = p->sched_class->get_rr_interval(rq, p);
4053 	task_rq_unlock(rq, p, &flags);
4054 
4055 	rcu_read_unlock();
4056 	jiffies_to_timespec(time_slice, &t);
4057 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4058 	return retval;
4059 
4060 out_unlock:
4061 	rcu_read_unlock();
4062 	return retval;
4063 }
4064 
4065 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4066 
4067 void sched_show_task(struct task_struct *p)
4068 {
4069 	unsigned long free = 0;
4070 	int ppid;
4071 	unsigned state;
4072 
4073 	state = p->state ? __ffs(p->state) + 1 : 0;
4074 	printk(KERN_INFO "%-15.15s %c", p->comm,
4075 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4076 #if BITS_PER_LONG == 32
4077 	if (state == TASK_RUNNING)
4078 		printk(KERN_CONT " running  ");
4079 	else
4080 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4081 #else
4082 	if (state == TASK_RUNNING)
4083 		printk(KERN_CONT "  running task    ");
4084 	else
4085 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4086 #endif
4087 #ifdef CONFIG_DEBUG_STACK_USAGE
4088 	free = stack_not_used(p);
4089 #endif
4090 	rcu_read_lock();
4091 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4092 	rcu_read_unlock();
4093 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4094 		task_pid_nr(p), ppid,
4095 		(unsigned long)task_thread_info(p)->flags);
4096 
4097 	print_worker_info(KERN_INFO, p);
4098 	show_stack(p, NULL);
4099 }
4100 
4101 void show_state_filter(unsigned long state_filter)
4102 {
4103 	struct task_struct *g, *p;
4104 
4105 #if BITS_PER_LONG == 32
4106 	printk(KERN_INFO
4107 		"  task                PC stack   pid father\n");
4108 #else
4109 	printk(KERN_INFO
4110 		"  task                        PC stack   pid father\n");
4111 #endif
4112 	rcu_read_lock();
4113 	do_each_thread(g, p) {
4114 		/*
4115 		 * reset the NMI-timeout, listing all files on a slow
4116 		 * console might take a lot of time:
4117 		 */
4118 		touch_nmi_watchdog();
4119 		if (!state_filter || (p->state & state_filter))
4120 			sched_show_task(p);
4121 	} while_each_thread(g, p);
4122 
4123 	touch_all_softlockup_watchdogs();
4124 
4125 #ifdef CONFIG_SCHED_DEBUG
4126 	sysrq_sched_debug_show();
4127 #endif
4128 	rcu_read_unlock();
4129 	/*
4130 	 * Only show locks if all tasks are dumped:
4131 	 */
4132 	if (!state_filter)
4133 		debug_show_all_locks();
4134 }
4135 
4136 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4137 {
4138 	idle->sched_class = &idle_sched_class;
4139 }
4140 
4141 /**
4142  * init_idle - set up an idle thread for a given CPU
4143  * @idle: task in question
4144  * @cpu: cpu the idle task belongs to
4145  *
4146  * NOTE: this function does not set the idle thread's NEED_RESCHED
4147  * flag, to make booting more robust.
4148  */
4149 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4150 {
4151 	struct rq *rq = cpu_rq(cpu);
4152 	unsigned long flags;
4153 
4154 	raw_spin_lock_irqsave(&rq->lock, flags);
4155 
4156 	__sched_fork(idle);
4157 	idle->state = TASK_RUNNING;
4158 	idle->se.exec_start = sched_clock();
4159 
4160 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4161 	/*
4162 	 * We're having a chicken and egg problem, even though we are
4163 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4164 	 * lockdep check in task_group() will fail.
4165 	 *
4166 	 * Similar case to sched_fork(). / Alternatively we could
4167 	 * use task_rq_lock() here and obtain the other rq->lock.
4168 	 *
4169 	 * Silence PROVE_RCU
4170 	 */
4171 	rcu_read_lock();
4172 	__set_task_cpu(idle, cpu);
4173 	rcu_read_unlock();
4174 
4175 	rq->curr = rq->idle = idle;
4176 #if defined(CONFIG_SMP)
4177 	idle->on_cpu = 1;
4178 #endif
4179 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4180 
4181 	/* Set the preempt count _outside_ the spinlocks! */
4182 	task_thread_info(idle)->preempt_count = 0;
4183 
4184 	/*
4185 	 * The idle tasks have their own, simple scheduling class:
4186 	 */
4187 	idle->sched_class = &idle_sched_class;
4188 	ftrace_graph_init_idle_task(idle, cpu);
4189 	vtime_init_idle(idle, cpu);
4190 #if defined(CONFIG_SMP)
4191 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4192 #endif
4193 }
4194 
4195 #ifdef CONFIG_SMP
4196 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4197 {
4198 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4199 		p->sched_class->set_cpus_allowed(p, new_mask);
4200 
4201 	cpumask_copy(&p->cpus_allowed, new_mask);
4202 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4203 }
4204 
4205 /*
4206  * This is how migration works:
4207  *
4208  * 1) we invoke migration_cpu_stop() on the target CPU using
4209  *    stop_one_cpu().
4210  * 2) stopper starts to run (implicitly forcing the migrated thread
4211  *    off the CPU)
4212  * 3) it checks whether the migrated task is still in the wrong runqueue.
4213  * 4) if it's in the wrong runqueue then the migration thread removes
4214  *    it and puts it into the right queue.
4215  * 5) stopper completes and stop_one_cpu() returns and the migration
4216  *    is done.
4217  */
4218 
4219 /*
4220  * Change a given task's CPU affinity. Migrate the thread to a
4221  * proper CPU and schedule it away if the CPU it's executing on
4222  * is removed from the allowed bitmask.
4223  *
4224  * NOTE: the caller must have a valid reference to the task, the
4225  * task must not exit() & deallocate itself prematurely. The
4226  * call is not atomic; no spinlocks may be held.
4227  */
4228 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4229 {
4230 	unsigned long flags;
4231 	struct rq *rq;
4232 	unsigned int dest_cpu;
4233 	int ret = 0;
4234 
4235 	rq = task_rq_lock(p, &flags);
4236 
4237 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4238 		goto out;
4239 
4240 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4241 		ret = -EINVAL;
4242 		goto out;
4243 	}
4244 
4245 	do_set_cpus_allowed(p, new_mask);
4246 
4247 	/* Can the task run on the task's current CPU? If so, we're done */
4248 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4249 		goto out;
4250 
4251 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4252 	if (p->on_rq) {
4253 		struct migration_arg arg = { p, dest_cpu };
4254 		/* Need help from migration thread: drop lock and wait. */
4255 		task_rq_unlock(rq, p, &flags);
4256 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4257 		tlb_migrate_finish(p->mm);
4258 		return 0;
4259 	}
4260 out:
4261 	task_rq_unlock(rq, p, &flags);
4262 
4263 	return ret;
4264 }
4265 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4266 
4267 /*
4268  * Move (not current) task off this cpu, onto dest cpu. We're doing
4269  * this because either it can't run here any more (set_cpus_allowed()
4270  * away from this CPU, or CPU going down), or because we're
4271  * attempting to rebalance this task on exec (sched_exec).
4272  *
4273  * So we race with normal scheduler movements, but that's OK, as long
4274  * as the task is no longer on this CPU.
4275  *
4276  * Returns non-zero if task was successfully migrated.
4277  */
4278 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4279 {
4280 	struct rq *rq_dest, *rq_src;
4281 	int ret = 0;
4282 
4283 	if (unlikely(!cpu_active(dest_cpu)))
4284 		return ret;
4285 
4286 	rq_src = cpu_rq(src_cpu);
4287 	rq_dest = cpu_rq(dest_cpu);
4288 
4289 	raw_spin_lock(&p->pi_lock);
4290 	double_rq_lock(rq_src, rq_dest);
4291 	/* Already moved. */
4292 	if (task_cpu(p) != src_cpu)
4293 		goto done;
4294 	/* Affinity changed (again). */
4295 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4296 		goto fail;
4297 
4298 	/*
4299 	 * If we're not on a rq, the next wake-up will ensure we're
4300 	 * placed properly.
4301 	 */
4302 	if (p->on_rq) {
4303 		dequeue_task(rq_src, p, 0);
4304 		set_task_cpu(p, dest_cpu);
4305 		enqueue_task(rq_dest, p, 0);
4306 		check_preempt_curr(rq_dest, p, 0);
4307 	}
4308 done:
4309 	ret = 1;
4310 fail:
4311 	double_rq_unlock(rq_src, rq_dest);
4312 	raw_spin_unlock(&p->pi_lock);
4313 	return ret;
4314 }
4315 
4316 /*
4317  * migration_cpu_stop - this will be executed by a highprio stopper thread
4318  * and performs thread migration by bumping thread off CPU then
4319  * 'pushing' onto another runqueue.
4320  */
4321 static int migration_cpu_stop(void *data)
4322 {
4323 	struct migration_arg *arg = data;
4324 
4325 	/*
4326 	 * The original target cpu might have gone down and we might
4327 	 * be on another cpu but it doesn't matter.
4328 	 */
4329 	local_irq_disable();
4330 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4331 	local_irq_enable();
4332 	return 0;
4333 }
4334 
4335 #ifdef CONFIG_HOTPLUG_CPU
4336 
4337 /*
4338  * Ensures that the idle task is using init_mm right before its cpu goes
4339  * offline.
4340  */
4341 void idle_task_exit(void)
4342 {
4343 	struct mm_struct *mm = current->active_mm;
4344 
4345 	BUG_ON(cpu_online(smp_processor_id()));
4346 
4347 	if (mm != &init_mm)
4348 		switch_mm(mm, &init_mm, current);
4349 	mmdrop(mm);
4350 }
4351 
4352 /*
4353  * Since this CPU is going 'away' for a while, fold any nr_active delta
4354  * we might have. Assumes we're called after migrate_tasks() so that the
4355  * nr_active count is stable.
4356  *
4357  * Also see the comment "Global load-average calculations".
4358  */
4359 static void calc_load_migrate(struct rq *rq)
4360 {
4361 	long delta = calc_load_fold_active(rq);
4362 	if (delta)
4363 		atomic_long_add(delta, &calc_load_tasks);
4364 }
4365 
4366 /*
4367  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4368  * try_to_wake_up()->select_task_rq().
4369  *
4370  * Called with rq->lock held even though we'er in stop_machine() and
4371  * there's no concurrency possible, we hold the required locks anyway
4372  * because of lock validation efforts.
4373  */
4374 static void migrate_tasks(unsigned int dead_cpu)
4375 {
4376 	struct rq *rq = cpu_rq(dead_cpu);
4377 	struct task_struct *next, *stop = rq->stop;
4378 	int dest_cpu;
4379 
4380 	/*
4381 	 * Fudge the rq selection such that the below task selection loop
4382 	 * doesn't get stuck on the currently eligible stop task.
4383 	 *
4384 	 * We're currently inside stop_machine() and the rq is either stuck
4385 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4386 	 * either way we should never end up calling schedule() until we're
4387 	 * done here.
4388 	 */
4389 	rq->stop = NULL;
4390 
4391 	/*
4392 	 * put_prev_task() and pick_next_task() sched
4393 	 * class method both need to have an up-to-date
4394 	 * value of rq->clock[_task]
4395 	 */
4396 	update_rq_clock(rq);
4397 
4398 	for ( ; ; ) {
4399 		/*
4400 		 * There's this thread running, bail when that's the only
4401 		 * remaining thread.
4402 		 */
4403 		if (rq->nr_running == 1)
4404 			break;
4405 
4406 		next = pick_next_task(rq);
4407 		BUG_ON(!next);
4408 		next->sched_class->put_prev_task(rq, next);
4409 
4410 		/* Find suitable destination for @next, with force if needed. */
4411 		dest_cpu = select_fallback_rq(dead_cpu, next);
4412 		raw_spin_unlock(&rq->lock);
4413 
4414 		__migrate_task(next, dead_cpu, dest_cpu);
4415 
4416 		raw_spin_lock(&rq->lock);
4417 	}
4418 
4419 	rq->stop = stop;
4420 }
4421 
4422 #endif /* CONFIG_HOTPLUG_CPU */
4423 
4424 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4425 
4426 static struct ctl_table sd_ctl_dir[] = {
4427 	{
4428 		.procname	= "sched_domain",
4429 		.mode		= 0555,
4430 	},
4431 	{}
4432 };
4433 
4434 static struct ctl_table sd_ctl_root[] = {
4435 	{
4436 		.procname	= "kernel",
4437 		.mode		= 0555,
4438 		.child		= sd_ctl_dir,
4439 	},
4440 	{}
4441 };
4442 
4443 static struct ctl_table *sd_alloc_ctl_entry(int n)
4444 {
4445 	struct ctl_table *entry =
4446 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4447 
4448 	return entry;
4449 }
4450 
4451 static void sd_free_ctl_entry(struct ctl_table **tablep)
4452 {
4453 	struct ctl_table *entry;
4454 
4455 	/*
4456 	 * In the intermediate directories, both the child directory and
4457 	 * procname are dynamically allocated and could fail but the mode
4458 	 * will always be set. In the lowest directory the names are
4459 	 * static strings and all have proc handlers.
4460 	 */
4461 	for (entry = *tablep; entry->mode; entry++) {
4462 		if (entry->child)
4463 			sd_free_ctl_entry(&entry->child);
4464 		if (entry->proc_handler == NULL)
4465 			kfree(entry->procname);
4466 	}
4467 
4468 	kfree(*tablep);
4469 	*tablep = NULL;
4470 }
4471 
4472 static int min_load_idx = 0;
4473 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4474 
4475 static void
4476 set_table_entry(struct ctl_table *entry,
4477 		const char *procname, void *data, int maxlen,
4478 		umode_t mode, proc_handler *proc_handler,
4479 		bool load_idx)
4480 {
4481 	entry->procname = procname;
4482 	entry->data = data;
4483 	entry->maxlen = maxlen;
4484 	entry->mode = mode;
4485 	entry->proc_handler = proc_handler;
4486 
4487 	if (load_idx) {
4488 		entry->extra1 = &min_load_idx;
4489 		entry->extra2 = &max_load_idx;
4490 	}
4491 }
4492 
4493 static struct ctl_table *
4494 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4495 {
4496 	struct ctl_table *table = sd_alloc_ctl_entry(13);
4497 
4498 	if (table == NULL)
4499 		return NULL;
4500 
4501 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4502 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4503 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4504 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4505 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4506 		sizeof(int), 0644, proc_dointvec_minmax, true);
4507 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4508 		sizeof(int), 0644, proc_dointvec_minmax, true);
4509 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4510 		sizeof(int), 0644, proc_dointvec_minmax, true);
4511 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4512 		sizeof(int), 0644, proc_dointvec_minmax, true);
4513 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4514 		sizeof(int), 0644, proc_dointvec_minmax, true);
4515 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4516 		sizeof(int), 0644, proc_dointvec_minmax, false);
4517 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4518 		sizeof(int), 0644, proc_dointvec_minmax, false);
4519 	set_table_entry(&table[9], "cache_nice_tries",
4520 		&sd->cache_nice_tries,
4521 		sizeof(int), 0644, proc_dointvec_minmax, false);
4522 	set_table_entry(&table[10], "flags", &sd->flags,
4523 		sizeof(int), 0644, proc_dointvec_minmax, false);
4524 	set_table_entry(&table[11], "name", sd->name,
4525 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4526 	/* &table[12] is terminator */
4527 
4528 	return table;
4529 }
4530 
4531 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4532 {
4533 	struct ctl_table *entry, *table;
4534 	struct sched_domain *sd;
4535 	int domain_num = 0, i;
4536 	char buf[32];
4537 
4538 	for_each_domain(cpu, sd)
4539 		domain_num++;
4540 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4541 	if (table == NULL)
4542 		return NULL;
4543 
4544 	i = 0;
4545 	for_each_domain(cpu, sd) {
4546 		snprintf(buf, 32, "domain%d", i);
4547 		entry->procname = kstrdup(buf, GFP_KERNEL);
4548 		entry->mode = 0555;
4549 		entry->child = sd_alloc_ctl_domain_table(sd);
4550 		entry++;
4551 		i++;
4552 	}
4553 	return table;
4554 }
4555 
4556 static struct ctl_table_header *sd_sysctl_header;
4557 static void register_sched_domain_sysctl(void)
4558 {
4559 	int i, cpu_num = num_possible_cpus();
4560 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4561 	char buf[32];
4562 
4563 	WARN_ON(sd_ctl_dir[0].child);
4564 	sd_ctl_dir[0].child = entry;
4565 
4566 	if (entry == NULL)
4567 		return;
4568 
4569 	for_each_possible_cpu(i) {
4570 		snprintf(buf, 32, "cpu%d", i);
4571 		entry->procname = kstrdup(buf, GFP_KERNEL);
4572 		entry->mode = 0555;
4573 		entry->child = sd_alloc_ctl_cpu_table(i);
4574 		entry++;
4575 	}
4576 
4577 	WARN_ON(sd_sysctl_header);
4578 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4579 }
4580 
4581 /* may be called multiple times per register */
4582 static void unregister_sched_domain_sysctl(void)
4583 {
4584 	if (sd_sysctl_header)
4585 		unregister_sysctl_table(sd_sysctl_header);
4586 	sd_sysctl_header = NULL;
4587 	if (sd_ctl_dir[0].child)
4588 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4589 }
4590 #else
4591 static void register_sched_domain_sysctl(void)
4592 {
4593 }
4594 static void unregister_sched_domain_sysctl(void)
4595 {
4596 }
4597 #endif
4598 
4599 static void set_rq_online(struct rq *rq)
4600 {
4601 	if (!rq->online) {
4602 		const struct sched_class *class;
4603 
4604 		cpumask_set_cpu(rq->cpu, rq->rd->online);
4605 		rq->online = 1;
4606 
4607 		for_each_class(class) {
4608 			if (class->rq_online)
4609 				class->rq_online(rq);
4610 		}
4611 	}
4612 }
4613 
4614 static void set_rq_offline(struct rq *rq)
4615 {
4616 	if (rq->online) {
4617 		const struct sched_class *class;
4618 
4619 		for_each_class(class) {
4620 			if (class->rq_offline)
4621 				class->rq_offline(rq);
4622 		}
4623 
4624 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4625 		rq->online = 0;
4626 	}
4627 }
4628 
4629 /*
4630  * migration_call - callback that gets triggered when a CPU is added.
4631  * Here we can start up the necessary migration thread for the new CPU.
4632  */
4633 static int __cpuinit
4634 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4635 {
4636 	int cpu = (long)hcpu;
4637 	unsigned long flags;
4638 	struct rq *rq = cpu_rq(cpu);
4639 
4640 	switch (action & ~CPU_TASKS_FROZEN) {
4641 
4642 	case CPU_UP_PREPARE:
4643 		rq->calc_load_update = calc_load_update;
4644 		break;
4645 
4646 	case CPU_ONLINE:
4647 		/* Update our root-domain */
4648 		raw_spin_lock_irqsave(&rq->lock, flags);
4649 		if (rq->rd) {
4650 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4651 
4652 			set_rq_online(rq);
4653 		}
4654 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4655 		break;
4656 
4657 #ifdef CONFIG_HOTPLUG_CPU
4658 	case CPU_DYING:
4659 		sched_ttwu_pending();
4660 		/* Update our root-domain */
4661 		raw_spin_lock_irqsave(&rq->lock, flags);
4662 		if (rq->rd) {
4663 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4664 			set_rq_offline(rq);
4665 		}
4666 		migrate_tasks(cpu);
4667 		BUG_ON(rq->nr_running != 1); /* the migration thread */
4668 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4669 		break;
4670 
4671 	case CPU_DEAD:
4672 		calc_load_migrate(rq);
4673 		break;
4674 #endif
4675 	}
4676 
4677 	update_max_interval();
4678 
4679 	return NOTIFY_OK;
4680 }
4681 
4682 /*
4683  * Register at high priority so that task migration (migrate_all_tasks)
4684  * happens before everything else.  This has to be lower priority than
4685  * the notifier in the perf_event subsystem, though.
4686  */
4687 static struct notifier_block __cpuinitdata migration_notifier = {
4688 	.notifier_call = migration_call,
4689 	.priority = CPU_PRI_MIGRATION,
4690 };
4691 
4692 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
4693 				      unsigned long action, void *hcpu)
4694 {
4695 	switch (action & ~CPU_TASKS_FROZEN) {
4696 	case CPU_STARTING:
4697 	case CPU_DOWN_FAILED:
4698 		set_cpu_active((long)hcpu, true);
4699 		return NOTIFY_OK;
4700 	default:
4701 		return NOTIFY_DONE;
4702 	}
4703 }
4704 
4705 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
4706 					unsigned long action, void *hcpu)
4707 {
4708 	switch (action & ~CPU_TASKS_FROZEN) {
4709 	case CPU_DOWN_PREPARE:
4710 		set_cpu_active((long)hcpu, false);
4711 		return NOTIFY_OK;
4712 	default:
4713 		return NOTIFY_DONE;
4714 	}
4715 }
4716 
4717 static int __init migration_init(void)
4718 {
4719 	void *cpu = (void *)(long)smp_processor_id();
4720 	int err;
4721 
4722 	/* Initialize migration for the boot CPU */
4723 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4724 	BUG_ON(err == NOTIFY_BAD);
4725 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4726 	register_cpu_notifier(&migration_notifier);
4727 
4728 	/* Register cpu active notifiers */
4729 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4730 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4731 
4732 	return 0;
4733 }
4734 early_initcall(migration_init);
4735 #endif
4736 
4737 #ifdef CONFIG_SMP
4738 
4739 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4740 
4741 #ifdef CONFIG_SCHED_DEBUG
4742 
4743 static __read_mostly int sched_debug_enabled;
4744 
4745 static int __init sched_debug_setup(char *str)
4746 {
4747 	sched_debug_enabled = 1;
4748 
4749 	return 0;
4750 }
4751 early_param("sched_debug", sched_debug_setup);
4752 
4753 static inline bool sched_debug(void)
4754 {
4755 	return sched_debug_enabled;
4756 }
4757 
4758 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4759 				  struct cpumask *groupmask)
4760 {
4761 	struct sched_group *group = sd->groups;
4762 	char str[256];
4763 
4764 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4765 	cpumask_clear(groupmask);
4766 
4767 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4768 
4769 	if (!(sd->flags & SD_LOAD_BALANCE)) {
4770 		printk("does not load-balance\n");
4771 		if (sd->parent)
4772 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4773 					" has parent");
4774 		return -1;
4775 	}
4776 
4777 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4778 
4779 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4780 		printk(KERN_ERR "ERROR: domain->span does not contain "
4781 				"CPU%d\n", cpu);
4782 	}
4783 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4784 		printk(KERN_ERR "ERROR: domain->groups does not contain"
4785 				" CPU%d\n", cpu);
4786 	}
4787 
4788 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4789 	do {
4790 		if (!group) {
4791 			printk("\n");
4792 			printk(KERN_ERR "ERROR: group is NULL\n");
4793 			break;
4794 		}
4795 
4796 		/*
4797 		 * Even though we initialize ->power to something semi-sane,
4798 		 * we leave power_orig unset. This allows us to detect if
4799 		 * domain iteration is still funny without causing /0 traps.
4800 		 */
4801 		if (!group->sgp->power_orig) {
4802 			printk(KERN_CONT "\n");
4803 			printk(KERN_ERR "ERROR: domain->cpu_power not "
4804 					"set\n");
4805 			break;
4806 		}
4807 
4808 		if (!cpumask_weight(sched_group_cpus(group))) {
4809 			printk(KERN_CONT "\n");
4810 			printk(KERN_ERR "ERROR: empty group\n");
4811 			break;
4812 		}
4813 
4814 		if (!(sd->flags & SD_OVERLAP) &&
4815 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4816 			printk(KERN_CONT "\n");
4817 			printk(KERN_ERR "ERROR: repeated CPUs\n");
4818 			break;
4819 		}
4820 
4821 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4822 
4823 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4824 
4825 		printk(KERN_CONT " %s", str);
4826 		if (group->sgp->power != SCHED_POWER_SCALE) {
4827 			printk(KERN_CONT " (cpu_power = %d)",
4828 				group->sgp->power);
4829 		}
4830 
4831 		group = group->next;
4832 	} while (group != sd->groups);
4833 	printk(KERN_CONT "\n");
4834 
4835 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4836 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4837 
4838 	if (sd->parent &&
4839 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4840 		printk(KERN_ERR "ERROR: parent span is not a superset "
4841 			"of domain->span\n");
4842 	return 0;
4843 }
4844 
4845 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4846 {
4847 	int level = 0;
4848 
4849 	if (!sched_debug_enabled)
4850 		return;
4851 
4852 	if (!sd) {
4853 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4854 		return;
4855 	}
4856 
4857 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4858 
4859 	for (;;) {
4860 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4861 			break;
4862 		level++;
4863 		sd = sd->parent;
4864 		if (!sd)
4865 			break;
4866 	}
4867 }
4868 #else /* !CONFIG_SCHED_DEBUG */
4869 # define sched_domain_debug(sd, cpu) do { } while (0)
4870 static inline bool sched_debug(void)
4871 {
4872 	return false;
4873 }
4874 #endif /* CONFIG_SCHED_DEBUG */
4875 
4876 static int sd_degenerate(struct sched_domain *sd)
4877 {
4878 	if (cpumask_weight(sched_domain_span(sd)) == 1)
4879 		return 1;
4880 
4881 	/* Following flags need at least 2 groups */
4882 	if (sd->flags & (SD_LOAD_BALANCE |
4883 			 SD_BALANCE_NEWIDLE |
4884 			 SD_BALANCE_FORK |
4885 			 SD_BALANCE_EXEC |
4886 			 SD_SHARE_CPUPOWER |
4887 			 SD_SHARE_PKG_RESOURCES)) {
4888 		if (sd->groups != sd->groups->next)
4889 			return 0;
4890 	}
4891 
4892 	/* Following flags don't use groups */
4893 	if (sd->flags & (SD_WAKE_AFFINE))
4894 		return 0;
4895 
4896 	return 1;
4897 }
4898 
4899 static int
4900 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4901 {
4902 	unsigned long cflags = sd->flags, pflags = parent->flags;
4903 
4904 	if (sd_degenerate(parent))
4905 		return 1;
4906 
4907 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4908 		return 0;
4909 
4910 	/* Flags needing groups don't count if only 1 group in parent */
4911 	if (parent->groups == parent->groups->next) {
4912 		pflags &= ~(SD_LOAD_BALANCE |
4913 				SD_BALANCE_NEWIDLE |
4914 				SD_BALANCE_FORK |
4915 				SD_BALANCE_EXEC |
4916 				SD_SHARE_CPUPOWER |
4917 				SD_SHARE_PKG_RESOURCES);
4918 		if (nr_node_ids == 1)
4919 			pflags &= ~SD_SERIALIZE;
4920 	}
4921 	if (~cflags & pflags)
4922 		return 0;
4923 
4924 	return 1;
4925 }
4926 
4927 static void free_rootdomain(struct rcu_head *rcu)
4928 {
4929 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4930 
4931 	cpupri_cleanup(&rd->cpupri);
4932 	free_cpumask_var(rd->rto_mask);
4933 	free_cpumask_var(rd->online);
4934 	free_cpumask_var(rd->span);
4935 	kfree(rd);
4936 }
4937 
4938 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4939 {
4940 	struct root_domain *old_rd = NULL;
4941 	unsigned long flags;
4942 
4943 	raw_spin_lock_irqsave(&rq->lock, flags);
4944 
4945 	if (rq->rd) {
4946 		old_rd = rq->rd;
4947 
4948 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4949 			set_rq_offline(rq);
4950 
4951 		cpumask_clear_cpu(rq->cpu, old_rd->span);
4952 
4953 		/*
4954 		 * If we dont want to free the old_rt yet then
4955 		 * set old_rd to NULL to skip the freeing later
4956 		 * in this function:
4957 		 */
4958 		if (!atomic_dec_and_test(&old_rd->refcount))
4959 			old_rd = NULL;
4960 	}
4961 
4962 	atomic_inc(&rd->refcount);
4963 	rq->rd = rd;
4964 
4965 	cpumask_set_cpu(rq->cpu, rd->span);
4966 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4967 		set_rq_online(rq);
4968 
4969 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4970 
4971 	if (old_rd)
4972 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
4973 }
4974 
4975 static int init_rootdomain(struct root_domain *rd)
4976 {
4977 	memset(rd, 0, sizeof(*rd));
4978 
4979 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4980 		goto out;
4981 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4982 		goto free_span;
4983 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4984 		goto free_online;
4985 
4986 	if (cpupri_init(&rd->cpupri) != 0)
4987 		goto free_rto_mask;
4988 	return 0;
4989 
4990 free_rto_mask:
4991 	free_cpumask_var(rd->rto_mask);
4992 free_online:
4993 	free_cpumask_var(rd->online);
4994 free_span:
4995 	free_cpumask_var(rd->span);
4996 out:
4997 	return -ENOMEM;
4998 }
4999 
5000 /*
5001  * By default the system creates a single root-domain with all cpus as
5002  * members (mimicking the global state we have today).
5003  */
5004 struct root_domain def_root_domain;
5005 
5006 static void init_defrootdomain(void)
5007 {
5008 	init_rootdomain(&def_root_domain);
5009 
5010 	atomic_set(&def_root_domain.refcount, 1);
5011 }
5012 
5013 static struct root_domain *alloc_rootdomain(void)
5014 {
5015 	struct root_domain *rd;
5016 
5017 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5018 	if (!rd)
5019 		return NULL;
5020 
5021 	if (init_rootdomain(rd) != 0) {
5022 		kfree(rd);
5023 		return NULL;
5024 	}
5025 
5026 	return rd;
5027 }
5028 
5029 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5030 {
5031 	struct sched_group *tmp, *first;
5032 
5033 	if (!sg)
5034 		return;
5035 
5036 	first = sg;
5037 	do {
5038 		tmp = sg->next;
5039 
5040 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5041 			kfree(sg->sgp);
5042 
5043 		kfree(sg);
5044 		sg = tmp;
5045 	} while (sg != first);
5046 }
5047 
5048 static void free_sched_domain(struct rcu_head *rcu)
5049 {
5050 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5051 
5052 	/*
5053 	 * If its an overlapping domain it has private groups, iterate and
5054 	 * nuke them all.
5055 	 */
5056 	if (sd->flags & SD_OVERLAP) {
5057 		free_sched_groups(sd->groups, 1);
5058 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5059 		kfree(sd->groups->sgp);
5060 		kfree(sd->groups);
5061 	}
5062 	kfree(sd);
5063 }
5064 
5065 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5066 {
5067 	call_rcu(&sd->rcu, free_sched_domain);
5068 }
5069 
5070 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5071 {
5072 	for (; sd; sd = sd->parent)
5073 		destroy_sched_domain(sd, cpu);
5074 }
5075 
5076 /*
5077  * Keep a special pointer to the highest sched_domain that has
5078  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5079  * allows us to avoid some pointer chasing select_idle_sibling().
5080  *
5081  * Also keep a unique ID per domain (we use the first cpu number in
5082  * the cpumask of the domain), this allows us to quickly tell if
5083  * two cpus are in the same cache domain, see cpus_share_cache().
5084  */
5085 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5086 DEFINE_PER_CPU(int, sd_llc_id);
5087 
5088 static void update_top_cache_domain(int cpu)
5089 {
5090 	struct sched_domain *sd;
5091 	int id = cpu;
5092 
5093 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5094 	if (sd)
5095 		id = cpumask_first(sched_domain_span(sd));
5096 
5097 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5098 	per_cpu(sd_llc_id, cpu) = id;
5099 }
5100 
5101 /*
5102  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5103  * hold the hotplug lock.
5104  */
5105 static void
5106 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5107 {
5108 	struct rq *rq = cpu_rq(cpu);
5109 	struct sched_domain *tmp;
5110 
5111 	/* Remove the sched domains which do not contribute to scheduling. */
5112 	for (tmp = sd; tmp; ) {
5113 		struct sched_domain *parent = tmp->parent;
5114 		if (!parent)
5115 			break;
5116 
5117 		if (sd_parent_degenerate(tmp, parent)) {
5118 			tmp->parent = parent->parent;
5119 			if (parent->parent)
5120 				parent->parent->child = tmp;
5121 			destroy_sched_domain(parent, cpu);
5122 		} else
5123 			tmp = tmp->parent;
5124 	}
5125 
5126 	if (sd && sd_degenerate(sd)) {
5127 		tmp = sd;
5128 		sd = sd->parent;
5129 		destroy_sched_domain(tmp, cpu);
5130 		if (sd)
5131 			sd->child = NULL;
5132 	}
5133 
5134 	sched_domain_debug(sd, cpu);
5135 
5136 	rq_attach_root(rq, rd);
5137 	tmp = rq->sd;
5138 	rcu_assign_pointer(rq->sd, sd);
5139 	destroy_sched_domains(tmp, cpu);
5140 
5141 	update_top_cache_domain(cpu);
5142 }
5143 
5144 /* cpus with isolated domains */
5145 static cpumask_var_t cpu_isolated_map;
5146 
5147 /* Setup the mask of cpus configured for isolated domains */
5148 static int __init isolated_cpu_setup(char *str)
5149 {
5150 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5151 	cpulist_parse(str, cpu_isolated_map);
5152 	return 1;
5153 }
5154 
5155 __setup("isolcpus=", isolated_cpu_setup);
5156 
5157 static const struct cpumask *cpu_cpu_mask(int cpu)
5158 {
5159 	return cpumask_of_node(cpu_to_node(cpu));
5160 }
5161 
5162 struct sd_data {
5163 	struct sched_domain **__percpu sd;
5164 	struct sched_group **__percpu sg;
5165 	struct sched_group_power **__percpu sgp;
5166 };
5167 
5168 struct s_data {
5169 	struct sched_domain ** __percpu sd;
5170 	struct root_domain	*rd;
5171 };
5172 
5173 enum s_alloc {
5174 	sa_rootdomain,
5175 	sa_sd,
5176 	sa_sd_storage,
5177 	sa_none,
5178 };
5179 
5180 struct sched_domain_topology_level;
5181 
5182 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5183 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5184 
5185 #define SDTL_OVERLAP	0x01
5186 
5187 struct sched_domain_topology_level {
5188 	sched_domain_init_f init;
5189 	sched_domain_mask_f mask;
5190 	int		    flags;
5191 	int		    numa_level;
5192 	struct sd_data      data;
5193 };
5194 
5195 /*
5196  * Build an iteration mask that can exclude certain CPUs from the upwards
5197  * domain traversal.
5198  *
5199  * Asymmetric node setups can result in situations where the domain tree is of
5200  * unequal depth, make sure to skip domains that already cover the entire
5201  * range.
5202  *
5203  * In that case build_sched_domains() will have terminated the iteration early
5204  * and our sibling sd spans will be empty. Domains should always include the
5205  * cpu they're built on, so check that.
5206  *
5207  */
5208 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5209 {
5210 	const struct cpumask *span = sched_domain_span(sd);
5211 	struct sd_data *sdd = sd->private;
5212 	struct sched_domain *sibling;
5213 	int i;
5214 
5215 	for_each_cpu(i, span) {
5216 		sibling = *per_cpu_ptr(sdd->sd, i);
5217 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5218 			continue;
5219 
5220 		cpumask_set_cpu(i, sched_group_mask(sg));
5221 	}
5222 }
5223 
5224 /*
5225  * Return the canonical balance cpu for this group, this is the first cpu
5226  * of this group that's also in the iteration mask.
5227  */
5228 int group_balance_cpu(struct sched_group *sg)
5229 {
5230 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5231 }
5232 
5233 static int
5234 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5235 {
5236 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5237 	const struct cpumask *span = sched_domain_span(sd);
5238 	struct cpumask *covered = sched_domains_tmpmask;
5239 	struct sd_data *sdd = sd->private;
5240 	struct sched_domain *child;
5241 	int i;
5242 
5243 	cpumask_clear(covered);
5244 
5245 	for_each_cpu(i, span) {
5246 		struct cpumask *sg_span;
5247 
5248 		if (cpumask_test_cpu(i, covered))
5249 			continue;
5250 
5251 		child = *per_cpu_ptr(sdd->sd, i);
5252 
5253 		/* See the comment near build_group_mask(). */
5254 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5255 			continue;
5256 
5257 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5258 				GFP_KERNEL, cpu_to_node(cpu));
5259 
5260 		if (!sg)
5261 			goto fail;
5262 
5263 		sg_span = sched_group_cpus(sg);
5264 		if (child->child) {
5265 			child = child->child;
5266 			cpumask_copy(sg_span, sched_domain_span(child));
5267 		} else
5268 			cpumask_set_cpu(i, sg_span);
5269 
5270 		cpumask_or(covered, covered, sg_span);
5271 
5272 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5273 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5274 			build_group_mask(sd, sg);
5275 
5276 		/*
5277 		 * Initialize sgp->power such that even if we mess up the
5278 		 * domains and no possible iteration will get us here, we won't
5279 		 * die on a /0 trap.
5280 		 */
5281 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5282 
5283 		/*
5284 		 * Make sure the first group of this domain contains the
5285 		 * canonical balance cpu. Otherwise the sched_domain iteration
5286 		 * breaks. See update_sg_lb_stats().
5287 		 */
5288 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5289 		    group_balance_cpu(sg) == cpu)
5290 			groups = sg;
5291 
5292 		if (!first)
5293 			first = sg;
5294 		if (last)
5295 			last->next = sg;
5296 		last = sg;
5297 		last->next = first;
5298 	}
5299 	sd->groups = groups;
5300 
5301 	return 0;
5302 
5303 fail:
5304 	free_sched_groups(first, 0);
5305 
5306 	return -ENOMEM;
5307 }
5308 
5309 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5310 {
5311 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5312 	struct sched_domain *child = sd->child;
5313 
5314 	if (child)
5315 		cpu = cpumask_first(sched_domain_span(child));
5316 
5317 	if (sg) {
5318 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5319 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5320 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5321 	}
5322 
5323 	return cpu;
5324 }
5325 
5326 /*
5327  * build_sched_groups will build a circular linked list of the groups
5328  * covered by the given span, and will set each group's ->cpumask correctly,
5329  * and ->cpu_power to 0.
5330  *
5331  * Assumes the sched_domain tree is fully constructed
5332  */
5333 static int
5334 build_sched_groups(struct sched_domain *sd, int cpu)
5335 {
5336 	struct sched_group *first = NULL, *last = NULL;
5337 	struct sd_data *sdd = sd->private;
5338 	const struct cpumask *span = sched_domain_span(sd);
5339 	struct cpumask *covered;
5340 	int i;
5341 
5342 	get_group(cpu, sdd, &sd->groups);
5343 	atomic_inc(&sd->groups->ref);
5344 
5345 	if (cpu != cpumask_first(span))
5346 		return 0;
5347 
5348 	lockdep_assert_held(&sched_domains_mutex);
5349 	covered = sched_domains_tmpmask;
5350 
5351 	cpumask_clear(covered);
5352 
5353 	for_each_cpu(i, span) {
5354 		struct sched_group *sg;
5355 		int group, j;
5356 
5357 		if (cpumask_test_cpu(i, covered))
5358 			continue;
5359 
5360 		group = get_group(i, sdd, &sg);
5361 		cpumask_clear(sched_group_cpus(sg));
5362 		sg->sgp->power = 0;
5363 		cpumask_setall(sched_group_mask(sg));
5364 
5365 		for_each_cpu(j, span) {
5366 			if (get_group(j, sdd, NULL) != group)
5367 				continue;
5368 
5369 			cpumask_set_cpu(j, covered);
5370 			cpumask_set_cpu(j, sched_group_cpus(sg));
5371 		}
5372 
5373 		if (!first)
5374 			first = sg;
5375 		if (last)
5376 			last->next = sg;
5377 		last = sg;
5378 	}
5379 	last->next = first;
5380 
5381 	return 0;
5382 }
5383 
5384 /*
5385  * Initialize sched groups cpu_power.
5386  *
5387  * cpu_power indicates the capacity of sched group, which is used while
5388  * distributing the load between different sched groups in a sched domain.
5389  * Typically cpu_power for all the groups in a sched domain will be same unless
5390  * there are asymmetries in the topology. If there are asymmetries, group
5391  * having more cpu_power will pickup more load compared to the group having
5392  * less cpu_power.
5393  */
5394 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5395 {
5396 	struct sched_group *sg = sd->groups;
5397 
5398 	WARN_ON(!sg);
5399 
5400 	do {
5401 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5402 		sg = sg->next;
5403 	} while (sg != sd->groups);
5404 
5405 	if (cpu != group_balance_cpu(sg))
5406 		return;
5407 
5408 	update_group_power(sd, cpu);
5409 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5410 }
5411 
5412 int __weak arch_sd_sibling_asym_packing(void)
5413 {
5414        return 0*SD_ASYM_PACKING;
5415 }
5416 
5417 /*
5418  * Initializers for schedule domains
5419  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5420  */
5421 
5422 #ifdef CONFIG_SCHED_DEBUG
5423 # define SD_INIT_NAME(sd, type)		sd->name = #type
5424 #else
5425 # define SD_INIT_NAME(sd, type)		do { } while (0)
5426 #endif
5427 
5428 #define SD_INIT_FUNC(type)						\
5429 static noinline struct sched_domain *					\
5430 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5431 {									\
5432 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5433 	*sd = SD_##type##_INIT;						\
5434 	SD_INIT_NAME(sd, type);						\
5435 	sd->private = &tl->data;					\
5436 	return sd;							\
5437 }
5438 
5439 SD_INIT_FUNC(CPU)
5440 #ifdef CONFIG_SCHED_SMT
5441  SD_INIT_FUNC(SIBLING)
5442 #endif
5443 #ifdef CONFIG_SCHED_MC
5444  SD_INIT_FUNC(MC)
5445 #endif
5446 #ifdef CONFIG_SCHED_BOOK
5447  SD_INIT_FUNC(BOOK)
5448 #endif
5449 
5450 static int default_relax_domain_level = -1;
5451 int sched_domain_level_max;
5452 
5453 static int __init setup_relax_domain_level(char *str)
5454 {
5455 	if (kstrtoint(str, 0, &default_relax_domain_level))
5456 		pr_warn("Unable to set relax_domain_level\n");
5457 
5458 	return 1;
5459 }
5460 __setup("relax_domain_level=", setup_relax_domain_level);
5461 
5462 static void set_domain_attribute(struct sched_domain *sd,
5463 				 struct sched_domain_attr *attr)
5464 {
5465 	int request;
5466 
5467 	if (!attr || attr->relax_domain_level < 0) {
5468 		if (default_relax_domain_level < 0)
5469 			return;
5470 		else
5471 			request = default_relax_domain_level;
5472 	} else
5473 		request = attr->relax_domain_level;
5474 	if (request < sd->level) {
5475 		/* turn off idle balance on this domain */
5476 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5477 	} else {
5478 		/* turn on idle balance on this domain */
5479 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5480 	}
5481 }
5482 
5483 static void __sdt_free(const struct cpumask *cpu_map);
5484 static int __sdt_alloc(const struct cpumask *cpu_map);
5485 
5486 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5487 				 const struct cpumask *cpu_map)
5488 {
5489 	switch (what) {
5490 	case sa_rootdomain:
5491 		if (!atomic_read(&d->rd->refcount))
5492 			free_rootdomain(&d->rd->rcu); /* fall through */
5493 	case sa_sd:
5494 		free_percpu(d->sd); /* fall through */
5495 	case sa_sd_storage:
5496 		__sdt_free(cpu_map); /* fall through */
5497 	case sa_none:
5498 		break;
5499 	}
5500 }
5501 
5502 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5503 						   const struct cpumask *cpu_map)
5504 {
5505 	memset(d, 0, sizeof(*d));
5506 
5507 	if (__sdt_alloc(cpu_map))
5508 		return sa_sd_storage;
5509 	d->sd = alloc_percpu(struct sched_domain *);
5510 	if (!d->sd)
5511 		return sa_sd_storage;
5512 	d->rd = alloc_rootdomain();
5513 	if (!d->rd)
5514 		return sa_sd;
5515 	return sa_rootdomain;
5516 }
5517 
5518 /*
5519  * NULL the sd_data elements we've used to build the sched_domain and
5520  * sched_group structure so that the subsequent __free_domain_allocs()
5521  * will not free the data we're using.
5522  */
5523 static void claim_allocations(int cpu, struct sched_domain *sd)
5524 {
5525 	struct sd_data *sdd = sd->private;
5526 
5527 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5528 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5529 
5530 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5531 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5532 
5533 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5534 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5535 }
5536 
5537 #ifdef CONFIG_SCHED_SMT
5538 static const struct cpumask *cpu_smt_mask(int cpu)
5539 {
5540 	return topology_thread_cpumask(cpu);
5541 }
5542 #endif
5543 
5544 /*
5545  * Topology list, bottom-up.
5546  */
5547 static struct sched_domain_topology_level default_topology[] = {
5548 #ifdef CONFIG_SCHED_SMT
5549 	{ sd_init_SIBLING, cpu_smt_mask, },
5550 #endif
5551 #ifdef CONFIG_SCHED_MC
5552 	{ sd_init_MC, cpu_coregroup_mask, },
5553 #endif
5554 #ifdef CONFIG_SCHED_BOOK
5555 	{ sd_init_BOOK, cpu_book_mask, },
5556 #endif
5557 	{ sd_init_CPU, cpu_cpu_mask, },
5558 	{ NULL, },
5559 };
5560 
5561 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5562 
5563 #define for_each_sd_topology(tl)			\
5564 	for (tl = sched_domain_topology; tl->init; tl++)
5565 
5566 #ifdef CONFIG_NUMA
5567 
5568 static int sched_domains_numa_levels;
5569 static int *sched_domains_numa_distance;
5570 static struct cpumask ***sched_domains_numa_masks;
5571 static int sched_domains_curr_level;
5572 
5573 static inline int sd_local_flags(int level)
5574 {
5575 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5576 		return 0;
5577 
5578 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5579 }
5580 
5581 static struct sched_domain *
5582 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5583 {
5584 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5585 	int level = tl->numa_level;
5586 	int sd_weight = cpumask_weight(
5587 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5588 
5589 	*sd = (struct sched_domain){
5590 		.min_interval		= sd_weight,
5591 		.max_interval		= 2*sd_weight,
5592 		.busy_factor		= 32,
5593 		.imbalance_pct		= 125,
5594 		.cache_nice_tries	= 2,
5595 		.busy_idx		= 3,
5596 		.idle_idx		= 2,
5597 		.newidle_idx		= 0,
5598 		.wake_idx		= 0,
5599 		.forkexec_idx		= 0,
5600 
5601 		.flags			= 1*SD_LOAD_BALANCE
5602 					| 1*SD_BALANCE_NEWIDLE
5603 					| 0*SD_BALANCE_EXEC
5604 					| 0*SD_BALANCE_FORK
5605 					| 0*SD_BALANCE_WAKE
5606 					| 0*SD_WAKE_AFFINE
5607 					| 0*SD_SHARE_CPUPOWER
5608 					| 0*SD_SHARE_PKG_RESOURCES
5609 					| 1*SD_SERIALIZE
5610 					| 0*SD_PREFER_SIBLING
5611 					| sd_local_flags(level)
5612 					,
5613 		.last_balance		= jiffies,
5614 		.balance_interval	= sd_weight,
5615 	};
5616 	SD_INIT_NAME(sd, NUMA);
5617 	sd->private = &tl->data;
5618 
5619 	/*
5620 	 * Ugly hack to pass state to sd_numa_mask()...
5621 	 */
5622 	sched_domains_curr_level = tl->numa_level;
5623 
5624 	return sd;
5625 }
5626 
5627 static const struct cpumask *sd_numa_mask(int cpu)
5628 {
5629 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5630 }
5631 
5632 static void sched_numa_warn(const char *str)
5633 {
5634 	static int done = false;
5635 	int i,j;
5636 
5637 	if (done)
5638 		return;
5639 
5640 	done = true;
5641 
5642 	printk(KERN_WARNING "ERROR: %s\n\n", str);
5643 
5644 	for (i = 0; i < nr_node_ids; i++) {
5645 		printk(KERN_WARNING "  ");
5646 		for (j = 0; j < nr_node_ids; j++)
5647 			printk(KERN_CONT "%02d ", node_distance(i,j));
5648 		printk(KERN_CONT "\n");
5649 	}
5650 	printk(KERN_WARNING "\n");
5651 }
5652 
5653 static bool find_numa_distance(int distance)
5654 {
5655 	int i;
5656 
5657 	if (distance == node_distance(0, 0))
5658 		return true;
5659 
5660 	for (i = 0; i < sched_domains_numa_levels; i++) {
5661 		if (sched_domains_numa_distance[i] == distance)
5662 			return true;
5663 	}
5664 
5665 	return false;
5666 }
5667 
5668 static void sched_init_numa(void)
5669 {
5670 	int next_distance, curr_distance = node_distance(0, 0);
5671 	struct sched_domain_topology_level *tl;
5672 	int level = 0;
5673 	int i, j, k;
5674 
5675 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5676 	if (!sched_domains_numa_distance)
5677 		return;
5678 
5679 	/*
5680 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5681 	 * unique distances in the node_distance() table.
5682 	 *
5683 	 * Assumes node_distance(0,j) includes all distances in
5684 	 * node_distance(i,j) in order to avoid cubic time.
5685 	 */
5686 	next_distance = curr_distance;
5687 	for (i = 0; i < nr_node_ids; i++) {
5688 		for (j = 0; j < nr_node_ids; j++) {
5689 			for (k = 0; k < nr_node_ids; k++) {
5690 				int distance = node_distance(i, k);
5691 
5692 				if (distance > curr_distance &&
5693 				    (distance < next_distance ||
5694 				     next_distance == curr_distance))
5695 					next_distance = distance;
5696 
5697 				/*
5698 				 * While not a strong assumption it would be nice to know
5699 				 * about cases where if node A is connected to B, B is not
5700 				 * equally connected to A.
5701 				 */
5702 				if (sched_debug() && node_distance(k, i) != distance)
5703 					sched_numa_warn("Node-distance not symmetric");
5704 
5705 				if (sched_debug() && i && !find_numa_distance(distance))
5706 					sched_numa_warn("Node-0 not representative");
5707 			}
5708 			if (next_distance != curr_distance) {
5709 				sched_domains_numa_distance[level++] = next_distance;
5710 				sched_domains_numa_levels = level;
5711 				curr_distance = next_distance;
5712 			} else break;
5713 		}
5714 
5715 		/*
5716 		 * In case of sched_debug() we verify the above assumption.
5717 		 */
5718 		if (!sched_debug())
5719 			break;
5720 	}
5721 	/*
5722 	 * 'level' contains the number of unique distances, excluding the
5723 	 * identity distance node_distance(i,i).
5724 	 *
5725 	 * The sched_domains_numa_distance[] array includes the actual distance
5726 	 * numbers.
5727 	 */
5728 
5729 	/*
5730 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5731 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5732 	 * the array will contain less then 'level' members. This could be
5733 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5734 	 * in other functions.
5735 	 *
5736 	 * We reset it to 'level' at the end of this function.
5737 	 */
5738 	sched_domains_numa_levels = 0;
5739 
5740 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5741 	if (!sched_domains_numa_masks)
5742 		return;
5743 
5744 	/*
5745 	 * Now for each level, construct a mask per node which contains all
5746 	 * cpus of nodes that are that many hops away from us.
5747 	 */
5748 	for (i = 0; i < level; i++) {
5749 		sched_domains_numa_masks[i] =
5750 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5751 		if (!sched_domains_numa_masks[i])
5752 			return;
5753 
5754 		for (j = 0; j < nr_node_ids; j++) {
5755 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5756 			if (!mask)
5757 				return;
5758 
5759 			sched_domains_numa_masks[i][j] = mask;
5760 
5761 			for (k = 0; k < nr_node_ids; k++) {
5762 				if (node_distance(j, k) > sched_domains_numa_distance[i])
5763 					continue;
5764 
5765 				cpumask_or(mask, mask, cpumask_of_node(k));
5766 			}
5767 		}
5768 	}
5769 
5770 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5771 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5772 	if (!tl)
5773 		return;
5774 
5775 	/*
5776 	 * Copy the default topology bits..
5777 	 */
5778 	for (i = 0; default_topology[i].init; i++)
5779 		tl[i] = default_topology[i];
5780 
5781 	/*
5782 	 * .. and append 'j' levels of NUMA goodness.
5783 	 */
5784 	for (j = 0; j < level; i++, j++) {
5785 		tl[i] = (struct sched_domain_topology_level){
5786 			.init = sd_numa_init,
5787 			.mask = sd_numa_mask,
5788 			.flags = SDTL_OVERLAP,
5789 			.numa_level = j,
5790 		};
5791 	}
5792 
5793 	sched_domain_topology = tl;
5794 
5795 	sched_domains_numa_levels = level;
5796 }
5797 
5798 static void sched_domains_numa_masks_set(int cpu)
5799 {
5800 	int i, j;
5801 	int node = cpu_to_node(cpu);
5802 
5803 	for (i = 0; i < sched_domains_numa_levels; i++) {
5804 		for (j = 0; j < nr_node_ids; j++) {
5805 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5806 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5807 		}
5808 	}
5809 }
5810 
5811 static void sched_domains_numa_masks_clear(int cpu)
5812 {
5813 	int i, j;
5814 	for (i = 0; i < sched_domains_numa_levels; i++) {
5815 		for (j = 0; j < nr_node_ids; j++)
5816 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5817 	}
5818 }
5819 
5820 /*
5821  * Update sched_domains_numa_masks[level][node] array when new cpus
5822  * are onlined.
5823  */
5824 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5825 					   unsigned long action,
5826 					   void *hcpu)
5827 {
5828 	int cpu = (long)hcpu;
5829 
5830 	switch (action & ~CPU_TASKS_FROZEN) {
5831 	case CPU_ONLINE:
5832 		sched_domains_numa_masks_set(cpu);
5833 		break;
5834 
5835 	case CPU_DEAD:
5836 		sched_domains_numa_masks_clear(cpu);
5837 		break;
5838 
5839 	default:
5840 		return NOTIFY_DONE;
5841 	}
5842 
5843 	return NOTIFY_OK;
5844 }
5845 #else
5846 static inline void sched_init_numa(void)
5847 {
5848 }
5849 
5850 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5851 					   unsigned long action,
5852 					   void *hcpu)
5853 {
5854 	return 0;
5855 }
5856 #endif /* CONFIG_NUMA */
5857 
5858 static int __sdt_alloc(const struct cpumask *cpu_map)
5859 {
5860 	struct sched_domain_topology_level *tl;
5861 	int j;
5862 
5863 	for_each_sd_topology(tl) {
5864 		struct sd_data *sdd = &tl->data;
5865 
5866 		sdd->sd = alloc_percpu(struct sched_domain *);
5867 		if (!sdd->sd)
5868 			return -ENOMEM;
5869 
5870 		sdd->sg = alloc_percpu(struct sched_group *);
5871 		if (!sdd->sg)
5872 			return -ENOMEM;
5873 
5874 		sdd->sgp = alloc_percpu(struct sched_group_power *);
5875 		if (!sdd->sgp)
5876 			return -ENOMEM;
5877 
5878 		for_each_cpu(j, cpu_map) {
5879 			struct sched_domain *sd;
5880 			struct sched_group *sg;
5881 			struct sched_group_power *sgp;
5882 
5883 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5884 					GFP_KERNEL, cpu_to_node(j));
5885 			if (!sd)
5886 				return -ENOMEM;
5887 
5888 			*per_cpu_ptr(sdd->sd, j) = sd;
5889 
5890 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5891 					GFP_KERNEL, cpu_to_node(j));
5892 			if (!sg)
5893 				return -ENOMEM;
5894 
5895 			sg->next = sg;
5896 
5897 			*per_cpu_ptr(sdd->sg, j) = sg;
5898 
5899 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5900 					GFP_KERNEL, cpu_to_node(j));
5901 			if (!sgp)
5902 				return -ENOMEM;
5903 
5904 			*per_cpu_ptr(sdd->sgp, j) = sgp;
5905 		}
5906 	}
5907 
5908 	return 0;
5909 }
5910 
5911 static void __sdt_free(const struct cpumask *cpu_map)
5912 {
5913 	struct sched_domain_topology_level *tl;
5914 	int j;
5915 
5916 	for_each_sd_topology(tl) {
5917 		struct sd_data *sdd = &tl->data;
5918 
5919 		for_each_cpu(j, cpu_map) {
5920 			struct sched_domain *sd;
5921 
5922 			if (sdd->sd) {
5923 				sd = *per_cpu_ptr(sdd->sd, j);
5924 				if (sd && (sd->flags & SD_OVERLAP))
5925 					free_sched_groups(sd->groups, 0);
5926 				kfree(*per_cpu_ptr(sdd->sd, j));
5927 			}
5928 
5929 			if (sdd->sg)
5930 				kfree(*per_cpu_ptr(sdd->sg, j));
5931 			if (sdd->sgp)
5932 				kfree(*per_cpu_ptr(sdd->sgp, j));
5933 		}
5934 		free_percpu(sdd->sd);
5935 		sdd->sd = NULL;
5936 		free_percpu(sdd->sg);
5937 		sdd->sg = NULL;
5938 		free_percpu(sdd->sgp);
5939 		sdd->sgp = NULL;
5940 	}
5941 }
5942 
5943 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5944 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5945 		struct sched_domain *child, int cpu)
5946 {
5947 	struct sched_domain *sd = tl->init(tl, cpu);
5948 	if (!sd)
5949 		return child;
5950 
5951 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5952 	if (child) {
5953 		sd->level = child->level + 1;
5954 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5955 		child->parent = sd;
5956 		sd->child = child;
5957 	}
5958 	set_domain_attribute(sd, attr);
5959 
5960 	return sd;
5961 }
5962 
5963 /*
5964  * Build sched domains for a given set of cpus and attach the sched domains
5965  * to the individual cpus
5966  */
5967 static int build_sched_domains(const struct cpumask *cpu_map,
5968 			       struct sched_domain_attr *attr)
5969 {
5970 	enum s_alloc alloc_state;
5971 	struct sched_domain *sd;
5972 	struct s_data d;
5973 	int i, ret = -ENOMEM;
5974 
5975 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5976 	if (alloc_state != sa_rootdomain)
5977 		goto error;
5978 
5979 	/* Set up domains for cpus specified by the cpu_map. */
5980 	for_each_cpu(i, cpu_map) {
5981 		struct sched_domain_topology_level *tl;
5982 
5983 		sd = NULL;
5984 		for_each_sd_topology(tl) {
5985 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
5986 			if (tl == sched_domain_topology)
5987 				*per_cpu_ptr(d.sd, i) = sd;
5988 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5989 				sd->flags |= SD_OVERLAP;
5990 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5991 				break;
5992 		}
5993 	}
5994 
5995 	/* Build the groups for the domains */
5996 	for_each_cpu(i, cpu_map) {
5997 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5998 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
5999 			if (sd->flags & SD_OVERLAP) {
6000 				if (build_overlap_sched_groups(sd, i))
6001 					goto error;
6002 			} else {
6003 				if (build_sched_groups(sd, i))
6004 					goto error;
6005 			}
6006 		}
6007 	}
6008 
6009 	/* Calculate CPU power for physical packages and nodes */
6010 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6011 		if (!cpumask_test_cpu(i, cpu_map))
6012 			continue;
6013 
6014 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6015 			claim_allocations(i, sd);
6016 			init_sched_groups_power(i, sd);
6017 		}
6018 	}
6019 
6020 	/* Attach the domains */
6021 	rcu_read_lock();
6022 	for_each_cpu(i, cpu_map) {
6023 		sd = *per_cpu_ptr(d.sd, i);
6024 		cpu_attach_domain(sd, d.rd, i);
6025 	}
6026 	rcu_read_unlock();
6027 
6028 	ret = 0;
6029 error:
6030 	__free_domain_allocs(&d, alloc_state, cpu_map);
6031 	return ret;
6032 }
6033 
6034 static cpumask_var_t *doms_cur;	/* current sched domains */
6035 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6036 static struct sched_domain_attr *dattr_cur;
6037 				/* attribues of custom domains in 'doms_cur' */
6038 
6039 /*
6040  * Special case: If a kmalloc of a doms_cur partition (array of
6041  * cpumask) fails, then fallback to a single sched domain,
6042  * as determined by the single cpumask fallback_doms.
6043  */
6044 static cpumask_var_t fallback_doms;
6045 
6046 /*
6047  * arch_update_cpu_topology lets virtualized architectures update the
6048  * cpu core maps. It is supposed to return 1 if the topology changed
6049  * or 0 if it stayed the same.
6050  */
6051 int __attribute__((weak)) arch_update_cpu_topology(void)
6052 {
6053 	return 0;
6054 }
6055 
6056 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6057 {
6058 	int i;
6059 	cpumask_var_t *doms;
6060 
6061 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6062 	if (!doms)
6063 		return NULL;
6064 	for (i = 0; i < ndoms; i++) {
6065 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6066 			free_sched_domains(doms, i);
6067 			return NULL;
6068 		}
6069 	}
6070 	return doms;
6071 }
6072 
6073 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6074 {
6075 	unsigned int i;
6076 	for (i = 0; i < ndoms; i++)
6077 		free_cpumask_var(doms[i]);
6078 	kfree(doms);
6079 }
6080 
6081 /*
6082  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6083  * For now this just excludes isolated cpus, but could be used to
6084  * exclude other special cases in the future.
6085  */
6086 static int init_sched_domains(const struct cpumask *cpu_map)
6087 {
6088 	int err;
6089 
6090 	arch_update_cpu_topology();
6091 	ndoms_cur = 1;
6092 	doms_cur = alloc_sched_domains(ndoms_cur);
6093 	if (!doms_cur)
6094 		doms_cur = &fallback_doms;
6095 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6096 	err = build_sched_domains(doms_cur[0], NULL);
6097 	register_sched_domain_sysctl();
6098 
6099 	return err;
6100 }
6101 
6102 /*
6103  * Detach sched domains from a group of cpus specified in cpu_map
6104  * These cpus will now be attached to the NULL domain
6105  */
6106 static void detach_destroy_domains(const struct cpumask *cpu_map)
6107 {
6108 	int i;
6109 
6110 	rcu_read_lock();
6111 	for_each_cpu(i, cpu_map)
6112 		cpu_attach_domain(NULL, &def_root_domain, i);
6113 	rcu_read_unlock();
6114 }
6115 
6116 /* handle null as "default" */
6117 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6118 			struct sched_domain_attr *new, int idx_new)
6119 {
6120 	struct sched_domain_attr tmp;
6121 
6122 	/* fast path */
6123 	if (!new && !cur)
6124 		return 1;
6125 
6126 	tmp = SD_ATTR_INIT;
6127 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6128 			new ? (new + idx_new) : &tmp,
6129 			sizeof(struct sched_domain_attr));
6130 }
6131 
6132 /*
6133  * Partition sched domains as specified by the 'ndoms_new'
6134  * cpumasks in the array doms_new[] of cpumasks. This compares
6135  * doms_new[] to the current sched domain partitioning, doms_cur[].
6136  * It destroys each deleted domain and builds each new domain.
6137  *
6138  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6139  * The masks don't intersect (don't overlap.) We should setup one
6140  * sched domain for each mask. CPUs not in any of the cpumasks will
6141  * not be load balanced. If the same cpumask appears both in the
6142  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6143  * it as it is.
6144  *
6145  * The passed in 'doms_new' should be allocated using
6146  * alloc_sched_domains.  This routine takes ownership of it and will
6147  * free_sched_domains it when done with it. If the caller failed the
6148  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6149  * and partition_sched_domains() will fallback to the single partition
6150  * 'fallback_doms', it also forces the domains to be rebuilt.
6151  *
6152  * If doms_new == NULL it will be replaced with cpu_online_mask.
6153  * ndoms_new == 0 is a special case for destroying existing domains,
6154  * and it will not create the default domain.
6155  *
6156  * Call with hotplug lock held
6157  */
6158 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6159 			     struct sched_domain_attr *dattr_new)
6160 {
6161 	int i, j, n;
6162 	int new_topology;
6163 
6164 	mutex_lock(&sched_domains_mutex);
6165 
6166 	/* always unregister in case we don't destroy any domains */
6167 	unregister_sched_domain_sysctl();
6168 
6169 	/* Let architecture update cpu core mappings. */
6170 	new_topology = arch_update_cpu_topology();
6171 
6172 	n = doms_new ? ndoms_new : 0;
6173 
6174 	/* Destroy deleted domains */
6175 	for (i = 0; i < ndoms_cur; i++) {
6176 		for (j = 0; j < n && !new_topology; j++) {
6177 			if (cpumask_equal(doms_cur[i], doms_new[j])
6178 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6179 				goto match1;
6180 		}
6181 		/* no match - a current sched domain not in new doms_new[] */
6182 		detach_destroy_domains(doms_cur[i]);
6183 match1:
6184 		;
6185 	}
6186 
6187 	if (doms_new == NULL) {
6188 		ndoms_cur = 0;
6189 		doms_new = &fallback_doms;
6190 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6191 		WARN_ON_ONCE(dattr_new);
6192 	}
6193 
6194 	/* Build new domains */
6195 	for (i = 0; i < ndoms_new; i++) {
6196 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6197 			if (cpumask_equal(doms_new[i], doms_cur[j])
6198 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6199 				goto match2;
6200 		}
6201 		/* no match - add a new doms_new */
6202 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6203 match2:
6204 		;
6205 	}
6206 
6207 	/* Remember the new sched domains */
6208 	if (doms_cur != &fallback_doms)
6209 		free_sched_domains(doms_cur, ndoms_cur);
6210 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6211 	doms_cur = doms_new;
6212 	dattr_cur = dattr_new;
6213 	ndoms_cur = ndoms_new;
6214 
6215 	register_sched_domain_sysctl();
6216 
6217 	mutex_unlock(&sched_domains_mutex);
6218 }
6219 
6220 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6221 
6222 /*
6223  * Update cpusets according to cpu_active mask.  If cpusets are
6224  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6225  * around partition_sched_domains().
6226  *
6227  * If we come here as part of a suspend/resume, don't touch cpusets because we
6228  * want to restore it back to its original state upon resume anyway.
6229  */
6230 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6231 			     void *hcpu)
6232 {
6233 	switch (action) {
6234 	case CPU_ONLINE_FROZEN:
6235 	case CPU_DOWN_FAILED_FROZEN:
6236 
6237 		/*
6238 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6239 		 * resume sequence. As long as this is not the last online
6240 		 * operation in the resume sequence, just build a single sched
6241 		 * domain, ignoring cpusets.
6242 		 */
6243 		num_cpus_frozen--;
6244 		if (likely(num_cpus_frozen)) {
6245 			partition_sched_domains(1, NULL, NULL);
6246 			break;
6247 		}
6248 
6249 		/*
6250 		 * This is the last CPU online operation. So fall through and
6251 		 * restore the original sched domains by considering the
6252 		 * cpuset configurations.
6253 		 */
6254 
6255 	case CPU_ONLINE:
6256 	case CPU_DOWN_FAILED:
6257 		cpuset_update_active_cpus(true);
6258 		break;
6259 	default:
6260 		return NOTIFY_DONE;
6261 	}
6262 	return NOTIFY_OK;
6263 }
6264 
6265 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6266 			       void *hcpu)
6267 {
6268 	switch (action) {
6269 	case CPU_DOWN_PREPARE:
6270 		cpuset_update_active_cpus(false);
6271 		break;
6272 	case CPU_DOWN_PREPARE_FROZEN:
6273 		num_cpus_frozen++;
6274 		partition_sched_domains(1, NULL, NULL);
6275 		break;
6276 	default:
6277 		return NOTIFY_DONE;
6278 	}
6279 	return NOTIFY_OK;
6280 }
6281 
6282 void __init sched_init_smp(void)
6283 {
6284 	cpumask_var_t non_isolated_cpus;
6285 
6286 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6287 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6288 
6289 	sched_init_numa();
6290 
6291 	get_online_cpus();
6292 	mutex_lock(&sched_domains_mutex);
6293 	init_sched_domains(cpu_active_mask);
6294 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6295 	if (cpumask_empty(non_isolated_cpus))
6296 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6297 	mutex_unlock(&sched_domains_mutex);
6298 	put_online_cpus();
6299 
6300 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6301 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6302 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6303 
6304 	init_hrtick();
6305 
6306 	/* Move init over to a non-isolated CPU */
6307 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6308 		BUG();
6309 	sched_init_granularity();
6310 	free_cpumask_var(non_isolated_cpus);
6311 
6312 	init_sched_rt_class();
6313 }
6314 #else
6315 void __init sched_init_smp(void)
6316 {
6317 	sched_init_granularity();
6318 }
6319 #endif /* CONFIG_SMP */
6320 
6321 const_debug unsigned int sysctl_timer_migration = 1;
6322 
6323 int in_sched_functions(unsigned long addr)
6324 {
6325 	return in_lock_functions(addr) ||
6326 		(addr >= (unsigned long)__sched_text_start
6327 		&& addr < (unsigned long)__sched_text_end);
6328 }
6329 
6330 #ifdef CONFIG_CGROUP_SCHED
6331 /*
6332  * Default task group.
6333  * Every task in system belongs to this group at bootup.
6334  */
6335 struct task_group root_task_group;
6336 LIST_HEAD(task_groups);
6337 #endif
6338 
6339 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6340 
6341 void __init sched_init(void)
6342 {
6343 	int i, j;
6344 	unsigned long alloc_size = 0, ptr;
6345 
6346 #ifdef CONFIG_FAIR_GROUP_SCHED
6347 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6348 #endif
6349 #ifdef CONFIG_RT_GROUP_SCHED
6350 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6351 #endif
6352 #ifdef CONFIG_CPUMASK_OFFSTACK
6353 	alloc_size += num_possible_cpus() * cpumask_size();
6354 #endif
6355 	if (alloc_size) {
6356 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6357 
6358 #ifdef CONFIG_FAIR_GROUP_SCHED
6359 		root_task_group.se = (struct sched_entity **)ptr;
6360 		ptr += nr_cpu_ids * sizeof(void **);
6361 
6362 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6363 		ptr += nr_cpu_ids * sizeof(void **);
6364 
6365 #endif /* CONFIG_FAIR_GROUP_SCHED */
6366 #ifdef CONFIG_RT_GROUP_SCHED
6367 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6368 		ptr += nr_cpu_ids * sizeof(void **);
6369 
6370 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6371 		ptr += nr_cpu_ids * sizeof(void **);
6372 
6373 #endif /* CONFIG_RT_GROUP_SCHED */
6374 #ifdef CONFIG_CPUMASK_OFFSTACK
6375 		for_each_possible_cpu(i) {
6376 			per_cpu(load_balance_mask, i) = (void *)ptr;
6377 			ptr += cpumask_size();
6378 		}
6379 #endif /* CONFIG_CPUMASK_OFFSTACK */
6380 	}
6381 
6382 #ifdef CONFIG_SMP
6383 	init_defrootdomain();
6384 #endif
6385 
6386 	init_rt_bandwidth(&def_rt_bandwidth,
6387 			global_rt_period(), global_rt_runtime());
6388 
6389 #ifdef CONFIG_RT_GROUP_SCHED
6390 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6391 			global_rt_period(), global_rt_runtime());
6392 #endif /* CONFIG_RT_GROUP_SCHED */
6393 
6394 #ifdef CONFIG_CGROUP_SCHED
6395 	list_add(&root_task_group.list, &task_groups);
6396 	INIT_LIST_HEAD(&root_task_group.children);
6397 	INIT_LIST_HEAD(&root_task_group.siblings);
6398 	autogroup_init(&init_task);
6399 
6400 #endif /* CONFIG_CGROUP_SCHED */
6401 
6402 	for_each_possible_cpu(i) {
6403 		struct rq *rq;
6404 
6405 		rq = cpu_rq(i);
6406 		raw_spin_lock_init(&rq->lock);
6407 		rq->nr_running = 0;
6408 		rq->calc_load_active = 0;
6409 		rq->calc_load_update = jiffies + LOAD_FREQ;
6410 		init_cfs_rq(&rq->cfs);
6411 		init_rt_rq(&rq->rt, rq);
6412 #ifdef CONFIG_FAIR_GROUP_SCHED
6413 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6414 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6415 		/*
6416 		 * How much cpu bandwidth does root_task_group get?
6417 		 *
6418 		 * In case of task-groups formed thr' the cgroup filesystem, it
6419 		 * gets 100% of the cpu resources in the system. This overall
6420 		 * system cpu resource is divided among the tasks of
6421 		 * root_task_group and its child task-groups in a fair manner,
6422 		 * based on each entity's (task or task-group's) weight
6423 		 * (se->load.weight).
6424 		 *
6425 		 * In other words, if root_task_group has 10 tasks of weight
6426 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6427 		 * then A0's share of the cpu resource is:
6428 		 *
6429 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6430 		 *
6431 		 * We achieve this by letting root_task_group's tasks sit
6432 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6433 		 */
6434 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6435 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6436 #endif /* CONFIG_FAIR_GROUP_SCHED */
6437 
6438 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6439 #ifdef CONFIG_RT_GROUP_SCHED
6440 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6441 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6442 #endif
6443 
6444 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6445 			rq->cpu_load[j] = 0;
6446 
6447 		rq->last_load_update_tick = jiffies;
6448 
6449 #ifdef CONFIG_SMP
6450 		rq->sd = NULL;
6451 		rq->rd = NULL;
6452 		rq->cpu_power = SCHED_POWER_SCALE;
6453 		rq->post_schedule = 0;
6454 		rq->active_balance = 0;
6455 		rq->next_balance = jiffies;
6456 		rq->push_cpu = 0;
6457 		rq->cpu = i;
6458 		rq->online = 0;
6459 		rq->idle_stamp = 0;
6460 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6461 
6462 		INIT_LIST_HEAD(&rq->cfs_tasks);
6463 
6464 		rq_attach_root(rq, &def_root_domain);
6465 #ifdef CONFIG_NO_HZ_COMMON
6466 		rq->nohz_flags = 0;
6467 #endif
6468 #ifdef CONFIG_NO_HZ_FULL
6469 		rq->last_sched_tick = 0;
6470 #endif
6471 #endif
6472 		init_rq_hrtick(rq);
6473 		atomic_set(&rq->nr_iowait, 0);
6474 	}
6475 
6476 	set_load_weight(&init_task);
6477 
6478 #ifdef CONFIG_PREEMPT_NOTIFIERS
6479 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6480 #endif
6481 
6482 #ifdef CONFIG_RT_MUTEXES
6483 	plist_head_init(&init_task.pi_waiters);
6484 #endif
6485 
6486 	/*
6487 	 * The boot idle thread does lazy MMU switching as well:
6488 	 */
6489 	atomic_inc(&init_mm.mm_count);
6490 	enter_lazy_tlb(&init_mm, current);
6491 
6492 	/*
6493 	 * Make us the idle thread. Technically, schedule() should not be
6494 	 * called from this thread, however somewhere below it might be,
6495 	 * but because we are the idle thread, we just pick up running again
6496 	 * when this runqueue becomes "idle".
6497 	 */
6498 	init_idle(current, smp_processor_id());
6499 
6500 	calc_load_update = jiffies + LOAD_FREQ;
6501 
6502 	/*
6503 	 * During early bootup we pretend to be a normal task:
6504 	 */
6505 	current->sched_class = &fair_sched_class;
6506 
6507 #ifdef CONFIG_SMP
6508 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6509 	/* May be allocated at isolcpus cmdline parse time */
6510 	if (cpu_isolated_map == NULL)
6511 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6512 	idle_thread_set_boot_cpu();
6513 #endif
6514 	init_sched_fair_class();
6515 
6516 	scheduler_running = 1;
6517 }
6518 
6519 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6520 static inline int preempt_count_equals(int preempt_offset)
6521 {
6522 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6523 
6524 	return (nested == preempt_offset);
6525 }
6526 
6527 void __might_sleep(const char *file, int line, int preempt_offset)
6528 {
6529 	static unsigned long prev_jiffy;	/* ratelimiting */
6530 
6531 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6532 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6533 	    system_state != SYSTEM_RUNNING || oops_in_progress)
6534 		return;
6535 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6536 		return;
6537 	prev_jiffy = jiffies;
6538 
6539 	printk(KERN_ERR
6540 		"BUG: sleeping function called from invalid context at %s:%d\n",
6541 			file, line);
6542 	printk(KERN_ERR
6543 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6544 			in_atomic(), irqs_disabled(),
6545 			current->pid, current->comm);
6546 
6547 	debug_show_held_locks(current);
6548 	if (irqs_disabled())
6549 		print_irqtrace_events(current);
6550 	dump_stack();
6551 }
6552 EXPORT_SYMBOL(__might_sleep);
6553 #endif
6554 
6555 #ifdef CONFIG_MAGIC_SYSRQ
6556 static void normalize_task(struct rq *rq, struct task_struct *p)
6557 {
6558 	const struct sched_class *prev_class = p->sched_class;
6559 	int old_prio = p->prio;
6560 	int on_rq;
6561 
6562 	on_rq = p->on_rq;
6563 	if (on_rq)
6564 		dequeue_task(rq, p, 0);
6565 	__setscheduler(rq, p, SCHED_NORMAL, 0);
6566 	if (on_rq) {
6567 		enqueue_task(rq, p, 0);
6568 		resched_task(rq->curr);
6569 	}
6570 
6571 	check_class_changed(rq, p, prev_class, old_prio);
6572 }
6573 
6574 void normalize_rt_tasks(void)
6575 {
6576 	struct task_struct *g, *p;
6577 	unsigned long flags;
6578 	struct rq *rq;
6579 
6580 	read_lock_irqsave(&tasklist_lock, flags);
6581 	do_each_thread(g, p) {
6582 		/*
6583 		 * Only normalize user tasks:
6584 		 */
6585 		if (!p->mm)
6586 			continue;
6587 
6588 		p->se.exec_start		= 0;
6589 #ifdef CONFIG_SCHEDSTATS
6590 		p->se.statistics.wait_start	= 0;
6591 		p->se.statistics.sleep_start	= 0;
6592 		p->se.statistics.block_start	= 0;
6593 #endif
6594 
6595 		if (!rt_task(p)) {
6596 			/*
6597 			 * Renice negative nice level userspace
6598 			 * tasks back to 0:
6599 			 */
6600 			if (TASK_NICE(p) < 0 && p->mm)
6601 				set_user_nice(p, 0);
6602 			continue;
6603 		}
6604 
6605 		raw_spin_lock(&p->pi_lock);
6606 		rq = __task_rq_lock(p);
6607 
6608 		normalize_task(rq, p);
6609 
6610 		__task_rq_unlock(rq);
6611 		raw_spin_unlock(&p->pi_lock);
6612 	} while_each_thread(g, p);
6613 
6614 	read_unlock_irqrestore(&tasklist_lock, flags);
6615 }
6616 
6617 #endif /* CONFIG_MAGIC_SYSRQ */
6618 
6619 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6620 /*
6621  * These functions are only useful for the IA64 MCA handling, or kdb.
6622  *
6623  * They can only be called when the whole system has been
6624  * stopped - every CPU needs to be quiescent, and no scheduling
6625  * activity can take place. Using them for anything else would
6626  * be a serious bug, and as a result, they aren't even visible
6627  * under any other configuration.
6628  */
6629 
6630 /**
6631  * curr_task - return the current task for a given cpu.
6632  * @cpu: the processor in question.
6633  *
6634  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6635  */
6636 struct task_struct *curr_task(int cpu)
6637 {
6638 	return cpu_curr(cpu);
6639 }
6640 
6641 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6642 
6643 #ifdef CONFIG_IA64
6644 /**
6645  * set_curr_task - set the current task for a given cpu.
6646  * @cpu: the processor in question.
6647  * @p: the task pointer to set.
6648  *
6649  * Description: This function must only be used when non-maskable interrupts
6650  * are serviced on a separate stack. It allows the architecture to switch the
6651  * notion of the current task on a cpu in a non-blocking manner. This function
6652  * must be called with all CPU's synchronized, and interrupts disabled, the
6653  * and caller must save the original value of the current task (see
6654  * curr_task() above) and restore that value before reenabling interrupts and
6655  * re-starting the system.
6656  *
6657  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6658  */
6659 void set_curr_task(int cpu, struct task_struct *p)
6660 {
6661 	cpu_curr(cpu) = p;
6662 }
6663 
6664 #endif
6665 
6666 #ifdef CONFIG_CGROUP_SCHED
6667 /* task_group_lock serializes the addition/removal of task groups */
6668 static DEFINE_SPINLOCK(task_group_lock);
6669 
6670 static void free_sched_group(struct task_group *tg)
6671 {
6672 	free_fair_sched_group(tg);
6673 	free_rt_sched_group(tg);
6674 	autogroup_free(tg);
6675 	kfree(tg);
6676 }
6677 
6678 /* allocate runqueue etc for a new task group */
6679 struct task_group *sched_create_group(struct task_group *parent)
6680 {
6681 	struct task_group *tg;
6682 
6683 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6684 	if (!tg)
6685 		return ERR_PTR(-ENOMEM);
6686 
6687 	if (!alloc_fair_sched_group(tg, parent))
6688 		goto err;
6689 
6690 	if (!alloc_rt_sched_group(tg, parent))
6691 		goto err;
6692 
6693 	return tg;
6694 
6695 err:
6696 	free_sched_group(tg);
6697 	return ERR_PTR(-ENOMEM);
6698 }
6699 
6700 void sched_online_group(struct task_group *tg, struct task_group *parent)
6701 {
6702 	unsigned long flags;
6703 
6704 	spin_lock_irqsave(&task_group_lock, flags);
6705 	list_add_rcu(&tg->list, &task_groups);
6706 
6707 	WARN_ON(!parent); /* root should already exist */
6708 
6709 	tg->parent = parent;
6710 	INIT_LIST_HEAD(&tg->children);
6711 	list_add_rcu(&tg->siblings, &parent->children);
6712 	spin_unlock_irqrestore(&task_group_lock, flags);
6713 }
6714 
6715 /* rcu callback to free various structures associated with a task group */
6716 static void free_sched_group_rcu(struct rcu_head *rhp)
6717 {
6718 	/* now it should be safe to free those cfs_rqs */
6719 	free_sched_group(container_of(rhp, struct task_group, rcu));
6720 }
6721 
6722 /* Destroy runqueue etc associated with a task group */
6723 void sched_destroy_group(struct task_group *tg)
6724 {
6725 	/* wait for possible concurrent references to cfs_rqs complete */
6726 	call_rcu(&tg->rcu, free_sched_group_rcu);
6727 }
6728 
6729 void sched_offline_group(struct task_group *tg)
6730 {
6731 	unsigned long flags;
6732 	int i;
6733 
6734 	/* end participation in shares distribution */
6735 	for_each_possible_cpu(i)
6736 		unregister_fair_sched_group(tg, i);
6737 
6738 	spin_lock_irqsave(&task_group_lock, flags);
6739 	list_del_rcu(&tg->list);
6740 	list_del_rcu(&tg->siblings);
6741 	spin_unlock_irqrestore(&task_group_lock, flags);
6742 }
6743 
6744 /* change task's runqueue when it moves between groups.
6745  *	The caller of this function should have put the task in its new group
6746  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6747  *	reflect its new group.
6748  */
6749 void sched_move_task(struct task_struct *tsk)
6750 {
6751 	struct task_group *tg;
6752 	int on_rq, running;
6753 	unsigned long flags;
6754 	struct rq *rq;
6755 
6756 	rq = task_rq_lock(tsk, &flags);
6757 
6758 	running = task_current(rq, tsk);
6759 	on_rq = tsk->on_rq;
6760 
6761 	if (on_rq)
6762 		dequeue_task(rq, tsk, 0);
6763 	if (unlikely(running))
6764 		tsk->sched_class->put_prev_task(rq, tsk);
6765 
6766 	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
6767 				lockdep_is_held(&tsk->sighand->siglock)),
6768 			  struct task_group, css);
6769 	tg = autogroup_task_group(tsk, tg);
6770 	tsk->sched_task_group = tg;
6771 
6772 #ifdef CONFIG_FAIR_GROUP_SCHED
6773 	if (tsk->sched_class->task_move_group)
6774 		tsk->sched_class->task_move_group(tsk, on_rq);
6775 	else
6776 #endif
6777 		set_task_rq(tsk, task_cpu(tsk));
6778 
6779 	if (unlikely(running))
6780 		tsk->sched_class->set_curr_task(rq);
6781 	if (on_rq)
6782 		enqueue_task(rq, tsk, 0);
6783 
6784 	task_rq_unlock(rq, tsk, &flags);
6785 }
6786 #endif /* CONFIG_CGROUP_SCHED */
6787 
6788 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6789 static unsigned long to_ratio(u64 period, u64 runtime)
6790 {
6791 	if (runtime == RUNTIME_INF)
6792 		return 1ULL << 20;
6793 
6794 	return div64_u64(runtime << 20, period);
6795 }
6796 #endif
6797 
6798 #ifdef CONFIG_RT_GROUP_SCHED
6799 /*
6800  * Ensure that the real time constraints are schedulable.
6801  */
6802 static DEFINE_MUTEX(rt_constraints_mutex);
6803 
6804 /* Must be called with tasklist_lock held */
6805 static inline int tg_has_rt_tasks(struct task_group *tg)
6806 {
6807 	struct task_struct *g, *p;
6808 
6809 	do_each_thread(g, p) {
6810 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6811 			return 1;
6812 	} while_each_thread(g, p);
6813 
6814 	return 0;
6815 }
6816 
6817 struct rt_schedulable_data {
6818 	struct task_group *tg;
6819 	u64 rt_period;
6820 	u64 rt_runtime;
6821 };
6822 
6823 static int tg_rt_schedulable(struct task_group *tg, void *data)
6824 {
6825 	struct rt_schedulable_data *d = data;
6826 	struct task_group *child;
6827 	unsigned long total, sum = 0;
6828 	u64 period, runtime;
6829 
6830 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6831 	runtime = tg->rt_bandwidth.rt_runtime;
6832 
6833 	if (tg == d->tg) {
6834 		period = d->rt_period;
6835 		runtime = d->rt_runtime;
6836 	}
6837 
6838 	/*
6839 	 * Cannot have more runtime than the period.
6840 	 */
6841 	if (runtime > period && runtime != RUNTIME_INF)
6842 		return -EINVAL;
6843 
6844 	/*
6845 	 * Ensure we don't starve existing RT tasks.
6846 	 */
6847 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6848 		return -EBUSY;
6849 
6850 	total = to_ratio(period, runtime);
6851 
6852 	/*
6853 	 * Nobody can have more than the global setting allows.
6854 	 */
6855 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6856 		return -EINVAL;
6857 
6858 	/*
6859 	 * The sum of our children's runtime should not exceed our own.
6860 	 */
6861 	list_for_each_entry_rcu(child, &tg->children, siblings) {
6862 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6863 		runtime = child->rt_bandwidth.rt_runtime;
6864 
6865 		if (child == d->tg) {
6866 			period = d->rt_period;
6867 			runtime = d->rt_runtime;
6868 		}
6869 
6870 		sum += to_ratio(period, runtime);
6871 	}
6872 
6873 	if (sum > total)
6874 		return -EINVAL;
6875 
6876 	return 0;
6877 }
6878 
6879 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6880 {
6881 	int ret;
6882 
6883 	struct rt_schedulable_data data = {
6884 		.tg = tg,
6885 		.rt_period = period,
6886 		.rt_runtime = runtime,
6887 	};
6888 
6889 	rcu_read_lock();
6890 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6891 	rcu_read_unlock();
6892 
6893 	return ret;
6894 }
6895 
6896 static int tg_set_rt_bandwidth(struct task_group *tg,
6897 		u64 rt_period, u64 rt_runtime)
6898 {
6899 	int i, err = 0;
6900 
6901 	mutex_lock(&rt_constraints_mutex);
6902 	read_lock(&tasklist_lock);
6903 	err = __rt_schedulable(tg, rt_period, rt_runtime);
6904 	if (err)
6905 		goto unlock;
6906 
6907 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6908 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6909 	tg->rt_bandwidth.rt_runtime = rt_runtime;
6910 
6911 	for_each_possible_cpu(i) {
6912 		struct rt_rq *rt_rq = tg->rt_rq[i];
6913 
6914 		raw_spin_lock(&rt_rq->rt_runtime_lock);
6915 		rt_rq->rt_runtime = rt_runtime;
6916 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6917 	}
6918 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6919 unlock:
6920 	read_unlock(&tasklist_lock);
6921 	mutex_unlock(&rt_constraints_mutex);
6922 
6923 	return err;
6924 }
6925 
6926 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6927 {
6928 	u64 rt_runtime, rt_period;
6929 
6930 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6931 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6932 	if (rt_runtime_us < 0)
6933 		rt_runtime = RUNTIME_INF;
6934 
6935 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6936 }
6937 
6938 static long sched_group_rt_runtime(struct task_group *tg)
6939 {
6940 	u64 rt_runtime_us;
6941 
6942 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6943 		return -1;
6944 
6945 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6946 	do_div(rt_runtime_us, NSEC_PER_USEC);
6947 	return rt_runtime_us;
6948 }
6949 
6950 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6951 {
6952 	u64 rt_runtime, rt_period;
6953 
6954 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6955 	rt_runtime = tg->rt_bandwidth.rt_runtime;
6956 
6957 	if (rt_period == 0)
6958 		return -EINVAL;
6959 
6960 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6961 }
6962 
6963 static long sched_group_rt_period(struct task_group *tg)
6964 {
6965 	u64 rt_period_us;
6966 
6967 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6968 	do_div(rt_period_us, NSEC_PER_USEC);
6969 	return rt_period_us;
6970 }
6971 
6972 static int sched_rt_global_constraints(void)
6973 {
6974 	u64 runtime, period;
6975 	int ret = 0;
6976 
6977 	if (sysctl_sched_rt_period <= 0)
6978 		return -EINVAL;
6979 
6980 	runtime = global_rt_runtime();
6981 	period = global_rt_period();
6982 
6983 	/*
6984 	 * Sanity check on the sysctl variables.
6985 	 */
6986 	if (runtime > period && runtime != RUNTIME_INF)
6987 		return -EINVAL;
6988 
6989 	mutex_lock(&rt_constraints_mutex);
6990 	read_lock(&tasklist_lock);
6991 	ret = __rt_schedulable(NULL, 0, 0);
6992 	read_unlock(&tasklist_lock);
6993 	mutex_unlock(&rt_constraints_mutex);
6994 
6995 	return ret;
6996 }
6997 
6998 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6999 {
7000 	/* Don't accept realtime tasks when there is no way for them to run */
7001 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7002 		return 0;
7003 
7004 	return 1;
7005 }
7006 
7007 #else /* !CONFIG_RT_GROUP_SCHED */
7008 static int sched_rt_global_constraints(void)
7009 {
7010 	unsigned long flags;
7011 	int i;
7012 
7013 	if (sysctl_sched_rt_period <= 0)
7014 		return -EINVAL;
7015 
7016 	/*
7017 	 * There's always some RT tasks in the root group
7018 	 * -- migration, kstopmachine etc..
7019 	 */
7020 	if (sysctl_sched_rt_runtime == 0)
7021 		return -EBUSY;
7022 
7023 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7024 	for_each_possible_cpu(i) {
7025 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7026 
7027 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7028 		rt_rq->rt_runtime = global_rt_runtime();
7029 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7030 	}
7031 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7032 
7033 	return 0;
7034 }
7035 #endif /* CONFIG_RT_GROUP_SCHED */
7036 
7037 int sched_rr_handler(struct ctl_table *table, int write,
7038 		void __user *buffer, size_t *lenp,
7039 		loff_t *ppos)
7040 {
7041 	int ret;
7042 	static DEFINE_MUTEX(mutex);
7043 
7044 	mutex_lock(&mutex);
7045 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7046 	/* make sure that internally we keep jiffies */
7047 	/* also, writing zero resets timeslice to default */
7048 	if (!ret && write) {
7049 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7050 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7051 	}
7052 	mutex_unlock(&mutex);
7053 	return ret;
7054 }
7055 
7056 int sched_rt_handler(struct ctl_table *table, int write,
7057 		void __user *buffer, size_t *lenp,
7058 		loff_t *ppos)
7059 {
7060 	int ret;
7061 	int old_period, old_runtime;
7062 	static DEFINE_MUTEX(mutex);
7063 
7064 	mutex_lock(&mutex);
7065 	old_period = sysctl_sched_rt_period;
7066 	old_runtime = sysctl_sched_rt_runtime;
7067 
7068 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7069 
7070 	if (!ret && write) {
7071 		ret = sched_rt_global_constraints();
7072 		if (ret) {
7073 			sysctl_sched_rt_period = old_period;
7074 			sysctl_sched_rt_runtime = old_runtime;
7075 		} else {
7076 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7077 			def_rt_bandwidth.rt_period =
7078 				ns_to_ktime(global_rt_period());
7079 		}
7080 	}
7081 	mutex_unlock(&mutex);
7082 
7083 	return ret;
7084 }
7085 
7086 #ifdef CONFIG_CGROUP_SCHED
7087 
7088 /* return corresponding task_group object of a cgroup */
7089 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7090 {
7091 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7092 			    struct task_group, css);
7093 }
7094 
7095 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7096 {
7097 	struct task_group *tg, *parent;
7098 
7099 	if (!cgrp->parent) {
7100 		/* This is early initialization for the top cgroup */
7101 		return &root_task_group.css;
7102 	}
7103 
7104 	parent = cgroup_tg(cgrp->parent);
7105 	tg = sched_create_group(parent);
7106 	if (IS_ERR(tg))
7107 		return ERR_PTR(-ENOMEM);
7108 
7109 	return &tg->css;
7110 }
7111 
7112 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7113 {
7114 	struct task_group *tg = cgroup_tg(cgrp);
7115 	struct task_group *parent;
7116 
7117 	if (!cgrp->parent)
7118 		return 0;
7119 
7120 	parent = cgroup_tg(cgrp->parent);
7121 	sched_online_group(tg, parent);
7122 	return 0;
7123 }
7124 
7125 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7126 {
7127 	struct task_group *tg = cgroup_tg(cgrp);
7128 
7129 	sched_destroy_group(tg);
7130 }
7131 
7132 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7133 {
7134 	struct task_group *tg = cgroup_tg(cgrp);
7135 
7136 	sched_offline_group(tg);
7137 }
7138 
7139 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7140 				 struct cgroup_taskset *tset)
7141 {
7142 	struct task_struct *task;
7143 
7144 	cgroup_taskset_for_each(task, cgrp, tset) {
7145 #ifdef CONFIG_RT_GROUP_SCHED
7146 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7147 			return -EINVAL;
7148 #else
7149 		/* We don't support RT-tasks being in separate groups */
7150 		if (task->sched_class != &fair_sched_class)
7151 			return -EINVAL;
7152 #endif
7153 	}
7154 	return 0;
7155 }
7156 
7157 static void cpu_cgroup_attach(struct cgroup *cgrp,
7158 			      struct cgroup_taskset *tset)
7159 {
7160 	struct task_struct *task;
7161 
7162 	cgroup_taskset_for_each(task, cgrp, tset)
7163 		sched_move_task(task);
7164 }
7165 
7166 static void
7167 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7168 		struct task_struct *task)
7169 {
7170 	/*
7171 	 * cgroup_exit() is called in the copy_process() failure path.
7172 	 * Ignore this case since the task hasn't ran yet, this avoids
7173 	 * trying to poke a half freed task state from generic code.
7174 	 */
7175 	if (!(task->flags & PF_EXITING))
7176 		return;
7177 
7178 	sched_move_task(task);
7179 }
7180 
7181 #ifdef CONFIG_FAIR_GROUP_SCHED
7182 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7183 				u64 shareval)
7184 {
7185 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7186 }
7187 
7188 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7189 {
7190 	struct task_group *tg = cgroup_tg(cgrp);
7191 
7192 	return (u64) scale_load_down(tg->shares);
7193 }
7194 
7195 #ifdef CONFIG_CFS_BANDWIDTH
7196 static DEFINE_MUTEX(cfs_constraints_mutex);
7197 
7198 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7199 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7200 
7201 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7202 
7203 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7204 {
7205 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7206 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7207 
7208 	if (tg == &root_task_group)
7209 		return -EINVAL;
7210 
7211 	/*
7212 	 * Ensure we have at some amount of bandwidth every period.  This is
7213 	 * to prevent reaching a state of large arrears when throttled via
7214 	 * entity_tick() resulting in prolonged exit starvation.
7215 	 */
7216 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7217 		return -EINVAL;
7218 
7219 	/*
7220 	 * Likewise, bound things on the otherside by preventing insane quota
7221 	 * periods.  This also allows us to normalize in computing quota
7222 	 * feasibility.
7223 	 */
7224 	if (period > max_cfs_quota_period)
7225 		return -EINVAL;
7226 
7227 	mutex_lock(&cfs_constraints_mutex);
7228 	ret = __cfs_schedulable(tg, period, quota);
7229 	if (ret)
7230 		goto out_unlock;
7231 
7232 	runtime_enabled = quota != RUNTIME_INF;
7233 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7234 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7235 	raw_spin_lock_irq(&cfs_b->lock);
7236 	cfs_b->period = ns_to_ktime(period);
7237 	cfs_b->quota = quota;
7238 
7239 	__refill_cfs_bandwidth_runtime(cfs_b);
7240 	/* restart the period timer (if active) to handle new period expiry */
7241 	if (runtime_enabled && cfs_b->timer_active) {
7242 		/* force a reprogram */
7243 		cfs_b->timer_active = 0;
7244 		__start_cfs_bandwidth(cfs_b);
7245 	}
7246 	raw_spin_unlock_irq(&cfs_b->lock);
7247 
7248 	for_each_possible_cpu(i) {
7249 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7250 		struct rq *rq = cfs_rq->rq;
7251 
7252 		raw_spin_lock_irq(&rq->lock);
7253 		cfs_rq->runtime_enabled = runtime_enabled;
7254 		cfs_rq->runtime_remaining = 0;
7255 
7256 		if (cfs_rq->throttled)
7257 			unthrottle_cfs_rq(cfs_rq);
7258 		raw_spin_unlock_irq(&rq->lock);
7259 	}
7260 out_unlock:
7261 	mutex_unlock(&cfs_constraints_mutex);
7262 
7263 	return ret;
7264 }
7265 
7266 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7267 {
7268 	u64 quota, period;
7269 
7270 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7271 	if (cfs_quota_us < 0)
7272 		quota = RUNTIME_INF;
7273 	else
7274 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7275 
7276 	return tg_set_cfs_bandwidth(tg, period, quota);
7277 }
7278 
7279 long tg_get_cfs_quota(struct task_group *tg)
7280 {
7281 	u64 quota_us;
7282 
7283 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7284 		return -1;
7285 
7286 	quota_us = tg->cfs_bandwidth.quota;
7287 	do_div(quota_us, NSEC_PER_USEC);
7288 
7289 	return quota_us;
7290 }
7291 
7292 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7293 {
7294 	u64 quota, period;
7295 
7296 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7297 	quota = tg->cfs_bandwidth.quota;
7298 
7299 	return tg_set_cfs_bandwidth(tg, period, quota);
7300 }
7301 
7302 long tg_get_cfs_period(struct task_group *tg)
7303 {
7304 	u64 cfs_period_us;
7305 
7306 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7307 	do_div(cfs_period_us, NSEC_PER_USEC);
7308 
7309 	return cfs_period_us;
7310 }
7311 
7312 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7313 {
7314 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7315 }
7316 
7317 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7318 				s64 cfs_quota_us)
7319 {
7320 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7321 }
7322 
7323 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7324 {
7325 	return tg_get_cfs_period(cgroup_tg(cgrp));
7326 }
7327 
7328 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7329 				u64 cfs_period_us)
7330 {
7331 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7332 }
7333 
7334 struct cfs_schedulable_data {
7335 	struct task_group *tg;
7336 	u64 period, quota;
7337 };
7338 
7339 /*
7340  * normalize group quota/period to be quota/max_period
7341  * note: units are usecs
7342  */
7343 static u64 normalize_cfs_quota(struct task_group *tg,
7344 			       struct cfs_schedulable_data *d)
7345 {
7346 	u64 quota, period;
7347 
7348 	if (tg == d->tg) {
7349 		period = d->period;
7350 		quota = d->quota;
7351 	} else {
7352 		period = tg_get_cfs_period(tg);
7353 		quota = tg_get_cfs_quota(tg);
7354 	}
7355 
7356 	/* note: these should typically be equivalent */
7357 	if (quota == RUNTIME_INF || quota == -1)
7358 		return RUNTIME_INF;
7359 
7360 	return to_ratio(period, quota);
7361 }
7362 
7363 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7364 {
7365 	struct cfs_schedulable_data *d = data;
7366 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7367 	s64 quota = 0, parent_quota = -1;
7368 
7369 	if (!tg->parent) {
7370 		quota = RUNTIME_INF;
7371 	} else {
7372 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7373 
7374 		quota = normalize_cfs_quota(tg, d);
7375 		parent_quota = parent_b->hierarchal_quota;
7376 
7377 		/*
7378 		 * ensure max(child_quota) <= parent_quota, inherit when no
7379 		 * limit is set
7380 		 */
7381 		if (quota == RUNTIME_INF)
7382 			quota = parent_quota;
7383 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7384 			return -EINVAL;
7385 	}
7386 	cfs_b->hierarchal_quota = quota;
7387 
7388 	return 0;
7389 }
7390 
7391 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7392 {
7393 	int ret;
7394 	struct cfs_schedulable_data data = {
7395 		.tg = tg,
7396 		.period = period,
7397 		.quota = quota,
7398 	};
7399 
7400 	if (quota != RUNTIME_INF) {
7401 		do_div(data.period, NSEC_PER_USEC);
7402 		do_div(data.quota, NSEC_PER_USEC);
7403 	}
7404 
7405 	rcu_read_lock();
7406 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7407 	rcu_read_unlock();
7408 
7409 	return ret;
7410 }
7411 
7412 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7413 		struct cgroup_map_cb *cb)
7414 {
7415 	struct task_group *tg = cgroup_tg(cgrp);
7416 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7417 
7418 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7419 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7420 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7421 
7422 	return 0;
7423 }
7424 #endif /* CONFIG_CFS_BANDWIDTH */
7425 #endif /* CONFIG_FAIR_GROUP_SCHED */
7426 
7427 #ifdef CONFIG_RT_GROUP_SCHED
7428 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7429 				s64 val)
7430 {
7431 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7432 }
7433 
7434 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7435 {
7436 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7437 }
7438 
7439 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7440 		u64 rt_period_us)
7441 {
7442 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7443 }
7444 
7445 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7446 {
7447 	return sched_group_rt_period(cgroup_tg(cgrp));
7448 }
7449 #endif /* CONFIG_RT_GROUP_SCHED */
7450 
7451 static struct cftype cpu_files[] = {
7452 #ifdef CONFIG_FAIR_GROUP_SCHED
7453 	{
7454 		.name = "shares",
7455 		.read_u64 = cpu_shares_read_u64,
7456 		.write_u64 = cpu_shares_write_u64,
7457 	},
7458 #endif
7459 #ifdef CONFIG_CFS_BANDWIDTH
7460 	{
7461 		.name = "cfs_quota_us",
7462 		.read_s64 = cpu_cfs_quota_read_s64,
7463 		.write_s64 = cpu_cfs_quota_write_s64,
7464 	},
7465 	{
7466 		.name = "cfs_period_us",
7467 		.read_u64 = cpu_cfs_period_read_u64,
7468 		.write_u64 = cpu_cfs_period_write_u64,
7469 	},
7470 	{
7471 		.name = "stat",
7472 		.read_map = cpu_stats_show,
7473 	},
7474 #endif
7475 #ifdef CONFIG_RT_GROUP_SCHED
7476 	{
7477 		.name = "rt_runtime_us",
7478 		.read_s64 = cpu_rt_runtime_read,
7479 		.write_s64 = cpu_rt_runtime_write,
7480 	},
7481 	{
7482 		.name = "rt_period_us",
7483 		.read_u64 = cpu_rt_period_read_uint,
7484 		.write_u64 = cpu_rt_period_write_uint,
7485 	},
7486 #endif
7487 	{ }	/* terminate */
7488 };
7489 
7490 struct cgroup_subsys cpu_cgroup_subsys = {
7491 	.name		= "cpu",
7492 	.css_alloc	= cpu_cgroup_css_alloc,
7493 	.css_free	= cpu_cgroup_css_free,
7494 	.css_online	= cpu_cgroup_css_online,
7495 	.css_offline	= cpu_cgroup_css_offline,
7496 	.can_attach	= cpu_cgroup_can_attach,
7497 	.attach		= cpu_cgroup_attach,
7498 	.exit		= cpu_cgroup_exit,
7499 	.subsys_id	= cpu_cgroup_subsys_id,
7500 	.base_cftypes	= cpu_files,
7501 	.early_init	= 1,
7502 };
7503 
7504 #endif	/* CONFIG_CGROUP_SCHED */
7505 
7506 void dump_cpu_task(int cpu)
7507 {
7508 	pr_info("Task dump for CPU %d:\n", cpu);
7509 	sched_show_task(cpu_curr(cpu));
7510 }
7511