1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/kasan.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/nmi.h> 33 #include <linux/init.h> 34 #include <linux/uaccess.h> 35 #include <linux/highmem.h> 36 #include <asm/mmu_context.h> 37 #include <linux/interrupt.h> 38 #include <linux/capability.h> 39 #include <linux/completion.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/debug_locks.h> 42 #include <linux/perf_event.h> 43 #include <linux/security.h> 44 #include <linux/notifier.h> 45 #include <linux/profile.h> 46 #include <linux/freezer.h> 47 #include <linux/vmalloc.h> 48 #include <linux/blkdev.h> 49 #include <linux/delay.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/smp.h> 52 #include <linux/threads.h> 53 #include <linux/timer.h> 54 #include <linux/rcupdate.h> 55 #include <linux/cpu.h> 56 #include <linux/cpuset.h> 57 #include <linux/percpu.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/sysctl.h> 61 #include <linux/syscalls.h> 62 #include <linux/times.h> 63 #include <linux/tsacct_kern.h> 64 #include <linux/kprobes.h> 65 #include <linux/delayacct.h> 66 #include <linux/unistd.h> 67 #include <linux/pagemap.h> 68 #include <linux/hrtimer.h> 69 #include <linux/tick.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/context_tracking.h> 75 #include <linux/compiler.h> 76 #include <linux/frame.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 DEFINE_MUTEX(sched_domains_mutex); 94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 95 96 static void update_rq_clock_task(struct rq *rq, s64 delta); 97 98 void update_rq_clock(struct rq *rq) 99 { 100 s64 delta; 101 102 lockdep_assert_held(&rq->lock); 103 104 if (rq->clock_skip_update & RQCF_ACT_SKIP) 105 return; 106 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 108 if (delta < 0) 109 return; 110 rq->clock += delta; 111 update_rq_clock_task(rq, delta); 112 } 113 114 /* 115 * Debugging: various feature bits 116 */ 117 118 #define SCHED_FEAT(name, enabled) \ 119 (1UL << __SCHED_FEAT_##name) * enabled | 120 121 const_debug unsigned int sysctl_sched_features = 122 #include "features.h" 123 0; 124 125 #undef SCHED_FEAT 126 127 /* 128 * Number of tasks to iterate in a single balance run. 129 * Limited because this is done with IRQs disabled. 130 */ 131 const_debug unsigned int sysctl_sched_nr_migrate = 32; 132 133 /* 134 * period over which we average the RT time consumption, measured 135 * in ms. 136 * 137 * default: 1s 138 */ 139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 140 141 /* 142 * period over which we measure -rt task cpu usage in us. 143 * default: 1s 144 */ 145 unsigned int sysctl_sched_rt_period = 1000000; 146 147 __read_mostly int scheduler_running; 148 149 /* 150 * part of the period that we allow rt tasks to run in us. 151 * default: 0.95s 152 */ 153 int sysctl_sched_rt_runtime = 950000; 154 155 /* cpus with isolated domains */ 156 cpumask_var_t cpu_isolated_map; 157 158 /* 159 * this_rq_lock - lock this runqueue and disable interrupts. 160 */ 161 static struct rq *this_rq_lock(void) 162 __acquires(rq->lock) 163 { 164 struct rq *rq; 165 166 local_irq_disable(); 167 rq = this_rq(); 168 raw_spin_lock(&rq->lock); 169 170 return rq; 171 } 172 173 #ifdef CONFIG_SCHED_HRTICK 174 /* 175 * Use HR-timers to deliver accurate preemption points. 176 */ 177 178 static void hrtick_clear(struct rq *rq) 179 { 180 if (hrtimer_active(&rq->hrtick_timer)) 181 hrtimer_cancel(&rq->hrtick_timer); 182 } 183 184 /* 185 * High-resolution timer tick. 186 * Runs from hardirq context with interrupts disabled. 187 */ 188 static enum hrtimer_restart hrtick(struct hrtimer *timer) 189 { 190 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 191 192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 193 194 raw_spin_lock(&rq->lock); 195 update_rq_clock(rq); 196 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 197 raw_spin_unlock(&rq->lock); 198 199 return HRTIMER_NORESTART; 200 } 201 202 #ifdef CONFIG_SMP 203 204 static void __hrtick_restart(struct rq *rq) 205 { 206 struct hrtimer *timer = &rq->hrtick_timer; 207 208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 209 } 210 211 /* 212 * called from hardirq (IPI) context 213 */ 214 static void __hrtick_start(void *arg) 215 { 216 struct rq *rq = arg; 217 218 raw_spin_lock(&rq->lock); 219 __hrtick_restart(rq); 220 rq->hrtick_csd_pending = 0; 221 raw_spin_unlock(&rq->lock); 222 } 223 224 /* 225 * Called to set the hrtick timer state. 226 * 227 * called with rq->lock held and irqs disabled 228 */ 229 void hrtick_start(struct rq *rq, u64 delay) 230 { 231 struct hrtimer *timer = &rq->hrtick_timer; 232 ktime_t time; 233 s64 delta; 234 235 /* 236 * Don't schedule slices shorter than 10000ns, that just 237 * doesn't make sense and can cause timer DoS. 238 */ 239 delta = max_t(s64, delay, 10000LL); 240 time = ktime_add_ns(timer->base->get_time(), delta); 241 242 hrtimer_set_expires(timer, time); 243 244 if (rq == this_rq()) { 245 __hrtick_restart(rq); 246 } else if (!rq->hrtick_csd_pending) { 247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 248 rq->hrtick_csd_pending = 1; 249 } 250 } 251 252 static int 253 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 254 { 255 int cpu = (int)(long)hcpu; 256 257 switch (action) { 258 case CPU_UP_CANCELED: 259 case CPU_UP_CANCELED_FROZEN: 260 case CPU_DOWN_PREPARE: 261 case CPU_DOWN_PREPARE_FROZEN: 262 case CPU_DEAD: 263 case CPU_DEAD_FROZEN: 264 hrtick_clear(cpu_rq(cpu)); 265 return NOTIFY_OK; 266 } 267 268 return NOTIFY_DONE; 269 } 270 271 static __init void init_hrtick(void) 272 { 273 hotcpu_notifier(hotplug_hrtick, 0); 274 } 275 #else 276 /* 277 * Called to set the hrtick timer state. 278 * 279 * called with rq->lock held and irqs disabled 280 */ 281 void hrtick_start(struct rq *rq, u64 delay) 282 { 283 /* 284 * Don't schedule slices shorter than 10000ns, that just 285 * doesn't make sense. Rely on vruntime for fairness. 286 */ 287 delay = max_t(u64, delay, 10000LL); 288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 289 HRTIMER_MODE_REL_PINNED); 290 } 291 292 static inline void init_hrtick(void) 293 { 294 } 295 #endif /* CONFIG_SMP */ 296 297 static void init_rq_hrtick(struct rq *rq) 298 { 299 #ifdef CONFIG_SMP 300 rq->hrtick_csd_pending = 0; 301 302 rq->hrtick_csd.flags = 0; 303 rq->hrtick_csd.func = __hrtick_start; 304 rq->hrtick_csd.info = rq; 305 #endif 306 307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 308 rq->hrtick_timer.function = hrtick; 309 } 310 #else /* CONFIG_SCHED_HRTICK */ 311 static inline void hrtick_clear(struct rq *rq) 312 { 313 } 314 315 static inline void init_rq_hrtick(struct rq *rq) 316 { 317 } 318 319 static inline void init_hrtick(void) 320 { 321 } 322 #endif /* CONFIG_SCHED_HRTICK */ 323 324 /* 325 * cmpxchg based fetch_or, macro so it works for different integer types 326 */ 327 #define fetch_or(ptr, mask) \ 328 ({ \ 329 typeof(ptr) _ptr = (ptr); \ 330 typeof(mask) _mask = (mask); \ 331 typeof(*_ptr) _old, _val = *_ptr; \ 332 \ 333 for (;;) { \ 334 _old = cmpxchg(_ptr, _val, _val | _mask); \ 335 if (_old == _val) \ 336 break; \ 337 _val = _old; \ 338 } \ 339 _old; \ 340 }) 341 342 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 343 /* 344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 345 * this avoids any races wrt polling state changes and thereby avoids 346 * spurious IPIs. 347 */ 348 static bool set_nr_and_not_polling(struct task_struct *p) 349 { 350 struct thread_info *ti = task_thread_info(p); 351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 352 } 353 354 /* 355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 356 * 357 * If this returns true, then the idle task promises to call 358 * sched_ttwu_pending() and reschedule soon. 359 */ 360 static bool set_nr_if_polling(struct task_struct *p) 361 { 362 struct thread_info *ti = task_thread_info(p); 363 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 364 365 for (;;) { 366 if (!(val & _TIF_POLLING_NRFLAG)) 367 return false; 368 if (val & _TIF_NEED_RESCHED) 369 return true; 370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 371 if (old == val) 372 break; 373 val = old; 374 } 375 return true; 376 } 377 378 #else 379 static bool set_nr_and_not_polling(struct task_struct *p) 380 { 381 set_tsk_need_resched(p); 382 return true; 383 } 384 385 #ifdef CONFIG_SMP 386 static bool set_nr_if_polling(struct task_struct *p) 387 { 388 return false; 389 } 390 #endif 391 #endif 392 393 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 394 { 395 struct wake_q_node *node = &task->wake_q; 396 397 /* 398 * Atomically grab the task, if ->wake_q is !nil already it means 399 * its already queued (either by us or someone else) and will get the 400 * wakeup due to that. 401 * 402 * This cmpxchg() implies a full barrier, which pairs with the write 403 * barrier implied by the wakeup in wake_up_list(). 404 */ 405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 406 return; 407 408 get_task_struct(task); 409 410 /* 411 * The head is context local, there can be no concurrency. 412 */ 413 *head->lastp = node; 414 head->lastp = &node->next; 415 } 416 417 void wake_up_q(struct wake_q_head *head) 418 { 419 struct wake_q_node *node = head->first; 420 421 while (node != WAKE_Q_TAIL) { 422 struct task_struct *task; 423 424 task = container_of(node, struct task_struct, wake_q); 425 BUG_ON(!task); 426 /* task can safely be re-inserted now */ 427 node = node->next; 428 task->wake_q.next = NULL; 429 430 /* 431 * wake_up_process() implies a wmb() to pair with the queueing 432 * in wake_q_add() so as not to miss wakeups. 433 */ 434 wake_up_process(task); 435 put_task_struct(task); 436 } 437 } 438 439 /* 440 * resched_curr - mark rq's current task 'to be rescheduled now'. 441 * 442 * On UP this means the setting of the need_resched flag, on SMP it 443 * might also involve a cross-CPU call to trigger the scheduler on 444 * the target CPU. 445 */ 446 void resched_curr(struct rq *rq) 447 { 448 struct task_struct *curr = rq->curr; 449 int cpu; 450 451 lockdep_assert_held(&rq->lock); 452 453 if (test_tsk_need_resched(curr)) 454 return; 455 456 cpu = cpu_of(rq); 457 458 if (cpu == smp_processor_id()) { 459 set_tsk_need_resched(curr); 460 set_preempt_need_resched(); 461 return; 462 } 463 464 if (set_nr_and_not_polling(curr)) 465 smp_send_reschedule(cpu); 466 else 467 trace_sched_wake_idle_without_ipi(cpu); 468 } 469 470 void resched_cpu(int cpu) 471 { 472 struct rq *rq = cpu_rq(cpu); 473 unsigned long flags; 474 475 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 476 return; 477 resched_curr(rq); 478 raw_spin_unlock_irqrestore(&rq->lock, flags); 479 } 480 481 #ifdef CONFIG_SMP 482 #ifdef CONFIG_NO_HZ_COMMON 483 /* 484 * In the semi idle case, use the nearest busy cpu for migrating timers 485 * from an idle cpu. This is good for power-savings. 486 * 487 * We don't do similar optimization for completely idle system, as 488 * selecting an idle cpu will add more delays to the timers than intended 489 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 490 */ 491 int get_nohz_timer_target(void) 492 { 493 int i, cpu = smp_processor_id(); 494 struct sched_domain *sd; 495 496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 497 return cpu; 498 499 rcu_read_lock(); 500 for_each_domain(cpu, sd) { 501 for_each_cpu(i, sched_domain_span(sd)) { 502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) { 503 cpu = i; 504 goto unlock; 505 } 506 } 507 } 508 509 if (!is_housekeeping_cpu(cpu)) 510 cpu = housekeeping_any_cpu(); 511 unlock: 512 rcu_read_unlock(); 513 return cpu; 514 } 515 /* 516 * When add_timer_on() enqueues a timer into the timer wheel of an 517 * idle CPU then this timer might expire before the next timer event 518 * which is scheduled to wake up that CPU. In case of a completely 519 * idle system the next event might even be infinite time into the 520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 521 * leaves the inner idle loop so the newly added timer is taken into 522 * account when the CPU goes back to idle and evaluates the timer 523 * wheel for the next timer event. 524 */ 525 static void wake_up_idle_cpu(int cpu) 526 { 527 struct rq *rq = cpu_rq(cpu); 528 529 if (cpu == smp_processor_id()) 530 return; 531 532 if (set_nr_and_not_polling(rq->idle)) 533 smp_send_reschedule(cpu); 534 else 535 trace_sched_wake_idle_without_ipi(cpu); 536 } 537 538 static bool wake_up_full_nohz_cpu(int cpu) 539 { 540 /* 541 * We just need the target to call irq_exit() and re-evaluate 542 * the next tick. The nohz full kick at least implies that. 543 * If needed we can still optimize that later with an 544 * empty IRQ. 545 */ 546 if (tick_nohz_full_cpu(cpu)) { 547 if (cpu != smp_processor_id() || 548 tick_nohz_tick_stopped()) 549 tick_nohz_full_kick_cpu(cpu); 550 return true; 551 } 552 553 return false; 554 } 555 556 void wake_up_nohz_cpu(int cpu) 557 { 558 if (!wake_up_full_nohz_cpu(cpu)) 559 wake_up_idle_cpu(cpu); 560 } 561 562 static inline bool got_nohz_idle_kick(void) 563 { 564 int cpu = smp_processor_id(); 565 566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 567 return false; 568 569 if (idle_cpu(cpu) && !need_resched()) 570 return true; 571 572 /* 573 * We can't run Idle Load Balance on this CPU for this time so we 574 * cancel it and clear NOHZ_BALANCE_KICK 575 */ 576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 577 return false; 578 } 579 580 #else /* CONFIG_NO_HZ_COMMON */ 581 582 static inline bool got_nohz_idle_kick(void) 583 { 584 return false; 585 } 586 587 #endif /* CONFIG_NO_HZ_COMMON */ 588 589 #ifdef CONFIG_NO_HZ_FULL 590 bool sched_can_stop_tick(struct rq *rq) 591 { 592 int fifo_nr_running; 593 594 /* Deadline tasks, even if single, need the tick */ 595 if (rq->dl.dl_nr_running) 596 return false; 597 598 /* 599 * FIFO realtime policy runs the highest priority task (after DEADLINE). 600 * Other runnable tasks are of a lower priority. The scheduler tick 601 * isn't needed. 602 */ 603 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 604 if (fifo_nr_running) 605 return true; 606 607 /* 608 * Round-robin realtime tasks time slice with other tasks at the same 609 * realtime priority. 610 */ 611 if (rq->rt.rr_nr_running) { 612 if (rq->rt.rr_nr_running == 1) 613 return true; 614 else 615 return false; 616 } 617 618 /* Normal multitasking need periodic preemption checks */ 619 if (rq->cfs.nr_running > 1) 620 return false; 621 622 return true; 623 } 624 #endif /* CONFIG_NO_HZ_FULL */ 625 626 void sched_avg_update(struct rq *rq) 627 { 628 s64 period = sched_avg_period(); 629 630 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 631 /* 632 * Inline assembly required to prevent the compiler 633 * optimising this loop into a divmod call. 634 * See __iter_div_u64_rem() for another example of this. 635 */ 636 asm("" : "+rm" (rq->age_stamp)); 637 rq->age_stamp += period; 638 rq->rt_avg /= 2; 639 } 640 } 641 642 #endif /* CONFIG_SMP */ 643 644 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 645 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 646 /* 647 * Iterate task_group tree rooted at *from, calling @down when first entering a 648 * node and @up when leaving it for the final time. 649 * 650 * Caller must hold rcu_lock or sufficient equivalent. 651 */ 652 int walk_tg_tree_from(struct task_group *from, 653 tg_visitor down, tg_visitor up, void *data) 654 { 655 struct task_group *parent, *child; 656 int ret; 657 658 parent = from; 659 660 down: 661 ret = (*down)(parent, data); 662 if (ret) 663 goto out; 664 list_for_each_entry_rcu(child, &parent->children, siblings) { 665 parent = child; 666 goto down; 667 668 up: 669 continue; 670 } 671 ret = (*up)(parent, data); 672 if (ret || parent == from) 673 goto out; 674 675 child = parent; 676 parent = parent->parent; 677 if (parent) 678 goto up; 679 out: 680 return ret; 681 } 682 683 int tg_nop(struct task_group *tg, void *data) 684 { 685 return 0; 686 } 687 #endif 688 689 static void set_load_weight(struct task_struct *p) 690 { 691 int prio = p->static_prio - MAX_RT_PRIO; 692 struct load_weight *load = &p->se.load; 693 694 /* 695 * SCHED_IDLE tasks get minimal weight: 696 */ 697 if (idle_policy(p->policy)) { 698 load->weight = scale_load(WEIGHT_IDLEPRIO); 699 load->inv_weight = WMULT_IDLEPRIO; 700 return; 701 } 702 703 load->weight = scale_load(sched_prio_to_weight[prio]); 704 load->inv_weight = sched_prio_to_wmult[prio]; 705 } 706 707 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 708 { 709 update_rq_clock(rq); 710 if (!(flags & ENQUEUE_RESTORE)) 711 sched_info_queued(rq, p); 712 p->sched_class->enqueue_task(rq, p, flags); 713 } 714 715 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 716 { 717 update_rq_clock(rq); 718 if (!(flags & DEQUEUE_SAVE)) 719 sched_info_dequeued(rq, p); 720 p->sched_class->dequeue_task(rq, p, flags); 721 } 722 723 void activate_task(struct rq *rq, struct task_struct *p, int flags) 724 { 725 if (task_contributes_to_load(p)) 726 rq->nr_uninterruptible--; 727 728 enqueue_task(rq, p, flags); 729 } 730 731 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 732 { 733 if (task_contributes_to_load(p)) 734 rq->nr_uninterruptible++; 735 736 dequeue_task(rq, p, flags); 737 } 738 739 static void update_rq_clock_task(struct rq *rq, s64 delta) 740 { 741 /* 742 * In theory, the compile should just see 0 here, and optimize out the call 743 * to sched_rt_avg_update. But I don't trust it... 744 */ 745 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 746 s64 steal = 0, irq_delta = 0; 747 #endif 748 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 749 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 750 751 /* 752 * Since irq_time is only updated on {soft,}irq_exit, we might run into 753 * this case when a previous update_rq_clock() happened inside a 754 * {soft,}irq region. 755 * 756 * When this happens, we stop ->clock_task and only update the 757 * prev_irq_time stamp to account for the part that fit, so that a next 758 * update will consume the rest. This ensures ->clock_task is 759 * monotonic. 760 * 761 * It does however cause some slight miss-attribution of {soft,}irq 762 * time, a more accurate solution would be to update the irq_time using 763 * the current rq->clock timestamp, except that would require using 764 * atomic ops. 765 */ 766 if (irq_delta > delta) 767 irq_delta = delta; 768 769 rq->prev_irq_time += irq_delta; 770 delta -= irq_delta; 771 #endif 772 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 773 if (static_key_false((¶virt_steal_rq_enabled))) { 774 steal = paravirt_steal_clock(cpu_of(rq)); 775 steal -= rq->prev_steal_time_rq; 776 777 if (unlikely(steal > delta)) 778 steal = delta; 779 780 rq->prev_steal_time_rq += steal; 781 delta -= steal; 782 } 783 #endif 784 785 rq->clock_task += delta; 786 787 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 788 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 789 sched_rt_avg_update(rq, irq_delta + steal); 790 #endif 791 } 792 793 void sched_set_stop_task(int cpu, struct task_struct *stop) 794 { 795 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 796 struct task_struct *old_stop = cpu_rq(cpu)->stop; 797 798 if (stop) { 799 /* 800 * Make it appear like a SCHED_FIFO task, its something 801 * userspace knows about and won't get confused about. 802 * 803 * Also, it will make PI more or less work without too 804 * much confusion -- but then, stop work should not 805 * rely on PI working anyway. 806 */ 807 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 808 809 stop->sched_class = &stop_sched_class; 810 } 811 812 cpu_rq(cpu)->stop = stop; 813 814 if (old_stop) { 815 /* 816 * Reset it back to a normal scheduling class so that 817 * it can die in pieces. 818 */ 819 old_stop->sched_class = &rt_sched_class; 820 } 821 } 822 823 /* 824 * __normal_prio - return the priority that is based on the static prio 825 */ 826 static inline int __normal_prio(struct task_struct *p) 827 { 828 return p->static_prio; 829 } 830 831 /* 832 * Calculate the expected normal priority: i.e. priority 833 * without taking RT-inheritance into account. Might be 834 * boosted by interactivity modifiers. Changes upon fork, 835 * setprio syscalls, and whenever the interactivity 836 * estimator recalculates. 837 */ 838 static inline int normal_prio(struct task_struct *p) 839 { 840 int prio; 841 842 if (task_has_dl_policy(p)) 843 prio = MAX_DL_PRIO-1; 844 else if (task_has_rt_policy(p)) 845 prio = MAX_RT_PRIO-1 - p->rt_priority; 846 else 847 prio = __normal_prio(p); 848 return prio; 849 } 850 851 /* 852 * Calculate the current priority, i.e. the priority 853 * taken into account by the scheduler. This value might 854 * be boosted by RT tasks, or might be boosted by 855 * interactivity modifiers. Will be RT if the task got 856 * RT-boosted. If not then it returns p->normal_prio. 857 */ 858 static int effective_prio(struct task_struct *p) 859 { 860 p->normal_prio = normal_prio(p); 861 /* 862 * If we are RT tasks or we were boosted to RT priority, 863 * keep the priority unchanged. Otherwise, update priority 864 * to the normal priority: 865 */ 866 if (!rt_prio(p->prio)) 867 return p->normal_prio; 868 return p->prio; 869 } 870 871 /** 872 * task_curr - is this task currently executing on a CPU? 873 * @p: the task in question. 874 * 875 * Return: 1 if the task is currently executing. 0 otherwise. 876 */ 877 inline int task_curr(const struct task_struct *p) 878 { 879 return cpu_curr(task_cpu(p)) == p; 880 } 881 882 /* 883 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 884 * use the balance_callback list if you want balancing. 885 * 886 * this means any call to check_class_changed() must be followed by a call to 887 * balance_callback(). 888 */ 889 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 890 const struct sched_class *prev_class, 891 int oldprio) 892 { 893 if (prev_class != p->sched_class) { 894 if (prev_class->switched_from) 895 prev_class->switched_from(rq, p); 896 897 p->sched_class->switched_to(rq, p); 898 } else if (oldprio != p->prio || dl_task(p)) 899 p->sched_class->prio_changed(rq, p, oldprio); 900 } 901 902 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 903 { 904 const struct sched_class *class; 905 906 if (p->sched_class == rq->curr->sched_class) { 907 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 908 } else { 909 for_each_class(class) { 910 if (class == rq->curr->sched_class) 911 break; 912 if (class == p->sched_class) { 913 resched_curr(rq); 914 break; 915 } 916 } 917 } 918 919 /* 920 * A queue event has occurred, and we're going to schedule. In 921 * this case, we can save a useless back to back clock update. 922 */ 923 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 924 rq_clock_skip_update(rq, true); 925 } 926 927 #ifdef CONFIG_SMP 928 /* 929 * This is how migration works: 930 * 931 * 1) we invoke migration_cpu_stop() on the target CPU using 932 * stop_one_cpu(). 933 * 2) stopper starts to run (implicitly forcing the migrated thread 934 * off the CPU) 935 * 3) it checks whether the migrated task is still in the wrong runqueue. 936 * 4) if it's in the wrong runqueue then the migration thread removes 937 * it and puts it into the right queue. 938 * 5) stopper completes and stop_one_cpu() returns and the migration 939 * is done. 940 */ 941 942 /* 943 * move_queued_task - move a queued task to new rq. 944 * 945 * Returns (locked) new rq. Old rq's lock is released. 946 */ 947 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu) 948 { 949 lockdep_assert_held(&rq->lock); 950 951 p->on_rq = TASK_ON_RQ_MIGRATING; 952 dequeue_task(rq, p, 0); 953 set_task_cpu(p, new_cpu); 954 raw_spin_unlock(&rq->lock); 955 956 rq = cpu_rq(new_cpu); 957 958 raw_spin_lock(&rq->lock); 959 BUG_ON(task_cpu(p) != new_cpu); 960 enqueue_task(rq, p, 0); 961 p->on_rq = TASK_ON_RQ_QUEUED; 962 check_preempt_curr(rq, p, 0); 963 964 return rq; 965 } 966 967 struct migration_arg { 968 struct task_struct *task; 969 int dest_cpu; 970 }; 971 972 /* 973 * Move (not current) task off this cpu, onto dest cpu. We're doing 974 * this because either it can't run here any more (set_cpus_allowed() 975 * away from this CPU, or CPU going down), or because we're 976 * attempting to rebalance this task on exec (sched_exec). 977 * 978 * So we race with normal scheduler movements, but that's OK, as long 979 * as the task is no longer on this CPU. 980 */ 981 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu) 982 { 983 if (unlikely(!cpu_active(dest_cpu))) 984 return rq; 985 986 /* Affinity changed (again). */ 987 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 988 return rq; 989 990 rq = move_queued_task(rq, p, dest_cpu); 991 992 return rq; 993 } 994 995 /* 996 * migration_cpu_stop - this will be executed by a highprio stopper thread 997 * and performs thread migration by bumping thread off CPU then 998 * 'pushing' onto another runqueue. 999 */ 1000 static int migration_cpu_stop(void *data) 1001 { 1002 struct migration_arg *arg = data; 1003 struct task_struct *p = arg->task; 1004 struct rq *rq = this_rq(); 1005 1006 /* 1007 * The original target cpu might have gone down and we might 1008 * be on another cpu but it doesn't matter. 1009 */ 1010 local_irq_disable(); 1011 /* 1012 * We need to explicitly wake pending tasks before running 1013 * __migrate_task() such that we will not miss enforcing cpus_allowed 1014 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1015 */ 1016 sched_ttwu_pending(); 1017 1018 raw_spin_lock(&p->pi_lock); 1019 raw_spin_lock(&rq->lock); 1020 /* 1021 * If task_rq(p) != rq, it cannot be migrated here, because we're 1022 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1023 * we're holding p->pi_lock. 1024 */ 1025 if (task_rq(p) == rq && task_on_rq_queued(p)) 1026 rq = __migrate_task(rq, p, arg->dest_cpu); 1027 raw_spin_unlock(&rq->lock); 1028 raw_spin_unlock(&p->pi_lock); 1029 1030 local_irq_enable(); 1031 return 0; 1032 } 1033 1034 /* 1035 * sched_class::set_cpus_allowed must do the below, but is not required to 1036 * actually call this function. 1037 */ 1038 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1039 { 1040 cpumask_copy(&p->cpus_allowed, new_mask); 1041 p->nr_cpus_allowed = cpumask_weight(new_mask); 1042 } 1043 1044 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1045 { 1046 struct rq *rq = task_rq(p); 1047 bool queued, running; 1048 1049 lockdep_assert_held(&p->pi_lock); 1050 1051 queued = task_on_rq_queued(p); 1052 running = task_current(rq, p); 1053 1054 if (queued) { 1055 /* 1056 * Because __kthread_bind() calls this on blocked tasks without 1057 * holding rq->lock. 1058 */ 1059 lockdep_assert_held(&rq->lock); 1060 dequeue_task(rq, p, DEQUEUE_SAVE); 1061 } 1062 if (running) 1063 put_prev_task(rq, p); 1064 1065 p->sched_class->set_cpus_allowed(p, new_mask); 1066 1067 if (running) 1068 p->sched_class->set_curr_task(rq); 1069 if (queued) 1070 enqueue_task(rq, p, ENQUEUE_RESTORE); 1071 } 1072 1073 /* 1074 * Change a given task's CPU affinity. Migrate the thread to a 1075 * proper CPU and schedule it away if the CPU it's executing on 1076 * is removed from the allowed bitmask. 1077 * 1078 * NOTE: the caller must have a valid reference to the task, the 1079 * task must not exit() & deallocate itself prematurely. The 1080 * call is not atomic; no spinlocks may be held. 1081 */ 1082 static int __set_cpus_allowed_ptr(struct task_struct *p, 1083 const struct cpumask *new_mask, bool check) 1084 { 1085 unsigned long flags; 1086 struct rq *rq; 1087 unsigned int dest_cpu; 1088 int ret = 0; 1089 1090 rq = task_rq_lock(p, &flags); 1091 1092 /* 1093 * Must re-check here, to close a race against __kthread_bind(), 1094 * sched_setaffinity() is not guaranteed to observe the flag. 1095 */ 1096 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1097 ret = -EINVAL; 1098 goto out; 1099 } 1100 1101 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1102 goto out; 1103 1104 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 1105 ret = -EINVAL; 1106 goto out; 1107 } 1108 1109 do_set_cpus_allowed(p, new_mask); 1110 1111 /* Can the task run on the task's current CPU? If so, we're done */ 1112 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1113 goto out; 1114 1115 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 1116 if (task_running(rq, p) || p->state == TASK_WAKING) { 1117 struct migration_arg arg = { p, dest_cpu }; 1118 /* Need help from migration thread: drop lock and wait. */ 1119 task_rq_unlock(rq, p, &flags); 1120 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1121 tlb_migrate_finish(p->mm); 1122 return 0; 1123 } else if (task_on_rq_queued(p)) { 1124 /* 1125 * OK, since we're going to drop the lock immediately 1126 * afterwards anyway. 1127 */ 1128 lockdep_unpin_lock(&rq->lock); 1129 rq = move_queued_task(rq, p, dest_cpu); 1130 lockdep_pin_lock(&rq->lock); 1131 } 1132 out: 1133 task_rq_unlock(rq, p, &flags); 1134 1135 return ret; 1136 } 1137 1138 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1139 { 1140 return __set_cpus_allowed_ptr(p, new_mask, false); 1141 } 1142 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1143 1144 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1145 { 1146 #ifdef CONFIG_SCHED_DEBUG 1147 /* 1148 * We should never call set_task_cpu() on a blocked task, 1149 * ttwu() will sort out the placement. 1150 */ 1151 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1152 !p->on_rq); 1153 1154 /* 1155 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1156 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1157 * time relying on p->on_rq. 1158 */ 1159 WARN_ON_ONCE(p->state == TASK_RUNNING && 1160 p->sched_class == &fair_sched_class && 1161 (p->on_rq && !task_on_rq_migrating(p))); 1162 1163 #ifdef CONFIG_LOCKDEP 1164 /* 1165 * The caller should hold either p->pi_lock or rq->lock, when changing 1166 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1167 * 1168 * sched_move_task() holds both and thus holding either pins the cgroup, 1169 * see task_group(). 1170 * 1171 * Furthermore, all task_rq users should acquire both locks, see 1172 * task_rq_lock(). 1173 */ 1174 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1175 lockdep_is_held(&task_rq(p)->lock))); 1176 #endif 1177 #endif 1178 1179 trace_sched_migrate_task(p, new_cpu); 1180 1181 if (task_cpu(p) != new_cpu) { 1182 if (p->sched_class->migrate_task_rq) 1183 p->sched_class->migrate_task_rq(p); 1184 p->se.nr_migrations++; 1185 perf_event_task_migrate(p); 1186 } 1187 1188 __set_task_cpu(p, new_cpu); 1189 } 1190 1191 static void __migrate_swap_task(struct task_struct *p, int cpu) 1192 { 1193 if (task_on_rq_queued(p)) { 1194 struct rq *src_rq, *dst_rq; 1195 1196 src_rq = task_rq(p); 1197 dst_rq = cpu_rq(cpu); 1198 1199 p->on_rq = TASK_ON_RQ_MIGRATING; 1200 deactivate_task(src_rq, p, 0); 1201 set_task_cpu(p, cpu); 1202 activate_task(dst_rq, p, 0); 1203 p->on_rq = TASK_ON_RQ_QUEUED; 1204 check_preempt_curr(dst_rq, p, 0); 1205 } else { 1206 /* 1207 * Task isn't running anymore; make it appear like we migrated 1208 * it before it went to sleep. This means on wakeup we make the 1209 * previous cpu our targer instead of where it really is. 1210 */ 1211 p->wake_cpu = cpu; 1212 } 1213 } 1214 1215 struct migration_swap_arg { 1216 struct task_struct *src_task, *dst_task; 1217 int src_cpu, dst_cpu; 1218 }; 1219 1220 static int migrate_swap_stop(void *data) 1221 { 1222 struct migration_swap_arg *arg = data; 1223 struct rq *src_rq, *dst_rq; 1224 int ret = -EAGAIN; 1225 1226 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1227 return -EAGAIN; 1228 1229 src_rq = cpu_rq(arg->src_cpu); 1230 dst_rq = cpu_rq(arg->dst_cpu); 1231 1232 double_raw_lock(&arg->src_task->pi_lock, 1233 &arg->dst_task->pi_lock); 1234 double_rq_lock(src_rq, dst_rq); 1235 1236 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1237 goto unlock; 1238 1239 if (task_cpu(arg->src_task) != arg->src_cpu) 1240 goto unlock; 1241 1242 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1243 goto unlock; 1244 1245 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1246 goto unlock; 1247 1248 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1249 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1250 1251 ret = 0; 1252 1253 unlock: 1254 double_rq_unlock(src_rq, dst_rq); 1255 raw_spin_unlock(&arg->dst_task->pi_lock); 1256 raw_spin_unlock(&arg->src_task->pi_lock); 1257 1258 return ret; 1259 } 1260 1261 /* 1262 * Cross migrate two tasks 1263 */ 1264 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1265 { 1266 struct migration_swap_arg arg; 1267 int ret = -EINVAL; 1268 1269 arg = (struct migration_swap_arg){ 1270 .src_task = cur, 1271 .src_cpu = task_cpu(cur), 1272 .dst_task = p, 1273 .dst_cpu = task_cpu(p), 1274 }; 1275 1276 if (arg.src_cpu == arg.dst_cpu) 1277 goto out; 1278 1279 /* 1280 * These three tests are all lockless; this is OK since all of them 1281 * will be re-checked with proper locks held further down the line. 1282 */ 1283 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1284 goto out; 1285 1286 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1287 goto out; 1288 1289 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1290 goto out; 1291 1292 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1293 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1294 1295 out: 1296 return ret; 1297 } 1298 1299 /* 1300 * wait_task_inactive - wait for a thread to unschedule. 1301 * 1302 * If @match_state is nonzero, it's the @p->state value just checked and 1303 * not expected to change. If it changes, i.e. @p might have woken up, 1304 * then return zero. When we succeed in waiting for @p to be off its CPU, 1305 * we return a positive number (its total switch count). If a second call 1306 * a short while later returns the same number, the caller can be sure that 1307 * @p has remained unscheduled the whole time. 1308 * 1309 * The caller must ensure that the task *will* unschedule sometime soon, 1310 * else this function might spin for a *long* time. This function can't 1311 * be called with interrupts off, or it may introduce deadlock with 1312 * smp_call_function() if an IPI is sent by the same process we are 1313 * waiting to become inactive. 1314 */ 1315 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1316 { 1317 unsigned long flags; 1318 int running, queued; 1319 unsigned long ncsw; 1320 struct rq *rq; 1321 1322 for (;;) { 1323 /* 1324 * We do the initial early heuristics without holding 1325 * any task-queue locks at all. We'll only try to get 1326 * the runqueue lock when things look like they will 1327 * work out! 1328 */ 1329 rq = task_rq(p); 1330 1331 /* 1332 * If the task is actively running on another CPU 1333 * still, just relax and busy-wait without holding 1334 * any locks. 1335 * 1336 * NOTE! Since we don't hold any locks, it's not 1337 * even sure that "rq" stays as the right runqueue! 1338 * But we don't care, since "task_running()" will 1339 * return false if the runqueue has changed and p 1340 * is actually now running somewhere else! 1341 */ 1342 while (task_running(rq, p)) { 1343 if (match_state && unlikely(p->state != match_state)) 1344 return 0; 1345 cpu_relax(); 1346 } 1347 1348 /* 1349 * Ok, time to look more closely! We need the rq 1350 * lock now, to be *sure*. If we're wrong, we'll 1351 * just go back and repeat. 1352 */ 1353 rq = task_rq_lock(p, &flags); 1354 trace_sched_wait_task(p); 1355 running = task_running(rq, p); 1356 queued = task_on_rq_queued(p); 1357 ncsw = 0; 1358 if (!match_state || p->state == match_state) 1359 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1360 task_rq_unlock(rq, p, &flags); 1361 1362 /* 1363 * If it changed from the expected state, bail out now. 1364 */ 1365 if (unlikely(!ncsw)) 1366 break; 1367 1368 /* 1369 * Was it really running after all now that we 1370 * checked with the proper locks actually held? 1371 * 1372 * Oops. Go back and try again.. 1373 */ 1374 if (unlikely(running)) { 1375 cpu_relax(); 1376 continue; 1377 } 1378 1379 /* 1380 * It's not enough that it's not actively running, 1381 * it must be off the runqueue _entirely_, and not 1382 * preempted! 1383 * 1384 * So if it was still runnable (but just not actively 1385 * running right now), it's preempted, and we should 1386 * yield - it could be a while. 1387 */ 1388 if (unlikely(queued)) { 1389 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1390 1391 set_current_state(TASK_UNINTERRUPTIBLE); 1392 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1393 continue; 1394 } 1395 1396 /* 1397 * Ahh, all good. It wasn't running, and it wasn't 1398 * runnable, which means that it will never become 1399 * running in the future either. We're all done! 1400 */ 1401 break; 1402 } 1403 1404 return ncsw; 1405 } 1406 1407 /*** 1408 * kick_process - kick a running thread to enter/exit the kernel 1409 * @p: the to-be-kicked thread 1410 * 1411 * Cause a process which is running on another CPU to enter 1412 * kernel-mode, without any delay. (to get signals handled.) 1413 * 1414 * NOTE: this function doesn't have to take the runqueue lock, 1415 * because all it wants to ensure is that the remote task enters 1416 * the kernel. If the IPI races and the task has been migrated 1417 * to another CPU then no harm is done and the purpose has been 1418 * achieved as well. 1419 */ 1420 void kick_process(struct task_struct *p) 1421 { 1422 int cpu; 1423 1424 preempt_disable(); 1425 cpu = task_cpu(p); 1426 if ((cpu != smp_processor_id()) && task_curr(p)) 1427 smp_send_reschedule(cpu); 1428 preempt_enable(); 1429 } 1430 EXPORT_SYMBOL_GPL(kick_process); 1431 1432 /* 1433 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1434 */ 1435 static int select_fallback_rq(int cpu, struct task_struct *p) 1436 { 1437 int nid = cpu_to_node(cpu); 1438 const struct cpumask *nodemask = NULL; 1439 enum { cpuset, possible, fail } state = cpuset; 1440 int dest_cpu; 1441 1442 /* 1443 * If the node that the cpu is on has been offlined, cpu_to_node() 1444 * will return -1. There is no cpu on the node, and we should 1445 * select the cpu on the other node. 1446 */ 1447 if (nid != -1) { 1448 nodemask = cpumask_of_node(nid); 1449 1450 /* Look for allowed, online CPU in same node. */ 1451 for_each_cpu(dest_cpu, nodemask) { 1452 if (!cpu_online(dest_cpu)) 1453 continue; 1454 if (!cpu_active(dest_cpu)) 1455 continue; 1456 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1457 return dest_cpu; 1458 } 1459 } 1460 1461 for (;;) { 1462 /* Any allowed, online CPU? */ 1463 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1464 if (!cpu_online(dest_cpu)) 1465 continue; 1466 if (!cpu_active(dest_cpu)) 1467 continue; 1468 goto out; 1469 } 1470 1471 /* No more Mr. Nice Guy. */ 1472 switch (state) { 1473 case cpuset: 1474 if (IS_ENABLED(CONFIG_CPUSETS)) { 1475 cpuset_cpus_allowed_fallback(p); 1476 state = possible; 1477 break; 1478 } 1479 /* fall-through */ 1480 case possible: 1481 do_set_cpus_allowed(p, cpu_possible_mask); 1482 state = fail; 1483 break; 1484 1485 case fail: 1486 BUG(); 1487 break; 1488 } 1489 } 1490 1491 out: 1492 if (state != cpuset) { 1493 /* 1494 * Don't tell them about moving exiting tasks or 1495 * kernel threads (both mm NULL), since they never 1496 * leave kernel. 1497 */ 1498 if (p->mm && printk_ratelimit()) { 1499 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1500 task_pid_nr(p), p->comm, cpu); 1501 } 1502 } 1503 1504 return dest_cpu; 1505 } 1506 1507 /* 1508 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1509 */ 1510 static inline 1511 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1512 { 1513 lockdep_assert_held(&p->pi_lock); 1514 1515 if (p->nr_cpus_allowed > 1) 1516 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1517 1518 /* 1519 * In order not to call set_task_cpu() on a blocking task we need 1520 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1521 * cpu. 1522 * 1523 * Since this is common to all placement strategies, this lives here. 1524 * 1525 * [ this allows ->select_task() to simply return task_cpu(p) and 1526 * not worry about this generic constraint ] 1527 */ 1528 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1529 !cpu_online(cpu))) 1530 cpu = select_fallback_rq(task_cpu(p), p); 1531 1532 return cpu; 1533 } 1534 1535 static void update_avg(u64 *avg, u64 sample) 1536 { 1537 s64 diff = sample - *avg; 1538 *avg += diff >> 3; 1539 } 1540 1541 #else 1542 1543 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1544 const struct cpumask *new_mask, bool check) 1545 { 1546 return set_cpus_allowed_ptr(p, new_mask); 1547 } 1548 1549 #endif /* CONFIG_SMP */ 1550 1551 static void 1552 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1553 { 1554 #ifdef CONFIG_SCHEDSTATS 1555 struct rq *rq = this_rq(); 1556 1557 #ifdef CONFIG_SMP 1558 int this_cpu = smp_processor_id(); 1559 1560 if (cpu == this_cpu) { 1561 schedstat_inc(rq, ttwu_local); 1562 schedstat_inc(p, se.statistics.nr_wakeups_local); 1563 } else { 1564 struct sched_domain *sd; 1565 1566 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1567 rcu_read_lock(); 1568 for_each_domain(this_cpu, sd) { 1569 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1570 schedstat_inc(sd, ttwu_wake_remote); 1571 break; 1572 } 1573 } 1574 rcu_read_unlock(); 1575 } 1576 1577 if (wake_flags & WF_MIGRATED) 1578 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1579 1580 #endif /* CONFIG_SMP */ 1581 1582 schedstat_inc(rq, ttwu_count); 1583 schedstat_inc(p, se.statistics.nr_wakeups); 1584 1585 if (wake_flags & WF_SYNC) 1586 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1587 1588 #endif /* CONFIG_SCHEDSTATS */ 1589 } 1590 1591 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1592 { 1593 activate_task(rq, p, en_flags); 1594 p->on_rq = TASK_ON_RQ_QUEUED; 1595 1596 /* if a worker is waking up, notify workqueue */ 1597 if (p->flags & PF_WQ_WORKER) 1598 wq_worker_waking_up(p, cpu_of(rq)); 1599 } 1600 1601 /* 1602 * Mark the task runnable and perform wakeup-preemption. 1603 */ 1604 static void 1605 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1606 { 1607 check_preempt_curr(rq, p, wake_flags); 1608 p->state = TASK_RUNNING; 1609 trace_sched_wakeup(p); 1610 1611 #ifdef CONFIG_SMP 1612 if (p->sched_class->task_woken) { 1613 /* 1614 * Our task @p is fully woken up and running; so its safe to 1615 * drop the rq->lock, hereafter rq is only used for statistics. 1616 */ 1617 lockdep_unpin_lock(&rq->lock); 1618 p->sched_class->task_woken(rq, p); 1619 lockdep_pin_lock(&rq->lock); 1620 } 1621 1622 if (rq->idle_stamp) { 1623 u64 delta = rq_clock(rq) - rq->idle_stamp; 1624 u64 max = 2*rq->max_idle_balance_cost; 1625 1626 update_avg(&rq->avg_idle, delta); 1627 1628 if (rq->avg_idle > max) 1629 rq->avg_idle = max; 1630 1631 rq->idle_stamp = 0; 1632 } 1633 #endif 1634 } 1635 1636 static void 1637 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1638 { 1639 lockdep_assert_held(&rq->lock); 1640 1641 #ifdef CONFIG_SMP 1642 if (p->sched_contributes_to_load) 1643 rq->nr_uninterruptible--; 1644 #endif 1645 1646 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1647 ttwu_do_wakeup(rq, p, wake_flags); 1648 } 1649 1650 /* 1651 * Called in case the task @p isn't fully descheduled from its runqueue, 1652 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1653 * since all we need to do is flip p->state to TASK_RUNNING, since 1654 * the task is still ->on_rq. 1655 */ 1656 static int ttwu_remote(struct task_struct *p, int wake_flags) 1657 { 1658 struct rq *rq; 1659 int ret = 0; 1660 1661 rq = __task_rq_lock(p); 1662 if (task_on_rq_queued(p)) { 1663 /* check_preempt_curr() may use rq clock */ 1664 update_rq_clock(rq); 1665 ttwu_do_wakeup(rq, p, wake_flags); 1666 ret = 1; 1667 } 1668 __task_rq_unlock(rq); 1669 1670 return ret; 1671 } 1672 1673 #ifdef CONFIG_SMP 1674 void sched_ttwu_pending(void) 1675 { 1676 struct rq *rq = this_rq(); 1677 struct llist_node *llist = llist_del_all(&rq->wake_list); 1678 struct task_struct *p; 1679 unsigned long flags; 1680 1681 if (!llist) 1682 return; 1683 1684 raw_spin_lock_irqsave(&rq->lock, flags); 1685 lockdep_pin_lock(&rq->lock); 1686 1687 while (llist) { 1688 p = llist_entry(llist, struct task_struct, wake_entry); 1689 llist = llist_next(llist); 1690 ttwu_do_activate(rq, p, 0); 1691 } 1692 1693 lockdep_unpin_lock(&rq->lock); 1694 raw_spin_unlock_irqrestore(&rq->lock, flags); 1695 } 1696 1697 void scheduler_ipi(void) 1698 { 1699 /* 1700 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1701 * TIF_NEED_RESCHED remotely (for the first time) will also send 1702 * this IPI. 1703 */ 1704 preempt_fold_need_resched(); 1705 1706 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1707 return; 1708 1709 /* 1710 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1711 * traditionally all their work was done from the interrupt return 1712 * path. Now that we actually do some work, we need to make sure 1713 * we do call them. 1714 * 1715 * Some archs already do call them, luckily irq_enter/exit nest 1716 * properly. 1717 * 1718 * Arguably we should visit all archs and update all handlers, 1719 * however a fair share of IPIs are still resched only so this would 1720 * somewhat pessimize the simple resched case. 1721 */ 1722 irq_enter(); 1723 sched_ttwu_pending(); 1724 1725 /* 1726 * Check if someone kicked us for doing the nohz idle load balance. 1727 */ 1728 if (unlikely(got_nohz_idle_kick())) { 1729 this_rq()->idle_balance = 1; 1730 raise_softirq_irqoff(SCHED_SOFTIRQ); 1731 } 1732 irq_exit(); 1733 } 1734 1735 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1736 { 1737 struct rq *rq = cpu_rq(cpu); 1738 1739 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1740 if (!set_nr_if_polling(rq->idle)) 1741 smp_send_reschedule(cpu); 1742 else 1743 trace_sched_wake_idle_without_ipi(cpu); 1744 } 1745 } 1746 1747 void wake_up_if_idle(int cpu) 1748 { 1749 struct rq *rq = cpu_rq(cpu); 1750 unsigned long flags; 1751 1752 rcu_read_lock(); 1753 1754 if (!is_idle_task(rcu_dereference(rq->curr))) 1755 goto out; 1756 1757 if (set_nr_if_polling(rq->idle)) { 1758 trace_sched_wake_idle_without_ipi(cpu); 1759 } else { 1760 raw_spin_lock_irqsave(&rq->lock, flags); 1761 if (is_idle_task(rq->curr)) 1762 smp_send_reschedule(cpu); 1763 /* Else cpu is not in idle, do nothing here */ 1764 raw_spin_unlock_irqrestore(&rq->lock, flags); 1765 } 1766 1767 out: 1768 rcu_read_unlock(); 1769 } 1770 1771 bool cpus_share_cache(int this_cpu, int that_cpu) 1772 { 1773 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1774 } 1775 #endif /* CONFIG_SMP */ 1776 1777 static void ttwu_queue(struct task_struct *p, int cpu) 1778 { 1779 struct rq *rq = cpu_rq(cpu); 1780 1781 #if defined(CONFIG_SMP) 1782 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1783 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1784 ttwu_queue_remote(p, cpu); 1785 return; 1786 } 1787 #endif 1788 1789 raw_spin_lock(&rq->lock); 1790 lockdep_pin_lock(&rq->lock); 1791 ttwu_do_activate(rq, p, 0); 1792 lockdep_unpin_lock(&rq->lock); 1793 raw_spin_unlock(&rq->lock); 1794 } 1795 1796 /* 1797 * Notes on Program-Order guarantees on SMP systems. 1798 * 1799 * MIGRATION 1800 * 1801 * The basic program-order guarantee on SMP systems is that when a task [t] 1802 * migrates, all its activity on its old cpu [c0] happens-before any subsequent 1803 * execution on its new cpu [c1]. 1804 * 1805 * For migration (of runnable tasks) this is provided by the following means: 1806 * 1807 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1808 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1809 * rq(c1)->lock (if not at the same time, then in that order). 1810 * C) LOCK of the rq(c1)->lock scheduling in task 1811 * 1812 * Transitivity guarantees that B happens after A and C after B. 1813 * Note: we only require RCpc transitivity. 1814 * Note: the cpu doing B need not be c0 or c1 1815 * 1816 * Example: 1817 * 1818 * CPU0 CPU1 CPU2 1819 * 1820 * LOCK rq(0)->lock 1821 * sched-out X 1822 * sched-in Y 1823 * UNLOCK rq(0)->lock 1824 * 1825 * LOCK rq(0)->lock // orders against CPU0 1826 * dequeue X 1827 * UNLOCK rq(0)->lock 1828 * 1829 * LOCK rq(1)->lock 1830 * enqueue X 1831 * UNLOCK rq(1)->lock 1832 * 1833 * LOCK rq(1)->lock // orders against CPU2 1834 * sched-out Z 1835 * sched-in X 1836 * UNLOCK rq(1)->lock 1837 * 1838 * 1839 * BLOCKING -- aka. SLEEP + WAKEUP 1840 * 1841 * For blocking we (obviously) need to provide the same guarantee as for 1842 * migration. However the means are completely different as there is no lock 1843 * chain to provide order. Instead we do: 1844 * 1845 * 1) smp_store_release(X->on_cpu, 0) 1846 * 2) smp_cond_acquire(!X->on_cpu) 1847 * 1848 * Example: 1849 * 1850 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1851 * 1852 * LOCK rq(0)->lock LOCK X->pi_lock 1853 * dequeue X 1854 * sched-out X 1855 * smp_store_release(X->on_cpu, 0); 1856 * 1857 * smp_cond_acquire(!X->on_cpu); 1858 * X->state = WAKING 1859 * set_task_cpu(X,2) 1860 * 1861 * LOCK rq(2)->lock 1862 * enqueue X 1863 * X->state = RUNNING 1864 * UNLOCK rq(2)->lock 1865 * 1866 * LOCK rq(2)->lock // orders against CPU1 1867 * sched-out Z 1868 * sched-in X 1869 * UNLOCK rq(2)->lock 1870 * 1871 * UNLOCK X->pi_lock 1872 * UNLOCK rq(0)->lock 1873 * 1874 * 1875 * However; for wakeups there is a second guarantee we must provide, namely we 1876 * must observe the state that lead to our wakeup. That is, not only must our 1877 * task observe its own prior state, it must also observe the stores prior to 1878 * its wakeup. 1879 * 1880 * This means that any means of doing remote wakeups must order the CPU doing 1881 * the wakeup against the CPU the task is going to end up running on. This, 1882 * however, is already required for the regular Program-Order guarantee above, 1883 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire). 1884 * 1885 */ 1886 1887 /** 1888 * try_to_wake_up - wake up a thread 1889 * @p: the thread to be awakened 1890 * @state: the mask of task states that can be woken 1891 * @wake_flags: wake modifier flags (WF_*) 1892 * 1893 * Put it on the run-queue if it's not already there. The "current" 1894 * thread is always on the run-queue (except when the actual 1895 * re-schedule is in progress), and as such you're allowed to do 1896 * the simpler "current->state = TASK_RUNNING" to mark yourself 1897 * runnable without the overhead of this. 1898 * 1899 * Return: %true if @p was woken up, %false if it was already running. 1900 * or @state didn't match @p's state. 1901 */ 1902 static int 1903 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1904 { 1905 unsigned long flags; 1906 int cpu, success = 0; 1907 1908 /* 1909 * If we are going to wake up a thread waiting for CONDITION we 1910 * need to ensure that CONDITION=1 done by the caller can not be 1911 * reordered with p->state check below. This pairs with mb() in 1912 * set_current_state() the waiting thread does. 1913 */ 1914 smp_mb__before_spinlock(); 1915 raw_spin_lock_irqsave(&p->pi_lock, flags); 1916 if (!(p->state & state)) 1917 goto out; 1918 1919 trace_sched_waking(p); 1920 1921 success = 1; /* we're going to change ->state */ 1922 cpu = task_cpu(p); 1923 1924 if (p->on_rq && ttwu_remote(p, wake_flags)) 1925 goto stat; 1926 1927 #ifdef CONFIG_SMP 1928 /* 1929 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 1930 * possible to, falsely, observe p->on_cpu == 0. 1931 * 1932 * One must be running (->on_cpu == 1) in order to remove oneself 1933 * from the runqueue. 1934 * 1935 * [S] ->on_cpu = 1; [L] ->on_rq 1936 * UNLOCK rq->lock 1937 * RMB 1938 * LOCK rq->lock 1939 * [S] ->on_rq = 0; [L] ->on_cpu 1940 * 1941 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 1942 * from the consecutive calls to schedule(); the first switching to our 1943 * task, the second putting it to sleep. 1944 */ 1945 smp_rmb(); 1946 1947 /* 1948 * If the owning (remote) cpu is still in the middle of schedule() with 1949 * this task as prev, wait until its done referencing the task. 1950 * 1951 * Pairs with the smp_store_release() in finish_lock_switch(). 1952 * 1953 * This ensures that tasks getting woken will be fully ordered against 1954 * their previous state and preserve Program Order. 1955 */ 1956 smp_cond_acquire(!p->on_cpu); 1957 1958 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1959 p->state = TASK_WAKING; 1960 1961 if (p->sched_class->task_waking) 1962 p->sched_class->task_waking(p); 1963 1964 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1965 if (task_cpu(p) != cpu) { 1966 wake_flags |= WF_MIGRATED; 1967 set_task_cpu(p, cpu); 1968 } 1969 #endif /* CONFIG_SMP */ 1970 1971 ttwu_queue(p, cpu); 1972 stat: 1973 if (schedstat_enabled()) 1974 ttwu_stat(p, cpu, wake_flags); 1975 out: 1976 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1977 1978 return success; 1979 } 1980 1981 /** 1982 * try_to_wake_up_local - try to wake up a local task with rq lock held 1983 * @p: the thread to be awakened 1984 * 1985 * Put @p on the run-queue if it's not already there. The caller must 1986 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1987 * the current task. 1988 */ 1989 static void try_to_wake_up_local(struct task_struct *p) 1990 { 1991 struct rq *rq = task_rq(p); 1992 1993 if (WARN_ON_ONCE(rq != this_rq()) || 1994 WARN_ON_ONCE(p == current)) 1995 return; 1996 1997 lockdep_assert_held(&rq->lock); 1998 1999 if (!raw_spin_trylock(&p->pi_lock)) { 2000 /* 2001 * This is OK, because current is on_cpu, which avoids it being 2002 * picked for load-balance and preemption/IRQs are still 2003 * disabled avoiding further scheduler activity on it and we've 2004 * not yet picked a replacement task. 2005 */ 2006 lockdep_unpin_lock(&rq->lock); 2007 raw_spin_unlock(&rq->lock); 2008 raw_spin_lock(&p->pi_lock); 2009 raw_spin_lock(&rq->lock); 2010 lockdep_pin_lock(&rq->lock); 2011 } 2012 2013 if (!(p->state & TASK_NORMAL)) 2014 goto out; 2015 2016 trace_sched_waking(p); 2017 2018 if (!task_on_rq_queued(p)) 2019 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 2020 2021 ttwu_do_wakeup(rq, p, 0); 2022 if (schedstat_enabled()) 2023 ttwu_stat(p, smp_processor_id(), 0); 2024 out: 2025 raw_spin_unlock(&p->pi_lock); 2026 } 2027 2028 /** 2029 * wake_up_process - Wake up a specific process 2030 * @p: The process to be woken up. 2031 * 2032 * Attempt to wake up the nominated process and move it to the set of runnable 2033 * processes. 2034 * 2035 * Return: 1 if the process was woken up, 0 if it was already running. 2036 * 2037 * It may be assumed that this function implies a write memory barrier before 2038 * changing the task state if and only if any tasks are woken up. 2039 */ 2040 int wake_up_process(struct task_struct *p) 2041 { 2042 return try_to_wake_up(p, TASK_NORMAL, 0); 2043 } 2044 EXPORT_SYMBOL(wake_up_process); 2045 2046 int wake_up_state(struct task_struct *p, unsigned int state) 2047 { 2048 return try_to_wake_up(p, state, 0); 2049 } 2050 2051 /* 2052 * This function clears the sched_dl_entity static params. 2053 */ 2054 void __dl_clear_params(struct task_struct *p) 2055 { 2056 struct sched_dl_entity *dl_se = &p->dl; 2057 2058 dl_se->dl_runtime = 0; 2059 dl_se->dl_deadline = 0; 2060 dl_se->dl_period = 0; 2061 dl_se->flags = 0; 2062 dl_se->dl_bw = 0; 2063 2064 dl_se->dl_throttled = 0; 2065 dl_se->dl_yielded = 0; 2066 } 2067 2068 /* 2069 * Perform scheduler related setup for a newly forked process p. 2070 * p is forked by current. 2071 * 2072 * __sched_fork() is basic setup used by init_idle() too: 2073 */ 2074 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2075 { 2076 p->on_rq = 0; 2077 2078 p->se.on_rq = 0; 2079 p->se.exec_start = 0; 2080 p->se.sum_exec_runtime = 0; 2081 p->se.prev_sum_exec_runtime = 0; 2082 p->se.nr_migrations = 0; 2083 p->se.vruntime = 0; 2084 INIT_LIST_HEAD(&p->se.group_node); 2085 2086 #ifdef CONFIG_FAIR_GROUP_SCHED 2087 p->se.cfs_rq = NULL; 2088 #endif 2089 2090 #ifdef CONFIG_SCHEDSTATS 2091 /* Even if schedstat is disabled, there should not be garbage */ 2092 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2093 #endif 2094 2095 RB_CLEAR_NODE(&p->dl.rb_node); 2096 init_dl_task_timer(&p->dl); 2097 __dl_clear_params(p); 2098 2099 INIT_LIST_HEAD(&p->rt.run_list); 2100 p->rt.timeout = 0; 2101 p->rt.time_slice = sched_rr_timeslice; 2102 p->rt.on_rq = 0; 2103 p->rt.on_list = 0; 2104 2105 #ifdef CONFIG_PREEMPT_NOTIFIERS 2106 INIT_HLIST_HEAD(&p->preempt_notifiers); 2107 #endif 2108 2109 #ifdef CONFIG_NUMA_BALANCING 2110 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2111 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2112 p->mm->numa_scan_seq = 0; 2113 } 2114 2115 if (clone_flags & CLONE_VM) 2116 p->numa_preferred_nid = current->numa_preferred_nid; 2117 else 2118 p->numa_preferred_nid = -1; 2119 2120 p->node_stamp = 0ULL; 2121 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2122 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2123 p->numa_work.next = &p->numa_work; 2124 p->numa_faults = NULL; 2125 p->last_task_numa_placement = 0; 2126 p->last_sum_exec_runtime = 0; 2127 2128 p->numa_group = NULL; 2129 #endif /* CONFIG_NUMA_BALANCING */ 2130 } 2131 2132 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2133 2134 #ifdef CONFIG_NUMA_BALANCING 2135 2136 void set_numabalancing_state(bool enabled) 2137 { 2138 if (enabled) 2139 static_branch_enable(&sched_numa_balancing); 2140 else 2141 static_branch_disable(&sched_numa_balancing); 2142 } 2143 2144 #ifdef CONFIG_PROC_SYSCTL 2145 int sysctl_numa_balancing(struct ctl_table *table, int write, 2146 void __user *buffer, size_t *lenp, loff_t *ppos) 2147 { 2148 struct ctl_table t; 2149 int err; 2150 int state = static_branch_likely(&sched_numa_balancing); 2151 2152 if (write && !capable(CAP_SYS_ADMIN)) 2153 return -EPERM; 2154 2155 t = *table; 2156 t.data = &state; 2157 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2158 if (err < 0) 2159 return err; 2160 if (write) 2161 set_numabalancing_state(state); 2162 return err; 2163 } 2164 #endif 2165 #endif 2166 2167 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2168 2169 #ifdef CONFIG_SCHEDSTATS 2170 static void set_schedstats(bool enabled) 2171 { 2172 if (enabled) 2173 static_branch_enable(&sched_schedstats); 2174 else 2175 static_branch_disable(&sched_schedstats); 2176 } 2177 2178 void force_schedstat_enabled(void) 2179 { 2180 if (!schedstat_enabled()) { 2181 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2182 static_branch_enable(&sched_schedstats); 2183 } 2184 } 2185 2186 static int __init setup_schedstats(char *str) 2187 { 2188 int ret = 0; 2189 if (!str) 2190 goto out; 2191 2192 if (!strcmp(str, "enable")) { 2193 set_schedstats(true); 2194 ret = 1; 2195 } else if (!strcmp(str, "disable")) { 2196 set_schedstats(false); 2197 ret = 1; 2198 } 2199 out: 2200 if (!ret) 2201 pr_warn("Unable to parse schedstats=\n"); 2202 2203 return ret; 2204 } 2205 __setup("schedstats=", setup_schedstats); 2206 2207 #ifdef CONFIG_PROC_SYSCTL 2208 int sysctl_schedstats(struct ctl_table *table, int write, 2209 void __user *buffer, size_t *lenp, loff_t *ppos) 2210 { 2211 struct ctl_table t; 2212 int err; 2213 int state = static_branch_likely(&sched_schedstats); 2214 2215 if (write && !capable(CAP_SYS_ADMIN)) 2216 return -EPERM; 2217 2218 t = *table; 2219 t.data = &state; 2220 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2221 if (err < 0) 2222 return err; 2223 if (write) 2224 set_schedstats(state); 2225 return err; 2226 } 2227 #endif 2228 #endif 2229 2230 /* 2231 * fork()/clone()-time setup: 2232 */ 2233 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2234 { 2235 unsigned long flags; 2236 int cpu = get_cpu(); 2237 2238 __sched_fork(clone_flags, p); 2239 /* 2240 * We mark the process as running here. This guarantees that 2241 * nobody will actually run it, and a signal or other external 2242 * event cannot wake it up and insert it on the runqueue either. 2243 */ 2244 p->state = TASK_RUNNING; 2245 2246 /* 2247 * Make sure we do not leak PI boosting priority to the child. 2248 */ 2249 p->prio = current->normal_prio; 2250 2251 /* 2252 * Revert to default priority/policy on fork if requested. 2253 */ 2254 if (unlikely(p->sched_reset_on_fork)) { 2255 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2256 p->policy = SCHED_NORMAL; 2257 p->static_prio = NICE_TO_PRIO(0); 2258 p->rt_priority = 0; 2259 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2260 p->static_prio = NICE_TO_PRIO(0); 2261 2262 p->prio = p->normal_prio = __normal_prio(p); 2263 set_load_weight(p); 2264 2265 /* 2266 * We don't need the reset flag anymore after the fork. It has 2267 * fulfilled its duty: 2268 */ 2269 p->sched_reset_on_fork = 0; 2270 } 2271 2272 if (dl_prio(p->prio)) { 2273 put_cpu(); 2274 return -EAGAIN; 2275 } else if (rt_prio(p->prio)) { 2276 p->sched_class = &rt_sched_class; 2277 } else { 2278 p->sched_class = &fair_sched_class; 2279 } 2280 2281 if (p->sched_class->task_fork) 2282 p->sched_class->task_fork(p); 2283 2284 /* 2285 * The child is not yet in the pid-hash so no cgroup attach races, 2286 * and the cgroup is pinned to this child due to cgroup_fork() 2287 * is ran before sched_fork(). 2288 * 2289 * Silence PROVE_RCU. 2290 */ 2291 raw_spin_lock_irqsave(&p->pi_lock, flags); 2292 set_task_cpu(p, cpu); 2293 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2294 2295 #ifdef CONFIG_SCHED_INFO 2296 if (likely(sched_info_on())) 2297 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2298 #endif 2299 #if defined(CONFIG_SMP) 2300 p->on_cpu = 0; 2301 #endif 2302 init_task_preempt_count(p); 2303 #ifdef CONFIG_SMP 2304 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2305 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2306 #endif 2307 2308 put_cpu(); 2309 return 0; 2310 } 2311 2312 unsigned long to_ratio(u64 period, u64 runtime) 2313 { 2314 if (runtime == RUNTIME_INF) 2315 return 1ULL << 20; 2316 2317 /* 2318 * Doing this here saves a lot of checks in all 2319 * the calling paths, and returning zero seems 2320 * safe for them anyway. 2321 */ 2322 if (period == 0) 2323 return 0; 2324 2325 return div64_u64(runtime << 20, period); 2326 } 2327 2328 #ifdef CONFIG_SMP 2329 inline struct dl_bw *dl_bw_of(int i) 2330 { 2331 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2332 "sched RCU must be held"); 2333 return &cpu_rq(i)->rd->dl_bw; 2334 } 2335 2336 static inline int dl_bw_cpus(int i) 2337 { 2338 struct root_domain *rd = cpu_rq(i)->rd; 2339 int cpus = 0; 2340 2341 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2342 "sched RCU must be held"); 2343 for_each_cpu_and(i, rd->span, cpu_active_mask) 2344 cpus++; 2345 2346 return cpus; 2347 } 2348 #else 2349 inline struct dl_bw *dl_bw_of(int i) 2350 { 2351 return &cpu_rq(i)->dl.dl_bw; 2352 } 2353 2354 static inline int dl_bw_cpus(int i) 2355 { 2356 return 1; 2357 } 2358 #endif 2359 2360 /* 2361 * We must be sure that accepting a new task (or allowing changing the 2362 * parameters of an existing one) is consistent with the bandwidth 2363 * constraints. If yes, this function also accordingly updates the currently 2364 * allocated bandwidth to reflect the new situation. 2365 * 2366 * This function is called while holding p's rq->lock. 2367 * 2368 * XXX we should delay bw change until the task's 0-lag point, see 2369 * __setparam_dl(). 2370 */ 2371 static int dl_overflow(struct task_struct *p, int policy, 2372 const struct sched_attr *attr) 2373 { 2374 2375 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2376 u64 period = attr->sched_period ?: attr->sched_deadline; 2377 u64 runtime = attr->sched_runtime; 2378 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2379 int cpus, err = -1; 2380 2381 if (new_bw == p->dl.dl_bw) 2382 return 0; 2383 2384 /* 2385 * Either if a task, enters, leave, or stays -deadline but changes 2386 * its parameters, we may need to update accordingly the total 2387 * allocated bandwidth of the container. 2388 */ 2389 raw_spin_lock(&dl_b->lock); 2390 cpus = dl_bw_cpus(task_cpu(p)); 2391 if (dl_policy(policy) && !task_has_dl_policy(p) && 2392 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2393 __dl_add(dl_b, new_bw); 2394 err = 0; 2395 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2396 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2397 __dl_clear(dl_b, p->dl.dl_bw); 2398 __dl_add(dl_b, new_bw); 2399 err = 0; 2400 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2401 __dl_clear(dl_b, p->dl.dl_bw); 2402 err = 0; 2403 } 2404 raw_spin_unlock(&dl_b->lock); 2405 2406 return err; 2407 } 2408 2409 extern void init_dl_bw(struct dl_bw *dl_b); 2410 2411 /* 2412 * wake_up_new_task - wake up a newly created task for the first time. 2413 * 2414 * This function will do some initial scheduler statistics housekeeping 2415 * that must be done for every newly created context, then puts the task 2416 * on the runqueue and wakes it. 2417 */ 2418 void wake_up_new_task(struct task_struct *p) 2419 { 2420 unsigned long flags; 2421 struct rq *rq; 2422 2423 raw_spin_lock_irqsave(&p->pi_lock, flags); 2424 /* Initialize new task's runnable average */ 2425 init_entity_runnable_average(&p->se); 2426 #ifdef CONFIG_SMP 2427 /* 2428 * Fork balancing, do it here and not earlier because: 2429 * - cpus_allowed can change in the fork path 2430 * - any previously selected cpu might disappear through hotplug 2431 */ 2432 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2433 #endif 2434 2435 rq = __task_rq_lock(p); 2436 activate_task(rq, p, 0); 2437 p->on_rq = TASK_ON_RQ_QUEUED; 2438 trace_sched_wakeup_new(p); 2439 check_preempt_curr(rq, p, WF_FORK); 2440 #ifdef CONFIG_SMP 2441 if (p->sched_class->task_woken) { 2442 /* 2443 * Nothing relies on rq->lock after this, so its fine to 2444 * drop it. 2445 */ 2446 lockdep_unpin_lock(&rq->lock); 2447 p->sched_class->task_woken(rq, p); 2448 lockdep_pin_lock(&rq->lock); 2449 } 2450 #endif 2451 task_rq_unlock(rq, p, &flags); 2452 } 2453 2454 #ifdef CONFIG_PREEMPT_NOTIFIERS 2455 2456 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2457 2458 void preempt_notifier_inc(void) 2459 { 2460 static_key_slow_inc(&preempt_notifier_key); 2461 } 2462 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2463 2464 void preempt_notifier_dec(void) 2465 { 2466 static_key_slow_dec(&preempt_notifier_key); 2467 } 2468 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2469 2470 /** 2471 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2472 * @notifier: notifier struct to register 2473 */ 2474 void preempt_notifier_register(struct preempt_notifier *notifier) 2475 { 2476 if (!static_key_false(&preempt_notifier_key)) 2477 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2478 2479 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2480 } 2481 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2482 2483 /** 2484 * preempt_notifier_unregister - no longer interested in preemption notifications 2485 * @notifier: notifier struct to unregister 2486 * 2487 * This is *not* safe to call from within a preemption notifier. 2488 */ 2489 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2490 { 2491 hlist_del(¬ifier->link); 2492 } 2493 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2494 2495 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2496 { 2497 struct preempt_notifier *notifier; 2498 2499 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2500 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2501 } 2502 2503 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2504 { 2505 if (static_key_false(&preempt_notifier_key)) 2506 __fire_sched_in_preempt_notifiers(curr); 2507 } 2508 2509 static void 2510 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2511 struct task_struct *next) 2512 { 2513 struct preempt_notifier *notifier; 2514 2515 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2516 notifier->ops->sched_out(notifier, next); 2517 } 2518 2519 static __always_inline void 2520 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2521 struct task_struct *next) 2522 { 2523 if (static_key_false(&preempt_notifier_key)) 2524 __fire_sched_out_preempt_notifiers(curr, next); 2525 } 2526 2527 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2528 2529 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2530 { 2531 } 2532 2533 static inline void 2534 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2535 struct task_struct *next) 2536 { 2537 } 2538 2539 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2540 2541 /** 2542 * prepare_task_switch - prepare to switch tasks 2543 * @rq: the runqueue preparing to switch 2544 * @prev: the current task that is being switched out 2545 * @next: the task we are going to switch to. 2546 * 2547 * This is called with the rq lock held and interrupts off. It must 2548 * be paired with a subsequent finish_task_switch after the context 2549 * switch. 2550 * 2551 * prepare_task_switch sets up locking and calls architecture specific 2552 * hooks. 2553 */ 2554 static inline void 2555 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2556 struct task_struct *next) 2557 { 2558 sched_info_switch(rq, prev, next); 2559 perf_event_task_sched_out(prev, next); 2560 fire_sched_out_preempt_notifiers(prev, next); 2561 prepare_lock_switch(rq, next); 2562 prepare_arch_switch(next); 2563 } 2564 2565 /** 2566 * finish_task_switch - clean up after a task-switch 2567 * @prev: the thread we just switched away from. 2568 * 2569 * finish_task_switch must be called after the context switch, paired 2570 * with a prepare_task_switch call before the context switch. 2571 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2572 * and do any other architecture-specific cleanup actions. 2573 * 2574 * Note that we may have delayed dropping an mm in context_switch(). If 2575 * so, we finish that here outside of the runqueue lock. (Doing it 2576 * with the lock held can cause deadlocks; see schedule() for 2577 * details.) 2578 * 2579 * The context switch have flipped the stack from under us and restored the 2580 * local variables which were saved when this task called schedule() in the 2581 * past. prev == current is still correct but we need to recalculate this_rq 2582 * because prev may have moved to another CPU. 2583 */ 2584 static struct rq *finish_task_switch(struct task_struct *prev) 2585 __releases(rq->lock) 2586 { 2587 struct rq *rq = this_rq(); 2588 struct mm_struct *mm = rq->prev_mm; 2589 long prev_state; 2590 2591 /* 2592 * The previous task will have left us with a preempt_count of 2 2593 * because it left us after: 2594 * 2595 * schedule() 2596 * preempt_disable(); // 1 2597 * __schedule() 2598 * raw_spin_lock_irq(&rq->lock) // 2 2599 * 2600 * Also, see FORK_PREEMPT_COUNT. 2601 */ 2602 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2603 "corrupted preempt_count: %s/%d/0x%x\n", 2604 current->comm, current->pid, preempt_count())) 2605 preempt_count_set(FORK_PREEMPT_COUNT); 2606 2607 rq->prev_mm = NULL; 2608 2609 /* 2610 * A task struct has one reference for the use as "current". 2611 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2612 * schedule one last time. The schedule call will never return, and 2613 * the scheduled task must drop that reference. 2614 * 2615 * We must observe prev->state before clearing prev->on_cpu (in 2616 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2617 * running on another CPU and we could rave with its RUNNING -> DEAD 2618 * transition, resulting in a double drop. 2619 */ 2620 prev_state = prev->state; 2621 vtime_task_switch(prev); 2622 perf_event_task_sched_in(prev, current); 2623 finish_lock_switch(rq, prev); 2624 finish_arch_post_lock_switch(); 2625 2626 fire_sched_in_preempt_notifiers(current); 2627 if (mm) 2628 mmdrop(mm); 2629 if (unlikely(prev_state == TASK_DEAD)) { 2630 if (prev->sched_class->task_dead) 2631 prev->sched_class->task_dead(prev); 2632 2633 /* 2634 * Remove function-return probe instances associated with this 2635 * task and put them back on the free list. 2636 */ 2637 kprobe_flush_task(prev); 2638 put_task_struct(prev); 2639 } 2640 2641 tick_nohz_task_switch(); 2642 return rq; 2643 } 2644 2645 #ifdef CONFIG_SMP 2646 2647 /* rq->lock is NOT held, but preemption is disabled */ 2648 static void __balance_callback(struct rq *rq) 2649 { 2650 struct callback_head *head, *next; 2651 void (*func)(struct rq *rq); 2652 unsigned long flags; 2653 2654 raw_spin_lock_irqsave(&rq->lock, flags); 2655 head = rq->balance_callback; 2656 rq->balance_callback = NULL; 2657 while (head) { 2658 func = (void (*)(struct rq *))head->func; 2659 next = head->next; 2660 head->next = NULL; 2661 head = next; 2662 2663 func(rq); 2664 } 2665 raw_spin_unlock_irqrestore(&rq->lock, flags); 2666 } 2667 2668 static inline void balance_callback(struct rq *rq) 2669 { 2670 if (unlikely(rq->balance_callback)) 2671 __balance_callback(rq); 2672 } 2673 2674 #else 2675 2676 static inline void balance_callback(struct rq *rq) 2677 { 2678 } 2679 2680 #endif 2681 2682 /** 2683 * schedule_tail - first thing a freshly forked thread must call. 2684 * @prev: the thread we just switched away from. 2685 */ 2686 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2687 __releases(rq->lock) 2688 { 2689 struct rq *rq; 2690 2691 /* 2692 * New tasks start with FORK_PREEMPT_COUNT, see there and 2693 * finish_task_switch() for details. 2694 * 2695 * finish_task_switch() will drop rq->lock() and lower preempt_count 2696 * and the preempt_enable() will end up enabling preemption (on 2697 * PREEMPT_COUNT kernels). 2698 */ 2699 2700 rq = finish_task_switch(prev); 2701 balance_callback(rq); 2702 preempt_enable(); 2703 2704 if (current->set_child_tid) 2705 put_user(task_pid_vnr(current), current->set_child_tid); 2706 } 2707 2708 /* 2709 * context_switch - switch to the new MM and the new thread's register state. 2710 */ 2711 static __always_inline struct rq * 2712 context_switch(struct rq *rq, struct task_struct *prev, 2713 struct task_struct *next) 2714 { 2715 struct mm_struct *mm, *oldmm; 2716 2717 prepare_task_switch(rq, prev, next); 2718 2719 mm = next->mm; 2720 oldmm = prev->active_mm; 2721 /* 2722 * For paravirt, this is coupled with an exit in switch_to to 2723 * combine the page table reload and the switch backend into 2724 * one hypercall. 2725 */ 2726 arch_start_context_switch(prev); 2727 2728 if (!mm) { 2729 next->active_mm = oldmm; 2730 atomic_inc(&oldmm->mm_count); 2731 enter_lazy_tlb(oldmm, next); 2732 } else 2733 switch_mm(oldmm, mm, next); 2734 2735 if (!prev->mm) { 2736 prev->active_mm = NULL; 2737 rq->prev_mm = oldmm; 2738 } 2739 /* 2740 * Since the runqueue lock will be released by the next 2741 * task (which is an invalid locking op but in the case 2742 * of the scheduler it's an obvious special-case), so we 2743 * do an early lockdep release here: 2744 */ 2745 lockdep_unpin_lock(&rq->lock); 2746 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2747 2748 /* Here we just switch the register state and the stack. */ 2749 switch_to(prev, next, prev); 2750 barrier(); 2751 2752 return finish_task_switch(prev); 2753 } 2754 2755 /* 2756 * nr_running and nr_context_switches: 2757 * 2758 * externally visible scheduler statistics: current number of runnable 2759 * threads, total number of context switches performed since bootup. 2760 */ 2761 unsigned long nr_running(void) 2762 { 2763 unsigned long i, sum = 0; 2764 2765 for_each_online_cpu(i) 2766 sum += cpu_rq(i)->nr_running; 2767 2768 return sum; 2769 } 2770 2771 /* 2772 * Check if only the current task is running on the cpu. 2773 * 2774 * Caution: this function does not check that the caller has disabled 2775 * preemption, thus the result might have a time-of-check-to-time-of-use 2776 * race. The caller is responsible to use it correctly, for example: 2777 * 2778 * - from a non-preemptable section (of course) 2779 * 2780 * - from a thread that is bound to a single CPU 2781 * 2782 * - in a loop with very short iterations (e.g. a polling loop) 2783 */ 2784 bool single_task_running(void) 2785 { 2786 return raw_rq()->nr_running == 1; 2787 } 2788 EXPORT_SYMBOL(single_task_running); 2789 2790 unsigned long long nr_context_switches(void) 2791 { 2792 int i; 2793 unsigned long long sum = 0; 2794 2795 for_each_possible_cpu(i) 2796 sum += cpu_rq(i)->nr_switches; 2797 2798 return sum; 2799 } 2800 2801 unsigned long nr_iowait(void) 2802 { 2803 unsigned long i, sum = 0; 2804 2805 for_each_possible_cpu(i) 2806 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2807 2808 return sum; 2809 } 2810 2811 unsigned long nr_iowait_cpu(int cpu) 2812 { 2813 struct rq *this = cpu_rq(cpu); 2814 return atomic_read(&this->nr_iowait); 2815 } 2816 2817 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2818 { 2819 struct rq *rq = this_rq(); 2820 *nr_waiters = atomic_read(&rq->nr_iowait); 2821 *load = rq->load.weight; 2822 } 2823 2824 #ifdef CONFIG_SMP 2825 2826 /* 2827 * sched_exec - execve() is a valuable balancing opportunity, because at 2828 * this point the task has the smallest effective memory and cache footprint. 2829 */ 2830 void sched_exec(void) 2831 { 2832 struct task_struct *p = current; 2833 unsigned long flags; 2834 int dest_cpu; 2835 2836 raw_spin_lock_irqsave(&p->pi_lock, flags); 2837 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2838 if (dest_cpu == smp_processor_id()) 2839 goto unlock; 2840 2841 if (likely(cpu_active(dest_cpu))) { 2842 struct migration_arg arg = { p, dest_cpu }; 2843 2844 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2845 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2846 return; 2847 } 2848 unlock: 2849 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2850 } 2851 2852 #endif 2853 2854 DEFINE_PER_CPU(struct kernel_stat, kstat); 2855 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2856 2857 EXPORT_PER_CPU_SYMBOL(kstat); 2858 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2859 2860 /* 2861 * Return accounted runtime for the task. 2862 * In case the task is currently running, return the runtime plus current's 2863 * pending runtime that have not been accounted yet. 2864 */ 2865 unsigned long long task_sched_runtime(struct task_struct *p) 2866 { 2867 unsigned long flags; 2868 struct rq *rq; 2869 u64 ns; 2870 2871 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2872 /* 2873 * 64-bit doesn't need locks to atomically read a 64bit value. 2874 * So we have a optimization chance when the task's delta_exec is 0. 2875 * Reading ->on_cpu is racy, but this is ok. 2876 * 2877 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2878 * If we race with it entering cpu, unaccounted time is 0. This is 2879 * indistinguishable from the read occurring a few cycles earlier. 2880 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2881 * been accounted, so we're correct here as well. 2882 */ 2883 if (!p->on_cpu || !task_on_rq_queued(p)) 2884 return p->se.sum_exec_runtime; 2885 #endif 2886 2887 rq = task_rq_lock(p, &flags); 2888 /* 2889 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2890 * project cycles that may never be accounted to this 2891 * thread, breaking clock_gettime(). 2892 */ 2893 if (task_current(rq, p) && task_on_rq_queued(p)) { 2894 update_rq_clock(rq); 2895 p->sched_class->update_curr(rq); 2896 } 2897 ns = p->se.sum_exec_runtime; 2898 task_rq_unlock(rq, p, &flags); 2899 2900 return ns; 2901 } 2902 2903 /* 2904 * This function gets called by the timer code, with HZ frequency. 2905 * We call it with interrupts disabled. 2906 */ 2907 void scheduler_tick(void) 2908 { 2909 int cpu = smp_processor_id(); 2910 struct rq *rq = cpu_rq(cpu); 2911 struct task_struct *curr = rq->curr; 2912 2913 sched_clock_tick(); 2914 2915 raw_spin_lock(&rq->lock); 2916 update_rq_clock(rq); 2917 curr->sched_class->task_tick(rq, curr, 0); 2918 update_cpu_load_active(rq); 2919 calc_global_load_tick(rq); 2920 raw_spin_unlock(&rq->lock); 2921 2922 perf_event_task_tick(); 2923 2924 #ifdef CONFIG_SMP 2925 rq->idle_balance = idle_cpu(cpu); 2926 trigger_load_balance(rq); 2927 #endif 2928 rq_last_tick_reset(rq); 2929 } 2930 2931 #ifdef CONFIG_NO_HZ_FULL 2932 /** 2933 * scheduler_tick_max_deferment 2934 * 2935 * Keep at least one tick per second when a single 2936 * active task is running because the scheduler doesn't 2937 * yet completely support full dynticks environment. 2938 * 2939 * This makes sure that uptime, CFS vruntime, load 2940 * balancing, etc... continue to move forward, even 2941 * with a very low granularity. 2942 * 2943 * Return: Maximum deferment in nanoseconds. 2944 */ 2945 u64 scheduler_tick_max_deferment(void) 2946 { 2947 struct rq *rq = this_rq(); 2948 unsigned long next, now = READ_ONCE(jiffies); 2949 2950 next = rq->last_sched_tick + HZ; 2951 2952 if (time_before_eq(next, now)) 2953 return 0; 2954 2955 return jiffies_to_nsecs(next - now); 2956 } 2957 #endif 2958 2959 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2960 defined(CONFIG_PREEMPT_TRACER)) 2961 2962 void preempt_count_add(int val) 2963 { 2964 #ifdef CONFIG_DEBUG_PREEMPT 2965 /* 2966 * Underflow? 2967 */ 2968 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2969 return; 2970 #endif 2971 __preempt_count_add(val); 2972 #ifdef CONFIG_DEBUG_PREEMPT 2973 /* 2974 * Spinlock count overflowing soon? 2975 */ 2976 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2977 PREEMPT_MASK - 10); 2978 #endif 2979 if (preempt_count() == val) { 2980 unsigned long ip = get_lock_parent_ip(); 2981 #ifdef CONFIG_DEBUG_PREEMPT 2982 current->preempt_disable_ip = ip; 2983 #endif 2984 trace_preempt_off(CALLER_ADDR0, ip); 2985 } 2986 } 2987 EXPORT_SYMBOL(preempt_count_add); 2988 NOKPROBE_SYMBOL(preempt_count_add); 2989 2990 void preempt_count_sub(int val) 2991 { 2992 #ifdef CONFIG_DEBUG_PREEMPT 2993 /* 2994 * Underflow? 2995 */ 2996 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2997 return; 2998 /* 2999 * Is the spinlock portion underflowing? 3000 */ 3001 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3002 !(preempt_count() & PREEMPT_MASK))) 3003 return; 3004 #endif 3005 3006 if (preempt_count() == val) 3007 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3008 __preempt_count_sub(val); 3009 } 3010 EXPORT_SYMBOL(preempt_count_sub); 3011 NOKPROBE_SYMBOL(preempt_count_sub); 3012 3013 #endif 3014 3015 /* 3016 * Print scheduling while atomic bug: 3017 */ 3018 static noinline void __schedule_bug(struct task_struct *prev) 3019 { 3020 if (oops_in_progress) 3021 return; 3022 3023 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3024 prev->comm, prev->pid, preempt_count()); 3025 3026 debug_show_held_locks(prev); 3027 print_modules(); 3028 if (irqs_disabled()) 3029 print_irqtrace_events(prev); 3030 #ifdef CONFIG_DEBUG_PREEMPT 3031 if (in_atomic_preempt_off()) { 3032 pr_err("Preemption disabled at:"); 3033 print_ip_sym(current->preempt_disable_ip); 3034 pr_cont("\n"); 3035 } 3036 #endif 3037 dump_stack(); 3038 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3039 } 3040 3041 /* 3042 * Various schedule()-time debugging checks and statistics: 3043 */ 3044 static inline void schedule_debug(struct task_struct *prev) 3045 { 3046 #ifdef CONFIG_SCHED_STACK_END_CHECK 3047 BUG_ON(task_stack_end_corrupted(prev)); 3048 #endif 3049 3050 if (unlikely(in_atomic_preempt_off())) { 3051 __schedule_bug(prev); 3052 preempt_count_set(PREEMPT_DISABLED); 3053 } 3054 rcu_sleep_check(); 3055 3056 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3057 3058 schedstat_inc(this_rq(), sched_count); 3059 } 3060 3061 /* 3062 * Pick up the highest-prio task: 3063 */ 3064 static inline struct task_struct * 3065 pick_next_task(struct rq *rq, struct task_struct *prev) 3066 { 3067 const struct sched_class *class = &fair_sched_class; 3068 struct task_struct *p; 3069 3070 /* 3071 * Optimization: we know that if all tasks are in 3072 * the fair class we can call that function directly: 3073 */ 3074 if (likely(prev->sched_class == class && 3075 rq->nr_running == rq->cfs.h_nr_running)) { 3076 p = fair_sched_class.pick_next_task(rq, prev); 3077 if (unlikely(p == RETRY_TASK)) 3078 goto again; 3079 3080 /* assumes fair_sched_class->next == idle_sched_class */ 3081 if (unlikely(!p)) 3082 p = idle_sched_class.pick_next_task(rq, prev); 3083 3084 return p; 3085 } 3086 3087 again: 3088 for_each_class(class) { 3089 p = class->pick_next_task(rq, prev); 3090 if (p) { 3091 if (unlikely(p == RETRY_TASK)) 3092 goto again; 3093 return p; 3094 } 3095 } 3096 3097 BUG(); /* the idle class will always have a runnable task */ 3098 } 3099 3100 /* 3101 * __schedule() is the main scheduler function. 3102 * 3103 * The main means of driving the scheduler and thus entering this function are: 3104 * 3105 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3106 * 3107 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3108 * paths. For example, see arch/x86/entry_64.S. 3109 * 3110 * To drive preemption between tasks, the scheduler sets the flag in timer 3111 * interrupt handler scheduler_tick(). 3112 * 3113 * 3. Wakeups don't really cause entry into schedule(). They add a 3114 * task to the run-queue and that's it. 3115 * 3116 * Now, if the new task added to the run-queue preempts the current 3117 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3118 * called on the nearest possible occasion: 3119 * 3120 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3121 * 3122 * - in syscall or exception context, at the next outmost 3123 * preempt_enable(). (this might be as soon as the wake_up()'s 3124 * spin_unlock()!) 3125 * 3126 * - in IRQ context, return from interrupt-handler to 3127 * preemptible context 3128 * 3129 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3130 * then at the next: 3131 * 3132 * - cond_resched() call 3133 * - explicit schedule() call 3134 * - return from syscall or exception to user-space 3135 * - return from interrupt-handler to user-space 3136 * 3137 * WARNING: must be called with preemption disabled! 3138 */ 3139 static void __sched notrace __schedule(bool preempt) 3140 { 3141 struct task_struct *prev, *next; 3142 unsigned long *switch_count; 3143 struct rq *rq; 3144 int cpu; 3145 3146 cpu = smp_processor_id(); 3147 rq = cpu_rq(cpu); 3148 prev = rq->curr; 3149 3150 /* 3151 * do_exit() calls schedule() with preemption disabled as an exception; 3152 * however we must fix that up, otherwise the next task will see an 3153 * inconsistent (higher) preempt count. 3154 * 3155 * It also avoids the below schedule_debug() test from complaining 3156 * about this. 3157 */ 3158 if (unlikely(prev->state == TASK_DEAD)) 3159 preempt_enable_no_resched_notrace(); 3160 3161 schedule_debug(prev); 3162 3163 if (sched_feat(HRTICK)) 3164 hrtick_clear(rq); 3165 3166 local_irq_disable(); 3167 rcu_note_context_switch(); 3168 3169 /* 3170 * Make sure that signal_pending_state()->signal_pending() below 3171 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3172 * done by the caller to avoid the race with signal_wake_up(). 3173 */ 3174 smp_mb__before_spinlock(); 3175 raw_spin_lock(&rq->lock); 3176 lockdep_pin_lock(&rq->lock); 3177 3178 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 3179 3180 switch_count = &prev->nivcsw; 3181 if (!preempt && prev->state) { 3182 if (unlikely(signal_pending_state(prev->state, prev))) { 3183 prev->state = TASK_RUNNING; 3184 } else { 3185 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3186 prev->on_rq = 0; 3187 3188 /* 3189 * If a worker went to sleep, notify and ask workqueue 3190 * whether it wants to wake up a task to maintain 3191 * concurrency. 3192 */ 3193 if (prev->flags & PF_WQ_WORKER) { 3194 struct task_struct *to_wakeup; 3195 3196 to_wakeup = wq_worker_sleeping(prev); 3197 if (to_wakeup) 3198 try_to_wake_up_local(to_wakeup); 3199 } 3200 } 3201 switch_count = &prev->nvcsw; 3202 } 3203 3204 if (task_on_rq_queued(prev)) 3205 update_rq_clock(rq); 3206 3207 next = pick_next_task(rq, prev); 3208 clear_tsk_need_resched(prev); 3209 clear_preempt_need_resched(); 3210 rq->clock_skip_update = 0; 3211 3212 if (likely(prev != next)) { 3213 rq->nr_switches++; 3214 rq->curr = next; 3215 ++*switch_count; 3216 3217 trace_sched_switch(preempt, prev, next); 3218 rq = context_switch(rq, prev, next); /* unlocks the rq */ 3219 } else { 3220 lockdep_unpin_lock(&rq->lock); 3221 raw_spin_unlock_irq(&rq->lock); 3222 } 3223 3224 balance_callback(rq); 3225 } 3226 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */ 3227 3228 static inline void sched_submit_work(struct task_struct *tsk) 3229 { 3230 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3231 return; 3232 /* 3233 * If we are going to sleep and we have plugged IO queued, 3234 * make sure to submit it to avoid deadlocks. 3235 */ 3236 if (blk_needs_flush_plug(tsk)) 3237 blk_schedule_flush_plug(tsk); 3238 } 3239 3240 asmlinkage __visible void __sched schedule(void) 3241 { 3242 struct task_struct *tsk = current; 3243 3244 sched_submit_work(tsk); 3245 do { 3246 preempt_disable(); 3247 __schedule(false); 3248 sched_preempt_enable_no_resched(); 3249 } while (need_resched()); 3250 } 3251 EXPORT_SYMBOL(schedule); 3252 3253 #ifdef CONFIG_CONTEXT_TRACKING 3254 asmlinkage __visible void __sched schedule_user(void) 3255 { 3256 /* 3257 * If we come here after a random call to set_need_resched(), 3258 * or we have been woken up remotely but the IPI has not yet arrived, 3259 * we haven't yet exited the RCU idle mode. Do it here manually until 3260 * we find a better solution. 3261 * 3262 * NB: There are buggy callers of this function. Ideally we 3263 * should warn if prev_state != CONTEXT_USER, but that will trigger 3264 * too frequently to make sense yet. 3265 */ 3266 enum ctx_state prev_state = exception_enter(); 3267 schedule(); 3268 exception_exit(prev_state); 3269 } 3270 #endif 3271 3272 /** 3273 * schedule_preempt_disabled - called with preemption disabled 3274 * 3275 * Returns with preemption disabled. Note: preempt_count must be 1 3276 */ 3277 void __sched schedule_preempt_disabled(void) 3278 { 3279 sched_preempt_enable_no_resched(); 3280 schedule(); 3281 preempt_disable(); 3282 } 3283 3284 static void __sched notrace preempt_schedule_common(void) 3285 { 3286 do { 3287 preempt_disable_notrace(); 3288 __schedule(true); 3289 preempt_enable_no_resched_notrace(); 3290 3291 /* 3292 * Check again in case we missed a preemption opportunity 3293 * between schedule and now. 3294 */ 3295 } while (need_resched()); 3296 } 3297 3298 #ifdef CONFIG_PREEMPT 3299 /* 3300 * this is the entry point to schedule() from in-kernel preemption 3301 * off of preempt_enable. Kernel preemptions off return from interrupt 3302 * occur there and call schedule directly. 3303 */ 3304 asmlinkage __visible void __sched notrace preempt_schedule(void) 3305 { 3306 /* 3307 * If there is a non-zero preempt_count or interrupts are disabled, 3308 * we do not want to preempt the current task. Just return.. 3309 */ 3310 if (likely(!preemptible())) 3311 return; 3312 3313 preempt_schedule_common(); 3314 } 3315 NOKPROBE_SYMBOL(preempt_schedule); 3316 EXPORT_SYMBOL(preempt_schedule); 3317 3318 /** 3319 * preempt_schedule_notrace - preempt_schedule called by tracing 3320 * 3321 * The tracing infrastructure uses preempt_enable_notrace to prevent 3322 * recursion and tracing preempt enabling caused by the tracing 3323 * infrastructure itself. But as tracing can happen in areas coming 3324 * from userspace or just about to enter userspace, a preempt enable 3325 * can occur before user_exit() is called. This will cause the scheduler 3326 * to be called when the system is still in usermode. 3327 * 3328 * To prevent this, the preempt_enable_notrace will use this function 3329 * instead of preempt_schedule() to exit user context if needed before 3330 * calling the scheduler. 3331 */ 3332 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3333 { 3334 enum ctx_state prev_ctx; 3335 3336 if (likely(!preemptible())) 3337 return; 3338 3339 do { 3340 preempt_disable_notrace(); 3341 /* 3342 * Needs preempt disabled in case user_exit() is traced 3343 * and the tracer calls preempt_enable_notrace() causing 3344 * an infinite recursion. 3345 */ 3346 prev_ctx = exception_enter(); 3347 __schedule(true); 3348 exception_exit(prev_ctx); 3349 3350 preempt_enable_no_resched_notrace(); 3351 } while (need_resched()); 3352 } 3353 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3354 3355 #endif /* CONFIG_PREEMPT */ 3356 3357 /* 3358 * this is the entry point to schedule() from kernel preemption 3359 * off of irq context. 3360 * Note, that this is called and return with irqs disabled. This will 3361 * protect us against recursive calling from irq. 3362 */ 3363 asmlinkage __visible void __sched preempt_schedule_irq(void) 3364 { 3365 enum ctx_state prev_state; 3366 3367 /* Catch callers which need to be fixed */ 3368 BUG_ON(preempt_count() || !irqs_disabled()); 3369 3370 prev_state = exception_enter(); 3371 3372 do { 3373 preempt_disable(); 3374 local_irq_enable(); 3375 __schedule(true); 3376 local_irq_disable(); 3377 sched_preempt_enable_no_resched(); 3378 } while (need_resched()); 3379 3380 exception_exit(prev_state); 3381 } 3382 3383 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3384 void *key) 3385 { 3386 return try_to_wake_up(curr->private, mode, wake_flags); 3387 } 3388 EXPORT_SYMBOL(default_wake_function); 3389 3390 #ifdef CONFIG_RT_MUTEXES 3391 3392 /* 3393 * rt_mutex_setprio - set the current priority of a task 3394 * @p: task 3395 * @prio: prio value (kernel-internal form) 3396 * 3397 * This function changes the 'effective' priority of a task. It does 3398 * not touch ->normal_prio like __setscheduler(). 3399 * 3400 * Used by the rt_mutex code to implement priority inheritance 3401 * logic. Call site only calls if the priority of the task changed. 3402 */ 3403 void rt_mutex_setprio(struct task_struct *p, int prio) 3404 { 3405 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE; 3406 struct rq *rq; 3407 const struct sched_class *prev_class; 3408 3409 BUG_ON(prio > MAX_PRIO); 3410 3411 rq = __task_rq_lock(p); 3412 3413 /* 3414 * Idle task boosting is a nono in general. There is one 3415 * exception, when PREEMPT_RT and NOHZ is active: 3416 * 3417 * The idle task calls get_next_timer_interrupt() and holds 3418 * the timer wheel base->lock on the CPU and another CPU wants 3419 * to access the timer (probably to cancel it). We can safely 3420 * ignore the boosting request, as the idle CPU runs this code 3421 * with interrupts disabled and will complete the lock 3422 * protected section without being interrupted. So there is no 3423 * real need to boost. 3424 */ 3425 if (unlikely(p == rq->idle)) { 3426 WARN_ON(p != rq->curr); 3427 WARN_ON(p->pi_blocked_on); 3428 goto out_unlock; 3429 } 3430 3431 trace_sched_pi_setprio(p, prio); 3432 oldprio = p->prio; 3433 3434 if (oldprio == prio) 3435 queue_flag &= ~DEQUEUE_MOVE; 3436 3437 prev_class = p->sched_class; 3438 queued = task_on_rq_queued(p); 3439 running = task_current(rq, p); 3440 if (queued) 3441 dequeue_task(rq, p, queue_flag); 3442 if (running) 3443 put_prev_task(rq, p); 3444 3445 /* 3446 * Boosting condition are: 3447 * 1. -rt task is running and holds mutex A 3448 * --> -dl task blocks on mutex A 3449 * 3450 * 2. -dl task is running and holds mutex A 3451 * --> -dl task blocks on mutex A and could preempt the 3452 * running task 3453 */ 3454 if (dl_prio(prio)) { 3455 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3456 if (!dl_prio(p->normal_prio) || 3457 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3458 p->dl.dl_boosted = 1; 3459 queue_flag |= ENQUEUE_REPLENISH; 3460 } else 3461 p->dl.dl_boosted = 0; 3462 p->sched_class = &dl_sched_class; 3463 } else if (rt_prio(prio)) { 3464 if (dl_prio(oldprio)) 3465 p->dl.dl_boosted = 0; 3466 if (oldprio < prio) 3467 queue_flag |= ENQUEUE_HEAD; 3468 p->sched_class = &rt_sched_class; 3469 } else { 3470 if (dl_prio(oldprio)) 3471 p->dl.dl_boosted = 0; 3472 if (rt_prio(oldprio)) 3473 p->rt.timeout = 0; 3474 p->sched_class = &fair_sched_class; 3475 } 3476 3477 p->prio = prio; 3478 3479 if (running) 3480 p->sched_class->set_curr_task(rq); 3481 if (queued) 3482 enqueue_task(rq, p, queue_flag); 3483 3484 check_class_changed(rq, p, prev_class, oldprio); 3485 out_unlock: 3486 preempt_disable(); /* avoid rq from going away on us */ 3487 __task_rq_unlock(rq); 3488 3489 balance_callback(rq); 3490 preempt_enable(); 3491 } 3492 #endif 3493 3494 void set_user_nice(struct task_struct *p, long nice) 3495 { 3496 int old_prio, delta, queued; 3497 unsigned long flags; 3498 struct rq *rq; 3499 3500 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3501 return; 3502 /* 3503 * We have to be careful, if called from sys_setpriority(), 3504 * the task might be in the middle of scheduling on another CPU. 3505 */ 3506 rq = task_rq_lock(p, &flags); 3507 /* 3508 * The RT priorities are set via sched_setscheduler(), but we still 3509 * allow the 'normal' nice value to be set - but as expected 3510 * it wont have any effect on scheduling until the task is 3511 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3512 */ 3513 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3514 p->static_prio = NICE_TO_PRIO(nice); 3515 goto out_unlock; 3516 } 3517 queued = task_on_rq_queued(p); 3518 if (queued) 3519 dequeue_task(rq, p, DEQUEUE_SAVE); 3520 3521 p->static_prio = NICE_TO_PRIO(nice); 3522 set_load_weight(p); 3523 old_prio = p->prio; 3524 p->prio = effective_prio(p); 3525 delta = p->prio - old_prio; 3526 3527 if (queued) { 3528 enqueue_task(rq, p, ENQUEUE_RESTORE); 3529 /* 3530 * If the task increased its priority or is running and 3531 * lowered its priority, then reschedule its CPU: 3532 */ 3533 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3534 resched_curr(rq); 3535 } 3536 out_unlock: 3537 task_rq_unlock(rq, p, &flags); 3538 } 3539 EXPORT_SYMBOL(set_user_nice); 3540 3541 /* 3542 * can_nice - check if a task can reduce its nice value 3543 * @p: task 3544 * @nice: nice value 3545 */ 3546 int can_nice(const struct task_struct *p, const int nice) 3547 { 3548 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3549 int nice_rlim = nice_to_rlimit(nice); 3550 3551 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3552 capable(CAP_SYS_NICE)); 3553 } 3554 3555 #ifdef __ARCH_WANT_SYS_NICE 3556 3557 /* 3558 * sys_nice - change the priority of the current process. 3559 * @increment: priority increment 3560 * 3561 * sys_setpriority is a more generic, but much slower function that 3562 * does similar things. 3563 */ 3564 SYSCALL_DEFINE1(nice, int, increment) 3565 { 3566 long nice, retval; 3567 3568 /* 3569 * Setpriority might change our priority at the same moment. 3570 * We don't have to worry. Conceptually one call occurs first 3571 * and we have a single winner. 3572 */ 3573 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3574 nice = task_nice(current) + increment; 3575 3576 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3577 if (increment < 0 && !can_nice(current, nice)) 3578 return -EPERM; 3579 3580 retval = security_task_setnice(current, nice); 3581 if (retval) 3582 return retval; 3583 3584 set_user_nice(current, nice); 3585 return 0; 3586 } 3587 3588 #endif 3589 3590 /** 3591 * task_prio - return the priority value of a given task. 3592 * @p: the task in question. 3593 * 3594 * Return: The priority value as seen by users in /proc. 3595 * RT tasks are offset by -200. Normal tasks are centered 3596 * around 0, value goes from -16 to +15. 3597 */ 3598 int task_prio(const struct task_struct *p) 3599 { 3600 return p->prio - MAX_RT_PRIO; 3601 } 3602 3603 /** 3604 * idle_cpu - is a given cpu idle currently? 3605 * @cpu: the processor in question. 3606 * 3607 * Return: 1 if the CPU is currently idle. 0 otherwise. 3608 */ 3609 int idle_cpu(int cpu) 3610 { 3611 struct rq *rq = cpu_rq(cpu); 3612 3613 if (rq->curr != rq->idle) 3614 return 0; 3615 3616 if (rq->nr_running) 3617 return 0; 3618 3619 #ifdef CONFIG_SMP 3620 if (!llist_empty(&rq->wake_list)) 3621 return 0; 3622 #endif 3623 3624 return 1; 3625 } 3626 3627 /** 3628 * idle_task - return the idle task for a given cpu. 3629 * @cpu: the processor in question. 3630 * 3631 * Return: The idle task for the cpu @cpu. 3632 */ 3633 struct task_struct *idle_task(int cpu) 3634 { 3635 return cpu_rq(cpu)->idle; 3636 } 3637 3638 /** 3639 * find_process_by_pid - find a process with a matching PID value. 3640 * @pid: the pid in question. 3641 * 3642 * The task of @pid, if found. %NULL otherwise. 3643 */ 3644 static struct task_struct *find_process_by_pid(pid_t pid) 3645 { 3646 return pid ? find_task_by_vpid(pid) : current; 3647 } 3648 3649 /* 3650 * This function initializes the sched_dl_entity of a newly becoming 3651 * SCHED_DEADLINE task. 3652 * 3653 * Only the static values are considered here, the actual runtime and the 3654 * absolute deadline will be properly calculated when the task is enqueued 3655 * for the first time with its new policy. 3656 */ 3657 static void 3658 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3659 { 3660 struct sched_dl_entity *dl_se = &p->dl; 3661 3662 dl_se->dl_runtime = attr->sched_runtime; 3663 dl_se->dl_deadline = attr->sched_deadline; 3664 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3665 dl_se->flags = attr->sched_flags; 3666 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3667 3668 /* 3669 * Changing the parameters of a task is 'tricky' and we're not doing 3670 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3671 * 3672 * What we SHOULD do is delay the bandwidth release until the 0-lag 3673 * point. This would include retaining the task_struct until that time 3674 * and change dl_overflow() to not immediately decrement the current 3675 * amount. 3676 * 3677 * Instead we retain the current runtime/deadline and let the new 3678 * parameters take effect after the current reservation period lapses. 3679 * This is safe (albeit pessimistic) because the 0-lag point is always 3680 * before the current scheduling deadline. 3681 * 3682 * We can still have temporary overloads because we do not delay the 3683 * change in bandwidth until that time; so admission control is 3684 * not on the safe side. It does however guarantee tasks will never 3685 * consume more than promised. 3686 */ 3687 } 3688 3689 /* 3690 * sched_setparam() passes in -1 for its policy, to let the functions 3691 * it calls know not to change it. 3692 */ 3693 #define SETPARAM_POLICY -1 3694 3695 static void __setscheduler_params(struct task_struct *p, 3696 const struct sched_attr *attr) 3697 { 3698 int policy = attr->sched_policy; 3699 3700 if (policy == SETPARAM_POLICY) 3701 policy = p->policy; 3702 3703 p->policy = policy; 3704 3705 if (dl_policy(policy)) 3706 __setparam_dl(p, attr); 3707 else if (fair_policy(policy)) 3708 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3709 3710 /* 3711 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3712 * !rt_policy. Always setting this ensures that things like 3713 * getparam()/getattr() don't report silly values for !rt tasks. 3714 */ 3715 p->rt_priority = attr->sched_priority; 3716 p->normal_prio = normal_prio(p); 3717 set_load_weight(p); 3718 } 3719 3720 /* Actually do priority change: must hold pi & rq lock. */ 3721 static void __setscheduler(struct rq *rq, struct task_struct *p, 3722 const struct sched_attr *attr, bool keep_boost) 3723 { 3724 __setscheduler_params(p, attr); 3725 3726 /* 3727 * Keep a potential priority boosting if called from 3728 * sched_setscheduler(). 3729 */ 3730 if (keep_boost) 3731 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 3732 else 3733 p->prio = normal_prio(p); 3734 3735 if (dl_prio(p->prio)) 3736 p->sched_class = &dl_sched_class; 3737 else if (rt_prio(p->prio)) 3738 p->sched_class = &rt_sched_class; 3739 else 3740 p->sched_class = &fair_sched_class; 3741 } 3742 3743 static void 3744 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3745 { 3746 struct sched_dl_entity *dl_se = &p->dl; 3747 3748 attr->sched_priority = p->rt_priority; 3749 attr->sched_runtime = dl_se->dl_runtime; 3750 attr->sched_deadline = dl_se->dl_deadline; 3751 attr->sched_period = dl_se->dl_period; 3752 attr->sched_flags = dl_se->flags; 3753 } 3754 3755 /* 3756 * This function validates the new parameters of a -deadline task. 3757 * We ask for the deadline not being zero, and greater or equal 3758 * than the runtime, as well as the period of being zero or 3759 * greater than deadline. Furthermore, we have to be sure that 3760 * user parameters are above the internal resolution of 1us (we 3761 * check sched_runtime only since it is always the smaller one) and 3762 * below 2^63 ns (we have to check both sched_deadline and 3763 * sched_period, as the latter can be zero). 3764 */ 3765 static bool 3766 __checkparam_dl(const struct sched_attr *attr) 3767 { 3768 /* deadline != 0 */ 3769 if (attr->sched_deadline == 0) 3770 return false; 3771 3772 /* 3773 * Since we truncate DL_SCALE bits, make sure we're at least 3774 * that big. 3775 */ 3776 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3777 return false; 3778 3779 /* 3780 * Since we use the MSB for wrap-around and sign issues, make 3781 * sure it's not set (mind that period can be equal to zero). 3782 */ 3783 if (attr->sched_deadline & (1ULL << 63) || 3784 attr->sched_period & (1ULL << 63)) 3785 return false; 3786 3787 /* runtime <= deadline <= period (if period != 0) */ 3788 if ((attr->sched_period != 0 && 3789 attr->sched_period < attr->sched_deadline) || 3790 attr->sched_deadline < attr->sched_runtime) 3791 return false; 3792 3793 return true; 3794 } 3795 3796 /* 3797 * check the target process has a UID that matches the current process's 3798 */ 3799 static bool check_same_owner(struct task_struct *p) 3800 { 3801 const struct cred *cred = current_cred(), *pcred; 3802 bool match; 3803 3804 rcu_read_lock(); 3805 pcred = __task_cred(p); 3806 match = (uid_eq(cred->euid, pcred->euid) || 3807 uid_eq(cred->euid, pcred->uid)); 3808 rcu_read_unlock(); 3809 return match; 3810 } 3811 3812 static bool dl_param_changed(struct task_struct *p, 3813 const struct sched_attr *attr) 3814 { 3815 struct sched_dl_entity *dl_se = &p->dl; 3816 3817 if (dl_se->dl_runtime != attr->sched_runtime || 3818 dl_se->dl_deadline != attr->sched_deadline || 3819 dl_se->dl_period != attr->sched_period || 3820 dl_se->flags != attr->sched_flags) 3821 return true; 3822 3823 return false; 3824 } 3825 3826 static int __sched_setscheduler(struct task_struct *p, 3827 const struct sched_attr *attr, 3828 bool user, bool pi) 3829 { 3830 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3831 MAX_RT_PRIO - 1 - attr->sched_priority; 3832 int retval, oldprio, oldpolicy = -1, queued, running; 3833 int new_effective_prio, policy = attr->sched_policy; 3834 unsigned long flags; 3835 const struct sched_class *prev_class; 3836 struct rq *rq; 3837 int reset_on_fork; 3838 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 3839 3840 /* may grab non-irq protected spin_locks */ 3841 BUG_ON(in_interrupt()); 3842 recheck: 3843 /* double check policy once rq lock held */ 3844 if (policy < 0) { 3845 reset_on_fork = p->sched_reset_on_fork; 3846 policy = oldpolicy = p->policy; 3847 } else { 3848 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3849 3850 if (!valid_policy(policy)) 3851 return -EINVAL; 3852 } 3853 3854 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3855 return -EINVAL; 3856 3857 /* 3858 * Valid priorities for SCHED_FIFO and SCHED_RR are 3859 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3860 * SCHED_BATCH and SCHED_IDLE is 0. 3861 */ 3862 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3863 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3864 return -EINVAL; 3865 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3866 (rt_policy(policy) != (attr->sched_priority != 0))) 3867 return -EINVAL; 3868 3869 /* 3870 * Allow unprivileged RT tasks to decrease priority: 3871 */ 3872 if (user && !capable(CAP_SYS_NICE)) { 3873 if (fair_policy(policy)) { 3874 if (attr->sched_nice < task_nice(p) && 3875 !can_nice(p, attr->sched_nice)) 3876 return -EPERM; 3877 } 3878 3879 if (rt_policy(policy)) { 3880 unsigned long rlim_rtprio = 3881 task_rlimit(p, RLIMIT_RTPRIO); 3882 3883 /* can't set/change the rt policy */ 3884 if (policy != p->policy && !rlim_rtprio) 3885 return -EPERM; 3886 3887 /* can't increase priority */ 3888 if (attr->sched_priority > p->rt_priority && 3889 attr->sched_priority > rlim_rtprio) 3890 return -EPERM; 3891 } 3892 3893 /* 3894 * Can't set/change SCHED_DEADLINE policy at all for now 3895 * (safest behavior); in the future we would like to allow 3896 * unprivileged DL tasks to increase their relative deadline 3897 * or reduce their runtime (both ways reducing utilization) 3898 */ 3899 if (dl_policy(policy)) 3900 return -EPERM; 3901 3902 /* 3903 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3904 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3905 */ 3906 if (idle_policy(p->policy) && !idle_policy(policy)) { 3907 if (!can_nice(p, task_nice(p))) 3908 return -EPERM; 3909 } 3910 3911 /* can't change other user's priorities */ 3912 if (!check_same_owner(p)) 3913 return -EPERM; 3914 3915 /* Normal users shall not reset the sched_reset_on_fork flag */ 3916 if (p->sched_reset_on_fork && !reset_on_fork) 3917 return -EPERM; 3918 } 3919 3920 if (user) { 3921 retval = security_task_setscheduler(p); 3922 if (retval) 3923 return retval; 3924 } 3925 3926 /* 3927 * make sure no PI-waiters arrive (or leave) while we are 3928 * changing the priority of the task: 3929 * 3930 * To be able to change p->policy safely, the appropriate 3931 * runqueue lock must be held. 3932 */ 3933 rq = task_rq_lock(p, &flags); 3934 3935 /* 3936 * Changing the policy of the stop threads its a very bad idea 3937 */ 3938 if (p == rq->stop) { 3939 task_rq_unlock(rq, p, &flags); 3940 return -EINVAL; 3941 } 3942 3943 /* 3944 * If not changing anything there's no need to proceed further, 3945 * but store a possible modification of reset_on_fork. 3946 */ 3947 if (unlikely(policy == p->policy)) { 3948 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3949 goto change; 3950 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3951 goto change; 3952 if (dl_policy(policy) && dl_param_changed(p, attr)) 3953 goto change; 3954 3955 p->sched_reset_on_fork = reset_on_fork; 3956 task_rq_unlock(rq, p, &flags); 3957 return 0; 3958 } 3959 change: 3960 3961 if (user) { 3962 #ifdef CONFIG_RT_GROUP_SCHED 3963 /* 3964 * Do not allow realtime tasks into groups that have no runtime 3965 * assigned. 3966 */ 3967 if (rt_bandwidth_enabled() && rt_policy(policy) && 3968 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3969 !task_group_is_autogroup(task_group(p))) { 3970 task_rq_unlock(rq, p, &flags); 3971 return -EPERM; 3972 } 3973 #endif 3974 #ifdef CONFIG_SMP 3975 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3976 cpumask_t *span = rq->rd->span; 3977 3978 /* 3979 * Don't allow tasks with an affinity mask smaller than 3980 * the entire root_domain to become SCHED_DEADLINE. We 3981 * will also fail if there's no bandwidth available. 3982 */ 3983 if (!cpumask_subset(span, &p->cpus_allowed) || 3984 rq->rd->dl_bw.bw == 0) { 3985 task_rq_unlock(rq, p, &flags); 3986 return -EPERM; 3987 } 3988 } 3989 #endif 3990 } 3991 3992 /* recheck policy now with rq lock held */ 3993 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3994 policy = oldpolicy = -1; 3995 task_rq_unlock(rq, p, &flags); 3996 goto recheck; 3997 } 3998 3999 /* 4000 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4001 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4002 * is available. 4003 */ 4004 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 4005 task_rq_unlock(rq, p, &flags); 4006 return -EBUSY; 4007 } 4008 4009 p->sched_reset_on_fork = reset_on_fork; 4010 oldprio = p->prio; 4011 4012 if (pi) { 4013 /* 4014 * Take priority boosted tasks into account. If the new 4015 * effective priority is unchanged, we just store the new 4016 * normal parameters and do not touch the scheduler class and 4017 * the runqueue. This will be done when the task deboost 4018 * itself. 4019 */ 4020 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 4021 if (new_effective_prio == oldprio) 4022 queue_flags &= ~DEQUEUE_MOVE; 4023 } 4024 4025 queued = task_on_rq_queued(p); 4026 running = task_current(rq, p); 4027 if (queued) 4028 dequeue_task(rq, p, queue_flags); 4029 if (running) 4030 put_prev_task(rq, p); 4031 4032 prev_class = p->sched_class; 4033 __setscheduler(rq, p, attr, pi); 4034 4035 if (running) 4036 p->sched_class->set_curr_task(rq); 4037 if (queued) { 4038 /* 4039 * We enqueue to tail when the priority of a task is 4040 * increased (user space view). 4041 */ 4042 if (oldprio < p->prio) 4043 queue_flags |= ENQUEUE_HEAD; 4044 4045 enqueue_task(rq, p, queue_flags); 4046 } 4047 4048 check_class_changed(rq, p, prev_class, oldprio); 4049 preempt_disable(); /* avoid rq from going away on us */ 4050 task_rq_unlock(rq, p, &flags); 4051 4052 if (pi) 4053 rt_mutex_adjust_pi(p); 4054 4055 /* 4056 * Run balance callbacks after we've adjusted the PI chain. 4057 */ 4058 balance_callback(rq); 4059 preempt_enable(); 4060 4061 return 0; 4062 } 4063 4064 static int _sched_setscheduler(struct task_struct *p, int policy, 4065 const struct sched_param *param, bool check) 4066 { 4067 struct sched_attr attr = { 4068 .sched_policy = policy, 4069 .sched_priority = param->sched_priority, 4070 .sched_nice = PRIO_TO_NICE(p->static_prio), 4071 }; 4072 4073 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4074 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4075 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4076 policy &= ~SCHED_RESET_ON_FORK; 4077 attr.sched_policy = policy; 4078 } 4079 4080 return __sched_setscheduler(p, &attr, check, true); 4081 } 4082 /** 4083 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4084 * @p: the task in question. 4085 * @policy: new policy. 4086 * @param: structure containing the new RT priority. 4087 * 4088 * Return: 0 on success. An error code otherwise. 4089 * 4090 * NOTE that the task may be already dead. 4091 */ 4092 int sched_setscheduler(struct task_struct *p, int policy, 4093 const struct sched_param *param) 4094 { 4095 return _sched_setscheduler(p, policy, param, true); 4096 } 4097 EXPORT_SYMBOL_GPL(sched_setscheduler); 4098 4099 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4100 { 4101 return __sched_setscheduler(p, attr, true, true); 4102 } 4103 EXPORT_SYMBOL_GPL(sched_setattr); 4104 4105 /** 4106 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4107 * @p: the task in question. 4108 * @policy: new policy. 4109 * @param: structure containing the new RT priority. 4110 * 4111 * Just like sched_setscheduler, only don't bother checking if the 4112 * current context has permission. For example, this is needed in 4113 * stop_machine(): we create temporary high priority worker threads, 4114 * but our caller might not have that capability. 4115 * 4116 * Return: 0 on success. An error code otherwise. 4117 */ 4118 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4119 const struct sched_param *param) 4120 { 4121 return _sched_setscheduler(p, policy, param, false); 4122 } 4123 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4124 4125 static int 4126 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4127 { 4128 struct sched_param lparam; 4129 struct task_struct *p; 4130 int retval; 4131 4132 if (!param || pid < 0) 4133 return -EINVAL; 4134 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4135 return -EFAULT; 4136 4137 rcu_read_lock(); 4138 retval = -ESRCH; 4139 p = find_process_by_pid(pid); 4140 if (p != NULL) 4141 retval = sched_setscheduler(p, policy, &lparam); 4142 rcu_read_unlock(); 4143 4144 return retval; 4145 } 4146 4147 /* 4148 * Mimics kernel/events/core.c perf_copy_attr(). 4149 */ 4150 static int sched_copy_attr(struct sched_attr __user *uattr, 4151 struct sched_attr *attr) 4152 { 4153 u32 size; 4154 int ret; 4155 4156 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4157 return -EFAULT; 4158 4159 /* 4160 * zero the full structure, so that a short copy will be nice. 4161 */ 4162 memset(attr, 0, sizeof(*attr)); 4163 4164 ret = get_user(size, &uattr->size); 4165 if (ret) 4166 return ret; 4167 4168 if (size > PAGE_SIZE) /* silly large */ 4169 goto err_size; 4170 4171 if (!size) /* abi compat */ 4172 size = SCHED_ATTR_SIZE_VER0; 4173 4174 if (size < SCHED_ATTR_SIZE_VER0) 4175 goto err_size; 4176 4177 /* 4178 * If we're handed a bigger struct than we know of, 4179 * ensure all the unknown bits are 0 - i.e. new 4180 * user-space does not rely on any kernel feature 4181 * extensions we dont know about yet. 4182 */ 4183 if (size > sizeof(*attr)) { 4184 unsigned char __user *addr; 4185 unsigned char __user *end; 4186 unsigned char val; 4187 4188 addr = (void __user *)uattr + sizeof(*attr); 4189 end = (void __user *)uattr + size; 4190 4191 for (; addr < end; addr++) { 4192 ret = get_user(val, addr); 4193 if (ret) 4194 return ret; 4195 if (val) 4196 goto err_size; 4197 } 4198 size = sizeof(*attr); 4199 } 4200 4201 ret = copy_from_user(attr, uattr, size); 4202 if (ret) 4203 return -EFAULT; 4204 4205 /* 4206 * XXX: do we want to be lenient like existing syscalls; or do we want 4207 * to be strict and return an error on out-of-bounds values? 4208 */ 4209 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4210 4211 return 0; 4212 4213 err_size: 4214 put_user(sizeof(*attr), &uattr->size); 4215 return -E2BIG; 4216 } 4217 4218 /** 4219 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4220 * @pid: the pid in question. 4221 * @policy: new policy. 4222 * @param: structure containing the new RT priority. 4223 * 4224 * Return: 0 on success. An error code otherwise. 4225 */ 4226 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4227 struct sched_param __user *, param) 4228 { 4229 /* negative values for policy are not valid */ 4230 if (policy < 0) 4231 return -EINVAL; 4232 4233 return do_sched_setscheduler(pid, policy, param); 4234 } 4235 4236 /** 4237 * sys_sched_setparam - set/change the RT priority of a thread 4238 * @pid: the pid in question. 4239 * @param: structure containing the new RT priority. 4240 * 4241 * Return: 0 on success. An error code otherwise. 4242 */ 4243 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4244 { 4245 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4246 } 4247 4248 /** 4249 * sys_sched_setattr - same as above, but with extended sched_attr 4250 * @pid: the pid in question. 4251 * @uattr: structure containing the extended parameters. 4252 * @flags: for future extension. 4253 */ 4254 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4255 unsigned int, flags) 4256 { 4257 struct sched_attr attr; 4258 struct task_struct *p; 4259 int retval; 4260 4261 if (!uattr || pid < 0 || flags) 4262 return -EINVAL; 4263 4264 retval = sched_copy_attr(uattr, &attr); 4265 if (retval) 4266 return retval; 4267 4268 if ((int)attr.sched_policy < 0) 4269 return -EINVAL; 4270 4271 rcu_read_lock(); 4272 retval = -ESRCH; 4273 p = find_process_by_pid(pid); 4274 if (p != NULL) 4275 retval = sched_setattr(p, &attr); 4276 rcu_read_unlock(); 4277 4278 return retval; 4279 } 4280 4281 /** 4282 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4283 * @pid: the pid in question. 4284 * 4285 * Return: On success, the policy of the thread. Otherwise, a negative error 4286 * code. 4287 */ 4288 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4289 { 4290 struct task_struct *p; 4291 int retval; 4292 4293 if (pid < 0) 4294 return -EINVAL; 4295 4296 retval = -ESRCH; 4297 rcu_read_lock(); 4298 p = find_process_by_pid(pid); 4299 if (p) { 4300 retval = security_task_getscheduler(p); 4301 if (!retval) 4302 retval = p->policy 4303 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4304 } 4305 rcu_read_unlock(); 4306 return retval; 4307 } 4308 4309 /** 4310 * sys_sched_getparam - get the RT priority of a thread 4311 * @pid: the pid in question. 4312 * @param: structure containing the RT priority. 4313 * 4314 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4315 * code. 4316 */ 4317 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4318 { 4319 struct sched_param lp = { .sched_priority = 0 }; 4320 struct task_struct *p; 4321 int retval; 4322 4323 if (!param || pid < 0) 4324 return -EINVAL; 4325 4326 rcu_read_lock(); 4327 p = find_process_by_pid(pid); 4328 retval = -ESRCH; 4329 if (!p) 4330 goto out_unlock; 4331 4332 retval = security_task_getscheduler(p); 4333 if (retval) 4334 goto out_unlock; 4335 4336 if (task_has_rt_policy(p)) 4337 lp.sched_priority = p->rt_priority; 4338 rcu_read_unlock(); 4339 4340 /* 4341 * This one might sleep, we cannot do it with a spinlock held ... 4342 */ 4343 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4344 4345 return retval; 4346 4347 out_unlock: 4348 rcu_read_unlock(); 4349 return retval; 4350 } 4351 4352 static int sched_read_attr(struct sched_attr __user *uattr, 4353 struct sched_attr *attr, 4354 unsigned int usize) 4355 { 4356 int ret; 4357 4358 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4359 return -EFAULT; 4360 4361 /* 4362 * If we're handed a smaller struct than we know of, 4363 * ensure all the unknown bits are 0 - i.e. old 4364 * user-space does not get uncomplete information. 4365 */ 4366 if (usize < sizeof(*attr)) { 4367 unsigned char *addr; 4368 unsigned char *end; 4369 4370 addr = (void *)attr + usize; 4371 end = (void *)attr + sizeof(*attr); 4372 4373 for (; addr < end; addr++) { 4374 if (*addr) 4375 return -EFBIG; 4376 } 4377 4378 attr->size = usize; 4379 } 4380 4381 ret = copy_to_user(uattr, attr, attr->size); 4382 if (ret) 4383 return -EFAULT; 4384 4385 return 0; 4386 } 4387 4388 /** 4389 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4390 * @pid: the pid in question. 4391 * @uattr: structure containing the extended parameters. 4392 * @size: sizeof(attr) for fwd/bwd comp. 4393 * @flags: for future extension. 4394 */ 4395 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4396 unsigned int, size, unsigned int, flags) 4397 { 4398 struct sched_attr attr = { 4399 .size = sizeof(struct sched_attr), 4400 }; 4401 struct task_struct *p; 4402 int retval; 4403 4404 if (!uattr || pid < 0 || size > PAGE_SIZE || 4405 size < SCHED_ATTR_SIZE_VER0 || flags) 4406 return -EINVAL; 4407 4408 rcu_read_lock(); 4409 p = find_process_by_pid(pid); 4410 retval = -ESRCH; 4411 if (!p) 4412 goto out_unlock; 4413 4414 retval = security_task_getscheduler(p); 4415 if (retval) 4416 goto out_unlock; 4417 4418 attr.sched_policy = p->policy; 4419 if (p->sched_reset_on_fork) 4420 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4421 if (task_has_dl_policy(p)) 4422 __getparam_dl(p, &attr); 4423 else if (task_has_rt_policy(p)) 4424 attr.sched_priority = p->rt_priority; 4425 else 4426 attr.sched_nice = task_nice(p); 4427 4428 rcu_read_unlock(); 4429 4430 retval = sched_read_attr(uattr, &attr, size); 4431 return retval; 4432 4433 out_unlock: 4434 rcu_read_unlock(); 4435 return retval; 4436 } 4437 4438 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4439 { 4440 cpumask_var_t cpus_allowed, new_mask; 4441 struct task_struct *p; 4442 int retval; 4443 4444 rcu_read_lock(); 4445 4446 p = find_process_by_pid(pid); 4447 if (!p) { 4448 rcu_read_unlock(); 4449 return -ESRCH; 4450 } 4451 4452 /* Prevent p going away */ 4453 get_task_struct(p); 4454 rcu_read_unlock(); 4455 4456 if (p->flags & PF_NO_SETAFFINITY) { 4457 retval = -EINVAL; 4458 goto out_put_task; 4459 } 4460 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4461 retval = -ENOMEM; 4462 goto out_put_task; 4463 } 4464 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4465 retval = -ENOMEM; 4466 goto out_free_cpus_allowed; 4467 } 4468 retval = -EPERM; 4469 if (!check_same_owner(p)) { 4470 rcu_read_lock(); 4471 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4472 rcu_read_unlock(); 4473 goto out_free_new_mask; 4474 } 4475 rcu_read_unlock(); 4476 } 4477 4478 retval = security_task_setscheduler(p); 4479 if (retval) 4480 goto out_free_new_mask; 4481 4482 4483 cpuset_cpus_allowed(p, cpus_allowed); 4484 cpumask_and(new_mask, in_mask, cpus_allowed); 4485 4486 /* 4487 * Since bandwidth control happens on root_domain basis, 4488 * if admission test is enabled, we only admit -deadline 4489 * tasks allowed to run on all the CPUs in the task's 4490 * root_domain. 4491 */ 4492 #ifdef CONFIG_SMP 4493 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4494 rcu_read_lock(); 4495 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4496 retval = -EBUSY; 4497 rcu_read_unlock(); 4498 goto out_free_new_mask; 4499 } 4500 rcu_read_unlock(); 4501 } 4502 #endif 4503 again: 4504 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4505 4506 if (!retval) { 4507 cpuset_cpus_allowed(p, cpus_allowed); 4508 if (!cpumask_subset(new_mask, cpus_allowed)) { 4509 /* 4510 * We must have raced with a concurrent cpuset 4511 * update. Just reset the cpus_allowed to the 4512 * cpuset's cpus_allowed 4513 */ 4514 cpumask_copy(new_mask, cpus_allowed); 4515 goto again; 4516 } 4517 } 4518 out_free_new_mask: 4519 free_cpumask_var(new_mask); 4520 out_free_cpus_allowed: 4521 free_cpumask_var(cpus_allowed); 4522 out_put_task: 4523 put_task_struct(p); 4524 return retval; 4525 } 4526 4527 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4528 struct cpumask *new_mask) 4529 { 4530 if (len < cpumask_size()) 4531 cpumask_clear(new_mask); 4532 else if (len > cpumask_size()) 4533 len = cpumask_size(); 4534 4535 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4536 } 4537 4538 /** 4539 * sys_sched_setaffinity - set the cpu affinity of a process 4540 * @pid: pid of the process 4541 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4542 * @user_mask_ptr: user-space pointer to the new cpu mask 4543 * 4544 * Return: 0 on success. An error code otherwise. 4545 */ 4546 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4547 unsigned long __user *, user_mask_ptr) 4548 { 4549 cpumask_var_t new_mask; 4550 int retval; 4551 4552 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4553 return -ENOMEM; 4554 4555 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4556 if (retval == 0) 4557 retval = sched_setaffinity(pid, new_mask); 4558 free_cpumask_var(new_mask); 4559 return retval; 4560 } 4561 4562 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4563 { 4564 struct task_struct *p; 4565 unsigned long flags; 4566 int retval; 4567 4568 rcu_read_lock(); 4569 4570 retval = -ESRCH; 4571 p = find_process_by_pid(pid); 4572 if (!p) 4573 goto out_unlock; 4574 4575 retval = security_task_getscheduler(p); 4576 if (retval) 4577 goto out_unlock; 4578 4579 raw_spin_lock_irqsave(&p->pi_lock, flags); 4580 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4581 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4582 4583 out_unlock: 4584 rcu_read_unlock(); 4585 4586 return retval; 4587 } 4588 4589 /** 4590 * sys_sched_getaffinity - get the cpu affinity of a process 4591 * @pid: pid of the process 4592 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4593 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4594 * 4595 * Return: 0 on success. An error code otherwise. 4596 */ 4597 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4598 unsigned long __user *, user_mask_ptr) 4599 { 4600 int ret; 4601 cpumask_var_t mask; 4602 4603 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4604 return -EINVAL; 4605 if (len & (sizeof(unsigned long)-1)) 4606 return -EINVAL; 4607 4608 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4609 return -ENOMEM; 4610 4611 ret = sched_getaffinity(pid, mask); 4612 if (ret == 0) { 4613 size_t retlen = min_t(size_t, len, cpumask_size()); 4614 4615 if (copy_to_user(user_mask_ptr, mask, retlen)) 4616 ret = -EFAULT; 4617 else 4618 ret = retlen; 4619 } 4620 free_cpumask_var(mask); 4621 4622 return ret; 4623 } 4624 4625 /** 4626 * sys_sched_yield - yield the current processor to other threads. 4627 * 4628 * This function yields the current CPU to other tasks. If there are no 4629 * other threads running on this CPU then this function will return. 4630 * 4631 * Return: 0. 4632 */ 4633 SYSCALL_DEFINE0(sched_yield) 4634 { 4635 struct rq *rq = this_rq_lock(); 4636 4637 schedstat_inc(rq, yld_count); 4638 current->sched_class->yield_task(rq); 4639 4640 /* 4641 * Since we are going to call schedule() anyway, there's 4642 * no need to preempt or enable interrupts: 4643 */ 4644 __release(rq->lock); 4645 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4646 do_raw_spin_unlock(&rq->lock); 4647 sched_preempt_enable_no_resched(); 4648 4649 schedule(); 4650 4651 return 0; 4652 } 4653 4654 int __sched _cond_resched(void) 4655 { 4656 if (should_resched(0)) { 4657 preempt_schedule_common(); 4658 return 1; 4659 } 4660 return 0; 4661 } 4662 EXPORT_SYMBOL(_cond_resched); 4663 4664 /* 4665 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4666 * call schedule, and on return reacquire the lock. 4667 * 4668 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4669 * operations here to prevent schedule() from being called twice (once via 4670 * spin_unlock(), once by hand). 4671 */ 4672 int __cond_resched_lock(spinlock_t *lock) 4673 { 4674 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4675 int ret = 0; 4676 4677 lockdep_assert_held(lock); 4678 4679 if (spin_needbreak(lock) || resched) { 4680 spin_unlock(lock); 4681 if (resched) 4682 preempt_schedule_common(); 4683 else 4684 cpu_relax(); 4685 ret = 1; 4686 spin_lock(lock); 4687 } 4688 return ret; 4689 } 4690 EXPORT_SYMBOL(__cond_resched_lock); 4691 4692 int __sched __cond_resched_softirq(void) 4693 { 4694 BUG_ON(!in_softirq()); 4695 4696 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4697 local_bh_enable(); 4698 preempt_schedule_common(); 4699 local_bh_disable(); 4700 return 1; 4701 } 4702 return 0; 4703 } 4704 EXPORT_SYMBOL(__cond_resched_softirq); 4705 4706 /** 4707 * yield - yield the current processor to other threads. 4708 * 4709 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4710 * 4711 * The scheduler is at all times free to pick the calling task as the most 4712 * eligible task to run, if removing the yield() call from your code breaks 4713 * it, its already broken. 4714 * 4715 * Typical broken usage is: 4716 * 4717 * while (!event) 4718 * yield(); 4719 * 4720 * where one assumes that yield() will let 'the other' process run that will 4721 * make event true. If the current task is a SCHED_FIFO task that will never 4722 * happen. Never use yield() as a progress guarantee!! 4723 * 4724 * If you want to use yield() to wait for something, use wait_event(). 4725 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4726 * If you still want to use yield(), do not! 4727 */ 4728 void __sched yield(void) 4729 { 4730 set_current_state(TASK_RUNNING); 4731 sys_sched_yield(); 4732 } 4733 EXPORT_SYMBOL(yield); 4734 4735 /** 4736 * yield_to - yield the current processor to another thread in 4737 * your thread group, or accelerate that thread toward the 4738 * processor it's on. 4739 * @p: target task 4740 * @preempt: whether task preemption is allowed or not 4741 * 4742 * It's the caller's job to ensure that the target task struct 4743 * can't go away on us before we can do any checks. 4744 * 4745 * Return: 4746 * true (>0) if we indeed boosted the target task. 4747 * false (0) if we failed to boost the target. 4748 * -ESRCH if there's no task to yield to. 4749 */ 4750 int __sched yield_to(struct task_struct *p, bool preempt) 4751 { 4752 struct task_struct *curr = current; 4753 struct rq *rq, *p_rq; 4754 unsigned long flags; 4755 int yielded = 0; 4756 4757 local_irq_save(flags); 4758 rq = this_rq(); 4759 4760 again: 4761 p_rq = task_rq(p); 4762 /* 4763 * If we're the only runnable task on the rq and target rq also 4764 * has only one task, there's absolutely no point in yielding. 4765 */ 4766 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4767 yielded = -ESRCH; 4768 goto out_irq; 4769 } 4770 4771 double_rq_lock(rq, p_rq); 4772 if (task_rq(p) != p_rq) { 4773 double_rq_unlock(rq, p_rq); 4774 goto again; 4775 } 4776 4777 if (!curr->sched_class->yield_to_task) 4778 goto out_unlock; 4779 4780 if (curr->sched_class != p->sched_class) 4781 goto out_unlock; 4782 4783 if (task_running(p_rq, p) || p->state) 4784 goto out_unlock; 4785 4786 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4787 if (yielded) { 4788 schedstat_inc(rq, yld_count); 4789 /* 4790 * Make p's CPU reschedule; pick_next_entity takes care of 4791 * fairness. 4792 */ 4793 if (preempt && rq != p_rq) 4794 resched_curr(p_rq); 4795 } 4796 4797 out_unlock: 4798 double_rq_unlock(rq, p_rq); 4799 out_irq: 4800 local_irq_restore(flags); 4801 4802 if (yielded > 0) 4803 schedule(); 4804 4805 return yielded; 4806 } 4807 EXPORT_SYMBOL_GPL(yield_to); 4808 4809 /* 4810 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4811 * that process accounting knows that this is a task in IO wait state. 4812 */ 4813 long __sched io_schedule_timeout(long timeout) 4814 { 4815 int old_iowait = current->in_iowait; 4816 struct rq *rq; 4817 long ret; 4818 4819 current->in_iowait = 1; 4820 blk_schedule_flush_plug(current); 4821 4822 delayacct_blkio_start(); 4823 rq = raw_rq(); 4824 atomic_inc(&rq->nr_iowait); 4825 ret = schedule_timeout(timeout); 4826 current->in_iowait = old_iowait; 4827 atomic_dec(&rq->nr_iowait); 4828 delayacct_blkio_end(); 4829 4830 return ret; 4831 } 4832 EXPORT_SYMBOL(io_schedule_timeout); 4833 4834 /** 4835 * sys_sched_get_priority_max - return maximum RT priority. 4836 * @policy: scheduling class. 4837 * 4838 * Return: On success, this syscall returns the maximum 4839 * rt_priority that can be used by a given scheduling class. 4840 * On failure, a negative error code is returned. 4841 */ 4842 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4843 { 4844 int ret = -EINVAL; 4845 4846 switch (policy) { 4847 case SCHED_FIFO: 4848 case SCHED_RR: 4849 ret = MAX_USER_RT_PRIO-1; 4850 break; 4851 case SCHED_DEADLINE: 4852 case SCHED_NORMAL: 4853 case SCHED_BATCH: 4854 case SCHED_IDLE: 4855 ret = 0; 4856 break; 4857 } 4858 return ret; 4859 } 4860 4861 /** 4862 * sys_sched_get_priority_min - return minimum RT priority. 4863 * @policy: scheduling class. 4864 * 4865 * Return: On success, this syscall returns the minimum 4866 * rt_priority that can be used by a given scheduling class. 4867 * On failure, a negative error code is returned. 4868 */ 4869 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4870 { 4871 int ret = -EINVAL; 4872 4873 switch (policy) { 4874 case SCHED_FIFO: 4875 case SCHED_RR: 4876 ret = 1; 4877 break; 4878 case SCHED_DEADLINE: 4879 case SCHED_NORMAL: 4880 case SCHED_BATCH: 4881 case SCHED_IDLE: 4882 ret = 0; 4883 } 4884 return ret; 4885 } 4886 4887 /** 4888 * sys_sched_rr_get_interval - return the default timeslice of a process. 4889 * @pid: pid of the process. 4890 * @interval: userspace pointer to the timeslice value. 4891 * 4892 * this syscall writes the default timeslice value of a given process 4893 * into the user-space timespec buffer. A value of '0' means infinity. 4894 * 4895 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4896 * an error code. 4897 */ 4898 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4899 struct timespec __user *, interval) 4900 { 4901 struct task_struct *p; 4902 unsigned int time_slice; 4903 unsigned long flags; 4904 struct rq *rq; 4905 int retval; 4906 struct timespec t; 4907 4908 if (pid < 0) 4909 return -EINVAL; 4910 4911 retval = -ESRCH; 4912 rcu_read_lock(); 4913 p = find_process_by_pid(pid); 4914 if (!p) 4915 goto out_unlock; 4916 4917 retval = security_task_getscheduler(p); 4918 if (retval) 4919 goto out_unlock; 4920 4921 rq = task_rq_lock(p, &flags); 4922 time_slice = 0; 4923 if (p->sched_class->get_rr_interval) 4924 time_slice = p->sched_class->get_rr_interval(rq, p); 4925 task_rq_unlock(rq, p, &flags); 4926 4927 rcu_read_unlock(); 4928 jiffies_to_timespec(time_slice, &t); 4929 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4930 return retval; 4931 4932 out_unlock: 4933 rcu_read_unlock(); 4934 return retval; 4935 } 4936 4937 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4938 4939 void sched_show_task(struct task_struct *p) 4940 { 4941 unsigned long free = 0; 4942 int ppid; 4943 unsigned long state = p->state; 4944 4945 if (state) 4946 state = __ffs(state) + 1; 4947 printk(KERN_INFO "%-15.15s %c", p->comm, 4948 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4949 #if BITS_PER_LONG == 32 4950 if (state == TASK_RUNNING) 4951 printk(KERN_CONT " running "); 4952 else 4953 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4954 #else 4955 if (state == TASK_RUNNING) 4956 printk(KERN_CONT " running task "); 4957 else 4958 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4959 #endif 4960 #ifdef CONFIG_DEBUG_STACK_USAGE 4961 free = stack_not_used(p); 4962 #endif 4963 ppid = 0; 4964 rcu_read_lock(); 4965 if (pid_alive(p)) 4966 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4967 rcu_read_unlock(); 4968 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4969 task_pid_nr(p), ppid, 4970 (unsigned long)task_thread_info(p)->flags); 4971 4972 print_worker_info(KERN_INFO, p); 4973 show_stack(p, NULL); 4974 } 4975 4976 void show_state_filter(unsigned long state_filter) 4977 { 4978 struct task_struct *g, *p; 4979 4980 #if BITS_PER_LONG == 32 4981 printk(KERN_INFO 4982 " task PC stack pid father\n"); 4983 #else 4984 printk(KERN_INFO 4985 " task PC stack pid father\n"); 4986 #endif 4987 rcu_read_lock(); 4988 for_each_process_thread(g, p) { 4989 /* 4990 * reset the NMI-timeout, listing all files on a slow 4991 * console might take a lot of time: 4992 */ 4993 touch_nmi_watchdog(); 4994 if (!state_filter || (p->state & state_filter)) 4995 sched_show_task(p); 4996 } 4997 4998 touch_all_softlockup_watchdogs(); 4999 5000 #ifdef CONFIG_SCHED_DEBUG 5001 sysrq_sched_debug_show(); 5002 #endif 5003 rcu_read_unlock(); 5004 /* 5005 * Only show locks if all tasks are dumped: 5006 */ 5007 if (!state_filter) 5008 debug_show_all_locks(); 5009 } 5010 5011 void init_idle_bootup_task(struct task_struct *idle) 5012 { 5013 idle->sched_class = &idle_sched_class; 5014 } 5015 5016 /** 5017 * init_idle - set up an idle thread for a given CPU 5018 * @idle: task in question 5019 * @cpu: cpu the idle task belongs to 5020 * 5021 * NOTE: this function does not set the idle thread's NEED_RESCHED 5022 * flag, to make booting more robust. 5023 */ 5024 void init_idle(struct task_struct *idle, int cpu) 5025 { 5026 struct rq *rq = cpu_rq(cpu); 5027 unsigned long flags; 5028 5029 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5030 raw_spin_lock(&rq->lock); 5031 5032 __sched_fork(0, idle); 5033 idle->state = TASK_RUNNING; 5034 idle->se.exec_start = sched_clock(); 5035 5036 kasan_unpoison_task_stack(idle); 5037 5038 #ifdef CONFIG_SMP 5039 /* 5040 * Its possible that init_idle() gets called multiple times on a task, 5041 * in that case do_set_cpus_allowed() will not do the right thing. 5042 * 5043 * And since this is boot we can forgo the serialization. 5044 */ 5045 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5046 #endif 5047 /* 5048 * We're having a chicken and egg problem, even though we are 5049 * holding rq->lock, the cpu isn't yet set to this cpu so the 5050 * lockdep check in task_group() will fail. 5051 * 5052 * Similar case to sched_fork(). / Alternatively we could 5053 * use task_rq_lock() here and obtain the other rq->lock. 5054 * 5055 * Silence PROVE_RCU 5056 */ 5057 rcu_read_lock(); 5058 __set_task_cpu(idle, cpu); 5059 rcu_read_unlock(); 5060 5061 rq->curr = rq->idle = idle; 5062 idle->on_rq = TASK_ON_RQ_QUEUED; 5063 #ifdef CONFIG_SMP 5064 idle->on_cpu = 1; 5065 #endif 5066 raw_spin_unlock(&rq->lock); 5067 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5068 5069 /* Set the preempt count _outside_ the spinlocks! */ 5070 init_idle_preempt_count(idle, cpu); 5071 5072 /* 5073 * The idle tasks have their own, simple scheduling class: 5074 */ 5075 idle->sched_class = &idle_sched_class; 5076 ftrace_graph_init_idle_task(idle, cpu); 5077 vtime_init_idle(idle, cpu); 5078 #ifdef CONFIG_SMP 5079 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5080 #endif 5081 } 5082 5083 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5084 const struct cpumask *trial) 5085 { 5086 int ret = 1, trial_cpus; 5087 struct dl_bw *cur_dl_b; 5088 unsigned long flags; 5089 5090 if (!cpumask_weight(cur)) 5091 return ret; 5092 5093 rcu_read_lock_sched(); 5094 cur_dl_b = dl_bw_of(cpumask_any(cur)); 5095 trial_cpus = cpumask_weight(trial); 5096 5097 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 5098 if (cur_dl_b->bw != -1 && 5099 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 5100 ret = 0; 5101 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 5102 rcu_read_unlock_sched(); 5103 5104 return ret; 5105 } 5106 5107 int task_can_attach(struct task_struct *p, 5108 const struct cpumask *cs_cpus_allowed) 5109 { 5110 int ret = 0; 5111 5112 /* 5113 * Kthreads which disallow setaffinity shouldn't be moved 5114 * to a new cpuset; we don't want to change their cpu 5115 * affinity and isolating such threads by their set of 5116 * allowed nodes is unnecessary. Thus, cpusets are not 5117 * applicable for such threads. This prevents checking for 5118 * success of set_cpus_allowed_ptr() on all attached tasks 5119 * before cpus_allowed may be changed. 5120 */ 5121 if (p->flags & PF_NO_SETAFFINITY) { 5122 ret = -EINVAL; 5123 goto out; 5124 } 5125 5126 #ifdef CONFIG_SMP 5127 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5128 cs_cpus_allowed)) { 5129 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5130 cs_cpus_allowed); 5131 struct dl_bw *dl_b; 5132 bool overflow; 5133 int cpus; 5134 unsigned long flags; 5135 5136 rcu_read_lock_sched(); 5137 dl_b = dl_bw_of(dest_cpu); 5138 raw_spin_lock_irqsave(&dl_b->lock, flags); 5139 cpus = dl_bw_cpus(dest_cpu); 5140 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5141 if (overflow) 5142 ret = -EBUSY; 5143 else { 5144 /* 5145 * We reserve space for this task in the destination 5146 * root_domain, as we can't fail after this point. 5147 * We will free resources in the source root_domain 5148 * later on (see set_cpus_allowed_dl()). 5149 */ 5150 __dl_add(dl_b, p->dl.dl_bw); 5151 } 5152 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5153 rcu_read_unlock_sched(); 5154 5155 } 5156 #endif 5157 out: 5158 return ret; 5159 } 5160 5161 #ifdef CONFIG_SMP 5162 5163 #ifdef CONFIG_NUMA_BALANCING 5164 /* Migrate current task p to target_cpu */ 5165 int migrate_task_to(struct task_struct *p, int target_cpu) 5166 { 5167 struct migration_arg arg = { p, target_cpu }; 5168 int curr_cpu = task_cpu(p); 5169 5170 if (curr_cpu == target_cpu) 5171 return 0; 5172 5173 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 5174 return -EINVAL; 5175 5176 /* TODO: This is not properly updating schedstats */ 5177 5178 trace_sched_move_numa(p, curr_cpu, target_cpu); 5179 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5180 } 5181 5182 /* 5183 * Requeue a task on a given node and accurately track the number of NUMA 5184 * tasks on the runqueues 5185 */ 5186 void sched_setnuma(struct task_struct *p, int nid) 5187 { 5188 struct rq *rq; 5189 unsigned long flags; 5190 bool queued, running; 5191 5192 rq = task_rq_lock(p, &flags); 5193 queued = task_on_rq_queued(p); 5194 running = task_current(rq, p); 5195 5196 if (queued) 5197 dequeue_task(rq, p, DEQUEUE_SAVE); 5198 if (running) 5199 put_prev_task(rq, p); 5200 5201 p->numa_preferred_nid = nid; 5202 5203 if (running) 5204 p->sched_class->set_curr_task(rq); 5205 if (queued) 5206 enqueue_task(rq, p, ENQUEUE_RESTORE); 5207 task_rq_unlock(rq, p, &flags); 5208 } 5209 #endif /* CONFIG_NUMA_BALANCING */ 5210 5211 #ifdef CONFIG_HOTPLUG_CPU 5212 /* 5213 * Ensures that the idle task is using init_mm right before its cpu goes 5214 * offline. 5215 */ 5216 void idle_task_exit(void) 5217 { 5218 struct mm_struct *mm = current->active_mm; 5219 5220 BUG_ON(cpu_online(smp_processor_id())); 5221 5222 if (mm != &init_mm) { 5223 switch_mm(mm, &init_mm, current); 5224 finish_arch_post_lock_switch(); 5225 } 5226 mmdrop(mm); 5227 } 5228 5229 /* 5230 * Since this CPU is going 'away' for a while, fold any nr_active delta 5231 * we might have. Assumes we're called after migrate_tasks() so that the 5232 * nr_active count is stable. 5233 * 5234 * Also see the comment "Global load-average calculations". 5235 */ 5236 static void calc_load_migrate(struct rq *rq) 5237 { 5238 long delta = calc_load_fold_active(rq); 5239 if (delta) 5240 atomic_long_add(delta, &calc_load_tasks); 5241 } 5242 5243 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5244 { 5245 } 5246 5247 static const struct sched_class fake_sched_class = { 5248 .put_prev_task = put_prev_task_fake, 5249 }; 5250 5251 static struct task_struct fake_task = { 5252 /* 5253 * Avoid pull_{rt,dl}_task() 5254 */ 5255 .prio = MAX_PRIO + 1, 5256 .sched_class = &fake_sched_class, 5257 }; 5258 5259 /* 5260 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5261 * try_to_wake_up()->select_task_rq(). 5262 * 5263 * Called with rq->lock held even though we'er in stop_machine() and 5264 * there's no concurrency possible, we hold the required locks anyway 5265 * because of lock validation efforts. 5266 */ 5267 static void migrate_tasks(struct rq *dead_rq) 5268 { 5269 struct rq *rq = dead_rq; 5270 struct task_struct *next, *stop = rq->stop; 5271 int dest_cpu; 5272 5273 /* 5274 * Fudge the rq selection such that the below task selection loop 5275 * doesn't get stuck on the currently eligible stop task. 5276 * 5277 * We're currently inside stop_machine() and the rq is either stuck 5278 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5279 * either way we should never end up calling schedule() until we're 5280 * done here. 5281 */ 5282 rq->stop = NULL; 5283 5284 /* 5285 * put_prev_task() and pick_next_task() sched 5286 * class method both need to have an up-to-date 5287 * value of rq->clock[_task] 5288 */ 5289 update_rq_clock(rq); 5290 5291 for (;;) { 5292 /* 5293 * There's this thread running, bail when that's the only 5294 * remaining thread. 5295 */ 5296 if (rq->nr_running == 1) 5297 break; 5298 5299 /* 5300 * pick_next_task assumes pinned rq->lock. 5301 */ 5302 lockdep_pin_lock(&rq->lock); 5303 next = pick_next_task(rq, &fake_task); 5304 BUG_ON(!next); 5305 next->sched_class->put_prev_task(rq, next); 5306 5307 /* 5308 * Rules for changing task_struct::cpus_allowed are holding 5309 * both pi_lock and rq->lock, such that holding either 5310 * stabilizes the mask. 5311 * 5312 * Drop rq->lock is not quite as disastrous as it usually is 5313 * because !cpu_active at this point, which means load-balance 5314 * will not interfere. Also, stop-machine. 5315 */ 5316 lockdep_unpin_lock(&rq->lock); 5317 raw_spin_unlock(&rq->lock); 5318 raw_spin_lock(&next->pi_lock); 5319 raw_spin_lock(&rq->lock); 5320 5321 /* 5322 * Since we're inside stop-machine, _nothing_ should have 5323 * changed the task, WARN if weird stuff happened, because in 5324 * that case the above rq->lock drop is a fail too. 5325 */ 5326 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5327 raw_spin_unlock(&next->pi_lock); 5328 continue; 5329 } 5330 5331 /* Find suitable destination for @next, with force if needed. */ 5332 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5333 5334 rq = __migrate_task(rq, next, dest_cpu); 5335 if (rq != dead_rq) { 5336 raw_spin_unlock(&rq->lock); 5337 rq = dead_rq; 5338 raw_spin_lock(&rq->lock); 5339 } 5340 raw_spin_unlock(&next->pi_lock); 5341 } 5342 5343 rq->stop = stop; 5344 } 5345 #endif /* CONFIG_HOTPLUG_CPU */ 5346 5347 static void set_rq_online(struct rq *rq) 5348 { 5349 if (!rq->online) { 5350 const struct sched_class *class; 5351 5352 cpumask_set_cpu(rq->cpu, rq->rd->online); 5353 rq->online = 1; 5354 5355 for_each_class(class) { 5356 if (class->rq_online) 5357 class->rq_online(rq); 5358 } 5359 } 5360 } 5361 5362 static void set_rq_offline(struct rq *rq) 5363 { 5364 if (rq->online) { 5365 const struct sched_class *class; 5366 5367 for_each_class(class) { 5368 if (class->rq_offline) 5369 class->rq_offline(rq); 5370 } 5371 5372 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5373 rq->online = 0; 5374 } 5375 } 5376 5377 /* 5378 * migration_call - callback that gets triggered when a CPU is added. 5379 * Here we can start up the necessary migration thread for the new CPU. 5380 */ 5381 static int 5382 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5383 { 5384 int cpu = (long)hcpu; 5385 unsigned long flags; 5386 struct rq *rq = cpu_rq(cpu); 5387 5388 switch (action & ~CPU_TASKS_FROZEN) { 5389 5390 case CPU_UP_PREPARE: 5391 rq->calc_load_update = calc_load_update; 5392 account_reset_rq(rq); 5393 break; 5394 5395 case CPU_ONLINE: 5396 /* Update our root-domain */ 5397 raw_spin_lock_irqsave(&rq->lock, flags); 5398 if (rq->rd) { 5399 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5400 5401 set_rq_online(rq); 5402 } 5403 raw_spin_unlock_irqrestore(&rq->lock, flags); 5404 break; 5405 5406 #ifdef CONFIG_HOTPLUG_CPU 5407 case CPU_DYING: 5408 sched_ttwu_pending(); 5409 /* Update our root-domain */ 5410 raw_spin_lock_irqsave(&rq->lock, flags); 5411 if (rq->rd) { 5412 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5413 set_rq_offline(rq); 5414 } 5415 migrate_tasks(rq); 5416 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5417 raw_spin_unlock_irqrestore(&rq->lock, flags); 5418 break; 5419 5420 case CPU_DEAD: 5421 calc_load_migrate(rq); 5422 break; 5423 #endif 5424 } 5425 5426 update_max_interval(); 5427 5428 return NOTIFY_OK; 5429 } 5430 5431 /* 5432 * Register at high priority so that task migration (migrate_all_tasks) 5433 * happens before everything else. This has to be lower priority than 5434 * the notifier in the perf_event subsystem, though. 5435 */ 5436 static struct notifier_block migration_notifier = { 5437 .notifier_call = migration_call, 5438 .priority = CPU_PRI_MIGRATION, 5439 }; 5440 5441 static void set_cpu_rq_start_time(void) 5442 { 5443 int cpu = smp_processor_id(); 5444 struct rq *rq = cpu_rq(cpu); 5445 rq->age_stamp = sched_clock_cpu(cpu); 5446 } 5447 5448 static int sched_cpu_active(struct notifier_block *nfb, 5449 unsigned long action, void *hcpu) 5450 { 5451 int cpu = (long)hcpu; 5452 5453 switch (action & ~CPU_TASKS_FROZEN) { 5454 case CPU_STARTING: 5455 set_cpu_rq_start_time(); 5456 return NOTIFY_OK; 5457 5458 case CPU_DOWN_FAILED: 5459 set_cpu_active(cpu, true); 5460 return NOTIFY_OK; 5461 5462 default: 5463 return NOTIFY_DONE; 5464 } 5465 } 5466 5467 static int sched_cpu_inactive(struct notifier_block *nfb, 5468 unsigned long action, void *hcpu) 5469 { 5470 switch (action & ~CPU_TASKS_FROZEN) { 5471 case CPU_DOWN_PREPARE: 5472 set_cpu_active((long)hcpu, false); 5473 return NOTIFY_OK; 5474 default: 5475 return NOTIFY_DONE; 5476 } 5477 } 5478 5479 static int __init migration_init(void) 5480 { 5481 void *cpu = (void *)(long)smp_processor_id(); 5482 int err; 5483 5484 /* Initialize migration for the boot CPU */ 5485 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5486 BUG_ON(err == NOTIFY_BAD); 5487 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5488 register_cpu_notifier(&migration_notifier); 5489 5490 /* Register cpu active notifiers */ 5491 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5492 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5493 5494 return 0; 5495 } 5496 early_initcall(migration_init); 5497 5498 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5499 5500 #ifdef CONFIG_SCHED_DEBUG 5501 5502 static __read_mostly int sched_debug_enabled; 5503 5504 static int __init sched_debug_setup(char *str) 5505 { 5506 sched_debug_enabled = 1; 5507 5508 return 0; 5509 } 5510 early_param("sched_debug", sched_debug_setup); 5511 5512 static inline bool sched_debug(void) 5513 { 5514 return sched_debug_enabled; 5515 } 5516 5517 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5518 struct cpumask *groupmask) 5519 { 5520 struct sched_group *group = sd->groups; 5521 5522 cpumask_clear(groupmask); 5523 5524 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5525 5526 if (!(sd->flags & SD_LOAD_BALANCE)) { 5527 printk("does not load-balance\n"); 5528 if (sd->parent) 5529 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5530 " has parent"); 5531 return -1; 5532 } 5533 5534 printk(KERN_CONT "span %*pbl level %s\n", 5535 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5536 5537 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5538 printk(KERN_ERR "ERROR: domain->span does not contain " 5539 "CPU%d\n", cpu); 5540 } 5541 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5542 printk(KERN_ERR "ERROR: domain->groups does not contain" 5543 " CPU%d\n", cpu); 5544 } 5545 5546 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5547 do { 5548 if (!group) { 5549 printk("\n"); 5550 printk(KERN_ERR "ERROR: group is NULL\n"); 5551 break; 5552 } 5553 5554 if (!cpumask_weight(sched_group_cpus(group))) { 5555 printk(KERN_CONT "\n"); 5556 printk(KERN_ERR "ERROR: empty group\n"); 5557 break; 5558 } 5559 5560 if (!(sd->flags & SD_OVERLAP) && 5561 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5562 printk(KERN_CONT "\n"); 5563 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5564 break; 5565 } 5566 5567 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5568 5569 printk(KERN_CONT " %*pbl", 5570 cpumask_pr_args(sched_group_cpus(group))); 5571 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5572 printk(KERN_CONT " (cpu_capacity = %d)", 5573 group->sgc->capacity); 5574 } 5575 5576 group = group->next; 5577 } while (group != sd->groups); 5578 printk(KERN_CONT "\n"); 5579 5580 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5581 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5582 5583 if (sd->parent && 5584 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5585 printk(KERN_ERR "ERROR: parent span is not a superset " 5586 "of domain->span\n"); 5587 return 0; 5588 } 5589 5590 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5591 { 5592 int level = 0; 5593 5594 if (!sched_debug_enabled) 5595 return; 5596 5597 if (!sd) { 5598 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5599 return; 5600 } 5601 5602 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5603 5604 for (;;) { 5605 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5606 break; 5607 level++; 5608 sd = sd->parent; 5609 if (!sd) 5610 break; 5611 } 5612 } 5613 #else /* !CONFIG_SCHED_DEBUG */ 5614 # define sched_domain_debug(sd, cpu) do { } while (0) 5615 static inline bool sched_debug(void) 5616 { 5617 return false; 5618 } 5619 #endif /* CONFIG_SCHED_DEBUG */ 5620 5621 static int sd_degenerate(struct sched_domain *sd) 5622 { 5623 if (cpumask_weight(sched_domain_span(sd)) == 1) 5624 return 1; 5625 5626 /* Following flags need at least 2 groups */ 5627 if (sd->flags & (SD_LOAD_BALANCE | 5628 SD_BALANCE_NEWIDLE | 5629 SD_BALANCE_FORK | 5630 SD_BALANCE_EXEC | 5631 SD_SHARE_CPUCAPACITY | 5632 SD_SHARE_PKG_RESOURCES | 5633 SD_SHARE_POWERDOMAIN)) { 5634 if (sd->groups != sd->groups->next) 5635 return 0; 5636 } 5637 5638 /* Following flags don't use groups */ 5639 if (sd->flags & (SD_WAKE_AFFINE)) 5640 return 0; 5641 5642 return 1; 5643 } 5644 5645 static int 5646 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5647 { 5648 unsigned long cflags = sd->flags, pflags = parent->flags; 5649 5650 if (sd_degenerate(parent)) 5651 return 1; 5652 5653 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5654 return 0; 5655 5656 /* Flags needing groups don't count if only 1 group in parent */ 5657 if (parent->groups == parent->groups->next) { 5658 pflags &= ~(SD_LOAD_BALANCE | 5659 SD_BALANCE_NEWIDLE | 5660 SD_BALANCE_FORK | 5661 SD_BALANCE_EXEC | 5662 SD_SHARE_CPUCAPACITY | 5663 SD_SHARE_PKG_RESOURCES | 5664 SD_PREFER_SIBLING | 5665 SD_SHARE_POWERDOMAIN); 5666 if (nr_node_ids == 1) 5667 pflags &= ~SD_SERIALIZE; 5668 } 5669 if (~cflags & pflags) 5670 return 0; 5671 5672 return 1; 5673 } 5674 5675 static void free_rootdomain(struct rcu_head *rcu) 5676 { 5677 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5678 5679 cpupri_cleanup(&rd->cpupri); 5680 cpudl_cleanup(&rd->cpudl); 5681 free_cpumask_var(rd->dlo_mask); 5682 free_cpumask_var(rd->rto_mask); 5683 free_cpumask_var(rd->online); 5684 free_cpumask_var(rd->span); 5685 kfree(rd); 5686 } 5687 5688 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5689 { 5690 struct root_domain *old_rd = NULL; 5691 unsigned long flags; 5692 5693 raw_spin_lock_irqsave(&rq->lock, flags); 5694 5695 if (rq->rd) { 5696 old_rd = rq->rd; 5697 5698 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5699 set_rq_offline(rq); 5700 5701 cpumask_clear_cpu(rq->cpu, old_rd->span); 5702 5703 /* 5704 * If we dont want to free the old_rd yet then 5705 * set old_rd to NULL to skip the freeing later 5706 * in this function: 5707 */ 5708 if (!atomic_dec_and_test(&old_rd->refcount)) 5709 old_rd = NULL; 5710 } 5711 5712 atomic_inc(&rd->refcount); 5713 rq->rd = rd; 5714 5715 cpumask_set_cpu(rq->cpu, rd->span); 5716 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5717 set_rq_online(rq); 5718 5719 raw_spin_unlock_irqrestore(&rq->lock, flags); 5720 5721 if (old_rd) 5722 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5723 } 5724 5725 static int init_rootdomain(struct root_domain *rd) 5726 { 5727 memset(rd, 0, sizeof(*rd)); 5728 5729 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 5730 goto out; 5731 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 5732 goto free_span; 5733 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5734 goto free_online; 5735 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5736 goto free_dlo_mask; 5737 5738 init_dl_bw(&rd->dl_bw); 5739 if (cpudl_init(&rd->cpudl) != 0) 5740 goto free_dlo_mask; 5741 5742 if (cpupri_init(&rd->cpupri) != 0) 5743 goto free_rto_mask; 5744 return 0; 5745 5746 free_rto_mask: 5747 free_cpumask_var(rd->rto_mask); 5748 free_dlo_mask: 5749 free_cpumask_var(rd->dlo_mask); 5750 free_online: 5751 free_cpumask_var(rd->online); 5752 free_span: 5753 free_cpumask_var(rd->span); 5754 out: 5755 return -ENOMEM; 5756 } 5757 5758 /* 5759 * By default the system creates a single root-domain with all cpus as 5760 * members (mimicking the global state we have today). 5761 */ 5762 struct root_domain def_root_domain; 5763 5764 static void init_defrootdomain(void) 5765 { 5766 init_rootdomain(&def_root_domain); 5767 5768 atomic_set(&def_root_domain.refcount, 1); 5769 } 5770 5771 static struct root_domain *alloc_rootdomain(void) 5772 { 5773 struct root_domain *rd; 5774 5775 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5776 if (!rd) 5777 return NULL; 5778 5779 if (init_rootdomain(rd) != 0) { 5780 kfree(rd); 5781 return NULL; 5782 } 5783 5784 return rd; 5785 } 5786 5787 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5788 { 5789 struct sched_group *tmp, *first; 5790 5791 if (!sg) 5792 return; 5793 5794 first = sg; 5795 do { 5796 tmp = sg->next; 5797 5798 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5799 kfree(sg->sgc); 5800 5801 kfree(sg); 5802 sg = tmp; 5803 } while (sg != first); 5804 } 5805 5806 static void free_sched_domain(struct rcu_head *rcu) 5807 { 5808 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5809 5810 /* 5811 * If its an overlapping domain it has private groups, iterate and 5812 * nuke them all. 5813 */ 5814 if (sd->flags & SD_OVERLAP) { 5815 free_sched_groups(sd->groups, 1); 5816 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5817 kfree(sd->groups->sgc); 5818 kfree(sd->groups); 5819 } 5820 kfree(sd); 5821 } 5822 5823 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5824 { 5825 call_rcu(&sd->rcu, free_sched_domain); 5826 } 5827 5828 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5829 { 5830 for (; sd; sd = sd->parent) 5831 destroy_sched_domain(sd, cpu); 5832 } 5833 5834 /* 5835 * Keep a special pointer to the highest sched_domain that has 5836 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5837 * allows us to avoid some pointer chasing select_idle_sibling(). 5838 * 5839 * Also keep a unique ID per domain (we use the first cpu number in 5840 * the cpumask of the domain), this allows us to quickly tell if 5841 * two cpus are in the same cache domain, see cpus_share_cache(). 5842 */ 5843 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5844 DEFINE_PER_CPU(int, sd_llc_size); 5845 DEFINE_PER_CPU(int, sd_llc_id); 5846 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5847 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5848 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5849 5850 static void update_top_cache_domain(int cpu) 5851 { 5852 struct sched_domain *sd; 5853 struct sched_domain *busy_sd = NULL; 5854 int id = cpu; 5855 int size = 1; 5856 5857 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5858 if (sd) { 5859 id = cpumask_first(sched_domain_span(sd)); 5860 size = cpumask_weight(sched_domain_span(sd)); 5861 busy_sd = sd->parent; /* sd_busy */ 5862 } 5863 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5864 5865 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5866 per_cpu(sd_llc_size, cpu) = size; 5867 per_cpu(sd_llc_id, cpu) = id; 5868 5869 sd = lowest_flag_domain(cpu, SD_NUMA); 5870 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5871 5872 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5873 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5874 } 5875 5876 /* 5877 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5878 * hold the hotplug lock. 5879 */ 5880 static void 5881 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5882 { 5883 struct rq *rq = cpu_rq(cpu); 5884 struct sched_domain *tmp; 5885 5886 /* Remove the sched domains which do not contribute to scheduling. */ 5887 for (tmp = sd; tmp; ) { 5888 struct sched_domain *parent = tmp->parent; 5889 if (!parent) 5890 break; 5891 5892 if (sd_parent_degenerate(tmp, parent)) { 5893 tmp->parent = parent->parent; 5894 if (parent->parent) 5895 parent->parent->child = tmp; 5896 /* 5897 * Transfer SD_PREFER_SIBLING down in case of a 5898 * degenerate parent; the spans match for this 5899 * so the property transfers. 5900 */ 5901 if (parent->flags & SD_PREFER_SIBLING) 5902 tmp->flags |= SD_PREFER_SIBLING; 5903 destroy_sched_domain(parent, cpu); 5904 } else 5905 tmp = tmp->parent; 5906 } 5907 5908 if (sd && sd_degenerate(sd)) { 5909 tmp = sd; 5910 sd = sd->parent; 5911 destroy_sched_domain(tmp, cpu); 5912 if (sd) 5913 sd->child = NULL; 5914 } 5915 5916 sched_domain_debug(sd, cpu); 5917 5918 rq_attach_root(rq, rd); 5919 tmp = rq->sd; 5920 rcu_assign_pointer(rq->sd, sd); 5921 destroy_sched_domains(tmp, cpu); 5922 5923 update_top_cache_domain(cpu); 5924 } 5925 5926 /* Setup the mask of cpus configured for isolated domains */ 5927 static int __init isolated_cpu_setup(char *str) 5928 { 5929 int ret; 5930 5931 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5932 ret = cpulist_parse(str, cpu_isolated_map); 5933 if (ret) { 5934 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); 5935 return 0; 5936 } 5937 return 1; 5938 } 5939 __setup("isolcpus=", isolated_cpu_setup); 5940 5941 struct s_data { 5942 struct sched_domain ** __percpu sd; 5943 struct root_domain *rd; 5944 }; 5945 5946 enum s_alloc { 5947 sa_rootdomain, 5948 sa_sd, 5949 sa_sd_storage, 5950 sa_none, 5951 }; 5952 5953 /* 5954 * Build an iteration mask that can exclude certain CPUs from the upwards 5955 * domain traversal. 5956 * 5957 * Asymmetric node setups can result in situations where the domain tree is of 5958 * unequal depth, make sure to skip domains that already cover the entire 5959 * range. 5960 * 5961 * In that case build_sched_domains() will have terminated the iteration early 5962 * and our sibling sd spans will be empty. Domains should always include the 5963 * cpu they're built on, so check that. 5964 * 5965 */ 5966 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5967 { 5968 const struct cpumask *span = sched_domain_span(sd); 5969 struct sd_data *sdd = sd->private; 5970 struct sched_domain *sibling; 5971 int i; 5972 5973 for_each_cpu(i, span) { 5974 sibling = *per_cpu_ptr(sdd->sd, i); 5975 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5976 continue; 5977 5978 cpumask_set_cpu(i, sched_group_mask(sg)); 5979 } 5980 } 5981 5982 /* 5983 * Return the canonical balance cpu for this group, this is the first cpu 5984 * of this group that's also in the iteration mask. 5985 */ 5986 int group_balance_cpu(struct sched_group *sg) 5987 { 5988 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5989 } 5990 5991 static int 5992 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5993 { 5994 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5995 const struct cpumask *span = sched_domain_span(sd); 5996 struct cpumask *covered = sched_domains_tmpmask; 5997 struct sd_data *sdd = sd->private; 5998 struct sched_domain *sibling; 5999 int i; 6000 6001 cpumask_clear(covered); 6002 6003 for_each_cpu(i, span) { 6004 struct cpumask *sg_span; 6005 6006 if (cpumask_test_cpu(i, covered)) 6007 continue; 6008 6009 sibling = *per_cpu_ptr(sdd->sd, i); 6010 6011 /* See the comment near build_group_mask(). */ 6012 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6013 continue; 6014 6015 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6016 GFP_KERNEL, cpu_to_node(cpu)); 6017 6018 if (!sg) 6019 goto fail; 6020 6021 sg_span = sched_group_cpus(sg); 6022 if (sibling->child) 6023 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 6024 else 6025 cpumask_set_cpu(i, sg_span); 6026 6027 cpumask_or(covered, covered, sg_span); 6028 6029 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 6030 if (atomic_inc_return(&sg->sgc->ref) == 1) 6031 build_group_mask(sd, sg); 6032 6033 /* 6034 * Initialize sgc->capacity such that even if we mess up the 6035 * domains and no possible iteration will get us here, we won't 6036 * die on a /0 trap. 6037 */ 6038 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 6039 6040 /* 6041 * Make sure the first group of this domain contains the 6042 * canonical balance cpu. Otherwise the sched_domain iteration 6043 * breaks. See update_sg_lb_stats(). 6044 */ 6045 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6046 group_balance_cpu(sg) == cpu) 6047 groups = sg; 6048 6049 if (!first) 6050 first = sg; 6051 if (last) 6052 last->next = sg; 6053 last = sg; 6054 last->next = first; 6055 } 6056 sd->groups = groups; 6057 6058 return 0; 6059 6060 fail: 6061 free_sched_groups(first, 0); 6062 6063 return -ENOMEM; 6064 } 6065 6066 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6067 { 6068 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6069 struct sched_domain *child = sd->child; 6070 6071 if (child) 6072 cpu = cpumask_first(sched_domain_span(child)); 6073 6074 if (sg) { 6075 *sg = *per_cpu_ptr(sdd->sg, cpu); 6076 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6077 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 6078 } 6079 6080 return cpu; 6081 } 6082 6083 /* 6084 * build_sched_groups will build a circular linked list of the groups 6085 * covered by the given span, and will set each group's ->cpumask correctly, 6086 * and ->cpu_capacity to 0. 6087 * 6088 * Assumes the sched_domain tree is fully constructed 6089 */ 6090 static int 6091 build_sched_groups(struct sched_domain *sd, int cpu) 6092 { 6093 struct sched_group *first = NULL, *last = NULL; 6094 struct sd_data *sdd = sd->private; 6095 const struct cpumask *span = sched_domain_span(sd); 6096 struct cpumask *covered; 6097 int i; 6098 6099 get_group(cpu, sdd, &sd->groups); 6100 atomic_inc(&sd->groups->ref); 6101 6102 if (cpu != cpumask_first(span)) 6103 return 0; 6104 6105 lockdep_assert_held(&sched_domains_mutex); 6106 covered = sched_domains_tmpmask; 6107 6108 cpumask_clear(covered); 6109 6110 for_each_cpu(i, span) { 6111 struct sched_group *sg; 6112 int group, j; 6113 6114 if (cpumask_test_cpu(i, covered)) 6115 continue; 6116 6117 group = get_group(i, sdd, &sg); 6118 cpumask_setall(sched_group_mask(sg)); 6119 6120 for_each_cpu(j, span) { 6121 if (get_group(j, sdd, NULL) != group) 6122 continue; 6123 6124 cpumask_set_cpu(j, covered); 6125 cpumask_set_cpu(j, sched_group_cpus(sg)); 6126 } 6127 6128 if (!first) 6129 first = sg; 6130 if (last) 6131 last->next = sg; 6132 last = sg; 6133 } 6134 last->next = first; 6135 6136 return 0; 6137 } 6138 6139 /* 6140 * Initialize sched groups cpu_capacity. 6141 * 6142 * cpu_capacity indicates the capacity of sched group, which is used while 6143 * distributing the load between different sched groups in a sched domain. 6144 * Typically cpu_capacity for all the groups in a sched domain will be same 6145 * unless there are asymmetries in the topology. If there are asymmetries, 6146 * group having more cpu_capacity will pickup more load compared to the 6147 * group having less cpu_capacity. 6148 */ 6149 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6150 { 6151 struct sched_group *sg = sd->groups; 6152 6153 WARN_ON(!sg); 6154 6155 do { 6156 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6157 sg = sg->next; 6158 } while (sg != sd->groups); 6159 6160 if (cpu != group_balance_cpu(sg)) 6161 return; 6162 6163 update_group_capacity(sd, cpu); 6164 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6165 } 6166 6167 /* 6168 * Initializers for schedule domains 6169 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6170 */ 6171 6172 static int default_relax_domain_level = -1; 6173 int sched_domain_level_max; 6174 6175 static int __init setup_relax_domain_level(char *str) 6176 { 6177 if (kstrtoint(str, 0, &default_relax_domain_level)) 6178 pr_warn("Unable to set relax_domain_level\n"); 6179 6180 return 1; 6181 } 6182 __setup("relax_domain_level=", setup_relax_domain_level); 6183 6184 static void set_domain_attribute(struct sched_domain *sd, 6185 struct sched_domain_attr *attr) 6186 { 6187 int request; 6188 6189 if (!attr || attr->relax_domain_level < 0) { 6190 if (default_relax_domain_level < 0) 6191 return; 6192 else 6193 request = default_relax_domain_level; 6194 } else 6195 request = attr->relax_domain_level; 6196 if (request < sd->level) { 6197 /* turn off idle balance on this domain */ 6198 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6199 } else { 6200 /* turn on idle balance on this domain */ 6201 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6202 } 6203 } 6204 6205 static void __sdt_free(const struct cpumask *cpu_map); 6206 static int __sdt_alloc(const struct cpumask *cpu_map); 6207 6208 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6209 const struct cpumask *cpu_map) 6210 { 6211 switch (what) { 6212 case sa_rootdomain: 6213 if (!atomic_read(&d->rd->refcount)) 6214 free_rootdomain(&d->rd->rcu); /* fall through */ 6215 case sa_sd: 6216 free_percpu(d->sd); /* fall through */ 6217 case sa_sd_storage: 6218 __sdt_free(cpu_map); /* fall through */ 6219 case sa_none: 6220 break; 6221 } 6222 } 6223 6224 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6225 const struct cpumask *cpu_map) 6226 { 6227 memset(d, 0, sizeof(*d)); 6228 6229 if (__sdt_alloc(cpu_map)) 6230 return sa_sd_storage; 6231 d->sd = alloc_percpu(struct sched_domain *); 6232 if (!d->sd) 6233 return sa_sd_storage; 6234 d->rd = alloc_rootdomain(); 6235 if (!d->rd) 6236 return sa_sd; 6237 return sa_rootdomain; 6238 } 6239 6240 /* 6241 * NULL the sd_data elements we've used to build the sched_domain and 6242 * sched_group structure so that the subsequent __free_domain_allocs() 6243 * will not free the data we're using. 6244 */ 6245 static void claim_allocations(int cpu, struct sched_domain *sd) 6246 { 6247 struct sd_data *sdd = sd->private; 6248 6249 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6250 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6251 6252 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6253 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6254 6255 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6256 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6257 } 6258 6259 #ifdef CONFIG_NUMA 6260 static int sched_domains_numa_levels; 6261 enum numa_topology_type sched_numa_topology_type; 6262 static int *sched_domains_numa_distance; 6263 int sched_max_numa_distance; 6264 static struct cpumask ***sched_domains_numa_masks; 6265 static int sched_domains_curr_level; 6266 #endif 6267 6268 /* 6269 * SD_flags allowed in topology descriptions. 6270 * 6271 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6272 * SD_SHARE_PKG_RESOURCES - describes shared caches 6273 * SD_NUMA - describes NUMA topologies 6274 * SD_SHARE_POWERDOMAIN - describes shared power domain 6275 * 6276 * Odd one out: 6277 * SD_ASYM_PACKING - describes SMT quirks 6278 */ 6279 #define TOPOLOGY_SD_FLAGS \ 6280 (SD_SHARE_CPUCAPACITY | \ 6281 SD_SHARE_PKG_RESOURCES | \ 6282 SD_NUMA | \ 6283 SD_ASYM_PACKING | \ 6284 SD_SHARE_POWERDOMAIN) 6285 6286 static struct sched_domain * 6287 sd_init(struct sched_domain_topology_level *tl, int cpu) 6288 { 6289 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6290 int sd_weight, sd_flags = 0; 6291 6292 #ifdef CONFIG_NUMA 6293 /* 6294 * Ugly hack to pass state to sd_numa_mask()... 6295 */ 6296 sched_domains_curr_level = tl->numa_level; 6297 #endif 6298 6299 sd_weight = cpumask_weight(tl->mask(cpu)); 6300 6301 if (tl->sd_flags) 6302 sd_flags = (*tl->sd_flags)(); 6303 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6304 "wrong sd_flags in topology description\n")) 6305 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6306 6307 *sd = (struct sched_domain){ 6308 .min_interval = sd_weight, 6309 .max_interval = 2*sd_weight, 6310 .busy_factor = 32, 6311 .imbalance_pct = 125, 6312 6313 .cache_nice_tries = 0, 6314 .busy_idx = 0, 6315 .idle_idx = 0, 6316 .newidle_idx = 0, 6317 .wake_idx = 0, 6318 .forkexec_idx = 0, 6319 6320 .flags = 1*SD_LOAD_BALANCE 6321 | 1*SD_BALANCE_NEWIDLE 6322 | 1*SD_BALANCE_EXEC 6323 | 1*SD_BALANCE_FORK 6324 | 0*SD_BALANCE_WAKE 6325 | 1*SD_WAKE_AFFINE 6326 | 0*SD_SHARE_CPUCAPACITY 6327 | 0*SD_SHARE_PKG_RESOURCES 6328 | 0*SD_SERIALIZE 6329 | 0*SD_PREFER_SIBLING 6330 | 0*SD_NUMA 6331 | sd_flags 6332 , 6333 6334 .last_balance = jiffies, 6335 .balance_interval = sd_weight, 6336 .smt_gain = 0, 6337 .max_newidle_lb_cost = 0, 6338 .next_decay_max_lb_cost = jiffies, 6339 #ifdef CONFIG_SCHED_DEBUG 6340 .name = tl->name, 6341 #endif 6342 }; 6343 6344 /* 6345 * Convert topological properties into behaviour. 6346 */ 6347 6348 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6349 sd->flags |= SD_PREFER_SIBLING; 6350 sd->imbalance_pct = 110; 6351 sd->smt_gain = 1178; /* ~15% */ 6352 6353 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6354 sd->imbalance_pct = 117; 6355 sd->cache_nice_tries = 1; 6356 sd->busy_idx = 2; 6357 6358 #ifdef CONFIG_NUMA 6359 } else if (sd->flags & SD_NUMA) { 6360 sd->cache_nice_tries = 2; 6361 sd->busy_idx = 3; 6362 sd->idle_idx = 2; 6363 6364 sd->flags |= SD_SERIALIZE; 6365 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6366 sd->flags &= ~(SD_BALANCE_EXEC | 6367 SD_BALANCE_FORK | 6368 SD_WAKE_AFFINE); 6369 } 6370 6371 #endif 6372 } else { 6373 sd->flags |= SD_PREFER_SIBLING; 6374 sd->cache_nice_tries = 1; 6375 sd->busy_idx = 2; 6376 sd->idle_idx = 1; 6377 } 6378 6379 sd->private = &tl->data; 6380 6381 return sd; 6382 } 6383 6384 /* 6385 * Topology list, bottom-up. 6386 */ 6387 static struct sched_domain_topology_level default_topology[] = { 6388 #ifdef CONFIG_SCHED_SMT 6389 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6390 #endif 6391 #ifdef CONFIG_SCHED_MC 6392 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6393 #endif 6394 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6395 { NULL, }, 6396 }; 6397 6398 static struct sched_domain_topology_level *sched_domain_topology = 6399 default_topology; 6400 6401 #define for_each_sd_topology(tl) \ 6402 for (tl = sched_domain_topology; tl->mask; tl++) 6403 6404 void set_sched_topology(struct sched_domain_topology_level *tl) 6405 { 6406 sched_domain_topology = tl; 6407 } 6408 6409 #ifdef CONFIG_NUMA 6410 6411 static const struct cpumask *sd_numa_mask(int cpu) 6412 { 6413 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6414 } 6415 6416 static void sched_numa_warn(const char *str) 6417 { 6418 static int done = false; 6419 int i,j; 6420 6421 if (done) 6422 return; 6423 6424 done = true; 6425 6426 printk(KERN_WARNING "ERROR: %s\n\n", str); 6427 6428 for (i = 0; i < nr_node_ids; i++) { 6429 printk(KERN_WARNING " "); 6430 for (j = 0; j < nr_node_ids; j++) 6431 printk(KERN_CONT "%02d ", node_distance(i,j)); 6432 printk(KERN_CONT "\n"); 6433 } 6434 printk(KERN_WARNING "\n"); 6435 } 6436 6437 bool find_numa_distance(int distance) 6438 { 6439 int i; 6440 6441 if (distance == node_distance(0, 0)) 6442 return true; 6443 6444 for (i = 0; i < sched_domains_numa_levels; i++) { 6445 if (sched_domains_numa_distance[i] == distance) 6446 return true; 6447 } 6448 6449 return false; 6450 } 6451 6452 /* 6453 * A system can have three types of NUMA topology: 6454 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6455 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6456 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6457 * 6458 * The difference between a glueless mesh topology and a backplane 6459 * topology lies in whether communication between not directly 6460 * connected nodes goes through intermediary nodes (where programs 6461 * could run), or through backplane controllers. This affects 6462 * placement of programs. 6463 * 6464 * The type of topology can be discerned with the following tests: 6465 * - If the maximum distance between any nodes is 1 hop, the system 6466 * is directly connected. 6467 * - If for two nodes A and B, located N > 1 hops away from each other, 6468 * there is an intermediary node C, which is < N hops away from both 6469 * nodes A and B, the system is a glueless mesh. 6470 */ 6471 static void init_numa_topology_type(void) 6472 { 6473 int a, b, c, n; 6474 6475 n = sched_max_numa_distance; 6476 6477 if (sched_domains_numa_levels <= 1) { 6478 sched_numa_topology_type = NUMA_DIRECT; 6479 return; 6480 } 6481 6482 for_each_online_node(a) { 6483 for_each_online_node(b) { 6484 /* Find two nodes furthest removed from each other. */ 6485 if (node_distance(a, b) < n) 6486 continue; 6487 6488 /* Is there an intermediary node between a and b? */ 6489 for_each_online_node(c) { 6490 if (node_distance(a, c) < n && 6491 node_distance(b, c) < n) { 6492 sched_numa_topology_type = 6493 NUMA_GLUELESS_MESH; 6494 return; 6495 } 6496 } 6497 6498 sched_numa_topology_type = NUMA_BACKPLANE; 6499 return; 6500 } 6501 } 6502 } 6503 6504 static void sched_init_numa(void) 6505 { 6506 int next_distance, curr_distance = node_distance(0, 0); 6507 struct sched_domain_topology_level *tl; 6508 int level = 0; 6509 int i, j, k; 6510 6511 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6512 if (!sched_domains_numa_distance) 6513 return; 6514 6515 /* 6516 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6517 * unique distances in the node_distance() table. 6518 * 6519 * Assumes node_distance(0,j) includes all distances in 6520 * node_distance(i,j) in order to avoid cubic time. 6521 */ 6522 next_distance = curr_distance; 6523 for (i = 0; i < nr_node_ids; i++) { 6524 for (j = 0; j < nr_node_ids; j++) { 6525 for (k = 0; k < nr_node_ids; k++) { 6526 int distance = node_distance(i, k); 6527 6528 if (distance > curr_distance && 6529 (distance < next_distance || 6530 next_distance == curr_distance)) 6531 next_distance = distance; 6532 6533 /* 6534 * While not a strong assumption it would be nice to know 6535 * about cases where if node A is connected to B, B is not 6536 * equally connected to A. 6537 */ 6538 if (sched_debug() && node_distance(k, i) != distance) 6539 sched_numa_warn("Node-distance not symmetric"); 6540 6541 if (sched_debug() && i && !find_numa_distance(distance)) 6542 sched_numa_warn("Node-0 not representative"); 6543 } 6544 if (next_distance != curr_distance) { 6545 sched_domains_numa_distance[level++] = next_distance; 6546 sched_domains_numa_levels = level; 6547 curr_distance = next_distance; 6548 } else break; 6549 } 6550 6551 /* 6552 * In case of sched_debug() we verify the above assumption. 6553 */ 6554 if (!sched_debug()) 6555 break; 6556 } 6557 6558 if (!level) 6559 return; 6560 6561 /* 6562 * 'level' contains the number of unique distances, excluding the 6563 * identity distance node_distance(i,i). 6564 * 6565 * The sched_domains_numa_distance[] array includes the actual distance 6566 * numbers. 6567 */ 6568 6569 /* 6570 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6571 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6572 * the array will contain less then 'level' members. This could be 6573 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6574 * in other functions. 6575 * 6576 * We reset it to 'level' at the end of this function. 6577 */ 6578 sched_domains_numa_levels = 0; 6579 6580 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6581 if (!sched_domains_numa_masks) 6582 return; 6583 6584 /* 6585 * Now for each level, construct a mask per node which contains all 6586 * cpus of nodes that are that many hops away from us. 6587 */ 6588 for (i = 0; i < level; i++) { 6589 sched_domains_numa_masks[i] = 6590 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6591 if (!sched_domains_numa_masks[i]) 6592 return; 6593 6594 for (j = 0; j < nr_node_ids; j++) { 6595 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6596 if (!mask) 6597 return; 6598 6599 sched_domains_numa_masks[i][j] = mask; 6600 6601 for_each_node(k) { 6602 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6603 continue; 6604 6605 cpumask_or(mask, mask, cpumask_of_node(k)); 6606 } 6607 } 6608 } 6609 6610 /* Compute default topology size */ 6611 for (i = 0; sched_domain_topology[i].mask; i++); 6612 6613 tl = kzalloc((i + level + 1) * 6614 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6615 if (!tl) 6616 return; 6617 6618 /* 6619 * Copy the default topology bits.. 6620 */ 6621 for (i = 0; sched_domain_topology[i].mask; i++) 6622 tl[i] = sched_domain_topology[i]; 6623 6624 /* 6625 * .. and append 'j' levels of NUMA goodness. 6626 */ 6627 for (j = 0; j < level; i++, j++) { 6628 tl[i] = (struct sched_domain_topology_level){ 6629 .mask = sd_numa_mask, 6630 .sd_flags = cpu_numa_flags, 6631 .flags = SDTL_OVERLAP, 6632 .numa_level = j, 6633 SD_INIT_NAME(NUMA) 6634 }; 6635 } 6636 6637 sched_domain_topology = tl; 6638 6639 sched_domains_numa_levels = level; 6640 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6641 6642 init_numa_topology_type(); 6643 } 6644 6645 static void sched_domains_numa_masks_set(int cpu) 6646 { 6647 int i, j; 6648 int node = cpu_to_node(cpu); 6649 6650 for (i = 0; i < sched_domains_numa_levels; i++) { 6651 for (j = 0; j < nr_node_ids; j++) { 6652 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6653 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6654 } 6655 } 6656 } 6657 6658 static void sched_domains_numa_masks_clear(int cpu) 6659 { 6660 int i, j; 6661 for (i = 0; i < sched_domains_numa_levels; i++) { 6662 for (j = 0; j < nr_node_ids; j++) 6663 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6664 } 6665 } 6666 6667 /* 6668 * Update sched_domains_numa_masks[level][node] array when new cpus 6669 * are onlined. 6670 */ 6671 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6672 unsigned long action, 6673 void *hcpu) 6674 { 6675 int cpu = (long)hcpu; 6676 6677 switch (action & ~CPU_TASKS_FROZEN) { 6678 case CPU_ONLINE: 6679 sched_domains_numa_masks_set(cpu); 6680 break; 6681 6682 case CPU_DEAD: 6683 sched_domains_numa_masks_clear(cpu); 6684 break; 6685 6686 default: 6687 return NOTIFY_DONE; 6688 } 6689 6690 return NOTIFY_OK; 6691 } 6692 #else 6693 static inline void sched_init_numa(void) 6694 { 6695 } 6696 6697 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6698 unsigned long action, 6699 void *hcpu) 6700 { 6701 return 0; 6702 } 6703 #endif /* CONFIG_NUMA */ 6704 6705 static int __sdt_alloc(const struct cpumask *cpu_map) 6706 { 6707 struct sched_domain_topology_level *tl; 6708 int j; 6709 6710 for_each_sd_topology(tl) { 6711 struct sd_data *sdd = &tl->data; 6712 6713 sdd->sd = alloc_percpu(struct sched_domain *); 6714 if (!sdd->sd) 6715 return -ENOMEM; 6716 6717 sdd->sg = alloc_percpu(struct sched_group *); 6718 if (!sdd->sg) 6719 return -ENOMEM; 6720 6721 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6722 if (!sdd->sgc) 6723 return -ENOMEM; 6724 6725 for_each_cpu(j, cpu_map) { 6726 struct sched_domain *sd; 6727 struct sched_group *sg; 6728 struct sched_group_capacity *sgc; 6729 6730 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6731 GFP_KERNEL, cpu_to_node(j)); 6732 if (!sd) 6733 return -ENOMEM; 6734 6735 *per_cpu_ptr(sdd->sd, j) = sd; 6736 6737 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6738 GFP_KERNEL, cpu_to_node(j)); 6739 if (!sg) 6740 return -ENOMEM; 6741 6742 sg->next = sg; 6743 6744 *per_cpu_ptr(sdd->sg, j) = sg; 6745 6746 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6747 GFP_KERNEL, cpu_to_node(j)); 6748 if (!sgc) 6749 return -ENOMEM; 6750 6751 *per_cpu_ptr(sdd->sgc, j) = sgc; 6752 } 6753 } 6754 6755 return 0; 6756 } 6757 6758 static void __sdt_free(const struct cpumask *cpu_map) 6759 { 6760 struct sched_domain_topology_level *tl; 6761 int j; 6762 6763 for_each_sd_topology(tl) { 6764 struct sd_data *sdd = &tl->data; 6765 6766 for_each_cpu(j, cpu_map) { 6767 struct sched_domain *sd; 6768 6769 if (sdd->sd) { 6770 sd = *per_cpu_ptr(sdd->sd, j); 6771 if (sd && (sd->flags & SD_OVERLAP)) 6772 free_sched_groups(sd->groups, 0); 6773 kfree(*per_cpu_ptr(sdd->sd, j)); 6774 } 6775 6776 if (sdd->sg) 6777 kfree(*per_cpu_ptr(sdd->sg, j)); 6778 if (sdd->sgc) 6779 kfree(*per_cpu_ptr(sdd->sgc, j)); 6780 } 6781 free_percpu(sdd->sd); 6782 sdd->sd = NULL; 6783 free_percpu(sdd->sg); 6784 sdd->sg = NULL; 6785 free_percpu(sdd->sgc); 6786 sdd->sgc = NULL; 6787 } 6788 } 6789 6790 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6791 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6792 struct sched_domain *child, int cpu) 6793 { 6794 struct sched_domain *sd = sd_init(tl, cpu); 6795 if (!sd) 6796 return child; 6797 6798 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6799 if (child) { 6800 sd->level = child->level + 1; 6801 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6802 child->parent = sd; 6803 sd->child = child; 6804 6805 if (!cpumask_subset(sched_domain_span(child), 6806 sched_domain_span(sd))) { 6807 pr_err("BUG: arch topology borken\n"); 6808 #ifdef CONFIG_SCHED_DEBUG 6809 pr_err(" the %s domain not a subset of the %s domain\n", 6810 child->name, sd->name); 6811 #endif 6812 /* Fixup, ensure @sd has at least @child cpus. */ 6813 cpumask_or(sched_domain_span(sd), 6814 sched_domain_span(sd), 6815 sched_domain_span(child)); 6816 } 6817 6818 } 6819 set_domain_attribute(sd, attr); 6820 6821 return sd; 6822 } 6823 6824 /* 6825 * Build sched domains for a given set of cpus and attach the sched domains 6826 * to the individual cpus 6827 */ 6828 static int build_sched_domains(const struct cpumask *cpu_map, 6829 struct sched_domain_attr *attr) 6830 { 6831 enum s_alloc alloc_state; 6832 struct sched_domain *sd; 6833 struct s_data d; 6834 int i, ret = -ENOMEM; 6835 6836 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6837 if (alloc_state != sa_rootdomain) 6838 goto error; 6839 6840 /* Set up domains for cpus specified by the cpu_map. */ 6841 for_each_cpu(i, cpu_map) { 6842 struct sched_domain_topology_level *tl; 6843 6844 sd = NULL; 6845 for_each_sd_topology(tl) { 6846 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6847 if (tl == sched_domain_topology) 6848 *per_cpu_ptr(d.sd, i) = sd; 6849 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6850 sd->flags |= SD_OVERLAP; 6851 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6852 break; 6853 } 6854 } 6855 6856 /* Build the groups for the domains */ 6857 for_each_cpu(i, cpu_map) { 6858 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6859 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6860 if (sd->flags & SD_OVERLAP) { 6861 if (build_overlap_sched_groups(sd, i)) 6862 goto error; 6863 } else { 6864 if (build_sched_groups(sd, i)) 6865 goto error; 6866 } 6867 } 6868 } 6869 6870 /* Calculate CPU capacity for physical packages and nodes */ 6871 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6872 if (!cpumask_test_cpu(i, cpu_map)) 6873 continue; 6874 6875 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6876 claim_allocations(i, sd); 6877 init_sched_groups_capacity(i, sd); 6878 } 6879 } 6880 6881 /* Attach the domains */ 6882 rcu_read_lock(); 6883 for_each_cpu(i, cpu_map) { 6884 sd = *per_cpu_ptr(d.sd, i); 6885 cpu_attach_domain(sd, d.rd, i); 6886 } 6887 rcu_read_unlock(); 6888 6889 ret = 0; 6890 error: 6891 __free_domain_allocs(&d, alloc_state, cpu_map); 6892 return ret; 6893 } 6894 6895 static cpumask_var_t *doms_cur; /* current sched domains */ 6896 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6897 static struct sched_domain_attr *dattr_cur; 6898 /* attribues of custom domains in 'doms_cur' */ 6899 6900 /* 6901 * Special case: If a kmalloc of a doms_cur partition (array of 6902 * cpumask) fails, then fallback to a single sched domain, 6903 * as determined by the single cpumask fallback_doms. 6904 */ 6905 static cpumask_var_t fallback_doms; 6906 6907 /* 6908 * arch_update_cpu_topology lets virtualized architectures update the 6909 * cpu core maps. It is supposed to return 1 if the topology changed 6910 * or 0 if it stayed the same. 6911 */ 6912 int __weak arch_update_cpu_topology(void) 6913 { 6914 return 0; 6915 } 6916 6917 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6918 { 6919 int i; 6920 cpumask_var_t *doms; 6921 6922 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6923 if (!doms) 6924 return NULL; 6925 for (i = 0; i < ndoms; i++) { 6926 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6927 free_sched_domains(doms, i); 6928 return NULL; 6929 } 6930 } 6931 return doms; 6932 } 6933 6934 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6935 { 6936 unsigned int i; 6937 for (i = 0; i < ndoms; i++) 6938 free_cpumask_var(doms[i]); 6939 kfree(doms); 6940 } 6941 6942 /* 6943 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6944 * For now this just excludes isolated cpus, but could be used to 6945 * exclude other special cases in the future. 6946 */ 6947 static int init_sched_domains(const struct cpumask *cpu_map) 6948 { 6949 int err; 6950 6951 arch_update_cpu_topology(); 6952 ndoms_cur = 1; 6953 doms_cur = alloc_sched_domains(ndoms_cur); 6954 if (!doms_cur) 6955 doms_cur = &fallback_doms; 6956 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6957 err = build_sched_domains(doms_cur[0], NULL); 6958 register_sched_domain_sysctl(); 6959 6960 return err; 6961 } 6962 6963 /* 6964 * Detach sched domains from a group of cpus specified in cpu_map 6965 * These cpus will now be attached to the NULL domain 6966 */ 6967 static void detach_destroy_domains(const struct cpumask *cpu_map) 6968 { 6969 int i; 6970 6971 rcu_read_lock(); 6972 for_each_cpu(i, cpu_map) 6973 cpu_attach_domain(NULL, &def_root_domain, i); 6974 rcu_read_unlock(); 6975 } 6976 6977 /* handle null as "default" */ 6978 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6979 struct sched_domain_attr *new, int idx_new) 6980 { 6981 struct sched_domain_attr tmp; 6982 6983 /* fast path */ 6984 if (!new && !cur) 6985 return 1; 6986 6987 tmp = SD_ATTR_INIT; 6988 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6989 new ? (new + idx_new) : &tmp, 6990 sizeof(struct sched_domain_attr)); 6991 } 6992 6993 /* 6994 * Partition sched domains as specified by the 'ndoms_new' 6995 * cpumasks in the array doms_new[] of cpumasks. This compares 6996 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6997 * It destroys each deleted domain and builds each new domain. 6998 * 6999 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 7000 * The masks don't intersect (don't overlap.) We should setup one 7001 * sched domain for each mask. CPUs not in any of the cpumasks will 7002 * not be load balanced. If the same cpumask appears both in the 7003 * current 'doms_cur' domains and in the new 'doms_new', we can leave 7004 * it as it is. 7005 * 7006 * The passed in 'doms_new' should be allocated using 7007 * alloc_sched_domains. This routine takes ownership of it and will 7008 * free_sched_domains it when done with it. If the caller failed the 7009 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 7010 * and partition_sched_domains() will fallback to the single partition 7011 * 'fallback_doms', it also forces the domains to be rebuilt. 7012 * 7013 * If doms_new == NULL it will be replaced with cpu_online_mask. 7014 * ndoms_new == 0 is a special case for destroying existing domains, 7015 * and it will not create the default domain. 7016 * 7017 * Call with hotplug lock held 7018 */ 7019 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 7020 struct sched_domain_attr *dattr_new) 7021 { 7022 int i, j, n; 7023 int new_topology; 7024 7025 mutex_lock(&sched_domains_mutex); 7026 7027 /* always unregister in case we don't destroy any domains */ 7028 unregister_sched_domain_sysctl(); 7029 7030 /* Let architecture update cpu core mappings. */ 7031 new_topology = arch_update_cpu_topology(); 7032 7033 n = doms_new ? ndoms_new : 0; 7034 7035 /* Destroy deleted domains */ 7036 for (i = 0; i < ndoms_cur; i++) { 7037 for (j = 0; j < n && !new_topology; j++) { 7038 if (cpumask_equal(doms_cur[i], doms_new[j]) 7039 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7040 goto match1; 7041 } 7042 /* no match - a current sched domain not in new doms_new[] */ 7043 detach_destroy_domains(doms_cur[i]); 7044 match1: 7045 ; 7046 } 7047 7048 n = ndoms_cur; 7049 if (doms_new == NULL) { 7050 n = 0; 7051 doms_new = &fallback_doms; 7052 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7053 WARN_ON_ONCE(dattr_new); 7054 } 7055 7056 /* Build new domains */ 7057 for (i = 0; i < ndoms_new; i++) { 7058 for (j = 0; j < n && !new_topology; j++) { 7059 if (cpumask_equal(doms_new[i], doms_cur[j]) 7060 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7061 goto match2; 7062 } 7063 /* no match - add a new doms_new */ 7064 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7065 match2: 7066 ; 7067 } 7068 7069 /* Remember the new sched domains */ 7070 if (doms_cur != &fallback_doms) 7071 free_sched_domains(doms_cur, ndoms_cur); 7072 kfree(dattr_cur); /* kfree(NULL) is safe */ 7073 doms_cur = doms_new; 7074 dattr_cur = dattr_new; 7075 ndoms_cur = ndoms_new; 7076 7077 register_sched_domain_sysctl(); 7078 7079 mutex_unlock(&sched_domains_mutex); 7080 } 7081 7082 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7083 7084 /* 7085 * Update cpusets according to cpu_active mask. If cpusets are 7086 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7087 * around partition_sched_domains(). 7088 * 7089 * If we come here as part of a suspend/resume, don't touch cpusets because we 7090 * want to restore it back to its original state upon resume anyway. 7091 */ 7092 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 7093 void *hcpu) 7094 { 7095 switch (action) { 7096 case CPU_ONLINE_FROZEN: 7097 case CPU_DOWN_FAILED_FROZEN: 7098 7099 /* 7100 * num_cpus_frozen tracks how many CPUs are involved in suspend 7101 * resume sequence. As long as this is not the last online 7102 * operation in the resume sequence, just build a single sched 7103 * domain, ignoring cpusets. 7104 */ 7105 num_cpus_frozen--; 7106 if (likely(num_cpus_frozen)) { 7107 partition_sched_domains(1, NULL, NULL); 7108 break; 7109 } 7110 7111 /* 7112 * This is the last CPU online operation. So fall through and 7113 * restore the original sched domains by considering the 7114 * cpuset configurations. 7115 */ 7116 7117 case CPU_ONLINE: 7118 cpuset_update_active_cpus(true); 7119 break; 7120 default: 7121 return NOTIFY_DONE; 7122 } 7123 return NOTIFY_OK; 7124 } 7125 7126 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 7127 void *hcpu) 7128 { 7129 unsigned long flags; 7130 long cpu = (long)hcpu; 7131 struct dl_bw *dl_b; 7132 bool overflow; 7133 int cpus; 7134 7135 switch (action) { 7136 case CPU_DOWN_PREPARE: 7137 rcu_read_lock_sched(); 7138 dl_b = dl_bw_of(cpu); 7139 7140 raw_spin_lock_irqsave(&dl_b->lock, flags); 7141 cpus = dl_bw_cpus(cpu); 7142 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7143 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7144 7145 rcu_read_unlock_sched(); 7146 7147 if (overflow) 7148 return notifier_from_errno(-EBUSY); 7149 cpuset_update_active_cpus(false); 7150 break; 7151 case CPU_DOWN_PREPARE_FROZEN: 7152 num_cpus_frozen++; 7153 partition_sched_domains(1, NULL, NULL); 7154 break; 7155 default: 7156 return NOTIFY_DONE; 7157 } 7158 return NOTIFY_OK; 7159 } 7160 7161 void __init sched_init_smp(void) 7162 { 7163 cpumask_var_t non_isolated_cpus; 7164 7165 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7166 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7167 7168 sched_init_numa(); 7169 7170 /* 7171 * There's no userspace yet to cause hotplug operations; hence all the 7172 * cpu masks are stable and all blatant races in the below code cannot 7173 * happen. 7174 */ 7175 mutex_lock(&sched_domains_mutex); 7176 init_sched_domains(cpu_active_mask); 7177 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7178 if (cpumask_empty(non_isolated_cpus)) 7179 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7180 mutex_unlock(&sched_domains_mutex); 7181 7182 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 7183 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7184 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7185 7186 init_hrtick(); 7187 7188 /* Move init over to a non-isolated CPU */ 7189 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7190 BUG(); 7191 sched_init_granularity(); 7192 free_cpumask_var(non_isolated_cpus); 7193 7194 init_sched_rt_class(); 7195 init_sched_dl_class(); 7196 } 7197 #else 7198 void __init sched_init_smp(void) 7199 { 7200 sched_init_granularity(); 7201 } 7202 #endif /* CONFIG_SMP */ 7203 7204 int in_sched_functions(unsigned long addr) 7205 { 7206 return in_lock_functions(addr) || 7207 (addr >= (unsigned long)__sched_text_start 7208 && addr < (unsigned long)__sched_text_end); 7209 } 7210 7211 #ifdef CONFIG_CGROUP_SCHED 7212 /* 7213 * Default task group. 7214 * Every task in system belongs to this group at bootup. 7215 */ 7216 struct task_group root_task_group; 7217 LIST_HEAD(task_groups); 7218 7219 /* Cacheline aligned slab cache for task_group */ 7220 static struct kmem_cache *task_group_cache __read_mostly; 7221 #endif 7222 7223 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7224 7225 void __init sched_init(void) 7226 { 7227 int i, j; 7228 unsigned long alloc_size = 0, ptr; 7229 7230 #ifdef CONFIG_FAIR_GROUP_SCHED 7231 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7232 #endif 7233 #ifdef CONFIG_RT_GROUP_SCHED 7234 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7235 #endif 7236 if (alloc_size) { 7237 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7238 7239 #ifdef CONFIG_FAIR_GROUP_SCHED 7240 root_task_group.se = (struct sched_entity **)ptr; 7241 ptr += nr_cpu_ids * sizeof(void **); 7242 7243 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7244 ptr += nr_cpu_ids * sizeof(void **); 7245 7246 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7247 #ifdef CONFIG_RT_GROUP_SCHED 7248 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7249 ptr += nr_cpu_ids * sizeof(void **); 7250 7251 root_task_group.rt_rq = (struct rt_rq **)ptr; 7252 ptr += nr_cpu_ids * sizeof(void **); 7253 7254 #endif /* CONFIG_RT_GROUP_SCHED */ 7255 } 7256 #ifdef CONFIG_CPUMASK_OFFSTACK 7257 for_each_possible_cpu(i) { 7258 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7259 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7260 } 7261 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7262 7263 init_rt_bandwidth(&def_rt_bandwidth, 7264 global_rt_period(), global_rt_runtime()); 7265 init_dl_bandwidth(&def_dl_bandwidth, 7266 global_rt_period(), global_rt_runtime()); 7267 7268 #ifdef CONFIG_SMP 7269 init_defrootdomain(); 7270 #endif 7271 7272 #ifdef CONFIG_RT_GROUP_SCHED 7273 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7274 global_rt_period(), global_rt_runtime()); 7275 #endif /* CONFIG_RT_GROUP_SCHED */ 7276 7277 #ifdef CONFIG_CGROUP_SCHED 7278 task_group_cache = KMEM_CACHE(task_group, 0); 7279 7280 list_add(&root_task_group.list, &task_groups); 7281 INIT_LIST_HEAD(&root_task_group.children); 7282 INIT_LIST_HEAD(&root_task_group.siblings); 7283 autogroup_init(&init_task); 7284 #endif /* CONFIG_CGROUP_SCHED */ 7285 7286 for_each_possible_cpu(i) { 7287 struct rq *rq; 7288 7289 rq = cpu_rq(i); 7290 raw_spin_lock_init(&rq->lock); 7291 rq->nr_running = 0; 7292 rq->calc_load_active = 0; 7293 rq->calc_load_update = jiffies + LOAD_FREQ; 7294 init_cfs_rq(&rq->cfs); 7295 init_rt_rq(&rq->rt); 7296 init_dl_rq(&rq->dl); 7297 #ifdef CONFIG_FAIR_GROUP_SCHED 7298 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7299 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7300 /* 7301 * How much cpu bandwidth does root_task_group get? 7302 * 7303 * In case of task-groups formed thr' the cgroup filesystem, it 7304 * gets 100% of the cpu resources in the system. This overall 7305 * system cpu resource is divided among the tasks of 7306 * root_task_group and its child task-groups in a fair manner, 7307 * based on each entity's (task or task-group's) weight 7308 * (se->load.weight). 7309 * 7310 * In other words, if root_task_group has 10 tasks of weight 7311 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7312 * then A0's share of the cpu resource is: 7313 * 7314 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7315 * 7316 * We achieve this by letting root_task_group's tasks sit 7317 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7318 */ 7319 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7320 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7321 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7322 7323 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7324 #ifdef CONFIG_RT_GROUP_SCHED 7325 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7326 #endif 7327 7328 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7329 rq->cpu_load[j] = 0; 7330 7331 rq->last_load_update_tick = jiffies; 7332 7333 #ifdef CONFIG_SMP 7334 rq->sd = NULL; 7335 rq->rd = NULL; 7336 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7337 rq->balance_callback = NULL; 7338 rq->active_balance = 0; 7339 rq->next_balance = jiffies; 7340 rq->push_cpu = 0; 7341 rq->cpu = i; 7342 rq->online = 0; 7343 rq->idle_stamp = 0; 7344 rq->avg_idle = 2*sysctl_sched_migration_cost; 7345 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7346 7347 INIT_LIST_HEAD(&rq->cfs_tasks); 7348 7349 rq_attach_root(rq, &def_root_domain); 7350 #ifdef CONFIG_NO_HZ_COMMON 7351 rq->nohz_flags = 0; 7352 #endif 7353 #ifdef CONFIG_NO_HZ_FULL 7354 rq->last_sched_tick = 0; 7355 #endif 7356 #endif 7357 init_rq_hrtick(rq); 7358 atomic_set(&rq->nr_iowait, 0); 7359 } 7360 7361 set_load_weight(&init_task); 7362 7363 #ifdef CONFIG_PREEMPT_NOTIFIERS 7364 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7365 #endif 7366 7367 /* 7368 * The boot idle thread does lazy MMU switching as well: 7369 */ 7370 atomic_inc(&init_mm.mm_count); 7371 enter_lazy_tlb(&init_mm, current); 7372 7373 /* 7374 * During early bootup we pretend to be a normal task: 7375 */ 7376 current->sched_class = &fair_sched_class; 7377 7378 /* 7379 * Make us the idle thread. Technically, schedule() should not be 7380 * called from this thread, however somewhere below it might be, 7381 * but because we are the idle thread, we just pick up running again 7382 * when this runqueue becomes "idle". 7383 */ 7384 init_idle(current, smp_processor_id()); 7385 7386 calc_load_update = jiffies + LOAD_FREQ; 7387 7388 #ifdef CONFIG_SMP 7389 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7390 /* May be allocated at isolcpus cmdline parse time */ 7391 if (cpu_isolated_map == NULL) 7392 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7393 idle_thread_set_boot_cpu(); 7394 set_cpu_rq_start_time(); 7395 #endif 7396 init_sched_fair_class(); 7397 7398 scheduler_running = 1; 7399 } 7400 7401 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7402 static inline int preempt_count_equals(int preempt_offset) 7403 { 7404 int nested = preempt_count() + rcu_preempt_depth(); 7405 7406 return (nested == preempt_offset); 7407 } 7408 7409 void __might_sleep(const char *file, int line, int preempt_offset) 7410 { 7411 /* 7412 * Blocking primitives will set (and therefore destroy) current->state, 7413 * since we will exit with TASK_RUNNING make sure we enter with it, 7414 * otherwise we will destroy state. 7415 */ 7416 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7417 "do not call blocking ops when !TASK_RUNNING; " 7418 "state=%lx set at [<%p>] %pS\n", 7419 current->state, 7420 (void *)current->task_state_change, 7421 (void *)current->task_state_change); 7422 7423 ___might_sleep(file, line, preempt_offset); 7424 } 7425 EXPORT_SYMBOL(__might_sleep); 7426 7427 void ___might_sleep(const char *file, int line, int preempt_offset) 7428 { 7429 static unsigned long prev_jiffy; /* ratelimiting */ 7430 7431 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7432 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7433 !is_idle_task(current)) || 7434 system_state != SYSTEM_RUNNING || oops_in_progress) 7435 return; 7436 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7437 return; 7438 prev_jiffy = jiffies; 7439 7440 printk(KERN_ERR 7441 "BUG: sleeping function called from invalid context at %s:%d\n", 7442 file, line); 7443 printk(KERN_ERR 7444 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7445 in_atomic(), irqs_disabled(), 7446 current->pid, current->comm); 7447 7448 if (task_stack_end_corrupted(current)) 7449 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7450 7451 debug_show_held_locks(current); 7452 if (irqs_disabled()) 7453 print_irqtrace_events(current); 7454 #ifdef CONFIG_DEBUG_PREEMPT 7455 if (!preempt_count_equals(preempt_offset)) { 7456 pr_err("Preemption disabled at:"); 7457 print_ip_sym(current->preempt_disable_ip); 7458 pr_cont("\n"); 7459 } 7460 #endif 7461 dump_stack(); 7462 } 7463 EXPORT_SYMBOL(___might_sleep); 7464 #endif 7465 7466 #ifdef CONFIG_MAGIC_SYSRQ 7467 void normalize_rt_tasks(void) 7468 { 7469 struct task_struct *g, *p; 7470 struct sched_attr attr = { 7471 .sched_policy = SCHED_NORMAL, 7472 }; 7473 7474 read_lock(&tasklist_lock); 7475 for_each_process_thread(g, p) { 7476 /* 7477 * Only normalize user tasks: 7478 */ 7479 if (p->flags & PF_KTHREAD) 7480 continue; 7481 7482 p->se.exec_start = 0; 7483 #ifdef CONFIG_SCHEDSTATS 7484 p->se.statistics.wait_start = 0; 7485 p->se.statistics.sleep_start = 0; 7486 p->se.statistics.block_start = 0; 7487 #endif 7488 7489 if (!dl_task(p) && !rt_task(p)) { 7490 /* 7491 * Renice negative nice level userspace 7492 * tasks back to 0: 7493 */ 7494 if (task_nice(p) < 0) 7495 set_user_nice(p, 0); 7496 continue; 7497 } 7498 7499 __sched_setscheduler(p, &attr, false, false); 7500 } 7501 read_unlock(&tasklist_lock); 7502 } 7503 7504 #endif /* CONFIG_MAGIC_SYSRQ */ 7505 7506 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7507 /* 7508 * These functions are only useful for the IA64 MCA handling, or kdb. 7509 * 7510 * They can only be called when the whole system has been 7511 * stopped - every CPU needs to be quiescent, and no scheduling 7512 * activity can take place. Using them for anything else would 7513 * be a serious bug, and as a result, they aren't even visible 7514 * under any other configuration. 7515 */ 7516 7517 /** 7518 * curr_task - return the current task for a given cpu. 7519 * @cpu: the processor in question. 7520 * 7521 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7522 * 7523 * Return: The current task for @cpu. 7524 */ 7525 struct task_struct *curr_task(int cpu) 7526 { 7527 return cpu_curr(cpu); 7528 } 7529 7530 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7531 7532 #ifdef CONFIG_IA64 7533 /** 7534 * set_curr_task - set the current task for a given cpu. 7535 * @cpu: the processor in question. 7536 * @p: the task pointer to set. 7537 * 7538 * Description: This function must only be used when non-maskable interrupts 7539 * are serviced on a separate stack. It allows the architecture to switch the 7540 * notion of the current task on a cpu in a non-blocking manner. This function 7541 * must be called with all CPU's synchronized, and interrupts disabled, the 7542 * and caller must save the original value of the current task (see 7543 * curr_task() above) and restore that value before reenabling interrupts and 7544 * re-starting the system. 7545 * 7546 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7547 */ 7548 void set_curr_task(int cpu, struct task_struct *p) 7549 { 7550 cpu_curr(cpu) = p; 7551 } 7552 7553 #endif 7554 7555 #ifdef CONFIG_CGROUP_SCHED 7556 /* task_group_lock serializes the addition/removal of task groups */ 7557 static DEFINE_SPINLOCK(task_group_lock); 7558 7559 static void sched_free_group(struct task_group *tg) 7560 { 7561 free_fair_sched_group(tg); 7562 free_rt_sched_group(tg); 7563 autogroup_free(tg); 7564 kmem_cache_free(task_group_cache, tg); 7565 } 7566 7567 /* allocate runqueue etc for a new task group */ 7568 struct task_group *sched_create_group(struct task_group *parent) 7569 { 7570 struct task_group *tg; 7571 7572 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 7573 if (!tg) 7574 return ERR_PTR(-ENOMEM); 7575 7576 if (!alloc_fair_sched_group(tg, parent)) 7577 goto err; 7578 7579 if (!alloc_rt_sched_group(tg, parent)) 7580 goto err; 7581 7582 return tg; 7583 7584 err: 7585 sched_free_group(tg); 7586 return ERR_PTR(-ENOMEM); 7587 } 7588 7589 void sched_online_group(struct task_group *tg, struct task_group *parent) 7590 { 7591 unsigned long flags; 7592 7593 spin_lock_irqsave(&task_group_lock, flags); 7594 list_add_rcu(&tg->list, &task_groups); 7595 7596 WARN_ON(!parent); /* root should already exist */ 7597 7598 tg->parent = parent; 7599 INIT_LIST_HEAD(&tg->children); 7600 list_add_rcu(&tg->siblings, &parent->children); 7601 spin_unlock_irqrestore(&task_group_lock, flags); 7602 } 7603 7604 /* rcu callback to free various structures associated with a task group */ 7605 static void sched_free_group_rcu(struct rcu_head *rhp) 7606 { 7607 /* now it should be safe to free those cfs_rqs */ 7608 sched_free_group(container_of(rhp, struct task_group, rcu)); 7609 } 7610 7611 void sched_destroy_group(struct task_group *tg) 7612 { 7613 /* wait for possible concurrent references to cfs_rqs complete */ 7614 call_rcu(&tg->rcu, sched_free_group_rcu); 7615 } 7616 7617 void sched_offline_group(struct task_group *tg) 7618 { 7619 unsigned long flags; 7620 7621 /* end participation in shares distribution */ 7622 unregister_fair_sched_group(tg); 7623 7624 spin_lock_irqsave(&task_group_lock, flags); 7625 list_del_rcu(&tg->list); 7626 list_del_rcu(&tg->siblings); 7627 spin_unlock_irqrestore(&task_group_lock, flags); 7628 } 7629 7630 /* change task's runqueue when it moves between groups. 7631 * The caller of this function should have put the task in its new group 7632 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7633 * reflect its new group. 7634 */ 7635 void sched_move_task(struct task_struct *tsk) 7636 { 7637 struct task_group *tg; 7638 int queued, running; 7639 unsigned long flags; 7640 struct rq *rq; 7641 7642 rq = task_rq_lock(tsk, &flags); 7643 7644 running = task_current(rq, tsk); 7645 queued = task_on_rq_queued(tsk); 7646 7647 if (queued) 7648 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE); 7649 if (unlikely(running)) 7650 put_prev_task(rq, tsk); 7651 7652 /* 7653 * All callers are synchronized by task_rq_lock(); we do not use RCU 7654 * which is pointless here. Thus, we pass "true" to task_css_check() 7655 * to prevent lockdep warnings. 7656 */ 7657 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7658 struct task_group, css); 7659 tg = autogroup_task_group(tsk, tg); 7660 tsk->sched_task_group = tg; 7661 7662 #ifdef CONFIG_FAIR_GROUP_SCHED 7663 if (tsk->sched_class->task_move_group) 7664 tsk->sched_class->task_move_group(tsk); 7665 else 7666 #endif 7667 set_task_rq(tsk, task_cpu(tsk)); 7668 7669 if (unlikely(running)) 7670 tsk->sched_class->set_curr_task(rq); 7671 if (queued) 7672 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE); 7673 7674 task_rq_unlock(rq, tsk, &flags); 7675 } 7676 #endif /* CONFIG_CGROUP_SCHED */ 7677 7678 #ifdef CONFIG_RT_GROUP_SCHED 7679 /* 7680 * Ensure that the real time constraints are schedulable. 7681 */ 7682 static DEFINE_MUTEX(rt_constraints_mutex); 7683 7684 /* Must be called with tasklist_lock held */ 7685 static inline int tg_has_rt_tasks(struct task_group *tg) 7686 { 7687 struct task_struct *g, *p; 7688 7689 /* 7690 * Autogroups do not have RT tasks; see autogroup_create(). 7691 */ 7692 if (task_group_is_autogroup(tg)) 7693 return 0; 7694 7695 for_each_process_thread(g, p) { 7696 if (rt_task(p) && task_group(p) == tg) 7697 return 1; 7698 } 7699 7700 return 0; 7701 } 7702 7703 struct rt_schedulable_data { 7704 struct task_group *tg; 7705 u64 rt_period; 7706 u64 rt_runtime; 7707 }; 7708 7709 static int tg_rt_schedulable(struct task_group *tg, void *data) 7710 { 7711 struct rt_schedulable_data *d = data; 7712 struct task_group *child; 7713 unsigned long total, sum = 0; 7714 u64 period, runtime; 7715 7716 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7717 runtime = tg->rt_bandwidth.rt_runtime; 7718 7719 if (tg == d->tg) { 7720 period = d->rt_period; 7721 runtime = d->rt_runtime; 7722 } 7723 7724 /* 7725 * Cannot have more runtime than the period. 7726 */ 7727 if (runtime > period && runtime != RUNTIME_INF) 7728 return -EINVAL; 7729 7730 /* 7731 * Ensure we don't starve existing RT tasks. 7732 */ 7733 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7734 return -EBUSY; 7735 7736 total = to_ratio(period, runtime); 7737 7738 /* 7739 * Nobody can have more than the global setting allows. 7740 */ 7741 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7742 return -EINVAL; 7743 7744 /* 7745 * The sum of our children's runtime should not exceed our own. 7746 */ 7747 list_for_each_entry_rcu(child, &tg->children, siblings) { 7748 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7749 runtime = child->rt_bandwidth.rt_runtime; 7750 7751 if (child == d->tg) { 7752 period = d->rt_period; 7753 runtime = d->rt_runtime; 7754 } 7755 7756 sum += to_ratio(period, runtime); 7757 } 7758 7759 if (sum > total) 7760 return -EINVAL; 7761 7762 return 0; 7763 } 7764 7765 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7766 { 7767 int ret; 7768 7769 struct rt_schedulable_data data = { 7770 .tg = tg, 7771 .rt_period = period, 7772 .rt_runtime = runtime, 7773 }; 7774 7775 rcu_read_lock(); 7776 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7777 rcu_read_unlock(); 7778 7779 return ret; 7780 } 7781 7782 static int tg_set_rt_bandwidth(struct task_group *tg, 7783 u64 rt_period, u64 rt_runtime) 7784 { 7785 int i, err = 0; 7786 7787 /* 7788 * Disallowing the root group RT runtime is BAD, it would disallow the 7789 * kernel creating (and or operating) RT threads. 7790 */ 7791 if (tg == &root_task_group && rt_runtime == 0) 7792 return -EINVAL; 7793 7794 /* No period doesn't make any sense. */ 7795 if (rt_period == 0) 7796 return -EINVAL; 7797 7798 mutex_lock(&rt_constraints_mutex); 7799 read_lock(&tasklist_lock); 7800 err = __rt_schedulable(tg, rt_period, rt_runtime); 7801 if (err) 7802 goto unlock; 7803 7804 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7805 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7806 tg->rt_bandwidth.rt_runtime = rt_runtime; 7807 7808 for_each_possible_cpu(i) { 7809 struct rt_rq *rt_rq = tg->rt_rq[i]; 7810 7811 raw_spin_lock(&rt_rq->rt_runtime_lock); 7812 rt_rq->rt_runtime = rt_runtime; 7813 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7814 } 7815 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7816 unlock: 7817 read_unlock(&tasklist_lock); 7818 mutex_unlock(&rt_constraints_mutex); 7819 7820 return err; 7821 } 7822 7823 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7824 { 7825 u64 rt_runtime, rt_period; 7826 7827 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7828 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7829 if (rt_runtime_us < 0) 7830 rt_runtime = RUNTIME_INF; 7831 7832 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7833 } 7834 7835 static long sched_group_rt_runtime(struct task_group *tg) 7836 { 7837 u64 rt_runtime_us; 7838 7839 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7840 return -1; 7841 7842 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7843 do_div(rt_runtime_us, NSEC_PER_USEC); 7844 return rt_runtime_us; 7845 } 7846 7847 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 7848 { 7849 u64 rt_runtime, rt_period; 7850 7851 rt_period = rt_period_us * NSEC_PER_USEC; 7852 rt_runtime = tg->rt_bandwidth.rt_runtime; 7853 7854 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7855 } 7856 7857 static long sched_group_rt_period(struct task_group *tg) 7858 { 7859 u64 rt_period_us; 7860 7861 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7862 do_div(rt_period_us, NSEC_PER_USEC); 7863 return rt_period_us; 7864 } 7865 #endif /* CONFIG_RT_GROUP_SCHED */ 7866 7867 #ifdef CONFIG_RT_GROUP_SCHED 7868 static int sched_rt_global_constraints(void) 7869 { 7870 int ret = 0; 7871 7872 mutex_lock(&rt_constraints_mutex); 7873 read_lock(&tasklist_lock); 7874 ret = __rt_schedulable(NULL, 0, 0); 7875 read_unlock(&tasklist_lock); 7876 mutex_unlock(&rt_constraints_mutex); 7877 7878 return ret; 7879 } 7880 7881 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7882 { 7883 /* Don't accept realtime tasks when there is no way for them to run */ 7884 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7885 return 0; 7886 7887 return 1; 7888 } 7889 7890 #else /* !CONFIG_RT_GROUP_SCHED */ 7891 static int sched_rt_global_constraints(void) 7892 { 7893 unsigned long flags; 7894 int i, ret = 0; 7895 7896 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7897 for_each_possible_cpu(i) { 7898 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7899 7900 raw_spin_lock(&rt_rq->rt_runtime_lock); 7901 rt_rq->rt_runtime = global_rt_runtime(); 7902 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7903 } 7904 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7905 7906 return ret; 7907 } 7908 #endif /* CONFIG_RT_GROUP_SCHED */ 7909 7910 static int sched_dl_global_validate(void) 7911 { 7912 u64 runtime = global_rt_runtime(); 7913 u64 period = global_rt_period(); 7914 u64 new_bw = to_ratio(period, runtime); 7915 struct dl_bw *dl_b; 7916 int cpu, ret = 0; 7917 unsigned long flags; 7918 7919 /* 7920 * Here we want to check the bandwidth not being set to some 7921 * value smaller than the currently allocated bandwidth in 7922 * any of the root_domains. 7923 * 7924 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7925 * cycling on root_domains... Discussion on different/better 7926 * solutions is welcome! 7927 */ 7928 for_each_possible_cpu(cpu) { 7929 rcu_read_lock_sched(); 7930 dl_b = dl_bw_of(cpu); 7931 7932 raw_spin_lock_irqsave(&dl_b->lock, flags); 7933 if (new_bw < dl_b->total_bw) 7934 ret = -EBUSY; 7935 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7936 7937 rcu_read_unlock_sched(); 7938 7939 if (ret) 7940 break; 7941 } 7942 7943 return ret; 7944 } 7945 7946 static void sched_dl_do_global(void) 7947 { 7948 u64 new_bw = -1; 7949 struct dl_bw *dl_b; 7950 int cpu; 7951 unsigned long flags; 7952 7953 def_dl_bandwidth.dl_period = global_rt_period(); 7954 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7955 7956 if (global_rt_runtime() != RUNTIME_INF) 7957 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7958 7959 /* 7960 * FIXME: As above... 7961 */ 7962 for_each_possible_cpu(cpu) { 7963 rcu_read_lock_sched(); 7964 dl_b = dl_bw_of(cpu); 7965 7966 raw_spin_lock_irqsave(&dl_b->lock, flags); 7967 dl_b->bw = new_bw; 7968 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7969 7970 rcu_read_unlock_sched(); 7971 } 7972 } 7973 7974 static int sched_rt_global_validate(void) 7975 { 7976 if (sysctl_sched_rt_period <= 0) 7977 return -EINVAL; 7978 7979 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7980 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7981 return -EINVAL; 7982 7983 return 0; 7984 } 7985 7986 static void sched_rt_do_global(void) 7987 { 7988 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7989 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7990 } 7991 7992 int sched_rt_handler(struct ctl_table *table, int write, 7993 void __user *buffer, size_t *lenp, 7994 loff_t *ppos) 7995 { 7996 int old_period, old_runtime; 7997 static DEFINE_MUTEX(mutex); 7998 int ret; 7999 8000 mutex_lock(&mutex); 8001 old_period = sysctl_sched_rt_period; 8002 old_runtime = sysctl_sched_rt_runtime; 8003 8004 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8005 8006 if (!ret && write) { 8007 ret = sched_rt_global_validate(); 8008 if (ret) 8009 goto undo; 8010 8011 ret = sched_dl_global_validate(); 8012 if (ret) 8013 goto undo; 8014 8015 ret = sched_rt_global_constraints(); 8016 if (ret) 8017 goto undo; 8018 8019 sched_rt_do_global(); 8020 sched_dl_do_global(); 8021 } 8022 if (0) { 8023 undo: 8024 sysctl_sched_rt_period = old_period; 8025 sysctl_sched_rt_runtime = old_runtime; 8026 } 8027 mutex_unlock(&mutex); 8028 8029 return ret; 8030 } 8031 8032 int sched_rr_handler(struct ctl_table *table, int write, 8033 void __user *buffer, size_t *lenp, 8034 loff_t *ppos) 8035 { 8036 int ret; 8037 static DEFINE_MUTEX(mutex); 8038 8039 mutex_lock(&mutex); 8040 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8041 /* make sure that internally we keep jiffies */ 8042 /* also, writing zero resets timeslice to default */ 8043 if (!ret && write) { 8044 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 8045 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 8046 } 8047 mutex_unlock(&mutex); 8048 return ret; 8049 } 8050 8051 #ifdef CONFIG_CGROUP_SCHED 8052 8053 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8054 { 8055 return css ? container_of(css, struct task_group, css) : NULL; 8056 } 8057 8058 static struct cgroup_subsys_state * 8059 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8060 { 8061 struct task_group *parent = css_tg(parent_css); 8062 struct task_group *tg; 8063 8064 if (!parent) { 8065 /* This is early initialization for the top cgroup */ 8066 return &root_task_group.css; 8067 } 8068 8069 tg = sched_create_group(parent); 8070 if (IS_ERR(tg)) 8071 return ERR_PTR(-ENOMEM); 8072 8073 sched_online_group(tg, parent); 8074 8075 return &tg->css; 8076 } 8077 8078 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8079 { 8080 struct task_group *tg = css_tg(css); 8081 8082 sched_offline_group(tg); 8083 } 8084 8085 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8086 { 8087 struct task_group *tg = css_tg(css); 8088 8089 /* 8090 * Relies on the RCU grace period between css_released() and this. 8091 */ 8092 sched_free_group(tg); 8093 } 8094 8095 static void cpu_cgroup_fork(struct task_struct *task) 8096 { 8097 sched_move_task(task); 8098 } 8099 8100 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8101 { 8102 struct task_struct *task; 8103 struct cgroup_subsys_state *css; 8104 8105 cgroup_taskset_for_each(task, css, tset) { 8106 #ifdef CONFIG_RT_GROUP_SCHED 8107 if (!sched_rt_can_attach(css_tg(css), task)) 8108 return -EINVAL; 8109 #else 8110 /* We don't support RT-tasks being in separate groups */ 8111 if (task->sched_class != &fair_sched_class) 8112 return -EINVAL; 8113 #endif 8114 } 8115 return 0; 8116 } 8117 8118 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8119 { 8120 struct task_struct *task; 8121 struct cgroup_subsys_state *css; 8122 8123 cgroup_taskset_for_each(task, css, tset) 8124 sched_move_task(task); 8125 } 8126 8127 #ifdef CONFIG_FAIR_GROUP_SCHED 8128 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8129 struct cftype *cftype, u64 shareval) 8130 { 8131 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8132 } 8133 8134 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8135 struct cftype *cft) 8136 { 8137 struct task_group *tg = css_tg(css); 8138 8139 return (u64) scale_load_down(tg->shares); 8140 } 8141 8142 #ifdef CONFIG_CFS_BANDWIDTH 8143 static DEFINE_MUTEX(cfs_constraints_mutex); 8144 8145 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8146 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8147 8148 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8149 8150 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8151 { 8152 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8153 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8154 8155 if (tg == &root_task_group) 8156 return -EINVAL; 8157 8158 /* 8159 * Ensure we have at some amount of bandwidth every period. This is 8160 * to prevent reaching a state of large arrears when throttled via 8161 * entity_tick() resulting in prolonged exit starvation. 8162 */ 8163 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8164 return -EINVAL; 8165 8166 /* 8167 * Likewise, bound things on the otherside by preventing insane quota 8168 * periods. This also allows us to normalize in computing quota 8169 * feasibility. 8170 */ 8171 if (period > max_cfs_quota_period) 8172 return -EINVAL; 8173 8174 /* 8175 * Prevent race between setting of cfs_rq->runtime_enabled and 8176 * unthrottle_offline_cfs_rqs(). 8177 */ 8178 get_online_cpus(); 8179 mutex_lock(&cfs_constraints_mutex); 8180 ret = __cfs_schedulable(tg, period, quota); 8181 if (ret) 8182 goto out_unlock; 8183 8184 runtime_enabled = quota != RUNTIME_INF; 8185 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8186 /* 8187 * If we need to toggle cfs_bandwidth_used, off->on must occur 8188 * before making related changes, and on->off must occur afterwards 8189 */ 8190 if (runtime_enabled && !runtime_was_enabled) 8191 cfs_bandwidth_usage_inc(); 8192 raw_spin_lock_irq(&cfs_b->lock); 8193 cfs_b->period = ns_to_ktime(period); 8194 cfs_b->quota = quota; 8195 8196 __refill_cfs_bandwidth_runtime(cfs_b); 8197 /* restart the period timer (if active) to handle new period expiry */ 8198 if (runtime_enabled) 8199 start_cfs_bandwidth(cfs_b); 8200 raw_spin_unlock_irq(&cfs_b->lock); 8201 8202 for_each_online_cpu(i) { 8203 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8204 struct rq *rq = cfs_rq->rq; 8205 8206 raw_spin_lock_irq(&rq->lock); 8207 cfs_rq->runtime_enabled = runtime_enabled; 8208 cfs_rq->runtime_remaining = 0; 8209 8210 if (cfs_rq->throttled) 8211 unthrottle_cfs_rq(cfs_rq); 8212 raw_spin_unlock_irq(&rq->lock); 8213 } 8214 if (runtime_was_enabled && !runtime_enabled) 8215 cfs_bandwidth_usage_dec(); 8216 out_unlock: 8217 mutex_unlock(&cfs_constraints_mutex); 8218 put_online_cpus(); 8219 8220 return ret; 8221 } 8222 8223 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8224 { 8225 u64 quota, period; 8226 8227 period = ktime_to_ns(tg->cfs_bandwidth.period); 8228 if (cfs_quota_us < 0) 8229 quota = RUNTIME_INF; 8230 else 8231 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8232 8233 return tg_set_cfs_bandwidth(tg, period, quota); 8234 } 8235 8236 long tg_get_cfs_quota(struct task_group *tg) 8237 { 8238 u64 quota_us; 8239 8240 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8241 return -1; 8242 8243 quota_us = tg->cfs_bandwidth.quota; 8244 do_div(quota_us, NSEC_PER_USEC); 8245 8246 return quota_us; 8247 } 8248 8249 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8250 { 8251 u64 quota, period; 8252 8253 period = (u64)cfs_period_us * NSEC_PER_USEC; 8254 quota = tg->cfs_bandwidth.quota; 8255 8256 return tg_set_cfs_bandwidth(tg, period, quota); 8257 } 8258 8259 long tg_get_cfs_period(struct task_group *tg) 8260 { 8261 u64 cfs_period_us; 8262 8263 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8264 do_div(cfs_period_us, NSEC_PER_USEC); 8265 8266 return cfs_period_us; 8267 } 8268 8269 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8270 struct cftype *cft) 8271 { 8272 return tg_get_cfs_quota(css_tg(css)); 8273 } 8274 8275 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8276 struct cftype *cftype, s64 cfs_quota_us) 8277 { 8278 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8279 } 8280 8281 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8282 struct cftype *cft) 8283 { 8284 return tg_get_cfs_period(css_tg(css)); 8285 } 8286 8287 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8288 struct cftype *cftype, u64 cfs_period_us) 8289 { 8290 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8291 } 8292 8293 struct cfs_schedulable_data { 8294 struct task_group *tg; 8295 u64 period, quota; 8296 }; 8297 8298 /* 8299 * normalize group quota/period to be quota/max_period 8300 * note: units are usecs 8301 */ 8302 static u64 normalize_cfs_quota(struct task_group *tg, 8303 struct cfs_schedulable_data *d) 8304 { 8305 u64 quota, period; 8306 8307 if (tg == d->tg) { 8308 period = d->period; 8309 quota = d->quota; 8310 } else { 8311 period = tg_get_cfs_period(tg); 8312 quota = tg_get_cfs_quota(tg); 8313 } 8314 8315 /* note: these should typically be equivalent */ 8316 if (quota == RUNTIME_INF || quota == -1) 8317 return RUNTIME_INF; 8318 8319 return to_ratio(period, quota); 8320 } 8321 8322 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8323 { 8324 struct cfs_schedulable_data *d = data; 8325 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8326 s64 quota = 0, parent_quota = -1; 8327 8328 if (!tg->parent) { 8329 quota = RUNTIME_INF; 8330 } else { 8331 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8332 8333 quota = normalize_cfs_quota(tg, d); 8334 parent_quota = parent_b->hierarchical_quota; 8335 8336 /* 8337 * ensure max(child_quota) <= parent_quota, inherit when no 8338 * limit is set 8339 */ 8340 if (quota == RUNTIME_INF) 8341 quota = parent_quota; 8342 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8343 return -EINVAL; 8344 } 8345 cfs_b->hierarchical_quota = quota; 8346 8347 return 0; 8348 } 8349 8350 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8351 { 8352 int ret; 8353 struct cfs_schedulable_data data = { 8354 .tg = tg, 8355 .period = period, 8356 .quota = quota, 8357 }; 8358 8359 if (quota != RUNTIME_INF) { 8360 do_div(data.period, NSEC_PER_USEC); 8361 do_div(data.quota, NSEC_PER_USEC); 8362 } 8363 8364 rcu_read_lock(); 8365 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8366 rcu_read_unlock(); 8367 8368 return ret; 8369 } 8370 8371 static int cpu_stats_show(struct seq_file *sf, void *v) 8372 { 8373 struct task_group *tg = css_tg(seq_css(sf)); 8374 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8375 8376 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8377 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8378 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8379 8380 return 0; 8381 } 8382 #endif /* CONFIG_CFS_BANDWIDTH */ 8383 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8384 8385 #ifdef CONFIG_RT_GROUP_SCHED 8386 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8387 struct cftype *cft, s64 val) 8388 { 8389 return sched_group_set_rt_runtime(css_tg(css), val); 8390 } 8391 8392 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8393 struct cftype *cft) 8394 { 8395 return sched_group_rt_runtime(css_tg(css)); 8396 } 8397 8398 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8399 struct cftype *cftype, u64 rt_period_us) 8400 { 8401 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8402 } 8403 8404 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8405 struct cftype *cft) 8406 { 8407 return sched_group_rt_period(css_tg(css)); 8408 } 8409 #endif /* CONFIG_RT_GROUP_SCHED */ 8410 8411 static struct cftype cpu_files[] = { 8412 #ifdef CONFIG_FAIR_GROUP_SCHED 8413 { 8414 .name = "shares", 8415 .read_u64 = cpu_shares_read_u64, 8416 .write_u64 = cpu_shares_write_u64, 8417 }, 8418 #endif 8419 #ifdef CONFIG_CFS_BANDWIDTH 8420 { 8421 .name = "cfs_quota_us", 8422 .read_s64 = cpu_cfs_quota_read_s64, 8423 .write_s64 = cpu_cfs_quota_write_s64, 8424 }, 8425 { 8426 .name = "cfs_period_us", 8427 .read_u64 = cpu_cfs_period_read_u64, 8428 .write_u64 = cpu_cfs_period_write_u64, 8429 }, 8430 { 8431 .name = "stat", 8432 .seq_show = cpu_stats_show, 8433 }, 8434 #endif 8435 #ifdef CONFIG_RT_GROUP_SCHED 8436 { 8437 .name = "rt_runtime_us", 8438 .read_s64 = cpu_rt_runtime_read, 8439 .write_s64 = cpu_rt_runtime_write, 8440 }, 8441 { 8442 .name = "rt_period_us", 8443 .read_u64 = cpu_rt_period_read_uint, 8444 .write_u64 = cpu_rt_period_write_uint, 8445 }, 8446 #endif 8447 { } /* terminate */ 8448 }; 8449 8450 struct cgroup_subsys cpu_cgrp_subsys = { 8451 .css_alloc = cpu_cgroup_css_alloc, 8452 .css_released = cpu_cgroup_css_released, 8453 .css_free = cpu_cgroup_css_free, 8454 .fork = cpu_cgroup_fork, 8455 .can_attach = cpu_cgroup_can_attach, 8456 .attach = cpu_cgroup_attach, 8457 .legacy_cftypes = cpu_files, 8458 .early_init = true, 8459 }; 8460 8461 #endif /* CONFIG_CGROUP_SCHED */ 8462 8463 void dump_cpu_task(int cpu) 8464 { 8465 pr_info("Task dump for CPU %d:\n", cpu); 8466 sched_show_task(cpu_curr(cpu)); 8467 } 8468 8469 /* 8470 * Nice levels are multiplicative, with a gentle 10% change for every 8471 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 8472 * nice 1, it will get ~10% less CPU time than another CPU-bound task 8473 * that remained on nice 0. 8474 * 8475 * The "10% effect" is relative and cumulative: from _any_ nice level, 8476 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 8477 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 8478 * If a task goes up by ~10% and another task goes down by ~10% then 8479 * the relative distance between them is ~25%.) 8480 */ 8481 const int sched_prio_to_weight[40] = { 8482 /* -20 */ 88761, 71755, 56483, 46273, 36291, 8483 /* -15 */ 29154, 23254, 18705, 14949, 11916, 8484 /* -10 */ 9548, 7620, 6100, 4904, 3906, 8485 /* -5 */ 3121, 2501, 1991, 1586, 1277, 8486 /* 0 */ 1024, 820, 655, 526, 423, 8487 /* 5 */ 335, 272, 215, 172, 137, 8488 /* 10 */ 110, 87, 70, 56, 45, 8489 /* 15 */ 36, 29, 23, 18, 15, 8490 }; 8491 8492 /* 8493 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 8494 * 8495 * In cases where the weight does not change often, we can use the 8496 * precalculated inverse to speed up arithmetics by turning divisions 8497 * into multiplications: 8498 */ 8499 const u32 sched_prio_to_wmult[40] = { 8500 /* -20 */ 48388, 59856, 76040, 92818, 118348, 8501 /* -15 */ 147320, 184698, 229616, 287308, 360437, 8502 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 8503 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 8504 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 8505 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 8506 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 8507 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 8508 }; 8509