xref: /linux/kernel/sched/core.c (revision 0da908c291070d89482f6211dbe81d4d43c3f7cb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #undef CREATE_TRACE_POINTS
84 
85 #include "sched.h"
86 #include "stats.h"
87 #include "autogroup.h"
88 
89 #include "autogroup.h"
90 #include "pelt.h"
91 #include "smp.h"
92 #include "stats.h"
93 
94 #include "../workqueue_internal.h"
95 #include "../../io_uring/io-wq.h"
96 #include "../smpboot.h"
97 
98 /*
99  * Export tracepoints that act as a bare tracehook (ie: have no trace event
100  * associated with them) to allow external modules to probe them.
101  */
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
113 
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 #ifdef CONFIG_SCHED_DEBUG
117 /*
118  * Debugging: various feature bits
119  *
120  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
121  * sysctl_sched_features, defined in sched.h, to allow constants propagation
122  * at compile time and compiler optimization based on features default.
123  */
124 #define SCHED_FEAT(name, enabled)	\
125 	(1UL << __SCHED_FEAT_##name) * enabled |
126 const_debug unsigned int sysctl_sched_features =
127 #include "features.h"
128 	0;
129 #undef SCHED_FEAT
130 
131 /*
132  * Print a warning if need_resched is set for the given duration (if
133  * LATENCY_WARN is enabled).
134  *
135  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
136  * per boot.
137  */
138 __read_mostly int sysctl_resched_latency_warn_ms = 100;
139 __read_mostly int sysctl_resched_latency_warn_once = 1;
140 #endif /* CONFIG_SCHED_DEBUG */
141 
142 /*
143  * Number of tasks to iterate in a single balance run.
144  * Limited because this is done with IRQs disabled.
145  */
146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
147 
148 __read_mostly int scheduler_running;
149 
150 #ifdef CONFIG_SCHED_CORE
151 
152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
153 
154 /* kernel prio, less is more */
155 static inline int __task_prio(struct task_struct *p)
156 {
157 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
158 		return -2;
159 
160 	if (rt_prio(p->prio)) /* includes deadline */
161 		return p->prio; /* [-1, 99] */
162 
163 	if (p->sched_class == &idle_sched_class)
164 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
165 
166 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
167 }
168 
169 /*
170  * l(a,b)
171  * le(a,b) := !l(b,a)
172  * g(a,b)  := l(b,a)
173  * ge(a,b) := !l(a,b)
174  */
175 
176 /* real prio, less is less */
177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
178 {
179 
180 	int pa = __task_prio(a), pb = __task_prio(b);
181 
182 	if (-pa < -pb)
183 		return true;
184 
185 	if (-pb < -pa)
186 		return false;
187 
188 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
189 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
190 
191 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
192 		return cfs_prio_less(a, b, in_fi);
193 
194 	return false;
195 }
196 
197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
198 {
199 	if (a->core_cookie < b->core_cookie)
200 		return true;
201 
202 	if (a->core_cookie > b->core_cookie)
203 		return false;
204 
205 	/* flip prio, so high prio is leftmost */
206 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
207 		return true;
208 
209 	return false;
210 }
211 
212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
213 
214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
215 {
216 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
217 }
218 
219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
220 {
221 	const struct task_struct *p = __node_2_sc(node);
222 	unsigned long cookie = (unsigned long)key;
223 
224 	if (cookie < p->core_cookie)
225 		return -1;
226 
227 	if (cookie > p->core_cookie)
228 		return 1;
229 
230 	return 0;
231 }
232 
233 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
234 {
235 	rq->core->core_task_seq++;
236 
237 	if (!p->core_cookie)
238 		return;
239 
240 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
241 }
242 
243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
244 {
245 	rq->core->core_task_seq++;
246 
247 	if (sched_core_enqueued(p)) {
248 		rb_erase(&p->core_node, &rq->core_tree);
249 		RB_CLEAR_NODE(&p->core_node);
250 	}
251 
252 	/*
253 	 * Migrating the last task off the cpu, with the cpu in forced idle
254 	 * state. Reschedule to create an accounting edge for forced idle,
255 	 * and re-examine whether the core is still in forced idle state.
256 	 */
257 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
258 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
259 		resched_curr(rq);
260 }
261 
262 /*
263  * Find left-most (aka, highest priority) task matching @cookie.
264  */
265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
266 {
267 	struct rb_node *node;
268 
269 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
270 	/*
271 	 * The idle task always matches any cookie!
272 	 */
273 	if (!node)
274 		return idle_sched_class.pick_task(rq);
275 
276 	return __node_2_sc(node);
277 }
278 
279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
280 {
281 	struct rb_node *node = &p->core_node;
282 
283 	node = rb_next(node);
284 	if (!node)
285 		return NULL;
286 
287 	p = container_of(node, struct task_struct, core_node);
288 	if (p->core_cookie != cookie)
289 		return NULL;
290 
291 	return p;
292 }
293 
294 /*
295  * Magic required such that:
296  *
297  *	raw_spin_rq_lock(rq);
298  *	...
299  *	raw_spin_rq_unlock(rq);
300  *
301  * ends up locking and unlocking the _same_ lock, and all CPUs
302  * always agree on what rq has what lock.
303  *
304  * XXX entirely possible to selectively enable cores, don't bother for now.
305  */
306 
307 static DEFINE_MUTEX(sched_core_mutex);
308 static atomic_t sched_core_count;
309 static struct cpumask sched_core_mask;
310 
311 static void sched_core_lock(int cpu, unsigned long *flags)
312 {
313 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
314 	int t, i = 0;
315 
316 	local_irq_save(*flags);
317 	for_each_cpu(t, smt_mask)
318 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
319 }
320 
321 static void sched_core_unlock(int cpu, unsigned long *flags)
322 {
323 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
324 	int t;
325 
326 	for_each_cpu(t, smt_mask)
327 		raw_spin_unlock(&cpu_rq(t)->__lock);
328 	local_irq_restore(*flags);
329 }
330 
331 static void __sched_core_flip(bool enabled)
332 {
333 	unsigned long flags;
334 	int cpu, t;
335 
336 	cpus_read_lock();
337 
338 	/*
339 	 * Toggle the online cores, one by one.
340 	 */
341 	cpumask_copy(&sched_core_mask, cpu_online_mask);
342 	for_each_cpu(cpu, &sched_core_mask) {
343 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
344 
345 		sched_core_lock(cpu, &flags);
346 
347 		for_each_cpu(t, smt_mask)
348 			cpu_rq(t)->core_enabled = enabled;
349 
350 		cpu_rq(cpu)->core->core_forceidle_start = 0;
351 
352 		sched_core_unlock(cpu, &flags);
353 
354 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
355 	}
356 
357 	/*
358 	 * Toggle the offline CPUs.
359 	 */
360 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
361 		cpu_rq(cpu)->core_enabled = enabled;
362 
363 	cpus_read_unlock();
364 }
365 
366 static void sched_core_assert_empty(void)
367 {
368 	int cpu;
369 
370 	for_each_possible_cpu(cpu)
371 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
372 }
373 
374 static void __sched_core_enable(void)
375 {
376 	static_branch_enable(&__sched_core_enabled);
377 	/*
378 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
379 	 * and future ones will observe !sched_core_disabled().
380 	 */
381 	synchronize_rcu();
382 	__sched_core_flip(true);
383 	sched_core_assert_empty();
384 }
385 
386 static void __sched_core_disable(void)
387 {
388 	sched_core_assert_empty();
389 	__sched_core_flip(false);
390 	static_branch_disable(&__sched_core_enabled);
391 }
392 
393 void sched_core_get(void)
394 {
395 	if (atomic_inc_not_zero(&sched_core_count))
396 		return;
397 
398 	mutex_lock(&sched_core_mutex);
399 	if (!atomic_read(&sched_core_count))
400 		__sched_core_enable();
401 
402 	smp_mb__before_atomic();
403 	atomic_inc(&sched_core_count);
404 	mutex_unlock(&sched_core_mutex);
405 }
406 
407 static void __sched_core_put(struct work_struct *work)
408 {
409 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
410 		__sched_core_disable();
411 		mutex_unlock(&sched_core_mutex);
412 	}
413 }
414 
415 void sched_core_put(void)
416 {
417 	static DECLARE_WORK(_work, __sched_core_put);
418 
419 	/*
420 	 * "There can be only one"
421 	 *
422 	 * Either this is the last one, or we don't actually need to do any
423 	 * 'work'. If it is the last *again*, we rely on
424 	 * WORK_STRUCT_PENDING_BIT.
425 	 */
426 	if (!atomic_add_unless(&sched_core_count, -1, 1))
427 		schedule_work(&_work);
428 }
429 
430 #else /* !CONFIG_SCHED_CORE */
431 
432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
433 static inline void
434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
435 
436 #endif /* CONFIG_SCHED_CORE */
437 
438 /*
439  * Serialization rules:
440  *
441  * Lock order:
442  *
443  *   p->pi_lock
444  *     rq->lock
445  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
446  *
447  *  rq1->lock
448  *    rq2->lock  where: rq1 < rq2
449  *
450  * Regular state:
451  *
452  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
453  * local CPU's rq->lock, it optionally removes the task from the runqueue and
454  * always looks at the local rq data structures to find the most eligible task
455  * to run next.
456  *
457  * Task enqueue is also under rq->lock, possibly taken from another CPU.
458  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
459  * the local CPU to avoid bouncing the runqueue state around [ see
460  * ttwu_queue_wakelist() ]
461  *
462  * Task wakeup, specifically wakeups that involve migration, are horribly
463  * complicated to avoid having to take two rq->locks.
464  *
465  * Special state:
466  *
467  * System-calls and anything external will use task_rq_lock() which acquires
468  * both p->pi_lock and rq->lock. As a consequence the state they change is
469  * stable while holding either lock:
470  *
471  *  - sched_setaffinity()/
472  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
473  *  - set_user_nice():		p->se.load, p->*prio
474  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
475  *				p->se.load, p->rt_priority,
476  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
477  *  - sched_setnuma():		p->numa_preferred_nid
478  *  - sched_move_task():	p->sched_task_group
479  *  - uclamp_update_active()	p->uclamp*
480  *
481  * p->state <- TASK_*:
482  *
483  *   is changed locklessly using set_current_state(), __set_current_state() or
484  *   set_special_state(), see their respective comments, or by
485  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
486  *   concurrent self.
487  *
488  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
489  *
490  *   is set by activate_task() and cleared by deactivate_task(), under
491  *   rq->lock. Non-zero indicates the task is runnable, the special
492  *   ON_RQ_MIGRATING state is used for migration without holding both
493  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
494  *
495  * p->on_cpu <- { 0, 1 }:
496  *
497  *   is set by prepare_task() and cleared by finish_task() such that it will be
498  *   set before p is scheduled-in and cleared after p is scheduled-out, both
499  *   under rq->lock. Non-zero indicates the task is running on its CPU.
500  *
501  *   [ The astute reader will observe that it is possible for two tasks on one
502  *     CPU to have ->on_cpu = 1 at the same time. ]
503  *
504  * task_cpu(p): is changed by set_task_cpu(), the rules are:
505  *
506  *  - Don't call set_task_cpu() on a blocked task:
507  *
508  *    We don't care what CPU we're not running on, this simplifies hotplug,
509  *    the CPU assignment of blocked tasks isn't required to be valid.
510  *
511  *  - for try_to_wake_up(), called under p->pi_lock:
512  *
513  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
514  *
515  *  - for migration called under rq->lock:
516  *    [ see task_on_rq_migrating() in task_rq_lock() ]
517  *
518  *    o move_queued_task()
519  *    o detach_task()
520  *
521  *  - for migration called under double_rq_lock():
522  *
523  *    o __migrate_swap_task()
524  *    o push_rt_task() / pull_rt_task()
525  *    o push_dl_task() / pull_dl_task()
526  *    o dl_task_offline_migration()
527  *
528  */
529 
530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
531 {
532 	raw_spinlock_t *lock;
533 
534 	/* Matches synchronize_rcu() in __sched_core_enable() */
535 	preempt_disable();
536 	if (sched_core_disabled()) {
537 		raw_spin_lock_nested(&rq->__lock, subclass);
538 		/* preempt_count *MUST* be > 1 */
539 		preempt_enable_no_resched();
540 		return;
541 	}
542 
543 	for (;;) {
544 		lock = __rq_lockp(rq);
545 		raw_spin_lock_nested(lock, subclass);
546 		if (likely(lock == __rq_lockp(rq))) {
547 			/* preempt_count *MUST* be > 1 */
548 			preempt_enable_no_resched();
549 			return;
550 		}
551 		raw_spin_unlock(lock);
552 	}
553 }
554 
555 bool raw_spin_rq_trylock(struct rq *rq)
556 {
557 	raw_spinlock_t *lock;
558 	bool ret;
559 
560 	/* Matches synchronize_rcu() in __sched_core_enable() */
561 	preempt_disable();
562 	if (sched_core_disabled()) {
563 		ret = raw_spin_trylock(&rq->__lock);
564 		preempt_enable();
565 		return ret;
566 	}
567 
568 	for (;;) {
569 		lock = __rq_lockp(rq);
570 		ret = raw_spin_trylock(lock);
571 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
572 			preempt_enable();
573 			return ret;
574 		}
575 		raw_spin_unlock(lock);
576 	}
577 }
578 
579 void raw_spin_rq_unlock(struct rq *rq)
580 {
581 	raw_spin_unlock(rq_lockp(rq));
582 }
583 
584 #ifdef CONFIG_SMP
585 /*
586  * double_rq_lock - safely lock two runqueues
587  */
588 void double_rq_lock(struct rq *rq1, struct rq *rq2)
589 {
590 	lockdep_assert_irqs_disabled();
591 
592 	if (rq_order_less(rq2, rq1))
593 		swap(rq1, rq2);
594 
595 	raw_spin_rq_lock(rq1);
596 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
597 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
598 
599 	double_rq_clock_clear_update(rq1, rq2);
600 }
601 #endif
602 
603 /*
604  * __task_rq_lock - lock the rq @p resides on.
605  */
606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
607 	__acquires(rq->lock)
608 {
609 	struct rq *rq;
610 
611 	lockdep_assert_held(&p->pi_lock);
612 
613 	for (;;) {
614 		rq = task_rq(p);
615 		raw_spin_rq_lock(rq);
616 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
617 			rq_pin_lock(rq, rf);
618 			return rq;
619 		}
620 		raw_spin_rq_unlock(rq);
621 
622 		while (unlikely(task_on_rq_migrating(p)))
623 			cpu_relax();
624 	}
625 }
626 
627 /*
628  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
629  */
630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
631 	__acquires(p->pi_lock)
632 	__acquires(rq->lock)
633 {
634 	struct rq *rq;
635 
636 	for (;;) {
637 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
638 		rq = task_rq(p);
639 		raw_spin_rq_lock(rq);
640 		/*
641 		 *	move_queued_task()		task_rq_lock()
642 		 *
643 		 *	ACQUIRE (rq->lock)
644 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
645 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
646 		 *	[S] ->cpu = new_cpu		[L] task_rq()
647 		 *					[L] ->on_rq
648 		 *	RELEASE (rq->lock)
649 		 *
650 		 * If we observe the old CPU in task_rq_lock(), the acquire of
651 		 * the old rq->lock will fully serialize against the stores.
652 		 *
653 		 * If we observe the new CPU in task_rq_lock(), the address
654 		 * dependency headed by '[L] rq = task_rq()' and the acquire
655 		 * will pair with the WMB to ensure we then also see migrating.
656 		 */
657 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
658 			rq_pin_lock(rq, rf);
659 			return rq;
660 		}
661 		raw_spin_rq_unlock(rq);
662 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
663 
664 		while (unlikely(task_on_rq_migrating(p)))
665 			cpu_relax();
666 	}
667 }
668 
669 /*
670  * RQ-clock updating methods:
671  */
672 
673 static void update_rq_clock_task(struct rq *rq, s64 delta)
674 {
675 /*
676  * In theory, the compile should just see 0 here, and optimize out the call
677  * to sched_rt_avg_update. But I don't trust it...
678  */
679 	s64 __maybe_unused steal = 0, irq_delta = 0;
680 
681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
682 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
683 
684 	/*
685 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
686 	 * this case when a previous update_rq_clock() happened inside a
687 	 * {soft,}irq region.
688 	 *
689 	 * When this happens, we stop ->clock_task and only update the
690 	 * prev_irq_time stamp to account for the part that fit, so that a next
691 	 * update will consume the rest. This ensures ->clock_task is
692 	 * monotonic.
693 	 *
694 	 * It does however cause some slight miss-attribution of {soft,}irq
695 	 * time, a more accurate solution would be to update the irq_time using
696 	 * the current rq->clock timestamp, except that would require using
697 	 * atomic ops.
698 	 */
699 	if (irq_delta > delta)
700 		irq_delta = delta;
701 
702 	rq->prev_irq_time += irq_delta;
703 	delta -= irq_delta;
704 	psi_account_irqtime(rq->curr, irq_delta);
705 #endif
706 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
707 	if (static_key_false((&paravirt_steal_rq_enabled))) {
708 		steal = paravirt_steal_clock(cpu_of(rq));
709 		steal -= rq->prev_steal_time_rq;
710 
711 		if (unlikely(steal > delta))
712 			steal = delta;
713 
714 		rq->prev_steal_time_rq += steal;
715 		delta -= steal;
716 	}
717 #endif
718 
719 	rq->clock_task += delta;
720 
721 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
722 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
723 		update_irq_load_avg(rq, irq_delta + steal);
724 #endif
725 	update_rq_clock_pelt(rq, delta);
726 }
727 
728 void update_rq_clock(struct rq *rq)
729 {
730 	s64 delta;
731 
732 	lockdep_assert_rq_held(rq);
733 
734 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
735 		return;
736 
737 #ifdef CONFIG_SCHED_DEBUG
738 	if (sched_feat(WARN_DOUBLE_CLOCK))
739 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
740 	rq->clock_update_flags |= RQCF_UPDATED;
741 #endif
742 
743 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
744 	if (delta < 0)
745 		return;
746 	rq->clock += delta;
747 	update_rq_clock_task(rq, delta);
748 }
749 
750 #ifdef CONFIG_SCHED_HRTICK
751 /*
752  * Use HR-timers to deliver accurate preemption points.
753  */
754 
755 static void hrtick_clear(struct rq *rq)
756 {
757 	if (hrtimer_active(&rq->hrtick_timer))
758 		hrtimer_cancel(&rq->hrtick_timer);
759 }
760 
761 /*
762  * High-resolution timer tick.
763  * Runs from hardirq context with interrupts disabled.
764  */
765 static enum hrtimer_restart hrtick(struct hrtimer *timer)
766 {
767 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
768 	struct rq_flags rf;
769 
770 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
771 
772 	rq_lock(rq, &rf);
773 	update_rq_clock(rq);
774 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
775 	rq_unlock(rq, &rf);
776 
777 	return HRTIMER_NORESTART;
778 }
779 
780 #ifdef CONFIG_SMP
781 
782 static void __hrtick_restart(struct rq *rq)
783 {
784 	struct hrtimer *timer = &rq->hrtick_timer;
785 	ktime_t time = rq->hrtick_time;
786 
787 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
788 }
789 
790 /*
791  * called from hardirq (IPI) context
792  */
793 static void __hrtick_start(void *arg)
794 {
795 	struct rq *rq = arg;
796 	struct rq_flags rf;
797 
798 	rq_lock(rq, &rf);
799 	__hrtick_restart(rq);
800 	rq_unlock(rq, &rf);
801 }
802 
803 /*
804  * Called to set the hrtick timer state.
805  *
806  * called with rq->lock held and irqs disabled
807  */
808 void hrtick_start(struct rq *rq, u64 delay)
809 {
810 	struct hrtimer *timer = &rq->hrtick_timer;
811 	s64 delta;
812 
813 	/*
814 	 * Don't schedule slices shorter than 10000ns, that just
815 	 * doesn't make sense and can cause timer DoS.
816 	 */
817 	delta = max_t(s64, delay, 10000LL);
818 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
819 
820 	if (rq == this_rq())
821 		__hrtick_restart(rq);
822 	else
823 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
824 }
825 
826 #else
827 /*
828  * Called to set the hrtick timer state.
829  *
830  * called with rq->lock held and irqs disabled
831  */
832 void hrtick_start(struct rq *rq, u64 delay)
833 {
834 	/*
835 	 * Don't schedule slices shorter than 10000ns, that just
836 	 * doesn't make sense. Rely on vruntime for fairness.
837 	 */
838 	delay = max_t(u64, delay, 10000LL);
839 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
840 		      HRTIMER_MODE_REL_PINNED_HARD);
841 }
842 
843 #endif /* CONFIG_SMP */
844 
845 static void hrtick_rq_init(struct rq *rq)
846 {
847 #ifdef CONFIG_SMP
848 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
849 #endif
850 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
851 	rq->hrtick_timer.function = hrtick;
852 }
853 #else	/* CONFIG_SCHED_HRTICK */
854 static inline void hrtick_clear(struct rq *rq)
855 {
856 }
857 
858 static inline void hrtick_rq_init(struct rq *rq)
859 {
860 }
861 #endif	/* CONFIG_SCHED_HRTICK */
862 
863 /*
864  * cmpxchg based fetch_or, macro so it works for different integer types
865  */
866 #define fetch_or(ptr, mask)						\
867 	({								\
868 		typeof(ptr) _ptr = (ptr);				\
869 		typeof(mask) _mask = (mask);				\
870 		typeof(*_ptr) _val = *_ptr;				\
871 									\
872 		do {							\
873 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
874 	_val;								\
875 })
876 
877 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
878 /*
879  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
880  * this avoids any races wrt polling state changes and thereby avoids
881  * spurious IPIs.
882  */
883 static inline bool set_nr_and_not_polling(struct task_struct *p)
884 {
885 	struct thread_info *ti = task_thread_info(p);
886 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
887 }
888 
889 /*
890  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
891  *
892  * If this returns true, then the idle task promises to call
893  * sched_ttwu_pending() and reschedule soon.
894  */
895 static bool set_nr_if_polling(struct task_struct *p)
896 {
897 	struct thread_info *ti = task_thread_info(p);
898 	typeof(ti->flags) val = READ_ONCE(ti->flags);
899 
900 	for (;;) {
901 		if (!(val & _TIF_POLLING_NRFLAG))
902 			return false;
903 		if (val & _TIF_NEED_RESCHED)
904 			return true;
905 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
906 			break;
907 	}
908 	return true;
909 }
910 
911 #else
912 static inline bool set_nr_and_not_polling(struct task_struct *p)
913 {
914 	set_tsk_need_resched(p);
915 	return true;
916 }
917 
918 #ifdef CONFIG_SMP
919 static inline bool set_nr_if_polling(struct task_struct *p)
920 {
921 	return false;
922 }
923 #endif
924 #endif
925 
926 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
927 {
928 	struct wake_q_node *node = &task->wake_q;
929 
930 	/*
931 	 * Atomically grab the task, if ->wake_q is !nil already it means
932 	 * it's already queued (either by us or someone else) and will get the
933 	 * wakeup due to that.
934 	 *
935 	 * In order to ensure that a pending wakeup will observe our pending
936 	 * state, even in the failed case, an explicit smp_mb() must be used.
937 	 */
938 	smp_mb__before_atomic();
939 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
940 		return false;
941 
942 	/*
943 	 * The head is context local, there can be no concurrency.
944 	 */
945 	*head->lastp = node;
946 	head->lastp = &node->next;
947 	return true;
948 }
949 
950 /**
951  * wake_q_add() - queue a wakeup for 'later' waking.
952  * @head: the wake_q_head to add @task to
953  * @task: the task to queue for 'later' wakeup
954  *
955  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
956  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
957  * instantly.
958  *
959  * This function must be used as-if it were wake_up_process(); IOW the task
960  * must be ready to be woken at this location.
961  */
962 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
963 {
964 	if (__wake_q_add(head, task))
965 		get_task_struct(task);
966 }
967 
968 /**
969  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
970  * @head: the wake_q_head to add @task to
971  * @task: the task to queue for 'later' wakeup
972  *
973  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
974  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
975  * instantly.
976  *
977  * This function must be used as-if it were wake_up_process(); IOW the task
978  * must be ready to be woken at this location.
979  *
980  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
981  * that already hold reference to @task can call the 'safe' version and trust
982  * wake_q to do the right thing depending whether or not the @task is already
983  * queued for wakeup.
984  */
985 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
986 {
987 	if (!__wake_q_add(head, task))
988 		put_task_struct(task);
989 }
990 
991 void wake_up_q(struct wake_q_head *head)
992 {
993 	struct wake_q_node *node = head->first;
994 
995 	while (node != WAKE_Q_TAIL) {
996 		struct task_struct *task;
997 
998 		task = container_of(node, struct task_struct, wake_q);
999 		/* Task can safely be re-inserted now: */
1000 		node = node->next;
1001 		task->wake_q.next = NULL;
1002 
1003 		/*
1004 		 * wake_up_process() executes a full barrier, which pairs with
1005 		 * the queueing in wake_q_add() so as not to miss wakeups.
1006 		 */
1007 		wake_up_process(task);
1008 		put_task_struct(task);
1009 	}
1010 }
1011 
1012 /*
1013  * resched_curr - mark rq's current task 'to be rescheduled now'.
1014  *
1015  * On UP this means the setting of the need_resched flag, on SMP it
1016  * might also involve a cross-CPU call to trigger the scheduler on
1017  * the target CPU.
1018  */
1019 void resched_curr(struct rq *rq)
1020 {
1021 	struct task_struct *curr = rq->curr;
1022 	int cpu;
1023 
1024 	lockdep_assert_rq_held(rq);
1025 
1026 	if (test_tsk_need_resched(curr))
1027 		return;
1028 
1029 	cpu = cpu_of(rq);
1030 
1031 	if (cpu == smp_processor_id()) {
1032 		set_tsk_need_resched(curr);
1033 		set_preempt_need_resched();
1034 		return;
1035 	}
1036 
1037 	if (set_nr_and_not_polling(curr))
1038 		smp_send_reschedule(cpu);
1039 	else
1040 		trace_sched_wake_idle_without_ipi(cpu);
1041 }
1042 
1043 void resched_cpu(int cpu)
1044 {
1045 	struct rq *rq = cpu_rq(cpu);
1046 	unsigned long flags;
1047 
1048 	raw_spin_rq_lock_irqsave(rq, flags);
1049 	if (cpu_online(cpu) || cpu == smp_processor_id())
1050 		resched_curr(rq);
1051 	raw_spin_rq_unlock_irqrestore(rq, flags);
1052 }
1053 
1054 #ifdef CONFIG_SMP
1055 #ifdef CONFIG_NO_HZ_COMMON
1056 /*
1057  * In the semi idle case, use the nearest busy CPU for migrating timers
1058  * from an idle CPU.  This is good for power-savings.
1059  *
1060  * We don't do similar optimization for completely idle system, as
1061  * selecting an idle CPU will add more delays to the timers than intended
1062  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1063  */
1064 int get_nohz_timer_target(void)
1065 {
1066 	int i, cpu = smp_processor_id(), default_cpu = -1;
1067 	struct sched_domain *sd;
1068 	const struct cpumask *hk_mask;
1069 
1070 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1071 		if (!idle_cpu(cpu))
1072 			return cpu;
1073 		default_cpu = cpu;
1074 	}
1075 
1076 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1077 
1078 	rcu_read_lock();
1079 	for_each_domain(cpu, sd) {
1080 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1081 			if (cpu == i)
1082 				continue;
1083 
1084 			if (!idle_cpu(i)) {
1085 				cpu = i;
1086 				goto unlock;
1087 			}
1088 		}
1089 	}
1090 
1091 	if (default_cpu == -1)
1092 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1093 	cpu = default_cpu;
1094 unlock:
1095 	rcu_read_unlock();
1096 	return cpu;
1097 }
1098 
1099 /*
1100  * When add_timer_on() enqueues a timer into the timer wheel of an
1101  * idle CPU then this timer might expire before the next timer event
1102  * which is scheduled to wake up that CPU. In case of a completely
1103  * idle system the next event might even be infinite time into the
1104  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1105  * leaves the inner idle loop so the newly added timer is taken into
1106  * account when the CPU goes back to idle and evaluates the timer
1107  * wheel for the next timer event.
1108  */
1109 static void wake_up_idle_cpu(int cpu)
1110 {
1111 	struct rq *rq = cpu_rq(cpu);
1112 
1113 	if (cpu == smp_processor_id())
1114 		return;
1115 
1116 	if (set_nr_and_not_polling(rq->idle))
1117 		smp_send_reschedule(cpu);
1118 	else
1119 		trace_sched_wake_idle_without_ipi(cpu);
1120 }
1121 
1122 static bool wake_up_full_nohz_cpu(int cpu)
1123 {
1124 	/*
1125 	 * We just need the target to call irq_exit() and re-evaluate
1126 	 * the next tick. The nohz full kick at least implies that.
1127 	 * If needed we can still optimize that later with an
1128 	 * empty IRQ.
1129 	 */
1130 	if (cpu_is_offline(cpu))
1131 		return true;  /* Don't try to wake offline CPUs. */
1132 	if (tick_nohz_full_cpu(cpu)) {
1133 		if (cpu != smp_processor_id() ||
1134 		    tick_nohz_tick_stopped())
1135 			tick_nohz_full_kick_cpu(cpu);
1136 		return true;
1137 	}
1138 
1139 	return false;
1140 }
1141 
1142 /*
1143  * Wake up the specified CPU.  If the CPU is going offline, it is the
1144  * caller's responsibility to deal with the lost wakeup, for example,
1145  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1146  */
1147 void wake_up_nohz_cpu(int cpu)
1148 {
1149 	if (!wake_up_full_nohz_cpu(cpu))
1150 		wake_up_idle_cpu(cpu);
1151 }
1152 
1153 static void nohz_csd_func(void *info)
1154 {
1155 	struct rq *rq = info;
1156 	int cpu = cpu_of(rq);
1157 	unsigned int flags;
1158 
1159 	/*
1160 	 * Release the rq::nohz_csd.
1161 	 */
1162 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1163 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1164 
1165 	rq->idle_balance = idle_cpu(cpu);
1166 	if (rq->idle_balance && !need_resched()) {
1167 		rq->nohz_idle_balance = flags;
1168 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1169 	}
1170 }
1171 
1172 #endif /* CONFIG_NO_HZ_COMMON */
1173 
1174 #ifdef CONFIG_NO_HZ_FULL
1175 bool sched_can_stop_tick(struct rq *rq)
1176 {
1177 	int fifo_nr_running;
1178 
1179 	/* Deadline tasks, even if single, need the tick */
1180 	if (rq->dl.dl_nr_running)
1181 		return false;
1182 
1183 	/*
1184 	 * If there are more than one RR tasks, we need the tick to affect the
1185 	 * actual RR behaviour.
1186 	 */
1187 	if (rq->rt.rr_nr_running) {
1188 		if (rq->rt.rr_nr_running == 1)
1189 			return true;
1190 		else
1191 			return false;
1192 	}
1193 
1194 	/*
1195 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1196 	 * forced preemption between FIFO tasks.
1197 	 */
1198 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1199 	if (fifo_nr_running)
1200 		return true;
1201 
1202 	/*
1203 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1204 	 * if there's more than one we need the tick for involuntary
1205 	 * preemption.
1206 	 */
1207 	if (rq->nr_running > 1)
1208 		return false;
1209 
1210 	return true;
1211 }
1212 #endif /* CONFIG_NO_HZ_FULL */
1213 #endif /* CONFIG_SMP */
1214 
1215 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1216 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1217 /*
1218  * Iterate task_group tree rooted at *from, calling @down when first entering a
1219  * node and @up when leaving it for the final time.
1220  *
1221  * Caller must hold rcu_lock or sufficient equivalent.
1222  */
1223 int walk_tg_tree_from(struct task_group *from,
1224 			     tg_visitor down, tg_visitor up, void *data)
1225 {
1226 	struct task_group *parent, *child;
1227 	int ret;
1228 
1229 	parent = from;
1230 
1231 down:
1232 	ret = (*down)(parent, data);
1233 	if (ret)
1234 		goto out;
1235 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1236 		parent = child;
1237 		goto down;
1238 
1239 up:
1240 		continue;
1241 	}
1242 	ret = (*up)(parent, data);
1243 	if (ret || parent == from)
1244 		goto out;
1245 
1246 	child = parent;
1247 	parent = parent->parent;
1248 	if (parent)
1249 		goto up;
1250 out:
1251 	return ret;
1252 }
1253 
1254 int tg_nop(struct task_group *tg, void *data)
1255 {
1256 	return 0;
1257 }
1258 #endif
1259 
1260 static void set_load_weight(struct task_struct *p, bool update_load)
1261 {
1262 	int prio = p->static_prio - MAX_RT_PRIO;
1263 	struct load_weight *load = &p->se.load;
1264 
1265 	/*
1266 	 * SCHED_IDLE tasks get minimal weight:
1267 	 */
1268 	if (task_has_idle_policy(p)) {
1269 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1270 		load->inv_weight = WMULT_IDLEPRIO;
1271 		return;
1272 	}
1273 
1274 	/*
1275 	 * SCHED_OTHER tasks have to update their load when changing their
1276 	 * weight
1277 	 */
1278 	if (update_load && p->sched_class == &fair_sched_class) {
1279 		reweight_task(p, prio);
1280 	} else {
1281 		load->weight = scale_load(sched_prio_to_weight[prio]);
1282 		load->inv_weight = sched_prio_to_wmult[prio];
1283 	}
1284 }
1285 
1286 #ifdef CONFIG_UCLAMP_TASK
1287 /*
1288  * Serializes updates of utilization clamp values
1289  *
1290  * The (slow-path) user-space triggers utilization clamp value updates which
1291  * can require updates on (fast-path) scheduler's data structures used to
1292  * support enqueue/dequeue operations.
1293  * While the per-CPU rq lock protects fast-path update operations, user-space
1294  * requests are serialized using a mutex to reduce the risk of conflicting
1295  * updates or API abuses.
1296  */
1297 static DEFINE_MUTEX(uclamp_mutex);
1298 
1299 /* Max allowed minimum utilization */
1300 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1301 
1302 /* Max allowed maximum utilization */
1303 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1304 
1305 /*
1306  * By default RT tasks run at the maximum performance point/capacity of the
1307  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1308  * SCHED_CAPACITY_SCALE.
1309  *
1310  * This knob allows admins to change the default behavior when uclamp is being
1311  * used. In battery powered devices, particularly, running at the maximum
1312  * capacity and frequency will increase energy consumption and shorten the
1313  * battery life.
1314  *
1315  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1316  *
1317  * This knob will not override the system default sched_util_clamp_min defined
1318  * above.
1319  */
1320 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1321 
1322 /* All clamps are required to be less or equal than these values */
1323 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1324 
1325 /*
1326  * This static key is used to reduce the uclamp overhead in the fast path. It
1327  * primarily disables the call to uclamp_rq_{inc, dec}() in
1328  * enqueue/dequeue_task().
1329  *
1330  * This allows users to continue to enable uclamp in their kernel config with
1331  * minimum uclamp overhead in the fast path.
1332  *
1333  * As soon as userspace modifies any of the uclamp knobs, the static key is
1334  * enabled, since we have an actual users that make use of uclamp
1335  * functionality.
1336  *
1337  * The knobs that would enable this static key are:
1338  *
1339  *   * A task modifying its uclamp value with sched_setattr().
1340  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1341  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1342  */
1343 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1344 
1345 /* Integer rounded range for each bucket */
1346 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1347 
1348 #define for_each_clamp_id(clamp_id) \
1349 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1350 
1351 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1352 {
1353 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1354 }
1355 
1356 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1357 {
1358 	if (clamp_id == UCLAMP_MIN)
1359 		return 0;
1360 	return SCHED_CAPACITY_SCALE;
1361 }
1362 
1363 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1364 				 unsigned int value, bool user_defined)
1365 {
1366 	uc_se->value = value;
1367 	uc_se->bucket_id = uclamp_bucket_id(value);
1368 	uc_se->user_defined = user_defined;
1369 }
1370 
1371 static inline unsigned int
1372 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1373 		  unsigned int clamp_value)
1374 {
1375 	/*
1376 	 * Avoid blocked utilization pushing up the frequency when we go
1377 	 * idle (which drops the max-clamp) by retaining the last known
1378 	 * max-clamp.
1379 	 */
1380 	if (clamp_id == UCLAMP_MAX) {
1381 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1382 		return clamp_value;
1383 	}
1384 
1385 	return uclamp_none(UCLAMP_MIN);
1386 }
1387 
1388 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1389 				     unsigned int clamp_value)
1390 {
1391 	/* Reset max-clamp retention only on idle exit */
1392 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1393 		return;
1394 
1395 	uclamp_rq_set(rq, clamp_id, clamp_value);
1396 }
1397 
1398 static inline
1399 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1400 				   unsigned int clamp_value)
1401 {
1402 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1403 	int bucket_id = UCLAMP_BUCKETS - 1;
1404 
1405 	/*
1406 	 * Since both min and max clamps are max aggregated, find the
1407 	 * top most bucket with tasks in.
1408 	 */
1409 	for ( ; bucket_id >= 0; bucket_id--) {
1410 		if (!bucket[bucket_id].tasks)
1411 			continue;
1412 		return bucket[bucket_id].value;
1413 	}
1414 
1415 	/* No tasks -- default clamp values */
1416 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1417 }
1418 
1419 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1420 {
1421 	unsigned int default_util_min;
1422 	struct uclamp_se *uc_se;
1423 
1424 	lockdep_assert_held(&p->pi_lock);
1425 
1426 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1427 
1428 	/* Only sync if user didn't override the default */
1429 	if (uc_se->user_defined)
1430 		return;
1431 
1432 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1433 	uclamp_se_set(uc_se, default_util_min, false);
1434 }
1435 
1436 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1437 {
1438 	struct rq_flags rf;
1439 	struct rq *rq;
1440 
1441 	if (!rt_task(p))
1442 		return;
1443 
1444 	/* Protect updates to p->uclamp_* */
1445 	rq = task_rq_lock(p, &rf);
1446 	__uclamp_update_util_min_rt_default(p);
1447 	task_rq_unlock(rq, p, &rf);
1448 }
1449 
1450 static inline struct uclamp_se
1451 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1452 {
1453 	/* Copy by value as we could modify it */
1454 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1455 #ifdef CONFIG_UCLAMP_TASK_GROUP
1456 	unsigned int tg_min, tg_max, value;
1457 
1458 	/*
1459 	 * Tasks in autogroups or root task group will be
1460 	 * restricted by system defaults.
1461 	 */
1462 	if (task_group_is_autogroup(task_group(p)))
1463 		return uc_req;
1464 	if (task_group(p) == &root_task_group)
1465 		return uc_req;
1466 
1467 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1468 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1469 	value = uc_req.value;
1470 	value = clamp(value, tg_min, tg_max);
1471 	uclamp_se_set(&uc_req, value, false);
1472 #endif
1473 
1474 	return uc_req;
1475 }
1476 
1477 /*
1478  * The effective clamp bucket index of a task depends on, by increasing
1479  * priority:
1480  * - the task specific clamp value, when explicitly requested from userspace
1481  * - the task group effective clamp value, for tasks not either in the root
1482  *   group or in an autogroup
1483  * - the system default clamp value, defined by the sysadmin
1484  */
1485 static inline struct uclamp_se
1486 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1487 {
1488 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1489 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1490 
1491 	/* System default restrictions always apply */
1492 	if (unlikely(uc_req.value > uc_max.value))
1493 		return uc_max;
1494 
1495 	return uc_req;
1496 }
1497 
1498 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1499 {
1500 	struct uclamp_se uc_eff;
1501 
1502 	/* Task currently refcounted: use back-annotated (effective) value */
1503 	if (p->uclamp[clamp_id].active)
1504 		return (unsigned long)p->uclamp[clamp_id].value;
1505 
1506 	uc_eff = uclamp_eff_get(p, clamp_id);
1507 
1508 	return (unsigned long)uc_eff.value;
1509 }
1510 
1511 /*
1512  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1513  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1514  * updates the rq's clamp value if required.
1515  *
1516  * Tasks can have a task-specific value requested from user-space, track
1517  * within each bucket the maximum value for tasks refcounted in it.
1518  * This "local max aggregation" allows to track the exact "requested" value
1519  * for each bucket when all its RUNNABLE tasks require the same clamp.
1520  */
1521 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1522 				    enum uclamp_id clamp_id)
1523 {
1524 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1525 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1526 	struct uclamp_bucket *bucket;
1527 
1528 	lockdep_assert_rq_held(rq);
1529 
1530 	/* Update task effective clamp */
1531 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1532 
1533 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1534 	bucket->tasks++;
1535 	uc_se->active = true;
1536 
1537 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1538 
1539 	/*
1540 	 * Local max aggregation: rq buckets always track the max
1541 	 * "requested" clamp value of its RUNNABLE tasks.
1542 	 */
1543 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1544 		bucket->value = uc_se->value;
1545 
1546 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1547 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1548 }
1549 
1550 /*
1551  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1552  * is released. If this is the last task reference counting the rq's max
1553  * active clamp value, then the rq's clamp value is updated.
1554  *
1555  * Both refcounted tasks and rq's cached clamp values are expected to be
1556  * always valid. If it's detected they are not, as defensive programming,
1557  * enforce the expected state and warn.
1558  */
1559 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1560 				    enum uclamp_id clamp_id)
1561 {
1562 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1563 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1564 	struct uclamp_bucket *bucket;
1565 	unsigned int bkt_clamp;
1566 	unsigned int rq_clamp;
1567 
1568 	lockdep_assert_rq_held(rq);
1569 
1570 	/*
1571 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1572 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1573 	 *
1574 	 * In this case the uc_se->active flag should be false since no uclamp
1575 	 * accounting was performed at enqueue time and we can just return
1576 	 * here.
1577 	 *
1578 	 * Need to be careful of the following enqueue/dequeue ordering
1579 	 * problem too
1580 	 *
1581 	 *	enqueue(taskA)
1582 	 *	// sched_uclamp_used gets enabled
1583 	 *	enqueue(taskB)
1584 	 *	dequeue(taskA)
1585 	 *	// Must not decrement bucket->tasks here
1586 	 *	dequeue(taskB)
1587 	 *
1588 	 * where we could end up with stale data in uc_se and
1589 	 * bucket[uc_se->bucket_id].
1590 	 *
1591 	 * The following check here eliminates the possibility of such race.
1592 	 */
1593 	if (unlikely(!uc_se->active))
1594 		return;
1595 
1596 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1597 
1598 	SCHED_WARN_ON(!bucket->tasks);
1599 	if (likely(bucket->tasks))
1600 		bucket->tasks--;
1601 
1602 	uc_se->active = false;
1603 
1604 	/*
1605 	 * Keep "local max aggregation" simple and accept to (possibly)
1606 	 * overboost some RUNNABLE tasks in the same bucket.
1607 	 * The rq clamp bucket value is reset to its base value whenever
1608 	 * there are no more RUNNABLE tasks refcounting it.
1609 	 */
1610 	if (likely(bucket->tasks))
1611 		return;
1612 
1613 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1614 	/*
1615 	 * Defensive programming: this should never happen. If it happens,
1616 	 * e.g. due to future modification, warn and fixup the expected value.
1617 	 */
1618 	SCHED_WARN_ON(bucket->value > rq_clamp);
1619 	if (bucket->value >= rq_clamp) {
1620 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1621 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1622 	}
1623 }
1624 
1625 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1626 {
1627 	enum uclamp_id clamp_id;
1628 
1629 	/*
1630 	 * Avoid any overhead until uclamp is actually used by the userspace.
1631 	 *
1632 	 * The condition is constructed such that a NOP is generated when
1633 	 * sched_uclamp_used is disabled.
1634 	 */
1635 	if (!static_branch_unlikely(&sched_uclamp_used))
1636 		return;
1637 
1638 	if (unlikely(!p->sched_class->uclamp_enabled))
1639 		return;
1640 
1641 	for_each_clamp_id(clamp_id)
1642 		uclamp_rq_inc_id(rq, p, clamp_id);
1643 
1644 	/* Reset clamp idle holding when there is one RUNNABLE task */
1645 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1646 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1647 }
1648 
1649 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1650 {
1651 	enum uclamp_id clamp_id;
1652 
1653 	/*
1654 	 * Avoid any overhead until uclamp is actually used by the userspace.
1655 	 *
1656 	 * The condition is constructed such that a NOP is generated when
1657 	 * sched_uclamp_used is disabled.
1658 	 */
1659 	if (!static_branch_unlikely(&sched_uclamp_used))
1660 		return;
1661 
1662 	if (unlikely(!p->sched_class->uclamp_enabled))
1663 		return;
1664 
1665 	for_each_clamp_id(clamp_id)
1666 		uclamp_rq_dec_id(rq, p, clamp_id);
1667 }
1668 
1669 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1670 				      enum uclamp_id clamp_id)
1671 {
1672 	if (!p->uclamp[clamp_id].active)
1673 		return;
1674 
1675 	uclamp_rq_dec_id(rq, p, clamp_id);
1676 	uclamp_rq_inc_id(rq, p, clamp_id);
1677 
1678 	/*
1679 	 * Make sure to clear the idle flag if we've transiently reached 0
1680 	 * active tasks on rq.
1681 	 */
1682 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1683 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1684 }
1685 
1686 static inline void
1687 uclamp_update_active(struct task_struct *p)
1688 {
1689 	enum uclamp_id clamp_id;
1690 	struct rq_flags rf;
1691 	struct rq *rq;
1692 
1693 	/*
1694 	 * Lock the task and the rq where the task is (or was) queued.
1695 	 *
1696 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1697 	 * price to pay to safely serialize util_{min,max} updates with
1698 	 * enqueues, dequeues and migration operations.
1699 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1700 	 */
1701 	rq = task_rq_lock(p, &rf);
1702 
1703 	/*
1704 	 * Setting the clamp bucket is serialized by task_rq_lock().
1705 	 * If the task is not yet RUNNABLE and its task_struct is not
1706 	 * affecting a valid clamp bucket, the next time it's enqueued,
1707 	 * it will already see the updated clamp bucket value.
1708 	 */
1709 	for_each_clamp_id(clamp_id)
1710 		uclamp_rq_reinc_id(rq, p, clamp_id);
1711 
1712 	task_rq_unlock(rq, p, &rf);
1713 }
1714 
1715 #ifdef CONFIG_UCLAMP_TASK_GROUP
1716 static inline void
1717 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1718 {
1719 	struct css_task_iter it;
1720 	struct task_struct *p;
1721 
1722 	css_task_iter_start(css, 0, &it);
1723 	while ((p = css_task_iter_next(&it)))
1724 		uclamp_update_active(p);
1725 	css_task_iter_end(&it);
1726 }
1727 
1728 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1729 #endif
1730 
1731 #ifdef CONFIG_SYSCTL
1732 #ifdef CONFIG_UCLAMP_TASK
1733 #ifdef CONFIG_UCLAMP_TASK_GROUP
1734 static void uclamp_update_root_tg(void)
1735 {
1736 	struct task_group *tg = &root_task_group;
1737 
1738 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1739 		      sysctl_sched_uclamp_util_min, false);
1740 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1741 		      sysctl_sched_uclamp_util_max, false);
1742 
1743 	rcu_read_lock();
1744 	cpu_util_update_eff(&root_task_group.css);
1745 	rcu_read_unlock();
1746 }
1747 #else
1748 static void uclamp_update_root_tg(void) { }
1749 #endif
1750 
1751 static void uclamp_sync_util_min_rt_default(void)
1752 {
1753 	struct task_struct *g, *p;
1754 
1755 	/*
1756 	 * copy_process()			sysctl_uclamp
1757 	 *					  uclamp_min_rt = X;
1758 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1759 	 *   // link thread			  smp_mb__after_spinlock()
1760 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1761 	 *   sched_post_fork()			  for_each_process_thread()
1762 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1763 	 *
1764 	 * Ensures that either sched_post_fork() will observe the new
1765 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1766 	 * task.
1767 	 */
1768 	read_lock(&tasklist_lock);
1769 	smp_mb__after_spinlock();
1770 	read_unlock(&tasklist_lock);
1771 
1772 	rcu_read_lock();
1773 	for_each_process_thread(g, p)
1774 		uclamp_update_util_min_rt_default(p);
1775 	rcu_read_unlock();
1776 }
1777 
1778 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1779 				void *buffer, size_t *lenp, loff_t *ppos)
1780 {
1781 	bool update_root_tg = false;
1782 	int old_min, old_max, old_min_rt;
1783 	int result;
1784 
1785 	mutex_lock(&uclamp_mutex);
1786 	old_min = sysctl_sched_uclamp_util_min;
1787 	old_max = sysctl_sched_uclamp_util_max;
1788 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1789 
1790 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1791 	if (result)
1792 		goto undo;
1793 	if (!write)
1794 		goto done;
1795 
1796 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1797 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1798 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1799 
1800 		result = -EINVAL;
1801 		goto undo;
1802 	}
1803 
1804 	if (old_min != sysctl_sched_uclamp_util_min) {
1805 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1806 			      sysctl_sched_uclamp_util_min, false);
1807 		update_root_tg = true;
1808 	}
1809 	if (old_max != sysctl_sched_uclamp_util_max) {
1810 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1811 			      sysctl_sched_uclamp_util_max, false);
1812 		update_root_tg = true;
1813 	}
1814 
1815 	if (update_root_tg) {
1816 		static_branch_enable(&sched_uclamp_used);
1817 		uclamp_update_root_tg();
1818 	}
1819 
1820 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1821 		static_branch_enable(&sched_uclamp_used);
1822 		uclamp_sync_util_min_rt_default();
1823 	}
1824 
1825 	/*
1826 	 * We update all RUNNABLE tasks only when task groups are in use.
1827 	 * Otherwise, keep it simple and do just a lazy update at each next
1828 	 * task enqueue time.
1829 	 */
1830 
1831 	goto done;
1832 
1833 undo:
1834 	sysctl_sched_uclamp_util_min = old_min;
1835 	sysctl_sched_uclamp_util_max = old_max;
1836 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1837 done:
1838 	mutex_unlock(&uclamp_mutex);
1839 
1840 	return result;
1841 }
1842 #endif
1843 #endif
1844 
1845 static int uclamp_validate(struct task_struct *p,
1846 			   const struct sched_attr *attr)
1847 {
1848 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1849 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1850 
1851 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1852 		util_min = attr->sched_util_min;
1853 
1854 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1855 			return -EINVAL;
1856 	}
1857 
1858 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1859 		util_max = attr->sched_util_max;
1860 
1861 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1862 			return -EINVAL;
1863 	}
1864 
1865 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1866 		return -EINVAL;
1867 
1868 	/*
1869 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1870 	 *
1871 	 * We need to do that here, because enabling static branches is a
1872 	 * blocking operation which obviously cannot be done while holding
1873 	 * scheduler locks.
1874 	 */
1875 	static_branch_enable(&sched_uclamp_used);
1876 
1877 	return 0;
1878 }
1879 
1880 static bool uclamp_reset(const struct sched_attr *attr,
1881 			 enum uclamp_id clamp_id,
1882 			 struct uclamp_se *uc_se)
1883 {
1884 	/* Reset on sched class change for a non user-defined clamp value. */
1885 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1886 	    !uc_se->user_defined)
1887 		return true;
1888 
1889 	/* Reset on sched_util_{min,max} == -1. */
1890 	if (clamp_id == UCLAMP_MIN &&
1891 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1892 	    attr->sched_util_min == -1) {
1893 		return true;
1894 	}
1895 
1896 	if (clamp_id == UCLAMP_MAX &&
1897 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1898 	    attr->sched_util_max == -1) {
1899 		return true;
1900 	}
1901 
1902 	return false;
1903 }
1904 
1905 static void __setscheduler_uclamp(struct task_struct *p,
1906 				  const struct sched_attr *attr)
1907 {
1908 	enum uclamp_id clamp_id;
1909 
1910 	for_each_clamp_id(clamp_id) {
1911 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1912 		unsigned int value;
1913 
1914 		if (!uclamp_reset(attr, clamp_id, uc_se))
1915 			continue;
1916 
1917 		/*
1918 		 * RT by default have a 100% boost value that could be modified
1919 		 * at runtime.
1920 		 */
1921 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1922 			value = sysctl_sched_uclamp_util_min_rt_default;
1923 		else
1924 			value = uclamp_none(clamp_id);
1925 
1926 		uclamp_se_set(uc_se, value, false);
1927 
1928 	}
1929 
1930 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1931 		return;
1932 
1933 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1934 	    attr->sched_util_min != -1) {
1935 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1936 			      attr->sched_util_min, true);
1937 	}
1938 
1939 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1940 	    attr->sched_util_max != -1) {
1941 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1942 			      attr->sched_util_max, true);
1943 	}
1944 }
1945 
1946 static void uclamp_fork(struct task_struct *p)
1947 {
1948 	enum uclamp_id clamp_id;
1949 
1950 	/*
1951 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1952 	 * as the task is still at its early fork stages.
1953 	 */
1954 	for_each_clamp_id(clamp_id)
1955 		p->uclamp[clamp_id].active = false;
1956 
1957 	if (likely(!p->sched_reset_on_fork))
1958 		return;
1959 
1960 	for_each_clamp_id(clamp_id) {
1961 		uclamp_se_set(&p->uclamp_req[clamp_id],
1962 			      uclamp_none(clamp_id), false);
1963 	}
1964 }
1965 
1966 static void uclamp_post_fork(struct task_struct *p)
1967 {
1968 	uclamp_update_util_min_rt_default(p);
1969 }
1970 
1971 static void __init init_uclamp_rq(struct rq *rq)
1972 {
1973 	enum uclamp_id clamp_id;
1974 	struct uclamp_rq *uc_rq = rq->uclamp;
1975 
1976 	for_each_clamp_id(clamp_id) {
1977 		uc_rq[clamp_id] = (struct uclamp_rq) {
1978 			.value = uclamp_none(clamp_id)
1979 		};
1980 	}
1981 
1982 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1983 }
1984 
1985 static void __init init_uclamp(void)
1986 {
1987 	struct uclamp_se uc_max = {};
1988 	enum uclamp_id clamp_id;
1989 	int cpu;
1990 
1991 	for_each_possible_cpu(cpu)
1992 		init_uclamp_rq(cpu_rq(cpu));
1993 
1994 	for_each_clamp_id(clamp_id) {
1995 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1996 			      uclamp_none(clamp_id), false);
1997 	}
1998 
1999 	/* System defaults allow max clamp values for both indexes */
2000 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2001 	for_each_clamp_id(clamp_id) {
2002 		uclamp_default[clamp_id] = uc_max;
2003 #ifdef CONFIG_UCLAMP_TASK_GROUP
2004 		root_task_group.uclamp_req[clamp_id] = uc_max;
2005 		root_task_group.uclamp[clamp_id] = uc_max;
2006 #endif
2007 	}
2008 }
2009 
2010 #else /* CONFIG_UCLAMP_TASK */
2011 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2012 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2013 static inline int uclamp_validate(struct task_struct *p,
2014 				  const struct sched_attr *attr)
2015 {
2016 	return -EOPNOTSUPP;
2017 }
2018 static void __setscheduler_uclamp(struct task_struct *p,
2019 				  const struct sched_attr *attr) { }
2020 static inline void uclamp_fork(struct task_struct *p) { }
2021 static inline void uclamp_post_fork(struct task_struct *p) { }
2022 static inline void init_uclamp(void) { }
2023 #endif /* CONFIG_UCLAMP_TASK */
2024 
2025 bool sched_task_on_rq(struct task_struct *p)
2026 {
2027 	return task_on_rq_queued(p);
2028 }
2029 
2030 unsigned long get_wchan(struct task_struct *p)
2031 {
2032 	unsigned long ip = 0;
2033 	unsigned int state;
2034 
2035 	if (!p || p == current)
2036 		return 0;
2037 
2038 	/* Only get wchan if task is blocked and we can keep it that way. */
2039 	raw_spin_lock_irq(&p->pi_lock);
2040 	state = READ_ONCE(p->__state);
2041 	smp_rmb(); /* see try_to_wake_up() */
2042 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2043 		ip = __get_wchan(p);
2044 	raw_spin_unlock_irq(&p->pi_lock);
2045 
2046 	return ip;
2047 }
2048 
2049 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2050 {
2051 	if (!(flags & ENQUEUE_NOCLOCK))
2052 		update_rq_clock(rq);
2053 
2054 	if (!(flags & ENQUEUE_RESTORE)) {
2055 		sched_info_enqueue(rq, p);
2056 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2057 	}
2058 
2059 	uclamp_rq_inc(rq, p);
2060 	p->sched_class->enqueue_task(rq, p, flags);
2061 
2062 	if (sched_core_enabled(rq))
2063 		sched_core_enqueue(rq, p);
2064 }
2065 
2066 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2067 {
2068 	if (sched_core_enabled(rq))
2069 		sched_core_dequeue(rq, p, flags);
2070 
2071 	if (!(flags & DEQUEUE_NOCLOCK))
2072 		update_rq_clock(rq);
2073 
2074 	if (!(flags & DEQUEUE_SAVE)) {
2075 		sched_info_dequeue(rq, p);
2076 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2077 	}
2078 
2079 	uclamp_rq_dec(rq, p);
2080 	p->sched_class->dequeue_task(rq, p, flags);
2081 }
2082 
2083 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2084 {
2085 	enqueue_task(rq, p, flags);
2086 
2087 	p->on_rq = TASK_ON_RQ_QUEUED;
2088 }
2089 
2090 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2091 {
2092 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2093 
2094 	dequeue_task(rq, p, flags);
2095 }
2096 
2097 static inline int __normal_prio(int policy, int rt_prio, int nice)
2098 {
2099 	int prio;
2100 
2101 	if (dl_policy(policy))
2102 		prio = MAX_DL_PRIO - 1;
2103 	else if (rt_policy(policy))
2104 		prio = MAX_RT_PRIO - 1 - rt_prio;
2105 	else
2106 		prio = NICE_TO_PRIO(nice);
2107 
2108 	return prio;
2109 }
2110 
2111 /*
2112  * Calculate the expected normal priority: i.e. priority
2113  * without taking RT-inheritance into account. Might be
2114  * boosted by interactivity modifiers. Changes upon fork,
2115  * setprio syscalls, and whenever the interactivity
2116  * estimator recalculates.
2117  */
2118 static inline int normal_prio(struct task_struct *p)
2119 {
2120 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2121 }
2122 
2123 /*
2124  * Calculate the current priority, i.e. the priority
2125  * taken into account by the scheduler. This value might
2126  * be boosted by RT tasks, or might be boosted by
2127  * interactivity modifiers. Will be RT if the task got
2128  * RT-boosted. If not then it returns p->normal_prio.
2129  */
2130 static int effective_prio(struct task_struct *p)
2131 {
2132 	p->normal_prio = normal_prio(p);
2133 	/*
2134 	 * If we are RT tasks or we were boosted to RT priority,
2135 	 * keep the priority unchanged. Otherwise, update priority
2136 	 * to the normal priority:
2137 	 */
2138 	if (!rt_prio(p->prio))
2139 		return p->normal_prio;
2140 	return p->prio;
2141 }
2142 
2143 /**
2144  * task_curr - is this task currently executing on a CPU?
2145  * @p: the task in question.
2146  *
2147  * Return: 1 if the task is currently executing. 0 otherwise.
2148  */
2149 inline int task_curr(const struct task_struct *p)
2150 {
2151 	return cpu_curr(task_cpu(p)) == p;
2152 }
2153 
2154 /*
2155  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2156  * use the balance_callback list if you want balancing.
2157  *
2158  * this means any call to check_class_changed() must be followed by a call to
2159  * balance_callback().
2160  */
2161 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2162 				       const struct sched_class *prev_class,
2163 				       int oldprio)
2164 {
2165 	if (prev_class != p->sched_class) {
2166 		if (prev_class->switched_from)
2167 			prev_class->switched_from(rq, p);
2168 
2169 		p->sched_class->switched_to(rq, p);
2170 	} else if (oldprio != p->prio || dl_task(p))
2171 		p->sched_class->prio_changed(rq, p, oldprio);
2172 }
2173 
2174 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2175 {
2176 	if (p->sched_class == rq->curr->sched_class)
2177 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2178 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2179 		resched_curr(rq);
2180 
2181 	/*
2182 	 * A queue event has occurred, and we're going to schedule.  In
2183 	 * this case, we can save a useless back to back clock update.
2184 	 */
2185 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2186 		rq_clock_skip_update(rq);
2187 }
2188 
2189 #ifdef CONFIG_SMP
2190 
2191 static void
2192 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2193 
2194 static int __set_cpus_allowed_ptr(struct task_struct *p,
2195 				  struct affinity_context *ctx);
2196 
2197 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2198 {
2199 	struct affinity_context ac = {
2200 		.new_mask  = cpumask_of(rq->cpu),
2201 		.flags     = SCA_MIGRATE_DISABLE,
2202 	};
2203 
2204 	if (likely(!p->migration_disabled))
2205 		return;
2206 
2207 	if (p->cpus_ptr != &p->cpus_mask)
2208 		return;
2209 
2210 	/*
2211 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2212 	 */
2213 	__do_set_cpus_allowed(p, &ac);
2214 }
2215 
2216 void migrate_disable(void)
2217 {
2218 	struct task_struct *p = current;
2219 
2220 	if (p->migration_disabled) {
2221 		p->migration_disabled++;
2222 		return;
2223 	}
2224 
2225 	preempt_disable();
2226 	this_rq()->nr_pinned++;
2227 	p->migration_disabled = 1;
2228 	preempt_enable();
2229 }
2230 EXPORT_SYMBOL_GPL(migrate_disable);
2231 
2232 void migrate_enable(void)
2233 {
2234 	struct task_struct *p = current;
2235 	struct affinity_context ac = {
2236 		.new_mask  = &p->cpus_mask,
2237 		.flags     = SCA_MIGRATE_ENABLE,
2238 	};
2239 
2240 	if (p->migration_disabled > 1) {
2241 		p->migration_disabled--;
2242 		return;
2243 	}
2244 
2245 	if (WARN_ON_ONCE(!p->migration_disabled))
2246 		return;
2247 
2248 	/*
2249 	 * Ensure stop_task runs either before or after this, and that
2250 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2251 	 */
2252 	preempt_disable();
2253 	if (p->cpus_ptr != &p->cpus_mask)
2254 		__set_cpus_allowed_ptr(p, &ac);
2255 	/*
2256 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2257 	 * regular cpus_mask, otherwise things that race (eg.
2258 	 * select_fallback_rq) get confused.
2259 	 */
2260 	barrier();
2261 	p->migration_disabled = 0;
2262 	this_rq()->nr_pinned--;
2263 	preempt_enable();
2264 }
2265 EXPORT_SYMBOL_GPL(migrate_enable);
2266 
2267 static inline bool rq_has_pinned_tasks(struct rq *rq)
2268 {
2269 	return rq->nr_pinned;
2270 }
2271 
2272 /*
2273  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2274  * __set_cpus_allowed_ptr() and select_fallback_rq().
2275  */
2276 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2277 {
2278 	/* When not in the task's cpumask, no point in looking further. */
2279 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2280 		return false;
2281 
2282 	/* migrate_disabled() must be allowed to finish. */
2283 	if (is_migration_disabled(p))
2284 		return cpu_online(cpu);
2285 
2286 	/* Non kernel threads are not allowed during either online or offline. */
2287 	if (!(p->flags & PF_KTHREAD))
2288 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2289 
2290 	/* KTHREAD_IS_PER_CPU is always allowed. */
2291 	if (kthread_is_per_cpu(p))
2292 		return cpu_online(cpu);
2293 
2294 	/* Regular kernel threads don't get to stay during offline. */
2295 	if (cpu_dying(cpu))
2296 		return false;
2297 
2298 	/* But are allowed during online. */
2299 	return cpu_online(cpu);
2300 }
2301 
2302 /*
2303  * This is how migration works:
2304  *
2305  * 1) we invoke migration_cpu_stop() on the target CPU using
2306  *    stop_one_cpu().
2307  * 2) stopper starts to run (implicitly forcing the migrated thread
2308  *    off the CPU)
2309  * 3) it checks whether the migrated task is still in the wrong runqueue.
2310  * 4) if it's in the wrong runqueue then the migration thread removes
2311  *    it and puts it into the right queue.
2312  * 5) stopper completes and stop_one_cpu() returns and the migration
2313  *    is done.
2314  */
2315 
2316 /*
2317  * move_queued_task - move a queued task to new rq.
2318  *
2319  * Returns (locked) new rq. Old rq's lock is released.
2320  */
2321 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2322 				   struct task_struct *p, int new_cpu)
2323 {
2324 	lockdep_assert_rq_held(rq);
2325 
2326 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2327 	set_task_cpu(p, new_cpu);
2328 	rq_unlock(rq, rf);
2329 
2330 	rq = cpu_rq(new_cpu);
2331 
2332 	rq_lock(rq, rf);
2333 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2334 	activate_task(rq, p, 0);
2335 	check_preempt_curr(rq, p, 0);
2336 
2337 	return rq;
2338 }
2339 
2340 struct migration_arg {
2341 	struct task_struct		*task;
2342 	int				dest_cpu;
2343 	struct set_affinity_pending	*pending;
2344 };
2345 
2346 /*
2347  * @refs: number of wait_for_completion()
2348  * @stop_pending: is @stop_work in use
2349  */
2350 struct set_affinity_pending {
2351 	refcount_t		refs;
2352 	unsigned int		stop_pending;
2353 	struct completion	done;
2354 	struct cpu_stop_work	stop_work;
2355 	struct migration_arg	arg;
2356 };
2357 
2358 /*
2359  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2360  * this because either it can't run here any more (set_cpus_allowed()
2361  * away from this CPU, or CPU going down), or because we're
2362  * attempting to rebalance this task on exec (sched_exec).
2363  *
2364  * So we race with normal scheduler movements, but that's OK, as long
2365  * as the task is no longer on this CPU.
2366  */
2367 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2368 				 struct task_struct *p, int dest_cpu)
2369 {
2370 	/* Affinity changed (again). */
2371 	if (!is_cpu_allowed(p, dest_cpu))
2372 		return rq;
2373 
2374 	update_rq_clock(rq);
2375 	rq = move_queued_task(rq, rf, p, dest_cpu);
2376 
2377 	return rq;
2378 }
2379 
2380 /*
2381  * migration_cpu_stop - this will be executed by a highprio stopper thread
2382  * and performs thread migration by bumping thread off CPU then
2383  * 'pushing' onto another runqueue.
2384  */
2385 static int migration_cpu_stop(void *data)
2386 {
2387 	struct migration_arg *arg = data;
2388 	struct set_affinity_pending *pending = arg->pending;
2389 	struct task_struct *p = arg->task;
2390 	struct rq *rq = this_rq();
2391 	bool complete = false;
2392 	struct rq_flags rf;
2393 
2394 	/*
2395 	 * The original target CPU might have gone down and we might
2396 	 * be on another CPU but it doesn't matter.
2397 	 */
2398 	local_irq_save(rf.flags);
2399 	/*
2400 	 * We need to explicitly wake pending tasks before running
2401 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2402 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2403 	 */
2404 	flush_smp_call_function_queue();
2405 
2406 	raw_spin_lock(&p->pi_lock);
2407 	rq_lock(rq, &rf);
2408 
2409 	/*
2410 	 * If we were passed a pending, then ->stop_pending was set, thus
2411 	 * p->migration_pending must have remained stable.
2412 	 */
2413 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2414 
2415 	/*
2416 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2417 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2418 	 * we're holding p->pi_lock.
2419 	 */
2420 	if (task_rq(p) == rq) {
2421 		if (is_migration_disabled(p))
2422 			goto out;
2423 
2424 		if (pending) {
2425 			p->migration_pending = NULL;
2426 			complete = true;
2427 
2428 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2429 				goto out;
2430 		}
2431 
2432 		if (task_on_rq_queued(p))
2433 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2434 		else
2435 			p->wake_cpu = arg->dest_cpu;
2436 
2437 		/*
2438 		 * XXX __migrate_task() can fail, at which point we might end
2439 		 * up running on a dodgy CPU, AFAICT this can only happen
2440 		 * during CPU hotplug, at which point we'll get pushed out
2441 		 * anyway, so it's probably not a big deal.
2442 		 */
2443 
2444 	} else if (pending) {
2445 		/*
2446 		 * This happens when we get migrated between migrate_enable()'s
2447 		 * preempt_enable() and scheduling the stopper task. At that
2448 		 * point we're a regular task again and not current anymore.
2449 		 *
2450 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2451 		 * more likely.
2452 		 */
2453 
2454 		/*
2455 		 * The task moved before the stopper got to run. We're holding
2456 		 * ->pi_lock, so the allowed mask is stable - if it got
2457 		 * somewhere allowed, we're done.
2458 		 */
2459 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2460 			p->migration_pending = NULL;
2461 			complete = true;
2462 			goto out;
2463 		}
2464 
2465 		/*
2466 		 * When migrate_enable() hits a rq mis-match we can't reliably
2467 		 * determine is_migration_disabled() and so have to chase after
2468 		 * it.
2469 		 */
2470 		WARN_ON_ONCE(!pending->stop_pending);
2471 		task_rq_unlock(rq, p, &rf);
2472 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2473 				    &pending->arg, &pending->stop_work);
2474 		return 0;
2475 	}
2476 out:
2477 	if (pending)
2478 		pending->stop_pending = false;
2479 	task_rq_unlock(rq, p, &rf);
2480 
2481 	if (complete)
2482 		complete_all(&pending->done);
2483 
2484 	return 0;
2485 }
2486 
2487 int push_cpu_stop(void *arg)
2488 {
2489 	struct rq *lowest_rq = NULL, *rq = this_rq();
2490 	struct task_struct *p = arg;
2491 
2492 	raw_spin_lock_irq(&p->pi_lock);
2493 	raw_spin_rq_lock(rq);
2494 
2495 	if (task_rq(p) != rq)
2496 		goto out_unlock;
2497 
2498 	if (is_migration_disabled(p)) {
2499 		p->migration_flags |= MDF_PUSH;
2500 		goto out_unlock;
2501 	}
2502 
2503 	p->migration_flags &= ~MDF_PUSH;
2504 
2505 	if (p->sched_class->find_lock_rq)
2506 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2507 
2508 	if (!lowest_rq)
2509 		goto out_unlock;
2510 
2511 	// XXX validate p is still the highest prio task
2512 	if (task_rq(p) == rq) {
2513 		deactivate_task(rq, p, 0);
2514 		set_task_cpu(p, lowest_rq->cpu);
2515 		activate_task(lowest_rq, p, 0);
2516 		resched_curr(lowest_rq);
2517 	}
2518 
2519 	double_unlock_balance(rq, lowest_rq);
2520 
2521 out_unlock:
2522 	rq->push_busy = false;
2523 	raw_spin_rq_unlock(rq);
2524 	raw_spin_unlock_irq(&p->pi_lock);
2525 
2526 	put_task_struct(p);
2527 	return 0;
2528 }
2529 
2530 /*
2531  * sched_class::set_cpus_allowed must do the below, but is not required to
2532  * actually call this function.
2533  */
2534 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2535 {
2536 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2537 		p->cpus_ptr = ctx->new_mask;
2538 		return;
2539 	}
2540 
2541 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2542 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2543 
2544 	/*
2545 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2546 	 */
2547 	if (ctx->flags & SCA_USER)
2548 		swap(p->user_cpus_ptr, ctx->user_mask);
2549 }
2550 
2551 static void
2552 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2553 {
2554 	struct rq *rq = task_rq(p);
2555 	bool queued, running;
2556 
2557 	/*
2558 	 * This here violates the locking rules for affinity, since we're only
2559 	 * supposed to change these variables while holding both rq->lock and
2560 	 * p->pi_lock.
2561 	 *
2562 	 * HOWEVER, it magically works, because ttwu() is the only code that
2563 	 * accesses these variables under p->pi_lock and only does so after
2564 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2565 	 * before finish_task().
2566 	 *
2567 	 * XXX do further audits, this smells like something putrid.
2568 	 */
2569 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2570 		SCHED_WARN_ON(!p->on_cpu);
2571 	else
2572 		lockdep_assert_held(&p->pi_lock);
2573 
2574 	queued = task_on_rq_queued(p);
2575 	running = task_current(rq, p);
2576 
2577 	if (queued) {
2578 		/*
2579 		 * Because __kthread_bind() calls this on blocked tasks without
2580 		 * holding rq->lock.
2581 		 */
2582 		lockdep_assert_rq_held(rq);
2583 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2584 	}
2585 	if (running)
2586 		put_prev_task(rq, p);
2587 
2588 	p->sched_class->set_cpus_allowed(p, ctx);
2589 
2590 	if (queued)
2591 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2592 	if (running)
2593 		set_next_task(rq, p);
2594 }
2595 
2596 /*
2597  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2598  * affinity (if any) should be destroyed too.
2599  */
2600 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2601 {
2602 	struct affinity_context ac = {
2603 		.new_mask  = new_mask,
2604 		.user_mask = NULL,
2605 		.flags     = SCA_USER,	/* clear the user requested mask */
2606 	};
2607 	union cpumask_rcuhead {
2608 		cpumask_t cpumask;
2609 		struct rcu_head rcu;
2610 	};
2611 
2612 	__do_set_cpus_allowed(p, &ac);
2613 
2614 	/*
2615 	 * Because this is called with p->pi_lock held, it is not possible
2616 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2617 	 * kfree_rcu().
2618 	 */
2619 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2620 }
2621 
2622 static cpumask_t *alloc_user_cpus_ptr(int node)
2623 {
2624 	/*
2625 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2626 	 */
2627 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2628 
2629 	return kmalloc_node(size, GFP_KERNEL, node);
2630 }
2631 
2632 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2633 		      int node)
2634 {
2635 	cpumask_t *user_mask;
2636 	unsigned long flags;
2637 
2638 	/*
2639 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2640 	 * may differ by now due to racing.
2641 	 */
2642 	dst->user_cpus_ptr = NULL;
2643 
2644 	/*
2645 	 * This check is racy and losing the race is a valid situation.
2646 	 * It is not worth the extra overhead of taking the pi_lock on
2647 	 * every fork/clone.
2648 	 */
2649 	if (data_race(!src->user_cpus_ptr))
2650 		return 0;
2651 
2652 	user_mask = alloc_user_cpus_ptr(node);
2653 	if (!user_mask)
2654 		return -ENOMEM;
2655 
2656 	/*
2657 	 * Use pi_lock to protect content of user_cpus_ptr
2658 	 *
2659 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2660 	 * do_set_cpus_allowed().
2661 	 */
2662 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2663 	if (src->user_cpus_ptr) {
2664 		swap(dst->user_cpus_ptr, user_mask);
2665 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2666 	}
2667 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2668 
2669 	if (unlikely(user_mask))
2670 		kfree(user_mask);
2671 
2672 	return 0;
2673 }
2674 
2675 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2676 {
2677 	struct cpumask *user_mask = NULL;
2678 
2679 	swap(p->user_cpus_ptr, user_mask);
2680 
2681 	return user_mask;
2682 }
2683 
2684 void release_user_cpus_ptr(struct task_struct *p)
2685 {
2686 	kfree(clear_user_cpus_ptr(p));
2687 }
2688 
2689 /*
2690  * This function is wildly self concurrent; here be dragons.
2691  *
2692  *
2693  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2694  * designated task is enqueued on an allowed CPU. If that task is currently
2695  * running, we have to kick it out using the CPU stopper.
2696  *
2697  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2698  * Consider:
2699  *
2700  *     Initial conditions: P0->cpus_mask = [0, 1]
2701  *
2702  *     P0@CPU0                  P1
2703  *
2704  *     migrate_disable();
2705  *     <preempted>
2706  *                              set_cpus_allowed_ptr(P0, [1]);
2707  *
2708  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2709  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2710  * This means we need the following scheme:
2711  *
2712  *     P0@CPU0                  P1
2713  *
2714  *     migrate_disable();
2715  *     <preempted>
2716  *                              set_cpus_allowed_ptr(P0, [1]);
2717  *                                <blocks>
2718  *     <resumes>
2719  *     migrate_enable();
2720  *       __set_cpus_allowed_ptr();
2721  *       <wakes local stopper>
2722  *                         `--> <woken on migration completion>
2723  *
2724  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2725  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2726  * task p are serialized by p->pi_lock, which we can leverage: the one that
2727  * should come into effect at the end of the Migrate-Disable region is the last
2728  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2729  * but we still need to properly signal those waiting tasks at the appropriate
2730  * moment.
2731  *
2732  * This is implemented using struct set_affinity_pending. The first
2733  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2734  * setup an instance of that struct and install it on the targeted task_struct.
2735  * Any and all further callers will reuse that instance. Those then wait for
2736  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2737  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2738  *
2739  *
2740  * (1) In the cases covered above. There is one more where the completion is
2741  * signaled within affine_move_task() itself: when a subsequent affinity request
2742  * occurs after the stopper bailed out due to the targeted task still being
2743  * Migrate-Disable. Consider:
2744  *
2745  *     Initial conditions: P0->cpus_mask = [0, 1]
2746  *
2747  *     CPU0		  P1				P2
2748  *     <P0>
2749  *       migrate_disable();
2750  *       <preempted>
2751  *                        set_cpus_allowed_ptr(P0, [1]);
2752  *                          <blocks>
2753  *     <migration/0>
2754  *       migration_cpu_stop()
2755  *         is_migration_disabled()
2756  *           <bails>
2757  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2758  *                                                         <signal completion>
2759  *                          <awakes>
2760  *
2761  * Note that the above is safe vs a concurrent migrate_enable(), as any
2762  * pending affinity completion is preceded by an uninstallation of
2763  * p->migration_pending done with p->pi_lock held.
2764  */
2765 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2766 			    int dest_cpu, unsigned int flags)
2767 	__releases(rq->lock)
2768 	__releases(p->pi_lock)
2769 {
2770 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2771 	bool stop_pending, complete = false;
2772 
2773 	/* Can the task run on the task's current CPU? If so, we're done */
2774 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2775 		struct task_struct *push_task = NULL;
2776 
2777 		if ((flags & SCA_MIGRATE_ENABLE) &&
2778 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2779 			rq->push_busy = true;
2780 			push_task = get_task_struct(p);
2781 		}
2782 
2783 		/*
2784 		 * If there are pending waiters, but no pending stop_work,
2785 		 * then complete now.
2786 		 */
2787 		pending = p->migration_pending;
2788 		if (pending && !pending->stop_pending) {
2789 			p->migration_pending = NULL;
2790 			complete = true;
2791 		}
2792 
2793 		task_rq_unlock(rq, p, rf);
2794 
2795 		if (push_task) {
2796 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2797 					    p, &rq->push_work);
2798 		}
2799 
2800 		if (complete)
2801 			complete_all(&pending->done);
2802 
2803 		return 0;
2804 	}
2805 
2806 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2807 		/* serialized by p->pi_lock */
2808 		if (!p->migration_pending) {
2809 			/* Install the request */
2810 			refcount_set(&my_pending.refs, 1);
2811 			init_completion(&my_pending.done);
2812 			my_pending.arg = (struct migration_arg) {
2813 				.task = p,
2814 				.dest_cpu = dest_cpu,
2815 				.pending = &my_pending,
2816 			};
2817 
2818 			p->migration_pending = &my_pending;
2819 		} else {
2820 			pending = p->migration_pending;
2821 			refcount_inc(&pending->refs);
2822 			/*
2823 			 * Affinity has changed, but we've already installed a
2824 			 * pending. migration_cpu_stop() *must* see this, else
2825 			 * we risk a completion of the pending despite having a
2826 			 * task on a disallowed CPU.
2827 			 *
2828 			 * Serialized by p->pi_lock, so this is safe.
2829 			 */
2830 			pending->arg.dest_cpu = dest_cpu;
2831 		}
2832 	}
2833 	pending = p->migration_pending;
2834 	/*
2835 	 * - !MIGRATE_ENABLE:
2836 	 *   we'll have installed a pending if there wasn't one already.
2837 	 *
2838 	 * - MIGRATE_ENABLE:
2839 	 *   we're here because the current CPU isn't matching anymore,
2840 	 *   the only way that can happen is because of a concurrent
2841 	 *   set_cpus_allowed_ptr() call, which should then still be
2842 	 *   pending completion.
2843 	 *
2844 	 * Either way, we really should have a @pending here.
2845 	 */
2846 	if (WARN_ON_ONCE(!pending)) {
2847 		task_rq_unlock(rq, p, rf);
2848 		return -EINVAL;
2849 	}
2850 
2851 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2852 		/*
2853 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2854 		 * anything else we cannot do is_migration_disabled(), punt
2855 		 * and have the stopper function handle it all race-free.
2856 		 */
2857 		stop_pending = pending->stop_pending;
2858 		if (!stop_pending)
2859 			pending->stop_pending = true;
2860 
2861 		if (flags & SCA_MIGRATE_ENABLE)
2862 			p->migration_flags &= ~MDF_PUSH;
2863 
2864 		task_rq_unlock(rq, p, rf);
2865 
2866 		if (!stop_pending) {
2867 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2868 					    &pending->arg, &pending->stop_work);
2869 		}
2870 
2871 		if (flags & SCA_MIGRATE_ENABLE)
2872 			return 0;
2873 	} else {
2874 
2875 		if (!is_migration_disabled(p)) {
2876 			if (task_on_rq_queued(p))
2877 				rq = move_queued_task(rq, rf, p, dest_cpu);
2878 
2879 			if (!pending->stop_pending) {
2880 				p->migration_pending = NULL;
2881 				complete = true;
2882 			}
2883 		}
2884 		task_rq_unlock(rq, p, rf);
2885 
2886 		if (complete)
2887 			complete_all(&pending->done);
2888 	}
2889 
2890 	wait_for_completion(&pending->done);
2891 
2892 	if (refcount_dec_and_test(&pending->refs))
2893 		wake_up_var(&pending->refs); /* No UaF, just an address */
2894 
2895 	/*
2896 	 * Block the original owner of &pending until all subsequent callers
2897 	 * have seen the completion and decremented the refcount
2898 	 */
2899 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2900 
2901 	/* ARGH */
2902 	WARN_ON_ONCE(my_pending.stop_pending);
2903 
2904 	return 0;
2905 }
2906 
2907 /*
2908  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2909  */
2910 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2911 					 struct affinity_context *ctx,
2912 					 struct rq *rq,
2913 					 struct rq_flags *rf)
2914 	__releases(rq->lock)
2915 	__releases(p->pi_lock)
2916 {
2917 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2918 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2919 	bool kthread = p->flags & PF_KTHREAD;
2920 	unsigned int dest_cpu;
2921 	int ret = 0;
2922 
2923 	update_rq_clock(rq);
2924 
2925 	if (kthread || is_migration_disabled(p)) {
2926 		/*
2927 		 * Kernel threads are allowed on online && !active CPUs,
2928 		 * however, during cpu-hot-unplug, even these might get pushed
2929 		 * away if not KTHREAD_IS_PER_CPU.
2930 		 *
2931 		 * Specifically, migration_disabled() tasks must not fail the
2932 		 * cpumask_any_and_distribute() pick below, esp. so on
2933 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2934 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2935 		 */
2936 		cpu_valid_mask = cpu_online_mask;
2937 	}
2938 
2939 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
2940 		ret = -EINVAL;
2941 		goto out;
2942 	}
2943 
2944 	/*
2945 	 * Must re-check here, to close a race against __kthread_bind(),
2946 	 * sched_setaffinity() is not guaranteed to observe the flag.
2947 	 */
2948 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2949 		ret = -EINVAL;
2950 		goto out;
2951 	}
2952 
2953 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
2954 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask))
2955 			goto out;
2956 
2957 		if (WARN_ON_ONCE(p == current &&
2958 				 is_migration_disabled(p) &&
2959 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
2960 			ret = -EBUSY;
2961 			goto out;
2962 		}
2963 	}
2964 
2965 	/*
2966 	 * Picking a ~random cpu helps in cases where we are changing affinity
2967 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2968 	 * immediately required to distribute the tasks within their new mask.
2969 	 */
2970 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
2971 	if (dest_cpu >= nr_cpu_ids) {
2972 		ret = -EINVAL;
2973 		goto out;
2974 	}
2975 
2976 	__do_set_cpus_allowed(p, ctx);
2977 
2978 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
2979 
2980 out:
2981 	task_rq_unlock(rq, p, rf);
2982 
2983 	return ret;
2984 }
2985 
2986 /*
2987  * Change a given task's CPU affinity. Migrate the thread to a
2988  * proper CPU and schedule it away if the CPU it's executing on
2989  * is removed from the allowed bitmask.
2990  *
2991  * NOTE: the caller must have a valid reference to the task, the
2992  * task must not exit() & deallocate itself prematurely. The
2993  * call is not atomic; no spinlocks may be held.
2994  */
2995 static int __set_cpus_allowed_ptr(struct task_struct *p,
2996 				  struct affinity_context *ctx)
2997 {
2998 	struct rq_flags rf;
2999 	struct rq *rq;
3000 
3001 	rq = task_rq_lock(p, &rf);
3002 	/*
3003 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3004 	 * flags are set.
3005 	 */
3006 	if (p->user_cpus_ptr &&
3007 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3008 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3009 		ctx->new_mask = rq->scratch_mask;
3010 
3011 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3012 }
3013 
3014 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3015 {
3016 	struct affinity_context ac = {
3017 		.new_mask  = new_mask,
3018 		.flags     = 0,
3019 	};
3020 
3021 	return __set_cpus_allowed_ptr(p, &ac);
3022 }
3023 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3024 
3025 /*
3026  * Change a given task's CPU affinity to the intersection of its current
3027  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3028  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3029  * affinity or use cpu_online_mask instead.
3030  *
3031  * If the resulting mask is empty, leave the affinity unchanged and return
3032  * -EINVAL.
3033  */
3034 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3035 				     struct cpumask *new_mask,
3036 				     const struct cpumask *subset_mask)
3037 {
3038 	struct affinity_context ac = {
3039 		.new_mask  = new_mask,
3040 		.flags     = 0,
3041 	};
3042 	struct rq_flags rf;
3043 	struct rq *rq;
3044 	int err;
3045 
3046 	rq = task_rq_lock(p, &rf);
3047 
3048 	/*
3049 	 * Forcefully restricting the affinity of a deadline task is
3050 	 * likely to cause problems, so fail and noisily override the
3051 	 * mask entirely.
3052 	 */
3053 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3054 		err = -EPERM;
3055 		goto err_unlock;
3056 	}
3057 
3058 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3059 		err = -EINVAL;
3060 		goto err_unlock;
3061 	}
3062 
3063 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3064 
3065 err_unlock:
3066 	task_rq_unlock(rq, p, &rf);
3067 	return err;
3068 }
3069 
3070 /*
3071  * Restrict the CPU affinity of task @p so that it is a subset of
3072  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3073  * old affinity mask. If the resulting mask is empty, we warn and walk
3074  * up the cpuset hierarchy until we find a suitable mask.
3075  */
3076 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3077 {
3078 	cpumask_var_t new_mask;
3079 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3080 
3081 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3082 
3083 	/*
3084 	 * __migrate_task() can fail silently in the face of concurrent
3085 	 * offlining of the chosen destination CPU, so take the hotplug
3086 	 * lock to ensure that the migration succeeds.
3087 	 */
3088 	cpus_read_lock();
3089 	if (!cpumask_available(new_mask))
3090 		goto out_set_mask;
3091 
3092 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3093 		goto out_free_mask;
3094 
3095 	/*
3096 	 * We failed to find a valid subset of the affinity mask for the
3097 	 * task, so override it based on its cpuset hierarchy.
3098 	 */
3099 	cpuset_cpus_allowed(p, new_mask);
3100 	override_mask = new_mask;
3101 
3102 out_set_mask:
3103 	if (printk_ratelimit()) {
3104 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3105 				task_pid_nr(p), p->comm,
3106 				cpumask_pr_args(override_mask));
3107 	}
3108 
3109 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3110 out_free_mask:
3111 	cpus_read_unlock();
3112 	free_cpumask_var(new_mask);
3113 }
3114 
3115 static int
3116 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3117 
3118 /*
3119  * Restore the affinity of a task @p which was previously restricted by a
3120  * call to force_compatible_cpus_allowed_ptr().
3121  *
3122  * It is the caller's responsibility to serialise this with any calls to
3123  * force_compatible_cpus_allowed_ptr(@p).
3124  */
3125 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3126 {
3127 	struct affinity_context ac = {
3128 		.new_mask  = task_user_cpus(p),
3129 		.flags     = 0,
3130 	};
3131 	int ret;
3132 
3133 	/*
3134 	 * Try to restore the old affinity mask with __sched_setaffinity().
3135 	 * Cpuset masking will be done there too.
3136 	 */
3137 	ret = __sched_setaffinity(p, &ac);
3138 	WARN_ON_ONCE(ret);
3139 }
3140 
3141 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3142 {
3143 #ifdef CONFIG_SCHED_DEBUG
3144 	unsigned int state = READ_ONCE(p->__state);
3145 
3146 	/*
3147 	 * We should never call set_task_cpu() on a blocked task,
3148 	 * ttwu() will sort out the placement.
3149 	 */
3150 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3151 
3152 	/*
3153 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3154 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3155 	 * time relying on p->on_rq.
3156 	 */
3157 	WARN_ON_ONCE(state == TASK_RUNNING &&
3158 		     p->sched_class == &fair_sched_class &&
3159 		     (p->on_rq && !task_on_rq_migrating(p)));
3160 
3161 #ifdef CONFIG_LOCKDEP
3162 	/*
3163 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3164 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3165 	 *
3166 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3167 	 * see task_group().
3168 	 *
3169 	 * Furthermore, all task_rq users should acquire both locks, see
3170 	 * task_rq_lock().
3171 	 */
3172 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3173 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3174 #endif
3175 	/*
3176 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3177 	 */
3178 	WARN_ON_ONCE(!cpu_online(new_cpu));
3179 
3180 	WARN_ON_ONCE(is_migration_disabled(p));
3181 #endif
3182 
3183 	trace_sched_migrate_task(p, new_cpu);
3184 
3185 	if (task_cpu(p) != new_cpu) {
3186 		if (p->sched_class->migrate_task_rq)
3187 			p->sched_class->migrate_task_rq(p, new_cpu);
3188 		p->se.nr_migrations++;
3189 		rseq_migrate(p);
3190 		perf_event_task_migrate(p);
3191 	}
3192 
3193 	__set_task_cpu(p, new_cpu);
3194 }
3195 
3196 #ifdef CONFIG_NUMA_BALANCING
3197 static void __migrate_swap_task(struct task_struct *p, int cpu)
3198 {
3199 	if (task_on_rq_queued(p)) {
3200 		struct rq *src_rq, *dst_rq;
3201 		struct rq_flags srf, drf;
3202 
3203 		src_rq = task_rq(p);
3204 		dst_rq = cpu_rq(cpu);
3205 
3206 		rq_pin_lock(src_rq, &srf);
3207 		rq_pin_lock(dst_rq, &drf);
3208 
3209 		deactivate_task(src_rq, p, 0);
3210 		set_task_cpu(p, cpu);
3211 		activate_task(dst_rq, p, 0);
3212 		check_preempt_curr(dst_rq, p, 0);
3213 
3214 		rq_unpin_lock(dst_rq, &drf);
3215 		rq_unpin_lock(src_rq, &srf);
3216 
3217 	} else {
3218 		/*
3219 		 * Task isn't running anymore; make it appear like we migrated
3220 		 * it before it went to sleep. This means on wakeup we make the
3221 		 * previous CPU our target instead of where it really is.
3222 		 */
3223 		p->wake_cpu = cpu;
3224 	}
3225 }
3226 
3227 struct migration_swap_arg {
3228 	struct task_struct *src_task, *dst_task;
3229 	int src_cpu, dst_cpu;
3230 };
3231 
3232 static int migrate_swap_stop(void *data)
3233 {
3234 	struct migration_swap_arg *arg = data;
3235 	struct rq *src_rq, *dst_rq;
3236 	int ret = -EAGAIN;
3237 
3238 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3239 		return -EAGAIN;
3240 
3241 	src_rq = cpu_rq(arg->src_cpu);
3242 	dst_rq = cpu_rq(arg->dst_cpu);
3243 
3244 	double_raw_lock(&arg->src_task->pi_lock,
3245 			&arg->dst_task->pi_lock);
3246 	double_rq_lock(src_rq, dst_rq);
3247 
3248 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3249 		goto unlock;
3250 
3251 	if (task_cpu(arg->src_task) != arg->src_cpu)
3252 		goto unlock;
3253 
3254 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3255 		goto unlock;
3256 
3257 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3258 		goto unlock;
3259 
3260 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3261 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3262 
3263 	ret = 0;
3264 
3265 unlock:
3266 	double_rq_unlock(src_rq, dst_rq);
3267 	raw_spin_unlock(&arg->dst_task->pi_lock);
3268 	raw_spin_unlock(&arg->src_task->pi_lock);
3269 
3270 	return ret;
3271 }
3272 
3273 /*
3274  * Cross migrate two tasks
3275  */
3276 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3277 		int target_cpu, int curr_cpu)
3278 {
3279 	struct migration_swap_arg arg;
3280 	int ret = -EINVAL;
3281 
3282 	arg = (struct migration_swap_arg){
3283 		.src_task = cur,
3284 		.src_cpu = curr_cpu,
3285 		.dst_task = p,
3286 		.dst_cpu = target_cpu,
3287 	};
3288 
3289 	if (arg.src_cpu == arg.dst_cpu)
3290 		goto out;
3291 
3292 	/*
3293 	 * These three tests are all lockless; this is OK since all of them
3294 	 * will be re-checked with proper locks held further down the line.
3295 	 */
3296 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3297 		goto out;
3298 
3299 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3300 		goto out;
3301 
3302 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3303 		goto out;
3304 
3305 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3306 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3307 
3308 out:
3309 	return ret;
3310 }
3311 #endif /* CONFIG_NUMA_BALANCING */
3312 
3313 /*
3314  * wait_task_inactive - wait for a thread to unschedule.
3315  *
3316  * Wait for the thread to block in any of the states set in @match_state.
3317  * If it changes, i.e. @p might have woken up, then return zero.  When we
3318  * succeed in waiting for @p to be off its CPU, we return a positive number
3319  * (its total switch count).  If a second call a short while later returns the
3320  * same number, the caller can be sure that @p has remained unscheduled the
3321  * whole time.
3322  *
3323  * The caller must ensure that the task *will* unschedule sometime soon,
3324  * else this function might spin for a *long* time. This function can't
3325  * be called with interrupts off, or it may introduce deadlock with
3326  * smp_call_function() if an IPI is sent by the same process we are
3327  * waiting to become inactive.
3328  */
3329 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3330 {
3331 	int running, queued;
3332 	struct rq_flags rf;
3333 	unsigned long ncsw;
3334 	struct rq *rq;
3335 
3336 	for (;;) {
3337 		/*
3338 		 * We do the initial early heuristics without holding
3339 		 * any task-queue locks at all. We'll only try to get
3340 		 * the runqueue lock when things look like they will
3341 		 * work out!
3342 		 */
3343 		rq = task_rq(p);
3344 
3345 		/*
3346 		 * If the task is actively running on another CPU
3347 		 * still, just relax and busy-wait without holding
3348 		 * any locks.
3349 		 *
3350 		 * NOTE! Since we don't hold any locks, it's not
3351 		 * even sure that "rq" stays as the right runqueue!
3352 		 * But we don't care, since "task_on_cpu()" will
3353 		 * return false if the runqueue has changed and p
3354 		 * is actually now running somewhere else!
3355 		 */
3356 		while (task_on_cpu(rq, p)) {
3357 			if (!(READ_ONCE(p->__state) & match_state))
3358 				return 0;
3359 			cpu_relax();
3360 		}
3361 
3362 		/*
3363 		 * Ok, time to look more closely! We need the rq
3364 		 * lock now, to be *sure*. If we're wrong, we'll
3365 		 * just go back and repeat.
3366 		 */
3367 		rq = task_rq_lock(p, &rf);
3368 		trace_sched_wait_task(p);
3369 		running = task_on_cpu(rq, p);
3370 		queued = task_on_rq_queued(p);
3371 		ncsw = 0;
3372 		if (READ_ONCE(p->__state) & match_state)
3373 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3374 		task_rq_unlock(rq, p, &rf);
3375 
3376 		/*
3377 		 * If it changed from the expected state, bail out now.
3378 		 */
3379 		if (unlikely(!ncsw))
3380 			break;
3381 
3382 		/*
3383 		 * Was it really running after all now that we
3384 		 * checked with the proper locks actually held?
3385 		 *
3386 		 * Oops. Go back and try again..
3387 		 */
3388 		if (unlikely(running)) {
3389 			cpu_relax();
3390 			continue;
3391 		}
3392 
3393 		/*
3394 		 * It's not enough that it's not actively running,
3395 		 * it must be off the runqueue _entirely_, and not
3396 		 * preempted!
3397 		 *
3398 		 * So if it was still runnable (but just not actively
3399 		 * running right now), it's preempted, and we should
3400 		 * yield - it could be a while.
3401 		 */
3402 		if (unlikely(queued)) {
3403 			ktime_t to = NSEC_PER_SEC / HZ;
3404 
3405 			set_current_state(TASK_UNINTERRUPTIBLE);
3406 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3407 			continue;
3408 		}
3409 
3410 		/*
3411 		 * Ahh, all good. It wasn't running, and it wasn't
3412 		 * runnable, which means that it will never become
3413 		 * running in the future either. We're all done!
3414 		 */
3415 		break;
3416 	}
3417 
3418 	return ncsw;
3419 }
3420 
3421 /***
3422  * kick_process - kick a running thread to enter/exit the kernel
3423  * @p: the to-be-kicked thread
3424  *
3425  * Cause a process which is running on another CPU to enter
3426  * kernel-mode, without any delay. (to get signals handled.)
3427  *
3428  * NOTE: this function doesn't have to take the runqueue lock,
3429  * because all it wants to ensure is that the remote task enters
3430  * the kernel. If the IPI races and the task has been migrated
3431  * to another CPU then no harm is done and the purpose has been
3432  * achieved as well.
3433  */
3434 void kick_process(struct task_struct *p)
3435 {
3436 	int cpu;
3437 
3438 	preempt_disable();
3439 	cpu = task_cpu(p);
3440 	if ((cpu != smp_processor_id()) && task_curr(p))
3441 		smp_send_reschedule(cpu);
3442 	preempt_enable();
3443 }
3444 EXPORT_SYMBOL_GPL(kick_process);
3445 
3446 /*
3447  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3448  *
3449  * A few notes on cpu_active vs cpu_online:
3450  *
3451  *  - cpu_active must be a subset of cpu_online
3452  *
3453  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3454  *    see __set_cpus_allowed_ptr(). At this point the newly online
3455  *    CPU isn't yet part of the sched domains, and balancing will not
3456  *    see it.
3457  *
3458  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3459  *    avoid the load balancer to place new tasks on the to be removed
3460  *    CPU. Existing tasks will remain running there and will be taken
3461  *    off.
3462  *
3463  * This means that fallback selection must not select !active CPUs.
3464  * And can assume that any active CPU must be online. Conversely
3465  * select_task_rq() below may allow selection of !active CPUs in order
3466  * to satisfy the above rules.
3467  */
3468 static int select_fallback_rq(int cpu, struct task_struct *p)
3469 {
3470 	int nid = cpu_to_node(cpu);
3471 	const struct cpumask *nodemask = NULL;
3472 	enum { cpuset, possible, fail } state = cpuset;
3473 	int dest_cpu;
3474 
3475 	/*
3476 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3477 	 * will return -1. There is no CPU on the node, and we should
3478 	 * select the CPU on the other node.
3479 	 */
3480 	if (nid != -1) {
3481 		nodemask = cpumask_of_node(nid);
3482 
3483 		/* Look for allowed, online CPU in same node. */
3484 		for_each_cpu(dest_cpu, nodemask) {
3485 			if (is_cpu_allowed(p, dest_cpu))
3486 				return dest_cpu;
3487 		}
3488 	}
3489 
3490 	for (;;) {
3491 		/* Any allowed, online CPU? */
3492 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3493 			if (!is_cpu_allowed(p, dest_cpu))
3494 				continue;
3495 
3496 			goto out;
3497 		}
3498 
3499 		/* No more Mr. Nice Guy. */
3500 		switch (state) {
3501 		case cpuset:
3502 			if (cpuset_cpus_allowed_fallback(p)) {
3503 				state = possible;
3504 				break;
3505 			}
3506 			fallthrough;
3507 		case possible:
3508 			/*
3509 			 * XXX When called from select_task_rq() we only
3510 			 * hold p->pi_lock and again violate locking order.
3511 			 *
3512 			 * More yuck to audit.
3513 			 */
3514 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3515 			state = fail;
3516 			break;
3517 		case fail:
3518 			BUG();
3519 			break;
3520 		}
3521 	}
3522 
3523 out:
3524 	if (state != cpuset) {
3525 		/*
3526 		 * Don't tell them about moving exiting tasks or
3527 		 * kernel threads (both mm NULL), since they never
3528 		 * leave kernel.
3529 		 */
3530 		if (p->mm && printk_ratelimit()) {
3531 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3532 					task_pid_nr(p), p->comm, cpu);
3533 		}
3534 	}
3535 
3536 	return dest_cpu;
3537 }
3538 
3539 /*
3540  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3541  */
3542 static inline
3543 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3544 {
3545 	lockdep_assert_held(&p->pi_lock);
3546 
3547 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3548 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3549 	else
3550 		cpu = cpumask_any(p->cpus_ptr);
3551 
3552 	/*
3553 	 * In order not to call set_task_cpu() on a blocking task we need
3554 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3555 	 * CPU.
3556 	 *
3557 	 * Since this is common to all placement strategies, this lives here.
3558 	 *
3559 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3560 	 *   not worry about this generic constraint ]
3561 	 */
3562 	if (unlikely(!is_cpu_allowed(p, cpu)))
3563 		cpu = select_fallback_rq(task_cpu(p), p);
3564 
3565 	return cpu;
3566 }
3567 
3568 void sched_set_stop_task(int cpu, struct task_struct *stop)
3569 {
3570 	static struct lock_class_key stop_pi_lock;
3571 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3572 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3573 
3574 	if (stop) {
3575 		/*
3576 		 * Make it appear like a SCHED_FIFO task, its something
3577 		 * userspace knows about and won't get confused about.
3578 		 *
3579 		 * Also, it will make PI more or less work without too
3580 		 * much confusion -- but then, stop work should not
3581 		 * rely on PI working anyway.
3582 		 */
3583 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3584 
3585 		stop->sched_class = &stop_sched_class;
3586 
3587 		/*
3588 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3589 		 * adjust the effective priority of a task. As a result,
3590 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3591 		 * which can then trigger wakeups of the stop thread to push
3592 		 * around the current task.
3593 		 *
3594 		 * The stop task itself will never be part of the PI-chain, it
3595 		 * never blocks, therefore that ->pi_lock recursion is safe.
3596 		 * Tell lockdep about this by placing the stop->pi_lock in its
3597 		 * own class.
3598 		 */
3599 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3600 	}
3601 
3602 	cpu_rq(cpu)->stop = stop;
3603 
3604 	if (old_stop) {
3605 		/*
3606 		 * Reset it back to a normal scheduling class so that
3607 		 * it can die in pieces.
3608 		 */
3609 		old_stop->sched_class = &rt_sched_class;
3610 	}
3611 }
3612 
3613 #else /* CONFIG_SMP */
3614 
3615 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3616 					 struct affinity_context *ctx)
3617 {
3618 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3619 }
3620 
3621 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3622 
3623 static inline bool rq_has_pinned_tasks(struct rq *rq)
3624 {
3625 	return false;
3626 }
3627 
3628 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3629 {
3630 	return NULL;
3631 }
3632 
3633 #endif /* !CONFIG_SMP */
3634 
3635 static void
3636 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3637 {
3638 	struct rq *rq;
3639 
3640 	if (!schedstat_enabled())
3641 		return;
3642 
3643 	rq = this_rq();
3644 
3645 #ifdef CONFIG_SMP
3646 	if (cpu == rq->cpu) {
3647 		__schedstat_inc(rq->ttwu_local);
3648 		__schedstat_inc(p->stats.nr_wakeups_local);
3649 	} else {
3650 		struct sched_domain *sd;
3651 
3652 		__schedstat_inc(p->stats.nr_wakeups_remote);
3653 		rcu_read_lock();
3654 		for_each_domain(rq->cpu, sd) {
3655 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3656 				__schedstat_inc(sd->ttwu_wake_remote);
3657 				break;
3658 			}
3659 		}
3660 		rcu_read_unlock();
3661 	}
3662 
3663 	if (wake_flags & WF_MIGRATED)
3664 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3665 #endif /* CONFIG_SMP */
3666 
3667 	__schedstat_inc(rq->ttwu_count);
3668 	__schedstat_inc(p->stats.nr_wakeups);
3669 
3670 	if (wake_flags & WF_SYNC)
3671 		__schedstat_inc(p->stats.nr_wakeups_sync);
3672 }
3673 
3674 /*
3675  * Mark the task runnable and perform wakeup-preemption.
3676  */
3677 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3678 			   struct rq_flags *rf)
3679 {
3680 	check_preempt_curr(rq, p, wake_flags);
3681 	WRITE_ONCE(p->__state, TASK_RUNNING);
3682 	trace_sched_wakeup(p);
3683 
3684 #ifdef CONFIG_SMP
3685 	if (p->sched_class->task_woken) {
3686 		/*
3687 		 * Our task @p is fully woken up and running; so it's safe to
3688 		 * drop the rq->lock, hereafter rq is only used for statistics.
3689 		 */
3690 		rq_unpin_lock(rq, rf);
3691 		p->sched_class->task_woken(rq, p);
3692 		rq_repin_lock(rq, rf);
3693 	}
3694 
3695 	if (rq->idle_stamp) {
3696 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3697 		u64 max = 2*rq->max_idle_balance_cost;
3698 
3699 		update_avg(&rq->avg_idle, delta);
3700 
3701 		if (rq->avg_idle > max)
3702 			rq->avg_idle = max;
3703 
3704 		rq->wake_stamp = jiffies;
3705 		rq->wake_avg_idle = rq->avg_idle / 2;
3706 
3707 		rq->idle_stamp = 0;
3708 	}
3709 #endif
3710 }
3711 
3712 static void
3713 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3714 		 struct rq_flags *rf)
3715 {
3716 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3717 
3718 	lockdep_assert_rq_held(rq);
3719 
3720 	if (p->sched_contributes_to_load)
3721 		rq->nr_uninterruptible--;
3722 
3723 #ifdef CONFIG_SMP
3724 	if (wake_flags & WF_MIGRATED)
3725 		en_flags |= ENQUEUE_MIGRATED;
3726 	else
3727 #endif
3728 	if (p->in_iowait) {
3729 		delayacct_blkio_end(p);
3730 		atomic_dec(&task_rq(p)->nr_iowait);
3731 	}
3732 
3733 	activate_task(rq, p, en_flags);
3734 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3735 }
3736 
3737 /*
3738  * Consider @p being inside a wait loop:
3739  *
3740  *   for (;;) {
3741  *      set_current_state(TASK_UNINTERRUPTIBLE);
3742  *
3743  *      if (CONDITION)
3744  *         break;
3745  *
3746  *      schedule();
3747  *   }
3748  *   __set_current_state(TASK_RUNNING);
3749  *
3750  * between set_current_state() and schedule(). In this case @p is still
3751  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3752  * an atomic manner.
3753  *
3754  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3755  * then schedule() must still happen and p->state can be changed to
3756  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3757  * need to do a full wakeup with enqueue.
3758  *
3759  * Returns: %true when the wakeup is done,
3760  *          %false otherwise.
3761  */
3762 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3763 {
3764 	struct rq_flags rf;
3765 	struct rq *rq;
3766 	int ret = 0;
3767 
3768 	rq = __task_rq_lock(p, &rf);
3769 	if (task_on_rq_queued(p)) {
3770 		/* check_preempt_curr() may use rq clock */
3771 		update_rq_clock(rq);
3772 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3773 		ret = 1;
3774 	}
3775 	__task_rq_unlock(rq, &rf);
3776 
3777 	return ret;
3778 }
3779 
3780 #ifdef CONFIG_SMP
3781 void sched_ttwu_pending(void *arg)
3782 {
3783 	struct llist_node *llist = arg;
3784 	struct rq *rq = this_rq();
3785 	struct task_struct *p, *t;
3786 	struct rq_flags rf;
3787 
3788 	if (!llist)
3789 		return;
3790 
3791 	rq_lock_irqsave(rq, &rf);
3792 	update_rq_clock(rq);
3793 
3794 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3795 		if (WARN_ON_ONCE(p->on_cpu))
3796 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3797 
3798 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3799 			set_task_cpu(p, cpu_of(rq));
3800 
3801 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3802 	}
3803 
3804 	/*
3805 	 * Must be after enqueueing at least once task such that
3806 	 * idle_cpu() does not observe a false-negative -- if it does,
3807 	 * it is possible for select_idle_siblings() to stack a number
3808 	 * of tasks on this CPU during that window.
3809 	 *
3810 	 * It is ok to clear ttwu_pending when another task pending.
3811 	 * We will receive IPI after local irq enabled and then enqueue it.
3812 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3813 	 */
3814 	WRITE_ONCE(rq->ttwu_pending, 0);
3815 	rq_unlock_irqrestore(rq, &rf);
3816 }
3817 
3818 void send_call_function_single_ipi(int cpu)
3819 {
3820 	struct rq *rq = cpu_rq(cpu);
3821 
3822 	if (!set_nr_if_polling(rq->idle))
3823 		arch_send_call_function_single_ipi(cpu);
3824 	else
3825 		trace_sched_wake_idle_without_ipi(cpu);
3826 }
3827 
3828 /*
3829  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3830  * necessary. The wakee CPU on receipt of the IPI will queue the task
3831  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3832  * of the wakeup instead of the waker.
3833  */
3834 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3835 {
3836 	struct rq *rq = cpu_rq(cpu);
3837 
3838 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3839 
3840 	WRITE_ONCE(rq->ttwu_pending, 1);
3841 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3842 }
3843 
3844 void wake_up_if_idle(int cpu)
3845 {
3846 	struct rq *rq = cpu_rq(cpu);
3847 	struct rq_flags rf;
3848 
3849 	rcu_read_lock();
3850 
3851 	if (!is_idle_task(rcu_dereference(rq->curr)))
3852 		goto out;
3853 
3854 	rq_lock_irqsave(rq, &rf);
3855 	if (is_idle_task(rq->curr))
3856 		resched_curr(rq);
3857 	/* Else CPU is not idle, do nothing here: */
3858 	rq_unlock_irqrestore(rq, &rf);
3859 
3860 out:
3861 	rcu_read_unlock();
3862 }
3863 
3864 bool cpus_share_cache(int this_cpu, int that_cpu)
3865 {
3866 	if (this_cpu == that_cpu)
3867 		return true;
3868 
3869 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3870 }
3871 
3872 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3873 {
3874 	/*
3875 	 * Do not complicate things with the async wake_list while the CPU is
3876 	 * in hotplug state.
3877 	 */
3878 	if (!cpu_active(cpu))
3879 		return false;
3880 
3881 	/* Ensure the task will still be allowed to run on the CPU. */
3882 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3883 		return false;
3884 
3885 	/*
3886 	 * If the CPU does not share cache, then queue the task on the
3887 	 * remote rqs wakelist to avoid accessing remote data.
3888 	 */
3889 	if (!cpus_share_cache(smp_processor_id(), cpu))
3890 		return true;
3891 
3892 	if (cpu == smp_processor_id())
3893 		return false;
3894 
3895 	/*
3896 	 * If the wakee cpu is idle, or the task is descheduling and the
3897 	 * only running task on the CPU, then use the wakelist to offload
3898 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3899 	 * the current CPU is likely busy. nr_running is checked to
3900 	 * avoid unnecessary task stacking.
3901 	 *
3902 	 * Note that we can only get here with (wakee) p->on_rq=0,
3903 	 * p->on_cpu can be whatever, we've done the dequeue, so
3904 	 * the wakee has been accounted out of ->nr_running.
3905 	 */
3906 	if (!cpu_rq(cpu)->nr_running)
3907 		return true;
3908 
3909 	return false;
3910 }
3911 
3912 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3913 {
3914 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3915 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3916 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3917 		return true;
3918 	}
3919 
3920 	return false;
3921 }
3922 
3923 #else /* !CONFIG_SMP */
3924 
3925 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3926 {
3927 	return false;
3928 }
3929 
3930 #endif /* CONFIG_SMP */
3931 
3932 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3933 {
3934 	struct rq *rq = cpu_rq(cpu);
3935 	struct rq_flags rf;
3936 
3937 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3938 		return;
3939 
3940 	rq_lock(rq, &rf);
3941 	update_rq_clock(rq);
3942 	ttwu_do_activate(rq, p, wake_flags, &rf);
3943 	rq_unlock(rq, &rf);
3944 }
3945 
3946 /*
3947  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3948  *
3949  * The caller holds p::pi_lock if p != current or has preemption
3950  * disabled when p == current.
3951  *
3952  * The rules of PREEMPT_RT saved_state:
3953  *
3954  *   The related locking code always holds p::pi_lock when updating
3955  *   p::saved_state, which means the code is fully serialized in both cases.
3956  *
3957  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3958  *   bits set. This allows to distinguish all wakeup scenarios.
3959  */
3960 static __always_inline
3961 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3962 {
3963 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3964 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3965 			     state != TASK_RTLOCK_WAIT);
3966 	}
3967 
3968 	if (READ_ONCE(p->__state) & state) {
3969 		*success = 1;
3970 		return true;
3971 	}
3972 
3973 #ifdef CONFIG_PREEMPT_RT
3974 	/*
3975 	 * Saved state preserves the task state across blocking on
3976 	 * an RT lock.  If the state matches, set p::saved_state to
3977 	 * TASK_RUNNING, but do not wake the task because it waits
3978 	 * for a lock wakeup. Also indicate success because from
3979 	 * the regular waker's point of view this has succeeded.
3980 	 *
3981 	 * After acquiring the lock the task will restore p::__state
3982 	 * from p::saved_state which ensures that the regular
3983 	 * wakeup is not lost. The restore will also set
3984 	 * p::saved_state to TASK_RUNNING so any further tests will
3985 	 * not result in false positives vs. @success
3986 	 */
3987 	if (p->saved_state & state) {
3988 		p->saved_state = TASK_RUNNING;
3989 		*success = 1;
3990 	}
3991 #endif
3992 	return false;
3993 }
3994 
3995 /*
3996  * Notes on Program-Order guarantees on SMP systems.
3997  *
3998  *  MIGRATION
3999  *
4000  * The basic program-order guarantee on SMP systems is that when a task [t]
4001  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4002  * execution on its new CPU [c1].
4003  *
4004  * For migration (of runnable tasks) this is provided by the following means:
4005  *
4006  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4007  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4008  *     rq(c1)->lock (if not at the same time, then in that order).
4009  *  C) LOCK of the rq(c1)->lock scheduling in task
4010  *
4011  * Release/acquire chaining guarantees that B happens after A and C after B.
4012  * Note: the CPU doing B need not be c0 or c1
4013  *
4014  * Example:
4015  *
4016  *   CPU0            CPU1            CPU2
4017  *
4018  *   LOCK rq(0)->lock
4019  *   sched-out X
4020  *   sched-in Y
4021  *   UNLOCK rq(0)->lock
4022  *
4023  *                                   LOCK rq(0)->lock // orders against CPU0
4024  *                                   dequeue X
4025  *                                   UNLOCK rq(0)->lock
4026  *
4027  *                                   LOCK rq(1)->lock
4028  *                                   enqueue X
4029  *                                   UNLOCK rq(1)->lock
4030  *
4031  *                   LOCK rq(1)->lock // orders against CPU2
4032  *                   sched-out Z
4033  *                   sched-in X
4034  *                   UNLOCK rq(1)->lock
4035  *
4036  *
4037  *  BLOCKING -- aka. SLEEP + WAKEUP
4038  *
4039  * For blocking we (obviously) need to provide the same guarantee as for
4040  * migration. However the means are completely different as there is no lock
4041  * chain to provide order. Instead we do:
4042  *
4043  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4044  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4045  *
4046  * Example:
4047  *
4048  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4049  *
4050  *   LOCK rq(0)->lock LOCK X->pi_lock
4051  *   dequeue X
4052  *   sched-out X
4053  *   smp_store_release(X->on_cpu, 0);
4054  *
4055  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4056  *                    X->state = WAKING
4057  *                    set_task_cpu(X,2)
4058  *
4059  *                    LOCK rq(2)->lock
4060  *                    enqueue X
4061  *                    X->state = RUNNING
4062  *                    UNLOCK rq(2)->lock
4063  *
4064  *                                          LOCK rq(2)->lock // orders against CPU1
4065  *                                          sched-out Z
4066  *                                          sched-in X
4067  *                                          UNLOCK rq(2)->lock
4068  *
4069  *                    UNLOCK X->pi_lock
4070  *   UNLOCK rq(0)->lock
4071  *
4072  *
4073  * However, for wakeups there is a second guarantee we must provide, namely we
4074  * must ensure that CONDITION=1 done by the caller can not be reordered with
4075  * accesses to the task state; see try_to_wake_up() and set_current_state().
4076  */
4077 
4078 /**
4079  * try_to_wake_up - wake up a thread
4080  * @p: the thread to be awakened
4081  * @state: the mask of task states that can be woken
4082  * @wake_flags: wake modifier flags (WF_*)
4083  *
4084  * Conceptually does:
4085  *
4086  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4087  *
4088  * If the task was not queued/runnable, also place it back on a runqueue.
4089  *
4090  * This function is atomic against schedule() which would dequeue the task.
4091  *
4092  * It issues a full memory barrier before accessing @p->state, see the comment
4093  * with set_current_state().
4094  *
4095  * Uses p->pi_lock to serialize against concurrent wake-ups.
4096  *
4097  * Relies on p->pi_lock stabilizing:
4098  *  - p->sched_class
4099  *  - p->cpus_ptr
4100  *  - p->sched_task_group
4101  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4102  *
4103  * Tries really hard to only take one task_rq(p)->lock for performance.
4104  * Takes rq->lock in:
4105  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4106  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4107  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4108  *
4109  * As a consequence we race really badly with just about everything. See the
4110  * many memory barriers and their comments for details.
4111  *
4112  * Return: %true if @p->state changes (an actual wakeup was done),
4113  *	   %false otherwise.
4114  */
4115 static int
4116 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4117 {
4118 	unsigned long flags;
4119 	int cpu, success = 0;
4120 
4121 	preempt_disable();
4122 	if (p == current) {
4123 		/*
4124 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4125 		 * == smp_processor_id()'. Together this means we can special
4126 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4127 		 * without taking any locks.
4128 		 *
4129 		 * In particular:
4130 		 *  - we rely on Program-Order guarantees for all the ordering,
4131 		 *  - we're serialized against set_special_state() by virtue of
4132 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4133 		 */
4134 		if (!ttwu_state_match(p, state, &success))
4135 			goto out;
4136 
4137 		trace_sched_waking(p);
4138 		WRITE_ONCE(p->__state, TASK_RUNNING);
4139 		trace_sched_wakeup(p);
4140 		goto out;
4141 	}
4142 
4143 	/*
4144 	 * If we are going to wake up a thread waiting for CONDITION we
4145 	 * need to ensure that CONDITION=1 done by the caller can not be
4146 	 * reordered with p->state check below. This pairs with smp_store_mb()
4147 	 * in set_current_state() that the waiting thread does.
4148 	 */
4149 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4150 	smp_mb__after_spinlock();
4151 	if (!ttwu_state_match(p, state, &success))
4152 		goto unlock;
4153 
4154 	trace_sched_waking(p);
4155 
4156 	/*
4157 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4158 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4159 	 * in smp_cond_load_acquire() below.
4160 	 *
4161 	 * sched_ttwu_pending()			try_to_wake_up()
4162 	 *   STORE p->on_rq = 1			  LOAD p->state
4163 	 *   UNLOCK rq->lock
4164 	 *
4165 	 * __schedule() (switch to task 'p')
4166 	 *   LOCK rq->lock			  smp_rmb();
4167 	 *   smp_mb__after_spinlock();
4168 	 *   UNLOCK rq->lock
4169 	 *
4170 	 * [task p]
4171 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4172 	 *
4173 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4174 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4175 	 *
4176 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4177 	 */
4178 	smp_rmb();
4179 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4180 		goto unlock;
4181 
4182 #ifdef CONFIG_SMP
4183 	/*
4184 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4185 	 * possible to, falsely, observe p->on_cpu == 0.
4186 	 *
4187 	 * One must be running (->on_cpu == 1) in order to remove oneself
4188 	 * from the runqueue.
4189 	 *
4190 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4191 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4192 	 *   UNLOCK rq->lock
4193 	 *
4194 	 * __schedule() (put 'p' to sleep)
4195 	 *   LOCK rq->lock			  smp_rmb();
4196 	 *   smp_mb__after_spinlock();
4197 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4198 	 *
4199 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4200 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4201 	 *
4202 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4203 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4204 	 * care about it's own p->state. See the comment in __schedule().
4205 	 */
4206 	smp_acquire__after_ctrl_dep();
4207 
4208 	/*
4209 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4210 	 * == 0), which means we need to do an enqueue, change p->state to
4211 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4212 	 * enqueue, such as ttwu_queue_wakelist().
4213 	 */
4214 	WRITE_ONCE(p->__state, TASK_WAKING);
4215 
4216 	/*
4217 	 * If the owning (remote) CPU is still in the middle of schedule() with
4218 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4219 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4220 	 * let the waker make forward progress. This is safe because IRQs are
4221 	 * disabled and the IPI will deliver after on_cpu is cleared.
4222 	 *
4223 	 * Ensure we load task_cpu(p) after p->on_cpu:
4224 	 *
4225 	 * set_task_cpu(p, cpu);
4226 	 *   STORE p->cpu = @cpu
4227 	 * __schedule() (switch to task 'p')
4228 	 *   LOCK rq->lock
4229 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4230 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4231 	 *
4232 	 * to ensure we observe the correct CPU on which the task is currently
4233 	 * scheduling.
4234 	 */
4235 	if (smp_load_acquire(&p->on_cpu) &&
4236 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4237 		goto unlock;
4238 
4239 	/*
4240 	 * If the owning (remote) CPU is still in the middle of schedule() with
4241 	 * this task as prev, wait until it's done referencing the task.
4242 	 *
4243 	 * Pairs with the smp_store_release() in finish_task().
4244 	 *
4245 	 * This ensures that tasks getting woken will be fully ordered against
4246 	 * their previous state and preserve Program Order.
4247 	 */
4248 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4249 
4250 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4251 	if (task_cpu(p) != cpu) {
4252 		if (p->in_iowait) {
4253 			delayacct_blkio_end(p);
4254 			atomic_dec(&task_rq(p)->nr_iowait);
4255 		}
4256 
4257 		wake_flags |= WF_MIGRATED;
4258 		psi_ttwu_dequeue(p);
4259 		set_task_cpu(p, cpu);
4260 	}
4261 #else
4262 	cpu = task_cpu(p);
4263 #endif /* CONFIG_SMP */
4264 
4265 	ttwu_queue(p, cpu, wake_flags);
4266 unlock:
4267 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4268 out:
4269 	if (success)
4270 		ttwu_stat(p, task_cpu(p), wake_flags);
4271 	preempt_enable();
4272 
4273 	return success;
4274 }
4275 
4276 static bool __task_needs_rq_lock(struct task_struct *p)
4277 {
4278 	unsigned int state = READ_ONCE(p->__state);
4279 
4280 	/*
4281 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4282 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4283 	 * locks at the end, see ttwu_queue_wakelist().
4284 	 */
4285 	if (state == TASK_RUNNING || state == TASK_WAKING)
4286 		return true;
4287 
4288 	/*
4289 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4290 	 * possible to, falsely, observe p->on_rq == 0.
4291 	 *
4292 	 * See try_to_wake_up() for a longer comment.
4293 	 */
4294 	smp_rmb();
4295 	if (p->on_rq)
4296 		return true;
4297 
4298 #ifdef CONFIG_SMP
4299 	/*
4300 	 * Ensure the task has finished __schedule() and will not be referenced
4301 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4302 	 */
4303 	smp_rmb();
4304 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4305 #endif
4306 
4307 	return false;
4308 }
4309 
4310 /**
4311  * task_call_func - Invoke a function on task in fixed state
4312  * @p: Process for which the function is to be invoked, can be @current.
4313  * @func: Function to invoke.
4314  * @arg: Argument to function.
4315  *
4316  * Fix the task in it's current state by avoiding wakeups and or rq operations
4317  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4318  * to work out what the state is, if required.  Given that @func can be invoked
4319  * with a runqueue lock held, it had better be quite lightweight.
4320  *
4321  * Returns:
4322  *   Whatever @func returns
4323  */
4324 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4325 {
4326 	struct rq *rq = NULL;
4327 	struct rq_flags rf;
4328 	int ret;
4329 
4330 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4331 
4332 	if (__task_needs_rq_lock(p))
4333 		rq = __task_rq_lock(p, &rf);
4334 
4335 	/*
4336 	 * At this point the task is pinned; either:
4337 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4338 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4339 	 *  - queued, and we're holding off schedule	 (rq->lock)
4340 	 *  - running, and we're holding off de-schedule (rq->lock)
4341 	 *
4342 	 * The called function (@func) can use: task_curr(), p->on_rq and
4343 	 * p->__state to differentiate between these states.
4344 	 */
4345 	ret = func(p, arg);
4346 
4347 	if (rq)
4348 		rq_unlock(rq, &rf);
4349 
4350 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4351 	return ret;
4352 }
4353 
4354 /**
4355  * cpu_curr_snapshot - Return a snapshot of the currently running task
4356  * @cpu: The CPU on which to snapshot the task.
4357  *
4358  * Returns the task_struct pointer of the task "currently" running on
4359  * the specified CPU.  If the same task is running on that CPU throughout,
4360  * the return value will be a pointer to that task's task_struct structure.
4361  * If the CPU did any context switches even vaguely concurrently with the
4362  * execution of this function, the return value will be a pointer to the
4363  * task_struct structure of a randomly chosen task that was running on
4364  * that CPU somewhere around the time that this function was executing.
4365  *
4366  * If the specified CPU was offline, the return value is whatever it
4367  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4368  * task, but there is no guarantee.  Callers wishing a useful return
4369  * value must take some action to ensure that the specified CPU remains
4370  * online throughout.
4371  *
4372  * This function executes full memory barriers before and after fetching
4373  * the pointer, which permits the caller to confine this function's fetch
4374  * with respect to the caller's accesses to other shared variables.
4375  */
4376 struct task_struct *cpu_curr_snapshot(int cpu)
4377 {
4378 	struct task_struct *t;
4379 
4380 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4381 	t = rcu_dereference(cpu_curr(cpu));
4382 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4383 	return t;
4384 }
4385 
4386 /**
4387  * wake_up_process - Wake up a specific process
4388  * @p: The process to be woken up.
4389  *
4390  * Attempt to wake up the nominated process and move it to the set of runnable
4391  * processes.
4392  *
4393  * Return: 1 if the process was woken up, 0 if it was already running.
4394  *
4395  * This function executes a full memory barrier before accessing the task state.
4396  */
4397 int wake_up_process(struct task_struct *p)
4398 {
4399 	return try_to_wake_up(p, TASK_NORMAL, 0);
4400 }
4401 EXPORT_SYMBOL(wake_up_process);
4402 
4403 int wake_up_state(struct task_struct *p, unsigned int state)
4404 {
4405 	return try_to_wake_up(p, state, 0);
4406 }
4407 
4408 /*
4409  * Perform scheduler related setup for a newly forked process p.
4410  * p is forked by current.
4411  *
4412  * __sched_fork() is basic setup used by init_idle() too:
4413  */
4414 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4415 {
4416 	p->on_rq			= 0;
4417 
4418 	p->se.on_rq			= 0;
4419 	p->se.exec_start		= 0;
4420 	p->se.sum_exec_runtime		= 0;
4421 	p->se.prev_sum_exec_runtime	= 0;
4422 	p->se.nr_migrations		= 0;
4423 	p->se.vruntime			= 0;
4424 	INIT_LIST_HEAD(&p->se.group_node);
4425 
4426 #ifdef CONFIG_FAIR_GROUP_SCHED
4427 	p->se.cfs_rq			= NULL;
4428 #endif
4429 
4430 #ifdef CONFIG_SCHEDSTATS
4431 	/* Even if schedstat is disabled, there should not be garbage */
4432 	memset(&p->stats, 0, sizeof(p->stats));
4433 #endif
4434 
4435 	RB_CLEAR_NODE(&p->dl.rb_node);
4436 	init_dl_task_timer(&p->dl);
4437 	init_dl_inactive_task_timer(&p->dl);
4438 	__dl_clear_params(p);
4439 
4440 	INIT_LIST_HEAD(&p->rt.run_list);
4441 	p->rt.timeout		= 0;
4442 	p->rt.time_slice	= sched_rr_timeslice;
4443 	p->rt.on_rq		= 0;
4444 	p->rt.on_list		= 0;
4445 
4446 #ifdef CONFIG_PREEMPT_NOTIFIERS
4447 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4448 #endif
4449 
4450 #ifdef CONFIG_COMPACTION
4451 	p->capture_control = NULL;
4452 #endif
4453 	init_numa_balancing(clone_flags, p);
4454 #ifdef CONFIG_SMP
4455 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4456 	p->migration_pending = NULL;
4457 #endif
4458 }
4459 
4460 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4461 
4462 #ifdef CONFIG_NUMA_BALANCING
4463 
4464 int sysctl_numa_balancing_mode;
4465 
4466 static void __set_numabalancing_state(bool enabled)
4467 {
4468 	if (enabled)
4469 		static_branch_enable(&sched_numa_balancing);
4470 	else
4471 		static_branch_disable(&sched_numa_balancing);
4472 }
4473 
4474 void set_numabalancing_state(bool enabled)
4475 {
4476 	if (enabled)
4477 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4478 	else
4479 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4480 	__set_numabalancing_state(enabled);
4481 }
4482 
4483 #ifdef CONFIG_PROC_SYSCTL
4484 static void reset_memory_tiering(void)
4485 {
4486 	struct pglist_data *pgdat;
4487 
4488 	for_each_online_pgdat(pgdat) {
4489 		pgdat->nbp_threshold = 0;
4490 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4491 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4492 	}
4493 }
4494 
4495 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4496 			  void *buffer, size_t *lenp, loff_t *ppos)
4497 {
4498 	struct ctl_table t;
4499 	int err;
4500 	int state = sysctl_numa_balancing_mode;
4501 
4502 	if (write && !capable(CAP_SYS_ADMIN))
4503 		return -EPERM;
4504 
4505 	t = *table;
4506 	t.data = &state;
4507 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4508 	if (err < 0)
4509 		return err;
4510 	if (write) {
4511 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4512 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4513 			reset_memory_tiering();
4514 		sysctl_numa_balancing_mode = state;
4515 		__set_numabalancing_state(state);
4516 	}
4517 	return err;
4518 }
4519 #endif
4520 #endif
4521 
4522 #ifdef CONFIG_SCHEDSTATS
4523 
4524 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4525 
4526 static void set_schedstats(bool enabled)
4527 {
4528 	if (enabled)
4529 		static_branch_enable(&sched_schedstats);
4530 	else
4531 		static_branch_disable(&sched_schedstats);
4532 }
4533 
4534 void force_schedstat_enabled(void)
4535 {
4536 	if (!schedstat_enabled()) {
4537 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4538 		static_branch_enable(&sched_schedstats);
4539 	}
4540 }
4541 
4542 static int __init setup_schedstats(char *str)
4543 {
4544 	int ret = 0;
4545 	if (!str)
4546 		goto out;
4547 
4548 	if (!strcmp(str, "enable")) {
4549 		set_schedstats(true);
4550 		ret = 1;
4551 	} else if (!strcmp(str, "disable")) {
4552 		set_schedstats(false);
4553 		ret = 1;
4554 	}
4555 out:
4556 	if (!ret)
4557 		pr_warn("Unable to parse schedstats=\n");
4558 
4559 	return ret;
4560 }
4561 __setup("schedstats=", setup_schedstats);
4562 
4563 #ifdef CONFIG_PROC_SYSCTL
4564 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4565 		size_t *lenp, loff_t *ppos)
4566 {
4567 	struct ctl_table t;
4568 	int err;
4569 	int state = static_branch_likely(&sched_schedstats);
4570 
4571 	if (write && !capable(CAP_SYS_ADMIN))
4572 		return -EPERM;
4573 
4574 	t = *table;
4575 	t.data = &state;
4576 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4577 	if (err < 0)
4578 		return err;
4579 	if (write)
4580 		set_schedstats(state);
4581 	return err;
4582 }
4583 #endif /* CONFIG_PROC_SYSCTL */
4584 #endif /* CONFIG_SCHEDSTATS */
4585 
4586 #ifdef CONFIG_SYSCTL
4587 static struct ctl_table sched_core_sysctls[] = {
4588 #ifdef CONFIG_SCHEDSTATS
4589 	{
4590 		.procname       = "sched_schedstats",
4591 		.data           = NULL,
4592 		.maxlen         = sizeof(unsigned int),
4593 		.mode           = 0644,
4594 		.proc_handler   = sysctl_schedstats,
4595 		.extra1         = SYSCTL_ZERO,
4596 		.extra2         = SYSCTL_ONE,
4597 	},
4598 #endif /* CONFIG_SCHEDSTATS */
4599 #ifdef CONFIG_UCLAMP_TASK
4600 	{
4601 		.procname       = "sched_util_clamp_min",
4602 		.data           = &sysctl_sched_uclamp_util_min,
4603 		.maxlen         = sizeof(unsigned int),
4604 		.mode           = 0644,
4605 		.proc_handler   = sysctl_sched_uclamp_handler,
4606 	},
4607 	{
4608 		.procname       = "sched_util_clamp_max",
4609 		.data           = &sysctl_sched_uclamp_util_max,
4610 		.maxlen         = sizeof(unsigned int),
4611 		.mode           = 0644,
4612 		.proc_handler   = sysctl_sched_uclamp_handler,
4613 	},
4614 	{
4615 		.procname       = "sched_util_clamp_min_rt_default",
4616 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4617 		.maxlen         = sizeof(unsigned int),
4618 		.mode           = 0644,
4619 		.proc_handler   = sysctl_sched_uclamp_handler,
4620 	},
4621 #endif /* CONFIG_UCLAMP_TASK */
4622 #ifdef CONFIG_NUMA_BALANCING
4623 	{
4624 		.procname	= "numa_balancing",
4625 		.data		= NULL, /* filled in by handler */
4626 		.maxlen		= sizeof(unsigned int),
4627 		.mode		= 0644,
4628 		.proc_handler	= sysctl_numa_balancing,
4629 		.extra1		= SYSCTL_ZERO,
4630 		.extra2		= SYSCTL_FOUR,
4631 	},
4632 #endif /* CONFIG_NUMA_BALANCING */
4633 	{}
4634 };
4635 static int __init sched_core_sysctl_init(void)
4636 {
4637 	register_sysctl_init("kernel", sched_core_sysctls);
4638 	return 0;
4639 }
4640 late_initcall(sched_core_sysctl_init);
4641 #endif /* CONFIG_SYSCTL */
4642 
4643 /*
4644  * fork()/clone()-time setup:
4645  */
4646 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4647 {
4648 	__sched_fork(clone_flags, p);
4649 	/*
4650 	 * We mark the process as NEW here. This guarantees that
4651 	 * nobody will actually run it, and a signal or other external
4652 	 * event cannot wake it up and insert it on the runqueue either.
4653 	 */
4654 	p->__state = TASK_NEW;
4655 
4656 	/*
4657 	 * Make sure we do not leak PI boosting priority to the child.
4658 	 */
4659 	p->prio = current->normal_prio;
4660 
4661 	uclamp_fork(p);
4662 
4663 	/*
4664 	 * Revert to default priority/policy on fork if requested.
4665 	 */
4666 	if (unlikely(p->sched_reset_on_fork)) {
4667 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4668 			p->policy = SCHED_NORMAL;
4669 			p->static_prio = NICE_TO_PRIO(0);
4670 			p->rt_priority = 0;
4671 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4672 			p->static_prio = NICE_TO_PRIO(0);
4673 
4674 		p->prio = p->normal_prio = p->static_prio;
4675 		set_load_weight(p, false);
4676 
4677 		/*
4678 		 * We don't need the reset flag anymore after the fork. It has
4679 		 * fulfilled its duty:
4680 		 */
4681 		p->sched_reset_on_fork = 0;
4682 	}
4683 
4684 	if (dl_prio(p->prio))
4685 		return -EAGAIN;
4686 	else if (rt_prio(p->prio))
4687 		p->sched_class = &rt_sched_class;
4688 	else
4689 		p->sched_class = &fair_sched_class;
4690 
4691 	init_entity_runnable_average(&p->se);
4692 
4693 
4694 #ifdef CONFIG_SCHED_INFO
4695 	if (likely(sched_info_on()))
4696 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4697 #endif
4698 #if defined(CONFIG_SMP)
4699 	p->on_cpu = 0;
4700 #endif
4701 	init_task_preempt_count(p);
4702 #ifdef CONFIG_SMP
4703 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4704 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4705 #endif
4706 	return 0;
4707 }
4708 
4709 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4710 {
4711 	unsigned long flags;
4712 
4713 	/*
4714 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4715 	 * required yet, but lockdep gets upset if rules are violated.
4716 	 */
4717 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4718 #ifdef CONFIG_CGROUP_SCHED
4719 	if (1) {
4720 		struct task_group *tg;
4721 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4722 				  struct task_group, css);
4723 		tg = autogroup_task_group(p, tg);
4724 		p->sched_task_group = tg;
4725 	}
4726 #endif
4727 	rseq_migrate(p);
4728 	/*
4729 	 * We're setting the CPU for the first time, we don't migrate,
4730 	 * so use __set_task_cpu().
4731 	 */
4732 	__set_task_cpu(p, smp_processor_id());
4733 	if (p->sched_class->task_fork)
4734 		p->sched_class->task_fork(p);
4735 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4736 }
4737 
4738 void sched_post_fork(struct task_struct *p)
4739 {
4740 	uclamp_post_fork(p);
4741 }
4742 
4743 unsigned long to_ratio(u64 period, u64 runtime)
4744 {
4745 	if (runtime == RUNTIME_INF)
4746 		return BW_UNIT;
4747 
4748 	/*
4749 	 * Doing this here saves a lot of checks in all
4750 	 * the calling paths, and returning zero seems
4751 	 * safe for them anyway.
4752 	 */
4753 	if (period == 0)
4754 		return 0;
4755 
4756 	return div64_u64(runtime << BW_SHIFT, period);
4757 }
4758 
4759 /*
4760  * wake_up_new_task - wake up a newly created task for the first time.
4761  *
4762  * This function will do some initial scheduler statistics housekeeping
4763  * that must be done for every newly created context, then puts the task
4764  * on the runqueue and wakes it.
4765  */
4766 void wake_up_new_task(struct task_struct *p)
4767 {
4768 	struct rq_flags rf;
4769 	struct rq *rq;
4770 
4771 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4772 	WRITE_ONCE(p->__state, TASK_RUNNING);
4773 #ifdef CONFIG_SMP
4774 	/*
4775 	 * Fork balancing, do it here and not earlier because:
4776 	 *  - cpus_ptr can change in the fork path
4777 	 *  - any previously selected CPU might disappear through hotplug
4778 	 *
4779 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4780 	 * as we're not fully set-up yet.
4781 	 */
4782 	p->recent_used_cpu = task_cpu(p);
4783 	rseq_migrate(p);
4784 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4785 #endif
4786 	rq = __task_rq_lock(p, &rf);
4787 	update_rq_clock(rq);
4788 	post_init_entity_util_avg(p);
4789 
4790 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4791 	trace_sched_wakeup_new(p);
4792 	check_preempt_curr(rq, p, WF_FORK);
4793 #ifdef CONFIG_SMP
4794 	if (p->sched_class->task_woken) {
4795 		/*
4796 		 * Nothing relies on rq->lock after this, so it's fine to
4797 		 * drop it.
4798 		 */
4799 		rq_unpin_lock(rq, &rf);
4800 		p->sched_class->task_woken(rq, p);
4801 		rq_repin_lock(rq, &rf);
4802 	}
4803 #endif
4804 	task_rq_unlock(rq, p, &rf);
4805 }
4806 
4807 #ifdef CONFIG_PREEMPT_NOTIFIERS
4808 
4809 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4810 
4811 void preempt_notifier_inc(void)
4812 {
4813 	static_branch_inc(&preempt_notifier_key);
4814 }
4815 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4816 
4817 void preempt_notifier_dec(void)
4818 {
4819 	static_branch_dec(&preempt_notifier_key);
4820 }
4821 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4822 
4823 /**
4824  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4825  * @notifier: notifier struct to register
4826  */
4827 void preempt_notifier_register(struct preempt_notifier *notifier)
4828 {
4829 	if (!static_branch_unlikely(&preempt_notifier_key))
4830 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4831 
4832 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4833 }
4834 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4835 
4836 /**
4837  * preempt_notifier_unregister - no longer interested in preemption notifications
4838  * @notifier: notifier struct to unregister
4839  *
4840  * This is *not* safe to call from within a preemption notifier.
4841  */
4842 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4843 {
4844 	hlist_del(&notifier->link);
4845 }
4846 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4847 
4848 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4849 {
4850 	struct preempt_notifier *notifier;
4851 
4852 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4853 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4854 }
4855 
4856 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4857 {
4858 	if (static_branch_unlikely(&preempt_notifier_key))
4859 		__fire_sched_in_preempt_notifiers(curr);
4860 }
4861 
4862 static void
4863 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4864 				   struct task_struct *next)
4865 {
4866 	struct preempt_notifier *notifier;
4867 
4868 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4869 		notifier->ops->sched_out(notifier, next);
4870 }
4871 
4872 static __always_inline void
4873 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4874 				 struct task_struct *next)
4875 {
4876 	if (static_branch_unlikely(&preempt_notifier_key))
4877 		__fire_sched_out_preempt_notifiers(curr, next);
4878 }
4879 
4880 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4881 
4882 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4883 {
4884 }
4885 
4886 static inline void
4887 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4888 				 struct task_struct *next)
4889 {
4890 }
4891 
4892 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4893 
4894 static inline void prepare_task(struct task_struct *next)
4895 {
4896 #ifdef CONFIG_SMP
4897 	/*
4898 	 * Claim the task as running, we do this before switching to it
4899 	 * such that any running task will have this set.
4900 	 *
4901 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4902 	 * its ordering comment.
4903 	 */
4904 	WRITE_ONCE(next->on_cpu, 1);
4905 #endif
4906 }
4907 
4908 static inline void finish_task(struct task_struct *prev)
4909 {
4910 #ifdef CONFIG_SMP
4911 	/*
4912 	 * This must be the very last reference to @prev from this CPU. After
4913 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4914 	 * must ensure this doesn't happen until the switch is completely
4915 	 * finished.
4916 	 *
4917 	 * In particular, the load of prev->state in finish_task_switch() must
4918 	 * happen before this.
4919 	 *
4920 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4921 	 */
4922 	smp_store_release(&prev->on_cpu, 0);
4923 #endif
4924 }
4925 
4926 #ifdef CONFIG_SMP
4927 
4928 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4929 {
4930 	void (*func)(struct rq *rq);
4931 	struct balance_callback *next;
4932 
4933 	lockdep_assert_rq_held(rq);
4934 
4935 	while (head) {
4936 		func = (void (*)(struct rq *))head->func;
4937 		next = head->next;
4938 		head->next = NULL;
4939 		head = next;
4940 
4941 		func(rq);
4942 	}
4943 }
4944 
4945 static void balance_push(struct rq *rq);
4946 
4947 /*
4948  * balance_push_callback is a right abuse of the callback interface and plays
4949  * by significantly different rules.
4950  *
4951  * Where the normal balance_callback's purpose is to be ran in the same context
4952  * that queued it (only later, when it's safe to drop rq->lock again),
4953  * balance_push_callback is specifically targeted at __schedule().
4954  *
4955  * This abuse is tolerated because it places all the unlikely/odd cases behind
4956  * a single test, namely: rq->balance_callback == NULL.
4957  */
4958 struct balance_callback balance_push_callback = {
4959 	.next = NULL,
4960 	.func = balance_push,
4961 };
4962 
4963 static inline struct balance_callback *
4964 __splice_balance_callbacks(struct rq *rq, bool split)
4965 {
4966 	struct balance_callback *head = rq->balance_callback;
4967 
4968 	if (likely(!head))
4969 		return NULL;
4970 
4971 	lockdep_assert_rq_held(rq);
4972 	/*
4973 	 * Must not take balance_push_callback off the list when
4974 	 * splice_balance_callbacks() and balance_callbacks() are not
4975 	 * in the same rq->lock section.
4976 	 *
4977 	 * In that case it would be possible for __schedule() to interleave
4978 	 * and observe the list empty.
4979 	 */
4980 	if (split && head == &balance_push_callback)
4981 		head = NULL;
4982 	else
4983 		rq->balance_callback = NULL;
4984 
4985 	return head;
4986 }
4987 
4988 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
4989 {
4990 	return __splice_balance_callbacks(rq, true);
4991 }
4992 
4993 static void __balance_callbacks(struct rq *rq)
4994 {
4995 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4996 }
4997 
4998 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
4999 {
5000 	unsigned long flags;
5001 
5002 	if (unlikely(head)) {
5003 		raw_spin_rq_lock_irqsave(rq, flags);
5004 		do_balance_callbacks(rq, head);
5005 		raw_spin_rq_unlock_irqrestore(rq, flags);
5006 	}
5007 }
5008 
5009 #else
5010 
5011 static inline void __balance_callbacks(struct rq *rq)
5012 {
5013 }
5014 
5015 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5016 {
5017 	return NULL;
5018 }
5019 
5020 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5021 {
5022 }
5023 
5024 #endif
5025 
5026 static inline void
5027 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5028 {
5029 	/*
5030 	 * Since the runqueue lock will be released by the next
5031 	 * task (which is an invalid locking op but in the case
5032 	 * of the scheduler it's an obvious special-case), so we
5033 	 * do an early lockdep release here:
5034 	 */
5035 	rq_unpin_lock(rq, rf);
5036 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5037 #ifdef CONFIG_DEBUG_SPINLOCK
5038 	/* this is a valid case when another task releases the spinlock */
5039 	rq_lockp(rq)->owner = next;
5040 #endif
5041 }
5042 
5043 static inline void finish_lock_switch(struct rq *rq)
5044 {
5045 	/*
5046 	 * If we are tracking spinlock dependencies then we have to
5047 	 * fix up the runqueue lock - which gets 'carried over' from
5048 	 * prev into current:
5049 	 */
5050 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5051 	__balance_callbacks(rq);
5052 	raw_spin_rq_unlock_irq(rq);
5053 }
5054 
5055 /*
5056  * NOP if the arch has not defined these:
5057  */
5058 
5059 #ifndef prepare_arch_switch
5060 # define prepare_arch_switch(next)	do { } while (0)
5061 #endif
5062 
5063 #ifndef finish_arch_post_lock_switch
5064 # define finish_arch_post_lock_switch()	do { } while (0)
5065 #endif
5066 
5067 static inline void kmap_local_sched_out(void)
5068 {
5069 #ifdef CONFIG_KMAP_LOCAL
5070 	if (unlikely(current->kmap_ctrl.idx))
5071 		__kmap_local_sched_out();
5072 #endif
5073 }
5074 
5075 static inline void kmap_local_sched_in(void)
5076 {
5077 #ifdef CONFIG_KMAP_LOCAL
5078 	if (unlikely(current->kmap_ctrl.idx))
5079 		__kmap_local_sched_in();
5080 #endif
5081 }
5082 
5083 /**
5084  * prepare_task_switch - prepare to switch tasks
5085  * @rq: the runqueue preparing to switch
5086  * @prev: the current task that is being switched out
5087  * @next: the task we are going to switch to.
5088  *
5089  * This is called with the rq lock held and interrupts off. It must
5090  * be paired with a subsequent finish_task_switch after the context
5091  * switch.
5092  *
5093  * prepare_task_switch sets up locking and calls architecture specific
5094  * hooks.
5095  */
5096 static inline void
5097 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5098 		    struct task_struct *next)
5099 {
5100 	kcov_prepare_switch(prev);
5101 	sched_info_switch(rq, prev, next);
5102 	perf_event_task_sched_out(prev, next);
5103 	rseq_preempt(prev);
5104 	fire_sched_out_preempt_notifiers(prev, next);
5105 	kmap_local_sched_out();
5106 	prepare_task(next);
5107 	prepare_arch_switch(next);
5108 }
5109 
5110 /**
5111  * finish_task_switch - clean up after a task-switch
5112  * @prev: the thread we just switched away from.
5113  *
5114  * finish_task_switch must be called after the context switch, paired
5115  * with a prepare_task_switch call before the context switch.
5116  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5117  * and do any other architecture-specific cleanup actions.
5118  *
5119  * Note that we may have delayed dropping an mm in context_switch(). If
5120  * so, we finish that here outside of the runqueue lock. (Doing it
5121  * with the lock held can cause deadlocks; see schedule() for
5122  * details.)
5123  *
5124  * The context switch have flipped the stack from under us and restored the
5125  * local variables which were saved when this task called schedule() in the
5126  * past. prev == current is still correct but we need to recalculate this_rq
5127  * because prev may have moved to another CPU.
5128  */
5129 static struct rq *finish_task_switch(struct task_struct *prev)
5130 	__releases(rq->lock)
5131 {
5132 	struct rq *rq = this_rq();
5133 	struct mm_struct *mm = rq->prev_mm;
5134 	unsigned int prev_state;
5135 
5136 	/*
5137 	 * The previous task will have left us with a preempt_count of 2
5138 	 * because it left us after:
5139 	 *
5140 	 *	schedule()
5141 	 *	  preempt_disable();			// 1
5142 	 *	  __schedule()
5143 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5144 	 *
5145 	 * Also, see FORK_PREEMPT_COUNT.
5146 	 */
5147 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5148 		      "corrupted preempt_count: %s/%d/0x%x\n",
5149 		      current->comm, current->pid, preempt_count()))
5150 		preempt_count_set(FORK_PREEMPT_COUNT);
5151 
5152 	rq->prev_mm = NULL;
5153 
5154 	/*
5155 	 * A task struct has one reference for the use as "current".
5156 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5157 	 * schedule one last time. The schedule call will never return, and
5158 	 * the scheduled task must drop that reference.
5159 	 *
5160 	 * We must observe prev->state before clearing prev->on_cpu (in
5161 	 * finish_task), otherwise a concurrent wakeup can get prev
5162 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5163 	 * transition, resulting in a double drop.
5164 	 */
5165 	prev_state = READ_ONCE(prev->__state);
5166 	vtime_task_switch(prev);
5167 	perf_event_task_sched_in(prev, current);
5168 	finish_task(prev);
5169 	tick_nohz_task_switch();
5170 	finish_lock_switch(rq);
5171 	finish_arch_post_lock_switch();
5172 	kcov_finish_switch(current);
5173 	/*
5174 	 * kmap_local_sched_out() is invoked with rq::lock held and
5175 	 * interrupts disabled. There is no requirement for that, but the
5176 	 * sched out code does not have an interrupt enabled section.
5177 	 * Restoring the maps on sched in does not require interrupts being
5178 	 * disabled either.
5179 	 */
5180 	kmap_local_sched_in();
5181 
5182 	fire_sched_in_preempt_notifiers(current);
5183 	/*
5184 	 * When switching through a kernel thread, the loop in
5185 	 * membarrier_{private,global}_expedited() may have observed that
5186 	 * kernel thread and not issued an IPI. It is therefore possible to
5187 	 * schedule between user->kernel->user threads without passing though
5188 	 * switch_mm(). Membarrier requires a barrier after storing to
5189 	 * rq->curr, before returning to userspace, so provide them here:
5190 	 *
5191 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5192 	 *   provided by mmdrop(),
5193 	 * - a sync_core for SYNC_CORE.
5194 	 */
5195 	if (mm) {
5196 		membarrier_mm_sync_core_before_usermode(mm);
5197 		mmdrop_sched(mm);
5198 	}
5199 	if (unlikely(prev_state == TASK_DEAD)) {
5200 		if (prev->sched_class->task_dead)
5201 			prev->sched_class->task_dead(prev);
5202 
5203 		/* Task is done with its stack. */
5204 		put_task_stack(prev);
5205 
5206 		put_task_struct_rcu_user(prev);
5207 	}
5208 
5209 	return rq;
5210 }
5211 
5212 /**
5213  * schedule_tail - first thing a freshly forked thread must call.
5214  * @prev: the thread we just switched away from.
5215  */
5216 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5217 	__releases(rq->lock)
5218 {
5219 	/*
5220 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5221 	 * finish_task_switch() for details.
5222 	 *
5223 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5224 	 * and the preempt_enable() will end up enabling preemption (on
5225 	 * PREEMPT_COUNT kernels).
5226 	 */
5227 
5228 	finish_task_switch(prev);
5229 	preempt_enable();
5230 
5231 	if (current->set_child_tid)
5232 		put_user(task_pid_vnr(current), current->set_child_tid);
5233 
5234 	calculate_sigpending();
5235 }
5236 
5237 /*
5238  * context_switch - switch to the new MM and the new thread's register state.
5239  */
5240 static __always_inline struct rq *
5241 context_switch(struct rq *rq, struct task_struct *prev,
5242 	       struct task_struct *next, struct rq_flags *rf)
5243 {
5244 	prepare_task_switch(rq, prev, next);
5245 
5246 	/*
5247 	 * For paravirt, this is coupled with an exit in switch_to to
5248 	 * combine the page table reload and the switch backend into
5249 	 * one hypercall.
5250 	 */
5251 	arch_start_context_switch(prev);
5252 
5253 	/*
5254 	 * kernel -> kernel   lazy + transfer active
5255 	 *   user -> kernel   lazy + mmgrab() active
5256 	 *
5257 	 * kernel ->   user   switch + mmdrop() active
5258 	 *   user ->   user   switch
5259 	 */
5260 	if (!next->mm) {                                // to kernel
5261 		enter_lazy_tlb(prev->active_mm, next);
5262 
5263 		next->active_mm = prev->active_mm;
5264 		if (prev->mm)                           // from user
5265 			mmgrab(prev->active_mm);
5266 		else
5267 			prev->active_mm = NULL;
5268 	} else {                                        // to user
5269 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5270 		/*
5271 		 * sys_membarrier() requires an smp_mb() between setting
5272 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5273 		 *
5274 		 * The below provides this either through switch_mm(), or in
5275 		 * case 'prev->active_mm == next->mm' through
5276 		 * finish_task_switch()'s mmdrop().
5277 		 */
5278 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5279 		lru_gen_use_mm(next->mm);
5280 
5281 		if (!prev->mm) {                        // from kernel
5282 			/* will mmdrop() in finish_task_switch(). */
5283 			rq->prev_mm = prev->active_mm;
5284 			prev->active_mm = NULL;
5285 		}
5286 	}
5287 
5288 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5289 
5290 	prepare_lock_switch(rq, next, rf);
5291 
5292 	/* Here we just switch the register state and the stack. */
5293 	switch_to(prev, next, prev);
5294 	barrier();
5295 
5296 	return finish_task_switch(prev);
5297 }
5298 
5299 /*
5300  * nr_running and nr_context_switches:
5301  *
5302  * externally visible scheduler statistics: current number of runnable
5303  * threads, total number of context switches performed since bootup.
5304  */
5305 unsigned int nr_running(void)
5306 {
5307 	unsigned int i, sum = 0;
5308 
5309 	for_each_online_cpu(i)
5310 		sum += cpu_rq(i)->nr_running;
5311 
5312 	return sum;
5313 }
5314 
5315 /*
5316  * Check if only the current task is running on the CPU.
5317  *
5318  * Caution: this function does not check that the caller has disabled
5319  * preemption, thus the result might have a time-of-check-to-time-of-use
5320  * race.  The caller is responsible to use it correctly, for example:
5321  *
5322  * - from a non-preemptible section (of course)
5323  *
5324  * - from a thread that is bound to a single CPU
5325  *
5326  * - in a loop with very short iterations (e.g. a polling loop)
5327  */
5328 bool single_task_running(void)
5329 {
5330 	return raw_rq()->nr_running == 1;
5331 }
5332 EXPORT_SYMBOL(single_task_running);
5333 
5334 unsigned long long nr_context_switches(void)
5335 {
5336 	int i;
5337 	unsigned long long sum = 0;
5338 
5339 	for_each_possible_cpu(i)
5340 		sum += cpu_rq(i)->nr_switches;
5341 
5342 	return sum;
5343 }
5344 
5345 /*
5346  * Consumers of these two interfaces, like for example the cpuidle menu
5347  * governor, are using nonsensical data. Preferring shallow idle state selection
5348  * for a CPU that has IO-wait which might not even end up running the task when
5349  * it does become runnable.
5350  */
5351 
5352 unsigned int nr_iowait_cpu(int cpu)
5353 {
5354 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5355 }
5356 
5357 /*
5358  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5359  *
5360  * The idea behind IO-wait account is to account the idle time that we could
5361  * have spend running if it were not for IO. That is, if we were to improve the
5362  * storage performance, we'd have a proportional reduction in IO-wait time.
5363  *
5364  * This all works nicely on UP, where, when a task blocks on IO, we account
5365  * idle time as IO-wait, because if the storage were faster, it could've been
5366  * running and we'd not be idle.
5367  *
5368  * This has been extended to SMP, by doing the same for each CPU. This however
5369  * is broken.
5370  *
5371  * Imagine for instance the case where two tasks block on one CPU, only the one
5372  * CPU will have IO-wait accounted, while the other has regular idle. Even
5373  * though, if the storage were faster, both could've ran at the same time,
5374  * utilising both CPUs.
5375  *
5376  * This means, that when looking globally, the current IO-wait accounting on
5377  * SMP is a lower bound, by reason of under accounting.
5378  *
5379  * Worse, since the numbers are provided per CPU, they are sometimes
5380  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5381  * associated with any one particular CPU, it can wake to another CPU than it
5382  * blocked on. This means the per CPU IO-wait number is meaningless.
5383  *
5384  * Task CPU affinities can make all that even more 'interesting'.
5385  */
5386 
5387 unsigned int nr_iowait(void)
5388 {
5389 	unsigned int i, sum = 0;
5390 
5391 	for_each_possible_cpu(i)
5392 		sum += nr_iowait_cpu(i);
5393 
5394 	return sum;
5395 }
5396 
5397 #ifdef CONFIG_SMP
5398 
5399 /*
5400  * sched_exec - execve() is a valuable balancing opportunity, because at
5401  * this point the task has the smallest effective memory and cache footprint.
5402  */
5403 void sched_exec(void)
5404 {
5405 	struct task_struct *p = current;
5406 	unsigned long flags;
5407 	int dest_cpu;
5408 
5409 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5410 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5411 	if (dest_cpu == smp_processor_id())
5412 		goto unlock;
5413 
5414 	if (likely(cpu_active(dest_cpu))) {
5415 		struct migration_arg arg = { p, dest_cpu };
5416 
5417 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5418 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5419 		return;
5420 	}
5421 unlock:
5422 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5423 }
5424 
5425 #endif
5426 
5427 DEFINE_PER_CPU(struct kernel_stat, kstat);
5428 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5429 
5430 EXPORT_PER_CPU_SYMBOL(kstat);
5431 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5432 
5433 /*
5434  * The function fair_sched_class.update_curr accesses the struct curr
5435  * and its field curr->exec_start; when called from task_sched_runtime(),
5436  * we observe a high rate of cache misses in practice.
5437  * Prefetching this data results in improved performance.
5438  */
5439 static inline void prefetch_curr_exec_start(struct task_struct *p)
5440 {
5441 #ifdef CONFIG_FAIR_GROUP_SCHED
5442 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5443 #else
5444 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5445 #endif
5446 	prefetch(curr);
5447 	prefetch(&curr->exec_start);
5448 }
5449 
5450 /*
5451  * Return accounted runtime for the task.
5452  * In case the task is currently running, return the runtime plus current's
5453  * pending runtime that have not been accounted yet.
5454  */
5455 unsigned long long task_sched_runtime(struct task_struct *p)
5456 {
5457 	struct rq_flags rf;
5458 	struct rq *rq;
5459 	u64 ns;
5460 
5461 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5462 	/*
5463 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5464 	 * So we have a optimization chance when the task's delta_exec is 0.
5465 	 * Reading ->on_cpu is racy, but this is ok.
5466 	 *
5467 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5468 	 * If we race with it entering CPU, unaccounted time is 0. This is
5469 	 * indistinguishable from the read occurring a few cycles earlier.
5470 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5471 	 * been accounted, so we're correct here as well.
5472 	 */
5473 	if (!p->on_cpu || !task_on_rq_queued(p))
5474 		return p->se.sum_exec_runtime;
5475 #endif
5476 
5477 	rq = task_rq_lock(p, &rf);
5478 	/*
5479 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5480 	 * project cycles that may never be accounted to this
5481 	 * thread, breaking clock_gettime().
5482 	 */
5483 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5484 		prefetch_curr_exec_start(p);
5485 		update_rq_clock(rq);
5486 		p->sched_class->update_curr(rq);
5487 	}
5488 	ns = p->se.sum_exec_runtime;
5489 	task_rq_unlock(rq, p, &rf);
5490 
5491 	return ns;
5492 }
5493 
5494 #ifdef CONFIG_SCHED_DEBUG
5495 static u64 cpu_resched_latency(struct rq *rq)
5496 {
5497 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5498 	u64 resched_latency, now = rq_clock(rq);
5499 	static bool warned_once;
5500 
5501 	if (sysctl_resched_latency_warn_once && warned_once)
5502 		return 0;
5503 
5504 	if (!need_resched() || !latency_warn_ms)
5505 		return 0;
5506 
5507 	if (system_state == SYSTEM_BOOTING)
5508 		return 0;
5509 
5510 	if (!rq->last_seen_need_resched_ns) {
5511 		rq->last_seen_need_resched_ns = now;
5512 		rq->ticks_without_resched = 0;
5513 		return 0;
5514 	}
5515 
5516 	rq->ticks_without_resched++;
5517 	resched_latency = now - rq->last_seen_need_resched_ns;
5518 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5519 		return 0;
5520 
5521 	warned_once = true;
5522 
5523 	return resched_latency;
5524 }
5525 
5526 static int __init setup_resched_latency_warn_ms(char *str)
5527 {
5528 	long val;
5529 
5530 	if ((kstrtol(str, 0, &val))) {
5531 		pr_warn("Unable to set resched_latency_warn_ms\n");
5532 		return 1;
5533 	}
5534 
5535 	sysctl_resched_latency_warn_ms = val;
5536 	return 1;
5537 }
5538 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5539 #else
5540 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5541 #endif /* CONFIG_SCHED_DEBUG */
5542 
5543 /*
5544  * This function gets called by the timer code, with HZ frequency.
5545  * We call it with interrupts disabled.
5546  */
5547 void scheduler_tick(void)
5548 {
5549 	int cpu = smp_processor_id();
5550 	struct rq *rq = cpu_rq(cpu);
5551 	struct task_struct *curr = rq->curr;
5552 	struct rq_flags rf;
5553 	unsigned long thermal_pressure;
5554 	u64 resched_latency;
5555 
5556 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5557 		arch_scale_freq_tick();
5558 
5559 	sched_clock_tick();
5560 
5561 	rq_lock(rq, &rf);
5562 
5563 	update_rq_clock(rq);
5564 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5565 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5566 	curr->sched_class->task_tick(rq, curr, 0);
5567 	if (sched_feat(LATENCY_WARN))
5568 		resched_latency = cpu_resched_latency(rq);
5569 	calc_global_load_tick(rq);
5570 	sched_core_tick(rq);
5571 
5572 	rq_unlock(rq, &rf);
5573 
5574 	if (sched_feat(LATENCY_WARN) && resched_latency)
5575 		resched_latency_warn(cpu, resched_latency);
5576 
5577 	perf_event_task_tick();
5578 
5579 #ifdef CONFIG_SMP
5580 	rq->idle_balance = idle_cpu(cpu);
5581 	trigger_load_balance(rq);
5582 #endif
5583 }
5584 
5585 #ifdef CONFIG_NO_HZ_FULL
5586 
5587 struct tick_work {
5588 	int			cpu;
5589 	atomic_t		state;
5590 	struct delayed_work	work;
5591 };
5592 /* Values for ->state, see diagram below. */
5593 #define TICK_SCHED_REMOTE_OFFLINE	0
5594 #define TICK_SCHED_REMOTE_OFFLINING	1
5595 #define TICK_SCHED_REMOTE_RUNNING	2
5596 
5597 /*
5598  * State diagram for ->state:
5599  *
5600  *
5601  *          TICK_SCHED_REMOTE_OFFLINE
5602  *                    |   ^
5603  *                    |   |
5604  *                    |   | sched_tick_remote()
5605  *                    |   |
5606  *                    |   |
5607  *                    +--TICK_SCHED_REMOTE_OFFLINING
5608  *                    |   ^
5609  *                    |   |
5610  * sched_tick_start() |   | sched_tick_stop()
5611  *                    |   |
5612  *                    V   |
5613  *          TICK_SCHED_REMOTE_RUNNING
5614  *
5615  *
5616  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5617  * and sched_tick_start() are happy to leave the state in RUNNING.
5618  */
5619 
5620 static struct tick_work __percpu *tick_work_cpu;
5621 
5622 static void sched_tick_remote(struct work_struct *work)
5623 {
5624 	struct delayed_work *dwork = to_delayed_work(work);
5625 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5626 	int cpu = twork->cpu;
5627 	struct rq *rq = cpu_rq(cpu);
5628 	struct task_struct *curr;
5629 	struct rq_flags rf;
5630 	u64 delta;
5631 	int os;
5632 
5633 	/*
5634 	 * Handle the tick only if it appears the remote CPU is running in full
5635 	 * dynticks mode. The check is racy by nature, but missing a tick or
5636 	 * having one too much is no big deal because the scheduler tick updates
5637 	 * statistics and checks timeslices in a time-independent way, regardless
5638 	 * of when exactly it is running.
5639 	 */
5640 	if (!tick_nohz_tick_stopped_cpu(cpu))
5641 		goto out_requeue;
5642 
5643 	rq_lock_irq(rq, &rf);
5644 	curr = rq->curr;
5645 	if (cpu_is_offline(cpu))
5646 		goto out_unlock;
5647 
5648 	update_rq_clock(rq);
5649 
5650 	if (!is_idle_task(curr)) {
5651 		/*
5652 		 * Make sure the next tick runs within a reasonable
5653 		 * amount of time.
5654 		 */
5655 		delta = rq_clock_task(rq) - curr->se.exec_start;
5656 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5657 	}
5658 	curr->sched_class->task_tick(rq, curr, 0);
5659 
5660 	calc_load_nohz_remote(rq);
5661 out_unlock:
5662 	rq_unlock_irq(rq, &rf);
5663 out_requeue:
5664 
5665 	/*
5666 	 * Run the remote tick once per second (1Hz). This arbitrary
5667 	 * frequency is large enough to avoid overload but short enough
5668 	 * to keep scheduler internal stats reasonably up to date.  But
5669 	 * first update state to reflect hotplug activity if required.
5670 	 */
5671 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5672 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5673 	if (os == TICK_SCHED_REMOTE_RUNNING)
5674 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5675 }
5676 
5677 static void sched_tick_start(int cpu)
5678 {
5679 	int os;
5680 	struct tick_work *twork;
5681 
5682 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5683 		return;
5684 
5685 	WARN_ON_ONCE(!tick_work_cpu);
5686 
5687 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5688 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5689 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5690 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5691 		twork->cpu = cpu;
5692 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5693 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5694 	}
5695 }
5696 
5697 #ifdef CONFIG_HOTPLUG_CPU
5698 static void sched_tick_stop(int cpu)
5699 {
5700 	struct tick_work *twork;
5701 	int os;
5702 
5703 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5704 		return;
5705 
5706 	WARN_ON_ONCE(!tick_work_cpu);
5707 
5708 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5709 	/* There cannot be competing actions, but don't rely on stop-machine. */
5710 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5711 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5712 	/* Don't cancel, as this would mess up the state machine. */
5713 }
5714 #endif /* CONFIG_HOTPLUG_CPU */
5715 
5716 int __init sched_tick_offload_init(void)
5717 {
5718 	tick_work_cpu = alloc_percpu(struct tick_work);
5719 	BUG_ON(!tick_work_cpu);
5720 	return 0;
5721 }
5722 
5723 #else /* !CONFIG_NO_HZ_FULL */
5724 static inline void sched_tick_start(int cpu) { }
5725 static inline void sched_tick_stop(int cpu) { }
5726 #endif
5727 
5728 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5729 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5730 /*
5731  * If the value passed in is equal to the current preempt count
5732  * then we just disabled preemption. Start timing the latency.
5733  */
5734 static inline void preempt_latency_start(int val)
5735 {
5736 	if (preempt_count() == val) {
5737 		unsigned long ip = get_lock_parent_ip();
5738 #ifdef CONFIG_DEBUG_PREEMPT
5739 		current->preempt_disable_ip = ip;
5740 #endif
5741 		trace_preempt_off(CALLER_ADDR0, ip);
5742 	}
5743 }
5744 
5745 void preempt_count_add(int val)
5746 {
5747 #ifdef CONFIG_DEBUG_PREEMPT
5748 	/*
5749 	 * Underflow?
5750 	 */
5751 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5752 		return;
5753 #endif
5754 	__preempt_count_add(val);
5755 #ifdef CONFIG_DEBUG_PREEMPT
5756 	/*
5757 	 * Spinlock count overflowing soon?
5758 	 */
5759 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5760 				PREEMPT_MASK - 10);
5761 #endif
5762 	preempt_latency_start(val);
5763 }
5764 EXPORT_SYMBOL(preempt_count_add);
5765 NOKPROBE_SYMBOL(preempt_count_add);
5766 
5767 /*
5768  * If the value passed in equals to the current preempt count
5769  * then we just enabled preemption. Stop timing the latency.
5770  */
5771 static inline void preempt_latency_stop(int val)
5772 {
5773 	if (preempt_count() == val)
5774 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5775 }
5776 
5777 void preempt_count_sub(int val)
5778 {
5779 #ifdef CONFIG_DEBUG_PREEMPT
5780 	/*
5781 	 * Underflow?
5782 	 */
5783 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5784 		return;
5785 	/*
5786 	 * Is the spinlock portion underflowing?
5787 	 */
5788 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5789 			!(preempt_count() & PREEMPT_MASK)))
5790 		return;
5791 #endif
5792 
5793 	preempt_latency_stop(val);
5794 	__preempt_count_sub(val);
5795 }
5796 EXPORT_SYMBOL(preempt_count_sub);
5797 NOKPROBE_SYMBOL(preempt_count_sub);
5798 
5799 #else
5800 static inline void preempt_latency_start(int val) { }
5801 static inline void preempt_latency_stop(int val) { }
5802 #endif
5803 
5804 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5805 {
5806 #ifdef CONFIG_DEBUG_PREEMPT
5807 	return p->preempt_disable_ip;
5808 #else
5809 	return 0;
5810 #endif
5811 }
5812 
5813 /*
5814  * Print scheduling while atomic bug:
5815  */
5816 static noinline void __schedule_bug(struct task_struct *prev)
5817 {
5818 	/* Save this before calling printk(), since that will clobber it */
5819 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5820 
5821 	if (oops_in_progress)
5822 		return;
5823 
5824 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5825 		prev->comm, prev->pid, preempt_count());
5826 
5827 	debug_show_held_locks(prev);
5828 	print_modules();
5829 	if (irqs_disabled())
5830 		print_irqtrace_events(prev);
5831 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5832 	    && in_atomic_preempt_off()) {
5833 		pr_err("Preemption disabled at:");
5834 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5835 	}
5836 	check_panic_on_warn("scheduling while atomic");
5837 
5838 	dump_stack();
5839 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5840 }
5841 
5842 /*
5843  * Various schedule()-time debugging checks and statistics:
5844  */
5845 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5846 {
5847 #ifdef CONFIG_SCHED_STACK_END_CHECK
5848 	if (task_stack_end_corrupted(prev))
5849 		panic("corrupted stack end detected inside scheduler\n");
5850 
5851 	if (task_scs_end_corrupted(prev))
5852 		panic("corrupted shadow stack detected inside scheduler\n");
5853 #endif
5854 
5855 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5856 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5857 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5858 			prev->comm, prev->pid, prev->non_block_count);
5859 		dump_stack();
5860 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5861 	}
5862 #endif
5863 
5864 	if (unlikely(in_atomic_preempt_off())) {
5865 		__schedule_bug(prev);
5866 		preempt_count_set(PREEMPT_DISABLED);
5867 	}
5868 	rcu_sleep_check();
5869 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5870 
5871 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5872 
5873 	schedstat_inc(this_rq()->sched_count);
5874 }
5875 
5876 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5877 				  struct rq_flags *rf)
5878 {
5879 #ifdef CONFIG_SMP
5880 	const struct sched_class *class;
5881 	/*
5882 	 * We must do the balancing pass before put_prev_task(), such
5883 	 * that when we release the rq->lock the task is in the same
5884 	 * state as before we took rq->lock.
5885 	 *
5886 	 * We can terminate the balance pass as soon as we know there is
5887 	 * a runnable task of @class priority or higher.
5888 	 */
5889 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5890 		if (class->balance(rq, prev, rf))
5891 			break;
5892 	}
5893 #endif
5894 
5895 	put_prev_task(rq, prev);
5896 }
5897 
5898 /*
5899  * Pick up the highest-prio task:
5900  */
5901 static inline struct task_struct *
5902 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5903 {
5904 	const struct sched_class *class;
5905 	struct task_struct *p;
5906 
5907 	/*
5908 	 * Optimization: we know that if all tasks are in the fair class we can
5909 	 * call that function directly, but only if the @prev task wasn't of a
5910 	 * higher scheduling class, because otherwise those lose the
5911 	 * opportunity to pull in more work from other CPUs.
5912 	 */
5913 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5914 		   rq->nr_running == rq->cfs.h_nr_running)) {
5915 
5916 		p = pick_next_task_fair(rq, prev, rf);
5917 		if (unlikely(p == RETRY_TASK))
5918 			goto restart;
5919 
5920 		/* Assume the next prioritized class is idle_sched_class */
5921 		if (!p) {
5922 			put_prev_task(rq, prev);
5923 			p = pick_next_task_idle(rq);
5924 		}
5925 
5926 		return p;
5927 	}
5928 
5929 restart:
5930 	put_prev_task_balance(rq, prev, rf);
5931 
5932 	for_each_class(class) {
5933 		p = class->pick_next_task(rq);
5934 		if (p)
5935 			return p;
5936 	}
5937 
5938 	BUG(); /* The idle class should always have a runnable task. */
5939 }
5940 
5941 #ifdef CONFIG_SCHED_CORE
5942 static inline bool is_task_rq_idle(struct task_struct *t)
5943 {
5944 	return (task_rq(t)->idle == t);
5945 }
5946 
5947 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5948 {
5949 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5950 }
5951 
5952 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5953 {
5954 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5955 		return true;
5956 
5957 	return a->core_cookie == b->core_cookie;
5958 }
5959 
5960 static inline struct task_struct *pick_task(struct rq *rq)
5961 {
5962 	const struct sched_class *class;
5963 	struct task_struct *p;
5964 
5965 	for_each_class(class) {
5966 		p = class->pick_task(rq);
5967 		if (p)
5968 			return p;
5969 	}
5970 
5971 	BUG(); /* The idle class should always have a runnable task. */
5972 }
5973 
5974 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5975 
5976 static void queue_core_balance(struct rq *rq);
5977 
5978 static struct task_struct *
5979 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5980 {
5981 	struct task_struct *next, *p, *max = NULL;
5982 	const struct cpumask *smt_mask;
5983 	bool fi_before = false;
5984 	bool core_clock_updated = (rq == rq->core);
5985 	unsigned long cookie;
5986 	int i, cpu, occ = 0;
5987 	struct rq *rq_i;
5988 	bool need_sync;
5989 
5990 	if (!sched_core_enabled(rq))
5991 		return __pick_next_task(rq, prev, rf);
5992 
5993 	cpu = cpu_of(rq);
5994 
5995 	/* Stopper task is switching into idle, no need core-wide selection. */
5996 	if (cpu_is_offline(cpu)) {
5997 		/*
5998 		 * Reset core_pick so that we don't enter the fastpath when
5999 		 * coming online. core_pick would already be migrated to
6000 		 * another cpu during offline.
6001 		 */
6002 		rq->core_pick = NULL;
6003 		return __pick_next_task(rq, prev, rf);
6004 	}
6005 
6006 	/*
6007 	 * If there were no {en,de}queues since we picked (IOW, the task
6008 	 * pointers are all still valid), and we haven't scheduled the last
6009 	 * pick yet, do so now.
6010 	 *
6011 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6012 	 * it was either offline or went offline during a sibling's core-wide
6013 	 * selection. In this case, do a core-wide selection.
6014 	 */
6015 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6016 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6017 	    rq->core_pick) {
6018 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6019 
6020 		next = rq->core_pick;
6021 		if (next != prev) {
6022 			put_prev_task(rq, prev);
6023 			set_next_task(rq, next);
6024 		}
6025 
6026 		rq->core_pick = NULL;
6027 		goto out;
6028 	}
6029 
6030 	put_prev_task_balance(rq, prev, rf);
6031 
6032 	smt_mask = cpu_smt_mask(cpu);
6033 	need_sync = !!rq->core->core_cookie;
6034 
6035 	/* reset state */
6036 	rq->core->core_cookie = 0UL;
6037 	if (rq->core->core_forceidle_count) {
6038 		if (!core_clock_updated) {
6039 			update_rq_clock(rq->core);
6040 			core_clock_updated = true;
6041 		}
6042 		sched_core_account_forceidle(rq);
6043 		/* reset after accounting force idle */
6044 		rq->core->core_forceidle_start = 0;
6045 		rq->core->core_forceidle_count = 0;
6046 		rq->core->core_forceidle_occupation = 0;
6047 		need_sync = true;
6048 		fi_before = true;
6049 	}
6050 
6051 	/*
6052 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6053 	 *
6054 	 * @task_seq guards the task state ({en,de}queues)
6055 	 * @pick_seq is the @task_seq we did a selection on
6056 	 * @sched_seq is the @pick_seq we scheduled
6057 	 *
6058 	 * However, preemptions can cause multiple picks on the same task set.
6059 	 * 'Fix' this by also increasing @task_seq for every pick.
6060 	 */
6061 	rq->core->core_task_seq++;
6062 
6063 	/*
6064 	 * Optimize for common case where this CPU has no cookies
6065 	 * and there are no cookied tasks running on siblings.
6066 	 */
6067 	if (!need_sync) {
6068 		next = pick_task(rq);
6069 		if (!next->core_cookie) {
6070 			rq->core_pick = NULL;
6071 			/*
6072 			 * For robustness, update the min_vruntime_fi for
6073 			 * unconstrained picks as well.
6074 			 */
6075 			WARN_ON_ONCE(fi_before);
6076 			task_vruntime_update(rq, next, false);
6077 			goto out_set_next;
6078 		}
6079 	}
6080 
6081 	/*
6082 	 * For each thread: do the regular task pick and find the max prio task
6083 	 * amongst them.
6084 	 *
6085 	 * Tie-break prio towards the current CPU
6086 	 */
6087 	for_each_cpu_wrap(i, smt_mask, cpu) {
6088 		rq_i = cpu_rq(i);
6089 
6090 		/*
6091 		 * Current cpu always has its clock updated on entrance to
6092 		 * pick_next_task(). If the current cpu is not the core,
6093 		 * the core may also have been updated above.
6094 		 */
6095 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6096 			update_rq_clock(rq_i);
6097 
6098 		p = rq_i->core_pick = pick_task(rq_i);
6099 		if (!max || prio_less(max, p, fi_before))
6100 			max = p;
6101 	}
6102 
6103 	cookie = rq->core->core_cookie = max->core_cookie;
6104 
6105 	/*
6106 	 * For each thread: try and find a runnable task that matches @max or
6107 	 * force idle.
6108 	 */
6109 	for_each_cpu(i, smt_mask) {
6110 		rq_i = cpu_rq(i);
6111 		p = rq_i->core_pick;
6112 
6113 		if (!cookie_equals(p, cookie)) {
6114 			p = NULL;
6115 			if (cookie)
6116 				p = sched_core_find(rq_i, cookie);
6117 			if (!p)
6118 				p = idle_sched_class.pick_task(rq_i);
6119 		}
6120 
6121 		rq_i->core_pick = p;
6122 
6123 		if (p == rq_i->idle) {
6124 			if (rq_i->nr_running) {
6125 				rq->core->core_forceidle_count++;
6126 				if (!fi_before)
6127 					rq->core->core_forceidle_seq++;
6128 			}
6129 		} else {
6130 			occ++;
6131 		}
6132 	}
6133 
6134 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6135 		rq->core->core_forceidle_start = rq_clock(rq->core);
6136 		rq->core->core_forceidle_occupation = occ;
6137 	}
6138 
6139 	rq->core->core_pick_seq = rq->core->core_task_seq;
6140 	next = rq->core_pick;
6141 	rq->core_sched_seq = rq->core->core_pick_seq;
6142 
6143 	/* Something should have been selected for current CPU */
6144 	WARN_ON_ONCE(!next);
6145 
6146 	/*
6147 	 * Reschedule siblings
6148 	 *
6149 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6150 	 * sending an IPI (below) ensures the sibling will no longer be running
6151 	 * their task. This ensures there is no inter-sibling overlap between
6152 	 * non-matching user state.
6153 	 */
6154 	for_each_cpu(i, smt_mask) {
6155 		rq_i = cpu_rq(i);
6156 
6157 		/*
6158 		 * An online sibling might have gone offline before a task
6159 		 * could be picked for it, or it might be offline but later
6160 		 * happen to come online, but its too late and nothing was
6161 		 * picked for it.  That's Ok - it will pick tasks for itself,
6162 		 * so ignore it.
6163 		 */
6164 		if (!rq_i->core_pick)
6165 			continue;
6166 
6167 		/*
6168 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6169 		 * fi_before     fi      update?
6170 		 *  0            0       1
6171 		 *  0            1       1
6172 		 *  1            0       1
6173 		 *  1            1       0
6174 		 */
6175 		if (!(fi_before && rq->core->core_forceidle_count))
6176 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6177 
6178 		rq_i->core_pick->core_occupation = occ;
6179 
6180 		if (i == cpu) {
6181 			rq_i->core_pick = NULL;
6182 			continue;
6183 		}
6184 
6185 		/* Did we break L1TF mitigation requirements? */
6186 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6187 
6188 		if (rq_i->curr == rq_i->core_pick) {
6189 			rq_i->core_pick = NULL;
6190 			continue;
6191 		}
6192 
6193 		resched_curr(rq_i);
6194 	}
6195 
6196 out_set_next:
6197 	set_next_task(rq, next);
6198 out:
6199 	if (rq->core->core_forceidle_count && next == rq->idle)
6200 		queue_core_balance(rq);
6201 
6202 	return next;
6203 }
6204 
6205 static bool try_steal_cookie(int this, int that)
6206 {
6207 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6208 	struct task_struct *p;
6209 	unsigned long cookie;
6210 	bool success = false;
6211 
6212 	local_irq_disable();
6213 	double_rq_lock(dst, src);
6214 
6215 	cookie = dst->core->core_cookie;
6216 	if (!cookie)
6217 		goto unlock;
6218 
6219 	if (dst->curr != dst->idle)
6220 		goto unlock;
6221 
6222 	p = sched_core_find(src, cookie);
6223 	if (p == src->idle)
6224 		goto unlock;
6225 
6226 	do {
6227 		if (p == src->core_pick || p == src->curr)
6228 			goto next;
6229 
6230 		if (!is_cpu_allowed(p, this))
6231 			goto next;
6232 
6233 		if (p->core_occupation > dst->idle->core_occupation)
6234 			goto next;
6235 
6236 		deactivate_task(src, p, 0);
6237 		set_task_cpu(p, this);
6238 		activate_task(dst, p, 0);
6239 
6240 		resched_curr(dst);
6241 
6242 		success = true;
6243 		break;
6244 
6245 next:
6246 		p = sched_core_next(p, cookie);
6247 	} while (p);
6248 
6249 unlock:
6250 	double_rq_unlock(dst, src);
6251 	local_irq_enable();
6252 
6253 	return success;
6254 }
6255 
6256 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6257 {
6258 	int i;
6259 
6260 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6261 		if (i == cpu)
6262 			continue;
6263 
6264 		if (need_resched())
6265 			break;
6266 
6267 		if (try_steal_cookie(cpu, i))
6268 			return true;
6269 	}
6270 
6271 	return false;
6272 }
6273 
6274 static void sched_core_balance(struct rq *rq)
6275 {
6276 	struct sched_domain *sd;
6277 	int cpu = cpu_of(rq);
6278 
6279 	preempt_disable();
6280 	rcu_read_lock();
6281 	raw_spin_rq_unlock_irq(rq);
6282 	for_each_domain(cpu, sd) {
6283 		if (need_resched())
6284 			break;
6285 
6286 		if (steal_cookie_task(cpu, sd))
6287 			break;
6288 	}
6289 	raw_spin_rq_lock_irq(rq);
6290 	rcu_read_unlock();
6291 	preempt_enable();
6292 }
6293 
6294 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6295 
6296 static void queue_core_balance(struct rq *rq)
6297 {
6298 	if (!sched_core_enabled(rq))
6299 		return;
6300 
6301 	if (!rq->core->core_cookie)
6302 		return;
6303 
6304 	if (!rq->nr_running) /* not forced idle */
6305 		return;
6306 
6307 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6308 }
6309 
6310 static void sched_core_cpu_starting(unsigned int cpu)
6311 {
6312 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6313 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6314 	unsigned long flags;
6315 	int t;
6316 
6317 	sched_core_lock(cpu, &flags);
6318 
6319 	WARN_ON_ONCE(rq->core != rq);
6320 
6321 	/* if we're the first, we'll be our own leader */
6322 	if (cpumask_weight(smt_mask) == 1)
6323 		goto unlock;
6324 
6325 	/* find the leader */
6326 	for_each_cpu(t, smt_mask) {
6327 		if (t == cpu)
6328 			continue;
6329 		rq = cpu_rq(t);
6330 		if (rq->core == rq) {
6331 			core_rq = rq;
6332 			break;
6333 		}
6334 	}
6335 
6336 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6337 		goto unlock;
6338 
6339 	/* install and validate core_rq */
6340 	for_each_cpu(t, smt_mask) {
6341 		rq = cpu_rq(t);
6342 
6343 		if (t == cpu)
6344 			rq->core = core_rq;
6345 
6346 		WARN_ON_ONCE(rq->core != core_rq);
6347 	}
6348 
6349 unlock:
6350 	sched_core_unlock(cpu, &flags);
6351 }
6352 
6353 static void sched_core_cpu_deactivate(unsigned int cpu)
6354 {
6355 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6356 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6357 	unsigned long flags;
6358 	int t;
6359 
6360 	sched_core_lock(cpu, &flags);
6361 
6362 	/* if we're the last man standing, nothing to do */
6363 	if (cpumask_weight(smt_mask) == 1) {
6364 		WARN_ON_ONCE(rq->core != rq);
6365 		goto unlock;
6366 	}
6367 
6368 	/* if we're not the leader, nothing to do */
6369 	if (rq->core != rq)
6370 		goto unlock;
6371 
6372 	/* find a new leader */
6373 	for_each_cpu(t, smt_mask) {
6374 		if (t == cpu)
6375 			continue;
6376 		core_rq = cpu_rq(t);
6377 		break;
6378 	}
6379 
6380 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6381 		goto unlock;
6382 
6383 	/* copy the shared state to the new leader */
6384 	core_rq->core_task_seq             = rq->core_task_seq;
6385 	core_rq->core_pick_seq             = rq->core_pick_seq;
6386 	core_rq->core_cookie               = rq->core_cookie;
6387 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6388 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6389 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6390 
6391 	/*
6392 	 * Accounting edge for forced idle is handled in pick_next_task().
6393 	 * Don't need another one here, since the hotplug thread shouldn't
6394 	 * have a cookie.
6395 	 */
6396 	core_rq->core_forceidle_start = 0;
6397 
6398 	/* install new leader */
6399 	for_each_cpu(t, smt_mask) {
6400 		rq = cpu_rq(t);
6401 		rq->core = core_rq;
6402 	}
6403 
6404 unlock:
6405 	sched_core_unlock(cpu, &flags);
6406 }
6407 
6408 static inline void sched_core_cpu_dying(unsigned int cpu)
6409 {
6410 	struct rq *rq = cpu_rq(cpu);
6411 
6412 	if (rq->core != rq)
6413 		rq->core = rq;
6414 }
6415 
6416 #else /* !CONFIG_SCHED_CORE */
6417 
6418 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6419 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6420 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6421 
6422 static struct task_struct *
6423 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6424 {
6425 	return __pick_next_task(rq, prev, rf);
6426 }
6427 
6428 #endif /* CONFIG_SCHED_CORE */
6429 
6430 /*
6431  * Constants for the sched_mode argument of __schedule().
6432  *
6433  * The mode argument allows RT enabled kernels to differentiate a
6434  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6435  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6436  * optimize the AND operation out and just check for zero.
6437  */
6438 #define SM_NONE			0x0
6439 #define SM_PREEMPT		0x1
6440 #define SM_RTLOCK_WAIT		0x2
6441 
6442 #ifndef CONFIG_PREEMPT_RT
6443 # define SM_MASK_PREEMPT	(~0U)
6444 #else
6445 # define SM_MASK_PREEMPT	SM_PREEMPT
6446 #endif
6447 
6448 /*
6449  * __schedule() is the main scheduler function.
6450  *
6451  * The main means of driving the scheduler and thus entering this function are:
6452  *
6453  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6454  *
6455  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6456  *      paths. For example, see arch/x86/entry_64.S.
6457  *
6458  *      To drive preemption between tasks, the scheduler sets the flag in timer
6459  *      interrupt handler scheduler_tick().
6460  *
6461  *   3. Wakeups don't really cause entry into schedule(). They add a
6462  *      task to the run-queue and that's it.
6463  *
6464  *      Now, if the new task added to the run-queue preempts the current
6465  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6466  *      called on the nearest possible occasion:
6467  *
6468  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6469  *
6470  *         - in syscall or exception context, at the next outmost
6471  *           preempt_enable(). (this might be as soon as the wake_up()'s
6472  *           spin_unlock()!)
6473  *
6474  *         - in IRQ context, return from interrupt-handler to
6475  *           preemptible context
6476  *
6477  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6478  *         then at the next:
6479  *
6480  *          - cond_resched() call
6481  *          - explicit schedule() call
6482  *          - return from syscall or exception to user-space
6483  *          - return from interrupt-handler to user-space
6484  *
6485  * WARNING: must be called with preemption disabled!
6486  */
6487 static void __sched notrace __schedule(unsigned int sched_mode)
6488 {
6489 	struct task_struct *prev, *next;
6490 	unsigned long *switch_count;
6491 	unsigned long prev_state;
6492 	struct rq_flags rf;
6493 	struct rq *rq;
6494 	int cpu;
6495 
6496 	cpu = smp_processor_id();
6497 	rq = cpu_rq(cpu);
6498 	prev = rq->curr;
6499 
6500 	schedule_debug(prev, !!sched_mode);
6501 
6502 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6503 		hrtick_clear(rq);
6504 
6505 	local_irq_disable();
6506 	rcu_note_context_switch(!!sched_mode);
6507 
6508 	/*
6509 	 * Make sure that signal_pending_state()->signal_pending() below
6510 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6511 	 * done by the caller to avoid the race with signal_wake_up():
6512 	 *
6513 	 * __set_current_state(@state)		signal_wake_up()
6514 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6515 	 *					  wake_up_state(p, state)
6516 	 *   LOCK rq->lock			    LOCK p->pi_state
6517 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6518 	 *     if (signal_pending_state())	    if (p->state & @state)
6519 	 *
6520 	 * Also, the membarrier system call requires a full memory barrier
6521 	 * after coming from user-space, before storing to rq->curr.
6522 	 */
6523 	rq_lock(rq, &rf);
6524 	smp_mb__after_spinlock();
6525 
6526 	/* Promote REQ to ACT */
6527 	rq->clock_update_flags <<= 1;
6528 	update_rq_clock(rq);
6529 
6530 	switch_count = &prev->nivcsw;
6531 
6532 	/*
6533 	 * We must load prev->state once (task_struct::state is volatile), such
6534 	 * that we form a control dependency vs deactivate_task() below.
6535 	 */
6536 	prev_state = READ_ONCE(prev->__state);
6537 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6538 		if (signal_pending_state(prev_state, prev)) {
6539 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6540 		} else {
6541 			prev->sched_contributes_to_load =
6542 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6543 				!(prev_state & TASK_NOLOAD) &&
6544 				!(prev_state & TASK_FROZEN);
6545 
6546 			if (prev->sched_contributes_to_load)
6547 				rq->nr_uninterruptible++;
6548 
6549 			/*
6550 			 * __schedule()			ttwu()
6551 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6552 			 *   if (prev_state)		    goto out;
6553 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6554 			 *				  p->state = TASK_WAKING
6555 			 *
6556 			 * Where __schedule() and ttwu() have matching control dependencies.
6557 			 *
6558 			 * After this, schedule() must not care about p->state any more.
6559 			 */
6560 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6561 
6562 			if (prev->in_iowait) {
6563 				atomic_inc(&rq->nr_iowait);
6564 				delayacct_blkio_start();
6565 			}
6566 		}
6567 		switch_count = &prev->nvcsw;
6568 	}
6569 
6570 	next = pick_next_task(rq, prev, &rf);
6571 	clear_tsk_need_resched(prev);
6572 	clear_preempt_need_resched();
6573 #ifdef CONFIG_SCHED_DEBUG
6574 	rq->last_seen_need_resched_ns = 0;
6575 #endif
6576 
6577 	if (likely(prev != next)) {
6578 		rq->nr_switches++;
6579 		/*
6580 		 * RCU users of rcu_dereference(rq->curr) may not see
6581 		 * changes to task_struct made by pick_next_task().
6582 		 */
6583 		RCU_INIT_POINTER(rq->curr, next);
6584 		/*
6585 		 * The membarrier system call requires each architecture
6586 		 * to have a full memory barrier after updating
6587 		 * rq->curr, before returning to user-space.
6588 		 *
6589 		 * Here are the schemes providing that barrier on the
6590 		 * various architectures:
6591 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6592 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6593 		 * - finish_lock_switch() for weakly-ordered
6594 		 *   architectures where spin_unlock is a full barrier,
6595 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6596 		 *   is a RELEASE barrier),
6597 		 */
6598 		++*switch_count;
6599 
6600 		migrate_disable_switch(rq, prev);
6601 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6602 
6603 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6604 
6605 		/* Also unlocks the rq: */
6606 		rq = context_switch(rq, prev, next, &rf);
6607 	} else {
6608 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6609 
6610 		rq_unpin_lock(rq, &rf);
6611 		__balance_callbacks(rq);
6612 		raw_spin_rq_unlock_irq(rq);
6613 	}
6614 }
6615 
6616 void __noreturn do_task_dead(void)
6617 {
6618 	/* Causes final put_task_struct in finish_task_switch(): */
6619 	set_special_state(TASK_DEAD);
6620 
6621 	/* Tell freezer to ignore us: */
6622 	current->flags |= PF_NOFREEZE;
6623 
6624 	__schedule(SM_NONE);
6625 	BUG();
6626 
6627 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6628 	for (;;)
6629 		cpu_relax();
6630 }
6631 
6632 static inline void sched_submit_work(struct task_struct *tsk)
6633 {
6634 	unsigned int task_flags;
6635 
6636 	if (task_is_running(tsk))
6637 		return;
6638 
6639 	task_flags = tsk->flags;
6640 	/*
6641 	 * If a worker goes to sleep, notify and ask workqueue whether it
6642 	 * wants to wake up a task to maintain concurrency.
6643 	 */
6644 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6645 		if (task_flags & PF_WQ_WORKER)
6646 			wq_worker_sleeping(tsk);
6647 		else
6648 			io_wq_worker_sleeping(tsk);
6649 	}
6650 
6651 	/*
6652 	 * spinlock and rwlock must not flush block requests.  This will
6653 	 * deadlock if the callback attempts to acquire a lock which is
6654 	 * already acquired.
6655 	 */
6656 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6657 
6658 	/*
6659 	 * If we are going to sleep and we have plugged IO queued,
6660 	 * make sure to submit it to avoid deadlocks.
6661 	 */
6662 	blk_flush_plug(tsk->plug, true);
6663 }
6664 
6665 static void sched_update_worker(struct task_struct *tsk)
6666 {
6667 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6668 		if (tsk->flags & PF_WQ_WORKER)
6669 			wq_worker_running(tsk);
6670 		else
6671 			io_wq_worker_running(tsk);
6672 	}
6673 }
6674 
6675 asmlinkage __visible void __sched schedule(void)
6676 {
6677 	struct task_struct *tsk = current;
6678 
6679 	sched_submit_work(tsk);
6680 	do {
6681 		preempt_disable();
6682 		__schedule(SM_NONE);
6683 		sched_preempt_enable_no_resched();
6684 	} while (need_resched());
6685 	sched_update_worker(tsk);
6686 }
6687 EXPORT_SYMBOL(schedule);
6688 
6689 /*
6690  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6691  * state (have scheduled out non-voluntarily) by making sure that all
6692  * tasks have either left the run queue or have gone into user space.
6693  * As idle tasks do not do either, they must not ever be preempted
6694  * (schedule out non-voluntarily).
6695  *
6696  * schedule_idle() is similar to schedule_preempt_disable() except that it
6697  * never enables preemption because it does not call sched_submit_work().
6698  */
6699 void __sched schedule_idle(void)
6700 {
6701 	/*
6702 	 * As this skips calling sched_submit_work(), which the idle task does
6703 	 * regardless because that function is a nop when the task is in a
6704 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6705 	 * current task can be in any other state. Note, idle is always in the
6706 	 * TASK_RUNNING state.
6707 	 */
6708 	WARN_ON_ONCE(current->__state);
6709 	do {
6710 		__schedule(SM_NONE);
6711 	} while (need_resched());
6712 }
6713 
6714 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6715 asmlinkage __visible void __sched schedule_user(void)
6716 {
6717 	/*
6718 	 * If we come here after a random call to set_need_resched(),
6719 	 * or we have been woken up remotely but the IPI has not yet arrived,
6720 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6721 	 * we find a better solution.
6722 	 *
6723 	 * NB: There are buggy callers of this function.  Ideally we
6724 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6725 	 * too frequently to make sense yet.
6726 	 */
6727 	enum ctx_state prev_state = exception_enter();
6728 	schedule();
6729 	exception_exit(prev_state);
6730 }
6731 #endif
6732 
6733 /**
6734  * schedule_preempt_disabled - called with preemption disabled
6735  *
6736  * Returns with preemption disabled. Note: preempt_count must be 1
6737  */
6738 void __sched schedule_preempt_disabled(void)
6739 {
6740 	sched_preempt_enable_no_resched();
6741 	schedule();
6742 	preempt_disable();
6743 }
6744 
6745 #ifdef CONFIG_PREEMPT_RT
6746 void __sched notrace schedule_rtlock(void)
6747 {
6748 	do {
6749 		preempt_disable();
6750 		__schedule(SM_RTLOCK_WAIT);
6751 		sched_preempt_enable_no_resched();
6752 	} while (need_resched());
6753 }
6754 NOKPROBE_SYMBOL(schedule_rtlock);
6755 #endif
6756 
6757 static void __sched notrace preempt_schedule_common(void)
6758 {
6759 	do {
6760 		/*
6761 		 * Because the function tracer can trace preempt_count_sub()
6762 		 * and it also uses preempt_enable/disable_notrace(), if
6763 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6764 		 * by the function tracer will call this function again and
6765 		 * cause infinite recursion.
6766 		 *
6767 		 * Preemption must be disabled here before the function
6768 		 * tracer can trace. Break up preempt_disable() into two
6769 		 * calls. One to disable preemption without fear of being
6770 		 * traced. The other to still record the preemption latency,
6771 		 * which can also be traced by the function tracer.
6772 		 */
6773 		preempt_disable_notrace();
6774 		preempt_latency_start(1);
6775 		__schedule(SM_PREEMPT);
6776 		preempt_latency_stop(1);
6777 		preempt_enable_no_resched_notrace();
6778 
6779 		/*
6780 		 * Check again in case we missed a preemption opportunity
6781 		 * between schedule and now.
6782 		 */
6783 	} while (need_resched());
6784 }
6785 
6786 #ifdef CONFIG_PREEMPTION
6787 /*
6788  * This is the entry point to schedule() from in-kernel preemption
6789  * off of preempt_enable.
6790  */
6791 asmlinkage __visible void __sched notrace preempt_schedule(void)
6792 {
6793 	/*
6794 	 * If there is a non-zero preempt_count or interrupts are disabled,
6795 	 * we do not want to preempt the current task. Just return..
6796 	 */
6797 	if (likely(!preemptible()))
6798 		return;
6799 	preempt_schedule_common();
6800 }
6801 NOKPROBE_SYMBOL(preempt_schedule);
6802 EXPORT_SYMBOL(preempt_schedule);
6803 
6804 #ifdef CONFIG_PREEMPT_DYNAMIC
6805 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6806 #ifndef preempt_schedule_dynamic_enabled
6807 #define preempt_schedule_dynamic_enabled	preempt_schedule
6808 #define preempt_schedule_dynamic_disabled	NULL
6809 #endif
6810 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6811 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6812 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6813 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6814 void __sched notrace dynamic_preempt_schedule(void)
6815 {
6816 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6817 		return;
6818 	preempt_schedule();
6819 }
6820 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6821 EXPORT_SYMBOL(dynamic_preempt_schedule);
6822 #endif
6823 #endif
6824 
6825 /**
6826  * preempt_schedule_notrace - preempt_schedule called by tracing
6827  *
6828  * The tracing infrastructure uses preempt_enable_notrace to prevent
6829  * recursion and tracing preempt enabling caused by the tracing
6830  * infrastructure itself. But as tracing can happen in areas coming
6831  * from userspace or just about to enter userspace, a preempt enable
6832  * can occur before user_exit() is called. This will cause the scheduler
6833  * to be called when the system is still in usermode.
6834  *
6835  * To prevent this, the preempt_enable_notrace will use this function
6836  * instead of preempt_schedule() to exit user context if needed before
6837  * calling the scheduler.
6838  */
6839 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6840 {
6841 	enum ctx_state prev_ctx;
6842 
6843 	if (likely(!preemptible()))
6844 		return;
6845 
6846 	do {
6847 		/*
6848 		 * Because the function tracer can trace preempt_count_sub()
6849 		 * and it also uses preempt_enable/disable_notrace(), if
6850 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6851 		 * by the function tracer will call this function again and
6852 		 * cause infinite recursion.
6853 		 *
6854 		 * Preemption must be disabled here before the function
6855 		 * tracer can trace. Break up preempt_disable() into two
6856 		 * calls. One to disable preemption without fear of being
6857 		 * traced. The other to still record the preemption latency,
6858 		 * which can also be traced by the function tracer.
6859 		 */
6860 		preempt_disable_notrace();
6861 		preempt_latency_start(1);
6862 		/*
6863 		 * Needs preempt disabled in case user_exit() is traced
6864 		 * and the tracer calls preempt_enable_notrace() causing
6865 		 * an infinite recursion.
6866 		 */
6867 		prev_ctx = exception_enter();
6868 		__schedule(SM_PREEMPT);
6869 		exception_exit(prev_ctx);
6870 
6871 		preempt_latency_stop(1);
6872 		preempt_enable_no_resched_notrace();
6873 	} while (need_resched());
6874 }
6875 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6876 
6877 #ifdef CONFIG_PREEMPT_DYNAMIC
6878 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6879 #ifndef preempt_schedule_notrace_dynamic_enabled
6880 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6881 #define preempt_schedule_notrace_dynamic_disabled	NULL
6882 #endif
6883 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6884 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6885 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6886 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6887 void __sched notrace dynamic_preempt_schedule_notrace(void)
6888 {
6889 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6890 		return;
6891 	preempt_schedule_notrace();
6892 }
6893 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6894 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6895 #endif
6896 #endif
6897 
6898 #endif /* CONFIG_PREEMPTION */
6899 
6900 /*
6901  * This is the entry point to schedule() from kernel preemption
6902  * off of irq context.
6903  * Note, that this is called and return with irqs disabled. This will
6904  * protect us against recursive calling from irq.
6905  */
6906 asmlinkage __visible void __sched preempt_schedule_irq(void)
6907 {
6908 	enum ctx_state prev_state;
6909 
6910 	/* Catch callers which need to be fixed */
6911 	BUG_ON(preempt_count() || !irqs_disabled());
6912 
6913 	prev_state = exception_enter();
6914 
6915 	do {
6916 		preempt_disable();
6917 		local_irq_enable();
6918 		__schedule(SM_PREEMPT);
6919 		local_irq_disable();
6920 		sched_preempt_enable_no_resched();
6921 	} while (need_resched());
6922 
6923 	exception_exit(prev_state);
6924 }
6925 
6926 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6927 			  void *key)
6928 {
6929 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6930 	return try_to_wake_up(curr->private, mode, wake_flags);
6931 }
6932 EXPORT_SYMBOL(default_wake_function);
6933 
6934 static void __setscheduler_prio(struct task_struct *p, int prio)
6935 {
6936 	if (dl_prio(prio))
6937 		p->sched_class = &dl_sched_class;
6938 	else if (rt_prio(prio))
6939 		p->sched_class = &rt_sched_class;
6940 	else
6941 		p->sched_class = &fair_sched_class;
6942 
6943 	p->prio = prio;
6944 }
6945 
6946 #ifdef CONFIG_RT_MUTEXES
6947 
6948 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6949 {
6950 	if (pi_task)
6951 		prio = min(prio, pi_task->prio);
6952 
6953 	return prio;
6954 }
6955 
6956 static inline int rt_effective_prio(struct task_struct *p, int prio)
6957 {
6958 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6959 
6960 	return __rt_effective_prio(pi_task, prio);
6961 }
6962 
6963 /*
6964  * rt_mutex_setprio - set the current priority of a task
6965  * @p: task to boost
6966  * @pi_task: donor task
6967  *
6968  * This function changes the 'effective' priority of a task. It does
6969  * not touch ->normal_prio like __setscheduler().
6970  *
6971  * Used by the rt_mutex code to implement priority inheritance
6972  * logic. Call site only calls if the priority of the task changed.
6973  */
6974 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6975 {
6976 	int prio, oldprio, queued, running, queue_flag =
6977 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6978 	const struct sched_class *prev_class;
6979 	struct rq_flags rf;
6980 	struct rq *rq;
6981 
6982 	/* XXX used to be waiter->prio, not waiter->task->prio */
6983 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6984 
6985 	/*
6986 	 * If nothing changed; bail early.
6987 	 */
6988 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6989 		return;
6990 
6991 	rq = __task_rq_lock(p, &rf);
6992 	update_rq_clock(rq);
6993 	/*
6994 	 * Set under pi_lock && rq->lock, such that the value can be used under
6995 	 * either lock.
6996 	 *
6997 	 * Note that there is loads of tricky to make this pointer cache work
6998 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6999 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7000 	 * task is allowed to run again (and can exit). This ensures the pointer
7001 	 * points to a blocked task -- which guarantees the task is present.
7002 	 */
7003 	p->pi_top_task = pi_task;
7004 
7005 	/*
7006 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7007 	 */
7008 	if (prio == p->prio && !dl_prio(prio))
7009 		goto out_unlock;
7010 
7011 	/*
7012 	 * Idle task boosting is a nono in general. There is one
7013 	 * exception, when PREEMPT_RT and NOHZ is active:
7014 	 *
7015 	 * The idle task calls get_next_timer_interrupt() and holds
7016 	 * the timer wheel base->lock on the CPU and another CPU wants
7017 	 * to access the timer (probably to cancel it). We can safely
7018 	 * ignore the boosting request, as the idle CPU runs this code
7019 	 * with interrupts disabled and will complete the lock
7020 	 * protected section without being interrupted. So there is no
7021 	 * real need to boost.
7022 	 */
7023 	if (unlikely(p == rq->idle)) {
7024 		WARN_ON(p != rq->curr);
7025 		WARN_ON(p->pi_blocked_on);
7026 		goto out_unlock;
7027 	}
7028 
7029 	trace_sched_pi_setprio(p, pi_task);
7030 	oldprio = p->prio;
7031 
7032 	if (oldprio == prio)
7033 		queue_flag &= ~DEQUEUE_MOVE;
7034 
7035 	prev_class = p->sched_class;
7036 	queued = task_on_rq_queued(p);
7037 	running = task_current(rq, p);
7038 	if (queued)
7039 		dequeue_task(rq, p, queue_flag);
7040 	if (running)
7041 		put_prev_task(rq, p);
7042 
7043 	/*
7044 	 * Boosting condition are:
7045 	 * 1. -rt task is running and holds mutex A
7046 	 *      --> -dl task blocks on mutex A
7047 	 *
7048 	 * 2. -dl task is running and holds mutex A
7049 	 *      --> -dl task blocks on mutex A and could preempt the
7050 	 *          running task
7051 	 */
7052 	if (dl_prio(prio)) {
7053 		if (!dl_prio(p->normal_prio) ||
7054 		    (pi_task && dl_prio(pi_task->prio) &&
7055 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7056 			p->dl.pi_se = pi_task->dl.pi_se;
7057 			queue_flag |= ENQUEUE_REPLENISH;
7058 		} else {
7059 			p->dl.pi_se = &p->dl;
7060 		}
7061 	} else if (rt_prio(prio)) {
7062 		if (dl_prio(oldprio))
7063 			p->dl.pi_se = &p->dl;
7064 		if (oldprio < prio)
7065 			queue_flag |= ENQUEUE_HEAD;
7066 	} else {
7067 		if (dl_prio(oldprio))
7068 			p->dl.pi_se = &p->dl;
7069 		if (rt_prio(oldprio))
7070 			p->rt.timeout = 0;
7071 	}
7072 
7073 	__setscheduler_prio(p, prio);
7074 
7075 	if (queued)
7076 		enqueue_task(rq, p, queue_flag);
7077 	if (running)
7078 		set_next_task(rq, p);
7079 
7080 	check_class_changed(rq, p, prev_class, oldprio);
7081 out_unlock:
7082 	/* Avoid rq from going away on us: */
7083 	preempt_disable();
7084 
7085 	rq_unpin_lock(rq, &rf);
7086 	__balance_callbacks(rq);
7087 	raw_spin_rq_unlock(rq);
7088 
7089 	preempt_enable();
7090 }
7091 #else
7092 static inline int rt_effective_prio(struct task_struct *p, int prio)
7093 {
7094 	return prio;
7095 }
7096 #endif
7097 
7098 void set_user_nice(struct task_struct *p, long nice)
7099 {
7100 	bool queued, running;
7101 	int old_prio;
7102 	struct rq_flags rf;
7103 	struct rq *rq;
7104 
7105 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7106 		return;
7107 	/*
7108 	 * We have to be careful, if called from sys_setpriority(),
7109 	 * the task might be in the middle of scheduling on another CPU.
7110 	 */
7111 	rq = task_rq_lock(p, &rf);
7112 	update_rq_clock(rq);
7113 
7114 	/*
7115 	 * The RT priorities are set via sched_setscheduler(), but we still
7116 	 * allow the 'normal' nice value to be set - but as expected
7117 	 * it won't have any effect on scheduling until the task is
7118 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7119 	 */
7120 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7121 		p->static_prio = NICE_TO_PRIO(nice);
7122 		goto out_unlock;
7123 	}
7124 	queued = task_on_rq_queued(p);
7125 	running = task_current(rq, p);
7126 	if (queued)
7127 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7128 	if (running)
7129 		put_prev_task(rq, p);
7130 
7131 	p->static_prio = NICE_TO_PRIO(nice);
7132 	set_load_weight(p, true);
7133 	old_prio = p->prio;
7134 	p->prio = effective_prio(p);
7135 
7136 	if (queued)
7137 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7138 	if (running)
7139 		set_next_task(rq, p);
7140 
7141 	/*
7142 	 * If the task increased its priority or is running and
7143 	 * lowered its priority, then reschedule its CPU:
7144 	 */
7145 	p->sched_class->prio_changed(rq, p, old_prio);
7146 
7147 out_unlock:
7148 	task_rq_unlock(rq, p, &rf);
7149 }
7150 EXPORT_SYMBOL(set_user_nice);
7151 
7152 /*
7153  * is_nice_reduction - check if nice value is an actual reduction
7154  *
7155  * Similar to can_nice() but does not perform a capability check.
7156  *
7157  * @p: task
7158  * @nice: nice value
7159  */
7160 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7161 {
7162 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7163 	int nice_rlim = nice_to_rlimit(nice);
7164 
7165 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7166 }
7167 
7168 /*
7169  * can_nice - check if a task can reduce its nice value
7170  * @p: task
7171  * @nice: nice value
7172  */
7173 int can_nice(const struct task_struct *p, const int nice)
7174 {
7175 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7176 }
7177 
7178 #ifdef __ARCH_WANT_SYS_NICE
7179 
7180 /*
7181  * sys_nice - change the priority of the current process.
7182  * @increment: priority increment
7183  *
7184  * sys_setpriority is a more generic, but much slower function that
7185  * does similar things.
7186  */
7187 SYSCALL_DEFINE1(nice, int, increment)
7188 {
7189 	long nice, retval;
7190 
7191 	/*
7192 	 * Setpriority might change our priority at the same moment.
7193 	 * We don't have to worry. Conceptually one call occurs first
7194 	 * and we have a single winner.
7195 	 */
7196 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7197 	nice = task_nice(current) + increment;
7198 
7199 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7200 	if (increment < 0 && !can_nice(current, nice))
7201 		return -EPERM;
7202 
7203 	retval = security_task_setnice(current, nice);
7204 	if (retval)
7205 		return retval;
7206 
7207 	set_user_nice(current, nice);
7208 	return 0;
7209 }
7210 
7211 #endif
7212 
7213 /**
7214  * task_prio - return the priority value of a given task.
7215  * @p: the task in question.
7216  *
7217  * Return: The priority value as seen by users in /proc.
7218  *
7219  * sched policy         return value   kernel prio    user prio/nice
7220  *
7221  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7222  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7223  * deadline                     -101             -1           0
7224  */
7225 int task_prio(const struct task_struct *p)
7226 {
7227 	return p->prio - MAX_RT_PRIO;
7228 }
7229 
7230 /**
7231  * idle_cpu - is a given CPU idle currently?
7232  * @cpu: the processor in question.
7233  *
7234  * Return: 1 if the CPU is currently idle. 0 otherwise.
7235  */
7236 int idle_cpu(int cpu)
7237 {
7238 	struct rq *rq = cpu_rq(cpu);
7239 
7240 	if (rq->curr != rq->idle)
7241 		return 0;
7242 
7243 	if (rq->nr_running)
7244 		return 0;
7245 
7246 #ifdef CONFIG_SMP
7247 	if (rq->ttwu_pending)
7248 		return 0;
7249 #endif
7250 
7251 	return 1;
7252 }
7253 
7254 /**
7255  * available_idle_cpu - is a given CPU idle for enqueuing work.
7256  * @cpu: the CPU in question.
7257  *
7258  * Return: 1 if the CPU is currently idle. 0 otherwise.
7259  */
7260 int available_idle_cpu(int cpu)
7261 {
7262 	if (!idle_cpu(cpu))
7263 		return 0;
7264 
7265 	if (vcpu_is_preempted(cpu))
7266 		return 0;
7267 
7268 	return 1;
7269 }
7270 
7271 /**
7272  * idle_task - return the idle task for a given CPU.
7273  * @cpu: the processor in question.
7274  *
7275  * Return: The idle task for the CPU @cpu.
7276  */
7277 struct task_struct *idle_task(int cpu)
7278 {
7279 	return cpu_rq(cpu)->idle;
7280 }
7281 
7282 #ifdef CONFIG_SMP
7283 /*
7284  * This function computes an effective utilization for the given CPU, to be
7285  * used for frequency selection given the linear relation: f = u * f_max.
7286  *
7287  * The scheduler tracks the following metrics:
7288  *
7289  *   cpu_util_{cfs,rt,dl,irq}()
7290  *   cpu_bw_dl()
7291  *
7292  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7293  * synchronized windows and are thus directly comparable.
7294  *
7295  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7296  * which excludes things like IRQ and steal-time. These latter are then accrued
7297  * in the irq utilization.
7298  *
7299  * The DL bandwidth number otoh is not a measured metric but a value computed
7300  * based on the task model parameters and gives the minimal utilization
7301  * required to meet deadlines.
7302  */
7303 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7304 				 enum cpu_util_type type,
7305 				 struct task_struct *p)
7306 {
7307 	unsigned long dl_util, util, irq, max;
7308 	struct rq *rq = cpu_rq(cpu);
7309 
7310 	max = arch_scale_cpu_capacity(cpu);
7311 
7312 	if (!uclamp_is_used() &&
7313 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7314 		return max;
7315 	}
7316 
7317 	/*
7318 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7319 	 * because of inaccuracies in how we track these -- see
7320 	 * update_irq_load_avg().
7321 	 */
7322 	irq = cpu_util_irq(rq);
7323 	if (unlikely(irq >= max))
7324 		return max;
7325 
7326 	/*
7327 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7328 	 * CFS tasks and we use the same metric to track the effective
7329 	 * utilization (PELT windows are synchronized) we can directly add them
7330 	 * to obtain the CPU's actual utilization.
7331 	 *
7332 	 * CFS and RT utilization can be boosted or capped, depending on
7333 	 * utilization clamp constraints requested by currently RUNNABLE
7334 	 * tasks.
7335 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7336 	 * frequency will be gracefully reduced with the utilization decay.
7337 	 */
7338 	util = util_cfs + cpu_util_rt(rq);
7339 	if (type == FREQUENCY_UTIL)
7340 		util = uclamp_rq_util_with(rq, util, p);
7341 
7342 	dl_util = cpu_util_dl(rq);
7343 
7344 	/*
7345 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7346 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7347 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7348 	 * that we select f_max when there is no idle time.
7349 	 *
7350 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7351 	 * saturation when we should -- something for later.
7352 	 */
7353 	if (util + dl_util >= max)
7354 		return max;
7355 
7356 	/*
7357 	 * OTOH, for energy computation we need the estimated running time, so
7358 	 * include util_dl and ignore dl_bw.
7359 	 */
7360 	if (type == ENERGY_UTIL)
7361 		util += dl_util;
7362 
7363 	/*
7364 	 * There is still idle time; further improve the number by using the
7365 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7366 	 * need to scale the task numbers:
7367 	 *
7368 	 *              max - irq
7369 	 *   U' = irq + --------- * U
7370 	 *                 max
7371 	 */
7372 	util = scale_irq_capacity(util, irq, max);
7373 	util += irq;
7374 
7375 	/*
7376 	 * Bandwidth required by DEADLINE must always be granted while, for
7377 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7378 	 * to gracefully reduce the frequency when no tasks show up for longer
7379 	 * periods of time.
7380 	 *
7381 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7382 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7383 	 * an interface. So, we only do the latter for now.
7384 	 */
7385 	if (type == FREQUENCY_UTIL)
7386 		util += cpu_bw_dl(rq);
7387 
7388 	return min(max, util);
7389 }
7390 
7391 unsigned long sched_cpu_util(int cpu)
7392 {
7393 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7394 }
7395 #endif /* CONFIG_SMP */
7396 
7397 /**
7398  * find_process_by_pid - find a process with a matching PID value.
7399  * @pid: the pid in question.
7400  *
7401  * The task of @pid, if found. %NULL otherwise.
7402  */
7403 static struct task_struct *find_process_by_pid(pid_t pid)
7404 {
7405 	return pid ? find_task_by_vpid(pid) : current;
7406 }
7407 
7408 /*
7409  * sched_setparam() passes in -1 for its policy, to let the functions
7410  * it calls know not to change it.
7411  */
7412 #define SETPARAM_POLICY	-1
7413 
7414 static void __setscheduler_params(struct task_struct *p,
7415 		const struct sched_attr *attr)
7416 {
7417 	int policy = attr->sched_policy;
7418 
7419 	if (policy == SETPARAM_POLICY)
7420 		policy = p->policy;
7421 
7422 	p->policy = policy;
7423 
7424 	if (dl_policy(policy))
7425 		__setparam_dl(p, attr);
7426 	else if (fair_policy(policy))
7427 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7428 
7429 	/*
7430 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7431 	 * !rt_policy. Always setting this ensures that things like
7432 	 * getparam()/getattr() don't report silly values for !rt tasks.
7433 	 */
7434 	p->rt_priority = attr->sched_priority;
7435 	p->normal_prio = normal_prio(p);
7436 	set_load_weight(p, true);
7437 }
7438 
7439 /*
7440  * Check the target process has a UID that matches the current process's:
7441  */
7442 static bool check_same_owner(struct task_struct *p)
7443 {
7444 	const struct cred *cred = current_cred(), *pcred;
7445 	bool match;
7446 
7447 	rcu_read_lock();
7448 	pcred = __task_cred(p);
7449 	match = (uid_eq(cred->euid, pcred->euid) ||
7450 		 uid_eq(cred->euid, pcred->uid));
7451 	rcu_read_unlock();
7452 	return match;
7453 }
7454 
7455 /*
7456  * Allow unprivileged RT tasks to decrease priority.
7457  * Only issue a capable test if needed and only once to avoid an audit
7458  * event on permitted non-privileged operations:
7459  */
7460 static int user_check_sched_setscheduler(struct task_struct *p,
7461 					 const struct sched_attr *attr,
7462 					 int policy, int reset_on_fork)
7463 {
7464 	if (fair_policy(policy)) {
7465 		if (attr->sched_nice < task_nice(p) &&
7466 		    !is_nice_reduction(p, attr->sched_nice))
7467 			goto req_priv;
7468 	}
7469 
7470 	if (rt_policy(policy)) {
7471 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7472 
7473 		/* Can't set/change the rt policy: */
7474 		if (policy != p->policy && !rlim_rtprio)
7475 			goto req_priv;
7476 
7477 		/* Can't increase priority: */
7478 		if (attr->sched_priority > p->rt_priority &&
7479 		    attr->sched_priority > rlim_rtprio)
7480 			goto req_priv;
7481 	}
7482 
7483 	/*
7484 	 * Can't set/change SCHED_DEADLINE policy at all for now
7485 	 * (safest behavior); in the future we would like to allow
7486 	 * unprivileged DL tasks to increase their relative deadline
7487 	 * or reduce their runtime (both ways reducing utilization)
7488 	 */
7489 	if (dl_policy(policy))
7490 		goto req_priv;
7491 
7492 	/*
7493 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7494 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7495 	 */
7496 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7497 		if (!is_nice_reduction(p, task_nice(p)))
7498 			goto req_priv;
7499 	}
7500 
7501 	/* Can't change other user's priorities: */
7502 	if (!check_same_owner(p))
7503 		goto req_priv;
7504 
7505 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7506 	if (p->sched_reset_on_fork && !reset_on_fork)
7507 		goto req_priv;
7508 
7509 	return 0;
7510 
7511 req_priv:
7512 	if (!capable(CAP_SYS_NICE))
7513 		return -EPERM;
7514 
7515 	return 0;
7516 }
7517 
7518 static int __sched_setscheduler(struct task_struct *p,
7519 				const struct sched_attr *attr,
7520 				bool user, bool pi)
7521 {
7522 	int oldpolicy = -1, policy = attr->sched_policy;
7523 	int retval, oldprio, newprio, queued, running;
7524 	const struct sched_class *prev_class;
7525 	struct balance_callback *head;
7526 	struct rq_flags rf;
7527 	int reset_on_fork;
7528 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7529 	struct rq *rq;
7530 
7531 	/* The pi code expects interrupts enabled */
7532 	BUG_ON(pi && in_interrupt());
7533 recheck:
7534 	/* Double check policy once rq lock held: */
7535 	if (policy < 0) {
7536 		reset_on_fork = p->sched_reset_on_fork;
7537 		policy = oldpolicy = p->policy;
7538 	} else {
7539 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7540 
7541 		if (!valid_policy(policy))
7542 			return -EINVAL;
7543 	}
7544 
7545 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7546 		return -EINVAL;
7547 
7548 	/*
7549 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7550 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7551 	 * SCHED_BATCH and SCHED_IDLE is 0.
7552 	 */
7553 	if (attr->sched_priority > MAX_RT_PRIO-1)
7554 		return -EINVAL;
7555 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7556 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7557 		return -EINVAL;
7558 
7559 	if (user) {
7560 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7561 		if (retval)
7562 			return retval;
7563 
7564 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7565 			return -EINVAL;
7566 
7567 		retval = security_task_setscheduler(p);
7568 		if (retval)
7569 			return retval;
7570 	}
7571 
7572 	/* Update task specific "requested" clamps */
7573 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7574 		retval = uclamp_validate(p, attr);
7575 		if (retval)
7576 			return retval;
7577 	}
7578 
7579 	if (pi)
7580 		cpuset_read_lock();
7581 
7582 	/*
7583 	 * Make sure no PI-waiters arrive (or leave) while we are
7584 	 * changing the priority of the task:
7585 	 *
7586 	 * To be able to change p->policy safely, the appropriate
7587 	 * runqueue lock must be held.
7588 	 */
7589 	rq = task_rq_lock(p, &rf);
7590 	update_rq_clock(rq);
7591 
7592 	/*
7593 	 * Changing the policy of the stop threads its a very bad idea:
7594 	 */
7595 	if (p == rq->stop) {
7596 		retval = -EINVAL;
7597 		goto unlock;
7598 	}
7599 
7600 	/*
7601 	 * If not changing anything there's no need to proceed further,
7602 	 * but store a possible modification of reset_on_fork.
7603 	 */
7604 	if (unlikely(policy == p->policy)) {
7605 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7606 			goto change;
7607 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7608 			goto change;
7609 		if (dl_policy(policy) && dl_param_changed(p, attr))
7610 			goto change;
7611 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7612 			goto change;
7613 
7614 		p->sched_reset_on_fork = reset_on_fork;
7615 		retval = 0;
7616 		goto unlock;
7617 	}
7618 change:
7619 
7620 	if (user) {
7621 #ifdef CONFIG_RT_GROUP_SCHED
7622 		/*
7623 		 * Do not allow realtime tasks into groups that have no runtime
7624 		 * assigned.
7625 		 */
7626 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7627 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7628 				!task_group_is_autogroup(task_group(p))) {
7629 			retval = -EPERM;
7630 			goto unlock;
7631 		}
7632 #endif
7633 #ifdef CONFIG_SMP
7634 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7635 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7636 			cpumask_t *span = rq->rd->span;
7637 
7638 			/*
7639 			 * Don't allow tasks with an affinity mask smaller than
7640 			 * the entire root_domain to become SCHED_DEADLINE. We
7641 			 * will also fail if there's no bandwidth available.
7642 			 */
7643 			if (!cpumask_subset(span, p->cpus_ptr) ||
7644 			    rq->rd->dl_bw.bw == 0) {
7645 				retval = -EPERM;
7646 				goto unlock;
7647 			}
7648 		}
7649 #endif
7650 	}
7651 
7652 	/* Re-check policy now with rq lock held: */
7653 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7654 		policy = oldpolicy = -1;
7655 		task_rq_unlock(rq, p, &rf);
7656 		if (pi)
7657 			cpuset_read_unlock();
7658 		goto recheck;
7659 	}
7660 
7661 	/*
7662 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7663 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7664 	 * is available.
7665 	 */
7666 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7667 		retval = -EBUSY;
7668 		goto unlock;
7669 	}
7670 
7671 	p->sched_reset_on_fork = reset_on_fork;
7672 	oldprio = p->prio;
7673 
7674 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7675 	if (pi) {
7676 		/*
7677 		 * Take priority boosted tasks into account. If the new
7678 		 * effective priority is unchanged, we just store the new
7679 		 * normal parameters and do not touch the scheduler class and
7680 		 * the runqueue. This will be done when the task deboost
7681 		 * itself.
7682 		 */
7683 		newprio = rt_effective_prio(p, newprio);
7684 		if (newprio == oldprio)
7685 			queue_flags &= ~DEQUEUE_MOVE;
7686 	}
7687 
7688 	queued = task_on_rq_queued(p);
7689 	running = task_current(rq, p);
7690 	if (queued)
7691 		dequeue_task(rq, p, queue_flags);
7692 	if (running)
7693 		put_prev_task(rq, p);
7694 
7695 	prev_class = p->sched_class;
7696 
7697 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7698 		__setscheduler_params(p, attr);
7699 		__setscheduler_prio(p, newprio);
7700 	}
7701 	__setscheduler_uclamp(p, attr);
7702 
7703 	if (queued) {
7704 		/*
7705 		 * We enqueue to tail when the priority of a task is
7706 		 * increased (user space view).
7707 		 */
7708 		if (oldprio < p->prio)
7709 			queue_flags |= ENQUEUE_HEAD;
7710 
7711 		enqueue_task(rq, p, queue_flags);
7712 	}
7713 	if (running)
7714 		set_next_task(rq, p);
7715 
7716 	check_class_changed(rq, p, prev_class, oldprio);
7717 
7718 	/* Avoid rq from going away on us: */
7719 	preempt_disable();
7720 	head = splice_balance_callbacks(rq);
7721 	task_rq_unlock(rq, p, &rf);
7722 
7723 	if (pi) {
7724 		cpuset_read_unlock();
7725 		rt_mutex_adjust_pi(p);
7726 	}
7727 
7728 	/* Run balance callbacks after we've adjusted the PI chain: */
7729 	balance_callbacks(rq, head);
7730 	preempt_enable();
7731 
7732 	return 0;
7733 
7734 unlock:
7735 	task_rq_unlock(rq, p, &rf);
7736 	if (pi)
7737 		cpuset_read_unlock();
7738 	return retval;
7739 }
7740 
7741 static int _sched_setscheduler(struct task_struct *p, int policy,
7742 			       const struct sched_param *param, bool check)
7743 {
7744 	struct sched_attr attr = {
7745 		.sched_policy   = policy,
7746 		.sched_priority = param->sched_priority,
7747 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7748 	};
7749 
7750 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7751 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7752 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7753 		policy &= ~SCHED_RESET_ON_FORK;
7754 		attr.sched_policy = policy;
7755 	}
7756 
7757 	return __sched_setscheduler(p, &attr, check, true);
7758 }
7759 /**
7760  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7761  * @p: the task in question.
7762  * @policy: new policy.
7763  * @param: structure containing the new RT priority.
7764  *
7765  * Use sched_set_fifo(), read its comment.
7766  *
7767  * Return: 0 on success. An error code otherwise.
7768  *
7769  * NOTE that the task may be already dead.
7770  */
7771 int sched_setscheduler(struct task_struct *p, int policy,
7772 		       const struct sched_param *param)
7773 {
7774 	return _sched_setscheduler(p, policy, param, true);
7775 }
7776 
7777 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7778 {
7779 	return __sched_setscheduler(p, attr, true, true);
7780 }
7781 
7782 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7783 {
7784 	return __sched_setscheduler(p, attr, false, true);
7785 }
7786 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7787 
7788 /**
7789  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7790  * @p: the task in question.
7791  * @policy: new policy.
7792  * @param: structure containing the new RT priority.
7793  *
7794  * Just like sched_setscheduler, only don't bother checking if the
7795  * current context has permission.  For example, this is needed in
7796  * stop_machine(): we create temporary high priority worker threads,
7797  * but our caller might not have that capability.
7798  *
7799  * Return: 0 on success. An error code otherwise.
7800  */
7801 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7802 			       const struct sched_param *param)
7803 {
7804 	return _sched_setscheduler(p, policy, param, false);
7805 }
7806 
7807 /*
7808  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7809  * incapable of resource management, which is the one thing an OS really should
7810  * be doing.
7811  *
7812  * This is of course the reason it is limited to privileged users only.
7813  *
7814  * Worse still; it is fundamentally impossible to compose static priority
7815  * workloads. You cannot take two correctly working static prio workloads
7816  * and smash them together and still expect them to work.
7817  *
7818  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7819  *
7820  *   MAX_RT_PRIO / 2
7821  *
7822  * The administrator _MUST_ configure the system, the kernel simply doesn't
7823  * know enough information to make a sensible choice.
7824  */
7825 void sched_set_fifo(struct task_struct *p)
7826 {
7827 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7828 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7829 }
7830 EXPORT_SYMBOL_GPL(sched_set_fifo);
7831 
7832 /*
7833  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7834  */
7835 void sched_set_fifo_low(struct task_struct *p)
7836 {
7837 	struct sched_param sp = { .sched_priority = 1 };
7838 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7839 }
7840 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7841 
7842 void sched_set_normal(struct task_struct *p, int nice)
7843 {
7844 	struct sched_attr attr = {
7845 		.sched_policy = SCHED_NORMAL,
7846 		.sched_nice = nice,
7847 	};
7848 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7849 }
7850 EXPORT_SYMBOL_GPL(sched_set_normal);
7851 
7852 static int
7853 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7854 {
7855 	struct sched_param lparam;
7856 	struct task_struct *p;
7857 	int retval;
7858 
7859 	if (!param || pid < 0)
7860 		return -EINVAL;
7861 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7862 		return -EFAULT;
7863 
7864 	rcu_read_lock();
7865 	retval = -ESRCH;
7866 	p = find_process_by_pid(pid);
7867 	if (likely(p))
7868 		get_task_struct(p);
7869 	rcu_read_unlock();
7870 
7871 	if (likely(p)) {
7872 		retval = sched_setscheduler(p, policy, &lparam);
7873 		put_task_struct(p);
7874 	}
7875 
7876 	return retval;
7877 }
7878 
7879 /*
7880  * Mimics kernel/events/core.c perf_copy_attr().
7881  */
7882 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7883 {
7884 	u32 size;
7885 	int ret;
7886 
7887 	/* Zero the full structure, so that a short copy will be nice: */
7888 	memset(attr, 0, sizeof(*attr));
7889 
7890 	ret = get_user(size, &uattr->size);
7891 	if (ret)
7892 		return ret;
7893 
7894 	/* ABI compatibility quirk: */
7895 	if (!size)
7896 		size = SCHED_ATTR_SIZE_VER0;
7897 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7898 		goto err_size;
7899 
7900 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7901 	if (ret) {
7902 		if (ret == -E2BIG)
7903 			goto err_size;
7904 		return ret;
7905 	}
7906 
7907 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7908 	    size < SCHED_ATTR_SIZE_VER1)
7909 		return -EINVAL;
7910 
7911 	/*
7912 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7913 	 * to be strict and return an error on out-of-bounds values?
7914 	 */
7915 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7916 
7917 	return 0;
7918 
7919 err_size:
7920 	put_user(sizeof(*attr), &uattr->size);
7921 	return -E2BIG;
7922 }
7923 
7924 static void get_params(struct task_struct *p, struct sched_attr *attr)
7925 {
7926 	if (task_has_dl_policy(p))
7927 		__getparam_dl(p, attr);
7928 	else if (task_has_rt_policy(p))
7929 		attr->sched_priority = p->rt_priority;
7930 	else
7931 		attr->sched_nice = task_nice(p);
7932 }
7933 
7934 /**
7935  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7936  * @pid: the pid in question.
7937  * @policy: new policy.
7938  * @param: structure containing the new RT priority.
7939  *
7940  * Return: 0 on success. An error code otherwise.
7941  */
7942 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7943 {
7944 	if (policy < 0)
7945 		return -EINVAL;
7946 
7947 	return do_sched_setscheduler(pid, policy, param);
7948 }
7949 
7950 /**
7951  * sys_sched_setparam - set/change the RT priority of a thread
7952  * @pid: the pid in question.
7953  * @param: structure containing the new RT priority.
7954  *
7955  * Return: 0 on success. An error code otherwise.
7956  */
7957 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7958 {
7959 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7960 }
7961 
7962 /**
7963  * sys_sched_setattr - same as above, but with extended sched_attr
7964  * @pid: the pid in question.
7965  * @uattr: structure containing the extended parameters.
7966  * @flags: for future extension.
7967  */
7968 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7969 			       unsigned int, flags)
7970 {
7971 	struct sched_attr attr;
7972 	struct task_struct *p;
7973 	int retval;
7974 
7975 	if (!uattr || pid < 0 || flags)
7976 		return -EINVAL;
7977 
7978 	retval = sched_copy_attr(uattr, &attr);
7979 	if (retval)
7980 		return retval;
7981 
7982 	if ((int)attr.sched_policy < 0)
7983 		return -EINVAL;
7984 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7985 		attr.sched_policy = SETPARAM_POLICY;
7986 
7987 	rcu_read_lock();
7988 	retval = -ESRCH;
7989 	p = find_process_by_pid(pid);
7990 	if (likely(p))
7991 		get_task_struct(p);
7992 	rcu_read_unlock();
7993 
7994 	if (likely(p)) {
7995 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7996 			get_params(p, &attr);
7997 		retval = sched_setattr(p, &attr);
7998 		put_task_struct(p);
7999 	}
8000 
8001 	return retval;
8002 }
8003 
8004 /**
8005  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8006  * @pid: the pid in question.
8007  *
8008  * Return: On success, the policy of the thread. Otherwise, a negative error
8009  * code.
8010  */
8011 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8012 {
8013 	struct task_struct *p;
8014 	int retval;
8015 
8016 	if (pid < 0)
8017 		return -EINVAL;
8018 
8019 	retval = -ESRCH;
8020 	rcu_read_lock();
8021 	p = find_process_by_pid(pid);
8022 	if (p) {
8023 		retval = security_task_getscheduler(p);
8024 		if (!retval)
8025 			retval = p->policy
8026 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8027 	}
8028 	rcu_read_unlock();
8029 	return retval;
8030 }
8031 
8032 /**
8033  * sys_sched_getparam - get the RT priority of a thread
8034  * @pid: the pid in question.
8035  * @param: structure containing the RT priority.
8036  *
8037  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8038  * code.
8039  */
8040 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8041 {
8042 	struct sched_param lp = { .sched_priority = 0 };
8043 	struct task_struct *p;
8044 	int retval;
8045 
8046 	if (!param || pid < 0)
8047 		return -EINVAL;
8048 
8049 	rcu_read_lock();
8050 	p = find_process_by_pid(pid);
8051 	retval = -ESRCH;
8052 	if (!p)
8053 		goto out_unlock;
8054 
8055 	retval = security_task_getscheduler(p);
8056 	if (retval)
8057 		goto out_unlock;
8058 
8059 	if (task_has_rt_policy(p))
8060 		lp.sched_priority = p->rt_priority;
8061 	rcu_read_unlock();
8062 
8063 	/*
8064 	 * This one might sleep, we cannot do it with a spinlock held ...
8065 	 */
8066 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8067 
8068 	return retval;
8069 
8070 out_unlock:
8071 	rcu_read_unlock();
8072 	return retval;
8073 }
8074 
8075 /*
8076  * Copy the kernel size attribute structure (which might be larger
8077  * than what user-space knows about) to user-space.
8078  *
8079  * Note that all cases are valid: user-space buffer can be larger or
8080  * smaller than the kernel-space buffer. The usual case is that both
8081  * have the same size.
8082  */
8083 static int
8084 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8085 			struct sched_attr *kattr,
8086 			unsigned int usize)
8087 {
8088 	unsigned int ksize = sizeof(*kattr);
8089 
8090 	if (!access_ok(uattr, usize))
8091 		return -EFAULT;
8092 
8093 	/*
8094 	 * sched_getattr() ABI forwards and backwards compatibility:
8095 	 *
8096 	 * If usize == ksize then we just copy everything to user-space and all is good.
8097 	 *
8098 	 * If usize < ksize then we only copy as much as user-space has space for,
8099 	 * this keeps ABI compatibility as well. We skip the rest.
8100 	 *
8101 	 * If usize > ksize then user-space is using a newer version of the ABI,
8102 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8103 	 * detect the kernel's knowledge of attributes from the attr->size value
8104 	 * which is set to ksize in this case.
8105 	 */
8106 	kattr->size = min(usize, ksize);
8107 
8108 	if (copy_to_user(uattr, kattr, kattr->size))
8109 		return -EFAULT;
8110 
8111 	return 0;
8112 }
8113 
8114 /**
8115  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8116  * @pid: the pid in question.
8117  * @uattr: structure containing the extended parameters.
8118  * @usize: sizeof(attr) for fwd/bwd comp.
8119  * @flags: for future extension.
8120  */
8121 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8122 		unsigned int, usize, unsigned int, flags)
8123 {
8124 	struct sched_attr kattr = { };
8125 	struct task_struct *p;
8126 	int retval;
8127 
8128 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8129 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8130 		return -EINVAL;
8131 
8132 	rcu_read_lock();
8133 	p = find_process_by_pid(pid);
8134 	retval = -ESRCH;
8135 	if (!p)
8136 		goto out_unlock;
8137 
8138 	retval = security_task_getscheduler(p);
8139 	if (retval)
8140 		goto out_unlock;
8141 
8142 	kattr.sched_policy = p->policy;
8143 	if (p->sched_reset_on_fork)
8144 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8145 	get_params(p, &kattr);
8146 	kattr.sched_flags &= SCHED_FLAG_ALL;
8147 
8148 #ifdef CONFIG_UCLAMP_TASK
8149 	/*
8150 	 * This could race with another potential updater, but this is fine
8151 	 * because it'll correctly read the old or the new value. We don't need
8152 	 * to guarantee who wins the race as long as it doesn't return garbage.
8153 	 */
8154 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8155 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8156 #endif
8157 
8158 	rcu_read_unlock();
8159 
8160 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8161 
8162 out_unlock:
8163 	rcu_read_unlock();
8164 	return retval;
8165 }
8166 
8167 #ifdef CONFIG_SMP
8168 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8169 {
8170 	int ret = 0;
8171 
8172 	/*
8173 	 * If the task isn't a deadline task or admission control is
8174 	 * disabled then we don't care about affinity changes.
8175 	 */
8176 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8177 		return 0;
8178 
8179 	/*
8180 	 * Since bandwidth control happens on root_domain basis,
8181 	 * if admission test is enabled, we only admit -deadline
8182 	 * tasks allowed to run on all the CPUs in the task's
8183 	 * root_domain.
8184 	 */
8185 	rcu_read_lock();
8186 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8187 		ret = -EBUSY;
8188 	rcu_read_unlock();
8189 	return ret;
8190 }
8191 #endif
8192 
8193 static int
8194 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8195 {
8196 	int retval;
8197 	cpumask_var_t cpus_allowed, new_mask;
8198 
8199 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8200 		return -ENOMEM;
8201 
8202 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8203 		retval = -ENOMEM;
8204 		goto out_free_cpus_allowed;
8205 	}
8206 
8207 	cpuset_cpus_allowed(p, cpus_allowed);
8208 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8209 
8210 	ctx->new_mask = new_mask;
8211 	ctx->flags |= SCA_CHECK;
8212 
8213 	retval = dl_task_check_affinity(p, new_mask);
8214 	if (retval)
8215 		goto out_free_new_mask;
8216 
8217 	retval = __set_cpus_allowed_ptr(p, ctx);
8218 	if (retval)
8219 		goto out_free_new_mask;
8220 
8221 	cpuset_cpus_allowed(p, cpus_allowed);
8222 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8223 		/*
8224 		 * We must have raced with a concurrent cpuset update.
8225 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8226 		 */
8227 		cpumask_copy(new_mask, cpus_allowed);
8228 
8229 		/*
8230 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8231 		 * will restore the previous user_cpus_ptr value.
8232 		 *
8233 		 * In the unlikely event a previous user_cpus_ptr exists,
8234 		 * we need to further restrict the mask to what is allowed
8235 		 * by that old user_cpus_ptr.
8236 		 */
8237 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8238 			bool empty = !cpumask_and(new_mask, new_mask,
8239 						  ctx->user_mask);
8240 
8241 			if (WARN_ON_ONCE(empty))
8242 				cpumask_copy(new_mask, cpus_allowed);
8243 		}
8244 		__set_cpus_allowed_ptr(p, ctx);
8245 		retval = -EINVAL;
8246 	}
8247 
8248 out_free_new_mask:
8249 	free_cpumask_var(new_mask);
8250 out_free_cpus_allowed:
8251 	free_cpumask_var(cpus_allowed);
8252 	return retval;
8253 }
8254 
8255 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8256 {
8257 	struct affinity_context ac;
8258 	struct cpumask *user_mask;
8259 	struct task_struct *p;
8260 	int retval;
8261 
8262 	rcu_read_lock();
8263 
8264 	p = find_process_by_pid(pid);
8265 	if (!p) {
8266 		rcu_read_unlock();
8267 		return -ESRCH;
8268 	}
8269 
8270 	/* Prevent p going away */
8271 	get_task_struct(p);
8272 	rcu_read_unlock();
8273 
8274 	if (p->flags & PF_NO_SETAFFINITY) {
8275 		retval = -EINVAL;
8276 		goto out_put_task;
8277 	}
8278 
8279 	if (!check_same_owner(p)) {
8280 		rcu_read_lock();
8281 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8282 			rcu_read_unlock();
8283 			retval = -EPERM;
8284 			goto out_put_task;
8285 		}
8286 		rcu_read_unlock();
8287 	}
8288 
8289 	retval = security_task_setscheduler(p);
8290 	if (retval)
8291 		goto out_put_task;
8292 
8293 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8294 	if (IS_ENABLED(CONFIG_SMP) && !user_mask) {
8295 		retval = -ENOMEM;
8296 		goto out_put_task;
8297 	}
8298 	cpumask_copy(user_mask, in_mask);
8299 	ac = (struct affinity_context){
8300 		.new_mask  = in_mask,
8301 		.user_mask = user_mask,
8302 		.flags     = SCA_USER,
8303 	};
8304 
8305 	retval = __sched_setaffinity(p, &ac);
8306 	kfree(ac.user_mask);
8307 
8308 out_put_task:
8309 	put_task_struct(p);
8310 	return retval;
8311 }
8312 
8313 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8314 			     struct cpumask *new_mask)
8315 {
8316 	if (len < cpumask_size())
8317 		cpumask_clear(new_mask);
8318 	else if (len > cpumask_size())
8319 		len = cpumask_size();
8320 
8321 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8322 }
8323 
8324 /**
8325  * sys_sched_setaffinity - set the CPU affinity of a process
8326  * @pid: pid of the process
8327  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8328  * @user_mask_ptr: user-space pointer to the new CPU mask
8329  *
8330  * Return: 0 on success. An error code otherwise.
8331  */
8332 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8333 		unsigned long __user *, user_mask_ptr)
8334 {
8335 	cpumask_var_t new_mask;
8336 	int retval;
8337 
8338 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8339 		return -ENOMEM;
8340 
8341 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8342 	if (retval == 0)
8343 		retval = sched_setaffinity(pid, new_mask);
8344 	free_cpumask_var(new_mask);
8345 	return retval;
8346 }
8347 
8348 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8349 {
8350 	struct task_struct *p;
8351 	unsigned long flags;
8352 	int retval;
8353 
8354 	rcu_read_lock();
8355 
8356 	retval = -ESRCH;
8357 	p = find_process_by_pid(pid);
8358 	if (!p)
8359 		goto out_unlock;
8360 
8361 	retval = security_task_getscheduler(p);
8362 	if (retval)
8363 		goto out_unlock;
8364 
8365 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8366 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8367 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8368 
8369 out_unlock:
8370 	rcu_read_unlock();
8371 
8372 	return retval;
8373 }
8374 
8375 /**
8376  * sys_sched_getaffinity - get the CPU affinity of a process
8377  * @pid: pid of the process
8378  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8379  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8380  *
8381  * Return: size of CPU mask copied to user_mask_ptr on success. An
8382  * error code otherwise.
8383  */
8384 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8385 		unsigned long __user *, user_mask_ptr)
8386 {
8387 	int ret;
8388 	cpumask_var_t mask;
8389 
8390 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8391 		return -EINVAL;
8392 	if (len & (sizeof(unsigned long)-1))
8393 		return -EINVAL;
8394 
8395 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8396 		return -ENOMEM;
8397 
8398 	ret = sched_getaffinity(pid, mask);
8399 	if (ret == 0) {
8400 		unsigned int retlen = min(len, cpumask_size());
8401 
8402 		if (copy_to_user(user_mask_ptr, mask, retlen))
8403 			ret = -EFAULT;
8404 		else
8405 			ret = retlen;
8406 	}
8407 	free_cpumask_var(mask);
8408 
8409 	return ret;
8410 }
8411 
8412 static void do_sched_yield(void)
8413 {
8414 	struct rq_flags rf;
8415 	struct rq *rq;
8416 
8417 	rq = this_rq_lock_irq(&rf);
8418 
8419 	schedstat_inc(rq->yld_count);
8420 	current->sched_class->yield_task(rq);
8421 
8422 	preempt_disable();
8423 	rq_unlock_irq(rq, &rf);
8424 	sched_preempt_enable_no_resched();
8425 
8426 	schedule();
8427 }
8428 
8429 /**
8430  * sys_sched_yield - yield the current processor to other threads.
8431  *
8432  * This function yields the current CPU to other tasks. If there are no
8433  * other threads running on this CPU then this function will return.
8434  *
8435  * Return: 0.
8436  */
8437 SYSCALL_DEFINE0(sched_yield)
8438 {
8439 	do_sched_yield();
8440 	return 0;
8441 }
8442 
8443 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8444 int __sched __cond_resched(void)
8445 {
8446 	if (should_resched(0)) {
8447 		preempt_schedule_common();
8448 		return 1;
8449 	}
8450 	/*
8451 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8452 	 * whether the current CPU is in an RCU read-side critical section,
8453 	 * so the tick can report quiescent states even for CPUs looping
8454 	 * in kernel context.  In contrast, in non-preemptible kernels,
8455 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8456 	 * processes executing in kernel context might never report an
8457 	 * RCU quiescent state.  Therefore, the following code causes
8458 	 * cond_resched() to report a quiescent state, but only when RCU
8459 	 * is in urgent need of one.
8460 	 */
8461 #ifndef CONFIG_PREEMPT_RCU
8462 	rcu_all_qs();
8463 #endif
8464 	return 0;
8465 }
8466 EXPORT_SYMBOL(__cond_resched);
8467 #endif
8468 
8469 #ifdef CONFIG_PREEMPT_DYNAMIC
8470 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8471 #define cond_resched_dynamic_enabled	__cond_resched
8472 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8473 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8474 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8475 
8476 #define might_resched_dynamic_enabled	__cond_resched
8477 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8478 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8479 EXPORT_STATIC_CALL_TRAMP(might_resched);
8480 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8481 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8482 int __sched dynamic_cond_resched(void)
8483 {
8484 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8485 		return 0;
8486 	return __cond_resched();
8487 }
8488 EXPORT_SYMBOL(dynamic_cond_resched);
8489 
8490 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8491 int __sched dynamic_might_resched(void)
8492 {
8493 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8494 		return 0;
8495 	return __cond_resched();
8496 }
8497 EXPORT_SYMBOL(dynamic_might_resched);
8498 #endif
8499 #endif
8500 
8501 /*
8502  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8503  * call schedule, and on return reacquire the lock.
8504  *
8505  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8506  * operations here to prevent schedule() from being called twice (once via
8507  * spin_unlock(), once by hand).
8508  */
8509 int __cond_resched_lock(spinlock_t *lock)
8510 {
8511 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8512 	int ret = 0;
8513 
8514 	lockdep_assert_held(lock);
8515 
8516 	if (spin_needbreak(lock) || resched) {
8517 		spin_unlock(lock);
8518 		if (!_cond_resched())
8519 			cpu_relax();
8520 		ret = 1;
8521 		spin_lock(lock);
8522 	}
8523 	return ret;
8524 }
8525 EXPORT_SYMBOL(__cond_resched_lock);
8526 
8527 int __cond_resched_rwlock_read(rwlock_t *lock)
8528 {
8529 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8530 	int ret = 0;
8531 
8532 	lockdep_assert_held_read(lock);
8533 
8534 	if (rwlock_needbreak(lock) || resched) {
8535 		read_unlock(lock);
8536 		if (!_cond_resched())
8537 			cpu_relax();
8538 		ret = 1;
8539 		read_lock(lock);
8540 	}
8541 	return ret;
8542 }
8543 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8544 
8545 int __cond_resched_rwlock_write(rwlock_t *lock)
8546 {
8547 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8548 	int ret = 0;
8549 
8550 	lockdep_assert_held_write(lock);
8551 
8552 	if (rwlock_needbreak(lock) || resched) {
8553 		write_unlock(lock);
8554 		if (!_cond_resched())
8555 			cpu_relax();
8556 		ret = 1;
8557 		write_lock(lock);
8558 	}
8559 	return ret;
8560 }
8561 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8562 
8563 #ifdef CONFIG_PREEMPT_DYNAMIC
8564 
8565 #ifdef CONFIG_GENERIC_ENTRY
8566 #include <linux/entry-common.h>
8567 #endif
8568 
8569 /*
8570  * SC:cond_resched
8571  * SC:might_resched
8572  * SC:preempt_schedule
8573  * SC:preempt_schedule_notrace
8574  * SC:irqentry_exit_cond_resched
8575  *
8576  *
8577  * NONE:
8578  *   cond_resched               <- __cond_resched
8579  *   might_resched              <- RET0
8580  *   preempt_schedule           <- NOP
8581  *   preempt_schedule_notrace   <- NOP
8582  *   irqentry_exit_cond_resched <- NOP
8583  *
8584  * VOLUNTARY:
8585  *   cond_resched               <- __cond_resched
8586  *   might_resched              <- __cond_resched
8587  *   preempt_schedule           <- NOP
8588  *   preempt_schedule_notrace   <- NOP
8589  *   irqentry_exit_cond_resched <- NOP
8590  *
8591  * FULL:
8592  *   cond_resched               <- RET0
8593  *   might_resched              <- RET0
8594  *   preempt_schedule           <- preempt_schedule
8595  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8596  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8597  */
8598 
8599 enum {
8600 	preempt_dynamic_undefined = -1,
8601 	preempt_dynamic_none,
8602 	preempt_dynamic_voluntary,
8603 	preempt_dynamic_full,
8604 };
8605 
8606 int preempt_dynamic_mode = preempt_dynamic_undefined;
8607 
8608 int sched_dynamic_mode(const char *str)
8609 {
8610 	if (!strcmp(str, "none"))
8611 		return preempt_dynamic_none;
8612 
8613 	if (!strcmp(str, "voluntary"))
8614 		return preempt_dynamic_voluntary;
8615 
8616 	if (!strcmp(str, "full"))
8617 		return preempt_dynamic_full;
8618 
8619 	return -EINVAL;
8620 }
8621 
8622 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8623 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8624 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8625 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8626 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8627 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8628 #else
8629 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8630 #endif
8631 
8632 void sched_dynamic_update(int mode)
8633 {
8634 	/*
8635 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8636 	 * the ZERO state, which is invalid.
8637 	 */
8638 	preempt_dynamic_enable(cond_resched);
8639 	preempt_dynamic_enable(might_resched);
8640 	preempt_dynamic_enable(preempt_schedule);
8641 	preempt_dynamic_enable(preempt_schedule_notrace);
8642 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8643 
8644 	switch (mode) {
8645 	case preempt_dynamic_none:
8646 		preempt_dynamic_enable(cond_resched);
8647 		preempt_dynamic_disable(might_resched);
8648 		preempt_dynamic_disable(preempt_schedule);
8649 		preempt_dynamic_disable(preempt_schedule_notrace);
8650 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8651 		pr_info("Dynamic Preempt: none\n");
8652 		break;
8653 
8654 	case preempt_dynamic_voluntary:
8655 		preempt_dynamic_enable(cond_resched);
8656 		preempt_dynamic_enable(might_resched);
8657 		preempt_dynamic_disable(preempt_schedule);
8658 		preempt_dynamic_disable(preempt_schedule_notrace);
8659 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8660 		pr_info("Dynamic Preempt: voluntary\n");
8661 		break;
8662 
8663 	case preempt_dynamic_full:
8664 		preempt_dynamic_disable(cond_resched);
8665 		preempt_dynamic_disable(might_resched);
8666 		preempt_dynamic_enable(preempt_schedule);
8667 		preempt_dynamic_enable(preempt_schedule_notrace);
8668 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8669 		pr_info("Dynamic Preempt: full\n");
8670 		break;
8671 	}
8672 
8673 	preempt_dynamic_mode = mode;
8674 }
8675 
8676 static int __init setup_preempt_mode(char *str)
8677 {
8678 	int mode = sched_dynamic_mode(str);
8679 	if (mode < 0) {
8680 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8681 		return 0;
8682 	}
8683 
8684 	sched_dynamic_update(mode);
8685 	return 1;
8686 }
8687 __setup("preempt=", setup_preempt_mode);
8688 
8689 static void __init preempt_dynamic_init(void)
8690 {
8691 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8692 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8693 			sched_dynamic_update(preempt_dynamic_none);
8694 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8695 			sched_dynamic_update(preempt_dynamic_voluntary);
8696 		} else {
8697 			/* Default static call setting, nothing to do */
8698 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8699 			preempt_dynamic_mode = preempt_dynamic_full;
8700 			pr_info("Dynamic Preempt: full\n");
8701 		}
8702 	}
8703 }
8704 
8705 #define PREEMPT_MODEL_ACCESSOR(mode) \
8706 	bool preempt_model_##mode(void)						 \
8707 	{									 \
8708 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8709 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8710 	}									 \
8711 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8712 
8713 PREEMPT_MODEL_ACCESSOR(none);
8714 PREEMPT_MODEL_ACCESSOR(voluntary);
8715 PREEMPT_MODEL_ACCESSOR(full);
8716 
8717 #else /* !CONFIG_PREEMPT_DYNAMIC */
8718 
8719 static inline void preempt_dynamic_init(void) { }
8720 
8721 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8722 
8723 /**
8724  * yield - yield the current processor to other threads.
8725  *
8726  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8727  *
8728  * The scheduler is at all times free to pick the calling task as the most
8729  * eligible task to run, if removing the yield() call from your code breaks
8730  * it, it's already broken.
8731  *
8732  * Typical broken usage is:
8733  *
8734  * while (!event)
8735  *	yield();
8736  *
8737  * where one assumes that yield() will let 'the other' process run that will
8738  * make event true. If the current task is a SCHED_FIFO task that will never
8739  * happen. Never use yield() as a progress guarantee!!
8740  *
8741  * If you want to use yield() to wait for something, use wait_event().
8742  * If you want to use yield() to be 'nice' for others, use cond_resched().
8743  * If you still want to use yield(), do not!
8744  */
8745 void __sched yield(void)
8746 {
8747 	set_current_state(TASK_RUNNING);
8748 	do_sched_yield();
8749 }
8750 EXPORT_SYMBOL(yield);
8751 
8752 /**
8753  * yield_to - yield the current processor to another thread in
8754  * your thread group, or accelerate that thread toward the
8755  * processor it's on.
8756  * @p: target task
8757  * @preempt: whether task preemption is allowed or not
8758  *
8759  * It's the caller's job to ensure that the target task struct
8760  * can't go away on us before we can do any checks.
8761  *
8762  * Return:
8763  *	true (>0) if we indeed boosted the target task.
8764  *	false (0) if we failed to boost the target.
8765  *	-ESRCH if there's no task to yield to.
8766  */
8767 int __sched yield_to(struct task_struct *p, bool preempt)
8768 {
8769 	struct task_struct *curr = current;
8770 	struct rq *rq, *p_rq;
8771 	unsigned long flags;
8772 	int yielded = 0;
8773 
8774 	local_irq_save(flags);
8775 	rq = this_rq();
8776 
8777 again:
8778 	p_rq = task_rq(p);
8779 	/*
8780 	 * If we're the only runnable task on the rq and target rq also
8781 	 * has only one task, there's absolutely no point in yielding.
8782 	 */
8783 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8784 		yielded = -ESRCH;
8785 		goto out_irq;
8786 	}
8787 
8788 	double_rq_lock(rq, p_rq);
8789 	if (task_rq(p) != p_rq) {
8790 		double_rq_unlock(rq, p_rq);
8791 		goto again;
8792 	}
8793 
8794 	if (!curr->sched_class->yield_to_task)
8795 		goto out_unlock;
8796 
8797 	if (curr->sched_class != p->sched_class)
8798 		goto out_unlock;
8799 
8800 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8801 		goto out_unlock;
8802 
8803 	yielded = curr->sched_class->yield_to_task(rq, p);
8804 	if (yielded) {
8805 		schedstat_inc(rq->yld_count);
8806 		/*
8807 		 * Make p's CPU reschedule; pick_next_entity takes care of
8808 		 * fairness.
8809 		 */
8810 		if (preempt && rq != p_rq)
8811 			resched_curr(p_rq);
8812 	}
8813 
8814 out_unlock:
8815 	double_rq_unlock(rq, p_rq);
8816 out_irq:
8817 	local_irq_restore(flags);
8818 
8819 	if (yielded > 0)
8820 		schedule();
8821 
8822 	return yielded;
8823 }
8824 EXPORT_SYMBOL_GPL(yield_to);
8825 
8826 int io_schedule_prepare(void)
8827 {
8828 	int old_iowait = current->in_iowait;
8829 
8830 	current->in_iowait = 1;
8831 	blk_flush_plug(current->plug, true);
8832 	return old_iowait;
8833 }
8834 
8835 void io_schedule_finish(int token)
8836 {
8837 	current->in_iowait = token;
8838 }
8839 
8840 /*
8841  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8842  * that process accounting knows that this is a task in IO wait state.
8843  */
8844 long __sched io_schedule_timeout(long timeout)
8845 {
8846 	int token;
8847 	long ret;
8848 
8849 	token = io_schedule_prepare();
8850 	ret = schedule_timeout(timeout);
8851 	io_schedule_finish(token);
8852 
8853 	return ret;
8854 }
8855 EXPORT_SYMBOL(io_schedule_timeout);
8856 
8857 void __sched io_schedule(void)
8858 {
8859 	int token;
8860 
8861 	token = io_schedule_prepare();
8862 	schedule();
8863 	io_schedule_finish(token);
8864 }
8865 EXPORT_SYMBOL(io_schedule);
8866 
8867 /**
8868  * sys_sched_get_priority_max - return maximum RT priority.
8869  * @policy: scheduling class.
8870  *
8871  * Return: On success, this syscall returns the maximum
8872  * rt_priority that can be used by a given scheduling class.
8873  * On failure, a negative error code is returned.
8874  */
8875 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8876 {
8877 	int ret = -EINVAL;
8878 
8879 	switch (policy) {
8880 	case SCHED_FIFO:
8881 	case SCHED_RR:
8882 		ret = MAX_RT_PRIO-1;
8883 		break;
8884 	case SCHED_DEADLINE:
8885 	case SCHED_NORMAL:
8886 	case SCHED_BATCH:
8887 	case SCHED_IDLE:
8888 		ret = 0;
8889 		break;
8890 	}
8891 	return ret;
8892 }
8893 
8894 /**
8895  * sys_sched_get_priority_min - return minimum RT priority.
8896  * @policy: scheduling class.
8897  *
8898  * Return: On success, this syscall returns the minimum
8899  * rt_priority that can be used by a given scheduling class.
8900  * On failure, a negative error code is returned.
8901  */
8902 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8903 {
8904 	int ret = -EINVAL;
8905 
8906 	switch (policy) {
8907 	case SCHED_FIFO:
8908 	case SCHED_RR:
8909 		ret = 1;
8910 		break;
8911 	case SCHED_DEADLINE:
8912 	case SCHED_NORMAL:
8913 	case SCHED_BATCH:
8914 	case SCHED_IDLE:
8915 		ret = 0;
8916 	}
8917 	return ret;
8918 }
8919 
8920 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8921 {
8922 	struct task_struct *p;
8923 	unsigned int time_slice;
8924 	struct rq_flags rf;
8925 	struct rq *rq;
8926 	int retval;
8927 
8928 	if (pid < 0)
8929 		return -EINVAL;
8930 
8931 	retval = -ESRCH;
8932 	rcu_read_lock();
8933 	p = find_process_by_pid(pid);
8934 	if (!p)
8935 		goto out_unlock;
8936 
8937 	retval = security_task_getscheduler(p);
8938 	if (retval)
8939 		goto out_unlock;
8940 
8941 	rq = task_rq_lock(p, &rf);
8942 	time_slice = 0;
8943 	if (p->sched_class->get_rr_interval)
8944 		time_slice = p->sched_class->get_rr_interval(rq, p);
8945 	task_rq_unlock(rq, p, &rf);
8946 
8947 	rcu_read_unlock();
8948 	jiffies_to_timespec64(time_slice, t);
8949 	return 0;
8950 
8951 out_unlock:
8952 	rcu_read_unlock();
8953 	return retval;
8954 }
8955 
8956 /**
8957  * sys_sched_rr_get_interval - return the default timeslice of a process.
8958  * @pid: pid of the process.
8959  * @interval: userspace pointer to the timeslice value.
8960  *
8961  * this syscall writes the default timeslice value of a given process
8962  * into the user-space timespec buffer. A value of '0' means infinity.
8963  *
8964  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8965  * an error code.
8966  */
8967 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8968 		struct __kernel_timespec __user *, interval)
8969 {
8970 	struct timespec64 t;
8971 	int retval = sched_rr_get_interval(pid, &t);
8972 
8973 	if (retval == 0)
8974 		retval = put_timespec64(&t, interval);
8975 
8976 	return retval;
8977 }
8978 
8979 #ifdef CONFIG_COMPAT_32BIT_TIME
8980 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8981 		struct old_timespec32 __user *, interval)
8982 {
8983 	struct timespec64 t;
8984 	int retval = sched_rr_get_interval(pid, &t);
8985 
8986 	if (retval == 0)
8987 		retval = put_old_timespec32(&t, interval);
8988 	return retval;
8989 }
8990 #endif
8991 
8992 void sched_show_task(struct task_struct *p)
8993 {
8994 	unsigned long free = 0;
8995 	int ppid;
8996 
8997 	if (!try_get_task_stack(p))
8998 		return;
8999 
9000 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9001 
9002 	if (task_is_running(p))
9003 		pr_cont("  running task    ");
9004 #ifdef CONFIG_DEBUG_STACK_USAGE
9005 	free = stack_not_used(p);
9006 #endif
9007 	ppid = 0;
9008 	rcu_read_lock();
9009 	if (pid_alive(p))
9010 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9011 	rcu_read_unlock();
9012 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9013 		free, task_pid_nr(p), ppid,
9014 		read_task_thread_flags(p));
9015 
9016 	print_worker_info(KERN_INFO, p);
9017 	print_stop_info(KERN_INFO, p);
9018 	show_stack(p, NULL, KERN_INFO);
9019 	put_task_stack(p);
9020 }
9021 EXPORT_SYMBOL_GPL(sched_show_task);
9022 
9023 static inline bool
9024 state_filter_match(unsigned long state_filter, struct task_struct *p)
9025 {
9026 	unsigned int state = READ_ONCE(p->__state);
9027 
9028 	/* no filter, everything matches */
9029 	if (!state_filter)
9030 		return true;
9031 
9032 	/* filter, but doesn't match */
9033 	if (!(state & state_filter))
9034 		return false;
9035 
9036 	/*
9037 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9038 	 * TASK_KILLABLE).
9039 	 */
9040 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9041 		return false;
9042 
9043 	return true;
9044 }
9045 
9046 
9047 void show_state_filter(unsigned int state_filter)
9048 {
9049 	struct task_struct *g, *p;
9050 
9051 	rcu_read_lock();
9052 	for_each_process_thread(g, p) {
9053 		/*
9054 		 * reset the NMI-timeout, listing all files on a slow
9055 		 * console might take a lot of time:
9056 		 * Also, reset softlockup watchdogs on all CPUs, because
9057 		 * another CPU might be blocked waiting for us to process
9058 		 * an IPI.
9059 		 */
9060 		touch_nmi_watchdog();
9061 		touch_all_softlockup_watchdogs();
9062 		if (state_filter_match(state_filter, p))
9063 			sched_show_task(p);
9064 	}
9065 
9066 #ifdef CONFIG_SCHED_DEBUG
9067 	if (!state_filter)
9068 		sysrq_sched_debug_show();
9069 #endif
9070 	rcu_read_unlock();
9071 	/*
9072 	 * Only show locks if all tasks are dumped:
9073 	 */
9074 	if (!state_filter)
9075 		debug_show_all_locks();
9076 }
9077 
9078 /**
9079  * init_idle - set up an idle thread for a given CPU
9080  * @idle: task in question
9081  * @cpu: CPU the idle task belongs to
9082  *
9083  * NOTE: this function does not set the idle thread's NEED_RESCHED
9084  * flag, to make booting more robust.
9085  */
9086 void __init init_idle(struct task_struct *idle, int cpu)
9087 {
9088 #ifdef CONFIG_SMP
9089 	struct affinity_context ac = (struct affinity_context) {
9090 		.new_mask  = cpumask_of(cpu),
9091 		.flags     = 0,
9092 	};
9093 #endif
9094 	struct rq *rq = cpu_rq(cpu);
9095 	unsigned long flags;
9096 
9097 	__sched_fork(0, idle);
9098 
9099 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9100 	raw_spin_rq_lock(rq);
9101 
9102 	idle->__state = TASK_RUNNING;
9103 	idle->se.exec_start = sched_clock();
9104 	/*
9105 	 * PF_KTHREAD should already be set at this point; regardless, make it
9106 	 * look like a proper per-CPU kthread.
9107 	 */
9108 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
9109 	kthread_set_per_cpu(idle, cpu);
9110 
9111 #ifdef CONFIG_SMP
9112 	/*
9113 	 * It's possible that init_idle() gets called multiple times on a task,
9114 	 * in that case do_set_cpus_allowed() will not do the right thing.
9115 	 *
9116 	 * And since this is boot we can forgo the serialization.
9117 	 */
9118 	set_cpus_allowed_common(idle, &ac);
9119 #endif
9120 	/*
9121 	 * We're having a chicken and egg problem, even though we are
9122 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9123 	 * lockdep check in task_group() will fail.
9124 	 *
9125 	 * Similar case to sched_fork(). / Alternatively we could
9126 	 * use task_rq_lock() here and obtain the other rq->lock.
9127 	 *
9128 	 * Silence PROVE_RCU
9129 	 */
9130 	rcu_read_lock();
9131 	__set_task_cpu(idle, cpu);
9132 	rcu_read_unlock();
9133 
9134 	rq->idle = idle;
9135 	rcu_assign_pointer(rq->curr, idle);
9136 	idle->on_rq = TASK_ON_RQ_QUEUED;
9137 #ifdef CONFIG_SMP
9138 	idle->on_cpu = 1;
9139 #endif
9140 	raw_spin_rq_unlock(rq);
9141 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9142 
9143 	/* Set the preempt count _outside_ the spinlocks! */
9144 	init_idle_preempt_count(idle, cpu);
9145 
9146 	/*
9147 	 * The idle tasks have their own, simple scheduling class:
9148 	 */
9149 	idle->sched_class = &idle_sched_class;
9150 	ftrace_graph_init_idle_task(idle, cpu);
9151 	vtime_init_idle(idle, cpu);
9152 #ifdef CONFIG_SMP
9153 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9154 #endif
9155 }
9156 
9157 #ifdef CONFIG_SMP
9158 
9159 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9160 			      const struct cpumask *trial)
9161 {
9162 	int ret = 1;
9163 
9164 	if (cpumask_empty(cur))
9165 		return ret;
9166 
9167 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9168 
9169 	return ret;
9170 }
9171 
9172 int task_can_attach(struct task_struct *p,
9173 		    const struct cpumask *cs_effective_cpus)
9174 {
9175 	int ret = 0;
9176 
9177 	/*
9178 	 * Kthreads which disallow setaffinity shouldn't be moved
9179 	 * to a new cpuset; we don't want to change their CPU
9180 	 * affinity and isolating such threads by their set of
9181 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9182 	 * applicable for such threads.  This prevents checking for
9183 	 * success of set_cpus_allowed_ptr() on all attached tasks
9184 	 * before cpus_mask may be changed.
9185 	 */
9186 	if (p->flags & PF_NO_SETAFFINITY) {
9187 		ret = -EINVAL;
9188 		goto out;
9189 	}
9190 
9191 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
9192 					      cs_effective_cpus)) {
9193 		int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
9194 
9195 		if (unlikely(cpu >= nr_cpu_ids))
9196 			return -EINVAL;
9197 		ret = dl_cpu_busy(cpu, p);
9198 	}
9199 
9200 out:
9201 	return ret;
9202 }
9203 
9204 bool sched_smp_initialized __read_mostly;
9205 
9206 #ifdef CONFIG_NUMA_BALANCING
9207 /* Migrate current task p to target_cpu */
9208 int migrate_task_to(struct task_struct *p, int target_cpu)
9209 {
9210 	struct migration_arg arg = { p, target_cpu };
9211 	int curr_cpu = task_cpu(p);
9212 
9213 	if (curr_cpu == target_cpu)
9214 		return 0;
9215 
9216 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9217 		return -EINVAL;
9218 
9219 	/* TODO: This is not properly updating schedstats */
9220 
9221 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9222 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9223 }
9224 
9225 /*
9226  * Requeue a task on a given node and accurately track the number of NUMA
9227  * tasks on the runqueues
9228  */
9229 void sched_setnuma(struct task_struct *p, int nid)
9230 {
9231 	bool queued, running;
9232 	struct rq_flags rf;
9233 	struct rq *rq;
9234 
9235 	rq = task_rq_lock(p, &rf);
9236 	queued = task_on_rq_queued(p);
9237 	running = task_current(rq, p);
9238 
9239 	if (queued)
9240 		dequeue_task(rq, p, DEQUEUE_SAVE);
9241 	if (running)
9242 		put_prev_task(rq, p);
9243 
9244 	p->numa_preferred_nid = nid;
9245 
9246 	if (queued)
9247 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9248 	if (running)
9249 		set_next_task(rq, p);
9250 	task_rq_unlock(rq, p, &rf);
9251 }
9252 #endif /* CONFIG_NUMA_BALANCING */
9253 
9254 #ifdef CONFIG_HOTPLUG_CPU
9255 /*
9256  * Ensure that the idle task is using init_mm right before its CPU goes
9257  * offline.
9258  */
9259 void idle_task_exit(void)
9260 {
9261 	struct mm_struct *mm = current->active_mm;
9262 
9263 	BUG_ON(cpu_online(smp_processor_id()));
9264 	BUG_ON(current != this_rq()->idle);
9265 
9266 	if (mm != &init_mm) {
9267 		switch_mm(mm, &init_mm, current);
9268 		finish_arch_post_lock_switch();
9269 	}
9270 
9271 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9272 }
9273 
9274 static int __balance_push_cpu_stop(void *arg)
9275 {
9276 	struct task_struct *p = arg;
9277 	struct rq *rq = this_rq();
9278 	struct rq_flags rf;
9279 	int cpu;
9280 
9281 	raw_spin_lock_irq(&p->pi_lock);
9282 	rq_lock(rq, &rf);
9283 
9284 	update_rq_clock(rq);
9285 
9286 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9287 		cpu = select_fallback_rq(rq->cpu, p);
9288 		rq = __migrate_task(rq, &rf, p, cpu);
9289 	}
9290 
9291 	rq_unlock(rq, &rf);
9292 	raw_spin_unlock_irq(&p->pi_lock);
9293 
9294 	put_task_struct(p);
9295 
9296 	return 0;
9297 }
9298 
9299 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9300 
9301 /*
9302  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9303  *
9304  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9305  * effective when the hotplug motion is down.
9306  */
9307 static void balance_push(struct rq *rq)
9308 {
9309 	struct task_struct *push_task = rq->curr;
9310 
9311 	lockdep_assert_rq_held(rq);
9312 
9313 	/*
9314 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9315 	 */
9316 	rq->balance_callback = &balance_push_callback;
9317 
9318 	/*
9319 	 * Only active while going offline and when invoked on the outgoing
9320 	 * CPU.
9321 	 */
9322 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9323 		return;
9324 
9325 	/*
9326 	 * Both the cpu-hotplug and stop task are in this case and are
9327 	 * required to complete the hotplug process.
9328 	 */
9329 	if (kthread_is_per_cpu(push_task) ||
9330 	    is_migration_disabled(push_task)) {
9331 
9332 		/*
9333 		 * If this is the idle task on the outgoing CPU try to wake
9334 		 * up the hotplug control thread which might wait for the
9335 		 * last task to vanish. The rcuwait_active() check is
9336 		 * accurate here because the waiter is pinned on this CPU
9337 		 * and can't obviously be running in parallel.
9338 		 *
9339 		 * On RT kernels this also has to check whether there are
9340 		 * pinned and scheduled out tasks on the runqueue. They
9341 		 * need to leave the migrate disabled section first.
9342 		 */
9343 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9344 		    rcuwait_active(&rq->hotplug_wait)) {
9345 			raw_spin_rq_unlock(rq);
9346 			rcuwait_wake_up(&rq->hotplug_wait);
9347 			raw_spin_rq_lock(rq);
9348 		}
9349 		return;
9350 	}
9351 
9352 	get_task_struct(push_task);
9353 	/*
9354 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9355 	 * Both preemption and IRQs are still disabled.
9356 	 */
9357 	raw_spin_rq_unlock(rq);
9358 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9359 			    this_cpu_ptr(&push_work));
9360 	/*
9361 	 * At this point need_resched() is true and we'll take the loop in
9362 	 * schedule(). The next pick is obviously going to be the stop task
9363 	 * which kthread_is_per_cpu() and will push this task away.
9364 	 */
9365 	raw_spin_rq_lock(rq);
9366 }
9367 
9368 static void balance_push_set(int cpu, bool on)
9369 {
9370 	struct rq *rq = cpu_rq(cpu);
9371 	struct rq_flags rf;
9372 
9373 	rq_lock_irqsave(rq, &rf);
9374 	if (on) {
9375 		WARN_ON_ONCE(rq->balance_callback);
9376 		rq->balance_callback = &balance_push_callback;
9377 	} else if (rq->balance_callback == &balance_push_callback) {
9378 		rq->balance_callback = NULL;
9379 	}
9380 	rq_unlock_irqrestore(rq, &rf);
9381 }
9382 
9383 /*
9384  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9385  * inactive. All tasks which are not per CPU kernel threads are either
9386  * pushed off this CPU now via balance_push() or placed on a different CPU
9387  * during wakeup. Wait until the CPU is quiescent.
9388  */
9389 static void balance_hotplug_wait(void)
9390 {
9391 	struct rq *rq = this_rq();
9392 
9393 	rcuwait_wait_event(&rq->hotplug_wait,
9394 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9395 			   TASK_UNINTERRUPTIBLE);
9396 }
9397 
9398 #else
9399 
9400 static inline void balance_push(struct rq *rq)
9401 {
9402 }
9403 
9404 static inline void balance_push_set(int cpu, bool on)
9405 {
9406 }
9407 
9408 static inline void balance_hotplug_wait(void)
9409 {
9410 }
9411 
9412 #endif /* CONFIG_HOTPLUG_CPU */
9413 
9414 void set_rq_online(struct rq *rq)
9415 {
9416 	if (!rq->online) {
9417 		const struct sched_class *class;
9418 
9419 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9420 		rq->online = 1;
9421 
9422 		for_each_class(class) {
9423 			if (class->rq_online)
9424 				class->rq_online(rq);
9425 		}
9426 	}
9427 }
9428 
9429 void set_rq_offline(struct rq *rq)
9430 {
9431 	if (rq->online) {
9432 		const struct sched_class *class;
9433 
9434 		for_each_class(class) {
9435 			if (class->rq_offline)
9436 				class->rq_offline(rq);
9437 		}
9438 
9439 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9440 		rq->online = 0;
9441 	}
9442 }
9443 
9444 /*
9445  * used to mark begin/end of suspend/resume:
9446  */
9447 static int num_cpus_frozen;
9448 
9449 /*
9450  * Update cpusets according to cpu_active mask.  If cpusets are
9451  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9452  * around partition_sched_domains().
9453  *
9454  * If we come here as part of a suspend/resume, don't touch cpusets because we
9455  * want to restore it back to its original state upon resume anyway.
9456  */
9457 static void cpuset_cpu_active(void)
9458 {
9459 	if (cpuhp_tasks_frozen) {
9460 		/*
9461 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9462 		 * resume sequence. As long as this is not the last online
9463 		 * operation in the resume sequence, just build a single sched
9464 		 * domain, ignoring cpusets.
9465 		 */
9466 		partition_sched_domains(1, NULL, NULL);
9467 		if (--num_cpus_frozen)
9468 			return;
9469 		/*
9470 		 * This is the last CPU online operation. So fall through and
9471 		 * restore the original sched domains by considering the
9472 		 * cpuset configurations.
9473 		 */
9474 		cpuset_force_rebuild();
9475 	}
9476 	cpuset_update_active_cpus();
9477 }
9478 
9479 static int cpuset_cpu_inactive(unsigned int cpu)
9480 {
9481 	if (!cpuhp_tasks_frozen) {
9482 		int ret = dl_cpu_busy(cpu, NULL);
9483 
9484 		if (ret)
9485 			return ret;
9486 		cpuset_update_active_cpus();
9487 	} else {
9488 		num_cpus_frozen++;
9489 		partition_sched_domains(1, NULL, NULL);
9490 	}
9491 	return 0;
9492 }
9493 
9494 int sched_cpu_activate(unsigned int cpu)
9495 {
9496 	struct rq *rq = cpu_rq(cpu);
9497 	struct rq_flags rf;
9498 
9499 	/*
9500 	 * Clear the balance_push callback and prepare to schedule
9501 	 * regular tasks.
9502 	 */
9503 	balance_push_set(cpu, false);
9504 
9505 #ifdef CONFIG_SCHED_SMT
9506 	/*
9507 	 * When going up, increment the number of cores with SMT present.
9508 	 */
9509 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9510 		static_branch_inc_cpuslocked(&sched_smt_present);
9511 #endif
9512 	set_cpu_active(cpu, true);
9513 
9514 	if (sched_smp_initialized) {
9515 		sched_update_numa(cpu, true);
9516 		sched_domains_numa_masks_set(cpu);
9517 		cpuset_cpu_active();
9518 	}
9519 
9520 	/*
9521 	 * Put the rq online, if not already. This happens:
9522 	 *
9523 	 * 1) In the early boot process, because we build the real domains
9524 	 *    after all CPUs have been brought up.
9525 	 *
9526 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9527 	 *    domains.
9528 	 */
9529 	rq_lock_irqsave(rq, &rf);
9530 	if (rq->rd) {
9531 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9532 		set_rq_online(rq);
9533 	}
9534 	rq_unlock_irqrestore(rq, &rf);
9535 
9536 	return 0;
9537 }
9538 
9539 int sched_cpu_deactivate(unsigned int cpu)
9540 {
9541 	struct rq *rq = cpu_rq(cpu);
9542 	struct rq_flags rf;
9543 	int ret;
9544 
9545 	/*
9546 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9547 	 * load balancing when not active
9548 	 */
9549 	nohz_balance_exit_idle(rq);
9550 
9551 	set_cpu_active(cpu, false);
9552 
9553 	/*
9554 	 * From this point forward, this CPU will refuse to run any task that
9555 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9556 	 * push those tasks away until this gets cleared, see
9557 	 * sched_cpu_dying().
9558 	 */
9559 	balance_push_set(cpu, true);
9560 
9561 	/*
9562 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9563 	 * preempt-disabled and RCU users of this state to go away such that
9564 	 * all new such users will observe it.
9565 	 *
9566 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9567 	 * ttwu_queue_cond() and is_cpu_allowed().
9568 	 *
9569 	 * Do sync before park smpboot threads to take care the rcu boost case.
9570 	 */
9571 	synchronize_rcu();
9572 
9573 	rq_lock_irqsave(rq, &rf);
9574 	if (rq->rd) {
9575 		update_rq_clock(rq);
9576 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9577 		set_rq_offline(rq);
9578 	}
9579 	rq_unlock_irqrestore(rq, &rf);
9580 
9581 #ifdef CONFIG_SCHED_SMT
9582 	/*
9583 	 * When going down, decrement the number of cores with SMT present.
9584 	 */
9585 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9586 		static_branch_dec_cpuslocked(&sched_smt_present);
9587 
9588 	sched_core_cpu_deactivate(cpu);
9589 #endif
9590 
9591 	if (!sched_smp_initialized)
9592 		return 0;
9593 
9594 	sched_update_numa(cpu, false);
9595 	ret = cpuset_cpu_inactive(cpu);
9596 	if (ret) {
9597 		balance_push_set(cpu, false);
9598 		set_cpu_active(cpu, true);
9599 		sched_update_numa(cpu, true);
9600 		return ret;
9601 	}
9602 	sched_domains_numa_masks_clear(cpu);
9603 	return 0;
9604 }
9605 
9606 static void sched_rq_cpu_starting(unsigned int cpu)
9607 {
9608 	struct rq *rq = cpu_rq(cpu);
9609 
9610 	rq->calc_load_update = calc_load_update;
9611 	update_max_interval();
9612 }
9613 
9614 int sched_cpu_starting(unsigned int cpu)
9615 {
9616 	sched_core_cpu_starting(cpu);
9617 	sched_rq_cpu_starting(cpu);
9618 	sched_tick_start(cpu);
9619 	return 0;
9620 }
9621 
9622 #ifdef CONFIG_HOTPLUG_CPU
9623 
9624 /*
9625  * Invoked immediately before the stopper thread is invoked to bring the
9626  * CPU down completely. At this point all per CPU kthreads except the
9627  * hotplug thread (current) and the stopper thread (inactive) have been
9628  * either parked or have been unbound from the outgoing CPU. Ensure that
9629  * any of those which might be on the way out are gone.
9630  *
9631  * If after this point a bound task is being woken on this CPU then the
9632  * responsible hotplug callback has failed to do it's job.
9633  * sched_cpu_dying() will catch it with the appropriate fireworks.
9634  */
9635 int sched_cpu_wait_empty(unsigned int cpu)
9636 {
9637 	balance_hotplug_wait();
9638 	return 0;
9639 }
9640 
9641 /*
9642  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9643  * might have. Called from the CPU stopper task after ensuring that the
9644  * stopper is the last running task on the CPU, so nr_active count is
9645  * stable. We need to take the teardown thread which is calling this into
9646  * account, so we hand in adjust = 1 to the load calculation.
9647  *
9648  * Also see the comment "Global load-average calculations".
9649  */
9650 static void calc_load_migrate(struct rq *rq)
9651 {
9652 	long delta = calc_load_fold_active(rq, 1);
9653 
9654 	if (delta)
9655 		atomic_long_add(delta, &calc_load_tasks);
9656 }
9657 
9658 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9659 {
9660 	struct task_struct *g, *p;
9661 	int cpu = cpu_of(rq);
9662 
9663 	lockdep_assert_rq_held(rq);
9664 
9665 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9666 	for_each_process_thread(g, p) {
9667 		if (task_cpu(p) != cpu)
9668 			continue;
9669 
9670 		if (!task_on_rq_queued(p))
9671 			continue;
9672 
9673 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9674 	}
9675 }
9676 
9677 int sched_cpu_dying(unsigned int cpu)
9678 {
9679 	struct rq *rq = cpu_rq(cpu);
9680 	struct rq_flags rf;
9681 
9682 	/* Handle pending wakeups and then migrate everything off */
9683 	sched_tick_stop(cpu);
9684 
9685 	rq_lock_irqsave(rq, &rf);
9686 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9687 		WARN(true, "Dying CPU not properly vacated!");
9688 		dump_rq_tasks(rq, KERN_WARNING);
9689 	}
9690 	rq_unlock_irqrestore(rq, &rf);
9691 
9692 	calc_load_migrate(rq);
9693 	update_max_interval();
9694 	hrtick_clear(rq);
9695 	sched_core_cpu_dying(cpu);
9696 	return 0;
9697 }
9698 #endif
9699 
9700 void __init sched_init_smp(void)
9701 {
9702 	sched_init_numa(NUMA_NO_NODE);
9703 
9704 	/*
9705 	 * There's no userspace yet to cause hotplug operations; hence all the
9706 	 * CPU masks are stable and all blatant races in the below code cannot
9707 	 * happen.
9708 	 */
9709 	mutex_lock(&sched_domains_mutex);
9710 	sched_init_domains(cpu_active_mask);
9711 	mutex_unlock(&sched_domains_mutex);
9712 
9713 	/* Move init over to a non-isolated CPU */
9714 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9715 		BUG();
9716 	current->flags &= ~PF_NO_SETAFFINITY;
9717 	sched_init_granularity();
9718 
9719 	init_sched_rt_class();
9720 	init_sched_dl_class();
9721 
9722 	sched_smp_initialized = true;
9723 }
9724 
9725 static int __init migration_init(void)
9726 {
9727 	sched_cpu_starting(smp_processor_id());
9728 	return 0;
9729 }
9730 early_initcall(migration_init);
9731 
9732 #else
9733 void __init sched_init_smp(void)
9734 {
9735 	sched_init_granularity();
9736 }
9737 #endif /* CONFIG_SMP */
9738 
9739 int in_sched_functions(unsigned long addr)
9740 {
9741 	return in_lock_functions(addr) ||
9742 		(addr >= (unsigned long)__sched_text_start
9743 		&& addr < (unsigned long)__sched_text_end);
9744 }
9745 
9746 #ifdef CONFIG_CGROUP_SCHED
9747 /*
9748  * Default task group.
9749  * Every task in system belongs to this group at bootup.
9750  */
9751 struct task_group root_task_group;
9752 LIST_HEAD(task_groups);
9753 
9754 /* Cacheline aligned slab cache for task_group */
9755 static struct kmem_cache *task_group_cache __read_mostly;
9756 #endif
9757 
9758 void __init sched_init(void)
9759 {
9760 	unsigned long ptr = 0;
9761 	int i;
9762 
9763 	/* Make sure the linker didn't screw up */
9764 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9765 	       &fair_sched_class != &rt_sched_class + 1 ||
9766 	       &rt_sched_class   != &dl_sched_class + 1);
9767 #ifdef CONFIG_SMP
9768 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9769 #endif
9770 
9771 	wait_bit_init();
9772 
9773 #ifdef CONFIG_FAIR_GROUP_SCHED
9774 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9775 #endif
9776 #ifdef CONFIG_RT_GROUP_SCHED
9777 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9778 #endif
9779 	if (ptr) {
9780 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9781 
9782 #ifdef CONFIG_FAIR_GROUP_SCHED
9783 		root_task_group.se = (struct sched_entity **)ptr;
9784 		ptr += nr_cpu_ids * sizeof(void **);
9785 
9786 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9787 		ptr += nr_cpu_ids * sizeof(void **);
9788 
9789 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9790 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9791 #endif /* CONFIG_FAIR_GROUP_SCHED */
9792 #ifdef CONFIG_RT_GROUP_SCHED
9793 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9794 		ptr += nr_cpu_ids * sizeof(void **);
9795 
9796 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9797 		ptr += nr_cpu_ids * sizeof(void **);
9798 
9799 #endif /* CONFIG_RT_GROUP_SCHED */
9800 	}
9801 
9802 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9803 
9804 #ifdef CONFIG_SMP
9805 	init_defrootdomain();
9806 #endif
9807 
9808 #ifdef CONFIG_RT_GROUP_SCHED
9809 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9810 			global_rt_period(), global_rt_runtime());
9811 #endif /* CONFIG_RT_GROUP_SCHED */
9812 
9813 #ifdef CONFIG_CGROUP_SCHED
9814 	task_group_cache = KMEM_CACHE(task_group, 0);
9815 
9816 	list_add(&root_task_group.list, &task_groups);
9817 	INIT_LIST_HEAD(&root_task_group.children);
9818 	INIT_LIST_HEAD(&root_task_group.siblings);
9819 	autogroup_init(&init_task);
9820 #endif /* CONFIG_CGROUP_SCHED */
9821 
9822 	for_each_possible_cpu(i) {
9823 		struct rq *rq;
9824 
9825 		rq = cpu_rq(i);
9826 		raw_spin_lock_init(&rq->__lock);
9827 		rq->nr_running = 0;
9828 		rq->calc_load_active = 0;
9829 		rq->calc_load_update = jiffies + LOAD_FREQ;
9830 		init_cfs_rq(&rq->cfs);
9831 		init_rt_rq(&rq->rt);
9832 		init_dl_rq(&rq->dl);
9833 #ifdef CONFIG_FAIR_GROUP_SCHED
9834 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9835 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9836 		/*
9837 		 * How much CPU bandwidth does root_task_group get?
9838 		 *
9839 		 * In case of task-groups formed thr' the cgroup filesystem, it
9840 		 * gets 100% of the CPU resources in the system. This overall
9841 		 * system CPU resource is divided among the tasks of
9842 		 * root_task_group and its child task-groups in a fair manner,
9843 		 * based on each entity's (task or task-group's) weight
9844 		 * (se->load.weight).
9845 		 *
9846 		 * In other words, if root_task_group has 10 tasks of weight
9847 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9848 		 * then A0's share of the CPU resource is:
9849 		 *
9850 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9851 		 *
9852 		 * We achieve this by letting root_task_group's tasks sit
9853 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9854 		 */
9855 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9856 #endif /* CONFIG_FAIR_GROUP_SCHED */
9857 
9858 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9859 #ifdef CONFIG_RT_GROUP_SCHED
9860 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9861 #endif
9862 #ifdef CONFIG_SMP
9863 		rq->sd = NULL;
9864 		rq->rd = NULL;
9865 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9866 		rq->balance_callback = &balance_push_callback;
9867 		rq->active_balance = 0;
9868 		rq->next_balance = jiffies;
9869 		rq->push_cpu = 0;
9870 		rq->cpu = i;
9871 		rq->online = 0;
9872 		rq->idle_stamp = 0;
9873 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9874 		rq->wake_stamp = jiffies;
9875 		rq->wake_avg_idle = rq->avg_idle;
9876 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9877 
9878 		INIT_LIST_HEAD(&rq->cfs_tasks);
9879 
9880 		rq_attach_root(rq, &def_root_domain);
9881 #ifdef CONFIG_NO_HZ_COMMON
9882 		rq->last_blocked_load_update_tick = jiffies;
9883 		atomic_set(&rq->nohz_flags, 0);
9884 
9885 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9886 #endif
9887 #ifdef CONFIG_HOTPLUG_CPU
9888 		rcuwait_init(&rq->hotplug_wait);
9889 #endif
9890 #endif /* CONFIG_SMP */
9891 		hrtick_rq_init(rq);
9892 		atomic_set(&rq->nr_iowait, 0);
9893 
9894 #ifdef CONFIG_SCHED_CORE
9895 		rq->core = rq;
9896 		rq->core_pick = NULL;
9897 		rq->core_enabled = 0;
9898 		rq->core_tree = RB_ROOT;
9899 		rq->core_forceidle_count = 0;
9900 		rq->core_forceidle_occupation = 0;
9901 		rq->core_forceidle_start = 0;
9902 
9903 		rq->core_cookie = 0UL;
9904 #endif
9905 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
9906 	}
9907 
9908 	set_load_weight(&init_task, false);
9909 
9910 	/*
9911 	 * The boot idle thread does lazy MMU switching as well:
9912 	 */
9913 	mmgrab(&init_mm);
9914 	enter_lazy_tlb(&init_mm, current);
9915 
9916 	/*
9917 	 * The idle task doesn't need the kthread struct to function, but it
9918 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9919 	 * if we want to avoid special-casing it in code that deals with per-CPU
9920 	 * kthreads.
9921 	 */
9922 	WARN_ON(!set_kthread_struct(current));
9923 
9924 	/*
9925 	 * Make us the idle thread. Technically, schedule() should not be
9926 	 * called from this thread, however somewhere below it might be,
9927 	 * but because we are the idle thread, we just pick up running again
9928 	 * when this runqueue becomes "idle".
9929 	 */
9930 	init_idle(current, smp_processor_id());
9931 
9932 	calc_load_update = jiffies + LOAD_FREQ;
9933 
9934 #ifdef CONFIG_SMP
9935 	idle_thread_set_boot_cpu();
9936 	balance_push_set(smp_processor_id(), false);
9937 #endif
9938 	init_sched_fair_class();
9939 
9940 	psi_init();
9941 
9942 	init_uclamp();
9943 
9944 	preempt_dynamic_init();
9945 
9946 	scheduler_running = 1;
9947 }
9948 
9949 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9950 
9951 void __might_sleep(const char *file, int line)
9952 {
9953 	unsigned int state = get_current_state();
9954 	/*
9955 	 * Blocking primitives will set (and therefore destroy) current->state,
9956 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9957 	 * otherwise we will destroy state.
9958 	 */
9959 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9960 			"do not call blocking ops when !TASK_RUNNING; "
9961 			"state=%x set at [<%p>] %pS\n", state,
9962 			(void *)current->task_state_change,
9963 			(void *)current->task_state_change);
9964 
9965 	__might_resched(file, line, 0);
9966 }
9967 EXPORT_SYMBOL(__might_sleep);
9968 
9969 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9970 {
9971 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9972 		return;
9973 
9974 	if (preempt_count() == preempt_offset)
9975 		return;
9976 
9977 	pr_err("Preemption disabled at:");
9978 	print_ip_sym(KERN_ERR, ip);
9979 }
9980 
9981 static inline bool resched_offsets_ok(unsigned int offsets)
9982 {
9983 	unsigned int nested = preempt_count();
9984 
9985 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9986 
9987 	return nested == offsets;
9988 }
9989 
9990 void __might_resched(const char *file, int line, unsigned int offsets)
9991 {
9992 	/* Ratelimiting timestamp: */
9993 	static unsigned long prev_jiffy;
9994 
9995 	unsigned long preempt_disable_ip;
9996 
9997 	/* WARN_ON_ONCE() by default, no rate limit required: */
9998 	rcu_sleep_check();
9999 
10000 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10001 	     !is_idle_task(current) && !current->non_block_count) ||
10002 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10003 	    oops_in_progress)
10004 		return;
10005 
10006 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10007 		return;
10008 	prev_jiffy = jiffies;
10009 
10010 	/* Save this before calling printk(), since that will clobber it: */
10011 	preempt_disable_ip = get_preempt_disable_ip(current);
10012 
10013 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10014 	       file, line);
10015 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10016 	       in_atomic(), irqs_disabled(), current->non_block_count,
10017 	       current->pid, current->comm);
10018 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10019 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10020 
10021 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10022 		pr_err("RCU nest depth: %d, expected: %u\n",
10023 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10024 	}
10025 
10026 	if (task_stack_end_corrupted(current))
10027 		pr_emerg("Thread overran stack, or stack corrupted\n");
10028 
10029 	debug_show_held_locks(current);
10030 	if (irqs_disabled())
10031 		print_irqtrace_events(current);
10032 
10033 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10034 				 preempt_disable_ip);
10035 
10036 	dump_stack();
10037 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10038 }
10039 EXPORT_SYMBOL(__might_resched);
10040 
10041 void __cant_sleep(const char *file, int line, int preempt_offset)
10042 {
10043 	static unsigned long prev_jiffy;
10044 
10045 	if (irqs_disabled())
10046 		return;
10047 
10048 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10049 		return;
10050 
10051 	if (preempt_count() > preempt_offset)
10052 		return;
10053 
10054 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10055 		return;
10056 	prev_jiffy = jiffies;
10057 
10058 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10059 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10060 			in_atomic(), irqs_disabled(),
10061 			current->pid, current->comm);
10062 
10063 	debug_show_held_locks(current);
10064 	dump_stack();
10065 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10066 }
10067 EXPORT_SYMBOL_GPL(__cant_sleep);
10068 
10069 #ifdef CONFIG_SMP
10070 void __cant_migrate(const char *file, int line)
10071 {
10072 	static unsigned long prev_jiffy;
10073 
10074 	if (irqs_disabled())
10075 		return;
10076 
10077 	if (is_migration_disabled(current))
10078 		return;
10079 
10080 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10081 		return;
10082 
10083 	if (preempt_count() > 0)
10084 		return;
10085 
10086 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10087 		return;
10088 	prev_jiffy = jiffies;
10089 
10090 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10091 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10092 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10093 	       current->pid, current->comm);
10094 
10095 	debug_show_held_locks(current);
10096 	dump_stack();
10097 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10098 }
10099 EXPORT_SYMBOL_GPL(__cant_migrate);
10100 #endif
10101 #endif
10102 
10103 #ifdef CONFIG_MAGIC_SYSRQ
10104 void normalize_rt_tasks(void)
10105 {
10106 	struct task_struct *g, *p;
10107 	struct sched_attr attr = {
10108 		.sched_policy = SCHED_NORMAL,
10109 	};
10110 
10111 	read_lock(&tasklist_lock);
10112 	for_each_process_thread(g, p) {
10113 		/*
10114 		 * Only normalize user tasks:
10115 		 */
10116 		if (p->flags & PF_KTHREAD)
10117 			continue;
10118 
10119 		p->se.exec_start = 0;
10120 		schedstat_set(p->stats.wait_start,  0);
10121 		schedstat_set(p->stats.sleep_start, 0);
10122 		schedstat_set(p->stats.block_start, 0);
10123 
10124 		if (!dl_task(p) && !rt_task(p)) {
10125 			/*
10126 			 * Renice negative nice level userspace
10127 			 * tasks back to 0:
10128 			 */
10129 			if (task_nice(p) < 0)
10130 				set_user_nice(p, 0);
10131 			continue;
10132 		}
10133 
10134 		__sched_setscheduler(p, &attr, false, false);
10135 	}
10136 	read_unlock(&tasklist_lock);
10137 }
10138 
10139 #endif /* CONFIG_MAGIC_SYSRQ */
10140 
10141 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10142 /*
10143  * These functions are only useful for the IA64 MCA handling, or kdb.
10144  *
10145  * They can only be called when the whole system has been
10146  * stopped - every CPU needs to be quiescent, and no scheduling
10147  * activity can take place. Using them for anything else would
10148  * be a serious bug, and as a result, they aren't even visible
10149  * under any other configuration.
10150  */
10151 
10152 /**
10153  * curr_task - return the current task for a given CPU.
10154  * @cpu: the processor in question.
10155  *
10156  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10157  *
10158  * Return: The current task for @cpu.
10159  */
10160 struct task_struct *curr_task(int cpu)
10161 {
10162 	return cpu_curr(cpu);
10163 }
10164 
10165 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10166 
10167 #ifdef CONFIG_IA64
10168 /**
10169  * ia64_set_curr_task - set the current task for a given CPU.
10170  * @cpu: the processor in question.
10171  * @p: the task pointer to set.
10172  *
10173  * Description: This function must only be used when non-maskable interrupts
10174  * are serviced on a separate stack. It allows the architecture to switch the
10175  * notion of the current task on a CPU in a non-blocking manner. This function
10176  * must be called with all CPU's synchronized, and interrupts disabled, the
10177  * and caller must save the original value of the current task (see
10178  * curr_task() above) and restore that value before reenabling interrupts and
10179  * re-starting the system.
10180  *
10181  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10182  */
10183 void ia64_set_curr_task(int cpu, struct task_struct *p)
10184 {
10185 	cpu_curr(cpu) = p;
10186 }
10187 
10188 #endif
10189 
10190 #ifdef CONFIG_CGROUP_SCHED
10191 /* task_group_lock serializes the addition/removal of task groups */
10192 static DEFINE_SPINLOCK(task_group_lock);
10193 
10194 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10195 					    struct task_group *parent)
10196 {
10197 #ifdef CONFIG_UCLAMP_TASK_GROUP
10198 	enum uclamp_id clamp_id;
10199 
10200 	for_each_clamp_id(clamp_id) {
10201 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10202 			      uclamp_none(clamp_id), false);
10203 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10204 	}
10205 #endif
10206 }
10207 
10208 static void sched_free_group(struct task_group *tg)
10209 {
10210 	free_fair_sched_group(tg);
10211 	free_rt_sched_group(tg);
10212 	autogroup_free(tg);
10213 	kmem_cache_free(task_group_cache, tg);
10214 }
10215 
10216 static void sched_free_group_rcu(struct rcu_head *rcu)
10217 {
10218 	sched_free_group(container_of(rcu, struct task_group, rcu));
10219 }
10220 
10221 static void sched_unregister_group(struct task_group *tg)
10222 {
10223 	unregister_fair_sched_group(tg);
10224 	unregister_rt_sched_group(tg);
10225 	/*
10226 	 * We have to wait for yet another RCU grace period to expire, as
10227 	 * print_cfs_stats() might run concurrently.
10228 	 */
10229 	call_rcu(&tg->rcu, sched_free_group_rcu);
10230 }
10231 
10232 /* allocate runqueue etc for a new task group */
10233 struct task_group *sched_create_group(struct task_group *parent)
10234 {
10235 	struct task_group *tg;
10236 
10237 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10238 	if (!tg)
10239 		return ERR_PTR(-ENOMEM);
10240 
10241 	if (!alloc_fair_sched_group(tg, parent))
10242 		goto err;
10243 
10244 	if (!alloc_rt_sched_group(tg, parent))
10245 		goto err;
10246 
10247 	alloc_uclamp_sched_group(tg, parent);
10248 
10249 	return tg;
10250 
10251 err:
10252 	sched_free_group(tg);
10253 	return ERR_PTR(-ENOMEM);
10254 }
10255 
10256 void sched_online_group(struct task_group *tg, struct task_group *parent)
10257 {
10258 	unsigned long flags;
10259 
10260 	spin_lock_irqsave(&task_group_lock, flags);
10261 	list_add_rcu(&tg->list, &task_groups);
10262 
10263 	/* Root should already exist: */
10264 	WARN_ON(!parent);
10265 
10266 	tg->parent = parent;
10267 	INIT_LIST_HEAD(&tg->children);
10268 	list_add_rcu(&tg->siblings, &parent->children);
10269 	spin_unlock_irqrestore(&task_group_lock, flags);
10270 
10271 	online_fair_sched_group(tg);
10272 }
10273 
10274 /* rcu callback to free various structures associated with a task group */
10275 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10276 {
10277 	/* Now it should be safe to free those cfs_rqs: */
10278 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10279 }
10280 
10281 void sched_destroy_group(struct task_group *tg)
10282 {
10283 	/* Wait for possible concurrent references to cfs_rqs complete: */
10284 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10285 }
10286 
10287 void sched_release_group(struct task_group *tg)
10288 {
10289 	unsigned long flags;
10290 
10291 	/*
10292 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10293 	 * sched_cfs_period_timer()).
10294 	 *
10295 	 * For this to be effective, we have to wait for all pending users of
10296 	 * this task group to leave their RCU critical section to ensure no new
10297 	 * user will see our dying task group any more. Specifically ensure
10298 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10299 	 *
10300 	 * We therefore defer calling unregister_fair_sched_group() to
10301 	 * sched_unregister_group() which is guarantied to get called only after the
10302 	 * current RCU grace period has expired.
10303 	 */
10304 	spin_lock_irqsave(&task_group_lock, flags);
10305 	list_del_rcu(&tg->list);
10306 	list_del_rcu(&tg->siblings);
10307 	spin_unlock_irqrestore(&task_group_lock, flags);
10308 }
10309 
10310 static void sched_change_group(struct task_struct *tsk)
10311 {
10312 	struct task_group *tg;
10313 
10314 	/*
10315 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10316 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10317 	 * to prevent lockdep warnings.
10318 	 */
10319 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10320 			  struct task_group, css);
10321 	tg = autogroup_task_group(tsk, tg);
10322 	tsk->sched_task_group = tg;
10323 
10324 #ifdef CONFIG_FAIR_GROUP_SCHED
10325 	if (tsk->sched_class->task_change_group)
10326 		tsk->sched_class->task_change_group(tsk);
10327 	else
10328 #endif
10329 		set_task_rq(tsk, task_cpu(tsk));
10330 }
10331 
10332 /*
10333  * Change task's runqueue when it moves between groups.
10334  *
10335  * The caller of this function should have put the task in its new group by
10336  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10337  * its new group.
10338  */
10339 void sched_move_task(struct task_struct *tsk)
10340 {
10341 	int queued, running, queue_flags =
10342 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10343 	struct rq_flags rf;
10344 	struct rq *rq;
10345 
10346 	rq = task_rq_lock(tsk, &rf);
10347 	update_rq_clock(rq);
10348 
10349 	running = task_current(rq, tsk);
10350 	queued = task_on_rq_queued(tsk);
10351 
10352 	if (queued)
10353 		dequeue_task(rq, tsk, queue_flags);
10354 	if (running)
10355 		put_prev_task(rq, tsk);
10356 
10357 	sched_change_group(tsk);
10358 
10359 	if (queued)
10360 		enqueue_task(rq, tsk, queue_flags);
10361 	if (running) {
10362 		set_next_task(rq, tsk);
10363 		/*
10364 		 * After changing group, the running task may have joined a
10365 		 * throttled one but it's still the running task. Trigger a
10366 		 * resched to make sure that task can still run.
10367 		 */
10368 		resched_curr(rq);
10369 	}
10370 
10371 	task_rq_unlock(rq, tsk, &rf);
10372 }
10373 
10374 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10375 {
10376 	return css ? container_of(css, struct task_group, css) : NULL;
10377 }
10378 
10379 static struct cgroup_subsys_state *
10380 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10381 {
10382 	struct task_group *parent = css_tg(parent_css);
10383 	struct task_group *tg;
10384 
10385 	if (!parent) {
10386 		/* This is early initialization for the top cgroup */
10387 		return &root_task_group.css;
10388 	}
10389 
10390 	tg = sched_create_group(parent);
10391 	if (IS_ERR(tg))
10392 		return ERR_PTR(-ENOMEM);
10393 
10394 	return &tg->css;
10395 }
10396 
10397 /* Expose task group only after completing cgroup initialization */
10398 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10399 {
10400 	struct task_group *tg = css_tg(css);
10401 	struct task_group *parent = css_tg(css->parent);
10402 
10403 	if (parent)
10404 		sched_online_group(tg, parent);
10405 
10406 #ifdef CONFIG_UCLAMP_TASK_GROUP
10407 	/* Propagate the effective uclamp value for the new group */
10408 	mutex_lock(&uclamp_mutex);
10409 	rcu_read_lock();
10410 	cpu_util_update_eff(css);
10411 	rcu_read_unlock();
10412 	mutex_unlock(&uclamp_mutex);
10413 #endif
10414 
10415 	return 0;
10416 }
10417 
10418 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10419 {
10420 	struct task_group *tg = css_tg(css);
10421 
10422 	sched_release_group(tg);
10423 }
10424 
10425 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10426 {
10427 	struct task_group *tg = css_tg(css);
10428 
10429 	/*
10430 	 * Relies on the RCU grace period between css_released() and this.
10431 	 */
10432 	sched_unregister_group(tg);
10433 }
10434 
10435 #ifdef CONFIG_RT_GROUP_SCHED
10436 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10437 {
10438 	struct task_struct *task;
10439 	struct cgroup_subsys_state *css;
10440 
10441 	cgroup_taskset_for_each(task, css, tset) {
10442 		if (!sched_rt_can_attach(css_tg(css), task))
10443 			return -EINVAL;
10444 	}
10445 	return 0;
10446 }
10447 #endif
10448 
10449 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10450 {
10451 	struct task_struct *task;
10452 	struct cgroup_subsys_state *css;
10453 
10454 	cgroup_taskset_for_each(task, css, tset)
10455 		sched_move_task(task);
10456 }
10457 
10458 #ifdef CONFIG_UCLAMP_TASK_GROUP
10459 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10460 {
10461 	struct cgroup_subsys_state *top_css = css;
10462 	struct uclamp_se *uc_parent = NULL;
10463 	struct uclamp_se *uc_se = NULL;
10464 	unsigned int eff[UCLAMP_CNT];
10465 	enum uclamp_id clamp_id;
10466 	unsigned int clamps;
10467 
10468 	lockdep_assert_held(&uclamp_mutex);
10469 	SCHED_WARN_ON(!rcu_read_lock_held());
10470 
10471 	css_for_each_descendant_pre(css, top_css) {
10472 		uc_parent = css_tg(css)->parent
10473 			? css_tg(css)->parent->uclamp : NULL;
10474 
10475 		for_each_clamp_id(clamp_id) {
10476 			/* Assume effective clamps matches requested clamps */
10477 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10478 			/* Cap effective clamps with parent's effective clamps */
10479 			if (uc_parent &&
10480 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10481 				eff[clamp_id] = uc_parent[clamp_id].value;
10482 			}
10483 		}
10484 		/* Ensure protection is always capped by limit */
10485 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10486 
10487 		/* Propagate most restrictive effective clamps */
10488 		clamps = 0x0;
10489 		uc_se = css_tg(css)->uclamp;
10490 		for_each_clamp_id(clamp_id) {
10491 			if (eff[clamp_id] == uc_se[clamp_id].value)
10492 				continue;
10493 			uc_se[clamp_id].value = eff[clamp_id];
10494 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10495 			clamps |= (0x1 << clamp_id);
10496 		}
10497 		if (!clamps) {
10498 			css = css_rightmost_descendant(css);
10499 			continue;
10500 		}
10501 
10502 		/* Immediately update descendants RUNNABLE tasks */
10503 		uclamp_update_active_tasks(css);
10504 	}
10505 }
10506 
10507 /*
10508  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10509  * C expression. Since there is no way to convert a macro argument (N) into a
10510  * character constant, use two levels of macros.
10511  */
10512 #define _POW10(exp) ((unsigned int)1e##exp)
10513 #define POW10(exp) _POW10(exp)
10514 
10515 struct uclamp_request {
10516 #define UCLAMP_PERCENT_SHIFT	2
10517 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10518 	s64 percent;
10519 	u64 util;
10520 	int ret;
10521 };
10522 
10523 static inline struct uclamp_request
10524 capacity_from_percent(char *buf)
10525 {
10526 	struct uclamp_request req = {
10527 		.percent = UCLAMP_PERCENT_SCALE,
10528 		.util = SCHED_CAPACITY_SCALE,
10529 		.ret = 0,
10530 	};
10531 
10532 	buf = strim(buf);
10533 	if (strcmp(buf, "max")) {
10534 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10535 					     &req.percent);
10536 		if (req.ret)
10537 			return req;
10538 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10539 			req.ret = -ERANGE;
10540 			return req;
10541 		}
10542 
10543 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10544 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10545 	}
10546 
10547 	return req;
10548 }
10549 
10550 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10551 				size_t nbytes, loff_t off,
10552 				enum uclamp_id clamp_id)
10553 {
10554 	struct uclamp_request req;
10555 	struct task_group *tg;
10556 
10557 	req = capacity_from_percent(buf);
10558 	if (req.ret)
10559 		return req.ret;
10560 
10561 	static_branch_enable(&sched_uclamp_used);
10562 
10563 	mutex_lock(&uclamp_mutex);
10564 	rcu_read_lock();
10565 
10566 	tg = css_tg(of_css(of));
10567 	if (tg->uclamp_req[clamp_id].value != req.util)
10568 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10569 
10570 	/*
10571 	 * Because of not recoverable conversion rounding we keep track of the
10572 	 * exact requested value
10573 	 */
10574 	tg->uclamp_pct[clamp_id] = req.percent;
10575 
10576 	/* Update effective clamps to track the most restrictive value */
10577 	cpu_util_update_eff(of_css(of));
10578 
10579 	rcu_read_unlock();
10580 	mutex_unlock(&uclamp_mutex);
10581 
10582 	return nbytes;
10583 }
10584 
10585 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10586 				    char *buf, size_t nbytes,
10587 				    loff_t off)
10588 {
10589 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10590 }
10591 
10592 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10593 				    char *buf, size_t nbytes,
10594 				    loff_t off)
10595 {
10596 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10597 }
10598 
10599 static inline void cpu_uclamp_print(struct seq_file *sf,
10600 				    enum uclamp_id clamp_id)
10601 {
10602 	struct task_group *tg;
10603 	u64 util_clamp;
10604 	u64 percent;
10605 	u32 rem;
10606 
10607 	rcu_read_lock();
10608 	tg = css_tg(seq_css(sf));
10609 	util_clamp = tg->uclamp_req[clamp_id].value;
10610 	rcu_read_unlock();
10611 
10612 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10613 		seq_puts(sf, "max\n");
10614 		return;
10615 	}
10616 
10617 	percent = tg->uclamp_pct[clamp_id];
10618 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10619 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10620 }
10621 
10622 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10623 {
10624 	cpu_uclamp_print(sf, UCLAMP_MIN);
10625 	return 0;
10626 }
10627 
10628 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10629 {
10630 	cpu_uclamp_print(sf, UCLAMP_MAX);
10631 	return 0;
10632 }
10633 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10634 
10635 #ifdef CONFIG_FAIR_GROUP_SCHED
10636 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10637 				struct cftype *cftype, u64 shareval)
10638 {
10639 	if (shareval > scale_load_down(ULONG_MAX))
10640 		shareval = MAX_SHARES;
10641 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10642 }
10643 
10644 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10645 			       struct cftype *cft)
10646 {
10647 	struct task_group *tg = css_tg(css);
10648 
10649 	return (u64) scale_load_down(tg->shares);
10650 }
10651 
10652 #ifdef CONFIG_CFS_BANDWIDTH
10653 static DEFINE_MUTEX(cfs_constraints_mutex);
10654 
10655 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10656 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10657 /* More than 203 days if BW_SHIFT equals 20. */
10658 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10659 
10660 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10661 
10662 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10663 				u64 burst)
10664 {
10665 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10666 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10667 
10668 	if (tg == &root_task_group)
10669 		return -EINVAL;
10670 
10671 	/*
10672 	 * Ensure we have at some amount of bandwidth every period.  This is
10673 	 * to prevent reaching a state of large arrears when throttled via
10674 	 * entity_tick() resulting in prolonged exit starvation.
10675 	 */
10676 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10677 		return -EINVAL;
10678 
10679 	/*
10680 	 * Likewise, bound things on the other side by preventing insane quota
10681 	 * periods.  This also allows us to normalize in computing quota
10682 	 * feasibility.
10683 	 */
10684 	if (period > max_cfs_quota_period)
10685 		return -EINVAL;
10686 
10687 	/*
10688 	 * Bound quota to defend quota against overflow during bandwidth shift.
10689 	 */
10690 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10691 		return -EINVAL;
10692 
10693 	if (quota != RUNTIME_INF && (burst > quota ||
10694 				     burst + quota > max_cfs_runtime))
10695 		return -EINVAL;
10696 
10697 	/*
10698 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10699 	 * unthrottle_offline_cfs_rqs().
10700 	 */
10701 	cpus_read_lock();
10702 	mutex_lock(&cfs_constraints_mutex);
10703 	ret = __cfs_schedulable(tg, period, quota);
10704 	if (ret)
10705 		goto out_unlock;
10706 
10707 	runtime_enabled = quota != RUNTIME_INF;
10708 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10709 	/*
10710 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10711 	 * before making related changes, and on->off must occur afterwards
10712 	 */
10713 	if (runtime_enabled && !runtime_was_enabled)
10714 		cfs_bandwidth_usage_inc();
10715 	raw_spin_lock_irq(&cfs_b->lock);
10716 	cfs_b->period = ns_to_ktime(period);
10717 	cfs_b->quota = quota;
10718 	cfs_b->burst = burst;
10719 
10720 	__refill_cfs_bandwidth_runtime(cfs_b);
10721 
10722 	/* Restart the period timer (if active) to handle new period expiry: */
10723 	if (runtime_enabled)
10724 		start_cfs_bandwidth(cfs_b);
10725 
10726 	raw_spin_unlock_irq(&cfs_b->lock);
10727 
10728 	for_each_online_cpu(i) {
10729 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10730 		struct rq *rq = cfs_rq->rq;
10731 		struct rq_flags rf;
10732 
10733 		rq_lock_irq(rq, &rf);
10734 		cfs_rq->runtime_enabled = runtime_enabled;
10735 		cfs_rq->runtime_remaining = 0;
10736 
10737 		if (cfs_rq->throttled)
10738 			unthrottle_cfs_rq(cfs_rq);
10739 		rq_unlock_irq(rq, &rf);
10740 	}
10741 	if (runtime_was_enabled && !runtime_enabled)
10742 		cfs_bandwidth_usage_dec();
10743 out_unlock:
10744 	mutex_unlock(&cfs_constraints_mutex);
10745 	cpus_read_unlock();
10746 
10747 	return ret;
10748 }
10749 
10750 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10751 {
10752 	u64 quota, period, burst;
10753 
10754 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10755 	burst = tg->cfs_bandwidth.burst;
10756 	if (cfs_quota_us < 0)
10757 		quota = RUNTIME_INF;
10758 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10759 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10760 	else
10761 		return -EINVAL;
10762 
10763 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10764 }
10765 
10766 static long tg_get_cfs_quota(struct task_group *tg)
10767 {
10768 	u64 quota_us;
10769 
10770 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10771 		return -1;
10772 
10773 	quota_us = tg->cfs_bandwidth.quota;
10774 	do_div(quota_us, NSEC_PER_USEC);
10775 
10776 	return quota_us;
10777 }
10778 
10779 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10780 {
10781 	u64 quota, period, burst;
10782 
10783 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10784 		return -EINVAL;
10785 
10786 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10787 	quota = tg->cfs_bandwidth.quota;
10788 	burst = tg->cfs_bandwidth.burst;
10789 
10790 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10791 }
10792 
10793 static long tg_get_cfs_period(struct task_group *tg)
10794 {
10795 	u64 cfs_period_us;
10796 
10797 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10798 	do_div(cfs_period_us, NSEC_PER_USEC);
10799 
10800 	return cfs_period_us;
10801 }
10802 
10803 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10804 {
10805 	u64 quota, period, burst;
10806 
10807 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10808 		return -EINVAL;
10809 
10810 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10811 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10812 	quota = tg->cfs_bandwidth.quota;
10813 
10814 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10815 }
10816 
10817 static long tg_get_cfs_burst(struct task_group *tg)
10818 {
10819 	u64 burst_us;
10820 
10821 	burst_us = tg->cfs_bandwidth.burst;
10822 	do_div(burst_us, NSEC_PER_USEC);
10823 
10824 	return burst_us;
10825 }
10826 
10827 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10828 				  struct cftype *cft)
10829 {
10830 	return tg_get_cfs_quota(css_tg(css));
10831 }
10832 
10833 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10834 				   struct cftype *cftype, s64 cfs_quota_us)
10835 {
10836 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10837 }
10838 
10839 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10840 				   struct cftype *cft)
10841 {
10842 	return tg_get_cfs_period(css_tg(css));
10843 }
10844 
10845 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10846 				    struct cftype *cftype, u64 cfs_period_us)
10847 {
10848 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10849 }
10850 
10851 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10852 				  struct cftype *cft)
10853 {
10854 	return tg_get_cfs_burst(css_tg(css));
10855 }
10856 
10857 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10858 				   struct cftype *cftype, u64 cfs_burst_us)
10859 {
10860 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10861 }
10862 
10863 struct cfs_schedulable_data {
10864 	struct task_group *tg;
10865 	u64 period, quota;
10866 };
10867 
10868 /*
10869  * normalize group quota/period to be quota/max_period
10870  * note: units are usecs
10871  */
10872 static u64 normalize_cfs_quota(struct task_group *tg,
10873 			       struct cfs_schedulable_data *d)
10874 {
10875 	u64 quota, period;
10876 
10877 	if (tg == d->tg) {
10878 		period = d->period;
10879 		quota = d->quota;
10880 	} else {
10881 		period = tg_get_cfs_period(tg);
10882 		quota = tg_get_cfs_quota(tg);
10883 	}
10884 
10885 	/* note: these should typically be equivalent */
10886 	if (quota == RUNTIME_INF || quota == -1)
10887 		return RUNTIME_INF;
10888 
10889 	return to_ratio(period, quota);
10890 }
10891 
10892 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10893 {
10894 	struct cfs_schedulable_data *d = data;
10895 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10896 	s64 quota = 0, parent_quota = -1;
10897 
10898 	if (!tg->parent) {
10899 		quota = RUNTIME_INF;
10900 	} else {
10901 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10902 
10903 		quota = normalize_cfs_quota(tg, d);
10904 		parent_quota = parent_b->hierarchical_quota;
10905 
10906 		/*
10907 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10908 		 * always take the min.  On cgroup1, only inherit when no
10909 		 * limit is set:
10910 		 */
10911 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10912 			quota = min(quota, parent_quota);
10913 		} else {
10914 			if (quota == RUNTIME_INF)
10915 				quota = parent_quota;
10916 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10917 				return -EINVAL;
10918 		}
10919 	}
10920 	cfs_b->hierarchical_quota = quota;
10921 
10922 	return 0;
10923 }
10924 
10925 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10926 {
10927 	int ret;
10928 	struct cfs_schedulable_data data = {
10929 		.tg = tg,
10930 		.period = period,
10931 		.quota = quota,
10932 	};
10933 
10934 	if (quota != RUNTIME_INF) {
10935 		do_div(data.period, NSEC_PER_USEC);
10936 		do_div(data.quota, NSEC_PER_USEC);
10937 	}
10938 
10939 	rcu_read_lock();
10940 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10941 	rcu_read_unlock();
10942 
10943 	return ret;
10944 }
10945 
10946 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10947 {
10948 	struct task_group *tg = css_tg(seq_css(sf));
10949 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10950 
10951 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10952 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10953 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10954 
10955 	if (schedstat_enabled() && tg != &root_task_group) {
10956 		struct sched_statistics *stats;
10957 		u64 ws = 0;
10958 		int i;
10959 
10960 		for_each_possible_cpu(i) {
10961 			stats = __schedstats_from_se(tg->se[i]);
10962 			ws += schedstat_val(stats->wait_sum);
10963 		}
10964 
10965 		seq_printf(sf, "wait_sum %llu\n", ws);
10966 	}
10967 
10968 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10969 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10970 
10971 	return 0;
10972 }
10973 #endif /* CONFIG_CFS_BANDWIDTH */
10974 #endif /* CONFIG_FAIR_GROUP_SCHED */
10975 
10976 #ifdef CONFIG_RT_GROUP_SCHED
10977 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10978 				struct cftype *cft, s64 val)
10979 {
10980 	return sched_group_set_rt_runtime(css_tg(css), val);
10981 }
10982 
10983 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10984 			       struct cftype *cft)
10985 {
10986 	return sched_group_rt_runtime(css_tg(css));
10987 }
10988 
10989 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10990 				    struct cftype *cftype, u64 rt_period_us)
10991 {
10992 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10993 }
10994 
10995 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10996 				   struct cftype *cft)
10997 {
10998 	return sched_group_rt_period(css_tg(css));
10999 }
11000 #endif /* CONFIG_RT_GROUP_SCHED */
11001 
11002 #ifdef CONFIG_FAIR_GROUP_SCHED
11003 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11004 			       struct cftype *cft)
11005 {
11006 	return css_tg(css)->idle;
11007 }
11008 
11009 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11010 				struct cftype *cft, s64 idle)
11011 {
11012 	return sched_group_set_idle(css_tg(css), idle);
11013 }
11014 #endif
11015 
11016 static struct cftype cpu_legacy_files[] = {
11017 #ifdef CONFIG_FAIR_GROUP_SCHED
11018 	{
11019 		.name = "shares",
11020 		.read_u64 = cpu_shares_read_u64,
11021 		.write_u64 = cpu_shares_write_u64,
11022 	},
11023 	{
11024 		.name = "idle",
11025 		.read_s64 = cpu_idle_read_s64,
11026 		.write_s64 = cpu_idle_write_s64,
11027 	},
11028 #endif
11029 #ifdef CONFIG_CFS_BANDWIDTH
11030 	{
11031 		.name = "cfs_quota_us",
11032 		.read_s64 = cpu_cfs_quota_read_s64,
11033 		.write_s64 = cpu_cfs_quota_write_s64,
11034 	},
11035 	{
11036 		.name = "cfs_period_us",
11037 		.read_u64 = cpu_cfs_period_read_u64,
11038 		.write_u64 = cpu_cfs_period_write_u64,
11039 	},
11040 	{
11041 		.name = "cfs_burst_us",
11042 		.read_u64 = cpu_cfs_burst_read_u64,
11043 		.write_u64 = cpu_cfs_burst_write_u64,
11044 	},
11045 	{
11046 		.name = "stat",
11047 		.seq_show = cpu_cfs_stat_show,
11048 	},
11049 #endif
11050 #ifdef CONFIG_RT_GROUP_SCHED
11051 	{
11052 		.name = "rt_runtime_us",
11053 		.read_s64 = cpu_rt_runtime_read,
11054 		.write_s64 = cpu_rt_runtime_write,
11055 	},
11056 	{
11057 		.name = "rt_period_us",
11058 		.read_u64 = cpu_rt_period_read_uint,
11059 		.write_u64 = cpu_rt_period_write_uint,
11060 	},
11061 #endif
11062 #ifdef CONFIG_UCLAMP_TASK_GROUP
11063 	{
11064 		.name = "uclamp.min",
11065 		.flags = CFTYPE_NOT_ON_ROOT,
11066 		.seq_show = cpu_uclamp_min_show,
11067 		.write = cpu_uclamp_min_write,
11068 	},
11069 	{
11070 		.name = "uclamp.max",
11071 		.flags = CFTYPE_NOT_ON_ROOT,
11072 		.seq_show = cpu_uclamp_max_show,
11073 		.write = cpu_uclamp_max_write,
11074 	},
11075 #endif
11076 	{ }	/* Terminate */
11077 };
11078 
11079 static int cpu_extra_stat_show(struct seq_file *sf,
11080 			       struct cgroup_subsys_state *css)
11081 {
11082 #ifdef CONFIG_CFS_BANDWIDTH
11083 	{
11084 		struct task_group *tg = css_tg(css);
11085 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11086 		u64 throttled_usec, burst_usec;
11087 
11088 		throttled_usec = cfs_b->throttled_time;
11089 		do_div(throttled_usec, NSEC_PER_USEC);
11090 		burst_usec = cfs_b->burst_time;
11091 		do_div(burst_usec, NSEC_PER_USEC);
11092 
11093 		seq_printf(sf, "nr_periods %d\n"
11094 			   "nr_throttled %d\n"
11095 			   "throttled_usec %llu\n"
11096 			   "nr_bursts %d\n"
11097 			   "burst_usec %llu\n",
11098 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11099 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11100 	}
11101 #endif
11102 	return 0;
11103 }
11104 
11105 #ifdef CONFIG_FAIR_GROUP_SCHED
11106 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11107 			       struct cftype *cft)
11108 {
11109 	struct task_group *tg = css_tg(css);
11110 	u64 weight = scale_load_down(tg->shares);
11111 
11112 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11113 }
11114 
11115 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11116 				struct cftype *cft, u64 weight)
11117 {
11118 	/*
11119 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11120 	 * values which are 1, 100 and 10000 respectively.  While it loses
11121 	 * a bit of range on both ends, it maps pretty well onto the shares
11122 	 * value used by scheduler and the round-trip conversions preserve
11123 	 * the original value over the entire range.
11124 	 */
11125 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11126 		return -ERANGE;
11127 
11128 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11129 
11130 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11131 }
11132 
11133 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11134 				    struct cftype *cft)
11135 {
11136 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11137 	int last_delta = INT_MAX;
11138 	int prio, delta;
11139 
11140 	/* find the closest nice value to the current weight */
11141 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11142 		delta = abs(sched_prio_to_weight[prio] - weight);
11143 		if (delta >= last_delta)
11144 			break;
11145 		last_delta = delta;
11146 	}
11147 
11148 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11149 }
11150 
11151 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11152 				     struct cftype *cft, s64 nice)
11153 {
11154 	unsigned long weight;
11155 	int idx;
11156 
11157 	if (nice < MIN_NICE || nice > MAX_NICE)
11158 		return -ERANGE;
11159 
11160 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11161 	idx = array_index_nospec(idx, 40);
11162 	weight = sched_prio_to_weight[idx];
11163 
11164 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11165 }
11166 #endif
11167 
11168 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11169 						  long period, long quota)
11170 {
11171 	if (quota < 0)
11172 		seq_puts(sf, "max");
11173 	else
11174 		seq_printf(sf, "%ld", quota);
11175 
11176 	seq_printf(sf, " %ld\n", period);
11177 }
11178 
11179 /* caller should put the current value in *@periodp before calling */
11180 static int __maybe_unused cpu_period_quota_parse(char *buf,
11181 						 u64 *periodp, u64 *quotap)
11182 {
11183 	char tok[21];	/* U64_MAX */
11184 
11185 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11186 		return -EINVAL;
11187 
11188 	*periodp *= NSEC_PER_USEC;
11189 
11190 	if (sscanf(tok, "%llu", quotap))
11191 		*quotap *= NSEC_PER_USEC;
11192 	else if (!strcmp(tok, "max"))
11193 		*quotap = RUNTIME_INF;
11194 	else
11195 		return -EINVAL;
11196 
11197 	return 0;
11198 }
11199 
11200 #ifdef CONFIG_CFS_BANDWIDTH
11201 static int cpu_max_show(struct seq_file *sf, void *v)
11202 {
11203 	struct task_group *tg = css_tg(seq_css(sf));
11204 
11205 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11206 	return 0;
11207 }
11208 
11209 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11210 			     char *buf, size_t nbytes, loff_t off)
11211 {
11212 	struct task_group *tg = css_tg(of_css(of));
11213 	u64 period = tg_get_cfs_period(tg);
11214 	u64 burst = tg_get_cfs_burst(tg);
11215 	u64 quota;
11216 	int ret;
11217 
11218 	ret = cpu_period_quota_parse(buf, &period, &quota);
11219 	if (!ret)
11220 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11221 	return ret ?: nbytes;
11222 }
11223 #endif
11224 
11225 static struct cftype cpu_files[] = {
11226 #ifdef CONFIG_FAIR_GROUP_SCHED
11227 	{
11228 		.name = "weight",
11229 		.flags = CFTYPE_NOT_ON_ROOT,
11230 		.read_u64 = cpu_weight_read_u64,
11231 		.write_u64 = cpu_weight_write_u64,
11232 	},
11233 	{
11234 		.name = "weight.nice",
11235 		.flags = CFTYPE_NOT_ON_ROOT,
11236 		.read_s64 = cpu_weight_nice_read_s64,
11237 		.write_s64 = cpu_weight_nice_write_s64,
11238 	},
11239 	{
11240 		.name = "idle",
11241 		.flags = CFTYPE_NOT_ON_ROOT,
11242 		.read_s64 = cpu_idle_read_s64,
11243 		.write_s64 = cpu_idle_write_s64,
11244 	},
11245 #endif
11246 #ifdef CONFIG_CFS_BANDWIDTH
11247 	{
11248 		.name = "max",
11249 		.flags = CFTYPE_NOT_ON_ROOT,
11250 		.seq_show = cpu_max_show,
11251 		.write = cpu_max_write,
11252 	},
11253 	{
11254 		.name = "max.burst",
11255 		.flags = CFTYPE_NOT_ON_ROOT,
11256 		.read_u64 = cpu_cfs_burst_read_u64,
11257 		.write_u64 = cpu_cfs_burst_write_u64,
11258 	},
11259 #endif
11260 #ifdef CONFIG_UCLAMP_TASK_GROUP
11261 	{
11262 		.name = "uclamp.min",
11263 		.flags = CFTYPE_NOT_ON_ROOT,
11264 		.seq_show = cpu_uclamp_min_show,
11265 		.write = cpu_uclamp_min_write,
11266 	},
11267 	{
11268 		.name = "uclamp.max",
11269 		.flags = CFTYPE_NOT_ON_ROOT,
11270 		.seq_show = cpu_uclamp_max_show,
11271 		.write = cpu_uclamp_max_write,
11272 	},
11273 #endif
11274 	{ }	/* terminate */
11275 };
11276 
11277 struct cgroup_subsys cpu_cgrp_subsys = {
11278 	.css_alloc	= cpu_cgroup_css_alloc,
11279 	.css_online	= cpu_cgroup_css_online,
11280 	.css_released	= cpu_cgroup_css_released,
11281 	.css_free	= cpu_cgroup_css_free,
11282 	.css_extra_stat_show = cpu_extra_stat_show,
11283 #ifdef CONFIG_RT_GROUP_SCHED
11284 	.can_attach	= cpu_cgroup_can_attach,
11285 #endif
11286 	.attach		= cpu_cgroup_attach,
11287 	.legacy_cftypes	= cpu_legacy_files,
11288 	.dfl_cftypes	= cpu_files,
11289 	.early_init	= true,
11290 	.threaded	= true,
11291 };
11292 
11293 #endif	/* CONFIG_CGROUP_SCHED */
11294 
11295 void dump_cpu_task(int cpu)
11296 {
11297 	if (cpu == smp_processor_id() && in_hardirq()) {
11298 		struct pt_regs *regs;
11299 
11300 		regs = get_irq_regs();
11301 		if (regs) {
11302 			show_regs(regs);
11303 			return;
11304 		}
11305 	}
11306 
11307 	if (trigger_single_cpu_backtrace(cpu))
11308 		return;
11309 
11310 	pr_info("Task dump for CPU %d:\n", cpu);
11311 	sched_show_task(cpu_curr(cpu));
11312 }
11313 
11314 /*
11315  * Nice levels are multiplicative, with a gentle 10% change for every
11316  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11317  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11318  * that remained on nice 0.
11319  *
11320  * The "10% effect" is relative and cumulative: from _any_ nice level,
11321  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11322  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11323  * If a task goes up by ~10% and another task goes down by ~10% then
11324  * the relative distance between them is ~25%.)
11325  */
11326 const int sched_prio_to_weight[40] = {
11327  /* -20 */     88761,     71755,     56483,     46273,     36291,
11328  /* -15 */     29154,     23254,     18705,     14949,     11916,
11329  /* -10 */      9548,      7620,      6100,      4904,      3906,
11330  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11331  /*   0 */      1024,       820,       655,       526,       423,
11332  /*   5 */       335,       272,       215,       172,       137,
11333  /*  10 */       110,        87,        70,        56,        45,
11334  /*  15 */        36,        29,        23,        18,        15,
11335 };
11336 
11337 /*
11338  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11339  *
11340  * In cases where the weight does not change often, we can use the
11341  * precalculated inverse to speed up arithmetics by turning divisions
11342  * into multiplications:
11343  */
11344 const u32 sched_prio_to_wmult[40] = {
11345  /* -20 */     48388,     59856,     76040,     92818,    118348,
11346  /* -15 */    147320,    184698,    229616,    287308,    360437,
11347  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11348  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11349  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11350  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11351  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11352  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11353 };
11354 
11355 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11356 {
11357         trace_sched_update_nr_running_tp(rq, count);
11358 }
11359