1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/kasan.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/nmi.h> 33 #include <linux/init.h> 34 #include <linux/uaccess.h> 35 #include <linux/highmem.h> 36 #include <linux/mmu_context.h> 37 #include <linux/interrupt.h> 38 #include <linux/capability.h> 39 #include <linux/completion.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/debug_locks.h> 42 #include <linux/perf_event.h> 43 #include <linux/security.h> 44 #include <linux/notifier.h> 45 #include <linux/profile.h> 46 #include <linux/freezer.h> 47 #include <linux/vmalloc.h> 48 #include <linux/blkdev.h> 49 #include <linux/delay.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/smp.h> 52 #include <linux/threads.h> 53 #include <linux/timer.h> 54 #include <linux/rcupdate.h> 55 #include <linux/cpu.h> 56 #include <linux/cpuset.h> 57 #include <linux/percpu.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/sysctl.h> 61 #include <linux/syscalls.h> 62 #include <linux/times.h> 63 #include <linux/tsacct_kern.h> 64 #include <linux/kprobes.h> 65 #include <linux/delayacct.h> 66 #include <linux/unistd.h> 67 #include <linux/pagemap.h> 68 #include <linux/hrtimer.h> 69 #include <linux/tick.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/context_tracking.h> 75 #include <linux/compiler.h> 76 #include <linux/frame.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 DEFINE_MUTEX(sched_domains_mutex); 94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 95 96 static void update_rq_clock_task(struct rq *rq, s64 delta); 97 98 void update_rq_clock(struct rq *rq) 99 { 100 s64 delta; 101 102 lockdep_assert_held(&rq->lock); 103 104 if (rq->clock_skip_update & RQCF_ACT_SKIP) 105 return; 106 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 108 if (delta < 0) 109 return; 110 rq->clock += delta; 111 update_rq_clock_task(rq, delta); 112 } 113 114 /* 115 * Debugging: various feature bits 116 */ 117 118 #define SCHED_FEAT(name, enabled) \ 119 (1UL << __SCHED_FEAT_##name) * enabled | 120 121 const_debug unsigned int sysctl_sched_features = 122 #include "features.h" 123 0; 124 125 #undef SCHED_FEAT 126 127 /* 128 * Number of tasks to iterate in a single balance run. 129 * Limited because this is done with IRQs disabled. 130 */ 131 const_debug unsigned int sysctl_sched_nr_migrate = 32; 132 133 /* 134 * period over which we average the RT time consumption, measured 135 * in ms. 136 * 137 * default: 1s 138 */ 139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 140 141 /* 142 * period over which we measure -rt task cpu usage in us. 143 * default: 1s 144 */ 145 unsigned int sysctl_sched_rt_period = 1000000; 146 147 __read_mostly int scheduler_running; 148 149 /* 150 * part of the period that we allow rt tasks to run in us. 151 * default: 0.95s 152 */ 153 int sysctl_sched_rt_runtime = 950000; 154 155 /* cpus with isolated domains */ 156 cpumask_var_t cpu_isolated_map; 157 158 /* 159 * this_rq_lock - lock this runqueue and disable interrupts. 160 */ 161 static struct rq *this_rq_lock(void) 162 __acquires(rq->lock) 163 { 164 struct rq *rq; 165 166 local_irq_disable(); 167 rq = this_rq(); 168 raw_spin_lock(&rq->lock); 169 170 return rq; 171 } 172 173 /* 174 * __task_rq_lock - lock the rq @p resides on. 175 */ 176 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 177 __acquires(rq->lock) 178 { 179 struct rq *rq; 180 181 lockdep_assert_held(&p->pi_lock); 182 183 for (;;) { 184 rq = task_rq(p); 185 raw_spin_lock(&rq->lock); 186 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 187 rf->cookie = lockdep_pin_lock(&rq->lock); 188 return rq; 189 } 190 raw_spin_unlock(&rq->lock); 191 192 while (unlikely(task_on_rq_migrating(p))) 193 cpu_relax(); 194 } 195 } 196 197 /* 198 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 199 */ 200 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 201 __acquires(p->pi_lock) 202 __acquires(rq->lock) 203 { 204 struct rq *rq; 205 206 for (;;) { 207 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 208 rq = task_rq(p); 209 raw_spin_lock(&rq->lock); 210 /* 211 * move_queued_task() task_rq_lock() 212 * 213 * ACQUIRE (rq->lock) 214 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 215 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 216 * [S] ->cpu = new_cpu [L] task_rq() 217 * [L] ->on_rq 218 * RELEASE (rq->lock) 219 * 220 * If we observe the old cpu in task_rq_lock, the acquire of 221 * the old rq->lock will fully serialize against the stores. 222 * 223 * If we observe the new cpu in task_rq_lock, the acquire will 224 * pair with the WMB to ensure we must then also see migrating. 225 */ 226 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 227 rf->cookie = lockdep_pin_lock(&rq->lock); 228 return rq; 229 } 230 raw_spin_unlock(&rq->lock); 231 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 232 233 while (unlikely(task_on_rq_migrating(p))) 234 cpu_relax(); 235 } 236 } 237 238 #ifdef CONFIG_SCHED_HRTICK 239 /* 240 * Use HR-timers to deliver accurate preemption points. 241 */ 242 243 static void hrtick_clear(struct rq *rq) 244 { 245 if (hrtimer_active(&rq->hrtick_timer)) 246 hrtimer_cancel(&rq->hrtick_timer); 247 } 248 249 /* 250 * High-resolution timer tick. 251 * Runs from hardirq context with interrupts disabled. 252 */ 253 static enum hrtimer_restart hrtick(struct hrtimer *timer) 254 { 255 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 256 257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 258 259 raw_spin_lock(&rq->lock); 260 update_rq_clock(rq); 261 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 262 raw_spin_unlock(&rq->lock); 263 264 return HRTIMER_NORESTART; 265 } 266 267 #ifdef CONFIG_SMP 268 269 static void __hrtick_restart(struct rq *rq) 270 { 271 struct hrtimer *timer = &rq->hrtick_timer; 272 273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 274 } 275 276 /* 277 * called from hardirq (IPI) context 278 */ 279 static void __hrtick_start(void *arg) 280 { 281 struct rq *rq = arg; 282 283 raw_spin_lock(&rq->lock); 284 __hrtick_restart(rq); 285 rq->hrtick_csd_pending = 0; 286 raw_spin_unlock(&rq->lock); 287 } 288 289 /* 290 * Called to set the hrtick timer state. 291 * 292 * called with rq->lock held and irqs disabled 293 */ 294 void hrtick_start(struct rq *rq, u64 delay) 295 { 296 struct hrtimer *timer = &rq->hrtick_timer; 297 ktime_t time; 298 s64 delta; 299 300 /* 301 * Don't schedule slices shorter than 10000ns, that just 302 * doesn't make sense and can cause timer DoS. 303 */ 304 delta = max_t(s64, delay, 10000LL); 305 time = ktime_add_ns(timer->base->get_time(), delta); 306 307 hrtimer_set_expires(timer, time); 308 309 if (rq == this_rq()) { 310 __hrtick_restart(rq); 311 } else if (!rq->hrtick_csd_pending) { 312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 313 rq->hrtick_csd_pending = 1; 314 } 315 } 316 317 #else 318 /* 319 * Called to set the hrtick timer state. 320 * 321 * called with rq->lock held and irqs disabled 322 */ 323 void hrtick_start(struct rq *rq, u64 delay) 324 { 325 /* 326 * Don't schedule slices shorter than 10000ns, that just 327 * doesn't make sense. Rely on vruntime for fairness. 328 */ 329 delay = max_t(u64, delay, 10000LL); 330 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 331 HRTIMER_MODE_REL_PINNED); 332 } 333 #endif /* CONFIG_SMP */ 334 335 static void init_rq_hrtick(struct rq *rq) 336 { 337 #ifdef CONFIG_SMP 338 rq->hrtick_csd_pending = 0; 339 340 rq->hrtick_csd.flags = 0; 341 rq->hrtick_csd.func = __hrtick_start; 342 rq->hrtick_csd.info = rq; 343 #endif 344 345 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 346 rq->hrtick_timer.function = hrtick; 347 } 348 #else /* CONFIG_SCHED_HRTICK */ 349 static inline void hrtick_clear(struct rq *rq) 350 { 351 } 352 353 static inline void init_rq_hrtick(struct rq *rq) 354 { 355 } 356 #endif /* CONFIG_SCHED_HRTICK */ 357 358 /* 359 * cmpxchg based fetch_or, macro so it works for different integer types 360 */ 361 #define fetch_or(ptr, mask) \ 362 ({ \ 363 typeof(ptr) _ptr = (ptr); \ 364 typeof(mask) _mask = (mask); \ 365 typeof(*_ptr) _old, _val = *_ptr; \ 366 \ 367 for (;;) { \ 368 _old = cmpxchg(_ptr, _val, _val | _mask); \ 369 if (_old == _val) \ 370 break; \ 371 _val = _old; \ 372 } \ 373 _old; \ 374 }) 375 376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 377 /* 378 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 379 * this avoids any races wrt polling state changes and thereby avoids 380 * spurious IPIs. 381 */ 382 static bool set_nr_and_not_polling(struct task_struct *p) 383 { 384 struct thread_info *ti = task_thread_info(p); 385 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 386 } 387 388 /* 389 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 390 * 391 * If this returns true, then the idle task promises to call 392 * sched_ttwu_pending() and reschedule soon. 393 */ 394 static bool set_nr_if_polling(struct task_struct *p) 395 { 396 struct thread_info *ti = task_thread_info(p); 397 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 398 399 for (;;) { 400 if (!(val & _TIF_POLLING_NRFLAG)) 401 return false; 402 if (val & _TIF_NEED_RESCHED) 403 return true; 404 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 405 if (old == val) 406 break; 407 val = old; 408 } 409 return true; 410 } 411 412 #else 413 static bool set_nr_and_not_polling(struct task_struct *p) 414 { 415 set_tsk_need_resched(p); 416 return true; 417 } 418 419 #ifdef CONFIG_SMP 420 static bool set_nr_if_polling(struct task_struct *p) 421 { 422 return false; 423 } 424 #endif 425 #endif 426 427 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 428 { 429 struct wake_q_node *node = &task->wake_q; 430 431 /* 432 * Atomically grab the task, if ->wake_q is !nil already it means 433 * its already queued (either by us or someone else) and will get the 434 * wakeup due to that. 435 * 436 * This cmpxchg() implies a full barrier, which pairs with the write 437 * barrier implied by the wakeup in wake_up_q(). 438 */ 439 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 440 return; 441 442 get_task_struct(task); 443 444 /* 445 * The head is context local, there can be no concurrency. 446 */ 447 *head->lastp = node; 448 head->lastp = &node->next; 449 } 450 451 void wake_up_q(struct wake_q_head *head) 452 { 453 struct wake_q_node *node = head->first; 454 455 while (node != WAKE_Q_TAIL) { 456 struct task_struct *task; 457 458 task = container_of(node, struct task_struct, wake_q); 459 BUG_ON(!task); 460 /* task can safely be re-inserted now */ 461 node = node->next; 462 task->wake_q.next = NULL; 463 464 /* 465 * wake_up_process() implies a wmb() to pair with the queueing 466 * in wake_q_add() so as not to miss wakeups. 467 */ 468 wake_up_process(task); 469 put_task_struct(task); 470 } 471 } 472 473 /* 474 * resched_curr - mark rq's current task 'to be rescheduled now'. 475 * 476 * On UP this means the setting of the need_resched flag, on SMP it 477 * might also involve a cross-CPU call to trigger the scheduler on 478 * the target CPU. 479 */ 480 void resched_curr(struct rq *rq) 481 { 482 struct task_struct *curr = rq->curr; 483 int cpu; 484 485 lockdep_assert_held(&rq->lock); 486 487 if (test_tsk_need_resched(curr)) 488 return; 489 490 cpu = cpu_of(rq); 491 492 if (cpu == smp_processor_id()) { 493 set_tsk_need_resched(curr); 494 set_preempt_need_resched(); 495 return; 496 } 497 498 if (set_nr_and_not_polling(curr)) 499 smp_send_reschedule(cpu); 500 else 501 trace_sched_wake_idle_without_ipi(cpu); 502 } 503 504 void resched_cpu(int cpu) 505 { 506 struct rq *rq = cpu_rq(cpu); 507 unsigned long flags; 508 509 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 510 return; 511 resched_curr(rq); 512 raw_spin_unlock_irqrestore(&rq->lock, flags); 513 } 514 515 #ifdef CONFIG_SMP 516 #ifdef CONFIG_NO_HZ_COMMON 517 /* 518 * In the semi idle case, use the nearest busy cpu for migrating timers 519 * from an idle cpu. This is good for power-savings. 520 * 521 * We don't do similar optimization for completely idle system, as 522 * selecting an idle cpu will add more delays to the timers than intended 523 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 524 */ 525 int get_nohz_timer_target(void) 526 { 527 int i, cpu = smp_processor_id(); 528 struct sched_domain *sd; 529 530 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 531 return cpu; 532 533 rcu_read_lock(); 534 for_each_domain(cpu, sd) { 535 for_each_cpu(i, sched_domain_span(sd)) { 536 if (cpu == i) 537 continue; 538 539 if (!idle_cpu(i) && is_housekeeping_cpu(i)) { 540 cpu = i; 541 goto unlock; 542 } 543 } 544 } 545 546 if (!is_housekeeping_cpu(cpu)) 547 cpu = housekeeping_any_cpu(); 548 unlock: 549 rcu_read_unlock(); 550 return cpu; 551 } 552 /* 553 * When add_timer_on() enqueues a timer into the timer wheel of an 554 * idle CPU then this timer might expire before the next timer event 555 * which is scheduled to wake up that CPU. In case of a completely 556 * idle system the next event might even be infinite time into the 557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 558 * leaves the inner idle loop so the newly added timer is taken into 559 * account when the CPU goes back to idle and evaluates the timer 560 * wheel for the next timer event. 561 */ 562 static void wake_up_idle_cpu(int cpu) 563 { 564 struct rq *rq = cpu_rq(cpu); 565 566 if (cpu == smp_processor_id()) 567 return; 568 569 if (set_nr_and_not_polling(rq->idle)) 570 smp_send_reschedule(cpu); 571 else 572 trace_sched_wake_idle_without_ipi(cpu); 573 } 574 575 static bool wake_up_full_nohz_cpu(int cpu) 576 { 577 /* 578 * We just need the target to call irq_exit() and re-evaluate 579 * the next tick. The nohz full kick at least implies that. 580 * If needed we can still optimize that later with an 581 * empty IRQ. 582 */ 583 if (tick_nohz_full_cpu(cpu)) { 584 if (cpu != smp_processor_id() || 585 tick_nohz_tick_stopped()) 586 tick_nohz_full_kick_cpu(cpu); 587 return true; 588 } 589 590 return false; 591 } 592 593 void wake_up_nohz_cpu(int cpu) 594 { 595 if (!wake_up_full_nohz_cpu(cpu)) 596 wake_up_idle_cpu(cpu); 597 } 598 599 static inline bool got_nohz_idle_kick(void) 600 { 601 int cpu = smp_processor_id(); 602 603 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 604 return false; 605 606 if (idle_cpu(cpu) && !need_resched()) 607 return true; 608 609 /* 610 * We can't run Idle Load Balance on this CPU for this time so we 611 * cancel it and clear NOHZ_BALANCE_KICK 612 */ 613 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 614 return false; 615 } 616 617 #else /* CONFIG_NO_HZ_COMMON */ 618 619 static inline bool got_nohz_idle_kick(void) 620 { 621 return false; 622 } 623 624 #endif /* CONFIG_NO_HZ_COMMON */ 625 626 #ifdef CONFIG_NO_HZ_FULL 627 bool sched_can_stop_tick(struct rq *rq) 628 { 629 int fifo_nr_running; 630 631 /* Deadline tasks, even if single, need the tick */ 632 if (rq->dl.dl_nr_running) 633 return false; 634 635 /* 636 * If there are more than one RR tasks, we need the tick to effect the 637 * actual RR behaviour. 638 */ 639 if (rq->rt.rr_nr_running) { 640 if (rq->rt.rr_nr_running == 1) 641 return true; 642 else 643 return false; 644 } 645 646 /* 647 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 648 * forced preemption between FIFO tasks. 649 */ 650 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 651 if (fifo_nr_running) 652 return true; 653 654 /* 655 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 656 * if there's more than one we need the tick for involuntary 657 * preemption. 658 */ 659 if (rq->nr_running > 1) 660 return false; 661 662 return true; 663 } 664 #endif /* CONFIG_NO_HZ_FULL */ 665 666 void sched_avg_update(struct rq *rq) 667 { 668 s64 period = sched_avg_period(); 669 670 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 671 /* 672 * Inline assembly required to prevent the compiler 673 * optimising this loop into a divmod call. 674 * See __iter_div_u64_rem() for another example of this. 675 */ 676 asm("" : "+rm" (rq->age_stamp)); 677 rq->age_stamp += period; 678 rq->rt_avg /= 2; 679 } 680 } 681 682 #endif /* CONFIG_SMP */ 683 684 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 685 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 686 /* 687 * Iterate task_group tree rooted at *from, calling @down when first entering a 688 * node and @up when leaving it for the final time. 689 * 690 * Caller must hold rcu_lock or sufficient equivalent. 691 */ 692 int walk_tg_tree_from(struct task_group *from, 693 tg_visitor down, tg_visitor up, void *data) 694 { 695 struct task_group *parent, *child; 696 int ret; 697 698 parent = from; 699 700 down: 701 ret = (*down)(parent, data); 702 if (ret) 703 goto out; 704 list_for_each_entry_rcu(child, &parent->children, siblings) { 705 parent = child; 706 goto down; 707 708 up: 709 continue; 710 } 711 ret = (*up)(parent, data); 712 if (ret || parent == from) 713 goto out; 714 715 child = parent; 716 parent = parent->parent; 717 if (parent) 718 goto up; 719 out: 720 return ret; 721 } 722 723 int tg_nop(struct task_group *tg, void *data) 724 { 725 return 0; 726 } 727 #endif 728 729 static void set_load_weight(struct task_struct *p) 730 { 731 int prio = p->static_prio - MAX_RT_PRIO; 732 struct load_weight *load = &p->se.load; 733 734 /* 735 * SCHED_IDLE tasks get minimal weight: 736 */ 737 if (idle_policy(p->policy)) { 738 load->weight = scale_load(WEIGHT_IDLEPRIO); 739 load->inv_weight = WMULT_IDLEPRIO; 740 return; 741 } 742 743 load->weight = scale_load(sched_prio_to_weight[prio]); 744 load->inv_weight = sched_prio_to_wmult[prio]; 745 } 746 747 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 748 { 749 update_rq_clock(rq); 750 if (!(flags & ENQUEUE_RESTORE)) 751 sched_info_queued(rq, p); 752 p->sched_class->enqueue_task(rq, p, flags); 753 } 754 755 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 756 { 757 update_rq_clock(rq); 758 if (!(flags & DEQUEUE_SAVE)) 759 sched_info_dequeued(rq, p); 760 p->sched_class->dequeue_task(rq, p, flags); 761 } 762 763 void activate_task(struct rq *rq, struct task_struct *p, int flags) 764 { 765 if (task_contributes_to_load(p)) 766 rq->nr_uninterruptible--; 767 768 enqueue_task(rq, p, flags); 769 } 770 771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 772 { 773 if (task_contributes_to_load(p)) 774 rq->nr_uninterruptible++; 775 776 dequeue_task(rq, p, flags); 777 } 778 779 static void update_rq_clock_task(struct rq *rq, s64 delta) 780 { 781 /* 782 * In theory, the compile should just see 0 here, and optimize out the call 783 * to sched_rt_avg_update. But I don't trust it... 784 */ 785 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 786 s64 steal = 0, irq_delta = 0; 787 #endif 788 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 789 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 790 791 /* 792 * Since irq_time is only updated on {soft,}irq_exit, we might run into 793 * this case when a previous update_rq_clock() happened inside a 794 * {soft,}irq region. 795 * 796 * When this happens, we stop ->clock_task and only update the 797 * prev_irq_time stamp to account for the part that fit, so that a next 798 * update will consume the rest. This ensures ->clock_task is 799 * monotonic. 800 * 801 * It does however cause some slight miss-attribution of {soft,}irq 802 * time, a more accurate solution would be to update the irq_time using 803 * the current rq->clock timestamp, except that would require using 804 * atomic ops. 805 */ 806 if (irq_delta > delta) 807 irq_delta = delta; 808 809 rq->prev_irq_time += irq_delta; 810 delta -= irq_delta; 811 #endif 812 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 813 if (static_key_false((¶virt_steal_rq_enabled))) { 814 steal = paravirt_steal_clock(cpu_of(rq)); 815 steal -= rq->prev_steal_time_rq; 816 817 if (unlikely(steal > delta)) 818 steal = delta; 819 820 rq->prev_steal_time_rq += steal; 821 delta -= steal; 822 } 823 #endif 824 825 rq->clock_task += delta; 826 827 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 828 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 829 sched_rt_avg_update(rq, irq_delta + steal); 830 #endif 831 } 832 833 void sched_set_stop_task(int cpu, struct task_struct *stop) 834 { 835 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 836 struct task_struct *old_stop = cpu_rq(cpu)->stop; 837 838 if (stop) { 839 /* 840 * Make it appear like a SCHED_FIFO task, its something 841 * userspace knows about and won't get confused about. 842 * 843 * Also, it will make PI more or less work without too 844 * much confusion -- but then, stop work should not 845 * rely on PI working anyway. 846 */ 847 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 848 849 stop->sched_class = &stop_sched_class; 850 } 851 852 cpu_rq(cpu)->stop = stop; 853 854 if (old_stop) { 855 /* 856 * Reset it back to a normal scheduling class so that 857 * it can die in pieces. 858 */ 859 old_stop->sched_class = &rt_sched_class; 860 } 861 } 862 863 /* 864 * __normal_prio - return the priority that is based on the static prio 865 */ 866 static inline int __normal_prio(struct task_struct *p) 867 { 868 return p->static_prio; 869 } 870 871 /* 872 * Calculate the expected normal priority: i.e. priority 873 * without taking RT-inheritance into account. Might be 874 * boosted by interactivity modifiers. Changes upon fork, 875 * setprio syscalls, and whenever the interactivity 876 * estimator recalculates. 877 */ 878 static inline int normal_prio(struct task_struct *p) 879 { 880 int prio; 881 882 if (task_has_dl_policy(p)) 883 prio = MAX_DL_PRIO-1; 884 else if (task_has_rt_policy(p)) 885 prio = MAX_RT_PRIO-1 - p->rt_priority; 886 else 887 prio = __normal_prio(p); 888 return prio; 889 } 890 891 /* 892 * Calculate the current priority, i.e. the priority 893 * taken into account by the scheduler. This value might 894 * be boosted by RT tasks, or might be boosted by 895 * interactivity modifiers. Will be RT if the task got 896 * RT-boosted. If not then it returns p->normal_prio. 897 */ 898 static int effective_prio(struct task_struct *p) 899 { 900 p->normal_prio = normal_prio(p); 901 /* 902 * If we are RT tasks or we were boosted to RT priority, 903 * keep the priority unchanged. Otherwise, update priority 904 * to the normal priority: 905 */ 906 if (!rt_prio(p->prio)) 907 return p->normal_prio; 908 return p->prio; 909 } 910 911 /** 912 * task_curr - is this task currently executing on a CPU? 913 * @p: the task in question. 914 * 915 * Return: 1 if the task is currently executing. 0 otherwise. 916 */ 917 inline int task_curr(const struct task_struct *p) 918 { 919 return cpu_curr(task_cpu(p)) == p; 920 } 921 922 /* 923 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 924 * use the balance_callback list if you want balancing. 925 * 926 * this means any call to check_class_changed() must be followed by a call to 927 * balance_callback(). 928 */ 929 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 930 const struct sched_class *prev_class, 931 int oldprio) 932 { 933 if (prev_class != p->sched_class) { 934 if (prev_class->switched_from) 935 prev_class->switched_from(rq, p); 936 937 p->sched_class->switched_to(rq, p); 938 } else if (oldprio != p->prio || dl_task(p)) 939 p->sched_class->prio_changed(rq, p, oldprio); 940 } 941 942 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 943 { 944 const struct sched_class *class; 945 946 if (p->sched_class == rq->curr->sched_class) { 947 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 948 } else { 949 for_each_class(class) { 950 if (class == rq->curr->sched_class) 951 break; 952 if (class == p->sched_class) { 953 resched_curr(rq); 954 break; 955 } 956 } 957 } 958 959 /* 960 * A queue event has occurred, and we're going to schedule. In 961 * this case, we can save a useless back to back clock update. 962 */ 963 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 964 rq_clock_skip_update(rq, true); 965 } 966 967 #ifdef CONFIG_SMP 968 /* 969 * This is how migration works: 970 * 971 * 1) we invoke migration_cpu_stop() on the target CPU using 972 * stop_one_cpu(). 973 * 2) stopper starts to run (implicitly forcing the migrated thread 974 * off the CPU) 975 * 3) it checks whether the migrated task is still in the wrong runqueue. 976 * 4) if it's in the wrong runqueue then the migration thread removes 977 * it and puts it into the right queue. 978 * 5) stopper completes and stop_one_cpu() returns and the migration 979 * is done. 980 */ 981 982 /* 983 * move_queued_task - move a queued task to new rq. 984 * 985 * Returns (locked) new rq. Old rq's lock is released. 986 */ 987 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu) 988 { 989 lockdep_assert_held(&rq->lock); 990 991 p->on_rq = TASK_ON_RQ_MIGRATING; 992 dequeue_task(rq, p, 0); 993 set_task_cpu(p, new_cpu); 994 raw_spin_unlock(&rq->lock); 995 996 rq = cpu_rq(new_cpu); 997 998 raw_spin_lock(&rq->lock); 999 BUG_ON(task_cpu(p) != new_cpu); 1000 enqueue_task(rq, p, 0); 1001 p->on_rq = TASK_ON_RQ_QUEUED; 1002 check_preempt_curr(rq, p, 0); 1003 1004 return rq; 1005 } 1006 1007 struct migration_arg { 1008 struct task_struct *task; 1009 int dest_cpu; 1010 }; 1011 1012 /* 1013 * Move (not current) task off this cpu, onto dest cpu. We're doing 1014 * this because either it can't run here any more (set_cpus_allowed() 1015 * away from this CPU, or CPU going down), or because we're 1016 * attempting to rebalance this task on exec (sched_exec). 1017 * 1018 * So we race with normal scheduler movements, but that's OK, as long 1019 * as the task is no longer on this CPU. 1020 */ 1021 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu) 1022 { 1023 if (unlikely(!cpu_active(dest_cpu))) 1024 return rq; 1025 1026 /* Affinity changed (again). */ 1027 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1028 return rq; 1029 1030 rq = move_queued_task(rq, p, dest_cpu); 1031 1032 return rq; 1033 } 1034 1035 /* 1036 * migration_cpu_stop - this will be executed by a highprio stopper thread 1037 * and performs thread migration by bumping thread off CPU then 1038 * 'pushing' onto another runqueue. 1039 */ 1040 static int migration_cpu_stop(void *data) 1041 { 1042 struct migration_arg *arg = data; 1043 struct task_struct *p = arg->task; 1044 struct rq *rq = this_rq(); 1045 1046 /* 1047 * The original target cpu might have gone down and we might 1048 * be on another cpu but it doesn't matter. 1049 */ 1050 local_irq_disable(); 1051 /* 1052 * We need to explicitly wake pending tasks before running 1053 * __migrate_task() such that we will not miss enforcing cpus_allowed 1054 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1055 */ 1056 sched_ttwu_pending(); 1057 1058 raw_spin_lock(&p->pi_lock); 1059 raw_spin_lock(&rq->lock); 1060 /* 1061 * If task_rq(p) != rq, it cannot be migrated here, because we're 1062 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1063 * we're holding p->pi_lock. 1064 */ 1065 if (task_rq(p) == rq && task_on_rq_queued(p)) 1066 rq = __migrate_task(rq, p, arg->dest_cpu); 1067 raw_spin_unlock(&rq->lock); 1068 raw_spin_unlock(&p->pi_lock); 1069 1070 local_irq_enable(); 1071 return 0; 1072 } 1073 1074 /* 1075 * sched_class::set_cpus_allowed must do the below, but is not required to 1076 * actually call this function. 1077 */ 1078 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1079 { 1080 cpumask_copy(&p->cpus_allowed, new_mask); 1081 p->nr_cpus_allowed = cpumask_weight(new_mask); 1082 } 1083 1084 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1085 { 1086 struct rq *rq = task_rq(p); 1087 bool queued, running; 1088 1089 lockdep_assert_held(&p->pi_lock); 1090 1091 queued = task_on_rq_queued(p); 1092 running = task_current(rq, p); 1093 1094 if (queued) { 1095 /* 1096 * Because __kthread_bind() calls this on blocked tasks without 1097 * holding rq->lock. 1098 */ 1099 lockdep_assert_held(&rq->lock); 1100 dequeue_task(rq, p, DEQUEUE_SAVE); 1101 } 1102 if (running) 1103 put_prev_task(rq, p); 1104 1105 p->sched_class->set_cpus_allowed(p, new_mask); 1106 1107 if (running) 1108 p->sched_class->set_curr_task(rq); 1109 if (queued) 1110 enqueue_task(rq, p, ENQUEUE_RESTORE); 1111 } 1112 1113 /* 1114 * Change a given task's CPU affinity. Migrate the thread to a 1115 * proper CPU and schedule it away if the CPU it's executing on 1116 * is removed from the allowed bitmask. 1117 * 1118 * NOTE: the caller must have a valid reference to the task, the 1119 * task must not exit() & deallocate itself prematurely. The 1120 * call is not atomic; no spinlocks may be held. 1121 */ 1122 static int __set_cpus_allowed_ptr(struct task_struct *p, 1123 const struct cpumask *new_mask, bool check) 1124 { 1125 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1126 unsigned int dest_cpu; 1127 struct rq_flags rf; 1128 struct rq *rq; 1129 int ret = 0; 1130 1131 rq = task_rq_lock(p, &rf); 1132 1133 if (p->flags & PF_KTHREAD) { 1134 /* 1135 * Kernel threads are allowed on online && !active CPUs 1136 */ 1137 cpu_valid_mask = cpu_online_mask; 1138 } 1139 1140 /* 1141 * Must re-check here, to close a race against __kthread_bind(), 1142 * sched_setaffinity() is not guaranteed to observe the flag. 1143 */ 1144 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1145 ret = -EINVAL; 1146 goto out; 1147 } 1148 1149 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1150 goto out; 1151 1152 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1153 ret = -EINVAL; 1154 goto out; 1155 } 1156 1157 do_set_cpus_allowed(p, new_mask); 1158 1159 if (p->flags & PF_KTHREAD) { 1160 /* 1161 * For kernel threads that do indeed end up on online && 1162 * !active we want to ensure they are strict per-cpu threads. 1163 */ 1164 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1165 !cpumask_intersects(new_mask, cpu_active_mask) && 1166 p->nr_cpus_allowed != 1); 1167 } 1168 1169 /* Can the task run on the task's current CPU? If so, we're done */ 1170 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1171 goto out; 1172 1173 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1174 if (task_running(rq, p) || p->state == TASK_WAKING) { 1175 struct migration_arg arg = { p, dest_cpu }; 1176 /* Need help from migration thread: drop lock and wait. */ 1177 task_rq_unlock(rq, p, &rf); 1178 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1179 tlb_migrate_finish(p->mm); 1180 return 0; 1181 } else if (task_on_rq_queued(p)) { 1182 /* 1183 * OK, since we're going to drop the lock immediately 1184 * afterwards anyway. 1185 */ 1186 lockdep_unpin_lock(&rq->lock, rf.cookie); 1187 rq = move_queued_task(rq, p, dest_cpu); 1188 lockdep_repin_lock(&rq->lock, rf.cookie); 1189 } 1190 out: 1191 task_rq_unlock(rq, p, &rf); 1192 1193 return ret; 1194 } 1195 1196 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1197 { 1198 return __set_cpus_allowed_ptr(p, new_mask, false); 1199 } 1200 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1201 1202 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1203 { 1204 #ifdef CONFIG_SCHED_DEBUG 1205 /* 1206 * We should never call set_task_cpu() on a blocked task, 1207 * ttwu() will sort out the placement. 1208 */ 1209 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1210 !p->on_rq); 1211 1212 /* 1213 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1214 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1215 * time relying on p->on_rq. 1216 */ 1217 WARN_ON_ONCE(p->state == TASK_RUNNING && 1218 p->sched_class == &fair_sched_class && 1219 (p->on_rq && !task_on_rq_migrating(p))); 1220 1221 #ifdef CONFIG_LOCKDEP 1222 /* 1223 * The caller should hold either p->pi_lock or rq->lock, when changing 1224 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1225 * 1226 * sched_move_task() holds both and thus holding either pins the cgroup, 1227 * see task_group(). 1228 * 1229 * Furthermore, all task_rq users should acquire both locks, see 1230 * task_rq_lock(). 1231 */ 1232 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1233 lockdep_is_held(&task_rq(p)->lock))); 1234 #endif 1235 #endif 1236 1237 trace_sched_migrate_task(p, new_cpu); 1238 1239 if (task_cpu(p) != new_cpu) { 1240 if (p->sched_class->migrate_task_rq) 1241 p->sched_class->migrate_task_rq(p); 1242 p->se.nr_migrations++; 1243 perf_event_task_migrate(p); 1244 } 1245 1246 __set_task_cpu(p, new_cpu); 1247 } 1248 1249 static void __migrate_swap_task(struct task_struct *p, int cpu) 1250 { 1251 if (task_on_rq_queued(p)) { 1252 struct rq *src_rq, *dst_rq; 1253 1254 src_rq = task_rq(p); 1255 dst_rq = cpu_rq(cpu); 1256 1257 p->on_rq = TASK_ON_RQ_MIGRATING; 1258 deactivate_task(src_rq, p, 0); 1259 set_task_cpu(p, cpu); 1260 activate_task(dst_rq, p, 0); 1261 p->on_rq = TASK_ON_RQ_QUEUED; 1262 check_preempt_curr(dst_rq, p, 0); 1263 } else { 1264 /* 1265 * Task isn't running anymore; make it appear like we migrated 1266 * it before it went to sleep. This means on wakeup we make the 1267 * previous cpu our targer instead of where it really is. 1268 */ 1269 p->wake_cpu = cpu; 1270 } 1271 } 1272 1273 struct migration_swap_arg { 1274 struct task_struct *src_task, *dst_task; 1275 int src_cpu, dst_cpu; 1276 }; 1277 1278 static int migrate_swap_stop(void *data) 1279 { 1280 struct migration_swap_arg *arg = data; 1281 struct rq *src_rq, *dst_rq; 1282 int ret = -EAGAIN; 1283 1284 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1285 return -EAGAIN; 1286 1287 src_rq = cpu_rq(arg->src_cpu); 1288 dst_rq = cpu_rq(arg->dst_cpu); 1289 1290 double_raw_lock(&arg->src_task->pi_lock, 1291 &arg->dst_task->pi_lock); 1292 double_rq_lock(src_rq, dst_rq); 1293 1294 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1295 goto unlock; 1296 1297 if (task_cpu(arg->src_task) != arg->src_cpu) 1298 goto unlock; 1299 1300 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1301 goto unlock; 1302 1303 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1304 goto unlock; 1305 1306 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1307 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1308 1309 ret = 0; 1310 1311 unlock: 1312 double_rq_unlock(src_rq, dst_rq); 1313 raw_spin_unlock(&arg->dst_task->pi_lock); 1314 raw_spin_unlock(&arg->src_task->pi_lock); 1315 1316 return ret; 1317 } 1318 1319 /* 1320 * Cross migrate two tasks 1321 */ 1322 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1323 { 1324 struct migration_swap_arg arg; 1325 int ret = -EINVAL; 1326 1327 arg = (struct migration_swap_arg){ 1328 .src_task = cur, 1329 .src_cpu = task_cpu(cur), 1330 .dst_task = p, 1331 .dst_cpu = task_cpu(p), 1332 }; 1333 1334 if (arg.src_cpu == arg.dst_cpu) 1335 goto out; 1336 1337 /* 1338 * These three tests are all lockless; this is OK since all of them 1339 * will be re-checked with proper locks held further down the line. 1340 */ 1341 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1342 goto out; 1343 1344 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1345 goto out; 1346 1347 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1348 goto out; 1349 1350 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1351 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1352 1353 out: 1354 return ret; 1355 } 1356 1357 /* 1358 * wait_task_inactive - wait for a thread to unschedule. 1359 * 1360 * If @match_state is nonzero, it's the @p->state value just checked and 1361 * not expected to change. If it changes, i.e. @p might have woken up, 1362 * then return zero. When we succeed in waiting for @p to be off its CPU, 1363 * we return a positive number (its total switch count). If a second call 1364 * a short while later returns the same number, the caller can be sure that 1365 * @p has remained unscheduled the whole time. 1366 * 1367 * The caller must ensure that the task *will* unschedule sometime soon, 1368 * else this function might spin for a *long* time. This function can't 1369 * be called with interrupts off, or it may introduce deadlock with 1370 * smp_call_function() if an IPI is sent by the same process we are 1371 * waiting to become inactive. 1372 */ 1373 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1374 { 1375 int running, queued; 1376 struct rq_flags rf; 1377 unsigned long ncsw; 1378 struct rq *rq; 1379 1380 for (;;) { 1381 /* 1382 * We do the initial early heuristics without holding 1383 * any task-queue locks at all. We'll only try to get 1384 * the runqueue lock when things look like they will 1385 * work out! 1386 */ 1387 rq = task_rq(p); 1388 1389 /* 1390 * If the task is actively running on another CPU 1391 * still, just relax and busy-wait without holding 1392 * any locks. 1393 * 1394 * NOTE! Since we don't hold any locks, it's not 1395 * even sure that "rq" stays as the right runqueue! 1396 * But we don't care, since "task_running()" will 1397 * return false if the runqueue has changed and p 1398 * is actually now running somewhere else! 1399 */ 1400 while (task_running(rq, p)) { 1401 if (match_state && unlikely(p->state != match_state)) 1402 return 0; 1403 cpu_relax(); 1404 } 1405 1406 /* 1407 * Ok, time to look more closely! We need the rq 1408 * lock now, to be *sure*. If we're wrong, we'll 1409 * just go back and repeat. 1410 */ 1411 rq = task_rq_lock(p, &rf); 1412 trace_sched_wait_task(p); 1413 running = task_running(rq, p); 1414 queued = task_on_rq_queued(p); 1415 ncsw = 0; 1416 if (!match_state || p->state == match_state) 1417 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1418 task_rq_unlock(rq, p, &rf); 1419 1420 /* 1421 * If it changed from the expected state, bail out now. 1422 */ 1423 if (unlikely(!ncsw)) 1424 break; 1425 1426 /* 1427 * Was it really running after all now that we 1428 * checked with the proper locks actually held? 1429 * 1430 * Oops. Go back and try again.. 1431 */ 1432 if (unlikely(running)) { 1433 cpu_relax(); 1434 continue; 1435 } 1436 1437 /* 1438 * It's not enough that it's not actively running, 1439 * it must be off the runqueue _entirely_, and not 1440 * preempted! 1441 * 1442 * So if it was still runnable (but just not actively 1443 * running right now), it's preempted, and we should 1444 * yield - it could be a while. 1445 */ 1446 if (unlikely(queued)) { 1447 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1448 1449 set_current_state(TASK_UNINTERRUPTIBLE); 1450 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1451 continue; 1452 } 1453 1454 /* 1455 * Ahh, all good. It wasn't running, and it wasn't 1456 * runnable, which means that it will never become 1457 * running in the future either. We're all done! 1458 */ 1459 break; 1460 } 1461 1462 return ncsw; 1463 } 1464 1465 /*** 1466 * kick_process - kick a running thread to enter/exit the kernel 1467 * @p: the to-be-kicked thread 1468 * 1469 * Cause a process which is running on another CPU to enter 1470 * kernel-mode, without any delay. (to get signals handled.) 1471 * 1472 * NOTE: this function doesn't have to take the runqueue lock, 1473 * because all it wants to ensure is that the remote task enters 1474 * the kernel. If the IPI races and the task has been migrated 1475 * to another CPU then no harm is done and the purpose has been 1476 * achieved as well. 1477 */ 1478 void kick_process(struct task_struct *p) 1479 { 1480 int cpu; 1481 1482 preempt_disable(); 1483 cpu = task_cpu(p); 1484 if ((cpu != smp_processor_id()) && task_curr(p)) 1485 smp_send_reschedule(cpu); 1486 preempt_enable(); 1487 } 1488 EXPORT_SYMBOL_GPL(kick_process); 1489 1490 /* 1491 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1492 * 1493 * A few notes on cpu_active vs cpu_online: 1494 * 1495 * - cpu_active must be a subset of cpu_online 1496 * 1497 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu, 1498 * see __set_cpus_allowed_ptr(). At this point the newly online 1499 * cpu isn't yet part of the sched domains, and balancing will not 1500 * see it. 1501 * 1502 * - on cpu-down we clear cpu_active() to mask the sched domains and 1503 * avoid the load balancer to place new tasks on the to be removed 1504 * cpu. Existing tasks will remain running there and will be taken 1505 * off. 1506 * 1507 * This means that fallback selection must not select !active CPUs. 1508 * And can assume that any active CPU must be online. Conversely 1509 * select_task_rq() below may allow selection of !active CPUs in order 1510 * to satisfy the above rules. 1511 */ 1512 static int select_fallback_rq(int cpu, struct task_struct *p) 1513 { 1514 int nid = cpu_to_node(cpu); 1515 const struct cpumask *nodemask = NULL; 1516 enum { cpuset, possible, fail } state = cpuset; 1517 int dest_cpu; 1518 1519 /* 1520 * If the node that the cpu is on has been offlined, cpu_to_node() 1521 * will return -1. There is no cpu on the node, and we should 1522 * select the cpu on the other node. 1523 */ 1524 if (nid != -1) { 1525 nodemask = cpumask_of_node(nid); 1526 1527 /* Look for allowed, online CPU in same node. */ 1528 for_each_cpu(dest_cpu, nodemask) { 1529 if (!cpu_active(dest_cpu)) 1530 continue; 1531 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1532 return dest_cpu; 1533 } 1534 } 1535 1536 for (;;) { 1537 /* Any allowed, online CPU? */ 1538 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1539 if (!cpu_active(dest_cpu)) 1540 continue; 1541 goto out; 1542 } 1543 1544 /* No more Mr. Nice Guy. */ 1545 switch (state) { 1546 case cpuset: 1547 if (IS_ENABLED(CONFIG_CPUSETS)) { 1548 cpuset_cpus_allowed_fallback(p); 1549 state = possible; 1550 break; 1551 } 1552 /* fall-through */ 1553 case possible: 1554 do_set_cpus_allowed(p, cpu_possible_mask); 1555 state = fail; 1556 break; 1557 1558 case fail: 1559 BUG(); 1560 break; 1561 } 1562 } 1563 1564 out: 1565 if (state != cpuset) { 1566 /* 1567 * Don't tell them about moving exiting tasks or 1568 * kernel threads (both mm NULL), since they never 1569 * leave kernel. 1570 */ 1571 if (p->mm && printk_ratelimit()) { 1572 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1573 task_pid_nr(p), p->comm, cpu); 1574 } 1575 } 1576 1577 return dest_cpu; 1578 } 1579 1580 /* 1581 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1582 */ 1583 static inline 1584 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1585 { 1586 lockdep_assert_held(&p->pi_lock); 1587 1588 if (tsk_nr_cpus_allowed(p) > 1) 1589 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1590 else 1591 cpu = cpumask_any(tsk_cpus_allowed(p)); 1592 1593 /* 1594 * In order not to call set_task_cpu() on a blocking task we need 1595 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1596 * cpu. 1597 * 1598 * Since this is common to all placement strategies, this lives here. 1599 * 1600 * [ this allows ->select_task() to simply return task_cpu(p) and 1601 * not worry about this generic constraint ] 1602 */ 1603 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1604 !cpu_online(cpu))) 1605 cpu = select_fallback_rq(task_cpu(p), p); 1606 1607 return cpu; 1608 } 1609 1610 static void update_avg(u64 *avg, u64 sample) 1611 { 1612 s64 diff = sample - *avg; 1613 *avg += diff >> 3; 1614 } 1615 1616 #else 1617 1618 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1619 const struct cpumask *new_mask, bool check) 1620 { 1621 return set_cpus_allowed_ptr(p, new_mask); 1622 } 1623 1624 #endif /* CONFIG_SMP */ 1625 1626 static void 1627 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1628 { 1629 #ifdef CONFIG_SCHEDSTATS 1630 struct rq *rq = this_rq(); 1631 1632 #ifdef CONFIG_SMP 1633 int this_cpu = smp_processor_id(); 1634 1635 if (cpu == this_cpu) { 1636 schedstat_inc(rq, ttwu_local); 1637 schedstat_inc(p, se.statistics.nr_wakeups_local); 1638 } else { 1639 struct sched_domain *sd; 1640 1641 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1642 rcu_read_lock(); 1643 for_each_domain(this_cpu, sd) { 1644 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1645 schedstat_inc(sd, ttwu_wake_remote); 1646 break; 1647 } 1648 } 1649 rcu_read_unlock(); 1650 } 1651 1652 if (wake_flags & WF_MIGRATED) 1653 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1654 1655 #endif /* CONFIG_SMP */ 1656 1657 schedstat_inc(rq, ttwu_count); 1658 schedstat_inc(p, se.statistics.nr_wakeups); 1659 1660 if (wake_flags & WF_SYNC) 1661 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1662 1663 #endif /* CONFIG_SCHEDSTATS */ 1664 } 1665 1666 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1667 { 1668 activate_task(rq, p, en_flags); 1669 p->on_rq = TASK_ON_RQ_QUEUED; 1670 1671 /* if a worker is waking up, notify workqueue */ 1672 if (p->flags & PF_WQ_WORKER) 1673 wq_worker_waking_up(p, cpu_of(rq)); 1674 } 1675 1676 /* 1677 * Mark the task runnable and perform wakeup-preemption. 1678 */ 1679 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1680 struct pin_cookie cookie) 1681 { 1682 check_preempt_curr(rq, p, wake_flags); 1683 p->state = TASK_RUNNING; 1684 trace_sched_wakeup(p); 1685 1686 #ifdef CONFIG_SMP 1687 if (p->sched_class->task_woken) { 1688 /* 1689 * Our task @p is fully woken up and running; so its safe to 1690 * drop the rq->lock, hereafter rq is only used for statistics. 1691 */ 1692 lockdep_unpin_lock(&rq->lock, cookie); 1693 p->sched_class->task_woken(rq, p); 1694 lockdep_repin_lock(&rq->lock, cookie); 1695 } 1696 1697 if (rq->idle_stamp) { 1698 u64 delta = rq_clock(rq) - rq->idle_stamp; 1699 u64 max = 2*rq->max_idle_balance_cost; 1700 1701 update_avg(&rq->avg_idle, delta); 1702 1703 if (rq->avg_idle > max) 1704 rq->avg_idle = max; 1705 1706 rq->idle_stamp = 0; 1707 } 1708 #endif 1709 } 1710 1711 static void 1712 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1713 struct pin_cookie cookie) 1714 { 1715 int en_flags = ENQUEUE_WAKEUP; 1716 1717 lockdep_assert_held(&rq->lock); 1718 1719 #ifdef CONFIG_SMP 1720 if (p->sched_contributes_to_load) 1721 rq->nr_uninterruptible--; 1722 1723 if (wake_flags & WF_MIGRATED) 1724 en_flags |= ENQUEUE_MIGRATED; 1725 #endif 1726 1727 ttwu_activate(rq, p, en_flags); 1728 ttwu_do_wakeup(rq, p, wake_flags, cookie); 1729 } 1730 1731 /* 1732 * Called in case the task @p isn't fully descheduled from its runqueue, 1733 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1734 * since all we need to do is flip p->state to TASK_RUNNING, since 1735 * the task is still ->on_rq. 1736 */ 1737 static int ttwu_remote(struct task_struct *p, int wake_flags) 1738 { 1739 struct rq_flags rf; 1740 struct rq *rq; 1741 int ret = 0; 1742 1743 rq = __task_rq_lock(p, &rf); 1744 if (task_on_rq_queued(p)) { 1745 /* check_preempt_curr() may use rq clock */ 1746 update_rq_clock(rq); 1747 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie); 1748 ret = 1; 1749 } 1750 __task_rq_unlock(rq, &rf); 1751 1752 return ret; 1753 } 1754 1755 #ifdef CONFIG_SMP 1756 void sched_ttwu_pending(void) 1757 { 1758 struct rq *rq = this_rq(); 1759 struct llist_node *llist = llist_del_all(&rq->wake_list); 1760 struct pin_cookie cookie; 1761 struct task_struct *p; 1762 unsigned long flags; 1763 1764 if (!llist) 1765 return; 1766 1767 raw_spin_lock_irqsave(&rq->lock, flags); 1768 cookie = lockdep_pin_lock(&rq->lock); 1769 1770 while (llist) { 1771 p = llist_entry(llist, struct task_struct, wake_entry); 1772 llist = llist_next(llist); 1773 /* 1774 * See ttwu_queue(); we only call ttwu_queue_remote() when 1775 * its a x-cpu wakeup. 1776 */ 1777 ttwu_do_activate(rq, p, WF_MIGRATED, cookie); 1778 } 1779 1780 lockdep_unpin_lock(&rq->lock, cookie); 1781 raw_spin_unlock_irqrestore(&rq->lock, flags); 1782 } 1783 1784 void scheduler_ipi(void) 1785 { 1786 /* 1787 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1788 * TIF_NEED_RESCHED remotely (for the first time) will also send 1789 * this IPI. 1790 */ 1791 preempt_fold_need_resched(); 1792 1793 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1794 return; 1795 1796 /* 1797 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1798 * traditionally all their work was done from the interrupt return 1799 * path. Now that we actually do some work, we need to make sure 1800 * we do call them. 1801 * 1802 * Some archs already do call them, luckily irq_enter/exit nest 1803 * properly. 1804 * 1805 * Arguably we should visit all archs and update all handlers, 1806 * however a fair share of IPIs are still resched only so this would 1807 * somewhat pessimize the simple resched case. 1808 */ 1809 irq_enter(); 1810 sched_ttwu_pending(); 1811 1812 /* 1813 * Check if someone kicked us for doing the nohz idle load balance. 1814 */ 1815 if (unlikely(got_nohz_idle_kick())) { 1816 this_rq()->idle_balance = 1; 1817 raise_softirq_irqoff(SCHED_SOFTIRQ); 1818 } 1819 irq_exit(); 1820 } 1821 1822 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1823 { 1824 struct rq *rq = cpu_rq(cpu); 1825 1826 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1827 if (!set_nr_if_polling(rq->idle)) 1828 smp_send_reschedule(cpu); 1829 else 1830 trace_sched_wake_idle_without_ipi(cpu); 1831 } 1832 } 1833 1834 void wake_up_if_idle(int cpu) 1835 { 1836 struct rq *rq = cpu_rq(cpu); 1837 unsigned long flags; 1838 1839 rcu_read_lock(); 1840 1841 if (!is_idle_task(rcu_dereference(rq->curr))) 1842 goto out; 1843 1844 if (set_nr_if_polling(rq->idle)) { 1845 trace_sched_wake_idle_without_ipi(cpu); 1846 } else { 1847 raw_spin_lock_irqsave(&rq->lock, flags); 1848 if (is_idle_task(rq->curr)) 1849 smp_send_reschedule(cpu); 1850 /* Else cpu is not in idle, do nothing here */ 1851 raw_spin_unlock_irqrestore(&rq->lock, flags); 1852 } 1853 1854 out: 1855 rcu_read_unlock(); 1856 } 1857 1858 bool cpus_share_cache(int this_cpu, int that_cpu) 1859 { 1860 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1861 } 1862 #endif /* CONFIG_SMP */ 1863 1864 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1865 { 1866 struct rq *rq = cpu_rq(cpu); 1867 struct pin_cookie cookie; 1868 1869 #if defined(CONFIG_SMP) 1870 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1871 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1872 ttwu_queue_remote(p, cpu); 1873 return; 1874 } 1875 #endif 1876 1877 raw_spin_lock(&rq->lock); 1878 cookie = lockdep_pin_lock(&rq->lock); 1879 ttwu_do_activate(rq, p, wake_flags, cookie); 1880 lockdep_unpin_lock(&rq->lock, cookie); 1881 raw_spin_unlock(&rq->lock); 1882 } 1883 1884 /* 1885 * Notes on Program-Order guarantees on SMP systems. 1886 * 1887 * MIGRATION 1888 * 1889 * The basic program-order guarantee on SMP systems is that when a task [t] 1890 * migrates, all its activity on its old cpu [c0] happens-before any subsequent 1891 * execution on its new cpu [c1]. 1892 * 1893 * For migration (of runnable tasks) this is provided by the following means: 1894 * 1895 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1896 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1897 * rq(c1)->lock (if not at the same time, then in that order). 1898 * C) LOCK of the rq(c1)->lock scheduling in task 1899 * 1900 * Transitivity guarantees that B happens after A and C after B. 1901 * Note: we only require RCpc transitivity. 1902 * Note: the cpu doing B need not be c0 or c1 1903 * 1904 * Example: 1905 * 1906 * CPU0 CPU1 CPU2 1907 * 1908 * LOCK rq(0)->lock 1909 * sched-out X 1910 * sched-in Y 1911 * UNLOCK rq(0)->lock 1912 * 1913 * LOCK rq(0)->lock // orders against CPU0 1914 * dequeue X 1915 * UNLOCK rq(0)->lock 1916 * 1917 * LOCK rq(1)->lock 1918 * enqueue X 1919 * UNLOCK rq(1)->lock 1920 * 1921 * LOCK rq(1)->lock // orders against CPU2 1922 * sched-out Z 1923 * sched-in X 1924 * UNLOCK rq(1)->lock 1925 * 1926 * 1927 * BLOCKING -- aka. SLEEP + WAKEUP 1928 * 1929 * For blocking we (obviously) need to provide the same guarantee as for 1930 * migration. However the means are completely different as there is no lock 1931 * chain to provide order. Instead we do: 1932 * 1933 * 1) smp_store_release(X->on_cpu, 0) 1934 * 2) smp_cond_acquire(!X->on_cpu) 1935 * 1936 * Example: 1937 * 1938 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1939 * 1940 * LOCK rq(0)->lock LOCK X->pi_lock 1941 * dequeue X 1942 * sched-out X 1943 * smp_store_release(X->on_cpu, 0); 1944 * 1945 * smp_cond_acquire(!X->on_cpu); 1946 * X->state = WAKING 1947 * set_task_cpu(X,2) 1948 * 1949 * LOCK rq(2)->lock 1950 * enqueue X 1951 * X->state = RUNNING 1952 * UNLOCK rq(2)->lock 1953 * 1954 * LOCK rq(2)->lock // orders against CPU1 1955 * sched-out Z 1956 * sched-in X 1957 * UNLOCK rq(2)->lock 1958 * 1959 * UNLOCK X->pi_lock 1960 * UNLOCK rq(0)->lock 1961 * 1962 * 1963 * However; for wakeups there is a second guarantee we must provide, namely we 1964 * must observe the state that lead to our wakeup. That is, not only must our 1965 * task observe its own prior state, it must also observe the stores prior to 1966 * its wakeup. 1967 * 1968 * This means that any means of doing remote wakeups must order the CPU doing 1969 * the wakeup against the CPU the task is going to end up running on. This, 1970 * however, is already required for the regular Program-Order guarantee above, 1971 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire). 1972 * 1973 */ 1974 1975 /** 1976 * try_to_wake_up - wake up a thread 1977 * @p: the thread to be awakened 1978 * @state: the mask of task states that can be woken 1979 * @wake_flags: wake modifier flags (WF_*) 1980 * 1981 * Put it on the run-queue if it's not already there. The "current" 1982 * thread is always on the run-queue (except when the actual 1983 * re-schedule is in progress), and as such you're allowed to do 1984 * the simpler "current->state = TASK_RUNNING" to mark yourself 1985 * runnable without the overhead of this. 1986 * 1987 * Return: %true if @p was woken up, %false if it was already running. 1988 * or @state didn't match @p's state. 1989 */ 1990 static int 1991 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1992 { 1993 unsigned long flags; 1994 int cpu, success = 0; 1995 1996 /* 1997 * If we are going to wake up a thread waiting for CONDITION we 1998 * need to ensure that CONDITION=1 done by the caller can not be 1999 * reordered with p->state check below. This pairs with mb() in 2000 * set_current_state() the waiting thread does. 2001 */ 2002 smp_mb__before_spinlock(); 2003 raw_spin_lock_irqsave(&p->pi_lock, flags); 2004 if (!(p->state & state)) 2005 goto out; 2006 2007 trace_sched_waking(p); 2008 2009 success = 1; /* we're going to change ->state */ 2010 cpu = task_cpu(p); 2011 2012 if (p->on_rq && ttwu_remote(p, wake_flags)) 2013 goto stat; 2014 2015 #ifdef CONFIG_SMP 2016 /* 2017 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2018 * possible to, falsely, observe p->on_cpu == 0. 2019 * 2020 * One must be running (->on_cpu == 1) in order to remove oneself 2021 * from the runqueue. 2022 * 2023 * [S] ->on_cpu = 1; [L] ->on_rq 2024 * UNLOCK rq->lock 2025 * RMB 2026 * LOCK rq->lock 2027 * [S] ->on_rq = 0; [L] ->on_cpu 2028 * 2029 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2030 * from the consecutive calls to schedule(); the first switching to our 2031 * task, the second putting it to sleep. 2032 */ 2033 smp_rmb(); 2034 2035 /* 2036 * If the owning (remote) cpu is still in the middle of schedule() with 2037 * this task as prev, wait until its done referencing the task. 2038 * 2039 * Pairs with the smp_store_release() in finish_lock_switch(). 2040 * 2041 * This ensures that tasks getting woken will be fully ordered against 2042 * their previous state and preserve Program Order. 2043 */ 2044 smp_cond_acquire(!p->on_cpu); 2045 2046 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2047 p->state = TASK_WAKING; 2048 2049 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2050 if (task_cpu(p) != cpu) { 2051 wake_flags |= WF_MIGRATED; 2052 set_task_cpu(p, cpu); 2053 } 2054 #endif /* CONFIG_SMP */ 2055 2056 ttwu_queue(p, cpu, wake_flags); 2057 stat: 2058 if (schedstat_enabled()) 2059 ttwu_stat(p, cpu, wake_flags); 2060 out: 2061 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2062 2063 return success; 2064 } 2065 2066 /** 2067 * try_to_wake_up_local - try to wake up a local task with rq lock held 2068 * @p: the thread to be awakened 2069 * 2070 * Put @p on the run-queue if it's not already there. The caller must 2071 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2072 * the current task. 2073 */ 2074 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie) 2075 { 2076 struct rq *rq = task_rq(p); 2077 2078 if (WARN_ON_ONCE(rq != this_rq()) || 2079 WARN_ON_ONCE(p == current)) 2080 return; 2081 2082 lockdep_assert_held(&rq->lock); 2083 2084 if (!raw_spin_trylock(&p->pi_lock)) { 2085 /* 2086 * This is OK, because current is on_cpu, which avoids it being 2087 * picked for load-balance and preemption/IRQs are still 2088 * disabled avoiding further scheduler activity on it and we've 2089 * not yet picked a replacement task. 2090 */ 2091 lockdep_unpin_lock(&rq->lock, cookie); 2092 raw_spin_unlock(&rq->lock); 2093 raw_spin_lock(&p->pi_lock); 2094 raw_spin_lock(&rq->lock); 2095 lockdep_repin_lock(&rq->lock, cookie); 2096 } 2097 2098 if (!(p->state & TASK_NORMAL)) 2099 goto out; 2100 2101 trace_sched_waking(p); 2102 2103 if (!task_on_rq_queued(p)) 2104 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 2105 2106 ttwu_do_wakeup(rq, p, 0, cookie); 2107 if (schedstat_enabled()) 2108 ttwu_stat(p, smp_processor_id(), 0); 2109 out: 2110 raw_spin_unlock(&p->pi_lock); 2111 } 2112 2113 /** 2114 * wake_up_process - Wake up a specific process 2115 * @p: The process to be woken up. 2116 * 2117 * Attempt to wake up the nominated process and move it to the set of runnable 2118 * processes. 2119 * 2120 * Return: 1 if the process was woken up, 0 if it was already running. 2121 * 2122 * It may be assumed that this function implies a write memory barrier before 2123 * changing the task state if and only if any tasks are woken up. 2124 */ 2125 int wake_up_process(struct task_struct *p) 2126 { 2127 return try_to_wake_up(p, TASK_NORMAL, 0); 2128 } 2129 EXPORT_SYMBOL(wake_up_process); 2130 2131 int wake_up_state(struct task_struct *p, unsigned int state) 2132 { 2133 return try_to_wake_up(p, state, 0); 2134 } 2135 2136 /* 2137 * This function clears the sched_dl_entity static params. 2138 */ 2139 void __dl_clear_params(struct task_struct *p) 2140 { 2141 struct sched_dl_entity *dl_se = &p->dl; 2142 2143 dl_se->dl_runtime = 0; 2144 dl_se->dl_deadline = 0; 2145 dl_se->dl_period = 0; 2146 dl_se->flags = 0; 2147 dl_se->dl_bw = 0; 2148 2149 dl_se->dl_throttled = 0; 2150 dl_se->dl_yielded = 0; 2151 } 2152 2153 /* 2154 * Perform scheduler related setup for a newly forked process p. 2155 * p is forked by current. 2156 * 2157 * __sched_fork() is basic setup used by init_idle() too: 2158 */ 2159 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2160 { 2161 p->on_rq = 0; 2162 2163 p->se.on_rq = 0; 2164 p->se.exec_start = 0; 2165 p->se.sum_exec_runtime = 0; 2166 p->se.prev_sum_exec_runtime = 0; 2167 p->se.nr_migrations = 0; 2168 p->se.vruntime = 0; 2169 INIT_LIST_HEAD(&p->se.group_node); 2170 2171 #ifdef CONFIG_FAIR_GROUP_SCHED 2172 p->se.cfs_rq = NULL; 2173 #endif 2174 2175 #ifdef CONFIG_SCHEDSTATS 2176 /* Even if schedstat is disabled, there should not be garbage */ 2177 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2178 #endif 2179 2180 RB_CLEAR_NODE(&p->dl.rb_node); 2181 init_dl_task_timer(&p->dl); 2182 __dl_clear_params(p); 2183 2184 INIT_LIST_HEAD(&p->rt.run_list); 2185 p->rt.timeout = 0; 2186 p->rt.time_slice = sched_rr_timeslice; 2187 p->rt.on_rq = 0; 2188 p->rt.on_list = 0; 2189 2190 #ifdef CONFIG_PREEMPT_NOTIFIERS 2191 INIT_HLIST_HEAD(&p->preempt_notifiers); 2192 #endif 2193 2194 #ifdef CONFIG_NUMA_BALANCING 2195 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2196 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2197 p->mm->numa_scan_seq = 0; 2198 } 2199 2200 if (clone_flags & CLONE_VM) 2201 p->numa_preferred_nid = current->numa_preferred_nid; 2202 else 2203 p->numa_preferred_nid = -1; 2204 2205 p->node_stamp = 0ULL; 2206 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2207 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2208 p->numa_work.next = &p->numa_work; 2209 p->numa_faults = NULL; 2210 p->last_task_numa_placement = 0; 2211 p->last_sum_exec_runtime = 0; 2212 2213 p->numa_group = NULL; 2214 #endif /* CONFIG_NUMA_BALANCING */ 2215 } 2216 2217 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2218 2219 #ifdef CONFIG_NUMA_BALANCING 2220 2221 void set_numabalancing_state(bool enabled) 2222 { 2223 if (enabled) 2224 static_branch_enable(&sched_numa_balancing); 2225 else 2226 static_branch_disable(&sched_numa_balancing); 2227 } 2228 2229 #ifdef CONFIG_PROC_SYSCTL 2230 int sysctl_numa_balancing(struct ctl_table *table, int write, 2231 void __user *buffer, size_t *lenp, loff_t *ppos) 2232 { 2233 struct ctl_table t; 2234 int err; 2235 int state = static_branch_likely(&sched_numa_balancing); 2236 2237 if (write && !capable(CAP_SYS_ADMIN)) 2238 return -EPERM; 2239 2240 t = *table; 2241 t.data = &state; 2242 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2243 if (err < 0) 2244 return err; 2245 if (write) 2246 set_numabalancing_state(state); 2247 return err; 2248 } 2249 #endif 2250 #endif 2251 2252 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2253 2254 #ifdef CONFIG_SCHEDSTATS 2255 static void set_schedstats(bool enabled) 2256 { 2257 if (enabled) 2258 static_branch_enable(&sched_schedstats); 2259 else 2260 static_branch_disable(&sched_schedstats); 2261 } 2262 2263 void force_schedstat_enabled(void) 2264 { 2265 if (!schedstat_enabled()) { 2266 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2267 static_branch_enable(&sched_schedstats); 2268 } 2269 } 2270 2271 static int __init setup_schedstats(char *str) 2272 { 2273 int ret = 0; 2274 if (!str) 2275 goto out; 2276 2277 if (!strcmp(str, "enable")) { 2278 set_schedstats(true); 2279 ret = 1; 2280 } else if (!strcmp(str, "disable")) { 2281 set_schedstats(false); 2282 ret = 1; 2283 } 2284 out: 2285 if (!ret) 2286 pr_warn("Unable to parse schedstats=\n"); 2287 2288 return ret; 2289 } 2290 __setup("schedstats=", setup_schedstats); 2291 2292 #ifdef CONFIG_PROC_SYSCTL 2293 int sysctl_schedstats(struct ctl_table *table, int write, 2294 void __user *buffer, size_t *lenp, loff_t *ppos) 2295 { 2296 struct ctl_table t; 2297 int err; 2298 int state = static_branch_likely(&sched_schedstats); 2299 2300 if (write && !capable(CAP_SYS_ADMIN)) 2301 return -EPERM; 2302 2303 t = *table; 2304 t.data = &state; 2305 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2306 if (err < 0) 2307 return err; 2308 if (write) 2309 set_schedstats(state); 2310 return err; 2311 } 2312 #endif 2313 #endif 2314 2315 /* 2316 * fork()/clone()-time setup: 2317 */ 2318 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2319 { 2320 unsigned long flags; 2321 int cpu = get_cpu(); 2322 2323 __sched_fork(clone_flags, p); 2324 /* 2325 * We mark the process as running here. This guarantees that 2326 * nobody will actually run it, and a signal or other external 2327 * event cannot wake it up and insert it on the runqueue either. 2328 */ 2329 p->state = TASK_RUNNING; 2330 2331 /* 2332 * Make sure we do not leak PI boosting priority to the child. 2333 */ 2334 p->prio = current->normal_prio; 2335 2336 /* 2337 * Revert to default priority/policy on fork if requested. 2338 */ 2339 if (unlikely(p->sched_reset_on_fork)) { 2340 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2341 p->policy = SCHED_NORMAL; 2342 p->static_prio = NICE_TO_PRIO(0); 2343 p->rt_priority = 0; 2344 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2345 p->static_prio = NICE_TO_PRIO(0); 2346 2347 p->prio = p->normal_prio = __normal_prio(p); 2348 set_load_weight(p); 2349 2350 /* 2351 * We don't need the reset flag anymore after the fork. It has 2352 * fulfilled its duty: 2353 */ 2354 p->sched_reset_on_fork = 0; 2355 } 2356 2357 if (dl_prio(p->prio)) { 2358 put_cpu(); 2359 return -EAGAIN; 2360 } else if (rt_prio(p->prio)) { 2361 p->sched_class = &rt_sched_class; 2362 } else { 2363 p->sched_class = &fair_sched_class; 2364 } 2365 2366 if (p->sched_class->task_fork) 2367 p->sched_class->task_fork(p); 2368 2369 /* 2370 * The child is not yet in the pid-hash so no cgroup attach races, 2371 * and the cgroup is pinned to this child due to cgroup_fork() 2372 * is ran before sched_fork(). 2373 * 2374 * Silence PROVE_RCU. 2375 */ 2376 raw_spin_lock_irqsave(&p->pi_lock, flags); 2377 set_task_cpu(p, cpu); 2378 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2379 2380 #ifdef CONFIG_SCHED_INFO 2381 if (likely(sched_info_on())) 2382 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2383 #endif 2384 #if defined(CONFIG_SMP) 2385 p->on_cpu = 0; 2386 #endif 2387 init_task_preempt_count(p); 2388 #ifdef CONFIG_SMP 2389 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2390 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2391 #endif 2392 2393 put_cpu(); 2394 return 0; 2395 } 2396 2397 unsigned long to_ratio(u64 period, u64 runtime) 2398 { 2399 if (runtime == RUNTIME_INF) 2400 return 1ULL << 20; 2401 2402 /* 2403 * Doing this here saves a lot of checks in all 2404 * the calling paths, and returning zero seems 2405 * safe for them anyway. 2406 */ 2407 if (period == 0) 2408 return 0; 2409 2410 return div64_u64(runtime << 20, period); 2411 } 2412 2413 #ifdef CONFIG_SMP 2414 inline struct dl_bw *dl_bw_of(int i) 2415 { 2416 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2417 "sched RCU must be held"); 2418 return &cpu_rq(i)->rd->dl_bw; 2419 } 2420 2421 static inline int dl_bw_cpus(int i) 2422 { 2423 struct root_domain *rd = cpu_rq(i)->rd; 2424 int cpus = 0; 2425 2426 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2427 "sched RCU must be held"); 2428 for_each_cpu_and(i, rd->span, cpu_active_mask) 2429 cpus++; 2430 2431 return cpus; 2432 } 2433 #else 2434 inline struct dl_bw *dl_bw_of(int i) 2435 { 2436 return &cpu_rq(i)->dl.dl_bw; 2437 } 2438 2439 static inline int dl_bw_cpus(int i) 2440 { 2441 return 1; 2442 } 2443 #endif 2444 2445 /* 2446 * We must be sure that accepting a new task (or allowing changing the 2447 * parameters of an existing one) is consistent with the bandwidth 2448 * constraints. If yes, this function also accordingly updates the currently 2449 * allocated bandwidth to reflect the new situation. 2450 * 2451 * This function is called while holding p's rq->lock. 2452 * 2453 * XXX we should delay bw change until the task's 0-lag point, see 2454 * __setparam_dl(). 2455 */ 2456 static int dl_overflow(struct task_struct *p, int policy, 2457 const struct sched_attr *attr) 2458 { 2459 2460 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2461 u64 period = attr->sched_period ?: attr->sched_deadline; 2462 u64 runtime = attr->sched_runtime; 2463 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2464 int cpus, err = -1; 2465 2466 /* !deadline task may carry old deadline bandwidth */ 2467 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2468 return 0; 2469 2470 /* 2471 * Either if a task, enters, leave, or stays -deadline but changes 2472 * its parameters, we may need to update accordingly the total 2473 * allocated bandwidth of the container. 2474 */ 2475 raw_spin_lock(&dl_b->lock); 2476 cpus = dl_bw_cpus(task_cpu(p)); 2477 if (dl_policy(policy) && !task_has_dl_policy(p) && 2478 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2479 __dl_add(dl_b, new_bw); 2480 err = 0; 2481 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2482 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2483 __dl_clear(dl_b, p->dl.dl_bw); 2484 __dl_add(dl_b, new_bw); 2485 err = 0; 2486 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2487 __dl_clear(dl_b, p->dl.dl_bw); 2488 err = 0; 2489 } 2490 raw_spin_unlock(&dl_b->lock); 2491 2492 return err; 2493 } 2494 2495 extern void init_dl_bw(struct dl_bw *dl_b); 2496 2497 /* 2498 * wake_up_new_task - wake up a newly created task for the first time. 2499 * 2500 * This function will do some initial scheduler statistics housekeeping 2501 * that must be done for every newly created context, then puts the task 2502 * on the runqueue and wakes it. 2503 */ 2504 void wake_up_new_task(struct task_struct *p) 2505 { 2506 struct rq_flags rf; 2507 struct rq *rq; 2508 2509 /* Initialize new task's runnable average */ 2510 init_entity_runnable_average(&p->se); 2511 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2512 #ifdef CONFIG_SMP 2513 /* 2514 * Fork balancing, do it here and not earlier because: 2515 * - cpus_allowed can change in the fork path 2516 * - any previously selected cpu might disappear through hotplug 2517 */ 2518 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2519 #endif 2520 /* Post initialize new task's util average when its cfs_rq is set */ 2521 post_init_entity_util_avg(&p->se); 2522 2523 rq = __task_rq_lock(p, &rf); 2524 activate_task(rq, p, 0); 2525 p->on_rq = TASK_ON_RQ_QUEUED; 2526 trace_sched_wakeup_new(p); 2527 check_preempt_curr(rq, p, WF_FORK); 2528 #ifdef CONFIG_SMP 2529 if (p->sched_class->task_woken) { 2530 /* 2531 * Nothing relies on rq->lock after this, so its fine to 2532 * drop it. 2533 */ 2534 lockdep_unpin_lock(&rq->lock, rf.cookie); 2535 p->sched_class->task_woken(rq, p); 2536 lockdep_repin_lock(&rq->lock, rf.cookie); 2537 } 2538 #endif 2539 task_rq_unlock(rq, p, &rf); 2540 } 2541 2542 #ifdef CONFIG_PREEMPT_NOTIFIERS 2543 2544 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2545 2546 void preempt_notifier_inc(void) 2547 { 2548 static_key_slow_inc(&preempt_notifier_key); 2549 } 2550 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2551 2552 void preempt_notifier_dec(void) 2553 { 2554 static_key_slow_dec(&preempt_notifier_key); 2555 } 2556 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2557 2558 /** 2559 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2560 * @notifier: notifier struct to register 2561 */ 2562 void preempt_notifier_register(struct preempt_notifier *notifier) 2563 { 2564 if (!static_key_false(&preempt_notifier_key)) 2565 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2566 2567 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2568 } 2569 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2570 2571 /** 2572 * preempt_notifier_unregister - no longer interested in preemption notifications 2573 * @notifier: notifier struct to unregister 2574 * 2575 * This is *not* safe to call from within a preemption notifier. 2576 */ 2577 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2578 { 2579 hlist_del(¬ifier->link); 2580 } 2581 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2582 2583 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2584 { 2585 struct preempt_notifier *notifier; 2586 2587 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2588 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2589 } 2590 2591 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2592 { 2593 if (static_key_false(&preempt_notifier_key)) 2594 __fire_sched_in_preempt_notifiers(curr); 2595 } 2596 2597 static void 2598 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2599 struct task_struct *next) 2600 { 2601 struct preempt_notifier *notifier; 2602 2603 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2604 notifier->ops->sched_out(notifier, next); 2605 } 2606 2607 static __always_inline void 2608 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2609 struct task_struct *next) 2610 { 2611 if (static_key_false(&preempt_notifier_key)) 2612 __fire_sched_out_preempt_notifiers(curr, next); 2613 } 2614 2615 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2616 2617 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2618 { 2619 } 2620 2621 static inline void 2622 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2623 struct task_struct *next) 2624 { 2625 } 2626 2627 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2628 2629 /** 2630 * prepare_task_switch - prepare to switch tasks 2631 * @rq: the runqueue preparing to switch 2632 * @prev: the current task that is being switched out 2633 * @next: the task we are going to switch to. 2634 * 2635 * This is called with the rq lock held and interrupts off. It must 2636 * be paired with a subsequent finish_task_switch after the context 2637 * switch. 2638 * 2639 * prepare_task_switch sets up locking and calls architecture specific 2640 * hooks. 2641 */ 2642 static inline void 2643 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2644 struct task_struct *next) 2645 { 2646 sched_info_switch(rq, prev, next); 2647 perf_event_task_sched_out(prev, next); 2648 fire_sched_out_preempt_notifiers(prev, next); 2649 prepare_lock_switch(rq, next); 2650 prepare_arch_switch(next); 2651 } 2652 2653 /** 2654 * finish_task_switch - clean up after a task-switch 2655 * @prev: the thread we just switched away from. 2656 * 2657 * finish_task_switch must be called after the context switch, paired 2658 * with a prepare_task_switch call before the context switch. 2659 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2660 * and do any other architecture-specific cleanup actions. 2661 * 2662 * Note that we may have delayed dropping an mm in context_switch(). If 2663 * so, we finish that here outside of the runqueue lock. (Doing it 2664 * with the lock held can cause deadlocks; see schedule() for 2665 * details.) 2666 * 2667 * The context switch have flipped the stack from under us and restored the 2668 * local variables which were saved when this task called schedule() in the 2669 * past. prev == current is still correct but we need to recalculate this_rq 2670 * because prev may have moved to another CPU. 2671 */ 2672 static struct rq *finish_task_switch(struct task_struct *prev) 2673 __releases(rq->lock) 2674 { 2675 struct rq *rq = this_rq(); 2676 struct mm_struct *mm = rq->prev_mm; 2677 long prev_state; 2678 2679 /* 2680 * The previous task will have left us with a preempt_count of 2 2681 * because it left us after: 2682 * 2683 * schedule() 2684 * preempt_disable(); // 1 2685 * __schedule() 2686 * raw_spin_lock_irq(&rq->lock) // 2 2687 * 2688 * Also, see FORK_PREEMPT_COUNT. 2689 */ 2690 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2691 "corrupted preempt_count: %s/%d/0x%x\n", 2692 current->comm, current->pid, preempt_count())) 2693 preempt_count_set(FORK_PREEMPT_COUNT); 2694 2695 rq->prev_mm = NULL; 2696 2697 /* 2698 * A task struct has one reference for the use as "current". 2699 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2700 * schedule one last time. The schedule call will never return, and 2701 * the scheduled task must drop that reference. 2702 * 2703 * We must observe prev->state before clearing prev->on_cpu (in 2704 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2705 * running on another CPU and we could rave with its RUNNING -> DEAD 2706 * transition, resulting in a double drop. 2707 */ 2708 prev_state = prev->state; 2709 vtime_task_switch(prev); 2710 perf_event_task_sched_in(prev, current); 2711 finish_lock_switch(rq, prev); 2712 finish_arch_post_lock_switch(); 2713 2714 fire_sched_in_preempt_notifiers(current); 2715 if (mm) 2716 mmdrop(mm); 2717 if (unlikely(prev_state == TASK_DEAD)) { 2718 if (prev->sched_class->task_dead) 2719 prev->sched_class->task_dead(prev); 2720 2721 /* 2722 * Remove function-return probe instances associated with this 2723 * task and put them back on the free list. 2724 */ 2725 kprobe_flush_task(prev); 2726 put_task_struct(prev); 2727 } 2728 2729 tick_nohz_task_switch(); 2730 return rq; 2731 } 2732 2733 #ifdef CONFIG_SMP 2734 2735 /* rq->lock is NOT held, but preemption is disabled */ 2736 static void __balance_callback(struct rq *rq) 2737 { 2738 struct callback_head *head, *next; 2739 void (*func)(struct rq *rq); 2740 unsigned long flags; 2741 2742 raw_spin_lock_irqsave(&rq->lock, flags); 2743 head = rq->balance_callback; 2744 rq->balance_callback = NULL; 2745 while (head) { 2746 func = (void (*)(struct rq *))head->func; 2747 next = head->next; 2748 head->next = NULL; 2749 head = next; 2750 2751 func(rq); 2752 } 2753 raw_spin_unlock_irqrestore(&rq->lock, flags); 2754 } 2755 2756 static inline void balance_callback(struct rq *rq) 2757 { 2758 if (unlikely(rq->balance_callback)) 2759 __balance_callback(rq); 2760 } 2761 2762 #else 2763 2764 static inline void balance_callback(struct rq *rq) 2765 { 2766 } 2767 2768 #endif 2769 2770 /** 2771 * schedule_tail - first thing a freshly forked thread must call. 2772 * @prev: the thread we just switched away from. 2773 */ 2774 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2775 __releases(rq->lock) 2776 { 2777 struct rq *rq; 2778 2779 /* 2780 * New tasks start with FORK_PREEMPT_COUNT, see there and 2781 * finish_task_switch() for details. 2782 * 2783 * finish_task_switch() will drop rq->lock() and lower preempt_count 2784 * and the preempt_enable() will end up enabling preemption (on 2785 * PREEMPT_COUNT kernels). 2786 */ 2787 2788 rq = finish_task_switch(prev); 2789 balance_callback(rq); 2790 preempt_enable(); 2791 2792 if (current->set_child_tid) 2793 put_user(task_pid_vnr(current), current->set_child_tid); 2794 } 2795 2796 /* 2797 * context_switch - switch to the new MM and the new thread's register state. 2798 */ 2799 static __always_inline struct rq * 2800 context_switch(struct rq *rq, struct task_struct *prev, 2801 struct task_struct *next, struct pin_cookie cookie) 2802 { 2803 struct mm_struct *mm, *oldmm; 2804 2805 prepare_task_switch(rq, prev, next); 2806 2807 mm = next->mm; 2808 oldmm = prev->active_mm; 2809 /* 2810 * For paravirt, this is coupled with an exit in switch_to to 2811 * combine the page table reload and the switch backend into 2812 * one hypercall. 2813 */ 2814 arch_start_context_switch(prev); 2815 2816 if (!mm) { 2817 next->active_mm = oldmm; 2818 atomic_inc(&oldmm->mm_count); 2819 enter_lazy_tlb(oldmm, next); 2820 } else 2821 switch_mm_irqs_off(oldmm, mm, next); 2822 2823 if (!prev->mm) { 2824 prev->active_mm = NULL; 2825 rq->prev_mm = oldmm; 2826 } 2827 /* 2828 * Since the runqueue lock will be released by the next 2829 * task (which is an invalid locking op but in the case 2830 * of the scheduler it's an obvious special-case), so we 2831 * do an early lockdep release here: 2832 */ 2833 lockdep_unpin_lock(&rq->lock, cookie); 2834 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2835 2836 /* Here we just switch the register state and the stack. */ 2837 switch_to(prev, next, prev); 2838 barrier(); 2839 2840 return finish_task_switch(prev); 2841 } 2842 2843 /* 2844 * nr_running and nr_context_switches: 2845 * 2846 * externally visible scheduler statistics: current number of runnable 2847 * threads, total number of context switches performed since bootup. 2848 */ 2849 unsigned long nr_running(void) 2850 { 2851 unsigned long i, sum = 0; 2852 2853 for_each_online_cpu(i) 2854 sum += cpu_rq(i)->nr_running; 2855 2856 return sum; 2857 } 2858 2859 /* 2860 * Check if only the current task is running on the cpu. 2861 * 2862 * Caution: this function does not check that the caller has disabled 2863 * preemption, thus the result might have a time-of-check-to-time-of-use 2864 * race. The caller is responsible to use it correctly, for example: 2865 * 2866 * - from a non-preemptable section (of course) 2867 * 2868 * - from a thread that is bound to a single CPU 2869 * 2870 * - in a loop with very short iterations (e.g. a polling loop) 2871 */ 2872 bool single_task_running(void) 2873 { 2874 return raw_rq()->nr_running == 1; 2875 } 2876 EXPORT_SYMBOL(single_task_running); 2877 2878 unsigned long long nr_context_switches(void) 2879 { 2880 int i; 2881 unsigned long long sum = 0; 2882 2883 for_each_possible_cpu(i) 2884 sum += cpu_rq(i)->nr_switches; 2885 2886 return sum; 2887 } 2888 2889 unsigned long nr_iowait(void) 2890 { 2891 unsigned long i, sum = 0; 2892 2893 for_each_possible_cpu(i) 2894 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2895 2896 return sum; 2897 } 2898 2899 unsigned long nr_iowait_cpu(int cpu) 2900 { 2901 struct rq *this = cpu_rq(cpu); 2902 return atomic_read(&this->nr_iowait); 2903 } 2904 2905 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2906 { 2907 struct rq *rq = this_rq(); 2908 *nr_waiters = atomic_read(&rq->nr_iowait); 2909 *load = rq->load.weight; 2910 } 2911 2912 #ifdef CONFIG_SMP 2913 2914 /* 2915 * sched_exec - execve() is a valuable balancing opportunity, because at 2916 * this point the task has the smallest effective memory and cache footprint. 2917 */ 2918 void sched_exec(void) 2919 { 2920 struct task_struct *p = current; 2921 unsigned long flags; 2922 int dest_cpu; 2923 2924 raw_spin_lock_irqsave(&p->pi_lock, flags); 2925 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2926 if (dest_cpu == smp_processor_id()) 2927 goto unlock; 2928 2929 if (likely(cpu_active(dest_cpu))) { 2930 struct migration_arg arg = { p, dest_cpu }; 2931 2932 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2933 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2934 return; 2935 } 2936 unlock: 2937 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2938 } 2939 2940 #endif 2941 2942 DEFINE_PER_CPU(struct kernel_stat, kstat); 2943 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2944 2945 EXPORT_PER_CPU_SYMBOL(kstat); 2946 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2947 2948 /* 2949 * Return accounted runtime for the task. 2950 * In case the task is currently running, return the runtime plus current's 2951 * pending runtime that have not been accounted yet. 2952 */ 2953 unsigned long long task_sched_runtime(struct task_struct *p) 2954 { 2955 struct rq_flags rf; 2956 struct rq *rq; 2957 u64 ns; 2958 2959 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2960 /* 2961 * 64-bit doesn't need locks to atomically read a 64bit value. 2962 * So we have a optimization chance when the task's delta_exec is 0. 2963 * Reading ->on_cpu is racy, but this is ok. 2964 * 2965 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2966 * If we race with it entering cpu, unaccounted time is 0. This is 2967 * indistinguishable from the read occurring a few cycles earlier. 2968 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2969 * been accounted, so we're correct here as well. 2970 */ 2971 if (!p->on_cpu || !task_on_rq_queued(p)) 2972 return p->se.sum_exec_runtime; 2973 #endif 2974 2975 rq = task_rq_lock(p, &rf); 2976 /* 2977 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2978 * project cycles that may never be accounted to this 2979 * thread, breaking clock_gettime(). 2980 */ 2981 if (task_current(rq, p) && task_on_rq_queued(p)) { 2982 update_rq_clock(rq); 2983 p->sched_class->update_curr(rq); 2984 } 2985 ns = p->se.sum_exec_runtime; 2986 task_rq_unlock(rq, p, &rf); 2987 2988 return ns; 2989 } 2990 2991 /* 2992 * This function gets called by the timer code, with HZ frequency. 2993 * We call it with interrupts disabled. 2994 */ 2995 void scheduler_tick(void) 2996 { 2997 int cpu = smp_processor_id(); 2998 struct rq *rq = cpu_rq(cpu); 2999 struct task_struct *curr = rq->curr; 3000 3001 sched_clock_tick(); 3002 3003 raw_spin_lock(&rq->lock); 3004 update_rq_clock(rq); 3005 curr->sched_class->task_tick(rq, curr, 0); 3006 cpu_load_update_active(rq); 3007 calc_global_load_tick(rq); 3008 raw_spin_unlock(&rq->lock); 3009 3010 perf_event_task_tick(); 3011 3012 #ifdef CONFIG_SMP 3013 rq->idle_balance = idle_cpu(cpu); 3014 trigger_load_balance(rq); 3015 #endif 3016 rq_last_tick_reset(rq); 3017 } 3018 3019 #ifdef CONFIG_NO_HZ_FULL 3020 /** 3021 * scheduler_tick_max_deferment 3022 * 3023 * Keep at least one tick per second when a single 3024 * active task is running because the scheduler doesn't 3025 * yet completely support full dynticks environment. 3026 * 3027 * This makes sure that uptime, CFS vruntime, load 3028 * balancing, etc... continue to move forward, even 3029 * with a very low granularity. 3030 * 3031 * Return: Maximum deferment in nanoseconds. 3032 */ 3033 u64 scheduler_tick_max_deferment(void) 3034 { 3035 struct rq *rq = this_rq(); 3036 unsigned long next, now = READ_ONCE(jiffies); 3037 3038 next = rq->last_sched_tick + HZ; 3039 3040 if (time_before_eq(next, now)) 3041 return 0; 3042 3043 return jiffies_to_nsecs(next - now); 3044 } 3045 #endif 3046 3047 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3048 defined(CONFIG_PREEMPT_TRACER)) 3049 /* 3050 * If the value passed in is equal to the current preempt count 3051 * then we just disabled preemption. Start timing the latency. 3052 */ 3053 static inline void preempt_latency_start(int val) 3054 { 3055 if (preempt_count() == val) { 3056 unsigned long ip = get_lock_parent_ip(); 3057 #ifdef CONFIG_DEBUG_PREEMPT 3058 current->preempt_disable_ip = ip; 3059 #endif 3060 trace_preempt_off(CALLER_ADDR0, ip); 3061 } 3062 } 3063 3064 void preempt_count_add(int val) 3065 { 3066 #ifdef CONFIG_DEBUG_PREEMPT 3067 /* 3068 * Underflow? 3069 */ 3070 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3071 return; 3072 #endif 3073 __preempt_count_add(val); 3074 #ifdef CONFIG_DEBUG_PREEMPT 3075 /* 3076 * Spinlock count overflowing soon? 3077 */ 3078 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3079 PREEMPT_MASK - 10); 3080 #endif 3081 preempt_latency_start(val); 3082 } 3083 EXPORT_SYMBOL(preempt_count_add); 3084 NOKPROBE_SYMBOL(preempt_count_add); 3085 3086 /* 3087 * If the value passed in equals to the current preempt count 3088 * then we just enabled preemption. Stop timing the latency. 3089 */ 3090 static inline void preempt_latency_stop(int val) 3091 { 3092 if (preempt_count() == val) 3093 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3094 } 3095 3096 void preempt_count_sub(int val) 3097 { 3098 #ifdef CONFIG_DEBUG_PREEMPT 3099 /* 3100 * Underflow? 3101 */ 3102 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3103 return; 3104 /* 3105 * Is the spinlock portion underflowing? 3106 */ 3107 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3108 !(preempt_count() & PREEMPT_MASK))) 3109 return; 3110 #endif 3111 3112 preempt_latency_stop(val); 3113 __preempt_count_sub(val); 3114 } 3115 EXPORT_SYMBOL(preempt_count_sub); 3116 NOKPROBE_SYMBOL(preempt_count_sub); 3117 3118 #else 3119 static inline void preempt_latency_start(int val) { } 3120 static inline void preempt_latency_stop(int val) { } 3121 #endif 3122 3123 /* 3124 * Print scheduling while atomic bug: 3125 */ 3126 static noinline void __schedule_bug(struct task_struct *prev) 3127 { 3128 if (oops_in_progress) 3129 return; 3130 3131 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3132 prev->comm, prev->pid, preempt_count()); 3133 3134 debug_show_held_locks(prev); 3135 print_modules(); 3136 if (irqs_disabled()) 3137 print_irqtrace_events(prev); 3138 #ifdef CONFIG_DEBUG_PREEMPT 3139 if (in_atomic_preempt_off()) { 3140 pr_err("Preemption disabled at:"); 3141 print_ip_sym(current->preempt_disable_ip); 3142 pr_cont("\n"); 3143 } 3144 #endif 3145 dump_stack(); 3146 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3147 } 3148 3149 /* 3150 * Various schedule()-time debugging checks and statistics: 3151 */ 3152 static inline void schedule_debug(struct task_struct *prev) 3153 { 3154 #ifdef CONFIG_SCHED_STACK_END_CHECK 3155 BUG_ON(task_stack_end_corrupted(prev)); 3156 #endif 3157 3158 if (unlikely(in_atomic_preempt_off())) { 3159 __schedule_bug(prev); 3160 preempt_count_set(PREEMPT_DISABLED); 3161 } 3162 rcu_sleep_check(); 3163 3164 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3165 3166 schedstat_inc(this_rq(), sched_count); 3167 } 3168 3169 /* 3170 * Pick up the highest-prio task: 3171 */ 3172 static inline struct task_struct * 3173 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie) 3174 { 3175 const struct sched_class *class = &fair_sched_class; 3176 struct task_struct *p; 3177 3178 /* 3179 * Optimization: we know that if all tasks are in 3180 * the fair class we can call that function directly: 3181 */ 3182 if (likely(prev->sched_class == class && 3183 rq->nr_running == rq->cfs.h_nr_running)) { 3184 p = fair_sched_class.pick_next_task(rq, prev, cookie); 3185 if (unlikely(p == RETRY_TASK)) 3186 goto again; 3187 3188 /* assumes fair_sched_class->next == idle_sched_class */ 3189 if (unlikely(!p)) 3190 p = idle_sched_class.pick_next_task(rq, prev, cookie); 3191 3192 return p; 3193 } 3194 3195 again: 3196 for_each_class(class) { 3197 p = class->pick_next_task(rq, prev, cookie); 3198 if (p) { 3199 if (unlikely(p == RETRY_TASK)) 3200 goto again; 3201 return p; 3202 } 3203 } 3204 3205 BUG(); /* the idle class will always have a runnable task */ 3206 } 3207 3208 /* 3209 * __schedule() is the main scheduler function. 3210 * 3211 * The main means of driving the scheduler and thus entering this function are: 3212 * 3213 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3214 * 3215 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3216 * paths. For example, see arch/x86/entry_64.S. 3217 * 3218 * To drive preemption between tasks, the scheduler sets the flag in timer 3219 * interrupt handler scheduler_tick(). 3220 * 3221 * 3. Wakeups don't really cause entry into schedule(). They add a 3222 * task to the run-queue and that's it. 3223 * 3224 * Now, if the new task added to the run-queue preempts the current 3225 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3226 * called on the nearest possible occasion: 3227 * 3228 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3229 * 3230 * - in syscall or exception context, at the next outmost 3231 * preempt_enable(). (this might be as soon as the wake_up()'s 3232 * spin_unlock()!) 3233 * 3234 * - in IRQ context, return from interrupt-handler to 3235 * preemptible context 3236 * 3237 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3238 * then at the next: 3239 * 3240 * - cond_resched() call 3241 * - explicit schedule() call 3242 * - return from syscall or exception to user-space 3243 * - return from interrupt-handler to user-space 3244 * 3245 * WARNING: must be called with preemption disabled! 3246 */ 3247 static void __sched notrace __schedule(bool preempt) 3248 { 3249 struct task_struct *prev, *next; 3250 unsigned long *switch_count; 3251 struct pin_cookie cookie; 3252 struct rq *rq; 3253 int cpu; 3254 3255 cpu = smp_processor_id(); 3256 rq = cpu_rq(cpu); 3257 prev = rq->curr; 3258 3259 /* 3260 * do_exit() calls schedule() with preemption disabled as an exception; 3261 * however we must fix that up, otherwise the next task will see an 3262 * inconsistent (higher) preempt count. 3263 * 3264 * It also avoids the below schedule_debug() test from complaining 3265 * about this. 3266 */ 3267 if (unlikely(prev->state == TASK_DEAD)) 3268 preempt_enable_no_resched_notrace(); 3269 3270 schedule_debug(prev); 3271 3272 if (sched_feat(HRTICK)) 3273 hrtick_clear(rq); 3274 3275 local_irq_disable(); 3276 rcu_note_context_switch(); 3277 3278 /* 3279 * Make sure that signal_pending_state()->signal_pending() below 3280 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3281 * done by the caller to avoid the race with signal_wake_up(). 3282 */ 3283 smp_mb__before_spinlock(); 3284 raw_spin_lock(&rq->lock); 3285 cookie = lockdep_pin_lock(&rq->lock); 3286 3287 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 3288 3289 switch_count = &prev->nivcsw; 3290 if (!preempt && prev->state) { 3291 if (unlikely(signal_pending_state(prev->state, prev))) { 3292 prev->state = TASK_RUNNING; 3293 } else { 3294 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3295 prev->on_rq = 0; 3296 3297 /* 3298 * If a worker went to sleep, notify and ask workqueue 3299 * whether it wants to wake up a task to maintain 3300 * concurrency. 3301 */ 3302 if (prev->flags & PF_WQ_WORKER) { 3303 struct task_struct *to_wakeup; 3304 3305 to_wakeup = wq_worker_sleeping(prev); 3306 if (to_wakeup) 3307 try_to_wake_up_local(to_wakeup, cookie); 3308 } 3309 } 3310 switch_count = &prev->nvcsw; 3311 } 3312 3313 if (task_on_rq_queued(prev)) 3314 update_rq_clock(rq); 3315 3316 next = pick_next_task(rq, prev, cookie); 3317 clear_tsk_need_resched(prev); 3318 clear_preempt_need_resched(); 3319 rq->clock_skip_update = 0; 3320 3321 if (likely(prev != next)) { 3322 rq->nr_switches++; 3323 rq->curr = next; 3324 ++*switch_count; 3325 3326 trace_sched_switch(preempt, prev, next); 3327 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */ 3328 } else { 3329 lockdep_unpin_lock(&rq->lock, cookie); 3330 raw_spin_unlock_irq(&rq->lock); 3331 } 3332 3333 balance_callback(rq); 3334 } 3335 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */ 3336 3337 static inline void sched_submit_work(struct task_struct *tsk) 3338 { 3339 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3340 return; 3341 /* 3342 * If we are going to sleep and we have plugged IO queued, 3343 * make sure to submit it to avoid deadlocks. 3344 */ 3345 if (blk_needs_flush_plug(tsk)) 3346 blk_schedule_flush_plug(tsk); 3347 } 3348 3349 asmlinkage __visible void __sched schedule(void) 3350 { 3351 struct task_struct *tsk = current; 3352 3353 sched_submit_work(tsk); 3354 do { 3355 preempt_disable(); 3356 __schedule(false); 3357 sched_preempt_enable_no_resched(); 3358 } while (need_resched()); 3359 } 3360 EXPORT_SYMBOL(schedule); 3361 3362 #ifdef CONFIG_CONTEXT_TRACKING 3363 asmlinkage __visible void __sched schedule_user(void) 3364 { 3365 /* 3366 * If we come here after a random call to set_need_resched(), 3367 * or we have been woken up remotely but the IPI has not yet arrived, 3368 * we haven't yet exited the RCU idle mode. Do it here manually until 3369 * we find a better solution. 3370 * 3371 * NB: There are buggy callers of this function. Ideally we 3372 * should warn if prev_state != CONTEXT_USER, but that will trigger 3373 * too frequently to make sense yet. 3374 */ 3375 enum ctx_state prev_state = exception_enter(); 3376 schedule(); 3377 exception_exit(prev_state); 3378 } 3379 #endif 3380 3381 /** 3382 * schedule_preempt_disabled - called with preemption disabled 3383 * 3384 * Returns with preemption disabled. Note: preempt_count must be 1 3385 */ 3386 void __sched schedule_preempt_disabled(void) 3387 { 3388 sched_preempt_enable_no_resched(); 3389 schedule(); 3390 preempt_disable(); 3391 } 3392 3393 static void __sched notrace preempt_schedule_common(void) 3394 { 3395 do { 3396 /* 3397 * Because the function tracer can trace preempt_count_sub() 3398 * and it also uses preempt_enable/disable_notrace(), if 3399 * NEED_RESCHED is set, the preempt_enable_notrace() called 3400 * by the function tracer will call this function again and 3401 * cause infinite recursion. 3402 * 3403 * Preemption must be disabled here before the function 3404 * tracer can trace. Break up preempt_disable() into two 3405 * calls. One to disable preemption without fear of being 3406 * traced. The other to still record the preemption latency, 3407 * which can also be traced by the function tracer. 3408 */ 3409 preempt_disable_notrace(); 3410 preempt_latency_start(1); 3411 __schedule(true); 3412 preempt_latency_stop(1); 3413 preempt_enable_no_resched_notrace(); 3414 3415 /* 3416 * Check again in case we missed a preemption opportunity 3417 * between schedule and now. 3418 */ 3419 } while (need_resched()); 3420 } 3421 3422 #ifdef CONFIG_PREEMPT 3423 /* 3424 * this is the entry point to schedule() from in-kernel preemption 3425 * off of preempt_enable. Kernel preemptions off return from interrupt 3426 * occur there and call schedule directly. 3427 */ 3428 asmlinkage __visible void __sched notrace preempt_schedule(void) 3429 { 3430 /* 3431 * If there is a non-zero preempt_count or interrupts are disabled, 3432 * we do not want to preempt the current task. Just return.. 3433 */ 3434 if (likely(!preemptible())) 3435 return; 3436 3437 preempt_schedule_common(); 3438 } 3439 NOKPROBE_SYMBOL(preempt_schedule); 3440 EXPORT_SYMBOL(preempt_schedule); 3441 3442 /** 3443 * preempt_schedule_notrace - preempt_schedule called by tracing 3444 * 3445 * The tracing infrastructure uses preempt_enable_notrace to prevent 3446 * recursion and tracing preempt enabling caused by the tracing 3447 * infrastructure itself. But as tracing can happen in areas coming 3448 * from userspace or just about to enter userspace, a preempt enable 3449 * can occur before user_exit() is called. This will cause the scheduler 3450 * to be called when the system is still in usermode. 3451 * 3452 * To prevent this, the preempt_enable_notrace will use this function 3453 * instead of preempt_schedule() to exit user context if needed before 3454 * calling the scheduler. 3455 */ 3456 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3457 { 3458 enum ctx_state prev_ctx; 3459 3460 if (likely(!preemptible())) 3461 return; 3462 3463 do { 3464 /* 3465 * Because the function tracer can trace preempt_count_sub() 3466 * and it also uses preempt_enable/disable_notrace(), if 3467 * NEED_RESCHED is set, the preempt_enable_notrace() called 3468 * by the function tracer will call this function again and 3469 * cause infinite recursion. 3470 * 3471 * Preemption must be disabled here before the function 3472 * tracer can trace. Break up preempt_disable() into two 3473 * calls. One to disable preemption without fear of being 3474 * traced. The other to still record the preemption latency, 3475 * which can also be traced by the function tracer. 3476 */ 3477 preempt_disable_notrace(); 3478 preempt_latency_start(1); 3479 /* 3480 * Needs preempt disabled in case user_exit() is traced 3481 * and the tracer calls preempt_enable_notrace() causing 3482 * an infinite recursion. 3483 */ 3484 prev_ctx = exception_enter(); 3485 __schedule(true); 3486 exception_exit(prev_ctx); 3487 3488 preempt_latency_stop(1); 3489 preempt_enable_no_resched_notrace(); 3490 } while (need_resched()); 3491 } 3492 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3493 3494 #endif /* CONFIG_PREEMPT */ 3495 3496 /* 3497 * this is the entry point to schedule() from kernel preemption 3498 * off of irq context. 3499 * Note, that this is called and return with irqs disabled. This will 3500 * protect us against recursive calling from irq. 3501 */ 3502 asmlinkage __visible void __sched preempt_schedule_irq(void) 3503 { 3504 enum ctx_state prev_state; 3505 3506 /* Catch callers which need to be fixed */ 3507 BUG_ON(preempt_count() || !irqs_disabled()); 3508 3509 prev_state = exception_enter(); 3510 3511 do { 3512 preempt_disable(); 3513 local_irq_enable(); 3514 __schedule(true); 3515 local_irq_disable(); 3516 sched_preempt_enable_no_resched(); 3517 } while (need_resched()); 3518 3519 exception_exit(prev_state); 3520 } 3521 3522 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3523 void *key) 3524 { 3525 return try_to_wake_up(curr->private, mode, wake_flags); 3526 } 3527 EXPORT_SYMBOL(default_wake_function); 3528 3529 #ifdef CONFIG_RT_MUTEXES 3530 3531 /* 3532 * rt_mutex_setprio - set the current priority of a task 3533 * @p: task 3534 * @prio: prio value (kernel-internal form) 3535 * 3536 * This function changes the 'effective' priority of a task. It does 3537 * not touch ->normal_prio like __setscheduler(). 3538 * 3539 * Used by the rt_mutex code to implement priority inheritance 3540 * logic. Call site only calls if the priority of the task changed. 3541 */ 3542 void rt_mutex_setprio(struct task_struct *p, int prio) 3543 { 3544 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE; 3545 const struct sched_class *prev_class; 3546 struct rq_flags rf; 3547 struct rq *rq; 3548 3549 BUG_ON(prio > MAX_PRIO); 3550 3551 rq = __task_rq_lock(p, &rf); 3552 3553 /* 3554 * Idle task boosting is a nono in general. There is one 3555 * exception, when PREEMPT_RT and NOHZ is active: 3556 * 3557 * The idle task calls get_next_timer_interrupt() and holds 3558 * the timer wheel base->lock on the CPU and another CPU wants 3559 * to access the timer (probably to cancel it). We can safely 3560 * ignore the boosting request, as the idle CPU runs this code 3561 * with interrupts disabled and will complete the lock 3562 * protected section without being interrupted. So there is no 3563 * real need to boost. 3564 */ 3565 if (unlikely(p == rq->idle)) { 3566 WARN_ON(p != rq->curr); 3567 WARN_ON(p->pi_blocked_on); 3568 goto out_unlock; 3569 } 3570 3571 trace_sched_pi_setprio(p, prio); 3572 oldprio = p->prio; 3573 3574 if (oldprio == prio) 3575 queue_flag &= ~DEQUEUE_MOVE; 3576 3577 prev_class = p->sched_class; 3578 queued = task_on_rq_queued(p); 3579 running = task_current(rq, p); 3580 if (queued) 3581 dequeue_task(rq, p, queue_flag); 3582 if (running) 3583 put_prev_task(rq, p); 3584 3585 /* 3586 * Boosting condition are: 3587 * 1. -rt task is running and holds mutex A 3588 * --> -dl task blocks on mutex A 3589 * 3590 * 2. -dl task is running and holds mutex A 3591 * --> -dl task blocks on mutex A and could preempt the 3592 * running task 3593 */ 3594 if (dl_prio(prio)) { 3595 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3596 if (!dl_prio(p->normal_prio) || 3597 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3598 p->dl.dl_boosted = 1; 3599 queue_flag |= ENQUEUE_REPLENISH; 3600 } else 3601 p->dl.dl_boosted = 0; 3602 p->sched_class = &dl_sched_class; 3603 } else if (rt_prio(prio)) { 3604 if (dl_prio(oldprio)) 3605 p->dl.dl_boosted = 0; 3606 if (oldprio < prio) 3607 queue_flag |= ENQUEUE_HEAD; 3608 p->sched_class = &rt_sched_class; 3609 } else { 3610 if (dl_prio(oldprio)) 3611 p->dl.dl_boosted = 0; 3612 if (rt_prio(oldprio)) 3613 p->rt.timeout = 0; 3614 p->sched_class = &fair_sched_class; 3615 } 3616 3617 p->prio = prio; 3618 3619 if (running) 3620 p->sched_class->set_curr_task(rq); 3621 if (queued) 3622 enqueue_task(rq, p, queue_flag); 3623 3624 check_class_changed(rq, p, prev_class, oldprio); 3625 out_unlock: 3626 preempt_disable(); /* avoid rq from going away on us */ 3627 __task_rq_unlock(rq, &rf); 3628 3629 balance_callback(rq); 3630 preempt_enable(); 3631 } 3632 #endif 3633 3634 void set_user_nice(struct task_struct *p, long nice) 3635 { 3636 int old_prio, delta, queued; 3637 struct rq_flags rf; 3638 struct rq *rq; 3639 3640 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3641 return; 3642 /* 3643 * We have to be careful, if called from sys_setpriority(), 3644 * the task might be in the middle of scheduling on another CPU. 3645 */ 3646 rq = task_rq_lock(p, &rf); 3647 /* 3648 * The RT priorities are set via sched_setscheduler(), but we still 3649 * allow the 'normal' nice value to be set - but as expected 3650 * it wont have any effect on scheduling until the task is 3651 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3652 */ 3653 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3654 p->static_prio = NICE_TO_PRIO(nice); 3655 goto out_unlock; 3656 } 3657 queued = task_on_rq_queued(p); 3658 if (queued) 3659 dequeue_task(rq, p, DEQUEUE_SAVE); 3660 3661 p->static_prio = NICE_TO_PRIO(nice); 3662 set_load_weight(p); 3663 old_prio = p->prio; 3664 p->prio = effective_prio(p); 3665 delta = p->prio - old_prio; 3666 3667 if (queued) { 3668 enqueue_task(rq, p, ENQUEUE_RESTORE); 3669 /* 3670 * If the task increased its priority or is running and 3671 * lowered its priority, then reschedule its CPU: 3672 */ 3673 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3674 resched_curr(rq); 3675 } 3676 out_unlock: 3677 task_rq_unlock(rq, p, &rf); 3678 } 3679 EXPORT_SYMBOL(set_user_nice); 3680 3681 /* 3682 * can_nice - check if a task can reduce its nice value 3683 * @p: task 3684 * @nice: nice value 3685 */ 3686 int can_nice(const struct task_struct *p, const int nice) 3687 { 3688 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3689 int nice_rlim = nice_to_rlimit(nice); 3690 3691 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3692 capable(CAP_SYS_NICE)); 3693 } 3694 3695 #ifdef __ARCH_WANT_SYS_NICE 3696 3697 /* 3698 * sys_nice - change the priority of the current process. 3699 * @increment: priority increment 3700 * 3701 * sys_setpriority is a more generic, but much slower function that 3702 * does similar things. 3703 */ 3704 SYSCALL_DEFINE1(nice, int, increment) 3705 { 3706 long nice, retval; 3707 3708 /* 3709 * Setpriority might change our priority at the same moment. 3710 * We don't have to worry. Conceptually one call occurs first 3711 * and we have a single winner. 3712 */ 3713 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3714 nice = task_nice(current) + increment; 3715 3716 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3717 if (increment < 0 && !can_nice(current, nice)) 3718 return -EPERM; 3719 3720 retval = security_task_setnice(current, nice); 3721 if (retval) 3722 return retval; 3723 3724 set_user_nice(current, nice); 3725 return 0; 3726 } 3727 3728 #endif 3729 3730 /** 3731 * task_prio - return the priority value of a given task. 3732 * @p: the task in question. 3733 * 3734 * Return: The priority value as seen by users in /proc. 3735 * RT tasks are offset by -200. Normal tasks are centered 3736 * around 0, value goes from -16 to +15. 3737 */ 3738 int task_prio(const struct task_struct *p) 3739 { 3740 return p->prio - MAX_RT_PRIO; 3741 } 3742 3743 /** 3744 * idle_cpu - is a given cpu idle currently? 3745 * @cpu: the processor in question. 3746 * 3747 * Return: 1 if the CPU is currently idle. 0 otherwise. 3748 */ 3749 int idle_cpu(int cpu) 3750 { 3751 struct rq *rq = cpu_rq(cpu); 3752 3753 if (rq->curr != rq->idle) 3754 return 0; 3755 3756 if (rq->nr_running) 3757 return 0; 3758 3759 #ifdef CONFIG_SMP 3760 if (!llist_empty(&rq->wake_list)) 3761 return 0; 3762 #endif 3763 3764 return 1; 3765 } 3766 3767 /** 3768 * idle_task - return the idle task for a given cpu. 3769 * @cpu: the processor in question. 3770 * 3771 * Return: The idle task for the cpu @cpu. 3772 */ 3773 struct task_struct *idle_task(int cpu) 3774 { 3775 return cpu_rq(cpu)->idle; 3776 } 3777 3778 /** 3779 * find_process_by_pid - find a process with a matching PID value. 3780 * @pid: the pid in question. 3781 * 3782 * The task of @pid, if found. %NULL otherwise. 3783 */ 3784 static struct task_struct *find_process_by_pid(pid_t pid) 3785 { 3786 return pid ? find_task_by_vpid(pid) : current; 3787 } 3788 3789 /* 3790 * This function initializes the sched_dl_entity of a newly becoming 3791 * SCHED_DEADLINE task. 3792 * 3793 * Only the static values are considered here, the actual runtime and the 3794 * absolute deadline will be properly calculated when the task is enqueued 3795 * for the first time with its new policy. 3796 */ 3797 static void 3798 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3799 { 3800 struct sched_dl_entity *dl_se = &p->dl; 3801 3802 dl_se->dl_runtime = attr->sched_runtime; 3803 dl_se->dl_deadline = attr->sched_deadline; 3804 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3805 dl_se->flags = attr->sched_flags; 3806 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3807 3808 /* 3809 * Changing the parameters of a task is 'tricky' and we're not doing 3810 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3811 * 3812 * What we SHOULD do is delay the bandwidth release until the 0-lag 3813 * point. This would include retaining the task_struct until that time 3814 * and change dl_overflow() to not immediately decrement the current 3815 * amount. 3816 * 3817 * Instead we retain the current runtime/deadline and let the new 3818 * parameters take effect after the current reservation period lapses. 3819 * This is safe (albeit pessimistic) because the 0-lag point is always 3820 * before the current scheduling deadline. 3821 * 3822 * We can still have temporary overloads because we do not delay the 3823 * change in bandwidth until that time; so admission control is 3824 * not on the safe side. It does however guarantee tasks will never 3825 * consume more than promised. 3826 */ 3827 } 3828 3829 /* 3830 * sched_setparam() passes in -1 for its policy, to let the functions 3831 * it calls know not to change it. 3832 */ 3833 #define SETPARAM_POLICY -1 3834 3835 static void __setscheduler_params(struct task_struct *p, 3836 const struct sched_attr *attr) 3837 { 3838 int policy = attr->sched_policy; 3839 3840 if (policy == SETPARAM_POLICY) 3841 policy = p->policy; 3842 3843 p->policy = policy; 3844 3845 if (dl_policy(policy)) 3846 __setparam_dl(p, attr); 3847 else if (fair_policy(policy)) 3848 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3849 3850 /* 3851 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3852 * !rt_policy. Always setting this ensures that things like 3853 * getparam()/getattr() don't report silly values for !rt tasks. 3854 */ 3855 p->rt_priority = attr->sched_priority; 3856 p->normal_prio = normal_prio(p); 3857 set_load_weight(p); 3858 } 3859 3860 /* Actually do priority change: must hold pi & rq lock. */ 3861 static void __setscheduler(struct rq *rq, struct task_struct *p, 3862 const struct sched_attr *attr, bool keep_boost) 3863 { 3864 __setscheduler_params(p, attr); 3865 3866 /* 3867 * Keep a potential priority boosting if called from 3868 * sched_setscheduler(). 3869 */ 3870 if (keep_boost) 3871 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 3872 else 3873 p->prio = normal_prio(p); 3874 3875 if (dl_prio(p->prio)) 3876 p->sched_class = &dl_sched_class; 3877 else if (rt_prio(p->prio)) 3878 p->sched_class = &rt_sched_class; 3879 else 3880 p->sched_class = &fair_sched_class; 3881 } 3882 3883 static void 3884 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3885 { 3886 struct sched_dl_entity *dl_se = &p->dl; 3887 3888 attr->sched_priority = p->rt_priority; 3889 attr->sched_runtime = dl_se->dl_runtime; 3890 attr->sched_deadline = dl_se->dl_deadline; 3891 attr->sched_period = dl_se->dl_period; 3892 attr->sched_flags = dl_se->flags; 3893 } 3894 3895 /* 3896 * This function validates the new parameters of a -deadline task. 3897 * We ask for the deadline not being zero, and greater or equal 3898 * than the runtime, as well as the period of being zero or 3899 * greater than deadline. Furthermore, we have to be sure that 3900 * user parameters are above the internal resolution of 1us (we 3901 * check sched_runtime only since it is always the smaller one) and 3902 * below 2^63 ns (we have to check both sched_deadline and 3903 * sched_period, as the latter can be zero). 3904 */ 3905 static bool 3906 __checkparam_dl(const struct sched_attr *attr) 3907 { 3908 /* deadline != 0 */ 3909 if (attr->sched_deadline == 0) 3910 return false; 3911 3912 /* 3913 * Since we truncate DL_SCALE bits, make sure we're at least 3914 * that big. 3915 */ 3916 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3917 return false; 3918 3919 /* 3920 * Since we use the MSB for wrap-around and sign issues, make 3921 * sure it's not set (mind that period can be equal to zero). 3922 */ 3923 if (attr->sched_deadline & (1ULL << 63) || 3924 attr->sched_period & (1ULL << 63)) 3925 return false; 3926 3927 /* runtime <= deadline <= period (if period != 0) */ 3928 if ((attr->sched_period != 0 && 3929 attr->sched_period < attr->sched_deadline) || 3930 attr->sched_deadline < attr->sched_runtime) 3931 return false; 3932 3933 return true; 3934 } 3935 3936 /* 3937 * check the target process has a UID that matches the current process's 3938 */ 3939 static bool check_same_owner(struct task_struct *p) 3940 { 3941 const struct cred *cred = current_cred(), *pcred; 3942 bool match; 3943 3944 rcu_read_lock(); 3945 pcred = __task_cred(p); 3946 match = (uid_eq(cred->euid, pcred->euid) || 3947 uid_eq(cred->euid, pcred->uid)); 3948 rcu_read_unlock(); 3949 return match; 3950 } 3951 3952 static bool dl_param_changed(struct task_struct *p, 3953 const struct sched_attr *attr) 3954 { 3955 struct sched_dl_entity *dl_se = &p->dl; 3956 3957 if (dl_se->dl_runtime != attr->sched_runtime || 3958 dl_se->dl_deadline != attr->sched_deadline || 3959 dl_se->dl_period != attr->sched_period || 3960 dl_se->flags != attr->sched_flags) 3961 return true; 3962 3963 return false; 3964 } 3965 3966 static int __sched_setscheduler(struct task_struct *p, 3967 const struct sched_attr *attr, 3968 bool user, bool pi) 3969 { 3970 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3971 MAX_RT_PRIO - 1 - attr->sched_priority; 3972 int retval, oldprio, oldpolicy = -1, queued, running; 3973 int new_effective_prio, policy = attr->sched_policy; 3974 const struct sched_class *prev_class; 3975 struct rq_flags rf; 3976 int reset_on_fork; 3977 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 3978 struct rq *rq; 3979 3980 /* may grab non-irq protected spin_locks */ 3981 BUG_ON(in_interrupt()); 3982 recheck: 3983 /* double check policy once rq lock held */ 3984 if (policy < 0) { 3985 reset_on_fork = p->sched_reset_on_fork; 3986 policy = oldpolicy = p->policy; 3987 } else { 3988 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3989 3990 if (!valid_policy(policy)) 3991 return -EINVAL; 3992 } 3993 3994 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3995 return -EINVAL; 3996 3997 /* 3998 * Valid priorities for SCHED_FIFO and SCHED_RR are 3999 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4000 * SCHED_BATCH and SCHED_IDLE is 0. 4001 */ 4002 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4003 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4004 return -EINVAL; 4005 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4006 (rt_policy(policy) != (attr->sched_priority != 0))) 4007 return -EINVAL; 4008 4009 /* 4010 * Allow unprivileged RT tasks to decrease priority: 4011 */ 4012 if (user && !capable(CAP_SYS_NICE)) { 4013 if (fair_policy(policy)) { 4014 if (attr->sched_nice < task_nice(p) && 4015 !can_nice(p, attr->sched_nice)) 4016 return -EPERM; 4017 } 4018 4019 if (rt_policy(policy)) { 4020 unsigned long rlim_rtprio = 4021 task_rlimit(p, RLIMIT_RTPRIO); 4022 4023 /* can't set/change the rt policy */ 4024 if (policy != p->policy && !rlim_rtprio) 4025 return -EPERM; 4026 4027 /* can't increase priority */ 4028 if (attr->sched_priority > p->rt_priority && 4029 attr->sched_priority > rlim_rtprio) 4030 return -EPERM; 4031 } 4032 4033 /* 4034 * Can't set/change SCHED_DEADLINE policy at all for now 4035 * (safest behavior); in the future we would like to allow 4036 * unprivileged DL tasks to increase their relative deadline 4037 * or reduce their runtime (both ways reducing utilization) 4038 */ 4039 if (dl_policy(policy)) 4040 return -EPERM; 4041 4042 /* 4043 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4044 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4045 */ 4046 if (idle_policy(p->policy) && !idle_policy(policy)) { 4047 if (!can_nice(p, task_nice(p))) 4048 return -EPERM; 4049 } 4050 4051 /* can't change other user's priorities */ 4052 if (!check_same_owner(p)) 4053 return -EPERM; 4054 4055 /* Normal users shall not reset the sched_reset_on_fork flag */ 4056 if (p->sched_reset_on_fork && !reset_on_fork) 4057 return -EPERM; 4058 } 4059 4060 if (user) { 4061 retval = security_task_setscheduler(p); 4062 if (retval) 4063 return retval; 4064 } 4065 4066 /* 4067 * make sure no PI-waiters arrive (or leave) while we are 4068 * changing the priority of the task: 4069 * 4070 * To be able to change p->policy safely, the appropriate 4071 * runqueue lock must be held. 4072 */ 4073 rq = task_rq_lock(p, &rf); 4074 4075 /* 4076 * Changing the policy of the stop threads its a very bad idea 4077 */ 4078 if (p == rq->stop) { 4079 task_rq_unlock(rq, p, &rf); 4080 return -EINVAL; 4081 } 4082 4083 /* 4084 * If not changing anything there's no need to proceed further, 4085 * but store a possible modification of reset_on_fork. 4086 */ 4087 if (unlikely(policy == p->policy)) { 4088 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4089 goto change; 4090 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4091 goto change; 4092 if (dl_policy(policy) && dl_param_changed(p, attr)) 4093 goto change; 4094 4095 p->sched_reset_on_fork = reset_on_fork; 4096 task_rq_unlock(rq, p, &rf); 4097 return 0; 4098 } 4099 change: 4100 4101 if (user) { 4102 #ifdef CONFIG_RT_GROUP_SCHED 4103 /* 4104 * Do not allow realtime tasks into groups that have no runtime 4105 * assigned. 4106 */ 4107 if (rt_bandwidth_enabled() && rt_policy(policy) && 4108 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4109 !task_group_is_autogroup(task_group(p))) { 4110 task_rq_unlock(rq, p, &rf); 4111 return -EPERM; 4112 } 4113 #endif 4114 #ifdef CONFIG_SMP 4115 if (dl_bandwidth_enabled() && dl_policy(policy)) { 4116 cpumask_t *span = rq->rd->span; 4117 4118 /* 4119 * Don't allow tasks with an affinity mask smaller than 4120 * the entire root_domain to become SCHED_DEADLINE. We 4121 * will also fail if there's no bandwidth available. 4122 */ 4123 if (!cpumask_subset(span, &p->cpus_allowed) || 4124 rq->rd->dl_bw.bw == 0) { 4125 task_rq_unlock(rq, p, &rf); 4126 return -EPERM; 4127 } 4128 } 4129 #endif 4130 } 4131 4132 /* recheck policy now with rq lock held */ 4133 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4134 policy = oldpolicy = -1; 4135 task_rq_unlock(rq, p, &rf); 4136 goto recheck; 4137 } 4138 4139 /* 4140 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4141 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4142 * is available. 4143 */ 4144 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 4145 task_rq_unlock(rq, p, &rf); 4146 return -EBUSY; 4147 } 4148 4149 p->sched_reset_on_fork = reset_on_fork; 4150 oldprio = p->prio; 4151 4152 if (pi) { 4153 /* 4154 * Take priority boosted tasks into account. If the new 4155 * effective priority is unchanged, we just store the new 4156 * normal parameters and do not touch the scheduler class and 4157 * the runqueue. This will be done when the task deboost 4158 * itself. 4159 */ 4160 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 4161 if (new_effective_prio == oldprio) 4162 queue_flags &= ~DEQUEUE_MOVE; 4163 } 4164 4165 queued = task_on_rq_queued(p); 4166 running = task_current(rq, p); 4167 if (queued) 4168 dequeue_task(rq, p, queue_flags); 4169 if (running) 4170 put_prev_task(rq, p); 4171 4172 prev_class = p->sched_class; 4173 __setscheduler(rq, p, attr, pi); 4174 4175 if (running) 4176 p->sched_class->set_curr_task(rq); 4177 if (queued) { 4178 /* 4179 * We enqueue to tail when the priority of a task is 4180 * increased (user space view). 4181 */ 4182 if (oldprio < p->prio) 4183 queue_flags |= ENQUEUE_HEAD; 4184 4185 enqueue_task(rq, p, queue_flags); 4186 } 4187 4188 check_class_changed(rq, p, prev_class, oldprio); 4189 preempt_disable(); /* avoid rq from going away on us */ 4190 task_rq_unlock(rq, p, &rf); 4191 4192 if (pi) 4193 rt_mutex_adjust_pi(p); 4194 4195 /* 4196 * Run balance callbacks after we've adjusted the PI chain. 4197 */ 4198 balance_callback(rq); 4199 preempt_enable(); 4200 4201 return 0; 4202 } 4203 4204 static int _sched_setscheduler(struct task_struct *p, int policy, 4205 const struct sched_param *param, bool check) 4206 { 4207 struct sched_attr attr = { 4208 .sched_policy = policy, 4209 .sched_priority = param->sched_priority, 4210 .sched_nice = PRIO_TO_NICE(p->static_prio), 4211 }; 4212 4213 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4214 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4215 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4216 policy &= ~SCHED_RESET_ON_FORK; 4217 attr.sched_policy = policy; 4218 } 4219 4220 return __sched_setscheduler(p, &attr, check, true); 4221 } 4222 /** 4223 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4224 * @p: the task in question. 4225 * @policy: new policy. 4226 * @param: structure containing the new RT priority. 4227 * 4228 * Return: 0 on success. An error code otherwise. 4229 * 4230 * NOTE that the task may be already dead. 4231 */ 4232 int sched_setscheduler(struct task_struct *p, int policy, 4233 const struct sched_param *param) 4234 { 4235 return _sched_setscheduler(p, policy, param, true); 4236 } 4237 EXPORT_SYMBOL_GPL(sched_setscheduler); 4238 4239 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4240 { 4241 return __sched_setscheduler(p, attr, true, true); 4242 } 4243 EXPORT_SYMBOL_GPL(sched_setattr); 4244 4245 /** 4246 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4247 * @p: the task in question. 4248 * @policy: new policy. 4249 * @param: structure containing the new RT priority. 4250 * 4251 * Just like sched_setscheduler, only don't bother checking if the 4252 * current context has permission. For example, this is needed in 4253 * stop_machine(): we create temporary high priority worker threads, 4254 * but our caller might not have that capability. 4255 * 4256 * Return: 0 on success. An error code otherwise. 4257 */ 4258 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4259 const struct sched_param *param) 4260 { 4261 return _sched_setscheduler(p, policy, param, false); 4262 } 4263 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4264 4265 static int 4266 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4267 { 4268 struct sched_param lparam; 4269 struct task_struct *p; 4270 int retval; 4271 4272 if (!param || pid < 0) 4273 return -EINVAL; 4274 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4275 return -EFAULT; 4276 4277 rcu_read_lock(); 4278 retval = -ESRCH; 4279 p = find_process_by_pid(pid); 4280 if (p != NULL) 4281 retval = sched_setscheduler(p, policy, &lparam); 4282 rcu_read_unlock(); 4283 4284 return retval; 4285 } 4286 4287 /* 4288 * Mimics kernel/events/core.c perf_copy_attr(). 4289 */ 4290 static int sched_copy_attr(struct sched_attr __user *uattr, 4291 struct sched_attr *attr) 4292 { 4293 u32 size; 4294 int ret; 4295 4296 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4297 return -EFAULT; 4298 4299 /* 4300 * zero the full structure, so that a short copy will be nice. 4301 */ 4302 memset(attr, 0, sizeof(*attr)); 4303 4304 ret = get_user(size, &uattr->size); 4305 if (ret) 4306 return ret; 4307 4308 if (size > PAGE_SIZE) /* silly large */ 4309 goto err_size; 4310 4311 if (!size) /* abi compat */ 4312 size = SCHED_ATTR_SIZE_VER0; 4313 4314 if (size < SCHED_ATTR_SIZE_VER0) 4315 goto err_size; 4316 4317 /* 4318 * If we're handed a bigger struct than we know of, 4319 * ensure all the unknown bits are 0 - i.e. new 4320 * user-space does not rely on any kernel feature 4321 * extensions we dont know about yet. 4322 */ 4323 if (size > sizeof(*attr)) { 4324 unsigned char __user *addr; 4325 unsigned char __user *end; 4326 unsigned char val; 4327 4328 addr = (void __user *)uattr + sizeof(*attr); 4329 end = (void __user *)uattr + size; 4330 4331 for (; addr < end; addr++) { 4332 ret = get_user(val, addr); 4333 if (ret) 4334 return ret; 4335 if (val) 4336 goto err_size; 4337 } 4338 size = sizeof(*attr); 4339 } 4340 4341 ret = copy_from_user(attr, uattr, size); 4342 if (ret) 4343 return -EFAULT; 4344 4345 /* 4346 * XXX: do we want to be lenient like existing syscalls; or do we want 4347 * to be strict and return an error on out-of-bounds values? 4348 */ 4349 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4350 4351 return 0; 4352 4353 err_size: 4354 put_user(sizeof(*attr), &uattr->size); 4355 return -E2BIG; 4356 } 4357 4358 /** 4359 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4360 * @pid: the pid in question. 4361 * @policy: new policy. 4362 * @param: structure containing the new RT priority. 4363 * 4364 * Return: 0 on success. An error code otherwise. 4365 */ 4366 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4367 struct sched_param __user *, param) 4368 { 4369 /* negative values for policy are not valid */ 4370 if (policy < 0) 4371 return -EINVAL; 4372 4373 return do_sched_setscheduler(pid, policy, param); 4374 } 4375 4376 /** 4377 * sys_sched_setparam - set/change the RT priority of a thread 4378 * @pid: the pid in question. 4379 * @param: structure containing the new RT priority. 4380 * 4381 * Return: 0 on success. An error code otherwise. 4382 */ 4383 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4384 { 4385 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4386 } 4387 4388 /** 4389 * sys_sched_setattr - same as above, but with extended sched_attr 4390 * @pid: the pid in question. 4391 * @uattr: structure containing the extended parameters. 4392 * @flags: for future extension. 4393 */ 4394 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4395 unsigned int, flags) 4396 { 4397 struct sched_attr attr; 4398 struct task_struct *p; 4399 int retval; 4400 4401 if (!uattr || pid < 0 || flags) 4402 return -EINVAL; 4403 4404 retval = sched_copy_attr(uattr, &attr); 4405 if (retval) 4406 return retval; 4407 4408 if ((int)attr.sched_policy < 0) 4409 return -EINVAL; 4410 4411 rcu_read_lock(); 4412 retval = -ESRCH; 4413 p = find_process_by_pid(pid); 4414 if (p != NULL) 4415 retval = sched_setattr(p, &attr); 4416 rcu_read_unlock(); 4417 4418 return retval; 4419 } 4420 4421 /** 4422 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4423 * @pid: the pid in question. 4424 * 4425 * Return: On success, the policy of the thread. Otherwise, a negative error 4426 * code. 4427 */ 4428 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4429 { 4430 struct task_struct *p; 4431 int retval; 4432 4433 if (pid < 0) 4434 return -EINVAL; 4435 4436 retval = -ESRCH; 4437 rcu_read_lock(); 4438 p = find_process_by_pid(pid); 4439 if (p) { 4440 retval = security_task_getscheduler(p); 4441 if (!retval) 4442 retval = p->policy 4443 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4444 } 4445 rcu_read_unlock(); 4446 return retval; 4447 } 4448 4449 /** 4450 * sys_sched_getparam - get the RT priority of a thread 4451 * @pid: the pid in question. 4452 * @param: structure containing the RT priority. 4453 * 4454 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4455 * code. 4456 */ 4457 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4458 { 4459 struct sched_param lp = { .sched_priority = 0 }; 4460 struct task_struct *p; 4461 int retval; 4462 4463 if (!param || pid < 0) 4464 return -EINVAL; 4465 4466 rcu_read_lock(); 4467 p = find_process_by_pid(pid); 4468 retval = -ESRCH; 4469 if (!p) 4470 goto out_unlock; 4471 4472 retval = security_task_getscheduler(p); 4473 if (retval) 4474 goto out_unlock; 4475 4476 if (task_has_rt_policy(p)) 4477 lp.sched_priority = p->rt_priority; 4478 rcu_read_unlock(); 4479 4480 /* 4481 * This one might sleep, we cannot do it with a spinlock held ... 4482 */ 4483 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4484 4485 return retval; 4486 4487 out_unlock: 4488 rcu_read_unlock(); 4489 return retval; 4490 } 4491 4492 static int sched_read_attr(struct sched_attr __user *uattr, 4493 struct sched_attr *attr, 4494 unsigned int usize) 4495 { 4496 int ret; 4497 4498 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4499 return -EFAULT; 4500 4501 /* 4502 * If we're handed a smaller struct than we know of, 4503 * ensure all the unknown bits are 0 - i.e. old 4504 * user-space does not get uncomplete information. 4505 */ 4506 if (usize < sizeof(*attr)) { 4507 unsigned char *addr; 4508 unsigned char *end; 4509 4510 addr = (void *)attr + usize; 4511 end = (void *)attr + sizeof(*attr); 4512 4513 for (; addr < end; addr++) { 4514 if (*addr) 4515 return -EFBIG; 4516 } 4517 4518 attr->size = usize; 4519 } 4520 4521 ret = copy_to_user(uattr, attr, attr->size); 4522 if (ret) 4523 return -EFAULT; 4524 4525 return 0; 4526 } 4527 4528 /** 4529 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4530 * @pid: the pid in question. 4531 * @uattr: structure containing the extended parameters. 4532 * @size: sizeof(attr) for fwd/bwd comp. 4533 * @flags: for future extension. 4534 */ 4535 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4536 unsigned int, size, unsigned int, flags) 4537 { 4538 struct sched_attr attr = { 4539 .size = sizeof(struct sched_attr), 4540 }; 4541 struct task_struct *p; 4542 int retval; 4543 4544 if (!uattr || pid < 0 || size > PAGE_SIZE || 4545 size < SCHED_ATTR_SIZE_VER0 || flags) 4546 return -EINVAL; 4547 4548 rcu_read_lock(); 4549 p = find_process_by_pid(pid); 4550 retval = -ESRCH; 4551 if (!p) 4552 goto out_unlock; 4553 4554 retval = security_task_getscheduler(p); 4555 if (retval) 4556 goto out_unlock; 4557 4558 attr.sched_policy = p->policy; 4559 if (p->sched_reset_on_fork) 4560 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4561 if (task_has_dl_policy(p)) 4562 __getparam_dl(p, &attr); 4563 else if (task_has_rt_policy(p)) 4564 attr.sched_priority = p->rt_priority; 4565 else 4566 attr.sched_nice = task_nice(p); 4567 4568 rcu_read_unlock(); 4569 4570 retval = sched_read_attr(uattr, &attr, size); 4571 return retval; 4572 4573 out_unlock: 4574 rcu_read_unlock(); 4575 return retval; 4576 } 4577 4578 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4579 { 4580 cpumask_var_t cpus_allowed, new_mask; 4581 struct task_struct *p; 4582 int retval; 4583 4584 rcu_read_lock(); 4585 4586 p = find_process_by_pid(pid); 4587 if (!p) { 4588 rcu_read_unlock(); 4589 return -ESRCH; 4590 } 4591 4592 /* Prevent p going away */ 4593 get_task_struct(p); 4594 rcu_read_unlock(); 4595 4596 if (p->flags & PF_NO_SETAFFINITY) { 4597 retval = -EINVAL; 4598 goto out_put_task; 4599 } 4600 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4601 retval = -ENOMEM; 4602 goto out_put_task; 4603 } 4604 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4605 retval = -ENOMEM; 4606 goto out_free_cpus_allowed; 4607 } 4608 retval = -EPERM; 4609 if (!check_same_owner(p)) { 4610 rcu_read_lock(); 4611 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4612 rcu_read_unlock(); 4613 goto out_free_new_mask; 4614 } 4615 rcu_read_unlock(); 4616 } 4617 4618 retval = security_task_setscheduler(p); 4619 if (retval) 4620 goto out_free_new_mask; 4621 4622 4623 cpuset_cpus_allowed(p, cpus_allowed); 4624 cpumask_and(new_mask, in_mask, cpus_allowed); 4625 4626 /* 4627 * Since bandwidth control happens on root_domain basis, 4628 * if admission test is enabled, we only admit -deadline 4629 * tasks allowed to run on all the CPUs in the task's 4630 * root_domain. 4631 */ 4632 #ifdef CONFIG_SMP 4633 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4634 rcu_read_lock(); 4635 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4636 retval = -EBUSY; 4637 rcu_read_unlock(); 4638 goto out_free_new_mask; 4639 } 4640 rcu_read_unlock(); 4641 } 4642 #endif 4643 again: 4644 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4645 4646 if (!retval) { 4647 cpuset_cpus_allowed(p, cpus_allowed); 4648 if (!cpumask_subset(new_mask, cpus_allowed)) { 4649 /* 4650 * We must have raced with a concurrent cpuset 4651 * update. Just reset the cpus_allowed to the 4652 * cpuset's cpus_allowed 4653 */ 4654 cpumask_copy(new_mask, cpus_allowed); 4655 goto again; 4656 } 4657 } 4658 out_free_new_mask: 4659 free_cpumask_var(new_mask); 4660 out_free_cpus_allowed: 4661 free_cpumask_var(cpus_allowed); 4662 out_put_task: 4663 put_task_struct(p); 4664 return retval; 4665 } 4666 4667 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4668 struct cpumask *new_mask) 4669 { 4670 if (len < cpumask_size()) 4671 cpumask_clear(new_mask); 4672 else if (len > cpumask_size()) 4673 len = cpumask_size(); 4674 4675 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4676 } 4677 4678 /** 4679 * sys_sched_setaffinity - set the cpu affinity of a process 4680 * @pid: pid of the process 4681 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4682 * @user_mask_ptr: user-space pointer to the new cpu mask 4683 * 4684 * Return: 0 on success. An error code otherwise. 4685 */ 4686 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4687 unsigned long __user *, user_mask_ptr) 4688 { 4689 cpumask_var_t new_mask; 4690 int retval; 4691 4692 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4693 return -ENOMEM; 4694 4695 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4696 if (retval == 0) 4697 retval = sched_setaffinity(pid, new_mask); 4698 free_cpumask_var(new_mask); 4699 return retval; 4700 } 4701 4702 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4703 { 4704 struct task_struct *p; 4705 unsigned long flags; 4706 int retval; 4707 4708 rcu_read_lock(); 4709 4710 retval = -ESRCH; 4711 p = find_process_by_pid(pid); 4712 if (!p) 4713 goto out_unlock; 4714 4715 retval = security_task_getscheduler(p); 4716 if (retval) 4717 goto out_unlock; 4718 4719 raw_spin_lock_irqsave(&p->pi_lock, flags); 4720 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4721 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4722 4723 out_unlock: 4724 rcu_read_unlock(); 4725 4726 return retval; 4727 } 4728 4729 /** 4730 * sys_sched_getaffinity - get the cpu affinity of a process 4731 * @pid: pid of the process 4732 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4733 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4734 * 4735 * Return: 0 on success. An error code otherwise. 4736 */ 4737 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4738 unsigned long __user *, user_mask_ptr) 4739 { 4740 int ret; 4741 cpumask_var_t mask; 4742 4743 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4744 return -EINVAL; 4745 if (len & (sizeof(unsigned long)-1)) 4746 return -EINVAL; 4747 4748 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4749 return -ENOMEM; 4750 4751 ret = sched_getaffinity(pid, mask); 4752 if (ret == 0) { 4753 size_t retlen = min_t(size_t, len, cpumask_size()); 4754 4755 if (copy_to_user(user_mask_ptr, mask, retlen)) 4756 ret = -EFAULT; 4757 else 4758 ret = retlen; 4759 } 4760 free_cpumask_var(mask); 4761 4762 return ret; 4763 } 4764 4765 /** 4766 * sys_sched_yield - yield the current processor to other threads. 4767 * 4768 * This function yields the current CPU to other tasks. If there are no 4769 * other threads running on this CPU then this function will return. 4770 * 4771 * Return: 0. 4772 */ 4773 SYSCALL_DEFINE0(sched_yield) 4774 { 4775 struct rq *rq = this_rq_lock(); 4776 4777 schedstat_inc(rq, yld_count); 4778 current->sched_class->yield_task(rq); 4779 4780 /* 4781 * Since we are going to call schedule() anyway, there's 4782 * no need to preempt or enable interrupts: 4783 */ 4784 __release(rq->lock); 4785 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4786 do_raw_spin_unlock(&rq->lock); 4787 sched_preempt_enable_no_resched(); 4788 4789 schedule(); 4790 4791 return 0; 4792 } 4793 4794 int __sched _cond_resched(void) 4795 { 4796 if (should_resched(0)) { 4797 preempt_schedule_common(); 4798 return 1; 4799 } 4800 return 0; 4801 } 4802 EXPORT_SYMBOL(_cond_resched); 4803 4804 /* 4805 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4806 * call schedule, and on return reacquire the lock. 4807 * 4808 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4809 * operations here to prevent schedule() from being called twice (once via 4810 * spin_unlock(), once by hand). 4811 */ 4812 int __cond_resched_lock(spinlock_t *lock) 4813 { 4814 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4815 int ret = 0; 4816 4817 lockdep_assert_held(lock); 4818 4819 if (spin_needbreak(lock) || resched) { 4820 spin_unlock(lock); 4821 if (resched) 4822 preempt_schedule_common(); 4823 else 4824 cpu_relax(); 4825 ret = 1; 4826 spin_lock(lock); 4827 } 4828 return ret; 4829 } 4830 EXPORT_SYMBOL(__cond_resched_lock); 4831 4832 int __sched __cond_resched_softirq(void) 4833 { 4834 BUG_ON(!in_softirq()); 4835 4836 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4837 local_bh_enable(); 4838 preempt_schedule_common(); 4839 local_bh_disable(); 4840 return 1; 4841 } 4842 return 0; 4843 } 4844 EXPORT_SYMBOL(__cond_resched_softirq); 4845 4846 /** 4847 * yield - yield the current processor to other threads. 4848 * 4849 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4850 * 4851 * The scheduler is at all times free to pick the calling task as the most 4852 * eligible task to run, if removing the yield() call from your code breaks 4853 * it, its already broken. 4854 * 4855 * Typical broken usage is: 4856 * 4857 * while (!event) 4858 * yield(); 4859 * 4860 * where one assumes that yield() will let 'the other' process run that will 4861 * make event true. If the current task is a SCHED_FIFO task that will never 4862 * happen. Never use yield() as a progress guarantee!! 4863 * 4864 * If you want to use yield() to wait for something, use wait_event(). 4865 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4866 * If you still want to use yield(), do not! 4867 */ 4868 void __sched yield(void) 4869 { 4870 set_current_state(TASK_RUNNING); 4871 sys_sched_yield(); 4872 } 4873 EXPORT_SYMBOL(yield); 4874 4875 /** 4876 * yield_to - yield the current processor to another thread in 4877 * your thread group, or accelerate that thread toward the 4878 * processor it's on. 4879 * @p: target task 4880 * @preempt: whether task preemption is allowed or not 4881 * 4882 * It's the caller's job to ensure that the target task struct 4883 * can't go away on us before we can do any checks. 4884 * 4885 * Return: 4886 * true (>0) if we indeed boosted the target task. 4887 * false (0) if we failed to boost the target. 4888 * -ESRCH if there's no task to yield to. 4889 */ 4890 int __sched yield_to(struct task_struct *p, bool preempt) 4891 { 4892 struct task_struct *curr = current; 4893 struct rq *rq, *p_rq; 4894 unsigned long flags; 4895 int yielded = 0; 4896 4897 local_irq_save(flags); 4898 rq = this_rq(); 4899 4900 again: 4901 p_rq = task_rq(p); 4902 /* 4903 * If we're the only runnable task on the rq and target rq also 4904 * has only one task, there's absolutely no point in yielding. 4905 */ 4906 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4907 yielded = -ESRCH; 4908 goto out_irq; 4909 } 4910 4911 double_rq_lock(rq, p_rq); 4912 if (task_rq(p) != p_rq) { 4913 double_rq_unlock(rq, p_rq); 4914 goto again; 4915 } 4916 4917 if (!curr->sched_class->yield_to_task) 4918 goto out_unlock; 4919 4920 if (curr->sched_class != p->sched_class) 4921 goto out_unlock; 4922 4923 if (task_running(p_rq, p) || p->state) 4924 goto out_unlock; 4925 4926 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4927 if (yielded) { 4928 schedstat_inc(rq, yld_count); 4929 /* 4930 * Make p's CPU reschedule; pick_next_entity takes care of 4931 * fairness. 4932 */ 4933 if (preempt && rq != p_rq) 4934 resched_curr(p_rq); 4935 } 4936 4937 out_unlock: 4938 double_rq_unlock(rq, p_rq); 4939 out_irq: 4940 local_irq_restore(flags); 4941 4942 if (yielded > 0) 4943 schedule(); 4944 4945 return yielded; 4946 } 4947 EXPORT_SYMBOL_GPL(yield_to); 4948 4949 /* 4950 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4951 * that process accounting knows that this is a task in IO wait state. 4952 */ 4953 long __sched io_schedule_timeout(long timeout) 4954 { 4955 int old_iowait = current->in_iowait; 4956 struct rq *rq; 4957 long ret; 4958 4959 current->in_iowait = 1; 4960 blk_schedule_flush_plug(current); 4961 4962 delayacct_blkio_start(); 4963 rq = raw_rq(); 4964 atomic_inc(&rq->nr_iowait); 4965 ret = schedule_timeout(timeout); 4966 current->in_iowait = old_iowait; 4967 atomic_dec(&rq->nr_iowait); 4968 delayacct_blkio_end(); 4969 4970 return ret; 4971 } 4972 EXPORT_SYMBOL(io_schedule_timeout); 4973 4974 /** 4975 * sys_sched_get_priority_max - return maximum RT priority. 4976 * @policy: scheduling class. 4977 * 4978 * Return: On success, this syscall returns the maximum 4979 * rt_priority that can be used by a given scheduling class. 4980 * On failure, a negative error code is returned. 4981 */ 4982 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4983 { 4984 int ret = -EINVAL; 4985 4986 switch (policy) { 4987 case SCHED_FIFO: 4988 case SCHED_RR: 4989 ret = MAX_USER_RT_PRIO-1; 4990 break; 4991 case SCHED_DEADLINE: 4992 case SCHED_NORMAL: 4993 case SCHED_BATCH: 4994 case SCHED_IDLE: 4995 ret = 0; 4996 break; 4997 } 4998 return ret; 4999 } 5000 5001 /** 5002 * sys_sched_get_priority_min - return minimum RT priority. 5003 * @policy: scheduling class. 5004 * 5005 * Return: On success, this syscall returns the minimum 5006 * rt_priority that can be used by a given scheduling class. 5007 * On failure, a negative error code is returned. 5008 */ 5009 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5010 { 5011 int ret = -EINVAL; 5012 5013 switch (policy) { 5014 case SCHED_FIFO: 5015 case SCHED_RR: 5016 ret = 1; 5017 break; 5018 case SCHED_DEADLINE: 5019 case SCHED_NORMAL: 5020 case SCHED_BATCH: 5021 case SCHED_IDLE: 5022 ret = 0; 5023 } 5024 return ret; 5025 } 5026 5027 /** 5028 * sys_sched_rr_get_interval - return the default timeslice of a process. 5029 * @pid: pid of the process. 5030 * @interval: userspace pointer to the timeslice value. 5031 * 5032 * this syscall writes the default timeslice value of a given process 5033 * into the user-space timespec buffer. A value of '0' means infinity. 5034 * 5035 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5036 * an error code. 5037 */ 5038 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5039 struct timespec __user *, interval) 5040 { 5041 struct task_struct *p; 5042 unsigned int time_slice; 5043 struct rq_flags rf; 5044 struct timespec t; 5045 struct rq *rq; 5046 int retval; 5047 5048 if (pid < 0) 5049 return -EINVAL; 5050 5051 retval = -ESRCH; 5052 rcu_read_lock(); 5053 p = find_process_by_pid(pid); 5054 if (!p) 5055 goto out_unlock; 5056 5057 retval = security_task_getscheduler(p); 5058 if (retval) 5059 goto out_unlock; 5060 5061 rq = task_rq_lock(p, &rf); 5062 time_slice = 0; 5063 if (p->sched_class->get_rr_interval) 5064 time_slice = p->sched_class->get_rr_interval(rq, p); 5065 task_rq_unlock(rq, p, &rf); 5066 5067 rcu_read_unlock(); 5068 jiffies_to_timespec(time_slice, &t); 5069 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 5070 return retval; 5071 5072 out_unlock: 5073 rcu_read_unlock(); 5074 return retval; 5075 } 5076 5077 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 5078 5079 void sched_show_task(struct task_struct *p) 5080 { 5081 unsigned long free = 0; 5082 int ppid; 5083 unsigned long state = p->state; 5084 5085 if (state) 5086 state = __ffs(state) + 1; 5087 printk(KERN_INFO "%-15.15s %c", p->comm, 5088 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 5089 #if BITS_PER_LONG == 32 5090 if (state == TASK_RUNNING) 5091 printk(KERN_CONT " running "); 5092 else 5093 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 5094 #else 5095 if (state == TASK_RUNNING) 5096 printk(KERN_CONT " running task "); 5097 else 5098 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 5099 #endif 5100 #ifdef CONFIG_DEBUG_STACK_USAGE 5101 free = stack_not_used(p); 5102 #endif 5103 ppid = 0; 5104 rcu_read_lock(); 5105 if (pid_alive(p)) 5106 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5107 rcu_read_unlock(); 5108 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5109 task_pid_nr(p), ppid, 5110 (unsigned long)task_thread_info(p)->flags); 5111 5112 print_worker_info(KERN_INFO, p); 5113 show_stack(p, NULL); 5114 } 5115 5116 void show_state_filter(unsigned long state_filter) 5117 { 5118 struct task_struct *g, *p; 5119 5120 #if BITS_PER_LONG == 32 5121 printk(KERN_INFO 5122 " task PC stack pid father\n"); 5123 #else 5124 printk(KERN_INFO 5125 " task PC stack pid father\n"); 5126 #endif 5127 rcu_read_lock(); 5128 for_each_process_thread(g, p) { 5129 /* 5130 * reset the NMI-timeout, listing all files on a slow 5131 * console might take a lot of time: 5132 */ 5133 touch_nmi_watchdog(); 5134 if (!state_filter || (p->state & state_filter)) 5135 sched_show_task(p); 5136 } 5137 5138 touch_all_softlockup_watchdogs(); 5139 5140 #ifdef CONFIG_SCHED_DEBUG 5141 if (!state_filter) 5142 sysrq_sched_debug_show(); 5143 #endif 5144 rcu_read_unlock(); 5145 /* 5146 * Only show locks if all tasks are dumped: 5147 */ 5148 if (!state_filter) 5149 debug_show_all_locks(); 5150 } 5151 5152 void init_idle_bootup_task(struct task_struct *idle) 5153 { 5154 idle->sched_class = &idle_sched_class; 5155 } 5156 5157 /** 5158 * init_idle - set up an idle thread for a given CPU 5159 * @idle: task in question 5160 * @cpu: cpu the idle task belongs to 5161 * 5162 * NOTE: this function does not set the idle thread's NEED_RESCHED 5163 * flag, to make booting more robust. 5164 */ 5165 void init_idle(struct task_struct *idle, int cpu) 5166 { 5167 struct rq *rq = cpu_rq(cpu); 5168 unsigned long flags; 5169 5170 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5171 raw_spin_lock(&rq->lock); 5172 5173 __sched_fork(0, idle); 5174 idle->state = TASK_RUNNING; 5175 idle->se.exec_start = sched_clock(); 5176 5177 kasan_unpoison_task_stack(idle); 5178 5179 #ifdef CONFIG_SMP 5180 /* 5181 * Its possible that init_idle() gets called multiple times on a task, 5182 * in that case do_set_cpus_allowed() will not do the right thing. 5183 * 5184 * And since this is boot we can forgo the serialization. 5185 */ 5186 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5187 #endif 5188 /* 5189 * We're having a chicken and egg problem, even though we are 5190 * holding rq->lock, the cpu isn't yet set to this cpu so the 5191 * lockdep check in task_group() will fail. 5192 * 5193 * Similar case to sched_fork(). / Alternatively we could 5194 * use task_rq_lock() here and obtain the other rq->lock. 5195 * 5196 * Silence PROVE_RCU 5197 */ 5198 rcu_read_lock(); 5199 __set_task_cpu(idle, cpu); 5200 rcu_read_unlock(); 5201 5202 rq->curr = rq->idle = idle; 5203 idle->on_rq = TASK_ON_RQ_QUEUED; 5204 #ifdef CONFIG_SMP 5205 idle->on_cpu = 1; 5206 #endif 5207 raw_spin_unlock(&rq->lock); 5208 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5209 5210 /* Set the preempt count _outside_ the spinlocks! */ 5211 init_idle_preempt_count(idle, cpu); 5212 5213 /* 5214 * The idle tasks have their own, simple scheduling class: 5215 */ 5216 idle->sched_class = &idle_sched_class; 5217 ftrace_graph_init_idle_task(idle, cpu); 5218 vtime_init_idle(idle, cpu); 5219 #ifdef CONFIG_SMP 5220 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5221 #endif 5222 } 5223 5224 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5225 const struct cpumask *trial) 5226 { 5227 int ret = 1, trial_cpus; 5228 struct dl_bw *cur_dl_b; 5229 unsigned long flags; 5230 5231 if (!cpumask_weight(cur)) 5232 return ret; 5233 5234 rcu_read_lock_sched(); 5235 cur_dl_b = dl_bw_of(cpumask_any(cur)); 5236 trial_cpus = cpumask_weight(trial); 5237 5238 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 5239 if (cur_dl_b->bw != -1 && 5240 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 5241 ret = 0; 5242 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 5243 rcu_read_unlock_sched(); 5244 5245 return ret; 5246 } 5247 5248 int task_can_attach(struct task_struct *p, 5249 const struct cpumask *cs_cpus_allowed) 5250 { 5251 int ret = 0; 5252 5253 /* 5254 * Kthreads which disallow setaffinity shouldn't be moved 5255 * to a new cpuset; we don't want to change their cpu 5256 * affinity and isolating such threads by their set of 5257 * allowed nodes is unnecessary. Thus, cpusets are not 5258 * applicable for such threads. This prevents checking for 5259 * success of set_cpus_allowed_ptr() on all attached tasks 5260 * before cpus_allowed may be changed. 5261 */ 5262 if (p->flags & PF_NO_SETAFFINITY) { 5263 ret = -EINVAL; 5264 goto out; 5265 } 5266 5267 #ifdef CONFIG_SMP 5268 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5269 cs_cpus_allowed)) { 5270 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5271 cs_cpus_allowed); 5272 struct dl_bw *dl_b; 5273 bool overflow; 5274 int cpus; 5275 unsigned long flags; 5276 5277 rcu_read_lock_sched(); 5278 dl_b = dl_bw_of(dest_cpu); 5279 raw_spin_lock_irqsave(&dl_b->lock, flags); 5280 cpus = dl_bw_cpus(dest_cpu); 5281 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5282 if (overflow) 5283 ret = -EBUSY; 5284 else { 5285 /* 5286 * We reserve space for this task in the destination 5287 * root_domain, as we can't fail after this point. 5288 * We will free resources in the source root_domain 5289 * later on (see set_cpus_allowed_dl()). 5290 */ 5291 __dl_add(dl_b, p->dl.dl_bw); 5292 } 5293 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5294 rcu_read_unlock_sched(); 5295 5296 } 5297 #endif 5298 out: 5299 return ret; 5300 } 5301 5302 #ifdef CONFIG_SMP 5303 5304 static bool sched_smp_initialized __read_mostly; 5305 5306 #ifdef CONFIG_NUMA_BALANCING 5307 /* Migrate current task p to target_cpu */ 5308 int migrate_task_to(struct task_struct *p, int target_cpu) 5309 { 5310 struct migration_arg arg = { p, target_cpu }; 5311 int curr_cpu = task_cpu(p); 5312 5313 if (curr_cpu == target_cpu) 5314 return 0; 5315 5316 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 5317 return -EINVAL; 5318 5319 /* TODO: This is not properly updating schedstats */ 5320 5321 trace_sched_move_numa(p, curr_cpu, target_cpu); 5322 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5323 } 5324 5325 /* 5326 * Requeue a task on a given node and accurately track the number of NUMA 5327 * tasks on the runqueues 5328 */ 5329 void sched_setnuma(struct task_struct *p, int nid) 5330 { 5331 bool queued, running; 5332 struct rq_flags rf; 5333 struct rq *rq; 5334 5335 rq = task_rq_lock(p, &rf); 5336 queued = task_on_rq_queued(p); 5337 running = task_current(rq, p); 5338 5339 if (queued) 5340 dequeue_task(rq, p, DEQUEUE_SAVE); 5341 if (running) 5342 put_prev_task(rq, p); 5343 5344 p->numa_preferred_nid = nid; 5345 5346 if (running) 5347 p->sched_class->set_curr_task(rq); 5348 if (queued) 5349 enqueue_task(rq, p, ENQUEUE_RESTORE); 5350 task_rq_unlock(rq, p, &rf); 5351 } 5352 #endif /* CONFIG_NUMA_BALANCING */ 5353 5354 #ifdef CONFIG_HOTPLUG_CPU 5355 /* 5356 * Ensures that the idle task is using init_mm right before its cpu goes 5357 * offline. 5358 */ 5359 void idle_task_exit(void) 5360 { 5361 struct mm_struct *mm = current->active_mm; 5362 5363 BUG_ON(cpu_online(smp_processor_id())); 5364 5365 if (mm != &init_mm) { 5366 switch_mm_irqs_off(mm, &init_mm, current); 5367 finish_arch_post_lock_switch(); 5368 } 5369 mmdrop(mm); 5370 } 5371 5372 /* 5373 * Since this CPU is going 'away' for a while, fold any nr_active delta 5374 * we might have. Assumes we're called after migrate_tasks() so that the 5375 * nr_active count is stable. 5376 * 5377 * Also see the comment "Global load-average calculations". 5378 */ 5379 static void calc_load_migrate(struct rq *rq) 5380 { 5381 long delta = calc_load_fold_active(rq); 5382 if (delta) 5383 atomic_long_add(delta, &calc_load_tasks); 5384 } 5385 5386 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5387 { 5388 } 5389 5390 static const struct sched_class fake_sched_class = { 5391 .put_prev_task = put_prev_task_fake, 5392 }; 5393 5394 static struct task_struct fake_task = { 5395 /* 5396 * Avoid pull_{rt,dl}_task() 5397 */ 5398 .prio = MAX_PRIO + 1, 5399 .sched_class = &fake_sched_class, 5400 }; 5401 5402 /* 5403 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5404 * try_to_wake_up()->select_task_rq(). 5405 * 5406 * Called with rq->lock held even though we'er in stop_machine() and 5407 * there's no concurrency possible, we hold the required locks anyway 5408 * because of lock validation efforts. 5409 */ 5410 static void migrate_tasks(struct rq *dead_rq) 5411 { 5412 struct rq *rq = dead_rq; 5413 struct task_struct *next, *stop = rq->stop; 5414 struct pin_cookie cookie; 5415 int dest_cpu; 5416 5417 /* 5418 * Fudge the rq selection such that the below task selection loop 5419 * doesn't get stuck on the currently eligible stop task. 5420 * 5421 * We're currently inside stop_machine() and the rq is either stuck 5422 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5423 * either way we should never end up calling schedule() until we're 5424 * done here. 5425 */ 5426 rq->stop = NULL; 5427 5428 /* 5429 * put_prev_task() and pick_next_task() sched 5430 * class method both need to have an up-to-date 5431 * value of rq->clock[_task] 5432 */ 5433 update_rq_clock(rq); 5434 5435 for (;;) { 5436 /* 5437 * There's this thread running, bail when that's the only 5438 * remaining thread. 5439 */ 5440 if (rq->nr_running == 1) 5441 break; 5442 5443 /* 5444 * pick_next_task assumes pinned rq->lock. 5445 */ 5446 cookie = lockdep_pin_lock(&rq->lock); 5447 next = pick_next_task(rq, &fake_task, cookie); 5448 BUG_ON(!next); 5449 next->sched_class->put_prev_task(rq, next); 5450 5451 /* 5452 * Rules for changing task_struct::cpus_allowed are holding 5453 * both pi_lock and rq->lock, such that holding either 5454 * stabilizes the mask. 5455 * 5456 * Drop rq->lock is not quite as disastrous as it usually is 5457 * because !cpu_active at this point, which means load-balance 5458 * will not interfere. Also, stop-machine. 5459 */ 5460 lockdep_unpin_lock(&rq->lock, cookie); 5461 raw_spin_unlock(&rq->lock); 5462 raw_spin_lock(&next->pi_lock); 5463 raw_spin_lock(&rq->lock); 5464 5465 /* 5466 * Since we're inside stop-machine, _nothing_ should have 5467 * changed the task, WARN if weird stuff happened, because in 5468 * that case the above rq->lock drop is a fail too. 5469 */ 5470 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5471 raw_spin_unlock(&next->pi_lock); 5472 continue; 5473 } 5474 5475 /* Find suitable destination for @next, with force if needed. */ 5476 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5477 5478 rq = __migrate_task(rq, next, dest_cpu); 5479 if (rq != dead_rq) { 5480 raw_spin_unlock(&rq->lock); 5481 rq = dead_rq; 5482 raw_spin_lock(&rq->lock); 5483 } 5484 raw_spin_unlock(&next->pi_lock); 5485 } 5486 5487 rq->stop = stop; 5488 } 5489 #endif /* CONFIG_HOTPLUG_CPU */ 5490 5491 static void set_rq_online(struct rq *rq) 5492 { 5493 if (!rq->online) { 5494 const struct sched_class *class; 5495 5496 cpumask_set_cpu(rq->cpu, rq->rd->online); 5497 rq->online = 1; 5498 5499 for_each_class(class) { 5500 if (class->rq_online) 5501 class->rq_online(rq); 5502 } 5503 } 5504 } 5505 5506 static void set_rq_offline(struct rq *rq) 5507 { 5508 if (rq->online) { 5509 const struct sched_class *class; 5510 5511 for_each_class(class) { 5512 if (class->rq_offline) 5513 class->rq_offline(rq); 5514 } 5515 5516 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5517 rq->online = 0; 5518 } 5519 } 5520 5521 static void set_cpu_rq_start_time(unsigned int cpu) 5522 { 5523 struct rq *rq = cpu_rq(cpu); 5524 5525 rq->age_stamp = sched_clock_cpu(cpu); 5526 } 5527 5528 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5529 5530 #ifdef CONFIG_SCHED_DEBUG 5531 5532 static __read_mostly int sched_debug_enabled; 5533 5534 static int __init sched_debug_setup(char *str) 5535 { 5536 sched_debug_enabled = 1; 5537 5538 return 0; 5539 } 5540 early_param("sched_debug", sched_debug_setup); 5541 5542 static inline bool sched_debug(void) 5543 { 5544 return sched_debug_enabled; 5545 } 5546 5547 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5548 struct cpumask *groupmask) 5549 { 5550 struct sched_group *group = sd->groups; 5551 5552 cpumask_clear(groupmask); 5553 5554 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5555 5556 if (!(sd->flags & SD_LOAD_BALANCE)) { 5557 printk("does not load-balance\n"); 5558 if (sd->parent) 5559 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5560 " has parent"); 5561 return -1; 5562 } 5563 5564 printk(KERN_CONT "span %*pbl level %s\n", 5565 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5566 5567 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5568 printk(KERN_ERR "ERROR: domain->span does not contain " 5569 "CPU%d\n", cpu); 5570 } 5571 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5572 printk(KERN_ERR "ERROR: domain->groups does not contain" 5573 " CPU%d\n", cpu); 5574 } 5575 5576 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5577 do { 5578 if (!group) { 5579 printk("\n"); 5580 printk(KERN_ERR "ERROR: group is NULL\n"); 5581 break; 5582 } 5583 5584 if (!cpumask_weight(sched_group_cpus(group))) { 5585 printk(KERN_CONT "\n"); 5586 printk(KERN_ERR "ERROR: empty group\n"); 5587 break; 5588 } 5589 5590 if (!(sd->flags & SD_OVERLAP) && 5591 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5592 printk(KERN_CONT "\n"); 5593 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5594 break; 5595 } 5596 5597 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5598 5599 printk(KERN_CONT " %*pbl", 5600 cpumask_pr_args(sched_group_cpus(group))); 5601 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5602 printk(KERN_CONT " (cpu_capacity = %d)", 5603 group->sgc->capacity); 5604 } 5605 5606 group = group->next; 5607 } while (group != sd->groups); 5608 printk(KERN_CONT "\n"); 5609 5610 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5611 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5612 5613 if (sd->parent && 5614 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5615 printk(KERN_ERR "ERROR: parent span is not a superset " 5616 "of domain->span\n"); 5617 return 0; 5618 } 5619 5620 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5621 { 5622 int level = 0; 5623 5624 if (!sched_debug_enabled) 5625 return; 5626 5627 if (!sd) { 5628 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5629 return; 5630 } 5631 5632 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5633 5634 for (;;) { 5635 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5636 break; 5637 level++; 5638 sd = sd->parent; 5639 if (!sd) 5640 break; 5641 } 5642 } 5643 #else /* !CONFIG_SCHED_DEBUG */ 5644 # define sched_domain_debug(sd, cpu) do { } while (0) 5645 static inline bool sched_debug(void) 5646 { 5647 return false; 5648 } 5649 #endif /* CONFIG_SCHED_DEBUG */ 5650 5651 static int sd_degenerate(struct sched_domain *sd) 5652 { 5653 if (cpumask_weight(sched_domain_span(sd)) == 1) 5654 return 1; 5655 5656 /* Following flags need at least 2 groups */ 5657 if (sd->flags & (SD_LOAD_BALANCE | 5658 SD_BALANCE_NEWIDLE | 5659 SD_BALANCE_FORK | 5660 SD_BALANCE_EXEC | 5661 SD_SHARE_CPUCAPACITY | 5662 SD_SHARE_PKG_RESOURCES | 5663 SD_SHARE_POWERDOMAIN)) { 5664 if (sd->groups != sd->groups->next) 5665 return 0; 5666 } 5667 5668 /* Following flags don't use groups */ 5669 if (sd->flags & (SD_WAKE_AFFINE)) 5670 return 0; 5671 5672 return 1; 5673 } 5674 5675 static int 5676 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5677 { 5678 unsigned long cflags = sd->flags, pflags = parent->flags; 5679 5680 if (sd_degenerate(parent)) 5681 return 1; 5682 5683 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5684 return 0; 5685 5686 /* Flags needing groups don't count if only 1 group in parent */ 5687 if (parent->groups == parent->groups->next) { 5688 pflags &= ~(SD_LOAD_BALANCE | 5689 SD_BALANCE_NEWIDLE | 5690 SD_BALANCE_FORK | 5691 SD_BALANCE_EXEC | 5692 SD_SHARE_CPUCAPACITY | 5693 SD_SHARE_PKG_RESOURCES | 5694 SD_PREFER_SIBLING | 5695 SD_SHARE_POWERDOMAIN); 5696 if (nr_node_ids == 1) 5697 pflags &= ~SD_SERIALIZE; 5698 } 5699 if (~cflags & pflags) 5700 return 0; 5701 5702 return 1; 5703 } 5704 5705 static void free_rootdomain(struct rcu_head *rcu) 5706 { 5707 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5708 5709 cpupri_cleanup(&rd->cpupri); 5710 cpudl_cleanup(&rd->cpudl); 5711 free_cpumask_var(rd->dlo_mask); 5712 free_cpumask_var(rd->rto_mask); 5713 free_cpumask_var(rd->online); 5714 free_cpumask_var(rd->span); 5715 kfree(rd); 5716 } 5717 5718 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5719 { 5720 struct root_domain *old_rd = NULL; 5721 unsigned long flags; 5722 5723 raw_spin_lock_irqsave(&rq->lock, flags); 5724 5725 if (rq->rd) { 5726 old_rd = rq->rd; 5727 5728 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5729 set_rq_offline(rq); 5730 5731 cpumask_clear_cpu(rq->cpu, old_rd->span); 5732 5733 /* 5734 * If we dont want to free the old_rd yet then 5735 * set old_rd to NULL to skip the freeing later 5736 * in this function: 5737 */ 5738 if (!atomic_dec_and_test(&old_rd->refcount)) 5739 old_rd = NULL; 5740 } 5741 5742 atomic_inc(&rd->refcount); 5743 rq->rd = rd; 5744 5745 cpumask_set_cpu(rq->cpu, rd->span); 5746 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5747 set_rq_online(rq); 5748 5749 raw_spin_unlock_irqrestore(&rq->lock, flags); 5750 5751 if (old_rd) 5752 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5753 } 5754 5755 static int init_rootdomain(struct root_domain *rd) 5756 { 5757 memset(rd, 0, sizeof(*rd)); 5758 5759 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 5760 goto out; 5761 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 5762 goto free_span; 5763 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5764 goto free_online; 5765 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5766 goto free_dlo_mask; 5767 5768 init_dl_bw(&rd->dl_bw); 5769 if (cpudl_init(&rd->cpudl) != 0) 5770 goto free_dlo_mask; 5771 5772 if (cpupri_init(&rd->cpupri) != 0) 5773 goto free_rto_mask; 5774 return 0; 5775 5776 free_rto_mask: 5777 free_cpumask_var(rd->rto_mask); 5778 free_dlo_mask: 5779 free_cpumask_var(rd->dlo_mask); 5780 free_online: 5781 free_cpumask_var(rd->online); 5782 free_span: 5783 free_cpumask_var(rd->span); 5784 out: 5785 return -ENOMEM; 5786 } 5787 5788 /* 5789 * By default the system creates a single root-domain with all cpus as 5790 * members (mimicking the global state we have today). 5791 */ 5792 struct root_domain def_root_domain; 5793 5794 static void init_defrootdomain(void) 5795 { 5796 init_rootdomain(&def_root_domain); 5797 5798 atomic_set(&def_root_domain.refcount, 1); 5799 } 5800 5801 static struct root_domain *alloc_rootdomain(void) 5802 { 5803 struct root_domain *rd; 5804 5805 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5806 if (!rd) 5807 return NULL; 5808 5809 if (init_rootdomain(rd) != 0) { 5810 kfree(rd); 5811 return NULL; 5812 } 5813 5814 return rd; 5815 } 5816 5817 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5818 { 5819 struct sched_group *tmp, *first; 5820 5821 if (!sg) 5822 return; 5823 5824 first = sg; 5825 do { 5826 tmp = sg->next; 5827 5828 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5829 kfree(sg->sgc); 5830 5831 kfree(sg); 5832 sg = tmp; 5833 } while (sg != first); 5834 } 5835 5836 static void free_sched_domain(struct rcu_head *rcu) 5837 { 5838 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5839 5840 /* 5841 * If its an overlapping domain it has private groups, iterate and 5842 * nuke them all. 5843 */ 5844 if (sd->flags & SD_OVERLAP) { 5845 free_sched_groups(sd->groups, 1); 5846 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5847 kfree(sd->groups->sgc); 5848 kfree(sd->groups); 5849 } 5850 kfree(sd); 5851 } 5852 5853 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5854 { 5855 call_rcu(&sd->rcu, free_sched_domain); 5856 } 5857 5858 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5859 { 5860 for (; sd; sd = sd->parent) 5861 destroy_sched_domain(sd, cpu); 5862 } 5863 5864 /* 5865 * Keep a special pointer to the highest sched_domain that has 5866 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5867 * allows us to avoid some pointer chasing select_idle_sibling(). 5868 * 5869 * Also keep a unique ID per domain (we use the first cpu number in 5870 * the cpumask of the domain), this allows us to quickly tell if 5871 * two cpus are in the same cache domain, see cpus_share_cache(). 5872 */ 5873 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5874 DEFINE_PER_CPU(int, sd_llc_size); 5875 DEFINE_PER_CPU(int, sd_llc_id); 5876 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5877 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5878 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5879 5880 static void update_top_cache_domain(int cpu) 5881 { 5882 struct sched_domain *sd; 5883 struct sched_domain *busy_sd = NULL; 5884 int id = cpu; 5885 int size = 1; 5886 5887 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5888 if (sd) { 5889 id = cpumask_first(sched_domain_span(sd)); 5890 size = cpumask_weight(sched_domain_span(sd)); 5891 busy_sd = sd->parent; /* sd_busy */ 5892 } 5893 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5894 5895 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5896 per_cpu(sd_llc_size, cpu) = size; 5897 per_cpu(sd_llc_id, cpu) = id; 5898 5899 sd = lowest_flag_domain(cpu, SD_NUMA); 5900 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5901 5902 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5903 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5904 } 5905 5906 /* 5907 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5908 * hold the hotplug lock. 5909 */ 5910 static void 5911 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5912 { 5913 struct rq *rq = cpu_rq(cpu); 5914 struct sched_domain *tmp; 5915 5916 /* Remove the sched domains which do not contribute to scheduling. */ 5917 for (tmp = sd; tmp; ) { 5918 struct sched_domain *parent = tmp->parent; 5919 if (!parent) 5920 break; 5921 5922 if (sd_parent_degenerate(tmp, parent)) { 5923 tmp->parent = parent->parent; 5924 if (parent->parent) 5925 parent->parent->child = tmp; 5926 /* 5927 * Transfer SD_PREFER_SIBLING down in case of a 5928 * degenerate parent; the spans match for this 5929 * so the property transfers. 5930 */ 5931 if (parent->flags & SD_PREFER_SIBLING) 5932 tmp->flags |= SD_PREFER_SIBLING; 5933 destroy_sched_domain(parent, cpu); 5934 } else 5935 tmp = tmp->parent; 5936 } 5937 5938 if (sd && sd_degenerate(sd)) { 5939 tmp = sd; 5940 sd = sd->parent; 5941 destroy_sched_domain(tmp, cpu); 5942 if (sd) 5943 sd->child = NULL; 5944 } 5945 5946 sched_domain_debug(sd, cpu); 5947 5948 rq_attach_root(rq, rd); 5949 tmp = rq->sd; 5950 rcu_assign_pointer(rq->sd, sd); 5951 destroy_sched_domains(tmp, cpu); 5952 5953 update_top_cache_domain(cpu); 5954 } 5955 5956 /* Setup the mask of cpus configured for isolated domains */ 5957 static int __init isolated_cpu_setup(char *str) 5958 { 5959 int ret; 5960 5961 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5962 ret = cpulist_parse(str, cpu_isolated_map); 5963 if (ret) { 5964 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); 5965 return 0; 5966 } 5967 return 1; 5968 } 5969 __setup("isolcpus=", isolated_cpu_setup); 5970 5971 struct s_data { 5972 struct sched_domain ** __percpu sd; 5973 struct root_domain *rd; 5974 }; 5975 5976 enum s_alloc { 5977 sa_rootdomain, 5978 sa_sd, 5979 sa_sd_storage, 5980 sa_none, 5981 }; 5982 5983 /* 5984 * Build an iteration mask that can exclude certain CPUs from the upwards 5985 * domain traversal. 5986 * 5987 * Asymmetric node setups can result in situations where the domain tree is of 5988 * unequal depth, make sure to skip domains that already cover the entire 5989 * range. 5990 * 5991 * In that case build_sched_domains() will have terminated the iteration early 5992 * and our sibling sd spans will be empty. Domains should always include the 5993 * cpu they're built on, so check that. 5994 * 5995 */ 5996 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5997 { 5998 const struct cpumask *span = sched_domain_span(sd); 5999 struct sd_data *sdd = sd->private; 6000 struct sched_domain *sibling; 6001 int i; 6002 6003 for_each_cpu(i, span) { 6004 sibling = *per_cpu_ptr(sdd->sd, i); 6005 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6006 continue; 6007 6008 cpumask_set_cpu(i, sched_group_mask(sg)); 6009 } 6010 } 6011 6012 /* 6013 * Return the canonical balance cpu for this group, this is the first cpu 6014 * of this group that's also in the iteration mask. 6015 */ 6016 int group_balance_cpu(struct sched_group *sg) 6017 { 6018 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 6019 } 6020 6021 static int 6022 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6023 { 6024 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6025 const struct cpumask *span = sched_domain_span(sd); 6026 struct cpumask *covered = sched_domains_tmpmask; 6027 struct sd_data *sdd = sd->private; 6028 struct sched_domain *sibling; 6029 int i; 6030 6031 cpumask_clear(covered); 6032 6033 for_each_cpu(i, span) { 6034 struct cpumask *sg_span; 6035 6036 if (cpumask_test_cpu(i, covered)) 6037 continue; 6038 6039 sibling = *per_cpu_ptr(sdd->sd, i); 6040 6041 /* See the comment near build_group_mask(). */ 6042 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6043 continue; 6044 6045 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6046 GFP_KERNEL, cpu_to_node(cpu)); 6047 6048 if (!sg) 6049 goto fail; 6050 6051 sg_span = sched_group_cpus(sg); 6052 if (sibling->child) 6053 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 6054 else 6055 cpumask_set_cpu(i, sg_span); 6056 6057 cpumask_or(covered, covered, sg_span); 6058 6059 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 6060 if (atomic_inc_return(&sg->sgc->ref) == 1) 6061 build_group_mask(sd, sg); 6062 6063 /* 6064 * Initialize sgc->capacity such that even if we mess up the 6065 * domains and no possible iteration will get us here, we won't 6066 * die on a /0 trap. 6067 */ 6068 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 6069 6070 /* 6071 * Make sure the first group of this domain contains the 6072 * canonical balance cpu. Otherwise the sched_domain iteration 6073 * breaks. See update_sg_lb_stats(). 6074 */ 6075 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6076 group_balance_cpu(sg) == cpu) 6077 groups = sg; 6078 6079 if (!first) 6080 first = sg; 6081 if (last) 6082 last->next = sg; 6083 last = sg; 6084 last->next = first; 6085 } 6086 sd->groups = groups; 6087 6088 return 0; 6089 6090 fail: 6091 free_sched_groups(first, 0); 6092 6093 return -ENOMEM; 6094 } 6095 6096 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6097 { 6098 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6099 struct sched_domain *child = sd->child; 6100 6101 if (child) 6102 cpu = cpumask_first(sched_domain_span(child)); 6103 6104 if (sg) { 6105 *sg = *per_cpu_ptr(sdd->sg, cpu); 6106 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6107 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 6108 } 6109 6110 return cpu; 6111 } 6112 6113 /* 6114 * build_sched_groups will build a circular linked list of the groups 6115 * covered by the given span, and will set each group's ->cpumask correctly, 6116 * and ->cpu_capacity to 0. 6117 * 6118 * Assumes the sched_domain tree is fully constructed 6119 */ 6120 static int 6121 build_sched_groups(struct sched_domain *sd, int cpu) 6122 { 6123 struct sched_group *first = NULL, *last = NULL; 6124 struct sd_data *sdd = sd->private; 6125 const struct cpumask *span = sched_domain_span(sd); 6126 struct cpumask *covered; 6127 int i; 6128 6129 get_group(cpu, sdd, &sd->groups); 6130 atomic_inc(&sd->groups->ref); 6131 6132 if (cpu != cpumask_first(span)) 6133 return 0; 6134 6135 lockdep_assert_held(&sched_domains_mutex); 6136 covered = sched_domains_tmpmask; 6137 6138 cpumask_clear(covered); 6139 6140 for_each_cpu(i, span) { 6141 struct sched_group *sg; 6142 int group, j; 6143 6144 if (cpumask_test_cpu(i, covered)) 6145 continue; 6146 6147 group = get_group(i, sdd, &sg); 6148 cpumask_setall(sched_group_mask(sg)); 6149 6150 for_each_cpu(j, span) { 6151 if (get_group(j, sdd, NULL) != group) 6152 continue; 6153 6154 cpumask_set_cpu(j, covered); 6155 cpumask_set_cpu(j, sched_group_cpus(sg)); 6156 } 6157 6158 if (!first) 6159 first = sg; 6160 if (last) 6161 last->next = sg; 6162 last = sg; 6163 } 6164 last->next = first; 6165 6166 return 0; 6167 } 6168 6169 /* 6170 * Initialize sched groups cpu_capacity. 6171 * 6172 * cpu_capacity indicates the capacity of sched group, which is used while 6173 * distributing the load between different sched groups in a sched domain. 6174 * Typically cpu_capacity for all the groups in a sched domain will be same 6175 * unless there are asymmetries in the topology. If there are asymmetries, 6176 * group having more cpu_capacity will pickup more load compared to the 6177 * group having less cpu_capacity. 6178 */ 6179 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6180 { 6181 struct sched_group *sg = sd->groups; 6182 6183 WARN_ON(!sg); 6184 6185 do { 6186 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6187 sg = sg->next; 6188 } while (sg != sd->groups); 6189 6190 if (cpu != group_balance_cpu(sg)) 6191 return; 6192 6193 update_group_capacity(sd, cpu); 6194 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6195 } 6196 6197 /* 6198 * Initializers for schedule domains 6199 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6200 */ 6201 6202 static int default_relax_domain_level = -1; 6203 int sched_domain_level_max; 6204 6205 static int __init setup_relax_domain_level(char *str) 6206 { 6207 if (kstrtoint(str, 0, &default_relax_domain_level)) 6208 pr_warn("Unable to set relax_domain_level\n"); 6209 6210 return 1; 6211 } 6212 __setup("relax_domain_level=", setup_relax_domain_level); 6213 6214 static void set_domain_attribute(struct sched_domain *sd, 6215 struct sched_domain_attr *attr) 6216 { 6217 int request; 6218 6219 if (!attr || attr->relax_domain_level < 0) { 6220 if (default_relax_domain_level < 0) 6221 return; 6222 else 6223 request = default_relax_domain_level; 6224 } else 6225 request = attr->relax_domain_level; 6226 if (request < sd->level) { 6227 /* turn off idle balance on this domain */ 6228 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6229 } else { 6230 /* turn on idle balance on this domain */ 6231 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6232 } 6233 } 6234 6235 static void __sdt_free(const struct cpumask *cpu_map); 6236 static int __sdt_alloc(const struct cpumask *cpu_map); 6237 6238 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6239 const struct cpumask *cpu_map) 6240 { 6241 switch (what) { 6242 case sa_rootdomain: 6243 if (!atomic_read(&d->rd->refcount)) 6244 free_rootdomain(&d->rd->rcu); /* fall through */ 6245 case sa_sd: 6246 free_percpu(d->sd); /* fall through */ 6247 case sa_sd_storage: 6248 __sdt_free(cpu_map); /* fall through */ 6249 case sa_none: 6250 break; 6251 } 6252 } 6253 6254 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6255 const struct cpumask *cpu_map) 6256 { 6257 memset(d, 0, sizeof(*d)); 6258 6259 if (__sdt_alloc(cpu_map)) 6260 return sa_sd_storage; 6261 d->sd = alloc_percpu(struct sched_domain *); 6262 if (!d->sd) 6263 return sa_sd_storage; 6264 d->rd = alloc_rootdomain(); 6265 if (!d->rd) 6266 return sa_sd; 6267 return sa_rootdomain; 6268 } 6269 6270 /* 6271 * NULL the sd_data elements we've used to build the sched_domain and 6272 * sched_group structure so that the subsequent __free_domain_allocs() 6273 * will not free the data we're using. 6274 */ 6275 static void claim_allocations(int cpu, struct sched_domain *sd) 6276 { 6277 struct sd_data *sdd = sd->private; 6278 6279 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6280 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6281 6282 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6283 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6284 6285 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6286 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6287 } 6288 6289 #ifdef CONFIG_NUMA 6290 static int sched_domains_numa_levels; 6291 enum numa_topology_type sched_numa_topology_type; 6292 static int *sched_domains_numa_distance; 6293 int sched_max_numa_distance; 6294 static struct cpumask ***sched_domains_numa_masks; 6295 static int sched_domains_curr_level; 6296 #endif 6297 6298 /* 6299 * SD_flags allowed in topology descriptions. 6300 * 6301 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6302 * SD_SHARE_PKG_RESOURCES - describes shared caches 6303 * SD_NUMA - describes NUMA topologies 6304 * SD_SHARE_POWERDOMAIN - describes shared power domain 6305 * 6306 * Odd one out: 6307 * SD_ASYM_PACKING - describes SMT quirks 6308 */ 6309 #define TOPOLOGY_SD_FLAGS \ 6310 (SD_SHARE_CPUCAPACITY | \ 6311 SD_SHARE_PKG_RESOURCES | \ 6312 SD_NUMA | \ 6313 SD_ASYM_PACKING | \ 6314 SD_SHARE_POWERDOMAIN) 6315 6316 static struct sched_domain * 6317 sd_init(struct sched_domain_topology_level *tl, int cpu) 6318 { 6319 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6320 int sd_weight, sd_flags = 0; 6321 6322 #ifdef CONFIG_NUMA 6323 /* 6324 * Ugly hack to pass state to sd_numa_mask()... 6325 */ 6326 sched_domains_curr_level = tl->numa_level; 6327 #endif 6328 6329 sd_weight = cpumask_weight(tl->mask(cpu)); 6330 6331 if (tl->sd_flags) 6332 sd_flags = (*tl->sd_flags)(); 6333 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6334 "wrong sd_flags in topology description\n")) 6335 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6336 6337 *sd = (struct sched_domain){ 6338 .min_interval = sd_weight, 6339 .max_interval = 2*sd_weight, 6340 .busy_factor = 32, 6341 .imbalance_pct = 125, 6342 6343 .cache_nice_tries = 0, 6344 .busy_idx = 0, 6345 .idle_idx = 0, 6346 .newidle_idx = 0, 6347 .wake_idx = 0, 6348 .forkexec_idx = 0, 6349 6350 .flags = 1*SD_LOAD_BALANCE 6351 | 1*SD_BALANCE_NEWIDLE 6352 | 1*SD_BALANCE_EXEC 6353 | 1*SD_BALANCE_FORK 6354 | 0*SD_BALANCE_WAKE 6355 | 1*SD_WAKE_AFFINE 6356 | 0*SD_SHARE_CPUCAPACITY 6357 | 0*SD_SHARE_PKG_RESOURCES 6358 | 0*SD_SERIALIZE 6359 | 0*SD_PREFER_SIBLING 6360 | 0*SD_NUMA 6361 | sd_flags 6362 , 6363 6364 .last_balance = jiffies, 6365 .balance_interval = sd_weight, 6366 .smt_gain = 0, 6367 .max_newidle_lb_cost = 0, 6368 .next_decay_max_lb_cost = jiffies, 6369 #ifdef CONFIG_SCHED_DEBUG 6370 .name = tl->name, 6371 #endif 6372 }; 6373 6374 /* 6375 * Convert topological properties into behaviour. 6376 */ 6377 6378 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6379 sd->flags |= SD_PREFER_SIBLING; 6380 sd->imbalance_pct = 110; 6381 sd->smt_gain = 1178; /* ~15% */ 6382 6383 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6384 sd->imbalance_pct = 117; 6385 sd->cache_nice_tries = 1; 6386 sd->busy_idx = 2; 6387 6388 #ifdef CONFIG_NUMA 6389 } else if (sd->flags & SD_NUMA) { 6390 sd->cache_nice_tries = 2; 6391 sd->busy_idx = 3; 6392 sd->idle_idx = 2; 6393 6394 sd->flags |= SD_SERIALIZE; 6395 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6396 sd->flags &= ~(SD_BALANCE_EXEC | 6397 SD_BALANCE_FORK | 6398 SD_WAKE_AFFINE); 6399 } 6400 6401 #endif 6402 } else { 6403 sd->flags |= SD_PREFER_SIBLING; 6404 sd->cache_nice_tries = 1; 6405 sd->busy_idx = 2; 6406 sd->idle_idx = 1; 6407 } 6408 6409 sd->private = &tl->data; 6410 6411 return sd; 6412 } 6413 6414 /* 6415 * Topology list, bottom-up. 6416 */ 6417 static struct sched_domain_topology_level default_topology[] = { 6418 #ifdef CONFIG_SCHED_SMT 6419 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6420 #endif 6421 #ifdef CONFIG_SCHED_MC 6422 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6423 #endif 6424 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6425 { NULL, }, 6426 }; 6427 6428 static struct sched_domain_topology_level *sched_domain_topology = 6429 default_topology; 6430 6431 #define for_each_sd_topology(tl) \ 6432 for (tl = sched_domain_topology; tl->mask; tl++) 6433 6434 void set_sched_topology(struct sched_domain_topology_level *tl) 6435 { 6436 sched_domain_topology = tl; 6437 } 6438 6439 #ifdef CONFIG_NUMA 6440 6441 static const struct cpumask *sd_numa_mask(int cpu) 6442 { 6443 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6444 } 6445 6446 static void sched_numa_warn(const char *str) 6447 { 6448 static int done = false; 6449 int i,j; 6450 6451 if (done) 6452 return; 6453 6454 done = true; 6455 6456 printk(KERN_WARNING "ERROR: %s\n\n", str); 6457 6458 for (i = 0; i < nr_node_ids; i++) { 6459 printk(KERN_WARNING " "); 6460 for (j = 0; j < nr_node_ids; j++) 6461 printk(KERN_CONT "%02d ", node_distance(i,j)); 6462 printk(KERN_CONT "\n"); 6463 } 6464 printk(KERN_WARNING "\n"); 6465 } 6466 6467 bool find_numa_distance(int distance) 6468 { 6469 int i; 6470 6471 if (distance == node_distance(0, 0)) 6472 return true; 6473 6474 for (i = 0; i < sched_domains_numa_levels; i++) { 6475 if (sched_domains_numa_distance[i] == distance) 6476 return true; 6477 } 6478 6479 return false; 6480 } 6481 6482 /* 6483 * A system can have three types of NUMA topology: 6484 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6485 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6486 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6487 * 6488 * The difference between a glueless mesh topology and a backplane 6489 * topology lies in whether communication between not directly 6490 * connected nodes goes through intermediary nodes (where programs 6491 * could run), or through backplane controllers. This affects 6492 * placement of programs. 6493 * 6494 * The type of topology can be discerned with the following tests: 6495 * - If the maximum distance between any nodes is 1 hop, the system 6496 * is directly connected. 6497 * - If for two nodes A and B, located N > 1 hops away from each other, 6498 * there is an intermediary node C, which is < N hops away from both 6499 * nodes A and B, the system is a glueless mesh. 6500 */ 6501 static void init_numa_topology_type(void) 6502 { 6503 int a, b, c, n; 6504 6505 n = sched_max_numa_distance; 6506 6507 if (sched_domains_numa_levels <= 1) { 6508 sched_numa_topology_type = NUMA_DIRECT; 6509 return; 6510 } 6511 6512 for_each_online_node(a) { 6513 for_each_online_node(b) { 6514 /* Find two nodes furthest removed from each other. */ 6515 if (node_distance(a, b) < n) 6516 continue; 6517 6518 /* Is there an intermediary node between a and b? */ 6519 for_each_online_node(c) { 6520 if (node_distance(a, c) < n && 6521 node_distance(b, c) < n) { 6522 sched_numa_topology_type = 6523 NUMA_GLUELESS_MESH; 6524 return; 6525 } 6526 } 6527 6528 sched_numa_topology_type = NUMA_BACKPLANE; 6529 return; 6530 } 6531 } 6532 } 6533 6534 static void sched_init_numa(void) 6535 { 6536 int next_distance, curr_distance = node_distance(0, 0); 6537 struct sched_domain_topology_level *tl; 6538 int level = 0; 6539 int i, j, k; 6540 6541 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6542 if (!sched_domains_numa_distance) 6543 return; 6544 6545 /* 6546 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6547 * unique distances in the node_distance() table. 6548 * 6549 * Assumes node_distance(0,j) includes all distances in 6550 * node_distance(i,j) in order to avoid cubic time. 6551 */ 6552 next_distance = curr_distance; 6553 for (i = 0; i < nr_node_ids; i++) { 6554 for (j = 0; j < nr_node_ids; j++) { 6555 for (k = 0; k < nr_node_ids; k++) { 6556 int distance = node_distance(i, k); 6557 6558 if (distance > curr_distance && 6559 (distance < next_distance || 6560 next_distance == curr_distance)) 6561 next_distance = distance; 6562 6563 /* 6564 * While not a strong assumption it would be nice to know 6565 * about cases where if node A is connected to B, B is not 6566 * equally connected to A. 6567 */ 6568 if (sched_debug() && node_distance(k, i) != distance) 6569 sched_numa_warn("Node-distance not symmetric"); 6570 6571 if (sched_debug() && i && !find_numa_distance(distance)) 6572 sched_numa_warn("Node-0 not representative"); 6573 } 6574 if (next_distance != curr_distance) { 6575 sched_domains_numa_distance[level++] = next_distance; 6576 sched_domains_numa_levels = level; 6577 curr_distance = next_distance; 6578 } else break; 6579 } 6580 6581 /* 6582 * In case of sched_debug() we verify the above assumption. 6583 */ 6584 if (!sched_debug()) 6585 break; 6586 } 6587 6588 if (!level) 6589 return; 6590 6591 /* 6592 * 'level' contains the number of unique distances, excluding the 6593 * identity distance node_distance(i,i). 6594 * 6595 * The sched_domains_numa_distance[] array includes the actual distance 6596 * numbers. 6597 */ 6598 6599 /* 6600 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6601 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6602 * the array will contain less then 'level' members. This could be 6603 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6604 * in other functions. 6605 * 6606 * We reset it to 'level' at the end of this function. 6607 */ 6608 sched_domains_numa_levels = 0; 6609 6610 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6611 if (!sched_domains_numa_masks) 6612 return; 6613 6614 /* 6615 * Now for each level, construct a mask per node which contains all 6616 * cpus of nodes that are that many hops away from us. 6617 */ 6618 for (i = 0; i < level; i++) { 6619 sched_domains_numa_masks[i] = 6620 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6621 if (!sched_domains_numa_masks[i]) 6622 return; 6623 6624 for (j = 0; j < nr_node_ids; j++) { 6625 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6626 if (!mask) 6627 return; 6628 6629 sched_domains_numa_masks[i][j] = mask; 6630 6631 for_each_node(k) { 6632 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6633 continue; 6634 6635 cpumask_or(mask, mask, cpumask_of_node(k)); 6636 } 6637 } 6638 } 6639 6640 /* Compute default topology size */ 6641 for (i = 0; sched_domain_topology[i].mask; i++); 6642 6643 tl = kzalloc((i + level + 1) * 6644 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6645 if (!tl) 6646 return; 6647 6648 /* 6649 * Copy the default topology bits.. 6650 */ 6651 for (i = 0; sched_domain_topology[i].mask; i++) 6652 tl[i] = sched_domain_topology[i]; 6653 6654 /* 6655 * .. and append 'j' levels of NUMA goodness. 6656 */ 6657 for (j = 0; j < level; i++, j++) { 6658 tl[i] = (struct sched_domain_topology_level){ 6659 .mask = sd_numa_mask, 6660 .sd_flags = cpu_numa_flags, 6661 .flags = SDTL_OVERLAP, 6662 .numa_level = j, 6663 SD_INIT_NAME(NUMA) 6664 }; 6665 } 6666 6667 sched_domain_topology = tl; 6668 6669 sched_domains_numa_levels = level; 6670 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6671 6672 init_numa_topology_type(); 6673 } 6674 6675 static void sched_domains_numa_masks_set(unsigned int cpu) 6676 { 6677 int node = cpu_to_node(cpu); 6678 int i, j; 6679 6680 for (i = 0; i < sched_domains_numa_levels; i++) { 6681 for (j = 0; j < nr_node_ids; j++) { 6682 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6683 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6684 } 6685 } 6686 } 6687 6688 static void sched_domains_numa_masks_clear(unsigned int cpu) 6689 { 6690 int i, j; 6691 6692 for (i = 0; i < sched_domains_numa_levels; i++) { 6693 for (j = 0; j < nr_node_ids; j++) 6694 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6695 } 6696 } 6697 6698 #else 6699 static inline void sched_init_numa(void) { } 6700 static void sched_domains_numa_masks_set(unsigned int cpu) { } 6701 static void sched_domains_numa_masks_clear(unsigned int cpu) { } 6702 #endif /* CONFIG_NUMA */ 6703 6704 static int __sdt_alloc(const struct cpumask *cpu_map) 6705 { 6706 struct sched_domain_topology_level *tl; 6707 int j; 6708 6709 for_each_sd_topology(tl) { 6710 struct sd_data *sdd = &tl->data; 6711 6712 sdd->sd = alloc_percpu(struct sched_domain *); 6713 if (!sdd->sd) 6714 return -ENOMEM; 6715 6716 sdd->sg = alloc_percpu(struct sched_group *); 6717 if (!sdd->sg) 6718 return -ENOMEM; 6719 6720 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6721 if (!sdd->sgc) 6722 return -ENOMEM; 6723 6724 for_each_cpu(j, cpu_map) { 6725 struct sched_domain *sd; 6726 struct sched_group *sg; 6727 struct sched_group_capacity *sgc; 6728 6729 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6730 GFP_KERNEL, cpu_to_node(j)); 6731 if (!sd) 6732 return -ENOMEM; 6733 6734 *per_cpu_ptr(sdd->sd, j) = sd; 6735 6736 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6737 GFP_KERNEL, cpu_to_node(j)); 6738 if (!sg) 6739 return -ENOMEM; 6740 6741 sg->next = sg; 6742 6743 *per_cpu_ptr(sdd->sg, j) = sg; 6744 6745 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6746 GFP_KERNEL, cpu_to_node(j)); 6747 if (!sgc) 6748 return -ENOMEM; 6749 6750 *per_cpu_ptr(sdd->sgc, j) = sgc; 6751 } 6752 } 6753 6754 return 0; 6755 } 6756 6757 static void __sdt_free(const struct cpumask *cpu_map) 6758 { 6759 struct sched_domain_topology_level *tl; 6760 int j; 6761 6762 for_each_sd_topology(tl) { 6763 struct sd_data *sdd = &tl->data; 6764 6765 for_each_cpu(j, cpu_map) { 6766 struct sched_domain *sd; 6767 6768 if (sdd->sd) { 6769 sd = *per_cpu_ptr(sdd->sd, j); 6770 if (sd && (sd->flags & SD_OVERLAP)) 6771 free_sched_groups(sd->groups, 0); 6772 kfree(*per_cpu_ptr(sdd->sd, j)); 6773 } 6774 6775 if (sdd->sg) 6776 kfree(*per_cpu_ptr(sdd->sg, j)); 6777 if (sdd->sgc) 6778 kfree(*per_cpu_ptr(sdd->sgc, j)); 6779 } 6780 free_percpu(sdd->sd); 6781 sdd->sd = NULL; 6782 free_percpu(sdd->sg); 6783 sdd->sg = NULL; 6784 free_percpu(sdd->sgc); 6785 sdd->sgc = NULL; 6786 } 6787 } 6788 6789 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6790 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6791 struct sched_domain *child, int cpu) 6792 { 6793 struct sched_domain *sd = sd_init(tl, cpu); 6794 if (!sd) 6795 return child; 6796 6797 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6798 if (child) { 6799 sd->level = child->level + 1; 6800 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6801 child->parent = sd; 6802 sd->child = child; 6803 6804 if (!cpumask_subset(sched_domain_span(child), 6805 sched_domain_span(sd))) { 6806 pr_err("BUG: arch topology borken\n"); 6807 #ifdef CONFIG_SCHED_DEBUG 6808 pr_err(" the %s domain not a subset of the %s domain\n", 6809 child->name, sd->name); 6810 #endif 6811 /* Fixup, ensure @sd has at least @child cpus. */ 6812 cpumask_or(sched_domain_span(sd), 6813 sched_domain_span(sd), 6814 sched_domain_span(child)); 6815 } 6816 6817 } 6818 set_domain_attribute(sd, attr); 6819 6820 return sd; 6821 } 6822 6823 /* 6824 * Build sched domains for a given set of cpus and attach the sched domains 6825 * to the individual cpus 6826 */ 6827 static int build_sched_domains(const struct cpumask *cpu_map, 6828 struct sched_domain_attr *attr) 6829 { 6830 enum s_alloc alloc_state; 6831 struct sched_domain *sd; 6832 struct s_data d; 6833 int i, ret = -ENOMEM; 6834 6835 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6836 if (alloc_state != sa_rootdomain) 6837 goto error; 6838 6839 /* Set up domains for cpus specified by the cpu_map. */ 6840 for_each_cpu(i, cpu_map) { 6841 struct sched_domain_topology_level *tl; 6842 6843 sd = NULL; 6844 for_each_sd_topology(tl) { 6845 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6846 if (tl == sched_domain_topology) 6847 *per_cpu_ptr(d.sd, i) = sd; 6848 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6849 sd->flags |= SD_OVERLAP; 6850 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6851 break; 6852 } 6853 } 6854 6855 /* Build the groups for the domains */ 6856 for_each_cpu(i, cpu_map) { 6857 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6858 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6859 if (sd->flags & SD_OVERLAP) { 6860 if (build_overlap_sched_groups(sd, i)) 6861 goto error; 6862 } else { 6863 if (build_sched_groups(sd, i)) 6864 goto error; 6865 } 6866 } 6867 } 6868 6869 /* Calculate CPU capacity for physical packages and nodes */ 6870 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6871 if (!cpumask_test_cpu(i, cpu_map)) 6872 continue; 6873 6874 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6875 claim_allocations(i, sd); 6876 init_sched_groups_capacity(i, sd); 6877 } 6878 } 6879 6880 /* Attach the domains */ 6881 rcu_read_lock(); 6882 for_each_cpu(i, cpu_map) { 6883 sd = *per_cpu_ptr(d.sd, i); 6884 cpu_attach_domain(sd, d.rd, i); 6885 } 6886 rcu_read_unlock(); 6887 6888 ret = 0; 6889 error: 6890 __free_domain_allocs(&d, alloc_state, cpu_map); 6891 return ret; 6892 } 6893 6894 static cpumask_var_t *doms_cur; /* current sched domains */ 6895 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6896 static struct sched_domain_attr *dattr_cur; 6897 /* attribues of custom domains in 'doms_cur' */ 6898 6899 /* 6900 * Special case: If a kmalloc of a doms_cur partition (array of 6901 * cpumask) fails, then fallback to a single sched domain, 6902 * as determined by the single cpumask fallback_doms. 6903 */ 6904 static cpumask_var_t fallback_doms; 6905 6906 /* 6907 * arch_update_cpu_topology lets virtualized architectures update the 6908 * cpu core maps. It is supposed to return 1 if the topology changed 6909 * or 0 if it stayed the same. 6910 */ 6911 int __weak arch_update_cpu_topology(void) 6912 { 6913 return 0; 6914 } 6915 6916 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6917 { 6918 int i; 6919 cpumask_var_t *doms; 6920 6921 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6922 if (!doms) 6923 return NULL; 6924 for (i = 0; i < ndoms; i++) { 6925 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6926 free_sched_domains(doms, i); 6927 return NULL; 6928 } 6929 } 6930 return doms; 6931 } 6932 6933 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6934 { 6935 unsigned int i; 6936 for (i = 0; i < ndoms; i++) 6937 free_cpumask_var(doms[i]); 6938 kfree(doms); 6939 } 6940 6941 /* 6942 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6943 * For now this just excludes isolated cpus, but could be used to 6944 * exclude other special cases in the future. 6945 */ 6946 static int init_sched_domains(const struct cpumask *cpu_map) 6947 { 6948 int err; 6949 6950 arch_update_cpu_topology(); 6951 ndoms_cur = 1; 6952 doms_cur = alloc_sched_domains(ndoms_cur); 6953 if (!doms_cur) 6954 doms_cur = &fallback_doms; 6955 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6956 err = build_sched_domains(doms_cur[0], NULL); 6957 register_sched_domain_sysctl(); 6958 6959 return err; 6960 } 6961 6962 /* 6963 * Detach sched domains from a group of cpus specified in cpu_map 6964 * These cpus will now be attached to the NULL domain 6965 */ 6966 static void detach_destroy_domains(const struct cpumask *cpu_map) 6967 { 6968 int i; 6969 6970 rcu_read_lock(); 6971 for_each_cpu(i, cpu_map) 6972 cpu_attach_domain(NULL, &def_root_domain, i); 6973 rcu_read_unlock(); 6974 } 6975 6976 /* handle null as "default" */ 6977 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6978 struct sched_domain_attr *new, int idx_new) 6979 { 6980 struct sched_domain_attr tmp; 6981 6982 /* fast path */ 6983 if (!new && !cur) 6984 return 1; 6985 6986 tmp = SD_ATTR_INIT; 6987 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6988 new ? (new + idx_new) : &tmp, 6989 sizeof(struct sched_domain_attr)); 6990 } 6991 6992 /* 6993 * Partition sched domains as specified by the 'ndoms_new' 6994 * cpumasks in the array doms_new[] of cpumasks. This compares 6995 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6996 * It destroys each deleted domain and builds each new domain. 6997 * 6998 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6999 * The masks don't intersect (don't overlap.) We should setup one 7000 * sched domain for each mask. CPUs not in any of the cpumasks will 7001 * not be load balanced. If the same cpumask appears both in the 7002 * current 'doms_cur' domains and in the new 'doms_new', we can leave 7003 * it as it is. 7004 * 7005 * The passed in 'doms_new' should be allocated using 7006 * alloc_sched_domains. This routine takes ownership of it and will 7007 * free_sched_domains it when done with it. If the caller failed the 7008 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 7009 * and partition_sched_domains() will fallback to the single partition 7010 * 'fallback_doms', it also forces the domains to be rebuilt. 7011 * 7012 * If doms_new == NULL it will be replaced with cpu_online_mask. 7013 * ndoms_new == 0 is a special case for destroying existing domains, 7014 * and it will not create the default domain. 7015 * 7016 * Call with hotplug lock held 7017 */ 7018 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 7019 struct sched_domain_attr *dattr_new) 7020 { 7021 int i, j, n; 7022 int new_topology; 7023 7024 mutex_lock(&sched_domains_mutex); 7025 7026 /* always unregister in case we don't destroy any domains */ 7027 unregister_sched_domain_sysctl(); 7028 7029 /* Let architecture update cpu core mappings. */ 7030 new_topology = arch_update_cpu_topology(); 7031 7032 n = doms_new ? ndoms_new : 0; 7033 7034 /* Destroy deleted domains */ 7035 for (i = 0; i < ndoms_cur; i++) { 7036 for (j = 0; j < n && !new_topology; j++) { 7037 if (cpumask_equal(doms_cur[i], doms_new[j]) 7038 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7039 goto match1; 7040 } 7041 /* no match - a current sched domain not in new doms_new[] */ 7042 detach_destroy_domains(doms_cur[i]); 7043 match1: 7044 ; 7045 } 7046 7047 n = ndoms_cur; 7048 if (doms_new == NULL) { 7049 n = 0; 7050 doms_new = &fallback_doms; 7051 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7052 WARN_ON_ONCE(dattr_new); 7053 } 7054 7055 /* Build new domains */ 7056 for (i = 0; i < ndoms_new; i++) { 7057 for (j = 0; j < n && !new_topology; j++) { 7058 if (cpumask_equal(doms_new[i], doms_cur[j]) 7059 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7060 goto match2; 7061 } 7062 /* no match - add a new doms_new */ 7063 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7064 match2: 7065 ; 7066 } 7067 7068 /* Remember the new sched domains */ 7069 if (doms_cur != &fallback_doms) 7070 free_sched_domains(doms_cur, ndoms_cur); 7071 kfree(dattr_cur); /* kfree(NULL) is safe */ 7072 doms_cur = doms_new; 7073 dattr_cur = dattr_new; 7074 ndoms_cur = ndoms_new; 7075 7076 register_sched_domain_sysctl(); 7077 7078 mutex_unlock(&sched_domains_mutex); 7079 } 7080 7081 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7082 7083 /* 7084 * Update cpusets according to cpu_active mask. If cpusets are 7085 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7086 * around partition_sched_domains(). 7087 * 7088 * If we come here as part of a suspend/resume, don't touch cpusets because we 7089 * want to restore it back to its original state upon resume anyway. 7090 */ 7091 static void cpuset_cpu_active(void) 7092 { 7093 if (cpuhp_tasks_frozen) { 7094 /* 7095 * num_cpus_frozen tracks how many CPUs are involved in suspend 7096 * resume sequence. As long as this is not the last online 7097 * operation in the resume sequence, just build a single sched 7098 * domain, ignoring cpusets. 7099 */ 7100 num_cpus_frozen--; 7101 if (likely(num_cpus_frozen)) { 7102 partition_sched_domains(1, NULL, NULL); 7103 return; 7104 } 7105 /* 7106 * This is the last CPU online operation. So fall through and 7107 * restore the original sched domains by considering the 7108 * cpuset configurations. 7109 */ 7110 } 7111 cpuset_update_active_cpus(true); 7112 } 7113 7114 static int cpuset_cpu_inactive(unsigned int cpu) 7115 { 7116 unsigned long flags; 7117 struct dl_bw *dl_b; 7118 bool overflow; 7119 int cpus; 7120 7121 if (!cpuhp_tasks_frozen) { 7122 rcu_read_lock_sched(); 7123 dl_b = dl_bw_of(cpu); 7124 7125 raw_spin_lock_irqsave(&dl_b->lock, flags); 7126 cpus = dl_bw_cpus(cpu); 7127 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7128 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7129 7130 rcu_read_unlock_sched(); 7131 7132 if (overflow) 7133 return -EBUSY; 7134 cpuset_update_active_cpus(false); 7135 } else { 7136 num_cpus_frozen++; 7137 partition_sched_domains(1, NULL, NULL); 7138 } 7139 return 0; 7140 } 7141 7142 int sched_cpu_activate(unsigned int cpu) 7143 { 7144 struct rq *rq = cpu_rq(cpu); 7145 unsigned long flags; 7146 7147 set_cpu_active(cpu, true); 7148 7149 if (sched_smp_initialized) { 7150 sched_domains_numa_masks_set(cpu); 7151 cpuset_cpu_active(); 7152 } 7153 7154 /* 7155 * Put the rq online, if not already. This happens: 7156 * 7157 * 1) In the early boot process, because we build the real domains 7158 * after all cpus have been brought up. 7159 * 7160 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7161 * domains. 7162 */ 7163 raw_spin_lock_irqsave(&rq->lock, flags); 7164 if (rq->rd) { 7165 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7166 set_rq_online(rq); 7167 } 7168 raw_spin_unlock_irqrestore(&rq->lock, flags); 7169 7170 update_max_interval(); 7171 7172 return 0; 7173 } 7174 7175 int sched_cpu_deactivate(unsigned int cpu) 7176 { 7177 int ret; 7178 7179 set_cpu_active(cpu, false); 7180 /* 7181 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 7182 * users of this state to go away such that all new such users will 7183 * observe it. 7184 * 7185 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might 7186 * not imply sync_sched(), so wait for both. 7187 * 7188 * Do sync before park smpboot threads to take care the rcu boost case. 7189 */ 7190 if (IS_ENABLED(CONFIG_PREEMPT)) 7191 synchronize_rcu_mult(call_rcu, call_rcu_sched); 7192 else 7193 synchronize_rcu(); 7194 7195 if (!sched_smp_initialized) 7196 return 0; 7197 7198 ret = cpuset_cpu_inactive(cpu); 7199 if (ret) { 7200 set_cpu_active(cpu, true); 7201 return ret; 7202 } 7203 sched_domains_numa_masks_clear(cpu); 7204 return 0; 7205 } 7206 7207 static void sched_rq_cpu_starting(unsigned int cpu) 7208 { 7209 struct rq *rq = cpu_rq(cpu); 7210 7211 rq->calc_load_update = calc_load_update; 7212 account_reset_rq(rq); 7213 update_max_interval(); 7214 } 7215 7216 int sched_cpu_starting(unsigned int cpu) 7217 { 7218 set_cpu_rq_start_time(cpu); 7219 sched_rq_cpu_starting(cpu); 7220 return 0; 7221 } 7222 7223 #ifdef CONFIG_HOTPLUG_CPU 7224 int sched_cpu_dying(unsigned int cpu) 7225 { 7226 struct rq *rq = cpu_rq(cpu); 7227 unsigned long flags; 7228 7229 /* Handle pending wakeups and then migrate everything off */ 7230 sched_ttwu_pending(); 7231 raw_spin_lock_irqsave(&rq->lock, flags); 7232 if (rq->rd) { 7233 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7234 set_rq_offline(rq); 7235 } 7236 migrate_tasks(rq); 7237 BUG_ON(rq->nr_running != 1); 7238 raw_spin_unlock_irqrestore(&rq->lock, flags); 7239 calc_load_migrate(rq); 7240 update_max_interval(); 7241 nohz_balance_exit_idle(cpu); 7242 hrtick_clear(rq); 7243 return 0; 7244 } 7245 #endif 7246 7247 void __init sched_init_smp(void) 7248 { 7249 cpumask_var_t non_isolated_cpus; 7250 7251 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7252 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7253 7254 sched_init_numa(); 7255 7256 /* 7257 * There's no userspace yet to cause hotplug operations; hence all the 7258 * cpu masks are stable and all blatant races in the below code cannot 7259 * happen. 7260 */ 7261 mutex_lock(&sched_domains_mutex); 7262 init_sched_domains(cpu_active_mask); 7263 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7264 if (cpumask_empty(non_isolated_cpus)) 7265 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7266 mutex_unlock(&sched_domains_mutex); 7267 7268 /* Move init over to a non-isolated CPU */ 7269 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7270 BUG(); 7271 sched_init_granularity(); 7272 free_cpumask_var(non_isolated_cpus); 7273 7274 init_sched_rt_class(); 7275 init_sched_dl_class(); 7276 sched_smp_initialized = true; 7277 } 7278 7279 static int __init migration_init(void) 7280 { 7281 sched_rq_cpu_starting(smp_processor_id()); 7282 return 0; 7283 } 7284 early_initcall(migration_init); 7285 7286 #else 7287 void __init sched_init_smp(void) 7288 { 7289 sched_init_granularity(); 7290 } 7291 #endif /* CONFIG_SMP */ 7292 7293 int in_sched_functions(unsigned long addr) 7294 { 7295 return in_lock_functions(addr) || 7296 (addr >= (unsigned long)__sched_text_start 7297 && addr < (unsigned long)__sched_text_end); 7298 } 7299 7300 #ifdef CONFIG_CGROUP_SCHED 7301 /* 7302 * Default task group. 7303 * Every task in system belongs to this group at bootup. 7304 */ 7305 struct task_group root_task_group; 7306 LIST_HEAD(task_groups); 7307 7308 /* Cacheline aligned slab cache for task_group */ 7309 static struct kmem_cache *task_group_cache __read_mostly; 7310 #endif 7311 7312 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7313 7314 void __init sched_init(void) 7315 { 7316 int i, j; 7317 unsigned long alloc_size = 0, ptr; 7318 7319 #ifdef CONFIG_FAIR_GROUP_SCHED 7320 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7321 #endif 7322 #ifdef CONFIG_RT_GROUP_SCHED 7323 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7324 #endif 7325 if (alloc_size) { 7326 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7327 7328 #ifdef CONFIG_FAIR_GROUP_SCHED 7329 root_task_group.se = (struct sched_entity **)ptr; 7330 ptr += nr_cpu_ids * sizeof(void **); 7331 7332 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7333 ptr += nr_cpu_ids * sizeof(void **); 7334 7335 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7336 #ifdef CONFIG_RT_GROUP_SCHED 7337 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7338 ptr += nr_cpu_ids * sizeof(void **); 7339 7340 root_task_group.rt_rq = (struct rt_rq **)ptr; 7341 ptr += nr_cpu_ids * sizeof(void **); 7342 7343 #endif /* CONFIG_RT_GROUP_SCHED */ 7344 } 7345 #ifdef CONFIG_CPUMASK_OFFSTACK 7346 for_each_possible_cpu(i) { 7347 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7348 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7349 } 7350 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7351 7352 init_rt_bandwidth(&def_rt_bandwidth, 7353 global_rt_period(), global_rt_runtime()); 7354 init_dl_bandwidth(&def_dl_bandwidth, 7355 global_rt_period(), global_rt_runtime()); 7356 7357 #ifdef CONFIG_SMP 7358 init_defrootdomain(); 7359 #endif 7360 7361 #ifdef CONFIG_RT_GROUP_SCHED 7362 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7363 global_rt_period(), global_rt_runtime()); 7364 #endif /* CONFIG_RT_GROUP_SCHED */ 7365 7366 #ifdef CONFIG_CGROUP_SCHED 7367 task_group_cache = KMEM_CACHE(task_group, 0); 7368 7369 list_add(&root_task_group.list, &task_groups); 7370 INIT_LIST_HEAD(&root_task_group.children); 7371 INIT_LIST_HEAD(&root_task_group.siblings); 7372 autogroup_init(&init_task); 7373 #endif /* CONFIG_CGROUP_SCHED */ 7374 7375 for_each_possible_cpu(i) { 7376 struct rq *rq; 7377 7378 rq = cpu_rq(i); 7379 raw_spin_lock_init(&rq->lock); 7380 rq->nr_running = 0; 7381 rq->calc_load_active = 0; 7382 rq->calc_load_update = jiffies + LOAD_FREQ; 7383 init_cfs_rq(&rq->cfs); 7384 init_rt_rq(&rq->rt); 7385 init_dl_rq(&rq->dl); 7386 #ifdef CONFIG_FAIR_GROUP_SCHED 7387 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7388 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7389 /* 7390 * How much cpu bandwidth does root_task_group get? 7391 * 7392 * In case of task-groups formed thr' the cgroup filesystem, it 7393 * gets 100% of the cpu resources in the system. This overall 7394 * system cpu resource is divided among the tasks of 7395 * root_task_group and its child task-groups in a fair manner, 7396 * based on each entity's (task or task-group's) weight 7397 * (se->load.weight). 7398 * 7399 * In other words, if root_task_group has 10 tasks of weight 7400 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7401 * then A0's share of the cpu resource is: 7402 * 7403 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7404 * 7405 * We achieve this by letting root_task_group's tasks sit 7406 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7407 */ 7408 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7409 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7410 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7411 7412 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7413 #ifdef CONFIG_RT_GROUP_SCHED 7414 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7415 #endif 7416 7417 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7418 rq->cpu_load[j] = 0; 7419 7420 #ifdef CONFIG_SMP 7421 rq->sd = NULL; 7422 rq->rd = NULL; 7423 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7424 rq->balance_callback = NULL; 7425 rq->active_balance = 0; 7426 rq->next_balance = jiffies; 7427 rq->push_cpu = 0; 7428 rq->cpu = i; 7429 rq->online = 0; 7430 rq->idle_stamp = 0; 7431 rq->avg_idle = 2*sysctl_sched_migration_cost; 7432 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7433 7434 INIT_LIST_HEAD(&rq->cfs_tasks); 7435 7436 rq_attach_root(rq, &def_root_domain); 7437 #ifdef CONFIG_NO_HZ_COMMON 7438 rq->last_load_update_tick = jiffies; 7439 rq->nohz_flags = 0; 7440 #endif 7441 #ifdef CONFIG_NO_HZ_FULL 7442 rq->last_sched_tick = 0; 7443 #endif 7444 #endif /* CONFIG_SMP */ 7445 init_rq_hrtick(rq); 7446 atomic_set(&rq->nr_iowait, 0); 7447 } 7448 7449 set_load_weight(&init_task); 7450 7451 #ifdef CONFIG_PREEMPT_NOTIFIERS 7452 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7453 #endif 7454 7455 /* 7456 * The boot idle thread does lazy MMU switching as well: 7457 */ 7458 atomic_inc(&init_mm.mm_count); 7459 enter_lazy_tlb(&init_mm, current); 7460 7461 /* 7462 * During early bootup we pretend to be a normal task: 7463 */ 7464 current->sched_class = &fair_sched_class; 7465 7466 /* 7467 * Make us the idle thread. Technically, schedule() should not be 7468 * called from this thread, however somewhere below it might be, 7469 * but because we are the idle thread, we just pick up running again 7470 * when this runqueue becomes "idle". 7471 */ 7472 init_idle(current, smp_processor_id()); 7473 7474 calc_load_update = jiffies + LOAD_FREQ; 7475 7476 #ifdef CONFIG_SMP 7477 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7478 /* May be allocated at isolcpus cmdline parse time */ 7479 if (cpu_isolated_map == NULL) 7480 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7481 idle_thread_set_boot_cpu(); 7482 set_cpu_rq_start_time(smp_processor_id()); 7483 #endif 7484 init_sched_fair_class(); 7485 7486 scheduler_running = 1; 7487 } 7488 7489 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7490 static inline int preempt_count_equals(int preempt_offset) 7491 { 7492 int nested = preempt_count() + rcu_preempt_depth(); 7493 7494 return (nested == preempt_offset); 7495 } 7496 7497 void __might_sleep(const char *file, int line, int preempt_offset) 7498 { 7499 /* 7500 * Blocking primitives will set (and therefore destroy) current->state, 7501 * since we will exit with TASK_RUNNING make sure we enter with it, 7502 * otherwise we will destroy state. 7503 */ 7504 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7505 "do not call blocking ops when !TASK_RUNNING; " 7506 "state=%lx set at [<%p>] %pS\n", 7507 current->state, 7508 (void *)current->task_state_change, 7509 (void *)current->task_state_change); 7510 7511 ___might_sleep(file, line, preempt_offset); 7512 } 7513 EXPORT_SYMBOL(__might_sleep); 7514 7515 void ___might_sleep(const char *file, int line, int preempt_offset) 7516 { 7517 static unsigned long prev_jiffy; /* ratelimiting */ 7518 7519 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7520 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7521 !is_idle_task(current)) || 7522 system_state != SYSTEM_RUNNING || oops_in_progress) 7523 return; 7524 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7525 return; 7526 prev_jiffy = jiffies; 7527 7528 printk(KERN_ERR 7529 "BUG: sleeping function called from invalid context at %s:%d\n", 7530 file, line); 7531 printk(KERN_ERR 7532 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7533 in_atomic(), irqs_disabled(), 7534 current->pid, current->comm); 7535 7536 if (task_stack_end_corrupted(current)) 7537 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7538 7539 debug_show_held_locks(current); 7540 if (irqs_disabled()) 7541 print_irqtrace_events(current); 7542 #ifdef CONFIG_DEBUG_PREEMPT 7543 if (!preempt_count_equals(preempt_offset)) { 7544 pr_err("Preemption disabled at:"); 7545 print_ip_sym(current->preempt_disable_ip); 7546 pr_cont("\n"); 7547 } 7548 #endif 7549 dump_stack(); 7550 } 7551 EXPORT_SYMBOL(___might_sleep); 7552 #endif 7553 7554 #ifdef CONFIG_MAGIC_SYSRQ 7555 void normalize_rt_tasks(void) 7556 { 7557 struct task_struct *g, *p; 7558 struct sched_attr attr = { 7559 .sched_policy = SCHED_NORMAL, 7560 }; 7561 7562 read_lock(&tasklist_lock); 7563 for_each_process_thread(g, p) { 7564 /* 7565 * Only normalize user tasks: 7566 */ 7567 if (p->flags & PF_KTHREAD) 7568 continue; 7569 7570 p->se.exec_start = 0; 7571 #ifdef CONFIG_SCHEDSTATS 7572 p->se.statistics.wait_start = 0; 7573 p->se.statistics.sleep_start = 0; 7574 p->se.statistics.block_start = 0; 7575 #endif 7576 7577 if (!dl_task(p) && !rt_task(p)) { 7578 /* 7579 * Renice negative nice level userspace 7580 * tasks back to 0: 7581 */ 7582 if (task_nice(p) < 0) 7583 set_user_nice(p, 0); 7584 continue; 7585 } 7586 7587 __sched_setscheduler(p, &attr, false, false); 7588 } 7589 read_unlock(&tasklist_lock); 7590 } 7591 7592 #endif /* CONFIG_MAGIC_SYSRQ */ 7593 7594 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7595 /* 7596 * These functions are only useful for the IA64 MCA handling, or kdb. 7597 * 7598 * They can only be called when the whole system has been 7599 * stopped - every CPU needs to be quiescent, and no scheduling 7600 * activity can take place. Using them for anything else would 7601 * be a serious bug, and as a result, they aren't even visible 7602 * under any other configuration. 7603 */ 7604 7605 /** 7606 * curr_task - return the current task for a given cpu. 7607 * @cpu: the processor in question. 7608 * 7609 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7610 * 7611 * Return: The current task for @cpu. 7612 */ 7613 struct task_struct *curr_task(int cpu) 7614 { 7615 return cpu_curr(cpu); 7616 } 7617 7618 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7619 7620 #ifdef CONFIG_IA64 7621 /** 7622 * set_curr_task - set the current task for a given cpu. 7623 * @cpu: the processor in question. 7624 * @p: the task pointer to set. 7625 * 7626 * Description: This function must only be used when non-maskable interrupts 7627 * are serviced on a separate stack. It allows the architecture to switch the 7628 * notion of the current task on a cpu in a non-blocking manner. This function 7629 * must be called with all CPU's synchronized, and interrupts disabled, the 7630 * and caller must save the original value of the current task (see 7631 * curr_task() above) and restore that value before reenabling interrupts and 7632 * re-starting the system. 7633 * 7634 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7635 */ 7636 void set_curr_task(int cpu, struct task_struct *p) 7637 { 7638 cpu_curr(cpu) = p; 7639 } 7640 7641 #endif 7642 7643 #ifdef CONFIG_CGROUP_SCHED 7644 /* task_group_lock serializes the addition/removal of task groups */ 7645 static DEFINE_SPINLOCK(task_group_lock); 7646 7647 static void sched_free_group(struct task_group *tg) 7648 { 7649 free_fair_sched_group(tg); 7650 free_rt_sched_group(tg); 7651 autogroup_free(tg); 7652 kmem_cache_free(task_group_cache, tg); 7653 } 7654 7655 /* allocate runqueue etc for a new task group */ 7656 struct task_group *sched_create_group(struct task_group *parent) 7657 { 7658 struct task_group *tg; 7659 7660 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 7661 if (!tg) 7662 return ERR_PTR(-ENOMEM); 7663 7664 if (!alloc_fair_sched_group(tg, parent)) 7665 goto err; 7666 7667 if (!alloc_rt_sched_group(tg, parent)) 7668 goto err; 7669 7670 return tg; 7671 7672 err: 7673 sched_free_group(tg); 7674 return ERR_PTR(-ENOMEM); 7675 } 7676 7677 void sched_online_group(struct task_group *tg, struct task_group *parent) 7678 { 7679 unsigned long flags; 7680 7681 spin_lock_irqsave(&task_group_lock, flags); 7682 list_add_rcu(&tg->list, &task_groups); 7683 7684 WARN_ON(!parent); /* root should already exist */ 7685 7686 tg->parent = parent; 7687 INIT_LIST_HEAD(&tg->children); 7688 list_add_rcu(&tg->siblings, &parent->children); 7689 spin_unlock_irqrestore(&task_group_lock, flags); 7690 } 7691 7692 /* rcu callback to free various structures associated with a task group */ 7693 static void sched_free_group_rcu(struct rcu_head *rhp) 7694 { 7695 /* now it should be safe to free those cfs_rqs */ 7696 sched_free_group(container_of(rhp, struct task_group, rcu)); 7697 } 7698 7699 void sched_destroy_group(struct task_group *tg) 7700 { 7701 /* wait for possible concurrent references to cfs_rqs complete */ 7702 call_rcu(&tg->rcu, sched_free_group_rcu); 7703 } 7704 7705 void sched_offline_group(struct task_group *tg) 7706 { 7707 unsigned long flags; 7708 7709 /* end participation in shares distribution */ 7710 unregister_fair_sched_group(tg); 7711 7712 spin_lock_irqsave(&task_group_lock, flags); 7713 list_del_rcu(&tg->list); 7714 list_del_rcu(&tg->siblings); 7715 spin_unlock_irqrestore(&task_group_lock, flags); 7716 } 7717 7718 /* change task's runqueue when it moves between groups. 7719 * The caller of this function should have put the task in its new group 7720 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7721 * reflect its new group. 7722 */ 7723 void sched_move_task(struct task_struct *tsk) 7724 { 7725 struct task_group *tg; 7726 int queued, running; 7727 struct rq_flags rf; 7728 struct rq *rq; 7729 7730 rq = task_rq_lock(tsk, &rf); 7731 7732 running = task_current(rq, tsk); 7733 queued = task_on_rq_queued(tsk); 7734 7735 if (queued) 7736 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE); 7737 if (unlikely(running)) 7738 put_prev_task(rq, tsk); 7739 7740 /* 7741 * All callers are synchronized by task_rq_lock(); we do not use RCU 7742 * which is pointless here. Thus, we pass "true" to task_css_check() 7743 * to prevent lockdep warnings. 7744 */ 7745 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7746 struct task_group, css); 7747 tg = autogroup_task_group(tsk, tg); 7748 tsk->sched_task_group = tg; 7749 7750 #ifdef CONFIG_FAIR_GROUP_SCHED 7751 if (tsk->sched_class->task_move_group) 7752 tsk->sched_class->task_move_group(tsk); 7753 else 7754 #endif 7755 set_task_rq(tsk, task_cpu(tsk)); 7756 7757 if (unlikely(running)) 7758 tsk->sched_class->set_curr_task(rq); 7759 if (queued) 7760 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE); 7761 7762 task_rq_unlock(rq, tsk, &rf); 7763 } 7764 #endif /* CONFIG_CGROUP_SCHED */ 7765 7766 #ifdef CONFIG_RT_GROUP_SCHED 7767 /* 7768 * Ensure that the real time constraints are schedulable. 7769 */ 7770 static DEFINE_MUTEX(rt_constraints_mutex); 7771 7772 /* Must be called with tasklist_lock held */ 7773 static inline int tg_has_rt_tasks(struct task_group *tg) 7774 { 7775 struct task_struct *g, *p; 7776 7777 /* 7778 * Autogroups do not have RT tasks; see autogroup_create(). 7779 */ 7780 if (task_group_is_autogroup(tg)) 7781 return 0; 7782 7783 for_each_process_thread(g, p) { 7784 if (rt_task(p) && task_group(p) == tg) 7785 return 1; 7786 } 7787 7788 return 0; 7789 } 7790 7791 struct rt_schedulable_data { 7792 struct task_group *tg; 7793 u64 rt_period; 7794 u64 rt_runtime; 7795 }; 7796 7797 static int tg_rt_schedulable(struct task_group *tg, void *data) 7798 { 7799 struct rt_schedulable_data *d = data; 7800 struct task_group *child; 7801 unsigned long total, sum = 0; 7802 u64 period, runtime; 7803 7804 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7805 runtime = tg->rt_bandwidth.rt_runtime; 7806 7807 if (tg == d->tg) { 7808 period = d->rt_period; 7809 runtime = d->rt_runtime; 7810 } 7811 7812 /* 7813 * Cannot have more runtime than the period. 7814 */ 7815 if (runtime > period && runtime != RUNTIME_INF) 7816 return -EINVAL; 7817 7818 /* 7819 * Ensure we don't starve existing RT tasks. 7820 */ 7821 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7822 return -EBUSY; 7823 7824 total = to_ratio(period, runtime); 7825 7826 /* 7827 * Nobody can have more than the global setting allows. 7828 */ 7829 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7830 return -EINVAL; 7831 7832 /* 7833 * The sum of our children's runtime should not exceed our own. 7834 */ 7835 list_for_each_entry_rcu(child, &tg->children, siblings) { 7836 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7837 runtime = child->rt_bandwidth.rt_runtime; 7838 7839 if (child == d->tg) { 7840 period = d->rt_period; 7841 runtime = d->rt_runtime; 7842 } 7843 7844 sum += to_ratio(period, runtime); 7845 } 7846 7847 if (sum > total) 7848 return -EINVAL; 7849 7850 return 0; 7851 } 7852 7853 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7854 { 7855 int ret; 7856 7857 struct rt_schedulable_data data = { 7858 .tg = tg, 7859 .rt_period = period, 7860 .rt_runtime = runtime, 7861 }; 7862 7863 rcu_read_lock(); 7864 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7865 rcu_read_unlock(); 7866 7867 return ret; 7868 } 7869 7870 static int tg_set_rt_bandwidth(struct task_group *tg, 7871 u64 rt_period, u64 rt_runtime) 7872 { 7873 int i, err = 0; 7874 7875 /* 7876 * Disallowing the root group RT runtime is BAD, it would disallow the 7877 * kernel creating (and or operating) RT threads. 7878 */ 7879 if (tg == &root_task_group && rt_runtime == 0) 7880 return -EINVAL; 7881 7882 /* No period doesn't make any sense. */ 7883 if (rt_period == 0) 7884 return -EINVAL; 7885 7886 mutex_lock(&rt_constraints_mutex); 7887 read_lock(&tasklist_lock); 7888 err = __rt_schedulable(tg, rt_period, rt_runtime); 7889 if (err) 7890 goto unlock; 7891 7892 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7893 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7894 tg->rt_bandwidth.rt_runtime = rt_runtime; 7895 7896 for_each_possible_cpu(i) { 7897 struct rt_rq *rt_rq = tg->rt_rq[i]; 7898 7899 raw_spin_lock(&rt_rq->rt_runtime_lock); 7900 rt_rq->rt_runtime = rt_runtime; 7901 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7902 } 7903 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7904 unlock: 7905 read_unlock(&tasklist_lock); 7906 mutex_unlock(&rt_constraints_mutex); 7907 7908 return err; 7909 } 7910 7911 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7912 { 7913 u64 rt_runtime, rt_period; 7914 7915 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7916 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7917 if (rt_runtime_us < 0) 7918 rt_runtime = RUNTIME_INF; 7919 7920 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7921 } 7922 7923 static long sched_group_rt_runtime(struct task_group *tg) 7924 { 7925 u64 rt_runtime_us; 7926 7927 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7928 return -1; 7929 7930 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7931 do_div(rt_runtime_us, NSEC_PER_USEC); 7932 return rt_runtime_us; 7933 } 7934 7935 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 7936 { 7937 u64 rt_runtime, rt_period; 7938 7939 rt_period = rt_period_us * NSEC_PER_USEC; 7940 rt_runtime = tg->rt_bandwidth.rt_runtime; 7941 7942 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7943 } 7944 7945 static long sched_group_rt_period(struct task_group *tg) 7946 { 7947 u64 rt_period_us; 7948 7949 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7950 do_div(rt_period_us, NSEC_PER_USEC); 7951 return rt_period_us; 7952 } 7953 #endif /* CONFIG_RT_GROUP_SCHED */ 7954 7955 #ifdef CONFIG_RT_GROUP_SCHED 7956 static int sched_rt_global_constraints(void) 7957 { 7958 int ret = 0; 7959 7960 mutex_lock(&rt_constraints_mutex); 7961 read_lock(&tasklist_lock); 7962 ret = __rt_schedulable(NULL, 0, 0); 7963 read_unlock(&tasklist_lock); 7964 mutex_unlock(&rt_constraints_mutex); 7965 7966 return ret; 7967 } 7968 7969 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7970 { 7971 /* Don't accept realtime tasks when there is no way for them to run */ 7972 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7973 return 0; 7974 7975 return 1; 7976 } 7977 7978 #else /* !CONFIG_RT_GROUP_SCHED */ 7979 static int sched_rt_global_constraints(void) 7980 { 7981 unsigned long flags; 7982 int i; 7983 7984 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7985 for_each_possible_cpu(i) { 7986 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7987 7988 raw_spin_lock(&rt_rq->rt_runtime_lock); 7989 rt_rq->rt_runtime = global_rt_runtime(); 7990 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7991 } 7992 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7993 7994 return 0; 7995 } 7996 #endif /* CONFIG_RT_GROUP_SCHED */ 7997 7998 static int sched_dl_global_validate(void) 7999 { 8000 u64 runtime = global_rt_runtime(); 8001 u64 period = global_rt_period(); 8002 u64 new_bw = to_ratio(period, runtime); 8003 struct dl_bw *dl_b; 8004 int cpu, ret = 0; 8005 unsigned long flags; 8006 8007 /* 8008 * Here we want to check the bandwidth not being set to some 8009 * value smaller than the currently allocated bandwidth in 8010 * any of the root_domains. 8011 * 8012 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 8013 * cycling on root_domains... Discussion on different/better 8014 * solutions is welcome! 8015 */ 8016 for_each_possible_cpu(cpu) { 8017 rcu_read_lock_sched(); 8018 dl_b = dl_bw_of(cpu); 8019 8020 raw_spin_lock_irqsave(&dl_b->lock, flags); 8021 if (new_bw < dl_b->total_bw) 8022 ret = -EBUSY; 8023 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8024 8025 rcu_read_unlock_sched(); 8026 8027 if (ret) 8028 break; 8029 } 8030 8031 return ret; 8032 } 8033 8034 static void sched_dl_do_global(void) 8035 { 8036 u64 new_bw = -1; 8037 struct dl_bw *dl_b; 8038 int cpu; 8039 unsigned long flags; 8040 8041 def_dl_bandwidth.dl_period = global_rt_period(); 8042 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 8043 8044 if (global_rt_runtime() != RUNTIME_INF) 8045 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 8046 8047 /* 8048 * FIXME: As above... 8049 */ 8050 for_each_possible_cpu(cpu) { 8051 rcu_read_lock_sched(); 8052 dl_b = dl_bw_of(cpu); 8053 8054 raw_spin_lock_irqsave(&dl_b->lock, flags); 8055 dl_b->bw = new_bw; 8056 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8057 8058 rcu_read_unlock_sched(); 8059 } 8060 } 8061 8062 static int sched_rt_global_validate(void) 8063 { 8064 if (sysctl_sched_rt_period <= 0) 8065 return -EINVAL; 8066 8067 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 8068 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 8069 return -EINVAL; 8070 8071 return 0; 8072 } 8073 8074 static void sched_rt_do_global(void) 8075 { 8076 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 8077 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 8078 } 8079 8080 int sched_rt_handler(struct ctl_table *table, int write, 8081 void __user *buffer, size_t *lenp, 8082 loff_t *ppos) 8083 { 8084 int old_period, old_runtime; 8085 static DEFINE_MUTEX(mutex); 8086 int ret; 8087 8088 mutex_lock(&mutex); 8089 old_period = sysctl_sched_rt_period; 8090 old_runtime = sysctl_sched_rt_runtime; 8091 8092 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8093 8094 if (!ret && write) { 8095 ret = sched_rt_global_validate(); 8096 if (ret) 8097 goto undo; 8098 8099 ret = sched_dl_global_validate(); 8100 if (ret) 8101 goto undo; 8102 8103 ret = sched_rt_global_constraints(); 8104 if (ret) 8105 goto undo; 8106 8107 sched_rt_do_global(); 8108 sched_dl_do_global(); 8109 } 8110 if (0) { 8111 undo: 8112 sysctl_sched_rt_period = old_period; 8113 sysctl_sched_rt_runtime = old_runtime; 8114 } 8115 mutex_unlock(&mutex); 8116 8117 return ret; 8118 } 8119 8120 int sched_rr_handler(struct ctl_table *table, int write, 8121 void __user *buffer, size_t *lenp, 8122 loff_t *ppos) 8123 { 8124 int ret; 8125 static DEFINE_MUTEX(mutex); 8126 8127 mutex_lock(&mutex); 8128 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8129 /* make sure that internally we keep jiffies */ 8130 /* also, writing zero resets timeslice to default */ 8131 if (!ret && write) { 8132 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 8133 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 8134 } 8135 mutex_unlock(&mutex); 8136 return ret; 8137 } 8138 8139 #ifdef CONFIG_CGROUP_SCHED 8140 8141 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8142 { 8143 return css ? container_of(css, struct task_group, css) : NULL; 8144 } 8145 8146 static struct cgroup_subsys_state * 8147 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8148 { 8149 struct task_group *parent = css_tg(parent_css); 8150 struct task_group *tg; 8151 8152 if (!parent) { 8153 /* This is early initialization for the top cgroup */ 8154 return &root_task_group.css; 8155 } 8156 8157 tg = sched_create_group(parent); 8158 if (IS_ERR(tg)) 8159 return ERR_PTR(-ENOMEM); 8160 8161 sched_online_group(tg, parent); 8162 8163 return &tg->css; 8164 } 8165 8166 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8167 { 8168 struct task_group *tg = css_tg(css); 8169 8170 sched_offline_group(tg); 8171 } 8172 8173 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8174 { 8175 struct task_group *tg = css_tg(css); 8176 8177 /* 8178 * Relies on the RCU grace period between css_released() and this. 8179 */ 8180 sched_free_group(tg); 8181 } 8182 8183 static void cpu_cgroup_fork(struct task_struct *task) 8184 { 8185 sched_move_task(task); 8186 } 8187 8188 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8189 { 8190 struct task_struct *task; 8191 struct cgroup_subsys_state *css; 8192 8193 cgroup_taskset_for_each(task, css, tset) { 8194 #ifdef CONFIG_RT_GROUP_SCHED 8195 if (!sched_rt_can_attach(css_tg(css), task)) 8196 return -EINVAL; 8197 #else 8198 /* We don't support RT-tasks being in separate groups */ 8199 if (task->sched_class != &fair_sched_class) 8200 return -EINVAL; 8201 #endif 8202 } 8203 return 0; 8204 } 8205 8206 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8207 { 8208 struct task_struct *task; 8209 struct cgroup_subsys_state *css; 8210 8211 cgroup_taskset_for_each(task, css, tset) 8212 sched_move_task(task); 8213 } 8214 8215 #ifdef CONFIG_FAIR_GROUP_SCHED 8216 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8217 struct cftype *cftype, u64 shareval) 8218 { 8219 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8220 } 8221 8222 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8223 struct cftype *cft) 8224 { 8225 struct task_group *tg = css_tg(css); 8226 8227 return (u64) scale_load_down(tg->shares); 8228 } 8229 8230 #ifdef CONFIG_CFS_BANDWIDTH 8231 static DEFINE_MUTEX(cfs_constraints_mutex); 8232 8233 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8234 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8235 8236 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8237 8238 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8239 { 8240 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8241 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8242 8243 if (tg == &root_task_group) 8244 return -EINVAL; 8245 8246 /* 8247 * Ensure we have at some amount of bandwidth every period. This is 8248 * to prevent reaching a state of large arrears when throttled via 8249 * entity_tick() resulting in prolonged exit starvation. 8250 */ 8251 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8252 return -EINVAL; 8253 8254 /* 8255 * Likewise, bound things on the otherside by preventing insane quota 8256 * periods. This also allows us to normalize in computing quota 8257 * feasibility. 8258 */ 8259 if (period > max_cfs_quota_period) 8260 return -EINVAL; 8261 8262 /* 8263 * Prevent race between setting of cfs_rq->runtime_enabled and 8264 * unthrottle_offline_cfs_rqs(). 8265 */ 8266 get_online_cpus(); 8267 mutex_lock(&cfs_constraints_mutex); 8268 ret = __cfs_schedulable(tg, period, quota); 8269 if (ret) 8270 goto out_unlock; 8271 8272 runtime_enabled = quota != RUNTIME_INF; 8273 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8274 /* 8275 * If we need to toggle cfs_bandwidth_used, off->on must occur 8276 * before making related changes, and on->off must occur afterwards 8277 */ 8278 if (runtime_enabled && !runtime_was_enabled) 8279 cfs_bandwidth_usage_inc(); 8280 raw_spin_lock_irq(&cfs_b->lock); 8281 cfs_b->period = ns_to_ktime(period); 8282 cfs_b->quota = quota; 8283 8284 __refill_cfs_bandwidth_runtime(cfs_b); 8285 /* restart the period timer (if active) to handle new period expiry */ 8286 if (runtime_enabled) 8287 start_cfs_bandwidth(cfs_b); 8288 raw_spin_unlock_irq(&cfs_b->lock); 8289 8290 for_each_online_cpu(i) { 8291 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8292 struct rq *rq = cfs_rq->rq; 8293 8294 raw_spin_lock_irq(&rq->lock); 8295 cfs_rq->runtime_enabled = runtime_enabled; 8296 cfs_rq->runtime_remaining = 0; 8297 8298 if (cfs_rq->throttled) 8299 unthrottle_cfs_rq(cfs_rq); 8300 raw_spin_unlock_irq(&rq->lock); 8301 } 8302 if (runtime_was_enabled && !runtime_enabled) 8303 cfs_bandwidth_usage_dec(); 8304 out_unlock: 8305 mutex_unlock(&cfs_constraints_mutex); 8306 put_online_cpus(); 8307 8308 return ret; 8309 } 8310 8311 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8312 { 8313 u64 quota, period; 8314 8315 period = ktime_to_ns(tg->cfs_bandwidth.period); 8316 if (cfs_quota_us < 0) 8317 quota = RUNTIME_INF; 8318 else 8319 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8320 8321 return tg_set_cfs_bandwidth(tg, period, quota); 8322 } 8323 8324 long tg_get_cfs_quota(struct task_group *tg) 8325 { 8326 u64 quota_us; 8327 8328 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8329 return -1; 8330 8331 quota_us = tg->cfs_bandwidth.quota; 8332 do_div(quota_us, NSEC_PER_USEC); 8333 8334 return quota_us; 8335 } 8336 8337 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8338 { 8339 u64 quota, period; 8340 8341 period = (u64)cfs_period_us * NSEC_PER_USEC; 8342 quota = tg->cfs_bandwidth.quota; 8343 8344 return tg_set_cfs_bandwidth(tg, period, quota); 8345 } 8346 8347 long tg_get_cfs_period(struct task_group *tg) 8348 { 8349 u64 cfs_period_us; 8350 8351 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8352 do_div(cfs_period_us, NSEC_PER_USEC); 8353 8354 return cfs_period_us; 8355 } 8356 8357 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8358 struct cftype *cft) 8359 { 8360 return tg_get_cfs_quota(css_tg(css)); 8361 } 8362 8363 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8364 struct cftype *cftype, s64 cfs_quota_us) 8365 { 8366 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8367 } 8368 8369 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8370 struct cftype *cft) 8371 { 8372 return tg_get_cfs_period(css_tg(css)); 8373 } 8374 8375 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8376 struct cftype *cftype, u64 cfs_period_us) 8377 { 8378 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8379 } 8380 8381 struct cfs_schedulable_data { 8382 struct task_group *tg; 8383 u64 period, quota; 8384 }; 8385 8386 /* 8387 * normalize group quota/period to be quota/max_period 8388 * note: units are usecs 8389 */ 8390 static u64 normalize_cfs_quota(struct task_group *tg, 8391 struct cfs_schedulable_data *d) 8392 { 8393 u64 quota, period; 8394 8395 if (tg == d->tg) { 8396 period = d->period; 8397 quota = d->quota; 8398 } else { 8399 period = tg_get_cfs_period(tg); 8400 quota = tg_get_cfs_quota(tg); 8401 } 8402 8403 /* note: these should typically be equivalent */ 8404 if (quota == RUNTIME_INF || quota == -1) 8405 return RUNTIME_INF; 8406 8407 return to_ratio(period, quota); 8408 } 8409 8410 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8411 { 8412 struct cfs_schedulable_data *d = data; 8413 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8414 s64 quota = 0, parent_quota = -1; 8415 8416 if (!tg->parent) { 8417 quota = RUNTIME_INF; 8418 } else { 8419 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8420 8421 quota = normalize_cfs_quota(tg, d); 8422 parent_quota = parent_b->hierarchical_quota; 8423 8424 /* 8425 * ensure max(child_quota) <= parent_quota, inherit when no 8426 * limit is set 8427 */ 8428 if (quota == RUNTIME_INF) 8429 quota = parent_quota; 8430 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8431 return -EINVAL; 8432 } 8433 cfs_b->hierarchical_quota = quota; 8434 8435 return 0; 8436 } 8437 8438 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8439 { 8440 int ret; 8441 struct cfs_schedulable_data data = { 8442 .tg = tg, 8443 .period = period, 8444 .quota = quota, 8445 }; 8446 8447 if (quota != RUNTIME_INF) { 8448 do_div(data.period, NSEC_PER_USEC); 8449 do_div(data.quota, NSEC_PER_USEC); 8450 } 8451 8452 rcu_read_lock(); 8453 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8454 rcu_read_unlock(); 8455 8456 return ret; 8457 } 8458 8459 static int cpu_stats_show(struct seq_file *sf, void *v) 8460 { 8461 struct task_group *tg = css_tg(seq_css(sf)); 8462 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8463 8464 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8465 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8466 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8467 8468 return 0; 8469 } 8470 #endif /* CONFIG_CFS_BANDWIDTH */ 8471 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8472 8473 #ifdef CONFIG_RT_GROUP_SCHED 8474 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8475 struct cftype *cft, s64 val) 8476 { 8477 return sched_group_set_rt_runtime(css_tg(css), val); 8478 } 8479 8480 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8481 struct cftype *cft) 8482 { 8483 return sched_group_rt_runtime(css_tg(css)); 8484 } 8485 8486 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8487 struct cftype *cftype, u64 rt_period_us) 8488 { 8489 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8490 } 8491 8492 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8493 struct cftype *cft) 8494 { 8495 return sched_group_rt_period(css_tg(css)); 8496 } 8497 #endif /* CONFIG_RT_GROUP_SCHED */ 8498 8499 static struct cftype cpu_files[] = { 8500 #ifdef CONFIG_FAIR_GROUP_SCHED 8501 { 8502 .name = "shares", 8503 .read_u64 = cpu_shares_read_u64, 8504 .write_u64 = cpu_shares_write_u64, 8505 }, 8506 #endif 8507 #ifdef CONFIG_CFS_BANDWIDTH 8508 { 8509 .name = "cfs_quota_us", 8510 .read_s64 = cpu_cfs_quota_read_s64, 8511 .write_s64 = cpu_cfs_quota_write_s64, 8512 }, 8513 { 8514 .name = "cfs_period_us", 8515 .read_u64 = cpu_cfs_period_read_u64, 8516 .write_u64 = cpu_cfs_period_write_u64, 8517 }, 8518 { 8519 .name = "stat", 8520 .seq_show = cpu_stats_show, 8521 }, 8522 #endif 8523 #ifdef CONFIG_RT_GROUP_SCHED 8524 { 8525 .name = "rt_runtime_us", 8526 .read_s64 = cpu_rt_runtime_read, 8527 .write_s64 = cpu_rt_runtime_write, 8528 }, 8529 { 8530 .name = "rt_period_us", 8531 .read_u64 = cpu_rt_period_read_uint, 8532 .write_u64 = cpu_rt_period_write_uint, 8533 }, 8534 #endif 8535 { } /* terminate */ 8536 }; 8537 8538 struct cgroup_subsys cpu_cgrp_subsys = { 8539 .css_alloc = cpu_cgroup_css_alloc, 8540 .css_released = cpu_cgroup_css_released, 8541 .css_free = cpu_cgroup_css_free, 8542 .fork = cpu_cgroup_fork, 8543 .can_attach = cpu_cgroup_can_attach, 8544 .attach = cpu_cgroup_attach, 8545 .legacy_cftypes = cpu_files, 8546 .early_init = true, 8547 }; 8548 8549 #endif /* CONFIG_CGROUP_SCHED */ 8550 8551 void dump_cpu_task(int cpu) 8552 { 8553 pr_info("Task dump for CPU %d:\n", cpu); 8554 sched_show_task(cpu_curr(cpu)); 8555 } 8556 8557 /* 8558 * Nice levels are multiplicative, with a gentle 10% change for every 8559 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 8560 * nice 1, it will get ~10% less CPU time than another CPU-bound task 8561 * that remained on nice 0. 8562 * 8563 * The "10% effect" is relative and cumulative: from _any_ nice level, 8564 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 8565 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 8566 * If a task goes up by ~10% and another task goes down by ~10% then 8567 * the relative distance between them is ~25%.) 8568 */ 8569 const int sched_prio_to_weight[40] = { 8570 /* -20 */ 88761, 71755, 56483, 46273, 36291, 8571 /* -15 */ 29154, 23254, 18705, 14949, 11916, 8572 /* -10 */ 9548, 7620, 6100, 4904, 3906, 8573 /* -5 */ 3121, 2501, 1991, 1586, 1277, 8574 /* 0 */ 1024, 820, 655, 526, 423, 8575 /* 5 */ 335, 272, 215, 172, 137, 8576 /* 10 */ 110, 87, 70, 56, 45, 8577 /* 15 */ 36, 29, 23, 18, 15, 8578 }; 8579 8580 /* 8581 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 8582 * 8583 * In cases where the weight does not change often, we can use the 8584 * precalculated inverse to speed up arithmetics by turning divisions 8585 * into multiplications: 8586 */ 8587 const u32 sched_prio_to_wmult[40] = { 8588 /* -20 */ 48388, 59856, 76040, 92818, 118348, 8589 /* -15 */ 147320, 184698, 229616, 287308, 360437, 8590 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 8591 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 8592 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 8593 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 8594 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 8595 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 8596 }; 8597