xref: /linux/kernel/sched/core.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 /*
128  * Number of tasks to iterate in a single balance run.
129  * Limited because this is done with IRQs disabled.
130  */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132 
133 /*
134  * period over which we average the RT time consumption, measured
135  * in ms.
136  *
137  * default: 1s
138  */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140 
141 /*
142  * period over which we measure -rt task cpu usage in us.
143  * default: 1s
144  */
145 unsigned int sysctl_sched_rt_period = 1000000;
146 
147 __read_mostly int scheduler_running;
148 
149 /*
150  * part of the period that we allow rt tasks to run in us.
151  * default: 0.95s
152  */
153 int sysctl_sched_rt_runtime = 950000;
154 
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157 
158 /*
159  * this_rq_lock - lock this runqueue and disable interrupts.
160  */
161 static struct rq *this_rq_lock(void)
162 	__acquires(rq->lock)
163 {
164 	struct rq *rq;
165 
166 	local_irq_disable();
167 	rq = this_rq();
168 	raw_spin_lock(&rq->lock);
169 
170 	return rq;
171 }
172 
173 /*
174  * __task_rq_lock - lock the rq @p resides on.
175  */
176 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
177 	__acquires(rq->lock)
178 {
179 	struct rq *rq;
180 
181 	lockdep_assert_held(&p->pi_lock);
182 
183 	for (;;) {
184 		rq = task_rq(p);
185 		raw_spin_lock(&rq->lock);
186 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
187 			rf->cookie = lockdep_pin_lock(&rq->lock);
188 			return rq;
189 		}
190 		raw_spin_unlock(&rq->lock);
191 
192 		while (unlikely(task_on_rq_migrating(p)))
193 			cpu_relax();
194 	}
195 }
196 
197 /*
198  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199  */
200 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
201 	__acquires(p->pi_lock)
202 	__acquires(rq->lock)
203 {
204 	struct rq *rq;
205 
206 	for (;;) {
207 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
208 		rq = task_rq(p);
209 		raw_spin_lock(&rq->lock);
210 		/*
211 		 *	move_queued_task()		task_rq_lock()
212 		 *
213 		 *	ACQUIRE (rq->lock)
214 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
215 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
216 		 *	[S] ->cpu = new_cpu		[L] task_rq()
217 		 *					[L] ->on_rq
218 		 *	RELEASE (rq->lock)
219 		 *
220 		 * If we observe the old cpu in task_rq_lock, the acquire of
221 		 * the old rq->lock will fully serialize against the stores.
222 		 *
223 		 * If we observe the new cpu in task_rq_lock, the acquire will
224 		 * pair with the WMB to ensure we must then also see migrating.
225 		 */
226 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
227 			rf->cookie = lockdep_pin_lock(&rq->lock);
228 			return rq;
229 		}
230 		raw_spin_unlock(&rq->lock);
231 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
232 
233 		while (unlikely(task_on_rq_migrating(p)))
234 			cpu_relax();
235 	}
236 }
237 
238 #ifdef CONFIG_SCHED_HRTICK
239 /*
240  * Use HR-timers to deliver accurate preemption points.
241  */
242 
243 static void hrtick_clear(struct rq *rq)
244 {
245 	if (hrtimer_active(&rq->hrtick_timer))
246 		hrtimer_cancel(&rq->hrtick_timer);
247 }
248 
249 /*
250  * High-resolution timer tick.
251  * Runs from hardirq context with interrupts disabled.
252  */
253 static enum hrtimer_restart hrtick(struct hrtimer *timer)
254 {
255 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256 
257 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258 
259 	raw_spin_lock(&rq->lock);
260 	update_rq_clock(rq);
261 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 	raw_spin_unlock(&rq->lock);
263 
264 	return HRTIMER_NORESTART;
265 }
266 
267 #ifdef CONFIG_SMP
268 
269 static void __hrtick_restart(struct rq *rq)
270 {
271 	struct hrtimer *timer = &rq->hrtick_timer;
272 
273 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275 
276 /*
277  * called from hardirq (IPI) context
278  */
279 static void __hrtick_start(void *arg)
280 {
281 	struct rq *rq = arg;
282 
283 	raw_spin_lock(&rq->lock);
284 	__hrtick_restart(rq);
285 	rq->hrtick_csd_pending = 0;
286 	raw_spin_unlock(&rq->lock);
287 }
288 
289 /*
290  * Called to set the hrtick timer state.
291  *
292  * called with rq->lock held and irqs disabled
293  */
294 void hrtick_start(struct rq *rq, u64 delay)
295 {
296 	struct hrtimer *timer = &rq->hrtick_timer;
297 	ktime_t time;
298 	s64 delta;
299 
300 	/*
301 	 * Don't schedule slices shorter than 10000ns, that just
302 	 * doesn't make sense and can cause timer DoS.
303 	 */
304 	delta = max_t(s64, delay, 10000LL);
305 	time = ktime_add_ns(timer->base->get_time(), delta);
306 
307 	hrtimer_set_expires(timer, time);
308 
309 	if (rq == this_rq()) {
310 		__hrtick_restart(rq);
311 	} else if (!rq->hrtick_csd_pending) {
312 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 		rq->hrtick_csd_pending = 1;
314 	}
315 }
316 
317 #else
318 /*
319  * Called to set the hrtick timer state.
320  *
321  * called with rq->lock held and irqs disabled
322  */
323 void hrtick_start(struct rq *rq, u64 delay)
324 {
325 	/*
326 	 * Don't schedule slices shorter than 10000ns, that just
327 	 * doesn't make sense. Rely on vruntime for fairness.
328 	 */
329 	delay = max_t(u64, delay, 10000LL);
330 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 		      HRTIMER_MODE_REL_PINNED);
332 }
333 #endif /* CONFIG_SMP */
334 
335 static void init_rq_hrtick(struct rq *rq)
336 {
337 #ifdef CONFIG_SMP
338 	rq->hrtick_csd_pending = 0;
339 
340 	rq->hrtick_csd.flags = 0;
341 	rq->hrtick_csd.func = __hrtick_start;
342 	rq->hrtick_csd.info = rq;
343 #endif
344 
345 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 	rq->hrtick_timer.function = hrtick;
347 }
348 #else	/* CONFIG_SCHED_HRTICK */
349 static inline void hrtick_clear(struct rq *rq)
350 {
351 }
352 
353 static inline void init_rq_hrtick(struct rq *rq)
354 {
355 }
356 #endif	/* CONFIG_SCHED_HRTICK */
357 
358 /*
359  * cmpxchg based fetch_or, macro so it works for different integer types
360  */
361 #define fetch_or(ptr, mask)						\
362 	({								\
363 		typeof(ptr) _ptr = (ptr);				\
364 		typeof(mask) _mask = (mask);				\
365 		typeof(*_ptr) _old, _val = *_ptr;			\
366 									\
367 		for (;;) {						\
368 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
369 			if (_old == _val)				\
370 				break;					\
371 			_val = _old;					\
372 		}							\
373 	_old;								\
374 })
375 
376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 /*
378  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379  * this avoids any races wrt polling state changes and thereby avoids
380  * spurious IPIs.
381  */
382 static bool set_nr_and_not_polling(struct task_struct *p)
383 {
384 	struct thread_info *ti = task_thread_info(p);
385 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386 }
387 
388 /*
389  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390  *
391  * If this returns true, then the idle task promises to call
392  * sched_ttwu_pending() and reschedule soon.
393  */
394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396 	struct thread_info *ti = task_thread_info(p);
397 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398 
399 	for (;;) {
400 		if (!(val & _TIF_POLLING_NRFLAG))
401 			return false;
402 		if (val & _TIF_NEED_RESCHED)
403 			return true;
404 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 		if (old == val)
406 			break;
407 		val = old;
408 	}
409 	return true;
410 }
411 
412 #else
413 static bool set_nr_and_not_polling(struct task_struct *p)
414 {
415 	set_tsk_need_resched(p);
416 	return true;
417 }
418 
419 #ifdef CONFIG_SMP
420 static bool set_nr_if_polling(struct task_struct *p)
421 {
422 	return false;
423 }
424 #endif
425 #endif
426 
427 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428 {
429 	struct wake_q_node *node = &task->wake_q;
430 
431 	/*
432 	 * Atomically grab the task, if ->wake_q is !nil already it means
433 	 * its already queued (either by us or someone else) and will get the
434 	 * wakeup due to that.
435 	 *
436 	 * This cmpxchg() implies a full barrier, which pairs with the write
437 	 * barrier implied by the wakeup in wake_up_q().
438 	 */
439 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440 		return;
441 
442 	get_task_struct(task);
443 
444 	/*
445 	 * The head is context local, there can be no concurrency.
446 	 */
447 	*head->lastp = node;
448 	head->lastp = &node->next;
449 }
450 
451 void wake_up_q(struct wake_q_head *head)
452 {
453 	struct wake_q_node *node = head->first;
454 
455 	while (node != WAKE_Q_TAIL) {
456 		struct task_struct *task;
457 
458 		task = container_of(node, struct task_struct, wake_q);
459 		BUG_ON(!task);
460 		/* task can safely be re-inserted now */
461 		node = node->next;
462 		task->wake_q.next = NULL;
463 
464 		/*
465 		 * wake_up_process() implies a wmb() to pair with the queueing
466 		 * in wake_q_add() so as not to miss wakeups.
467 		 */
468 		wake_up_process(task);
469 		put_task_struct(task);
470 	}
471 }
472 
473 /*
474  * resched_curr - mark rq's current task 'to be rescheduled now'.
475  *
476  * On UP this means the setting of the need_resched flag, on SMP it
477  * might also involve a cross-CPU call to trigger the scheduler on
478  * the target CPU.
479  */
480 void resched_curr(struct rq *rq)
481 {
482 	struct task_struct *curr = rq->curr;
483 	int cpu;
484 
485 	lockdep_assert_held(&rq->lock);
486 
487 	if (test_tsk_need_resched(curr))
488 		return;
489 
490 	cpu = cpu_of(rq);
491 
492 	if (cpu == smp_processor_id()) {
493 		set_tsk_need_resched(curr);
494 		set_preempt_need_resched();
495 		return;
496 	}
497 
498 	if (set_nr_and_not_polling(curr))
499 		smp_send_reschedule(cpu);
500 	else
501 		trace_sched_wake_idle_without_ipi(cpu);
502 }
503 
504 void resched_cpu(int cpu)
505 {
506 	struct rq *rq = cpu_rq(cpu);
507 	unsigned long flags;
508 
509 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
510 		return;
511 	resched_curr(rq);
512 	raw_spin_unlock_irqrestore(&rq->lock, flags);
513 }
514 
515 #ifdef CONFIG_SMP
516 #ifdef CONFIG_NO_HZ_COMMON
517 /*
518  * In the semi idle case, use the nearest busy cpu for migrating timers
519  * from an idle cpu.  This is good for power-savings.
520  *
521  * We don't do similar optimization for completely idle system, as
522  * selecting an idle cpu will add more delays to the timers than intended
523  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
524  */
525 int get_nohz_timer_target(void)
526 {
527 	int i, cpu = smp_processor_id();
528 	struct sched_domain *sd;
529 
530 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
531 		return cpu;
532 
533 	rcu_read_lock();
534 	for_each_domain(cpu, sd) {
535 		for_each_cpu(i, sched_domain_span(sd)) {
536 			if (cpu == i)
537 				continue;
538 
539 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
540 				cpu = i;
541 				goto unlock;
542 			}
543 		}
544 	}
545 
546 	if (!is_housekeeping_cpu(cpu))
547 		cpu = housekeeping_any_cpu();
548 unlock:
549 	rcu_read_unlock();
550 	return cpu;
551 }
552 /*
553  * When add_timer_on() enqueues a timer into the timer wheel of an
554  * idle CPU then this timer might expire before the next timer event
555  * which is scheduled to wake up that CPU. In case of a completely
556  * idle system the next event might even be infinite time into the
557  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558  * leaves the inner idle loop so the newly added timer is taken into
559  * account when the CPU goes back to idle and evaluates the timer
560  * wheel for the next timer event.
561  */
562 static void wake_up_idle_cpu(int cpu)
563 {
564 	struct rq *rq = cpu_rq(cpu);
565 
566 	if (cpu == smp_processor_id())
567 		return;
568 
569 	if (set_nr_and_not_polling(rq->idle))
570 		smp_send_reschedule(cpu);
571 	else
572 		trace_sched_wake_idle_without_ipi(cpu);
573 }
574 
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577 	/*
578 	 * We just need the target to call irq_exit() and re-evaluate
579 	 * the next tick. The nohz full kick at least implies that.
580 	 * If needed we can still optimize that later with an
581 	 * empty IRQ.
582 	 */
583 	if (tick_nohz_full_cpu(cpu)) {
584 		if (cpu != smp_processor_id() ||
585 		    tick_nohz_tick_stopped())
586 			tick_nohz_full_kick_cpu(cpu);
587 		return true;
588 	}
589 
590 	return false;
591 }
592 
593 void wake_up_nohz_cpu(int cpu)
594 {
595 	if (!wake_up_full_nohz_cpu(cpu))
596 		wake_up_idle_cpu(cpu);
597 }
598 
599 static inline bool got_nohz_idle_kick(void)
600 {
601 	int cpu = smp_processor_id();
602 
603 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
604 		return false;
605 
606 	if (idle_cpu(cpu) && !need_resched())
607 		return true;
608 
609 	/*
610 	 * We can't run Idle Load Balance on this CPU for this time so we
611 	 * cancel it and clear NOHZ_BALANCE_KICK
612 	 */
613 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
614 	return false;
615 }
616 
617 #else /* CONFIG_NO_HZ_COMMON */
618 
619 static inline bool got_nohz_idle_kick(void)
620 {
621 	return false;
622 }
623 
624 #endif /* CONFIG_NO_HZ_COMMON */
625 
626 #ifdef CONFIG_NO_HZ_FULL
627 bool sched_can_stop_tick(struct rq *rq)
628 {
629 	int fifo_nr_running;
630 
631 	/* Deadline tasks, even if single, need the tick */
632 	if (rq->dl.dl_nr_running)
633 		return false;
634 
635 	/*
636 	 * If there are more than one RR tasks, we need the tick to effect the
637 	 * actual RR behaviour.
638 	 */
639 	if (rq->rt.rr_nr_running) {
640 		if (rq->rt.rr_nr_running == 1)
641 			return true;
642 		else
643 			return false;
644 	}
645 
646 	/*
647 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
648 	 * forced preemption between FIFO tasks.
649 	 */
650 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
651 	if (fifo_nr_running)
652 		return true;
653 
654 	/*
655 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
656 	 * if there's more than one we need the tick for involuntary
657 	 * preemption.
658 	 */
659 	if (rq->nr_running > 1)
660 		return false;
661 
662 	return true;
663 }
664 #endif /* CONFIG_NO_HZ_FULL */
665 
666 void sched_avg_update(struct rq *rq)
667 {
668 	s64 period = sched_avg_period();
669 
670 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
671 		/*
672 		 * Inline assembly required to prevent the compiler
673 		 * optimising this loop into a divmod call.
674 		 * See __iter_div_u64_rem() for another example of this.
675 		 */
676 		asm("" : "+rm" (rq->age_stamp));
677 		rq->age_stamp += period;
678 		rq->rt_avg /= 2;
679 	}
680 }
681 
682 #endif /* CONFIG_SMP */
683 
684 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
685 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
686 /*
687  * Iterate task_group tree rooted at *from, calling @down when first entering a
688  * node and @up when leaving it for the final time.
689  *
690  * Caller must hold rcu_lock or sufficient equivalent.
691  */
692 int walk_tg_tree_from(struct task_group *from,
693 			     tg_visitor down, tg_visitor up, void *data)
694 {
695 	struct task_group *parent, *child;
696 	int ret;
697 
698 	parent = from;
699 
700 down:
701 	ret = (*down)(parent, data);
702 	if (ret)
703 		goto out;
704 	list_for_each_entry_rcu(child, &parent->children, siblings) {
705 		parent = child;
706 		goto down;
707 
708 up:
709 		continue;
710 	}
711 	ret = (*up)(parent, data);
712 	if (ret || parent == from)
713 		goto out;
714 
715 	child = parent;
716 	parent = parent->parent;
717 	if (parent)
718 		goto up;
719 out:
720 	return ret;
721 }
722 
723 int tg_nop(struct task_group *tg, void *data)
724 {
725 	return 0;
726 }
727 #endif
728 
729 static void set_load_weight(struct task_struct *p)
730 {
731 	int prio = p->static_prio - MAX_RT_PRIO;
732 	struct load_weight *load = &p->se.load;
733 
734 	/*
735 	 * SCHED_IDLE tasks get minimal weight:
736 	 */
737 	if (idle_policy(p->policy)) {
738 		load->weight = scale_load(WEIGHT_IDLEPRIO);
739 		load->inv_weight = WMULT_IDLEPRIO;
740 		return;
741 	}
742 
743 	load->weight = scale_load(sched_prio_to_weight[prio]);
744 	load->inv_weight = sched_prio_to_wmult[prio];
745 }
746 
747 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
748 {
749 	update_rq_clock(rq);
750 	if (!(flags & ENQUEUE_RESTORE))
751 		sched_info_queued(rq, p);
752 	p->sched_class->enqueue_task(rq, p, flags);
753 }
754 
755 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 	update_rq_clock(rq);
758 	if (!(flags & DEQUEUE_SAVE))
759 		sched_info_dequeued(rq, p);
760 	p->sched_class->dequeue_task(rq, p, flags);
761 }
762 
763 void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 	if (task_contributes_to_load(p))
766 		rq->nr_uninterruptible--;
767 
768 	enqueue_task(rq, p, flags);
769 }
770 
771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 	if (task_contributes_to_load(p))
774 		rq->nr_uninterruptible++;
775 
776 	dequeue_task(rq, p, flags);
777 }
778 
779 static void update_rq_clock_task(struct rq *rq, s64 delta)
780 {
781 /*
782  * In theory, the compile should just see 0 here, and optimize out the call
783  * to sched_rt_avg_update. But I don't trust it...
784  */
785 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
786 	s64 steal = 0, irq_delta = 0;
787 #endif
788 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
789 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
790 
791 	/*
792 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
793 	 * this case when a previous update_rq_clock() happened inside a
794 	 * {soft,}irq region.
795 	 *
796 	 * When this happens, we stop ->clock_task and only update the
797 	 * prev_irq_time stamp to account for the part that fit, so that a next
798 	 * update will consume the rest. This ensures ->clock_task is
799 	 * monotonic.
800 	 *
801 	 * It does however cause some slight miss-attribution of {soft,}irq
802 	 * time, a more accurate solution would be to update the irq_time using
803 	 * the current rq->clock timestamp, except that would require using
804 	 * atomic ops.
805 	 */
806 	if (irq_delta > delta)
807 		irq_delta = delta;
808 
809 	rq->prev_irq_time += irq_delta;
810 	delta -= irq_delta;
811 #endif
812 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
813 	if (static_key_false((&paravirt_steal_rq_enabled))) {
814 		steal = paravirt_steal_clock(cpu_of(rq));
815 		steal -= rq->prev_steal_time_rq;
816 
817 		if (unlikely(steal > delta))
818 			steal = delta;
819 
820 		rq->prev_steal_time_rq += steal;
821 		delta -= steal;
822 	}
823 #endif
824 
825 	rq->clock_task += delta;
826 
827 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
828 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
829 		sched_rt_avg_update(rq, irq_delta + steal);
830 #endif
831 }
832 
833 void sched_set_stop_task(int cpu, struct task_struct *stop)
834 {
835 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
836 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
837 
838 	if (stop) {
839 		/*
840 		 * Make it appear like a SCHED_FIFO task, its something
841 		 * userspace knows about and won't get confused about.
842 		 *
843 		 * Also, it will make PI more or less work without too
844 		 * much confusion -- but then, stop work should not
845 		 * rely on PI working anyway.
846 		 */
847 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
848 
849 		stop->sched_class = &stop_sched_class;
850 	}
851 
852 	cpu_rq(cpu)->stop = stop;
853 
854 	if (old_stop) {
855 		/*
856 		 * Reset it back to a normal scheduling class so that
857 		 * it can die in pieces.
858 		 */
859 		old_stop->sched_class = &rt_sched_class;
860 	}
861 }
862 
863 /*
864  * __normal_prio - return the priority that is based on the static prio
865  */
866 static inline int __normal_prio(struct task_struct *p)
867 {
868 	return p->static_prio;
869 }
870 
871 /*
872  * Calculate the expected normal priority: i.e. priority
873  * without taking RT-inheritance into account. Might be
874  * boosted by interactivity modifiers. Changes upon fork,
875  * setprio syscalls, and whenever the interactivity
876  * estimator recalculates.
877  */
878 static inline int normal_prio(struct task_struct *p)
879 {
880 	int prio;
881 
882 	if (task_has_dl_policy(p))
883 		prio = MAX_DL_PRIO-1;
884 	else if (task_has_rt_policy(p))
885 		prio = MAX_RT_PRIO-1 - p->rt_priority;
886 	else
887 		prio = __normal_prio(p);
888 	return prio;
889 }
890 
891 /*
892  * Calculate the current priority, i.e. the priority
893  * taken into account by the scheduler. This value might
894  * be boosted by RT tasks, or might be boosted by
895  * interactivity modifiers. Will be RT if the task got
896  * RT-boosted. If not then it returns p->normal_prio.
897  */
898 static int effective_prio(struct task_struct *p)
899 {
900 	p->normal_prio = normal_prio(p);
901 	/*
902 	 * If we are RT tasks or we were boosted to RT priority,
903 	 * keep the priority unchanged. Otherwise, update priority
904 	 * to the normal priority:
905 	 */
906 	if (!rt_prio(p->prio))
907 		return p->normal_prio;
908 	return p->prio;
909 }
910 
911 /**
912  * task_curr - is this task currently executing on a CPU?
913  * @p: the task in question.
914  *
915  * Return: 1 if the task is currently executing. 0 otherwise.
916  */
917 inline int task_curr(const struct task_struct *p)
918 {
919 	return cpu_curr(task_cpu(p)) == p;
920 }
921 
922 /*
923  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
924  * use the balance_callback list if you want balancing.
925  *
926  * this means any call to check_class_changed() must be followed by a call to
927  * balance_callback().
928  */
929 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
930 				       const struct sched_class *prev_class,
931 				       int oldprio)
932 {
933 	if (prev_class != p->sched_class) {
934 		if (prev_class->switched_from)
935 			prev_class->switched_from(rq, p);
936 
937 		p->sched_class->switched_to(rq, p);
938 	} else if (oldprio != p->prio || dl_task(p))
939 		p->sched_class->prio_changed(rq, p, oldprio);
940 }
941 
942 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
943 {
944 	const struct sched_class *class;
945 
946 	if (p->sched_class == rq->curr->sched_class) {
947 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
948 	} else {
949 		for_each_class(class) {
950 			if (class == rq->curr->sched_class)
951 				break;
952 			if (class == p->sched_class) {
953 				resched_curr(rq);
954 				break;
955 			}
956 		}
957 	}
958 
959 	/*
960 	 * A queue event has occurred, and we're going to schedule.  In
961 	 * this case, we can save a useless back to back clock update.
962 	 */
963 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
964 		rq_clock_skip_update(rq, true);
965 }
966 
967 #ifdef CONFIG_SMP
968 /*
969  * This is how migration works:
970  *
971  * 1) we invoke migration_cpu_stop() on the target CPU using
972  *    stop_one_cpu().
973  * 2) stopper starts to run (implicitly forcing the migrated thread
974  *    off the CPU)
975  * 3) it checks whether the migrated task is still in the wrong runqueue.
976  * 4) if it's in the wrong runqueue then the migration thread removes
977  *    it and puts it into the right queue.
978  * 5) stopper completes and stop_one_cpu() returns and the migration
979  *    is done.
980  */
981 
982 /*
983  * move_queued_task - move a queued task to new rq.
984  *
985  * Returns (locked) new rq. Old rq's lock is released.
986  */
987 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
988 {
989 	lockdep_assert_held(&rq->lock);
990 
991 	p->on_rq = TASK_ON_RQ_MIGRATING;
992 	dequeue_task(rq, p, 0);
993 	set_task_cpu(p, new_cpu);
994 	raw_spin_unlock(&rq->lock);
995 
996 	rq = cpu_rq(new_cpu);
997 
998 	raw_spin_lock(&rq->lock);
999 	BUG_ON(task_cpu(p) != new_cpu);
1000 	enqueue_task(rq, p, 0);
1001 	p->on_rq = TASK_ON_RQ_QUEUED;
1002 	check_preempt_curr(rq, p, 0);
1003 
1004 	return rq;
1005 }
1006 
1007 struct migration_arg {
1008 	struct task_struct *task;
1009 	int dest_cpu;
1010 };
1011 
1012 /*
1013  * Move (not current) task off this cpu, onto dest cpu. We're doing
1014  * this because either it can't run here any more (set_cpus_allowed()
1015  * away from this CPU, or CPU going down), or because we're
1016  * attempting to rebalance this task on exec (sched_exec).
1017  *
1018  * So we race with normal scheduler movements, but that's OK, as long
1019  * as the task is no longer on this CPU.
1020  */
1021 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1022 {
1023 	if (unlikely(!cpu_active(dest_cpu)))
1024 		return rq;
1025 
1026 	/* Affinity changed (again). */
1027 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1028 		return rq;
1029 
1030 	rq = move_queued_task(rq, p, dest_cpu);
1031 
1032 	return rq;
1033 }
1034 
1035 /*
1036  * migration_cpu_stop - this will be executed by a highprio stopper thread
1037  * and performs thread migration by bumping thread off CPU then
1038  * 'pushing' onto another runqueue.
1039  */
1040 static int migration_cpu_stop(void *data)
1041 {
1042 	struct migration_arg *arg = data;
1043 	struct task_struct *p = arg->task;
1044 	struct rq *rq = this_rq();
1045 
1046 	/*
1047 	 * The original target cpu might have gone down and we might
1048 	 * be on another cpu but it doesn't matter.
1049 	 */
1050 	local_irq_disable();
1051 	/*
1052 	 * We need to explicitly wake pending tasks before running
1053 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1054 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1055 	 */
1056 	sched_ttwu_pending();
1057 
1058 	raw_spin_lock(&p->pi_lock);
1059 	raw_spin_lock(&rq->lock);
1060 	/*
1061 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1062 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1063 	 * we're holding p->pi_lock.
1064 	 */
1065 	if (task_rq(p) == rq && task_on_rq_queued(p))
1066 		rq = __migrate_task(rq, p, arg->dest_cpu);
1067 	raw_spin_unlock(&rq->lock);
1068 	raw_spin_unlock(&p->pi_lock);
1069 
1070 	local_irq_enable();
1071 	return 0;
1072 }
1073 
1074 /*
1075  * sched_class::set_cpus_allowed must do the below, but is not required to
1076  * actually call this function.
1077  */
1078 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1079 {
1080 	cpumask_copy(&p->cpus_allowed, new_mask);
1081 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1082 }
1083 
1084 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1085 {
1086 	struct rq *rq = task_rq(p);
1087 	bool queued, running;
1088 
1089 	lockdep_assert_held(&p->pi_lock);
1090 
1091 	queued = task_on_rq_queued(p);
1092 	running = task_current(rq, p);
1093 
1094 	if (queued) {
1095 		/*
1096 		 * Because __kthread_bind() calls this on blocked tasks without
1097 		 * holding rq->lock.
1098 		 */
1099 		lockdep_assert_held(&rq->lock);
1100 		dequeue_task(rq, p, DEQUEUE_SAVE);
1101 	}
1102 	if (running)
1103 		put_prev_task(rq, p);
1104 
1105 	p->sched_class->set_cpus_allowed(p, new_mask);
1106 
1107 	if (running)
1108 		p->sched_class->set_curr_task(rq);
1109 	if (queued)
1110 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1111 }
1112 
1113 /*
1114  * Change a given task's CPU affinity. Migrate the thread to a
1115  * proper CPU and schedule it away if the CPU it's executing on
1116  * is removed from the allowed bitmask.
1117  *
1118  * NOTE: the caller must have a valid reference to the task, the
1119  * task must not exit() & deallocate itself prematurely. The
1120  * call is not atomic; no spinlocks may be held.
1121  */
1122 static int __set_cpus_allowed_ptr(struct task_struct *p,
1123 				  const struct cpumask *new_mask, bool check)
1124 {
1125 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1126 	unsigned int dest_cpu;
1127 	struct rq_flags rf;
1128 	struct rq *rq;
1129 	int ret = 0;
1130 
1131 	rq = task_rq_lock(p, &rf);
1132 
1133 	if (p->flags & PF_KTHREAD) {
1134 		/*
1135 		 * Kernel threads are allowed on online && !active CPUs
1136 		 */
1137 		cpu_valid_mask = cpu_online_mask;
1138 	}
1139 
1140 	/*
1141 	 * Must re-check here, to close a race against __kthread_bind(),
1142 	 * sched_setaffinity() is not guaranteed to observe the flag.
1143 	 */
1144 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1145 		ret = -EINVAL;
1146 		goto out;
1147 	}
1148 
1149 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1150 		goto out;
1151 
1152 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1153 		ret = -EINVAL;
1154 		goto out;
1155 	}
1156 
1157 	do_set_cpus_allowed(p, new_mask);
1158 
1159 	if (p->flags & PF_KTHREAD) {
1160 		/*
1161 		 * For kernel threads that do indeed end up on online &&
1162 		 * !active we want to ensure they are strict per-cpu threads.
1163 		 */
1164 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1165 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1166 			p->nr_cpus_allowed != 1);
1167 	}
1168 
1169 	/* Can the task run on the task's current CPU? If so, we're done */
1170 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1171 		goto out;
1172 
1173 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1174 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1175 		struct migration_arg arg = { p, dest_cpu };
1176 		/* Need help from migration thread: drop lock and wait. */
1177 		task_rq_unlock(rq, p, &rf);
1178 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1179 		tlb_migrate_finish(p->mm);
1180 		return 0;
1181 	} else if (task_on_rq_queued(p)) {
1182 		/*
1183 		 * OK, since we're going to drop the lock immediately
1184 		 * afterwards anyway.
1185 		 */
1186 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1187 		rq = move_queued_task(rq, p, dest_cpu);
1188 		lockdep_repin_lock(&rq->lock, rf.cookie);
1189 	}
1190 out:
1191 	task_rq_unlock(rq, p, &rf);
1192 
1193 	return ret;
1194 }
1195 
1196 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1197 {
1198 	return __set_cpus_allowed_ptr(p, new_mask, false);
1199 }
1200 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1201 
1202 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1203 {
1204 #ifdef CONFIG_SCHED_DEBUG
1205 	/*
1206 	 * We should never call set_task_cpu() on a blocked task,
1207 	 * ttwu() will sort out the placement.
1208 	 */
1209 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1210 			!p->on_rq);
1211 
1212 	/*
1213 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1214 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1215 	 * time relying on p->on_rq.
1216 	 */
1217 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1218 		     p->sched_class == &fair_sched_class &&
1219 		     (p->on_rq && !task_on_rq_migrating(p)));
1220 
1221 #ifdef CONFIG_LOCKDEP
1222 	/*
1223 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1224 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1225 	 *
1226 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1227 	 * see task_group().
1228 	 *
1229 	 * Furthermore, all task_rq users should acquire both locks, see
1230 	 * task_rq_lock().
1231 	 */
1232 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1233 				      lockdep_is_held(&task_rq(p)->lock)));
1234 #endif
1235 #endif
1236 
1237 	trace_sched_migrate_task(p, new_cpu);
1238 
1239 	if (task_cpu(p) != new_cpu) {
1240 		if (p->sched_class->migrate_task_rq)
1241 			p->sched_class->migrate_task_rq(p);
1242 		p->se.nr_migrations++;
1243 		perf_event_task_migrate(p);
1244 	}
1245 
1246 	__set_task_cpu(p, new_cpu);
1247 }
1248 
1249 static void __migrate_swap_task(struct task_struct *p, int cpu)
1250 {
1251 	if (task_on_rq_queued(p)) {
1252 		struct rq *src_rq, *dst_rq;
1253 
1254 		src_rq = task_rq(p);
1255 		dst_rq = cpu_rq(cpu);
1256 
1257 		p->on_rq = TASK_ON_RQ_MIGRATING;
1258 		deactivate_task(src_rq, p, 0);
1259 		set_task_cpu(p, cpu);
1260 		activate_task(dst_rq, p, 0);
1261 		p->on_rq = TASK_ON_RQ_QUEUED;
1262 		check_preempt_curr(dst_rq, p, 0);
1263 	} else {
1264 		/*
1265 		 * Task isn't running anymore; make it appear like we migrated
1266 		 * it before it went to sleep. This means on wakeup we make the
1267 		 * previous cpu our targer instead of where it really is.
1268 		 */
1269 		p->wake_cpu = cpu;
1270 	}
1271 }
1272 
1273 struct migration_swap_arg {
1274 	struct task_struct *src_task, *dst_task;
1275 	int src_cpu, dst_cpu;
1276 };
1277 
1278 static int migrate_swap_stop(void *data)
1279 {
1280 	struct migration_swap_arg *arg = data;
1281 	struct rq *src_rq, *dst_rq;
1282 	int ret = -EAGAIN;
1283 
1284 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1285 		return -EAGAIN;
1286 
1287 	src_rq = cpu_rq(arg->src_cpu);
1288 	dst_rq = cpu_rq(arg->dst_cpu);
1289 
1290 	double_raw_lock(&arg->src_task->pi_lock,
1291 			&arg->dst_task->pi_lock);
1292 	double_rq_lock(src_rq, dst_rq);
1293 
1294 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1295 		goto unlock;
1296 
1297 	if (task_cpu(arg->src_task) != arg->src_cpu)
1298 		goto unlock;
1299 
1300 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1301 		goto unlock;
1302 
1303 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1304 		goto unlock;
1305 
1306 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1307 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1308 
1309 	ret = 0;
1310 
1311 unlock:
1312 	double_rq_unlock(src_rq, dst_rq);
1313 	raw_spin_unlock(&arg->dst_task->pi_lock);
1314 	raw_spin_unlock(&arg->src_task->pi_lock);
1315 
1316 	return ret;
1317 }
1318 
1319 /*
1320  * Cross migrate two tasks
1321  */
1322 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1323 {
1324 	struct migration_swap_arg arg;
1325 	int ret = -EINVAL;
1326 
1327 	arg = (struct migration_swap_arg){
1328 		.src_task = cur,
1329 		.src_cpu = task_cpu(cur),
1330 		.dst_task = p,
1331 		.dst_cpu = task_cpu(p),
1332 	};
1333 
1334 	if (arg.src_cpu == arg.dst_cpu)
1335 		goto out;
1336 
1337 	/*
1338 	 * These three tests are all lockless; this is OK since all of them
1339 	 * will be re-checked with proper locks held further down the line.
1340 	 */
1341 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1342 		goto out;
1343 
1344 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1345 		goto out;
1346 
1347 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1348 		goto out;
1349 
1350 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1351 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1352 
1353 out:
1354 	return ret;
1355 }
1356 
1357 /*
1358  * wait_task_inactive - wait for a thread to unschedule.
1359  *
1360  * If @match_state is nonzero, it's the @p->state value just checked and
1361  * not expected to change.  If it changes, i.e. @p might have woken up,
1362  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1363  * we return a positive number (its total switch count).  If a second call
1364  * a short while later returns the same number, the caller can be sure that
1365  * @p has remained unscheduled the whole time.
1366  *
1367  * The caller must ensure that the task *will* unschedule sometime soon,
1368  * else this function might spin for a *long* time. This function can't
1369  * be called with interrupts off, or it may introduce deadlock with
1370  * smp_call_function() if an IPI is sent by the same process we are
1371  * waiting to become inactive.
1372  */
1373 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1374 {
1375 	int running, queued;
1376 	struct rq_flags rf;
1377 	unsigned long ncsw;
1378 	struct rq *rq;
1379 
1380 	for (;;) {
1381 		/*
1382 		 * We do the initial early heuristics without holding
1383 		 * any task-queue locks at all. We'll only try to get
1384 		 * the runqueue lock when things look like they will
1385 		 * work out!
1386 		 */
1387 		rq = task_rq(p);
1388 
1389 		/*
1390 		 * If the task is actively running on another CPU
1391 		 * still, just relax and busy-wait without holding
1392 		 * any locks.
1393 		 *
1394 		 * NOTE! Since we don't hold any locks, it's not
1395 		 * even sure that "rq" stays as the right runqueue!
1396 		 * But we don't care, since "task_running()" will
1397 		 * return false if the runqueue has changed and p
1398 		 * is actually now running somewhere else!
1399 		 */
1400 		while (task_running(rq, p)) {
1401 			if (match_state && unlikely(p->state != match_state))
1402 				return 0;
1403 			cpu_relax();
1404 		}
1405 
1406 		/*
1407 		 * Ok, time to look more closely! We need the rq
1408 		 * lock now, to be *sure*. If we're wrong, we'll
1409 		 * just go back and repeat.
1410 		 */
1411 		rq = task_rq_lock(p, &rf);
1412 		trace_sched_wait_task(p);
1413 		running = task_running(rq, p);
1414 		queued = task_on_rq_queued(p);
1415 		ncsw = 0;
1416 		if (!match_state || p->state == match_state)
1417 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1418 		task_rq_unlock(rq, p, &rf);
1419 
1420 		/*
1421 		 * If it changed from the expected state, bail out now.
1422 		 */
1423 		if (unlikely(!ncsw))
1424 			break;
1425 
1426 		/*
1427 		 * Was it really running after all now that we
1428 		 * checked with the proper locks actually held?
1429 		 *
1430 		 * Oops. Go back and try again..
1431 		 */
1432 		if (unlikely(running)) {
1433 			cpu_relax();
1434 			continue;
1435 		}
1436 
1437 		/*
1438 		 * It's not enough that it's not actively running,
1439 		 * it must be off the runqueue _entirely_, and not
1440 		 * preempted!
1441 		 *
1442 		 * So if it was still runnable (but just not actively
1443 		 * running right now), it's preempted, and we should
1444 		 * yield - it could be a while.
1445 		 */
1446 		if (unlikely(queued)) {
1447 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1448 
1449 			set_current_state(TASK_UNINTERRUPTIBLE);
1450 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1451 			continue;
1452 		}
1453 
1454 		/*
1455 		 * Ahh, all good. It wasn't running, and it wasn't
1456 		 * runnable, which means that it will never become
1457 		 * running in the future either. We're all done!
1458 		 */
1459 		break;
1460 	}
1461 
1462 	return ncsw;
1463 }
1464 
1465 /***
1466  * kick_process - kick a running thread to enter/exit the kernel
1467  * @p: the to-be-kicked thread
1468  *
1469  * Cause a process which is running on another CPU to enter
1470  * kernel-mode, without any delay. (to get signals handled.)
1471  *
1472  * NOTE: this function doesn't have to take the runqueue lock,
1473  * because all it wants to ensure is that the remote task enters
1474  * the kernel. If the IPI races and the task has been migrated
1475  * to another CPU then no harm is done and the purpose has been
1476  * achieved as well.
1477  */
1478 void kick_process(struct task_struct *p)
1479 {
1480 	int cpu;
1481 
1482 	preempt_disable();
1483 	cpu = task_cpu(p);
1484 	if ((cpu != smp_processor_id()) && task_curr(p))
1485 		smp_send_reschedule(cpu);
1486 	preempt_enable();
1487 }
1488 EXPORT_SYMBOL_GPL(kick_process);
1489 
1490 /*
1491  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1492  *
1493  * A few notes on cpu_active vs cpu_online:
1494  *
1495  *  - cpu_active must be a subset of cpu_online
1496  *
1497  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1498  *    see __set_cpus_allowed_ptr(). At this point the newly online
1499  *    cpu isn't yet part of the sched domains, and balancing will not
1500  *    see it.
1501  *
1502  *  - on cpu-down we clear cpu_active() to mask the sched domains and
1503  *    avoid the load balancer to place new tasks on the to be removed
1504  *    cpu. Existing tasks will remain running there and will be taken
1505  *    off.
1506  *
1507  * This means that fallback selection must not select !active CPUs.
1508  * And can assume that any active CPU must be online. Conversely
1509  * select_task_rq() below may allow selection of !active CPUs in order
1510  * to satisfy the above rules.
1511  */
1512 static int select_fallback_rq(int cpu, struct task_struct *p)
1513 {
1514 	int nid = cpu_to_node(cpu);
1515 	const struct cpumask *nodemask = NULL;
1516 	enum { cpuset, possible, fail } state = cpuset;
1517 	int dest_cpu;
1518 
1519 	/*
1520 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1521 	 * will return -1. There is no cpu on the node, and we should
1522 	 * select the cpu on the other node.
1523 	 */
1524 	if (nid != -1) {
1525 		nodemask = cpumask_of_node(nid);
1526 
1527 		/* Look for allowed, online CPU in same node. */
1528 		for_each_cpu(dest_cpu, nodemask) {
1529 			if (!cpu_active(dest_cpu))
1530 				continue;
1531 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1532 				return dest_cpu;
1533 		}
1534 	}
1535 
1536 	for (;;) {
1537 		/* Any allowed, online CPU? */
1538 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1539 			if (!cpu_active(dest_cpu))
1540 				continue;
1541 			goto out;
1542 		}
1543 
1544 		/* No more Mr. Nice Guy. */
1545 		switch (state) {
1546 		case cpuset:
1547 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1548 				cpuset_cpus_allowed_fallback(p);
1549 				state = possible;
1550 				break;
1551 			}
1552 			/* fall-through */
1553 		case possible:
1554 			do_set_cpus_allowed(p, cpu_possible_mask);
1555 			state = fail;
1556 			break;
1557 
1558 		case fail:
1559 			BUG();
1560 			break;
1561 		}
1562 	}
1563 
1564 out:
1565 	if (state != cpuset) {
1566 		/*
1567 		 * Don't tell them about moving exiting tasks or
1568 		 * kernel threads (both mm NULL), since they never
1569 		 * leave kernel.
1570 		 */
1571 		if (p->mm && printk_ratelimit()) {
1572 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1573 					task_pid_nr(p), p->comm, cpu);
1574 		}
1575 	}
1576 
1577 	return dest_cpu;
1578 }
1579 
1580 /*
1581  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1582  */
1583 static inline
1584 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1585 {
1586 	lockdep_assert_held(&p->pi_lock);
1587 
1588 	if (tsk_nr_cpus_allowed(p) > 1)
1589 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1590 	else
1591 		cpu = cpumask_any(tsk_cpus_allowed(p));
1592 
1593 	/*
1594 	 * In order not to call set_task_cpu() on a blocking task we need
1595 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1596 	 * cpu.
1597 	 *
1598 	 * Since this is common to all placement strategies, this lives here.
1599 	 *
1600 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1601 	 *   not worry about this generic constraint ]
1602 	 */
1603 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1604 		     !cpu_online(cpu)))
1605 		cpu = select_fallback_rq(task_cpu(p), p);
1606 
1607 	return cpu;
1608 }
1609 
1610 static void update_avg(u64 *avg, u64 sample)
1611 {
1612 	s64 diff = sample - *avg;
1613 	*avg += diff >> 3;
1614 }
1615 
1616 #else
1617 
1618 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1619 					 const struct cpumask *new_mask, bool check)
1620 {
1621 	return set_cpus_allowed_ptr(p, new_mask);
1622 }
1623 
1624 #endif /* CONFIG_SMP */
1625 
1626 static void
1627 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1628 {
1629 #ifdef CONFIG_SCHEDSTATS
1630 	struct rq *rq = this_rq();
1631 
1632 #ifdef CONFIG_SMP
1633 	int this_cpu = smp_processor_id();
1634 
1635 	if (cpu == this_cpu) {
1636 		schedstat_inc(rq, ttwu_local);
1637 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1638 	} else {
1639 		struct sched_domain *sd;
1640 
1641 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1642 		rcu_read_lock();
1643 		for_each_domain(this_cpu, sd) {
1644 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1645 				schedstat_inc(sd, ttwu_wake_remote);
1646 				break;
1647 			}
1648 		}
1649 		rcu_read_unlock();
1650 	}
1651 
1652 	if (wake_flags & WF_MIGRATED)
1653 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1654 
1655 #endif /* CONFIG_SMP */
1656 
1657 	schedstat_inc(rq, ttwu_count);
1658 	schedstat_inc(p, se.statistics.nr_wakeups);
1659 
1660 	if (wake_flags & WF_SYNC)
1661 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1662 
1663 #endif /* CONFIG_SCHEDSTATS */
1664 }
1665 
1666 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1667 {
1668 	activate_task(rq, p, en_flags);
1669 	p->on_rq = TASK_ON_RQ_QUEUED;
1670 
1671 	/* if a worker is waking up, notify workqueue */
1672 	if (p->flags & PF_WQ_WORKER)
1673 		wq_worker_waking_up(p, cpu_of(rq));
1674 }
1675 
1676 /*
1677  * Mark the task runnable and perform wakeup-preemption.
1678  */
1679 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1680 			   struct pin_cookie cookie)
1681 {
1682 	check_preempt_curr(rq, p, wake_flags);
1683 	p->state = TASK_RUNNING;
1684 	trace_sched_wakeup(p);
1685 
1686 #ifdef CONFIG_SMP
1687 	if (p->sched_class->task_woken) {
1688 		/*
1689 		 * Our task @p is fully woken up and running; so its safe to
1690 		 * drop the rq->lock, hereafter rq is only used for statistics.
1691 		 */
1692 		lockdep_unpin_lock(&rq->lock, cookie);
1693 		p->sched_class->task_woken(rq, p);
1694 		lockdep_repin_lock(&rq->lock, cookie);
1695 	}
1696 
1697 	if (rq->idle_stamp) {
1698 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1699 		u64 max = 2*rq->max_idle_balance_cost;
1700 
1701 		update_avg(&rq->avg_idle, delta);
1702 
1703 		if (rq->avg_idle > max)
1704 			rq->avg_idle = max;
1705 
1706 		rq->idle_stamp = 0;
1707 	}
1708 #endif
1709 }
1710 
1711 static void
1712 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1713 		 struct pin_cookie cookie)
1714 {
1715 	int en_flags = ENQUEUE_WAKEUP;
1716 
1717 	lockdep_assert_held(&rq->lock);
1718 
1719 #ifdef CONFIG_SMP
1720 	if (p->sched_contributes_to_load)
1721 		rq->nr_uninterruptible--;
1722 
1723 	if (wake_flags & WF_MIGRATED)
1724 		en_flags |= ENQUEUE_MIGRATED;
1725 #endif
1726 
1727 	ttwu_activate(rq, p, en_flags);
1728 	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1729 }
1730 
1731 /*
1732  * Called in case the task @p isn't fully descheduled from its runqueue,
1733  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1734  * since all we need to do is flip p->state to TASK_RUNNING, since
1735  * the task is still ->on_rq.
1736  */
1737 static int ttwu_remote(struct task_struct *p, int wake_flags)
1738 {
1739 	struct rq_flags rf;
1740 	struct rq *rq;
1741 	int ret = 0;
1742 
1743 	rq = __task_rq_lock(p, &rf);
1744 	if (task_on_rq_queued(p)) {
1745 		/* check_preempt_curr() may use rq clock */
1746 		update_rq_clock(rq);
1747 		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1748 		ret = 1;
1749 	}
1750 	__task_rq_unlock(rq, &rf);
1751 
1752 	return ret;
1753 }
1754 
1755 #ifdef CONFIG_SMP
1756 void sched_ttwu_pending(void)
1757 {
1758 	struct rq *rq = this_rq();
1759 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1760 	struct pin_cookie cookie;
1761 	struct task_struct *p;
1762 	unsigned long flags;
1763 
1764 	if (!llist)
1765 		return;
1766 
1767 	raw_spin_lock_irqsave(&rq->lock, flags);
1768 	cookie = lockdep_pin_lock(&rq->lock);
1769 
1770 	while (llist) {
1771 		p = llist_entry(llist, struct task_struct, wake_entry);
1772 		llist = llist_next(llist);
1773 		/*
1774 		 * See ttwu_queue(); we only call ttwu_queue_remote() when
1775 		 * its a x-cpu wakeup.
1776 		 */
1777 		ttwu_do_activate(rq, p, WF_MIGRATED, cookie);
1778 	}
1779 
1780 	lockdep_unpin_lock(&rq->lock, cookie);
1781 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1782 }
1783 
1784 void scheduler_ipi(void)
1785 {
1786 	/*
1787 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1788 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1789 	 * this IPI.
1790 	 */
1791 	preempt_fold_need_resched();
1792 
1793 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1794 		return;
1795 
1796 	/*
1797 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1798 	 * traditionally all their work was done from the interrupt return
1799 	 * path. Now that we actually do some work, we need to make sure
1800 	 * we do call them.
1801 	 *
1802 	 * Some archs already do call them, luckily irq_enter/exit nest
1803 	 * properly.
1804 	 *
1805 	 * Arguably we should visit all archs and update all handlers,
1806 	 * however a fair share of IPIs are still resched only so this would
1807 	 * somewhat pessimize the simple resched case.
1808 	 */
1809 	irq_enter();
1810 	sched_ttwu_pending();
1811 
1812 	/*
1813 	 * Check if someone kicked us for doing the nohz idle load balance.
1814 	 */
1815 	if (unlikely(got_nohz_idle_kick())) {
1816 		this_rq()->idle_balance = 1;
1817 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1818 	}
1819 	irq_exit();
1820 }
1821 
1822 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1823 {
1824 	struct rq *rq = cpu_rq(cpu);
1825 
1826 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1827 		if (!set_nr_if_polling(rq->idle))
1828 			smp_send_reschedule(cpu);
1829 		else
1830 			trace_sched_wake_idle_without_ipi(cpu);
1831 	}
1832 }
1833 
1834 void wake_up_if_idle(int cpu)
1835 {
1836 	struct rq *rq = cpu_rq(cpu);
1837 	unsigned long flags;
1838 
1839 	rcu_read_lock();
1840 
1841 	if (!is_idle_task(rcu_dereference(rq->curr)))
1842 		goto out;
1843 
1844 	if (set_nr_if_polling(rq->idle)) {
1845 		trace_sched_wake_idle_without_ipi(cpu);
1846 	} else {
1847 		raw_spin_lock_irqsave(&rq->lock, flags);
1848 		if (is_idle_task(rq->curr))
1849 			smp_send_reschedule(cpu);
1850 		/* Else cpu is not in idle, do nothing here */
1851 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1852 	}
1853 
1854 out:
1855 	rcu_read_unlock();
1856 }
1857 
1858 bool cpus_share_cache(int this_cpu, int that_cpu)
1859 {
1860 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1861 }
1862 #endif /* CONFIG_SMP */
1863 
1864 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1865 {
1866 	struct rq *rq = cpu_rq(cpu);
1867 	struct pin_cookie cookie;
1868 
1869 #if defined(CONFIG_SMP)
1870 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1871 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1872 		ttwu_queue_remote(p, cpu);
1873 		return;
1874 	}
1875 #endif
1876 
1877 	raw_spin_lock(&rq->lock);
1878 	cookie = lockdep_pin_lock(&rq->lock);
1879 	ttwu_do_activate(rq, p, wake_flags, cookie);
1880 	lockdep_unpin_lock(&rq->lock, cookie);
1881 	raw_spin_unlock(&rq->lock);
1882 }
1883 
1884 /*
1885  * Notes on Program-Order guarantees on SMP systems.
1886  *
1887  *  MIGRATION
1888  *
1889  * The basic program-order guarantee on SMP systems is that when a task [t]
1890  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1891  * execution on its new cpu [c1].
1892  *
1893  * For migration (of runnable tasks) this is provided by the following means:
1894  *
1895  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1896  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1897  *     rq(c1)->lock (if not at the same time, then in that order).
1898  *  C) LOCK of the rq(c1)->lock scheduling in task
1899  *
1900  * Transitivity guarantees that B happens after A and C after B.
1901  * Note: we only require RCpc transitivity.
1902  * Note: the cpu doing B need not be c0 or c1
1903  *
1904  * Example:
1905  *
1906  *   CPU0            CPU1            CPU2
1907  *
1908  *   LOCK rq(0)->lock
1909  *   sched-out X
1910  *   sched-in Y
1911  *   UNLOCK rq(0)->lock
1912  *
1913  *                                   LOCK rq(0)->lock // orders against CPU0
1914  *                                   dequeue X
1915  *                                   UNLOCK rq(0)->lock
1916  *
1917  *                                   LOCK rq(1)->lock
1918  *                                   enqueue X
1919  *                                   UNLOCK rq(1)->lock
1920  *
1921  *                   LOCK rq(1)->lock // orders against CPU2
1922  *                   sched-out Z
1923  *                   sched-in X
1924  *                   UNLOCK rq(1)->lock
1925  *
1926  *
1927  *  BLOCKING -- aka. SLEEP + WAKEUP
1928  *
1929  * For blocking we (obviously) need to provide the same guarantee as for
1930  * migration. However the means are completely different as there is no lock
1931  * chain to provide order. Instead we do:
1932  *
1933  *   1) smp_store_release(X->on_cpu, 0)
1934  *   2) smp_cond_acquire(!X->on_cpu)
1935  *
1936  * Example:
1937  *
1938  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1939  *
1940  *   LOCK rq(0)->lock LOCK X->pi_lock
1941  *   dequeue X
1942  *   sched-out X
1943  *   smp_store_release(X->on_cpu, 0);
1944  *
1945  *                    smp_cond_acquire(!X->on_cpu);
1946  *                    X->state = WAKING
1947  *                    set_task_cpu(X,2)
1948  *
1949  *                    LOCK rq(2)->lock
1950  *                    enqueue X
1951  *                    X->state = RUNNING
1952  *                    UNLOCK rq(2)->lock
1953  *
1954  *                                          LOCK rq(2)->lock // orders against CPU1
1955  *                                          sched-out Z
1956  *                                          sched-in X
1957  *                                          UNLOCK rq(2)->lock
1958  *
1959  *                    UNLOCK X->pi_lock
1960  *   UNLOCK rq(0)->lock
1961  *
1962  *
1963  * However; for wakeups there is a second guarantee we must provide, namely we
1964  * must observe the state that lead to our wakeup. That is, not only must our
1965  * task observe its own prior state, it must also observe the stores prior to
1966  * its wakeup.
1967  *
1968  * This means that any means of doing remote wakeups must order the CPU doing
1969  * the wakeup against the CPU the task is going to end up running on. This,
1970  * however, is already required for the regular Program-Order guarantee above,
1971  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1972  *
1973  */
1974 
1975 /**
1976  * try_to_wake_up - wake up a thread
1977  * @p: the thread to be awakened
1978  * @state: the mask of task states that can be woken
1979  * @wake_flags: wake modifier flags (WF_*)
1980  *
1981  * Put it on the run-queue if it's not already there. The "current"
1982  * thread is always on the run-queue (except when the actual
1983  * re-schedule is in progress), and as such you're allowed to do
1984  * the simpler "current->state = TASK_RUNNING" to mark yourself
1985  * runnable without the overhead of this.
1986  *
1987  * Return: %true if @p was woken up, %false if it was already running.
1988  * or @state didn't match @p's state.
1989  */
1990 static int
1991 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1992 {
1993 	unsigned long flags;
1994 	int cpu, success = 0;
1995 
1996 	/*
1997 	 * If we are going to wake up a thread waiting for CONDITION we
1998 	 * need to ensure that CONDITION=1 done by the caller can not be
1999 	 * reordered with p->state check below. This pairs with mb() in
2000 	 * set_current_state() the waiting thread does.
2001 	 */
2002 	smp_mb__before_spinlock();
2003 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2004 	if (!(p->state & state))
2005 		goto out;
2006 
2007 	trace_sched_waking(p);
2008 
2009 	success = 1; /* we're going to change ->state */
2010 	cpu = task_cpu(p);
2011 
2012 	if (p->on_rq && ttwu_remote(p, wake_flags))
2013 		goto stat;
2014 
2015 #ifdef CONFIG_SMP
2016 	/*
2017 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2018 	 * possible to, falsely, observe p->on_cpu == 0.
2019 	 *
2020 	 * One must be running (->on_cpu == 1) in order to remove oneself
2021 	 * from the runqueue.
2022 	 *
2023 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2024 	 *      UNLOCK rq->lock
2025 	 *			RMB
2026 	 *      LOCK   rq->lock
2027 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2028 	 *
2029 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2030 	 * from the consecutive calls to schedule(); the first switching to our
2031 	 * task, the second putting it to sleep.
2032 	 */
2033 	smp_rmb();
2034 
2035 	/*
2036 	 * If the owning (remote) cpu is still in the middle of schedule() with
2037 	 * this task as prev, wait until its done referencing the task.
2038 	 *
2039 	 * Pairs with the smp_store_release() in finish_lock_switch().
2040 	 *
2041 	 * This ensures that tasks getting woken will be fully ordered against
2042 	 * their previous state and preserve Program Order.
2043 	 */
2044 	smp_cond_acquire(!p->on_cpu);
2045 
2046 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2047 	p->state = TASK_WAKING;
2048 
2049 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2050 	if (task_cpu(p) != cpu) {
2051 		wake_flags |= WF_MIGRATED;
2052 		set_task_cpu(p, cpu);
2053 	}
2054 #endif /* CONFIG_SMP */
2055 
2056 	ttwu_queue(p, cpu, wake_flags);
2057 stat:
2058 	if (schedstat_enabled())
2059 		ttwu_stat(p, cpu, wake_flags);
2060 out:
2061 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2062 
2063 	return success;
2064 }
2065 
2066 /**
2067  * try_to_wake_up_local - try to wake up a local task with rq lock held
2068  * @p: the thread to be awakened
2069  *
2070  * Put @p on the run-queue if it's not already there. The caller must
2071  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2072  * the current task.
2073  */
2074 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2075 {
2076 	struct rq *rq = task_rq(p);
2077 
2078 	if (WARN_ON_ONCE(rq != this_rq()) ||
2079 	    WARN_ON_ONCE(p == current))
2080 		return;
2081 
2082 	lockdep_assert_held(&rq->lock);
2083 
2084 	if (!raw_spin_trylock(&p->pi_lock)) {
2085 		/*
2086 		 * This is OK, because current is on_cpu, which avoids it being
2087 		 * picked for load-balance and preemption/IRQs are still
2088 		 * disabled avoiding further scheduler activity on it and we've
2089 		 * not yet picked a replacement task.
2090 		 */
2091 		lockdep_unpin_lock(&rq->lock, cookie);
2092 		raw_spin_unlock(&rq->lock);
2093 		raw_spin_lock(&p->pi_lock);
2094 		raw_spin_lock(&rq->lock);
2095 		lockdep_repin_lock(&rq->lock, cookie);
2096 	}
2097 
2098 	if (!(p->state & TASK_NORMAL))
2099 		goto out;
2100 
2101 	trace_sched_waking(p);
2102 
2103 	if (!task_on_rq_queued(p))
2104 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2105 
2106 	ttwu_do_wakeup(rq, p, 0, cookie);
2107 	if (schedstat_enabled())
2108 		ttwu_stat(p, smp_processor_id(), 0);
2109 out:
2110 	raw_spin_unlock(&p->pi_lock);
2111 }
2112 
2113 /**
2114  * wake_up_process - Wake up a specific process
2115  * @p: The process to be woken up.
2116  *
2117  * Attempt to wake up the nominated process and move it to the set of runnable
2118  * processes.
2119  *
2120  * Return: 1 if the process was woken up, 0 if it was already running.
2121  *
2122  * It may be assumed that this function implies a write memory barrier before
2123  * changing the task state if and only if any tasks are woken up.
2124  */
2125 int wake_up_process(struct task_struct *p)
2126 {
2127 	return try_to_wake_up(p, TASK_NORMAL, 0);
2128 }
2129 EXPORT_SYMBOL(wake_up_process);
2130 
2131 int wake_up_state(struct task_struct *p, unsigned int state)
2132 {
2133 	return try_to_wake_up(p, state, 0);
2134 }
2135 
2136 /*
2137  * This function clears the sched_dl_entity static params.
2138  */
2139 void __dl_clear_params(struct task_struct *p)
2140 {
2141 	struct sched_dl_entity *dl_se = &p->dl;
2142 
2143 	dl_se->dl_runtime = 0;
2144 	dl_se->dl_deadline = 0;
2145 	dl_se->dl_period = 0;
2146 	dl_se->flags = 0;
2147 	dl_se->dl_bw = 0;
2148 
2149 	dl_se->dl_throttled = 0;
2150 	dl_se->dl_yielded = 0;
2151 }
2152 
2153 /*
2154  * Perform scheduler related setup for a newly forked process p.
2155  * p is forked by current.
2156  *
2157  * __sched_fork() is basic setup used by init_idle() too:
2158  */
2159 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2160 {
2161 	p->on_rq			= 0;
2162 
2163 	p->se.on_rq			= 0;
2164 	p->se.exec_start		= 0;
2165 	p->se.sum_exec_runtime		= 0;
2166 	p->se.prev_sum_exec_runtime	= 0;
2167 	p->se.nr_migrations		= 0;
2168 	p->se.vruntime			= 0;
2169 	INIT_LIST_HEAD(&p->se.group_node);
2170 
2171 #ifdef CONFIG_FAIR_GROUP_SCHED
2172 	p->se.cfs_rq			= NULL;
2173 #endif
2174 
2175 #ifdef CONFIG_SCHEDSTATS
2176 	/* Even if schedstat is disabled, there should not be garbage */
2177 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2178 #endif
2179 
2180 	RB_CLEAR_NODE(&p->dl.rb_node);
2181 	init_dl_task_timer(&p->dl);
2182 	__dl_clear_params(p);
2183 
2184 	INIT_LIST_HEAD(&p->rt.run_list);
2185 	p->rt.timeout		= 0;
2186 	p->rt.time_slice	= sched_rr_timeslice;
2187 	p->rt.on_rq		= 0;
2188 	p->rt.on_list		= 0;
2189 
2190 #ifdef CONFIG_PREEMPT_NOTIFIERS
2191 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2192 #endif
2193 
2194 #ifdef CONFIG_NUMA_BALANCING
2195 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2196 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2197 		p->mm->numa_scan_seq = 0;
2198 	}
2199 
2200 	if (clone_flags & CLONE_VM)
2201 		p->numa_preferred_nid = current->numa_preferred_nid;
2202 	else
2203 		p->numa_preferred_nid = -1;
2204 
2205 	p->node_stamp = 0ULL;
2206 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2207 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2208 	p->numa_work.next = &p->numa_work;
2209 	p->numa_faults = NULL;
2210 	p->last_task_numa_placement = 0;
2211 	p->last_sum_exec_runtime = 0;
2212 
2213 	p->numa_group = NULL;
2214 #endif /* CONFIG_NUMA_BALANCING */
2215 }
2216 
2217 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2218 
2219 #ifdef CONFIG_NUMA_BALANCING
2220 
2221 void set_numabalancing_state(bool enabled)
2222 {
2223 	if (enabled)
2224 		static_branch_enable(&sched_numa_balancing);
2225 	else
2226 		static_branch_disable(&sched_numa_balancing);
2227 }
2228 
2229 #ifdef CONFIG_PROC_SYSCTL
2230 int sysctl_numa_balancing(struct ctl_table *table, int write,
2231 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2232 {
2233 	struct ctl_table t;
2234 	int err;
2235 	int state = static_branch_likely(&sched_numa_balancing);
2236 
2237 	if (write && !capable(CAP_SYS_ADMIN))
2238 		return -EPERM;
2239 
2240 	t = *table;
2241 	t.data = &state;
2242 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2243 	if (err < 0)
2244 		return err;
2245 	if (write)
2246 		set_numabalancing_state(state);
2247 	return err;
2248 }
2249 #endif
2250 #endif
2251 
2252 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2253 
2254 #ifdef CONFIG_SCHEDSTATS
2255 static void set_schedstats(bool enabled)
2256 {
2257 	if (enabled)
2258 		static_branch_enable(&sched_schedstats);
2259 	else
2260 		static_branch_disable(&sched_schedstats);
2261 }
2262 
2263 void force_schedstat_enabled(void)
2264 {
2265 	if (!schedstat_enabled()) {
2266 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2267 		static_branch_enable(&sched_schedstats);
2268 	}
2269 }
2270 
2271 static int __init setup_schedstats(char *str)
2272 {
2273 	int ret = 0;
2274 	if (!str)
2275 		goto out;
2276 
2277 	if (!strcmp(str, "enable")) {
2278 		set_schedstats(true);
2279 		ret = 1;
2280 	} else if (!strcmp(str, "disable")) {
2281 		set_schedstats(false);
2282 		ret = 1;
2283 	}
2284 out:
2285 	if (!ret)
2286 		pr_warn("Unable to parse schedstats=\n");
2287 
2288 	return ret;
2289 }
2290 __setup("schedstats=", setup_schedstats);
2291 
2292 #ifdef CONFIG_PROC_SYSCTL
2293 int sysctl_schedstats(struct ctl_table *table, int write,
2294 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2295 {
2296 	struct ctl_table t;
2297 	int err;
2298 	int state = static_branch_likely(&sched_schedstats);
2299 
2300 	if (write && !capable(CAP_SYS_ADMIN))
2301 		return -EPERM;
2302 
2303 	t = *table;
2304 	t.data = &state;
2305 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2306 	if (err < 0)
2307 		return err;
2308 	if (write)
2309 		set_schedstats(state);
2310 	return err;
2311 }
2312 #endif
2313 #endif
2314 
2315 /*
2316  * fork()/clone()-time setup:
2317  */
2318 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2319 {
2320 	unsigned long flags;
2321 	int cpu = get_cpu();
2322 
2323 	__sched_fork(clone_flags, p);
2324 	/*
2325 	 * We mark the process as running here. This guarantees that
2326 	 * nobody will actually run it, and a signal or other external
2327 	 * event cannot wake it up and insert it on the runqueue either.
2328 	 */
2329 	p->state = TASK_RUNNING;
2330 
2331 	/*
2332 	 * Make sure we do not leak PI boosting priority to the child.
2333 	 */
2334 	p->prio = current->normal_prio;
2335 
2336 	/*
2337 	 * Revert to default priority/policy on fork if requested.
2338 	 */
2339 	if (unlikely(p->sched_reset_on_fork)) {
2340 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2341 			p->policy = SCHED_NORMAL;
2342 			p->static_prio = NICE_TO_PRIO(0);
2343 			p->rt_priority = 0;
2344 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2345 			p->static_prio = NICE_TO_PRIO(0);
2346 
2347 		p->prio = p->normal_prio = __normal_prio(p);
2348 		set_load_weight(p);
2349 
2350 		/*
2351 		 * We don't need the reset flag anymore after the fork. It has
2352 		 * fulfilled its duty:
2353 		 */
2354 		p->sched_reset_on_fork = 0;
2355 	}
2356 
2357 	if (dl_prio(p->prio)) {
2358 		put_cpu();
2359 		return -EAGAIN;
2360 	} else if (rt_prio(p->prio)) {
2361 		p->sched_class = &rt_sched_class;
2362 	} else {
2363 		p->sched_class = &fair_sched_class;
2364 	}
2365 
2366 	if (p->sched_class->task_fork)
2367 		p->sched_class->task_fork(p);
2368 
2369 	/*
2370 	 * The child is not yet in the pid-hash so no cgroup attach races,
2371 	 * and the cgroup is pinned to this child due to cgroup_fork()
2372 	 * is ran before sched_fork().
2373 	 *
2374 	 * Silence PROVE_RCU.
2375 	 */
2376 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2377 	set_task_cpu(p, cpu);
2378 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2379 
2380 #ifdef CONFIG_SCHED_INFO
2381 	if (likely(sched_info_on()))
2382 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2383 #endif
2384 #if defined(CONFIG_SMP)
2385 	p->on_cpu = 0;
2386 #endif
2387 	init_task_preempt_count(p);
2388 #ifdef CONFIG_SMP
2389 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2390 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2391 #endif
2392 
2393 	put_cpu();
2394 	return 0;
2395 }
2396 
2397 unsigned long to_ratio(u64 period, u64 runtime)
2398 {
2399 	if (runtime == RUNTIME_INF)
2400 		return 1ULL << 20;
2401 
2402 	/*
2403 	 * Doing this here saves a lot of checks in all
2404 	 * the calling paths, and returning zero seems
2405 	 * safe for them anyway.
2406 	 */
2407 	if (period == 0)
2408 		return 0;
2409 
2410 	return div64_u64(runtime << 20, period);
2411 }
2412 
2413 #ifdef CONFIG_SMP
2414 inline struct dl_bw *dl_bw_of(int i)
2415 {
2416 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2417 			 "sched RCU must be held");
2418 	return &cpu_rq(i)->rd->dl_bw;
2419 }
2420 
2421 static inline int dl_bw_cpus(int i)
2422 {
2423 	struct root_domain *rd = cpu_rq(i)->rd;
2424 	int cpus = 0;
2425 
2426 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2427 			 "sched RCU must be held");
2428 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2429 		cpus++;
2430 
2431 	return cpus;
2432 }
2433 #else
2434 inline struct dl_bw *dl_bw_of(int i)
2435 {
2436 	return &cpu_rq(i)->dl.dl_bw;
2437 }
2438 
2439 static inline int dl_bw_cpus(int i)
2440 {
2441 	return 1;
2442 }
2443 #endif
2444 
2445 /*
2446  * We must be sure that accepting a new task (or allowing changing the
2447  * parameters of an existing one) is consistent with the bandwidth
2448  * constraints. If yes, this function also accordingly updates the currently
2449  * allocated bandwidth to reflect the new situation.
2450  *
2451  * This function is called while holding p's rq->lock.
2452  *
2453  * XXX we should delay bw change until the task's 0-lag point, see
2454  * __setparam_dl().
2455  */
2456 static int dl_overflow(struct task_struct *p, int policy,
2457 		       const struct sched_attr *attr)
2458 {
2459 
2460 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2461 	u64 period = attr->sched_period ?: attr->sched_deadline;
2462 	u64 runtime = attr->sched_runtime;
2463 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2464 	int cpus, err = -1;
2465 
2466 	/* !deadline task may carry old deadline bandwidth */
2467 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2468 		return 0;
2469 
2470 	/*
2471 	 * Either if a task, enters, leave, or stays -deadline but changes
2472 	 * its parameters, we may need to update accordingly the total
2473 	 * allocated bandwidth of the container.
2474 	 */
2475 	raw_spin_lock(&dl_b->lock);
2476 	cpus = dl_bw_cpus(task_cpu(p));
2477 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2478 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2479 		__dl_add(dl_b, new_bw);
2480 		err = 0;
2481 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2482 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2483 		__dl_clear(dl_b, p->dl.dl_bw);
2484 		__dl_add(dl_b, new_bw);
2485 		err = 0;
2486 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2487 		__dl_clear(dl_b, p->dl.dl_bw);
2488 		err = 0;
2489 	}
2490 	raw_spin_unlock(&dl_b->lock);
2491 
2492 	return err;
2493 }
2494 
2495 extern void init_dl_bw(struct dl_bw *dl_b);
2496 
2497 /*
2498  * wake_up_new_task - wake up a newly created task for the first time.
2499  *
2500  * This function will do some initial scheduler statistics housekeeping
2501  * that must be done for every newly created context, then puts the task
2502  * on the runqueue and wakes it.
2503  */
2504 void wake_up_new_task(struct task_struct *p)
2505 {
2506 	struct rq_flags rf;
2507 	struct rq *rq;
2508 
2509 	/* Initialize new task's runnable average */
2510 	init_entity_runnable_average(&p->se);
2511 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2512 #ifdef CONFIG_SMP
2513 	/*
2514 	 * Fork balancing, do it here and not earlier because:
2515 	 *  - cpus_allowed can change in the fork path
2516 	 *  - any previously selected cpu might disappear through hotplug
2517 	 */
2518 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2519 #endif
2520 	/* Post initialize new task's util average when its cfs_rq is set */
2521 	post_init_entity_util_avg(&p->se);
2522 
2523 	rq = __task_rq_lock(p, &rf);
2524 	activate_task(rq, p, 0);
2525 	p->on_rq = TASK_ON_RQ_QUEUED;
2526 	trace_sched_wakeup_new(p);
2527 	check_preempt_curr(rq, p, WF_FORK);
2528 #ifdef CONFIG_SMP
2529 	if (p->sched_class->task_woken) {
2530 		/*
2531 		 * Nothing relies on rq->lock after this, so its fine to
2532 		 * drop it.
2533 		 */
2534 		lockdep_unpin_lock(&rq->lock, rf.cookie);
2535 		p->sched_class->task_woken(rq, p);
2536 		lockdep_repin_lock(&rq->lock, rf.cookie);
2537 	}
2538 #endif
2539 	task_rq_unlock(rq, p, &rf);
2540 }
2541 
2542 #ifdef CONFIG_PREEMPT_NOTIFIERS
2543 
2544 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2545 
2546 void preempt_notifier_inc(void)
2547 {
2548 	static_key_slow_inc(&preempt_notifier_key);
2549 }
2550 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2551 
2552 void preempt_notifier_dec(void)
2553 {
2554 	static_key_slow_dec(&preempt_notifier_key);
2555 }
2556 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2557 
2558 /**
2559  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2560  * @notifier: notifier struct to register
2561  */
2562 void preempt_notifier_register(struct preempt_notifier *notifier)
2563 {
2564 	if (!static_key_false(&preempt_notifier_key))
2565 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2566 
2567 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2568 }
2569 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2570 
2571 /**
2572  * preempt_notifier_unregister - no longer interested in preemption notifications
2573  * @notifier: notifier struct to unregister
2574  *
2575  * This is *not* safe to call from within a preemption notifier.
2576  */
2577 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2578 {
2579 	hlist_del(&notifier->link);
2580 }
2581 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2582 
2583 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2584 {
2585 	struct preempt_notifier *notifier;
2586 
2587 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2588 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2589 }
2590 
2591 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2592 {
2593 	if (static_key_false(&preempt_notifier_key))
2594 		__fire_sched_in_preempt_notifiers(curr);
2595 }
2596 
2597 static void
2598 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2599 				   struct task_struct *next)
2600 {
2601 	struct preempt_notifier *notifier;
2602 
2603 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2604 		notifier->ops->sched_out(notifier, next);
2605 }
2606 
2607 static __always_inline void
2608 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2609 				 struct task_struct *next)
2610 {
2611 	if (static_key_false(&preempt_notifier_key))
2612 		__fire_sched_out_preempt_notifiers(curr, next);
2613 }
2614 
2615 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2616 
2617 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2618 {
2619 }
2620 
2621 static inline void
2622 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2623 				 struct task_struct *next)
2624 {
2625 }
2626 
2627 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2628 
2629 /**
2630  * prepare_task_switch - prepare to switch tasks
2631  * @rq: the runqueue preparing to switch
2632  * @prev: the current task that is being switched out
2633  * @next: the task we are going to switch to.
2634  *
2635  * This is called with the rq lock held and interrupts off. It must
2636  * be paired with a subsequent finish_task_switch after the context
2637  * switch.
2638  *
2639  * prepare_task_switch sets up locking and calls architecture specific
2640  * hooks.
2641  */
2642 static inline void
2643 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2644 		    struct task_struct *next)
2645 {
2646 	sched_info_switch(rq, prev, next);
2647 	perf_event_task_sched_out(prev, next);
2648 	fire_sched_out_preempt_notifiers(prev, next);
2649 	prepare_lock_switch(rq, next);
2650 	prepare_arch_switch(next);
2651 }
2652 
2653 /**
2654  * finish_task_switch - clean up after a task-switch
2655  * @prev: the thread we just switched away from.
2656  *
2657  * finish_task_switch must be called after the context switch, paired
2658  * with a prepare_task_switch call before the context switch.
2659  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2660  * and do any other architecture-specific cleanup actions.
2661  *
2662  * Note that we may have delayed dropping an mm in context_switch(). If
2663  * so, we finish that here outside of the runqueue lock. (Doing it
2664  * with the lock held can cause deadlocks; see schedule() for
2665  * details.)
2666  *
2667  * The context switch have flipped the stack from under us and restored the
2668  * local variables which were saved when this task called schedule() in the
2669  * past. prev == current is still correct but we need to recalculate this_rq
2670  * because prev may have moved to another CPU.
2671  */
2672 static struct rq *finish_task_switch(struct task_struct *prev)
2673 	__releases(rq->lock)
2674 {
2675 	struct rq *rq = this_rq();
2676 	struct mm_struct *mm = rq->prev_mm;
2677 	long prev_state;
2678 
2679 	/*
2680 	 * The previous task will have left us with a preempt_count of 2
2681 	 * because it left us after:
2682 	 *
2683 	 *	schedule()
2684 	 *	  preempt_disable();			// 1
2685 	 *	  __schedule()
2686 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2687 	 *
2688 	 * Also, see FORK_PREEMPT_COUNT.
2689 	 */
2690 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2691 		      "corrupted preempt_count: %s/%d/0x%x\n",
2692 		      current->comm, current->pid, preempt_count()))
2693 		preempt_count_set(FORK_PREEMPT_COUNT);
2694 
2695 	rq->prev_mm = NULL;
2696 
2697 	/*
2698 	 * A task struct has one reference for the use as "current".
2699 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2700 	 * schedule one last time. The schedule call will never return, and
2701 	 * the scheduled task must drop that reference.
2702 	 *
2703 	 * We must observe prev->state before clearing prev->on_cpu (in
2704 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2705 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2706 	 * transition, resulting in a double drop.
2707 	 */
2708 	prev_state = prev->state;
2709 	vtime_task_switch(prev);
2710 	perf_event_task_sched_in(prev, current);
2711 	finish_lock_switch(rq, prev);
2712 	finish_arch_post_lock_switch();
2713 
2714 	fire_sched_in_preempt_notifiers(current);
2715 	if (mm)
2716 		mmdrop(mm);
2717 	if (unlikely(prev_state == TASK_DEAD)) {
2718 		if (prev->sched_class->task_dead)
2719 			prev->sched_class->task_dead(prev);
2720 
2721 		/*
2722 		 * Remove function-return probe instances associated with this
2723 		 * task and put them back on the free list.
2724 		 */
2725 		kprobe_flush_task(prev);
2726 		put_task_struct(prev);
2727 	}
2728 
2729 	tick_nohz_task_switch();
2730 	return rq;
2731 }
2732 
2733 #ifdef CONFIG_SMP
2734 
2735 /* rq->lock is NOT held, but preemption is disabled */
2736 static void __balance_callback(struct rq *rq)
2737 {
2738 	struct callback_head *head, *next;
2739 	void (*func)(struct rq *rq);
2740 	unsigned long flags;
2741 
2742 	raw_spin_lock_irqsave(&rq->lock, flags);
2743 	head = rq->balance_callback;
2744 	rq->balance_callback = NULL;
2745 	while (head) {
2746 		func = (void (*)(struct rq *))head->func;
2747 		next = head->next;
2748 		head->next = NULL;
2749 		head = next;
2750 
2751 		func(rq);
2752 	}
2753 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2754 }
2755 
2756 static inline void balance_callback(struct rq *rq)
2757 {
2758 	if (unlikely(rq->balance_callback))
2759 		__balance_callback(rq);
2760 }
2761 
2762 #else
2763 
2764 static inline void balance_callback(struct rq *rq)
2765 {
2766 }
2767 
2768 #endif
2769 
2770 /**
2771  * schedule_tail - first thing a freshly forked thread must call.
2772  * @prev: the thread we just switched away from.
2773  */
2774 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2775 	__releases(rq->lock)
2776 {
2777 	struct rq *rq;
2778 
2779 	/*
2780 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2781 	 * finish_task_switch() for details.
2782 	 *
2783 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2784 	 * and the preempt_enable() will end up enabling preemption (on
2785 	 * PREEMPT_COUNT kernels).
2786 	 */
2787 
2788 	rq = finish_task_switch(prev);
2789 	balance_callback(rq);
2790 	preempt_enable();
2791 
2792 	if (current->set_child_tid)
2793 		put_user(task_pid_vnr(current), current->set_child_tid);
2794 }
2795 
2796 /*
2797  * context_switch - switch to the new MM and the new thread's register state.
2798  */
2799 static __always_inline struct rq *
2800 context_switch(struct rq *rq, struct task_struct *prev,
2801 	       struct task_struct *next, struct pin_cookie cookie)
2802 {
2803 	struct mm_struct *mm, *oldmm;
2804 
2805 	prepare_task_switch(rq, prev, next);
2806 
2807 	mm = next->mm;
2808 	oldmm = prev->active_mm;
2809 	/*
2810 	 * For paravirt, this is coupled with an exit in switch_to to
2811 	 * combine the page table reload and the switch backend into
2812 	 * one hypercall.
2813 	 */
2814 	arch_start_context_switch(prev);
2815 
2816 	if (!mm) {
2817 		next->active_mm = oldmm;
2818 		atomic_inc(&oldmm->mm_count);
2819 		enter_lazy_tlb(oldmm, next);
2820 	} else
2821 		switch_mm_irqs_off(oldmm, mm, next);
2822 
2823 	if (!prev->mm) {
2824 		prev->active_mm = NULL;
2825 		rq->prev_mm = oldmm;
2826 	}
2827 	/*
2828 	 * Since the runqueue lock will be released by the next
2829 	 * task (which is an invalid locking op but in the case
2830 	 * of the scheduler it's an obvious special-case), so we
2831 	 * do an early lockdep release here:
2832 	 */
2833 	lockdep_unpin_lock(&rq->lock, cookie);
2834 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2835 
2836 	/* Here we just switch the register state and the stack. */
2837 	switch_to(prev, next, prev);
2838 	barrier();
2839 
2840 	return finish_task_switch(prev);
2841 }
2842 
2843 /*
2844  * nr_running and nr_context_switches:
2845  *
2846  * externally visible scheduler statistics: current number of runnable
2847  * threads, total number of context switches performed since bootup.
2848  */
2849 unsigned long nr_running(void)
2850 {
2851 	unsigned long i, sum = 0;
2852 
2853 	for_each_online_cpu(i)
2854 		sum += cpu_rq(i)->nr_running;
2855 
2856 	return sum;
2857 }
2858 
2859 /*
2860  * Check if only the current task is running on the cpu.
2861  *
2862  * Caution: this function does not check that the caller has disabled
2863  * preemption, thus the result might have a time-of-check-to-time-of-use
2864  * race.  The caller is responsible to use it correctly, for example:
2865  *
2866  * - from a non-preemptable section (of course)
2867  *
2868  * - from a thread that is bound to a single CPU
2869  *
2870  * - in a loop with very short iterations (e.g. a polling loop)
2871  */
2872 bool single_task_running(void)
2873 {
2874 	return raw_rq()->nr_running == 1;
2875 }
2876 EXPORT_SYMBOL(single_task_running);
2877 
2878 unsigned long long nr_context_switches(void)
2879 {
2880 	int i;
2881 	unsigned long long sum = 0;
2882 
2883 	for_each_possible_cpu(i)
2884 		sum += cpu_rq(i)->nr_switches;
2885 
2886 	return sum;
2887 }
2888 
2889 unsigned long nr_iowait(void)
2890 {
2891 	unsigned long i, sum = 0;
2892 
2893 	for_each_possible_cpu(i)
2894 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2895 
2896 	return sum;
2897 }
2898 
2899 unsigned long nr_iowait_cpu(int cpu)
2900 {
2901 	struct rq *this = cpu_rq(cpu);
2902 	return atomic_read(&this->nr_iowait);
2903 }
2904 
2905 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2906 {
2907 	struct rq *rq = this_rq();
2908 	*nr_waiters = atomic_read(&rq->nr_iowait);
2909 	*load = rq->load.weight;
2910 }
2911 
2912 #ifdef CONFIG_SMP
2913 
2914 /*
2915  * sched_exec - execve() is a valuable balancing opportunity, because at
2916  * this point the task has the smallest effective memory and cache footprint.
2917  */
2918 void sched_exec(void)
2919 {
2920 	struct task_struct *p = current;
2921 	unsigned long flags;
2922 	int dest_cpu;
2923 
2924 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2925 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2926 	if (dest_cpu == smp_processor_id())
2927 		goto unlock;
2928 
2929 	if (likely(cpu_active(dest_cpu))) {
2930 		struct migration_arg arg = { p, dest_cpu };
2931 
2932 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2933 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2934 		return;
2935 	}
2936 unlock:
2937 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2938 }
2939 
2940 #endif
2941 
2942 DEFINE_PER_CPU(struct kernel_stat, kstat);
2943 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2944 
2945 EXPORT_PER_CPU_SYMBOL(kstat);
2946 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2947 
2948 /*
2949  * Return accounted runtime for the task.
2950  * In case the task is currently running, return the runtime plus current's
2951  * pending runtime that have not been accounted yet.
2952  */
2953 unsigned long long task_sched_runtime(struct task_struct *p)
2954 {
2955 	struct rq_flags rf;
2956 	struct rq *rq;
2957 	u64 ns;
2958 
2959 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2960 	/*
2961 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2962 	 * So we have a optimization chance when the task's delta_exec is 0.
2963 	 * Reading ->on_cpu is racy, but this is ok.
2964 	 *
2965 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2966 	 * If we race with it entering cpu, unaccounted time is 0. This is
2967 	 * indistinguishable from the read occurring a few cycles earlier.
2968 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2969 	 * been accounted, so we're correct here as well.
2970 	 */
2971 	if (!p->on_cpu || !task_on_rq_queued(p))
2972 		return p->se.sum_exec_runtime;
2973 #endif
2974 
2975 	rq = task_rq_lock(p, &rf);
2976 	/*
2977 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2978 	 * project cycles that may never be accounted to this
2979 	 * thread, breaking clock_gettime().
2980 	 */
2981 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2982 		update_rq_clock(rq);
2983 		p->sched_class->update_curr(rq);
2984 	}
2985 	ns = p->se.sum_exec_runtime;
2986 	task_rq_unlock(rq, p, &rf);
2987 
2988 	return ns;
2989 }
2990 
2991 /*
2992  * This function gets called by the timer code, with HZ frequency.
2993  * We call it with interrupts disabled.
2994  */
2995 void scheduler_tick(void)
2996 {
2997 	int cpu = smp_processor_id();
2998 	struct rq *rq = cpu_rq(cpu);
2999 	struct task_struct *curr = rq->curr;
3000 
3001 	sched_clock_tick();
3002 
3003 	raw_spin_lock(&rq->lock);
3004 	update_rq_clock(rq);
3005 	curr->sched_class->task_tick(rq, curr, 0);
3006 	cpu_load_update_active(rq);
3007 	calc_global_load_tick(rq);
3008 	raw_spin_unlock(&rq->lock);
3009 
3010 	perf_event_task_tick();
3011 
3012 #ifdef CONFIG_SMP
3013 	rq->idle_balance = idle_cpu(cpu);
3014 	trigger_load_balance(rq);
3015 #endif
3016 	rq_last_tick_reset(rq);
3017 }
3018 
3019 #ifdef CONFIG_NO_HZ_FULL
3020 /**
3021  * scheduler_tick_max_deferment
3022  *
3023  * Keep at least one tick per second when a single
3024  * active task is running because the scheduler doesn't
3025  * yet completely support full dynticks environment.
3026  *
3027  * This makes sure that uptime, CFS vruntime, load
3028  * balancing, etc... continue to move forward, even
3029  * with a very low granularity.
3030  *
3031  * Return: Maximum deferment in nanoseconds.
3032  */
3033 u64 scheduler_tick_max_deferment(void)
3034 {
3035 	struct rq *rq = this_rq();
3036 	unsigned long next, now = READ_ONCE(jiffies);
3037 
3038 	next = rq->last_sched_tick + HZ;
3039 
3040 	if (time_before_eq(next, now))
3041 		return 0;
3042 
3043 	return jiffies_to_nsecs(next - now);
3044 }
3045 #endif
3046 
3047 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3048 				defined(CONFIG_PREEMPT_TRACER))
3049 /*
3050  * If the value passed in is equal to the current preempt count
3051  * then we just disabled preemption. Start timing the latency.
3052  */
3053 static inline void preempt_latency_start(int val)
3054 {
3055 	if (preempt_count() == val) {
3056 		unsigned long ip = get_lock_parent_ip();
3057 #ifdef CONFIG_DEBUG_PREEMPT
3058 		current->preempt_disable_ip = ip;
3059 #endif
3060 		trace_preempt_off(CALLER_ADDR0, ip);
3061 	}
3062 }
3063 
3064 void preempt_count_add(int val)
3065 {
3066 #ifdef CONFIG_DEBUG_PREEMPT
3067 	/*
3068 	 * Underflow?
3069 	 */
3070 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3071 		return;
3072 #endif
3073 	__preempt_count_add(val);
3074 #ifdef CONFIG_DEBUG_PREEMPT
3075 	/*
3076 	 * Spinlock count overflowing soon?
3077 	 */
3078 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3079 				PREEMPT_MASK - 10);
3080 #endif
3081 	preempt_latency_start(val);
3082 }
3083 EXPORT_SYMBOL(preempt_count_add);
3084 NOKPROBE_SYMBOL(preempt_count_add);
3085 
3086 /*
3087  * If the value passed in equals to the current preempt count
3088  * then we just enabled preemption. Stop timing the latency.
3089  */
3090 static inline void preempt_latency_stop(int val)
3091 {
3092 	if (preempt_count() == val)
3093 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3094 }
3095 
3096 void preempt_count_sub(int val)
3097 {
3098 #ifdef CONFIG_DEBUG_PREEMPT
3099 	/*
3100 	 * Underflow?
3101 	 */
3102 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3103 		return;
3104 	/*
3105 	 * Is the spinlock portion underflowing?
3106 	 */
3107 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3108 			!(preempt_count() & PREEMPT_MASK)))
3109 		return;
3110 #endif
3111 
3112 	preempt_latency_stop(val);
3113 	__preempt_count_sub(val);
3114 }
3115 EXPORT_SYMBOL(preempt_count_sub);
3116 NOKPROBE_SYMBOL(preempt_count_sub);
3117 
3118 #else
3119 static inline void preempt_latency_start(int val) { }
3120 static inline void preempt_latency_stop(int val) { }
3121 #endif
3122 
3123 /*
3124  * Print scheduling while atomic bug:
3125  */
3126 static noinline void __schedule_bug(struct task_struct *prev)
3127 {
3128 	if (oops_in_progress)
3129 		return;
3130 
3131 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3132 		prev->comm, prev->pid, preempt_count());
3133 
3134 	debug_show_held_locks(prev);
3135 	print_modules();
3136 	if (irqs_disabled())
3137 		print_irqtrace_events(prev);
3138 #ifdef CONFIG_DEBUG_PREEMPT
3139 	if (in_atomic_preempt_off()) {
3140 		pr_err("Preemption disabled at:");
3141 		print_ip_sym(current->preempt_disable_ip);
3142 		pr_cont("\n");
3143 	}
3144 #endif
3145 	dump_stack();
3146 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3147 }
3148 
3149 /*
3150  * Various schedule()-time debugging checks and statistics:
3151  */
3152 static inline void schedule_debug(struct task_struct *prev)
3153 {
3154 #ifdef CONFIG_SCHED_STACK_END_CHECK
3155 	BUG_ON(task_stack_end_corrupted(prev));
3156 #endif
3157 
3158 	if (unlikely(in_atomic_preempt_off())) {
3159 		__schedule_bug(prev);
3160 		preempt_count_set(PREEMPT_DISABLED);
3161 	}
3162 	rcu_sleep_check();
3163 
3164 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3165 
3166 	schedstat_inc(this_rq(), sched_count);
3167 }
3168 
3169 /*
3170  * Pick up the highest-prio task:
3171  */
3172 static inline struct task_struct *
3173 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3174 {
3175 	const struct sched_class *class = &fair_sched_class;
3176 	struct task_struct *p;
3177 
3178 	/*
3179 	 * Optimization: we know that if all tasks are in
3180 	 * the fair class we can call that function directly:
3181 	 */
3182 	if (likely(prev->sched_class == class &&
3183 		   rq->nr_running == rq->cfs.h_nr_running)) {
3184 		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3185 		if (unlikely(p == RETRY_TASK))
3186 			goto again;
3187 
3188 		/* assumes fair_sched_class->next == idle_sched_class */
3189 		if (unlikely(!p))
3190 			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3191 
3192 		return p;
3193 	}
3194 
3195 again:
3196 	for_each_class(class) {
3197 		p = class->pick_next_task(rq, prev, cookie);
3198 		if (p) {
3199 			if (unlikely(p == RETRY_TASK))
3200 				goto again;
3201 			return p;
3202 		}
3203 	}
3204 
3205 	BUG(); /* the idle class will always have a runnable task */
3206 }
3207 
3208 /*
3209  * __schedule() is the main scheduler function.
3210  *
3211  * The main means of driving the scheduler and thus entering this function are:
3212  *
3213  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3214  *
3215  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3216  *      paths. For example, see arch/x86/entry_64.S.
3217  *
3218  *      To drive preemption between tasks, the scheduler sets the flag in timer
3219  *      interrupt handler scheduler_tick().
3220  *
3221  *   3. Wakeups don't really cause entry into schedule(). They add a
3222  *      task to the run-queue and that's it.
3223  *
3224  *      Now, if the new task added to the run-queue preempts the current
3225  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3226  *      called on the nearest possible occasion:
3227  *
3228  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3229  *
3230  *         - in syscall or exception context, at the next outmost
3231  *           preempt_enable(). (this might be as soon as the wake_up()'s
3232  *           spin_unlock()!)
3233  *
3234  *         - in IRQ context, return from interrupt-handler to
3235  *           preemptible context
3236  *
3237  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3238  *         then at the next:
3239  *
3240  *          - cond_resched() call
3241  *          - explicit schedule() call
3242  *          - return from syscall or exception to user-space
3243  *          - return from interrupt-handler to user-space
3244  *
3245  * WARNING: must be called with preemption disabled!
3246  */
3247 static void __sched notrace __schedule(bool preempt)
3248 {
3249 	struct task_struct *prev, *next;
3250 	unsigned long *switch_count;
3251 	struct pin_cookie cookie;
3252 	struct rq *rq;
3253 	int cpu;
3254 
3255 	cpu = smp_processor_id();
3256 	rq = cpu_rq(cpu);
3257 	prev = rq->curr;
3258 
3259 	/*
3260 	 * do_exit() calls schedule() with preemption disabled as an exception;
3261 	 * however we must fix that up, otherwise the next task will see an
3262 	 * inconsistent (higher) preempt count.
3263 	 *
3264 	 * It also avoids the below schedule_debug() test from complaining
3265 	 * about this.
3266 	 */
3267 	if (unlikely(prev->state == TASK_DEAD))
3268 		preempt_enable_no_resched_notrace();
3269 
3270 	schedule_debug(prev);
3271 
3272 	if (sched_feat(HRTICK))
3273 		hrtick_clear(rq);
3274 
3275 	local_irq_disable();
3276 	rcu_note_context_switch();
3277 
3278 	/*
3279 	 * Make sure that signal_pending_state()->signal_pending() below
3280 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3281 	 * done by the caller to avoid the race with signal_wake_up().
3282 	 */
3283 	smp_mb__before_spinlock();
3284 	raw_spin_lock(&rq->lock);
3285 	cookie = lockdep_pin_lock(&rq->lock);
3286 
3287 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3288 
3289 	switch_count = &prev->nivcsw;
3290 	if (!preempt && prev->state) {
3291 		if (unlikely(signal_pending_state(prev->state, prev))) {
3292 			prev->state = TASK_RUNNING;
3293 		} else {
3294 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3295 			prev->on_rq = 0;
3296 
3297 			/*
3298 			 * If a worker went to sleep, notify and ask workqueue
3299 			 * whether it wants to wake up a task to maintain
3300 			 * concurrency.
3301 			 */
3302 			if (prev->flags & PF_WQ_WORKER) {
3303 				struct task_struct *to_wakeup;
3304 
3305 				to_wakeup = wq_worker_sleeping(prev);
3306 				if (to_wakeup)
3307 					try_to_wake_up_local(to_wakeup, cookie);
3308 			}
3309 		}
3310 		switch_count = &prev->nvcsw;
3311 	}
3312 
3313 	if (task_on_rq_queued(prev))
3314 		update_rq_clock(rq);
3315 
3316 	next = pick_next_task(rq, prev, cookie);
3317 	clear_tsk_need_resched(prev);
3318 	clear_preempt_need_resched();
3319 	rq->clock_skip_update = 0;
3320 
3321 	if (likely(prev != next)) {
3322 		rq->nr_switches++;
3323 		rq->curr = next;
3324 		++*switch_count;
3325 
3326 		trace_sched_switch(preempt, prev, next);
3327 		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3328 	} else {
3329 		lockdep_unpin_lock(&rq->lock, cookie);
3330 		raw_spin_unlock_irq(&rq->lock);
3331 	}
3332 
3333 	balance_callback(rq);
3334 }
3335 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3336 
3337 static inline void sched_submit_work(struct task_struct *tsk)
3338 {
3339 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3340 		return;
3341 	/*
3342 	 * If we are going to sleep and we have plugged IO queued,
3343 	 * make sure to submit it to avoid deadlocks.
3344 	 */
3345 	if (blk_needs_flush_plug(tsk))
3346 		blk_schedule_flush_plug(tsk);
3347 }
3348 
3349 asmlinkage __visible void __sched schedule(void)
3350 {
3351 	struct task_struct *tsk = current;
3352 
3353 	sched_submit_work(tsk);
3354 	do {
3355 		preempt_disable();
3356 		__schedule(false);
3357 		sched_preempt_enable_no_resched();
3358 	} while (need_resched());
3359 }
3360 EXPORT_SYMBOL(schedule);
3361 
3362 #ifdef CONFIG_CONTEXT_TRACKING
3363 asmlinkage __visible void __sched schedule_user(void)
3364 {
3365 	/*
3366 	 * If we come here after a random call to set_need_resched(),
3367 	 * or we have been woken up remotely but the IPI has not yet arrived,
3368 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3369 	 * we find a better solution.
3370 	 *
3371 	 * NB: There are buggy callers of this function.  Ideally we
3372 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3373 	 * too frequently to make sense yet.
3374 	 */
3375 	enum ctx_state prev_state = exception_enter();
3376 	schedule();
3377 	exception_exit(prev_state);
3378 }
3379 #endif
3380 
3381 /**
3382  * schedule_preempt_disabled - called with preemption disabled
3383  *
3384  * Returns with preemption disabled. Note: preempt_count must be 1
3385  */
3386 void __sched schedule_preempt_disabled(void)
3387 {
3388 	sched_preempt_enable_no_resched();
3389 	schedule();
3390 	preempt_disable();
3391 }
3392 
3393 static void __sched notrace preempt_schedule_common(void)
3394 {
3395 	do {
3396 		/*
3397 		 * Because the function tracer can trace preempt_count_sub()
3398 		 * and it also uses preempt_enable/disable_notrace(), if
3399 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3400 		 * by the function tracer will call this function again and
3401 		 * cause infinite recursion.
3402 		 *
3403 		 * Preemption must be disabled here before the function
3404 		 * tracer can trace. Break up preempt_disable() into two
3405 		 * calls. One to disable preemption without fear of being
3406 		 * traced. The other to still record the preemption latency,
3407 		 * which can also be traced by the function tracer.
3408 		 */
3409 		preempt_disable_notrace();
3410 		preempt_latency_start(1);
3411 		__schedule(true);
3412 		preempt_latency_stop(1);
3413 		preempt_enable_no_resched_notrace();
3414 
3415 		/*
3416 		 * Check again in case we missed a preemption opportunity
3417 		 * between schedule and now.
3418 		 */
3419 	} while (need_resched());
3420 }
3421 
3422 #ifdef CONFIG_PREEMPT
3423 /*
3424  * this is the entry point to schedule() from in-kernel preemption
3425  * off of preempt_enable. Kernel preemptions off return from interrupt
3426  * occur there and call schedule directly.
3427  */
3428 asmlinkage __visible void __sched notrace preempt_schedule(void)
3429 {
3430 	/*
3431 	 * If there is a non-zero preempt_count or interrupts are disabled,
3432 	 * we do not want to preempt the current task. Just return..
3433 	 */
3434 	if (likely(!preemptible()))
3435 		return;
3436 
3437 	preempt_schedule_common();
3438 }
3439 NOKPROBE_SYMBOL(preempt_schedule);
3440 EXPORT_SYMBOL(preempt_schedule);
3441 
3442 /**
3443  * preempt_schedule_notrace - preempt_schedule called by tracing
3444  *
3445  * The tracing infrastructure uses preempt_enable_notrace to prevent
3446  * recursion and tracing preempt enabling caused by the tracing
3447  * infrastructure itself. But as tracing can happen in areas coming
3448  * from userspace or just about to enter userspace, a preempt enable
3449  * can occur before user_exit() is called. This will cause the scheduler
3450  * to be called when the system is still in usermode.
3451  *
3452  * To prevent this, the preempt_enable_notrace will use this function
3453  * instead of preempt_schedule() to exit user context if needed before
3454  * calling the scheduler.
3455  */
3456 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3457 {
3458 	enum ctx_state prev_ctx;
3459 
3460 	if (likely(!preemptible()))
3461 		return;
3462 
3463 	do {
3464 		/*
3465 		 * Because the function tracer can trace preempt_count_sub()
3466 		 * and it also uses preempt_enable/disable_notrace(), if
3467 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3468 		 * by the function tracer will call this function again and
3469 		 * cause infinite recursion.
3470 		 *
3471 		 * Preemption must be disabled here before the function
3472 		 * tracer can trace. Break up preempt_disable() into two
3473 		 * calls. One to disable preemption without fear of being
3474 		 * traced. The other to still record the preemption latency,
3475 		 * which can also be traced by the function tracer.
3476 		 */
3477 		preempt_disable_notrace();
3478 		preempt_latency_start(1);
3479 		/*
3480 		 * Needs preempt disabled in case user_exit() is traced
3481 		 * and the tracer calls preempt_enable_notrace() causing
3482 		 * an infinite recursion.
3483 		 */
3484 		prev_ctx = exception_enter();
3485 		__schedule(true);
3486 		exception_exit(prev_ctx);
3487 
3488 		preempt_latency_stop(1);
3489 		preempt_enable_no_resched_notrace();
3490 	} while (need_resched());
3491 }
3492 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3493 
3494 #endif /* CONFIG_PREEMPT */
3495 
3496 /*
3497  * this is the entry point to schedule() from kernel preemption
3498  * off of irq context.
3499  * Note, that this is called and return with irqs disabled. This will
3500  * protect us against recursive calling from irq.
3501  */
3502 asmlinkage __visible void __sched preempt_schedule_irq(void)
3503 {
3504 	enum ctx_state prev_state;
3505 
3506 	/* Catch callers which need to be fixed */
3507 	BUG_ON(preempt_count() || !irqs_disabled());
3508 
3509 	prev_state = exception_enter();
3510 
3511 	do {
3512 		preempt_disable();
3513 		local_irq_enable();
3514 		__schedule(true);
3515 		local_irq_disable();
3516 		sched_preempt_enable_no_resched();
3517 	} while (need_resched());
3518 
3519 	exception_exit(prev_state);
3520 }
3521 
3522 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3523 			  void *key)
3524 {
3525 	return try_to_wake_up(curr->private, mode, wake_flags);
3526 }
3527 EXPORT_SYMBOL(default_wake_function);
3528 
3529 #ifdef CONFIG_RT_MUTEXES
3530 
3531 /*
3532  * rt_mutex_setprio - set the current priority of a task
3533  * @p: task
3534  * @prio: prio value (kernel-internal form)
3535  *
3536  * This function changes the 'effective' priority of a task. It does
3537  * not touch ->normal_prio like __setscheduler().
3538  *
3539  * Used by the rt_mutex code to implement priority inheritance
3540  * logic. Call site only calls if the priority of the task changed.
3541  */
3542 void rt_mutex_setprio(struct task_struct *p, int prio)
3543 {
3544 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3545 	const struct sched_class *prev_class;
3546 	struct rq_flags rf;
3547 	struct rq *rq;
3548 
3549 	BUG_ON(prio > MAX_PRIO);
3550 
3551 	rq = __task_rq_lock(p, &rf);
3552 
3553 	/*
3554 	 * Idle task boosting is a nono in general. There is one
3555 	 * exception, when PREEMPT_RT and NOHZ is active:
3556 	 *
3557 	 * The idle task calls get_next_timer_interrupt() and holds
3558 	 * the timer wheel base->lock on the CPU and another CPU wants
3559 	 * to access the timer (probably to cancel it). We can safely
3560 	 * ignore the boosting request, as the idle CPU runs this code
3561 	 * with interrupts disabled and will complete the lock
3562 	 * protected section without being interrupted. So there is no
3563 	 * real need to boost.
3564 	 */
3565 	if (unlikely(p == rq->idle)) {
3566 		WARN_ON(p != rq->curr);
3567 		WARN_ON(p->pi_blocked_on);
3568 		goto out_unlock;
3569 	}
3570 
3571 	trace_sched_pi_setprio(p, prio);
3572 	oldprio = p->prio;
3573 
3574 	if (oldprio == prio)
3575 		queue_flag &= ~DEQUEUE_MOVE;
3576 
3577 	prev_class = p->sched_class;
3578 	queued = task_on_rq_queued(p);
3579 	running = task_current(rq, p);
3580 	if (queued)
3581 		dequeue_task(rq, p, queue_flag);
3582 	if (running)
3583 		put_prev_task(rq, p);
3584 
3585 	/*
3586 	 * Boosting condition are:
3587 	 * 1. -rt task is running and holds mutex A
3588 	 *      --> -dl task blocks on mutex A
3589 	 *
3590 	 * 2. -dl task is running and holds mutex A
3591 	 *      --> -dl task blocks on mutex A and could preempt the
3592 	 *          running task
3593 	 */
3594 	if (dl_prio(prio)) {
3595 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3596 		if (!dl_prio(p->normal_prio) ||
3597 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3598 			p->dl.dl_boosted = 1;
3599 			queue_flag |= ENQUEUE_REPLENISH;
3600 		} else
3601 			p->dl.dl_boosted = 0;
3602 		p->sched_class = &dl_sched_class;
3603 	} else if (rt_prio(prio)) {
3604 		if (dl_prio(oldprio))
3605 			p->dl.dl_boosted = 0;
3606 		if (oldprio < prio)
3607 			queue_flag |= ENQUEUE_HEAD;
3608 		p->sched_class = &rt_sched_class;
3609 	} else {
3610 		if (dl_prio(oldprio))
3611 			p->dl.dl_boosted = 0;
3612 		if (rt_prio(oldprio))
3613 			p->rt.timeout = 0;
3614 		p->sched_class = &fair_sched_class;
3615 	}
3616 
3617 	p->prio = prio;
3618 
3619 	if (running)
3620 		p->sched_class->set_curr_task(rq);
3621 	if (queued)
3622 		enqueue_task(rq, p, queue_flag);
3623 
3624 	check_class_changed(rq, p, prev_class, oldprio);
3625 out_unlock:
3626 	preempt_disable(); /* avoid rq from going away on us */
3627 	__task_rq_unlock(rq, &rf);
3628 
3629 	balance_callback(rq);
3630 	preempt_enable();
3631 }
3632 #endif
3633 
3634 void set_user_nice(struct task_struct *p, long nice)
3635 {
3636 	int old_prio, delta, queued;
3637 	struct rq_flags rf;
3638 	struct rq *rq;
3639 
3640 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3641 		return;
3642 	/*
3643 	 * We have to be careful, if called from sys_setpriority(),
3644 	 * the task might be in the middle of scheduling on another CPU.
3645 	 */
3646 	rq = task_rq_lock(p, &rf);
3647 	/*
3648 	 * The RT priorities are set via sched_setscheduler(), but we still
3649 	 * allow the 'normal' nice value to be set - but as expected
3650 	 * it wont have any effect on scheduling until the task is
3651 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3652 	 */
3653 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3654 		p->static_prio = NICE_TO_PRIO(nice);
3655 		goto out_unlock;
3656 	}
3657 	queued = task_on_rq_queued(p);
3658 	if (queued)
3659 		dequeue_task(rq, p, DEQUEUE_SAVE);
3660 
3661 	p->static_prio = NICE_TO_PRIO(nice);
3662 	set_load_weight(p);
3663 	old_prio = p->prio;
3664 	p->prio = effective_prio(p);
3665 	delta = p->prio - old_prio;
3666 
3667 	if (queued) {
3668 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3669 		/*
3670 		 * If the task increased its priority or is running and
3671 		 * lowered its priority, then reschedule its CPU:
3672 		 */
3673 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3674 			resched_curr(rq);
3675 	}
3676 out_unlock:
3677 	task_rq_unlock(rq, p, &rf);
3678 }
3679 EXPORT_SYMBOL(set_user_nice);
3680 
3681 /*
3682  * can_nice - check if a task can reduce its nice value
3683  * @p: task
3684  * @nice: nice value
3685  */
3686 int can_nice(const struct task_struct *p, const int nice)
3687 {
3688 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3689 	int nice_rlim = nice_to_rlimit(nice);
3690 
3691 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3692 		capable(CAP_SYS_NICE));
3693 }
3694 
3695 #ifdef __ARCH_WANT_SYS_NICE
3696 
3697 /*
3698  * sys_nice - change the priority of the current process.
3699  * @increment: priority increment
3700  *
3701  * sys_setpriority is a more generic, but much slower function that
3702  * does similar things.
3703  */
3704 SYSCALL_DEFINE1(nice, int, increment)
3705 {
3706 	long nice, retval;
3707 
3708 	/*
3709 	 * Setpriority might change our priority at the same moment.
3710 	 * We don't have to worry. Conceptually one call occurs first
3711 	 * and we have a single winner.
3712 	 */
3713 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3714 	nice = task_nice(current) + increment;
3715 
3716 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3717 	if (increment < 0 && !can_nice(current, nice))
3718 		return -EPERM;
3719 
3720 	retval = security_task_setnice(current, nice);
3721 	if (retval)
3722 		return retval;
3723 
3724 	set_user_nice(current, nice);
3725 	return 0;
3726 }
3727 
3728 #endif
3729 
3730 /**
3731  * task_prio - return the priority value of a given task.
3732  * @p: the task in question.
3733  *
3734  * Return: The priority value as seen by users in /proc.
3735  * RT tasks are offset by -200. Normal tasks are centered
3736  * around 0, value goes from -16 to +15.
3737  */
3738 int task_prio(const struct task_struct *p)
3739 {
3740 	return p->prio - MAX_RT_PRIO;
3741 }
3742 
3743 /**
3744  * idle_cpu - is a given cpu idle currently?
3745  * @cpu: the processor in question.
3746  *
3747  * Return: 1 if the CPU is currently idle. 0 otherwise.
3748  */
3749 int idle_cpu(int cpu)
3750 {
3751 	struct rq *rq = cpu_rq(cpu);
3752 
3753 	if (rq->curr != rq->idle)
3754 		return 0;
3755 
3756 	if (rq->nr_running)
3757 		return 0;
3758 
3759 #ifdef CONFIG_SMP
3760 	if (!llist_empty(&rq->wake_list))
3761 		return 0;
3762 #endif
3763 
3764 	return 1;
3765 }
3766 
3767 /**
3768  * idle_task - return the idle task for a given cpu.
3769  * @cpu: the processor in question.
3770  *
3771  * Return: The idle task for the cpu @cpu.
3772  */
3773 struct task_struct *idle_task(int cpu)
3774 {
3775 	return cpu_rq(cpu)->idle;
3776 }
3777 
3778 /**
3779  * find_process_by_pid - find a process with a matching PID value.
3780  * @pid: the pid in question.
3781  *
3782  * The task of @pid, if found. %NULL otherwise.
3783  */
3784 static struct task_struct *find_process_by_pid(pid_t pid)
3785 {
3786 	return pid ? find_task_by_vpid(pid) : current;
3787 }
3788 
3789 /*
3790  * This function initializes the sched_dl_entity of a newly becoming
3791  * SCHED_DEADLINE task.
3792  *
3793  * Only the static values are considered here, the actual runtime and the
3794  * absolute deadline will be properly calculated when the task is enqueued
3795  * for the first time with its new policy.
3796  */
3797 static void
3798 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3799 {
3800 	struct sched_dl_entity *dl_se = &p->dl;
3801 
3802 	dl_se->dl_runtime = attr->sched_runtime;
3803 	dl_se->dl_deadline = attr->sched_deadline;
3804 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3805 	dl_se->flags = attr->sched_flags;
3806 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3807 
3808 	/*
3809 	 * Changing the parameters of a task is 'tricky' and we're not doing
3810 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3811 	 *
3812 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3813 	 * point. This would include retaining the task_struct until that time
3814 	 * and change dl_overflow() to not immediately decrement the current
3815 	 * amount.
3816 	 *
3817 	 * Instead we retain the current runtime/deadline and let the new
3818 	 * parameters take effect after the current reservation period lapses.
3819 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3820 	 * before the current scheduling deadline.
3821 	 *
3822 	 * We can still have temporary overloads because we do not delay the
3823 	 * change in bandwidth until that time; so admission control is
3824 	 * not on the safe side. It does however guarantee tasks will never
3825 	 * consume more than promised.
3826 	 */
3827 }
3828 
3829 /*
3830  * sched_setparam() passes in -1 for its policy, to let the functions
3831  * it calls know not to change it.
3832  */
3833 #define SETPARAM_POLICY	-1
3834 
3835 static void __setscheduler_params(struct task_struct *p,
3836 		const struct sched_attr *attr)
3837 {
3838 	int policy = attr->sched_policy;
3839 
3840 	if (policy == SETPARAM_POLICY)
3841 		policy = p->policy;
3842 
3843 	p->policy = policy;
3844 
3845 	if (dl_policy(policy))
3846 		__setparam_dl(p, attr);
3847 	else if (fair_policy(policy))
3848 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3849 
3850 	/*
3851 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3852 	 * !rt_policy. Always setting this ensures that things like
3853 	 * getparam()/getattr() don't report silly values for !rt tasks.
3854 	 */
3855 	p->rt_priority = attr->sched_priority;
3856 	p->normal_prio = normal_prio(p);
3857 	set_load_weight(p);
3858 }
3859 
3860 /* Actually do priority change: must hold pi & rq lock. */
3861 static void __setscheduler(struct rq *rq, struct task_struct *p,
3862 			   const struct sched_attr *attr, bool keep_boost)
3863 {
3864 	__setscheduler_params(p, attr);
3865 
3866 	/*
3867 	 * Keep a potential priority boosting if called from
3868 	 * sched_setscheduler().
3869 	 */
3870 	if (keep_boost)
3871 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3872 	else
3873 		p->prio = normal_prio(p);
3874 
3875 	if (dl_prio(p->prio))
3876 		p->sched_class = &dl_sched_class;
3877 	else if (rt_prio(p->prio))
3878 		p->sched_class = &rt_sched_class;
3879 	else
3880 		p->sched_class = &fair_sched_class;
3881 }
3882 
3883 static void
3884 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3885 {
3886 	struct sched_dl_entity *dl_se = &p->dl;
3887 
3888 	attr->sched_priority = p->rt_priority;
3889 	attr->sched_runtime = dl_se->dl_runtime;
3890 	attr->sched_deadline = dl_se->dl_deadline;
3891 	attr->sched_period = dl_se->dl_period;
3892 	attr->sched_flags = dl_se->flags;
3893 }
3894 
3895 /*
3896  * This function validates the new parameters of a -deadline task.
3897  * We ask for the deadline not being zero, and greater or equal
3898  * than the runtime, as well as the period of being zero or
3899  * greater than deadline. Furthermore, we have to be sure that
3900  * user parameters are above the internal resolution of 1us (we
3901  * check sched_runtime only since it is always the smaller one) and
3902  * below 2^63 ns (we have to check both sched_deadline and
3903  * sched_period, as the latter can be zero).
3904  */
3905 static bool
3906 __checkparam_dl(const struct sched_attr *attr)
3907 {
3908 	/* deadline != 0 */
3909 	if (attr->sched_deadline == 0)
3910 		return false;
3911 
3912 	/*
3913 	 * Since we truncate DL_SCALE bits, make sure we're at least
3914 	 * that big.
3915 	 */
3916 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3917 		return false;
3918 
3919 	/*
3920 	 * Since we use the MSB for wrap-around and sign issues, make
3921 	 * sure it's not set (mind that period can be equal to zero).
3922 	 */
3923 	if (attr->sched_deadline & (1ULL << 63) ||
3924 	    attr->sched_period & (1ULL << 63))
3925 		return false;
3926 
3927 	/* runtime <= deadline <= period (if period != 0) */
3928 	if ((attr->sched_period != 0 &&
3929 	     attr->sched_period < attr->sched_deadline) ||
3930 	    attr->sched_deadline < attr->sched_runtime)
3931 		return false;
3932 
3933 	return true;
3934 }
3935 
3936 /*
3937  * check the target process has a UID that matches the current process's
3938  */
3939 static bool check_same_owner(struct task_struct *p)
3940 {
3941 	const struct cred *cred = current_cred(), *pcred;
3942 	bool match;
3943 
3944 	rcu_read_lock();
3945 	pcred = __task_cred(p);
3946 	match = (uid_eq(cred->euid, pcred->euid) ||
3947 		 uid_eq(cred->euid, pcred->uid));
3948 	rcu_read_unlock();
3949 	return match;
3950 }
3951 
3952 static bool dl_param_changed(struct task_struct *p,
3953 		const struct sched_attr *attr)
3954 {
3955 	struct sched_dl_entity *dl_se = &p->dl;
3956 
3957 	if (dl_se->dl_runtime != attr->sched_runtime ||
3958 		dl_se->dl_deadline != attr->sched_deadline ||
3959 		dl_se->dl_period != attr->sched_period ||
3960 		dl_se->flags != attr->sched_flags)
3961 		return true;
3962 
3963 	return false;
3964 }
3965 
3966 static int __sched_setscheduler(struct task_struct *p,
3967 				const struct sched_attr *attr,
3968 				bool user, bool pi)
3969 {
3970 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3971 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3972 	int retval, oldprio, oldpolicy = -1, queued, running;
3973 	int new_effective_prio, policy = attr->sched_policy;
3974 	const struct sched_class *prev_class;
3975 	struct rq_flags rf;
3976 	int reset_on_fork;
3977 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3978 	struct rq *rq;
3979 
3980 	/* may grab non-irq protected spin_locks */
3981 	BUG_ON(in_interrupt());
3982 recheck:
3983 	/* double check policy once rq lock held */
3984 	if (policy < 0) {
3985 		reset_on_fork = p->sched_reset_on_fork;
3986 		policy = oldpolicy = p->policy;
3987 	} else {
3988 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3989 
3990 		if (!valid_policy(policy))
3991 			return -EINVAL;
3992 	}
3993 
3994 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3995 		return -EINVAL;
3996 
3997 	/*
3998 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3999 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4000 	 * SCHED_BATCH and SCHED_IDLE is 0.
4001 	 */
4002 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4003 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4004 		return -EINVAL;
4005 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4006 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4007 		return -EINVAL;
4008 
4009 	/*
4010 	 * Allow unprivileged RT tasks to decrease priority:
4011 	 */
4012 	if (user && !capable(CAP_SYS_NICE)) {
4013 		if (fair_policy(policy)) {
4014 			if (attr->sched_nice < task_nice(p) &&
4015 			    !can_nice(p, attr->sched_nice))
4016 				return -EPERM;
4017 		}
4018 
4019 		if (rt_policy(policy)) {
4020 			unsigned long rlim_rtprio =
4021 					task_rlimit(p, RLIMIT_RTPRIO);
4022 
4023 			/* can't set/change the rt policy */
4024 			if (policy != p->policy && !rlim_rtprio)
4025 				return -EPERM;
4026 
4027 			/* can't increase priority */
4028 			if (attr->sched_priority > p->rt_priority &&
4029 			    attr->sched_priority > rlim_rtprio)
4030 				return -EPERM;
4031 		}
4032 
4033 		 /*
4034 		  * Can't set/change SCHED_DEADLINE policy at all for now
4035 		  * (safest behavior); in the future we would like to allow
4036 		  * unprivileged DL tasks to increase their relative deadline
4037 		  * or reduce their runtime (both ways reducing utilization)
4038 		  */
4039 		if (dl_policy(policy))
4040 			return -EPERM;
4041 
4042 		/*
4043 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4044 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4045 		 */
4046 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4047 			if (!can_nice(p, task_nice(p)))
4048 				return -EPERM;
4049 		}
4050 
4051 		/* can't change other user's priorities */
4052 		if (!check_same_owner(p))
4053 			return -EPERM;
4054 
4055 		/* Normal users shall not reset the sched_reset_on_fork flag */
4056 		if (p->sched_reset_on_fork && !reset_on_fork)
4057 			return -EPERM;
4058 	}
4059 
4060 	if (user) {
4061 		retval = security_task_setscheduler(p);
4062 		if (retval)
4063 			return retval;
4064 	}
4065 
4066 	/*
4067 	 * make sure no PI-waiters arrive (or leave) while we are
4068 	 * changing the priority of the task:
4069 	 *
4070 	 * To be able to change p->policy safely, the appropriate
4071 	 * runqueue lock must be held.
4072 	 */
4073 	rq = task_rq_lock(p, &rf);
4074 
4075 	/*
4076 	 * Changing the policy of the stop threads its a very bad idea
4077 	 */
4078 	if (p == rq->stop) {
4079 		task_rq_unlock(rq, p, &rf);
4080 		return -EINVAL;
4081 	}
4082 
4083 	/*
4084 	 * If not changing anything there's no need to proceed further,
4085 	 * but store a possible modification of reset_on_fork.
4086 	 */
4087 	if (unlikely(policy == p->policy)) {
4088 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4089 			goto change;
4090 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4091 			goto change;
4092 		if (dl_policy(policy) && dl_param_changed(p, attr))
4093 			goto change;
4094 
4095 		p->sched_reset_on_fork = reset_on_fork;
4096 		task_rq_unlock(rq, p, &rf);
4097 		return 0;
4098 	}
4099 change:
4100 
4101 	if (user) {
4102 #ifdef CONFIG_RT_GROUP_SCHED
4103 		/*
4104 		 * Do not allow realtime tasks into groups that have no runtime
4105 		 * assigned.
4106 		 */
4107 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4108 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4109 				!task_group_is_autogroup(task_group(p))) {
4110 			task_rq_unlock(rq, p, &rf);
4111 			return -EPERM;
4112 		}
4113 #endif
4114 #ifdef CONFIG_SMP
4115 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4116 			cpumask_t *span = rq->rd->span;
4117 
4118 			/*
4119 			 * Don't allow tasks with an affinity mask smaller than
4120 			 * the entire root_domain to become SCHED_DEADLINE. We
4121 			 * will also fail if there's no bandwidth available.
4122 			 */
4123 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4124 			    rq->rd->dl_bw.bw == 0) {
4125 				task_rq_unlock(rq, p, &rf);
4126 				return -EPERM;
4127 			}
4128 		}
4129 #endif
4130 	}
4131 
4132 	/* recheck policy now with rq lock held */
4133 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4134 		policy = oldpolicy = -1;
4135 		task_rq_unlock(rq, p, &rf);
4136 		goto recheck;
4137 	}
4138 
4139 	/*
4140 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4141 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4142 	 * is available.
4143 	 */
4144 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4145 		task_rq_unlock(rq, p, &rf);
4146 		return -EBUSY;
4147 	}
4148 
4149 	p->sched_reset_on_fork = reset_on_fork;
4150 	oldprio = p->prio;
4151 
4152 	if (pi) {
4153 		/*
4154 		 * Take priority boosted tasks into account. If the new
4155 		 * effective priority is unchanged, we just store the new
4156 		 * normal parameters and do not touch the scheduler class and
4157 		 * the runqueue. This will be done when the task deboost
4158 		 * itself.
4159 		 */
4160 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4161 		if (new_effective_prio == oldprio)
4162 			queue_flags &= ~DEQUEUE_MOVE;
4163 	}
4164 
4165 	queued = task_on_rq_queued(p);
4166 	running = task_current(rq, p);
4167 	if (queued)
4168 		dequeue_task(rq, p, queue_flags);
4169 	if (running)
4170 		put_prev_task(rq, p);
4171 
4172 	prev_class = p->sched_class;
4173 	__setscheduler(rq, p, attr, pi);
4174 
4175 	if (running)
4176 		p->sched_class->set_curr_task(rq);
4177 	if (queued) {
4178 		/*
4179 		 * We enqueue to tail when the priority of a task is
4180 		 * increased (user space view).
4181 		 */
4182 		if (oldprio < p->prio)
4183 			queue_flags |= ENQUEUE_HEAD;
4184 
4185 		enqueue_task(rq, p, queue_flags);
4186 	}
4187 
4188 	check_class_changed(rq, p, prev_class, oldprio);
4189 	preempt_disable(); /* avoid rq from going away on us */
4190 	task_rq_unlock(rq, p, &rf);
4191 
4192 	if (pi)
4193 		rt_mutex_adjust_pi(p);
4194 
4195 	/*
4196 	 * Run balance callbacks after we've adjusted the PI chain.
4197 	 */
4198 	balance_callback(rq);
4199 	preempt_enable();
4200 
4201 	return 0;
4202 }
4203 
4204 static int _sched_setscheduler(struct task_struct *p, int policy,
4205 			       const struct sched_param *param, bool check)
4206 {
4207 	struct sched_attr attr = {
4208 		.sched_policy   = policy,
4209 		.sched_priority = param->sched_priority,
4210 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4211 	};
4212 
4213 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4214 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4215 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4216 		policy &= ~SCHED_RESET_ON_FORK;
4217 		attr.sched_policy = policy;
4218 	}
4219 
4220 	return __sched_setscheduler(p, &attr, check, true);
4221 }
4222 /**
4223  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4224  * @p: the task in question.
4225  * @policy: new policy.
4226  * @param: structure containing the new RT priority.
4227  *
4228  * Return: 0 on success. An error code otherwise.
4229  *
4230  * NOTE that the task may be already dead.
4231  */
4232 int sched_setscheduler(struct task_struct *p, int policy,
4233 		       const struct sched_param *param)
4234 {
4235 	return _sched_setscheduler(p, policy, param, true);
4236 }
4237 EXPORT_SYMBOL_GPL(sched_setscheduler);
4238 
4239 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4240 {
4241 	return __sched_setscheduler(p, attr, true, true);
4242 }
4243 EXPORT_SYMBOL_GPL(sched_setattr);
4244 
4245 /**
4246  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4247  * @p: the task in question.
4248  * @policy: new policy.
4249  * @param: structure containing the new RT priority.
4250  *
4251  * Just like sched_setscheduler, only don't bother checking if the
4252  * current context has permission.  For example, this is needed in
4253  * stop_machine(): we create temporary high priority worker threads,
4254  * but our caller might not have that capability.
4255  *
4256  * Return: 0 on success. An error code otherwise.
4257  */
4258 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4259 			       const struct sched_param *param)
4260 {
4261 	return _sched_setscheduler(p, policy, param, false);
4262 }
4263 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4264 
4265 static int
4266 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4267 {
4268 	struct sched_param lparam;
4269 	struct task_struct *p;
4270 	int retval;
4271 
4272 	if (!param || pid < 0)
4273 		return -EINVAL;
4274 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4275 		return -EFAULT;
4276 
4277 	rcu_read_lock();
4278 	retval = -ESRCH;
4279 	p = find_process_by_pid(pid);
4280 	if (p != NULL)
4281 		retval = sched_setscheduler(p, policy, &lparam);
4282 	rcu_read_unlock();
4283 
4284 	return retval;
4285 }
4286 
4287 /*
4288  * Mimics kernel/events/core.c perf_copy_attr().
4289  */
4290 static int sched_copy_attr(struct sched_attr __user *uattr,
4291 			   struct sched_attr *attr)
4292 {
4293 	u32 size;
4294 	int ret;
4295 
4296 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4297 		return -EFAULT;
4298 
4299 	/*
4300 	 * zero the full structure, so that a short copy will be nice.
4301 	 */
4302 	memset(attr, 0, sizeof(*attr));
4303 
4304 	ret = get_user(size, &uattr->size);
4305 	if (ret)
4306 		return ret;
4307 
4308 	if (size > PAGE_SIZE)	/* silly large */
4309 		goto err_size;
4310 
4311 	if (!size)		/* abi compat */
4312 		size = SCHED_ATTR_SIZE_VER0;
4313 
4314 	if (size < SCHED_ATTR_SIZE_VER0)
4315 		goto err_size;
4316 
4317 	/*
4318 	 * If we're handed a bigger struct than we know of,
4319 	 * ensure all the unknown bits are 0 - i.e. new
4320 	 * user-space does not rely on any kernel feature
4321 	 * extensions we dont know about yet.
4322 	 */
4323 	if (size > sizeof(*attr)) {
4324 		unsigned char __user *addr;
4325 		unsigned char __user *end;
4326 		unsigned char val;
4327 
4328 		addr = (void __user *)uattr + sizeof(*attr);
4329 		end  = (void __user *)uattr + size;
4330 
4331 		for (; addr < end; addr++) {
4332 			ret = get_user(val, addr);
4333 			if (ret)
4334 				return ret;
4335 			if (val)
4336 				goto err_size;
4337 		}
4338 		size = sizeof(*attr);
4339 	}
4340 
4341 	ret = copy_from_user(attr, uattr, size);
4342 	if (ret)
4343 		return -EFAULT;
4344 
4345 	/*
4346 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4347 	 * to be strict and return an error on out-of-bounds values?
4348 	 */
4349 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4350 
4351 	return 0;
4352 
4353 err_size:
4354 	put_user(sizeof(*attr), &uattr->size);
4355 	return -E2BIG;
4356 }
4357 
4358 /**
4359  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4360  * @pid: the pid in question.
4361  * @policy: new policy.
4362  * @param: structure containing the new RT priority.
4363  *
4364  * Return: 0 on success. An error code otherwise.
4365  */
4366 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4367 		struct sched_param __user *, param)
4368 {
4369 	/* negative values for policy are not valid */
4370 	if (policy < 0)
4371 		return -EINVAL;
4372 
4373 	return do_sched_setscheduler(pid, policy, param);
4374 }
4375 
4376 /**
4377  * sys_sched_setparam - set/change the RT priority of a thread
4378  * @pid: the pid in question.
4379  * @param: structure containing the new RT priority.
4380  *
4381  * Return: 0 on success. An error code otherwise.
4382  */
4383 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4384 {
4385 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4386 }
4387 
4388 /**
4389  * sys_sched_setattr - same as above, but with extended sched_attr
4390  * @pid: the pid in question.
4391  * @uattr: structure containing the extended parameters.
4392  * @flags: for future extension.
4393  */
4394 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4395 			       unsigned int, flags)
4396 {
4397 	struct sched_attr attr;
4398 	struct task_struct *p;
4399 	int retval;
4400 
4401 	if (!uattr || pid < 0 || flags)
4402 		return -EINVAL;
4403 
4404 	retval = sched_copy_attr(uattr, &attr);
4405 	if (retval)
4406 		return retval;
4407 
4408 	if ((int)attr.sched_policy < 0)
4409 		return -EINVAL;
4410 
4411 	rcu_read_lock();
4412 	retval = -ESRCH;
4413 	p = find_process_by_pid(pid);
4414 	if (p != NULL)
4415 		retval = sched_setattr(p, &attr);
4416 	rcu_read_unlock();
4417 
4418 	return retval;
4419 }
4420 
4421 /**
4422  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4423  * @pid: the pid in question.
4424  *
4425  * Return: On success, the policy of the thread. Otherwise, a negative error
4426  * code.
4427  */
4428 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4429 {
4430 	struct task_struct *p;
4431 	int retval;
4432 
4433 	if (pid < 0)
4434 		return -EINVAL;
4435 
4436 	retval = -ESRCH;
4437 	rcu_read_lock();
4438 	p = find_process_by_pid(pid);
4439 	if (p) {
4440 		retval = security_task_getscheduler(p);
4441 		if (!retval)
4442 			retval = p->policy
4443 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4444 	}
4445 	rcu_read_unlock();
4446 	return retval;
4447 }
4448 
4449 /**
4450  * sys_sched_getparam - get the RT priority of a thread
4451  * @pid: the pid in question.
4452  * @param: structure containing the RT priority.
4453  *
4454  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4455  * code.
4456  */
4457 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4458 {
4459 	struct sched_param lp = { .sched_priority = 0 };
4460 	struct task_struct *p;
4461 	int retval;
4462 
4463 	if (!param || pid < 0)
4464 		return -EINVAL;
4465 
4466 	rcu_read_lock();
4467 	p = find_process_by_pid(pid);
4468 	retval = -ESRCH;
4469 	if (!p)
4470 		goto out_unlock;
4471 
4472 	retval = security_task_getscheduler(p);
4473 	if (retval)
4474 		goto out_unlock;
4475 
4476 	if (task_has_rt_policy(p))
4477 		lp.sched_priority = p->rt_priority;
4478 	rcu_read_unlock();
4479 
4480 	/*
4481 	 * This one might sleep, we cannot do it with a spinlock held ...
4482 	 */
4483 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4484 
4485 	return retval;
4486 
4487 out_unlock:
4488 	rcu_read_unlock();
4489 	return retval;
4490 }
4491 
4492 static int sched_read_attr(struct sched_attr __user *uattr,
4493 			   struct sched_attr *attr,
4494 			   unsigned int usize)
4495 {
4496 	int ret;
4497 
4498 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4499 		return -EFAULT;
4500 
4501 	/*
4502 	 * If we're handed a smaller struct than we know of,
4503 	 * ensure all the unknown bits are 0 - i.e. old
4504 	 * user-space does not get uncomplete information.
4505 	 */
4506 	if (usize < sizeof(*attr)) {
4507 		unsigned char *addr;
4508 		unsigned char *end;
4509 
4510 		addr = (void *)attr + usize;
4511 		end  = (void *)attr + sizeof(*attr);
4512 
4513 		for (; addr < end; addr++) {
4514 			if (*addr)
4515 				return -EFBIG;
4516 		}
4517 
4518 		attr->size = usize;
4519 	}
4520 
4521 	ret = copy_to_user(uattr, attr, attr->size);
4522 	if (ret)
4523 		return -EFAULT;
4524 
4525 	return 0;
4526 }
4527 
4528 /**
4529  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4530  * @pid: the pid in question.
4531  * @uattr: structure containing the extended parameters.
4532  * @size: sizeof(attr) for fwd/bwd comp.
4533  * @flags: for future extension.
4534  */
4535 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4536 		unsigned int, size, unsigned int, flags)
4537 {
4538 	struct sched_attr attr = {
4539 		.size = sizeof(struct sched_attr),
4540 	};
4541 	struct task_struct *p;
4542 	int retval;
4543 
4544 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4545 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4546 		return -EINVAL;
4547 
4548 	rcu_read_lock();
4549 	p = find_process_by_pid(pid);
4550 	retval = -ESRCH;
4551 	if (!p)
4552 		goto out_unlock;
4553 
4554 	retval = security_task_getscheduler(p);
4555 	if (retval)
4556 		goto out_unlock;
4557 
4558 	attr.sched_policy = p->policy;
4559 	if (p->sched_reset_on_fork)
4560 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4561 	if (task_has_dl_policy(p))
4562 		__getparam_dl(p, &attr);
4563 	else if (task_has_rt_policy(p))
4564 		attr.sched_priority = p->rt_priority;
4565 	else
4566 		attr.sched_nice = task_nice(p);
4567 
4568 	rcu_read_unlock();
4569 
4570 	retval = sched_read_attr(uattr, &attr, size);
4571 	return retval;
4572 
4573 out_unlock:
4574 	rcu_read_unlock();
4575 	return retval;
4576 }
4577 
4578 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4579 {
4580 	cpumask_var_t cpus_allowed, new_mask;
4581 	struct task_struct *p;
4582 	int retval;
4583 
4584 	rcu_read_lock();
4585 
4586 	p = find_process_by_pid(pid);
4587 	if (!p) {
4588 		rcu_read_unlock();
4589 		return -ESRCH;
4590 	}
4591 
4592 	/* Prevent p going away */
4593 	get_task_struct(p);
4594 	rcu_read_unlock();
4595 
4596 	if (p->flags & PF_NO_SETAFFINITY) {
4597 		retval = -EINVAL;
4598 		goto out_put_task;
4599 	}
4600 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4601 		retval = -ENOMEM;
4602 		goto out_put_task;
4603 	}
4604 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4605 		retval = -ENOMEM;
4606 		goto out_free_cpus_allowed;
4607 	}
4608 	retval = -EPERM;
4609 	if (!check_same_owner(p)) {
4610 		rcu_read_lock();
4611 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4612 			rcu_read_unlock();
4613 			goto out_free_new_mask;
4614 		}
4615 		rcu_read_unlock();
4616 	}
4617 
4618 	retval = security_task_setscheduler(p);
4619 	if (retval)
4620 		goto out_free_new_mask;
4621 
4622 
4623 	cpuset_cpus_allowed(p, cpus_allowed);
4624 	cpumask_and(new_mask, in_mask, cpus_allowed);
4625 
4626 	/*
4627 	 * Since bandwidth control happens on root_domain basis,
4628 	 * if admission test is enabled, we only admit -deadline
4629 	 * tasks allowed to run on all the CPUs in the task's
4630 	 * root_domain.
4631 	 */
4632 #ifdef CONFIG_SMP
4633 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4634 		rcu_read_lock();
4635 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4636 			retval = -EBUSY;
4637 			rcu_read_unlock();
4638 			goto out_free_new_mask;
4639 		}
4640 		rcu_read_unlock();
4641 	}
4642 #endif
4643 again:
4644 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4645 
4646 	if (!retval) {
4647 		cpuset_cpus_allowed(p, cpus_allowed);
4648 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4649 			/*
4650 			 * We must have raced with a concurrent cpuset
4651 			 * update. Just reset the cpus_allowed to the
4652 			 * cpuset's cpus_allowed
4653 			 */
4654 			cpumask_copy(new_mask, cpus_allowed);
4655 			goto again;
4656 		}
4657 	}
4658 out_free_new_mask:
4659 	free_cpumask_var(new_mask);
4660 out_free_cpus_allowed:
4661 	free_cpumask_var(cpus_allowed);
4662 out_put_task:
4663 	put_task_struct(p);
4664 	return retval;
4665 }
4666 
4667 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4668 			     struct cpumask *new_mask)
4669 {
4670 	if (len < cpumask_size())
4671 		cpumask_clear(new_mask);
4672 	else if (len > cpumask_size())
4673 		len = cpumask_size();
4674 
4675 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4676 }
4677 
4678 /**
4679  * sys_sched_setaffinity - set the cpu affinity of a process
4680  * @pid: pid of the process
4681  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4682  * @user_mask_ptr: user-space pointer to the new cpu mask
4683  *
4684  * Return: 0 on success. An error code otherwise.
4685  */
4686 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4687 		unsigned long __user *, user_mask_ptr)
4688 {
4689 	cpumask_var_t new_mask;
4690 	int retval;
4691 
4692 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4693 		return -ENOMEM;
4694 
4695 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4696 	if (retval == 0)
4697 		retval = sched_setaffinity(pid, new_mask);
4698 	free_cpumask_var(new_mask);
4699 	return retval;
4700 }
4701 
4702 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4703 {
4704 	struct task_struct *p;
4705 	unsigned long flags;
4706 	int retval;
4707 
4708 	rcu_read_lock();
4709 
4710 	retval = -ESRCH;
4711 	p = find_process_by_pid(pid);
4712 	if (!p)
4713 		goto out_unlock;
4714 
4715 	retval = security_task_getscheduler(p);
4716 	if (retval)
4717 		goto out_unlock;
4718 
4719 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4720 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4721 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4722 
4723 out_unlock:
4724 	rcu_read_unlock();
4725 
4726 	return retval;
4727 }
4728 
4729 /**
4730  * sys_sched_getaffinity - get the cpu affinity of a process
4731  * @pid: pid of the process
4732  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4733  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4734  *
4735  * Return: 0 on success. An error code otherwise.
4736  */
4737 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4738 		unsigned long __user *, user_mask_ptr)
4739 {
4740 	int ret;
4741 	cpumask_var_t mask;
4742 
4743 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4744 		return -EINVAL;
4745 	if (len & (sizeof(unsigned long)-1))
4746 		return -EINVAL;
4747 
4748 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4749 		return -ENOMEM;
4750 
4751 	ret = sched_getaffinity(pid, mask);
4752 	if (ret == 0) {
4753 		size_t retlen = min_t(size_t, len, cpumask_size());
4754 
4755 		if (copy_to_user(user_mask_ptr, mask, retlen))
4756 			ret = -EFAULT;
4757 		else
4758 			ret = retlen;
4759 	}
4760 	free_cpumask_var(mask);
4761 
4762 	return ret;
4763 }
4764 
4765 /**
4766  * sys_sched_yield - yield the current processor to other threads.
4767  *
4768  * This function yields the current CPU to other tasks. If there are no
4769  * other threads running on this CPU then this function will return.
4770  *
4771  * Return: 0.
4772  */
4773 SYSCALL_DEFINE0(sched_yield)
4774 {
4775 	struct rq *rq = this_rq_lock();
4776 
4777 	schedstat_inc(rq, yld_count);
4778 	current->sched_class->yield_task(rq);
4779 
4780 	/*
4781 	 * Since we are going to call schedule() anyway, there's
4782 	 * no need to preempt or enable interrupts:
4783 	 */
4784 	__release(rq->lock);
4785 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4786 	do_raw_spin_unlock(&rq->lock);
4787 	sched_preempt_enable_no_resched();
4788 
4789 	schedule();
4790 
4791 	return 0;
4792 }
4793 
4794 int __sched _cond_resched(void)
4795 {
4796 	if (should_resched(0)) {
4797 		preempt_schedule_common();
4798 		return 1;
4799 	}
4800 	return 0;
4801 }
4802 EXPORT_SYMBOL(_cond_resched);
4803 
4804 /*
4805  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4806  * call schedule, and on return reacquire the lock.
4807  *
4808  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4809  * operations here to prevent schedule() from being called twice (once via
4810  * spin_unlock(), once by hand).
4811  */
4812 int __cond_resched_lock(spinlock_t *lock)
4813 {
4814 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4815 	int ret = 0;
4816 
4817 	lockdep_assert_held(lock);
4818 
4819 	if (spin_needbreak(lock) || resched) {
4820 		spin_unlock(lock);
4821 		if (resched)
4822 			preempt_schedule_common();
4823 		else
4824 			cpu_relax();
4825 		ret = 1;
4826 		spin_lock(lock);
4827 	}
4828 	return ret;
4829 }
4830 EXPORT_SYMBOL(__cond_resched_lock);
4831 
4832 int __sched __cond_resched_softirq(void)
4833 {
4834 	BUG_ON(!in_softirq());
4835 
4836 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4837 		local_bh_enable();
4838 		preempt_schedule_common();
4839 		local_bh_disable();
4840 		return 1;
4841 	}
4842 	return 0;
4843 }
4844 EXPORT_SYMBOL(__cond_resched_softirq);
4845 
4846 /**
4847  * yield - yield the current processor to other threads.
4848  *
4849  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4850  *
4851  * The scheduler is at all times free to pick the calling task as the most
4852  * eligible task to run, if removing the yield() call from your code breaks
4853  * it, its already broken.
4854  *
4855  * Typical broken usage is:
4856  *
4857  * while (!event)
4858  * 	yield();
4859  *
4860  * where one assumes that yield() will let 'the other' process run that will
4861  * make event true. If the current task is a SCHED_FIFO task that will never
4862  * happen. Never use yield() as a progress guarantee!!
4863  *
4864  * If you want to use yield() to wait for something, use wait_event().
4865  * If you want to use yield() to be 'nice' for others, use cond_resched().
4866  * If you still want to use yield(), do not!
4867  */
4868 void __sched yield(void)
4869 {
4870 	set_current_state(TASK_RUNNING);
4871 	sys_sched_yield();
4872 }
4873 EXPORT_SYMBOL(yield);
4874 
4875 /**
4876  * yield_to - yield the current processor to another thread in
4877  * your thread group, or accelerate that thread toward the
4878  * processor it's on.
4879  * @p: target task
4880  * @preempt: whether task preemption is allowed or not
4881  *
4882  * It's the caller's job to ensure that the target task struct
4883  * can't go away on us before we can do any checks.
4884  *
4885  * Return:
4886  *	true (>0) if we indeed boosted the target task.
4887  *	false (0) if we failed to boost the target.
4888  *	-ESRCH if there's no task to yield to.
4889  */
4890 int __sched yield_to(struct task_struct *p, bool preempt)
4891 {
4892 	struct task_struct *curr = current;
4893 	struct rq *rq, *p_rq;
4894 	unsigned long flags;
4895 	int yielded = 0;
4896 
4897 	local_irq_save(flags);
4898 	rq = this_rq();
4899 
4900 again:
4901 	p_rq = task_rq(p);
4902 	/*
4903 	 * If we're the only runnable task on the rq and target rq also
4904 	 * has only one task, there's absolutely no point in yielding.
4905 	 */
4906 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4907 		yielded = -ESRCH;
4908 		goto out_irq;
4909 	}
4910 
4911 	double_rq_lock(rq, p_rq);
4912 	if (task_rq(p) != p_rq) {
4913 		double_rq_unlock(rq, p_rq);
4914 		goto again;
4915 	}
4916 
4917 	if (!curr->sched_class->yield_to_task)
4918 		goto out_unlock;
4919 
4920 	if (curr->sched_class != p->sched_class)
4921 		goto out_unlock;
4922 
4923 	if (task_running(p_rq, p) || p->state)
4924 		goto out_unlock;
4925 
4926 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4927 	if (yielded) {
4928 		schedstat_inc(rq, yld_count);
4929 		/*
4930 		 * Make p's CPU reschedule; pick_next_entity takes care of
4931 		 * fairness.
4932 		 */
4933 		if (preempt && rq != p_rq)
4934 			resched_curr(p_rq);
4935 	}
4936 
4937 out_unlock:
4938 	double_rq_unlock(rq, p_rq);
4939 out_irq:
4940 	local_irq_restore(flags);
4941 
4942 	if (yielded > 0)
4943 		schedule();
4944 
4945 	return yielded;
4946 }
4947 EXPORT_SYMBOL_GPL(yield_to);
4948 
4949 /*
4950  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4951  * that process accounting knows that this is a task in IO wait state.
4952  */
4953 long __sched io_schedule_timeout(long timeout)
4954 {
4955 	int old_iowait = current->in_iowait;
4956 	struct rq *rq;
4957 	long ret;
4958 
4959 	current->in_iowait = 1;
4960 	blk_schedule_flush_plug(current);
4961 
4962 	delayacct_blkio_start();
4963 	rq = raw_rq();
4964 	atomic_inc(&rq->nr_iowait);
4965 	ret = schedule_timeout(timeout);
4966 	current->in_iowait = old_iowait;
4967 	atomic_dec(&rq->nr_iowait);
4968 	delayacct_blkio_end();
4969 
4970 	return ret;
4971 }
4972 EXPORT_SYMBOL(io_schedule_timeout);
4973 
4974 /**
4975  * sys_sched_get_priority_max - return maximum RT priority.
4976  * @policy: scheduling class.
4977  *
4978  * Return: On success, this syscall returns the maximum
4979  * rt_priority that can be used by a given scheduling class.
4980  * On failure, a negative error code is returned.
4981  */
4982 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4983 {
4984 	int ret = -EINVAL;
4985 
4986 	switch (policy) {
4987 	case SCHED_FIFO:
4988 	case SCHED_RR:
4989 		ret = MAX_USER_RT_PRIO-1;
4990 		break;
4991 	case SCHED_DEADLINE:
4992 	case SCHED_NORMAL:
4993 	case SCHED_BATCH:
4994 	case SCHED_IDLE:
4995 		ret = 0;
4996 		break;
4997 	}
4998 	return ret;
4999 }
5000 
5001 /**
5002  * sys_sched_get_priority_min - return minimum RT priority.
5003  * @policy: scheduling class.
5004  *
5005  * Return: On success, this syscall returns the minimum
5006  * rt_priority that can be used by a given scheduling class.
5007  * On failure, a negative error code is returned.
5008  */
5009 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5010 {
5011 	int ret = -EINVAL;
5012 
5013 	switch (policy) {
5014 	case SCHED_FIFO:
5015 	case SCHED_RR:
5016 		ret = 1;
5017 		break;
5018 	case SCHED_DEADLINE:
5019 	case SCHED_NORMAL:
5020 	case SCHED_BATCH:
5021 	case SCHED_IDLE:
5022 		ret = 0;
5023 	}
5024 	return ret;
5025 }
5026 
5027 /**
5028  * sys_sched_rr_get_interval - return the default timeslice of a process.
5029  * @pid: pid of the process.
5030  * @interval: userspace pointer to the timeslice value.
5031  *
5032  * this syscall writes the default timeslice value of a given process
5033  * into the user-space timespec buffer. A value of '0' means infinity.
5034  *
5035  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5036  * an error code.
5037  */
5038 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5039 		struct timespec __user *, interval)
5040 {
5041 	struct task_struct *p;
5042 	unsigned int time_slice;
5043 	struct rq_flags rf;
5044 	struct timespec t;
5045 	struct rq *rq;
5046 	int retval;
5047 
5048 	if (pid < 0)
5049 		return -EINVAL;
5050 
5051 	retval = -ESRCH;
5052 	rcu_read_lock();
5053 	p = find_process_by_pid(pid);
5054 	if (!p)
5055 		goto out_unlock;
5056 
5057 	retval = security_task_getscheduler(p);
5058 	if (retval)
5059 		goto out_unlock;
5060 
5061 	rq = task_rq_lock(p, &rf);
5062 	time_slice = 0;
5063 	if (p->sched_class->get_rr_interval)
5064 		time_slice = p->sched_class->get_rr_interval(rq, p);
5065 	task_rq_unlock(rq, p, &rf);
5066 
5067 	rcu_read_unlock();
5068 	jiffies_to_timespec(time_slice, &t);
5069 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5070 	return retval;
5071 
5072 out_unlock:
5073 	rcu_read_unlock();
5074 	return retval;
5075 }
5076 
5077 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5078 
5079 void sched_show_task(struct task_struct *p)
5080 {
5081 	unsigned long free = 0;
5082 	int ppid;
5083 	unsigned long state = p->state;
5084 
5085 	if (state)
5086 		state = __ffs(state) + 1;
5087 	printk(KERN_INFO "%-15.15s %c", p->comm,
5088 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5089 #if BITS_PER_LONG == 32
5090 	if (state == TASK_RUNNING)
5091 		printk(KERN_CONT " running  ");
5092 	else
5093 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5094 #else
5095 	if (state == TASK_RUNNING)
5096 		printk(KERN_CONT "  running task    ");
5097 	else
5098 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5099 #endif
5100 #ifdef CONFIG_DEBUG_STACK_USAGE
5101 	free = stack_not_used(p);
5102 #endif
5103 	ppid = 0;
5104 	rcu_read_lock();
5105 	if (pid_alive(p))
5106 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5107 	rcu_read_unlock();
5108 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5109 		task_pid_nr(p), ppid,
5110 		(unsigned long)task_thread_info(p)->flags);
5111 
5112 	print_worker_info(KERN_INFO, p);
5113 	show_stack(p, NULL);
5114 }
5115 
5116 void show_state_filter(unsigned long state_filter)
5117 {
5118 	struct task_struct *g, *p;
5119 
5120 #if BITS_PER_LONG == 32
5121 	printk(KERN_INFO
5122 		"  task                PC stack   pid father\n");
5123 #else
5124 	printk(KERN_INFO
5125 		"  task                        PC stack   pid father\n");
5126 #endif
5127 	rcu_read_lock();
5128 	for_each_process_thread(g, p) {
5129 		/*
5130 		 * reset the NMI-timeout, listing all files on a slow
5131 		 * console might take a lot of time:
5132 		 */
5133 		touch_nmi_watchdog();
5134 		if (!state_filter || (p->state & state_filter))
5135 			sched_show_task(p);
5136 	}
5137 
5138 	touch_all_softlockup_watchdogs();
5139 
5140 #ifdef CONFIG_SCHED_DEBUG
5141 	if (!state_filter)
5142 		sysrq_sched_debug_show();
5143 #endif
5144 	rcu_read_unlock();
5145 	/*
5146 	 * Only show locks if all tasks are dumped:
5147 	 */
5148 	if (!state_filter)
5149 		debug_show_all_locks();
5150 }
5151 
5152 void init_idle_bootup_task(struct task_struct *idle)
5153 {
5154 	idle->sched_class = &idle_sched_class;
5155 }
5156 
5157 /**
5158  * init_idle - set up an idle thread for a given CPU
5159  * @idle: task in question
5160  * @cpu: cpu the idle task belongs to
5161  *
5162  * NOTE: this function does not set the idle thread's NEED_RESCHED
5163  * flag, to make booting more robust.
5164  */
5165 void init_idle(struct task_struct *idle, int cpu)
5166 {
5167 	struct rq *rq = cpu_rq(cpu);
5168 	unsigned long flags;
5169 
5170 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5171 	raw_spin_lock(&rq->lock);
5172 
5173 	__sched_fork(0, idle);
5174 	idle->state = TASK_RUNNING;
5175 	idle->se.exec_start = sched_clock();
5176 
5177 	kasan_unpoison_task_stack(idle);
5178 
5179 #ifdef CONFIG_SMP
5180 	/*
5181 	 * Its possible that init_idle() gets called multiple times on a task,
5182 	 * in that case do_set_cpus_allowed() will not do the right thing.
5183 	 *
5184 	 * And since this is boot we can forgo the serialization.
5185 	 */
5186 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5187 #endif
5188 	/*
5189 	 * We're having a chicken and egg problem, even though we are
5190 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5191 	 * lockdep check in task_group() will fail.
5192 	 *
5193 	 * Similar case to sched_fork(). / Alternatively we could
5194 	 * use task_rq_lock() here and obtain the other rq->lock.
5195 	 *
5196 	 * Silence PROVE_RCU
5197 	 */
5198 	rcu_read_lock();
5199 	__set_task_cpu(idle, cpu);
5200 	rcu_read_unlock();
5201 
5202 	rq->curr = rq->idle = idle;
5203 	idle->on_rq = TASK_ON_RQ_QUEUED;
5204 #ifdef CONFIG_SMP
5205 	idle->on_cpu = 1;
5206 #endif
5207 	raw_spin_unlock(&rq->lock);
5208 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5209 
5210 	/* Set the preempt count _outside_ the spinlocks! */
5211 	init_idle_preempt_count(idle, cpu);
5212 
5213 	/*
5214 	 * The idle tasks have their own, simple scheduling class:
5215 	 */
5216 	idle->sched_class = &idle_sched_class;
5217 	ftrace_graph_init_idle_task(idle, cpu);
5218 	vtime_init_idle(idle, cpu);
5219 #ifdef CONFIG_SMP
5220 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5221 #endif
5222 }
5223 
5224 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5225 			      const struct cpumask *trial)
5226 {
5227 	int ret = 1, trial_cpus;
5228 	struct dl_bw *cur_dl_b;
5229 	unsigned long flags;
5230 
5231 	if (!cpumask_weight(cur))
5232 		return ret;
5233 
5234 	rcu_read_lock_sched();
5235 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5236 	trial_cpus = cpumask_weight(trial);
5237 
5238 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5239 	if (cur_dl_b->bw != -1 &&
5240 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5241 		ret = 0;
5242 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5243 	rcu_read_unlock_sched();
5244 
5245 	return ret;
5246 }
5247 
5248 int task_can_attach(struct task_struct *p,
5249 		    const struct cpumask *cs_cpus_allowed)
5250 {
5251 	int ret = 0;
5252 
5253 	/*
5254 	 * Kthreads which disallow setaffinity shouldn't be moved
5255 	 * to a new cpuset; we don't want to change their cpu
5256 	 * affinity and isolating such threads by their set of
5257 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5258 	 * applicable for such threads.  This prevents checking for
5259 	 * success of set_cpus_allowed_ptr() on all attached tasks
5260 	 * before cpus_allowed may be changed.
5261 	 */
5262 	if (p->flags & PF_NO_SETAFFINITY) {
5263 		ret = -EINVAL;
5264 		goto out;
5265 	}
5266 
5267 #ifdef CONFIG_SMP
5268 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5269 					      cs_cpus_allowed)) {
5270 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5271 							cs_cpus_allowed);
5272 		struct dl_bw *dl_b;
5273 		bool overflow;
5274 		int cpus;
5275 		unsigned long flags;
5276 
5277 		rcu_read_lock_sched();
5278 		dl_b = dl_bw_of(dest_cpu);
5279 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5280 		cpus = dl_bw_cpus(dest_cpu);
5281 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5282 		if (overflow)
5283 			ret = -EBUSY;
5284 		else {
5285 			/*
5286 			 * We reserve space for this task in the destination
5287 			 * root_domain, as we can't fail after this point.
5288 			 * We will free resources in the source root_domain
5289 			 * later on (see set_cpus_allowed_dl()).
5290 			 */
5291 			__dl_add(dl_b, p->dl.dl_bw);
5292 		}
5293 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5294 		rcu_read_unlock_sched();
5295 
5296 	}
5297 #endif
5298 out:
5299 	return ret;
5300 }
5301 
5302 #ifdef CONFIG_SMP
5303 
5304 static bool sched_smp_initialized __read_mostly;
5305 
5306 #ifdef CONFIG_NUMA_BALANCING
5307 /* Migrate current task p to target_cpu */
5308 int migrate_task_to(struct task_struct *p, int target_cpu)
5309 {
5310 	struct migration_arg arg = { p, target_cpu };
5311 	int curr_cpu = task_cpu(p);
5312 
5313 	if (curr_cpu == target_cpu)
5314 		return 0;
5315 
5316 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5317 		return -EINVAL;
5318 
5319 	/* TODO: This is not properly updating schedstats */
5320 
5321 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5322 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5323 }
5324 
5325 /*
5326  * Requeue a task on a given node and accurately track the number of NUMA
5327  * tasks on the runqueues
5328  */
5329 void sched_setnuma(struct task_struct *p, int nid)
5330 {
5331 	bool queued, running;
5332 	struct rq_flags rf;
5333 	struct rq *rq;
5334 
5335 	rq = task_rq_lock(p, &rf);
5336 	queued = task_on_rq_queued(p);
5337 	running = task_current(rq, p);
5338 
5339 	if (queued)
5340 		dequeue_task(rq, p, DEQUEUE_SAVE);
5341 	if (running)
5342 		put_prev_task(rq, p);
5343 
5344 	p->numa_preferred_nid = nid;
5345 
5346 	if (running)
5347 		p->sched_class->set_curr_task(rq);
5348 	if (queued)
5349 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5350 	task_rq_unlock(rq, p, &rf);
5351 }
5352 #endif /* CONFIG_NUMA_BALANCING */
5353 
5354 #ifdef CONFIG_HOTPLUG_CPU
5355 /*
5356  * Ensures that the idle task is using init_mm right before its cpu goes
5357  * offline.
5358  */
5359 void idle_task_exit(void)
5360 {
5361 	struct mm_struct *mm = current->active_mm;
5362 
5363 	BUG_ON(cpu_online(smp_processor_id()));
5364 
5365 	if (mm != &init_mm) {
5366 		switch_mm_irqs_off(mm, &init_mm, current);
5367 		finish_arch_post_lock_switch();
5368 	}
5369 	mmdrop(mm);
5370 }
5371 
5372 /*
5373  * Since this CPU is going 'away' for a while, fold any nr_active delta
5374  * we might have. Assumes we're called after migrate_tasks() so that the
5375  * nr_active count is stable.
5376  *
5377  * Also see the comment "Global load-average calculations".
5378  */
5379 static void calc_load_migrate(struct rq *rq)
5380 {
5381 	long delta = calc_load_fold_active(rq);
5382 	if (delta)
5383 		atomic_long_add(delta, &calc_load_tasks);
5384 }
5385 
5386 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5387 {
5388 }
5389 
5390 static const struct sched_class fake_sched_class = {
5391 	.put_prev_task = put_prev_task_fake,
5392 };
5393 
5394 static struct task_struct fake_task = {
5395 	/*
5396 	 * Avoid pull_{rt,dl}_task()
5397 	 */
5398 	.prio = MAX_PRIO + 1,
5399 	.sched_class = &fake_sched_class,
5400 };
5401 
5402 /*
5403  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5404  * try_to_wake_up()->select_task_rq().
5405  *
5406  * Called with rq->lock held even though we'er in stop_machine() and
5407  * there's no concurrency possible, we hold the required locks anyway
5408  * because of lock validation efforts.
5409  */
5410 static void migrate_tasks(struct rq *dead_rq)
5411 {
5412 	struct rq *rq = dead_rq;
5413 	struct task_struct *next, *stop = rq->stop;
5414 	struct pin_cookie cookie;
5415 	int dest_cpu;
5416 
5417 	/*
5418 	 * Fudge the rq selection such that the below task selection loop
5419 	 * doesn't get stuck on the currently eligible stop task.
5420 	 *
5421 	 * We're currently inside stop_machine() and the rq is either stuck
5422 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5423 	 * either way we should never end up calling schedule() until we're
5424 	 * done here.
5425 	 */
5426 	rq->stop = NULL;
5427 
5428 	/*
5429 	 * put_prev_task() and pick_next_task() sched
5430 	 * class method both need to have an up-to-date
5431 	 * value of rq->clock[_task]
5432 	 */
5433 	update_rq_clock(rq);
5434 
5435 	for (;;) {
5436 		/*
5437 		 * There's this thread running, bail when that's the only
5438 		 * remaining thread.
5439 		 */
5440 		if (rq->nr_running == 1)
5441 			break;
5442 
5443 		/*
5444 		 * pick_next_task assumes pinned rq->lock.
5445 		 */
5446 		cookie = lockdep_pin_lock(&rq->lock);
5447 		next = pick_next_task(rq, &fake_task, cookie);
5448 		BUG_ON(!next);
5449 		next->sched_class->put_prev_task(rq, next);
5450 
5451 		/*
5452 		 * Rules for changing task_struct::cpus_allowed are holding
5453 		 * both pi_lock and rq->lock, such that holding either
5454 		 * stabilizes the mask.
5455 		 *
5456 		 * Drop rq->lock is not quite as disastrous as it usually is
5457 		 * because !cpu_active at this point, which means load-balance
5458 		 * will not interfere. Also, stop-machine.
5459 		 */
5460 		lockdep_unpin_lock(&rq->lock, cookie);
5461 		raw_spin_unlock(&rq->lock);
5462 		raw_spin_lock(&next->pi_lock);
5463 		raw_spin_lock(&rq->lock);
5464 
5465 		/*
5466 		 * Since we're inside stop-machine, _nothing_ should have
5467 		 * changed the task, WARN if weird stuff happened, because in
5468 		 * that case the above rq->lock drop is a fail too.
5469 		 */
5470 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5471 			raw_spin_unlock(&next->pi_lock);
5472 			continue;
5473 		}
5474 
5475 		/* Find suitable destination for @next, with force if needed. */
5476 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5477 
5478 		rq = __migrate_task(rq, next, dest_cpu);
5479 		if (rq != dead_rq) {
5480 			raw_spin_unlock(&rq->lock);
5481 			rq = dead_rq;
5482 			raw_spin_lock(&rq->lock);
5483 		}
5484 		raw_spin_unlock(&next->pi_lock);
5485 	}
5486 
5487 	rq->stop = stop;
5488 }
5489 #endif /* CONFIG_HOTPLUG_CPU */
5490 
5491 static void set_rq_online(struct rq *rq)
5492 {
5493 	if (!rq->online) {
5494 		const struct sched_class *class;
5495 
5496 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5497 		rq->online = 1;
5498 
5499 		for_each_class(class) {
5500 			if (class->rq_online)
5501 				class->rq_online(rq);
5502 		}
5503 	}
5504 }
5505 
5506 static void set_rq_offline(struct rq *rq)
5507 {
5508 	if (rq->online) {
5509 		const struct sched_class *class;
5510 
5511 		for_each_class(class) {
5512 			if (class->rq_offline)
5513 				class->rq_offline(rq);
5514 		}
5515 
5516 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5517 		rq->online = 0;
5518 	}
5519 }
5520 
5521 static void set_cpu_rq_start_time(unsigned int cpu)
5522 {
5523 	struct rq *rq = cpu_rq(cpu);
5524 
5525 	rq->age_stamp = sched_clock_cpu(cpu);
5526 }
5527 
5528 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5529 
5530 #ifdef CONFIG_SCHED_DEBUG
5531 
5532 static __read_mostly int sched_debug_enabled;
5533 
5534 static int __init sched_debug_setup(char *str)
5535 {
5536 	sched_debug_enabled = 1;
5537 
5538 	return 0;
5539 }
5540 early_param("sched_debug", sched_debug_setup);
5541 
5542 static inline bool sched_debug(void)
5543 {
5544 	return sched_debug_enabled;
5545 }
5546 
5547 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5548 				  struct cpumask *groupmask)
5549 {
5550 	struct sched_group *group = sd->groups;
5551 
5552 	cpumask_clear(groupmask);
5553 
5554 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5555 
5556 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5557 		printk("does not load-balance\n");
5558 		if (sd->parent)
5559 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5560 					" has parent");
5561 		return -1;
5562 	}
5563 
5564 	printk(KERN_CONT "span %*pbl level %s\n",
5565 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5566 
5567 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5568 		printk(KERN_ERR "ERROR: domain->span does not contain "
5569 				"CPU%d\n", cpu);
5570 	}
5571 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5572 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5573 				" CPU%d\n", cpu);
5574 	}
5575 
5576 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5577 	do {
5578 		if (!group) {
5579 			printk("\n");
5580 			printk(KERN_ERR "ERROR: group is NULL\n");
5581 			break;
5582 		}
5583 
5584 		if (!cpumask_weight(sched_group_cpus(group))) {
5585 			printk(KERN_CONT "\n");
5586 			printk(KERN_ERR "ERROR: empty group\n");
5587 			break;
5588 		}
5589 
5590 		if (!(sd->flags & SD_OVERLAP) &&
5591 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5592 			printk(KERN_CONT "\n");
5593 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5594 			break;
5595 		}
5596 
5597 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5598 
5599 		printk(KERN_CONT " %*pbl",
5600 		       cpumask_pr_args(sched_group_cpus(group)));
5601 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5602 			printk(KERN_CONT " (cpu_capacity = %d)",
5603 				group->sgc->capacity);
5604 		}
5605 
5606 		group = group->next;
5607 	} while (group != sd->groups);
5608 	printk(KERN_CONT "\n");
5609 
5610 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5611 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5612 
5613 	if (sd->parent &&
5614 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5615 		printk(KERN_ERR "ERROR: parent span is not a superset "
5616 			"of domain->span\n");
5617 	return 0;
5618 }
5619 
5620 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5621 {
5622 	int level = 0;
5623 
5624 	if (!sched_debug_enabled)
5625 		return;
5626 
5627 	if (!sd) {
5628 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5629 		return;
5630 	}
5631 
5632 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5633 
5634 	for (;;) {
5635 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5636 			break;
5637 		level++;
5638 		sd = sd->parent;
5639 		if (!sd)
5640 			break;
5641 	}
5642 }
5643 #else /* !CONFIG_SCHED_DEBUG */
5644 # define sched_domain_debug(sd, cpu) do { } while (0)
5645 static inline bool sched_debug(void)
5646 {
5647 	return false;
5648 }
5649 #endif /* CONFIG_SCHED_DEBUG */
5650 
5651 static int sd_degenerate(struct sched_domain *sd)
5652 {
5653 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5654 		return 1;
5655 
5656 	/* Following flags need at least 2 groups */
5657 	if (sd->flags & (SD_LOAD_BALANCE |
5658 			 SD_BALANCE_NEWIDLE |
5659 			 SD_BALANCE_FORK |
5660 			 SD_BALANCE_EXEC |
5661 			 SD_SHARE_CPUCAPACITY |
5662 			 SD_SHARE_PKG_RESOURCES |
5663 			 SD_SHARE_POWERDOMAIN)) {
5664 		if (sd->groups != sd->groups->next)
5665 			return 0;
5666 	}
5667 
5668 	/* Following flags don't use groups */
5669 	if (sd->flags & (SD_WAKE_AFFINE))
5670 		return 0;
5671 
5672 	return 1;
5673 }
5674 
5675 static int
5676 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5677 {
5678 	unsigned long cflags = sd->flags, pflags = parent->flags;
5679 
5680 	if (sd_degenerate(parent))
5681 		return 1;
5682 
5683 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5684 		return 0;
5685 
5686 	/* Flags needing groups don't count if only 1 group in parent */
5687 	if (parent->groups == parent->groups->next) {
5688 		pflags &= ~(SD_LOAD_BALANCE |
5689 				SD_BALANCE_NEWIDLE |
5690 				SD_BALANCE_FORK |
5691 				SD_BALANCE_EXEC |
5692 				SD_SHARE_CPUCAPACITY |
5693 				SD_SHARE_PKG_RESOURCES |
5694 				SD_PREFER_SIBLING |
5695 				SD_SHARE_POWERDOMAIN);
5696 		if (nr_node_ids == 1)
5697 			pflags &= ~SD_SERIALIZE;
5698 	}
5699 	if (~cflags & pflags)
5700 		return 0;
5701 
5702 	return 1;
5703 }
5704 
5705 static void free_rootdomain(struct rcu_head *rcu)
5706 {
5707 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5708 
5709 	cpupri_cleanup(&rd->cpupri);
5710 	cpudl_cleanup(&rd->cpudl);
5711 	free_cpumask_var(rd->dlo_mask);
5712 	free_cpumask_var(rd->rto_mask);
5713 	free_cpumask_var(rd->online);
5714 	free_cpumask_var(rd->span);
5715 	kfree(rd);
5716 }
5717 
5718 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5719 {
5720 	struct root_domain *old_rd = NULL;
5721 	unsigned long flags;
5722 
5723 	raw_spin_lock_irqsave(&rq->lock, flags);
5724 
5725 	if (rq->rd) {
5726 		old_rd = rq->rd;
5727 
5728 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5729 			set_rq_offline(rq);
5730 
5731 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5732 
5733 		/*
5734 		 * If we dont want to free the old_rd yet then
5735 		 * set old_rd to NULL to skip the freeing later
5736 		 * in this function:
5737 		 */
5738 		if (!atomic_dec_and_test(&old_rd->refcount))
5739 			old_rd = NULL;
5740 	}
5741 
5742 	atomic_inc(&rd->refcount);
5743 	rq->rd = rd;
5744 
5745 	cpumask_set_cpu(rq->cpu, rd->span);
5746 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5747 		set_rq_online(rq);
5748 
5749 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5750 
5751 	if (old_rd)
5752 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5753 }
5754 
5755 static int init_rootdomain(struct root_domain *rd)
5756 {
5757 	memset(rd, 0, sizeof(*rd));
5758 
5759 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5760 		goto out;
5761 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5762 		goto free_span;
5763 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5764 		goto free_online;
5765 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5766 		goto free_dlo_mask;
5767 
5768 	init_dl_bw(&rd->dl_bw);
5769 	if (cpudl_init(&rd->cpudl) != 0)
5770 		goto free_dlo_mask;
5771 
5772 	if (cpupri_init(&rd->cpupri) != 0)
5773 		goto free_rto_mask;
5774 	return 0;
5775 
5776 free_rto_mask:
5777 	free_cpumask_var(rd->rto_mask);
5778 free_dlo_mask:
5779 	free_cpumask_var(rd->dlo_mask);
5780 free_online:
5781 	free_cpumask_var(rd->online);
5782 free_span:
5783 	free_cpumask_var(rd->span);
5784 out:
5785 	return -ENOMEM;
5786 }
5787 
5788 /*
5789  * By default the system creates a single root-domain with all cpus as
5790  * members (mimicking the global state we have today).
5791  */
5792 struct root_domain def_root_domain;
5793 
5794 static void init_defrootdomain(void)
5795 {
5796 	init_rootdomain(&def_root_domain);
5797 
5798 	atomic_set(&def_root_domain.refcount, 1);
5799 }
5800 
5801 static struct root_domain *alloc_rootdomain(void)
5802 {
5803 	struct root_domain *rd;
5804 
5805 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5806 	if (!rd)
5807 		return NULL;
5808 
5809 	if (init_rootdomain(rd) != 0) {
5810 		kfree(rd);
5811 		return NULL;
5812 	}
5813 
5814 	return rd;
5815 }
5816 
5817 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5818 {
5819 	struct sched_group *tmp, *first;
5820 
5821 	if (!sg)
5822 		return;
5823 
5824 	first = sg;
5825 	do {
5826 		tmp = sg->next;
5827 
5828 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5829 			kfree(sg->sgc);
5830 
5831 		kfree(sg);
5832 		sg = tmp;
5833 	} while (sg != first);
5834 }
5835 
5836 static void free_sched_domain(struct rcu_head *rcu)
5837 {
5838 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5839 
5840 	/*
5841 	 * If its an overlapping domain it has private groups, iterate and
5842 	 * nuke them all.
5843 	 */
5844 	if (sd->flags & SD_OVERLAP) {
5845 		free_sched_groups(sd->groups, 1);
5846 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5847 		kfree(sd->groups->sgc);
5848 		kfree(sd->groups);
5849 	}
5850 	kfree(sd);
5851 }
5852 
5853 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5854 {
5855 	call_rcu(&sd->rcu, free_sched_domain);
5856 }
5857 
5858 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5859 {
5860 	for (; sd; sd = sd->parent)
5861 		destroy_sched_domain(sd, cpu);
5862 }
5863 
5864 /*
5865  * Keep a special pointer to the highest sched_domain that has
5866  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5867  * allows us to avoid some pointer chasing select_idle_sibling().
5868  *
5869  * Also keep a unique ID per domain (we use the first cpu number in
5870  * the cpumask of the domain), this allows us to quickly tell if
5871  * two cpus are in the same cache domain, see cpus_share_cache().
5872  */
5873 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5874 DEFINE_PER_CPU(int, sd_llc_size);
5875 DEFINE_PER_CPU(int, sd_llc_id);
5876 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5877 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5878 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5879 
5880 static void update_top_cache_domain(int cpu)
5881 {
5882 	struct sched_domain *sd;
5883 	struct sched_domain *busy_sd = NULL;
5884 	int id = cpu;
5885 	int size = 1;
5886 
5887 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5888 	if (sd) {
5889 		id = cpumask_first(sched_domain_span(sd));
5890 		size = cpumask_weight(sched_domain_span(sd));
5891 		busy_sd = sd->parent; /* sd_busy */
5892 	}
5893 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5894 
5895 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5896 	per_cpu(sd_llc_size, cpu) = size;
5897 	per_cpu(sd_llc_id, cpu) = id;
5898 
5899 	sd = lowest_flag_domain(cpu, SD_NUMA);
5900 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5901 
5902 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5903 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5904 }
5905 
5906 /*
5907  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5908  * hold the hotplug lock.
5909  */
5910 static void
5911 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5912 {
5913 	struct rq *rq = cpu_rq(cpu);
5914 	struct sched_domain *tmp;
5915 
5916 	/* Remove the sched domains which do not contribute to scheduling. */
5917 	for (tmp = sd; tmp; ) {
5918 		struct sched_domain *parent = tmp->parent;
5919 		if (!parent)
5920 			break;
5921 
5922 		if (sd_parent_degenerate(tmp, parent)) {
5923 			tmp->parent = parent->parent;
5924 			if (parent->parent)
5925 				parent->parent->child = tmp;
5926 			/*
5927 			 * Transfer SD_PREFER_SIBLING down in case of a
5928 			 * degenerate parent; the spans match for this
5929 			 * so the property transfers.
5930 			 */
5931 			if (parent->flags & SD_PREFER_SIBLING)
5932 				tmp->flags |= SD_PREFER_SIBLING;
5933 			destroy_sched_domain(parent, cpu);
5934 		} else
5935 			tmp = tmp->parent;
5936 	}
5937 
5938 	if (sd && sd_degenerate(sd)) {
5939 		tmp = sd;
5940 		sd = sd->parent;
5941 		destroy_sched_domain(tmp, cpu);
5942 		if (sd)
5943 			sd->child = NULL;
5944 	}
5945 
5946 	sched_domain_debug(sd, cpu);
5947 
5948 	rq_attach_root(rq, rd);
5949 	tmp = rq->sd;
5950 	rcu_assign_pointer(rq->sd, sd);
5951 	destroy_sched_domains(tmp, cpu);
5952 
5953 	update_top_cache_domain(cpu);
5954 }
5955 
5956 /* Setup the mask of cpus configured for isolated domains */
5957 static int __init isolated_cpu_setup(char *str)
5958 {
5959 	int ret;
5960 
5961 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5962 	ret = cpulist_parse(str, cpu_isolated_map);
5963 	if (ret) {
5964 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5965 		return 0;
5966 	}
5967 	return 1;
5968 }
5969 __setup("isolcpus=", isolated_cpu_setup);
5970 
5971 struct s_data {
5972 	struct sched_domain ** __percpu sd;
5973 	struct root_domain	*rd;
5974 };
5975 
5976 enum s_alloc {
5977 	sa_rootdomain,
5978 	sa_sd,
5979 	sa_sd_storage,
5980 	sa_none,
5981 };
5982 
5983 /*
5984  * Build an iteration mask that can exclude certain CPUs from the upwards
5985  * domain traversal.
5986  *
5987  * Asymmetric node setups can result in situations where the domain tree is of
5988  * unequal depth, make sure to skip domains that already cover the entire
5989  * range.
5990  *
5991  * In that case build_sched_domains() will have terminated the iteration early
5992  * and our sibling sd spans will be empty. Domains should always include the
5993  * cpu they're built on, so check that.
5994  *
5995  */
5996 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5997 {
5998 	const struct cpumask *span = sched_domain_span(sd);
5999 	struct sd_data *sdd = sd->private;
6000 	struct sched_domain *sibling;
6001 	int i;
6002 
6003 	for_each_cpu(i, span) {
6004 		sibling = *per_cpu_ptr(sdd->sd, i);
6005 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6006 			continue;
6007 
6008 		cpumask_set_cpu(i, sched_group_mask(sg));
6009 	}
6010 }
6011 
6012 /*
6013  * Return the canonical balance cpu for this group, this is the first cpu
6014  * of this group that's also in the iteration mask.
6015  */
6016 int group_balance_cpu(struct sched_group *sg)
6017 {
6018 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6019 }
6020 
6021 static int
6022 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6023 {
6024 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6025 	const struct cpumask *span = sched_domain_span(sd);
6026 	struct cpumask *covered = sched_domains_tmpmask;
6027 	struct sd_data *sdd = sd->private;
6028 	struct sched_domain *sibling;
6029 	int i;
6030 
6031 	cpumask_clear(covered);
6032 
6033 	for_each_cpu(i, span) {
6034 		struct cpumask *sg_span;
6035 
6036 		if (cpumask_test_cpu(i, covered))
6037 			continue;
6038 
6039 		sibling = *per_cpu_ptr(sdd->sd, i);
6040 
6041 		/* See the comment near build_group_mask(). */
6042 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6043 			continue;
6044 
6045 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6046 				GFP_KERNEL, cpu_to_node(cpu));
6047 
6048 		if (!sg)
6049 			goto fail;
6050 
6051 		sg_span = sched_group_cpus(sg);
6052 		if (sibling->child)
6053 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6054 		else
6055 			cpumask_set_cpu(i, sg_span);
6056 
6057 		cpumask_or(covered, covered, sg_span);
6058 
6059 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6060 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6061 			build_group_mask(sd, sg);
6062 
6063 		/*
6064 		 * Initialize sgc->capacity such that even if we mess up the
6065 		 * domains and no possible iteration will get us here, we won't
6066 		 * die on a /0 trap.
6067 		 */
6068 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6069 
6070 		/*
6071 		 * Make sure the first group of this domain contains the
6072 		 * canonical balance cpu. Otherwise the sched_domain iteration
6073 		 * breaks. See update_sg_lb_stats().
6074 		 */
6075 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6076 		    group_balance_cpu(sg) == cpu)
6077 			groups = sg;
6078 
6079 		if (!first)
6080 			first = sg;
6081 		if (last)
6082 			last->next = sg;
6083 		last = sg;
6084 		last->next = first;
6085 	}
6086 	sd->groups = groups;
6087 
6088 	return 0;
6089 
6090 fail:
6091 	free_sched_groups(first, 0);
6092 
6093 	return -ENOMEM;
6094 }
6095 
6096 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6097 {
6098 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6099 	struct sched_domain *child = sd->child;
6100 
6101 	if (child)
6102 		cpu = cpumask_first(sched_domain_span(child));
6103 
6104 	if (sg) {
6105 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6106 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6107 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6108 	}
6109 
6110 	return cpu;
6111 }
6112 
6113 /*
6114  * build_sched_groups will build a circular linked list of the groups
6115  * covered by the given span, and will set each group's ->cpumask correctly,
6116  * and ->cpu_capacity to 0.
6117  *
6118  * Assumes the sched_domain tree is fully constructed
6119  */
6120 static int
6121 build_sched_groups(struct sched_domain *sd, int cpu)
6122 {
6123 	struct sched_group *first = NULL, *last = NULL;
6124 	struct sd_data *sdd = sd->private;
6125 	const struct cpumask *span = sched_domain_span(sd);
6126 	struct cpumask *covered;
6127 	int i;
6128 
6129 	get_group(cpu, sdd, &sd->groups);
6130 	atomic_inc(&sd->groups->ref);
6131 
6132 	if (cpu != cpumask_first(span))
6133 		return 0;
6134 
6135 	lockdep_assert_held(&sched_domains_mutex);
6136 	covered = sched_domains_tmpmask;
6137 
6138 	cpumask_clear(covered);
6139 
6140 	for_each_cpu(i, span) {
6141 		struct sched_group *sg;
6142 		int group, j;
6143 
6144 		if (cpumask_test_cpu(i, covered))
6145 			continue;
6146 
6147 		group = get_group(i, sdd, &sg);
6148 		cpumask_setall(sched_group_mask(sg));
6149 
6150 		for_each_cpu(j, span) {
6151 			if (get_group(j, sdd, NULL) != group)
6152 				continue;
6153 
6154 			cpumask_set_cpu(j, covered);
6155 			cpumask_set_cpu(j, sched_group_cpus(sg));
6156 		}
6157 
6158 		if (!first)
6159 			first = sg;
6160 		if (last)
6161 			last->next = sg;
6162 		last = sg;
6163 	}
6164 	last->next = first;
6165 
6166 	return 0;
6167 }
6168 
6169 /*
6170  * Initialize sched groups cpu_capacity.
6171  *
6172  * cpu_capacity indicates the capacity of sched group, which is used while
6173  * distributing the load between different sched groups in a sched domain.
6174  * Typically cpu_capacity for all the groups in a sched domain will be same
6175  * unless there are asymmetries in the topology. If there are asymmetries,
6176  * group having more cpu_capacity will pickup more load compared to the
6177  * group having less cpu_capacity.
6178  */
6179 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6180 {
6181 	struct sched_group *sg = sd->groups;
6182 
6183 	WARN_ON(!sg);
6184 
6185 	do {
6186 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6187 		sg = sg->next;
6188 	} while (sg != sd->groups);
6189 
6190 	if (cpu != group_balance_cpu(sg))
6191 		return;
6192 
6193 	update_group_capacity(sd, cpu);
6194 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6195 }
6196 
6197 /*
6198  * Initializers for schedule domains
6199  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6200  */
6201 
6202 static int default_relax_domain_level = -1;
6203 int sched_domain_level_max;
6204 
6205 static int __init setup_relax_domain_level(char *str)
6206 {
6207 	if (kstrtoint(str, 0, &default_relax_domain_level))
6208 		pr_warn("Unable to set relax_domain_level\n");
6209 
6210 	return 1;
6211 }
6212 __setup("relax_domain_level=", setup_relax_domain_level);
6213 
6214 static void set_domain_attribute(struct sched_domain *sd,
6215 				 struct sched_domain_attr *attr)
6216 {
6217 	int request;
6218 
6219 	if (!attr || attr->relax_domain_level < 0) {
6220 		if (default_relax_domain_level < 0)
6221 			return;
6222 		else
6223 			request = default_relax_domain_level;
6224 	} else
6225 		request = attr->relax_domain_level;
6226 	if (request < sd->level) {
6227 		/* turn off idle balance on this domain */
6228 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6229 	} else {
6230 		/* turn on idle balance on this domain */
6231 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6232 	}
6233 }
6234 
6235 static void __sdt_free(const struct cpumask *cpu_map);
6236 static int __sdt_alloc(const struct cpumask *cpu_map);
6237 
6238 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6239 				 const struct cpumask *cpu_map)
6240 {
6241 	switch (what) {
6242 	case sa_rootdomain:
6243 		if (!atomic_read(&d->rd->refcount))
6244 			free_rootdomain(&d->rd->rcu); /* fall through */
6245 	case sa_sd:
6246 		free_percpu(d->sd); /* fall through */
6247 	case sa_sd_storage:
6248 		__sdt_free(cpu_map); /* fall through */
6249 	case sa_none:
6250 		break;
6251 	}
6252 }
6253 
6254 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6255 						   const struct cpumask *cpu_map)
6256 {
6257 	memset(d, 0, sizeof(*d));
6258 
6259 	if (__sdt_alloc(cpu_map))
6260 		return sa_sd_storage;
6261 	d->sd = alloc_percpu(struct sched_domain *);
6262 	if (!d->sd)
6263 		return sa_sd_storage;
6264 	d->rd = alloc_rootdomain();
6265 	if (!d->rd)
6266 		return sa_sd;
6267 	return sa_rootdomain;
6268 }
6269 
6270 /*
6271  * NULL the sd_data elements we've used to build the sched_domain and
6272  * sched_group structure so that the subsequent __free_domain_allocs()
6273  * will not free the data we're using.
6274  */
6275 static void claim_allocations(int cpu, struct sched_domain *sd)
6276 {
6277 	struct sd_data *sdd = sd->private;
6278 
6279 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6280 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6281 
6282 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6283 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6284 
6285 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6286 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6287 }
6288 
6289 #ifdef CONFIG_NUMA
6290 static int sched_domains_numa_levels;
6291 enum numa_topology_type sched_numa_topology_type;
6292 static int *sched_domains_numa_distance;
6293 int sched_max_numa_distance;
6294 static struct cpumask ***sched_domains_numa_masks;
6295 static int sched_domains_curr_level;
6296 #endif
6297 
6298 /*
6299  * SD_flags allowed in topology descriptions.
6300  *
6301  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6302  * SD_SHARE_PKG_RESOURCES - describes shared caches
6303  * SD_NUMA                - describes NUMA topologies
6304  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6305  *
6306  * Odd one out:
6307  * SD_ASYM_PACKING        - describes SMT quirks
6308  */
6309 #define TOPOLOGY_SD_FLAGS		\
6310 	(SD_SHARE_CPUCAPACITY |		\
6311 	 SD_SHARE_PKG_RESOURCES |	\
6312 	 SD_NUMA |			\
6313 	 SD_ASYM_PACKING |		\
6314 	 SD_SHARE_POWERDOMAIN)
6315 
6316 static struct sched_domain *
6317 sd_init(struct sched_domain_topology_level *tl, int cpu)
6318 {
6319 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6320 	int sd_weight, sd_flags = 0;
6321 
6322 #ifdef CONFIG_NUMA
6323 	/*
6324 	 * Ugly hack to pass state to sd_numa_mask()...
6325 	 */
6326 	sched_domains_curr_level = tl->numa_level;
6327 #endif
6328 
6329 	sd_weight = cpumask_weight(tl->mask(cpu));
6330 
6331 	if (tl->sd_flags)
6332 		sd_flags = (*tl->sd_flags)();
6333 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6334 			"wrong sd_flags in topology description\n"))
6335 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6336 
6337 	*sd = (struct sched_domain){
6338 		.min_interval		= sd_weight,
6339 		.max_interval		= 2*sd_weight,
6340 		.busy_factor		= 32,
6341 		.imbalance_pct		= 125,
6342 
6343 		.cache_nice_tries	= 0,
6344 		.busy_idx		= 0,
6345 		.idle_idx		= 0,
6346 		.newidle_idx		= 0,
6347 		.wake_idx		= 0,
6348 		.forkexec_idx		= 0,
6349 
6350 		.flags			= 1*SD_LOAD_BALANCE
6351 					| 1*SD_BALANCE_NEWIDLE
6352 					| 1*SD_BALANCE_EXEC
6353 					| 1*SD_BALANCE_FORK
6354 					| 0*SD_BALANCE_WAKE
6355 					| 1*SD_WAKE_AFFINE
6356 					| 0*SD_SHARE_CPUCAPACITY
6357 					| 0*SD_SHARE_PKG_RESOURCES
6358 					| 0*SD_SERIALIZE
6359 					| 0*SD_PREFER_SIBLING
6360 					| 0*SD_NUMA
6361 					| sd_flags
6362 					,
6363 
6364 		.last_balance		= jiffies,
6365 		.balance_interval	= sd_weight,
6366 		.smt_gain		= 0,
6367 		.max_newidle_lb_cost	= 0,
6368 		.next_decay_max_lb_cost	= jiffies,
6369 #ifdef CONFIG_SCHED_DEBUG
6370 		.name			= tl->name,
6371 #endif
6372 	};
6373 
6374 	/*
6375 	 * Convert topological properties into behaviour.
6376 	 */
6377 
6378 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6379 		sd->flags |= SD_PREFER_SIBLING;
6380 		sd->imbalance_pct = 110;
6381 		sd->smt_gain = 1178; /* ~15% */
6382 
6383 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6384 		sd->imbalance_pct = 117;
6385 		sd->cache_nice_tries = 1;
6386 		sd->busy_idx = 2;
6387 
6388 #ifdef CONFIG_NUMA
6389 	} else if (sd->flags & SD_NUMA) {
6390 		sd->cache_nice_tries = 2;
6391 		sd->busy_idx = 3;
6392 		sd->idle_idx = 2;
6393 
6394 		sd->flags |= SD_SERIALIZE;
6395 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6396 			sd->flags &= ~(SD_BALANCE_EXEC |
6397 				       SD_BALANCE_FORK |
6398 				       SD_WAKE_AFFINE);
6399 		}
6400 
6401 #endif
6402 	} else {
6403 		sd->flags |= SD_PREFER_SIBLING;
6404 		sd->cache_nice_tries = 1;
6405 		sd->busy_idx = 2;
6406 		sd->idle_idx = 1;
6407 	}
6408 
6409 	sd->private = &tl->data;
6410 
6411 	return sd;
6412 }
6413 
6414 /*
6415  * Topology list, bottom-up.
6416  */
6417 static struct sched_domain_topology_level default_topology[] = {
6418 #ifdef CONFIG_SCHED_SMT
6419 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6420 #endif
6421 #ifdef CONFIG_SCHED_MC
6422 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6423 #endif
6424 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6425 	{ NULL, },
6426 };
6427 
6428 static struct sched_domain_topology_level *sched_domain_topology =
6429 	default_topology;
6430 
6431 #define for_each_sd_topology(tl)			\
6432 	for (tl = sched_domain_topology; tl->mask; tl++)
6433 
6434 void set_sched_topology(struct sched_domain_topology_level *tl)
6435 {
6436 	sched_domain_topology = tl;
6437 }
6438 
6439 #ifdef CONFIG_NUMA
6440 
6441 static const struct cpumask *sd_numa_mask(int cpu)
6442 {
6443 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6444 }
6445 
6446 static void sched_numa_warn(const char *str)
6447 {
6448 	static int done = false;
6449 	int i,j;
6450 
6451 	if (done)
6452 		return;
6453 
6454 	done = true;
6455 
6456 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6457 
6458 	for (i = 0; i < nr_node_ids; i++) {
6459 		printk(KERN_WARNING "  ");
6460 		for (j = 0; j < nr_node_ids; j++)
6461 			printk(KERN_CONT "%02d ", node_distance(i,j));
6462 		printk(KERN_CONT "\n");
6463 	}
6464 	printk(KERN_WARNING "\n");
6465 }
6466 
6467 bool find_numa_distance(int distance)
6468 {
6469 	int i;
6470 
6471 	if (distance == node_distance(0, 0))
6472 		return true;
6473 
6474 	for (i = 0; i < sched_domains_numa_levels; i++) {
6475 		if (sched_domains_numa_distance[i] == distance)
6476 			return true;
6477 	}
6478 
6479 	return false;
6480 }
6481 
6482 /*
6483  * A system can have three types of NUMA topology:
6484  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6485  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6486  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6487  *
6488  * The difference between a glueless mesh topology and a backplane
6489  * topology lies in whether communication between not directly
6490  * connected nodes goes through intermediary nodes (where programs
6491  * could run), or through backplane controllers. This affects
6492  * placement of programs.
6493  *
6494  * The type of topology can be discerned with the following tests:
6495  * - If the maximum distance between any nodes is 1 hop, the system
6496  *   is directly connected.
6497  * - If for two nodes A and B, located N > 1 hops away from each other,
6498  *   there is an intermediary node C, which is < N hops away from both
6499  *   nodes A and B, the system is a glueless mesh.
6500  */
6501 static void init_numa_topology_type(void)
6502 {
6503 	int a, b, c, n;
6504 
6505 	n = sched_max_numa_distance;
6506 
6507 	if (sched_domains_numa_levels <= 1) {
6508 		sched_numa_topology_type = NUMA_DIRECT;
6509 		return;
6510 	}
6511 
6512 	for_each_online_node(a) {
6513 		for_each_online_node(b) {
6514 			/* Find two nodes furthest removed from each other. */
6515 			if (node_distance(a, b) < n)
6516 				continue;
6517 
6518 			/* Is there an intermediary node between a and b? */
6519 			for_each_online_node(c) {
6520 				if (node_distance(a, c) < n &&
6521 				    node_distance(b, c) < n) {
6522 					sched_numa_topology_type =
6523 							NUMA_GLUELESS_MESH;
6524 					return;
6525 				}
6526 			}
6527 
6528 			sched_numa_topology_type = NUMA_BACKPLANE;
6529 			return;
6530 		}
6531 	}
6532 }
6533 
6534 static void sched_init_numa(void)
6535 {
6536 	int next_distance, curr_distance = node_distance(0, 0);
6537 	struct sched_domain_topology_level *tl;
6538 	int level = 0;
6539 	int i, j, k;
6540 
6541 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6542 	if (!sched_domains_numa_distance)
6543 		return;
6544 
6545 	/*
6546 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6547 	 * unique distances in the node_distance() table.
6548 	 *
6549 	 * Assumes node_distance(0,j) includes all distances in
6550 	 * node_distance(i,j) in order to avoid cubic time.
6551 	 */
6552 	next_distance = curr_distance;
6553 	for (i = 0; i < nr_node_ids; i++) {
6554 		for (j = 0; j < nr_node_ids; j++) {
6555 			for (k = 0; k < nr_node_ids; k++) {
6556 				int distance = node_distance(i, k);
6557 
6558 				if (distance > curr_distance &&
6559 				    (distance < next_distance ||
6560 				     next_distance == curr_distance))
6561 					next_distance = distance;
6562 
6563 				/*
6564 				 * While not a strong assumption it would be nice to know
6565 				 * about cases where if node A is connected to B, B is not
6566 				 * equally connected to A.
6567 				 */
6568 				if (sched_debug() && node_distance(k, i) != distance)
6569 					sched_numa_warn("Node-distance not symmetric");
6570 
6571 				if (sched_debug() && i && !find_numa_distance(distance))
6572 					sched_numa_warn("Node-0 not representative");
6573 			}
6574 			if (next_distance != curr_distance) {
6575 				sched_domains_numa_distance[level++] = next_distance;
6576 				sched_domains_numa_levels = level;
6577 				curr_distance = next_distance;
6578 			} else break;
6579 		}
6580 
6581 		/*
6582 		 * In case of sched_debug() we verify the above assumption.
6583 		 */
6584 		if (!sched_debug())
6585 			break;
6586 	}
6587 
6588 	if (!level)
6589 		return;
6590 
6591 	/*
6592 	 * 'level' contains the number of unique distances, excluding the
6593 	 * identity distance node_distance(i,i).
6594 	 *
6595 	 * The sched_domains_numa_distance[] array includes the actual distance
6596 	 * numbers.
6597 	 */
6598 
6599 	/*
6600 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6601 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6602 	 * the array will contain less then 'level' members. This could be
6603 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6604 	 * in other functions.
6605 	 *
6606 	 * We reset it to 'level' at the end of this function.
6607 	 */
6608 	sched_domains_numa_levels = 0;
6609 
6610 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6611 	if (!sched_domains_numa_masks)
6612 		return;
6613 
6614 	/*
6615 	 * Now for each level, construct a mask per node which contains all
6616 	 * cpus of nodes that are that many hops away from us.
6617 	 */
6618 	for (i = 0; i < level; i++) {
6619 		sched_domains_numa_masks[i] =
6620 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6621 		if (!sched_domains_numa_masks[i])
6622 			return;
6623 
6624 		for (j = 0; j < nr_node_ids; j++) {
6625 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6626 			if (!mask)
6627 				return;
6628 
6629 			sched_domains_numa_masks[i][j] = mask;
6630 
6631 			for_each_node(k) {
6632 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6633 					continue;
6634 
6635 				cpumask_or(mask, mask, cpumask_of_node(k));
6636 			}
6637 		}
6638 	}
6639 
6640 	/* Compute default topology size */
6641 	for (i = 0; sched_domain_topology[i].mask; i++);
6642 
6643 	tl = kzalloc((i + level + 1) *
6644 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6645 	if (!tl)
6646 		return;
6647 
6648 	/*
6649 	 * Copy the default topology bits..
6650 	 */
6651 	for (i = 0; sched_domain_topology[i].mask; i++)
6652 		tl[i] = sched_domain_topology[i];
6653 
6654 	/*
6655 	 * .. and append 'j' levels of NUMA goodness.
6656 	 */
6657 	for (j = 0; j < level; i++, j++) {
6658 		tl[i] = (struct sched_domain_topology_level){
6659 			.mask = sd_numa_mask,
6660 			.sd_flags = cpu_numa_flags,
6661 			.flags = SDTL_OVERLAP,
6662 			.numa_level = j,
6663 			SD_INIT_NAME(NUMA)
6664 		};
6665 	}
6666 
6667 	sched_domain_topology = tl;
6668 
6669 	sched_domains_numa_levels = level;
6670 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6671 
6672 	init_numa_topology_type();
6673 }
6674 
6675 static void sched_domains_numa_masks_set(unsigned int cpu)
6676 {
6677 	int node = cpu_to_node(cpu);
6678 	int i, j;
6679 
6680 	for (i = 0; i < sched_domains_numa_levels; i++) {
6681 		for (j = 0; j < nr_node_ids; j++) {
6682 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6683 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6684 		}
6685 	}
6686 }
6687 
6688 static void sched_domains_numa_masks_clear(unsigned int cpu)
6689 {
6690 	int i, j;
6691 
6692 	for (i = 0; i < sched_domains_numa_levels; i++) {
6693 		for (j = 0; j < nr_node_ids; j++)
6694 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6695 	}
6696 }
6697 
6698 #else
6699 static inline void sched_init_numa(void) { }
6700 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6701 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6702 #endif /* CONFIG_NUMA */
6703 
6704 static int __sdt_alloc(const struct cpumask *cpu_map)
6705 {
6706 	struct sched_domain_topology_level *tl;
6707 	int j;
6708 
6709 	for_each_sd_topology(tl) {
6710 		struct sd_data *sdd = &tl->data;
6711 
6712 		sdd->sd = alloc_percpu(struct sched_domain *);
6713 		if (!sdd->sd)
6714 			return -ENOMEM;
6715 
6716 		sdd->sg = alloc_percpu(struct sched_group *);
6717 		if (!sdd->sg)
6718 			return -ENOMEM;
6719 
6720 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6721 		if (!sdd->sgc)
6722 			return -ENOMEM;
6723 
6724 		for_each_cpu(j, cpu_map) {
6725 			struct sched_domain *sd;
6726 			struct sched_group *sg;
6727 			struct sched_group_capacity *sgc;
6728 
6729 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6730 					GFP_KERNEL, cpu_to_node(j));
6731 			if (!sd)
6732 				return -ENOMEM;
6733 
6734 			*per_cpu_ptr(sdd->sd, j) = sd;
6735 
6736 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6737 					GFP_KERNEL, cpu_to_node(j));
6738 			if (!sg)
6739 				return -ENOMEM;
6740 
6741 			sg->next = sg;
6742 
6743 			*per_cpu_ptr(sdd->sg, j) = sg;
6744 
6745 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6746 					GFP_KERNEL, cpu_to_node(j));
6747 			if (!sgc)
6748 				return -ENOMEM;
6749 
6750 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6751 		}
6752 	}
6753 
6754 	return 0;
6755 }
6756 
6757 static void __sdt_free(const struct cpumask *cpu_map)
6758 {
6759 	struct sched_domain_topology_level *tl;
6760 	int j;
6761 
6762 	for_each_sd_topology(tl) {
6763 		struct sd_data *sdd = &tl->data;
6764 
6765 		for_each_cpu(j, cpu_map) {
6766 			struct sched_domain *sd;
6767 
6768 			if (sdd->sd) {
6769 				sd = *per_cpu_ptr(sdd->sd, j);
6770 				if (sd && (sd->flags & SD_OVERLAP))
6771 					free_sched_groups(sd->groups, 0);
6772 				kfree(*per_cpu_ptr(sdd->sd, j));
6773 			}
6774 
6775 			if (sdd->sg)
6776 				kfree(*per_cpu_ptr(sdd->sg, j));
6777 			if (sdd->sgc)
6778 				kfree(*per_cpu_ptr(sdd->sgc, j));
6779 		}
6780 		free_percpu(sdd->sd);
6781 		sdd->sd = NULL;
6782 		free_percpu(sdd->sg);
6783 		sdd->sg = NULL;
6784 		free_percpu(sdd->sgc);
6785 		sdd->sgc = NULL;
6786 	}
6787 }
6788 
6789 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6790 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6791 		struct sched_domain *child, int cpu)
6792 {
6793 	struct sched_domain *sd = sd_init(tl, cpu);
6794 	if (!sd)
6795 		return child;
6796 
6797 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6798 	if (child) {
6799 		sd->level = child->level + 1;
6800 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6801 		child->parent = sd;
6802 		sd->child = child;
6803 
6804 		if (!cpumask_subset(sched_domain_span(child),
6805 				    sched_domain_span(sd))) {
6806 			pr_err("BUG: arch topology borken\n");
6807 #ifdef CONFIG_SCHED_DEBUG
6808 			pr_err("     the %s domain not a subset of the %s domain\n",
6809 					child->name, sd->name);
6810 #endif
6811 			/* Fixup, ensure @sd has at least @child cpus. */
6812 			cpumask_or(sched_domain_span(sd),
6813 				   sched_domain_span(sd),
6814 				   sched_domain_span(child));
6815 		}
6816 
6817 	}
6818 	set_domain_attribute(sd, attr);
6819 
6820 	return sd;
6821 }
6822 
6823 /*
6824  * Build sched domains for a given set of cpus and attach the sched domains
6825  * to the individual cpus
6826  */
6827 static int build_sched_domains(const struct cpumask *cpu_map,
6828 			       struct sched_domain_attr *attr)
6829 {
6830 	enum s_alloc alloc_state;
6831 	struct sched_domain *sd;
6832 	struct s_data d;
6833 	int i, ret = -ENOMEM;
6834 
6835 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6836 	if (alloc_state != sa_rootdomain)
6837 		goto error;
6838 
6839 	/* Set up domains for cpus specified by the cpu_map. */
6840 	for_each_cpu(i, cpu_map) {
6841 		struct sched_domain_topology_level *tl;
6842 
6843 		sd = NULL;
6844 		for_each_sd_topology(tl) {
6845 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6846 			if (tl == sched_domain_topology)
6847 				*per_cpu_ptr(d.sd, i) = sd;
6848 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6849 				sd->flags |= SD_OVERLAP;
6850 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6851 				break;
6852 		}
6853 	}
6854 
6855 	/* Build the groups for the domains */
6856 	for_each_cpu(i, cpu_map) {
6857 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6858 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6859 			if (sd->flags & SD_OVERLAP) {
6860 				if (build_overlap_sched_groups(sd, i))
6861 					goto error;
6862 			} else {
6863 				if (build_sched_groups(sd, i))
6864 					goto error;
6865 			}
6866 		}
6867 	}
6868 
6869 	/* Calculate CPU capacity for physical packages and nodes */
6870 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6871 		if (!cpumask_test_cpu(i, cpu_map))
6872 			continue;
6873 
6874 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6875 			claim_allocations(i, sd);
6876 			init_sched_groups_capacity(i, sd);
6877 		}
6878 	}
6879 
6880 	/* Attach the domains */
6881 	rcu_read_lock();
6882 	for_each_cpu(i, cpu_map) {
6883 		sd = *per_cpu_ptr(d.sd, i);
6884 		cpu_attach_domain(sd, d.rd, i);
6885 	}
6886 	rcu_read_unlock();
6887 
6888 	ret = 0;
6889 error:
6890 	__free_domain_allocs(&d, alloc_state, cpu_map);
6891 	return ret;
6892 }
6893 
6894 static cpumask_var_t *doms_cur;	/* current sched domains */
6895 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6896 static struct sched_domain_attr *dattr_cur;
6897 				/* attribues of custom domains in 'doms_cur' */
6898 
6899 /*
6900  * Special case: If a kmalloc of a doms_cur partition (array of
6901  * cpumask) fails, then fallback to a single sched domain,
6902  * as determined by the single cpumask fallback_doms.
6903  */
6904 static cpumask_var_t fallback_doms;
6905 
6906 /*
6907  * arch_update_cpu_topology lets virtualized architectures update the
6908  * cpu core maps. It is supposed to return 1 if the topology changed
6909  * or 0 if it stayed the same.
6910  */
6911 int __weak arch_update_cpu_topology(void)
6912 {
6913 	return 0;
6914 }
6915 
6916 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6917 {
6918 	int i;
6919 	cpumask_var_t *doms;
6920 
6921 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6922 	if (!doms)
6923 		return NULL;
6924 	for (i = 0; i < ndoms; i++) {
6925 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6926 			free_sched_domains(doms, i);
6927 			return NULL;
6928 		}
6929 	}
6930 	return doms;
6931 }
6932 
6933 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6934 {
6935 	unsigned int i;
6936 	for (i = 0; i < ndoms; i++)
6937 		free_cpumask_var(doms[i]);
6938 	kfree(doms);
6939 }
6940 
6941 /*
6942  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6943  * For now this just excludes isolated cpus, but could be used to
6944  * exclude other special cases in the future.
6945  */
6946 static int init_sched_domains(const struct cpumask *cpu_map)
6947 {
6948 	int err;
6949 
6950 	arch_update_cpu_topology();
6951 	ndoms_cur = 1;
6952 	doms_cur = alloc_sched_domains(ndoms_cur);
6953 	if (!doms_cur)
6954 		doms_cur = &fallback_doms;
6955 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6956 	err = build_sched_domains(doms_cur[0], NULL);
6957 	register_sched_domain_sysctl();
6958 
6959 	return err;
6960 }
6961 
6962 /*
6963  * Detach sched domains from a group of cpus specified in cpu_map
6964  * These cpus will now be attached to the NULL domain
6965  */
6966 static void detach_destroy_domains(const struct cpumask *cpu_map)
6967 {
6968 	int i;
6969 
6970 	rcu_read_lock();
6971 	for_each_cpu(i, cpu_map)
6972 		cpu_attach_domain(NULL, &def_root_domain, i);
6973 	rcu_read_unlock();
6974 }
6975 
6976 /* handle null as "default" */
6977 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6978 			struct sched_domain_attr *new, int idx_new)
6979 {
6980 	struct sched_domain_attr tmp;
6981 
6982 	/* fast path */
6983 	if (!new && !cur)
6984 		return 1;
6985 
6986 	tmp = SD_ATTR_INIT;
6987 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6988 			new ? (new + idx_new) : &tmp,
6989 			sizeof(struct sched_domain_attr));
6990 }
6991 
6992 /*
6993  * Partition sched domains as specified by the 'ndoms_new'
6994  * cpumasks in the array doms_new[] of cpumasks. This compares
6995  * doms_new[] to the current sched domain partitioning, doms_cur[].
6996  * It destroys each deleted domain and builds each new domain.
6997  *
6998  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6999  * The masks don't intersect (don't overlap.) We should setup one
7000  * sched domain for each mask. CPUs not in any of the cpumasks will
7001  * not be load balanced. If the same cpumask appears both in the
7002  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7003  * it as it is.
7004  *
7005  * The passed in 'doms_new' should be allocated using
7006  * alloc_sched_domains.  This routine takes ownership of it and will
7007  * free_sched_domains it when done with it. If the caller failed the
7008  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7009  * and partition_sched_domains() will fallback to the single partition
7010  * 'fallback_doms', it also forces the domains to be rebuilt.
7011  *
7012  * If doms_new == NULL it will be replaced with cpu_online_mask.
7013  * ndoms_new == 0 is a special case for destroying existing domains,
7014  * and it will not create the default domain.
7015  *
7016  * Call with hotplug lock held
7017  */
7018 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7019 			     struct sched_domain_attr *dattr_new)
7020 {
7021 	int i, j, n;
7022 	int new_topology;
7023 
7024 	mutex_lock(&sched_domains_mutex);
7025 
7026 	/* always unregister in case we don't destroy any domains */
7027 	unregister_sched_domain_sysctl();
7028 
7029 	/* Let architecture update cpu core mappings. */
7030 	new_topology = arch_update_cpu_topology();
7031 
7032 	n = doms_new ? ndoms_new : 0;
7033 
7034 	/* Destroy deleted domains */
7035 	for (i = 0; i < ndoms_cur; i++) {
7036 		for (j = 0; j < n && !new_topology; j++) {
7037 			if (cpumask_equal(doms_cur[i], doms_new[j])
7038 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7039 				goto match1;
7040 		}
7041 		/* no match - a current sched domain not in new doms_new[] */
7042 		detach_destroy_domains(doms_cur[i]);
7043 match1:
7044 		;
7045 	}
7046 
7047 	n = ndoms_cur;
7048 	if (doms_new == NULL) {
7049 		n = 0;
7050 		doms_new = &fallback_doms;
7051 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7052 		WARN_ON_ONCE(dattr_new);
7053 	}
7054 
7055 	/* Build new domains */
7056 	for (i = 0; i < ndoms_new; i++) {
7057 		for (j = 0; j < n && !new_topology; j++) {
7058 			if (cpumask_equal(doms_new[i], doms_cur[j])
7059 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7060 				goto match2;
7061 		}
7062 		/* no match - add a new doms_new */
7063 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7064 match2:
7065 		;
7066 	}
7067 
7068 	/* Remember the new sched domains */
7069 	if (doms_cur != &fallback_doms)
7070 		free_sched_domains(doms_cur, ndoms_cur);
7071 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7072 	doms_cur = doms_new;
7073 	dattr_cur = dattr_new;
7074 	ndoms_cur = ndoms_new;
7075 
7076 	register_sched_domain_sysctl();
7077 
7078 	mutex_unlock(&sched_domains_mutex);
7079 }
7080 
7081 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7082 
7083 /*
7084  * Update cpusets according to cpu_active mask.  If cpusets are
7085  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7086  * around partition_sched_domains().
7087  *
7088  * If we come here as part of a suspend/resume, don't touch cpusets because we
7089  * want to restore it back to its original state upon resume anyway.
7090  */
7091 static void cpuset_cpu_active(void)
7092 {
7093 	if (cpuhp_tasks_frozen) {
7094 		/*
7095 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7096 		 * resume sequence. As long as this is not the last online
7097 		 * operation in the resume sequence, just build a single sched
7098 		 * domain, ignoring cpusets.
7099 		 */
7100 		num_cpus_frozen--;
7101 		if (likely(num_cpus_frozen)) {
7102 			partition_sched_domains(1, NULL, NULL);
7103 			return;
7104 		}
7105 		/*
7106 		 * This is the last CPU online operation. So fall through and
7107 		 * restore the original sched domains by considering the
7108 		 * cpuset configurations.
7109 		 */
7110 	}
7111 	cpuset_update_active_cpus(true);
7112 }
7113 
7114 static int cpuset_cpu_inactive(unsigned int cpu)
7115 {
7116 	unsigned long flags;
7117 	struct dl_bw *dl_b;
7118 	bool overflow;
7119 	int cpus;
7120 
7121 	if (!cpuhp_tasks_frozen) {
7122 		rcu_read_lock_sched();
7123 		dl_b = dl_bw_of(cpu);
7124 
7125 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7126 		cpus = dl_bw_cpus(cpu);
7127 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7128 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7129 
7130 		rcu_read_unlock_sched();
7131 
7132 		if (overflow)
7133 			return -EBUSY;
7134 		cpuset_update_active_cpus(false);
7135 	} else {
7136 		num_cpus_frozen++;
7137 		partition_sched_domains(1, NULL, NULL);
7138 	}
7139 	return 0;
7140 }
7141 
7142 int sched_cpu_activate(unsigned int cpu)
7143 {
7144 	struct rq *rq = cpu_rq(cpu);
7145 	unsigned long flags;
7146 
7147 	set_cpu_active(cpu, true);
7148 
7149 	if (sched_smp_initialized) {
7150 		sched_domains_numa_masks_set(cpu);
7151 		cpuset_cpu_active();
7152 	}
7153 
7154 	/*
7155 	 * Put the rq online, if not already. This happens:
7156 	 *
7157 	 * 1) In the early boot process, because we build the real domains
7158 	 *    after all cpus have been brought up.
7159 	 *
7160 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7161 	 *    domains.
7162 	 */
7163 	raw_spin_lock_irqsave(&rq->lock, flags);
7164 	if (rq->rd) {
7165 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7166 		set_rq_online(rq);
7167 	}
7168 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7169 
7170 	update_max_interval();
7171 
7172 	return 0;
7173 }
7174 
7175 int sched_cpu_deactivate(unsigned int cpu)
7176 {
7177 	int ret;
7178 
7179 	set_cpu_active(cpu, false);
7180 	/*
7181 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7182 	 * users of this state to go away such that all new such users will
7183 	 * observe it.
7184 	 *
7185 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7186 	 * not imply sync_sched(), so wait for both.
7187 	 *
7188 	 * Do sync before park smpboot threads to take care the rcu boost case.
7189 	 */
7190 	if (IS_ENABLED(CONFIG_PREEMPT))
7191 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
7192 	else
7193 		synchronize_rcu();
7194 
7195 	if (!sched_smp_initialized)
7196 		return 0;
7197 
7198 	ret = cpuset_cpu_inactive(cpu);
7199 	if (ret) {
7200 		set_cpu_active(cpu, true);
7201 		return ret;
7202 	}
7203 	sched_domains_numa_masks_clear(cpu);
7204 	return 0;
7205 }
7206 
7207 static void sched_rq_cpu_starting(unsigned int cpu)
7208 {
7209 	struct rq *rq = cpu_rq(cpu);
7210 
7211 	rq->calc_load_update = calc_load_update;
7212 	account_reset_rq(rq);
7213 	update_max_interval();
7214 }
7215 
7216 int sched_cpu_starting(unsigned int cpu)
7217 {
7218 	set_cpu_rq_start_time(cpu);
7219 	sched_rq_cpu_starting(cpu);
7220 	return 0;
7221 }
7222 
7223 #ifdef CONFIG_HOTPLUG_CPU
7224 int sched_cpu_dying(unsigned int cpu)
7225 {
7226 	struct rq *rq = cpu_rq(cpu);
7227 	unsigned long flags;
7228 
7229 	/* Handle pending wakeups and then migrate everything off */
7230 	sched_ttwu_pending();
7231 	raw_spin_lock_irqsave(&rq->lock, flags);
7232 	if (rq->rd) {
7233 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7234 		set_rq_offline(rq);
7235 	}
7236 	migrate_tasks(rq);
7237 	BUG_ON(rq->nr_running != 1);
7238 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7239 	calc_load_migrate(rq);
7240 	update_max_interval();
7241 	nohz_balance_exit_idle(cpu);
7242 	hrtick_clear(rq);
7243 	return 0;
7244 }
7245 #endif
7246 
7247 void __init sched_init_smp(void)
7248 {
7249 	cpumask_var_t non_isolated_cpus;
7250 
7251 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7252 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7253 
7254 	sched_init_numa();
7255 
7256 	/*
7257 	 * There's no userspace yet to cause hotplug operations; hence all the
7258 	 * cpu masks are stable and all blatant races in the below code cannot
7259 	 * happen.
7260 	 */
7261 	mutex_lock(&sched_domains_mutex);
7262 	init_sched_domains(cpu_active_mask);
7263 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7264 	if (cpumask_empty(non_isolated_cpus))
7265 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7266 	mutex_unlock(&sched_domains_mutex);
7267 
7268 	/* Move init over to a non-isolated CPU */
7269 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7270 		BUG();
7271 	sched_init_granularity();
7272 	free_cpumask_var(non_isolated_cpus);
7273 
7274 	init_sched_rt_class();
7275 	init_sched_dl_class();
7276 	sched_smp_initialized = true;
7277 }
7278 
7279 static int __init migration_init(void)
7280 {
7281 	sched_rq_cpu_starting(smp_processor_id());
7282 	return 0;
7283 }
7284 early_initcall(migration_init);
7285 
7286 #else
7287 void __init sched_init_smp(void)
7288 {
7289 	sched_init_granularity();
7290 }
7291 #endif /* CONFIG_SMP */
7292 
7293 int in_sched_functions(unsigned long addr)
7294 {
7295 	return in_lock_functions(addr) ||
7296 		(addr >= (unsigned long)__sched_text_start
7297 		&& addr < (unsigned long)__sched_text_end);
7298 }
7299 
7300 #ifdef CONFIG_CGROUP_SCHED
7301 /*
7302  * Default task group.
7303  * Every task in system belongs to this group at bootup.
7304  */
7305 struct task_group root_task_group;
7306 LIST_HEAD(task_groups);
7307 
7308 /* Cacheline aligned slab cache for task_group */
7309 static struct kmem_cache *task_group_cache __read_mostly;
7310 #endif
7311 
7312 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7313 
7314 void __init sched_init(void)
7315 {
7316 	int i, j;
7317 	unsigned long alloc_size = 0, ptr;
7318 
7319 #ifdef CONFIG_FAIR_GROUP_SCHED
7320 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7321 #endif
7322 #ifdef CONFIG_RT_GROUP_SCHED
7323 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7324 #endif
7325 	if (alloc_size) {
7326 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7327 
7328 #ifdef CONFIG_FAIR_GROUP_SCHED
7329 		root_task_group.se = (struct sched_entity **)ptr;
7330 		ptr += nr_cpu_ids * sizeof(void **);
7331 
7332 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7333 		ptr += nr_cpu_ids * sizeof(void **);
7334 
7335 #endif /* CONFIG_FAIR_GROUP_SCHED */
7336 #ifdef CONFIG_RT_GROUP_SCHED
7337 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7338 		ptr += nr_cpu_ids * sizeof(void **);
7339 
7340 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7341 		ptr += nr_cpu_ids * sizeof(void **);
7342 
7343 #endif /* CONFIG_RT_GROUP_SCHED */
7344 	}
7345 #ifdef CONFIG_CPUMASK_OFFSTACK
7346 	for_each_possible_cpu(i) {
7347 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7348 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7349 	}
7350 #endif /* CONFIG_CPUMASK_OFFSTACK */
7351 
7352 	init_rt_bandwidth(&def_rt_bandwidth,
7353 			global_rt_period(), global_rt_runtime());
7354 	init_dl_bandwidth(&def_dl_bandwidth,
7355 			global_rt_period(), global_rt_runtime());
7356 
7357 #ifdef CONFIG_SMP
7358 	init_defrootdomain();
7359 #endif
7360 
7361 #ifdef CONFIG_RT_GROUP_SCHED
7362 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7363 			global_rt_period(), global_rt_runtime());
7364 #endif /* CONFIG_RT_GROUP_SCHED */
7365 
7366 #ifdef CONFIG_CGROUP_SCHED
7367 	task_group_cache = KMEM_CACHE(task_group, 0);
7368 
7369 	list_add(&root_task_group.list, &task_groups);
7370 	INIT_LIST_HEAD(&root_task_group.children);
7371 	INIT_LIST_HEAD(&root_task_group.siblings);
7372 	autogroup_init(&init_task);
7373 #endif /* CONFIG_CGROUP_SCHED */
7374 
7375 	for_each_possible_cpu(i) {
7376 		struct rq *rq;
7377 
7378 		rq = cpu_rq(i);
7379 		raw_spin_lock_init(&rq->lock);
7380 		rq->nr_running = 0;
7381 		rq->calc_load_active = 0;
7382 		rq->calc_load_update = jiffies + LOAD_FREQ;
7383 		init_cfs_rq(&rq->cfs);
7384 		init_rt_rq(&rq->rt);
7385 		init_dl_rq(&rq->dl);
7386 #ifdef CONFIG_FAIR_GROUP_SCHED
7387 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7388 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7389 		/*
7390 		 * How much cpu bandwidth does root_task_group get?
7391 		 *
7392 		 * In case of task-groups formed thr' the cgroup filesystem, it
7393 		 * gets 100% of the cpu resources in the system. This overall
7394 		 * system cpu resource is divided among the tasks of
7395 		 * root_task_group and its child task-groups in a fair manner,
7396 		 * based on each entity's (task or task-group's) weight
7397 		 * (se->load.weight).
7398 		 *
7399 		 * In other words, if root_task_group has 10 tasks of weight
7400 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7401 		 * then A0's share of the cpu resource is:
7402 		 *
7403 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7404 		 *
7405 		 * We achieve this by letting root_task_group's tasks sit
7406 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7407 		 */
7408 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7409 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7410 #endif /* CONFIG_FAIR_GROUP_SCHED */
7411 
7412 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7413 #ifdef CONFIG_RT_GROUP_SCHED
7414 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7415 #endif
7416 
7417 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7418 			rq->cpu_load[j] = 0;
7419 
7420 #ifdef CONFIG_SMP
7421 		rq->sd = NULL;
7422 		rq->rd = NULL;
7423 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7424 		rq->balance_callback = NULL;
7425 		rq->active_balance = 0;
7426 		rq->next_balance = jiffies;
7427 		rq->push_cpu = 0;
7428 		rq->cpu = i;
7429 		rq->online = 0;
7430 		rq->idle_stamp = 0;
7431 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7432 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7433 
7434 		INIT_LIST_HEAD(&rq->cfs_tasks);
7435 
7436 		rq_attach_root(rq, &def_root_domain);
7437 #ifdef CONFIG_NO_HZ_COMMON
7438 		rq->last_load_update_tick = jiffies;
7439 		rq->nohz_flags = 0;
7440 #endif
7441 #ifdef CONFIG_NO_HZ_FULL
7442 		rq->last_sched_tick = 0;
7443 #endif
7444 #endif /* CONFIG_SMP */
7445 		init_rq_hrtick(rq);
7446 		atomic_set(&rq->nr_iowait, 0);
7447 	}
7448 
7449 	set_load_weight(&init_task);
7450 
7451 #ifdef CONFIG_PREEMPT_NOTIFIERS
7452 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7453 #endif
7454 
7455 	/*
7456 	 * The boot idle thread does lazy MMU switching as well:
7457 	 */
7458 	atomic_inc(&init_mm.mm_count);
7459 	enter_lazy_tlb(&init_mm, current);
7460 
7461 	/*
7462 	 * During early bootup we pretend to be a normal task:
7463 	 */
7464 	current->sched_class = &fair_sched_class;
7465 
7466 	/*
7467 	 * Make us the idle thread. Technically, schedule() should not be
7468 	 * called from this thread, however somewhere below it might be,
7469 	 * but because we are the idle thread, we just pick up running again
7470 	 * when this runqueue becomes "idle".
7471 	 */
7472 	init_idle(current, smp_processor_id());
7473 
7474 	calc_load_update = jiffies + LOAD_FREQ;
7475 
7476 #ifdef CONFIG_SMP
7477 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7478 	/* May be allocated at isolcpus cmdline parse time */
7479 	if (cpu_isolated_map == NULL)
7480 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7481 	idle_thread_set_boot_cpu();
7482 	set_cpu_rq_start_time(smp_processor_id());
7483 #endif
7484 	init_sched_fair_class();
7485 
7486 	scheduler_running = 1;
7487 }
7488 
7489 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7490 static inline int preempt_count_equals(int preempt_offset)
7491 {
7492 	int nested = preempt_count() + rcu_preempt_depth();
7493 
7494 	return (nested == preempt_offset);
7495 }
7496 
7497 void __might_sleep(const char *file, int line, int preempt_offset)
7498 {
7499 	/*
7500 	 * Blocking primitives will set (and therefore destroy) current->state,
7501 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7502 	 * otherwise we will destroy state.
7503 	 */
7504 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7505 			"do not call blocking ops when !TASK_RUNNING; "
7506 			"state=%lx set at [<%p>] %pS\n",
7507 			current->state,
7508 			(void *)current->task_state_change,
7509 			(void *)current->task_state_change);
7510 
7511 	___might_sleep(file, line, preempt_offset);
7512 }
7513 EXPORT_SYMBOL(__might_sleep);
7514 
7515 void ___might_sleep(const char *file, int line, int preempt_offset)
7516 {
7517 	static unsigned long prev_jiffy;	/* ratelimiting */
7518 
7519 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7520 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7521 	     !is_idle_task(current)) ||
7522 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7523 		return;
7524 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7525 		return;
7526 	prev_jiffy = jiffies;
7527 
7528 	printk(KERN_ERR
7529 		"BUG: sleeping function called from invalid context at %s:%d\n",
7530 			file, line);
7531 	printk(KERN_ERR
7532 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7533 			in_atomic(), irqs_disabled(),
7534 			current->pid, current->comm);
7535 
7536 	if (task_stack_end_corrupted(current))
7537 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7538 
7539 	debug_show_held_locks(current);
7540 	if (irqs_disabled())
7541 		print_irqtrace_events(current);
7542 #ifdef CONFIG_DEBUG_PREEMPT
7543 	if (!preempt_count_equals(preempt_offset)) {
7544 		pr_err("Preemption disabled at:");
7545 		print_ip_sym(current->preempt_disable_ip);
7546 		pr_cont("\n");
7547 	}
7548 #endif
7549 	dump_stack();
7550 }
7551 EXPORT_SYMBOL(___might_sleep);
7552 #endif
7553 
7554 #ifdef CONFIG_MAGIC_SYSRQ
7555 void normalize_rt_tasks(void)
7556 {
7557 	struct task_struct *g, *p;
7558 	struct sched_attr attr = {
7559 		.sched_policy = SCHED_NORMAL,
7560 	};
7561 
7562 	read_lock(&tasklist_lock);
7563 	for_each_process_thread(g, p) {
7564 		/*
7565 		 * Only normalize user tasks:
7566 		 */
7567 		if (p->flags & PF_KTHREAD)
7568 			continue;
7569 
7570 		p->se.exec_start		= 0;
7571 #ifdef CONFIG_SCHEDSTATS
7572 		p->se.statistics.wait_start	= 0;
7573 		p->se.statistics.sleep_start	= 0;
7574 		p->se.statistics.block_start	= 0;
7575 #endif
7576 
7577 		if (!dl_task(p) && !rt_task(p)) {
7578 			/*
7579 			 * Renice negative nice level userspace
7580 			 * tasks back to 0:
7581 			 */
7582 			if (task_nice(p) < 0)
7583 				set_user_nice(p, 0);
7584 			continue;
7585 		}
7586 
7587 		__sched_setscheduler(p, &attr, false, false);
7588 	}
7589 	read_unlock(&tasklist_lock);
7590 }
7591 
7592 #endif /* CONFIG_MAGIC_SYSRQ */
7593 
7594 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7595 /*
7596  * These functions are only useful for the IA64 MCA handling, or kdb.
7597  *
7598  * They can only be called when the whole system has been
7599  * stopped - every CPU needs to be quiescent, and no scheduling
7600  * activity can take place. Using them for anything else would
7601  * be a serious bug, and as a result, they aren't even visible
7602  * under any other configuration.
7603  */
7604 
7605 /**
7606  * curr_task - return the current task for a given cpu.
7607  * @cpu: the processor in question.
7608  *
7609  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7610  *
7611  * Return: The current task for @cpu.
7612  */
7613 struct task_struct *curr_task(int cpu)
7614 {
7615 	return cpu_curr(cpu);
7616 }
7617 
7618 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7619 
7620 #ifdef CONFIG_IA64
7621 /**
7622  * set_curr_task - set the current task for a given cpu.
7623  * @cpu: the processor in question.
7624  * @p: the task pointer to set.
7625  *
7626  * Description: This function must only be used when non-maskable interrupts
7627  * are serviced on a separate stack. It allows the architecture to switch the
7628  * notion of the current task on a cpu in a non-blocking manner. This function
7629  * must be called with all CPU's synchronized, and interrupts disabled, the
7630  * and caller must save the original value of the current task (see
7631  * curr_task() above) and restore that value before reenabling interrupts and
7632  * re-starting the system.
7633  *
7634  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7635  */
7636 void set_curr_task(int cpu, struct task_struct *p)
7637 {
7638 	cpu_curr(cpu) = p;
7639 }
7640 
7641 #endif
7642 
7643 #ifdef CONFIG_CGROUP_SCHED
7644 /* task_group_lock serializes the addition/removal of task groups */
7645 static DEFINE_SPINLOCK(task_group_lock);
7646 
7647 static void sched_free_group(struct task_group *tg)
7648 {
7649 	free_fair_sched_group(tg);
7650 	free_rt_sched_group(tg);
7651 	autogroup_free(tg);
7652 	kmem_cache_free(task_group_cache, tg);
7653 }
7654 
7655 /* allocate runqueue etc for a new task group */
7656 struct task_group *sched_create_group(struct task_group *parent)
7657 {
7658 	struct task_group *tg;
7659 
7660 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7661 	if (!tg)
7662 		return ERR_PTR(-ENOMEM);
7663 
7664 	if (!alloc_fair_sched_group(tg, parent))
7665 		goto err;
7666 
7667 	if (!alloc_rt_sched_group(tg, parent))
7668 		goto err;
7669 
7670 	return tg;
7671 
7672 err:
7673 	sched_free_group(tg);
7674 	return ERR_PTR(-ENOMEM);
7675 }
7676 
7677 void sched_online_group(struct task_group *tg, struct task_group *parent)
7678 {
7679 	unsigned long flags;
7680 
7681 	spin_lock_irqsave(&task_group_lock, flags);
7682 	list_add_rcu(&tg->list, &task_groups);
7683 
7684 	WARN_ON(!parent); /* root should already exist */
7685 
7686 	tg->parent = parent;
7687 	INIT_LIST_HEAD(&tg->children);
7688 	list_add_rcu(&tg->siblings, &parent->children);
7689 	spin_unlock_irqrestore(&task_group_lock, flags);
7690 }
7691 
7692 /* rcu callback to free various structures associated with a task group */
7693 static void sched_free_group_rcu(struct rcu_head *rhp)
7694 {
7695 	/* now it should be safe to free those cfs_rqs */
7696 	sched_free_group(container_of(rhp, struct task_group, rcu));
7697 }
7698 
7699 void sched_destroy_group(struct task_group *tg)
7700 {
7701 	/* wait for possible concurrent references to cfs_rqs complete */
7702 	call_rcu(&tg->rcu, sched_free_group_rcu);
7703 }
7704 
7705 void sched_offline_group(struct task_group *tg)
7706 {
7707 	unsigned long flags;
7708 
7709 	/* end participation in shares distribution */
7710 	unregister_fair_sched_group(tg);
7711 
7712 	spin_lock_irqsave(&task_group_lock, flags);
7713 	list_del_rcu(&tg->list);
7714 	list_del_rcu(&tg->siblings);
7715 	spin_unlock_irqrestore(&task_group_lock, flags);
7716 }
7717 
7718 /* change task's runqueue when it moves between groups.
7719  *	The caller of this function should have put the task in its new group
7720  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7721  *	reflect its new group.
7722  */
7723 void sched_move_task(struct task_struct *tsk)
7724 {
7725 	struct task_group *tg;
7726 	int queued, running;
7727 	struct rq_flags rf;
7728 	struct rq *rq;
7729 
7730 	rq = task_rq_lock(tsk, &rf);
7731 
7732 	running = task_current(rq, tsk);
7733 	queued = task_on_rq_queued(tsk);
7734 
7735 	if (queued)
7736 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7737 	if (unlikely(running))
7738 		put_prev_task(rq, tsk);
7739 
7740 	/*
7741 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7742 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7743 	 * to prevent lockdep warnings.
7744 	 */
7745 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7746 			  struct task_group, css);
7747 	tg = autogroup_task_group(tsk, tg);
7748 	tsk->sched_task_group = tg;
7749 
7750 #ifdef CONFIG_FAIR_GROUP_SCHED
7751 	if (tsk->sched_class->task_move_group)
7752 		tsk->sched_class->task_move_group(tsk);
7753 	else
7754 #endif
7755 		set_task_rq(tsk, task_cpu(tsk));
7756 
7757 	if (unlikely(running))
7758 		tsk->sched_class->set_curr_task(rq);
7759 	if (queued)
7760 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7761 
7762 	task_rq_unlock(rq, tsk, &rf);
7763 }
7764 #endif /* CONFIG_CGROUP_SCHED */
7765 
7766 #ifdef CONFIG_RT_GROUP_SCHED
7767 /*
7768  * Ensure that the real time constraints are schedulable.
7769  */
7770 static DEFINE_MUTEX(rt_constraints_mutex);
7771 
7772 /* Must be called with tasklist_lock held */
7773 static inline int tg_has_rt_tasks(struct task_group *tg)
7774 {
7775 	struct task_struct *g, *p;
7776 
7777 	/*
7778 	 * Autogroups do not have RT tasks; see autogroup_create().
7779 	 */
7780 	if (task_group_is_autogroup(tg))
7781 		return 0;
7782 
7783 	for_each_process_thread(g, p) {
7784 		if (rt_task(p) && task_group(p) == tg)
7785 			return 1;
7786 	}
7787 
7788 	return 0;
7789 }
7790 
7791 struct rt_schedulable_data {
7792 	struct task_group *tg;
7793 	u64 rt_period;
7794 	u64 rt_runtime;
7795 };
7796 
7797 static int tg_rt_schedulable(struct task_group *tg, void *data)
7798 {
7799 	struct rt_schedulable_data *d = data;
7800 	struct task_group *child;
7801 	unsigned long total, sum = 0;
7802 	u64 period, runtime;
7803 
7804 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7805 	runtime = tg->rt_bandwidth.rt_runtime;
7806 
7807 	if (tg == d->tg) {
7808 		period = d->rt_period;
7809 		runtime = d->rt_runtime;
7810 	}
7811 
7812 	/*
7813 	 * Cannot have more runtime than the period.
7814 	 */
7815 	if (runtime > period && runtime != RUNTIME_INF)
7816 		return -EINVAL;
7817 
7818 	/*
7819 	 * Ensure we don't starve existing RT tasks.
7820 	 */
7821 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7822 		return -EBUSY;
7823 
7824 	total = to_ratio(period, runtime);
7825 
7826 	/*
7827 	 * Nobody can have more than the global setting allows.
7828 	 */
7829 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7830 		return -EINVAL;
7831 
7832 	/*
7833 	 * The sum of our children's runtime should not exceed our own.
7834 	 */
7835 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7836 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7837 		runtime = child->rt_bandwidth.rt_runtime;
7838 
7839 		if (child == d->tg) {
7840 			period = d->rt_period;
7841 			runtime = d->rt_runtime;
7842 		}
7843 
7844 		sum += to_ratio(period, runtime);
7845 	}
7846 
7847 	if (sum > total)
7848 		return -EINVAL;
7849 
7850 	return 0;
7851 }
7852 
7853 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7854 {
7855 	int ret;
7856 
7857 	struct rt_schedulable_data data = {
7858 		.tg = tg,
7859 		.rt_period = period,
7860 		.rt_runtime = runtime,
7861 	};
7862 
7863 	rcu_read_lock();
7864 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7865 	rcu_read_unlock();
7866 
7867 	return ret;
7868 }
7869 
7870 static int tg_set_rt_bandwidth(struct task_group *tg,
7871 		u64 rt_period, u64 rt_runtime)
7872 {
7873 	int i, err = 0;
7874 
7875 	/*
7876 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7877 	 * kernel creating (and or operating) RT threads.
7878 	 */
7879 	if (tg == &root_task_group && rt_runtime == 0)
7880 		return -EINVAL;
7881 
7882 	/* No period doesn't make any sense. */
7883 	if (rt_period == 0)
7884 		return -EINVAL;
7885 
7886 	mutex_lock(&rt_constraints_mutex);
7887 	read_lock(&tasklist_lock);
7888 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7889 	if (err)
7890 		goto unlock;
7891 
7892 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7893 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7894 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7895 
7896 	for_each_possible_cpu(i) {
7897 		struct rt_rq *rt_rq = tg->rt_rq[i];
7898 
7899 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7900 		rt_rq->rt_runtime = rt_runtime;
7901 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7902 	}
7903 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7904 unlock:
7905 	read_unlock(&tasklist_lock);
7906 	mutex_unlock(&rt_constraints_mutex);
7907 
7908 	return err;
7909 }
7910 
7911 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7912 {
7913 	u64 rt_runtime, rt_period;
7914 
7915 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7916 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7917 	if (rt_runtime_us < 0)
7918 		rt_runtime = RUNTIME_INF;
7919 
7920 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7921 }
7922 
7923 static long sched_group_rt_runtime(struct task_group *tg)
7924 {
7925 	u64 rt_runtime_us;
7926 
7927 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7928 		return -1;
7929 
7930 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7931 	do_div(rt_runtime_us, NSEC_PER_USEC);
7932 	return rt_runtime_us;
7933 }
7934 
7935 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7936 {
7937 	u64 rt_runtime, rt_period;
7938 
7939 	rt_period = rt_period_us * NSEC_PER_USEC;
7940 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7941 
7942 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7943 }
7944 
7945 static long sched_group_rt_period(struct task_group *tg)
7946 {
7947 	u64 rt_period_us;
7948 
7949 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7950 	do_div(rt_period_us, NSEC_PER_USEC);
7951 	return rt_period_us;
7952 }
7953 #endif /* CONFIG_RT_GROUP_SCHED */
7954 
7955 #ifdef CONFIG_RT_GROUP_SCHED
7956 static int sched_rt_global_constraints(void)
7957 {
7958 	int ret = 0;
7959 
7960 	mutex_lock(&rt_constraints_mutex);
7961 	read_lock(&tasklist_lock);
7962 	ret = __rt_schedulable(NULL, 0, 0);
7963 	read_unlock(&tasklist_lock);
7964 	mutex_unlock(&rt_constraints_mutex);
7965 
7966 	return ret;
7967 }
7968 
7969 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7970 {
7971 	/* Don't accept realtime tasks when there is no way for them to run */
7972 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7973 		return 0;
7974 
7975 	return 1;
7976 }
7977 
7978 #else /* !CONFIG_RT_GROUP_SCHED */
7979 static int sched_rt_global_constraints(void)
7980 {
7981 	unsigned long flags;
7982 	int i;
7983 
7984 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7985 	for_each_possible_cpu(i) {
7986 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7987 
7988 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7989 		rt_rq->rt_runtime = global_rt_runtime();
7990 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7991 	}
7992 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7993 
7994 	return 0;
7995 }
7996 #endif /* CONFIG_RT_GROUP_SCHED */
7997 
7998 static int sched_dl_global_validate(void)
7999 {
8000 	u64 runtime = global_rt_runtime();
8001 	u64 period = global_rt_period();
8002 	u64 new_bw = to_ratio(period, runtime);
8003 	struct dl_bw *dl_b;
8004 	int cpu, ret = 0;
8005 	unsigned long flags;
8006 
8007 	/*
8008 	 * Here we want to check the bandwidth not being set to some
8009 	 * value smaller than the currently allocated bandwidth in
8010 	 * any of the root_domains.
8011 	 *
8012 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8013 	 * cycling on root_domains... Discussion on different/better
8014 	 * solutions is welcome!
8015 	 */
8016 	for_each_possible_cpu(cpu) {
8017 		rcu_read_lock_sched();
8018 		dl_b = dl_bw_of(cpu);
8019 
8020 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8021 		if (new_bw < dl_b->total_bw)
8022 			ret = -EBUSY;
8023 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8024 
8025 		rcu_read_unlock_sched();
8026 
8027 		if (ret)
8028 			break;
8029 	}
8030 
8031 	return ret;
8032 }
8033 
8034 static void sched_dl_do_global(void)
8035 {
8036 	u64 new_bw = -1;
8037 	struct dl_bw *dl_b;
8038 	int cpu;
8039 	unsigned long flags;
8040 
8041 	def_dl_bandwidth.dl_period = global_rt_period();
8042 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8043 
8044 	if (global_rt_runtime() != RUNTIME_INF)
8045 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8046 
8047 	/*
8048 	 * FIXME: As above...
8049 	 */
8050 	for_each_possible_cpu(cpu) {
8051 		rcu_read_lock_sched();
8052 		dl_b = dl_bw_of(cpu);
8053 
8054 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8055 		dl_b->bw = new_bw;
8056 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8057 
8058 		rcu_read_unlock_sched();
8059 	}
8060 }
8061 
8062 static int sched_rt_global_validate(void)
8063 {
8064 	if (sysctl_sched_rt_period <= 0)
8065 		return -EINVAL;
8066 
8067 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8068 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8069 		return -EINVAL;
8070 
8071 	return 0;
8072 }
8073 
8074 static void sched_rt_do_global(void)
8075 {
8076 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8077 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8078 }
8079 
8080 int sched_rt_handler(struct ctl_table *table, int write,
8081 		void __user *buffer, size_t *lenp,
8082 		loff_t *ppos)
8083 {
8084 	int old_period, old_runtime;
8085 	static DEFINE_MUTEX(mutex);
8086 	int ret;
8087 
8088 	mutex_lock(&mutex);
8089 	old_period = sysctl_sched_rt_period;
8090 	old_runtime = sysctl_sched_rt_runtime;
8091 
8092 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8093 
8094 	if (!ret && write) {
8095 		ret = sched_rt_global_validate();
8096 		if (ret)
8097 			goto undo;
8098 
8099 		ret = sched_dl_global_validate();
8100 		if (ret)
8101 			goto undo;
8102 
8103 		ret = sched_rt_global_constraints();
8104 		if (ret)
8105 			goto undo;
8106 
8107 		sched_rt_do_global();
8108 		sched_dl_do_global();
8109 	}
8110 	if (0) {
8111 undo:
8112 		sysctl_sched_rt_period = old_period;
8113 		sysctl_sched_rt_runtime = old_runtime;
8114 	}
8115 	mutex_unlock(&mutex);
8116 
8117 	return ret;
8118 }
8119 
8120 int sched_rr_handler(struct ctl_table *table, int write,
8121 		void __user *buffer, size_t *lenp,
8122 		loff_t *ppos)
8123 {
8124 	int ret;
8125 	static DEFINE_MUTEX(mutex);
8126 
8127 	mutex_lock(&mutex);
8128 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8129 	/* make sure that internally we keep jiffies */
8130 	/* also, writing zero resets timeslice to default */
8131 	if (!ret && write) {
8132 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8133 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8134 	}
8135 	mutex_unlock(&mutex);
8136 	return ret;
8137 }
8138 
8139 #ifdef CONFIG_CGROUP_SCHED
8140 
8141 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8142 {
8143 	return css ? container_of(css, struct task_group, css) : NULL;
8144 }
8145 
8146 static struct cgroup_subsys_state *
8147 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8148 {
8149 	struct task_group *parent = css_tg(parent_css);
8150 	struct task_group *tg;
8151 
8152 	if (!parent) {
8153 		/* This is early initialization for the top cgroup */
8154 		return &root_task_group.css;
8155 	}
8156 
8157 	tg = sched_create_group(parent);
8158 	if (IS_ERR(tg))
8159 		return ERR_PTR(-ENOMEM);
8160 
8161 	sched_online_group(tg, parent);
8162 
8163 	return &tg->css;
8164 }
8165 
8166 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8167 {
8168 	struct task_group *tg = css_tg(css);
8169 
8170 	sched_offline_group(tg);
8171 }
8172 
8173 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8174 {
8175 	struct task_group *tg = css_tg(css);
8176 
8177 	/*
8178 	 * Relies on the RCU grace period between css_released() and this.
8179 	 */
8180 	sched_free_group(tg);
8181 }
8182 
8183 static void cpu_cgroup_fork(struct task_struct *task)
8184 {
8185 	sched_move_task(task);
8186 }
8187 
8188 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8189 {
8190 	struct task_struct *task;
8191 	struct cgroup_subsys_state *css;
8192 
8193 	cgroup_taskset_for_each(task, css, tset) {
8194 #ifdef CONFIG_RT_GROUP_SCHED
8195 		if (!sched_rt_can_attach(css_tg(css), task))
8196 			return -EINVAL;
8197 #else
8198 		/* We don't support RT-tasks being in separate groups */
8199 		if (task->sched_class != &fair_sched_class)
8200 			return -EINVAL;
8201 #endif
8202 	}
8203 	return 0;
8204 }
8205 
8206 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8207 {
8208 	struct task_struct *task;
8209 	struct cgroup_subsys_state *css;
8210 
8211 	cgroup_taskset_for_each(task, css, tset)
8212 		sched_move_task(task);
8213 }
8214 
8215 #ifdef CONFIG_FAIR_GROUP_SCHED
8216 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8217 				struct cftype *cftype, u64 shareval)
8218 {
8219 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8220 }
8221 
8222 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8223 			       struct cftype *cft)
8224 {
8225 	struct task_group *tg = css_tg(css);
8226 
8227 	return (u64) scale_load_down(tg->shares);
8228 }
8229 
8230 #ifdef CONFIG_CFS_BANDWIDTH
8231 static DEFINE_MUTEX(cfs_constraints_mutex);
8232 
8233 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8234 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8235 
8236 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8237 
8238 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8239 {
8240 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8241 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8242 
8243 	if (tg == &root_task_group)
8244 		return -EINVAL;
8245 
8246 	/*
8247 	 * Ensure we have at some amount of bandwidth every period.  This is
8248 	 * to prevent reaching a state of large arrears when throttled via
8249 	 * entity_tick() resulting in prolonged exit starvation.
8250 	 */
8251 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8252 		return -EINVAL;
8253 
8254 	/*
8255 	 * Likewise, bound things on the otherside by preventing insane quota
8256 	 * periods.  This also allows us to normalize in computing quota
8257 	 * feasibility.
8258 	 */
8259 	if (period > max_cfs_quota_period)
8260 		return -EINVAL;
8261 
8262 	/*
8263 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8264 	 * unthrottle_offline_cfs_rqs().
8265 	 */
8266 	get_online_cpus();
8267 	mutex_lock(&cfs_constraints_mutex);
8268 	ret = __cfs_schedulable(tg, period, quota);
8269 	if (ret)
8270 		goto out_unlock;
8271 
8272 	runtime_enabled = quota != RUNTIME_INF;
8273 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8274 	/*
8275 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8276 	 * before making related changes, and on->off must occur afterwards
8277 	 */
8278 	if (runtime_enabled && !runtime_was_enabled)
8279 		cfs_bandwidth_usage_inc();
8280 	raw_spin_lock_irq(&cfs_b->lock);
8281 	cfs_b->period = ns_to_ktime(period);
8282 	cfs_b->quota = quota;
8283 
8284 	__refill_cfs_bandwidth_runtime(cfs_b);
8285 	/* restart the period timer (if active) to handle new period expiry */
8286 	if (runtime_enabled)
8287 		start_cfs_bandwidth(cfs_b);
8288 	raw_spin_unlock_irq(&cfs_b->lock);
8289 
8290 	for_each_online_cpu(i) {
8291 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8292 		struct rq *rq = cfs_rq->rq;
8293 
8294 		raw_spin_lock_irq(&rq->lock);
8295 		cfs_rq->runtime_enabled = runtime_enabled;
8296 		cfs_rq->runtime_remaining = 0;
8297 
8298 		if (cfs_rq->throttled)
8299 			unthrottle_cfs_rq(cfs_rq);
8300 		raw_spin_unlock_irq(&rq->lock);
8301 	}
8302 	if (runtime_was_enabled && !runtime_enabled)
8303 		cfs_bandwidth_usage_dec();
8304 out_unlock:
8305 	mutex_unlock(&cfs_constraints_mutex);
8306 	put_online_cpus();
8307 
8308 	return ret;
8309 }
8310 
8311 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8312 {
8313 	u64 quota, period;
8314 
8315 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8316 	if (cfs_quota_us < 0)
8317 		quota = RUNTIME_INF;
8318 	else
8319 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8320 
8321 	return tg_set_cfs_bandwidth(tg, period, quota);
8322 }
8323 
8324 long tg_get_cfs_quota(struct task_group *tg)
8325 {
8326 	u64 quota_us;
8327 
8328 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8329 		return -1;
8330 
8331 	quota_us = tg->cfs_bandwidth.quota;
8332 	do_div(quota_us, NSEC_PER_USEC);
8333 
8334 	return quota_us;
8335 }
8336 
8337 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8338 {
8339 	u64 quota, period;
8340 
8341 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8342 	quota = tg->cfs_bandwidth.quota;
8343 
8344 	return tg_set_cfs_bandwidth(tg, period, quota);
8345 }
8346 
8347 long tg_get_cfs_period(struct task_group *tg)
8348 {
8349 	u64 cfs_period_us;
8350 
8351 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8352 	do_div(cfs_period_us, NSEC_PER_USEC);
8353 
8354 	return cfs_period_us;
8355 }
8356 
8357 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8358 				  struct cftype *cft)
8359 {
8360 	return tg_get_cfs_quota(css_tg(css));
8361 }
8362 
8363 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8364 				   struct cftype *cftype, s64 cfs_quota_us)
8365 {
8366 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8367 }
8368 
8369 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8370 				   struct cftype *cft)
8371 {
8372 	return tg_get_cfs_period(css_tg(css));
8373 }
8374 
8375 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8376 				    struct cftype *cftype, u64 cfs_period_us)
8377 {
8378 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8379 }
8380 
8381 struct cfs_schedulable_data {
8382 	struct task_group *tg;
8383 	u64 period, quota;
8384 };
8385 
8386 /*
8387  * normalize group quota/period to be quota/max_period
8388  * note: units are usecs
8389  */
8390 static u64 normalize_cfs_quota(struct task_group *tg,
8391 			       struct cfs_schedulable_data *d)
8392 {
8393 	u64 quota, period;
8394 
8395 	if (tg == d->tg) {
8396 		period = d->period;
8397 		quota = d->quota;
8398 	} else {
8399 		period = tg_get_cfs_period(tg);
8400 		quota = tg_get_cfs_quota(tg);
8401 	}
8402 
8403 	/* note: these should typically be equivalent */
8404 	if (quota == RUNTIME_INF || quota == -1)
8405 		return RUNTIME_INF;
8406 
8407 	return to_ratio(period, quota);
8408 }
8409 
8410 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8411 {
8412 	struct cfs_schedulable_data *d = data;
8413 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8414 	s64 quota = 0, parent_quota = -1;
8415 
8416 	if (!tg->parent) {
8417 		quota = RUNTIME_INF;
8418 	} else {
8419 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8420 
8421 		quota = normalize_cfs_quota(tg, d);
8422 		parent_quota = parent_b->hierarchical_quota;
8423 
8424 		/*
8425 		 * ensure max(child_quota) <= parent_quota, inherit when no
8426 		 * limit is set
8427 		 */
8428 		if (quota == RUNTIME_INF)
8429 			quota = parent_quota;
8430 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8431 			return -EINVAL;
8432 	}
8433 	cfs_b->hierarchical_quota = quota;
8434 
8435 	return 0;
8436 }
8437 
8438 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8439 {
8440 	int ret;
8441 	struct cfs_schedulable_data data = {
8442 		.tg = tg,
8443 		.period = period,
8444 		.quota = quota,
8445 	};
8446 
8447 	if (quota != RUNTIME_INF) {
8448 		do_div(data.period, NSEC_PER_USEC);
8449 		do_div(data.quota, NSEC_PER_USEC);
8450 	}
8451 
8452 	rcu_read_lock();
8453 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8454 	rcu_read_unlock();
8455 
8456 	return ret;
8457 }
8458 
8459 static int cpu_stats_show(struct seq_file *sf, void *v)
8460 {
8461 	struct task_group *tg = css_tg(seq_css(sf));
8462 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8463 
8464 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8465 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8466 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8467 
8468 	return 0;
8469 }
8470 #endif /* CONFIG_CFS_BANDWIDTH */
8471 #endif /* CONFIG_FAIR_GROUP_SCHED */
8472 
8473 #ifdef CONFIG_RT_GROUP_SCHED
8474 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8475 				struct cftype *cft, s64 val)
8476 {
8477 	return sched_group_set_rt_runtime(css_tg(css), val);
8478 }
8479 
8480 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8481 			       struct cftype *cft)
8482 {
8483 	return sched_group_rt_runtime(css_tg(css));
8484 }
8485 
8486 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8487 				    struct cftype *cftype, u64 rt_period_us)
8488 {
8489 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8490 }
8491 
8492 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8493 				   struct cftype *cft)
8494 {
8495 	return sched_group_rt_period(css_tg(css));
8496 }
8497 #endif /* CONFIG_RT_GROUP_SCHED */
8498 
8499 static struct cftype cpu_files[] = {
8500 #ifdef CONFIG_FAIR_GROUP_SCHED
8501 	{
8502 		.name = "shares",
8503 		.read_u64 = cpu_shares_read_u64,
8504 		.write_u64 = cpu_shares_write_u64,
8505 	},
8506 #endif
8507 #ifdef CONFIG_CFS_BANDWIDTH
8508 	{
8509 		.name = "cfs_quota_us",
8510 		.read_s64 = cpu_cfs_quota_read_s64,
8511 		.write_s64 = cpu_cfs_quota_write_s64,
8512 	},
8513 	{
8514 		.name = "cfs_period_us",
8515 		.read_u64 = cpu_cfs_period_read_u64,
8516 		.write_u64 = cpu_cfs_period_write_u64,
8517 	},
8518 	{
8519 		.name = "stat",
8520 		.seq_show = cpu_stats_show,
8521 	},
8522 #endif
8523 #ifdef CONFIG_RT_GROUP_SCHED
8524 	{
8525 		.name = "rt_runtime_us",
8526 		.read_s64 = cpu_rt_runtime_read,
8527 		.write_s64 = cpu_rt_runtime_write,
8528 	},
8529 	{
8530 		.name = "rt_period_us",
8531 		.read_u64 = cpu_rt_period_read_uint,
8532 		.write_u64 = cpu_rt_period_write_uint,
8533 	},
8534 #endif
8535 	{ }	/* terminate */
8536 };
8537 
8538 struct cgroup_subsys cpu_cgrp_subsys = {
8539 	.css_alloc	= cpu_cgroup_css_alloc,
8540 	.css_released	= cpu_cgroup_css_released,
8541 	.css_free	= cpu_cgroup_css_free,
8542 	.fork		= cpu_cgroup_fork,
8543 	.can_attach	= cpu_cgroup_can_attach,
8544 	.attach		= cpu_cgroup_attach,
8545 	.legacy_cftypes	= cpu_files,
8546 	.early_init	= true,
8547 };
8548 
8549 #endif	/* CONFIG_CGROUP_SCHED */
8550 
8551 void dump_cpu_task(int cpu)
8552 {
8553 	pr_info("Task dump for CPU %d:\n", cpu);
8554 	sched_show_task(cpu_curr(cpu));
8555 }
8556 
8557 /*
8558  * Nice levels are multiplicative, with a gentle 10% change for every
8559  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8560  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8561  * that remained on nice 0.
8562  *
8563  * The "10% effect" is relative and cumulative: from _any_ nice level,
8564  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8565  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8566  * If a task goes up by ~10% and another task goes down by ~10% then
8567  * the relative distance between them is ~25%.)
8568  */
8569 const int sched_prio_to_weight[40] = {
8570  /* -20 */     88761,     71755,     56483,     46273,     36291,
8571  /* -15 */     29154,     23254,     18705,     14949,     11916,
8572  /* -10 */      9548,      7620,      6100,      4904,      3906,
8573  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8574  /*   0 */      1024,       820,       655,       526,       423,
8575  /*   5 */       335,       272,       215,       172,       137,
8576  /*  10 */       110,        87,        70,        56,        45,
8577  /*  15 */        36,        29,        23,        18,        15,
8578 };
8579 
8580 /*
8581  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8582  *
8583  * In cases where the weight does not change often, we can use the
8584  * precalculated inverse to speed up arithmetics by turning divisions
8585  * into multiplications:
8586  */
8587 const u32 sched_prio_to_wmult[40] = {
8588  /* -20 */     48388,     59856,     76040,     92818,    118348,
8589  /* -15 */    147320,    184698,    229616,    287308,    360437,
8590  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8591  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8592  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8593  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8594  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8595  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8596 };
8597