xref: /linux/kernel/sched/core.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 /*
128  * Number of tasks to iterate in a single balance run.
129  * Limited because this is done with IRQs disabled.
130  */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132 
133 /*
134  * period over which we average the RT time consumption, measured
135  * in ms.
136  *
137  * default: 1s
138  */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140 
141 /*
142  * period over which we measure -rt task cpu usage in us.
143  * default: 1s
144  */
145 unsigned int sysctl_sched_rt_period = 1000000;
146 
147 __read_mostly int scheduler_running;
148 
149 /*
150  * part of the period that we allow rt tasks to run in us.
151  * default: 0.95s
152  */
153 int sysctl_sched_rt_runtime = 950000;
154 
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157 
158 /*
159  * this_rq_lock - lock this runqueue and disable interrupts.
160  */
161 static struct rq *this_rq_lock(void)
162 	__acquires(rq->lock)
163 {
164 	struct rq *rq;
165 
166 	local_irq_disable();
167 	rq = this_rq();
168 	raw_spin_lock(&rq->lock);
169 
170 	return rq;
171 }
172 
173 /*
174  * __task_rq_lock - lock the rq @p resides on.
175  */
176 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
177 	__acquires(rq->lock)
178 {
179 	struct rq *rq;
180 
181 	lockdep_assert_held(&p->pi_lock);
182 
183 	for (;;) {
184 		rq = task_rq(p);
185 		raw_spin_lock(&rq->lock);
186 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
187 			rf->cookie = lockdep_pin_lock(&rq->lock);
188 			return rq;
189 		}
190 		raw_spin_unlock(&rq->lock);
191 
192 		while (unlikely(task_on_rq_migrating(p)))
193 			cpu_relax();
194 	}
195 }
196 
197 /*
198  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199  */
200 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
201 	__acquires(p->pi_lock)
202 	__acquires(rq->lock)
203 {
204 	struct rq *rq;
205 
206 	for (;;) {
207 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
208 		rq = task_rq(p);
209 		raw_spin_lock(&rq->lock);
210 		/*
211 		 *	move_queued_task()		task_rq_lock()
212 		 *
213 		 *	ACQUIRE (rq->lock)
214 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
215 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
216 		 *	[S] ->cpu = new_cpu		[L] task_rq()
217 		 *					[L] ->on_rq
218 		 *	RELEASE (rq->lock)
219 		 *
220 		 * If we observe the old cpu in task_rq_lock, the acquire of
221 		 * the old rq->lock will fully serialize against the stores.
222 		 *
223 		 * If we observe the new cpu in task_rq_lock, the acquire will
224 		 * pair with the WMB to ensure we must then also see migrating.
225 		 */
226 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
227 			rf->cookie = lockdep_pin_lock(&rq->lock);
228 			return rq;
229 		}
230 		raw_spin_unlock(&rq->lock);
231 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
232 
233 		while (unlikely(task_on_rq_migrating(p)))
234 			cpu_relax();
235 	}
236 }
237 
238 #ifdef CONFIG_SCHED_HRTICK
239 /*
240  * Use HR-timers to deliver accurate preemption points.
241  */
242 
243 static void hrtick_clear(struct rq *rq)
244 {
245 	if (hrtimer_active(&rq->hrtick_timer))
246 		hrtimer_cancel(&rq->hrtick_timer);
247 }
248 
249 /*
250  * High-resolution timer tick.
251  * Runs from hardirq context with interrupts disabled.
252  */
253 static enum hrtimer_restart hrtick(struct hrtimer *timer)
254 {
255 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256 
257 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258 
259 	raw_spin_lock(&rq->lock);
260 	update_rq_clock(rq);
261 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 	raw_spin_unlock(&rq->lock);
263 
264 	return HRTIMER_NORESTART;
265 }
266 
267 #ifdef CONFIG_SMP
268 
269 static void __hrtick_restart(struct rq *rq)
270 {
271 	struct hrtimer *timer = &rq->hrtick_timer;
272 
273 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275 
276 /*
277  * called from hardirq (IPI) context
278  */
279 static void __hrtick_start(void *arg)
280 {
281 	struct rq *rq = arg;
282 
283 	raw_spin_lock(&rq->lock);
284 	__hrtick_restart(rq);
285 	rq->hrtick_csd_pending = 0;
286 	raw_spin_unlock(&rq->lock);
287 }
288 
289 /*
290  * Called to set the hrtick timer state.
291  *
292  * called with rq->lock held and irqs disabled
293  */
294 void hrtick_start(struct rq *rq, u64 delay)
295 {
296 	struct hrtimer *timer = &rq->hrtick_timer;
297 	ktime_t time;
298 	s64 delta;
299 
300 	/*
301 	 * Don't schedule slices shorter than 10000ns, that just
302 	 * doesn't make sense and can cause timer DoS.
303 	 */
304 	delta = max_t(s64, delay, 10000LL);
305 	time = ktime_add_ns(timer->base->get_time(), delta);
306 
307 	hrtimer_set_expires(timer, time);
308 
309 	if (rq == this_rq()) {
310 		__hrtick_restart(rq);
311 	} else if (!rq->hrtick_csd_pending) {
312 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 		rq->hrtick_csd_pending = 1;
314 	}
315 }
316 
317 #else
318 /*
319  * Called to set the hrtick timer state.
320  *
321  * called with rq->lock held and irqs disabled
322  */
323 void hrtick_start(struct rq *rq, u64 delay)
324 {
325 	/*
326 	 * Don't schedule slices shorter than 10000ns, that just
327 	 * doesn't make sense. Rely on vruntime for fairness.
328 	 */
329 	delay = max_t(u64, delay, 10000LL);
330 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 		      HRTIMER_MODE_REL_PINNED);
332 }
333 #endif /* CONFIG_SMP */
334 
335 static void init_rq_hrtick(struct rq *rq)
336 {
337 #ifdef CONFIG_SMP
338 	rq->hrtick_csd_pending = 0;
339 
340 	rq->hrtick_csd.flags = 0;
341 	rq->hrtick_csd.func = __hrtick_start;
342 	rq->hrtick_csd.info = rq;
343 #endif
344 
345 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 	rq->hrtick_timer.function = hrtick;
347 }
348 #else	/* CONFIG_SCHED_HRTICK */
349 static inline void hrtick_clear(struct rq *rq)
350 {
351 }
352 
353 static inline void init_rq_hrtick(struct rq *rq)
354 {
355 }
356 #endif	/* CONFIG_SCHED_HRTICK */
357 
358 /*
359  * cmpxchg based fetch_or, macro so it works for different integer types
360  */
361 #define fetch_or(ptr, mask)						\
362 	({								\
363 		typeof(ptr) _ptr = (ptr);				\
364 		typeof(mask) _mask = (mask);				\
365 		typeof(*_ptr) _old, _val = *_ptr;			\
366 									\
367 		for (;;) {						\
368 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
369 			if (_old == _val)				\
370 				break;					\
371 			_val = _old;					\
372 		}							\
373 	_old;								\
374 })
375 
376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 /*
378  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379  * this avoids any races wrt polling state changes and thereby avoids
380  * spurious IPIs.
381  */
382 static bool set_nr_and_not_polling(struct task_struct *p)
383 {
384 	struct thread_info *ti = task_thread_info(p);
385 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386 }
387 
388 /*
389  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390  *
391  * If this returns true, then the idle task promises to call
392  * sched_ttwu_pending() and reschedule soon.
393  */
394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396 	struct thread_info *ti = task_thread_info(p);
397 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398 
399 	for (;;) {
400 		if (!(val & _TIF_POLLING_NRFLAG))
401 			return false;
402 		if (val & _TIF_NEED_RESCHED)
403 			return true;
404 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 		if (old == val)
406 			break;
407 		val = old;
408 	}
409 	return true;
410 }
411 
412 #else
413 static bool set_nr_and_not_polling(struct task_struct *p)
414 {
415 	set_tsk_need_resched(p);
416 	return true;
417 }
418 
419 #ifdef CONFIG_SMP
420 static bool set_nr_if_polling(struct task_struct *p)
421 {
422 	return false;
423 }
424 #endif
425 #endif
426 
427 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428 {
429 	struct wake_q_node *node = &task->wake_q;
430 
431 	/*
432 	 * Atomically grab the task, if ->wake_q is !nil already it means
433 	 * its already queued (either by us or someone else) and will get the
434 	 * wakeup due to that.
435 	 *
436 	 * This cmpxchg() implies a full barrier, which pairs with the write
437 	 * barrier implied by the wakeup in wake_up_q().
438 	 */
439 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440 		return;
441 
442 	get_task_struct(task);
443 
444 	/*
445 	 * The head is context local, there can be no concurrency.
446 	 */
447 	*head->lastp = node;
448 	head->lastp = &node->next;
449 }
450 
451 void wake_up_q(struct wake_q_head *head)
452 {
453 	struct wake_q_node *node = head->first;
454 
455 	while (node != WAKE_Q_TAIL) {
456 		struct task_struct *task;
457 
458 		task = container_of(node, struct task_struct, wake_q);
459 		BUG_ON(!task);
460 		/* task can safely be re-inserted now */
461 		node = node->next;
462 		task->wake_q.next = NULL;
463 
464 		/*
465 		 * wake_up_process() implies a wmb() to pair with the queueing
466 		 * in wake_q_add() so as not to miss wakeups.
467 		 */
468 		wake_up_process(task);
469 		put_task_struct(task);
470 	}
471 }
472 
473 /*
474  * resched_curr - mark rq's current task 'to be rescheduled now'.
475  *
476  * On UP this means the setting of the need_resched flag, on SMP it
477  * might also involve a cross-CPU call to trigger the scheduler on
478  * the target CPU.
479  */
480 void resched_curr(struct rq *rq)
481 {
482 	struct task_struct *curr = rq->curr;
483 	int cpu;
484 
485 	lockdep_assert_held(&rq->lock);
486 
487 	if (test_tsk_need_resched(curr))
488 		return;
489 
490 	cpu = cpu_of(rq);
491 
492 	if (cpu == smp_processor_id()) {
493 		set_tsk_need_resched(curr);
494 		set_preempt_need_resched();
495 		return;
496 	}
497 
498 	if (set_nr_and_not_polling(curr))
499 		smp_send_reschedule(cpu);
500 	else
501 		trace_sched_wake_idle_without_ipi(cpu);
502 }
503 
504 void resched_cpu(int cpu)
505 {
506 	struct rq *rq = cpu_rq(cpu);
507 	unsigned long flags;
508 
509 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
510 		return;
511 	resched_curr(rq);
512 	raw_spin_unlock_irqrestore(&rq->lock, flags);
513 }
514 
515 #ifdef CONFIG_SMP
516 #ifdef CONFIG_NO_HZ_COMMON
517 /*
518  * In the semi idle case, use the nearest busy cpu for migrating timers
519  * from an idle cpu.  This is good for power-savings.
520  *
521  * We don't do similar optimization for completely idle system, as
522  * selecting an idle cpu will add more delays to the timers than intended
523  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
524  */
525 int get_nohz_timer_target(void)
526 {
527 	int i, cpu = smp_processor_id();
528 	struct sched_domain *sd;
529 
530 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
531 		return cpu;
532 
533 	rcu_read_lock();
534 	for_each_domain(cpu, sd) {
535 		for_each_cpu(i, sched_domain_span(sd)) {
536 			if (cpu == i)
537 				continue;
538 
539 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
540 				cpu = i;
541 				goto unlock;
542 			}
543 		}
544 	}
545 
546 	if (!is_housekeeping_cpu(cpu))
547 		cpu = housekeeping_any_cpu();
548 unlock:
549 	rcu_read_unlock();
550 	return cpu;
551 }
552 /*
553  * When add_timer_on() enqueues a timer into the timer wheel of an
554  * idle CPU then this timer might expire before the next timer event
555  * which is scheduled to wake up that CPU. In case of a completely
556  * idle system the next event might even be infinite time into the
557  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558  * leaves the inner idle loop so the newly added timer is taken into
559  * account when the CPU goes back to idle and evaluates the timer
560  * wheel for the next timer event.
561  */
562 static void wake_up_idle_cpu(int cpu)
563 {
564 	struct rq *rq = cpu_rq(cpu);
565 
566 	if (cpu == smp_processor_id())
567 		return;
568 
569 	if (set_nr_and_not_polling(rq->idle))
570 		smp_send_reschedule(cpu);
571 	else
572 		trace_sched_wake_idle_without_ipi(cpu);
573 }
574 
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577 	/*
578 	 * We just need the target to call irq_exit() and re-evaluate
579 	 * the next tick. The nohz full kick at least implies that.
580 	 * If needed we can still optimize that later with an
581 	 * empty IRQ.
582 	 */
583 	if (tick_nohz_full_cpu(cpu)) {
584 		if (cpu != smp_processor_id() ||
585 		    tick_nohz_tick_stopped())
586 			tick_nohz_full_kick_cpu(cpu);
587 		return true;
588 	}
589 
590 	return false;
591 }
592 
593 void wake_up_nohz_cpu(int cpu)
594 {
595 	if (!wake_up_full_nohz_cpu(cpu))
596 		wake_up_idle_cpu(cpu);
597 }
598 
599 static inline bool got_nohz_idle_kick(void)
600 {
601 	int cpu = smp_processor_id();
602 
603 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
604 		return false;
605 
606 	if (idle_cpu(cpu) && !need_resched())
607 		return true;
608 
609 	/*
610 	 * We can't run Idle Load Balance on this CPU for this time so we
611 	 * cancel it and clear NOHZ_BALANCE_KICK
612 	 */
613 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
614 	return false;
615 }
616 
617 #else /* CONFIG_NO_HZ_COMMON */
618 
619 static inline bool got_nohz_idle_kick(void)
620 {
621 	return false;
622 }
623 
624 #endif /* CONFIG_NO_HZ_COMMON */
625 
626 #ifdef CONFIG_NO_HZ_FULL
627 bool sched_can_stop_tick(struct rq *rq)
628 {
629 	int fifo_nr_running;
630 
631 	/* Deadline tasks, even if single, need the tick */
632 	if (rq->dl.dl_nr_running)
633 		return false;
634 
635 	/*
636 	 * If there are more than one RR tasks, we need the tick to effect the
637 	 * actual RR behaviour.
638 	 */
639 	if (rq->rt.rr_nr_running) {
640 		if (rq->rt.rr_nr_running == 1)
641 			return true;
642 		else
643 			return false;
644 	}
645 
646 	/*
647 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
648 	 * forced preemption between FIFO tasks.
649 	 */
650 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
651 	if (fifo_nr_running)
652 		return true;
653 
654 	/*
655 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
656 	 * if there's more than one we need the tick for involuntary
657 	 * preemption.
658 	 */
659 	if (rq->nr_running > 1)
660 		return false;
661 
662 	return true;
663 }
664 #endif /* CONFIG_NO_HZ_FULL */
665 
666 void sched_avg_update(struct rq *rq)
667 {
668 	s64 period = sched_avg_period();
669 
670 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
671 		/*
672 		 * Inline assembly required to prevent the compiler
673 		 * optimising this loop into a divmod call.
674 		 * See __iter_div_u64_rem() for another example of this.
675 		 */
676 		asm("" : "+rm" (rq->age_stamp));
677 		rq->age_stamp += period;
678 		rq->rt_avg /= 2;
679 	}
680 }
681 
682 #endif /* CONFIG_SMP */
683 
684 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
685 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
686 /*
687  * Iterate task_group tree rooted at *from, calling @down when first entering a
688  * node and @up when leaving it for the final time.
689  *
690  * Caller must hold rcu_lock or sufficient equivalent.
691  */
692 int walk_tg_tree_from(struct task_group *from,
693 			     tg_visitor down, tg_visitor up, void *data)
694 {
695 	struct task_group *parent, *child;
696 	int ret;
697 
698 	parent = from;
699 
700 down:
701 	ret = (*down)(parent, data);
702 	if (ret)
703 		goto out;
704 	list_for_each_entry_rcu(child, &parent->children, siblings) {
705 		parent = child;
706 		goto down;
707 
708 up:
709 		continue;
710 	}
711 	ret = (*up)(parent, data);
712 	if (ret || parent == from)
713 		goto out;
714 
715 	child = parent;
716 	parent = parent->parent;
717 	if (parent)
718 		goto up;
719 out:
720 	return ret;
721 }
722 
723 int tg_nop(struct task_group *tg, void *data)
724 {
725 	return 0;
726 }
727 #endif
728 
729 static void set_load_weight(struct task_struct *p)
730 {
731 	int prio = p->static_prio - MAX_RT_PRIO;
732 	struct load_weight *load = &p->se.load;
733 
734 	/*
735 	 * SCHED_IDLE tasks get minimal weight:
736 	 */
737 	if (idle_policy(p->policy)) {
738 		load->weight = scale_load(WEIGHT_IDLEPRIO);
739 		load->inv_weight = WMULT_IDLEPRIO;
740 		return;
741 	}
742 
743 	load->weight = scale_load(sched_prio_to_weight[prio]);
744 	load->inv_weight = sched_prio_to_wmult[prio];
745 }
746 
747 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
748 {
749 	update_rq_clock(rq);
750 	if (!(flags & ENQUEUE_RESTORE))
751 		sched_info_queued(rq, p);
752 	p->sched_class->enqueue_task(rq, p, flags);
753 }
754 
755 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 	update_rq_clock(rq);
758 	if (!(flags & DEQUEUE_SAVE))
759 		sched_info_dequeued(rq, p);
760 	p->sched_class->dequeue_task(rq, p, flags);
761 }
762 
763 void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 	if (task_contributes_to_load(p))
766 		rq->nr_uninterruptible--;
767 
768 	enqueue_task(rq, p, flags);
769 }
770 
771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 	if (task_contributes_to_load(p))
774 		rq->nr_uninterruptible++;
775 
776 	dequeue_task(rq, p, flags);
777 }
778 
779 static void update_rq_clock_task(struct rq *rq, s64 delta)
780 {
781 /*
782  * In theory, the compile should just see 0 here, and optimize out the call
783  * to sched_rt_avg_update. But I don't trust it...
784  */
785 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
786 	s64 steal = 0, irq_delta = 0;
787 #endif
788 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
789 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
790 
791 	/*
792 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
793 	 * this case when a previous update_rq_clock() happened inside a
794 	 * {soft,}irq region.
795 	 *
796 	 * When this happens, we stop ->clock_task and only update the
797 	 * prev_irq_time stamp to account for the part that fit, so that a next
798 	 * update will consume the rest. This ensures ->clock_task is
799 	 * monotonic.
800 	 *
801 	 * It does however cause some slight miss-attribution of {soft,}irq
802 	 * time, a more accurate solution would be to update the irq_time using
803 	 * the current rq->clock timestamp, except that would require using
804 	 * atomic ops.
805 	 */
806 	if (irq_delta > delta)
807 		irq_delta = delta;
808 
809 	rq->prev_irq_time += irq_delta;
810 	delta -= irq_delta;
811 #endif
812 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
813 	if (static_key_false((&paravirt_steal_rq_enabled))) {
814 		steal = paravirt_steal_clock(cpu_of(rq));
815 		steal -= rq->prev_steal_time_rq;
816 
817 		if (unlikely(steal > delta))
818 			steal = delta;
819 
820 		rq->prev_steal_time_rq += steal;
821 		delta -= steal;
822 	}
823 #endif
824 
825 	rq->clock_task += delta;
826 
827 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
828 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
829 		sched_rt_avg_update(rq, irq_delta + steal);
830 #endif
831 }
832 
833 void sched_set_stop_task(int cpu, struct task_struct *stop)
834 {
835 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
836 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
837 
838 	if (stop) {
839 		/*
840 		 * Make it appear like a SCHED_FIFO task, its something
841 		 * userspace knows about and won't get confused about.
842 		 *
843 		 * Also, it will make PI more or less work without too
844 		 * much confusion -- but then, stop work should not
845 		 * rely on PI working anyway.
846 		 */
847 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
848 
849 		stop->sched_class = &stop_sched_class;
850 	}
851 
852 	cpu_rq(cpu)->stop = stop;
853 
854 	if (old_stop) {
855 		/*
856 		 * Reset it back to a normal scheduling class so that
857 		 * it can die in pieces.
858 		 */
859 		old_stop->sched_class = &rt_sched_class;
860 	}
861 }
862 
863 /*
864  * __normal_prio - return the priority that is based on the static prio
865  */
866 static inline int __normal_prio(struct task_struct *p)
867 {
868 	return p->static_prio;
869 }
870 
871 /*
872  * Calculate the expected normal priority: i.e. priority
873  * without taking RT-inheritance into account. Might be
874  * boosted by interactivity modifiers. Changes upon fork,
875  * setprio syscalls, and whenever the interactivity
876  * estimator recalculates.
877  */
878 static inline int normal_prio(struct task_struct *p)
879 {
880 	int prio;
881 
882 	if (task_has_dl_policy(p))
883 		prio = MAX_DL_PRIO-1;
884 	else if (task_has_rt_policy(p))
885 		prio = MAX_RT_PRIO-1 - p->rt_priority;
886 	else
887 		prio = __normal_prio(p);
888 	return prio;
889 }
890 
891 /*
892  * Calculate the current priority, i.e. the priority
893  * taken into account by the scheduler. This value might
894  * be boosted by RT tasks, or might be boosted by
895  * interactivity modifiers. Will be RT if the task got
896  * RT-boosted. If not then it returns p->normal_prio.
897  */
898 static int effective_prio(struct task_struct *p)
899 {
900 	p->normal_prio = normal_prio(p);
901 	/*
902 	 * If we are RT tasks or we were boosted to RT priority,
903 	 * keep the priority unchanged. Otherwise, update priority
904 	 * to the normal priority:
905 	 */
906 	if (!rt_prio(p->prio))
907 		return p->normal_prio;
908 	return p->prio;
909 }
910 
911 /**
912  * task_curr - is this task currently executing on a CPU?
913  * @p: the task in question.
914  *
915  * Return: 1 if the task is currently executing. 0 otherwise.
916  */
917 inline int task_curr(const struct task_struct *p)
918 {
919 	return cpu_curr(task_cpu(p)) == p;
920 }
921 
922 /*
923  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
924  * use the balance_callback list if you want balancing.
925  *
926  * this means any call to check_class_changed() must be followed by a call to
927  * balance_callback().
928  */
929 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
930 				       const struct sched_class *prev_class,
931 				       int oldprio)
932 {
933 	if (prev_class != p->sched_class) {
934 		if (prev_class->switched_from)
935 			prev_class->switched_from(rq, p);
936 
937 		p->sched_class->switched_to(rq, p);
938 	} else if (oldprio != p->prio || dl_task(p))
939 		p->sched_class->prio_changed(rq, p, oldprio);
940 }
941 
942 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
943 {
944 	const struct sched_class *class;
945 
946 	if (p->sched_class == rq->curr->sched_class) {
947 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
948 	} else {
949 		for_each_class(class) {
950 			if (class == rq->curr->sched_class)
951 				break;
952 			if (class == p->sched_class) {
953 				resched_curr(rq);
954 				break;
955 			}
956 		}
957 	}
958 
959 	/*
960 	 * A queue event has occurred, and we're going to schedule.  In
961 	 * this case, we can save a useless back to back clock update.
962 	 */
963 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
964 		rq_clock_skip_update(rq, true);
965 }
966 
967 #ifdef CONFIG_SMP
968 /*
969  * This is how migration works:
970  *
971  * 1) we invoke migration_cpu_stop() on the target CPU using
972  *    stop_one_cpu().
973  * 2) stopper starts to run (implicitly forcing the migrated thread
974  *    off the CPU)
975  * 3) it checks whether the migrated task is still in the wrong runqueue.
976  * 4) if it's in the wrong runqueue then the migration thread removes
977  *    it and puts it into the right queue.
978  * 5) stopper completes and stop_one_cpu() returns and the migration
979  *    is done.
980  */
981 
982 /*
983  * move_queued_task - move a queued task to new rq.
984  *
985  * Returns (locked) new rq. Old rq's lock is released.
986  */
987 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
988 {
989 	lockdep_assert_held(&rq->lock);
990 
991 	p->on_rq = TASK_ON_RQ_MIGRATING;
992 	dequeue_task(rq, p, 0);
993 	set_task_cpu(p, new_cpu);
994 	raw_spin_unlock(&rq->lock);
995 
996 	rq = cpu_rq(new_cpu);
997 
998 	raw_spin_lock(&rq->lock);
999 	BUG_ON(task_cpu(p) != new_cpu);
1000 	enqueue_task(rq, p, 0);
1001 	p->on_rq = TASK_ON_RQ_QUEUED;
1002 	check_preempt_curr(rq, p, 0);
1003 
1004 	return rq;
1005 }
1006 
1007 struct migration_arg {
1008 	struct task_struct *task;
1009 	int dest_cpu;
1010 };
1011 
1012 /*
1013  * Move (not current) task off this cpu, onto dest cpu. We're doing
1014  * this because either it can't run here any more (set_cpus_allowed()
1015  * away from this CPU, or CPU going down), or because we're
1016  * attempting to rebalance this task on exec (sched_exec).
1017  *
1018  * So we race with normal scheduler movements, but that's OK, as long
1019  * as the task is no longer on this CPU.
1020  */
1021 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1022 {
1023 	if (unlikely(!cpu_active(dest_cpu)))
1024 		return rq;
1025 
1026 	/* Affinity changed (again). */
1027 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1028 		return rq;
1029 
1030 	rq = move_queued_task(rq, p, dest_cpu);
1031 
1032 	return rq;
1033 }
1034 
1035 /*
1036  * migration_cpu_stop - this will be executed by a highprio stopper thread
1037  * and performs thread migration by bumping thread off CPU then
1038  * 'pushing' onto another runqueue.
1039  */
1040 static int migration_cpu_stop(void *data)
1041 {
1042 	struct migration_arg *arg = data;
1043 	struct task_struct *p = arg->task;
1044 	struct rq *rq = this_rq();
1045 
1046 	/*
1047 	 * The original target cpu might have gone down and we might
1048 	 * be on another cpu but it doesn't matter.
1049 	 */
1050 	local_irq_disable();
1051 	/*
1052 	 * We need to explicitly wake pending tasks before running
1053 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1054 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1055 	 */
1056 	sched_ttwu_pending();
1057 
1058 	raw_spin_lock(&p->pi_lock);
1059 	raw_spin_lock(&rq->lock);
1060 	/*
1061 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1062 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1063 	 * we're holding p->pi_lock.
1064 	 */
1065 	if (task_rq(p) == rq && task_on_rq_queued(p))
1066 		rq = __migrate_task(rq, p, arg->dest_cpu);
1067 	raw_spin_unlock(&rq->lock);
1068 	raw_spin_unlock(&p->pi_lock);
1069 
1070 	local_irq_enable();
1071 	return 0;
1072 }
1073 
1074 /*
1075  * sched_class::set_cpus_allowed must do the below, but is not required to
1076  * actually call this function.
1077  */
1078 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1079 {
1080 	cpumask_copy(&p->cpus_allowed, new_mask);
1081 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1082 }
1083 
1084 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1085 {
1086 	struct rq *rq = task_rq(p);
1087 	bool queued, running;
1088 
1089 	lockdep_assert_held(&p->pi_lock);
1090 
1091 	queued = task_on_rq_queued(p);
1092 	running = task_current(rq, p);
1093 
1094 	if (queued) {
1095 		/*
1096 		 * Because __kthread_bind() calls this on blocked tasks without
1097 		 * holding rq->lock.
1098 		 */
1099 		lockdep_assert_held(&rq->lock);
1100 		dequeue_task(rq, p, DEQUEUE_SAVE);
1101 	}
1102 	if (running)
1103 		put_prev_task(rq, p);
1104 
1105 	p->sched_class->set_cpus_allowed(p, new_mask);
1106 
1107 	if (running)
1108 		p->sched_class->set_curr_task(rq);
1109 	if (queued)
1110 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1111 }
1112 
1113 /*
1114  * Change a given task's CPU affinity. Migrate the thread to a
1115  * proper CPU and schedule it away if the CPU it's executing on
1116  * is removed from the allowed bitmask.
1117  *
1118  * NOTE: the caller must have a valid reference to the task, the
1119  * task must not exit() & deallocate itself prematurely. The
1120  * call is not atomic; no spinlocks may be held.
1121  */
1122 static int __set_cpus_allowed_ptr(struct task_struct *p,
1123 				  const struct cpumask *new_mask, bool check)
1124 {
1125 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1126 	unsigned int dest_cpu;
1127 	struct rq_flags rf;
1128 	struct rq *rq;
1129 	int ret = 0;
1130 
1131 	rq = task_rq_lock(p, &rf);
1132 
1133 	if (p->flags & PF_KTHREAD) {
1134 		/*
1135 		 * Kernel threads are allowed on online && !active CPUs
1136 		 */
1137 		cpu_valid_mask = cpu_online_mask;
1138 	}
1139 
1140 	/*
1141 	 * Must re-check here, to close a race against __kthread_bind(),
1142 	 * sched_setaffinity() is not guaranteed to observe the flag.
1143 	 */
1144 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1145 		ret = -EINVAL;
1146 		goto out;
1147 	}
1148 
1149 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1150 		goto out;
1151 
1152 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1153 		ret = -EINVAL;
1154 		goto out;
1155 	}
1156 
1157 	do_set_cpus_allowed(p, new_mask);
1158 
1159 	if (p->flags & PF_KTHREAD) {
1160 		/*
1161 		 * For kernel threads that do indeed end up on online &&
1162 		 * !active we want to ensure they are strict per-cpu threads.
1163 		 */
1164 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1165 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1166 			p->nr_cpus_allowed != 1);
1167 	}
1168 
1169 	/* Can the task run on the task's current CPU? If so, we're done */
1170 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1171 		goto out;
1172 
1173 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1174 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1175 		struct migration_arg arg = { p, dest_cpu };
1176 		/* Need help from migration thread: drop lock and wait. */
1177 		task_rq_unlock(rq, p, &rf);
1178 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1179 		tlb_migrate_finish(p->mm);
1180 		return 0;
1181 	} else if (task_on_rq_queued(p)) {
1182 		/*
1183 		 * OK, since we're going to drop the lock immediately
1184 		 * afterwards anyway.
1185 		 */
1186 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1187 		rq = move_queued_task(rq, p, dest_cpu);
1188 		lockdep_repin_lock(&rq->lock, rf.cookie);
1189 	}
1190 out:
1191 	task_rq_unlock(rq, p, &rf);
1192 
1193 	return ret;
1194 }
1195 
1196 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1197 {
1198 	return __set_cpus_allowed_ptr(p, new_mask, false);
1199 }
1200 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1201 
1202 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1203 {
1204 #ifdef CONFIG_SCHED_DEBUG
1205 	/*
1206 	 * We should never call set_task_cpu() on a blocked task,
1207 	 * ttwu() will sort out the placement.
1208 	 */
1209 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1210 			!p->on_rq);
1211 
1212 	/*
1213 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1214 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1215 	 * time relying on p->on_rq.
1216 	 */
1217 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1218 		     p->sched_class == &fair_sched_class &&
1219 		     (p->on_rq && !task_on_rq_migrating(p)));
1220 
1221 #ifdef CONFIG_LOCKDEP
1222 	/*
1223 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1224 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1225 	 *
1226 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1227 	 * see task_group().
1228 	 *
1229 	 * Furthermore, all task_rq users should acquire both locks, see
1230 	 * task_rq_lock().
1231 	 */
1232 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1233 				      lockdep_is_held(&task_rq(p)->lock)));
1234 #endif
1235 #endif
1236 
1237 	trace_sched_migrate_task(p, new_cpu);
1238 
1239 	if (task_cpu(p) != new_cpu) {
1240 		if (p->sched_class->migrate_task_rq)
1241 			p->sched_class->migrate_task_rq(p);
1242 		p->se.nr_migrations++;
1243 		perf_event_task_migrate(p);
1244 	}
1245 
1246 	__set_task_cpu(p, new_cpu);
1247 }
1248 
1249 static void __migrate_swap_task(struct task_struct *p, int cpu)
1250 {
1251 	if (task_on_rq_queued(p)) {
1252 		struct rq *src_rq, *dst_rq;
1253 
1254 		src_rq = task_rq(p);
1255 		dst_rq = cpu_rq(cpu);
1256 
1257 		p->on_rq = TASK_ON_RQ_MIGRATING;
1258 		deactivate_task(src_rq, p, 0);
1259 		set_task_cpu(p, cpu);
1260 		activate_task(dst_rq, p, 0);
1261 		p->on_rq = TASK_ON_RQ_QUEUED;
1262 		check_preempt_curr(dst_rq, p, 0);
1263 	} else {
1264 		/*
1265 		 * Task isn't running anymore; make it appear like we migrated
1266 		 * it before it went to sleep. This means on wakeup we make the
1267 		 * previous cpu our targer instead of where it really is.
1268 		 */
1269 		p->wake_cpu = cpu;
1270 	}
1271 }
1272 
1273 struct migration_swap_arg {
1274 	struct task_struct *src_task, *dst_task;
1275 	int src_cpu, dst_cpu;
1276 };
1277 
1278 static int migrate_swap_stop(void *data)
1279 {
1280 	struct migration_swap_arg *arg = data;
1281 	struct rq *src_rq, *dst_rq;
1282 	int ret = -EAGAIN;
1283 
1284 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1285 		return -EAGAIN;
1286 
1287 	src_rq = cpu_rq(arg->src_cpu);
1288 	dst_rq = cpu_rq(arg->dst_cpu);
1289 
1290 	double_raw_lock(&arg->src_task->pi_lock,
1291 			&arg->dst_task->pi_lock);
1292 	double_rq_lock(src_rq, dst_rq);
1293 
1294 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1295 		goto unlock;
1296 
1297 	if (task_cpu(arg->src_task) != arg->src_cpu)
1298 		goto unlock;
1299 
1300 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1301 		goto unlock;
1302 
1303 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1304 		goto unlock;
1305 
1306 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1307 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1308 
1309 	ret = 0;
1310 
1311 unlock:
1312 	double_rq_unlock(src_rq, dst_rq);
1313 	raw_spin_unlock(&arg->dst_task->pi_lock);
1314 	raw_spin_unlock(&arg->src_task->pi_lock);
1315 
1316 	return ret;
1317 }
1318 
1319 /*
1320  * Cross migrate two tasks
1321  */
1322 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1323 {
1324 	struct migration_swap_arg arg;
1325 	int ret = -EINVAL;
1326 
1327 	arg = (struct migration_swap_arg){
1328 		.src_task = cur,
1329 		.src_cpu = task_cpu(cur),
1330 		.dst_task = p,
1331 		.dst_cpu = task_cpu(p),
1332 	};
1333 
1334 	if (arg.src_cpu == arg.dst_cpu)
1335 		goto out;
1336 
1337 	/*
1338 	 * These three tests are all lockless; this is OK since all of them
1339 	 * will be re-checked with proper locks held further down the line.
1340 	 */
1341 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1342 		goto out;
1343 
1344 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1345 		goto out;
1346 
1347 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1348 		goto out;
1349 
1350 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1351 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1352 
1353 out:
1354 	return ret;
1355 }
1356 
1357 /*
1358  * wait_task_inactive - wait for a thread to unschedule.
1359  *
1360  * If @match_state is nonzero, it's the @p->state value just checked and
1361  * not expected to change.  If it changes, i.e. @p might have woken up,
1362  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1363  * we return a positive number (its total switch count).  If a second call
1364  * a short while later returns the same number, the caller can be sure that
1365  * @p has remained unscheduled the whole time.
1366  *
1367  * The caller must ensure that the task *will* unschedule sometime soon,
1368  * else this function might spin for a *long* time. This function can't
1369  * be called with interrupts off, or it may introduce deadlock with
1370  * smp_call_function() if an IPI is sent by the same process we are
1371  * waiting to become inactive.
1372  */
1373 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1374 {
1375 	int running, queued;
1376 	struct rq_flags rf;
1377 	unsigned long ncsw;
1378 	struct rq *rq;
1379 
1380 	for (;;) {
1381 		/*
1382 		 * We do the initial early heuristics without holding
1383 		 * any task-queue locks at all. We'll only try to get
1384 		 * the runqueue lock when things look like they will
1385 		 * work out!
1386 		 */
1387 		rq = task_rq(p);
1388 
1389 		/*
1390 		 * If the task is actively running on another CPU
1391 		 * still, just relax and busy-wait without holding
1392 		 * any locks.
1393 		 *
1394 		 * NOTE! Since we don't hold any locks, it's not
1395 		 * even sure that "rq" stays as the right runqueue!
1396 		 * But we don't care, since "task_running()" will
1397 		 * return false if the runqueue has changed and p
1398 		 * is actually now running somewhere else!
1399 		 */
1400 		while (task_running(rq, p)) {
1401 			if (match_state && unlikely(p->state != match_state))
1402 				return 0;
1403 			cpu_relax();
1404 		}
1405 
1406 		/*
1407 		 * Ok, time to look more closely! We need the rq
1408 		 * lock now, to be *sure*. If we're wrong, we'll
1409 		 * just go back and repeat.
1410 		 */
1411 		rq = task_rq_lock(p, &rf);
1412 		trace_sched_wait_task(p);
1413 		running = task_running(rq, p);
1414 		queued = task_on_rq_queued(p);
1415 		ncsw = 0;
1416 		if (!match_state || p->state == match_state)
1417 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1418 		task_rq_unlock(rq, p, &rf);
1419 
1420 		/*
1421 		 * If it changed from the expected state, bail out now.
1422 		 */
1423 		if (unlikely(!ncsw))
1424 			break;
1425 
1426 		/*
1427 		 * Was it really running after all now that we
1428 		 * checked with the proper locks actually held?
1429 		 *
1430 		 * Oops. Go back and try again..
1431 		 */
1432 		if (unlikely(running)) {
1433 			cpu_relax();
1434 			continue;
1435 		}
1436 
1437 		/*
1438 		 * It's not enough that it's not actively running,
1439 		 * it must be off the runqueue _entirely_, and not
1440 		 * preempted!
1441 		 *
1442 		 * So if it was still runnable (but just not actively
1443 		 * running right now), it's preempted, and we should
1444 		 * yield - it could be a while.
1445 		 */
1446 		if (unlikely(queued)) {
1447 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1448 
1449 			set_current_state(TASK_UNINTERRUPTIBLE);
1450 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1451 			continue;
1452 		}
1453 
1454 		/*
1455 		 * Ahh, all good. It wasn't running, and it wasn't
1456 		 * runnable, which means that it will never become
1457 		 * running in the future either. We're all done!
1458 		 */
1459 		break;
1460 	}
1461 
1462 	return ncsw;
1463 }
1464 
1465 /***
1466  * kick_process - kick a running thread to enter/exit the kernel
1467  * @p: the to-be-kicked thread
1468  *
1469  * Cause a process which is running on another CPU to enter
1470  * kernel-mode, without any delay. (to get signals handled.)
1471  *
1472  * NOTE: this function doesn't have to take the runqueue lock,
1473  * because all it wants to ensure is that the remote task enters
1474  * the kernel. If the IPI races and the task has been migrated
1475  * to another CPU then no harm is done and the purpose has been
1476  * achieved as well.
1477  */
1478 void kick_process(struct task_struct *p)
1479 {
1480 	int cpu;
1481 
1482 	preempt_disable();
1483 	cpu = task_cpu(p);
1484 	if ((cpu != smp_processor_id()) && task_curr(p))
1485 		smp_send_reschedule(cpu);
1486 	preempt_enable();
1487 }
1488 EXPORT_SYMBOL_GPL(kick_process);
1489 
1490 /*
1491  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1492  *
1493  * A few notes on cpu_active vs cpu_online:
1494  *
1495  *  - cpu_active must be a subset of cpu_online
1496  *
1497  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1498  *    see __set_cpus_allowed_ptr(). At this point the newly online
1499  *    cpu isn't yet part of the sched domains, and balancing will not
1500  *    see it.
1501  *
1502  *  - on cpu-down we clear cpu_active() to mask the sched domains and
1503  *    avoid the load balancer to place new tasks on the to be removed
1504  *    cpu. Existing tasks will remain running there and will be taken
1505  *    off.
1506  *
1507  * This means that fallback selection must not select !active CPUs.
1508  * And can assume that any active CPU must be online. Conversely
1509  * select_task_rq() below may allow selection of !active CPUs in order
1510  * to satisfy the above rules.
1511  */
1512 static int select_fallback_rq(int cpu, struct task_struct *p)
1513 {
1514 	int nid = cpu_to_node(cpu);
1515 	const struct cpumask *nodemask = NULL;
1516 	enum { cpuset, possible, fail } state = cpuset;
1517 	int dest_cpu;
1518 
1519 	/*
1520 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1521 	 * will return -1. There is no cpu on the node, and we should
1522 	 * select the cpu on the other node.
1523 	 */
1524 	if (nid != -1) {
1525 		nodemask = cpumask_of_node(nid);
1526 
1527 		/* Look for allowed, online CPU in same node. */
1528 		for_each_cpu(dest_cpu, nodemask) {
1529 			if (!cpu_active(dest_cpu))
1530 				continue;
1531 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1532 				return dest_cpu;
1533 		}
1534 	}
1535 
1536 	for (;;) {
1537 		/* Any allowed, online CPU? */
1538 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1539 			if (!cpu_active(dest_cpu))
1540 				continue;
1541 			goto out;
1542 		}
1543 
1544 		/* No more Mr. Nice Guy. */
1545 		switch (state) {
1546 		case cpuset:
1547 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1548 				cpuset_cpus_allowed_fallback(p);
1549 				state = possible;
1550 				break;
1551 			}
1552 			/* fall-through */
1553 		case possible:
1554 			do_set_cpus_allowed(p, cpu_possible_mask);
1555 			state = fail;
1556 			break;
1557 
1558 		case fail:
1559 			BUG();
1560 			break;
1561 		}
1562 	}
1563 
1564 out:
1565 	if (state != cpuset) {
1566 		/*
1567 		 * Don't tell them about moving exiting tasks or
1568 		 * kernel threads (both mm NULL), since they never
1569 		 * leave kernel.
1570 		 */
1571 		if (p->mm && printk_ratelimit()) {
1572 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1573 					task_pid_nr(p), p->comm, cpu);
1574 		}
1575 	}
1576 
1577 	return dest_cpu;
1578 }
1579 
1580 /*
1581  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1582  */
1583 static inline
1584 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1585 {
1586 	lockdep_assert_held(&p->pi_lock);
1587 
1588 	if (tsk_nr_cpus_allowed(p) > 1)
1589 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1590 	else
1591 		cpu = cpumask_any(tsk_cpus_allowed(p));
1592 
1593 	/*
1594 	 * In order not to call set_task_cpu() on a blocking task we need
1595 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1596 	 * cpu.
1597 	 *
1598 	 * Since this is common to all placement strategies, this lives here.
1599 	 *
1600 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1601 	 *   not worry about this generic constraint ]
1602 	 */
1603 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1604 		     !cpu_online(cpu)))
1605 		cpu = select_fallback_rq(task_cpu(p), p);
1606 
1607 	return cpu;
1608 }
1609 
1610 static void update_avg(u64 *avg, u64 sample)
1611 {
1612 	s64 diff = sample - *avg;
1613 	*avg += diff >> 3;
1614 }
1615 
1616 #else
1617 
1618 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1619 					 const struct cpumask *new_mask, bool check)
1620 {
1621 	return set_cpus_allowed_ptr(p, new_mask);
1622 }
1623 
1624 #endif /* CONFIG_SMP */
1625 
1626 static void
1627 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1628 {
1629 #ifdef CONFIG_SCHEDSTATS
1630 	struct rq *rq = this_rq();
1631 
1632 #ifdef CONFIG_SMP
1633 	int this_cpu = smp_processor_id();
1634 
1635 	if (cpu == this_cpu) {
1636 		schedstat_inc(rq, ttwu_local);
1637 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1638 	} else {
1639 		struct sched_domain *sd;
1640 
1641 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1642 		rcu_read_lock();
1643 		for_each_domain(this_cpu, sd) {
1644 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1645 				schedstat_inc(sd, ttwu_wake_remote);
1646 				break;
1647 			}
1648 		}
1649 		rcu_read_unlock();
1650 	}
1651 
1652 	if (wake_flags & WF_MIGRATED)
1653 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1654 
1655 #endif /* CONFIG_SMP */
1656 
1657 	schedstat_inc(rq, ttwu_count);
1658 	schedstat_inc(p, se.statistics.nr_wakeups);
1659 
1660 	if (wake_flags & WF_SYNC)
1661 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1662 
1663 #endif /* CONFIG_SCHEDSTATS */
1664 }
1665 
1666 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1667 {
1668 	activate_task(rq, p, en_flags);
1669 	p->on_rq = TASK_ON_RQ_QUEUED;
1670 
1671 	/* if a worker is waking up, notify workqueue */
1672 	if (p->flags & PF_WQ_WORKER)
1673 		wq_worker_waking_up(p, cpu_of(rq));
1674 }
1675 
1676 /*
1677  * Mark the task runnable and perform wakeup-preemption.
1678  */
1679 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1680 			   struct pin_cookie cookie)
1681 {
1682 	check_preempt_curr(rq, p, wake_flags);
1683 	p->state = TASK_RUNNING;
1684 	trace_sched_wakeup(p);
1685 
1686 #ifdef CONFIG_SMP
1687 	if (p->sched_class->task_woken) {
1688 		/*
1689 		 * Our task @p is fully woken up and running; so its safe to
1690 		 * drop the rq->lock, hereafter rq is only used for statistics.
1691 		 */
1692 		lockdep_unpin_lock(&rq->lock, cookie);
1693 		p->sched_class->task_woken(rq, p);
1694 		lockdep_repin_lock(&rq->lock, cookie);
1695 	}
1696 
1697 	if (rq->idle_stamp) {
1698 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1699 		u64 max = 2*rq->max_idle_balance_cost;
1700 
1701 		update_avg(&rq->avg_idle, delta);
1702 
1703 		if (rq->avg_idle > max)
1704 			rq->avg_idle = max;
1705 
1706 		rq->idle_stamp = 0;
1707 	}
1708 #endif
1709 }
1710 
1711 static void
1712 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1713 		 struct pin_cookie cookie)
1714 {
1715 	int en_flags = ENQUEUE_WAKEUP;
1716 
1717 	lockdep_assert_held(&rq->lock);
1718 
1719 #ifdef CONFIG_SMP
1720 	if (p->sched_contributes_to_load)
1721 		rq->nr_uninterruptible--;
1722 
1723 	if (wake_flags & WF_MIGRATED)
1724 		en_flags |= ENQUEUE_MIGRATED;
1725 #endif
1726 
1727 	ttwu_activate(rq, p, en_flags);
1728 	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1729 }
1730 
1731 /*
1732  * Called in case the task @p isn't fully descheduled from its runqueue,
1733  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1734  * since all we need to do is flip p->state to TASK_RUNNING, since
1735  * the task is still ->on_rq.
1736  */
1737 static int ttwu_remote(struct task_struct *p, int wake_flags)
1738 {
1739 	struct rq_flags rf;
1740 	struct rq *rq;
1741 	int ret = 0;
1742 
1743 	rq = __task_rq_lock(p, &rf);
1744 	if (task_on_rq_queued(p)) {
1745 		/* check_preempt_curr() may use rq clock */
1746 		update_rq_clock(rq);
1747 		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1748 		ret = 1;
1749 	}
1750 	__task_rq_unlock(rq, &rf);
1751 
1752 	return ret;
1753 }
1754 
1755 #ifdef CONFIG_SMP
1756 void sched_ttwu_pending(void)
1757 {
1758 	struct rq *rq = this_rq();
1759 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1760 	struct pin_cookie cookie;
1761 	struct task_struct *p;
1762 	unsigned long flags;
1763 
1764 	if (!llist)
1765 		return;
1766 
1767 	raw_spin_lock_irqsave(&rq->lock, flags);
1768 	cookie = lockdep_pin_lock(&rq->lock);
1769 
1770 	while (llist) {
1771 		int wake_flags = 0;
1772 
1773 		p = llist_entry(llist, struct task_struct, wake_entry);
1774 		llist = llist_next(llist);
1775 
1776 		if (p->sched_remote_wakeup)
1777 			wake_flags = WF_MIGRATED;
1778 
1779 		ttwu_do_activate(rq, p, wake_flags, cookie);
1780 	}
1781 
1782 	lockdep_unpin_lock(&rq->lock, cookie);
1783 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1784 }
1785 
1786 void scheduler_ipi(void)
1787 {
1788 	/*
1789 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1790 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1791 	 * this IPI.
1792 	 */
1793 	preempt_fold_need_resched();
1794 
1795 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1796 		return;
1797 
1798 	/*
1799 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1800 	 * traditionally all their work was done from the interrupt return
1801 	 * path. Now that we actually do some work, we need to make sure
1802 	 * we do call them.
1803 	 *
1804 	 * Some archs already do call them, luckily irq_enter/exit nest
1805 	 * properly.
1806 	 *
1807 	 * Arguably we should visit all archs and update all handlers,
1808 	 * however a fair share of IPIs are still resched only so this would
1809 	 * somewhat pessimize the simple resched case.
1810 	 */
1811 	irq_enter();
1812 	sched_ttwu_pending();
1813 
1814 	/*
1815 	 * Check if someone kicked us for doing the nohz idle load balance.
1816 	 */
1817 	if (unlikely(got_nohz_idle_kick())) {
1818 		this_rq()->idle_balance = 1;
1819 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1820 	}
1821 	irq_exit();
1822 }
1823 
1824 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1825 {
1826 	struct rq *rq = cpu_rq(cpu);
1827 
1828 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1829 
1830 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1831 		if (!set_nr_if_polling(rq->idle))
1832 			smp_send_reschedule(cpu);
1833 		else
1834 			trace_sched_wake_idle_without_ipi(cpu);
1835 	}
1836 }
1837 
1838 void wake_up_if_idle(int cpu)
1839 {
1840 	struct rq *rq = cpu_rq(cpu);
1841 	unsigned long flags;
1842 
1843 	rcu_read_lock();
1844 
1845 	if (!is_idle_task(rcu_dereference(rq->curr)))
1846 		goto out;
1847 
1848 	if (set_nr_if_polling(rq->idle)) {
1849 		trace_sched_wake_idle_without_ipi(cpu);
1850 	} else {
1851 		raw_spin_lock_irqsave(&rq->lock, flags);
1852 		if (is_idle_task(rq->curr))
1853 			smp_send_reschedule(cpu);
1854 		/* Else cpu is not in idle, do nothing here */
1855 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1856 	}
1857 
1858 out:
1859 	rcu_read_unlock();
1860 }
1861 
1862 bool cpus_share_cache(int this_cpu, int that_cpu)
1863 {
1864 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1865 }
1866 #endif /* CONFIG_SMP */
1867 
1868 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1869 {
1870 	struct rq *rq = cpu_rq(cpu);
1871 	struct pin_cookie cookie;
1872 
1873 #if defined(CONFIG_SMP)
1874 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1875 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1876 		ttwu_queue_remote(p, cpu, wake_flags);
1877 		return;
1878 	}
1879 #endif
1880 
1881 	raw_spin_lock(&rq->lock);
1882 	cookie = lockdep_pin_lock(&rq->lock);
1883 	ttwu_do_activate(rq, p, wake_flags, cookie);
1884 	lockdep_unpin_lock(&rq->lock, cookie);
1885 	raw_spin_unlock(&rq->lock);
1886 }
1887 
1888 /*
1889  * Notes on Program-Order guarantees on SMP systems.
1890  *
1891  *  MIGRATION
1892  *
1893  * The basic program-order guarantee on SMP systems is that when a task [t]
1894  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1895  * execution on its new cpu [c1].
1896  *
1897  * For migration (of runnable tasks) this is provided by the following means:
1898  *
1899  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1900  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1901  *     rq(c1)->lock (if not at the same time, then in that order).
1902  *  C) LOCK of the rq(c1)->lock scheduling in task
1903  *
1904  * Transitivity guarantees that B happens after A and C after B.
1905  * Note: we only require RCpc transitivity.
1906  * Note: the cpu doing B need not be c0 or c1
1907  *
1908  * Example:
1909  *
1910  *   CPU0            CPU1            CPU2
1911  *
1912  *   LOCK rq(0)->lock
1913  *   sched-out X
1914  *   sched-in Y
1915  *   UNLOCK rq(0)->lock
1916  *
1917  *                                   LOCK rq(0)->lock // orders against CPU0
1918  *                                   dequeue X
1919  *                                   UNLOCK rq(0)->lock
1920  *
1921  *                                   LOCK rq(1)->lock
1922  *                                   enqueue X
1923  *                                   UNLOCK rq(1)->lock
1924  *
1925  *                   LOCK rq(1)->lock // orders against CPU2
1926  *                   sched-out Z
1927  *                   sched-in X
1928  *                   UNLOCK rq(1)->lock
1929  *
1930  *
1931  *  BLOCKING -- aka. SLEEP + WAKEUP
1932  *
1933  * For blocking we (obviously) need to provide the same guarantee as for
1934  * migration. However the means are completely different as there is no lock
1935  * chain to provide order. Instead we do:
1936  *
1937  *   1) smp_store_release(X->on_cpu, 0)
1938  *   2) smp_cond_acquire(!X->on_cpu)
1939  *
1940  * Example:
1941  *
1942  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1943  *
1944  *   LOCK rq(0)->lock LOCK X->pi_lock
1945  *   dequeue X
1946  *   sched-out X
1947  *   smp_store_release(X->on_cpu, 0);
1948  *
1949  *                    smp_cond_acquire(!X->on_cpu);
1950  *                    X->state = WAKING
1951  *                    set_task_cpu(X,2)
1952  *
1953  *                    LOCK rq(2)->lock
1954  *                    enqueue X
1955  *                    X->state = RUNNING
1956  *                    UNLOCK rq(2)->lock
1957  *
1958  *                                          LOCK rq(2)->lock // orders against CPU1
1959  *                                          sched-out Z
1960  *                                          sched-in X
1961  *                                          UNLOCK rq(2)->lock
1962  *
1963  *                    UNLOCK X->pi_lock
1964  *   UNLOCK rq(0)->lock
1965  *
1966  *
1967  * However; for wakeups there is a second guarantee we must provide, namely we
1968  * must observe the state that lead to our wakeup. That is, not only must our
1969  * task observe its own prior state, it must also observe the stores prior to
1970  * its wakeup.
1971  *
1972  * This means that any means of doing remote wakeups must order the CPU doing
1973  * the wakeup against the CPU the task is going to end up running on. This,
1974  * however, is already required for the regular Program-Order guarantee above,
1975  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1976  *
1977  */
1978 
1979 /**
1980  * try_to_wake_up - wake up a thread
1981  * @p: the thread to be awakened
1982  * @state: the mask of task states that can be woken
1983  * @wake_flags: wake modifier flags (WF_*)
1984  *
1985  * Put it on the run-queue if it's not already there. The "current"
1986  * thread is always on the run-queue (except when the actual
1987  * re-schedule is in progress), and as such you're allowed to do
1988  * the simpler "current->state = TASK_RUNNING" to mark yourself
1989  * runnable without the overhead of this.
1990  *
1991  * Return: %true if @p was woken up, %false if it was already running.
1992  * or @state didn't match @p's state.
1993  */
1994 static int
1995 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1996 {
1997 	unsigned long flags;
1998 	int cpu, success = 0;
1999 
2000 	/*
2001 	 * If we are going to wake up a thread waiting for CONDITION we
2002 	 * need to ensure that CONDITION=1 done by the caller can not be
2003 	 * reordered with p->state check below. This pairs with mb() in
2004 	 * set_current_state() the waiting thread does.
2005 	 */
2006 	smp_mb__before_spinlock();
2007 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2008 	if (!(p->state & state))
2009 		goto out;
2010 
2011 	trace_sched_waking(p);
2012 
2013 	success = 1; /* we're going to change ->state */
2014 	cpu = task_cpu(p);
2015 
2016 	if (p->on_rq && ttwu_remote(p, wake_flags))
2017 		goto stat;
2018 
2019 #ifdef CONFIG_SMP
2020 	/*
2021 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2022 	 * possible to, falsely, observe p->on_cpu == 0.
2023 	 *
2024 	 * One must be running (->on_cpu == 1) in order to remove oneself
2025 	 * from the runqueue.
2026 	 *
2027 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2028 	 *      UNLOCK rq->lock
2029 	 *			RMB
2030 	 *      LOCK   rq->lock
2031 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2032 	 *
2033 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2034 	 * from the consecutive calls to schedule(); the first switching to our
2035 	 * task, the second putting it to sleep.
2036 	 */
2037 	smp_rmb();
2038 
2039 	/*
2040 	 * If the owning (remote) cpu is still in the middle of schedule() with
2041 	 * this task as prev, wait until its done referencing the task.
2042 	 *
2043 	 * Pairs with the smp_store_release() in finish_lock_switch().
2044 	 *
2045 	 * This ensures that tasks getting woken will be fully ordered against
2046 	 * their previous state and preserve Program Order.
2047 	 */
2048 	smp_cond_acquire(!p->on_cpu);
2049 
2050 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2051 	p->state = TASK_WAKING;
2052 
2053 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2054 	if (task_cpu(p) != cpu) {
2055 		wake_flags |= WF_MIGRATED;
2056 		set_task_cpu(p, cpu);
2057 	}
2058 #endif /* CONFIG_SMP */
2059 
2060 	ttwu_queue(p, cpu, wake_flags);
2061 stat:
2062 	if (schedstat_enabled())
2063 		ttwu_stat(p, cpu, wake_flags);
2064 out:
2065 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2066 
2067 	return success;
2068 }
2069 
2070 /**
2071  * try_to_wake_up_local - try to wake up a local task with rq lock held
2072  * @p: the thread to be awakened
2073  *
2074  * Put @p on the run-queue if it's not already there. The caller must
2075  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2076  * the current task.
2077  */
2078 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2079 {
2080 	struct rq *rq = task_rq(p);
2081 
2082 	if (WARN_ON_ONCE(rq != this_rq()) ||
2083 	    WARN_ON_ONCE(p == current))
2084 		return;
2085 
2086 	lockdep_assert_held(&rq->lock);
2087 
2088 	if (!raw_spin_trylock(&p->pi_lock)) {
2089 		/*
2090 		 * This is OK, because current is on_cpu, which avoids it being
2091 		 * picked for load-balance and preemption/IRQs are still
2092 		 * disabled avoiding further scheduler activity on it and we've
2093 		 * not yet picked a replacement task.
2094 		 */
2095 		lockdep_unpin_lock(&rq->lock, cookie);
2096 		raw_spin_unlock(&rq->lock);
2097 		raw_spin_lock(&p->pi_lock);
2098 		raw_spin_lock(&rq->lock);
2099 		lockdep_repin_lock(&rq->lock, cookie);
2100 	}
2101 
2102 	if (!(p->state & TASK_NORMAL))
2103 		goto out;
2104 
2105 	trace_sched_waking(p);
2106 
2107 	if (!task_on_rq_queued(p))
2108 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2109 
2110 	ttwu_do_wakeup(rq, p, 0, cookie);
2111 	if (schedstat_enabled())
2112 		ttwu_stat(p, smp_processor_id(), 0);
2113 out:
2114 	raw_spin_unlock(&p->pi_lock);
2115 }
2116 
2117 /**
2118  * wake_up_process - Wake up a specific process
2119  * @p: The process to be woken up.
2120  *
2121  * Attempt to wake up the nominated process and move it to the set of runnable
2122  * processes.
2123  *
2124  * Return: 1 if the process was woken up, 0 if it was already running.
2125  *
2126  * It may be assumed that this function implies a write memory barrier before
2127  * changing the task state if and only if any tasks are woken up.
2128  */
2129 int wake_up_process(struct task_struct *p)
2130 {
2131 	return try_to_wake_up(p, TASK_NORMAL, 0);
2132 }
2133 EXPORT_SYMBOL(wake_up_process);
2134 
2135 int wake_up_state(struct task_struct *p, unsigned int state)
2136 {
2137 	return try_to_wake_up(p, state, 0);
2138 }
2139 
2140 /*
2141  * This function clears the sched_dl_entity static params.
2142  */
2143 void __dl_clear_params(struct task_struct *p)
2144 {
2145 	struct sched_dl_entity *dl_se = &p->dl;
2146 
2147 	dl_se->dl_runtime = 0;
2148 	dl_se->dl_deadline = 0;
2149 	dl_se->dl_period = 0;
2150 	dl_se->flags = 0;
2151 	dl_se->dl_bw = 0;
2152 
2153 	dl_se->dl_throttled = 0;
2154 	dl_se->dl_yielded = 0;
2155 }
2156 
2157 /*
2158  * Perform scheduler related setup for a newly forked process p.
2159  * p is forked by current.
2160  *
2161  * __sched_fork() is basic setup used by init_idle() too:
2162  */
2163 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2164 {
2165 	p->on_rq			= 0;
2166 
2167 	p->se.on_rq			= 0;
2168 	p->se.exec_start		= 0;
2169 	p->se.sum_exec_runtime		= 0;
2170 	p->se.prev_sum_exec_runtime	= 0;
2171 	p->se.nr_migrations		= 0;
2172 	p->se.vruntime			= 0;
2173 	INIT_LIST_HEAD(&p->se.group_node);
2174 
2175 #ifdef CONFIG_FAIR_GROUP_SCHED
2176 	p->se.cfs_rq			= NULL;
2177 #endif
2178 
2179 #ifdef CONFIG_SCHEDSTATS
2180 	/* Even if schedstat is disabled, there should not be garbage */
2181 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2182 #endif
2183 
2184 	RB_CLEAR_NODE(&p->dl.rb_node);
2185 	init_dl_task_timer(&p->dl);
2186 	__dl_clear_params(p);
2187 
2188 	INIT_LIST_HEAD(&p->rt.run_list);
2189 	p->rt.timeout		= 0;
2190 	p->rt.time_slice	= sched_rr_timeslice;
2191 	p->rt.on_rq		= 0;
2192 	p->rt.on_list		= 0;
2193 
2194 #ifdef CONFIG_PREEMPT_NOTIFIERS
2195 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2196 #endif
2197 
2198 #ifdef CONFIG_NUMA_BALANCING
2199 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2200 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2201 		p->mm->numa_scan_seq = 0;
2202 	}
2203 
2204 	if (clone_flags & CLONE_VM)
2205 		p->numa_preferred_nid = current->numa_preferred_nid;
2206 	else
2207 		p->numa_preferred_nid = -1;
2208 
2209 	p->node_stamp = 0ULL;
2210 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2211 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2212 	p->numa_work.next = &p->numa_work;
2213 	p->numa_faults = NULL;
2214 	p->last_task_numa_placement = 0;
2215 	p->last_sum_exec_runtime = 0;
2216 
2217 	p->numa_group = NULL;
2218 #endif /* CONFIG_NUMA_BALANCING */
2219 }
2220 
2221 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2222 
2223 #ifdef CONFIG_NUMA_BALANCING
2224 
2225 void set_numabalancing_state(bool enabled)
2226 {
2227 	if (enabled)
2228 		static_branch_enable(&sched_numa_balancing);
2229 	else
2230 		static_branch_disable(&sched_numa_balancing);
2231 }
2232 
2233 #ifdef CONFIG_PROC_SYSCTL
2234 int sysctl_numa_balancing(struct ctl_table *table, int write,
2235 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2236 {
2237 	struct ctl_table t;
2238 	int err;
2239 	int state = static_branch_likely(&sched_numa_balancing);
2240 
2241 	if (write && !capable(CAP_SYS_ADMIN))
2242 		return -EPERM;
2243 
2244 	t = *table;
2245 	t.data = &state;
2246 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2247 	if (err < 0)
2248 		return err;
2249 	if (write)
2250 		set_numabalancing_state(state);
2251 	return err;
2252 }
2253 #endif
2254 #endif
2255 
2256 #ifdef CONFIG_SCHEDSTATS
2257 
2258 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2259 static bool __initdata __sched_schedstats = false;
2260 
2261 static void set_schedstats(bool enabled)
2262 {
2263 	if (enabled)
2264 		static_branch_enable(&sched_schedstats);
2265 	else
2266 		static_branch_disable(&sched_schedstats);
2267 }
2268 
2269 void force_schedstat_enabled(void)
2270 {
2271 	if (!schedstat_enabled()) {
2272 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2273 		static_branch_enable(&sched_schedstats);
2274 	}
2275 }
2276 
2277 static int __init setup_schedstats(char *str)
2278 {
2279 	int ret = 0;
2280 	if (!str)
2281 		goto out;
2282 
2283 	/*
2284 	 * This code is called before jump labels have been set up, so we can't
2285 	 * change the static branch directly just yet.  Instead set a temporary
2286 	 * variable so init_schedstats() can do it later.
2287 	 */
2288 	if (!strcmp(str, "enable")) {
2289 		__sched_schedstats = true;
2290 		ret = 1;
2291 	} else if (!strcmp(str, "disable")) {
2292 		__sched_schedstats = false;
2293 		ret = 1;
2294 	}
2295 out:
2296 	if (!ret)
2297 		pr_warn("Unable to parse schedstats=\n");
2298 
2299 	return ret;
2300 }
2301 __setup("schedstats=", setup_schedstats);
2302 
2303 static void __init init_schedstats(void)
2304 {
2305 	set_schedstats(__sched_schedstats);
2306 }
2307 
2308 #ifdef CONFIG_PROC_SYSCTL
2309 int sysctl_schedstats(struct ctl_table *table, int write,
2310 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2311 {
2312 	struct ctl_table t;
2313 	int err;
2314 	int state = static_branch_likely(&sched_schedstats);
2315 
2316 	if (write && !capable(CAP_SYS_ADMIN))
2317 		return -EPERM;
2318 
2319 	t = *table;
2320 	t.data = &state;
2321 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2322 	if (err < 0)
2323 		return err;
2324 	if (write)
2325 		set_schedstats(state);
2326 	return err;
2327 }
2328 #endif /* CONFIG_PROC_SYSCTL */
2329 #else  /* !CONFIG_SCHEDSTATS */
2330 static inline void init_schedstats(void) {}
2331 #endif /* CONFIG_SCHEDSTATS */
2332 
2333 /*
2334  * fork()/clone()-time setup:
2335  */
2336 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2337 {
2338 	unsigned long flags;
2339 	int cpu = get_cpu();
2340 
2341 	__sched_fork(clone_flags, p);
2342 	/*
2343 	 * We mark the process as running here. This guarantees that
2344 	 * nobody will actually run it, and a signal or other external
2345 	 * event cannot wake it up and insert it on the runqueue either.
2346 	 */
2347 	p->state = TASK_RUNNING;
2348 
2349 	/*
2350 	 * Make sure we do not leak PI boosting priority to the child.
2351 	 */
2352 	p->prio = current->normal_prio;
2353 
2354 	/*
2355 	 * Revert to default priority/policy on fork if requested.
2356 	 */
2357 	if (unlikely(p->sched_reset_on_fork)) {
2358 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2359 			p->policy = SCHED_NORMAL;
2360 			p->static_prio = NICE_TO_PRIO(0);
2361 			p->rt_priority = 0;
2362 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2363 			p->static_prio = NICE_TO_PRIO(0);
2364 
2365 		p->prio = p->normal_prio = __normal_prio(p);
2366 		set_load_weight(p);
2367 
2368 		/*
2369 		 * We don't need the reset flag anymore after the fork. It has
2370 		 * fulfilled its duty:
2371 		 */
2372 		p->sched_reset_on_fork = 0;
2373 	}
2374 
2375 	if (dl_prio(p->prio)) {
2376 		put_cpu();
2377 		return -EAGAIN;
2378 	} else if (rt_prio(p->prio)) {
2379 		p->sched_class = &rt_sched_class;
2380 	} else {
2381 		p->sched_class = &fair_sched_class;
2382 	}
2383 
2384 	if (p->sched_class->task_fork)
2385 		p->sched_class->task_fork(p);
2386 
2387 	/*
2388 	 * The child is not yet in the pid-hash so no cgroup attach races,
2389 	 * and the cgroup is pinned to this child due to cgroup_fork()
2390 	 * is ran before sched_fork().
2391 	 *
2392 	 * Silence PROVE_RCU.
2393 	 */
2394 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2395 	set_task_cpu(p, cpu);
2396 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2397 
2398 #ifdef CONFIG_SCHED_INFO
2399 	if (likely(sched_info_on()))
2400 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2401 #endif
2402 #if defined(CONFIG_SMP)
2403 	p->on_cpu = 0;
2404 #endif
2405 	init_task_preempt_count(p);
2406 #ifdef CONFIG_SMP
2407 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2408 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2409 #endif
2410 
2411 	put_cpu();
2412 	return 0;
2413 }
2414 
2415 unsigned long to_ratio(u64 period, u64 runtime)
2416 {
2417 	if (runtime == RUNTIME_INF)
2418 		return 1ULL << 20;
2419 
2420 	/*
2421 	 * Doing this here saves a lot of checks in all
2422 	 * the calling paths, and returning zero seems
2423 	 * safe for them anyway.
2424 	 */
2425 	if (period == 0)
2426 		return 0;
2427 
2428 	return div64_u64(runtime << 20, period);
2429 }
2430 
2431 #ifdef CONFIG_SMP
2432 inline struct dl_bw *dl_bw_of(int i)
2433 {
2434 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2435 			 "sched RCU must be held");
2436 	return &cpu_rq(i)->rd->dl_bw;
2437 }
2438 
2439 static inline int dl_bw_cpus(int i)
2440 {
2441 	struct root_domain *rd = cpu_rq(i)->rd;
2442 	int cpus = 0;
2443 
2444 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2445 			 "sched RCU must be held");
2446 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2447 		cpus++;
2448 
2449 	return cpus;
2450 }
2451 #else
2452 inline struct dl_bw *dl_bw_of(int i)
2453 {
2454 	return &cpu_rq(i)->dl.dl_bw;
2455 }
2456 
2457 static inline int dl_bw_cpus(int i)
2458 {
2459 	return 1;
2460 }
2461 #endif
2462 
2463 /*
2464  * We must be sure that accepting a new task (or allowing changing the
2465  * parameters of an existing one) is consistent with the bandwidth
2466  * constraints. If yes, this function also accordingly updates the currently
2467  * allocated bandwidth to reflect the new situation.
2468  *
2469  * This function is called while holding p's rq->lock.
2470  *
2471  * XXX we should delay bw change until the task's 0-lag point, see
2472  * __setparam_dl().
2473  */
2474 static int dl_overflow(struct task_struct *p, int policy,
2475 		       const struct sched_attr *attr)
2476 {
2477 
2478 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2479 	u64 period = attr->sched_period ?: attr->sched_deadline;
2480 	u64 runtime = attr->sched_runtime;
2481 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2482 	int cpus, err = -1;
2483 
2484 	/* !deadline task may carry old deadline bandwidth */
2485 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2486 		return 0;
2487 
2488 	/*
2489 	 * Either if a task, enters, leave, or stays -deadline but changes
2490 	 * its parameters, we may need to update accordingly the total
2491 	 * allocated bandwidth of the container.
2492 	 */
2493 	raw_spin_lock(&dl_b->lock);
2494 	cpus = dl_bw_cpus(task_cpu(p));
2495 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2496 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2497 		__dl_add(dl_b, new_bw);
2498 		err = 0;
2499 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2500 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2501 		__dl_clear(dl_b, p->dl.dl_bw);
2502 		__dl_add(dl_b, new_bw);
2503 		err = 0;
2504 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2505 		__dl_clear(dl_b, p->dl.dl_bw);
2506 		err = 0;
2507 	}
2508 	raw_spin_unlock(&dl_b->lock);
2509 
2510 	return err;
2511 }
2512 
2513 extern void init_dl_bw(struct dl_bw *dl_b);
2514 
2515 /*
2516  * wake_up_new_task - wake up a newly created task for the first time.
2517  *
2518  * This function will do some initial scheduler statistics housekeeping
2519  * that must be done for every newly created context, then puts the task
2520  * on the runqueue and wakes it.
2521  */
2522 void wake_up_new_task(struct task_struct *p)
2523 {
2524 	struct rq_flags rf;
2525 	struct rq *rq;
2526 
2527 	/* Initialize new task's runnable average */
2528 	init_entity_runnable_average(&p->se);
2529 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2530 #ifdef CONFIG_SMP
2531 	/*
2532 	 * Fork balancing, do it here and not earlier because:
2533 	 *  - cpus_allowed can change in the fork path
2534 	 *  - any previously selected cpu might disappear through hotplug
2535 	 */
2536 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2537 #endif
2538 	/* Post initialize new task's util average when its cfs_rq is set */
2539 	post_init_entity_util_avg(&p->se);
2540 
2541 	rq = __task_rq_lock(p, &rf);
2542 	activate_task(rq, p, 0);
2543 	p->on_rq = TASK_ON_RQ_QUEUED;
2544 	trace_sched_wakeup_new(p);
2545 	check_preempt_curr(rq, p, WF_FORK);
2546 #ifdef CONFIG_SMP
2547 	if (p->sched_class->task_woken) {
2548 		/*
2549 		 * Nothing relies on rq->lock after this, so its fine to
2550 		 * drop it.
2551 		 */
2552 		lockdep_unpin_lock(&rq->lock, rf.cookie);
2553 		p->sched_class->task_woken(rq, p);
2554 		lockdep_repin_lock(&rq->lock, rf.cookie);
2555 	}
2556 #endif
2557 	task_rq_unlock(rq, p, &rf);
2558 }
2559 
2560 #ifdef CONFIG_PREEMPT_NOTIFIERS
2561 
2562 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2563 
2564 void preempt_notifier_inc(void)
2565 {
2566 	static_key_slow_inc(&preempt_notifier_key);
2567 }
2568 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2569 
2570 void preempt_notifier_dec(void)
2571 {
2572 	static_key_slow_dec(&preempt_notifier_key);
2573 }
2574 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2575 
2576 /**
2577  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2578  * @notifier: notifier struct to register
2579  */
2580 void preempt_notifier_register(struct preempt_notifier *notifier)
2581 {
2582 	if (!static_key_false(&preempt_notifier_key))
2583 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2584 
2585 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2586 }
2587 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2588 
2589 /**
2590  * preempt_notifier_unregister - no longer interested in preemption notifications
2591  * @notifier: notifier struct to unregister
2592  *
2593  * This is *not* safe to call from within a preemption notifier.
2594  */
2595 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2596 {
2597 	hlist_del(&notifier->link);
2598 }
2599 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2600 
2601 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2602 {
2603 	struct preempt_notifier *notifier;
2604 
2605 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2606 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2607 }
2608 
2609 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2610 {
2611 	if (static_key_false(&preempt_notifier_key))
2612 		__fire_sched_in_preempt_notifiers(curr);
2613 }
2614 
2615 static void
2616 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2617 				   struct task_struct *next)
2618 {
2619 	struct preempt_notifier *notifier;
2620 
2621 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2622 		notifier->ops->sched_out(notifier, next);
2623 }
2624 
2625 static __always_inline void
2626 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2627 				 struct task_struct *next)
2628 {
2629 	if (static_key_false(&preempt_notifier_key))
2630 		__fire_sched_out_preempt_notifiers(curr, next);
2631 }
2632 
2633 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2634 
2635 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2636 {
2637 }
2638 
2639 static inline void
2640 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2641 				 struct task_struct *next)
2642 {
2643 }
2644 
2645 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2646 
2647 /**
2648  * prepare_task_switch - prepare to switch tasks
2649  * @rq: the runqueue preparing to switch
2650  * @prev: the current task that is being switched out
2651  * @next: the task we are going to switch to.
2652  *
2653  * This is called with the rq lock held and interrupts off. It must
2654  * be paired with a subsequent finish_task_switch after the context
2655  * switch.
2656  *
2657  * prepare_task_switch sets up locking and calls architecture specific
2658  * hooks.
2659  */
2660 static inline void
2661 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2662 		    struct task_struct *next)
2663 {
2664 	sched_info_switch(rq, prev, next);
2665 	perf_event_task_sched_out(prev, next);
2666 	fire_sched_out_preempt_notifiers(prev, next);
2667 	prepare_lock_switch(rq, next);
2668 	prepare_arch_switch(next);
2669 }
2670 
2671 /**
2672  * finish_task_switch - clean up after a task-switch
2673  * @prev: the thread we just switched away from.
2674  *
2675  * finish_task_switch must be called after the context switch, paired
2676  * with a prepare_task_switch call before the context switch.
2677  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2678  * and do any other architecture-specific cleanup actions.
2679  *
2680  * Note that we may have delayed dropping an mm in context_switch(). If
2681  * so, we finish that here outside of the runqueue lock. (Doing it
2682  * with the lock held can cause deadlocks; see schedule() for
2683  * details.)
2684  *
2685  * The context switch have flipped the stack from under us and restored the
2686  * local variables which were saved when this task called schedule() in the
2687  * past. prev == current is still correct but we need to recalculate this_rq
2688  * because prev may have moved to another CPU.
2689  */
2690 static struct rq *finish_task_switch(struct task_struct *prev)
2691 	__releases(rq->lock)
2692 {
2693 	struct rq *rq = this_rq();
2694 	struct mm_struct *mm = rq->prev_mm;
2695 	long prev_state;
2696 
2697 	/*
2698 	 * The previous task will have left us with a preempt_count of 2
2699 	 * because it left us after:
2700 	 *
2701 	 *	schedule()
2702 	 *	  preempt_disable();			// 1
2703 	 *	  __schedule()
2704 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2705 	 *
2706 	 * Also, see FORK_PREEMPT_COUNT.
2707 	 */
2708 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2709 		      "corrupted preempt_count: %s/%d/0x%x\n",
2710 		      current->comm, current->pid, preempt_count()))
2711 		preempt_count_set(FORK_PREEMPT_COUNT);
2712 
2713 	rq->prev_mm = NULL;
2714 
2715 	/*
2716 	 * A task struct has one reference for the use as "current".
2717 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2718 	 * schedule one last time. The schedule call will never return, and
2719 	 * the scheduled task must drop that reference.
2720 	 *
2721 	 * We must observe prev->state before clearing prev->on_cpu (in
2722 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2723 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2724 	 * transition, resulting in a double drop.
2725 	 */
2726 	prev_state = prev->state;
2727 	vtime_task_switch(prev);
2728 	perf_event_task_sched_in(prev, current);
2729 	finish_lock_switch(rq, prev);
2730 	finish_arch_post_lock_switch();
2731 
2732 	fire_sched_in_preempt_notifiers(current);
2733 	if (mm)
2734 		mmdrop(mm);
2735 	if (unlikely(prev_state == TASK_DEAD)) {
2736 		if (prev->sched_class->task_dead)
2737 			prev->sched_class->task_dead(prev);
2738 
2739 		/*
2740 		 * Remove function-return probe instances associated with this
2741 		 * task and put them back on the free list.
2742 		 */
2743 		kprobe_flush_task(prev);
2744 		put_task_struct(prev);
2745 	}
2746 
2747 	tick_nohz_task_switch();
2748 	return rq;
2749 }
2750 
2751 #ifdef CONFIG_SMP
2752 
2753 /* rq->lock is NOT held, but preemption is disabled */
2754 static void __balance_callback(struct rq *rq)
2755 {
2756 	struct callback_head *head, *next;
2757 	void (*func)(struct rq *rq);
2758 	unsigned long flags;
2759 
2760 	raw_spin_lock_irqsave(&rq->lock, flags);
2761 	head = rq->balance_callback;
2762 	rq->balance_callback = NULL;
2763 	while (head) {
2764 		func = (void (*)(struct rq *))head->func;
2765 		next = head->next;
2766 		head->next = NULL;
2767 		head = next;
2768 
2769 		func(rq);
2770 	}
2771 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2772 }
2773 
2774 static inline void balance_callback(struct rq *rq)
2775 {
2776 	if (unlikely(rq->balance_callback))
2777 		__balance_callback(rq);
2778 }
2779 
2780 #else
2781 
2782 static inline void balance_callback(struct rq *rq)
2783 {
2784 }
2785 
2786 #endif
2787 
2788 /**
2789  * schedule_tail - first thing a freshly forked thread must call.
2790  * @prev: the thread we just switched away from.
2791  */
2792 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2793 	__releases(rq->lock)
2794 {
2795 	struct rq *rq;
2796 
2797 	/*
2798 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2799 	 * finish_task_switch() for details.
2800 	 *
2801 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2802 	 * and the preempt_enable() will end up enabling preemption (on
2803 	 * PREEMPT_COUNT kernels).
2804 	 */
2805 
2806 	rq = finish_task_switch(prev);
2807 	balance_callback(rq);
2808 	preempt_enable();
2809 
2810 	if (current->set_child_tid)
2811 		put_user(task_pid_vnr(current), current->set_child_tid);
2812 }
2813 
2814 /*
2815  * context_switch - switch to the new MM and the new thread's register state.
2816  */
2817 static __always_inline struct rq *
2818 context_switch(struct rq *rq, struct task_struct *prev,
2819 	       struct task_struct *next, struct pin_cookie cookie)
2820 {
2821 	struct mm_struct *mm, *oldmm;
2822 
2823 	prepare_task_switch(rq, prev, next);
2824 
2825 	mm = next->mm;
2826 	oldmm = prev->active_mm;
2827 	/*
2828 	 * For paravirt, this is coupled with an exit in switch_to to
2829 	 * combine the page table reload and the switch backend into
2830 	 * one hypercall.
2831 	 */
2832 	arch_start_context_switch(prev);
2833 
2834 	if (!mm) {
2835 		next->active_mm = oldmm;
2836 		atomic_inc(&oldmm->mm_count);
2837 		enter_lazy_tlb(oldmm, next);
2838 	} else
2839 		switch_mm_irqs_off(oldmm, mm, next);
2840 
2841 	if (!prev->mm) {
2842 		prev->active_mm = NULL;
2843 		rq->prev_mm = oldmm;
2844 	}
2845 	/*
2846 	 * Since the runqueue lock will be released by the next
2847 	 * task (which is an invalid locking op but in the case
2848 	 * of the scheduler it's an obvious special-case), so we
2849 	 * do an early lockdep release here:
2850 	 */
2851 	lockdep_unpin_lock(&rq->lock, cookie);
2852 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2853 
2854 	/* Here we just switch the register state and the stack. */
2855 	switch_to(prev, next, prev);
2856 	barrier();
2857 
2858 	return finish_task_switch(prev);
2859 }
2860 
2861 /*
2862  * nr_running and nr_context_switches:
2863  *
2864  * externally visible scheduler statistics: current number of runnable
2865  * threads, total number of context switches performed since bootup.
2866  */
2867 unsigned long nr_running(void)
2868 {
2869 	unsigned long i, sum = 0;
2870 
2871 	for_each_online_cpu(i)
2872 		sum += cpu_rq(i)->nr_running;
2873 
2874 	return sum;
2875 }
2876 
2877 /*
2878  * Check if only the current task is running on the cpu.
2879  *
2880  * Caution: this function does not check that the caller has disabled
2881  * preemption, thus the result might have a time-of-check-to-time-of-use
2882  * race.  The caller is responsible to use it correctly, for example:
2883  *
2884  * - from a non-preemptable section (of course)
2885  *
2886  * - from a thread that is bound to a single CPU
2887  *
2888  * - in a loop with very short iterations (e.g. a polling loop)
2889  */
2890 bool single_task_running(void)
2891 {
2892 	return raw_rq()->nr_running == 1;
2893 }
2894 EXPORT_SYMBOL(single_task_running);
2895 
2896 unsigned long long nr_context_switches(void)
2897 {
2898 	int i;
2899 	unsigned long long sum = 0;
2900 
2901 	for_each_possible_cpu(i)
2902 		sum += cpu_rq(i)->nr_switches;
2903 
2904 	return sum;
2905 }
2906 
2907 unsigned long nr_iowait(void)
2908 {
2909 	unsigned long i, sum = 0;
2910 
2911 	for_each_possible_cpu(i)
2912 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2913 
2914 	return sum;
2915 }
2916 
2917 unsigned long nr_iowait_cpu(int cpu)
2918 {
2919 	struct rq *this = cpu_rq(cpu);
2920 	return atomic_read(&this->nr_iowait);
2921 }
2922 
2923 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2924 {
2925 	struct rq *rq = this_rq();
2926 	*nr_waiters = atomic_read(&rq->nr_iowait);
2927 	*load = rq->load.weight;
2928 }
2929 
2930 #ifdef CONFIG_SMP
2931 
2932 /*
2933  * sched_exec - execve() is a valuable balancing opportunity, because at
2934  * this point the task has the smallest effective memory and cache footprint.
2935  */
2936 void sched_exec(void)
2937 {
2938 	struct task_struct *p = current;
2939 	unsigned long flags;
2940 	int dest_cpu;
2941 
2942 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2943 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2944 	if (dest_cpu == smp_processor_id())
2945 		goto unlock;
2946 
2947 	if (likely(cpu_active(dest_cpu))) {
2948 		struct migration_arg arg = { p, dest_cpu };
2949 
2950 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2951 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2952 		return;
2953 	}
2954 unlock:
2955 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2956 }
2957 
2958 #endif
2959 
2960 DEFINE_PER_CPU(struct kernel_stat, kstat);
2961 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2962 
2963 EXPORT_PER_CPU_SYMBOL(kstat);
2964 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2965 
2966 /*
2967  * Return accounted runtime for the task.
2968  * In case the task is currently running, return the runtime plus current's
2969  * pending runtime that have not been accounted yet.
2970  */
2971 unsigned long long task_sched_runtime(struct task_struct *p)
2972 {
2973 	struct rq_flags rf;
2974 	struct rq *rq;
2975 	u64 ns;
2976 
2977 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2978 	/*
2979 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2980 	 * So we have a optimization chance when the task's delta_exec is 0.
2981 	 * Reading ->on_cpu is racy, but this is ok.
2982 	 *
2983 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2984 	 * If we race with it entering cpu, unaccounted time is 0. This is
2985 	 * indistinguishable from the read occurring a few cycles earlier.
2986 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2987 	 * been accounted, so we're correct here as well.
2988 	 */
2989 	if (!p->on_cpu || !task_on_rq_queued(p))
2990 		return p->se.sum_exec_runtime;
2991 #endif
2992 
2993 	rq = task_rq_lock(p, &rf);
2994 	/*
2995 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2996 	 * project cycles that may never be accounted to this
2997 	 * thread, breaking clock_gettime().
2998 	 */
2999 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3000 		update_rq_clock(rq);
3001 		p->sched_class->update_curr(rq);
3002 	}
3003 	ns = p->se.sum_exec_runtime;
3004 	task_rq_unlock(rq, p, &rf);
3005 
3006 	return ns;
3007 }
3008 
3009 /*
3010  * This function gets called by the timer code, with HZ frequency.
3011  * We call it with interrupts disabled.
3012  */
3013 void scheduler_tick(void)
3014 {
3015 	int cpu = smp_processor_id();
3016 	struct rq *rq = cpu_rq(cpu);
3017 	struct task_struct *curr = rq->curr;
3018 
3019 	sched_clock_tick();
3020 
3021 	raw_spin_lock(&rq->lock);
3022 	update_rq_clock(rq);
3023 	curr->sched_class->task_tick(rq, curr, 0);
3024 	cpu_load_update_active(rq);
3025 	calc_global_load_tick(rq);
3026 	raw_spin_unlock(&rq->lock);
3027 
3028 	perf_event_task_tick();
3029 
3030 #ifdef CONFIG_SMP
3031 	rq->idle_balance = idle_cpu(cpu);
3032 	trigger_load_balance(rq);
3033 #endif
3034 	rq_last_tick_reset(rq);
3035 }
3036 
3037 #ifdef CONFIG_NO_HZ_FULL
3038 /**
3039  * scheduler_tick_max_deferment
3040  *
3041  * Keep at least one tick per second when a single
3042  * active task is running because the scheduler doesn't
3043  * yet completely support full dynticks environment.
3044  *
3045  * This makes sure that uptime, CFS vruntime, load
3046  * balancing, etc... continue to move forward, even
3047  * with a very low granularity.
3048  *
3049  * Return: Maximum deferment in nanoseconds.
3050  */
3051 u64 scheduler_tick_max_deferment(void)
3052 {
3053 	struct rq *rq = this_rq();
3054 	unsigned long next, now = READ_ONCE(jiffies);
3055 
3056 	next = rq->last_sched_tick + HZ;
3057 
3058 	if (time_before_eq(next, now))
3059 		return 0;
3060 
3061 	return jiffies_to_nsecs(next - now);
3062 }
3063 #endif
3064 
3065 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3066 				defined(CONFIG_PREEMPT_TRACER))
3067 /*
3068  * If the value passed in is equal to the current preempt count
3069  * then we just disabled preemption. Start timing the latency.
3070  */
3071 static inline void preempt_latency_start(int val)
3072 {
3073 	if (preempt_count() == val) {
3074 		unsigned long ip = get_lock_parent_ip();
3075 #ifdef CONFIG_DEBUG_PREEMPT
3076 		current->preempt_disable_ip = ip;
3077 #endif
3078 		trace_preempt_off(CALLER_ADDR0, ip);
3079 	}
3080 }
3081 
3082 void preempt_count_add(int val)
3083 {
3084 #ifdef CONFIG_DEBUG_PREEMPT
3085 	/*
3086 	 * Underflow?
3087 	 */
3088 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3089 		return;
3090 #endif
3091 	__preempt_count_add(val);
3092 #ifdef CONFIG_DEBUG_PREEMPT
3093 	/*
3094 	 * Spinlock count overflowing soon?
3095 	 */
3096 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3097 				PREEMPT_MASK - 10);
3098 #endif
3099 	preempt_latency_start(val);
3100 }
3101 EXPORT_SYMBOL(preempt_count_add);
3102 NOKPROBE_SYMBOL(preempt_count_add);
3103 
3104 /*
3105  * If the value passed in equals to the current preempt count
3106  * then we just enabled preemption. Stop timing the latency.
3107  */
3108 static inline void preempt_latency_stop(int val)
3109 {
3110 	if (preempt_count() == val)
3111 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3112 }
3113 
3114 void preempt_count_sub(int val)
3115 {
3116 #ifdef CONFIG_DEBUG_PREEMPT
3117 	/*
3118 	 * Underflow?
3119 	 */
3120 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3121 		return;
3122 	/*
3123 	 * Is the spinlock portion underflowing?
3124 	 */
3125 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3126 			!(preempt_count() & PREEMPT_MASK)))
3127 		return;
3128 #endif
3129 
3130 	preempt_latency_stop(val);
3131 	__preempt_count_sub(val);
3132 }
3133 EXPORT_SYMBOL(preempt_count_sub);
3134 NOKPROBE_SYMBOL(preempt_count_sub);
3135 
3136 #else
3137 static inline void preempt_latency_start(int val) { }
3138 static inline void preempt_latency_stop(int val) { }
3139 #endif
3140 
3141 /*
3142  * Print scheduling while atomic bug:
3143  */
3144 static noinline void __schedule_bug(struct task_struct *prev)
3145 {
3146 	if (oops_in_progress)
3147 		return;
3148 
3149 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3150 		prev->comm, prev->pid, preempt_count());
3151 
3152 	debug_show_held_locks(prev);
3153 	print_modules();
3154 	if (irqs_disabled())
3155 		print_irqtrace_events(prev);
3156 #ifdef CONFIG_DEBUG_PREEMPT
3157 	if (in_atomic_preempt_off()) {
3158 		pr_err("Preemption disabled at:");
3159 		print_ip_sym(current->preempt_disable_ip);
3160 		pr_cont("\n");
3161 	}
3162 #endif
3163 	dump_stack();
3164 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3165 }
3166 
3167 /*
3168  * Various schedule()-time debugging checks and statistics:
3169  */
3170 static inline void schedule_debug(struct task_struct *prev)
3171 {
3172 #ifdef CONFIG_SCHED_STACK_END_CHECK
3173 	if (task_stack_end_corrupted(prev))
3174 		panic("corrupted stack end detected inside scheduler\n");
3175 #endif
3176 
3177 	if (unlikely(in_atomic_preempt_off())) {
3178 		__schedule_bug(prev);
3179 		preempt_count_set(PREEMPT_DISABLED);
3180 	}
3181 	rcu_sleep_check();
3182 
3183 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3184 
3185 	schedstat_inc(this_rq(), sched_count);
3186 }
3187 
3188 /*
3189  * Pick up the highest-prio task:
3190  */
3191 static inline struct task_struct *
3192 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3193 {
3194 	const struct sched_class *class = &fair_sched_class;
3195 	struct task_struct *p;
3196 
3197 	/*
3198 	 * Optimization: we know that if all tasks are in
3199 	 * the fair class we can call that function directly:
3200 	 */
3201 	if (likely(prev->sched_class == class &&
3202 		   rq->nr_running == rq->cfs.h_nr_running)) {
3203 		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3204 		if (unlikely(p == RETRY_TASK))
3205 			goto again;
3206 
3207 		/* assumes fair_sched_class->next == idle_sched_class */
3208 		if (unlikely(!p))
3209 			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3210 
3211 		return p;
3212 	}
3213 
3214 again:
3215 	for_each_class(class) {
3216 		p = class->pick_next_task(rq, prev, cookie);
3217 		if (p) {
3218 			if (unlikely(p == RETRY_TASK))
3219 				goto again;
3220 			return p;
3221 		}
3222 	}
3223 
3224 	BUG(); /* the idle class will always have a runnable task */
3225 }
3226 
3227 /*
3228  * __schedule() is the main scheduler function.
3229  *
3230  * The main means of driving the scheduler and thus entering this function are:
3231  *
3232  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3233  *
3234  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3235  *      paths. For example, see arch/x86/entry_64.S.
3236  *
3237  *      To drive preemption between tasks, the scheduler sets the flag in timer
3238  *      interrupt handler scheduler_tick().
3239  *
3240  *   3. Wakeups don't really cause entry into schedule(). They add a
3241  *      task to the run-queue and that's it.
3242  *
3243  *      Now, if the new task added to the run-queue preempts the current
3244  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3245  *      called on the nearest possible occasion:
3246  *
3247  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3248  *
3249  *         - in syscall or exception context, at the next outmost
3250  *           preempt_enable(). (this might be as soon as the wake_up()'s
3251  *           spin_unlock()!)
3252  *
3253  *         - in IRQ context, return from interrupt-handler to
3254  *           preemptible context
3255  *
3256  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3257  *         then at the next:
3258  *
3259  *          - cond_resched() call
3260  *          - explicit schedule() call
3261  *          - return from syscall or exception to user-space
3262  *          - return from interrupt-handler to user-space
3263  *
3264  * WARNING: must be called with preemption disabled!
3265  */
3266 static void __sched notrace __schedule(bool preempt)
3267 {
3268 	struct task_struct *prev, *next;
3269 	unsigned long *switch_count;
3270 	struct pin_cookie cookie;
3271 	struct rq *rq;
3272 	int cpu;
3273 
3274 	cpu = smp_processor_id();
3275 	rq = cpu_rq(cpu);
3276 	prev = rq->curr;
3277 
3278 	/*
3279 	 * do_exit() calls schedule() with preemption disabled as an exception;
3280 	 * however we must fix that up, otherwise the next task will see an
3281 	 * inconsistent (higher) preempt count.
3282 	 *
3283 	 * It also avoids the below schedule_debug() test from complaining
3284 	 * about this.
3285 	 */
3286 	if (unlikely(prev->state == TASK_DEAD))
3287 		preempt_enable_no_resched_notrace();
3288 
3289 	schedule_debug(prev);
3290 
3291 	if (sched_feat(HRTICK))
3292 		hrtick_clear(rq);
3293 
3294 	local_irq_disable();
3295 	rcu_note_context_switch();
3296 
3297 	/*
3298 	 * Make sure that signal_pending_state()->signal_pending() below
3299 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3300 	 * done by the caller to avoid the race with signal_wake_up().
3301 	 */
3302 	smp_mb__before_spinlock();
3303 	raw_spin_lock(&rq->lock);
3304 	cookie = lockdep_pin_lock(&rq->lock);
3305 
3306 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3307 
3308 	switch_count = &prev->nivcsw;
3309 	if (!preempt && prev->state) {
3310 		if (unlikely(signal_pending_state(prev->state, prev))) {
3311 			prev->state = TASK_RUNNING;
3312 		} else {
3313 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3314 			prev->on_rq = 0;
3315 
3316 			/*
3317 			 * If a worker went to sleep, notify and ask workqueue
3318 			 * whether it wants to wake up a task to maintain
3319 			 * concurrency.
3320 			 */
3321 			if (prev->flags & PF_WQ_WORKER) {
3322 				struct task_struct *to_wakeup;
3323 
3324 				to_wakeup = wq_worker_sleeping(prev);
3325 				if (to_wakeup)
3326 					try_to_wake_up_local(to_wakeup, cookie);
3327 			}
3328 		}
3329 		switch_count = &prev->nvcsw;
3330 	}
3331 
3332 	if (task_on_rq_queued(prev))
3333 		update_rq_clock(rq);
3334 
3335 	next = pick_next_task(rq, prev, cookie);
3336 	clear_tsk_need_resched(prev);
3337 	clear_preempt_need_resched();
3338 	rq->clock_skip_update = 0;
3339 
3340 	if (likely(prev != next)) {
3341 		rq->nr_switches++;
3342 		rq->curr = next;
3343 		++*switch_count;
3344 
3345 		trace_sched_switch(preempt, prev, next);
3346 		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3347 	} else {
3348 		lockdep_unpin_lock(&rq->lock, cookie);
3349 		raw_spin_unlock_irq(&rq->lock);
3350 	}
3351 
3352 	balance_callback(rq);
3353 }
3354 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3355 
3356 static inline void sched_submit_work(struct task_struct *tsk)
3357 {
3358 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3359 		return;
3360 	/*
3361 	 * If we are going to sleep and we have plugged IO queued,
3362 	 * make sure to submit it to avoid deadlocks.
3363 	 */
3364 	if (blk_needs_flush_plug(tsk))
3365 		blk_schedule_flush_plug(tsk);
3366 }
3367 
3368 asmlinkage __visible void __sched schedule(void)
3369 {
3370 	struct task_struct *tsk = current;
3371 
3372 	sched_submit_work(tsk);
3373 	do {
3374 		preempt_disable();
3375 		__schedule(false);
3376 		sched_preempt_enable_no_resched();
3377 	} while (need_resched());
3378 }
3379 EXPORT_SYMBOL(schedule);
3380 
3381 #ifdef CONFIG_CONTEXT_TRACKING
3382 asmlinkage __visible void __sched schedule_user(void)
3383 {
3384 	/*
3385 	 * If we come here after a random call to set_need_resched(),
3386 	 * or we have been woken up remotely but the IPI has not yet arrived,
3387 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3388 	 * we find a better solution.
3389 	 *
3390 	 * NB: There are buggy callers of this function.  Ideally we
3391 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3392 	 * too frequently to make sense yet.
3393 	 */
3394 	enum ctx_state prev_state = exception_enter();
3395 	schedule();
3396 	exception_exit(prev_state);
3397 }
3398 #endif
3399 
3400 /**
3401  * schedule_preempt_disabled - called with preemption disabled
3402  *
3403  * Returns with preemption disabled. Note: preempt_count must be 1
3404  */
3405 void __sched schedule_preempt_disabled(void)
3406 {
3407 	sched_preempt_enable_no_resched();
3408 	schedule();
3409 	preempt_disable();
3410 }
3411 
3412 static void __sched notrace preempt_schedule_common(void)
3413 {
3414 	do {
3415 		/*
3416 		 * Because the function tracer can trace preempt_count_sub()
3417 		 * and it also uses preempt_enable/disable_notrace(), if
3418 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3419 		 * by the function tracer will call this function again and
3420 		 * cause infinite recursion.
3421 		 *
3422 		 * Preemption must be disabled here before the function
3423 		 * tracer can trace. Break up preempt_disable() into two
3424 		 * calls. One to disable preemption without fear of being
3425 		 * traced. The other to still record the preemption latency,
3426 		 * which can also be traced by the function tracer.
3427 		 */
3428 		preempt_disable_notrace();
3429 		preempt_latency_start(1);
3430 		__schedule(true);
3431 		preempt_latency_stop(1);
3432 		preempt_enable_no_resched_notrace();
3433 
3434 		/*
3435 		 * Check again in case we missed a preemption opportunity
3436 		 * between schedule and now.
3437 		 */
3438 	} while (need_resched());
3439 }
3440 
3441 #ifdef CONFIG_PREEMPT
3442 /*
3443  * this is the entry point to schedule() from in-kernel preemption
3444  * off of preempt_enable. Kernel preemptions off return from interrupt
3445  * occur there and call schedule directly.
3446  */
3447 asmlinkage __visible void __sched notrace preempt_schedule(void)
3448 {
3449 	/*
3450 	 * If there is a non-zero preempt_count or interrupts are disabled,
3451 	 * we do not want to preempt the current task. Just return..
3452 	 */
3453 	if (likely(!preemptible()))
3454 		return;
3455 
3456 	preempt_schedule_common();
3457 }
3458 NOKPROBE_SYMBOL(preempt_schedule);
3459 EXPORT_SYMBOL(preempt_schedule);
3460 
3461 /**
3462  * preempt_schedule_notrace - preempt_schedule called by tracing
3463  *
3464  * The tracing infrastructure uses preempt_enable_notrace to prevent
3465  * recursion and tracing preempt enabling caused by the tracing
3466  * infrastructure itself. But as tracing can happen in areas coming
3467  * from userspace or just about to enter userspace, a preempt enable
3468  * can occur before user_exit() is called. This will cause the scheduler
3469  * to be called when the system is still in usermode.
3470  *
3471  * To prevent this, the preempt_enable_notrace will use this function
3472  * instead of preempt_schedule() to exit user context if needed before
3473  * calling the scheduler.
3474  */
3475 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3476 {
3477 	enum ctx_state prev_ctx;
3478 
3479 	if (likely(!preemptible()))
3480 		return;
3481 
3482 	do {
3483 		/*
3484 		 * Because the function tracer can trace preempt_count_sub()
3485 		 * and it also uses preempt_enable/disable_notrace(), if
3486 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3487 		 * by the function tracer will call this function again and
3488 		 * cause infinite recursion.
3489 		 *
3490 		 * Preemption must be disabled here before the function
3491 		 * tracer can trace. Break up preempt_disable() into two
3492 		 * calls. One to disable preemption without fear of being
3493 		 * traced. The other to still record the preemption latency,
3494 		 * which can also be traced by the function tracer.
3495 		 */
3496 		preempt_disable_notrace();
3497 		preempt_latency_start(1);
3498 		/*
3499 		 * Needs preempt disabled in case user_exit() is traced
3500 		 * and the tracer calls preempt_enable_notrace() causing
3501 		 * an infinite recursion.
3502 		 */
3503 		prev_ctx = exception_enter();
3504 		__schedule(true);
3505 		exception_exit(prev_ctx);
3506 
3507 		preempt_latency_stop(1);
3508 		preempt_enable_no_resched_notrace();
3509 	} while (need_resched());
3510 }
3511 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3512 
3513 #endif /* CONFIG_PREEMPT */
3514 
3515 /*
3516  * this is the entry point to schedule() from kernel preemption
3517  * off of irq context.
3518  * Note, that this is called and return with irqs disabled. This will
3519  * protect us against recursive calling from irq.
3520  */
3521 asmlinkage __visible void __sched preempt_schedule_irq(void)
3522 {
3523 	enum ctx_state prev_state;
3524 
3525 	/* Catch callers which need to be fixed */
3526 	BUG_ON(preempt_count() || !irqs_disabled());
3527 
3528 	prev_state = exception_enter();
3529 
3530 	do {
3531 		preempt_disable();
3532 		local_irq_enable();
3533 		__schedule(true);
3534 		local_irq_disable();
3535 		sched_preempt_enable_no_resched();
3536 	} while (need_resched());
3537 
3538 	exception_exit(prev_state);
3539 }
3540 
3541 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3542 			  void *key)
3543 {
3544 	return try_to_wake_up(curr->private, mode, wake_flags);
3545 }
3546 EXPORT_SYMBOL(default_wake_function);
3547 
3548 #ifdef CONFIG_RT_MUTEXES
3549 
3550 /*
3551  * rt_mutex_setprio - set the current priority of a task
3552  * @p: task
3553  * @prio: prio value (kernel-internal form)
3554  *
3555  * This function changes the 'effective' priority of a task. It does
3556  * not touch ->normal_prio like __setscheduler().
3557  *
3558  * Used by the rt_mutex code to implement priority inheritance
3559  * logic. Call site only calls if the priority of the task changed.
3560  */
3561 void rt_mutex_setprio(struct task_struct *p, int prio)
3562 {
3563 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3564 	const struct sched_class *prev_class;
3565 	struct rq_flags rf;
3566 	struct rq *rq;
3567 
3568 	BUG_ON(prio > MAX_PRIO);
3569 
3570 	rq = __task_rq_lock(p, &rf);
3571 
3572 	/*
3573 	 * Idle task boosting is a nono in general. There is one
3574 	 * exception, when PREEMPT_RT and NOHZ is active:
3575 	 *
3576 	 * The idle task calls get_next_timer_interrupt() and holds
3577 	 * the timer wheel base->lock on the CPU and another CPU wants
3578 	 * to access the timer (probably to cancel it). We can safely
3579 	 * ignore the boosting request, as the idle CPU runs this code
3580 	 * with interrupts disabled and will complete the lock
3581 	 * protected section without being interrupted. So there is no
3582 	 * real need to boost.
3583 	 */
3584 	if (unlikely(p == rq->idle)) {
3585 		WARN_ON(p != rq->curr);
3586 		WARN_ON(p->pi_blocked_on);
3587 		goto out_unlock;
3588 	}
3589 
3590 	trace_sched_pi_setprio(p, prio);
3591 	oldprio = p->prio;
3592 
3593 	if (oldprio == prio)
3594 		queue_flag &= ~DEQUEUE_MOVE;
3595 
3596 	prev_class = p->sched_class;
3597 	queued = task_on_rq_queued(p);
3598 	running = task_current(rq, p);
3599 	if (queued)
3600 		dequeue_task(rq, p, queue_flag);
3601 	if (running)
3602 		put_prev_task(rq, p);
3603 
3604 	/*
3605 	 * Boosting condition are:
3606 	 * 1. -rt task is running and holds mutex A
3607 	 *      --> -dl task blocks on mutex A
3608 	 *
3609 	 * 2. -dl task is running and holds mutex A
3610 	 *      --> -dl task blocks on mutex A and could preempt the
3611 	 *          running task
3612 	 */
3613 	if (dl_prio(prio)) {
3614 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3615 		if (!dl_prio(p->normal_prio) ||
3616 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3617 			p->dl.dl_boosted = 1;
3618 			queue_flag |= ENQUEUE_REPLENISH;
3619 		} else
3620 			p->dl.dl_boosted = 0;
3621 		p->sched_class = &dl_sched_class;
3622 	} else if (rt_prio(prio)) {
3623 		if (dl_prio(oldprio))
3624 			p->dl.dl_boosted = 0;
3625 		if (oldprio < prio)
3626 			queue_flag |= ENQUEUE_HEAD;
3627 		p->sched_class = &rt_sched_class;
3628 	} else {
3629 		if (dl_prio(oldprio))
3630 			p->dl.dl_boosted = 0;
3631 		if (rt_prio(oldprio))
3632 			p->rt.timeout = 0;
3633 		p->sched_class = &fair_sched_class;
3634 	}
3635 
3636 	p->prio = prio;
3637 
3638 	if (running)
3639 		p->sched_class->set_curr_task(rq);
3640 	if (queued)
3641 		enqueue_task(rq, p, queue_flag);
3642 
3643 	check_class_changed(rq, p, prev_class, oldprio);
3644 out_unlock:
3645 	preempt_disable(); /* avoid rq from going away on us */
3646 	__task_rq_unlock(rq, &rf);
3647 
3648 	balance_callback(rq);
3649 	preempt_enable();
3650 }
3651 #endif
3652 
3653 void set_user_nice(struct task_struct *p, long nice)
3654 {
3655 	int old_prio, delta, queued;
3656 	struct rq_flags rf;
3657 	struct rq *rq;
3658 
3659 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3660 		return;
3661 	/*
3662 	 * We have to be careful, if called from sys_setpriority(),
3663 	 * the task might be in the middle of scheduling on another CPU.
3664 	 */
3665 	rq = task_rq_lock(p, &rf);
3666 	/*
3667 	 * The RT priorities are set via sched_setscheduler(), but we still
3668 	 * allow the 'normal' nice value to be set - but as expected
3669 	 * it wont have any effect on scheduling until the task is
3670 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3671 	 */
3672 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3673 		p->static_prio = NICE_TO_PRIO(nice);
3674 		goto out_unlock;
3675 	}
3676 	queued = task_on_rq_queued(p);
3677 	if (queued)
3678 		dequeue_task(rq, p, DEQUEUE_SAVE);
3679 
3680 	p->static_prio = NICE_TO_PRIO(nice);
3681 	set_load_weight(p);
3682 	old_prio = p->prio;
3683 	p->prio = effective_prio(p);
3684 	delta = p->prio - old_prio;
3685 
3686 	if (queued) {
3687 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3688 		/*
3689 		 * If the task increased its priority or is running and
3690 		 * lowered its priority, then reschedule its CPU:
3691 		 */
3692 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3693 			resched_curr(rq);
3694 	}
3695 out_unlock:
3696 	task_rq_unlock(rq, p, &rf);
3697 }
3698 EXPORT_SYMBOL(set_user_nice);
3699 
3700 /*
3701  * can_nice - check if a task can reduce its nice value
3702  * @p: task
3703  * @nice: nice value
3704  */
3705 int can_nice(const struct task_struct *p, const int nice)
3706 {
3707 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3708 	int nice_rlim = nice_to_rlimit(nice);
3709 
3710 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3711 		capable(CAP_SYS_NICE));
3712 }
3713 
3714 #ifdef __ARCH_WANT_SYS_NICE
3715 
3716 /*
3717  * sys_nice - change the priority of the current process.
3718  * @increment: priority increment
3719  *
3720  * sys_setpriority is a more generic, but much slower function that
3721  * does similar things.
3722  */
3723 SYSCALL_DEFINE1(nice, int, increment)
3724 {
3725 	long nice, retval;
3726 
3727 	/*
3728 	 * Setpriority might change our priority at the same moment.
3729 	 * We don't have to worry. Conceptually one call occurs first
3730 	 * and we have a single winner.
3731 	 */
3732 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3733 	nice = task_nice(current) + increment;
3734 
3735 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3736 	if (increment < 0 && !can_nice(current, nice))
3737 		return -EPERM;
3738 
3739 	retval = security_task_setnice(current, nice);
3740 	if (retval)
3741 		return retval;
3742 
3743 	set_user_nice(current, nice);
3744 	return 0;
3745 }
3746 
3747 #endif
3748 
3749 /**
3750  * task_prio - return the priority value of a given task.
3751  * @p: the task in question.
3752  *
3753  * Return: The priority value as seen by users in /proc.
3754  * RT tasks are offset by -200. Normal tasks are centered
3755  * around 0, value goes from -16 to +15.
3756  */
3757 int task_prio(const struct task_struct *p)
3758 {
3759 	return p->prio - MAX_RT_PRIO;
3760 }
3761 
3762 /**
3763  * idle_cpu - is a given cpu idle currently?
3764  * @cpu: the processor in question.
3765  *
3766  * Return: 1 if the CPU is currently idle. 0 otherwise.
3767  */
3768 int idle_cpu(int cpu)
3769 {
3770 	struct rq *rq = cpu_rq(cpu);
3771 
3772 	if (rq->curr != rq->idle)
3773 		return 0;
3774 
3775 	if (rq->nr_running)
3776 		return 0;
3777 
3778 #ifdef CONFIG_SMP
3779 	if (!llist_empty(&rq->wake_list))
3780 		return 0;
3781 #endif
3782 
3783 	return 1;
3784 }
3785 
3786 /**
3787  * idle_task - return the idle task for a given cpu.
3788  * @cpu: the processor in question.
3789  *
3790  * Return: The idle task for the cpu @cpu.
3791  */
3792 struct task_struct *idle_task(int cpu)
3793 {
3794 	return cpu_rq(cpu)->idle;
3795 }
3796 
3797 /**
3798  * find_process_by_pid - find a process with a matching PID value.
3799  * @pid: the pid in question.
3800  *
3801  * The task of @pid, if found. %NULL otherwise.
3802  */
3803 static struct task_struct *find_process_by_pid(pid_t pid)
3804 {
3805 	return pid ? find_task_by_vpid(pid) : current;
3806 }
3807 
3808 /*
3809  * This function initializes the sched_dl_entity of a newly becoming
3810  * SCHED_DEADLINE task.
3811  *
3812  * Only the static values are considered here, the actual runtime and the
3813  * absolute deadline will be properly calculated when the task is enqueued
3814  * for the first time with its new policy.
3815  */
3816 static void
3817 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3818 {
3819 	struct sched_dl_entity *dl_se = &p->dl;
3820 
3821 	dl_se->dl_runtime = attr->sched_runtime;
3822 	dl_se->dl_deadline = attr->sched_deadline;
3823 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3824 	dl_se->flags = attr->sched_flags;
3825 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3826 
3827 	/*
3828 	 * Changing the parameters of a task is 'tricky' and we're not doing
3829 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3830 	 *
3831 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3832 	 * point. This would include retaining the task_struct until that time
3833 	 * and change dl_overflow() to not immediately decrement the current
3834 	 * amount.
3835 	 *
3836 	 * Instead we retain the current runtime/deadline and let the new
3837 	 * parameters take effect after the current reservation period lapses.
3838 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3839 	 * before the current scheduling deadline.
3840 	 *
3841 	 * We can still have temporary overloads because we do not delay the
3842 	 * change in bandwidth until that time; so admission control is
3843 	 * not on the safe side. It does however guarantee tasks will never
3844 	 * consume more than promised.
3845 	 */
3846 }
3847 
3848 /*
3849  * sched_setparam() passes in -1 for its policy, to let the functions
3850  * it calls know not to change it.
3851  */
3852 #define SETPARAM_POLICY	-1
3853 
3854 static void __setscheduler_params(struct task_struct *p,
3855 		const struct sched_attr *attr)
3856 {
3857 	int policy = attr->sched_policy;
3858 
3859 	if (policy == SETPARAM_POLICY)
3860 		policy = p->policy;
3861 
3862 	p->policy = policy;
3863 
3864 	if (dl_policy(policy))
3865 		__setparam_dl(p, attr);
3866 	else if (fair_policy(policy))
3867 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3868 
3869 	/*
3870 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3871 	 * !rt_policy. Always setting this ensures that things like
3872 	 * getparam()/getattr() don't report silly values for !rt tasks.
3873 	 */
3874 	p->rt_priority = attr->sched_priority;
3875 	p->normal_prio = normal_prio(p);
3876 	set_load_weight(p);
3877 }
3878 
3879 /* Actually do priority change: must hold pi & rq lock. */
3880 static void __setscheduler(struct rq *rq, struct task_struct *p,
3881 			   const struct sched_attr *attr, bool keep_boost)
3882 {
3883 	__setscheduler_params(p, attr);
3884 
3885 	/*
3886 	 * Keep a potential priority boosting if called from
3887 	 * sched_setscheduler().
3888 	 */
3889 	if (keep_boost)
3890 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3891 	else
3892 		p->prio = normal_prio(p);
3893 
3894 	if (dl_prio(p->prio))
3895 		p->sched_class = &dl_sched_class;
3896 	else if (rt_prio(p->prio))
3897 		p->sched_class = &rt_sched_class;
3898 	else
3899 		p->sched_class = &fair_sched_class;
3900 }
3901 
3902 static void
3903 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3904 {
3905 	struct sched_dl_entity *dl_se = &p->dl;
3906 
3907 	attr->sched_priority = p->rt_priority;
3908 	attr->sched_runtime = dl_se->dl_runtime;
3909 	attr->sched_deadline = dl_se->dl_deadline;
3910 	attr->sched_period = dl_se->dl_period;
3911 	attr->sched_flags = dl_se->flags;
3912 }
3913 
3914 /*
3915  * This function validates the new parameters of a -deadline task.
3916  * We ask for the deadline not being zero, and greater or equal
3917  * than the runtime, as well as the period of being zero or
3918  * greater than deadline. Furthermore, we have to be sure that
3919  * user parameters are above the internal resolution of 1us (we
3920  * check sched_runtime only since it is always the smaller one) and
3921  * below 2^63 ns (we have to check both sched_deadline and
3922  * sched_period, as the latter can be zero).
3923  */
3924 static bool
3925 __checkparam_dl(const struct sched_attr *attr)
3926 {
3927 	/* deadline != 0 */
3928 	if (attr->sched_deadline == 0)
3929 		return false;
3930 
3931 	/*
3932 	 * Since we truncate DL_SCALE bits, make sure we're at least
3933 	 * that big.
3934 	 */
3935 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3936 		return false;
3937 
3938 	/*
3939 	 * Since we use the MSB for wrap-around and sign issues, make
3940 	 * sure it's not set (mind that period can be equal to zero).
3941 	 */
3942 	if (attr->sched_deadline & (1ULL << 63) ||
3943 	    attr->sched_period & (1ULL << 63))
3944 		return false;
3945 
3946 	/* runtime <= deadline <= period (if period != 0) */
3947 	if ((attr->sched_period != 0 &&
3948 	     attr->sched_period < attr->sched_deadline) ||
3949 	    attr->sched_deadline < attr->sched_runtime)
3950 		return false;
3951 
3952 	return true;
3953 }
3954 
3955 /*
3956  * check the target process has a UID that matches the current process's
3957  */
3958 static bool check_same_owner(struct task_struct *p)
3959 {
3960 	const struct cred *cred = current_cred(), *pcred;
3961 	bool match;
3962 
3963 	rcu_read_lock();
3964 	pcred = __task_cred(p);
3965 	match = (uid_eq(cred->euid, pcred->euid) ||
3966 		 uid_eq(cred->euid, pcred->uid));
3967 	rcu_read_unlock();
3968 	return match;
3969 }
3970 
3971 static bool dl_param_changed(struct task_struct *p,
3972 		const struct sched_attr *attr)
3973 {
3974 	struct sched_dl_entity *dl_se = &p->dl;
3975 
3976 	if (dl_se->dl_runtime != attr->sched_runtime ||
3977 		dl_se->dl_deadline != attr->sched_deadline ||
3978 		dl_se->dl_period != attr->sched_period ||
3979 		dl_se->flags != attr->sched_flags)
3980 		return true;
3981 
3982 	return false;
3983 }
3984 
3985 static int __sched_setscheduler(struct task_struct *p,
3986 				const struct sched_attr *attr,
3987 				bool user, bool pi)
3988 {
3989 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3990 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3991 	int retval, oldprio, oldpolicy = -1, queued, running;
3992 	int new_effective_prio, policy = attr->sched_policy;
3993 	const struct sched_class *prev_class;
3994 	struct rq_flags rf;
3995 	int reset_on_fork;
3996 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3997 	struct rq *rq;
3998 
3999 	/* may grab non-irq protected spin_locks */
4000 	BUG_ON(in_interrupt());
4001 recheck:
4002 	/* double check policy once rq lock held */
4003 	if (policy < 0) {
4004 		reset_on_fork = p->sched_reset_on_fork;
4005 		policy = oldpolicy = p->policy;
4006 	} else {
4007 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4008 
4009 		if (!valid_policy(policy))
4010 			return -EINVAL;
4011 	}
4012 
4013 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4014 		return -EINVAL;
4015 
4016 	/*
4017 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4018 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4019 	 * SCHED_BATCH and SCHED_IDLE is 0.
4020 	 */
4021 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4022 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4023 		return -EINVAL;
4024 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4025 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4026 		return -EINVAL;
4027 
4028 	/*
4029 	 * Allow unprivileged RT tasks to decrease priority:
4030 	 */
4031 	if (user && !capable(CAP_SYS_NICE)) {
4032 		if (fair_policy(policy)) {
4033 			if (attr->sched_nice < task_nice(p) &&
4034 			    !can_nice(p, attr->sched_nice))
4035 				return -EPERM;
4036 		}
4037 
4038 		if (rt_policy(policy)) {
4039 			unsigned long rlim_rtprio =
4040 					task_rlimit(p, RLIMIT_RTPRIO);
4041 
4042 			/* can't set/change the rt policy */
4043 			if (policy != p->policy && !rlim_rtprio)
4044 				return -EPERM;
4045 
4046 			/* can't increase priority */
4047 			if (attr->sched_priority > p->rt_priority &&
4048 			    attr->sched_priority > rlim_rtprio)
4049 				return -EPERM;
4050 		}
4051 
4052 		 /*
4053 		  * Can't set/change SCHED_DEADLINE policy at all for now
4054 		  * (safest behavior); in the future we would like to allow
4055 		  * unprivileged DL tasks to increase their relative deadline
4056 		  * or reduce their runtime (both ways reducing utilization)
4057 		  */
4058 		if (dl_policy(policy))
4059 			return -EPERM;
4060 
4061 		/*
4062 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4063 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4064 		 */
4065 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4066 			if (!can_nice(p, task_nice(p)))
4067 				return -EPERM;
4068 		}
4069 
4070 		/* can't change other user's priorities */
4071 		if (!check_same_owner(p))
4072 			return -EPERM;
4073 
4074 		/* Normal users shall not reset the sched_reset_on_fork flag */
4075 		if (p->sched_reset_on_fork && !reset_on_fork)
4076 			return -EPERM;
4077 	}
4078 
4079 	if (user) {
4080 		retval = security_task_setscheduler(p);
4081 		if (retval)
4082 			return retval;
4083 	}
4084 
4085 	/*
4086 	 * make sure no PI-waiters arrive (or leave) while we are
4087 	 * changing the priority of the task:
4088 	 *
4089 	 * To be able to change p->policy safely, the appropriate
4090 	 * runqueue lock must be held.
4091 	 */
4092 	rq = task_rq_lock(p, &rf);
4093 
4094 	/*
4095 	 * Changing the policy of the stop threads its a very bad idea
4096 	 */
4097 	if (p == rq->stop) {
4098 		task_rq_unlock(rq, p, &rf);
4099 		return -EINVAL;
4100 	}
4101 
4102 	/*
4103 	 * If not changing anything there's no need to proceed further,
4104 	 * but store a possible modification of reset_on_fork.
4105 	 */
4106 	if (unlikely(policy == p->policy)) {
4107 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4108 			goto change;
4109 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4110 			goto change;
4111 		if (dl_policy(policy) && dl_param_changed(p, attr))
4112 			goto change;
4113 
4114 		p->sched_reset_on_fork = reset_on_fork;
4115 		task_rq_unlock(rq, p, &rf);
4116 		return 0;
4117 	}
4118 change:
4119 
4120 	if (user) {
4121 #ifdef CONFIG_RT_GROUP_SCHED
4122 		/*
4123 		 * Do not allow realtime tasks into groups that have no runtime
4124 		 * assigned.
4125 		 */
4126 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4127 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4128 				!task_group_is_autogroup(task_group(p))) {
4129 			task_rq_unlock(rq, p, &rf);
4130 			return -EPERM;
4131 		}
4132 #endif
4133 #ifdef CONFIG_SMP
4134 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4135 			cpumask_t *span = rq->rd->span;
4136 
4137 			/*
4138 			 * Don't allow tasks with an affinity mask smaller than
4139 			 * the entire root_domain to become SCHED_DEADLINE. We
4140 			 * will also fail if there's no bandwidth available.
4141 			 */
4142 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4143 			    rq->rd->dl_bw.bw == 0) {
4144 				task_rq_unlock(rq, p, &rf);
4145 				return -EPERM;
4146 			}
4147 		}
4148 #endif
4149 	}
4150 
4151 	/* recheck policy now with rq lock held */
4152 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4153 		policy = oldpolicy = -1;
4154 		task_rq_unlock(rq, p, &rf);
4155 		goto recheck;
4156 	}
4157 
4158 	/*
4159 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4160 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4161 	 * is available.
4162 	 */
4163 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4164 		task_rq_unlock(rq, p, &rf);
4165 		return -EBUSY;
4166 	}
4167 
4168 	p->sched_reset_on_fork = reset_on_fork;
4169 	oldprio = p->prio;
4170 
4171 	if (pi) {
4172 		/*
4173 		 * Take priority boosted tasks into account. If the new
4174 		 * effective priority is unchanged, we just store the new
4175 		 * normal parameters and do not touch the scheduler class and
4176 		 * the runqueue. This will be done when the task deboost
4177 		 * itself.
4178 		 */
4179 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4180 		if (new_effective_prio == oldprio)
4181 			queue_flags &= ~DEQUEUE_MOVE;
4182 	}
4183 
4184 	queued = task_on_rq_queued(p);
4185 	running = task_current(rq, p);
4186 	if (queued)
4187 		dequeue_task(rq, p, queue_flags);
4188 	if (running)
4189 		put_prev_task(rq, p);
4190 
4191 	prev_class = p->sched_class;
4192 	__setscheduler(rq, p, attr, pi);
4193 
4194 	if (running)
4195 		p->sched_class->set_curr_task(rq);
4196 	if (queued) {
4197 		/*
4198 		 * We enqueue to tail when the priority of a task is
4199 		 * increased (user space view).
4200 		 */
4201 		if (oldprio < p->prio)
4202 			queue_flags |= ENQUEUE_HEAD;
4203 
4204 		enqueue_task(rq, p, queue_flags);
4205 	}
4206 
4207 	check_class_changed(rq, p, prev_class, oldprio);
4208 	preempt_disable(); /* avoid rq from going away on us */
4209 	task_rq_unlock(rq, p, &rf);
4210 
4211 	if (pi)
4212 		rt_mutex_adjust_pi(p);
4213 
4214 	/*
4215 	 * Run balance callbacks after we've adjusted the PI chain.
4216 	 */
4217 	balance_callback(rq);
4218 	preempt_enable();
4219 
4220 	return 0;
4221 }
4222 
4223 static int _sched_setscheduler(struct task_struct *p, int policy,
4224 			       const struct sched_param *param, bool check)
4225 {
4226 	struct sched_attr attr = {
4227 		.sched_policy   = policy,
4228 		.sched_priority = param->sched_priority,
4229 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4230 	};
4231 
4232 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4233 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4234 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4235 		policy &= ~SCHED_RESET_ON_FORK;
4236 		attr.sched_policy = policy;
4237 	}
4238 
4239 	return __sched_setscheduler(p, &attr, check, true);
4240 }
4241 /**
4242  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4243  * @p: the task in question.
4244  * @policy: new policy.
4245  * @param: structure containing the new RT priority.
4246  *
4247  * Return: 0 on success. An error code otherwise.
4248  *
4249  * NOTE that the task may be already dead.
4250  */
4251 int sched_setscheduler(struct task_struct *p, int policy,
4252 		       const struct sched_param *param)
4253 {
4254 	return _sched_setscheduler(p, policy, param, true);
4255 }
4256 EXPORT_SYMBOL_GPL(sched_setscheduler);
4257 
4258 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4259 {
4260 	return __sched_setscheduler(p, attr, true, true);
4261 }
4262 EXPORT_SYMBOL_GPL(sched_setattr);
4263 
4264 /**
4265  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4266  * @p: the task in question.
4267  * @policy: new policy.
4268  * @param: structure containing the new RT priority.
4269  *
4270  * Just like sched_setscheduler, only don't bother checking if the
4271  * current context has permission.  For example, this is needed in
4272  * stop_machine(): we create temporary high priority worker threads,
4273  * but our caller might not have that capability.
4274  *
4275  * Return: 0 on success. An error code otherwise.
4276  */
4277 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4278 			       const struct sched_param *param)
4279 {
4280 	return _sched_setscheduler(p, policy, param, false);
4281 }
4282 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4283 
4284 static int
4285 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4286 {
4287 	struct sched_param lparam;
4288 	struct task_struct *p;
4289 	int retval;
4290 
4291 	if (!param || pid < 0)
4292 		return -EINVAL;
4293 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4294 		return -EFAULT;
4295 
4296 	rcu_read_lock();
4297 	retval = -ESRCH;
4298 	p = find_process_by_pid(pid);
4299 	if (p != NULL)
4300 		retval = sched_setscheduler(p, policy, &lparam);
4301 	rcu_read_unlock();
4302 
4303 	return retval;
4304 }
4305 
4306 /*
4307  * Mimics kernel/events/core.c perf_copy_attr().
4308  */
4309 static int sched_copy_attr(struct sched_attr __user *uattr,
4310 			   struct sched_attr *attr)
4311 {
4312 	u32 size;
4313 	int ret;
4314 
4315 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4316 		return -EFAULT;
4317 
4318 	/*
4319 	 * zero the full structure, so that a short copy will be nice.
4320 	 */
4321 	memset(attr, 0, sizeof(*attr));
4322 
4323 	ret = get_user(size, &uattr->size);
4324 	if (ret)
4325 		return ret;
4326 
4327 	if (size > PAGE_SIZE)	/* silly large */
4328 		goto err_size;
4329 
4330 	if (!size)		/* abi compat */
4331 		size = SCHED_ATTR_SIZE_VER0;
4332 
4333 	if (size < SCHED_ATTR_SIZE_VER0)
4334 		goto err_size;
4335 
4336 	/*
4337 	 * If we're handed a bigger struct than we know of,
4338 	 * ensure all the unknown bits are 0 - i.e. new
4339 	 * user-space does not rely on any kernel feature
4340 	 * extensions we dont know about yet.
4341 	 */
4342 	if (size > sizeof(*attr)) {
4343 		unsigned char __user *addr;
4344 		unsigned char __user *end;
4345 		unsigned char val;
4346 
4347 		addr = (void __user *)uattr + sizeof(*attr);
4348 		end  = (void __user *)uattr + size;
4349 
4350 		for (; addr < end; addr++) {
4351 			ret = get_user(val, addr);
4352 			if (ret)
4353 				return ret;
4354 			if (val)
4355 				goto err_size;
4356 		}
4357 		size = sizeof(*attr);
4358 	}
4359 
4360 	ret = copy_from_user(attr, uattr, size);
4361 	if (ret)
4362 		return -EFAULT;
4363 
4364 	/*
4365 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4366 	 * to be strict and return an error on out-of-bounds values?
4367 	 */
4368 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4369 
4370 	return 0;
4371 
4372 err_size:
4373 	put_user(sizeof(*attr), &uattr->size);
4374 	return -E2BIG;
4375 }
4376 
4377 /**
4378  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4379  * @pid: the pid in question.
4380  * @policy: new policy.
4381  * @param: structure containing the new RT priority.
4382  *
4383  * Return: 0 on success. An error code otherwise.
4384  */
4385 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4386 		struct sched_param __user *, param)
4387 {
4388 	/* negative values for policy are not valid */
4389 	if (policy < 0)
4390 		return -EINVAL;
4391 
4392 	return do_sched_setscheduler(pid, policy, param);
4393 }
4394 
4395 /**
4396  * sys_sched_setparam - set/change the RT priority of a thread
4397  * @pid: the pid in question.
4398  * @param: structure containing the new RT priority.
4399  *
4400  * Return: 0 on success. An error code otherwise.
4401  */
4402 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4403 {
4404 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4405 }
4406 
4407 /**
4408  * sys_sched_setattr - same as above, but with extended sched_attr
4409  * @pid: the pid in question.
4410  * @uattr: structure containing the extended parameters.
4411  * @flags: for future extension.
4412  */
4413 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4414 			       unsigned int, flags)
4415 {
4416 	struct sched_attr attr;
4417 	struct task_struct *p;
4418 	int retval;
4419 
4420 	if (!uattr || pid < 0 || flags)
4421 		return -EINVAL;
4422 
4423 	retval = sched_copy_attr(uattr, &attr);
4424 	if (retval)
4425 		return retval;
4426 
4427 	if ((int)attr.sched_policy < 0)
4428 		return -EINVAL;
4429 
4430 	rcu_read_lock();
4431 	retval = -ESRCH;
4432 	p = find_process_by_pid(pid);
4433 	if (p != NULL)
4434 		retval = sched_setattr(p, &attr);
4435 	rcu_read_unlock();
4436 
4437 	return retval;
4438 }
4439 
4440 /**
4441  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4442  * @pid: the pid in question.
4443  *
4444  * Return: On success, the policy of the thread. Otherwise, a negative error
4445  * code.
4446  */
4447 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4448 {
4449 	struct task_struct *p;
4450 	int retval;
4451 
4452 	if (pid < 0)
4453 		return -EINVAL;
4454 
4455 	retval = -ESRCH;
4456 	rcu_read_lock();
4457 	p = find_process_by_pid(pid);
4458 	if (p) {
4459 		retval = security_task_getscheduler(p);
4460 		if (!retval)
4461 			retval = p->policy
4462 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4463 	}
4464 	rcu_read_unlock();
4465 	return retval;
4466 }
4467 
4468 /**
4469  * sys_sched_getparam - get the RT priority of a thread
4470  * @pid: the pid in question.
4471  * @param: structure containing the RT priority.
4472  *
4473  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4474  * code.
4475  */
4476 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4477 {
4478 	struct sched_param lp = { .sched_priority = 0 };
4479 	struct task_struct *p;
4480 	int retval;
4481 
4482 	if (!param || pid < 0)
4483 		return -EINVAL;
4484 
4485 	rcu_read_lock();
4486 	p = find_process_by_pid(pid);
4487 	retval = -ESRCH;
4488 	if (!p)
4489 		goto out_unlock;
4490 
4491 	retval = security_task_getscheduler(p);
4492 	if (retval)
4493 		goto out_unlock;
4494 
4495 	if (task_has_rt_policy(p))
4496 		lp.sched_priority = p->rt_priority;
4497 	rcu_read_unlock();
4498 
4499 	/*
4500 	 * This one might sleep, we cannot do it with a spinlock held ...
4501 	 */
4502 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4503 
4504 	return retval;
4505 
4506 out_unlock:
4507 	rcu_read_unlock();
4508 	return retval;
4509 }
4510 
4511 static int sched_read_attr(struct sched_attr __user *uattr,
4512 			   struct sched_attr *attr,
4513 			   unsigned int usize)
4514 {
4515 	int ret;
4516 
4517 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4518 		return -EFAULT;
4519 
4520 	/*
4521 	 * If we're handed a smaller struct than we know of,
4522 	 * ensure all the unknown bits are 0 - i.e. old
4523 	 * user-space does not get uncomplete information.
4524 	 */
4525 	if (usize < sizeof(*attr)) {
4526 		unsigned char *addr;
4527 		unsigned char *end;
4528 
4529 		addr = (void *)attr + usize;
4530 		end  = (void *)attr + sizeof(*attr);
4531 
4532 		for (; addr < end; addr++) {
4533 			if (*addr)
4534 				return -EFBIG;
4535 		}
4536 
4537 		attr->size = usize;
4538 	}
4539 
4540 	ret = copy_to_user(uattr, attr, attr->size);
4541 	if (ret)
4542 		return -EFAULT;
4543 
4544 	return 0;
4545 }
4546 
4547 /**
4548  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4549  * @pid: the pid in question.
4550  * @uattr: structure containing the extended parameters.
4551  * @size: sizeof(attr) for fwd/bwd comp.
4552  * @flags: for future extension.
4553  */
4554 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4555 		unsigned int, size, unsigned int, flags)
4556 {
4557 	struct sched_attr attr = {
4558 		.size = sizeof(struct sched_attr),
4559 	};
4560 	struct task_struct *p;
4561 	int retval;
4562 
4563 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4564 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4565 		return -EINVAL;
4566 
4567 	rcu_read_lock();
4568 	p = find_process_by_pid(pid);
4569 	retval = -ESRCH;
4570 	if (!p)
4571 		goto out_unlock;
4572 
4573 	retval = security_task_getscheduler(p);
4574 	if (retval)
4575 		goto out_unlock;
4576 
4577 	attr.sched_policy = p->policy;
4578 	if (p->sched_reset_on_fork)
4579 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4580 	if (task_has_dl_policy(p))
4581 		__getparam_dl(p, &attr);
4582 	else if (task_has_rt_policy(p))
4583 		attr.sched_priority = p->rt_priority;
4584 	else
4585 		attr.sched_nice = task_nice(p);
4586 
4587 	rcu_read_unlock();
4588 
4589 	retval = sched_read_attr(uattr, &attr, size);
4590 	return retval;
4591 
4592 out_unlock:
4593 	rcu_read_unlock();
4594 	return retval;
4595 }
4596 
4597 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4598 {
4599 	cpumask_var_t cpus_allowed, new_mask;
4600 	struct task_struct *p;
4601 	int retval;
4602 
4603 	rcu_read_lock();
4604 
4605 	p = find_process_by_pid(pid);
4606 	if (!p) {
4607 		rcu_read_unlock();
4608 		return -ESRCH;
4609 	}
4610 
4611 	/* Prevent p going away */
4612 	get_task_struct(p);
4613 	rcu_read_unlock();
4614 
4615 	if (p->flags & PF_NO_SETAFFINITY) {
4616 		retval = -EINVAL;
4617 		goto out_put_task;
4618 	}
4619 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4620 		retval = -ENOMEM;
4621 		goto out_put_task;
4622 	}
4623 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4624 		retval = -ENOMEM;
4625 		goto out_free_cpus_allowed;
4626 	}
4627 	retval = -EPERM;
4628 	if (!check_same_owner(p)) {
4629 		rcu_read_lock();
4630 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4631 			rcu_read_unlock();
4632 			goto out_free_new_mask;
4633 		}
4634 		rcu_read_unlock();
4635 	}
4636 
4637 	retval = security_task_setscheduler(p);
4638 	if (retval)
4639 		goto out_free_new_mask;
4640 
4641 
4642 	cpuset_cpus_allowed(p, cpus_allowed);
4643 	cpumask_and(new_mask, in_mask, cpus_allowed);
4644 
4645 	/*
4646 	 * Since bandwidth control happens on root_domain basis,
4647 	 * if admission test is enabled, we only admit -deadline
4648 	 * tasks allowed to run on all the CPUs in the task's
4649 	 * root_domain.
4650 	 */
4651 #ifdef CONFIG_SMP
4652 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4653 		rcu_read_lock();
4654 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4655 			retval = -EBUSY;
4656 			rcu_read_unlock();
4657 			goto out_free_new_mask;
4658 		}
4659 		rcu_read_unlock();
4660 	}
4661 #endif
4662 again:
4663 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4664 
4665 	if (!retval) {
4666 		cpuset_cpus_allowed(p, cpus_allowed);
4667 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4668 			/*
4669 			 * We must have raced with a concurrent cpuset
4670 			 * update. Just reset the cpus_allowed to the
4671 			 * cpuset's cpus_allowed
4672 			 */
4673 			cpumask_copy(new_mask, cpus_allowed);
4674 			goto again;
4675 		}
4676 	}
4677 out_free_new_mask:
4678 	free_cpumask_var(new_mask);
4679 out_free_cpus_allowed:
4680 	free_cpumask_var(cpus_allowed);
4681 out_put_task:
4682 	put_task_struct(p);
4683 	return retval;
4684 }
4685 
4686 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4687 			     struct cpumask *new_mask)
4688 {
4689 	if (len < cpumask_size())
4690 		cpumask_clear(new_mask);
4691 	else if (len > cpumask_size())
4692 		len = cpumask_size();
4693 
4694 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4695 }
4696 
4697 /**
4698  * sys_sched_setaffinity - set the cpu affinity of a process
4699  * @pid: pid of the process
4700  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4701  * @user_mask_ptr: user-space pointer to the new cpu mask
4702  *
4703  * Return: 0 on success. An error code otherwise.
4704  */
4705 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4706 		unsigned long __user *, user_mask_ptr)
4707 {
4708 	cpumask_var_t new_mask;
4709 	int retval;
4710 
4711 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4712 		return -ENOMEM;
4713 
4714 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4715 	if (retval == 0)
4716 		retval = sched_setaffinity(pid, new_mask);
4717 	free_cpumask_var(new_mask);
4718 	return retval;
4719 }
4720 
4721 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4722 {
4723 	struct task_struct *p;
4724 	unsigned long flags;
4725 	int retval;
4726 
4727 	rcu_read_lock();
4728 
4729 	retval = -ESRCH;
4730 	p = find_process_by_pid(pid);
4731 	if (!p)
4732 		goto out_unlock;
4733 
4734 	retval = security_task_getscheduler(p);
4735 	if (retval)
4736 		goto out_unlock;
4737 
4738 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4739 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4740 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4741 
4742 out_unlock:
4743 	rcu_read_unlock();
4744 
4745 	return retval;
4746 }
4747 
4748 /**
4749  * sys_sched_getaffinity - get the cpu affinity of a process
4750  * @pid: pid of the process
4751  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4752  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4753  *
4754  * Return: 0 on success. An error code otherwise.
4755  */
4756 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4757 		unsigned long __user *, user_mask_ptr)
4758 {
4759 	int ret;
4760 	cpumask_var_t mask;
4761 
4762 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4763 		return -EINVAL;
4764 	if (len & (sizeof(unsigned long)-1))
4765 		return -EINVAL;
4766 
4767 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4768 		return -ENOMEM;
4769 
4770 	ret = sched_getaffinity(pid, mask);
4771 	if (ret == 0) {
4772 		size_t retlen = min_t(size_t, len, cpumask_size());
4773 
4774 		if (copy_to_user(user_mask_ptr, mask, retlen))
4775 			ret = -EFAULT;
4776 		else
4777 			ret = retlen;
4778 	}
4779 	free_cpumask_var(mask);
4780 
4781 	return ret;
4782 }
4783 
4784 /**
4785  * sys_sched_yield - yield the current processor to other threads.
4786  *
4787  * This function yields the current CPU to other tasks. If there are no
4788  * other threads running on this CPU then this function will return.
4789  *
4790  * Return: 0.
4791  */
4792 SYSCALL_DEFINE0(sched_yield)
4793 {
4794 	struct rq *rq = this_rq_lock();
4795 
4796 	schedstat_inc(rq, yld_count);
4797 	current->sched_class->yield_task(rq);
4798 
4799 	/*
4800 	 * Since we are going to call schedule() anyway, there's
4801 	 * no need to preempt or enable interrupts:
4802 	 */
4803 	__release(rq->lock);
4804 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4805 	do_raw_spin_unlock(&rq->lock);
4806 	sched_preempt_enable_no_resched();
4807 
4808 	schedule();
4809 
4810 	return 0;
4811 }
4812 
4813 int __sched _cond_resched(void)
4814 {
4815 	if (should_resched(0)) {
4816 		preempt_schedule_common();
4817 		return 1;
4818 	}
4819 	return 0;
4820 }
4821 EXPORT_SYMBOL(_cond_resched);
4822 
4823 /*
4824  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4825  * call schedule, and on return reacquire the lock.
4826  *
4827  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4828  * operations here to prevent schedule() from being called twice (once via
4829  * spin_unlock(), once by hand).
4830  */
4831 int __cond_resched_lock(spinlock_t *lock)
4832 {
4833 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4834 	int ret = 0;
4835 
4836 	lockdep_assert_held(lock);
4837 
4838 	if (spin_needbreak(lock) || resched) {
4839 		spin_unlock(lock);
4840 		if (resched)
4841 			preempt_schedule_common();
4842 		else
4843 			cpu_relax();
4844 		ret = 1;
4845 		spin_lock(lock);
4846 	}
4847 	return ret;
4848 }
4849 EXPORT_SYMBOL(__cond_resched_lock);
4850 
4851 int __sched __cond_resched_softirq(void)
4852 {
4853 	BUG_ON(!in_softirq());
4854 
4855 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4856 		local_bh_enable();
4857 		preempt_schedule_common();
4858 		local_bh_disable();
4859 		return 1;
4860 	}
4861 	return 0;
4862 }
4863 EXPORT_SYMBOL(__cond_resched_softirq);
4864 
4865 /**
4866  * yield - yield the current processor to other threads.
4867  *
4868  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4869  *
4870  * The scheduler is at all times free to pick the calling task as the most
4871  * eligible task to run, if removing the yield() call from your code breaks
4872  * it, its already broken.
4873  *
4874  * Typical broken usage is:
4875  *
4876  * while (!event)
4877  * 	yield();
4878  *
4879  * where one assumes that yield() will let 'the other' process run that will
4880  * make event true. If the current task is a SCHED_FIFO task that will never
4881  * happen. Never use yield() as a progress guarantee!!
4882  *
4883  * If you want to use yield() to wait for something, use wait_event().
4884  * If you want to use yield() to be 'nice' for others, use cond_resched().
4885  * If you still want to use yield(), do not!
4886  */
4887 void __sched yield(void)
4888 {
4889 	set_current_state(TASK_RUNNING);
4890 	sys_sched_yield();
4891 }
4892 EXPORT_SYMBOL(yield);
4893 
4894 /**
4895  * yield_to - yield the current processor to another thread in
4896  * your thread group, or accelerate that thread toward the
4897  * processor it's on.
4898  * @p: target task
4899  * @preempt: whether task preemption is allowed or not
4900  *
4901  * It's the caller's job to ensure that the target task struct
4902  * can't go away on us before we can do any checks.
4903  *
4904  * Return:
4905  *	true (>0) if we indeed boosted the target task.
4906  *	false (0) if we failed to boost the target.
4907  *	-ESRCH if there's no task to yield to.
4908  */
4909 int __sched yield_to(struct task_struct *p, bool preempt)
4910 {
4911 	struct task_struct *curr = current;
4912 	struct rq *rq, *p_rq;
4913 	unsigned long flags;
4914 	int yielded = 0;
4915 
4916 	local_irq_save(flags);
4917 	rq = this_rq();
4918 
4919 again:
4920 	p_rq = task_rq(p);
4921 	/*
4922 	 * If we're the only runnable task on the rq and target rq also
4923 	 * has only one task, there's absolutely no point in yielding.
4924 	 */
4925 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4926 		yielded = -ESRCH;
4927 		goto out_irq;
4928 	}
4929 
4930 	double_rq_lock(rq, p_rq);
4931 	if (task_rq(p) != p_rq) {
4932 		double_rq_unlock(rq, p_rq);
4933 		goto again;
4934 	}
4935 
4936 	if (!curr->sched_class->yield_to_task)
4937 		goto out_unlock;
4938 
4939 	if (curr->sched_class != p->sched_class)
4940 		goto out_unlock;
4941 
4942 	if (task_running(p_rq, p) || p->state)
4943 		goto out_unlock;
4944 
4945 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4946 	if (yielded) {
4947 		schedstat_inc(rq, yld_count);
4948 		/*
4949 		 * Make p's CPU reschedule; pick_next_entity takes care of
4950 		 * fairness.
4951 		 */
4952 		if (preempt && rq != p_rq)
4953 			resched_curr(p_rq);
4954 	}
4955 
4956 out_unlock:
4957 	double_rq_unlock(rq, p_rq);
4958 out_irq:
4959 	local_irq_restore(flags);
4960 
4961 	if (yielded > 0)
4962 		schedule();
4963 
4964 	return yielded;
4965 }
4966 EXPORT_SYMBOL_GPL(yield_to);
4967 
4968 /*
4969  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4970  * that process accounting knows that this is a task in IO wait state.
4971  */
4972 long __sched io_schedule_timeout(long timeout)
4973 {
4974 	int old_iowait = current->in_iowait;
4975 	struct rq *rq;
4976 	long ret;
4977 
4978 	current->in_iowait = 1;
4979 	blk_schedule_flush_plug(current);
4980 
4981 	delayacct_blkio_start();
4982 	rq = raw_rq();
4983 	atomic_inc(&rq->nr_iowait);
4984 	ret = schedule_timeout(timeout);
4985 	current->in_iowait = old_iowait;
4986 	atomic_dec(&rq->nr_iowait);
4987 	delayacct_blkio_end();
4988 
4989 	return ret;
4990 }
4991 EXPORT_SYMBOL(io_schedule_timeout);
4992 
4993 /**
4994  * sys_sched_get_priority_max - return maximum RT priority.
4995  * @policy: scheduling class.
4996  *
4997  * Return: On success, this syscall returns the maximum
4998  * rt_priority that can be used by a given scheduling class.
4999  * On failure, a negative error code is returned.
5000  */
5001 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5002 {
5003 	int ret = -EINVAL;
5004 
5005 	switch (policy) {
5006 	case SCHED_FIFO:
5007 	case SCHED_RR:
5008 		ret = MAX_USER_RT_PRIO-1;
5009 		break;
5010 	case SCHED_DEADLINE:
5011 	case SCHED_NORMAL:
5012 	case SCHED_BATCH:
5013 	case SCHED_IDLE:
5014 		ret = 0;
5015 		break;
5016 	}
5017 	return ret;
5018 }
5019 
5020 /**
5021  * sys_sched_get_priority_min - return minimum RT priority.
5022  * @policy: scheduling class.
5023  *
5024  * Return: On success, this syscall returns the minimum
5025  * rt_priority that can be used by a given scheduling class.
5026  * On failure, a negative error code is returned.
5027  */
5028 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5029 {
5030 	int ret = -EINVAL;
5031 
5032 	switch (policy) {
5033 	case SCHED_FIFO:
5034 	case SCHED_RR:
5035 		ret = 1;
5036 		break;
5037 	case SCHED_DEADLINE:
5038 	case SCHED_NORMAL:
5039 	case SCHED_BATCH:
5040 	case SCHED_IDLE:
5041 		ret = 0;
5042 	}
5043 	return ret;
5044 }
5045 
5046 /**
5047  * sys_sched_rr_get_interval - return the default timeslice of a process.
5048  * @pid: pid of the process.
5049  * @interval: userspace pointer to the timeslice value.
5050  *
5051  * this syscall writes the default timeslice value of a given process
5052  * into the user-space timespec buffer. A value of '0' means infinity.
5053  *
5054  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5055  * an error code.
5056  */
5057 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5058 		struct timespec __user *, interval)
5059 {
5060 	struct task_struct *p;
5061 	unsigned int time_slice;
5062 	struct rq_flags rf;
5063 	struct timespec t;
5064 	struct rq *rq;
5065 	int retval;
5066 
5067 	if (pid < 0)
5068 		return -EINVAL;
5069 
5070 	retval = -ESRCH;
5071 	rcu_read_lock();
5072 	p = find_process_by_pid(pid);
5073 	if (!p)
5074 		goto out_unlock;
5075 
5076 	retval = security_task_getscheduler(p);
5077 	if (retval)
5078 		goto out_unlock;
5079 
5080 	rq = task_rq_lock(p, &rf);
5081 	time_slice = 0;
5082 	if (p->sched_class->get_rr_interval)
5083 		time_slice = p->sched_class->get_rr_interval(rq, p);
5084 	task_rq_unlock(rq, p, &rf);
5085 
5086 	rcu_read_unlock();
5087 	jiffies_to_timespec(time_slice, &t);
5088 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5089 	return retval;
5090 
5091 out_unlock:
5092 	rcu_read_unlock();
5093 	return retval;
5094 }
5095 
5096 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5097 
5098 void sched_show_task(struct task_struct *p)
5099 {
5100 	unsigned long free = 0;
5101 	int ppid;
5102 	unsigned long state = p->state;
5103 
5104 	if (state)
5105 		state = __ffs(state) + 1;
5106 	printk(KERN_INFO "%-15.15s %c", p->comm,
5107 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5108 #if BITS_PER_LONG == 32
5109 	if (state == TASK_RUNNING)
5110 		printk(KERN_CONT " running  ");
5111 	else
5112 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5113 #else
5114 	if (state == TASK_RUNNING)
5115 		printk(KERN_CONT "  running task    ");
5116 	else
5117 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5118 #endif
5119 #ifdef CONFIG_DEBUG_STACK_USAGE
5120 	free = stack_not_used(p);
5121 #endif
5122 	ppid = 0;
5123 	rcu_read_lock();
5124 	if (pid_alive(p))
5125 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5126 	rcu_read_unlock();
5127 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5128 		task_pid_nr(p), ppid,
5129 		(unsigned long)task_thread_info(p)->flags);
5130 
5131 	print_worker_info(KERN_INFO, p);
5132 	show_stack(p, NULL);
5133 }
5134 
5135 void show_state_filter(unsigned long state_filter)
5136 {
5137 	struct task_struct *g, *p;
5138 
5139 #if BITS_PER_LONG == 32
5140 	printk(KERN_INFO
5141 		"  task                PC stack   pid father\n");
5142 #else
5143 	printk(KERN_INFO
5144 		"  task                        PC stack   pid father\n");
5145 #endif
5146 	rcu_read_lock();
5147 	for_each_process_thread(g, p) {
5148 		/*
5149 		 * reset the NMI-timeout, listing all files on a slow
5150 		 * console might take a lot of time:
5151 		 */
5152 		touch_nmi_watchdog();
5153 		if (!state_filter || (p->state & state_filter))
5154 			sched_show_task(p);
5155 	}
5156 
5157 	touch_all_softlockup_watchdogs();
5158 
5159 #ifdef CONFIG_SCHED_DEBUG
5160 	if (!state_filter)
5161 		sysrq_sched_debug_show();
5162 #endif
5163 	rcu_read_unlock();
5164 	/*
5165 	 * Only show locks if all tasks are dumped:
5166 	 */
5167 	if (!state_filter)
5168 		debug_show_all_locks();
5169 }
5170 
5171 void init_idle_bootup_task(struct task_struct *idle)
5172 {
5173 	idle->sched_class = &idle_sched_class;
5174 }
5175 
5176 /**
5177  * init_idle - set up an idle thread for a given CPU
5178  * @idle: task in question
5179  * @cpu: cpu the idle task belongs to
5180  *
5181  * NOTE: this function does not set the idle thread's NEED_RESCHED
5182  * flag, to make booting more robust.
5183  */
5184 void init_idle(struct task_struct *idle, int cpu)
5185 {
5186 	struct rq *rq = cpu_rq(cpu);
5187 	unsigned long flags;
5188 
5189 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5190 	raw_spin_lock(&rq->lock);
5191 
5192 	__sched_fork(0, idle);
5193 	idle->state = TASK_RUNNING;
5194 	idle->se.exec_start = sched_clock();
5195 
5196 	kasan_unpoison_task_stack(idle);
5197 
5198 #ifdef CONFIG_SMP
5199 	/*
5200 	 * Its possible that init_idle() gets called multiple times on a task,
5201 	 * in that case do_set_cpus_allowed() will not do the right thing.
5202 	 *
5203 	 * And since this is boot we can forgo the serialization.
5204 	 */
5205 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5206 #endif
5207 	/*
5208 	 * We're having a chicken and egg problem, even though we are
5209 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5210 	 * lockdep check in task_group() will fail.
5211 	 *
5212 	 * Similar case to sched_fork(). / Alternatively we could
5213 	 * use task_rq_lock() here and obtain the other rq->lock.
5214 	 *
5215 	 * Silence PROVE_RCU
5216 	 */
5217 	rcu_read_lock();
5218 	__set_task_cpu(idle, cpu);
5219 	rcu_read_unlock();
5220 
5221 	rq->curr = rq->idle = idle;
5222 	idle->on_rq = TASK_ON_RQ_QUEUED;
5223 #ifdef CONFIG_SMP
5224 	idle->on_cpu = 1;
5225 #endif
5226 	raw_spin_unlock(&rq->lock);
5227 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5228 
5229 	/* Set the preempt count _outside_ the spinlocks! */
5230 	init_idle_preempt_count(idle, cpu);
5231 
5232 	/*
5233 	 * The idle tasks have their own, simple scheduling class:
5234 	 */
5235 	idle->sched_class = &idle_sched_class;
5236 	ftrace_graph_init_idle_task(idle, cpu);
5237 	vtime_init_idle(idle, cpu);
5238 #ifdef CONFIG_SMP
5239 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5240 #endif
5241 }
5242 
5243 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5244 			      const struct cpumask *trial)
5245 {
5246 	int ret = 1, trial_cpus;
5247 	struct dl_bw *cur_dl_b;
5248 	unsigned long flags;
5249 
5250 	if (!cpumask_weight(cur))
5251 		return ret;
5252 
5253 	rcu_read_lock_sched();
5254 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5255 	trial_cpus = cpumask_weight(trial);
5256 
5257 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5258 	if (cur_dl_b->bw != -1 &&
5259 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5260 		ret = 0;
5261 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5262 	rcu_read_unlock_sched();
5263 
5264 	return ret;
5265 }
5266 
5267 int task_can_attach(struct task_struct *p,
5268 		    const struct cpumask *cs_cpus_allowed)
5269 {
5270 	int ret = 0;
5271 
5272 	/*
5273 	 * Kthreads which disallow setaffinity shouldn't be moved
5274 	 * to a new cpuset; we don't want to change their cpu
5275 	 * affinity and isolating such threads by their set of
5276 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5277 	 * applicable for such threads.  This prevents checking for
5278 	 * success of set_cpus_allowed_ptr() on all attached tasks
5279 	 * before cpus_allowed may be changed.
5280 	 */
5281 	if (p->flags & PF_NO_SETAFFINITY) {
5282 		ret = -EINVAL;
5283 		goto out;
5284 	}
5285 
5286 #ifdef CONFIG_SMP
5287 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5288 					      cs_cpus_allowed)) {
5289 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5290 							cs_cpus_allowed);
5291 		struct dl_bw *dl_b;
5292 		bool overflow;
5293 		int cpus;
5294 		unsigned long flags;
5295 
5296 		rcu_read_lock_sched();
5297 		dl_b = dl_bw_of(dest_cpu);
5298 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5299 		cpus = dl_bw_cpus(dest_cpu);
5300 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5301 		if (overflow)
5302 			ret = -EBUSY;
5303 		else {
5304 			/*
5305 			 * We reserve space for this task in the destination
5306 			 * root_domain, as we can't fail after this point.
5307 			 * We will free resources in the source root_domain
5308 			 * later on (see set_cpus_allowed_dl()).
5309 			 */
5310 			__dl_add(dl_b, p->dl.dl_bw);
5311 		}
5312 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5313 		rcu_read_unlock_sched();
5314 
5315 	}
5316 #endif
5317 out:
5318 	return ret;
5319 }
5320 
5321 #ifdef CONFIG_SMP
5322 
5323 static bool sched_smp_initialized __read_mostly;
5324 
5325 #ifdef CONFIG_NUMA_BALANCING
5326 /* Migrate current task p to target_cpu */
5327 int migrate_task_to(struct task_struct *p, int target_cpu)
5328 {
5329 	struct migration_arg arg = { p, target_cpu };
5330 	int curr_cpu = task_cpu(p);
5331 
5332 	if (curr_cpu == target_cpu)
5333 		return 0;
5334 
5335 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5336 		return -EINVAL;
5337 
5338 	/* TODO: This is not properly updating schedstats */
5339 
5340 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5341 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5342 }
5343 
5344 /*
5345  * Requeue a task on a given node and accurately track the number of NUMA
5346  * tasks on the runqueues
5347  */
5348 void sched_setnuma(struct task_struct *p, int nid)
5349 {
5350 	bool queued, running;
5351 	struct rq_flags rf;
5352 	struct rq *rq;
5353 
5354 	rq = task_rq_lock(p, &rf);
5355 	queued = task_on_rq_queued(p);
5356 	running = task_current(rq, p);
5357 
5358 	if (queued)
5359 		dequeue_task(rq, p, DEQUEUE_SAVE);
5360 	if (running)
5361 		put_prev_task(rq, p);
5362 
5363 	p->numa_preferred_nid = nid;
5364 
5365 	if (running)
5366 		p->sched_class->set_curr_task(rq);
5367 	if (queued)
5368 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5369 	task_rq_unlock(rq, p, &rf);
5370 }
5371 #endif /* CONFIG_NUMA_BALANCING */
5372 
5373 #ifdef CONFIG_HOTPLUG_CPU
5374 /*
5375  * Ensures that the idle task is using init_mm right before its cpu goes
5376  * offline.
5377  */
5378 void idle_task_exit(void)
5379 {
5380 	struct mm_struct *mm = current->active_mm;
5381 
5382 	BUG_ON(cpu_online(smp_processor_id()));
5383 
5384 	if (mm != &init_mm) {
5385 		switch_mm_irqs_off(mm, &init_mm, current);
5386 		finish_arch_post_lock_switch();
5387 	}
5388 	mmdrop(mm);
5389 }
5390 
5391 /*
5392  * Since this CPU is going 'away' for a while, fold any nr_active delta
5393  * we might have. Assumes we're called after migrate_tasks() so that the
5394  * nr_active count is stable.
5395  *
5396  * Also see the comment "Global load-average calculations".
5397  */
5398 static void calc_load_migrate(struct rq *rq)
5399 {
5400 	long delta = calc_load_fold_active(rq);
5401 	if (delta)
5402 		atomic_long_add(delta, &calc_load_tasks);
5403 }
5404 
5405 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5406 {
5407 }
5408 
5409 static const struct sched_class fake_sched_class = {
5410 	.put_prev_task = put_prev_task_fake,
5411 };
5412 
5413 static struct task_struct fake_task = {
5414 	/*
5415 	 * Avoid pull_{rt,dl}_task()
5416 	 */
5417 	.prio = MAX_PRIO + 1,
5418 	.sched_class = &fake_sched_class,
5419 };
5420 
5421 /*
5422  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5423  * try_to_wake_up()->select_task_rq().
5424  *
5425  * Called with rq->lock held even though we'er in stop_machine() and
5426  * there's no concurrency possible, we hold the required locks anyway
5427  * because of lock validation efforts.
5428  */
5429 static void migrate_tasks(struct rq *dead_rq)
5430 {
5431 	struct rq *rq = dead_rq;
5432 	struct task_struct *next, *stop = rq->stop;
5433 	struct pin_cookie cookie;
5434 	int dest_cpu;
5435 
5436 	/*
5437 	 * Fudge the rq selection such that the below task selection loop
5438 	 * doesn't get stuck on the currently eligible stop task.
5439 	 *
5440 	 * We're currently inside stop_machine() and the rq is either stuck
5441 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5442 	 * either way we should never end up calling schedule() until we're
5443 	 * done here.
5444 	 */
5445 	rq->stop = NULL;
5446 
5447 	/*
5448 	 * put_prev_task() and pick_next_task() sched
5449 	 * class method both need to have an up-to-date
5450 	 * value of rq->clock[_task]
5451 	 */
5452 	update_rq_clock(rq);
5453 
5454 	for (;;) {
5455 		/*
5456 		 * There's this thread running, bail when that's the only
5457 		 * remaining thread.
5458 		 */
5459 		if (rq->nr_running == 1)
5460 			break;
5461 
5462 		/*
5463 		 * pick_next_task assumes pinned rq->lock.
5464 		 */
5465 		cookie = lockdep_pin_lock(&rq->lock);
5466 		next = pick_next_task(rq, &fake_task, cookie);
5467 		BUG_ON(!next);
5468 		next->sched_class->put_prev_task(rq, next);
5469 
5470 		/*
5471 		 * Rules for changing task_struct::cpus_allowed are holding
5472 		 * both pi_lock and rq->lock, such that holding either
5473 		 * stabilizes the mask.
5474 		 *
5475 		 * Drop rq->lock is not quite as disastrous as it usually is
5476 		 * because !cpu_active at this point, which means load-balance
5477 		 * will not interfere. Also, stop-machine.
5478 		 */
5479 		lockdep_unpin_lock(&rq->lock, cookie);
5480 		raw_spin_unlock(&rq->lock);
5481 		raw_spin_lock(&next->pi_lock);
5482 		raw_spin_lock(&rq->lock);
5483 
5484 		/*
5485 		 * Since we're inside stop-machine, _nothing_ should have
5486 		 * changed the task, WARN if weird stuff happened, because in
5487 		 * that case the above rq->lock drop is a fail too.
5488 		 */
5489 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5490 			raw_spin_unlock(&next->pi_lock);
5491 			continue;
5492 		}
5493 
5494 		/* Find suitable destination for @next, with force if needed. */
5495 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5496 
5497 		rq = __migrate_task(rq, next, dest_cpu);
5498 		if (rq != dead_rq) {
5499 			raw_spin_unlock(&rq->lock);
5500 			rq = dead_rq;
5501 			raw_spin_lock(&rq->lock);
5502 		}
5503 		raw_spin_unlock(&next->pi_lock);
5504 	}
5505 
5506 	rq->stop = stop;
5507 }
5508 #endif /* CONFIG_HOTPLUG_CPU */
5509 
5510 static void set_rq_online(struct rq *rq)
5511 {
5512 	if (!rq->online) {
5513 		const struct sched_class *class;
5514 
5515 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5516 		rq->online = 1;
5517 
5518 		for_each_class(class) {
5519 			if (class->rq_online)
5520 				class->rq_online(rq);
5521 		}
5522 	}
5523 }
5524 
5525 static void set_rq_offline(struct rq *rq)
5526 {
5527 	if (rq->online) {
5528 		const struct sched_class *class;
5529 
5530 		for_each_class(class) {
5531 			if (class->rq_offline)
5532 				class->rq_offline(rq);
5533 		}
5534 
5535 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5536 		rq->online = 0;
5537 	}
5538 }
5539 
5540 static void set_cpu_rq_start_time(unsigned int cpu)
5541 {
5542 	struct rq *rq = cpu_rq(cpu);
5543 
5544 	rq->age_stamp = sched_clock_cpu(cpu);
5545 }
5546 
5547 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5548 
5549 #ifdef CONFIG_SCHED_DEBUG
5550 
5551 static __read_mostly int sched_debug_enabled;
5552 
5553 static int __init sched_debug_setup(char *str)
5554 {
5555 	sched_debug_enabled = 1;
5556 
5557 	return 0;
5558 }
5559 early_param("sched_debug", sched_debug_setup);
5560 
5561 static inline bool sched_debug(void)
5562 {
5563 	return sched_debug_enabled;
5564 }
5565 
5566 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5567 				  struct cpumask *groupmask)
5568 {
5569 	struct sched_group *group = sd->groups;
5570 
5571 	cpumask_clear(groupmask);
5572 
5573 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5574 
5575 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5576 		printk("does not load-balance\n");
5577 		if (sd->parent)
5578 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5579 					" has parent");
5580 		return -1;
5581 	}
5582 
5583 	printk(KERN_CONT "span %*pbl level %s\n",
5584 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5585 
5586 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5587 		printk(KERN_ERR "ERROR: domain->span does not contain "
5588 				"CPU%d\n", cpu);
5589 	}
5590 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5591 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5592 				" CPU%d\n", cpu);
5593 	}
5594 
5595 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5596 	do {
5597 		if (!group) {
5598 			printk("\n");
5599 			printk(KERN_ERR "ERROR: group is NULL\n");
5600 			break;
5601 		}
5602 
5603 		if (!cpumask_weight(sched_group_cpus(group))) {
5604 			printk(KERN_CONT "\n");
5605 			printk(KERN_ERR "ERROR: empty group\n");
5606 			break;
5607 		}
5608 
5609 		if (!(sd->flags & SD_OVERLAP) &&
5610 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5611 			printk(KERN_CONT "\n");
5612 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5613 			break;
5614 		}
5615 
5616 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5617 
5618 		printk(KERN_CONT " %*pbl",
5619 		       cpumask_pr_args(sched_group_cpus(group)));
5620 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5621 			printk(KERN_CONT " (cpu_capacity = %d)",
5622 				group->sgc->capacity);
5623 		}
5624 
5625 		group = group->next;
5626 	} while (group != sd->groups);
5627 	printk(KERN_CONT "\n");
5628 
5629 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5630 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5631 
5632 	if (sd->parent &&
5633 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5634 		printk(KERN_ERR "ERROR: parent span is not a superset "
5635 			"of domain->span\n");
5636 	return 0;
5637 }
5638 
5639 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5640 {
5641 	int level = 0;
5642 
5643 	if (!sched_debug_enabled)
5644 		return;
5645 
5646 	if (!sd) {
5647 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5648 		return;
5649 	}
5650 
5651 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5652 
5653 	for (;;) {
5654 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5655 			break;
5656 		level++;
5657 		sd = sd->parent;
5658 		if (!sd)
5659 			break;
5660 	}
5661 }
5662 #else /* !CONFIG_SCHED_DEBUG */
5663 # define sched_domain_debug(sd, cpu) do { } while (0)
5664 static inline bool sched_debug(void)
5665 {
5666 	return false;
5667 }
5668 #endif /* CONFIG_SCHED_DEBUG */
5669 
5670 static int sd_degenerate(struct sched_domain *sd)
5671 {
5672 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5673 		return 1;
5674 
5675 	/* Following flags need at least 2 groups */
5676 	if (sd->flags & (SD_LOAD_BALANCE |
5677 			 SD_BALANCE_NEWIDLE |
5678 			 SD_BALANCE_FORK |
5679 			 SD_BALANCE_EXEC |
5680 			 SD_SHARE_CPUCAPACITY |
5681 			 SD_SHARE_PKG_RESOURCES |
5682 			 SD_SHARE_POWERDOMAIN)) {
5683 		if (sd->groups != sd->groups->next)
5684 			return 0;
5685 	}
5686 
5687 	/* Following flags don't use groups */
5688 	if (sd->flags & (SD_WAKE_AFFINE))
5689 		return 0;
5690 
5691 	return 1;
5692 }
5693 
5694 static int
5695 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5696 {
5697 	unsigned long cflags = sd->flags, pflags = parent->flags;
5698 
5699 	if (sd_degenerate(parent))
5700 		return 1;
5701 
5702 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5703 		return 0;
5704 
5705 	/* Flags needing groups don't count if only 1 group in parent */
5706 	if (parent->groups == parent->groups->next) {
5707 		pflags &= ~(SD_LOAD_BALANCE |
5708 				SD_BALANCE_NEWIDLE |
5709 				SD_BALANCE_FORK |
5710 				SD_BALANCE_EXEC |
5711 				SD_SHARE_CPUCAPACITY |
5712 				SD_SHARE_PKG_RESOURCES |
5713 				SD_PREFER_SIBLING |
5714 				SD_SHARE_POWERDOMAIN);
5715 		if (nr_node_ids == 1)
5716 			pflags &= ~SD_SERIALIZE;
5717 	}
5718 	if (~cflags & pflags)
5719 		return 0;
5720 
5721 	return 1;
5722 }
5723 
5724 static void free_rootdomain(struct rcu_head *rcu)
5725 {
5726 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5727 
5728 	cpupri_cleanup(&rd->cpupri);
5729 	cpudl_cleanup(&rd->cpudl);
5730 	free_cpumask_var(rd->dlo_mask);
5731 	free_cpumask_var(rd->rto_mask);
5732 	free_cpumask_var(rd->online);
5733 	free_cpumask_var(rd->span);
5734 	kfree(rd);
5735 }
5736 
5737 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5738 {
5739 	struct root_domain *old_rd = NULL;
5740 	unsigned long flags;
5741 
5742 	raw_spin_lock_irqsave(&rq->lock, flags);
5743 
5744 	if (rq->rd) {
5745 		old_rd = rq->rd;
5746 
5747 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5748 			set_rq_offline(rq);
5749 
5750 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5751 
5752 		/*
5753 		 * If we dont want to free the old_rd yet then
5754 		 * set old_rd to NULL to skip the freeing later
5755 		 * in this function:
5756 		 */
5757 		if (!atomic_dec_and_test(&old_rd->refcount))
5758 			old_rd = NULL;
5759 	}
5760 
5761 	atomic_inc(&rd->refcount);
5762 	rq->rd = rd;
5763 
5764 	cpumask_set_cpu(rq->cpu, rd->span);
5765 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5766 		set_rq_online(rq);
5767 
5768 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5769 
5770 	if (old_rd)
5771 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5772 }
5773 
5774 static int init_rootdomain(struct root_domain *rd)
5775 {
5776 	memset(rd, 0, sizeof(*rd));
5777 
5778 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5779 		goto out;
5780 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5781 		goto free_span;
5782 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5783 		goto free_online;
5784 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5785 		goto free_dlo_mask;
5786 
5787 	init_dl_bw(&rd->dl_bw);
5788 	if (cpudl_init(&rd->cpudl) != 0)
5789 		goto free_dlo_mask;
5790 
5791 	if (cpupri_init(&rd->cpupri) != 0)
5792 		goto free_rto_mask;
5793 	return 0;
5794 
5795 free_rto_mask:
5796 	free_cpumask_var(rd->rto_mask);
5797 free_dlo_mask:
5798 	free_cpumask_var(rd->dlo_mask);
5799 free_online:
5800 	free_cpumask_var(rd->online);
5801 free_span:
5802 	free_cpumask_var(rd->span);
5803 out:
5804 	return -ENOMEM;
5805 }
5806 
5807 /*
5808  * By default the system creates a single root-domain with all cpus as
5809  * members (mimicking the global state we have today).
5810  */
5811 struct root_domain def_root_domain;
5812 
5813 static void init_defrootdomain(void)
5814 {
5815 	init_rootdomain(&def_root_domain);
5816 
5817 	atomic_set(&def_root_domain.refcount, 1);
5818 }
5819 
5820 static struct root_domain *alloc_rootdomain(void)
5821 {
5822 	struct root_domain *rd;
5823 
5824 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5825 	if (!rd)
5826 		return NULL;
5827 
5828 	if (init_rootdomain(rd) != 0) {
5829 		kfree(rd);
5830 		return NULL;
5831 	}
5832 
5833 	return rd;
5834 }
5835 
5836 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5837 {
5838 	struct sched_group *tmp, *first;
5839 
5840 	if (!sg)
5841 		return;
5842 
5843 	first = sg;
5844 	do {
5845 		tmp = sg->next;
5846 
5847 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5848 			kfree(sg->sgc);
5849 
5850 		kfree(sg);
5851 		sg = tmp;
5852 	} while (sg != first);
5853 }
5854 
5855 static void free_sched_domain(struct rcu_head *rcu)
5856 {
5857 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5858 
5859 	/*
5860 	 * If its an overlapping domain it has private groups, iterate and
5861 	 * nuke them all.
5862 	 */
5863 	if (sd->flags & SD_OVERLAP) {
5864 		free_sched_groups(sd->groups, 1);
5865 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5866 		kfree(sd->groups->sgc);
5867 		kfree(sd->groups);
5868 	}
5869 	kfree(sd);
5870 }
5871 
5872 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5873 {
5874 	call_rcu(&sd->rcu, free_sched_domain);
5875 }
5876 
5877 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5878 {
5879 	for (; sd; sd = sd->parent)
5880 		destroy_sched_domain(sd, cpu);
5881 }
5882 
5883 /*
5884  * Keep a special pointer to the highest sched_domain that has
5885  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5886  * allows us to avoid some pointer chasing select_idle_sibling().
5887  *
5888  * Also keep a unique ID per domain (we use the first cpu number in
5889  * the cpumask of the domain), this allows us to quickly tell if
5890  * two cpus are in the same cache domain, see cpus_share_cache().
5891  */
5892 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5893 DEFINE_PER_CPU(int, sd_llc_size);
5894 DEFINE_PER_CPU(int, sd_llc_id);
5895 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5896 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5897 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5898 
5899 static void update_top_cache_domain(int cpu)
5900 {
5901 	struct sched_domain *sd;
5902 	struct sched_domain *busy_sd = NULL;
5903 	int id = cpu;
5904 	int size = 1;
5905 
5906 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5907 	if (sd) {
5908 		id = cpumask_first(sched_domain_span(sd));
5909 		size = cpumask_weight(sched_domain_span(sd));
5910 		busy_sd = sd->parent; /* sd_busy */
5911 	}
5912 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5913 
5914 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5915 	per_cpu(sd_llc_size, cpu) = size;
5916 	per_cpu(sd_llc_id, cpu) = id;
5917 
5918 	sd = lowest_flag_domain(cpu, SD_NUMA);
5919 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5920 
5921 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5922 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5923 }
5924 
5925 /*
5926  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5927  * hold the hotplug lock.
5928  */
5929 static void
5930 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5931 {
5932 	struct rq *rq = cpu_rq(cpu);
5933 	struct sched_domain *tmp;
5934 
5935 	/* Remove the sched domains which do not contribute to scheduling. */
5936 	for (tmp = sd; tmp; ) {
5937 		struct sched_domain *parent = tmp->parent;
5938 		if (!parent)
5939 			break;
5940 
5941 		if (sd_parent_degenerate(tmp, parent)) {
5942 			tmp->parent = parent->parent;
5943 			if (parent->parent)
5944 				parent->parent->child = tmp;
5945 			/*
5946 			 * Transfer SD_PREFER_SIBLING down in case of a
5947 			 * degenerate parent; the spans match for this
5948 			 * so the property transfers.
5949 			 */
5950 			if (parent->flags & SD_PREFER_SIBLING)
5951 				tmp->flags |= SD_PREFER_SIBLING;
5952 			destroy_sched_domain(parent, cpu);
5953 		} else
5954 			tmp = tmp->parent;
5955 	}
5956 
5957 	if (sd && sd_degenerate(sd)) {
5958 		tmp = sd;
5959 		sd = sd->parent;
5960 		destroy_sched_domain(tmp, cpu);
5961 		if (sd)
5962 			sd->child = NULL;
5963 	}
5964 
5965 	sched_domain_debug(sd, cpu);
5966 
5967 	rq_attach_root(rq, rd);
5968 	tmp = rq->sd;
5969 	rcu_assign_pointer(rq->sd, sd);
5970 	destroy_sched_domains(tmp, cpu);
5971 
5972 	update_top_cache_domain(cpu);
5973 }
5974 
5975 /* Setup the mask of cpus configured for isolated domains */
5976 static int __init isolated_cpu_setup(char *str)
5977 {
5978 	int ret;
5979 
5980 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5981 	ret = cpulist_parse(str, cpu_isolated_map);
5982 	if (ret) {
5983 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5984 		return 0;
5985 	}
5986 	return 1;
5987 }
5988 __setup("isolcpus=", isolated_cpu_setup);
5989 
5990 struct s_data {
5991 	struct sched_domain ** __percpu sd;
5992 	struct root_domain	*rd;
5993 };
5994 
5995 enum s_alloc {
5996 	sa_rootdomain,
5997 	sa_sd,
5998 	sa_sd_storage,
5999 	sa_none,
6000 };
6001 
6002 /*
6003  * Build an iteration mask that can exclude certain CPUs from the upwards
6004  * domain traversal.
6005  *
6006  * Asymmetric node setups can result in situations where the domain tree is of
6007  * unequal depth, make sure to skip domains that already cover the entire
6008  * range.
6009  *
6010  * In that case build_sched_domains() will have terminated the iteration early
6011  * and our sibling sd spans will be empty. Domains should always include the
6012  * cpu they're built on, so check that.
6013  *
6014  */
6015 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6016 {
6017 	const struct cpumask *span = sched_domain_span(sd);
6018 	struct sd_data *sdd = sd->private;
6019 	struct sched_domain *sibling;
6020 	int i;
6021 
6022 	for_each_cpu(i, span) {
6023 		sibling = *per_cpu_ptr(sdd->sd, i);
6024 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6025 			continue;
6026 
6027 		cpumask_set_cpu(i, sched_group_mask(sg));
6028 	}
6029 }
6030 
6031 /*
6032  * Return the canonical balance cpu for this group, this is the first cpu
6033  * of this group that's also in the iteration mask.
6034  */
6035 int group_balance_cpu(struct sched_group *sg)
6036 {
6037 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6038 }
6039 
6040 static int
6041 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6042 {
6043 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6044 	const struct cpumask *span = sched_domain_span(sd);
6045 	struct cpumask *covered = sched_domains_tmpmask;
6046 	struct sd_data *sdd = sd->private;
6047 	struct sched_domain *sibling;
6048 	int i;
6049 
6050 	cpumask_clear(covered);
6051 
6052 	for_each_cpu(i, span) {
6053 		struct cpumask *sg_span;
6054 
6055 		if (cpumask_test_cpu(i, covered))
6056 			continue;
6057 
6058 		sibling = *per_cpu_ptr(sdd->sd, i);
6059 
6060 		/* See the comment near build_group_mask(). */
6061 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6062 			continue;
6063 
6064 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6065 				GFP_KERNEL, cpu_to_node(cpu));
6066 
6067 		if (!sg)
6068 			goto fail;
6069 
6070 		sg_span = sched_group_cpus(sg);
6071 		if (sibling->child)
6072 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6073 		else
6074 			cpumask_set_cpu(i, sg_span);
6075 
6076 		cpumask_or(covered, covered, sg_span);
6077 
6078 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6079 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6080 			build_group_mask(sd, sg);
6081 
6082 		/*
6083 		 * Initialize sgc->capacity such that even if we mess up the
6084 		 * domains and no possible iteration will get us here, we won't
6085 		 * die on a /0 trap.
6086 		 */
6087 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6088 
6089 		/*
6090 		 * Make sure the first group of this domain contains the
6091 		 * canonical balance cpu. Otherwise the sched_domain iteration
6092 		 * breaks. See update_sg_lb_stats().
6093 		 */
6094 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6095 		    group_balance_cpu(sg) == cpu)
6096 			groups = sg;
6097 
6098 		if (!first)
6099 			first = sg;
6100 		if (last)
6101 			last->next = sg;
6102 		last = sg;
6103 		last->next = first;
6104 	}
6105 	sd->groups = groups;
6106 
6107 	return 0;
6108 
6109 fail:
6110 	free_sched_groups(first, 0);
6111 
6112 	return -ENOMEM;
6113 }
6114 
6115 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6116 {
6117 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6118 	struct sched_domain *child = sd->child;
6119 
6120 	if (child)
6121 		cpu = cpumask_first(sched_domain_span(child));
6122 
6123 	if (sg) {
6124 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6125 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6126 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6127 	}
6128 
6129 	return cpu;
6130 }
6131 
6132 /*
6133  * build_sched_groups will build a circular linked list of the groups
6134  * covered by the given span, and will set each group's ->cpumask correctly,
6135  * and ->cpu_capacity to 0.
6136  *
6137  * Assumes the sched_domain tree is fully constructed
6138  */
6139 static int
6140 build_sched_groups(struct sched_domain *sd, int cpu)
6141 {
6142 	struct sched_group *first = NULL, *last = NULL;
6143 	struct sd_data *sdd = sd->private;
6144 	const struct cpumask *span = sched_domain_span(sd);
6145 	struct cpumask *covered;
6146 	int i;
6147 
6148 	get_group(cpu, sdd, &sd->groups);
6149 	atomic_inc(&sd->groups->ref);
6150 
6151 	if (cpu != cpumask_first(span))
6152 		return 0;
6153 
6154 	lockdep_assert_held(&sched_domains_mutex);
6155 	covered = sched_domains_tmpmask;
6156 
6157 	cpumask_clear(covered);
6158 
6159 	for_each_cpu(i, span) {
6160 		struct sched_group *sg;
6161 		int group, j;
6162 
6163 		if (cpumask_test_cpu(i, covered))
6164 			continue;
6165 
6166 		group = get_group(i, sdd, &sg);
6167 		cpumask_setall(sched_group_mask(sg));
6168 
6169 		for_each_cpu(j, span) {
6170 			if (get_group(j, sdd, NULL) != group)
6171 				continue;
6172 
6173 			cpumask_set_cpu(j, covered);
6174 			cpumask_set_cpu(j, sched_group_cpus(sg));
6175 		}
6176 
6177 		if (!first)
6178 			first = sg;
6179 		if (last)
6180 			last->next = sg;
6181 		last = sg;
6182 	}
6183 	last->next = first;
6184 
6185 	return 0;
6186 }
6187 
6188 /*
6189  * Initialize sched groups cpu_capacity.
6190  *
6191  * cpu_capacity indicates the capacity of sched group, which is used while
6192  * distributing the load between different sched groups in a sched domain.
6193  * Typically cpu_capacity for all the groups in a sched domain will be same
6194  * unless there are asymmetries in the topology. If there are asymmetries,
6195  * group having more cpu_capacity will pickup more load compared to the
6196  * group having less cpu_capacity.
6197  */
6198 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6199 {
6200 	struct sched_group *sg = sd->groups;
6201 
6202 	WARN_ON(!sg);
6203 
6204 	do {
6205 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6206 		sg = sg->next;
6207 	} while (sg != sd->groups);
6208 
6209 	if (cpu != group_balance_cpu(sg))
6210 		return;
6211 
6212 	update_group_capacity(sd, cpu);
6213 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6214 }
6215 
6216 /*
6217  * Initializers for schedule domains
6218  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6219  */
6220 
6221 static int default_relax_domain_level = -1;
6222 int sched_domain_level_max;
6223 
6224 static int __init setup_relax_domain_level(char *str)
6225 {
6226 	if (kstrtoint(str, 0, &default_relax_domain_level))
6227 		pr_warn("Unable to set relax_domain_level\n");
6228 
6229 	return 1;
6230 }
6231 __setup("relax_domain_level=", setup_relax_domain_level);
6232 
6233 static void set_domain_attribute(struct sched_domain *sd,
6234 				 struct sched_domain_attr *attr)
6235 {
6236 	int request;
6237 
6238 	if (!attr || attr->relax_domain_level < 0) {
6239 		if (default_relax_domain_level < 0)
6240 			return;
6241 		else
6242 			request = default_relax_domain_level;
6243 	} else
6244 		request = attr->relax_domain_level;
6245 	if (request < sd->level) {
6246 		/* turn off idle balance on this domain */
6247 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6248 	} else {
6249 		/* turn on idle balance on this domain */
6250 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6251 	}
6252 }
6253 
6254 static void __sdt_free(const struct cpumask *cpu_map);
6255 static int __sdt_alloc(const struct cpumask *cpu_map);
6256 
6257 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6258 				 const struct cpumask *cpu_map)
6259 {
6260 	switch (what) {
6261 	case sa_rootdomain:
6262 		if (!atomic_read(&d->rd->refcount))
6263 			free_rootdomain(&d->rd->rcu); /* fall through */
6264 	case sa_sd:
6265 		free_percpu(d->sd); /* fall through */
6266 	case sa_sd_storage:
6267 		__sdt_free(cpu_map); /* fall through */
6268 	case sa_none:
6269 		break;
6270 	}
6271 }
6272 
6273 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6274 						   const struct cpumask *cpu_map)
6275 {
6276 	memset(d, 0, sizeof(*d));
6277 
6278 	if (__sdt_alloc(cpu_map))
6279 		return sa_sd_storage;
6280 	d->sd = alloc_percpu(struct sched_domain *);
6281 	if (!d->sd)
6282 		return sa_sd_storage;
6283 	d->rd = alloc_rootdomain();
6284 	if (!d->rd)
6285 		return sa_sd;
6286 	return sa_rootdomain;
6287 }
6288 
6289 /*
6290  * NULL the sd_data elements we've used to build the sched_domain and
6291  * sched_group structure so that the subsequent __free_domain_allocs()
6292  * will not free the data we're using.
6293  */
6294 static void claim_allocations(int cpu, struct sched_domain *sd)
6295 {
6296 	struct sd_data *sdd = sd->private;
6297 
6298 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6299 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6300 
6301 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6302 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6303 
6304 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6305 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6306 }
6307 
6308 #ifdef CONFIG_NUMA
6309 static int sched_domains_numa_levels;
6310 enum numa_topology_type sched_numa_topology_type;
6311 static int *sched_domains_numa_distance;
6312 int sched_max_numa_distance;
6313 static struct cpumask ***sched_domains_numa_masks;
6314 static int sched_domains_curr_level;
6315 #endif
6316 
6317 /*
6318  * SD_flags allowed in topology descriptions.
6319  *
6320  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6321  * SD_SHARE_PKG_RESOURCES - describes shared caches
6322  * SD_NUMA                - describes NUMA topologies
6323  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6324  *
6325  * Odd one out:
6326  * SD_ASYM_PACKING        - describes SMT quirks
6327  */
6328 #define TOPOLOGY_SD_FLAGS		\
6329 	(SD_SHARE_CPUCAPACITY |		\
6330 	 SD_SHARE_PKG_RESOURCES |	\
6331 	 SD_NUMA |			\
6332 	 SD_ASYM_PACKING |		\
6333 	 SD_SHARE_POWERDOMAIN)
6334 
6335 static struct sched_domain *
6336 sd_init(struct sched_domain_topology_level *tl, int cpu)
6337 {
6338 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6339 	int sd_weight, sd_flags = 0;
6340 
6341 #ifdef CONFIG_NUMA
6342 	/*
6343 	 * Ugly hack to pass state to sd_numa_mask()...
6344 	 */
6345 	sched_domains_curr_level = tl->numa_level;
6346 #endif
6347 
6348 	sd_weight = cpumask_weight(tl->mask(cpu));
6349 
6350 	if (tl->sd_flags)
6351 		sd_flags = (*tl->sd_flags)();
6352 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6353 			"wrong sd_flags in topology description\n"))
6354 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6355 
6356 	*sd = (struct sched_domain){
6357 		.min_interval		= sd_weight,
6358 		.max_interval		= 2*sd_weight,
6359 		.busy_factor		= 32,
6360 		.imbalance_pct		= 125,
6361 
6362 		.cache_nice_tries	= 0,
6363 		.busy_idx		= 0,
6364 		.idle_idx		= 0,
6365 		.newidle_idx		= 0,
6366 		.wake_idx		= 0,
6367 		.forkexec_idx		= 0,
6368 
6369 		.flags			= 1*SD_LOAD_BALANCE
6370 					| 1*SD_BALANCE_NEWIDLE
6371 					| 1*SD_BALANCE_EXEC
6372 					| 1*SD_BALANCE_FORK
6373 					| 0*SD_BALANCE_WAKE
6374 					| 1*SD_WAKE_AFFINE
6375 					| 0*SD_SHARE_CPUCAPACITY
6376 					| 0*SD_SHARE_PKG_RESOURCES
6377 					| 0*SD_SERIALIZE
6378 					| 0*SD_PREFER_SIBLING
6379 					| 0*SD_NUMA
6380 					| sd_flags
6381 					,
6382 
6383 		.last_balance		= jiffies,
6384 		.balance_interval	= sd_weight,
6385 		.smt_gain		= 0,
6386 		.max_newidle_lb_cost	= 0,
6387 		.next_decay_max_lb_cost	= jiffies,
6388 #ifdef CONFIG_SCHED_DEBUG
6389 		.name			= tl->name,
6390 #endif
6391 	};
6392 
6393 	/*
6394 	 * Convert topological properties into behaviour.
6395 	 */
6396 
6397 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6398 		sd->flags |= SD_PREFER_SIBLING;
6399 		sd->imbalance_pct = 110;
6400 		sd->smt_gain = 1178; /* ~15% */
6401 
6402 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6403 		sd->imbalance_pct = 117;
6404 		sd->cache_nice_tries = 1;
6405 		sd->busy_idx = 2;
6406 
6407 #ifdef CONFIG_NUMA
6408 	} else if (sd->flags & SD_NUMA) {
6409 		sd->cache_nice_tries = 2;
6410 		sd->busy_idx = 3;
6411 		sd->idle_idx = 2;
6412 
6413 		sd->flags |= SD_SERIALIZE;
6414 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6415 			sd->flags &= ~(SD_BALANCE_EXEC |
6416 				       SD_BALANCE_FORK |
6417 				       SD_WAKE_AFFINE);
6418 		}
6419 
6420 #endif
6421 	} else {
6422 		sd->flags |= SD_PREFER_SIBLING;
6423 		sd->cache_nice_tries = 1;
6424 		sd->busy_idx = 2;
6425 		sd->idle_idx = 1;
6426 	}
6427 
6428 	sd->private = &tl->data;
6429 
6430 	return sd;
6431 }
6432 
6433 /*
6434  * Topology list, bottom-up.
6435  */
6436 static struct sched_domain_topology_level default_topology[] = {
6437 #ifdef CONFIG_SCHED_SMT
6438 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6439 #endif
6440 #ifdef CONFIG_SCHED_MC
6441 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6442 #endif
6443 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6444 	{ NULL, },
6445 };
6446 
6447 static struct sched_domain_topology_level *sched_domain_topology =
6448 	default_topology;
6449 
6450 #define for_each_sd_topology(tl)			\
6451 	for (tl = sched_domain_topology; tl->mask; tl++)
6452 
6453 void set_sched_topology(struct sched_domain_topology_level *tl)
6454 {
6455 	sched_domain_topology = tl;
6456 }
6457 
6458 #ifdef CONFIG_NUMA
6459 
6460 static const struct cpumask *sd_numa_mask(int cpu)
6461 {
6462 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6463 }
6464 
6465 static void sched_numa_warn(const char *str)
6466 {
6467 	static int done = false;
6468 	int i,j;
6469 
6470 	if (done)
6471 		return;
6472 
6473 	done = true;
6474 
6475 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6476 
6477 	for (i = 0; i < nr_node_ids; i++) {
6478 		printk(KERN_WARNING "  ");
6479 		for (j = 0; j < nr_node_ids; j++)
6480 			printk(KERN_CONT "%02d ", node_distance(i,j));
6481 		printk(KERN_CONT "\n");
6482 	}
6483 	printk(KERN_WARNING "\n");
6484 }
6485 
6486 bool find_numa_distance(int distance)
6487 {
6488 	int i;
6489 
6490 	if (distance == node_distance(0, 0))
6491 		return true;
6492 
6493 	for (i = 0; i < sched_domains_numa_levels; i++) {
6494 		if (sched_domains_numa_distance[i] == distance)
6495 			return true;
6496 	}
6497 
6498 	return false;
6499 }
6500 
6501 /*
6502  * A system can have three types of NUMA topology:
6503  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6504  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6505  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6506  *
6507  * The difference between a glueless mesh topology and a backplane
6508  * topology lies in whether communication between not directly
6509  * connected nodes goes through intermediary nodes (where programs
6510  * could run), or through backplane controllers. This affects
6511  * placement of programs.
6512  *
6513  * The type of topology can be discerned with the following tests:
6514  * - If the maximum distance between any nodes is 1 hop, the system
6515  *   is directly connected.
6516  * - If for two nodes A and B, located N > 1 hops away from each other,
6517  *   there is an intermediary node C, which is < N hops away from both
6518  *   nodes A and B, the system is a glueless mesh.
6519  */
6520 static void init_numa_topology_type(void)
6521 {
6522 	int a, b, c, n;
6523 
6524 	n = sched_max_numa_distance;
6525 
6526 	if (sched_domains_numa_levels <= 1) {
6527 		sched_numa_topology_type = NUMA_DIRECT;
6528 		return;
6529 	}
6530 
6531 	for_each_online_node(a) {
6532 		for_each_online_node(b) {
6533 			/* Find two nodes furthest removed from each other. */
6534 			if (node_distance(a, b) < n)
6535 				continue;
6536 
6537 			/* Is there an intermediary node between a and b? */
6538 			for_each_online_node(c) {
6539 				if (node_distance(a, c) < n &&
6540 				    node_distance(b, c) < n) {
6541 					sched_numa_topology_type =
6542 							NUMA_GLUELESS_MESH;
6543 					return;
6544 				}
6545 			}
6546 
6547 			sched_numa_topology_type = NUMA_BACKPLANE;
6548 			return;
6549 		}
6550 	}
6551 }
6552 
6553 static void sched_init_numa(void)
6554 {
6555 	int next_distance, curr_distance = node_distance(0, 0);
6556 	struct sched_domain_topology_level *tl;
6557 	int level = 0;
6558 	int i, j, k;
6559 
6560 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6561 	if (!sched_domains_numa_distance)
6562 		return;
6563 
6564 	/*
6565 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6566 	 * unique distances in the node_distance() table.
6567 	 *
6568 	 * Assumes node_distance(0,j) includes all distances in
6569 	 * node_distance(i,j) in order to avoid cubic time.
6570 	 */
6571 	next_distance = curr_distance;
6572 	for (i = 0; i < nr_node_ids; i++) {
6573 		for (j = 0; j < nr_node_ids; j++) {
6574 			for (k = 0; k < nr_node_ids; k++) {
6575 				int distance = node_distance(i, k);
6576 
6577 				if (distance > curr_distance &&
6578 				    (distance < next_distance ||
6579 				     next_distance == curr_distance))
6580 					next_distance = distance;
6581 
6582 				/*
6583 				 * While not a strong assumption it would be nice to know
6584 				 * about cases where if node A is connected to B, B is not
6585 				 * equally connected to A.
6586 				 */
6587 				if (sched_debug() && node_distance(k, i) != distance)
6588 					sched_numa_warn("Node-distance not symmetric");
6589 
6590 				if (sched_debug() && i && !find_numa_distance(distance))
6591 					sched_numa_warn("Node-0 not representative");
6592 			}
6593 			if (next_distance != curr_distance) {
6594 				sched_domains_numa_distance[level++] = next_distance;
6595 				sched_domains_numa_levels = level;
6596 				curr_distance = next_distance;
6597 			} else break;
6598 		}
6599 
6600 		/*
6601 		 * In case of sched_debug() we verify the above assumption.
6602 		 */
6603 		if (!sched_debug())
6604 			break;
6605 	}
6606 
6607 	if (!level)
6608 		return;
6609 
6610 	/*
6611 	 * 'level' contains the number of unique distances, excluding the
6612 	 * identity distance node_distance(i,i).
6613 	 *
6614 	 * The sched_domains_numa_distance[] array includes the actual distance
6615 	 * numbers.
6616 	 */
6617 
6618 	/*
6619 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6620 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6621 	 * the array will contain less then 'level' members. This could be
6622 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6623 	 * in other functions.
6624 	 *
6625 	 * We reset it to 'level' at the end of this function.
6626 	 */
6627 	sched_domains_numa_levels = 0;
6628 
6629 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6630 	if (!sched_domains_numa_masks)
6631 		return;
6632 
6633 	/*
6634 	 * Now for each level, construct a mask per node which contains all
6635 	 * cpus of nodes that are that many hops away from us.
6636 	 */
6637 	for (i = 0; i < level; i++) {
6638 		sched_domains_numa_masks[i] =
6639 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6640 		if (!sched_domains_numa_masks[i])
6641 			return;
6642 
6643 		for (j = 0; j < nr_node_ids; j++) {
6644 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6645 			if (!mask)
6646 				return;
6647 
6648 			sched_domains_numa_masks[i][j] = mask;
6649 
6650 			for_each_node(k) {
6651 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6652 					continue;
6653 
6654 				cpumask_or(mask, mask, cpumask_of_node(k));
6655 			}
6656 		}
6657 	}
6658 
6659 	/* Compute default topology size */
6660 	for (i = 0; sched_domain_topology[i].mask; i++);
6661 
6662 	tl = kzalloc((i + level + 1) *
6663 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6664 	if (!tl)
6665 		return;
6666 
6667 	/*
6668 	 * Copy the default topology bits..
6669 	 */
6670 	for (i = 0; sched_domain_topology[i].mask; i++)
6671 		tl[i] = sched_domain_topology[i];
6672 
6673 	/*
6674 	 * .. and append 'j' levels of NUMA goodness.
6675 	 */
6676 	for (j = 0; j < level; i++, j++) {
6677 		tl[i] = (struct sched_domain_topology_level){
6678 			.mask = sd_numa_mask,
6679 			.sd_flags = cpu_numa_flags,
6680 			.flags = SDTL_OVERLAP,
6681 			.numa_level = j,
6682 			SD_INIT_NAME(NUMA)
6683 		};
6684 	}
6685 
6686 	sched_domain_topology = tl;
6687 
6688 	sched_domains_numa_levels = level;
6689 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6690 
6691 	init_numa_topology_type();
6692 }
6693 
6694 static void sched_domains_numa_masks_set(unsigned int cpu)
6695 {
6696 	int node = cpu_to_node(cpu);
6697 	int i, j;
6698 
6699 	for (i = 0; i < sched_domains_numa_levels; i++) {
6700 		for (j = 0; j < nr_node_ids; j++) {
6701 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6702 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6703 		}
6704 	}
6705 }
6706 
6707 static void sched_domains_numa_masks_clear(unsigned int cpu)
6708 {
6709 	int i, j;
6710 
6711 	for (i = 0; i < sched_domains_numa_levels; i++) {
6712 		for (j = 0; j < nr_node_ids; j++)
6713 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6714 	}
6715 }
6716 
6717 #else
6718 static inline void sched_init_numa(void) { }
6719 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6720 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6721 #endif /* CONFIG_NUMA */
6722 
6723 static int __sdt_alloc(const struct cpumask *cpu_map)
6724 {
6725 	struct sched_domain_topology_level *tl;
6726 	int j;
6727 
6728 	for_each_sd_topology(tl) {
6729 		struct sd_data *sdd = &tl->data;
6730 
6731 		sdd->sd = alloc_percpu(struct sched_domain *);
6732 		if (!sdd->sd)
6733 			return -ENOMEM;
6734 
6735 		sdd->sg = alloc_percpu(struct sched_group *);
6736 		if (!sdd->sg)
6737 			return -ENOMEM;
6738 
6739 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6740 		if (!sdd->sgc)
6741 			return -ENOMEM;
6742 
6743 		for_each_cpu(j, cpu_map) {
6744 			struct sched_domain *sd;
6745 			struct sched_group *sg;
6746 			struct sched_group_capacity *sgc;
6747 
6748 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6749 					GFP_KERNEL, cpu_to_node(j));
6750 			if (!sd)
6751 				return -ENOMEM;
6752 
6753 			*per_cpu_ptr(sdd->sd, j) = sd;
6754 
6755 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6756 					GFP_KERNEL, cpu_to_node(j));
6757 			if (!sg)
6758 				return -ENOMEM;
6759 
6760 			sg->next = sg;
6761 
6762 			*per_cpu_ptr(sdd->sg, j) = sg;
6763 
6764 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6765 					GFP_KERNEL, cpu_to_node(j));
6766 			if (!sgc)
6767 				return -ENOMEM;
6768 
6769 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6770 		}
6771 	}
6772 
6773 	return 0;
6774 }
6775 
6776 static void __sdt_free(const struct cpumask *cpu_map)
6777 {
6778 	struct sched_domain_topology_level *tl;
6779 	int j;
6780 
6781 	for_each_sd_topology(tl) {
6782 		struct sd_data *sdd = &tl->data;
6783 
6784 		for_each_cpu(j, cpu_map) {
6785 			struct sched_domain *sd;
6786 
6787 			if (sdd->sd) {
6788 				sd = *per_cpu_ptr(sdd->sd, j);
6789 				if (sd && (sd->flags & SD_OVERLAP))
6790 					free_sched_groups(sd->groups, 0);
6791 				kfree(*per_cpu_ptr(sdd->sd, j));
6792 			}
6793 
6794 			if (sdd->sg)
6795 				kfree(*per_cpu_ptr(sdd->sg, j));
6796 			if (sdd->sgc)
6797 				kfree(*per_cpu_ptr(sdd->sgc, j));
6798 		}
6799 		free_percpu(sdd->sd);
6800 		sdd->sd = NULL;
6801 		free_percpu(sdd->sg);
6802 		sdd->sg = NULL;
6803 		free_percpu(sdd->sgc);
6804 		sdd->sgc = NULL;
6805 	}
6806 }
6807 
6808 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6809 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6810 		struct sched_domain *child, int cpu)
6811 {
6812 	struct sched_domain *sd = sd_init(tl, cpu);
6813 	if (!sd)
6814 		return child;
6815 
6816 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6817 	if (child) {
6818 		sd->level = child->level + 1;
6819 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6820 		child->parent = sd;
6821 		sd->child = child;
6822 
6823 		if (!cpumask_subset(sched_domain_span(child),
6824 				    sched_domain_span(sd))) {
6825 			pr_err("BUG: arch topology borken\n");
6826 #ifdef CONFIG_SCHED_DEBUG
6827 			pr_err("     the %s domain not a subset of the %s domain\n",
6828 					child->name, sd->name);
6829 #endif
6830 			/* Fixup, ensure @sd has at least @child cpus. */
6831 			cpumask_or(sched_domain_span(sd),
6832 				   sched_domain_span(sd),
6833 				   sched_domain_span(child));
6834 		}
6835 
6836 	}
6837 	set_domain_attribute(sd, attr);
6838 
6839 	return sd;
6840 }
6841 
6842 /*
6843  * Build sched domains for a given set of cpus and attach the sched domains
6844  * to the individual cpus
6845  */
6846 static int build_sched_domains(const struct cpumask *cpu_map,
6847 			       struct sched_domain_attr *attr)
6848 {
6849 	enum s_alloc alloc_state;
6850 	struct sched_domain *sd;
6851 	struct s_data d;
6852 	int i, ret = -ENOMEM;
6853 
6854 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6855 	if (alloc_state != sa_rootdomain)
6856 		goto error;
6857 
6858 	/* Set up domains for cpus specified by the cpu_map. */
6859 	for_each_cpu(i, cpu_map) {
6860 		struct sched_domain_topology_level *tl;
6861 
6862 		sd = NULL;
6863 		for_each_sd_topology(tl) {
6864 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6865 			if (tl == sched_domain_topology)
6866 				*per_cpu_ptr(d.sd, i) = sd;
6867 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6868 				sd->flags |= SD_OVERLAP;
6869 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6870 				break;
6871 		}
6872 	}
6873 
6874 	/* Build the groups for the domains */
6875 	for_each_cpu(i, cpu_map) {
6876 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6877 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6878 			if (sd->flags & SD_OVERLAP) {
6879 				if (build_overlap_sched_groups(sd, i))
6880 					goto error;
6881 			} else {
6882 				if (build_sched_groups(sd, i))
6883 					goto error;
6884 			}
6885 		}
6886 	}
6887 
6888 	/* Calculate CPU capacity for physical packages and nodes */
6889 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6890 		if (!cpumask_test_cpu(i, cpu_map))
6891 			continue;
6892 
6893 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6894 			claim_allocations(i, sd);
6895 			init_sched_groups_capacity(i, sd);
6896 		}
6897 	}
6898 
6899 	/* Attach the domains */
6900 	rcu_read_lock();
6901 	for_each_cpu(i, cpu_map) {
6902 		sd = *per_cpu_ptr(d.sd, i);
6903 		cpu_attach_domain(sd, d.rd, i);
6904 	}
6905 	rcu_read_unlock();
6906 
6907 	ret = 0;
6908 error:
6909 	__free_domain_allocs(&d, alloc_state, cpu_map);
6910 	return ret;
6911 }
6912 
6913 static cpumask_var_t *doms_cur;	/* current sched domains */
6914 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6915 static struct sched_domain_attr *dattr_cur;
6916 				/* attribues of custom domains in 'doms_cur' */
6917 
6918 /*
6919  * Special case: If a kmalloc of a doms_cur partition (array of
6920  * cpumask) fails, then fallback to a single sched domain,
6921  * as determined by the single cpumask fallback_doms.
6922  */
6923 static cpumask_var_t fallback_doms;
6924 
6925 /*
6926  * arch_update_cpu_topology lets virtualized architectures update the
6927  * cpu core maps. It is supposed to return 1 if the topology changed
6928  * or 0 if it stayed the same.
6929  */
6930 int __weak arch_update_cpu_topology(void)
6931 {
6932 	return 0;
6933 }
6934 
6935 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6936 {
6937 	int i;
6938 	cpumask_var_t *doms;
6939 
6940 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6941 	if (!doms)
6942 		return NULL;
6943 	for (i = 0; i < ndoms; i++) {
6944 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6945 			free_sched_domains(doms, i);
6946 			return NULL;
6947 		}
6948 	}
6949 	return doms;
6950 }
6951 
6952 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6953 {
6954 	unsigned int i;
6955 	for (i = 0; i < ndoms; i++)
6956 		free_cpumask_var(doms[i]);
6957 	kfree(doms);
6958 }
6959 
6960 /*
6961  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6962  * For now this just excludes isolated cpus, but could be used to
6963  * exclude other special cases in the future.
6964  */
6965 static int init_sched_domains(const struct cpumask *cpu_map)
6966 {
6967 	int err;
6968 
6969 	arch_update_cpu_topology();
6970 	ndoms_cur = 1;
6971 	doms_cur = alloc_sched_domains(ndoms_cur);
6972 	if (!doms_cur)
6973 		doms_cur = &fallback_doms;
6974 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6975 	err = build_sched_domains(doms_cur[0], NULL);
6976 	register_sched_domain_sysctl();
6977 
6978 	return err;
6979 }
6980 
6981 /*
6982  * Detach sched domains from a group of cpus specified in cpu_map
6983  * These cpus will now be attached to the NULL domain
6984  */
6985 static void detach_destroy_domains(const struct cpumask *cpu_map)
6986 {
6987 	int i;
6988 
6989 	rcu_read_lock();
6990 	for_each_cpu(i, cpu_map)
6991 		cpu_attach_domain(NULL, &def_root_domain, i);
6992 	rcu_read_unlock();
6993 }
6994 
6995 /* handle null as "default" */
6996 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6997 			struct sched_domain_attr *new, int idx_new)
6998 {
6999 	struct sched_domain_attr tmp;
7000 
7001 	/* fast path */
7002 	if (!new && !cur)
7003 		return 1;
7004 
7005 	tmp = SD_ATTR_INIT;
7006 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7007 			new ? (new + idx_new) : &tmp,
7008 			sizeof(struct sched_domain_attr));
7009 }
7010 
7011 /*
7012  * Partition sched domains as specified by the 'ndoms_new'
7013  * cpumasks in the array doms_new[] of cpumasks. This compares
7014  * doms_new[] to the current sched domain partitioning, doms_cur[].
7015  * It destroys each deleted domain and builds each new domain.
7016  *
7017  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7018  * The masks don't intersect (don't overlap.) We should setup one
7019  * sched domain for each mask. CPUs not in any of the cpumasks will
7020  * not be load balanced. If the same cpumask appears both in the
7021  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7022  * it as it is.
7023  *
7024  * The passed in 'doms_new' should be allocated using
7025  * alloc_sched_domains.  This routine takes ownership of it and will
7026  * free_sched_domains it when done with it. If the caller failed the
7027  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7028  * and partition_sched_domains() will fallback to the single partition
7029  * 'fallback_doms', it also forces the domains to be rebuilt.
7030  *
7031  * If doms_new == NULL it will be replaced with cpu_online_mask.
7032  * ndoms_new == 0 is a special case for destroying existing domains,
7033  * and it will not create the default domain.
7034  *
7035  * Call with hotplug lock held
7036  */
7037 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7038 			     struct sched_domain_attr *dattr_new)
7039 {
7040 	int i, j, n;
7041 	int new_topology;
7042 
7043 	mutex_lock(&sched_domains_mutex);
7044 
7045 	/* always unregister in case we don't destroy any domains */
7046 	unregister_sched_domain_sysctl();
7047 
7048 	/* Let architecture update cpu core mappings. */
7049 	new_topology = arch_update_cpu_topology();
7050 
7051 	n = doms_new ? ndoms_new : 0;
7052 
7053 	/* Destroy deleted domains */
7054 	for (i = 0; i < ndoms_cur; i++) {
7055 		for (j = 0; j < n && !new_topology; j++) {
7056 			if (cpumask_equal(doms_cur[i], doms_new[j])
7057 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7058 				goto match1;
7059 		}
7060 		/* no match - a current sched domain not in new doms_new[] */
7061 		detach_destroy_domains(doms_cur[i]);
7062 match1:
7063 		;
7064 	}
7065 
7066 	n = ndoms_cur;
7067 	if (doms_new == NULL) {
7068 		n = 0;
7069 		doms_new = &fallback_doms;
7070 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7071 		WARN_ON_ONCE(dattr_new);
7072 	}
7073 
7074 	/* Build new domains */
7075 	for (i = 0; i < ndoms_new; i++) {
7076 		for (j = 0; j < n && !new_topology; j++) {
7077 			if (cpumask_equal(doms_new[i], doms_cur[j])
7078 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7079 				goto match2;
7080 		}
7081 		/* no match - add a new doms_new */
7082 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7083 match2:
7084 		;
7085 	}
7086 
7087 	/* Remember the new sched domains */
7088 	if (doms_cur != &fallback_doms)
7089 		free_sched_domains(doms_cur, ndoms_cur);
7090 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7091 	doms_cur = doms_new;
7092 	dattr_cur = dattr_new;
7093 	ndoms_cur = ndoms_new;
7094 
7095 	register_sched_domain_sysctl();
7096 
7097 	mutex_unlock(&sched_domains_mutex);
7098 }
7099 
7100 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7101 
7102 /*
7103  * Update cpusets according to cpu_active mask.  If cpusets are
7104  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7105  * around partition_sched_domains().
7106  *
7107  * If we come here as part of a suspend/resume, don't touch cpusets because we
7108  * want to restore it back to its original state upon resume anyway.
7109  */
7110 static void cpuset_cpu_active(void)
7111 {
7112 	if (cpuhp_tasks_frozen) {
7113 		/*
7114 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7115 		 * resume sequence. As long as this is not the last online
7116 		 * operation in the resume sequence, just build a single sched
7117 		 * domain, ignoring cpusets.
7118 		 */
7119 		num_cpus_frozen--;
7120 		if (likely(num_cpus_frozen)) {
7121 			partition_sched_domains(1, NULL, NULL);
7122 			return;
7123 		}
7124 		/*
7125 		 * This is the last CPU online operation. So fall through and
7126 		 * restore the original sched domains by considering the
7127 		 * cpuset configurations.
7128 		 */
7129 	}
7130 	cpuset_update_active_cpus(true);
7131 }
7132 
7133 static int cpuset_cpu_inactive(unsigned int cpu)
7134 {
7135 	unsigned long flags;
7136 	struct dl_bw *dl_b;
7137 	bool overflow;
7138 	int cpus;
7139 
7140 	if (!cpuhp_tasks_frozen) {
7141 		rcu_read_lock_sched();
7142 		dl_b = dl_bw_of(cpu);
7143 
7144 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7145 		cpus = dl_bw_cpus(cpu);
7146 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7147 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7148 
7149 		rcu_read_unlock_sched();
7150 
7151 		if (overflow)
7152 			return -EBUSY;
7153 		cpuset_update_active_cpus(false);
7154 	} else {
7155 		num_cpus_frozen++;
7156 		partition_sched_domains(1, NULL, NULL);
7157 	}
7158 	return 0;
7159 }
7160 
7161 int sched_cpu_activate(unsigned int cpu)
7162 {
7163 	struct rq *rq = cpu_rq(cpu);
7164 	unsigned long flags;
7165 
7166 	set_cpu_active(cpu, true);
7167 
7168 	if (sched_smp_initialized) {
7169 		sched_domains_numa_masks_set(cpu);
7170 		cpuset_cpu_active();
7171 	}
7172 
7173 	/*
7174 	 * Put the rq online, if not already. This happens:
7175 	 *
7176 	 * 1) In the early boot process, because we build the real domains
7177 	 *    after all cpus have been brought up.
7178 	 *
7179 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7180 	 *    domains.
7181 	 */
7182 	raw_spin_lock_irqsave(&rq->lock, flags);
7183 	if (rq->rd) {
7184 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7185 		set_rq_online(rq);
7186 	}
7187 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7188 
7189 	update_max_interval();
7190 
7191 	return 0;
7192 }
7193 
7194 int sched_cpu_deactivate(unsigned int cpu)
7195 {
7196 	int ret;
7197 
7198 	set_cpu_active(cpu, false);
7199 	/*
7200 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7201 	 * users of this state to go away such that all new such users will
7202 	 * observe it.
7203 	 *
7204 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7205 	 * not imply sync_sched(), so wait for both.
7206 	 *
7207 	 * Do sync before park smpboot threads to take care the rcu boost case.
7208 	 */
7209 	if (IS_ENABLED(CONFIG_PREEMPT))
7210 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
7211 	else
7212 		synchronize_rcu();
7213 
7214 	if (!sched_smp_initialized)
7215 		return 0;
7216 
7217 	ret = cpuset_cpu_inactive(cpu);
7218 	if (ret) {
7219 		set_cpu_active(cpu, true);
7220 		return ret;
7221 	}
7222 	sched_domains_numa_masks_clear(cpu);
7223 	return 0;
7224 }
7225 
7226 static void sched_rq_cpu_starting(unsigned int cpu)
7227 {
7228 	struct rq *rq = cpu_rq(cpu);
7229 
7230 	rq->calc_load_update = calc_load_update;
7231 	account_reset_rq(rq);
7232 	update_max_interval();
7233 }
7234 
7235 int sched_cpu_starting(unsigned int cpu)
7236 {
7237 	set_cpu_rq_start_time(cpu);
7238 	sched_rq_cpu_starting(cpu);
7239 	return 0;
7240 }
7241 
7242 #ifdef CONFIG_HOTPLUG_CPU
7243 int sched_cpu_dying(unsigned int cpu)
7244 {
7245 	struct rq *rq = cpu_rq(cpu);
7246 	unsigned long flags;
7247 
7248 	/* Handle pending wakeups and then migrate everything off */
7249 	sched_ttwu_pending();
7250 	raw_spin_lock_irqsave(&rq->lock, flags);
7251 	if (rq->rd) {
7252 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7253 		set_rq_offline(rq);
7254 	}
7255 	migrate_tasks(rq);
7256 	BUG_ON(rq->nr_running != 1);
7257 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7258 	calc_load_migrate(rq);
7259 	update_max_interval();
7260 	nohz_balance_exit_idle(cpu);
7261 	hrtick_clear(rq);
7262 	return 0;
7263 }
7264 #endif
7265 
7266 void __init sched_init_smp(void)
7267 {
7268 	cpumask_var_t non_isolated_cpus;
7269 
7270 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7271 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7272 
7273 	sched_init_numa();
7274 
7275 	/*
7276 	 * There's no userspace yet to cause hotplug operations; hence all the
7277 	 * cpu masks are stable and all blatant races in the below code cannot
7278 	 * happen.
7279 	 */
7280 	mutex_lock(&sched_domains_mutex);
7281 	init_sched_domains(cpu_active_mask);
7282 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7283 	if (cpumask_empty(non_isolated_cpus))
7284 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7285 	mutex_unlock(&sched_domains_mutex);
7286 
7287 	/* Move init over to a non-isolated CPU */
7288 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7289 		BUG();
7290 	sched_init_granularity();
7291 	free_cpumask_var(non_isolated_cpus);
7292 
7293 	init_sched_rt_class();
7294 	init_sched_dl_class();
7295 	sched_smp_initialized = true;
7296 }
7297 
7298 static int __init migration_init(void)
7299 {
7300 	sched_rq_cpu_starting(smp_processor_id());
7301 	return 0;
7302 }
7303 early_initcall(migration_init);
7304 
7305 #else
7306 void __init sched_init_smp(void)
7307 {
7308 	sched_init_granularity();
7309 }
7310 #endif /* CONFIG_SMP */
7311 
7312 int in_sched_functions(unsigned long addr)
7313 {
7314 	return in_lock_functions(addr) ||
7315 		(addr >= (unsigned long)__sched_text_start
7316 		&& addr < (unsigned long)__sched_text_end);
7317 }
7318 
7319 #ifdef CONFIG_CGROUP_SCHED
7320 /*
7321  * Default task group.
7322  * Every task in system belongs to this group at bootup.
7323  */
7324 struct task_group root_task_group;
7325 LIST_HEAD(task_groups);
7326 
7327 /* Cacheline aligned slab cache for task_group */
7328 static struct kmem_cache *task_group_cache __read_mostly;
7329 #endif
7330 
7331 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7332 
7333 void __init sched_init(void)
7334 {
7335 	int i, j;
7336 	unsigned long alloc_size = 0, ptr;
7337 
7338 #ifdef CONFIG_FAIR_GROUP_SCHED
7339 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7340 #endif
7341 #ifdef CONFIG_RT_GROUP_SCHED
7342 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7343 #endif
7344 	if (alloc_size) {
7345 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7346 
7347 #ifdef CONFIG_FAIR_GROUP_SCHED
7348 		root_task_group.se = (struct sched_entity **)ptr;
7349 		ptr += nr_cpu_ids * sizeof(void **);
7350 
7351 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7352 		ptr += nr_cpu_ids * sizeof(void **);
7353 
7354 #endif /* CONFIG_FAIR_GROUP_SCHED */
7355 #ifdef CONFIG_RT_GROUP_SCHED
7356 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7357 		ptr += nr_cpu_ids * sizeof(void **);
7358 
7359 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7360 		ptr += nr_cpu_ids * sizeof(void **);
7361 
7362 #endif /* CONFIG_RT_GROUP_SCHED */
7363 	}
7364 #ifdef CONFIG_CPUMASK_OFFSTACK
7365 	for_each_possible_cpu(i) {
7366 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7367 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7368 	}
7369 #endif /* CONFIG_CPUMASK_OFFSTACK */
7370 
7371 	init_rt_bandwidth(&def_rt_bandwidth,
7372 			global_rt_period(), global_rt_runtime());
7373 	init_dl_bandwidth(&def_dl_bandwidth,
7374 			global_rt_period(), global_rt_runtime());
7375 
7376 #ifdef CONFIG_SMP
7377 	init_defrootdomain();
7378 #endif
7379 
7380 #ifdef CONFIG_RT_GROUP_SCHED
7381 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7382 			global_rt_period(), global_rt_runtime());
7383 #endif /* CONFIG_RT_GROUP_SCHED */
7384 
7385 #ifdef CONFIG_CGROUP_SCHED
7386 	task_group_cache = KMEM_CACHE(task_group, 0);
7387 
7388 	list_add(&root_task_group.list, &task_groups);
7389 	INIT_LIST_HEAD(&root_task_group.children);
7390 	INIT_LIST_HEAD(&root_task_group.siblings);
7391 	autogroup_init(&init_task);
7392 #endif /* CONFIG_CGROUP_SCHED */
7393 
7394 	for_each_possible_cpu(i) {
7395 		struct rq *rq;
7396 
7397 		rq = cpu_rq(i);
7398 		raw_spin_lock_init(&rq->lock);
7399 		rq->nr_running = 0;
7400 		rq->calc_load_active = 0;
7401 		rq->calc_load_update = jiffies + LOAD_FREQ;
7402 		init_cfs_rq(&rq->cfs);
7403 		init_rt_rq(&rq->rt);
7404 		init_dl_rq(&rq->dl);
7405 #ifdef CONFIG_FAIR_GROUP_SCHED
7406 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7407 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7408 		/*
7409 		 * How much cpu bandwidth does root_task_group get?
7410 		 *
7411 		 * In case of task-groups formed thr' the cgroup filesystem, it
7412 		 * gets 100% of the cpu resources in the system. This overall
7413 		 * system cpu resource is divided among the tasks of
7414 		 * root_task_group and its child task-groups in a fair manner,
7415 		 * based on each entity's (task or task-group's) weight
7416 		 * (se->load.weight).
7417 		 *
7418 		 * In other words, if root_task_group has 10 tasks of weight
7419 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7420 		 * then A0's share of the cpu resource is:
7421 		 *
7422 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7423 		 *
7424 		 * We achieve this by letting root_task_group's tasks sit
7425 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7426 		 */
7427 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7428 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7429 #endif /* CONFIG_FAIR_GROUP_SCHED */
7430 
7431 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7432 #ifdef CONFIG_RT_GROUP_SCHED
7433 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7434 #endif
7435 
7436 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7437 			rq->cpu_load[j] = 0;
7438 
7439 #ifdef CONFIG_SMP
7440 		rq->sd = NULL;
7441 		rq->rd = NULL;
7442 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7443 		rq->balance_callback = NULL;
7444 		rq->active_balance = 0;
7445 		rq->next_balance = jiffies;
7446 		rq->push_cpu = 0;
7447 		rq->cpu = i;
7448 		rq->online = 0;
7449 		rq->idle_stamp = 0;
7450 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7451 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7452 
7453 		INIT_LIST_HEAD(&rq->cfs_tasks);
7454 
7455 		rq_attach_root(rq, &def_root_domain);
7456 #ifdef CONFIG_NO_HZ_COMMON
7457 		rq->last_load_update_tick = jiffies;
7458 		rq->nohz_flags = 0;
7459 #endif
7460 #ifdef CONFIG_NO_HZ_FULL
7461 		rq->last_sched_tick = 0;
7462 #endif
7463 #endif /* CONFIG_SMP */
7464 		init_rq_hrtick(rq);
7465 		atomic_set(&rq->nr_iowait, 0);
7466 	}
7467 
7468 	set_load_weight(&init_task);
7469 
7470 #ifdef CONFIG_PREEMPT_NOTIFIERS
7471 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7472 #endif
7473 
7474 	/*
7475 	 * The boot idle thread does lazy MMU switching as well:
7476 	 */
7477 	atomic_inc(&init_mm.mm_count);
7478 	enter_lazy_tlb(&init_mm, current);
7479 
7480 	/*
7481 	 * During early bootup we pretend to be a normal task:
7482 	 */
7483 	current->sched_class = &fair_sched_class;
7484 
7485 	/*
7486 	 * Make us the idle thread. Technically, schedule() should not be
7487 	 * called from this thread, however somewhere below it might be,
7488 	 * but because we are the idle thread, we just pick up running again
7489 	 * when this runqueue becomes "idle".
7490 	 */
7491 	init_idle(current, smp_processor_id());
7492 
7493 	calc_load_update = jiffies + LOAD_FREQ;
7494 
7495 #ifdef CONFIG_SMP
7496 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7497 	/* May be allocated at isolcpus cmdline parse time */
7498 	if (cpu_isolated_map == NULL)
7499 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7500 	idle_thread_set_boot_cpu();
7501 	set_cpu_rq_start_time(smp_processor_id());
7502 #endif
7503 	init_sched_fair_class();
7504 
7505 	init_schedstats();
7506 
7507 	scheduler_running = 1;
7508 }
7509 
7510 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7511 static inline int preempt_count_equals(int preempt_offset)
7512 {
7513 	int nested = preempt_count() + rcu_preempt_depth();
7514 
7515 	return (nested == preempt_offset);
7516 }
7517 
7518 void __might_sleep(const char *file, int line, int preempt_offset)
7519 {
7520 	/*
7521 	 * Blocking primitives will set (and therefore destroy) current->state,
7522 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7523 	 * otherwise we will destroy state.
7524 	 */
7525 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7526 			"do not call blocking ops when !TASK_RUNNING; "
7527 			"state=%lx set at [<%p>] %pS\n",
7528 			current->state,
7529 			(void *)current->task_state_change,
7530 			(void *)current->task_state_change);
7531 
7532 	___might_sleep(file, line, preempt_offset);
7533 }
7534 EXPORT_SYMBOL(__might_sleep);
7535 
7536 void ___might_sleep(const char *file, int line, int preempt_offset)
7537 {
7538 	static unsigned long prev_jiffy;	/* ratelimiting */
7539 
7540 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7541 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7542 	     !is_idle_task(current)) ||
7543 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7544 		return;
7545 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7546 		return;
7547 	prev_jiffy = jiffies;
7548 
7549 	printk(KERN_ERR
7550 		"BUG: sleeping function called from invalid context at %s:%d\n",
7551 			file, line);
7552 	printk(KERN_ERR
7553 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7554 			in_atomic(), irqs_disabled(),
7555 			current->pid, current->comm);
7556 
7557 	if (task_stack_end_corrupted(current))
7558 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7559 
7560 	debug_show_held_locks(current);
7561 	if (irqs_disabled())
7562 		print_irqtrace_events(current);
7563 #ifdef CONFIG_DEBUG_PREEMPT
7564 	if (!preempt_count_equals(preempt_offset)) {
7565 		pr_err("Preemption disabled at:");
7566 		print_ip_sym(current->preempt_disable_ip);
7567 		pr_cont("\n");
7568 	}
7569 #endif
7570 	dump_stack();
7571 }
7572 EXPORT_SYMBOL(___might_sleep);
7573 #endif
7574 
7575 #ifdef CONFIG_MAGIC_SYSRQ
7576 void normalize_rt_tasks(void)
7577 {
7578 	struct task_struct *g, *p;
7579 	struct sched_attr attr = {
7580 		.sched_policy = SCHED_NORMAL,
7581 	};
7582 
7583 	read_lock(&tasklist_lock);
7584 	for_each_process_thread(g, p) {
7585 		/*
7586 		 * Only normalize user tasks:
7587 		 */
7588 		if (p->flags & PF_KTHREAD)
7589 			continue;
7590 
7591 		p->se.exec_start		= 0;
7592 #ifdef CONFIG_SCHEDSTATS
7593 		p->se.statistics.wait_start	= 0;
7594 		p->se.statistics.sleep_start	= 0;
7595 		p->se.statistics.block_start	= 0;
7596 #endif
7597 
7598 		if (!dl_task(p) && !rt_task(p)) {
7599 			/*
7600 			 * Renice negative nice level userspace
7601 			 * tasks back to 0:
7602 			 */
7603 			if (task_nice(p) < 0)
7604 				set_user_nice(p, 0);
7605 			continue;
7606 		}
7607 
7608 		__sched_setscheduler(p, &attr, false, false);
7609 	}
7610 	read_unlock(&tasklist_lock);
7611 }
7612 
7613 #endif /* CONFIG_MAGIC_SYSRQ */
7614 
7615 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7616 /*
7617  * These functions are only useful for the IA64 MCA handling, or kdb.
7618  *
7619  * They can only be called when the whole system has been
7620  * stopped - every CPU needs to be quiescent, and no scheduling
7621  * activity can take place. Using them for anything else would
7622  * be a serious bug, and as a result, they aren't even visible
7623  * under any other configuration.
7624  */
7625 
7626 /**
7627  * curr_task - return the current task for a given cpu.
7628  * @cpu: the processor in question.
7629  *
7630  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7631  *
7632  * Return: The current task for @cpu.
7633  */
7634 struct task_struct *curr_task(int cpu)
7635 {
7636 	return cpu_curr(cpu);
7637 }
7638 
7639 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7640 
7641 #ifdef CONFIG_IA64
7642 /**
7643  * set_curr_task - set the current task for a given cpu.
7644  * @cpu: the processor in question.
7645  * @p: the task pointer to set.
7646  *
7647  * Description: This function must only be used when non-maskable interrupts
7648  * are serviced on a separate stack. It allows the architecture to switch the
7649  * notion of the current task on a cpu in a non-blocking manner. This function
7650  * must be called with all CPU's synchronized, and interrupts disabled, the
7651  * and caller must save the original value of the current task (see
7652  * curr_task() above) and restore that value before reenabling interrupts and
7653  * re-starting the system.
7654  *
7655  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7656  */
7657 void set_curr_task(int cpu, struct task_struct *p)
7658 {
7659 	cpu_curr(cpu) = p;
7660 }
7661 
7662 #endif
7663 
7664 #ifdef CONFIG_CGROUP_SCHED
7665 /* task_group_lock serializes the addition/removal of task groups */
7666 static DEFINE_SPINLOCK(task_group_lock);
7667 
7668 static void sched_free_group(struct task_group *tg)
7669 {
7670 	free_fair_sched_group(tg);
7671 	free_rt_sched_group(tg);
7672 	autogroup_free(tg);
7673 	kmem_cache_free(task_group_cache, tg);
7674 }
7675 
7676 /* allocate runqueue etc for a new task group */
7677 struct task_group *sched_create_group(struct task_group *parent)
7678 {
7679 	struct task_group *tg;
7680 
7681 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7682 	if (!tg)
7683 		return ERR_PTR(-ENOMEM);
7684 
7685 	if (!alloc_fair_sched_group(tg, parent))
7686 		goto err;
7687 
7688 	if (!alloc_rt_sched_group(tg, parent))
7689 		goto err;
7690 
7691 	return tg;
7692 
7693 err:
7694 	sched_free_group(tg);
7695 	return ERR_PTR(-ENOMEM);
7696 }
7697 
7698 void sched_online_group(struct task_group *tg, struct task_group *parent)
7699 {
7700 	unsigned long flags;
7701 
7702 	spin_lock_irqsave(&task_group_lock, flags);
7703 	list_add_rcu(&tg->list, &task_groups);
7704 
7705 	WARN_ON(!parent); /* root should already exist */
7706 
7707 	tg->parent = parent;
7708 	INIT_LIST_HEAD(&tg->children);
7709 	list_add_rcu(&tg->siblings, &parent->children);
7710 	spin_unlock_irqrestore(&task_group_lock, flags);
7711 }
7712 
7713 /* rcu callback to free various structures associated with a task group */
7714 static void sched_free_group_rcu(struct rcu_head *rhp)
7715 {
7716 	/* now it should be safe to free those cfs_rqs */
7717 	sched_free_group(container_of(rhp, struct task_group, rcu));
7718 }
7719 
7720 void sched_destroy_group(struct task_group *tg)
7721 {
7722 	/* wait for possible concurrent references to cfs_rqs complete */
7723 	call_rcu(&tg->rcu, sched_free_group_rcu);
7724 }
7725 
7726 void sched_offline_group(struct task_group *tg)
7727 {
7728 	unsigned long flags;
7729 
7730 	/* end participation in shares distribution */
7731 	unregister_fair_sched_group(tg);
7732 
7733 	spin_lock_irqsave(&task_group_lock, flags);
7734 	list_del_rcu(&tg->list);
7735 	list_del_rcu(&tg->siblings);
7736 	spin_unlock_irqrestore(&task_group_lock, flags);
7737 }
7738 
7739 /* change task's runqueue when it moves between groups.
7740  *	The caller of this function should have put the task in its new group
7741  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7742  *	reflect its new group.
7743  */
7744 void sched_move_task(struct task_struct *tsk)
7745 {
7746 	struct task_group *tg;
7747 	int queued, running;
7748 	struct rq_flags rf;
7749 	struct rq *rq;
7750 
7751 	rq = task_rq_lock(tsk, &rf);
7752 
7753 	running = task_current(rq, tsk);
7754 	queued = task_on_rq_queued(tsk);
7755 
7756 	if (queued)
7757 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7758 	if (unlikely(running))
7759 		put_prev_task(rq, tsk);
7760 
7761 	/*
7762 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7763 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7764 	 * to prevent lockdep warnings.
7765 	 */
7766 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7767 			  struct task_group, css);
7768 	tg = autogroup_task_group(tsk, tg);
7769 	tsk->sched_task_group = tg;
7770 
7771 #ifdef CONFIG_FAIR_GROUP_SCHED
7772 	if (tsk->sched_class->task_move_group)
7773 		tsk->sched_class->task_move_group(tsk);
7774 	else
7775 #endif
7776 		set_task_rq(tsk, task_cpu(tsk));
7777 
7778 	if (unlikely(running))
7779 		tsk->sched_class->set_curr_task(rq);
7780 	if (queued)
7781 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7782 
7783 	task_rq_unlock(rq, tsk, &rf);
7784 }
7785 #endif /* CONFIG_CGROUP_SCHED */
7786 
7787 #ifdef CONFIG_RT_GROUP_SCHED
7788 /*
7789  * Ensure that the real time constraints are schedulable.
7790  */
7791 static DEFINE_MUTEX(rt_constraints_mutex);
7792 
7793 /* Must be called with tasklist_lock held */
7794 static inline int tg_has_rt_tasks(struct task_group *tg)
7795 {
7796 	struct task_struct *g, *p;
7797 
7798 	/*
7799 	 * Autogroups do not have RT tasks; see autogroup_create().
7800 	 */
7801 	if (task_group_is_autogroup(tg))
7802 		return 0;
7803 
7804 	for_each_process_thread(g, p) {
7805 		if (rt_task(p) && task_group(p) == tg)
7806 			return 1;
7807 	}
7808 
7809 	return 0;
7810 }
7811 
7812 struct rt_schedulable_data {
7813 	struct task_group *tg;
7814 	u64 rt_period;
7815 	u64 rt_runtime;
7816 };
7817 
7818 static int tg_rt_schedulable(struct task_group *tg, void *data)
7819 {
7820 	struct rt_schedulable_data *d = data;
7821 	struct task_group *child;
7822 	unsigned long total, sum = 0;
7823 	u64 period, runtime;
7824 
7825 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7826 	runtime = tg->rt_bandwidth.rt_runtime;
7827 
7828 	if (tg == d->tg) {
7829 		period = d->rt_period;
7830 		runtime = d->rt_runtime;
7831 	}
7832 
7833 	/*
7834 	 * Cannot have more runtime than the period.
7835 	 */
7836 	if (runtime > period && runtime != RUNTIME_INF)
7837 		return -EINVAL;
7838 
7839 	/*
7840 	 * Ensure we don't starve existing RT tasks.
7841 	 */
7842 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7843 		return -EBUSY;
7844 
7845 	total = to_ratio(period, runtime);
7846 
7847 	/*
7848 	 * Nobody can have more than the global setting allows.
7849 	 */
7850 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7851 		return -EINVAL;
7852 
7853 	/*
7854 	 * The sum of our children's runtime should not exceed our own.
7855 	 */
7856 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7857 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7858 		runtime = child->rt_bandwidth.rt_runtime;
7859 
7860 		if (child == d->tg) {
7861 			period = d->rt_period;
7862 			runtime = d->rt_runtime;
7863 		}
7864 
7865 		sum += to_ratio(period, runtime);
7866 	}
7867 
7868 	if (sum > total)
7869 		return -EINVAL;
7870 
7871 	return 0;
7872 }
7873 
7874 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7875 {
7876 	int ret;
7877 
7878 	struct rt_schedulable_data data = {
7879 		.tg = tg,
7880 		.rt_period = period,
7881 		.rt_runtime = runtime,
7882 	};
7883 
7884 	rcu_read_lock();
7885 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7886 	rcu_read_unlock();
7887 
7888 	return ret;
7889 }
7890 
7891 static int tg_set_rt_bandwidth(struct task_group *tg,
7892 		u64 rt_period, u64 rt_runtime)
7893 {
7894 	int i, err = 0;
7895 
7896 	/*
7897 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7898 	 * kernel creating (and or operating) RT threads.
7899 	 */
7900 	if (tg == &root_task_group && rt_runtime == 0)
7901 		return -EINVAL;
7902 
7903 	/* No period doesn't make any sense. */
7904 	if (rt_period == 0)
7905 		return -EINVAL;
7906 
7907 	mutex_lock(&rt_constraints_mutex);
7908 	read_lock(&tasklist_lock);
7909 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7910 	if (err)
7911 		goto unlock;
7912 
7913 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7914 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7915 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7916 
7917 	for_each_possible_cpu(i) {
7918 		struct rt_rq *rt_rq = tg->rt_rq[i];
7919 
7920 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7921 		rt_rq->rt_runtime = rt_runtime;
7922 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7923 	}
7924 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7925 unlock:
7926 	read_unlock(&tasklist_lock);
7927 	mutex_unlock(&rt_constraints_mutex);
7928 
7929 	return err;
7930 }
7931 
7932 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7933 {
7934 	u64 rt_runtime, rt_period;
7935 
7936 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7937 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7938 	if (rt_runtime_us < 0)
7939 		rt_runtime = RUNTIME_INF;
7940 
7941 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7942 }
7943 
7944 static long sched_group_rt_runtime(struct task_group *tg)
7945 {
7946 	u64 rt_runtime_us;
7947 
7948 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7949 		return -1;
7950 
7951 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7952 	do_div(rt_runtime_us, NSEC_PER_USEC);
7953 	return rt_runtime_us;
7954 }
7955 
7956 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7957 {
7958 	u64 rt_runtime, rt_period;
7959 
7960 	rt_period = rt_period_us * NSEC_PER_USEC;
7961 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7962 
7963 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7964 }
7965 
7966 static long sched_group_rt_period(struct task_group *tg)
7967 {
7968 	u64 rt_period_us;
7969 
7970 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7971 	do_div(rt_period_us, NSEC_PER_USEC);
7972 	return rt_period_us;
7973 }
7974 #endif /* CONFIG_RT_GROUP_SCHED */
7975 
7976 #ifdef CONFIG_RT_GROUP_SCHED
7977 static int sched_rt_global_constraints(void)
7978 {
7979 	int ret = 0;
7980 
7981 	mutex_lock(&rt_constraints_mutex);
7982 	read_lock(&tasklist_lock);
7983 	ret = __rt_schedulable(NULL, 0, 0);
7984 	read_unlock(&tasklist_lock);
7985 	mutex_unlock(&rt_constraints_mutex);
7986 
7987 	return ret;
7988 }
7989 
7990 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7991 {
7992 	/* Don't accept realtime tasks when there is no way for them to run */
7993 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7994 		return 0;
7995 
7996 	return 1;
7997 }
7998 
7999 #else /* !CONFIG_RT_GROUP_SCHED */
8000 static int sched_rt_global_constraints(void)
8001 {
8002 	unsigned long flags;
8003 	int i;
8004 
8005 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8006 	for_each_possible_cpu(i) {
8007 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8008 
8009 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8010 		rt_rq->rt_runtime = global_rt_runtime();
8011 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8012 	}
8013 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8014 
8015 	return 0;
8016 }
8017 #endif /* CONFIG_RT_GROUP_SCHED */
8018 
8019 static int sched_dl_global_validate(void)
8020 {
8021 	u64 runtime = global_rt_runtime();
8022 	u64 period = global_rt_period();
8023 	u64 new_bw = to_ratio(period, runtime);
8024 	struct dl_bw *dl_b;
8025 	int cpu, ret = 0;
8026 	unsigned long flags;
8027 
8028 	/*
8029 	 * Here we want to check the bandwidth not being set to some
8030 	 * value smaller than the currently allocated bandwidth in
8031 	 * any of the root_domains.
8032 	 *
8033 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8034 	 * cycling on root_domains... Discussion on different/better
8035 	 * solutions is welcome!
8036 	 */
8037 	for_each_possible_cpu(cpu) {
8038 		rcu_read_lock_sched();
8039 		dl_b = dl_bw_of(cpu);
8040 
8041 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8042 		if (new_bw < dl_b->total_bw)
8043 			ret = -EBUSY;
8044 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8045 
8046 		rcu_read_unlock_sched();
8047 
8048 		if (ret)
8049 			break;
8050 	}
8051 
8052 	return ret;
8053 }
8054 
8055 static void sched_dl_do_global(void)
8056 {
8057 	u64 new_bw = -1;
8058 	struct dl_bw *dl_b;
8059 	int cpu;
8060 	unsigned long flags;
8061 
8062 	def_dl_bandwidth.dl_period = global_rt_period();
8063 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8064 
8065 	if (global_rt_runtime() != RUNTIME_INF)
8066 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8067 
8068 	/*
8069 	 * FIXME: As above...
8070 	 */
8071 	for_each_possible_cpu(cpu) {
8072 		rcu_read_lock_sched();
8073 		dl_b = dl_bw_of(cpu);
8074 
8075 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8076 		dl_b->bw = new_bw;
8077 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8078 
8079 		rcu_read_unlock_sched();
8080 	}
8081 }
8082 
8083 static int sched_rt_global_validate(void)
8084 {
8085 	if (sysctl_sched_rt_period <= 0)
8086 		return -EINVAL;
8087 
8088 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8089 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8090 		return -EINVAL;
8091 
8092 	return 0;
8093 }
8094 
8095 static void sched_rt_do_global(void)
8096 {
8097 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8098 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8099 }
8100 
8101 int sched_rt_handler(struct ctl_table *table, int write,
8102 		void __user *buffer, size_t *lenp,
8103 		loff_t *ppos)
8104 {
8105 	int old_period, old_runtime;
8106 	static DEFINE_MUTEX(mutex);
8107 	int ret;
8108 
8109 	mutex_lock(&mutex);
8110 	old_period = sysctl_sched_rt_period;
8111 	old_runtime = sysctl_sched_rt_runtime;
8112 
8113 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8114 
8115 	if (!ret && write) {
8116 		ret = sched_rt_global_validate();
8117 		if (ret)
8118 			goto undo;
8119 
8120 		ret = sched_dl_global_validate();
8121 		if (ret)
8122 			goto undo;
8123 
8124 		ret = sched_rt_global_constraints();
8125 		if (ret)
8126 			goto undo;
8127 
8128 		sched_rt_do_global();
8129 		sched_dl_do_global();
8130 	}
8131 	if (0) {
8132 undo:
8133 		sysctl_sched_rt_period = old_period;
8134 		sysctl_sched_rt_runtime = old_runtime;
8135 	}
8136 	mutex_unlock(&mutex);
8137 
8138 	return ret;
8139 }
8140 
8141 int sched_rr_handler(struct ctl_table *table, int write,
8142 		void __user *buffer, size_t *lenp,
8143 		loff_t *ppos)
8144 {
8145 	int ret;
8146 	static DEFINE_MUTEX(mutex);
8147 
8148 	mutex_lock(&mutex);
8149 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8150 	/* make sure that internally we keep jiffies */
8151 	/* also, writing zero resets timeslice to default */
8152 	if (!ret && write) {
8153 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8154 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8155 	}
8156 	mutex_unlock(&mutex);
8157 	return ret;
8158 }
8159 
8160 #ifdef CONFIG_CGROUP_SCHED
8161 
8162 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8163 {
8164 	return css ? container_of(css, struct task_group, css) : NULL;
8165 }
8166 
8167 static struct cgroup_subsys_state *
8168 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8169 {
8170 	struct task_group *parent = css_tg(parent_css);
8171 	struct task_group *tg;
8172 
8173 	if (!parent) {
8174 		/* This is early initialization for the top cgroup */
8175 		return &root_task_group.css;
8176 	}
8177 
8178 	tg = sched_create_group(parent);
8179 	if (IS_ERR(tg))
8180 		return ERR_PTR(-ENOMEM);
8181 
8182 	sched_online_group(tg, parent);
8183 
8184 	return &tg->css;
8185 }
8186 
8187 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8188 {
8189 	struct task_group *tg = css_tg(css);
8190 
8191 	sched_offline_group(tg);
8192 }
8193 
8194 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8195 {
8196 	struct task_group *tg = css_tg(css);
8197 
8198 	/*
8199 	 * Relies on the RCU grace period between css_released() and this.
8200 	 */
8201 	sched_free_group(tg);
8202 }
8203 
8204 static void cpu_cgroup_fork(struct task_struct *task)
8205 {
8206 	sched_move_task(task);
8207 }
8208 
8209 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8210 {
8211 	struct task_struct *task;
8212 	struct cgroup_subsys_state *css;
8213 
8214 	cgroup_taskset_for_each(task, css, tset) {
8215 #ifdef CONFIG_RT_GROUP_SCHED
8216 		if (!sched_rt_can_attach(css_tg(css), task))
8217 			return -EINVAL;
8218 #else
8219 		/* We don't support RT-tasks being in separate groups */
8220 		if (task->sched_class != &fair_sched_class)
8221 			return -EINVAL;
8222 #endif
8223 	}
8224 	return 0;
8225 }
8226 
8227 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8228 {
8229 	struct task_struct *task;
8230 	struct cgroup_subsys_state *css;
8231 
8232 	cgroup_taskset_for_each(task, css, tset)
8233 		sched_move_task(task);
8234 }
8235 
8236 #ifdef CONFIG_FAIR_GROUP_SCHED
8237 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8238 				struct cftype *cftype, u64 shareval)
8239 {
8240 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8241 }
8242 
8243 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8244 			       struct cftype *cft)
8245 {
8246 	struct task_group *tg = css_tg(css);
8247 
8248 	return (u64) scale_load_down(tg->shares);
8249 }
8250 
8251 #ifdef CONFIG_CFS_BANDWIDTH
8252 static DEFINE_MUTEX(cfs_constraints_mutex);
8253 
8254 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8255 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8256 
8257 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8258 
8259 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8260 {
8261 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8262 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8263 
8264 	if (tg == &root_task_group)
8265 		return -EINVAL;
8266 
8267 	/*
8268 	 * Ensure we have at some amount of bandwidth every period.  This is
8269 	 * to prevent reaching a state of large arrears when throttled via
8270 	 * entity_tick() resulting in prolonged exit starvation.
8271 	 */
8272 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8273 		return -EINVAL;
8274 
8275 	/*
8276 	 * Likewise, bound things on the otherside by preventing insane quota
8277 	 * periods.  This also allows us to normalize in computing quota
8278 	 * feasibility.
8279 	 */
8280 	if (period > max_cfs_quota_period)
8281 		return -EINVAL;
8282 
8283 	/*
8284 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8285 	 * unthrottle_offline_cfs_rqs().
8286 	 */
8287 	get_online_cpus();
8288 	mutex_lock(&cfs_constraints_mutex);
8289 	ret = __cfs_schedulable(tg, period, quota);
8290 	if (ret)
8291 		goto out_unlock;
8292 
8293 	runtime_enabled = quota != RUNTIME_INF;
8294 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8295 	/*
8296 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8297 	 * before making related changes, and on->off must occur afterwards
8298 	 */
8299 	if (runtime_enabled && !runtime_was_enabled)
8300 		cfs_bandwidth_usage_inc();
8301 	raw_spin_lock_irq(&cfs_b->lock);
8302 	cfs_b->period = ns_to_ktime(period);
8303 	cfs_b->quota = quota;
8304 
8305 	__refill_cfs_bandwidth_runtime(cfs_b);
8306 	/* restart the period timer (if active) to handle new period expiry */
8307 	if (runtime_enabled)
8308 		start_cfs_bandwidth(cfs_b);
8309 	raw_spin_unlock_irq(&cfs_b->lock);
8310 
8311 	for_each_online_cpu(i) {
8312 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8313 		struct rq *rq = cfs_rq->rq;
8314 
8315 		raw_spin_lock_irq(&rq->lock);
8316 		cfs_rq->runtime_enabled = runtime_enabled;
8317 		cfs_rq->runtime_remaining = 0;
8318 
8319 		if (cfs_rq->throttled)
8320 			unthrottle_cfs_rq(cfs_rq);
8321 		raw_spin_unlock_irq(&rq->lock);
8322 	}
8323 	if (runtime_was_enabled && !runtime_enabled)
8324 		cfs_bandwidth_usage_dec();
8325 out_unlock:
8326 	mutex_unlock(&cfs_constraints_mutex);
8327 	put_online_cpus();
8328 
8329 	return ret;
8330 }
8331 
8332 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8333 {
8334 	u64 quota, period;
8335 
8336 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8337 	if (cfs_quota_us < 0)
8338 		quota = RUNTIME_INF;
8339 	else
8340 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8341 
8342 	return tg_set_cfs_bandwidth(tg, period, quota);
8343 }
8344 
8345 long tg_get_cfs_quota(struct task_group *tg)
8346 {
8347 	u64 quota_us;
8348 
8349 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8350 		return -1;
8351 
8352 	quota_us = tg->cfs_bandwidth.quota;
8353 	do_div(quota_us, NSEC_PER_USEC);
8354 
8355 	return quota_us;
8356 }
8357 
8358 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8359 {
8360 	u64 quota, period;
8361 
8362 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8363 	quota = tg->cfs_bandwidth.quota;
8364 
8365 	return tg_set_cfs_bandwidth(tg, period, quota);
8366 }
8367 
8368 long tg_get_cfs_period(struct task_group *tg)
8369 {
8370 	u64 cfs_period_us;
8371 
8372 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8373 	do_div(cfs_period_us, NSEC_PER_USEC);
8374 
8375 	return cfs_period_us;
8376 }
8377 
8378 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8379 				  struct cftype *cft)
8380 {
8381 	return tg_get_cfs_quota(css_tg(css));
8382 }
8383 
8384 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8385 				   struct cftype *cftype, s64 cfs_quota_us)
8386 {
8387 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8388 }
8389 
8390 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8391 				   struct cftype *cft)
8392 {
8393 	return tg_get_cfs_period(css_tg(css));
8394 }
8395 
8396 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8397 				    struct cftype *cftype, u64 cfs_period_us)
8398 {
8399 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8400 }
8401 
8402 struct cfs_schedulable_data {
8403 	struct task_group *tg;
8404 	u64 period, quota;
8405 };
8406 
8407 /*
8408  * normalize group quota/period to be quota/max_period
8409  * note: units are usecs
8410  */
8411 static u64 normalize_cfs_quota(struct task_group *tg,
8412 			       struct cfs_schedulable_data *d)
8413 {
8414 	u64 quota, period;
8415 
8416 	if (tg == d->tg) {
8417 		period = d->period;
8418 		quota = d->quota;
8419 	} else {
8420 		period = tg_get_cfs_period(tg);
8421 		quota = tg_get_cfs_quota(tg);
8422 	}
8423 
8424 	/* note: these should typically be equivalent */
8425 	if (quota == RUNTIME_INF || quota == -1)
8426 		return RUNTIME_INF;
8427 
8428 	return to_ratio(period, quota);
8429 }
8430 
8431 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8432 {
8433 	struct cfs_schedulable_data *d = data;
8434 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8435 	s64 quota = 0, parent_quota = -1;
8436 
8437 	if (!tg->parent) {
8438 		quota = RUNTIME_INF;
8439 	} else {
8440 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8441 
8442 		quota = normalize_cfs_quota(tg, d);
8443 		parent_quota = parent_b->hierarchical_quota;
8444 
8445 		/*
8446 		 * ensure max(child_quota) <= parent_quota, inherit when no
8447 		 * limit is set
8448 		 */
8449 		if (quota == RUNTIME_INF)
8450 			quota = parent_quota;
8451 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8452 			return -EINVAL;
8453 	}
8454 	cfs_b->hierarchical_quota = quota;
8455 
8456 	return 0;
8457 }
8458 
8459 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8460 {
8461 	int ret;
8462 	struct cfs_schedulable_data data = {
8463 		.tg = tg,
8464 		.period = period,
8465 		.quota = quota,
8466 	};
8467 
8468 	if (quota != RUNTIME_INF) {
8469 		do_div(data.period, NSEC_PER_USEC);
8470 		do_div(data.quota, NSEC_PER_USEC);
8471 	}
8472 
8473 	rcu_read_lock();
8474 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8475 	rcu_read_unlock();
8476 
8477 	return ret;
8478 }
8479 
8480 static int cpu_stats_show(struct seq_file *sf, void *v)
8481 {
8482 	struct task_group *tg = css_tg(seq_css(sf));
8483 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8484 
8485 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8486 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8487 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8488 
8489 	return 0;
8490 }
8491 #endif /* CONFIG_CFS_BANDWIDTH */
8492 #endif /* CONFIG_FAIR_GROUP_SCHED */
8493 
8494 #ifdef CONFIG_RT_GROUP_SCHED
8495 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8496 				struct cftype *cft, s64 val)
8497 {
8498 	return sched_group_set_rt_runtime(css_tg(css), val);
8499 }
8500 
8501 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8502 			       struct cftype *cft)
8503 {
8504 	return sched_group_rt_runtime(css_tg(css));
8505 }
8506 
8507 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8508 				    struct cftype *cftype, u64 rt_period_us)
8509 {
8510 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8511 }
8512 
8513 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8514 				   struct cftype *cft)
8515 {
8516 	return sched_group_rt_period(css_tg(css));
8517 }
8518 #endif /* CONFIG_RT_GROUP_SCHED */
8519 
8520 static struct cftype cpu_files[] = {
8521 #ifdef CONFIG_FAIR_GROUP_SCHED
8522 	{
8523 		.name = "shares",
8524 		.read_u64 = cpu_shares_read_u64,
8525 		.write_u64 = cpu_shares_write_u64,
8526 	},
8527 #endif
8528 #ifdef CONFIG_CFS_BANDWIDTH
8529 	{
8530 		.name = "cfs_quota_us",
8531 		.read_s64 = cpu_cfs_quota_read_s64,
8532 		.write_s64 = cpu_cfs_quota_write_s64,
8533 	},
8534 	{
8535 		.name = "cfs_period_us",
8536 		.read_u64 = cpu_cfs_period_read_u64,
8537 		.write_u64 = cpu_cfs_period_write_u64,
8538 	},
8539 	{
8540 		.name = "stat",
8541 		.seq_show = cpu_stats_show,
8542 	},
8543 #endif
8544 #ifdef CONFIG_RT_GROUP_SCHED
8545 	{
8546 		.name = "rt_runtime_us",
8547 		.read_s64 = cpu_rt_runtime_read,
8548 		.write_s64 = cpu_rt_runtime_write,
8549 	},
8550 	{
8551 		.name = "rt_period_us",
8552 		.read_u64 = cpu_rt_period_read_uint,
8553 		.write_u64 = cpu_rt_period_write_uint,
8554 	},
8555 #endif
8556 	{ }	/* terminate */
8557 };
8558 
8559 struct cgroup_subsys cpu_cgrp_subsys = {
8560 	.css_alloc	= cpu_cgroup_css_alloc,
8561 	.css_released	= cpu_cgroup_css_released,
8562 	.css_free	= cpu_cgroup_css_free,
8563 	.fork		= cpu_cgroup_fork,
8564 	.can_attach	= cpu_cgroup_can_attach,
8565 	.attach		= cpu_cgroup_attach,
8566 	.legacy_cftypes	= cpu_files,
8567 	.early_init	= true,
8568 };
8569 
8570 #endif	/* CONFIG_CGROUP_SCHED */
8571 
8572 void dump_cpu_task(int cpu)
8573 {
8574 	pr_info("Task dump for CPU %d:\n", cpu);
8575 	sched_show_task(cpu_curr(cpu));
8576 }
8577 
8578 /*
8579  * Nice levels are multiplicative, with a gentle 10% change for every
8580  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8581  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8582  * that remained on nice 0.
8583  *
8584  * The "10% effect" is relative and cumulative: from _any_ nice level,
8585  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8586  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8587  * If a task goes up by ~10% and another task goes down by ~10% then
8588  * the relative distance between them is ~25%.)
8589  */
8590 const int sched_prio_to_weight[40] = {
8591  /* -20 */     88761,     71755,     56483,     46273,     36291,
8592  /* -15 */     29154,     23254,     18705,     14949,     11916,
8593  /* -10 */      9548,      7620,      6100,      4904,      3906,
8594  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8595  /*   0 */      1024,       820,       655,       526,       423,
8596  /*   5 */       335,       272,       215,       172,       137,
8597  /*  10 */       110,        87,        70,        56,        45,
8598  /*  15 */        36,        29,        23,        18,        15,
8599 };
8600 
8601 /*
8602  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8603  *
8604  * In cases where the weight does not change often, we can use the
8605  * precalculated inverse to speed up arithmetics by turning divisions
8606  * into multiplications:
8607  */
8608 const u32 sched_prio_to_wmult[40] = {
8609  /* -20 */     48388,     59856,     76040,     92818,    118348,
8610  /* -15 */    147320,    184698,    229616,    287308,    360437,
8611  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8612  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8613  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8614  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8615  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8616  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8617 };
8618