1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/kasan.h> 30 #include <linux/mm.h> 31 #include <linux/module.h> 32 #include <linux/nmi.h> 33 #include <linux/init.h> 34 #include <linux/uaccess.h> 35 #include <linux/highmem.h> 36 #include <linux/mmu_context.h> 37 #include <linux/interrupt.h> 38 #include <linux/capability.h> 39 #include <linux/completion.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/debug_locks.h> 42 #include <linux/perf_event.h> 43 #include <linux/security.h> 44 #include <linux/notifier.h> 45 #include <linux/profile.h> 46 #include <linux/freezer.h> 47 #include <linux/vmalloc.h> 48 #include <linux/blkdev.h> 49 #include <linux/delay.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/smp.h> 52 #include <linux/threads.h> 53 #include <linux/timer.h> 54 #include <linux/rcupdate.h> 55 #include <linux/cpu.h> 56 #include <linux/cpuset.h> 57 #include <linux/percpu.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/sysctl.h> 61 #include <linux/syscalls.h> 62 #include <linux/times.h> 63 #include <linux/tsacct_kern.h> 64 #include <linux/kprobes.h> 65 #include <linux/delayacct.h> 66 #include <linux/unistd.h> 67 #include <linux/pagemap.h> 68 #include <linux/hrtimer.h> 69 #include <linux/tick.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/context_tracking.h> 75 #include <linux/compiler.h> 76 #include <linux/frame.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 DEFINE_MUTEX(sched_domains_mutex); 94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 95 96 static void update_rq_clock_task(struct rq *rq, s64 delta); 97 98 void update_rq_clock(struct rq *rq) 99 { 100 s64 delta; 101 102 lockdep_assert_held(&rq->lock); 103 104 if (rq->clock_skip_update & RQCF_ACT_SKIP) 105 return; 106 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 108 if (delta < 0) 109 return; 110 rq->clock += delta; 111 update_rq_clock_task(rq, delta); 112 } 113 114 /* 115 * Debugging: various feature bits 116 */ 117 118 #define SCHED_FEAT(name, enabled) \ 119 (1UL << __SCHED_FEAT_##name) * enabled | 120 121 const_debug unsigned int sysctl_sched_features = 122 #include "features.h" 123 0; 124 125 #undef SCHED_FEAT 126 127 /* 128 * Number of tasks to iterate in a single balance run. 129 * Limited because this is done with IRQs disabled. 130 */ 131 const_debug unsigned int sysctl_sched_nr_migrate = 32; 132 133 /* 134 * period over which we average the RT time consumption, measured 135 * in ms. 136 * 137 * default: 1s 138 */ 139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 140 141 /* 142 * period over which we measure -rt task cpu usage in us. 143 * default: 1s 144 */ 145 unsigned int sysctl_sched_rt_period = 1000000; 146 147 __read_mostly int scheduler_running; 148 149 /* 150 * part of the period that we allow rt tasks to run in us. 151 * default: 0.95s 152 */ 153 int sysctl_sched_rt_runtime = 950000; 154 155 /* cpus with isolated domains */ 156 cpumask_var_t cpu_isolated_map; 157 158 /* 159 * this_rq_lock - lock this runqueue and disable interrupts. 160 */ 161 static struct rq *this_rq_lock(void) 162 __acquires(rq->lock) 163 { 164 struct rq *rq; 165 166 local_irq_disable(); 167 rq = this_rq(); 168 raw_spin_lock(&rq->lock); 169 170 return rq; 171 } 172 173 /* 174 * __task_rq_lock - lock the rq @p resides on. 175 */ 176 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 177 __acquires(rq->lock) 178 { 179 struct rq *rq; 180 181 lockdep_assert_held(&p->pi_lock); 182 183 for (;;) { 184 rq = task_rq(p); 185 raw_spin_lock(&rq->lock); 186 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 187 rf->cookie = lockdep_pin_lock(&rq->lock); 188 return rq; 189 } 190 raw_spin_unlock(&rq->lock); 191 192 while (unlikely(task_on_rq_migrating(p))) 193 cpu_relax(); 194 } 195 } 196 197 /* 198 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 199 */ 200 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 201 __acquires(p->pi_lock) 202 __acquires(rq->lock) 203 { 204 struct rq *rq; 205 206 for (;;) { 207 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 208 rq = task_rq(p); 209 raw_spin_lock(&rq->lock); 210 /* 211 * move_queued_task() task_rq_lock() 212 * 213 * ACQUIRE (rq->lock) 214 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 215 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 216 * [S] ->cpu = new_cpu [L] task_rq() 217 * [L] ->on_rq 218 * RELEASE (rq->lock) 219 * 220 * If we observe the old cpu in task_rq_lock, the acquire of 221 * the old rq->lock will fully serialize against the stores. 222 * 223 * If we observe the new cpu in task_rq_lock, the acquire will 224 * pair with the WMB to ensure we must then also see migrating. 225 */ 226 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 227 rf->cookie = lockdep_pin_lock(&rq->lock); 228 return rq; 229 } 230 raw_spin_unlock(&rq->lock); 231 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 232 233 while (unlikely(task_on_rq_migrating(p))) 234 cpu_relax(); 235 } 236 } 237 238 #ifdef CONFIG_SCHED_HRTICK 239 /* 240 * Use HR-timers to deliver accurate preemption points. 241 */ 242 243 static void hrtick_clear(struct rq *rq) 244 { 245 if (hrtimer_active(&rq->hrtick_timer)) 246 hrtimer_cancel(&rq->hrtick_timer); 247 } 248 249 /* 250 * High-resolution timer tick. 251 * Runs from hardirq context with interrupts disabled. 252 */ 253 static enum hrtimer_restart hrtick(struct hrtimer *timer) 254 { 255 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 256 257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 258 259 raw_spin_lock(&rq->lock); 260 update_rq_clock(rq); 261 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 262 raw_spin_unlock(&rq->lock); 263 264 return HRTIMER_NORESTART; 265 } 266 267 #ifdef CONFIG_SMP 268 269 static void __hrtick_restart(struct rq *rq) 270 { 271 struct hrtimer *timer = &rq->hrtick_timer; 272 273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 274 } 275 276 /* 277 * called from hardirq (IPI) context 278 */ 279 static void __hrtick_start(void *arg) 280 { 281 struct rq *rq = arg; 282 283 raw_spin_lock(&rq->lock); 284 __hrtick_restart(rq); 285 rq->hrtick_csd_pending = 0; 286 raw_spin_unlock(&rq->lock); 287 } 288 289 /* 290 * Called to set the hrtick timer state. 291 * 292 * called with rq->lock held and irqs disabled 293 */ 294 void hrtick_start(struct rq *rq, u64 delay) 295 { 296 struct hrtimer *timer = &rq->hrtick_timer; 297 ktime_t time; 298 s64 delta; 299 300 /* 301 * Don't schedule slices shorter than 10000ns, that just 302 * doesn't make sense and can cause timer DoS. 303 */ 304 delta = max_t(s64, delay, 10000LL); 305 time = ktime_add_ns(timer->base->get_time(), delta); 306 307 hrtimer_set_expires(timer, time); 308 309 if (rq == this_rq()) { 310 __hrtick_restart(rq); 311 } else if (!rq->hrtick_csd_pending) { 312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 313 rq->hrtick_csd_pending = 1; 314 } 315 } 316 317 #else 318 /* 319 * Called to set the hrtick timer state. 320 * 321 * called with rq->lock held and irqs disabled 322 */ 323 void hrtick_start(struct rq *rq, u64 delay) 324 { 325 /* 326 * Don't schedule slices shorter than 10000ns, that just 327 * doesn't make sense. Rely on vruntime for fairness. 328 */ 329 delay = max_t(u64, delay, 10000LL); 330 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 331 HRTIMER_MODE_REL_PINNED); 332 } 333 #endif /* CONFIG_SMP */ 334 335 static void init_rq_hrtick(struct rq *rq) 336 { 337 #ifdef CONFIG_SMP 338 rq->hrtick_csd_pending = 0; 339 340 rq->hrtick_csd.flags = 0; 341 rq->hrtick_csd.func = __hrtick_start; 342 rq->hrtick_csd.info = rq; 343 #endif 344 345 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 346 rq->hrtick_timer.function = hrtick; 347 } 348 #else /* CONFIG_SCHED_HRTICK */ 349 static inline void hrtick_clear(struct rq *rq) 350 { 351 } 352 353 static inline void init_rq_hrtick(struct rq *rq) 354 { 355 } 356 #endif /* CONFIG_SCHED_HRTICK */ 357 358 /* 359 * cmpxchg based fetch_or, macro so it works for different integer types 360 */ 361 #define fetch_or(ptr, mask) \ 362 ({ \ 363 typeof(ptr) _ptr = (ptr); \ 364 typeof(mask) _mask = (mask); \ 365 typeof(*_ptr) _old, _val = *_ptr; \ 366 \ 367 for (;;) { \ 368 _old = cmpxchg(_ptr, _val, _val | _mask); \ 369 if (_old == _val) \ 370 break; \ 371 _val = _old; \ 372 } \ 373 _old; \ 374 }) 375 376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 377 /* 378 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 379 * this avoids any races wrt polling state changes and thereby avoids 380 * spurious IPIs. 381 */ 382 static bool set_nr_and_not_polling(struct task_struct *p) 383 { 384 struct thread_info *ti = task_thread_info(p); 385 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 386 } 387 388 /* 389 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 390 * 391 * If this returns true, then the idle task promises to call 392 * sched_ttwu_pending() and reschedule soon. 393 */ 394 static bool set_nr_if_polling(struct task_struct *p) 395 { 396 struct thread_info *ti = task_thread_info(p); 397 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 398 399 for (;;) { 400 if (!(val & _TIF_POLLING_NRFLAG)) 401 return false; 402 if (val & _TIF_NEED_RESCHED) 403 return true; 404 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 405 if (old == val) 406 break; 407 val = old; 408 } 409 return true; 410 } 411 412 #else 413 static bool set_nr_and_not_polling(struct task_struct *p) 414 { 415 set_tsk_need_resched(p); 416 return true; 417 } 418 419 #ifdef CONFIG_SMP 420 static bool set_nr_if_polling(struct task_struct *p) 421 { 422 return false; 423 } 424 #endif 425 #endif 426 427 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 428 { 429 struct wake_q_node *node = &task->wake_q; 430 431 /* 432 * Atomically grab the task, if ->wake_q is !nil already it means 433 * its already queued (either by us or someone else) and will get the 434 * wakeup due to that. 435 * 436 * This cmpxchg() implies a full barrier, which pairs with the write 437 * barrier implied by the wakeup in wake_up_q(). 438 */ 439 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 440 return; 441 442 get_task_struct(task); 443 444 /* 445 * The head is context local, there can be no concurrency. 446 */ 447 *head->lastp = node; 448 head->lastp = &node->next; 449 } 450 451 void wake_up_q(struct wake_q_head *head) 452 { 453 struct wake_q_node *node = head->first; 454 455 while (node != WAKE_Q_TAIL) { 456 struct task_struct *task; 457 458 task = container_of(node, struct task_struct, wake_q); 459 BUG_ON(!task); 460 /* task can safely be re-inserted now */ 461 node = node->next; 462 task->wake_q.next = NULL; 463 464 /* 465 * wake_up_process() implies a wmb() to pair with the queueing 466 * in wake_q_add() so as not to miss wakeups. 467 */ 468 wake_up_process(task); 469 put_task_struct(task); 470 } 471 } 472 473 /* 474 * resched_curr - mark rq's current task 'to be rescheduled now'. 475 * 476 * On UP this means the setting of the need_resched flag, on SMP it 477 * might also involve a cross-CPU call to trigger the scheduler on 478 * the target CPU. 479 */ 480 void resched_curr(struct rq *rq) 481 { 482 struct task_struct *curr = rq->curr; 483 int cpu; 484 485 lockdep_assert_held(&rq->lock); 486 487 if (test_tsk_need_resched(curr)) 488 return; 489 490 cpu = cpu_of(rq); 491 492 if (cpu == smp_processor_id()) { 493 set_tsk_need_resched(curr); 494 set_preempt_need_resched(); 495 return; 496 } 497 498 if (set_nr_and_not_polling(curr)) 499 smp_send_reschedule(cpu); 500 else 501 trace_sched_wake_idle_without_ipi(cpu); 502 } 503 504 void resched_cpu(int cpu) 505 { 506 struct rq *rq = cpu_rq(cpu); 507 unsigned long flags; 508 509 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 510 return; 511 resched_curr(rq); 512 raw_spin_unlock_irqrestore(&rq->lock, flags); 513 } 514 515 #ifdef CONFIG_SMP 516 #ifdef CONFIG_NO_HZ_COMMON 517 /* 518 * In the semi idle case, use the nearest busy cpu for migrating timers 519 * from an idle cpu. This is good for power-savings. 520 * 521 * We don't do similar optimization for completely idle system, as 522 * selecting an idle cpu will add more delays to the timers than intended 523 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 524 */ 525 int get_nohz_timer_target(void) 526 { 527 int i, cpu = smp_processor_id(); 528 struct sched_domain *sd; 529 530 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) 531 return cpu; 532 533 rcu_read_lock(); 534 for_each_domain(cpu, sd) { 535 for_each_cpu(i, sched_domain_span(sd)) { 536 if (cpu == i) 537 continue; 538 539 if (!idle_cpu(i) && is_housekeeping_cpu(i)) { 540 cpu = i; 541 goto unlock; 542 } 543 } 544 } 545 546 if (!is_housekeeping_cpu(cpu)) 547 cpu = housekeeping_any_cpu(); 548 unlock: 549 rcu_read_unlock(); 550 return cpu; 551 } 552 /* 553 * When add_timer_on() enqueues a timer into the timer wheel of an 554 * idle CPU then this timer might expire before the next timer event 555 * which is scheduled to wake up that CPU. In case of a completely 556 * idle system the next event might even be infinite time into the 557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 558 * leaves the inner idle loop so the newly added timer is taken into 559 * account when the CPU goes back to idle and evaluates the timer 560 * wheel for the next timer event. 561 */ 562 static void wake_up_idle_cpu(int cpu) 563 { 564 struct rq *rq = cpu_rq(cpu); 565 566 if (cpu == smp_processor_id()) 567 return; 568 569 if (set_nr_and_not_polling(rq->idle)) 570 smp_send_reschedule(cpu); 571 else 572 trace_sched_wake_idle_without_ipi(cpu); 573 } 574 575 static bool wake_up_full_nohz_cpu(int cpu) 576 { 577 /* 578 * We just need the target to call irq_exit() and re-evaluate 579 * the next tick. The nohz full kick at least implies that. 580 * If needed we can still optimize that later with an 581 * empty IRQ. 582 */ 583 if (tick_nohz_full_cpu(cpu)) { 584 if (cpu != smp_processor_id() || 585 tick_nohz_tick_stopped()) 586 tick_nohz_full_kick_cpu(cpu); 587 return true; 588 } 589 590 return false; 591 } 592 593 void wake_up_nohz_cpu(int cpu) 594 { 595 if (!wake_up_full_nohz_cpu(cpu)) 596 wake_up_idle_cpu(cpu); 597 } 598 599 static inline bool got_nohz_idle_kick(void) 600 { 601 int cpu = smp_processor_id(); 602 603 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 604 return false; 605 606 if (idle_cpu(cpu) && !need_resched()) 607 return true; 608 609 /* 610 * We can't run Idle Load Balance on this CPU for this time so we 611 * cancel it and clear NOHZ_BALANCE_KICK 612 */ 613 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 614 return false; 615 } 616 617 #else /* CONFIG_NO_HZ_COMMON */ 618 619 static inline bool got_nohz_idle_kick(void) 620 { 621 return false; 622 } 623 624 #endif /* CONFIG_NO_HZ_COMMON */ 625 626 #ifdef CONFIG_NO_HZ_FULL 627 bool sched_can_stop_tick(struct rq *rq) 628 { 629 int fifo_nr_running; 630 631 /* Deadline tasks, even if single, need the tick */ 632 if (rq->dl.dl_nr_running) 633 return false; 634 635 /* 636 * If there are more than one RR tasks, we need the tick to effect the 637 * actual RR behaviour. 638 */ 639 if (rq->rt.rr_nr_running) { 640 if (rq->rt.rr_nr_running == 1) 641 return true; 642 else 643 return false; 644 } 645 646 /* 647 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 648 * forced preemption between FIFO tasks. 649 */ 650 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 651 if (fifo_nr_running) 652 return true; 653 654 /* 655 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 656 * if there's more than one we need the tick for involuntary 657 * preemption. 658 */ 659 if (rq->nr_running > 1) 660 return false; 661 662 return true; 663 } 664 #endif /* CONFIG_NO_HZ_FULL */ 665 666 void sched_avg_update(struct rq *rq) 667 { 668 s64 period = sched_avg_period(); 669 670 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 671 /* 672 * Inline assembly required to prevent the compiler 673 * optimising this loop into a divmod call. 674 * See __iter_div_u64_rem() for another example of this. 675 */ 676 asm("" : "+rm" (rq->age_stamp)); 677 rq->age_stamp += period; 678 rq->rt_avg /= 2; 679 } 680 } 681 682 #endif /* CONFIG_SMP */ 683 684 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 685 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 686 /* 687 * Iterate task_group tree rooted at *from, calling @down when first entering a 688 * node and @up when leaving it for the final time. 689 * 690 * Caller must hold rcu_lock or sufficient equivalent. 691 */ 692 int walk_tg_tree_from(struct task_group *from, 693 tg_visitor down, tg_visitor up, void *data) 694 { 695 struct task_group *parent, *child; 696 int ret; 697 698 parent = from; 699 700 down: 701 ret = (*down)(parent, data); 702 if (ret) 703 goto out; 704 list_for_each_entry_rcu(child, &parent->children, siblings) { 705 parent = child; 706 goto down; 707 708 up: 709 continue; 710 } 711 ret = (*up)(parent, data); 712 if (ret || parent == from) 713 goto out; 714 715 child = parent; 716 parent = parent->parent; 717 if (parent) 718 goto up; 719 out: 720 return ret; 721 } 722 723 int tg_nop(struct task_group *tg, void *data) 724 { 725 return 0; 726 } 727 #endif 728 729 static void set_load_weight(struct task_struct *p) 730 { 731 int prio = p->static_prio - MAX_RT_PRIO; 732 struct load_weight *load = &p->se.load; 733 734 /* 735 * SCHED_IDLE tasks get minimal weight: 736 */ 737 if (idle_policy(p->policy)) { 738 load->weight = scale_load(WEIGHT_IDLEPRIO); 739 load->inv_weight = WMULT_IDLEPRIO; 740 return; 741 } 742 743 load->weight = scale_load(sched_prio_to_weight[prio]); 744 load->inv_weight = sched_prio_to_wmult[prio]; 745 } 746 747 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 748 { 749 update_rq_clock(rq); 750 if (!(flags & ENQUEUE_RESTORE)) 751 sched_info_queued(rq, p); 752 p->sched_class->enqueue_task(rq, p, flags); 753 } 754 755 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 756 { 757 update_rq_clock(rq); 758 if (!(flags & DEQUEUE_SAVE)) 759 sched_info_dequeued(rq, p); 760 p->sched_class->dequeue_task(rq, p, flags); 761 } 762 763 void activate_task(struct rq *rq, struct task_struct *p, int flags) 764 { 765 if (task_contributes_to_load(p)) 766 rq->nr_uninterruptible--; 767 768 enqueue_task(rq, p, flags); 769 } 770 771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 772 { 773 if (task_contributes_to_load(p)) 774 rq->nr_uninterruptible++; 775 776 dequeue_task(rq, p, flags); 777 } 778 779 static void update_rq_clock_task(struct rq *rq, s64 delta) 780 { 781 /* 782 * In theory, the compile should just see 0 here, and optimize out the call 783 * to sched_rt_avg_update. But I don't trust it... 784 */ 785 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 786 s64 steal = 0, irq_delta = 0; 787 #endif 788 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 789 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 790 791 /* 792 * Since irq_time is only updated on {soft,}irq_exit, we might run into 793 * this case when a previous update_rq_clock() happened inside a 794 * {soft,}irq region. 795 * 796 * When this happens, we stop ->clock_task and only update the 797 * prev_irq_time stamp to account for the part that fit, so that a next 798 * update will consume the rest. This ensures ->clock_task is 799 * monotonic. 800 * 801 * It does however cause some slight miss-attribution of {soft,}irq 802 * time, a more accurate solution would be to update the irq_time using 803 * the current rq->clock timestamp, except that would require using 804 * atomic ops. 805 */ 806 if (irq_delta > delta) 807 irq_delta = delta; 808 809 rq->prev_irq_time += irq_delta; 810 delta -= irq_delta; 811 #endif 812 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 813 if (static_key_false((¶virt_steal_rq_enabled))) { 814 steal = paravirt_steal_clock(cpu_of(rq)); 815 steal -= rq->prev_steal_time_rq; 816 817 if (unlikely(steal > delta)) 818 steal = delta; 819 820 rq->prev_steal_time_rq += steal; 821 delta -= steal; 822 } 823 #endif 824 825 rq->clock_task += delta; 826 827 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 828 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 829 sched_rt_avg_update(rq, irq_delta + steal); 830 #endif 831 } 832 833 void sched_set_stop_task(int cpu, struct task_struct *stop) 834 { 835 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 836 struct task_struct *old_stop = cpu_rq(cpu)->stop; 837 838 if (stop) { 839 /* 840 * Make it appear like a SCHED_FIFO task, its something 841 * userspace knows about and won't get confused about. 842 * 843 * Also, it will make PI more or less work without too 844 * much confusion -- but then, stop work should not 845 * rely on PI working anyway. 846 */ 847 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 848 849 stop->sched_class = &stop_sched_class; 850 } 851 852 cpu_rq(cpu)->stop = stop; 853 854 if (old_stop) { 855 /* 856 * Reset it back to a normal scheduling class so that 857 * it can die in pieces. 858 */ 859 old_stop->sched_class = &rt_sched_class; 860 } 861 } 862 863 /* 864 * __normal_prio - return the priority that is based on the static prio 865 */ 866 static inline int __normal_prio(struct task_struct *p) 867 { 868 return p->static_prio; 869 } 870 871 /* 872 * Calculate the expected normal priority: i.e. priority 873 * without taking RT-inheritance into account. Might be 874 * boosted by interactivity modifiers. Changes upon fork, 875 * setprio syscalls, and whenever the interactivity 876 * estimator recalculates. 877 */ 878 static inline int normal_prio(struct task_struct *p) 879 { 880 int prio; 881 882 if (task_has_dl_policy(p)) 883 prio = MAX_DL_PRIO-1; 884 else if (task_has_rt_policy(p)) 885 prio = MAX_RT_PRIO-1 - p->rt_priority; 886 else 887 prio = __normal_prio(p); 888 return prio; 889 } 890 891 /* 892 * Calculate the current priority, i.e. the priority 893 * taken into account by the scheduler. This value might 894 * be boosted by RT tasks, or might be boosted by 895 * interactivity modifiers. Will be RT if the task got 896 * RT-boosted. If not then it returns p->normal_prio. 897 */ 898 static int effective_prio(struct task_struct *p) 899 { 900 p->normal_prio = normal_prio(p); 901 /* 902 * If we are RT tasks or we were boosted to RT priority, 903 * keep the priority unchanged. Otherwise, update priority 904 * to the normal priority: 905 */ 906 if (!rt_prio(p->prio)) 907 return p->normal_prio; 908 return p->prio; 909 } 910 911 /** 912 * task_curr - is this task currently executing on a CPU? 913 * @p: the task in question. 914 * 915 * Return: 1 if the task is currently executing. 0 otherwise. 916 */ 917 inline int task_curr(const struct task_struct *p) 918 { 919 return cpu_curr(task_cpu(p)) == p; 920 } 921 922 /* 923 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 924 * use the balance_callback list if you want balancing. 925 * 926 * this means any call to check_class_changed() must be followed by a call to 927 * balance_callback(). 928 */ 929 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 930 const struct sched_class *prev_class, 931 int oldprio) 932 { 933 if (prev_class != p->sched_class) { 934 if (prev_class->switched_from) 935 prev_class->switched_from(rq, p); 936 937 p->sched_class->switched_to(rq, p); 938 } else if (oldprio != p->prio || dl_task(p)) 939 p->sched_class->prio_changed(rq, p, oldprio); 940 } 941 942 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 943 { 944 const struct sched_class *class; 945 946 if (p->sched_class == rq->curr->sched_class) { 947 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 948 } else { 949 for_each_class(class) { 950 if (class == rq->curr->sched_class) 951 break; 952 if (class == p->sched_class) { 953 resched_curr(rq); 954 break; 955 } 956 } 957 } 958 959 /* 960 * A queue event has occurred, and we're going to schedule. In 961 * this case, we can save a useless back to back clock update. 962 */ 963 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 964 rq_clock_skip_update(rq, true); 965 } 966 967 #ifdef CONFIG_SMP 968 /* 969 * This is how migration works: 970 * 971 * 1) we invoke migration_cpu_stop() on the target CPU using 972 * stop_one_cpu(). 973 * 2) stopper starts to run (implicitly forcing the migrated thread 974 * off the CPU) 975 * 3) it checks whether the migrated task is still in the wrong runqueue. 976 * 4) if it's in the wrong runqueue then the migration thread removes 977 * it and puts it into the right queue. 978 * 5) stopper completes and stop_one_cpu() returns and the migration 979 * is done. 980 */ 981 982 /* 983 * move_queued_task - move a queued task to new rq. 984 * 985 * Returns (locked) new rq. Old rq's lock is released. 986 */ 987 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu) 988 { 989 lockdep_assert_held(&rq->lock); 990 991 p->on_rq = TASK_ON_RQ_MIGRATING; 992 dequeue_task(rq, p, 0); 993 set_task_cpu(p, new_cpu); 994 raw_spin_unlock(&rq->lock); 995 996 rq = cpu_rq(new_cpu); 997 998 raw_spin_lock(&rq->lock); 999 BUG_ON(task_cpu(p) != new_cpu); 1000 enqueue_task(rq, p, 0); 1001 p->on_rq = TASK_ON_RQ_QUEUED; 1002 check_preempt_curr(rq, p, 0); 1003 1004 return rq; 1005 } 1006 1007 struct migration_arg { 1008 struct task_struct *task; 1009 int dest_cpu; 1010 }; 1011 1012 /* 1013 * Move (not current) task off this cpu, onto dest cpu. We're doing 1014 * this because either it can't run here any more (set_cpus_allowed() 1015 * away from this CPU, or CPU going down), or because we're 1016 * attempting to rebalance this task on exec (sched_exec). 1017 * 1018 * So we race with normal scheduler movements, but that's OK, as long 1019 * as the task is no longer on this CPU. 1020 */ 1021 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu) 1022 { 1023 if (unlikely(!cpu_active(dest_cpu))) 1024 return rq; 1025 1026 /* Affinity changed (again). */ 1027 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1028 return rq; 1029 1030 rq = move_queued_task(rq, p, dest_cpu); 1031 1032 return rq; 1033 } 1034 1035 /* 1036 * migration_cpu_stop - this will be executed by a highprio stopper thread 1037 * and performs thread migration by bumping thread off CPU then 1038 * 'pushing' onto another runqueue. 1039 */ 1040 static int migration_cpu_stop(void *data) 1041 { 1042 struct migration_arg *arg = data; 1043 struct task_struct *p = arg->task; 1044 struct rq *rq = this_rq(); 1045 1046 /* 1047 * The original target cpu might have gone down and we might 1048 * be on another cpu but it doesn't matter. 1049 */ 1050 local_irq_disable(); 1051 /* 1052 * We need to explicitly wake pending tasks before running 1053 * __migrate_task() such that we will not miss enforcing cpus_allowed 1054 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1055 */ 1056 sched_ttwu_pending(); 1057 1058 raw_spin_lock(&p->pi_lock); 1059 raw_spin_lock(&rq->lock); 1060 /* 1061 * If task_rq(p) != rq, it cannot be migrated here, because we're 1062 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1063 * we're holding p->pi_lock. 1064 */ 1065 if (task_rq(p) == rq && task_on_rq_queued(p)) 1066 rq = __migrate_task(rq, p, arg->dest_cpu); 1067 raw_spin_unlock(&rq->lock); 1068 raw_spin_unlock(&p->pi_lock); 1069 1070 local_irq_enable(); 1071 return 0; 1072 } 1073 1074 /* 1075 * sched_class::set_cpus_allowed must do the below, but is not required to 1076 * actually call this function. 1077 */ 1078 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1079 { 1080 cpumask_copy(&p->cpus_allowed, new_mask); 1081 p->nr_cpus_allowed = cpumask_weight(new_mask); 1082 } 1083 1084 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1085 { 1086 struct rq *rq = task_rq(p); 1087 bool queued, running; 1088 1089 lockdep_assert_held(&p->pi_lock); 1090 1091 queued = task_on_rq_queued(p); 1092 running = task_current(rq, p); 1093 1094 if (queued) { 1095 /* 1096 * Because __kthread_bind() calls this on blocked tasks without 1097 * holding rq->lock. 1098 */ 1099 lockdep_assert_held(&rq->lock); 1100 dequeue_task(rq, p, DEQUEUE_SAVE); 1101 } 1102 if (running) 1103 put_prev_task(rq, p); 1104 1105 p->sched_class->set_cpus_allowed(p, new_mask); 1106 1107 if (running) 1108 p->sched_class->set_curr_task(rq); 1109 if (queued) 1110 enqueue_task(rq, p, ENQUEUE_RESTORE); 1111 } 1112 1113 /* 1114 * Change a given task's CPU affinity. Migrate the thread to a 1115 * proper CPU and schedule it away if the CPU it's executing on 1116 * is removed from the allowed bitmask. 1117 * 1118 * NOTE: the caller must have a valid reference to the task, the 1119 * task must not exit() & deallocate itself prematurely. The 1120 * call is not atomic; no spinlocks may be held. 1121 */ 1122 static int __set_cpus_allowed_ptr(struct task_struct *p, 1123 const struct cpumask *new_mask, bool check) 1124 { 1125 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1126 unsigned int dest_cpu; 1127 struct rq_flags rf; 1128 struct rq *rq; 1129 int ret = 0; 1130 1131 rq = task_rq_lock(p, &rf); 1132 1133 if (p->flags & PF_KTHREAD) { 1134 /* 1135 * Kernel threads are allowed on online && !active CPUs 1136 */ 1137 cpu_valid_mask = cpu_online_mask; 1138 } 1139 1140 /* 1141 * Must re-check here, to close a race against __kthread_bind(), 1142 * sched_setaffinity() is not guaranteed to observe the flag. 1143 */ 1144 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1145 ret = -EINVAL; 1146 goto out; 1147 } 1148 1149 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1150 goto out; 1151 1152 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1153 ret = -EINVAL; 1154 goto out; 1155 } 1156 1157 do_set_cpus_allowed(p, new_mask); 1158 1159 if (p->flags & PF_KTHREAD) { 1160 /* 1161 * For kernel threads that do indeed end up on online && 1162 * !active we want to ensure they are strict per-cpu threads. 1163 */ 1164 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1165 !cpumask_intersects(new_mask, cpu_active_mask) && 1166 p->nr_cpus_allowed != 1); 1167 } 1168 1169 /* Can the task run on the task's current CPU? If so, we're done */ 1170 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1171 goto out; 1172 1173 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1174 if (task_running(rq, p) || p->state == TASK_WAKING) { 1175 struct migration_arg arg = { p, dest_cpu }; 1176 /* Need help from migration thread: drop lock and wait. */ 1177 task_rq_unlock(rq, p, &rf); 1178 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1179 tlb_migrate_finish(p->mm); 1180 return 0; 1181 } else if (task_on_rq_queued(p)) { 1182 /* 1183 * OK, since we're going to drop the lock immediately 1184 * afterwards anyway. 1185 */ 1186 lockdep_unpin_lock(&rq->lock, rf.cookie); 1187 rq = move_queued_task(rq, p, dest_cpu); 1188 lockdep_repin_lock(&rq->lock, rf.cookie); 1189 } 1190 out: 1191 task_rq_unlock(rq, p, &rf); 1192 1193 return ret; 1194 } 1195 1196 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1197 { 1198 return __set_cpus_allowed_ptr(p, new_mask, false); 1199 } 1200 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1201 1202 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1203 { 1204 #ifdef CONFIG_SCHED_DEBUG 1205 /* 1206 * We should never call set_task_cpu() on a blocked task, 1207 * ttwu() will sort out the placement. 1208 */ 1209 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1210 !p->on_rq); 1211 1212 /* 1213 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1214 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1215 * time relying on p->on_rq. 1216 */ 1217 WARN_ON_ONCE(p->state == TASK_RUNNING && 1218 p->sched_class == &fair_sched_class && 1219 (p->on_rq && !task_on_rq_migrating(p))); 1220 1221 #ifdef CONFIG_LOCKDEP 1222 /* 1223 * The caller should hold either p->pi_lock or rq->lock, when changing 1224 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1225 * 1226 * sched_move_task() holds both and thus holding either pins the cgroup, 1227 * see task_group(). 1228 * 1229 * Furthermore, all task_rq users should acquire both locks, see 1230 * task_rq_lock(). 1231 */ 1232 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1233 lockdep_is_held(&task_rq(p)->lock))); 1234 #endif 1235 #endif 1236 1237 trace_sched_migrate_task(p, new_cpu); 1238 1239 if (task_cpu(p) != new_cpu) { 1240 if (p->sched_class->migrate_task_rq) 1241 p->sched_class->migrate_task_rq(p); 1242 p->se.nr_migrations++; 1243 perf_event_task_migrate(p); 1244 } 1245 1246 __set_task_cpu(p, new_cpu); 1247 } 1248 1249 static void __migrate_swap_task(struct task_struct *p, int cpu) 1250 { 1251 if (task_on_rq_queued(p)) { 1252 struct rq *src_rq, *dst_rq; 1253 1254 src_rq = task_rq(p); 1255 dst_rq = cpu_rq(cpu); 1256 1257 p->on_rq = TASK_ON_RQ_MIGRATING; 1258 deactivate_task(src_rq, p, 0); 1259 set_task_cpu(p, cpu); 1260 activate_task(dst_rq, p, 0); 1261 p->on_rq = TASK_ON_RQ_QUEUED; 1262 check_preempt_curr(dst_rq, p, 0); 1263 } else { 1264 /* 1265 * Task isn't running anymore; make it appear like we migrated 1266 * it before it went to sleep. This means on wakeup we make the 1267 * previous cpu our targer instead of where it really is. 1268 */ 1269 p->wake_cpu = cpu; 1270 } 1271 } 1272 1273 struct migration_swap_arg { 1274 struct task_struct *src_task, *dst_task; 1275 int src_cpu, dst_cpu; 1276 }; 1277 1278 static int migrate_swap_stop(void *data) 1279 { 1280 struct migration_swap_arg *arg = data; 1281 struct rq *src_rq, *dst_rq; 1282 int ret = -EAGAIN; 1283 1284 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1285 return -EAGAIN; 1286 1287 src_rq = cpu_rq(arg->src_cpu); 1288 dst_rq = cpu_rq(arg->dst_cpu); 1289 1290 double_raw_lock(&arg->src_task->pi_lock, 1291 &arg->dst_task->pi_lock); 1292 double_rq_lock(src_rq, dst_rq); 1293 1294 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1295 goto unlock; 1296 1297 if (task_cpu(arg->src_task) != arg->src_cpu) 1298 goto unlock; 1299 1300 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1301 goto unlock; 1302 1303 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1304 goto unlock; 1305 1306 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1307 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1308 1309 ret = 0; 1310 1311 unlock: 1312 double_rq_unlock(src_rq, dst_rq); 1313 raw_spin_unlock(&arg->dst_task->pi_lock); 1314 raw_spin_unlock(&arg->src_task->pi_lock); 1315 1316 return ret; 1317 } 1318 1319 /* 1320 * Cross migrate two tasks 1321 */ 1322 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1323 { 1324 struct migration_swap_arg arg; 1325 int ret = -EINVAL; 1326 1327 arg = (struct migration_swap_arg){ 1328 .src_task = cur, 1329 .src_cpu = task_cpu(cur), 1330 .dst_task = p, 1331 .dst_cpu = task_cpu(p), 1332 }; 1333 1334 if (arg.src_cpu == arg.dst_cpu) 1335 goto out; 1336 1337 /* 1338 * These three tests are all lockless; this is OK since all of them 1339 * will be re-checked with proper locks held further down the line. 1340 */ 1341 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1342 goto out; 1343 1344 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1345 goto out; 1346 1347 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1348 goto out; 1349 1350 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1351 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1352 1353 out: 1354 return ret; 1355 } 1356 1357 /* 1358 * wait_task_inactive - wait for a thread to unschedule. 1359 * 1360 * If @match_state is nonzero, it's the @p->state value just checked and 1361 * not expected to change. If it changes, i.e. @p might have woken up, 1362 * then return zero. When we succeed in waiting for @p to be off its CPU, 1363 * we return a positive number (its total switch count). If a second call 1364 * a short while later returns the same number, the caller can be sure that 1365 * @p has remained unscheduled the whole time. 1366 * 1367 * The caller must ensure that the task *will* unschedule sometime soon, 1368 * else this function might spin for a *long* time. This function can't 1369 * be called with interrupts off, or it may introduce deadlock with 1370 * smp_call_function() if an IPI is sent by the same process we are 1371 * waiting to become inactive. 1372 */ 1373 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1374 { 1375 int running, queued; 1376 struct rq_flags rf; 1377 unsigned long ncsw; 1378 struct rq *rq; 1379 1380 for (;;) { 1381 /* 1382 * We do the initial early heuristics without holding 1383 * any task-queue locks at all. We'll only try to get 1384 * the runqueue lock when things look like they will 1385 * work out! 1386 */ 1387 rq = task_rq(p); 1388 1389 /* 1390 * If the task is actively running on another CPU 1391 * still, just relax and busy-wait without holding 1392 * any locks. 1393 * 1394 * NOTE! Since we don't hold any locks, it's not 1395 * even sure that "rq" stays as the right runqueue! 1396 * But we don't care, since "task_running()" will 1397 * return false if the runqueue has changed and p 1398 * is actually now running somewhere else! 1399 */ 1400 while (task_running(rq, p)) { 1401 if (match_state && unlikely(p->state != match_state)) 1402 return 0; 1403 cpu_relax(); 1404 } 1405 1406 /* 1407 * Ok, time to look more closely! We need the rq 1408 * lock now, to be *sure*. If we're wrong, we'll 1409 * just go back and repeat. 1410 */ 1411 rq = task_rq_lock(p, &rf); 1412 trace_sched_wait_task(p); 1413 running = task_running(rq, p); 1414 queued = task_on_rq_queued(p); 1415 ncsw = 0; 1416 if (!match_state || p->state == match_state) 1417 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1418 task_rq_unlock(rq, p, &rf); 1419 1420 /* 1421 * If it changed from the expected state, bail out now. 1422 */ 1423 if (unlikely(!ncsw)) 1424 break; 1425 1426 /* 1427 * Was it really running after all now that we 1428 * checked with the proper locks actually held? 1429 * 1430 * Oops. Go back and try again.. 1431 */ 1432 if (unlikely(running)) { 1433 cpu_relax(); 1434 continue; 1435 } 1436 1437 /* 1438 * It's not enough that it's not actively running, 1439 * it must be off the runqueue _entirely_, and not 1440 * preempted! 1441 * 1442 * So if it was still runnable (but just not actively 1443 * running right now), it's preempted, and we should 1444 * yield - it could be a while. 1445 */ 1446 if (unlikely(queued)) { 1447 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1448 1449 set_current_state(TASK_UNINTERRUPTIBLE); 1450 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1451 continue; 1452 } 1453 1454 /* 1455 * Ahh, all good. It wasn't running, and it wasn't 1456 * runnable, which means that it will never become 1457 * running in the future either. We're all done! 1458 */ 1459 break; 1460 } 1461 1462 return ncsw; 1463 } 1464 1465 /*** 1466 * kick_process - kick a running thread to enter/exit the kernel 1467 * @p: the to-be-kicked thread 1468 * 1469 * Cause a process which is running on another CPU to enter 1470 * kernel-mode, without any delay. (to get signals handled.) 1471 * 1472 * NOTE: this function doesn't have to take the runqueue lock, 1473 * because all it wants to ensure is that the remote task enters 1474 * the kernel. If the IPI races and the task has been migrated 1475 * to another CPU then no harm is done and the purpose has been 1476 * achieved as well. 1477 */ 1478 void kick_process(struct task_struct *p) 1479 { 1480 int cpu; 1481 1482 preempt_disable(); 1483 cpu = task_cpu(p); 1484 if ((cpu != smp_processor_id()) && task_curr(p)) 1485 smp_send_reschedule(cpu); 1486 preempt_enable(); 1487 } 1488 EXPORT_SYMBOL_GPL(kick_process); 1489 1490 /* 1491 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1492 * 1493 * A few notes on cpu_active vs cpu_online: 1494 * 1495 * - cpu_active must be a subset of cpu_online 1496 * 1497 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu, 1498 * see __set_cpus_allowed_ptr(). At this point the newly online 1499 * cpu isn't yet part of the sched domains, and balancing will not 1500 * see it. 1501 * 1502 * - on cpu-down we clear cpu_active() to mask the sched domains and 1503 * avoid the load balancer to place new tasks on the to be removed 1504 * cpu. Existing tasks will remain running there and will be taken 1505 * off. 1506 * 1507 * This means that fallback selection must not select !active CPUs. 1508 * And can assume that any active CPU must be online. Conversely 1509 * select_task_rq() below may allow selection of !active CPUs in order 1510 * to satisfy the above rules. 1511 */ 1512 static int select_fallback_rq(int cpu, struct task_struct *p) 1513 { 1514 int nid = cpu_to_node(cpu); 1515 const struct cpumask *nodemask = NULL; 1516 enum { cpuset, possible, fail } state = cpuset; 1517 int dest_cpu; 1518 1519 /* 1520 * If the node that the cpu is on has been offlined, cpu_to_node() 1521 * will return -1. There is no cpu on the node, and we should 1522 * select the cpu on the other node. 1523 */ 1524 if (nid != -1) { 1525 nodemask = cpumask_of_node(nid); 1526 1527 /* Look for allowed, online CPU in same node. */ 1528 for_each_cpu(dest_cpu, nodemask) { 1529 if (!cpu_active(dest_cpu)) 1530 continue; 1531 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1532 return dest_cpu; 1533 } 1534 } 1535 1536 for (;;) { 1537 /* Any allowed, online CPU? */ 1538 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1539 if (!cpu_active(dest_cpu)) 1540 continue; 1541 goto out; 1542 } 1543 1544 /* No more Mr. Nice Guy. */ 1545 switch (state) { 1546 case cpuset: 1547 if (IS_ENABLED(CONFIG_CPUSETS)) { 1548 cpuset_cpus_allowed_fallback(p); 1549 state = possible; 1550 break; 1551 } 1552 /* fall-through */ 1553 case possible: 1554 do_set_cpus_allowed(p, cpu_possible_mask); 1555 state = fail; 1556 break; 1557 1558 case fail: 1559 BUG(); 1560 break; 1561 } 1562 } 1563 1564 out: 1565 if (state != cpuset) { 1566 /* 1567 * Don't tell them about moving exiting tasks or 1568 * kernel threads (both mm NULL), since they never 1569 * leave kernel. 1570 */ 1571 if (p->mm && printk_ratelimit()) { 1572 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1573 task_pid_nr(p), p->comm, cpu); 1574 } 1575 } 1576 1577 return dest_cpu; 1578 } 1579 1580 /* 1581 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1582 */ 1583 static inline 1584 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1585 { 1586 lockdep_assert_held(&p->pi_lock); 1587 1588 if (tsk_nr_cpus_allowed(p) > 1) 1589 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1590 else 1591 cpu = cpumask_any(tsk_cpus_allowed(p)); 1592 1593 /* 1594 * In order not to call set_task_cpu() on a blocking task we need 1595 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1596 * cpu. 1597 * 1598 * Since this is common to all placement strategies, this lives here. 1599 * 1600 * [ this allows ->select_task() to simply return task_cpu(p) and 1601 * not worry about this generic constraint ] 1602 */ 1603 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1604 !cpu_online(cpu))) 1605 cpu = select_fallback_rq(task_cpu(p), p); 1606 1607 return cpu; 1608 } 1609 1610 static void update_avg(u64 *avg, u64 sample) 1611 { 1612 s64 diff = sample - *avg; 1613 *avg += diff >> 3; 1614 } 1615 1616 #else 1617 1618 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1619 const struct cpumask *new_mask, bool check) 1620 { 1621 return set_cpus_allowed_ptr(p, new_mask); 1622 } 1623 1624 #endif /* CONFIG_SMP */ 1625 1626 static void 1627 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1628 { 1629 #ifdef CONFIG_SCHEDSTATS 1630 struct rq *rq = this_rq(); 1631 1632 #ifdef CONFIG_SMP 1633 int this_cpu = smp_processor_id(); 1634 1635 if (cpu == this_cpu) { 1636 schedstat_inc(rq, ttwu_local); 1637 schedstat_inc(p, se.statistics.nr_wakeups_local); 1638 } else { 1639 struct sched_domain *sd; 1640 1641 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1642 rcu_read_lock(); 1643 for_each_domain(this_cpu, sd) { 1644 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1645 schedstat_inc(sd, ttwu_wake_remote); 1646 break; 1647 } 1648 } 1649 rcu_read_unlock(); 1650 } 1651 1652 if (wake_flags & WF_MIGRATED) 1653 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1654 1655 #endif /* CONFIG_SMP */ 1656 1657 schedstat_inc(rq, ttwu_count); 1658 schedstat_inc(p, se.statistics.nr_wakeups); 1659 1660 if (wake_flags & WF_SYNC) 1661 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1662 1663 #endif /* CONFIG_SCHEDSTATS */ 1664 } 1665 1666 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1667 { 1668 activate_task(rq, p, en_flags); 1669 p->on_rq = TASK_ON_RQ_QUEUED; 1670 1671 /* if a worker is waking up, notify workqueue */ 1672 if (p->flags & PF_WQ_WORKER) 1673 wq_worker_waking_up(p, cpu_of(rq)); 1674 } 1675 1676 /* 1677 * Mark the task runnable and perform wakeup-preemption. 1678 */ 1679 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1680 struct pin_cookie cookie) 1681 { 1682 check_preempt_curr(rq, p, wake_flags); 1683 p->state = TASK_RUNNING; 1684 trace_sched_wakeup(p); 1685 1686 #ifdef CONFIG_SMP 1687 if (p->sched_class->task_woken) { 1688 /* 1689 * Our task @p is fully woken up and running; so its safe to 1690 * drop the rq->lock, hereafter rq is only used for statistics. 1691 */ 1692 lockdep_unpin_lock(&rq->lock, cookie); 1693 p->sched_class->task_woken(rq, p); 1694 lockdep_repin_lock(&rq->lock, cookie); 1695 } 1696 1697 if (rq->idle_stamp) { 1698 u64 delta = rq_clock(rq) - rq->idle_stamp; 1699 u64 max = 2*rq->max_idle_balance_cost; 1700 1701 update_avg(&rq->avg_idle, delta); 1702 1703 if (rq->avg_idle > max) 1704 rq->avg_idle = max; 1705 1706 rq->idle_stamp = 0; 1707 } 1708 #endif 1709 } 1710 1711 static void 1712 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1713 struct pin_cookie cookie) 1714 { 1715 int en_flags = ENQUEUE_WAKEUP; 1716 1717 lockdep_assert_held(&rq->lock); 1718 1719 #ifdef CONFIG_SMP 1720 if (p->sched_contributes_to_load) 1721 rq->nr_uninterruptible--; 1722 1723 if (wake_flags & WF_MIGRATED) 1724 en_flags |= ENQUEUE_MIGRATED; 1725 #endif 1726 1727 ttwu_activate(rq, p, en_flags); 1728 ttwu_do_wakeup(rq, p, wake_flags, cookie); 1729 } 1730 1731 /* 1732 * Called in case the task @p isn't fully descheduled from its runqueue, 1733 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1734 * since all we need to do is flip p->state to TASK_RUNNING, since 1735 * the task is still ->on_rq. 1736 */ 1737 static int ttwu_remote(struct task_struct *p, int wake_flags) 1738 { 1739 struct rq_flags rf; 1740 struct rq *rq; 1741 int ret = 0; 1742 1743 rq = __task_rq_lock(p, &rf); 1744 if (task_on_rq_queued(p)) { 1745 /* check_preempt_curr() may use rq clock */ 1746 update_rq_clock(rq); 1747 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie); 1748 ret = 1; 1749 } 1750 __task_rq_unlock(rq, &rf); 1751 1752 return ret; 1753 } 1754 1755 #ifdef CONFIG_SMP 1756 void sched_ttwu_pending(void) 1757 { 1758 struct rq *rq = this_rq(); 1759 struct llist_node *llist = llist_del_all(&rq->wake_list); 1760 struct pin_cookie cookie; 1761 struct task_struct *p; 1762 unsigned long flags; 1763 1764 if (!llist) 1765 return; 1766 1767 raw_spin_lock_irqsave(&rq->lock, flags); 1768 cookie = lockdep_pin_lock(&rq->lock); 1769 1770 while (llist) { 1771 int wake_flags = 0; 1772 1773 p = llist_entry(llist, struct task_struct, wake_entry); 1774 llist = llist_next(llist); 1775 1776 if (p->sched_remote_wakeup) 1777 wake_flags = WF_MIGRATED; 1778 1779 ttwu_do_activate(rq, p, wake_flags, cookie); 1780 } 1781 1782 lockdep_unpin_lock(&rq->lock, cookie); 1783 raw_spin_unlock_irqrestore(&rq->lock, flags); 1784 } 1785 1786 void scheduler_ipi(void) 1787 { 1788 /* 1789 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1790 * TIF_NEED_RESCHED remotely (for the first time) will also send 1791 * this IPI. 1792 */ 1793 preempt_fold_need_resched(); 1794 1795 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1796 return; 1797 1798 /* 1799 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1800 * traditionally all their work was done from the interrupt return 1801 * path. Now that we actually do some work, we need to make sure 1802 * we do call them. 1803 * 1804 * Some archs already do call them, luckily irq_enter/exit nest 1805 * properly. 1806 * 1807 * Arguably we should visit all archs and update all handlers, 1808 * however a fair share of IPIs are still resched only so this would 1809 * somewhat pessimize the simple resched case. 1810 */ 1811 irq_enter(); 1812 sched_ttwu_pending(); 1813 1814 /* 1815 * Check if someone kicked us for doing the nohz idle load balance. 1816 */ 1817 if (unlikely(got_nohz_idle_kick())) { 1818 this_rq()->idle_balance = 1; 1819 raise_softirq_irqoff(SCHED_SOFTIRQ); 1820 } 1821 irq_exit(); 1822 } 1823 1824 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1825 { 1826 struct rq *rq = cpu_rq(cpu); 1827 1828 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1829 1830 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1831 if (!set_nr_if_polling(rq->idle)) 1832 smp_send_reschedule(cpu); 1833 else 1834 trace_sched_wake_idle_without_ipi(cpu); 1835 } 1836 } 1837 1838 void wake_up_if_idle(int cpu) 1839 { 1840 struct rq *rq = cpu_rq(cpu); 1841 unsigned long flags; 1842 1843 rcu_read_lock(); 1844 1845 if (!is_idle_task(rcu_dereference(rq->curr))) 1846 goto out; 1847 1848 if (set_nr_if_polling(rq->idle)) { 1849 trace_sched_wake_idle_without_ipi(cpu); 1850 } else { 1851 raw_spin_lock_irqsave(&rq->lock, flags); 1852 if (is_idle_task(rq->curr)) 1853 smp_send_reschedule(cpu); 1854 /* Else cpu is not in idle, do nothing here */ 1855 raw_spin_unlock_irqrestore(&rq->lock, flags); 1856 } 1857 1858 out: 1859 rcu_read_unlock(); 1860 } 1861 1862 bool cpus_share_cache(int this_cpu, int that_cpu) 1863 { 1864 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1865 } 1866 #endif /* CONFIG_SMP */ 1867 1868 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1869 { 1870 struct rq *rq = cpu_rq(cpu); 1871 struct pin_cookie cookie; 1872 1873 #if defined(CONFIG_SMP) 1874 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1875 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1876 ttwu_queue_remote(p, cpu, wake_flags); 1877 return; 1878 } 1879 #endif 1880 1881 raw_spin_lock(&rq->lock); 1882 cookie = lockdep_pin_lock(&rq->lock); 1883 ttwu_do_activate(rq, p, wake_flags, cookie); 1884 lockdep_unpin_lock(&rq->lock, cookie); 1885 raw_spin_unlock(&rq->lock); 1886 } 1887 1888 /* 1889 * Notes on Program-Order guarantees on SMP systems. 1890 * 1891 * MIGRATION 1892 * 1893 * The basic program-order guarantee on SMP systems is that when a task [t] 1894 * migrates, all its activity on its old cpu [c0] happens-before any subsequent 1895 * execution on its new cpu [c1]. 1896 * 1897 * For migration (of runnable tasks) this is provided by the following means: 1898 * 1899 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1900 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1901 * rq(c1)->lock (if not at the same time, then in that order). 1902 * C) LOCK of the rq(c1)->lock scheduling in task 1903 * 1904 * Transitivity guarantees that B happens after A and C after B. 1905 * Note: we only require RCpc transitivity. 1906 * Note: the cpu doing B need not be c0 or c1 1907 * 1908 * Example: 1909 * 1910 * CPU0 CPU1 CPU2 1911 * 1912 * LOCK rq(0)->lock 1913 * sched-out X 1914 * sched-in Y 1915 * UNLOCK rq(0)->lock 1916 * 1917 * LOCK rq(0)->lock // orders against CPU0 1918 * dequeue X 1919 * UNLOCK rq(0)->lock 1920 * 1921 * LOCK rq(1)->lock 1922 * enqueue X 1923 * UNLOCK rq(1)->lock 1924 * 1925 * LOCK rq(1)->lock // orders against CPU2 1926 * sched-out Z 1927 * sched-in X 1928 * UNLOCK rq(1)->lock 1929 * 1930 * 1931 * BLOCKING -- aka. SLEEP + WAKEUP 1932 * 1933 * For blocking we (obviously) need to provide the same guarantee as for 1934 * migration. However the means are completely different as there is no lock 1935 * chain to provide order. Instead we do: 1936 * 1937 * 1) smp_store_release(X->on_cpu, 0) 1938 * 2) smp_cond_acquire(!X->on_cpu) 1939 * 1940 * Example: 1941 * 1942 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1943 * 1944 * LOCK rq(0)->lock LOCK X->pi_lock 1945 * dequeue X 1946 * sched-out X 1947 * smp_store_release(X->on_cpu, 0); 1948 * 1949 * smp_cond_acquire(!X->on_cpu); 1950 * X->state = WAKING 1951 * set_task_cpu(X,2) 1952 * 1953 * LOCK rq(2)->lock 1954 * enqueue X 1955 * X->state = RUNNING 1956 * UNLOCK rq(2)->lock 1957 * 1958 * LOCK rq(2)->lock // orders against CPU1 1959 * sched-out Z 1960 * sched-in X 1961 * UNLOCK rq(2)->lock 1962 * 1963 * UNLOCK X->pi_lock 1964 * UNLOCK rq(0)->lock 1965 * 1966 * 1967 * However; for wakeups there is a second guarantee we must provide, namely we 1968 * must observe the state that lead to our wakeup. That is, not only must our 1969 * task observe its own prior state, it must also observe the stores prior to 1970 * its wakeup. 1971 * 1972 * This means that any means of doing remote wakeups must order the CPU doing 1973 * the wakeup against the CPU the task is going to end up running on. This, 1974 * however, is already required for the regular Program-Order guarantee above, 1975 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire). 1976 * 1977 */ 1978 1979 /** 1980 * try_to_wake_up - wake up a thread 1981 * @p: the thread to be awakened 1982 * @state: the mask of task states that can be woken 1983 * @wake_flags: wake modifier flags (WF_*) 1984 * 1985 * Put it on the run-queue if it's not already there. The "current" 1986 * thread is always on the run-queue (except when the actual 1987 * re-schedule is in progress), and as such you're allowed to do 1988 * the simpler "current->state = TASK_RUNNING" to mark yourself 1989 * runnable without the overhead of this. 1990 * 1991 * Return: %true if @p was woken up, %false if it was already running. 1992 * or @state didn't match @p's state. 1993 */ 1994 static int 1995 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1996 { 1997 unsigned long flags; 1998 int cpu, success = 0; 1999 2000 /* 2001 * If we are going to wake up a thread waiting for CONDITION we 2002 * need to ensure that CONDITION=1 done by the caller can not be 2003 * reordered with p->state check below. This pairs with mb() in 2004 * set_current_state() the waiting thread does. 2005 */ 2006 smp_mb__before_spinlock(); 2007 raw_spin_lock_irqsave(&p->pi_lock, flags); 2008 if (!(p->state & state)) 2009 goto out; 2010 2011 trace_sched_waking(p); 2012 2013 success = 1; /* we're going to change ->state */ 2014 cpu = task_cpu(p); 2015 2016 if (p->on_rq && ttwu_remote(p, wake_flags)) 2017 goto stat; 2018 2019 #ifdef CONFIG_SMP 2020 /* 2021 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2022 * possible to, falsely, observe p->on_cpu == 0. 2023 * 2024 * One must be running (->on_cpu == 1) in order to remove oneself 2025 * from the runqueue. 2026 * 2027 * [S] ->on_cpu = 1; [L] ->on_rq 2028 * UNLOCK rq->lock 2029 * RMB 2030 * LOCK rq->lock 2031 * [S] ->on_rq = 0; [L] ->on_cpu 2032 * 2033 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2034 * from the consecutive calls to schedule(); the first switching to our 2035 * task, the second putting it to sleep. 2036 */ 2037 smp_rmb(); 2038 2039 /* 2040 * If the owning (remote) cpu is still in the middle of schedule() with 2041 * this task as prev, wait until its done referencing the task. 2042 * 2043 * Pairs with the smp_store_release() in finish_lock_switch(). 2044 * 2045 * This ensures that tasks getting woken will be fully ordered against 2046 * their previous state and preserve Program Order. 2047 */ 2048 smp_cond_acquire(!p->on_cpu); 2049 2050 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2051 p->state = TASK_WAKING; 2052 2053 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2054 if (task_cpu(p) != cpu) { 2055 wake_flags |= WF_MIGRATED; 2056 set_task_cpu(p, cpu); 2057 } 2058 #endif /* CONFIG_SMP */ 2059 2060 ttwu_queue(p, cpu, wake_flags); 2061 stat: 2062 if (schedstat_enabled()) 2063 ttwu_stat(p, cpu, wake_flags); 2064 out: 2065 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2066 2067 return success; 2068 } 2069 2070 /** 2071 * try_to_wake_up_local - try to wake up a local task with rq lock held 2072 * @p: the thread to be awakened 2073 * 2074 * Put @p on the run-queue if it's not already there. The caller must 2075 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2076 * the current task. 2077 */ 2078 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie) 2079 { 2080 struct rq *rq = task_rq(p); 2081 2082 if (WARN_ON_ONCE(rq != this_rq()) || 2083 WARN_ON_ONCE(p == current)) 2084 return; 2085 2086 lockdep_assert_held(&rq->lock); 2087 2088 if (!raw_spin_trylock(&p->pi_lock)) { 2089 /* 2090 * This is OK, because current is on_cpu, which avoids it being 2091 * picked for load-balance and preemption/IRQs are still 2092 * disabled avoiding further scheduler activity on it and we've 2093 * not yet picked a replacement task. 2094 */ 2095 lockdep_unpin_lock(&rq->lock, cookie); 2096 raw_spin_unlock(&rq->lock); 2097 raw_spin_lock(&p->pi_lock); 2098 raw_spin_lock(&rq->lock); 2099 lockdep_repin_lock(&rq->lock, cookie); 2100 } 2101 2102 if (!(p->state & TASK_NORMAL)) 2103 goto out; 2104 2105 trace_sched_waking(p); 2106 2107 if (!task_on_rq_queued(p)) 2108 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 2109 2110 ttwu_do_wakeup(rq, p, 0, cookie); 2111 if (schedstat_enabled()) 2112 ttwu_stat(p, smp_processor_id(), 0); 2113 out: 2114 raw_spin_unlock(&p->pi_lock); 2115 } 2116 2117 /** 2118 * wake_up_process - Wake up a specific process 2119 * @p: The process to be woken up. 2120 * 2121 * Attempt to wake up the nominated process and move it to the set of runnable 2122 * processes. 2123 * 2124 * Return: 1 if the process was woken up, 0 if it was already running. 2125 * 2126 * It may be assumed that this function implies a write memory barrier before 2127 * changing the task state if and only if any tasks are woken up. 2128 */ 2129 int wake_up_process(struct task_struct *p) 2130 { 2131 return try_to_wake_up(p, TASK_NORMAL, 0); 2132 } 2133 EXPORT_SYMBOL(wake_up_process); 2134 2135 int wake_up_state(struct task_struct *p, unsigned int state) 2136 { 2137 return try_to_wake_up(p, state, 0); 2138 } 2139 2140 /* 2141 * This function clears the sched_dl_entity static params. 2142 */ 2143 void __dl_clear_params(struct task_struct *p) 2144 { 2145 struct sched_dl_entity *dl_se = &p->dl; 2146 2147 dl_se->dl_runtime = 0; 2148 dl_se->dl_deadline = 0; 2149 dl_se->dl_period = 0; 2150 dl_se->flags = 0; 2151 dl_se->dl_bw = 0; 2152 2153 dl_se->dl_throttled = 0; 2154 dl_se->dl_yielded = 0; 2155 } 2156 2157 /* 2158 * Perform scheduler related setup for a newly forked process p. 2159 * p is forked by current. 2160 * 2161 * __sched_fork() is basic setup used by init_idle() too: 2162 */ 2163 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2164 { 2165 p->on_rq = 0; 2166 2167 p->se.on_rq = 0; 2168 p->se.exec_start = 0; 2169 p->se.sum_exec_runtime = 0; 2170 p->se.prev_sum_exec_runtime = 0; 2171 p->se.nr_migrations = 0; 2172 p->se.vruntime = 0; 2173 INIT_LIST_HEAD(&p->se.group_node); 2174 2175 #ifdef CONFIG_FAIR_GROUP_SCHED 2176 p->se.cfs_rq = NULL; 2177 #endif 2178 2179 #ifdef CONFIG_SCHEDSTATS 2180 /* Even if schedstat is disabled, there should not be garbage */ 2181 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2182 #endif 2183 2184 RB_CLEAR_NODE(&p->dl.rb_node); 2185 init_dl_task_timer(&p->dl); 2186 __dl_clear_params(p); 2187 2188 INIT_LIST_HEAD(&p->rt.run_list); 2189 p->rt.timeout = 0; 2190 p->rt.time_slice = sched_rr_timeslice; 2191 p->rt.on_rq = 0; 2192 p->rt.on_list = 0; 2193 2194 #ifdef CONFIG_PREEMPT_NOTIFIERS 2195 INIT_HLIST_HEAD(&p->preempt_notifiers); 2196 #endif 2197 2198 #ifdef CONFIG_NUMA_BALANCING 2199 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2200 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2201 p->mm->numa_scan_seq = 0; 2202 } 2203 2204 if (clone_flags & CLONE_VM) 2205 p->numa_preferred_nid = current->numa_preferred_nid; 2206 else 2207 p->numa_preferred_nid = -1; 2208 2209 p->node_stamp = 0ULL; 2210 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2211 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2212 p->numa_work.next = &p->numa_work; 2213 p->numa_faults = NULL; 2214 p->last_task_numa_placement = 0; 2215 p->last_sum_exec_runtime = 0; 2216 2217 p->numa_group = NULL; 2218 #endif /* CONFIG_NUMA_BALANCING */ 2219 } 2220 2221 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2222 2223 #ifdef CONFIG_NUMA_BALANCING 2224 2225 void set_numabalancing_state(bool enabled) 2226 { 2227 if (enabled) 2228 static_branch_enable(&sched_numa_balancing); 2229 else 2230 static_branch_disable(&sched_numa_balancing); 2231 } 2232 2233 #ifdef CONFIG_PROC_SYSCTL 2234 int sysctl_numa_balancing(struct ctl_table *table, int write, 2235 void __user *buffer, size_t *lenp, loff_t *ppos) 2236 { 2237 struct ctl_table t; 2238 int err; 2239 int state = static_branch_likely(&sched_numa_balancing); 2240 2241 if (write && !capable(CAP_SYS_ADMIN)) 2242 return -EPERM; 2243 2244 t = *table; 2245 t.data = &state; 2246 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2247 if (err < 0) 2248 return err; 2249 if (write) 2250 set_numabalancing_state(state); 2251 return err; 2252 } 2253 #endif 2254 #endif 2255 2256 #ifdef CONFIG_SCHEDSTATS 2257 2258 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2259 static bool __initdata __sched_schedstats = false; 2260 2261 static void set_schedstats(bool enabled) 2262 { 2263 if (enabled) 2264 static_branch_enable(&sched_schedstats); 2265 else 2266 static_branch_disable(&sched_schedstats); 2267 } 2268 2269 void force_schedstat_enabled(void) 2270 { 2271 if (!schedstat_enabled()) { 2272 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2273 static_branch_enable(&sched_schedstats); 2274 } 2275 } 2276 2277 static int __init setup_schedstats(char *str) 2278 { 2279 int ret = 0; 2280 if (!str) 2281 goto out; 2282 2283 /* 2284 * This code is called before jump labels have been set up, so we can't 2285 * change the static branch directly just yet. Instead set a temporary 2286 * variable so init_schedstats() can do it later. 2287 */ 2288 if (!strcmp(str, "enable")) { 2289 __sched_schedstats = true; 2290 ret = 1; 2291 } else if (!strcmp(str, "disable")) { 2292 __sched_schedstats = false; 2293 ret = 1; 2294 } 2295 out: 2296 if (!ret) 2297 pr_warn("Unable to parse schedstats=\n"); 2298 2299 return ret; 2300 } 2301 __setup("schedstats=", setup_schedstats); 2302 2303 static void __init init_schedstats(void) 2304 { 2305 set_schedstats(__sched_schedstats); 2306 } 2307 2308 #ifdef CONFIG_PROC_SYSCTL 2309 int sysctl_schedstats(struct ctl_table *table, int write, 2310 void __user *buffer, size_t *lenp, loff_t *ppos) 2311 { 2312 struct ctl_table t; 2313 int err; 2314 int state = static_branch_likely(&sched_schedstats); 2315 2316 if (write && !capable(CAP_SYS_ADMIN)) 2317 return -EPERM; 2318 2319 t = *table; 2320 t.data = &state; 2321 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2322 if (err < 0) 2323 return err; 2324 if (write) 2325 set_schedstats(state); 2326 return err; 2327 } 2328 #endif /* CONFIG_PROC_SYSCTL */ 2329 #else /* !CONFIG_SCHEDSTATS */ 2330 static inline void init_schedstats(void) {} 2331 #endif /* CONFIG_SCHEDSTATS */ 2332 2333 /* 2334 * fork()/clone()-time setup: 2335 */ 2336 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2337 { 2338 unsigned long flags; 2339 int cpu = get_cpu(); 2340 2341 __sched_fork(clone_flags, p); 2342 /* 2343 * We mark the process as running here. This guarantees that 2344 * nobody will actually run it, and a signal or other external 2345 * event cannot wake it up and insert it on the runqueue either. 2346 */ 2347 p->state = TASK_RUNNING; 2348 2349 /* 2350 * Make sure we do not leak PI boosting priority to the child. 2351 */ 2352 p->prio = current->normal_prio; 2353 2354 /* 2355 * Revert to default priority/policy on fork if requested. 2356 */ 2357 if (unlikely(p->sched_reset_on_fork)) { 2358 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2359 p->policy = SCHED_NORMAL; 2360 p->static_prio = NICE_TO_PRIO(0); 2361 p->rt_priority = 0; 2362 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2363 p->static_prio = NICE_TO_PRIO(0); 2364 2365 p->prio = p->normal_prio = __normal_prio(p); 2366 set_load_weight(p); 2367 2368 /* 2369 * We don't need the reset flag anymore after the fork. It has 2370 * fulfilled its duty: 2371 */ 2372 p->sched_reset_on_fork = 0; 2373 } 2374 2375 if (dl_prio(p->prio)) { 2376 put_cpu(); 2377 return -EAGAIN; 2378 } else if (rt_prio(p->prio)) { 2379 p->sched_class = &rt_sched_class; 2380 } else { 2381 p->sched_class = &fair_sched_class; 2382 } 2383 2384 if (p->sched_class->task_fork) 2385 p->sched_class->task_fork(p); 2386 2387 /* 2388 * The child is not yet in the pid-hash so no cgroup attach races, 2389 * and the cgroup is pinned to this child due to cgroup_fork() 2390 * is ran before sched_fork(). 2391 * 2392 * Silence PROVE_RCU. 2393 */ 2394 raw_spin_lock_irqsave(&p->pi_lock, flags); 2395 set_task_cpu(p, cpu); 2396 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2397 2398 #ifdef CONFIG_SCHED_INFO 2399 if (likely(sched_info_on())) 2400 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2401 #endif 2402 #if defined(CONFIG_SMP) 2403 p->on_cpu = 0; 2404 #endif 2405 init_task_preempt_count(p); 2406 #ifdef CONFIG_SMP 2407 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2408 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2409 #endif 2410 2411 put_cpu(); 2412 return 0; 2413 } 2414 2415 unsigned long to_ratio(u64 period, u64 runtime) 2416 { 2417 if (runtime == RUNTIME_INF) 2418 return 1ULL << 20; 2419 2420 /* 2421 * Doing this here saves a lot of checks in all 2422 * the calling paths, and returning zero seems 2423 * safe for them anyway. 2424 */ 2425 if (period == 0) 2426 return 0; 2427 2428 return div64_u64(runtime << 20, period); 2429 } 2430 2431 #ifdef CONFIG_SMP 2432 inline struct dl_bw *dl_bw_of(int i) 2433 { 2434 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2435 "sched RCU must be held"); 2436 return &cpu_rq(i)->rd->dl_bw; 2437 } 2438 2439 static inline int dl_bw_cpus(int i) 2440 { 2441 struct root_domain *rd = cpu_rq(i)->rd; 2442 int cpus = 0; 2443 2444 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2445 "sched RCU must be held"); 2446 for_each_cpu_and(i, rd->span, cpu_active_mask) 2447 cpus++; 2448 2449 return cpus; 2450 } 2451 #else 2452 inline struct dl_bw *dl_bw_of(int i) 2453 { 2454 return &cpu_rq(i)->dl.dl_bw; 2455 } 2456 2457 static inline int dl_bw_cpus(int i) 2458 { 2459 return 1; 2460 } 2461 #endif 2462 2463 /* 2464 * We must be sure that accepting a new task (or allowing changing the 2465 * parameters of an existing one) is consistent with the bandwidth 2466 * constraints. If yes, this function also accordingly updates the currently 2467 * allocated bandwidth to reflect the new situation. 2468 * 2469 * This function is called while holding p's rq->lock. 2470 * 2471 * XXX we should delay bw change until the task's 0-lag point, see 2472 * __setparam_dl(). 2473 */ 2474 static int dl_overflow(struct task_struct *p, int policy, 2475 const struct sched_attr *attr) 2476 { 2477 2478 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2479 u64 period = attr->sched_period ?: attr->sched_deadline; 2480 u64 runtime = attr->sched_runtime; 2481 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2482 int cpus, err = -1; 2483 2484 /* !deadline task may carry old deadline bandwidth */ 2485 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2486 return 0; 2487 2488 /* 2489 * Either if a task, enters, leave, or stays -deadline but changes 2490 * its parameters, we may need to update accordingly the total 2491 * allocated bandwidth of the container. 2492 */ 2493 raw_spin_lock(&dl_b->lock); 2494 cpus = dl_bw_cpus(task_cpu(p)); 2495 if (dl_policy(policy) && !task_has_dl_policy(p) && 2496 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2497 __dl_add(dl_b, new_bw); 2498 err = 0; 2499 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2500 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2501 __dl_clear(dl_b, p->dl.dl_bw); 2502 __dl_add(dl_b, new_bw); 2503 err = 0; 2504 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2505 __dl_clear(dl_b, p->dl.dl_bw); 2506 err = 0; 2507 } 2508 raw_spin_unlock(&dl_b->lock); 2509 2510 return err; 2511 } 2512 2513 extern void init_dl_bw(struct dl_bw *dl_b); 2514 2515 /* 2516 * wake_up_new_task - wake up a newly created task for the first time. 2517 * 2518 * This function will do some initial scheduler statistics housekeeping 2519 * that must be done for every newly created context, then puts the task 2520 * on the runqueue and wakes it. 2521 */ 2522 void wake_up_new_task(struct task_struct *p) 2523 { 2524 struct rq_flags rf; 2525 struct rq *rq; 2526 2527 /* Initialize new task's runnable average */ 2528 init_entity_runnable_average(&p->se); 2529 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2530 #ifdef CONFIG_SMP 2531 /* 2532 * Fork balancing, do it here and not earlier because: 2533 * - cpus_allowed can change in the fork path 2534 * - any previously selected cpu might disappear through hotplug 2535 */ 2536 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2537 #endif 2538 /* Post initialize new task's util average when its cfs_rq is set */ 2539 post_init_entity_util_avg(&p->se); 2540 2541 rq = __task_rq_lock(p, &rf); 2542 activate_task(rq, p, 0); 2543 p->on_rq = TASK_ON_RQ_QUEUED; 2544 trace_sched_wakeup_new(p); 2545 check_preempt_curr(rq, p, WF_FORK); 2546 #ifdef CONFIG_SMP 2547 if (p->sched_class->task_woken) { 2548 /* 2549 * Nothing relies on rq->lock after this, so its fine to 2550 * drop it. 2551 */ 2552 lockdep_unpin_lock(&rq->lock, rf.cookie); 2553 p->sched_class->task_woken(rq, p); 2554 lockdep_repin_lock(&rq->lock, rf.cookie); 2555 } 2556 #endif 2557 task_rq_unlock(rq, p, &rf); 2558 } 2559 2560 #ifdef CONFIG_PREEMPT_NOTIFIERS 2561 2562 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2563 2564 void preempt_notifier_inc(void) 2565 { 2566 static_key_slow_inc(&preempt_notifier_key); 2567 } 2568 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2569 2570 void preempt_notifier_dec(void) 2571 { 2572 static_key_slow_dec(&preempt_notifier_key); 2573 } 2574 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2575 2576 /** 2577 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2578 * @notifier: notifier struct to register 2579 */ 2580 void preempt_notifier_register(struct preempt_notifier *notifier) 2581 { 2582 if (!static_key_false(&preempt_notifier_key)) 2583 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2584 2585 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2586 } 2587 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2588 2589 /** 2590 * preempt_notifier_unregister - no longer interested in preemption notifications 2591 * @notifier: notifier struct to unregister 2592 * 2593 * This is *not* safe to call from within a preemption notifier. 2594 */ 2595 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2596 { 2597 hlist_del(¬ifier->link); 2598 } 2599 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2600 2601 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2602 { 2603 struct preempt_notifier *notifier; 2604 2605 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2606 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2607 } 2608 2609 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2610 { 2611 if (static_key_false(&preempt_notifier_key)) 2612 __fire_sched_in_preempt_notifiers(curr); 2613 } 2614 2615 static void 2616 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2617 struct task_struct *next) 2618 { 2619 struct preempt_notifier *notifier; 2620 2621 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2622 notifier->ops->sched_out(notifier, next); 2623 } 2624 2625 static __always_inline void 2626 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2627 struct task_struct *next) 2628 { 2629 if (static_key_false(&preempt_notifier_key)) 2630 __fire_sched_out_preempt_notifiers(curr, next); 2631 } 2632 2633 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2634 2635 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2636 { 2637 } 2638 2639 static inline void 2640 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2641 struct task_struct *next) 2642 { 2643 } 2644 2645 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2646 2647 /** 2648 * prepare_task_switch - prepare to switch tasks 2649 * @rq: the runqueue preparing to switch 2650 * @prev: the current task that is being switched out 2651 * @next: the task we are going to switch to. 2652 * 2653 * This is called with the rq lock held and interrupts off. It must 2654 * be paired with a subsequent finish_task_switch after the context 2655 * switch. 2656 * 2657 * prepare_task_switch sets up locking and calls architecture specific 2658 * hooks. 2659 */ 2660 static inline void 2661 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2662 struct task_struct *next) 2663 { 2664 sched_info_switch(rq, prev, next); 2665 perf_event_task_sched_out(prev, next); 2666 fire_sched_out_preempt_notifiers(prev, next); 2667 prepare_lock_switch(rq, next); 2668 prepare_arch_switch(next); 2669 } 2670 2671 /** 2672 * finish_task_switch - clean up after a task-switch 2673 * @prev: the thread we just switched away from. 2674 * 2675 * finish_task_switch must be called after the context switch, paired 2676 * with a prepare_task_switch call before the context switch. 2677 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2678 * and do any other architecture-specific cleanup actions. 2679 * 2680 * Note that we may have delayed dropping an mm in context_switch(). If 2681 * so, we finish that here outside of the runqueue lock. (Doing it 2682 * with the lock held can cause deadlocks; see schedule() for 2683 * details.) 2684 * 2685 * The context switch have flipped the stack from under us and restored the 2686 * local variables which were saved when this task called schedule() in the 2687 * past. prev == current is still correct but we need to recalculate this_rq 2688 * because prev may have moved to another CPU. 2689 */ 2690 static struct rq *finish_task_switch(struct task_struct *prev) 2691 __releases(rq->lock) 2692 { 2693 struct rq *rq = this_rq(); 2694 struct mm_struct *mm = rq->prev_mm; 2695 long prev_state; 2696 2697 /* 2698 * The previous task will have left us with a preempt_count of 2 2699 * because it left us after: 2700 * 2701 * schedule() 2702 * preempt_disable(); // 1 2703 * __schedule() 2704 * raw_spin_lock_irq(&rq->lock) // 2 2705 * 2706 * Also, see FORK_PREEMPT_COUNT. 2707 */ 2708 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2709 "corrupted preempt_count: %s/%d/0x%x\n", 2710 current->comm, current->pid, preempt_count())) 2711 preempt_count_set(FORK_PREEMPT_COUNT); 2712 2713 rq->prev_mm = NULL; 2714 2715 /* 2716 * A task struct has one reference for the use as "current". 2717 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2718 * schedule one last time. The schedule call will never return, and 2719 * the scheduled task must drop that reference. 2720 * 2721 * We must observe prev->state before clearing prev->on_cpu (in 2722 * finish_lock_switch), otherwise a concurrent wakeup can get prev 2723 * running on another CPU and we could rave with its RUNNING -> DEAD 2724 * transition, resulting in a double drop. 2725 */ 2726 prev_state = prev->state; 2727 vtime_task_switch(prev); 2728 perf_event_task_sched_in(prev, current); 2729 finish_lock_switch(rq, prev); 2730 finish_arch_post_lock_switch(); 2731 2732 fire_sched_in_preempt_notifiers(current); 2733 if (mm) 2734 mmdrop(mm); 2735 if (unlikely(prev_state == TASK_DEAD)) { 2736 if (prev->sched_class->task_dead) 2737 prev->sched_class->task_dead(prev); 2738 2739 /* 2740 * Remove function-return probe instances associated with this 2741 * task and put them back on the free list. 2742 */ 2743 kprobe_flush_task(prev); 2744 put_task_struct(prev); 2745 } 2746 2747 tick_nohz_task_switch(); 2748 return rq; 2749 } 2750 2751 #ifdef CONFIG_SMP 2752 2753 /* rq->lock is NOT held, but preemption is disabled */ 2754 static void __balance_callback(struct rq *rq) 2755 { 2756 struct callback_head *head, *next; 2757 void (*func)(struct rq *rq); 2758 unsigned long flags; 2759 2760 raw_spin_lock_irqsave(&rq->lock, flags); 2761 head = rq->balance_callback; 2762 rq->balance_callback = NULL; 2763 while (head) { 2764 func = (void (*)(struct rq *))head->func; 2765 next = head->next; 2766 head->next = NULL; 2767 head = next; 2768 2769 func(rq); 2770 } 2771 raw_spin_unlock_irqrestore(&rq->lock, flags); 2772 } 2773 2774 static inline void balance_callback(struct rq *rq) 2775 { 2776 if (unlikely(rq->balance_callback)) 2777 __balance_callback(rq); 2778 } 2779 2780 #else 2781 2782 static inline void balance_callback(struct rq *rq) 2783 { 2784 } 2785 2786 #endif 2787 2788 /** 2789 * schedule_tail - first thing a freshly forked thread must call. 2790 * @prev: the thread we just switched away from. 2791 */ 2792 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2793 __releases(rq->lock) 2794 { 2795 struct rq *rq; 2796 2797 /* 2798 * New tasks start with FORK_PREEMPT_COUNT, see there and 2799 * finish_task_switch() for details. 2800 * 2801 * finish_task_switch() will drop rq->lock() and lower preempt_count 2802 * and the preempt_enable() will end up enabling preemption (on 2803 * PREEMPT_COUNT kernels). 2804 */ 2805 2806 rq = finish_task_switch(prev); 2807 balance_callback(rq); 2808 preempt_enable(); 2809 2810 if (current->set_child_tid) 2811 put_user(task_pid_vnr(current), current->set_child_tid); 2812 } 2813 2814 /* 2815 * context_switch - switch to the new MM and the new thread's register state. 2816 */ 2817 static __always_inline struct rq * 2818 context_switch(struct rq *rq, struct task_struct *prev, 2819 struct task_struct *next, struct pin_cookie cookie) 2820 { 2821 struct mm_struct *mm, *oldmm; 2822 2823 prepare_task_switch(rq, prev, next); 2824 2825 mm = next->mm; 2826 oldmm = prev->active_mm; 2827 /* 2828 * For paravirt, this is coupled with an exit in switch_to to 2829 * combine the page table reload and the switch backend into 2830 * one hypercall. 2831 */ 2832 arch_start_context_switch(prev); 2833 2834 if (!mm) { 2835 next->active_mm = oldmm; 2836 atomic_inc(&oldmm->mm_count); 2837 enter_lazy_tlb(oldmm, next); 2838 } else 2839 switch_mm_irqs_off(oldmm, mm, next); 2840 2841 if (!prev->mm) { 2842 prev->active_mm = NULL; 2843 rq->prev_mm = oldmm; 2844 } 2845 /* 2846 * Since the runqueue lock will be released by the next 2847 * task (which is an invalid locking op but in the case 2848 * of the scheduler it's an obvious special-case), so we 2849 * do an early lockdep release here: 2850 */ 2851 lockdep_unpin_lock(&rq->lock, cookie); 2852 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2853 2854 /* Here we just switch the register state and the stack. */ 2855 switch_to(prev, next, prev); 2856 barrier(); 2857 2858 return finish_task_switch(prev); 2859 } 2860 2861 /* 2862 * nr_running and nr_context_switches: 2863 * 2864 * externally visible scheduler statistics: current number of runnable 2865 * threads, total number of context switches performed since bootup. 2866 */ 2867 unsigned long nr_running(void) 2868 { 2869 unsigned long i, sum = 0; 2870 2871 for_each_online_cpu(i) 2872 sum += cpu_rq(i)->nr_running; 2873 2874 return sum; 2875 } 2876 2877 /* 2878 * Check if only the current task is running on the cpu. 2879 * 2880 * Caution: this function does not check that the caller has disabled 2881 * preemption, thus the result might have a time-of-check-to-time-of-use 2882 * race. The caller is responsible to use it correctly, for example: 2883 * 2884 * - from a non-preemptable section (of course) 2885 * 2886 * - from a thread that is bound to a single CPU 2887 * 2888 * - in a loop with very short iterations (e.g. a polling loop) 2889 */ 2890 bool single_task_running(void) 2891 { 2892 return raw_rq()->nr_running == 1; 2893 } 2894 EXPORT_SYMBOL(single_task_running); 2895 2896 unsigned long long nr_context_switches(void) 2897 { 2898 int i; 2899 unsigned long long sum = 0; 2900 2901 for_each_possible_cpu(i) 2902 sum += cpu_rq(i)->nr_switches; 2903 2904 return sum; 2905 } 2906 2907 unsigned long nr_iowait(void) 2908 { 2909 unsigned long i, sum = 0; 2910 2911 for_each_possible_cpu(i) 2912 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2913 2914 return sum; 2915 } 2916 2917 unsigned long nr_iowait_cpu(int cpu) 2918 { 2919 struct rq *this = cpu_rq(cpu); 2920 return atomic_read(&this->nr_iowait); 2921 } 2922 2923 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2924 { 2925 struct rq *rq = this_rq(); 2926 *nr_waiters = atomic_read(&rq->nr_iowait); 2927 *load = rq->load.weight; 2928 } 2929 2930 #ifdef CONFIG_SMP 2931 2932 /* 2933 * sched_exec - execve() is a valuable balancing opportunity, because at 2934 * this point the task has the smallest effective memory and cache footprint. 2935 */ 2936 void sched_exec(void) 2937 { 2938 struct task_struct *p = current; 2939 unsigned long flags; 2940 int dest_cpu; 2941 2942 raw_spin_lock_irqsave(&p->pi_lock, flags); 2943 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2944 if (dest_cpu == smp_processor_id()) 2945 goto unlock; 2946 2947 if (likely(cpu_active(dest_cpu))) { 2948 struct migration_arg arg = { p, dest_cpu }; 2949 2950 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2951 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2952 return; 2953 } 2954 unlock: 2955 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2956 } 2957 2958 #endif 2959 2960 DEFINE_PER_CPU(struct kernel_stat, kstat); 2961 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2962 2963 EXPORT_PER_CPU_SYMBOL(kstat); 2964 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2965 2966 /* 2967 * Return accounted runtime for the task. 2968 * In case the task is currently running, return the runtime plus current's 2969 * pending runtime that have not been accounted yet. 2970 */ 2971 unsigned long long task_sched_runtime(struct task_struct *p) 2972 { 2973 struct rq_flags rf; 2974 struct rq *rq; 2975 u64 ns; 2976 2977 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2978 /* 2979 * 64-bit doesn't need locks to atomically read a 64bit value. 2980 * So we have a optimization chance when the task's delta_exec is 0. 2981 * Reading ->on_cpu is racy, but this is ok. 2982 * 2983 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2984 * If we race with it entering cpu, unaccounted time is 0. This is 2985 * indistinguishable from the read occurring a few cycles earlier. 2986 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2987 * been accounted, so we're correct here as well. 2988 */ 2989 if (!p->on_cpu || !task_on_rq_queued(p)) 2990 return p->se.sum_exec_runtime; 2991 #endif 2992 2993 rq = task_rq_lock(p, &rf); 2994 /* 2995 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2996 * project cycles that may never be accounted to this 2997 * thread, breaking clock_gettime(). 2998 */ 2999 if (task_current(rq, p) && task_on_rq_queued(p)) { 3000 update_rq_clock(rq); 3001 p->sched_class->update_curr(rq); 3002 } 3003 ns = p->se.sum_exec_runtime; 3004 task_rq_unlock(rq, p, &rf); 3005 3006 return ns; 3007 } 3008 3009 /* 3010 * This function gets called by the timer code, with HZ frequency. 3011 * We call it with interrupts disabled. 3012 */ 3013 void scheduler_tick(void) 3014 { 3015 int cpu = smp_processor_id(); 3016 struct rq *rq = cpu_rq(cpu); 3017 struct task_struct *curr = rq->curr; 3018 3019 sched_clock_tick(); 3020 3021 raw_spin_lock(&rq->lock); 3022 update_rq_clock(rq); 3023 curr->sched_class->task_tick(rq, curr, 0); 3024 cpu_load_update_active(rq); 3025 calc_global_load_tick(rq); 3026 raw_spin_unlock(&rq->lock); 3027 3028 perf_event_task_tick(); 3029 3030 #ifdef CONFIG_SMP 3031 rq->idle_balance = idle_cpu(cpu); 3032 trigger_load_balance(rq); 3033 #endif 3034 rq_last_tick_reset(rq); 3035 } 3036 3037 #ifdef CONFIG_NO_HZ_FULL 3038 /** 3039 * scheduler_tick_max_deferment 3040 * 3041 * Keep at least one tick per second when a single 3042 * active task is running because the scheduler doesn't 3043 * yet completely support full dynticks environment. 3044 * 3045 * This makes sure that uptime, CFS vruntime, load 3046 * balancing, etc... continue to move forward, even 3047 * with a very low granularity. 3048 * 3049 * Return: Maximum deferment in nanoseconds. 3050 */ 3051 u64 scheduler_tick_max_deferment(void) 3052 { 3053 struct rq *rq = this_rq(); 3054 unsigned long next, now = READ_ONCE(jiffies); 3055 3056 next = rq->last_sched_tick + HZ; 3057 3058 if (time_before_eq(next, now)) 3059 return 0; 3060 3061 return jiffies_to_nsecs(next - now); 3062 } 3063 #endif 3064 3065 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3066 defined(CONFIG_PREEMPT_TRACER)) 3067 /* 3068 * If the value passed in is equal to the current preempt count 3069 * then we just disabled preemption. Start timing the latency. 3070 */ 3071 static inline void preempt_latency_start(int val) 3072 { 3073 if (preempt_count() == val) { 3074 unsigned long ip = get_lock_parent_ip(); 3075 #ifdef CONFIG_DEBUG_PREEMPT 3076 current->preempt_disable_ip = ip; 3077 #endif 3078 trace_preempt_off(CALLER_ADDR0, ip); 3079 } 3080 } 3081 3082 void preempt_count_add(int val) 3083 { 3084 #ifdef CONFIG_DEBUG_PREEMPT 3085 /* 3086 * Underflow? 3087 */ 3088 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3089 return; 3090 #endif 3091 __preempt_count_add(val); 3092 #ifdef CONFIG_DEBUG_PREEMPT 3093 /* 3094 * Spinlock count overflowing soon? 3095 */ 3096 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3097 PREEMPT_MASK - 10); 3098 #endif 3099 preempt_latency_start(val); 3100 } 3101 EXPORT_SYMBOL(preempt_count_add); 3102 NOKPROBE_SYMBOL(preempt_count_add); 3103 3104 /* 3105 * If the value passed in equals to the current preempt count 3106 * then we just enabled preemption. Stop timing the latency. 3107 */ 3108 static inline void preempt_latency_stop(int val) 3109 { 3110 if (preempt_count() == val) 3111 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3112 } 3113 3114 void preempt_count_sub(int val) 3115 { 3116 #ifdef CONFIG_DEBUG_PREEMPT 3117 /* 3118 * Underflow? 3119 */ 3120 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3121 return; 3122 /* 3123 * Is the spinlock portion underflowing? 3124 */ 3125 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3126 !(preempt_count() & PREEMPT_MASK))) 3127 return; 3128 #endif 3129 3130 preempt_latency_stop(val); 3131 __preempt_count_sub(val); 3132 } 3133 EXPORT_SYMBOL(preempt_count_sub); 3134 NOKPROBE_SYMBOL(preempt_count_sub); 3135 3136 #else 3137 static inline void preempt_latency_start(int val) { } 3138 static inline void preempt_latency_stop(int val) { } 3139 #endif 3140 3141 /* 3142 * Print scheduling while atomic bug: 3143 */ 3144 static noinline void __schedule_bug(struct task_struct *prev) 3145 { 3146 if (oops_in_progress) 3147 return; 3148 3149 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3150 prev->comm, prev->pid, preempt_count()); 3151 3152 debug_show_held_locks(prev); 3153 print_modules(); 3154 if (irqs_disabled()) 3155 print_irqtrace_events(prev); 3156 #ifdef CONFIG_DEBUG_PREEMPT 3157 if (in_atomic_preempt_off()) { 3158 pr_err("Preemption disabled at:"); 3159 print_ip_sym(current->preempt_disable_ip); 3160 pr_cont("\n"); 3161 } 3162 #endif 3163 dump_stack(); 3164 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3165 } 3166 3167 /* 3168 * Various schedule()-time debugging checks and statistics: 3169 */ 3170 static inline void schedule_debug(struct task_struct *prev) 3171 { 3172 #ifdef CONFIG_SCHED_STACK_END_CHECK 3173 if (task_stack_end_corrupted(prev)) 3174 panic("corrupted stack end detected inside scheduler\n"); 3175 #endif 3176 3177 if (unlikely(in_atomic_preempt_off())) { 3178 __schedule_bug(prev); 3179 preempt_count_set(PREEMPT_DISABLED); 3180 } 3181 rcu_sleep_check(); 3182 3183 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3184 3185 schedstat_inc(this_rq(), sched_count); 3186 } 3187 3188 /* 3189 * Pick up the highest-prio task: 3190 */ 3191 static inline struct task_struct * 3192 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie) 3193 { 3194 const struct sched_class *class = &fair_sched_class; 3195 struct task_struct *p; 3196 3197 /* 3198 * Optimization: we know that if all tasks are in 3199 * the fair class we can call that function directly: 3200 */ 3201 if (likely(prev->sched_class == class && 3202 rq->nr_running == rq->cfs.h_nr_running)) { 3203 p = fair_sched_class.pick_next_task(rq, prev, cookie); 3204 if (unlikely(p == RETRY_TASK)) 3205 goto again; 3206 3207 /* assumes fair_sched_class->next == idle_sched_class */ 3208 if (unlikely(!p)) 3209 p = idle_sched_class.pick_next_task(rq, prev, cookie); 3210 3211 return p; 3212 } 3213 3214 again: 3215 for_each_class(class) { 3216 p = class->pick_next_task(rq, prev, cookie); 3217 if (p) { 3218 if (unlikely(p == RETRY_TASK)) 3219 goto again; 3220 return p; 3221 } 3222 } 3223 3224 BUG(); /* the idle class will always have a runnable task */ 3225 } 3226 3227 /* 3228 * __schedule() is the main scheduler function. 3229 * 3230 * The main means of driving the scheduler and thus entering this function are: 3231 * 3232 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3233 * 3234 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3235 * paths. For example, see arch/x86/entry_64.S. 3236 * 3237 * To drive preemption between tasks, the scheduler sets the flag in timer 3238 * interrupt handler scheduler_tick(). 3239 * 3240 * 3. Wakeups don't really cause entry into schedule(). They add a 3241 * task to the run-queue and that's it. 3242 * 3243 * Now, if the new task added to the run-queue preempts the current 3244 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3245 * called on the nearest possible occasion: 3246 * 3247 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3248 * 3249 * - in syscall or exception context, at the next outmost 3250 * preempt_enable(). (this might be as soon as the wake_up()'s 3251 * spin_unlock()!) 3252 * 3253 * - in IRQ context, return from interrupt-handler to 3254 * preemptible context 3255 * 3256 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3257 * then at the next: 3258 * 3259 * - cond_resched() call 3260 * - explicit schedule() call 3261 * - return from syscall or exception to user-space 3262 * - return from interrupt-handler to user-space 3263 * 3264 * WARNING: must be called with preemption disabled! 3265 */ 3266 static void __sched notrace __schedule(bool preempt) 3267 { 3268 struct task_struct *prev, *next; 3269 unsigned long *switch_count; 3270 struct pin_cookie cookie; 3271 struct rq *rq; 3272 int cpu; 3273 3274 cpu = smp_processor_id(); 3275 rq = cpu_rq(cpu); 3276 prev = rq->curr; 3277 3278 /* 3279 * do_exit() calls schedule() with preemption disabled as an exception; 3280 * however we must fix that up, otherwise the next task will see an 3281 * inconsistent (higher) preempt count. 3282 * 3283 * It also avoids the below schedule_debug() test from complaining 3284 * about this. 3285 */ 3286 if (unlikely(prev->state == TASK_DEAD)) 3287 preempt_enable_no_resched_notrace(); 3288 3289 schedule_debug(prev); 3290 3291 if (sched_feat(HRTICK)) 3292 hrtick_clear(rq); 3293 3294 local_irq_disable(); 3295 rcu_note_context_switch(); 3296 3297 /* 3298 * Make sure that signal_pending_state()->signal_pending() below 3299 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3300 * done by the caller to avoid the race with signal_wake_up(). 3301 */ 3302 smp_mb__before_spinlock(); 3303 raw_spin_lock(&rq->lock); 3304 cookie = lockdep_pin_lock(&rq->lock); 3305 3306 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 3307 3308 switch_count = &prev->nivcsw; 3309 if (!preempt && prev->state) { 3310 if (unlikely(signal_pending_state(prev->state, prev))) { 3311 prev->state = TASK_RUNNING; 3312 } else { 3313 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3314 prev->on_rq = 0; 3315 3316 /* 3317 * If a worker went to sleep, notify and ask workqueue 3318 * whether it wants to wake up a task to maintain 3319 * concurrency. 3320 */ 3321 if (prev->flags & PF_WQ_WORKER) { 3322 struct task_struct *to_wakeup; 3323 3324 to_wakeup = wq_worker_sleeping(prev); 3325 if (to_wakeup) 3326 try_to_wake_up_local(to_wakeup, cookie); 3327 } 3328 } 3329 switch_count = &prev->nvcsw; 3330 } 3331 3332 if (task_on_rq_queued(prev)) 3333 update_rq_clock(rq); 3334 3335 next = pick_next_task(rq, prev, cookie); 3336 clear_tsk_need_resched(prev); 3337 clear_preempt_need_resched(); 3338 rq->clock_skip_update = 0; 3339 3340 if (likely(prev != next)) { 3341 rq->nr_switches++; 3342 rq->curr = next; 3343 ++*switch_count; 3344 3345 trace_sched_switch(preempt, prev, next); 3346 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */ 3347 } else { 3348 lockdep_unpin_lock(&rq->lock, cookie); 3349 raw_spin_unlock_irq(&rq->lock); 3350 } 3351 3352 balance_callback(rq); 3353 } 3354 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */ 3355 3356 static inline void sched_submit_work(struct task_struct *tsk) 3357 { 3358 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3359 return; 3360 /* 3361 * If we are going to sleep and we have plugged IO queued, 3362 * make sure to submit it to avoid deadlocks. 3363 */ 3364 if (blk_needs_flush_plug(tsk)) 3365 blk_schedule_flush_plug(tsk); 3366 } 3367 3368 asmlinkage __visible void __sched schedule(void) 3369 { 3370 struct task_struct *tsk = current; 3371 3372 sched_submit_work(tsk); 3373 do { 3374 preempt_disable(); 3375 __schedule(false); 3376 sched_preempt_enable_no_resched(); 3377 } while (need_resched()); 3378 } 3379 EXPORT_SYMBOL(schedule); 3380 3381 #ifdef CONFIG_CONTEXT_TRACKING 3382 asmlinkage __visible void __sched schedule_user(void) 3383 { 3384 /* 3385 * If we come here after a random call to set_need_resched(), 3386 * or we have been woken up remotely but the IPI has not yet arrived, 3387 * we haven't yet exited the RCU idle mode. Do it here manually until 3388 * we find a better solution. 3389 * 3390 * NB: There are buggy callers of this function. Ideally we 3391 * should warn if prev_state != CONTEXT_USER, but that will trigger 3392 * too frequently to make sense yet. 3393 */ 3394 enum ctx_state prev_state = exception_enter(); 3395 schedule(); 3396 exception_exit(prev_state); 3397 } 3398 #endif 3399 3400 /** 3401 * schedule_preempt_disabled - called with preemption disabled 3402 * 3403 * Returns with preemption disabled. Note: preempt_count must be 1 3404 */ 3405 void __sched schedule_preempt_disabled(void) 3406 { 3407 sched_preempt_enable_no_resched(); 3408 schedule(); 3409 preempt_disable(); 3410 } 3411 3412 static void __sched notrace preempt_schedule_common(void) 3413 { 3414 do { 3415 /* 3416 * Because the function tracer can trace preempt_count_sub() 3417 * and it also uses preempt_enable/disable_notrace(), if 3418 * NEED_RESCHED is set, the preempt_enable_notrace() called 3419 * by the function tracer will call this function again and 3420 * cause infinite recursion. 3421 * 3422 * Preemption must be disabled here before the function 3423 * tracer can trace. Break up preempt_disable() into two 3424 * calls. One to disable preemption without fear of being 3425 * traced. The other to still record the preemption latency, 3426 * which can also be traced by the function tracer. 3427 */ 3428 preempt_disable_notrace(); 3429 preempt_latency_start(1); 3430 __schedule(true); 3431 preempt_latency_stop(1); 3432 preempt_enable_no_resched_notrace(); 3433 3434 /* 3435 * Check again in case we missed a preemption opportunity 3436 * between schedule and now. 3437 */ 3438 } while (need_resched()); 3439 } 3440 3441 #ifdef CONFIG_PREEMPT 3442 /* 3443 * this is the entry point to schedule() from in-kernel preemption 3444 * off of preempt_enable. Kernel preemptions off return from interrupt 3445 * occur there and call schedule directly. 3446 */ 3447 asmlinkage __visible void __sched notrace preempt_schedule(void) 3448 { 3449 /* 3450 * If there is a non-zero preempt_count or interrupts are disabled, 3451 * we do not want to preempt the current task. Just return.. 3452 */ 3453 if (likely(!preemptible())) 3454 return; 3455 3456 preempt_schedule_common(); 3457 } 3458 NOKPROBE_SYMBOL(preempt_schedule); 3459 EXPORT_SYMBOL(preempt_schedule); 3460 3461 /** 3462 * preempt_schedule_notrace - preempt_schedule called by tracing 3463 * 3464 * The tracing infrastructure uses preempt_enable_notrace to prevent 3465 * recursion and tracing preempt enabling caused by the tracing 3466 * infrastructure itself. But as tracing can happen in areas coming 3467 * from userspace or just about to enter userspace, a preempt enable 3468 * can occur before user_exit() is called. This will cause the scheduler 3469 * to be called when the system is still in usermode. 3470 * 3471 * To prevent this, the preempt_enable_notrace will use this function 3472 * instead of preempt_schedule() to exit user context if needed before 3473 * calling the scheduler. 3474 */ 3475 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3476 { 3477 enum ctx_state prev_ctx; 3478 3479 if (likely(!preemptible())) 3480 return; 3481 3482 do { 3483 /* 3484 * Because the function tracer can trace preempt_count_sub() 3485 * and it also uses preempt_enable/disable_notrace(), if 3486 * NEED_RESCHED is set, the preempt_enable_notrace() called 3487 * by the function tracer will call this function again and 3488 * cause infinite recursion. 3489 * 3490 * Preemption must be disabled here before the function 3491 * tracer can trace. Break up preempt_disable() into two 3492 * calls. One to disable preemption without fear of being 3493 * traced. The other to still record the preemption latency, 3494 * which can also be traced by the function tracer. 3495 */ 3496 preempt_disable_notrace(); 3497 preempt_latency_start(1); 3498 /* 3499 * Needs preempt disabled in case user_exit() is traced 3500 * and the tracer calls preempt_enable_notrace() causing 3501 * an infinite recursion. 3502 */ 3503 prev_ctx = exception_enter(); 3504 __schedule(true); 3505 exception_exit(prev_ctx); 3506 3507 preempt_latency_stop(1); 3508 preempt_enable_no_resched_notrace(); 3509 } while (need_resched()); 3510 } 3511 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3512 3513 #endif /* CONFIG_PREEMPT */ 3514 3515 /* 3516 * this is the entry point to schedule() from kernel preemption 3517 * off of irq context. 3518 * Note, that this is called and return with irqs disabled. This will 3519 * protect us against recursive calling from irq. 3520 */ 3521 asmlinkage __visible void __sched preempt_schedule_irq(void) 3522 { 3523 enum ctx_state prev_state; 3524 3525 /* Catch callers which need to be fixed */ 3526 BUG_ON(preempt_count() || !irqs_disabled()); 3527 3528 prev_state = exception_enter(); 3529 3530 do { 3531 preempt_disable(); 3532 local_irq_enable(); 3533 __schedule(true); 3534 local_irq_disable(); 3535 sched_preempt_enable_no_resched(); 3536 } while (need_resched()); 3537 3538 exception_exit(prev_state); 3539 } 3540 3541 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3542 void *key) 3543 { 3544 return try_to_wake_up(curr->private, mode, wake_flags); 3545 } 3546 EXPORT_SYMBOL(default_wake_function); 3547 3548 #ifdef CONFIG_RT_MUTEXES 3549 3550 /* 3551 * rt_mutex_setprio - set the current priority of a task 3552 * @p: task 3553 * @prio: prio value (kernel-internal form) 3554 * 3555 * This function changes the 'effective' priority of a task. It does 3556 * not touch ->normal_prio like __setscheduler(). 3557 * 3558 * Used by the rt_mutex code to implement priority inheritance 3559 * logic. Call site only calls if the priority of the task changed. 3560 */ 3561 void rt_mutex_setprio(struct task_struct *p, int prio) 3562 { 3563 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE; 3564 const struct sched_class *prev_class; 3565 struct rq_flags rf; 3566 struct rq *rq; 3567 3568 BUG_ON(prio > MAX_PRIO); 3569 3570 rq = __task_rq_lock(p, &rf); 3571 3572 /* 3573 * Idle task boosting is a nono in general. There is one 3574 * exception, when PREEMPT_RT and NOHZ is active: 3575 * 3576 * The idle task calls get_next_timer_interrupt() and holds 3577 * the timer wheel base->lock on the CPU and another CPU wants 3578 * to access the timer (probably to cancel it). We can safely 3579 * ignore the boosting request, as the idle CPU runs this code 3580 * with interrupts disabled and will complete the lock 3581 * protected section without being interrupted. So there is no 3582 * real need to boost. 3583 */ 3584 if (unlikely(p == rq->idle)) { 3585 WARN_ON(p != rq->curr); 3586 WARN_ON(p->pi_blocked_on); 3587 goto out_unlock; 3588 } 3589 3590 trace_sched_pi_setprio(p, prio); 3591 oldprio = p->prio; 3592 3593 if (oldprio == prio) 3594 queue_flag &= ~DEQUEUE_MOVE; 3595 3596 prev_class = p->sched_class; 3597 queued = task_on_rq_queued(p); 3598 running = task_current(rq, p); 3599 if (queued) 3600 dequeue_task(rq, p, queue_flag); 3601 if (running) 3602 put_prev_task(rq, p); 3603 3604 /* 3605 * Boosting condition are: 3606 * 1. -rt task is running and holds mutex A 3607 * --> -dl task blocks on mutex A 3608 * 3609 * 2. -dl task is running and holds mutex A 3610 * --> -dl task blocks on mutex A and could preempt the 3611 * running task 3612 */ 3613 if (dl_prio(prio)) { 3614 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3615 if (!dl_prio(p->normal_prio) || 3616 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3617 p->dl.dl_boosted = 1; 3618 queue_flag |= ENQUEUE_REPLENISH; 3619 } else 3620 p->dl.dl_boosted = 0; 3621 p->sched_class = &dl_sched_class; 3622 } else if (rt_prio(prio)) { 3623 if (dl_prio(oldprio)) 3624 p->dl.dl_boosted = 0; 3625 if (oldprio < prio) 3626 queue_flag |= ENQUEUE_HEAD; 3627 p->sched_class = &rt_sched_class; 3628 } else { 3629 if (dl_prio(oldprio)) 3630 p->dl.dl_boosted = 0; 3631 if (rt_prio(oldprio)) 3632 p->rt.timeout = 0; 3633 p->sched_class = &fair_sched_class; 3634 } 3635 3636 p->prio = prio; 3637 3638 if (running) 3639 p->sched_class->set_curr_task(rq); 3640 if (queued) 3641 enqueue_task(rq, p, queue_flag); 3642 3643 check_class_changed(rq, p, prev_class, oldprio); 3644 out_unlock: 3645 preempt_disable(); /* avoid rq from going away on us */ 3646 __task_rq_unlock(rq, &rf); 3647 3648 balance_callback(rq); 3649 preempt_enable(); 3650 } 3651 #endif 3652 3653 void set_user_nice(struct task_struct *p, long nice) 3654 { 3655 int old_prio, delta, queued; 3656 struct rq_flags rf; 3657 struct rq *rq; 3658 3659 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3660 return; 3661 /* 3662 * We have to be careful, if called from sys_setpriority(), 3663 * the task might be in the middle of scheduling on another CPU. 3664 */ 3665 rq = task_rq_lock(p, &rf); 3666 /* 3667 * The RT priorities are set via sched_setscheduler(), but we still 3668 * allow the 'normal' nice value to be set - but as expected 3669 * it wont have any effect on scheduling until the task is 3670 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3671 */ 3672 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3673 p->static_prio = NICE_TO_PRIO(nice); 3674 goto out_unlock; 3675 } 3676 queued = task_on_rq_queued(p); 3677 if (queued) 3678 dequeue_task(rq, p, DEQUEUE_SAVE); 3679 3680 p->static_prio = NICE_TO_PRIO(nice); 3681 set_load_weight(p); 3682 old_prio = p->prio; 3683 p->prio = effective_prio(p); 3684 delta = p->prio - old_prio; 3685 3686 if (queued) { 3687 enqueue_task(rq, p, ENQUEUE_RESTORE); 3688 /* 3689 * If the task increased its priority or is running and 3690 * lowered its priority, then reschedule its CPU: 3691 */ 3692 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3693 resched_curr(rq); 3694 } 3695 out_unlock: 3696 task_rq_unlock(rq, p, &rf); 3697 } 3698 EXPORT_SYMBOL(set_user_nice); 3699 3700 /* 3701 * can_nice - check if a task can reduce its nice value 3702 * @p: task 3703 * @nice: nice value 3704 */ 3705 int can_nice(const struct task_struct *p, const int nice) 3706 { 3707 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3708 int nice_rlim = nice_to_rlimit(nice); 3709 3710 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3711 capable(CAP_SYS_NICE)); 3712 } 3713 3714 #ifdef __ARCH_WANT_SYS_NICE 3715 3716 /* 3717 * sys_nice - change the priority of the current process. 3718 * @increment: priority increment 3719 * 3720 * sys_setpriority is a more generic, but much slower function that 3721 * does similar things. 3722 */ 3723 SYSCALL_DEFINE1(nice, int, increment) 3724 { 3725 long nice, retval; 3726 3727 /* 3728 * Setpriority might change our priority at the same moment. 3729 * We don't have to worry. Conceptually one call occurs first 3730 * and we have a single winner. 3731 */ 3732 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3733 nice = task_nice(current) + increment; 3734 3735 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3736 if (increment < 0 && !can_nice(current, nice)) 3737 return -EPERM; 3738 3739 retval = security_task_setnice(current, nice); 3740 if (retval) 3741 return retval; 3742 3743 set_user_nice(current, nice); 3744 return 0; 3745 } 3746 3747 #endif 3748 3749 /** 3750 * task_prio - return the priority value of a given task. 3751 * @p: the task in question. 3752 * 3753 * Return: The priority value as seen by users in /proc. 3754 * RT tasks are offset by -200. Normal tasks are centered 3755 * around 0, value goes from -16 to +15. 3756 */ 3757 int task_prio(const struct task_struct *p) 3758 { 3759 return p->prio - MAX_RT_PRIO; 3760 } 3761 3762 /** 3763 * idle_cpu - is a given cpu idle currently? 3764 * @cpu: the processor in question. 3765 * 3766 * Return: 1 if the CPU is currently idle. 0 otherwise. 3767 */ 3768 int idle_cpu(int cpu) 3769 { 3770 struct rq *rq = cpu_rq(cpu); 3771 3772 if (rq->curr != rq->idle) 3773 return 0; 3774 3775 if (rq->nr_running) 3776 return 0; 3777 3778 #ifdef CONFIG_SMP 3779 if (!llist_empty(&rq->wake_list)) 3780 return 0; 3781 #endif 3782 3783 return 1; 3784 } 3785 3786 /** 3787 * idle_task - return the idle task for a given cpu. 3788 * @cpu: the processor in question. 3789 * 3790 * Return: The idle task for the cpu @cpu. 3791 */ 3792 struct task_struct *idle_task(int cpu) 3793 { 3794 return cpu_rq(cpu)->idle; 3795 } 3796 3797 /** 3798 * find_process_by_pid - find a process with a matching PID value. 3799 * @pid: the pid in question. 3800 * 3801 * The task of @pid, if found. %NULL otherwise. 3802 */ 3803 static struct task_struct *find_process_by_pid(pid_t pid) 3804 { 3805 return pid ? find_task_by_vpid(pid) : current; 3806 } 3807 3808 /* 3809 * This function initializes the sched_dl_entity of a newly becoming 3810 * SCHED_DEADLINE task. 3811 * 3812 * Only the static values are considered here, the actual runtime and the 3813 * absolute deadline will be properly calculated when the task is enqueued 3814 * for the first time with its new policy. 3815 */ 3816 static void 3817 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3818 { 3819 struct sched_dl_entity *dl_se = &p->dl; 3820 3821 dl_se->dl_runtime = attr->sched_runtime; 3822 dl_se->dl_deadline = attr->sched_deadline; 3823 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3824 dl_se->flags = attr->sched_flags; 3825 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3826 3827 /* 3828 * Changing the parameters of a task is 'tricky' and we're not doing 3829 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3830 * 3831 * What we SHOULD do is delay the bandwidth release until the 0-lag 3832 * point. This would include retaining the task_struct until that time 3833 * and change dl_overflow() to not immediately decrement the current 3834 * amount. 3835 * 3836 * Instead we retain the current runtime/deadline and let the new 3837 * parameters take effect after the current reservation period lapses. 3838 * This is safe (albeit pessimistic) because the 0-lag point is always 3839 * before the current scheduling deadline. 3840 * 3841 * We can still have temporary overloads because we do not delay the 3842 * change in bandwidth until that time; so admission control is 3843 * not on the safe side. It does however guarantee tasks will never 3844 * consume more than promised. 3845 */ 3846 } 3847 3848 /* 3849 * sched_setparam() passes in -1 for its policy, to let the functions 3850 * it calls know not to change it. 3851 */ 3852 #define SETPARAM_POLICY -1 3853 3854 static void __setscheduler_params(struct task_struct *p, 3855 const struct sched_attr *attr) 3856 { 3857 int policy = attr->sched_policy; 3858 3859 if (policy == SETPARAM_POLICY) 3860 policy = p->policy; 3861 3862 p->policy = policy; 3863 3864 if (dl_policy(policy)) 3865 __setparam_dl(p, attr); 3866 else if (fair_policy(policy)) 3867 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3868 3869 /* 3870 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3871 * !rt_policy. Always setting this ensures that things like 3872 * getparam()/getattr() don't report silly values for !rt tasks. 3873 */ 3874 p->rt_priority = attr->sched_priority; 3875 p->normal_prio = normal_prio(p); 3876 set_load_weight(p); 3877 } 3878 3879 /* Actually do priority change: must hold pi & rq lock. */ 3880 static void __setscheduler(struct rq *rq, struct task_struct *p, 3881 const struct sched_attr *attr, bool keep_boost) 3882 { 3883 __setscheduler_params(p, attr); 3884 3885 /* 3886 * Keep a potential priority boosting if called from 3887 * sched_setscheduler(). 3888 */ 3889 if (keep_boost) 3890 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 3891 else 3892 p->prio = normal_prio(p); 3893 3894 if (dl_prio(p->prio)) 3895 p->sched_class = &dl_sched_class; 3896 else if (rt_prio(p->prio)) 3897 p->sched_class = &rt_sched_class; 3898 else 3899 p->sched_class = &fair_sched_class; 3900 } 3901 3902 static void 3903 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3904 { 3905 struct sched_dl_entity *dl_se = &p->dl; 3906 3907 attr->sched_priority = p->rt_priority; 3908 attr->sched_runtime = dl_se->dl_runtime; 3909 attr->sched_deadline = dl_se->dl_deadline; 3910 attr->sched_period = dl_se->dl_period; 3911 attr->sched_flags = dl_se->flags; 3912 } 3913 3914 /* 3915 * This function validates the new parameters of a -deadline task. 3916 * We ask for the deadline not being zero, and greater or equal 3917 * than the runtime, as well as the period of being zero or 3918 * greater than deadline. Furthermore, we have to be sure that 3919 * user parameters are above the internal resolution of 1us (we 3920 * check sched_runtime only since it is always the smaller one) and 3921 * below 2^63 ns (we have to check both sched_deadline and 3922 * sched_period, as the latter can be zero). 3923 */ 3924 static bool 3925 __checkparam_dl(const struct sched_attr *attr) 3926 { 3927 /* deadline != 0 */ 3928 if (attr->sched_deadline == 0) 3929 return false; 3930 3931 /* 3932 * Since we truncate DL_SCALE bits, make sure we're at least 3933 * that big. 3934 */ 3935 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3936 return false; 3937 3938 /* 3939 * Since we use the MSB for wrap-around and sign issues, make 3940 * sure it's not set (mind that period can be equal to zero). 3941 */ 3942 if (attr->sched_deadline & (1ULL << 63) || 3943 attr->sched_period & (1ULL << 63)) 3944 return false; 3945 3946 /* runtime <= deadline <= period (if period != 0) */ 3947 if ((attr->sched_period != 0 && 3948 attr->sched_period < attr->sched_deadline) || 3949 attr->sched_deadline < attr->sched_runtime) 3950 return false; 3951 3952 return true; 3953 } 3954 3955 /* 3956 * check the target process has a UID that matches the current process's 3957 */ 3958 static bool check_same_owner(struct task_struct *p) 3959 { 3960 const struct cred *cred = current_cred(), *pcred; 3961 bool match; 3962 3963 rcu_read_lock(); 3964 pcred = __task_cred(p); 3965 match = (uid_eq(cred->euid, pcred->euid) || 3966 uid_eq(cred->euid, pcred->uid)); 3967 rcu_read_unlock(); 3968 return match; 3969 } 3970 3971 static bool dl_param_changed(struct task_struct *p, 3972 const struct sched_attr *attr) 3973 { 3974 struct sched_dl_entity *dl_se = &p->dl; 3975 3976 if (dl_se->dl_runtime != attr->sched_runtime || 3977 dl_se->dl_deadline != attr->sched_deadline || 3978 dl_se->dl_period != attr->sched_period || 3979 dl_se->flags != attr->sched_flags) 3980 return true; 3981 3982 return false; 3983 } 3984 3985 static int __sched_setscheduler(struct task_struct *p, 3986 const struct sched_attr *attr, 3987 bool user, bool pi) 3988 { 3989 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3990 MAX_RT_PRIO - 1 - attr->sched_priority; 3991 int retval, oldprio, oldpolicy = -1, queued, running; 3992 int new_effective_prio, policy = attr->sched_policy; 3993 const struct sched_class *prev_class; 3994 struct rq_flags rf; 3995 int reset_on_fork; 3996 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 3997 struct rq *rq; 3998 3999 /* may grab non-irq protected spin_locks */ 4000 BUG_ON(in_interrupt()); 4001 recheck: 4002 /* double check policy once rq lock held */ 4003 if (policy < 0) { 4004 reset_on_fork = p->sched_reset_on_fork; 4005 policy = oldpolicy = p->policy; 4006 } else { 4007 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4008 4009 if (!valid_policy(policy)) 4010 return -EINVAL; 4011 } 4012 4013 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 4014 return -EINVAL; 4015 4016 /* 4017 * Valid priorities for SCHED_FIFO and SCHED_RR are 4018 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4019 * SCHED_BATCH and SCHED_IDLE is 0. 4020 */ 4021 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4022 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4023 return -EINVAL; 4024 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4025 (rt_policy(policy) != (attr->sched_priority != 0))) 4026 return -EINVAL; 4027 4028 /* 4029 * Allow unprivileged RT tasks to decrease priority: 4030 */ 4031 if (user && !capable(CAP_SYS_NICE)) { 4032 if (fair_policy(policy)) { 4033 if (attr->sched_nice < task_nice(p) && 4034 !can_nice(p, attr->sched_nice)) 4035 return -EPERM; 4036 } 4037 4038 if (rt_policy(policy)) { 4039 unsigned long rlim_rtprio = 4040 task_rlimit(p, RLIMIT_RTPRIO); 4041 4042 /* can't set/change the rt policy */ 4043 if (policy != p->policy && !rlim_rtprio) 4044 return -EPERM; 4045 4046 /* can't increase priority */ 4047 if (attr->sched_priority > p->rt_priority && 4048 attr->sched_priority > rlim_rtprio) 4049 return -EPERM; 4050 } 4051 4052 /* 4053 * Can't set/change SCHED_DEADLINE policy at all for now 4054 * (safest behavior); in the future we would like to allow 4055 * unprivileged DL tasks to increase their relative deadline 4056 * or reduce their runtime (both ways reducing utilization) 4057 */ 4058 if (dl_policy(policy)) 4059 return -EPERM; 4060 4061 /* 4062 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4063 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4064 */ 4065 if (idle_policy(p->policy) && !idle_policy(policy)) { 4066 if (!can_nice(p, task_nice(p))) 4067 return -EPERM; 4068 } 4069 4070 /* can't change other user's priorities */ 4071 if (!check_same_owner(p)) 4072 return -EPERM; 4073 4074 /* Normal users shall not reset the sched_reset_on_fork flag */ 4075 if (p->sched_reset_on_fork && !reset_on_fork) 4076 return -EPERM; 4077 } 4078 4079 if (user) { 4080 retval = security_task_setscheduler(p); 4081 if (retval) 4082 return retval; 4083 } 4084 4085 /* 4086 * make sure no PI-waiters arrive (or leave) while we are 4087 * changing the priority of the task: 4088 * 4089 * To be able to change p->policy safely, the appropriate 4090 * runqueue lock must be held. 4091 */ 4092 rq = task_rq_lock(p, &rf); 4093 4094 /* 4095 * Changing the policy of the stop threads its a very bad idea 4096 */ 4097 if (p == rq->stop) { 4098 task_rq_unlock(rq, p, &rf); 4099 return -EINVAL; 4100 } 4101 4102 /* 4103 * If not changing anything there's no need to proceed further, 4104 * but store a possible modification of reset_on_fork. 4105 */ 4106 if (unlikely(policy == p->policy)) { 4107 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4108 goto change; 4109 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4110 goto change; 4111 if (dl_policy(policy) && dl_param_changed(p, attr)) 4112 goto change; 4113 4114 p->sched_reset_on_fork = reset_on_fork; 4115 task_rq_unlock(rq, p, &rf); 4116 return 0; 4117 } 4118 change: 4119 4120 if (user) { 4121 #ifdef CONFIG_RT_GROUP_SCHED 4122 /* 4123 * Do not allow realtime tasks into groups that have no runtime 4124 * assigned. 4125 */ 4126 if (rt_bandwidth_enabled() && rt_policy(policy) && 4127 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4128 !task_group_is_autogroup(task_group(p))) { 4129 task_rq_unlock(rq, p, &rf); 4130 return -EPERM; 4131 } 4132 #endif 4133 #ifdef CONFIG_SMP 4134 if (dl_bandwidth_enabled() && dl_policy(policy)) { 4135 cpumask_t *span = rq->rd->span; 4136 4137 /* 4138 * Don't allow tasks with an affinity mask smaller than 4139 * the entire root_domain to become SCHED_DEADLINE. We 4140 * will also fail if there's no bandwidth available. 4141 */ 4142 if (!cpumask_subset(span, &p->cpus_allowed) || 4143 rq->rd->dl_bw.bw == 0) { 4144 task_rq_unlock(rq, p, &rf); 4145 return -EPERM; 4146 } 4147 } 4148 #endif 4149 } 4150 4151 /* recheck policy now with rq lock held */ 4152 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4153 policy = oldpolicy = -1; 4154 task_rq_unlock(rq, p, &rf); 4155 goto recheck; 4156 } 4157 4158 /* 4159 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4160 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4161 * is available. 4162 */ 4163 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 4164 task_rq_unlock(rq, p, &rf); 4165 return -EBUSY; 4166 } 4167 4168 p->sched_reset_on_fork = reset_on_fork; 4169 oldprio = p->prio; 4170 4171 if (pi) { 4172 /* 4173 * Take priority boosted tasks into account. If the new 4174 * effective priority is unchanged, we just store the new 4175 * normal parameters and do not touch the scheduler class and 4176 * the runqueue. This will be done when the task deboost 4177 * itself. 4178 */ 4179 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 4180 if (new_effective_prio == oldprio) 4181 queue_flags &= ~DEQUEUE_MOVE; 4182 } 4183 4184 queued = task_on_rq_queued(p); 4185 running = task_current(rq, p); 4186 if (queued) 4187 dequeue_task(rq, p, queue_flags); 4188 if (running) 4189 put_prev_task(rq, p); 4190 4191 prev_class = p->sched_class; 4192 __setscheduler(rq, p, attr, pi); 4193 4194 if (running) 4195 p->sched_class->set_curr_task(rq); 4196 if (queued) { 4197 /* 4198 * We enqueue to tail when the priority of a task is 4199 * increased (user space view). 4200 */ 4201 if (oldprio < p->prio) 4202 queue_flags |= ENQUEUE_HEAD; 4203 4204 enqueue_task(rq, p, queue_flags); 4205 } 4206 4207 check_class_changed(rq, p, prev_class, oldprio); 4208 preempt_disable(); /* avoid rq from going away on us */ 4209 task_rq_unlock(rq, p, &rf); 4210 4211 if (pi) 4212 rt_mutex_adjust_pi(p); 4213 4214 /* 4215 * Run balance callbacks after we've adjusted the PI chain. 4216 */ 4217 balance_callback(rq); 4218 preempt_enable(); 4219 4220 return 0; 4221 } 4222 4223 static int _sched_setscheduler(struct task_struct *p, int policy, 4224 const struct sched_param *param, bool check) 4225 { 4226 struct sched_attr attr = { 4227 .sched_policy = policy, 4228 .sched_priority = param->sched_priority, 4229 .sched_nice = PRIO_TO_NICE(p->static_prio), 4230 }; 4231 4232 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4233 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4234 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4235 policy &= ~SCHED_RESET_ON_FORK; 4236 attr.sched_policy = policy; 4237 } 4238 4239 return __sched_setscheduler(p, &attr, check, true); 4240 } 4241 /** 4242 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4243 * @p: the task in question. 4244 * @policy: new policy. 4245 * @param: structure containing the new RT priority. 4246 * 4247 * Return: 0 on success. An error code otherwise. 4248 * 4249 * NOTE that the task may be already dead. 4250 */ 4251 int sched_setscheduler(struct task_struct *p, int policy, 4252 const struct sched_param *param) 4253 { 4254 return _sched_setscheduler(p, policy, param, true); 4255 } 4256 EXPORT_SYMBOL_GPL(sched_setscheduler); 4257 4258 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4259 { 4260 return __sched_setscheduler(p, attr, true, true); 4261 } 4262 EXPORT_SYMBOL_GPL(sched_setattr); 4263 4264 /** 4265 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4266 * @p: the task in question. 4267 * @policy: new policy. 4268 * @param: structure containing the new RT priority. 4269 * 4270 * Just like sched_setscheduler, only don't bother checking if the 4271 * current context has permission. For example, this is needed in 4272 * stop_machine(): we create temporary high priority worker threads, 4273 * but our caller might not have that capability. 4274 * 4275 * Return: 0 on success. An error code otherwise. 4276 */ 4277 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4278 const struct sched_param *param) 4279 { 4280 return _sched_setscheduler(p, policy, param, false); 4281 } 4282 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4283 4284 static int 4285 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4286 { 4287 struct sched_param lparam; 4288 struct task_struct *p; 4289 int retval; 4290 4291 if (!param || pid < 0) 4292 return -EINVAL; 4293 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4294 return -EFAULT; 4295 4296 rcu_read_lock(); 4297 retval = -ESRCH; 4298 p = find_process_by_pid(pid); 4299 if (p != NULL) 4300 retval = sched_setscheduler(p, policy, &lparam); 4301 rcu_read_unlock(); 4302 4303 return retval; 4304 } 4305 4306 /* 4307 * Mimics kernel/events/core.c perf_copy_attr(). 4308 */ 4309 static int sched_copy_attr(struct sched_attr __user *uattr, 4310 struct sched_attr *attr) 4311 { 4312 u32 size; 4313 int ret; 4314 4315 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4316 return -EFAULT; 4317 4318 /* 4319 * zero the full structure, so that a short copy will be nice. 4320 */ 4321 memset(attr, 0, sizeof(*attr)); 4322 4323 ret = get_user(size, &uattr->size); 4324 if (ret) 4325 return ret; 4326 4327 if (size > PAGE_SIZE) /* silly large */ 4328 goto err_size; 4329 4330 if (!size) /* abi compat */ 4331 size = SCHED_ATTR_SIZE_VER0; 4332 4333 if (size < SCHED_ATTR_SIZE_VER0) 4334 goto err_size; 4335 4336 /* 4337 * If we're handed a bigger struct than we know of, 4338 * ensure all the unknown bits are 0 - i.e. new 4339 * user-space does not rely on any kernel feature 4340 * extensions we dont know about yet. 4341 */ 4342 if (size > sizeof(*attr)) { 4343 unsigned char __user *addr; 4344 unsigned char __user *end; 4345 unsigned char val; 4346 4347 addr = (void __user *)uattr + sizeof(*attr); 4348 end = (void __user *)uattr + size; 4349 4350 for (; addr < end; addr++) { 4351 ret = get_user(val, addr); 4352 if (ret) 4353 return ret; 4354 if (val) 4355 goto err_size; 4356 } 4357 size = sizeof(*attr); 4358 } 4359 4360 ret = copy_from_user(attr, uattr, size); 4361 if (ret) 4362 return -EFAULT; 4363 4364 /* 4365 * XXX: do we want to be lenient like existing syscalls; or do we want 4366 * to be strict and return an error on out-of-bounds values? 4367 */ 4368 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4369 4370 return 0; 4371 4372 err_size: 4373 put_user(sizeof(*attr), &uattr->size); 4374 return -E2BIG; 4375 } 4376 4377 /** 4378 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4379 * @pid: the pid in question. 4380 * @policy: new policy. 4381 * @param: structure containing the new RT priority. 4382 * 4383 * Return: 0 on success. An error code otherwise. 4384 */ 4385 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4386 struct sched_param __user *, param) 4387 { 4388 /* negative values for policy are not valid */ 4389 if (policy < 0) 4390 return -EINVAL; 4391 4392 return do_sched_setscheduler(pid, policy, param); 4393 } 4394 4395 /** 4396 * sys_sched_setparam - set/change the RT priority of a thread 4397 * @pid: the pid in question. 4398 * @param: structure containing the new RT priority. 4399 * 4400 * Return: 0 on success. An error code otherwise. 4401 */ 4402 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4403 { 4404 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4405 } 4406 4407 /** 4408 * sys_sched_setattr - same as above, but with extended sched_attr 4409 * @pid: the pid in question. 4410 * @uattr: structure containing the extended parameters. 4411 * @flags: for future extension. 4412 */ 4413 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4414 unsigned int, flags) 4415 { 4416 struct sched_attr attr; 4417 struct task_struct *p; 4418 int retval; 4419 4420 if (!uattr || pid < 0 || flags) 4421 return -EINVAL; 4422 4423 retval = sched_copy_attr(uattr, &attr); 4424 if (retval) 4425 return retval; 4426 4427 if ((int)attr.sched_policy < 0) 4428 return -EINVAL; 4429 4430 rcu_read_lock(); 4431 retval = -ESRCH; 4432 p = find_process_by_pid(pid); 4433 if (p != NULL) 4434 retval = sched_setattr(p, &attr); 4435 rcu_read_unlock(); 4436 4437 return retval; 4438 } 4439 4440 /** 4441 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4442 * @pid: the pid in question. 4443 * 4444 * Return: On success, the policy of the thread. Otherwise, a negative error 4445 * code. 4446 */ 4447 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4448 { 4449 struct task_struct *p; 4450 int retval; 4451 4452 if (pid < 0) 4453 return -EINVAL; 4454 4455 retval = -ESRCH; 4456 rcu_read_lock(); 4457 p = find_process_by_pid(pid); 4458 if (p) { 4459 retval = security_task_getscheduler(p); 4460 if (!retval) 4461 retval = p->policy 4462 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4463 } 4464 rcu_read_unlock(); 4465 return retval; 4466 } 4467 4468 /** 4469 * sys_sched_getparam - get the RT priority of a thread 4470 * @pid: the pid in question. 4471 * @param: structure containing the RT priority. 4472 * 4473 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4474 * code. 4475 */ 4476 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4477 { 4478 struct sched_param lp = { .sched_priority = 0 }; 4479 struct task_struct *p; 4480 int retval; 4481 4482 if (!param || pid < 0) 4483 return -EINVAL; 4484 4485 rcu_read_lock(); 4486 p = find_process_by_pid(pid); 4487 retval = -ESRCH; 4488 if (!p) 4489 goto out_unlock; 4490 4491 retval = security_task_getscheduler(p); 4492 if (retval) 4493 goto out_unlock; 4494 4495 if (task_has_rt_policy(p)) 4496 lp.sched_priority = p->rt_priority; 4497 rcu_read_unlock(); 4498 4499 /* 4500 * This one might sleep, we cannot do it with a spinlock held ... 4501 */ 4502 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4503 4504 return retval; 4505 4506 out_unlock: 4507 rcu_read_unlock(); 4508 return retval; 4509 } 4510 4511 static int sched_read_attr(struct sched_attr __user *uattr, 4512 struct sched_attr *attr, 4513 unsigned int usize) 4514 { 4515 int ret; 4516 4517 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4518 return -EFAULT; 4519 4520 /* 4521 * If we're handed a smaller struct than we know of, 4522 * ensure all the unknown bits are 0 - i.e. old 4523 * user-space does not get uncomplete information. 4524 */ 4525 if (usize < sizeof(*attr)) { 4526 unsigned char *addr; 4527 unsigned char *end; 4528 4529 addr = (void *)attr + usize; 4530 end = (void *)attr + sizeof(*attr); 4531 4532 for (; addr < end; addr++) { 4533 if (*addr) 4534 return -EFBIG; 4535 } 4536 4537 attr->size = usize; 4538 } 4539 4540 ret = copy_to_user(uattr, attr, attr->size); 4541 if (ret) 4542 return -EFAULT; 4543 4544 return 0; 4545 } 4546 4547 /** 4548 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4549 * @pid: the pid in question. 4550 * @uattr: structure containing the extended parameters. 4551 * @size: sizeof(attr) for fwd/bwd comp. 4552 * @flags: for future extension. 4553 */ 4554 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4555 unsigned int, size, unsigned int, flags) 4556 { 4557 struct sched_attr attr = { 4558 .size = sizeof(struct sched_attr), 4559 }; 4560 struct task_struct *p; 4561 int retval; 4562 4563 if (!uattr || pid < 0 || size > PAGE_SIZE || 4564 size < SCHED_ATTR_SIZE_VER0 || flags) 4565 return -EINVAL; 4566 4567 rcu_read_lock(); 4568 p = find_process_by_pid(pid); 4569 retval = -ESRCH; 4570 if (!p) 4571 goto out_unlock; 4572 4573 retval = security_task_getscheduler(p); 4574 if (retval) 4575 goto out_unlock; 4576 4577 attr.sched_policy = p->policy; 4578 if (p->sched_reset_on_fork) 4579 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4580 if (task_has_dl_policy(p)) 4581 __getparam_dl(p, &attr); 4582 else if (task_has_rt_policy(p)) 4583 attr.sched_priority = p->rt_priority; 4584 else 4585 attr.sched_nice = task_nice(p); 4586 4587 rcu_read_unlock(); 4588 4589 retval = sched_read_attr(uattr, &attr, size); 4590 return retval; 4591 4592 out_unlock: 4593 rcu_read_unlock(); 4594 return retval; 4595 } 4596 4597 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4598 { 4599 cpumask_var_t cpus_allowed, new_mask; 4600 struct task_struct *p; 4601 int retval; 4602 4603 rcu_read_lock(); 4604 4605 p = find_process_by_pid(pid); 4606 if (!p) { 4607 rcu_read_unlock(); 4608 return -ESRCH; 4609 } 4610 4611 /* Prevent p going away */ 4612 get_task_struct(p); 4613 rcu_read_unlock(); 4614 4615 if (p->flags & PF_NO_SETAFFINITY) { 4616 retval = -EINVAL; 4617 goto out_put_task; 4618 } 4619 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4620 retval = -ENOMEM; 4621 goto out_put_task; 4622 } 4623 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4624 retval = -ENOMEM; 4625 goto out_free_cpus_allowed; 4626 } 4627 retval = -EPERM; 4628 if (!check_same_owner(p)) { 4629 rcu_read_lock(); 4630 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4631 rcu_read_unlock(); 4632 goto out_free_new_mask; 4633 } 4634 rcu_read_unlock(); 4635 } 4636 4637 retval = security_task_setscheduler(p); 4638 if (retval) 4639 goto out_free_new_mask; 4640 4641 4642 cpuset_cpus_allowed(p, cpus_allowed); 4643 cpumask_and(new_mask, in_mask, cpus_allowed); 4644 4645 /* 4646 * Since bandwidth control happens on root_domain basis, 4647 * if admission test is enabled, we only admit -deadline 4648 * tasks allowed to run on all the CPUs in the task's 4649 * root_domain. 4650 */ 4651 #ifdef CONFIG_SMP 4652 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4653 rcu_read_lock(); 4654 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4655 retval = -EBUSY; 4656 rcu_read_unlock(); 4657 goto out_free_new_mask; 4658 } 4659 rcu_read_unlock(); 4660 } 4661 #endif 4662 again: 4663 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4664 4665 if (!retval) { 4666 cpuset_cpus_allowed(p, cpus_allowed); 4667 if (!cpumask_subset(new_mask, cpus_allowed)) { 4668 /* 4669 * We must have raced with a concurrent cpuset 4670 * update. Just reset the cpus_allowed to the 4671 * cpuset's cpus_allowed 4672 */ 4673 cpumask_copy(new_mask, cpus_allowed); 4674 goto again; 4675 } 4676 } 4677 out_free_new_mask: 4678 free_cpumask_var(new_mask); 4679 out_free_cpus_allowed: 4680 free_cpumask_var(cpus_allowed); 4681 out_put_task: 4682 put_task_struct(p); 4683 return retval; 4684 } 4685 4686 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4687 struct cpumask *new_mask) 4688 { 4689 if (len < cpumask_size()) 4690 cpumask_clear(new_mask); 4691 else if (len > cpumask_size()) 4692 len = cpumask_size(); 4693 4694 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4695 } 4696 4697 /** 4698 * sys_sched_setaffinity - set the cpu affinity of a process 4699 * @pid: pid of the process 4700 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4701 * @user_mask_ptr: user-space pointer to the new cpu mask 4702 * 4703 * Return: 0 on success. An error code otherwise. 4704 */ 4705 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4706 unsigned long __user *, user_mask_ptr) 4707 { 4708 cpumask_var_t new_mask; 4709 int retval; 4710 4711 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4712 return -ENOMEM; 4713 4714 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4715 if (retval == 0) 4716 retval = sched_setaffinity(pid, new_mask); 4717 free_cpumask_var(new_mask); 4718 return retval; 4719 } 4720 4721 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4722 { 4723 struct task_struct *p; 4724 unsigned long flags; 4725 int retval; 4726 4727 rcu_read_lock(); 4728 4729 retval = -ESRCH; 4730 p = find_process_by_pid(pid); 4731 if (!p) 4732 goto out_unlock; 4733 4734 retval = security_task_getscheduler(p); 4735 if (retval) 4736 goto out_unlock; 4737 4738 raw_spin_lock_irqsave(&p->pi_lock, flags); 4739 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4740 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4741 4742 out_unlock: 4743 rcu_read_unlock(); 4744 4745 return retval; 4746 } 4747 4748 /** 4749 * sys_sched_getaffinity - get the cpu affinity of a process 4750 * @pid: pid of the process 4751 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4752 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4753 * 4754 * Return: 0 on success. An error code otherwise. 4755 */ 4756 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4757 unsigned long __user *, user_mask_ptr) 4758 { 4759 int ret; 4760 cpumask_var_t mask; 4761 4762 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4763 return -EINVAL; 4764 if (len & (sizeof(unsigned long)-1)) 4765 return -EINVAL; 4766 4767 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4768 return -ENOMEM; 4769 4770 ret = sched_getaffinity(pid, mask); 4771 if (ret == 0) { 4772 size_t retlen = min_t(size_t, len, cpumask_size()); 4773 4774 if (copy_to_user(user_mask_ptr, mask, retlen)) 4775 ret = -EFAULT; 4776 else 4777 ret = retlen; 4778 } 4779 free_cpumask_var(mask); 4780 4781 return ret; 4782 } 4783 4784 /** 4785 * sys_sched_yield - yield the current processor to other threads. 4786 * 4787 * This function yields the current CPU to other tasks. If there are no 4788 * other threads running on this CPU then this function will return. 4789 * 4790 * Return: 0. 4791 */ 4792 SYSCALL_DEFINE0(sched_yield) 4793 { 4794 struct rq *rq = this_rq_lock(); 4795 4796 schedstat_inc(rq, yld_count); 4797 current->sched_class->yield_task(rq); 4798 4799 /* 4800 * Since we are going to call schedule() anyway, there's 4801 * no need to preempt or enable interrupts: 4802 */ 4803 __release(rq->lock); 4804 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4805 do_raw_spin_unlock(&rq->lock); 4806 sched_preempt_enable_no_resched(); 4807 4808 schedule(); 4809 4810 return 0; 4811 } 4812 4813 int __sched _cond_resched(void) 4814 { 4815 if (should_resched(0)) { 4816 preempt_schedule_common(); 4817 return 1; 4818 } 4819 return 0; 4820 } 4821 EXPORT_SYMBOL(_cond_resched); 4822 4823 /* 4824 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4825 * call schedule, and on return reacquire the lock. 4826 * 4827 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4828 * operations here to prevent schedule() from being called twice (once via 4829 * spin_unlock(), once by hand). 4830 */ 4831 int __cond_resched_lock(spinlock_t *lock) 4832 { 4833 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4834 int ret = 0; 4835 4836 lockdep_assert_held(lock); 4837 4838 if (spin_needbreak(lock) || resched) { 4839 spin_unlock(lock); 4840 if (resched) 4841 preempt_schedule_common(); 4842 else 4843 cpu_relax(); 4844 ret = 1; 4845 spin_lock(lock); 4846 } 4847 return ret; 4848 } 4849 EXPORT_SYMBOL(__cond_resched_lock); 4850 4851 int __sched __cond_resched_softirq(void) 4852 { 4853 BUG_ON(!in_softirq()); 4854 4855 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 4856 local_bh_enable(); 4857 preempt_schedule_common(); 4858 local_bh_disable(); 4859 return 1; 4860 } 4861 return 0; 4862 } 4863 EXPORT_SYMBOL(__cond_resched_softirq); 4864 4865 /** 4866 * yield - yield the current processor to other threads. 4867 * 4868 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4869 * 4870 * The scheduler is at all times free to pick the calling task as the most 4871 * eligible task to run, if removing the yield() call from your code breaks 4872 * it, its already broken. 4873 * 4874 * Typical broken usage is: 4875 * 4876 * while (!event) 4877 * yield(); 4878 * 4879 * where one assumes that yield() will let 'the other' process run that will 4880 * make event true. If the current task is a SCHED_FIFO task that will never 4881 * happen. Never use yield() as a progress guarantee!! 4882 * 4883 * If you want to use yield() to wait for something, use wait_event(). 4884 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4885 * If you still want to use yield(), do not! 4886 */ 4887 void __sched yield(void) 4888 { 4889 set_current_state(TASK_RUNNING); 4890 sys_sched_yield(); 4891 } 4892 EXPORT_SYMBOL(yield); 4893 4894 /** 4895 * yield_to - yield the current processor to another thread in 4896 * your thread group, or accelerate that thread toward the 4897 * processor it's on. 4898 * @p: target task 4899 * @preempt: whether task preemption is allowed or not 4900 * 4901 * It's the caller's job to ensure that the target task struct 4902 * can't go away on us before we can do any checks. 4903 * 4904 * Return: 4905 * true (>0) if we indeed boosted the target task. 4906 * false (0) if we failed to boost the target. 4907 * -ESRCH if there's no task to yield to. 4908 */ 4909 int __sched yield_to(struct task_struct *p, bool preempt) 4910 { 4911 struct task_struct *curr = current; 4912 struct rq *rq, *p_rq; 4913 unsigned long flags; 4914 int yielded = 0; 4915 4916 local_irq_save(flags); 4917 rq = this_rq(); 4918 4919 again: 4920 p_rq = task_rq(p); 4921 /* 4922 * If we're the only runnable task on the rq and target rq also 4923 * has only one task, there's absolutely no point in yielding. 4924 */ 4925 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4926 yielded = -ESRCH; 4927 goto out_irq; 4928 } 4929 4930 double_rq_lock(rq, p_rq); 4931 if (task_rq(p) != p_rq) { 4932 double_rq_unlock(rq, p_rq); 4933 goto again; 4934 } 4935 4936 if (!curr->sched_class->yield_to_task) 4937 goto out_unlock; 4938 4939 if (curr->sched_class != p->sched_class) 4940 goto out_unlock; 4941 4942 if (task_running(p_rq, p) || p->state) 4943 goto out_unlock; 4944 4945 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4946 if (yielded) { 4947 schedstat_inc(rq, yld_count); 4948 /* 4949 * Make p's CPU reschedule; pick_next_entity takes care of 4950 * fairness. 4951 */ 4952 if (preempt && rq != p_rq) 4953 resched_curr(p_rq); 4954 } 4955 4956 out_unlock: 4957 double_rq_unlock(rq, p_rq); 4958 out_irq: 4959 local_irq_restore(flags); 4960 4961 if (yielded > 0) 4962 schedule(); 4963 4964 return yielded; 4965 } 4966 EXPORT_SYMBOL_GPL(yield_to); 4967 4968 /* 4969 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4970 * that process accounting knows that this is a task in IO wait state. 4971 */ 4972 long __sched io_schedule_timeout(long timeout) 4973 { 4974 int old_iowait = current->in_iowait; 4975 struct rq *rq; 4976 long ret; 4977 4978 current->in_iowait = 1; 4979 blk_schedule_flush_plug(current); 4980 4981 delayacct_blkio_start(); 4982 rq = raw_rq(); 4983 atomic_inc(&rq->nr_iowait); 4984 ret = schedule_timeout(timeout); 4985 current->in_iowait = old_iowait; 4986 atomic_dec(&rq->nr_iowait); 4987 delayacct_blkio_end(); 4988 4989 return ret; 4990 } 4991 EXPORT_SYMBOL(io_schedule_timeout); 4992 4993 /** 4994 * sys_sched_get_priority_max - return maximum RT priority. 4995 * @policy: scheduling class. 4996 * 4997 * Return: On success, this syscall returns the maximum 4998 * rt_priority that can be used by a given scheduling class. 4999 * On failure, a negative error code is returned. 5000 */ 5001 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5002 { 5003 int ret = -EINVAL; 5004 5005 switch (policy) { 5006 case SCHED_FIFO: 5007 case SCHED_RR: 5008 ret = MAX_USER_RT_PRIO-1; 5009 break; 5010 case SCHED_DEADLINE: 5011 case SCHED_NORMAL: 5012 case SCHED_BATCH: 5013 case SCHED_IDLE: 5014 ret = 0; 5015 break; 5016 } 5017 return ret; 5018 } 5019 5020 /** 5021 * sys_sched_get_priority_min - return minimum RT priority. 5022 * @policy: scheduling class. 5023 * 5024 * Return: On success, this syscall returns the minimum 5025 * rt_priority that can be used by a given scheduling class. 5026 * On failure, a negative error code is returned. 5027 */ 5028 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5029 { 5030 int ret = -EINVAL; 5031 5032 switch (policy) { 5033 case SCHED_FIFO: 5034 case SCHED_RR: 5035 ret = 1; 5036 break; 5037 case SCHED_DEADLINE: 5038 case SCHED_NORMAL: 5039 case SCHED_BATCH: 5040 case SCHED_IDLE: 5041 ret = 0; 5042 } 5043 return ret; 5044 } 5045 5046 /** 5047 * sys_sched_rr_get_interval - return the default timeslice of a process. 5048 * @pid: pid of the process. 5049 * @interval: userspace pointer to the timeslice value. 5050 * 5051 * this syscall writes the default timeslice value of a given process 5052 * into the user-space timespec buffer. A value of '0' means infinity. 5053 * 5054 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5055 * an error code. 5056 */ 5057 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5058 struct timespec __user *, interval) 5059 { 5060 struct task_struct *p; 5061 unsigned int time_slice; 5062 struct rq_flags rf; 5063 struct timespec t; 5064 struct rq *rq; 5065 int retval; 5066 5067 if (pid < 0) 5068 return -EINVAL; 5069 5070 retval = -ESRCH; 5071 rcu_read_lock(); 5072 p = find_process_by_pid(pid); 5073 if (!p) 5074 goto out_unlock; 5075 5076 retval = security_task_getscheduler(p); 5077 if (retval) 5078 goto out_unlock; 5079 5080 rq = task_rq_lock(p, &rf); 5081 time_slice = 0; 5082 if (p->sched_class->get_rr_interval) 5083 time_slice = p->sched_class->get_rr_interval(rq, p); 5084 task_rq_unlock(rq, p, &rf); 5085 5086 rcu_read_unlock(); 5087 jiffies_to_timespec(time_slice, &t); 5088 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 5089 return retval; 5090 5091 out_unlock: 5092 rcu_read_unlock(); 5093 return retval; 5094 } 5095 5096 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 5097 5098 void sched_show_task(struct task_struct *p) 5099 { 5100 unsigned long free = 0; 5101 int ppid; 5102 unsigned long state = p->state; 5103 5104 if (state) 5105 state = __ffs(state) + 1; 5106 printk(KERN_INFO "%-15.15s %c", p->comm, 5107 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 5108 #if BITS_PER_LONG == 32 5109 if (state == TASK_RUNNING) 5110 printk(KERN_CONT " running "); 5111 else 5112 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 5113 #else 5114 if (state == TASK_RUNNING) 5115 printk(KERN_CONT " running task "); 5116 else 5117 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 5118 #endif 5119 #ifdef CONFIG_DEBUG_STACK_USAGE 5120 free = stack_not_used(p); 5121 #endif 5122 ppid = 0; 5123 rcu_read_lock(); 5124 if (pid_alive(p)) 5125 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5126 rcu_read_unlock(); 5127 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5128 task_pid_nr(p), ppid, 5129 (unsigned long)task_thread_info(p)->flags); 5130 5131 print_worker_info(KERN_INFO, p); 5132 show_stack(p, NULL); 5133 } 5134 5135 void show_state_filter(unsigned long state_filter) 5136 { 5137 struct task_struct *g, *p; 5138 5139 #if BITS_PER_LONG == 32 5140 printk(KERN_INFO 5141 " task PC stack pid father\n"); 5142 #else 5143 printk(KERN_INFO 5144 " task PC stack pid father\n"); 5145 #endif 5146 rcu_read_lock(); 5147 for_each_process_thread(g, p) { 5148 /* 5149 * reset the NMI-timeout, listing all files on a slow 5150 * console might take a lot of time: 5151 */ 5152 touch_nmi_watchdog(); 5153 if (!state_filter || (p->state & state_filter)) 5154 sched_show_task(p); 5155 } 5156 5157 touch_all_softlockup_watchdogs(); 5158 5159 #ifdef CONFIG_SCHED_DEBUG 5160 if (!state_filter) 5161 sysrq_sched_debug_show(); 5162 #endif 5163 rcu_read_unlock(); 5164 /* 5165 * Only show locks if all tasks are dumped: 5166 */ 5167 if (!state_filter) 5168 debug_show_all_locks(); 5169 } 5170 5171 void init_idle_bootup_task(struct task_struct *idle) 5172 { 5173 idle->sched_class = &idle_sched_class; 5174 } 5175 5176 /** 5177 * init_idle - set up an idle thread for a given CPU 5178 * @idle: task in question 5179 * @cpu: cpu the idle task belongs to 5180 * 5181 * NOTE: this function does not set the idle thread's NEED_RESCHED 5182 * flag, to make booting more robust. 5183 */ 5184 void init_idle(struct task_struct *idle, int cpu) 5185 { 5186 struct rq *rq = cpu_rq(cpu); 5187 unsigned long flags; 5188 5189 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5190 raw_spin_lock(&rq->lock); 5191 5192 __sched_fork(0, idle); 5193 idle->state = TASK_RUNNING; 5194 idle->se.exec_start = sched_clock(); 5195 5196 kasan_unpoison_task_stack(idle); 5197 5198 #ifdef CONFIG_SMP 5199 /* 5200 * Its possible that init_idle() gets called multiple times on a task, 5201 * in that case do_set_cpus_allowed() will not do the right thing. 5202 * 5203 * And since this is boot we can forgo the serialization. 5204 */ 5205 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5206 #endif 5207 /* 5208 * We're having a chicken and egg problem, even though we are 5209 * holding rq->lock, the cpu isn't yet set to this cpu so the 5210 * lockdep check in task_group() will fail. 5211 * 5212 * Similar case to sched_fork(). / Alternatively we could 5213 * use task_rq_lock() here and obtain the other rq->lock. 5214 * 5215 * Silence PROVE_RCU 5216 */ 5217 rcu_read_lock(); 5218 __set_task_cpu(idle, cpu); 5219 rcu_read_unlock(); 5220 5221 rq->curr = rq->idle = idle; 5222 idle->on_rq = TASK_ON_RQ_QUEUED; 5223 #ifdef CONFIG_SMP 5224 idle->on_cpu = 1; 5225 #endif 5226 raw_spin_unlock(&rq->lock); 5227 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5228 5229 /* Set the preempt count _outside_ the spinlocks! */ 5230 init_idle_preempt_count(idle, cpu); 5231 5232 /* 5233 * The idle tasks have their own, simple scheduling class: 5234 */ 5235 idle->sched_class = &idle_sched_class; 5236 ftrace_graph_init_idle_task(idle, cpu); 5237 vtime_init_idle(idle, cpu); 5238 #ifdef CONFIG_SMP 5239 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5240 #endif 5241 } 5242 5243 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5244 const struct cpumask *trial) 5245 { 5246 int ret = 1, trial_cpus; 5247 struct dl_bw *cur_dl_b; 5248 unsigned long flags; 5249 5250 if (!cpumask_weight(cur)) 5251 return ret; 5252 5253 rcu_read_lock_sched(); 5254 cur_dl_b = dl_bw_of(cpumask_any(cur)); 5255 trial_cpus = cpumask_weight(trial); 5256 5257 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 5258 if (cur_dl_b->bw != -1 && 5259 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 5260 ret = 0; 5261 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 5262 rcu_read_unlock_sched(); 5263 5264 return ret; 5265 } 5266 5267 int task_can_attach(struct task_struct *p, 5268 const struct cpumask *cs_cpus_allowed) 5269 { 5270 int ret = 0; 5271 5272 /* 5273 * Kthreads which disallow setaffinity shouldn't be moved 5274 * to a new cpuset; we don't want to change their cpu 5275 * affinity and isolating such threads by their set of 5276 * allowed nodes is unnecessary. Thus, cpusets are not 5277 * applicable for such threads. This prevents checking for 5278 * success of set_cpus_allowed_ptr() on all attached tasks 5279 * before cpus_allowed may be changed. 5280 */ 5281 if (p->flags & PF_NO_SETAFFINITY) { 5282 ret = -EINVAL; 5283 goto out; 5284 } 5285 5286 #ifdef CONFIG_SMP 5287 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5288 cs_cpus_allowed)) { 5289 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 5290 cs_cpus_allowed); 5291 struct dl_bw *dl_b; 5292 bool overflow; 5293 int cpus; 5294 unsigned long flags; 5295 5296 rcu_read_lock_sched(); 5297 dl_b = dl_bw_of(dest_cpu); 5298 raw_spin_lock_irqsave(&dl_b->lock, flags); 5299 cpus = dl_bw_cpus(dest_cpu); 5300 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 5301 if (overflow) 5302 ret = -EBUSY; 5303 else { 5304 /* 5305 * We reserve space for this task in the destination 5306 * root_domain, as we can't fail after this point. 5307 * We will free resources in the source root_domain 5308 * later on (see set_cpus_allowed_dl()). 5309 */ 5310 __dl_add(dl_b, p->dl.dl_bw); 5311 } 5312 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5313 rcu_read_unlock_sched(); 5314 5315 } 5316 #endif 5317 out: 5318 return ret; 5319 } 5320 5321 #ifdef CONFIG_SMP 5322 5323 static bool sched_smp_initialized __read_mostly; 5324 5325 #ifdef CONFIG_NUMA_BALANCING 5326 /* Migrate current task p to target_cpu */ 5327 int migrate_task_to(struct task_struct *p, int target_cpu) 5328 { 5329 struct migration_arg arg = { p, target_cpu }; 5330 int curr_cpu = task_cpu(p); 5331 5332 if (curr_cpu == target_cpu) 5333 return 0; 5334 5335 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 5336 return -EINVAL; 5337 5338 /* TODO: This is not properly updating schedstats */ 5339 5340 trace_sched_move_numa(p, curr_cpu, target_cpu); 5341 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5342 } 5343 5344 /* 5345 * Requeue a task on a given node and accurately track the number of NUMA 5346 * tasks on the runqueues 5347 */ 5348 void sched_setnuma(struct task_struct *p, int nid) 5349 { 5350 bool queued, running; 5351 struct rq_flags rf; 5352 struct rq *rq; 5353 5354 rq = task_rq_lock(p, &rf); 5355 queued = task_on_rq_queued(p); 5356 running = task_current(rq, p); 5357 5358 if (queued) 5359 dequeue_task(rq, p, DEQUEUE_SAVE); 5360 if (running) 5361 put_prev_task(rq, p); 5362 5363 p->numa_preferred_nid = nid; 5364 5365 if (running) 5366 p->sched_class->set_curr_task(rq); 5367 if (queued) 5368 enqueue_task(rq, p, ENQUEUE_RESTORE); 5369 task_rq_unlock(rq, p, &rf); 5370 } 5371 #endif /* CONFIG_NUMA_BALANCING */ 5372 5373 #ifdef CONFIG_HOTPLUG_CPU 5374 /* 5375 * Ensures that the idle task is using init_mm right before its cpu goes 5376 * offline. 5377 */ 5378 void idle_task_exit(void) 5379 { 5380 struct mm_struct *mm = current->active_mm; 5381 5382 BUG_ON(cpu_online(smp_processor_id())); 5383 5384 if (mm != &init_mm) { 5385 switch_mm_irqs_off(mm, &init_mm, current); 5386 finish_arch_post_lock_switch(); 5387 } 5388 mmdrop(mm); 5389 } 5390 5391 /* 5392 * Since this CPU is going 'away' for a while, fold any nr_active delta 5393 * we might have. Assumes we're called after migrate_tasks() so that the 5394 * nr_active count is stable. 5395 * 5396 * Also see the comment "Global load-average calculations". 5397 */ 5398 static void calc_load_migrate(struct rq *rq) 5399 { 5400 long delta = calc_load_fold_active(rq); 5401 if (delta) 5402 atomic_long_add(delta, &calc_load_tasks); 5403 } 5404 5405 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5406 { 5407 } 5408 5409 static const struct sched_class fake_sched_class = { 5410 .put_prev_task = put_prev_task_fake, 5411 }; 5412 5413 static struct task_struct fake_task = { 5414 /* 5415 * Avoid pull_{rt,dl}_task() 5416 */ 5417 .prio = MAX_PRIO + 1, 5418 .sched_class = &fake_sched_class, 5419 }; 5420 5421 /* 5422 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5423 * try_to_wake_up()->select_task_rq(). 5424 * 5425 * Called with rq->lock held even though we'er in stop_machine() and 5426 * there's no concurrency possible, we hold the required locks anyway 5427 * because of lock validation efforts. 5428 */ 5429 static void migrate_tasks(struct rq *dead_rq) 5430 { 5431 struct rq *rq = dead_rq; 5432 struct task_struct *next, *stop = rq->stop; 5433 struct pin_cookie cookie; 5434 int dest_cpu; 5435 5436 /* 5437 * Fudge the rq selection such that the below task selection loop 5438 * doesn't get stuck on the currently eligible stop task. 5439 * 5440 * We're currently inside stop_machine() and the rq is either stuck 5441 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5442 * either way we should never end up calling schedule() until we're 5443 * done here. 5444 */ 5445 rq->stop = NULL; 5446 5447 /* 5448 * put_prev_task() and pick_next_task() sched 5449 * class method both need to have an up-to-date 5450 * value of rq->clock[_task] 5451 */ 5452 update_rq_clock(rq); 5453 5454 for (;;) { 5455 /* 5456 * There's this thread running, bail when that's the only 5457 * remaining thread. 5458 */ 5459 if (rq->nr_running == 1) 5460 break; 5461 5462 /* 5463 * pick_next_task assumes pinned rq->lock. 5464 */ 5465 cookie = lockdep_pin_lock(&rq->lock); 5466 next = pick_next_task(rq, &fake_task, cookie); 5467 BUG_ON(!next); 5468 next->sched_class->put_prev_task(rq, next); 5469 5470 /* 5471 * Rules for changing task_struct::cpus_allowed are holding 5472 * both pi_lock and rq->lock, such that holding either 5473 * stabilizes the mask. 5474 * 5475 * Drop rq->lock is not quite as disastrous as it usually is 5476 * because !cpu_active at this point, which means load-balance 5477 * will not interfere. Also, stop-machine. 5478 */ 5479 lockdep_unpin_lock(&rq->lock, cookie); 5480 raw_spin_unlock(&rq->lock); 5481 raw_spin_lock(&next->pi_lock); 5482 raw_spin_lock(&rq->lock); 5483 5484 /* 5485 * Since we're inside stop-machine, _nothing_ should have 5486 * changed the task, WARN if weird stuff happened, because in 5487 * that case the above rq->lock drop is a fail too. 5488 */ 5489 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5490 raw_spin_unlock(&next->pi_lock); 5491 continue; 5492 } 5493 5494 /* Find suitable destination for @next, with force if needed. */ 5495 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5496 5497 rq = __migrate_task(rq, next, dest_cpu); 5498 if (rq != dead_rq) { 5499 raw_spin_unlock(&rq->lock); 5500 rq = dead_rq; 5501 raw_spin_lock(&rq->lock); 5502 } 5503 raw_spin_unlock(&next->pi_lock); 5504 } 5505 5506 rq->stop = stop; 5507 } 5508 #endif /* CONFIG_HOTPLUG_CPU */ 5509 5510 static void set_rq_online(struct rq *rq) 5511 { 5512 if (!rq->online) { 5513 const struct sched_class *class; 5514 5515 cpumask_set_cpu(rq->cpu, rq->rd->online); 5516 rq->online = 1; 5517 5518 for_each_class(class) { 5519 if (class->rq_online) 5520 class->rq_online(rq); 5521 } 5522 } 5523 } 5524 5525 static void set_rq_offline(struct rq *rq) 5526 { 5527 if (rq->online) { 5528 const struct sched_class *class; 5529 5530 for_each_class(class) { 5531 if (class->rq_offline) 5532 class->rq_offline(rq); 5533 } 5534 5535 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5536 rq->online = 0; 5537 } 5538 } 5539 5540 static void set_cpu_rq_start_time(unsigned int cpu) 5541 { 5542 struct rq *rq = cpu_rq(cpu); 5543 5544 rq->age_stamp = sched_clock_cpu(cpu); 5545 } 5546 5547 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5548 5549 #ifdef CONFIG_SCHED_DEBUG 5550 5551 static __read_mostly int sched_debug_enabled; 5552 5553 static int __init sched_debug_setup(char *str) 5554 { 5555 sched_debug_enabled = 1; 5556 5557 return 0; 5558 } 5559 early_param("sched_debug", sched_debug_setup); 5560 5561 static inline bool sched_debug(void) 5562 { 5563 return sched_debug_enabled; 5564 } 5565 5566 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5567 struct cpumask *groupmask) 5568 { 5569 struct sched_group *group = sd->groups; 5570 5571 cpumask_clear(groupmask); 5572 5573 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5574 5575 if (!(sd->flags & SD_LOAD_BALANCE)) { 5576 printk("does not load-balance\n"); 5577 if (sd->parent) 5578 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5579 " has parent"); 5580 return -1; 5581 } 5582 5583 printk(KERN_CONT "span %*pbl level %s\n", 5584 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5585 5586 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5587 printk(KERN_ERR "ERROR: domain->span does not contain " 5588 "CPU%d\n", cpu); 5589 } 5590 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5591 printk(KERN_ERR "ERROR: domain->groups does not contain" 5592 " CPU%d\n", cpu); 5593 } 5594 5595 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5596 do { 5597 if (!group) { 5598 printk("\n"); 5599 printk(KERN_ERR "ERROR: group is NULL\n"); 5600 break; 5601 } 5602 5603 if (!cpumask_weight(sched_group_cpus(group))) { 5604 printk(KERN_CONT "\n"); 5605 printk(KERN_ERR "ERROR: empty group\n"); 5606 break; 5607 } 5608 5609 if (!(sd->flags & SD_OVERLAP) && 5610 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5611 printk(KERN_CONT "\n"); 5612 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5613 break; 5614 } 5615 5616 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5617 5618 printk(KERN_CONT " %*pbl", 5619 cpumask_pr_args(sched_group_cpus(group))); 5620 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5621 printk(KERN_CONT " (cpu_capacity = %d)", 5622 group->sgc->capacity); 5623 } 5624 5625 group = group->next; 5626 } while (group != sd->groups); 5627 printk(KERN_CONT "\n"); 5628 5629 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5630 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5631 5632 if (sd->parent && 5633 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5634 printk(KERN_ERR "ERROR: parent span is not a superset " 5635 "of domain->span\n"); 5636 return 0; 5637 } 5638 5639 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5640 { 5641 int level = 0; 5642 5643 if (!sched_debug_enabled) 5644 return; 5645 5646 if (!sd) { 5647 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5648 return; 5649 } 5650 5651 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5652 5653 for (;;) { 5654 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5655 break; 5656 level++; 5657 sd = sd->parent; 5658 if (!sd) 5659 break; 5660 } 5661 } 5662 #else /* !CONFIG_SCHED_DEBUG */ 5663 # define sched_domain_debug(sd, cpu) do { } while (0) 5664 static inline bool sched_debug(void) 5665 { 5666 return false; 5667 } 5668 #endif /* CONFIG_SCHED_DEBUG */ 5669 5670 static int sd_degenerate(struct sched_domain *sd) 5671 { 5672 if (cpumask_weight(sched_domain_span(sd)) == 1) 5673 return 1; 5674 5675 /* Following flags need at least 2 groups */ 5676 if (sd->flags & (SD_LOAD_BALANCE | 5677 SD_BALANCE_NEWIDLE | 5678 SD_BALANCE_FORK | 5679 SD_BALANCE_EXEC | 5680 SD_SHARE_CPUCAPACITY | 5681 SD_SHARE_PKG_RESOURCES | 5682 SD_SHARE_POWERDOMAIN)) { 5683 if (sd->groups != sd->groups->next) 5684 return 0; 5685 } 5686 5687 /* Following flags don't use groups */ 5688 if (sd->flags & (SD_WAKE_AFFINE)) 5689 return 0; 5690 5691 return 1; 5692 } 5693 5694 static int 5695 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5696 { 5697 unsigned long cflags = sd->flags, pflags = parent->flags; 5698 5699 if (sd_degenerate(parent)) 5700 return 1; 5701 5702 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5703 return 0; 5704 5705 /* Flags needing groups don't count if only 1 group in parent */ 5706 if (parent->groups == parent->groups->next) { 5707 pflags &= ~(SD_LOAD_BALANCE | 5708 SD_BALANCE_NEWIDLE | 5709 SD_BALANCE_FORK | 5710 SD_BALANCE_EXEC | 5711 SD_SHARE_CPUCAPACITY | 5712 SD_SHARE_PKG_RESOURCES | 5713 SD_PREFER_SIBLING | 5714 SD_SHARE_POWERDOMAIN); 5715 if (nr_node_ids == 1) 5716 pflags &= ~SD_SERIALIZE; 5717 } 5718 if (~cflags & pflags) 5719 return 0; 5720 5721 return 1; 5722 } 5723 5724 static void free_rootdomain(struct rcu_head *rcu) 5725 { 5726 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5727 5728 cpupri_cleanup(&rd->cpupri); 5729 cpudl_cleanup(&rd->cpudl); 5730 free_cpumask_var(rd->dlo_mask); 5731 free_cpumask_var(rd->rto_mask); 5732 free_cpumask_var(rd->online); 5733 free_cpumask_var(rd->span); 5734 kfree(rd); 5735 } 5736 5737 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5738 { 5739 struct root_domain *old_rd = NULL; 5740 unsigned long flags; 5741 5742 raw_spin_lock_irqsave(&rq->lock, flags); 5743 5744 if (rq->rd) { 5745 old_rd = rq->rd; 5746 5747 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5748 set_rq_offline(rq); 5749 5750 cpumask_clear_cpu(rq->cpu, old_rd->span); 5751 5752 /* 5753 * If we dont want to free the old_rd yet then 5754 * set old_rd to NULL to skip the freeing later 5755 * in this function: 5756 */ 5757 if (!atomic_dec_and_test(&old_rd->refcount)) 5758 old_rd = NULL; 5759 } 5760 5761 atomic_inc(&rd->refcount); 5762 rq->rd = rd; 5763 5764 cpumask_set_cpu(rq->cpu, rd->span); 5765 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5766 set_rq_online(rq); 5767 5768 raw_spin_unlock_irqrestore(&rq->lock, flags); 5769 5770 if (old_rd) 5771 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5772 } 5773 5774 static int init_rootdomain(struct root_domain *rd) 5775 { 5776 memset(rd, 0, sizeof(*rd)); 5777 5778 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 5779 goto out; 5780 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 5781 goto free_span; 5782 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5783 goto free_online; 5784 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5785 goto free_dlo_mask; 5786 5787 init_dl_bw(&rd->dl_bw); 5788 if (cpudl_init(&rd->cpudl) != 0) 5789 goto free_dlo_mask; 5790 5791 if (cpupri_init(&rd->cpupri) != 0) 5792 goto free_rto_mask; 5793 return 0; 5794 5795 free_rto_mask: 5796 free_cpumask_var(rd->rto_mask); 5797 free_dlo_mask: 5798 free_cpumask_var(rd->dlo_mask); 5799 free_online: 5800 free_cpumask_var(rd->online); 5801 free_span: 5802 free_cpumask_var(rd->span); 5803 out: 5804 return -ENOMEM; 5805 } 5806 5807 /* 5808 * By default the system creates a single root-domain with all cpus as 5809 * members (mimicking the global state we have today). 5810 */ 5811 struct root_domain def_root_domain; 5812 5813 static void init_defrootdomain(void) 5814 { 5815 init_rootdomain(&def_root_domain); 5816 5817 atomic_set(&def_root_domain.refcount, 1); 5818 } 5819 5820 static struct root_domain *alloc_rootdomain(void) 5821 { 5822 struct root_domain *rd; 5823 5824 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5825 if (!rd) 5826 return NULL; 5827 5828 if (init_rootdomain(rd) != 0) { 5829 kfree(rd); 5830 return NULL; 5831 } 5832 5833 return rd; 5834 } 5835 5836 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5837 { 5838 struct sched_group *tmp, *first; 5839 5840 if (!sg) 5841 return; 5842 5843 first = sg; 5844 do { 5845 tmp = sg->next; 5846 5847 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5848 kfree(sg->sgc); 5849 5850 kfree(sg); 5851 sg = tmp; 5852 } while (sg != first); 5853 } 5854 5855 static void free_sched_domain(struct rcu_head *rcu) 5856 { 5857 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5858 5859 /* 5860 * If its an overlapping domain it has private groups, iterate and 5861 * nuke them all. 5862 */ 5863 if (sd->flags & SD_OVERLAP) { 5864 free_sched_groups(sd->groups, 1); 5865 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5866 kfree(sd->groups->sgc); 5867 kfree(sd->groups); 5868 } 5869 kfree(sd); 5870 } 5871 5872 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5873 { 5874 call_rcu(&sd->rcu, free_sched_domain); 5875 } 5876 5877 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5878 { 5879 for (; sd; sd = sd->parent) 5880 destroy_sched_domain(sd, cpu); 5881 } 5882 5883 /* 5884 * Keep a special pointer to the highest sched_domain that has 5885 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5886 * allows us to avoid some pointer chasing select_idle_sibling(). 5887 * 5888 * Also keep a unique ID per domain (we use the first cpu number in 5889 * the cpumask of the domain), this allows us to quickly tell if 5890 * two cpus are in the same cache domain, see cpus_share_cache(). 5891 */ 5892 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5893 DEFINE_PER_CPU(int, sd_llc_size); 5894 DEFINE_PER_CPU(int, sd_llc_id); 5895 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5896 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5897 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5898 5899 static void update_top_cache_domain(int cpu) 5900 { 5901 struct sched_domain *sd; 5902 struct sched_domain *busy_sd = NULL; 5903 int id = cpu; 5904 int size = 1; 5905 5906 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5907 if (sd) { 5908 id = cpumask_first(sched_domain_span(sd)); 5909 size = cpumask_weight(sched_domain_span(sd)); 5910 busy_sd = sd->parent; /* sd_busy */ 5911 } 5912 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5913 5914 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5915 per_cpu(sd_llc_size, cpu) = size; 5916 per_cpu(sd_llc_id, cpu) = id; 5917 5918 sd = lowest_flag_domain(cpu, SD_NUMA); 5919 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5920 5921 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5922 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5923 } 5924 5925 /* 5926 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5927 * hold the hotplug lock. 5928 */ 5929 static void 5930 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5931 { 5932 struct rq *rq = cpu_rq(cpu); 5933 struct sched_domain *tmp; 5934 5935 /* Remove the sched domains which do not contribute to scheduling. */ 5936 for (tmp = sd; tmp; ) { 5937 struct sched_domain *parent = tmp->parent; 5938 if (!parent) 5939 break; 5940 5941 if (sd_parent_degenerate(tmp, parent)) { 5942 tmp->parent = parent->parent; 5943 if (parent->parent) 5944 parent->parent->child = tmp; 5945 /* 5946 * Transfer SD_PREFER_SIBLING down in case of a 5947 * degenerate parent; the spans match for this 5948 * so the property transfers. 5949 */ 5950 if (parent->flags & SD_PREFER_SIBLING) 5951 tmp->flags |= SD_PREFER_SIBLING; 5952 destroy_sched_domain(parent, cpu); 5953 } else 5954 tmp = tmp->parent; 5955 } 5956 5957 if (sd && sd_degenerate(sd)) { 5958 tmp = sd; 5959 sd = sd->parent; 5960 destroy_sched_domain(tmp, cpu); 5961 if (sd) 5962 sd->child = NULL; 5963 } 5964 5965 sched_domain_debug(sd, cpu); 5966 5967 rq_attach_root(rq, rd); 5968 tmp = rq->sd; 5969 rcu_assign_pointer(rq->sd, sd); 5970 destroy_sched_domains(tmp, cpu); 5971 5972 update_top_cache_domain(cpu); 5973 } 5974 5975 /* Setup the mask of cpus configured for isolated domains */ 5976 static int __init isolated_cpu_setup(char *str) 5977 { 5978 int ret; 5979 5980 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5981 ret = cpulist_parse(str, cpu_isolated_map); 5982 if (ret) { 5983 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); 5984 return 0; 5985 } 5986 return 1; 5987 } 5988 __setup("isolcpus=", isolated_cpu_setup); 5989 5990 struct s_data { 5991 struct sched_domain ** __percpu sd; 5992 struct root_domain *rd; 5993 }; 5994 5995 enum s_alloc { 5996 sa_rootdomain, 5997 sa_sd, 5998 sa_sd_storage, 5999 sa_none, 6000 }; 6001 6002 /* 6003 * Build an iteration mask that can exclude certain CPUs from the upwards 6004 * domain traversal. 6005 * 6006 * Asymmetric node setups can result in situations where the domain tree is of 6007 * unequal depth, make sure to skip domains that already cover the entire 6008 * range. 6009 * 6010 * In that case build_sched_domains() will have terminated the iteration early 6011 * and our sibling sd spans will be empty. Domains should always include the 6012 * cpu they're built on, so check that. 6013 * 6014 */ 6015 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 6016 { 6017 const struct cpumask *span = sched_domain_span(sd); 6018 struct sd_data *sdd = sd->private; 6019 struct sched_domain *sibling; 6020 int i; 6021 6022 for_each_cpu(i, span) { 6023 sibling = *per_cpu_ptr(sdd->sd, i); 6024 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6025 continue; 6026 6027 cpumask_set_cpu(i, sched_group_mask(sg)); 6028 } 6029 } 6030 6031 /* 6032 * Return the canonical balance cpu for this group, this is the first cpu 6033 * of this group that's also in the iteration mask. 6034 */ 6035 int group_balance_cpu(struct sched_group *sg) 6036 { 6037 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 6038 } 6039 6040 static int 6041 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6042 { 6043 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6044 const struct cpumask *span = sched_domain_span(sd); 6045 struct cpumask *covered = sched_domains_tmpmask; 6046 struct sd_data *sdd = sd->private; 6047 struct sched_domain *sibling; 6048 int i; 6049 6050 cpumask_clear(covered); 6051 6052 for_each_cpu(i, span) { 6053 struct cpumask *sg_span; 6054 6055 if (cpumask_test_cpu(i, covered)) 6056 continue; 6057 6058 sibling = *per_cpu_ptr(sdd->sd, i); 6059 6060 /* See the comment near build_group_mask(). */ 6061 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 6062 continue; 6063 6064 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6065 GFP_KERNEL, cpu_to_node(cpu)); 6066 6067 if (!sg) 6068 goto fail; 6069 6070 sg_span = sched_group_cpus(sg); 6071 if (sibling->child) 6072 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 6073 else 6074 cpumask_set_cpu(i, sg_span); 6075 6076 cpumask_or(covered, covered, sg_span); 6077 6078 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 6079 if (atomic_inc_return(&sg->sgc->ref) == 1) 6080 build_group_mask(sd, sg); 6081 6082 /* 6083 * Initialize sgc->capacity such that even if we mess up the 6084 * domains and no possible iteration will get us here, we won't 6085 * die on a /0 trap. 6086 */ 6087 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 6088 6089 /* 6090 * Make sure the first group of this domain contains the 6091 * canonical balance cpu. Otherwise the sched_domain iteration 6092 * breaks. See update_sg_lb_stats(). 6093 */ 6094 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6095 group_balance_cpu(sg) == cpu) 6096 groups = sg; 6097 6098 if (!first) 6099 first = sg; 6100 if (last) 6101 last->next = sg; 6102 last = sg; 6103 last->next = first; 6104 } 6105 sd->groups = groups; 6106 6107 return 0; 6108 6109 fail: 6110 free_sched_groups(first, 0); 6111 6112 return -ENOMEM; 6113 } 6114 6115 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6116 { 6117 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6118 struct sched_domain *child = sd->child; 6119 6120 if (child) 6121 cpu = cpumask_first(sched_domain_span(child)); 6122 6123 if (sg) { 6124 *sg = *per_cpu_ptr(sdd->sg, cpu); 6125 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6126 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 6127 } 6128 6129 return cpu; 6130 } 6131 6132 /* 6133 * build_sched_groups will build a circular linked list of the groups 6134 * covered by the given span, and will set each group's ->cpumask correctly, 6135 * and ->cpu_capacity to 0. 6136 * 6137 * Assumes the sched_domain tree is fully constructed 6138 */ 6139 static int 6140 build_sched_groups(struct sched_domain *sd, int cpu) 6141 { 6142 struct sched_group *first = NULL, *last = NULL; 6143 struct sd_data *sdd = sd->private; 6144 const struct cpumask *span = sched_domain_span(sd); 6145 struct cpumask *covered; 6146 int i; 6147 6148 get_group(cpu, sdd, &sd->groups); 6149 atomic_inc(&sd->groups->ref); 6150 6151 if (cpu != cpumask_first(span)) 6152 return 0; 6153 6154 lockdep_assert_held(&sched_domains_mutex); 6155 covered = sched_domains_tmpmask; 6156 6157 cpumask_clear(covered); 6158 6159 for_each_cpu(i, span) { 6160 struct sched_group *sg; 6161 int group, j; 6162 6163 if (cpumask_test_cpu(i, covered)) 6164 continue; 6165 6166 group = get_group(i, sdd, &sg); 6167 cpumask_setall(sched_group_mask(sg)); 6168 6169 for_each_cpu(j, span) { 6170 if (get_group(j, sdd, NULL) != group) 6171 continue; 6172 6173 cpumask_set_cpu(j, covered); 6174 cpumask_set_cpu(j, sched_group_cpus(sg)); 6175 } 6176 6177 if (!first) 6178 first = sg; 6179 if (last) 6180 last->next = sg; 6181 last = sg; 6182 } 6183 last->next = first; 6184 6185 return 0; 6186 } 6187 6188 /* 6189 * Initialize sched groups cpu_capacity. 6190 * 6191 * cpu_capacity indicates the capacity of sched group, which is used while 6192 * distributing the load between different sched groups in a sched domain. 6193 * Typically cpu_capacity for all the groups in a sched domain will be same 6194 * unless there are asymmetries in the topology. If there are asymmetries, 6195 * group having more cpu_capacity will pickup more load compared to the 6196 * group having less cpu_capacity. 6197 */ 6198 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6199 { 6200 struct sched_group *sg = sd->groups; 6201 6202 WARN_ON(!sg); 6203 6204 do { 6205 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6206 sg = sg->next; 6207 } while (sg != sd->groups); 6208 6209 if (cpu != group_balance_cpu(sg)) 6210 return; 6211 6212 update_group_capacity(sd, cpu); 6213 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6214 } 6215 6216 /* 6217 * Initializers for schedule domains 6218 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6219 */ 6220 6221 static int default_relax_domain_level = -1; 6222 int sched_domain_level_max; 6223 6224 static int __init setup_relax_domain_level(char *str) 6225 { 6226 if (kstrtoint(str, 0, &default_relax_domain_level)) 6227 pr_warn("Unable to set relax_domain_level\n"); 6228 6229 return 1; 6230 } 6231 __setup("relax_domain_level=", setup_relax_domain_level); 6232 6233 static void set_domain_attribute(struct sched_domain *sd, 6234 struct sched_domain_attr *attr) 6235 { 6236 int request; 6237 6238 if (!attr || attr->relax_domain_level < 0) { 6239 if (default_relax_domain_level < 0) 6240 return; 6241 else 6242 request = default_relax_domain_level; 6243 } else 6244 request = attr->relax_domain_level; 6245 if (request < sd->level) { 6246 /* turn off idle balance on this domain */ 6247 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6248 } else { 6249 /* turn on idle balance on this domain */ 6250 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6251 } 6252 } 6253 6254 static void __sdt_free(const struct cpumask *cpu_map); 6255 static int __sdt_alloc(const struct cpumask *cpu_map); 6256 6257 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6258 const struct cpumask *cpu_map) 6259 { 6260 switch (what) { 6261 case sa_rootdomain: 6262 if (!atomic_read(&d->rd->refcount)) 6263 free_rootdomain(&d->rd->rcu); /* fall through */ 6264 case sa_sd: 6265 free_percpu(d->sd); /* fall through */ 6266 case sa_sd_storage: 6267 __sdt_free(cpu_map); /* fall through */ 6268 case sa_none: 6269 break; 6270 } 6271 } 6272 6273 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6274 const struct cpumask *cpu_map) 6275 { 6276 memset(d, 0, sizeof(*d)); 6277 6278 if (__sdt_alloc(cpu_map)) 6279 return sa_sd_storage; 6280 d->sd = alloc_percpu(struct sched_domain *); 6281 if (!d->sd) 6282 return sa_sd_storage; 6283 d->rd = alloc_rootdomain(); 6284 if (!d->rd) 6285 return sa_sd; 6286 return sa_rootdomain; 6287 } 6288 6289 /* 6290 * NULL the sd_data elements we've used to build the sched_domain and 6291 * sched_group structure so that the subsequent __free_domain_allocs() 6292 * will not free the data we're using. 6293 */ 6294 static void claim_allocations(int cpu, struct sched_domain *sd) 6295 { 6296 struct sd_data *sdd = sd->private; 6297 6298 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6299 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6300 6301 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6302 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6303 6304 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6305 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6306 } 6307 6308 #ifdef CONFIG_NUMA 6309 static int sched_domains_numa_levels; 6310 enum numa_topology_type sched_numa_topology_type; 6311 static int *sched_domains_numa_distance; 6312 int sched_max_numa_distance; 6313 static struct cpumask ***sched_domains_numa_masks; 6314 static int sched_domains_curr_level; 6315 #endif 6316 6317 /* 6318 * SD_flags allowed in topology descriptions. 6319 * 6320 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6321 * SD_SHARE_PKG_RESOURCES - describes shared caches 6322 * SD_NUMA - describes NUMA topologies 6323 * SD_SHARE_POWERDOMAIN - describes shared power domain 6324 * 6325 * Odd one out: 6326 * SD_ASYM_PACKING - describes SMT quirks 6327 */ 6328 #define TOPOLOGY_SD_FLAGS \ 6329 (SD_SHARE_CPUCAPACITY | \ 6330 SD_SHARE_PKG_RESOURCES | \ 6331 SD_NUMA | \ 6332 SD_ASYM_PACKING | \ 6333 SD_SHARE_POWERDOMAIN) 6334 6335 static struct sched_domain * 6336 sd_init(struct sched_domain_topology_level *tl, int cpu) 6337 { 6338 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6339 int sd_weight, sd_flags = 0; 6340 6341 #ifdef CONFIG_NUMA 6342 /* 6343 * Ugly hack to pass state to sd_numa_mask()... 6344 */ 6345 sched_domains_curr_level = tl->numa_level; 6346 #endif 6347 6348 sd_weight = cpumask_weight(tl->mask(cpu)); 6349 6350 if (tl->sd_flags) 6351 sd_flags = (*tl->sd_flags)(); 6352 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6353 "wrong sd_flags in topology description\n")) 6354 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6355 6356 *sd = (struct sched_domain){ 6357 .min_interval = sd_weight, 6358 .max_interval = 2*sd_weight, 6359 .busy_factor = 32, 6360 .imbalance_pct = 125, 6361 6362 .cache_nice_tries = 0, 6363 .busy_idx = 0, 6364 .idle_idx = 0, 6365 .newidle_idx = 0, 6366 .wake_idx = 0, 6367 .forkexec_idx = 0, 6368 6369 .flags = 1*SD_LOAD_BALANCE 6370 | 1*SD_BALANCE_NEWIDLE 6371 | 1*SD_BALANCE_EXEC 6372 | 1*SD_BALANCE_FORK 6373 | 0*SD_BALANCE_WAKE 6374 | 1*SD_WAKE_AFFINE 6375 | 0*SD_SHARE_CPUCAPACITY 6376 | 0*SD_SHARE_PKG_RESOURCES 6377 | 0*SD_SERIALIZE 6378 | 0*SD_PREFER_SIBLING 6379 | 0*SD_NUMA 6380 | sd_flags 6381 , 6382 6383 .last_balance = jiffies, 6384 .balance_interval = sd_weight, 6385 .smt_gain = 0, 6386 .max_newidle_lb_cost = 0, 6387 .next_decay_max_lb_cost = jiffies, 6388 #ifdef CONFIG_SCHED_DEBUG 6389 .name = tl->name, 6390 #endif 6391 }; 6392 6393 /* 6394 * Convert topological properties into behaviour. 6395 */ 6396 6397 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6398 sd->flags |= SD_PREFER_SIBLING; 6399 sd->imbalance_pct = 110; 6400 sd->smt_gain = 1178; /* ~15% */ 6401 6402 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6403 sd->imbalance_pct = 117; 6404 sd->cache_nice_tries = 1; 6405 sd->busy_idx = 2; 6406 6407 #ifdef CONFIG_NUMA 6408 } else if (sd->flags & SD_NUMA) { 6409 sd->cache_nice_tries = 2; 6410 sd->busy_idx = 3; 6411 sd->idle_idx = 2; 6412 6413 sd->flags |= SD_SERIALIZE; 6414 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6415 sd->flags &= ~(SD_BALANCE_EXEC | 6416 SD_BALANCE_FORK | 6417 SD_WAKE_AFFINE); 6418 } 6419 6420 #endif 6421 } else { 6422 sd->flags |= SD_PREFER_SIBLING; 6423 sd->cache_nice_tries = 1; 6424 sd->busy_idx = 2; 6425 sd->idle_idx = 1; 6426 } 6427 6428 sd->private = &tl->data; 6429 6430 return sd; 6431 } 6432 6433 /* 6434 * Topology list, bottom-up. 6435 */ 6436 static struct sched_domain_topology_level default_topology[] = { 6437 #ifdef CONFIG_SCHED_SMT 6438 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6439 #endif 6440 #ifdef CONFIG_SCHED_MC 6441 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6442 #endif 6443 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6444 { NULL, }, 6445 }; 6446 6447 static struct sched_domain_topology_level *sched_domain_topology = 6448 default_topology; 6449 6450 #define for_each_sd_topology(tl) \ 6451 for (tl = sched_domain_topology; tl->mask; tl++) 6452 6453 void set_sched_topology(struct sched_domain_topology_level *tl) 6454 { 6455 sched_domain_topology = tl; 6456 } 6457 6458 #ifdef CONFIG_NUMA 6459 6460 static const struct cpumask *sd_numa_mask(int cpu) 6461 { 6462 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6463 } 6464 6465 static void sched_numa_warn(const char *str) 6466 { 6467 static int done = false; 6468 int i,j; 6469 6470 if (done) 6471 return; 6472 6473 done = true; 6474 6475 printk(KERN_WARNING "ERROR: %s\n\n", str); 6476 6477 for (i = 0; i < nr_node_ids; i++) { 6478 printk(KERN_WARNING " "); 6479 for (j = 0; j < nr_node_ids; j++) 6480 printk(KERN_CONT "%02d ", node_distance(i,j)); 6481 printk(KERN_CONT "\n"); 6482 } 6483 printk(KERN_WARNING "\n"); 6484 } 6485 6486 bool find_numa_distance(int distance) 6487 { 6488 int i; 6489 6490 if (distance == node_distance(0, 0)) 6491 return true; 6492 6493 for (i = 0; i < sched_domains_numa_levels; i++) { 6494 if (sched_domains_numa_distance[i] == distance) 6495 return true; 6496 } 6497 6498 return false; 6499 } 6500 6501 /* 6502 * A system can have three types of NUMA topology: 6503 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6504 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6505 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6506 * 6507 * The difference between a glueless mesh topology and a backplane 6508 * topology lies in whether communication between not directly 6509 * connected nodes goes through intermediary nodes (where programs 6510 * could run), or through backplane controllers. This affects 6511 * placement of programs. 6512 * 6513 * The type of topology can be discerned with the following tests: 6514 * - If the maximum distance between any nodes is 1 hop, the system 6515 * is directly connected. 6516 * - If for two nodes A and B, located N > 1 hops away from each other, 6517 * there is an intermediary node C, which is < N hops away from both 6518 * nodes A and B, the system is a glueless mesh. 6519 */ 6520 static void init_numa_topology_type(void) 6521 { 6522 int a, b, c, n; 6523 6524 n = sched_max_numa_distance; 6525 6526 if (sched_domains_numa_levels <= 1) { 6527 sched_numa_topology_type = NUMA_DIRECT; 6528 return; 6529 } 6530 6531 for_each_online_node(a) { 6532 for_each_online_node(b) { 6533 /* Find two nodes furthest removed from each other. */ 6534 if (node_distance(a, b) < n) 6535 continue; 6536 6537 /* Is there an intermediary node between a and b? */ 6538 for_each_online_node(c) { 6539 if (node_distance(a, c) < n && 6540 node_distance(b, c) < n) { 6541 sched_numa_topology_type = 6542 NUMA_GLUELESS_MESH; 6543 return; 6544 } 6545 } 6546 6547 sched_numa_topology_type = NUMA_BACKPLANE; 6548 return; 6549 } 6550 } 6551 } 6552 6553 static void sched_init_numa(void) 6554 { 6555 int next_distance, curr_distance = node_distance(0, 0); 6556 struct sched_domain_topology_level *tl; 6557 int level = 0; 6558 int i, j, k; 6559 6560 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6561 if (!sched_domains_numa_distance) 6562 return; 6563 6564 /* 6565 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6566 * unique distances in the node_distance() table. 6567 * 6568 * Assumes node_distance(0,j) includes all distances in 6569 * node_distance(i,j) in order to avoid cubic time. 6570 */ 6571 next_distance = curr_distance; 6572 for (i = 0; i < nr_node_ids; i++) { 6573 for (j = 0; j < nr_node_ids; j++) { 6574 for (k = 0; k < nr_node_ids; k++) { 6575 int distance = node_distance(i, k); 6576 6577 if (distance > curr_distance && 6578 (distance < next_distance || 6579 next_distance == curr_distance)) 6580 next_distance = distance; 6581 6582 /* 6583 * While not a strong assumption it would be nice to know 6584 * about cases where if node A is connected to B, B is not 6585 * equally connected to A. 6586 */ 6587 if (sched_debug() && node_distance(k, i) != distance) 6588 sched_numa_warn("Node-distance not symmetric"); 6589 6590 if (sched_debug() && i && !find_numa_distance(distance)) 6591 sched_numa_warn("Node-0 not representative"); 6592 } 6593 if (next_distance != curr_distance) { 6594 sched_domains_numa_distance[level++] = next_distance; 6595 sched_domains_numa_levels = level; 6596 curr_distance = next_distance; 6597 } else break; 6598 } 6599 6600 /* 6601 * In case of sched_debug() we verify the above assumption. 6602 */ 6603 if (!sched_debug()) 6604 break; 6605 } 6606 6607 if (!level) 6608 return; 6609 6610 /* 6611 * 'level' contains the number of unique distances, excluding the 6612 * identity distance node_distance(i,i). 6613 * 6614 * The sched_domains_numa_distance[] array includes the actual distance 6615 * numbers. 6616 */ 6617 6618 /* 6619 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6620 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6621 * the array will contain less then 'level' members. This could be 6622 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6623 * in other functions. 6624 * 6625 * We reset it to 'level' at the end of this function. 6626 */ 6627 sched_domains_numa_levels = 0; 6628 6629 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6630 if (!sched_domains_numa_masks) 6631 return; 6632 6633 /* 6634 * Now for each level, construct a mask per node which contains all 6635 * cpus of nodes that are that many hops away from us. 6636 */ 6637 for (i = 0; i < level; i++) { 6638 sched_domains_numa_masks[i] = 6639 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6640 if (!sched_domains_numa_masks[i]) 6641 return; 6642 6643 for (j = 0; j < nr_node_ids; j++) { 6644 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6645 if (!mask) 6646 return; 6647 6648 sched_domains_numa_masks[i][j] = mask; 6649 6650 for_each_node(k) { 6651 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6652 continue; 6653 6654 cpumask_or(mask, mask, cpumask_of_node(k)); 6655 } 6656 } 6657 } 6658 6659 /* Compute default topology size */ 6660 for (i = 0; sched_domain_topology[i].mask; i++); 6661 6662 tl = kzalloc((i + level + 1) * 6663 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6664 if (!tl) 6665 return; 6666 6667 /* 6668 * Copy the default topology bits.. 6669 */ 6670 for (i = 0; sched_domain_topology[i].mask; i++) 6671 tl[i] = sched_domain_topology[i]; 6672 6673 /* 6674 * .. and append 'j' levels of NUMA goodness. 6675 */ 6676 for (j = 0; j < level; i++, j++) { 6677 tl[i] = (struct sched_domain_topology_level){ 6678 .mask = sd_numa_mask, 6679 .sd_flags = cpu_numa_flags, 6680 .flags = SDTL_OVERLAP, 6681 .numa_level = j, 6682 SD_INIT_NAME(NUMA) 6683 }; 6684 } 6685 6686 sched_domain_topology = tl; 6687 6688 sched_domains_numa_levels = level; 6689 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6690 6691 init_numa_topology_type(); 6692 } 6693 6694 static void sched_domains_numa_masks_set(unsigned int cpu) 6695 { 6696 int node = cpu_to_node(cpu); 6697 int i, j; 6698 6699 for (i = 0; i < sched_domains_numa_levels; i++) { 6700 for (j = 0; j < nr_node_ids; j++) { 6701 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6702 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6703 } 6704 } 6705 } 6706 6707 static void sched_domains_numa_masks_clear(unsigned int cpu) 6708 { 6709 int i, j; 6710 6711 for (i = 0; i < sched_domains_numa_levels; i++) { 6712 for (j = 0; j < nr_node_ids; j++) 6713 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6714 } 6715 } 6716 6717 #else 6718 static inline void sched_init_numa(void) { } 6719 static void sched_domains_numa_masks_set(unsigned int cpu) { } 6720 static void sched_domains_numa_masks_clear(unsigned int cpu) { } 6721 #endif /* CONFIG_NUMA */ 6722 6723 static int __sdt_alloc(const struct cpumask *cpu_map) 6724 { 6725 struct sched_domain_topology_level *tl; 6726 int j; 6727 6728 for_each_sd_topology(tl) { 6729 struct sd_data *sdd = &tl->data; 6730 6731 sdd->sd = alloc_percpu(struct sched_domain *); 6732 if (!sdd->sd) 6733 return -ENOMEM; 6734 6735 sdd->sg = alloc_percpu(struct sched_group *); 6736 if (!sdd->sg) 6737 return -ENOMEM; 6738 6739 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6740 if (!sdd->sgc) 6741 return -ENOMEM; 6742 6743 for_each_cpu(j, cpu_map) { 6744 struct sched_domain *sd; 6745 struct sched_group *sg; 6746 struct sched_group_capacity *sgc; 6747 6748 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6749 GFP_KERNEL, cpu_to_node(j)); 6750 if (!sd) 6751 return -ENOMEM; 6752 6753 *per_cpu_ptr(sdd->sd, j) = sd; 6754 6755 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6756 GFP_KERNEL, cpu_to_node(j)); 6757 if (!sg) 6758 return -ENOMEM; 6759 6760 sg->next = sg; 6761 6762 *per_cpu_ptr(sdd->sg, j) = sg; 6763 6764 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6765 GFP_KERNEL, cpu_to_node(j)); 6766 if (!sgc) 6767 return -ENOMEM; 6768 6769 *per_cpu_ptr(sdd->sgc, j) = sgc; 6770 } 6771 } 6772 6773 return 0; 6774 } 6775 6776 static void __sdt_free(const struct cpumask *cpu_map) 6777 { 6778 struct sched_domain_topology_level *tl; 6779 int j; 6780 6781 for_each_sd_topology(tl) { 6782 struct sd_data *sdd = &tl->data; 6783 6784 for_each_cpu(j, cpu_map) { 6785 struct sched_domain *sd; 6786 6787 if (sdd->sd) { 6788 sd = *per_cpu_ptr(sdd->sd, j); 6789 if (sd && (sd->flags & SD_OVERLAP)) 6790 free_sched_groups(sd->groups, 0); 6791 kfree(*per_cpu_ptr(sdd->sd, j)); 6792 } 6793 6794 if (sdd->sg) 6795 kfree(*per_cpu_ptr(sdd->sg, j)); 6796 if (sdd->sgc) 6797 kfree(*per_cpu_ptr(sdd->sgc, j)); 6798 } 6799 free_percpu(sdd->sd); 6800 sdd->sd = NULL; 6801 free_percpu(sdd->sg); 6802 sdd->sg = NULL; 6803 free_percpu(sdd->sgc); 6804 sdd->sgc = NULL; 6805 } 6806 } 6807 6808 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6809 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6810 struct sched_domain *child, int cpu) 6811 { 6812 struct sched_domain *sd = sd_init(tl, cpu); 6813 if (!sd) 6814 return child; 6815 6816 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6817 if (child) { 6818 sd->level = child->level + 1; 6819 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6820 child->parent = sd; 6821 sd->child = child; 6822 6823 if (!cpumask_subset(sched_domain_span(child), 6824 sched_domain_span(sd))) { 6825 pr_err("BUG: arch topology borken\n"); 6826 #ifdef CONFIG_SCHED_DEBUG 6827 pr_err(" the %s domain not a subset of the %s domain\n", 6828 child->name, sd->name); 6829 #endif 6830 /* Fixup, ensure @sd has at least @child cpus. */ 6831 cpumask_or(sched_domain_span(sd), 6832 sched_domain_span(sd), 6833 sched_domain_span(child)); 6834 } 6835 6836 } 6837 set_domain_attribute(sd, attr); 6838 6839 return sd; 6840 } 6841 6842 /* 6843 * Build sched domains for a given set of cpus and attach the sched domains 6844 * to the individual cpus 6845 */ 6846 static int build_sched_domains(const struct cpumask *cpu_map, 6847 struct sched_domain_attr *attr) 6848 { 6849 enum s_alloc alloc_state; 6850 struct sched_domain *sd; 6851 struct s_data d; 6852 int i, ret = -ENOMEM; 6853 6854 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6855 if (alloc_state != sa_rootdomain) 6856 goto error; 6857 6858 /* Set up domains for cpus specified by the cpu_map. */ 6859 for_each_cpu(i, cpu_map) { 6860 struct sched_domain_topology_level *tl; 6861 6862 sd = NULL; 6863 for_each_sd_topology(tl) { 6864 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6865 if (tl == sched_domain_topology) 6866 *per_cpu_ptr(d.sd, i) = sd; 6867 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6868 sd->flags |= SD_OVERLAP; 6869 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6870 break; 6871 } 6872 } 6873 6874 /* Build the groups for the domains */ 6875 for_each_cpu(i, cpu_map) { 6876 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6877 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6878 if (sd->flags & SD_OVERLAP) { 6879 if (build_overlap_sched_groups(sd, i)) 6880 goto error; 6881 } else { 6882 if (build_sched_groups(sd, i)) 6883 goto error; 6884 } 6885 } 6886 } 6887 6888 /* Calculate CPU capacity for physical packages and nodes */ 6889 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6890 if (!cpumask_test_cpu(i, cpu_map)) 6891 continue; 6892 6893 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6894 claim_allocations(i, sd); 6895 init_sched_groups_capacity(i, sd); 6896 } 6897 } 6898 6899 /* Attach the domains */ 6900 rcu_read_lock(); 6901 for_each_cpu(i, cpu_map) { 6902 sd = *per_cpu_ptr(d.sd, i); 6903 cpu_attach_domain(sd, d.rd, i); 6904 } 6905 rcu_read_unlock(); 6906 6907 ret = 0; 6908 error: 6909 __free_domain_allocs(&d, alloc_state, cpu_map); 6910 return ret; 6911 } 6912 6913 static cpumask_var_t *doms_cur; /* current sched domains */ 6914 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6915 static struct sched_domain_attr *dattr_cur; 6916 /* attribues of custom domains in 'doms_cur' */ 6917 6918 /* 6919 * Special case: If a kmalloc of a doms_cur partition (array of 6920 * cpumask) fails, then fallback to a single sched domain, 6921 * as determined by the single cpumask fallback_doms. 6922 */ 6923 static cpumask_var_t fallback_doms; 6924 6925 /* 6926 * arch_update_cpu_topology lets virtualized architectures update the 6927 * cpu core maps. It is supposed to return 1 if the topology changed 6928 * or 0 if it stayed the same. 6929 */ 6930 int __weak arch_update_cpu_topology(void) 6931 { 6932 return 0; 6933 } 6934 6935 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6936 { 6937 int i; 6938 cpumask_var_t *doms; 6939 6940 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6941 if (!doms) 6942 return NULL; 6943 for (i = 0; i < ndoms; i++) { 6944 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6945 free_sched_domains(doms, i); 6946 return NULL; 6947 } 6948 } 6949 return doms; 6950 } 6951 6952 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6953 { 6954 unsigned int i; 6955 for (i = 0; i < ndoms; i++) 6956 free_cpumask_var(doms[i]); 6957 kfree(doms); 6958 } 6959 6960 /* 6961 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6962 * For now this just excludes isolated cpus, but could be used to 6963 * exclude other special cases in the future. 6964 */ 6965 static int init_sched_domains(const struct cpumask *cpu_map) 6966 { 6967 int err; 6968 6969 arch_update_cpu_topology(); 6970 ndoms_cur = 1; 6971 doms_cur = alloc_sched_domains(ndoms_cur); 6972 if (!doms_cur) 6973 doms_cur = &fallback_doms; 6974 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6975 err = build_sched_domains(doms_cur[0], NULL); 6976 register_sched_domain_sysctl(); 6977 6978 return err; 6979 } 6980 6981 /* 6982 * Detach sched domains from a group of cpus specified in cpu_map 6983 * These cpus will now be attached to the NULL domain 6984 */ 6985 static void detach_destroy_domains(const struct cpumask *cpu_map) 6986 { 6987 int i; 6988 6989 rcu_read_lock(); 6990 for_each_cpu(i, cpu_map) 6991 cpu_attach_domain(NULL, &def_root_domain, i); 6992 rcu_read_unlock(); 6993 } 6994 6995 /* handle null as "default" */ 6996 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6997 struct sched_domain_attr *new, int idx_new) 6998 { 6999 struct sched_domain_attr tmp; 7000 7001 /* fast path */ 7002 if (!new && !cur) 7003 return 1; 7004 7005 tmp = SD_ATTR_INIT; 7006 return !memcmp(cur ? (cur + idx_cur) : &tmp, 7007 new ? (new + idx_new) : &tmp, 7008 sizeof(struct sched_domain_attr)); 7009 } 7010 7011 /* 7012 * Partition sched domains as specified by the 'ndoms_new' 7013 * cpumasks in the array doms_new[] of cpumasks. This compares 7014 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7015 * It destroys each deleted domain and builds each new domain. 7016 * 7017 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 7018 * The masks don't intersect (don't overlap.) We should setup one 7019 * sched domain for each mask. CPUs not in any of the cpumasks will 7020 * not be load balanced. If the same cpumask appears both in the 7021 * current 'doms_cur' domains and in the new 'doms_new', we can leave 7022 * it as it is. 7023 * 7024 * The passed in 'doms_new' should be allocated using 7025 * alloc_sched_domains. This routine takes ownership of it and will 7026 * free_sched_domains it when done with it. If the caller failed the 7027 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 7028 * and partition_sched_domains() will fallback to the single partition 7029 * 'fallback_doms', it also forces the domains to be rebuilt. 7030 * 7031 * If doms_new == NULL it will be replaced with cpu_online_mask. 7032 * ndoms_new == 0 is a special case for destroying existing domains, 7033 * and it will not create the default domain. 7034 * 7035 * Call with hotplug lock held 7036 */ 7037 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 7038 struct sched_domain_attr *dattr_new) 7039 { 7040 int i, j, n; 7041 int new_topology; 7042 7043 mutex_lock(&sched_domains_mutex); 7044 7045 /* always unregister in case we don't destroy any domains */ 7046 unregister_sched_domain_sysctl(); 7047 7048 /* Let architecture update cpu core mappings. */ 7049 new_topology = arch_update_cpu_topology(); 7050 7051 n = doms_new ? ndoms_new : 0; 7052 7053 /* Destroy deleted domains */ 7054 for (i = 0; i < ndoms_cur; i++) { 7055 for (j = 0; j < n && !new_topology; j++) { 7056 if (cpumask_equal(doms_cur[i], doms_new[j]) 7057 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7058 goto match1; 7059 } 7060 /* no match - a current sched domain not in new doms_new[] */ 7061 detach_destroy_domains(doms_cur[i]); 7062 match1: 7063 ; 7064 } 7065 7066 n = ndoms_cur; 7067 if (doms_new == NULL) { 7068 n = 0; 7069 doms_new = &fallback_doms; 7070 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7071 WARN_ON_ONCE(dattr_new); 7072 } 7073 7074 /* Build new domains */ 7075 for (i = 0; i < ndoms_new; i++) { 7076 for (j = 0; j < n && !new_topology; j++) { 7077 if (cpumask_equal(doms_new[i], doms_cur[j]) 7078 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7079 goto match2; 7080 } 7081 /* no match - add a new doms_new */ 7082 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7083 match2: 7084 ; 7085 } 7086 7087 /* Remember the new sched domains */ 7088 if (doms_cur != &fallback_doms) 7089 free_sched_domains(doms_cur, ndoms_cur); 7090 kfree(dattr_cur); /* kfree(NULL) is safe */ 7091 doms_cur = doms_new; 7092 dattr_cur = dattr_new; 7093 ndoms_cur = ndoms_new; 7094 7095 register_sched_domain_sysctl(); 7096 7097 mutex_unlock(&sched_domains_mutex); 7098 } 7099 7100 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7101 7102 /* 7103 * Update cpusets according to cpu_active mask. If cpusets are 7104 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7105 * around partition_sched_domains(). 7106 * 7107 * If we come here as part of a suspend/resume, don't touch cpusets because we 7108 * want to restore it back to its original state upon resume anyway. 7109 */ 7110 static void cpuset_cpu_active(void) 7111 { 7112 if (cpuhp_tasks_frozen) { 7113 /* 7114 * num_cpus_frozen tracks how many CPUs are involved in suspend 7115 * resume sequence. As long as this is not the last online 7116 * operation in the resume sequence, just build a single sched 7117 * domain, ignoring cpusets. 7118 */ 7119 num_cpus_frozen--; 7120 if (likely(num_cpus_frozen)) { 7121 partition_sched_domains(1, NULL, NULL); 7122 return; 7123 } 7124 /* 7125 * This is the last CPU online operation. So fall through and 7126 * restore the original sched domains by considering the 7127 * cpuset configurations. 7128 */ 7129 } 7130 cpuset_update_active_cpus(true); 7131 } 7132 7133 static int cpuset_cpu_inactive(unsigned int cpu) 7134 { 7135 unsigned long flags; 7136 struct dl_bw *dl_b; 7137 bool overflow; 7138 int cpus; 7139 7140 if (!cpuhp_tasks_frozen) { 7141 rcu_read_lock_sched(); 7142 dl_b = dl_bw_of(cpu); 7143 7144 raw_spin_lock_irqsave(&dl_b->lock, flags); 7145 cpus = dl_bw_cpus(cpu); 7146 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7147 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7148 7149 rcu_read_unlock_sched(); 7150 7151 if (overflow) 7152 return -EBUSY; 7153 cpuset_update_active_cpus(false); 7154 } else { 7155 num_cpus_frozen++; 7156 partition_sched_domains(1, NULL, NULL); 7157 } 7158 return 0; 7159 } 7160 7161 int sched_cpu_activate(unsigned int cpu) 7162 { 7163 struct rq *rq = cpu_rq(cpu); 7164 unsigned long flags; 7165 7166 set_cpu_active(cpu, true); 7167 7168 if (sched_smp_initialized) { 7169 sched_domains_numa_masks_set(cpu); 7170 cpuset_cpu_active(); 7171 } 7172 7173 /* 7174 * Put the rq online, if not already. This happens: 7175 * 7176 * 1) In the early boot process, because we build the real domains 7177 * after all cpus have been brought up. 7178 * 7179 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7180 * domains. 7181 */ 7182 raw_spin_lock_irqsave(&rq->lock, flags); 7183 if (rq->rd) { 7184 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7185 set_rq_online(rq); 7186 } 7187 raw_spin_unlock_irqrestore(&rq->lock, flags); 7188 7189 update_max_interval(); 7190 7191 return 0; 7192 } 7193 7194 int sched_cpu_deactivate(unsigned int cpu) 7195 { 7196 int ret; 7197 7198 set_cpu_active(cpu, false); 7199 /* 7200 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 7201 * users of this state to go away such that all new such users will 7202 * observe it. 7203 * 7204 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might 7205 * not imply sync_sched(), so wait for both. 7206 * 7207 * Do sync before park smpboot threads to take care the rcu boost case. 7208 */ 7209 if (IS_ENABLED(CONFIG_PREEMPT)) 7210 synchronize_rcu_mult(call_rcu, call_rcu_sched); 7211 else 7212 synchronize_rcu(); 7213 7214 if (!sched_smp_initialized) 7215 return 0; 7216 7217 ret = cpuset_cpu_inactive(cpu); 7218 if (ret) { 7219 set_cpu_active(cpu, true); 7220 return ret; 7221 } 7222 sched_domains_numa_masks_clear(cpu); 7223 return 0; 7224 } 7225 7226 static void sched_rq_cpu_starting(unsigned int cpu) 7227 { 7228 struct rq *rq = cpu_rq(cpu); 7229 7230 rq->calc_load_update = calc_load_update; 7231 account_reset_rq(rq); 7232 update_max_interval(); 7233 } 7234 7235 int sched_cpu_starting(unsigned int cpu) 7236 { 7237 set_cpu_rq_start_time(cpu); 7238 sched_rq_cpu_starting(cpu); 7239 return 0; 7240 } 7241 7242 #ifdef CONFIG_HOTPLUG_CPU 7243 int sched_cpu_dying(unsigned int cpu) 7244 { 7245 struct rq *rq = cpu_rq(cpu); 7246 unsigned long flags; 7247 7248 /* Handle pending wakeups and then migrate everything off */ 7249 sched_ttwu_pending(); 7250 raw_spin_lock_irqsave(&rq->lock, flags); 7251 if (rq->rd) { 7252 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7253 set_rq_offline(rq); 7254 } 7255 migrate_tasks(rq); 7256 BUG_ON(rq->nr_running != 1); 7257 raw_spin_unlock_irqrestore(&rq->lock, flags); 7258 calc_load_migrate(rq); 7259 update_max_interval(); 7260 nohz_balance_exit_idle(cpu); 7261 hrtick_clear(rq); 7262 return 0; 7263 } 7264 #endif 7265 7266 void __init sched_init_smp(void) 7267 { 7268 cpumask_var_t non_isolated_cpus; 7269 7270 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7271 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7272 7273 sched_init_numa(); 7274 7275 /* 7276 * There's no userspace yet to cause hotplug operations; hence all the 7277 * cpu masks are stable and all blatant races in the below code cannot 7278 * happen. 7279 */ 7280 mutex_lock(&sched_domains_mutex); 7281 init_sched_domains(cpu_active_mask); 7282 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7283 if (cpumask_empty(non_isolated_cpus)) 7284 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7285 mutex_unlock(&sched_domains_mutex); 7286 7287 /* Move init over to a non-isolated CPU */ 7288 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7289 BUG(); 7290 sched_init_granularity(); 7291 free_cpumask_var(non_isolated_cpus); 7292 7293 init_sched_rt_class(); 7294 init_sched_dl_class(); 7295 sched_smp_initialized = true; 7296 } 7297 7298 static int __init migration_init(void) 7299 { 7300 sched_rq_cpu_starting(smp_processor_id()); 7301 return 0; 7302 } 7303 early_initcall(migration_init); 7304 7305 #else 7306 void __init sched_init_smp(void) 7307 { 7308 sched_init_granularity(); 7309 } 7310 #endif /* CONFIG_SMP */ 7311 7312 int in_sched_functions(unsigned long addr) 7313 { 7314 return in_lock_functions(addr) || 7315 (addr >= (unsigned long)__sched_text_start 7316 && addr < (unsigned long)__sched_text_end); 7317 } 7318 7319 #ifdef CONFIG_CGROUP_SCHED 7320 /* 7321 * Default task group. 7322 * Every task in system belongs to this group at bootup. 7323 */ 7324 struct task_group root_task_group; 7325 LIST_HEAD(task_groups); 7326 7327 /* Cacheline aligned slab cache for task_group */ 7328 static struct kmem_cache *task_group_cache __read_mostly; 7329 #endif 7330 7331 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7332 7333 void __init sched_init(void) 7334 { 7335 int i, j; 7336 unsigned long alloc_size = 0, ptr; 7337 7338 #ifdef CONFIG_FAIR_GROUP_SCHED 7339 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7340 #endif 7341 #ifdef CONFIG_RT_GROUP_SCHED 7342 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7343 #endif 7344 if (alloc_size) { 7345 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7346 7347 #ifdef CONFIG_FAIR_GROUP_SCHED 7348 root_task_group.se = (struct sched_entity **)ptr; 7349 ptr += nr_cpu_ids * sizeof(void **); 7350 7351 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7352 ptr += nr_cpu_ids * sizeof(void **); 7353 7354 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7355 #ifdef CONFIG_RT_GROUP_SCHED 7356 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7357 ptr += nr_cpu_ids * sizeof(void **); 7358 7359 root_task_group.rt_rq = (struct rt_rq **)ptr; 7360 ptr += nr_cpu_ids * sizeof(void **); 7361 7362 #endif /* CONFIG_RT_GROUP_SCHED */ 7363 } 7364 #ifdef CONFIG_CPUMASK_OFFSTACK 7365 for_each_possible_cpu(i) { 7366 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7367 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7368 } 7369 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7370 7371 init_rt_bandwidth(&def_rt_bandwidth, 7372 global_rt_period(), global_rt_runtime()); 7373 init_dl_bandwidth(&def_dl_bandwidth, 7374 global_rt_period(), global_rt_runtime()); 7375 7376 #ifdef CONFIG_SMP 7377 init_defrootdomain(); 7378 #endif 7379 7380 #ifdef CONFIG_RT_GROUP_SCHED 7381 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7382 global_rt_period(), global_rt_runtime()); 7383 #endif /* CONFIG_RT_GROUP_SCHED */ 7384 7385 #ifdef CONFIG_CGROUP_SCHED 7386 task_group_cache = KMEM_CACHE(task_group, 0); 7387 7388 list_add(&root_task_group.list, &task_groups); 7389 INIT_LIST_HEAD(&root_task_group.children); 7390 INIT_LIST_HEAD(&root_task_group.siblings); 7391 autogroup_init(&init_task); 7392 #endif /* CONFIG_CGROUP_SCHED */ 7393 7394 for_each_possible_cpu(i) { 7395 struct rq *rq; 7396 7397 rq = cpu_rq(i); 7398 raw_spin_lock_init(&rq->lock); 7399 rq->nr_running = 0; 7400 rq->calc_load_active = 0; 7401 rq->calc_load_update = jiffies + LOAD_FREQ; 7402 init_cfs_rq(&rq->cfs); 7403 init_rt_rq(&rq->rt); 7404 init_dl_rq(&rq->dl); 7405 #ifdef CONFIG_FAIR_GROUP_SCHED 7406 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7407 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7408 /* 7409 * How much cpu bandwidth does root_task_group get? 7410 * 7411 * In case of task-groups formed thr' the cgroup filesystem, it 7412 * gets 100% of the cpu resources in the system. This overall 7413 * system cpu resource is divided among the tasks of 7414 * root_task_group and its child task-groups in a fair manner, 7415 * based on each entity's (task or task-group's) weight 7416 * (se->load.weight). 7417 * 7418 * In other words, if root_task_group has 10 tasks of weight 7419 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7420 * then A0's share of the cpu resource is: 7421 * 7422 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7423 * 7424 * We achieve this by letting root_task_group's tasks sit 7425 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7426 */ 7427 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7428 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7429 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7430 7431 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7432 #ifdef CONFIG_RT_GROUP_SCHED 7433 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7434 #endif 7435 7436 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7437 rq->cpu_load[j] = 0; 7438 7439 #ifdef CONFIG_SMP 7440 rq->sd = NULL; 7441 rq->rd = NULL; 7442 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7443 rq->balance_callback = NULL; 7444 rq->active_balance = 0; 7445 rq->next_balance = jiffies; 7446 rq->push_cpu = 0; 7447 rq->cpu = i; 7448 rq->online = 0; 7449 rq->idle_stamp = 0; 7450 rq->avg_idle = 2*sysctl_sched_migration_cost; 7451 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7452 7453 INIT_LIST_HEAD(&rq->cfs_tasks); 7454 7455 rq_attach_root(rq, &def_root_domain); 7456 #ifdef CONFIG_NO_HZ_COMMON 7457 rq->last_load_update_tick = jiffies; 7458 rq->nohz_flags = 0; 7459 #endif 7460 #ifdef CONFIG_NO_HZ_FULL 7461 rq->last_sched_tick = 0; 7462 #endif 7463 #endif /* CONFIG_SMP */ 7464 init_rq_hrtick(rq); 7465 atomic_set(&rq->nr_iowait, 0); 7466 } 7467 7468 set_load_weight(&init_task); 7469 7470 #ifdef CONFIG_PREEMPT_NOTIFIERS 7471 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7472 #endif 7473 7474 /* 7475 * The boot idle thread does lazy MMU switching as well: 7476 */ 7477 atomic_inc(&init_mm.mm_count); 7478 enter_lazy_tlb(&init_mm, current); 7479 7480 /* 7481 * During early bootup we pretend to be a normal task: 7482 */ 7483 current->sched_class = &fair_sched_class; 7484 7485 /* 7486 * Make us the idle thread. Technically, schedule() should not be 7487 * called from this thread, however somewhere below it might be, 7488 * but because we are the idle thread, we just pick up running again 7489 * when this runqueue becomes "idle". 7490 */ 7491 init_idle(current, smp_processor_id()); 7492 7493 calc_load_update = jiffies + LOAD_FREQ; 7494 7495 #ifdef CONFIG_SMP 7496 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7497 /* May be allocated at isolcpus cmdline parse time */ 7498 if (cpu_isolated_map == NULL) 7499 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7500 idle_thread_set_boot_cpu(); 7501 set_cpu_rq_start_time(smp_processor_id()); 7502 #endif 7503 init_sched_fair_class(); 7504 7505 init_schedstats(); 7506 7507 scheduler_running = 1; 7508 } 7509 7510 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7511 static inline int preempt_count_equals(int preempt_offset) 7512 { 7513 int nested = preempt_count() + rcu_preempt_depth(); 7514 7515 return (nested == preempt_offset); 7516 } 7517 7518 void __might_sleep(const char *file, int line, int preempt_offset) 7519 { 7520 /* 7521 * Blocking primitives will set (and therefore destroy) current->state, 7522 * since we will exit with TASK_RUNNING make sure we enter with it, 7523 * otherwise we will destroy state. 7524 */ 7525 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7526 "do not call blocking ops when !TASK_RUNNING; " 7527 "state=%lx set at [<%p>] %pS\n", 7528 current->state, 7529 (void *)current->task_state_change, 7530 (void *)current->task_state_change); 7531 7532 ___might_sleep(file, line, preempt_offset); 7533 } 7534 EXPORT_SYMBOL(__might_sleep); 7535 7536 void ___might_sleep(const char *file, int line, int preempt_offset) 7537 { 7538 static unsigned long prev_jiffy; /* ratelimiting */ 7539 7540 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7541 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7542 !is_idle_task(current)) || 7543 system_state != SYSTEM_RUNNING || oops_in_progress) 7544 return; 7545 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7546 return; 7547 prev_jiffy = jiffies; 7548 7549 printk(KERN_ERR 7550 "BUG: sleeping function called from invalid context at %s:%d\n", 7551 file, line); 7552 printk(KERN_ERR 7553 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7554 in_atomic(), irqs_disabled(), 7555 current->pid, current->comm); 7556 7557 if (task_stack_end_corrupted(current)) 7558 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7559 7560 debug_show_held_locks(current); 7561 if (irqs_disabled()) 7562 print_irqtrace_events(current); 7563 #ifdef CONFIG_DEBUG_PREEMPT 7564 if (!preempt_count_equals(preempt_offset)) { 7565 pr_err("Preemption disabled at:"); 7566 print_ip_sym(current->preempt_disable_ip); 7567 pr_cont("\n"); 7568 } 7569 #endif 7570 dump_stack(); 7571 } 7572 EXPORT_SYMBOL(___might_sleep); 7573 #endif 7574 7575 #ifdef CONFIG_MAGIC_SYSRQ 7576 void normalize_rt_tasks(void) 7577 { 7578 struct task_struct *g, *p; 7579 struct sched_attr attr = { 7580 .sched_policy = SCHED_NORMAL, 7581 }; 7582 7583 read_lock(&tasklist_lock); 7584 for_each_process_thread(g, p) { 7585 /* 7586 * Only normalize user tasks: 7587 */ 7588 if (p->flags & PF_KTHREAD) 7589 continue; 7590 7591 p->se.exec_start = 0; 7592 #ifdef CONFIG_SCHEDSTATS 7593 p->se.statistics.wait_start = 0; 7594 p->se.statistics.sleep_start = 0; 7595 p->se.statistics.block_start = 0; 7596 #endif 7597 7598 if (!dl_task(p) && !rt_task(p)) { 7599 /* 7600 * Renice negative nice level userspace 7601 * tasks back to 0: 7602 */ 7603 if (task_nice(p) < 0) 7604 set_user_nice(p, 0); 7605 continue; 7606 } 7607 7608 __sched_setscheduler(p, &attr, false, false); 7609 } 7610 read_unlock(&tasklist_lock); 7611 } 7612 7613 #endif /* CONFIG_MAGIC_SYSRQ */ 7614 7615 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7616 /* 7617 * These functions are only useful for the IA64 MCA handling, or kdb. 7618 * 7619 * They can only be called when the whole system has been 7620 * stopped - every CPU needs to be quiescent, and no scheduling 7621 * activity can take place. Using them for anything else would 7622 * be a serious bug, and as a result, they aren't even visible 7623 * under any other configuration. 7624 */ 7625 7626 /** 7627 * curr_task - return the current task for a given cpu. 7628 * @cpu: the processor in question. 7629 * 7630 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7631 * 7632 * Return: The current task for @cpu. 7633 */ 7634 struct task_struct *curr_task(int cpu) 7635 { 7636 return cpu_curr(cpu); 7637 } 7638 7639 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7640 7641 #ifdef CONFIG_IA64 7642 /** 7643 * set_curr_task - set the current task for a given cpu. 7644 * @cpu: the processor in question. 7645 * @p: the task pointer to set. 7646 * 7647 * Description: This function must only be used when non-maskable interrupts 7648 * are serviced on a separate stack. It allows the architecture to switch the 7649 * notion of the current task on a cpu in a non-blocking manner. This function 7650 * must be called with all CPU's synchronized, and interrupts disabled, the 7651 * and caller must save the original value of the current task (see 7652 * curr_task() above) and restore that value before reenabling interrupts and 7653 * re-starting the system. 7654 * 7655 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7656 */ 7657 void set_curr_task(int cpu, struct task_struct *p) 7658 { 7659 cpu_curr(cpu) = p; 7660 } 7661 7662 #endif 7663 7664 #ifdef CONFIG_CGROUP_SCHED 7665 /* task_group_lock serializes the addition/removal of task groups */ 7666 static DEFINE_SPINLOCK(task_group_lock); 7667 7668 static void sched_free_group(struct task_group *tg) 7669 { 7670 free_fair_sched_group(tg); 7671 free_rt_sched_group(tg); 7672 autogroup_free(tg); 7673 kmem_cache_free(task_group_cache, tg); 7674 } 7675 7676 /* allocate runqueue etc for a new task group */ 7677 struct task_group *sched_create_group(struct task_group *parent) 7678 { 7679 struct task_group *tg; 7680 7681 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 7682 if (!tg) 7683 return ERR_PTR(-ENOMEM); 7684 7685 if (!alloc_fair_sched_group(tg, parent)) 7686 goto err; 7687 7688 if (!alloc_rt_sched_group(tg, parent)) 7689 goto err; 7690 7691 return tg; 7692 7693 err: 7694 sched_free_group(tg); 7695 return ERR_PTR(-ENOMEM); 7696 } 7697 7698 void sched_online_group(struct task_group *tg, struct task_group *parent) 7699 { 7700 unsigned long flags; 7701 7702 spin_lock_irqsave(&task_group_lock, flags); 7703 list_add_rcu(&tg->list, &task_groups); 7704 7705 WARN_ON(!parent); /* root should already exist */ 7706 7707 tg->parent = parent; 7708 INIT_LIST_HEAD(&tg->children); 7709 list_add_rcu(&tg->siblings, &parent->children); 7710 spin_unlock_irqrestore(&task_group_lock, flags); 7711 } 7712 7713 /* rcu callback to free various structures associated with a task group */ 7714 static void sched_free_group_rcu(struct rcu_head *rhp) 7715 { 7716 /* now it should be safe to free those cfs_rqs */ 7717 sched_free_group(container_of(rhp, struct task_group, rcu)); 7718 } 7719 7720 void sched_destroy_group(struct task_group *tg) 7721 { 7722 /* wait for possible concurrent references to cfs_rqs complete */ 7723 call_rcu(&tg->rcu, sched_free_group_rcu); 7724 } 7725 7726 void sched_offline_group(struct task_group *tg) 7727 { 7728 unsigned long flags; 7729 7730 /* end participation in shares distribution */ 7731 unregister_fair_sched_group(tg); 7732 7733 spin_lock_irqsave(&task_group_lock, flags); 7734 list_del_rcu(&tg->list); 7735 list_del_rcu(&tg->siblings); 7736 spin_unlock_irqrestore(&task_group_lock, flags); 7737 } 7738 7739 /* change task's runqueue when it moves between groups. 7740 * The caller of this function should have put the task in its new group 7741 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7742 * reflect its new group. 7743 */ 7744 void sched_move_task(struct task_struct *tsk) 7745 { 7746 struct task_group *tg; 7747 int queued, running; 7748 struct rq_flags rf; 7749 struct rq *rq; 7750 7751 rq = task_rq_lock(tsk, &rf); 7752 7753 running = task_current(rq, tsk); 7754 queued = task_on_rq_queued(tsk); 7755 7756 if (queued) 7757 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE); 7758 if (unlikely(running)) 7759 put_prev_task(rq, tsk); 7760 7761 /* 7762 * All callers are synchronized by task_rq_lock(); we do not use RCU 7763 * which is pointless here. Thus, we pass "true" to task_css_check() 7764 * to prevent lockdep warnings. 7765 */ 7766 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7767 struct task_group, css); 7768 tg = autogroup_task_group(tsk, tg); 7769 tsk->sched_task_group = tg; 7770 7771 #ifdef CONFIG_FAIR_GROUP_SCHED 7772 if (tsk->sched_class->task_move_group) 7773 tsk->sched_class->task_move_group(tsk); 7774 else 7775 #endif 7776 set_task_rq(tsk, task_cpu(tsk)); 7777 7778 if (unlikely(running)) 7779 tsk->sched_class->set_curr_task(rq); 7780 if (queued) 7781 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE); 7782 7783 task_rq_unlock(rq, tsk, &rf); 7784 } 7785 #endif /* CONFIG_CGROUP_SCHED */ 7786 7787 #ifdef CONFIG_RT_GROUP_SCHED 7788 /* 7789 * Ensure that the real time constraints are schedulable. 7790 */ 7791 static DEFINE_MUTEX(rt_constraints_mutex); 7792 7793 /* Must be called with tasklist_lock held */ 7794 static inline int tg_has_rt_tasks(struct task_group *tg) 7795 { 7796 struct task_struct *g, *p; 7797 7798 /* 7799 * Autogroups do not have RT tasks; see autogroup_create(). 7800 */ 7801 if (task_group_is_autogroup(tg)) 7802 return 0; 7803 7804 for_each_process_thread(g, p) { 7805 if (rt_task(p) && task_group(p) == tg) 7806 return 1; 7807 } 7808 7809 return 0; 7810 } 7811 7812 struct rt_schedulable_data { 7813 struct task_group *tg; 7814 u64 rt_period; 7815 u64 rt_runtime; 7816 }; 7817 7818 static int tg_rt_schedulable(struct task_group *tg, void *data) 7819 { 7820 struct rt_schedulable_data *d = data; 7821 struct task_group *child; 7822 unsigned long total, sum = 0; 7823 u64 period, runtime; 7824 7825 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7826 runtime = tg->rt_bandwidth.rt_runtime; 7827 7828 if (tg == d->tg) { 7829 period = d->rt_period; 7830 runtime = d->rt_runtime; 7831 } 7832 7833 /* 7834 * Cannot have more runtime than the period. 7835 */ 7836 if (runtime > period && runtime != RUNTIME_INF) 7837 return -EINVAL; 7838 7839 /* 7840 * Ensure we don't starve existing RT tasks. 7841 */ 7842 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7843 return -EBUSY; 7844 7845 total = to_ratio(period, runtime); 7846 7847 /* 7848 * Nobody can have more than the global setting allows. 7849 */ 7850 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7851 return -EINVAL; 7852 7853 /* 7854 * The sum of our children's runtime should not exceed our own. 7855 */ 7856 list_for_each_entry_rcu(child, &tg->children, siblings) { 7857 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7858 runtime = child->rt_bandwidth.rt_runtime; 7859 7860 if (child == d->tg) { 7861 period = d->rt_period; 7862 runtime = d->rt_runtime; 7863 } 7864 7865 sum += to_ratio(period, runtime); 7866 } 7867 7868 if (sum > total) 7869 return -EINVAL; 7870 7871 return 0; 7872 } 7873 7874 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7875 { 7876 int ret; 7877 7878 struct rt_schedulable_data data = { 7879 .tg = tg, 7880 .rt_period = period, 7881 .rt_runtime = runtime, 7882 }; 7883 7884 rcu_read_lock(); 7885 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7886 rcu_read_unlock(); 7887 7888 return ret; 7889 } 7890 7891 static int tg_set_rt_bandwidth(struct task_group *tg, 7892 u64 rt_period, u64 rt_runtime) 7893 { 7894 int i, err = 0; 7895 7896 /* 7897 * Disallowing the root group RT runtime is BAD, it would disallow the 7898 * kernel creating (and or operating) RT threads. 7899 */ 7900 if (tg == &root_task_group && rt_runtime == 0) 7901 return -EINVAL; 7902 7903 /* No period doesn't make any sense. */ 7904 if (rt_period == 0) 7905 return -EINVAL; 7906 7907 mutex_lock(&rt_constraints_mutex); 7908 read_lock(&tasklist_lock); 7909 err = __rt_schedulable(tg, rt_period, rt_runtime); 7910 if (err) 7911 goto unlock; 7912 7913 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7914 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7915 tg->rt_bandwidth.rt_runtime = rt_runtime; 7916 7917 for_each_possible_cpu(i) { 7918 struct rt_rq *rt_rq = tg->rt_rq[i]; 7919 7920 raw_spin_lock(&rt_rq->rt_runtime_lock); 7921 rt_rq->rt_runtime = rt_runtime; 7922 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7923 } 7924 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7925 unlock: 7926 read_unlock(&tasklist_lock); 7927 mutex_unlock(&rt_constraints_mutex); 7928 7929 return err; 7930 } 7931 7932 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7933 { 7934 u64 rt_runtime, rt_period; 7935 7936 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7937 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7938 if (rt_runtime_us < 0) 7939 rt_runtime = RUNTIME_INF; 7940 7941 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7942 } 7943 7944 static long sched_group_rt_runtime(struct task_group *tg) 7945 { 7946 u64 rt_runtime_us; 7947 7948 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7949 return -1; 7950 7951 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7952 do_div(rt_runtime_us, NSEC_PER_USEC); 7953 return rt_runtime_us; 7954 } 7955 7956 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 7957 { 7958 u64 rt_runtime, rt_period; 7959 7960 rt_period = rt_period_us * NSEC_PER_USEC; 7961 rt_runtime = tg->rt_bandwidth.rt_runtime; 7962 7963 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7964 } 7965 7966 static long sched_group_rt_period(struct task_group *tg) 7967 { 7968 u64 rt_period_us; 7969 7970 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7971 do_div(rt_period_us, NSEC_PER_USEC); 7972 return rt_period_us; 7973 } 7974 #endif /* CONFIG_RT_GROUP_SCHED */ 7975 7976 #ifdef CONFIG_RT_GROUP_SCHED 7977 static int sched_rt_global_constraints(void) 7978 { 7979 int ret = 0; 7980 7981 mutex_lock(&rt_constraints_mutex); 7982 read_lock(&tasklist_lock); 7983 ret = __rt_schedulable(NULL, 0, 0); 7984 read_unlock(&tasklist_lock); 7985 mutex_unlock(&rt_constraints_mutex); 7986 7987 return ret; 7988 } 7989 7990 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7991 { 7992 /* Don't accept realtime tasks when there is no way for them to run */ 7993 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7994 return 0; 7995 7996 return 1; 7997 } 7998 7999 #else /* !CONFIG_RT_GROUP_SCHED */ 8000 static int sched_rt_global_constraints(void) 8001 { 8002 unsigned long flags; 8003 int i; 8004 8005 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 8006 for_each_possible_cpu(i) { 8007 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 8008 8009 raw_spin_lock(&rt_rq->rt_runtime_lock); 8010 rt_rq->rt_runtime = global_rt_runtime(); 8011 raw_spin_unlock(&rt_rq->rt_runtime_lock); 8012 } 8013 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 8014 8015 return 0; 8016 } 8017 #endif /* CONFIG_RT_GROUP_SCHED */ 8018 8019 static int sched_dl_global_validate(void) 8020 { 8021 u64 runtime = global_rt_runtime(); 8022 u64 period = global_rt_period(); 8023 u64 new_bw = to_ratio(period, runtime); 8024 struct dl_bw *dl_b; 8025 int cpu, ret = 0; 8026 unsigned long flags; 8027 8028 /* 8029 * Here we want to check the bandwidth not being set to some 8030 * value smaller than the currently allocated bandwidth in 8031 * any of the root_domains. 8032 * 8033 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 8034 * cycling on root_domains... Discussion on different/better 8035 * solutions is welcome! 8036 */ 8037 for_each_possible_cpu(cpu) { 8038 rcu_read_lock_sched(); 8039 dl_b = dl_bw_of(cpu); 8040 8041 raw_spin_lock_irqsave(&dl_b->lock, flags); 8042 if (new_bw < dl_b->total_bw) 8043 ret = -EBUSY; 8044 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8045 8046 rcu_read_unlock_sched(); 8047 8048 if (ret) 8049 break; 8050 } 8051 8052 return ret; 8053 } 8054 8055 static void sched_dl_do_global(void) 8056 { 8057 u64 new_bw = -1; 8058 struct dl_bw *dl_b; 8059 int cpu; 8060 unsigned long flags; 8061 8062 def_dl_bandwidth.dl_period = global_rt_period(); 8063 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 8064 8065 if (global_rt_runtime() != RUNTIME_INF) 8066 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 8067 8068 /* 8069 * FIXME: As above... 8070 */ 8071 for_each_possible_cpu(cpu) { 8072 rcu_read_lock_sched(); 8073 dl_b = dl_bw_of(cpu); 8074 8075 raw_spin_lock_irqsave(&dl_b->lock, flags); 8076 dl_b->bw = new_bw; 8077 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 8078 8079 rcu_read_unlock_sched(); 8080 } 8081 } 8082 8083 static int sched_rt_global_validate(void) 8084 { 8085 if (sysctl_sched_rt_period <= 0) 8086 return -EINVAL; 8087 8088 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 8089 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 8090 return -EINVAL; 8091 8092 return 0; 8093 } 8094 8095 static void sched_rt_do_global(void) 8096 { 8097 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 8098 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 8099 } 8100 8101 int sched_rt_handler(struct ctl_table *table, int write, 8102 void __user *buffer, size_t *lenp, 8103 loff_t *ppos) 8104 { 8105 int old_period, old_runtime; 8106 static DEFINE_MUTEX(mutex); 8107 int ret; 8108 8109 mutex_lock(&mutex); 8110 old_period = sysctl_sched_rt_period; 8111 old_runtime = sysctl_sched_rt_runtime; 8112 8113 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8114 8115 if (!ret && write) { 8116 ret = sched_rt_global_validate(); 8117 if (ret) 8118 goto undo; 8119 8120 ret = sched_dl_global_validate(); 8121 if (ret) 8122 goto undo; 8123 8124 ret = sched_rt_global_constraints(); 8125 if (ret) 8126 goto undo; 8127 8128 sched_rt_do_global(); 8129 sched_dl_do_global(); 8130 } 8131 if (0) { 8132 undo: 8133 sysctl_sched_rt_period = old_period; 8134 sysctl_sched_rt_runtime = old_runtime; 8135 } 8136 mutex_unlock(&mutex); 8137 8138 return ret; 8139 } 8140 8141 int sched_rr_handler(struct ctl_table *table, int write, 8142 void __user *buffer, size_t *lenp, 8143 loff_t *ppos) 8144 { 8145 int ret; 8146 static DEFINE_MUTEX(mutex); 8147 8148 mutex_lock(&mutex); 8149 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8150 /* make sure that internally we keep jiffies */ 8151 /* also, writing zero resets timeslice to default */ 8152 if (!ret && write) { 8153 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 8154 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 8155 } 8156 mutex_unlock(&mutex); 8157 return ret; 8158 } 8159 8160 #ifdef CONFIG_CGROUP_SCHED 8161 8162 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8163 { 8164 return css ? container_of(css, struct task_group, css) : NULL; 8165 } 8166 8167 static struct cgroup_subsys_state * 8168 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8169 { 8170 struct task_group *parent = css_tg(parent_css); 8171 struct task_group *tg; 8172 8173 if (!parent) { 8174 /* This is early initialization for the top cgroup */ 8175 return &root_task_group.css; 8176 } 8177 8178 tg = sched_create_group(parent); 8179 if (IS_ERR(tg)) 8180 return ERR_PTR(-ENOMEM); 8181 8182 sched_online_group(tg, parent); 8183 8184 return &tg->css; 8185 } 8186 8187 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8188 { 8189 struct task_group *tg = css_tg(css); 8190 8191 sched_offline_group(tg); 8192 } 8193 8194 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8195 { 8196 struct task_group *tg = css_tg(css); 8197 8198 /* 8199 * Relies on the RCU grace period between css_released() and this. 8200 */ 8201 sched_free_group(tg); 8202 } 8203 8204 static void cpu_cgroup_fork(struct task_struct *task) 8205 { 8206 sched_move_task(task); 8207 } 8208 8209 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8210 { 8211 struct task_struct *task; 8212 struct cgroup_subsys_state *css; 8213 8214 cgroup_taskset_for_each(task, css, tset) { 8215 #ifdef CONFIG_RT_GROUP_SCHED 8216 if (!sched_rt_can_attach(css_tg(css), task)) 8217 return -EINVAL; 8218 #else 8219 /* We don't support RT-tasks being in separate groups */ 8220 if (task->sched_class != &fair_sched_class) 8221 return -EINVAL; 8222 #endif 8223 } 8224 return 0; 8225 } 8226 8227 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8228 { 8229 struct task_struct *task; 8230 struct cgroup_subsys_state *css; 8231 8232 cgroup_taskset_for_each(task, css, tset) 8233 sched_move_task(task); 8234 } 8235 8236 #ifdef CONFIG_FAIR_GROUP_SCHED 8237 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8238 struct cftype *cftype, u64 shareval) 8239 { 8240 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8241 } 8242 8243 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8244 struct cftype *cft) 8245 { 8246 struct task_group *tg = css_tg(css); 8247 8248 return (u64) scale_load_down(tg->shares); 8249 } 8250 8251 #ifdef CONFIG_CFS_BANDWIDTH 8252 static DEFINE_MUTEX(cfs_constraints_mutex); 8253 8254 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8255 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8256 8257 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8258 8259 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8260 { 8261 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8262 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8263 8264 if (tg == &root_task_group) 8265 return -EINVAL; 8266 8267 /* 8268 * Ensure we have at some amount of bandwidth every period. This is 8269 * to prevent reaching a state of large arrears when throttled via 8270 * entity_tick() resulting in prolonged exit starvation. 8271 */ 8272 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8273 return -EINVAL; 8274 8275 /* 8276 * Likewise, bound things on the otherside by preventing insane quota 8277 * periods. This also allows us to normalize in computing quota 8278 * feasibility. 8279 */ 8280 if (period > max_cfs_quota_period) 8281 return -EINVAL; 8282 8283 /* 8284 * Prevent race between setting of cfs_rq->runtime_enabled and 8285 * unthrottle_offline_cfs_rqs(). 8286 */ 8287 get_online_cpus(); 8288 mutex_lock(&cfs_constraints_mutex); 8289 ret = __cfs_schedulable(tg, period, quota); 8290 if (ret) 8291 goto out_unlock; 8292 8293 runtime_enabled = quota != RUNTIME_INF; 8294 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8295 /* 8296 * If we need to toggle cfs_bandwidth_used, off->on must occur 8297 * before making related changes, and on->off must occur afterwards 8298 */ 8299 if (runtime_enabled && !runtime_was_enabled) 8300 cfs_bandwidth_usage_inc(); 8301 raw_spin_lock_irq(&cfs_b->lock); 8302 cfs_b->period = ns_to_ktime(period); 8303 cfs_b->quota = quota; 8304 8305 __refill_cfs_bandwidth_runtime(cfs_b); 8306 /* restart the period timer (if active) to handle new period expiry */ 8307 if (runtime_enabled) 8308 start_cfs_bandwidth(cfs_b); 8309 raw_spin_unlock_irq(&cfs_b->lock); 8310 8311 for_each_online_cpu(i) { 8312 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8313 struct rq *rq = cfs_rq->rq; 8314 8315 raw_spin_lock_irq(&rq->lock); 8316 cfs_rq->runtime_enabled = runtime_enabled; 8317 cfs_rq->runtime_remaining = 0; 8318 8319 if (cfs_rq->throttled) 8320 unthrottle_cfs_rq(cfs_rq); 8321 raw_spin_unlock_irq(&rq->lock); 8322 } 8323 if (runtime_was_enabled && !runtime_enabled) 8324 cfs_bandwidth_usage_dec(); 8325 out_unlock: 8326 mutex_unlock(&cfs_constraints_mutex); 8327 put_online_cpus(); 8328 8329 return ret; 8330 } 8331 8332 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8333 { 8334 u64 quota, period; 8335 8336 period = ktime_to_ns(tg->cfs_bandwidth.period); 8337 if (cfs_quota_us < 0) 8338 quota = RUNTIME_INF; 8339 else 8340 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8341 8342 return tg_set_cfs_bandwidth(tg, period, quota); 8343 } 8344 8345 long tg_get_cfs_quota(struct task_group *tg) 8346 { 8347 u64 quota_us; 8348 8349 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8350 return -1; 8351 8352 quota_us = tg->cfs_bandwidth.quota; 8353 do_div(quota_us, NSEC_PER_USEC); 8354 8355 return quota_us; 8356 } 8357 8358 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8359 { 8360 u64 quota, period; 8361 8362 period = (u64)cfs_period_us * NSEC_PER_USEC; 8363 quota = tg->cfs_bandwidth.quota; 8364 8365 return tg_set_cfs_bandwidth(tg, period, quota); 8366 } 8367 8368 long tg_get_cfs_period(struct task_group *tg) 8369 { 8370 u64 cfs_period_us; 8371 8372 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8373 do_div(cfs_period_us, NSEC_PER_USEC); 8374 8375 return cfs_period_us; 8376 } 8377 8378 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8379 struct cftype *cft) 8380 { 8381 return tg_get_cfs_quota(css_tg(css)); 8382 } 8383 8384 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8385 struct cftype *cftype, s64 cfs_quota_us) 8386 { 8387 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8388 } 8389 8390 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8391 struct cftype *cft) 8392 { 8393 return tg_get_cfs_period(css_tg(css)); 8394 } 8395 8396 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8397 struct cftype *cftype, u64 cfs_period_us) 8398 { 8399 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8400 } 8401 8402 struct cfs_schedulable_data { 8403 struct task_group *tg; 8404 u64 period, quota; 8405 }; 8406 8407 /* 8408 * normalize group quota/period to be quota/max_period 8409 * note: units are usecs 8410 */ 8411 static u64 normalize_cfs_quota(struct task_group *tg, 8412 struct cfs_schedulable_data *d) 8413 { 8414 u64 quota, period; 8415 8416 if (tg == d->tg) { 8417 period = d->period; 8418 quota = d->quota; 8419 } else { 8420 period = tg_get_cfs_period(tg); 8421 quota = tg_get_cfs_quota(tg); 8422 } 8423 8424 /* note: these should typically be equivalent */ 8425 if (quota == RUNTIME_INF || quota == -1) 8426 return RUNTIME_INF; 8427 8428 return to_ratio(period, quota); 8429 } 8430 8431 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8432 { 8433 struct cfs_schedulable_data *d = data; 8434 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8435 s64 quota = 0, parent_quota = -1; 8436 8437 if (!tg->parent) { 8438 quota = RUNTIME_INF; 8439 } else { 8440 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8441 8442 quota = normalize_cfs_quota(tg, d); 8443 parent_quota = parent_b->hierarchical_quota; 8444 8445 /* 8446 * ensure max(child_quota) <= parent_quota, inherit when no 8447 * limit is set 8448 */ 8449 if (quota == RUNTIME_INF) 8450 quota = parent_quota; 8451 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8452 return -EINVAL; 8453 } 8454 cfs_b->hierarchical_quota = quota; 8455 8456 return 0; 8457 } 8458 8459 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8460 { 8461 int ret; 8462 struct cfs_schedulable_data data = { 8463 .tg = tg, 8464 .period = period, 8465 .quota = quota, 8466 }; 8467 8468 if (quota != RUNTIME_INF) { 8469 do_div(data.period, NSEC_PER_USEC); 8470 do_div(data.quota, NSEC_PER_USEC); 8471 } 8472 8473 rcu_read_lock(); 8474 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8475 rcu_read_unlock(); 8476 8477 return ret; 8478 } 8479 8480 static int cpu_stats_show(struct seq_file *sf, void *v) 8481 { 8482 struct task_group *tg = css_tg(seq_css(sf)); 8483 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8484 8485 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8486 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8487 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8488 8489 return 0; 8490 } 8491 #endif /* CONFIG_CFS_BANDWIDTH */ 8492 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8493 8494 #ifdef CONFIG_RT_GROUP_SCHED 8495 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8496 struct cftype *cft, s64 val) 8497 { 8498 return sched_group_set_rt_runtime(css_tg(css), val); 8499 } 8500 8501 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8502 struct cftype *cft) 8503 { 8504 return sched_group_rt_runtime(css_tg(css)); 8505 } 8506 8507 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8508 struct cftype *cftype, u64 rt_period_us) 8509 { 8510 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8511 } 8512 8513 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8514 struct cftype *cft) 8515 { 8516 return sched_group_rt_period(css_tg(css)); 8517 } 8518 #endif /* CONFIG_RT_GROUP_SCHED */ 8519 8520 static struct cftype cpu_files[] = { 8521 #ifdef CONFIG_FAIR_GROUP_SCHED 8522 { 8523 .name = "shares", 8524 .read_u64 = cpu_shares_read_u64, 8525 .write_u64 = cpu_shares_write_u64, 8526 }, 8527 #endif 8528 #ifdef CONFIG_CFS_BANDWIDTH 8529 { 8530 .name = "cfs_quota_us", 8531 .read_s64 = cpu_cfs_quota_read_s64, 8532 .write_s64 = cpu_cfs_quota_write_s64, 8533 }, 8534 { 8535 .name = "cfs_period_us", 8536 .read_u64 = cpu_cfs_period_read_u64, 8537 .write_u64 = cpu_cfs_period_write_u64, 8538 }, 8539 { 8540 .name = "stat", 8541 .seq_show = cpu_stats_show, 8542 }, 8543 #endif 8544 #ifdef CONFIG_RT_GROUP_SCHED 8545 { 8546 .name = "rt_runtime_us", 8547 .read_s64 = cpu_rt_runtime_read, 8548 .write_s64 = cpu_rt_runtime_write, 8549 }, 8550 { 8551 .name = "rt_period_us", 8552 .read_u64 = cpu_rt_period_read_uint, 8553 .write_u64 = cpu_rt_period_write_uint, 8554 }, 8555 #endif 8556 { } /* terminate */ 8557 }; 8558 8559 struct cgroup_subsys cpu_cgrp_subsys = { 8560 .css_alloc = cpu_cgroup_css_alloc, 8561 .css_released = cpu_cgroup_css_released, 8562 .css_free = cpu_cgroup_css_free, 8563 .fork = cpu_cgroup_fork, 8564 .can_attach = cpu_cgroup_can_attach, 8565 .attach = cpu_cgroup_attach, 8566 .legacy_cftypes = cpu_files, 8567 .early_init = true, 8568 }; 8569 8570 #endif /* CONFIG_CGROUP_SCHED */ 8571 8572 void dump_cpu_task(int cpu) 8573 { 8574 pr_info("Task dump for CPU %d:\n", cpu); 8575 sched_show_task(cpu_curr(cpu)); 8576 } 8577 8578 /* 8579 * Nice levels are multiplicative, with a gentle 10% change for every 8580 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 8581 * nice 1, it will get ~10% less CPU time than another CPU-bound task 8582 * that remained on nice 0. 8583 * 8584 * The "10% effect" is relative and cumulative: from _any_ nice level, 8585 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 8586 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 8587 * If a task goes up by ~10% and another task goes down by ~10% then 8588 * the relative distance between them is ~25%.) 8589 */ 8590 const int sched_prio_to_weight[40] = { 8591 /* -20 */ 88761, 71755, 56483, 46273, 36291, 8592 /* -15 */ 29154, 23254, 18705, 14949, 11916, 8593 /* -10 */ 9548, 7620, 6100, 4904, 3906, 8594 /* -5 */ 3121, 2501, 1991, 1586, 1277, 8595 /* 0 */ 1024, 820, 655, 526, 423, 8596 /* 5 */ 335, 272, 215, 172, 137, 8597 /* 10 */ 110, 87, 70, 56, 45, 8598 /* 15 */ 36, 29, 23, 18, 15, 8599 }; 8600 8601 /* 8602 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 8603 * 8604 * In cases where the weight does not change often, we can use the 8605 * precalculated inverse to speed up arithmetics by turning divisions 8606 * into multiplications: 8607 */ 8608 const u32 sched_prio_to_wmult[40] = { 8609 /* -20 */ 48388, 59856, 76040, 92818, 118348, 8610 /* -15 */ 147320, 184698, 229616, 287308, 360437, 8611 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 8612 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 8613 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 8614 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 8615 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 8616 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 8617 }; 8618