1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #define INSTANTIATE_EXPORTED_MIGRATE_DISABLE 11 #include <linux/sched.h> 12 #include <linux/highmem.h> 13 #include <linux/hrtimer_api.h> 14 #include <linux/ktime_api.h> 15 #include <linux/sched/signal.h> 16 #include <linux/syscalls_api.h> 17 #include <linux/debug_locks.h> 18 #include <linux/prefetch.h> 19 #include <linux/capability.h> 20 #include <linux/pgtable_api.h> 21 #include <linux/wait_bit.h> 22 #include <linux/jiffies.h> 23 #include <linux/spinlock_api.h> 24 #include <linux/cpumask_api.h> 25 #include <linux/lockdep_api.h> 26 #include <linux/hardirq.h> 27 #include <linux/softirq.h> 28 #include <linux/refcount_api.h> 29 #include <linux/topology.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/cond_resched.h> 32 #include <linux/sched/cputime.h> 33 #include <linux/sched/debug.h> 34 #include <linux/sched/hotplug.h> 35 #include <linux/sched/init.h> 36 #include <linux/sched/isolation.h> 37 #include <linux/sched/loadavg.h> 38 #include <linux/sched/mm.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/rseq_api.h> 41 #include <linux/sched/rt.h> 42 43 #include <linux/blkdev.h> 44 #include <linux/context_tracking.h> 45 #include <linux/cpuset.h> 46 #include <linux/delayacct.h> 47 #include <linux/init_task.h> 48 #include <linux/interrupt.h> 49 #include <linux/ioprio.h> 50 #include <linux/kallsyms.h> 51 #include <linux/kcov.h> 52 #include <linux/kprobes.h> 53 #include <linux/llist_api.h> 54 #include <linux/mmu_context.h> 55 #include <linux/mmzone.h> 56 #include <linux/mutex_api.h> 57 #include <linux/nmi.h> 58 #include <linux/nospec.h> 59 #include <linux/perf_event_api.h> 60 #include <linux/profile.h> 61 #include <linux/psi.h> 62 #include <linux/rcuwait_api.h> 63 #include <linux/rseq.h> 64 #include <linux/sched/wake_q.h> 65 #include <linux/scs.h> 66 #include <linux/slab.h> 67 #include <linux/syscalls.h> 68 #include <linux/vtime.h> 69 #include <linux/wait_api.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/livepatch_sched.h> 72 73 #ifdef CONFIG_PREEMPT_DYNAMIC 74 # ifdef CONFIG_GENERIC_IRQ_ENTRY 75 # include <linux/irq-entry-common.h> 76 # endif 77 #endif 78 79 #include <uapi/linux/sched/types.h> 80 81 #include <asm/irq_regs.h> 82 #include <asm/switch_to.h> 83 #include <asm/tlb.h> 84 85 #define CREATE_TRACE_POINTS 86 #include <linux/sched/rseq_api.h> 87 #include <trace/events/sched.h> 88 #include <trace/events/ipi.h> 89 #undef CREATE_TRACE_POINTS 90 91 #include "sched.h" 92 #include "stats.h" 93 94 #include "autogroup.h" 95 #include "pelt.h" 96 #include "smp.h" 97 98 #include "../workqueue_internal.h" 99 #include "../../io_uring/io-wq.h" 100 #include "../smpboot.h" 101 #include "../locking/mutex.h" 102 103 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 105 106 /* 107 * Export tracepoints that act as a bare tracehook (ie: have no trace event 108 * associated with them) to allow external modules to probe them. 109 */ 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 120 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 121 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 122 123 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 124 125 #ifdef CONFIG_SCHED_PROXY_EXEC 126 DEFINE_STATIC_KEY_TRUE(__sched_proxy_exec); 127 static int __init setup_proxy_exec(char *str) 128 { 129 bool proxy_enable = true; 130 131 if (*str && kstrtobool(str + 1, &proxy_enable)) { 132 pr_warn("Unable to parse sched_proxy_exec=\n"); 133 return 0; 134 } 135 136 if (proxy_enable) { 137 pr_info("sched_proxy_exec enabled via boot arg\n"); 138 static_branch_enable(&__sched_proxy_exec); 139 } else { 140 pr_info("sched_proxy_exec disabled via boot arg\n"); 141 static_branch_disable(&__sched_proxy_exec); 142 } 143 return 1; 144 } 145 #else 146 static int __init setup_proxy_exec(char *str) 147 { 148 pr_warn("CONFIG_SCHED_PROXY_EXEC=n, so it cannot be enabled or disabled at boot time\n"); 149 return 0; 150 } 151 #endif 152 __setup("sched_proxy_exec", setup_proxy_exec); 153 154 /* 155 * Debugging: various feature bits 156 * 157 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 158 * sysctl_sched_features, defined in sched.h, to allow constants propagation 159 * at compile time and compiler optimization based on features default. 160 */ 161 #define SCHED_FEAT(name, enabled) \ 162 (1UL << __SCHED_FEAT_##name) * enabled | 163 __read_mostly unsigned int sysctl_sched_features = 164 #include "features.h" 165 0; 166 #undef SCHED_FEAT 167 168 /* 169 * Print a warning if need_resched is set for the given duration (if 170 * LATENCY_WARN is enabled). 171 * 172 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 173 * per boot. 174 */ 175 __read_mostly int sysctl_resched_latency_warn_ms = 100; 176 __read_mostly int sysctl_resched_latency_warn_once = 1; 177 178 /* 179 * Number of tasks to iterate in a single balance run. 180 * Limited because this is done with IRQs disabled. 181 */ 182 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 183 184 __read_mostly int scheduler_running; 185 186 #ifdef CONFIG_SCHED_CORE 187 188 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 189 190 /* kernel prio, less is more */ 191 static inline int __task_prio(const struct task_struct *p) 192 { 193 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 194 return -2; 195 196 if (p->dl_server) 197 return -1; /* deadline */ 198 199 if (rt_or_dl_prio(p->prio)) 200 return p->prio; /* [-1, 99] */ 201 202 if (p->sched_class == &idle_sched_class) 203 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 204 205 if (task_on_scx(p)) 206 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 207 208 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 209 } 210 211 /* 212 * l(a,b) 213 * le(a,b) := !l(b,a) 214 * g(a,b) := l(b,a) 215 * ge(a,b) := !l(a,b) 216 */ 217 218 /* real prio, less is less */ 219 static inline bool prio_less(const struct task_struct *a, 220 const struct task_struct *b, bool in_fi) 221 { 222 223 int pa = __task_prio(a), pb = __task_prio(b); 224 225 if (-pa < -pb) 226 return true; 227 228 if (-pb < -pa) 229 return false; 230 231 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 232 const struct sched_dl_entity *a_dl, *b_dl; 233 234 a_dl = &a->dl; 235 /* 236 * Since,'a' and 'b' can be CFS tasks served by DL server, 237 * __task_prio() can return -1 (for DL) even for those. In that 238 * case, get to the dl_server's DL entity. 239 */ 240 if (a->dl_server) 241 a_dl = a->dl_server; 242 243 b_dl = &b->dl; 244 if (b->dl_server) 245 b_dl = b->dl_server; 246 247 return !dl_time_before(a_dl->deadline, b_dl->deadline); 248 } 249 250 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 251 return cfs_prio_less(a, b, in_fi); 252 253 #ifdef CONFIG_SCHED_CLASS_EXT 254 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 255 return scx_prio_less(a, b, in_fi); 256 #endif 257 258 return false; 259 } 260 261 static inline bool __sched_core_less(const struct task_struct *a, 262 const struct task_struct *b) 263 { 264 if (a->core_cookie < b->core_cookie) 265 return true; 266 267 if (a->core_cookie > b->core_cookie) 268 return false; 269 270 /* flip prio, so high prio is leftmost */ 271 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 272 return true; 273 274 return false; 275 } 276 277 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 278 279 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 280 { 281 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 282 } 283 284 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 285 { 286 const struct task_struct *p = __node_2_sc(node); 287 unsigned long cookie = (unsigned long)key; 288 289 if (cookie < p->core_cookie) 290 return -1; 291 292 if (cookie > p->core_cookie) 293 return 1; 294 295 return 0; 296 } 297 298 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 299 { 300 if (p->se.sched_delayed) 301 return; 302 303 rq->core->core_task_seq++; 304 305 if (!p->core_cookie) 306 return; 307 308 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 309 } 310 311 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 312 { 313 if (p->se.sched_delayed) 314 return; 315 316 rq->core->core_task_seq++; 317 318 if (sched_core_enqueued(p)) { 319 rb_erase(&p->core_node, &rq->core_tree); 320 RB_CLEAR_NODE(&p->core_node); 321 } 322 323 /* 324 * Migrating the last task off the cpu, with the cpu in forced idle 325 * state. Reschedule to create an accounting edge for forced idle, 326 * and re-examine whether the core is still in forced idle state. 327 */ 328 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 329 rq->core->core_forceidle_count && rq->curr == rq->idle) 330 resched_curr(rq); 331 } 332 333 static int sched_task_is_throttled(struct task_struct *p, int cpu) 334 { 335 if (p->sched_class->task_is_throttled) 336 return p->sched_class->task_is_throttled(p, cpu); 337 338 return 0; 339 } 340 341 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 342 { 343 struct rb_node *node = &p->core_node; 344 int cpu = task_cpu(p); 345 346 do { 347 node = rb_next(node); 348 if (!node) 349 return NULL; 350 351 p = __node_2_sc(node); 352 if (p->core_cookie != cookie) 353 return NULL; 354 355 } while (sched_task_is_throttled(p, cpu)); 356 357 return p; 358 } 359 360 /* 361 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 362 * If no suitable task is found, NULL will be returned. 363 */ 364 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 365 { 366 struct task_struct *p; 367 struct rb_node *node; 368 369 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 370 if (!node) 371 return NULL; 372 373 p = __node_2_sc(node); 374 if (!sched_task_is_throttled(p, rq->cpu)) 375 return p; 376 377 return sched_core_next(p, cookie); 378 } 379 380 /* 381 * Magic required such that: 382 * 383 * raw_spin_rq_lock(rq); 384 * ... 385 * raw_spin_rq_unlock(rq); 386 * 387 * ends up locking and unlocking the _same_ lock, and all CPUs 388 * always agree on what rq has what lock. 389 * 390 * XXX entirely possible to selectively enable cores, don't bother for now. 391 */ 392 393 static DEFINE_MUTEX(sched_core_mutex); 394 static atomic_t sched_core_count; 395 static struct cpumask sched_core_mask; 396 397 static void sched_core_lock(int cpu, unsigned long *flags) 398 { 399 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 400 int t, i = 0; 401 402 local_irq_save(*flags); 403 for_each_cpu(t, smt_mask) 404 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 405 } 406 407 static void sched_core_unlock(int cpu, unsigned long *flags) 408 { 409 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 410 int t; 411 412 for_each_cpu(t, smt_mask) 413 raw_spin_unlock(&cpu_rq(t)->__lock); 414 local_irq_restore(*flags); 415 } 416 417 static void __sched_core_flip(bool enabled) 418 { 419 unsigned long flags; 420 int cpu, t; 421 422 cpus_read_lock(); 423 424 /* 425 * Toggle the online cores, one by one. 426 */ 427 cpumask_copy(&sched_core_mask, cpu_online_mask); 428 for_each_cpu(cpu, &sched_core_mask) { 429 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 430 431 sched_core_lock(cpu, &flags); 432 433 for_each_cpu(t, smt_mask) 434 cpu_rq(t)->core_enabled = enabled; 435 436 cpu_rq(cpu)->core->core_forceidle_start = 0; 437 438 sched_core_unlock(cpu, &flags); 439 440 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 441 } 442 443 /* 444 * Toggle the offline CPUs. 445 */ 446 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 447 cpu_rq(cpu)->core_enabled = enabled; 448 449 cpus_read_unlock(); 450 } 451 452 static void sched_core_assert_empty(void) 453 { 454 int cpu; 455 456 for_each_possible_cpu(cpu) 457 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 458 } 459 460 static void __sched_core_enable(void) 461 { 462 static_branch_enable(&__sched_core_enabled); 463 /* 464 * Ensure all previous instances of raw_spin_rq_*lock() have finished 465 * and future ones will observe !sched_core_disabled(). 466 */ 467 synchronize_rcu(); 468 __sched_core_flip(true); 469 sched_core_assert_empty(); 470 } 471 472 static void __sched_core_disable(void) 473 { 474 sched_core_assert_empty(); 475 __sched_core_flip(false); 476 static_branch_disable(&__sched_core_enabled); 477 } 478 479 void sched_core_get(void) 480 { 481 if (atomic_inc_not_zero(&sched_core_count)) 482 return; 483 484 mutex_lock(&sched_core_mutex); 485 if (!atomic_read(&sched_core_count)) 486 __sched_core_enable(); 487 488 smp_mb__before_atomic(); 489 atomic_inc(&sched_core_count); 490 mutex_unlock(&sched_core_mutex); 491 } 492 493 static void __sched_core_put(struct work_struct *work) 494 { 495 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 496 __sched_core_disable(); 497 mutex_unlock(&sched_core_mutex); 498 } 499 } 500 501 void sched_core_put(void) 502 { 503 static DECLARE_WORK(_work, __sched_core_put); 504 505 /* 506 * "There can be only one" 507 * 508 * Either this is the last one, or we don't actually need to do any 509 * 'work'. If it is the last *again*, we rely on 510 * WORK_STRUCT_PENDING_BIT. 511 */ 512 if (!atomic_add_unless(&sched_core_count, -1, 1)) 513 schedule_work(&_work); 514 } 515 516 #else /* !CONFIG_SCHED_CORE: */ 517 518 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 519 static inline void 520 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 521 522 #endif /* !CONFIG_SCHED_CORE */ 523 524 /* need a wrapper since we may need to trace from modules */ 525 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp); 526 527 /* Call via the helper macro trace_set_current_state. */ 528 void __trace_set_current_state(int state_value) 529 { 530 trace_sched_set_state_tp(current, state_value); 531 } 532 EXPORT_SYMBOL(__trace_set_current_state); 533 534 /* 535 * Serialization rules: 536 * 537 * Lock order: 538 * 539 * p->pi_lock 540 * rq->lock 541 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 542 * 543 * rq1->lock 544 * rq2->lock where: rq1 < rq2 545 * 546 * Regular state: 547 * 548 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 549 * local CPU's rq->lock, it optionally removes the task from the runqueue and 550 * always looks at the local rq data structures to find the most eligible task 551 * to run next. 552 * 553 * Task enqueue is also under rq->lock, possibly taken from another CPU. 554 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 555 * the local CPU to avoid bouncing the runqueue state around [ see 556 * ttwu_queue_wakelist() ] 557 * 558 * Task wakeup, specifically wakeups that involve migration, are horribly 559 * complicated to avoid having to take two rq->locks. 560 * 561 * Special state: 562 * 563 * System-calls and anything external will use task_rq_lock() which acquires 564 * both p->pi_lock and rq->lock. As a consequence the state they change is 565 * stable while holding either lock: 566 * 567 * - sched_setaffinity()/ 568 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 569 * - set_user_nice(): p->se.load, p->*prio 570 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 571 * p->se.load, p->rt_priority, 572 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 573 * - sched_setnuma(): p->numa_preferred_nid 574 * - sched_move_task(): p->sched_task_group 575 * - uclamp_update_active() p->uclamp* 576 * 577 * p->state <- TASK_*: 578 * 579 * is changed locklessly using set_current_state(), __set_current_state() or 580 * set_special_state(), see their respective comments, or by 581 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 582 * concurrent self. 583 * 584 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 585 * 586 * is set by activate_task() and cleared by deactivate_task(), under 587 * rq->lock. Non-zero indicates the task is runnable, the special 588 * ON_RQ_MIGRATING state is used for migration without holding both 589 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 590 * 591 * Additionally it is possible to be ->on_rq but still be considered not 592 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 593 * but will be dequeued as soon as they get picked again. See the 594 * task_is_runnable() helper. 595 * 596 * p->on_cpu <- { 0, 1 }: 597 * 598 * is set by prepare_task() and cleared by finish_task() such that it will be 599 * set before p is scheduled-in and cleared after p is scheduled-out, both 600 * under rq->lock. Non-zero indicates the task is running on its CPU. 601 * 602 * [ The astute reader will observe that it is possible for two tasks on one 603 * CPU to have ->on_cpu = 1 at the same time. ] 604 * 605 * task_cpu(p): is changed by set_task_cpu(), the rules are: 606 * 607 * - Don't call set_task_cpu() on a blocked task: 608 * 609 * We don't care what CPU we're not running on, this simplifies hotplug, 610 * the CPU assignment of blocked tasks isn't required to be valid. 611 * 612 * - for try_to_wake_up(), called under p->pi_lock: 613 * 614 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 615 * 616 * - for migration called under rq->lock: 617 * [ see task_on_rq_migrating() in task_rq_lock() ] 618 * 619 * o move_queued_task() 620 * o detach_task() 621 * 622 * - for migration called under double_rq_lock(): 623 * 624 * o __migrate_swap_task() 625 * o push_rt_task() / pull_rt_task() 626 * o push_dl_task() / pull_dl_task() 627 * o dl_task_offline_migration() 628 * 629 */ 630 631 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 632 { 633 raw_spinlock_t *lock; 634 635 /* Matches synchronize_rcu() in __sched_core_enable() */ 636 preempt_disable(); 637 if (sched_core_disabled()) { 638 raw_spin_lock_nested(&rq->__lock, subclass); 639 /* preempt_count *MUST* be > 1 */ 640 preempt_enable_no_resched(); 641 return; 642 } 643 644 for (;;) { 645 lock = __rq_lockp(rq); 646 raw_spin_lock_nested(lock, subclass); 647 if (likely(lock == __rq_lockp(rq))) { 648 /* preempt_count *MUST* be > 1 */ 649 preempt_enable_no_resched(); 650 return; 651 } 652 raw_spin_unlock(lock); 653 } 654 } 655 656 bool raw_spin_rq_trylock(struct rq *rq) 657 { 658 raw_spinlock_t *lock; 659 bool ret; 660 661 /* Matches synchronize_rcu() in __sched_core_enable() */ 662 preempt_disable(); 663 if (sched_core_disabled()) { 664 ret = raw_spin_trylock(&rq->__lock); 665 preempt_enable(); 666 return ret; 667 } 668 669 for (;;) { 670 lock = __rq_lockp(rq); 671 ret = raw_spin_trylock(lock); 672 if (!ret || (likely(lock == __rq_lockp(rq)))) { 673 preempt_enable(); 674 return ret; 675 } 676 raw_spin_unlock(lock); 677 } 678 } 679 680 void raw_spin_rq_unlock(struct rq *rq) 681 { 682 raw_spin_unlock(rq_lockp(rq)); 683 } 684 685 /* 686 * double_rq_lock - safely lock two runqueues 687 */ 688 void double_rq_lock(struct rq *rq1, struct rq *rq2) 689 { 690 lockdep_assert_irqs_disabled(); 691 692 if (rq_order_less(rq2, rq1)) 693 swap(rq1, rq2); 694 695 raw_spin_rq_lock(rq1); 696 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 697 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 698 699 double_rq_clock_clear_update(rq1, rq2); 700 } 701 702 /* 703 * __task_rq_lock - lock the rq @p resides on. 704 */ 705 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 706 __acquires(rq->lock) 707 { 708 struct rq *rq; 709 710 lockdep_assert_held(&p->pi_lock); 711 712 for (;;) { 713 rq = task_rq(p); 714 raw_spin_rq_lock(rq); 715 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 716 rq_pin_lock(rq, rf); 717 return rq; 718 } 719 raw_spin_rq_unlock(rq); 720 721 while (unlikely(task_on_rq_migrating(p))) 722 cpu_relax(); 723 } 724 } 725 726 /* 727 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 728 */ 729 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 730 __acquires(p->pi_lock) 731 __acquires(rq->lock) 732 { 733 struct rq *rq; 734 735 for (;;) { 736 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 737 rq = task_rq(p); 738 raw_spin_rq_lock(rq); 739 /* 740 * move_queued_task() task_rq_lock() 741 * 742 * ACQUIRE (rq->lock) 743 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 744 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 745 * [S] ->cpu = new_cpu [L] task_rq() 746 * [L] ->on_rq 747 * RELEASE (rq->lock) 748 * 749 * If we observe the old CPU in task_rq_lock(), the acquire of 750 * the old rq->lock will fully serialize against the stores. 751 * 752 * If we observe the new CPU in task_rq_lock(), the address 753 * dependency headed by '[L] rq = task_rq()' and the acquire 754 * will pair with the WMB to ensure we then also see migrating. 755 */ 756 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 757 rq_pin_lock(rq, rf); 758 return rq; 759 } 760 raw_spin_rq_unlock(rq); 761 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 762 763 while (unlikely(task_on_rq_migrating(p))) 764 cpu_relax(); 765 } 766 } 767 768 /* 769 * RQ-clock updating methods: 770 */ 771 772 static void update_rq_clock_task(struct rq *rq, s64 delta) 773 { 774 /* 775 * In theory, the compile should just see 0 here, and optimize out the call 776 * to sched_rt_avg_update. But I don't trust it... 777 */ 778 s64 __maybe_unused steal = 0, irq_delta = 0; 779 780 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 781 if (irqtime_enabled()) { 782 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 783 784 /* 785 * Since irq_time is only updated on {soft,}irq_exit, we might run into 786 * this case when a previous update_rq_clock() happened inside a 787 * {soft,}IRQ region. 788 * 789 * When this happens, we stop ->clock_task and only update the 790 * prev_irq_time stamp to account for the part that fit, so that a next 791 * update will consume the rest. This ensures ->clock_task is 792 * monotonic. 793 * 794 * It does however cause some slight miss-attribution of {soft,}IRQ 795 * time, a more accurate solution would be to update the irq_time using 796 * the current rq->clock timestamp, except that would require using 797 * atomic ops. 798 */ 799 if (irq_delta > delta) 800 irq_delta = delta; 801 802 rq->prev_irq_time += irq_delta; 803 delta -= irq_delta; 804 delayacct_irq(rq->curr, irq_delta); 805 } 806 #endif 807 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 808 if (static_key_false((¶virt_steal_rq_enabled))) { 809 u64 prev_steal; 810 811 steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); 812 steal -= rq->prev_steal_time_rq; 813 814 if (unlikely(steal > delta)) 815 steal = delta; 816 817 rq->prev_steal_time_rq = prev_steal; 818 delta -= steal; 819 } 820 #endif 821 822 rq->clock_task += delta; 823 824 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 825 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 826 update_irq_load_avg(rq, irq_delta + steal); 827 #endif 828 update_rq_clock_pelt(rq, delta); 829 } 830 831 void update_rq_clock(struct rq *rq) 832 { 833 s64 delta; 834 u64 clock; 835 836 lockdep_assert_rq_held(rq); 837 838 if (rq->clock_update_flags & RQCF_ACT_SKIP) 839 return; 840 841 if (sched_feat(WARN_DOUBLE_CLOCK)) 842 WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); 843 rq->clock_update_flags |= RQCF_UPDATED; 844 845 clock = sched_clock_cpu(cpu_of(rq)); 846 scx_rq_clock_update(rq, clock); 847 848 delta = clock - rq->clock; 849 if (delta < 0) 850 return; 851 rq->clock += delta; 852 853 update_rq_clock_task(rq, delta); 854 } 855 856 #ifdef CONFIG_SCHED_HRTICK 857 /* 858 * Use HR-timers to deliver accurate preemption points. 859 */ 860 861 static void hrtick_clear(struct rq *rq) 862 { 863 if (hrtimer_active(&rq->hrtick_timer)) 864 hrtimer_cancel(&rq->hrtick_timer); 865 } 866 867 /* 868 * High-resolution timer tick. 869 * Runs from hardirq context with interrupts disabled. 870 */ 871 static enum hrtimer_restart hrtick(struct hrtimer *timer) 872 { 873 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 874 struct rq_flags rf; 875 876 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 877 878 rq_lock(rq, &rf); 879 update_rq_clock(rq); 880 rq->donor->sched_class->task_tick(rq, rq->curr, 1); 881 rq_unlock(rq, &rf); 882 883 return HRTIMER_NORESTART; 884 } 885 886 static void __hrtick_restart(struct rq *rq) 887 { 888 struct hrtimer *timer = &rq->hrtick_timer; 889 ktime_t time = rq->hrtick_time; 890 891 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 892 } 893 894 /* 895 * called from hardirq (IPI) context 896 */ 897 static void __hrtick_start(void *arg) 898 { 899 struct rq *rq = arg; 900 struct rq_flags rf; 901 902 rq_lock(rq, &rf); 903 __hrtick_restart(rq); 904 rq_unlock(rq, &rf); 905 } 906 907 /* 908 * Called to set the hrtick timer state. 909 * 910 * called with rq->lock held and IRQs disabled 911 */ 912 void hrtick_start(struct rq *rq, u64 delay) 913 { 914 struct hrtimer *timer = &rq->hrtick_timer; 915 s64 delta; 916 917 /* 918 * Don't schedule slices shorter than 10000ns, that just 919 * doesn't make sense and can cause timer DoS. 920 */ 921 delta = max_t(s64, delay, 10000LL); 922 rq->hrtick_time = ktime_add_ns(hrtimer_cb_get_time(timer), delta); 923 924 if (rq == this_rq()) 925 __hrtick_restart(rq); 926 else 927 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 928 } 929 930 static void hrtick_rq_init(struct rq *rq) 931 { 932 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 933 hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 934 } 935 #else /* !CONFIG_SCHED_HRTICK: */ 936 static inline void hrtick_clear(struct rq *rq) 937 { 938 } 939 940 static inline void hrtick_rq_init(struct rq *rq) 941 { 942 } 943 #endif /* !CONFIG_SCHED_HRTICK */ 944 945 /* 946 * try_cmpxchg based fetch_or() macro so it works for different integer types: 947 */ 948 #define fetch_or(ptr, mask) \ 949 ({ \ 950 typeof(ptr) _ptr = (ptr); \ 951 typeof(mask) _mask = (mask); \ 952 typeof(*_ptr) _val = *_ptr; \ 953 \ 954 do { \ 955 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 956 _val; \ 957 }) 958 959 #ifdef TIF_POLLING_NRFLAG 960 /* 961 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 962 * this avoids any races wrt polling state changes and thereby avoids 963 * spurious IPIs. 964 */ 965 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 966 { 967 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 968 } 969 970 /* 971 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 972 * 973 * If this returns true, then the idle task promises to call 974 * sched_ttwu_pending() and reschedule soon. 975 */ 976 static bool set_nr_if_polling(struct task_struct *p) 977 { 978 struct thread_info *ti = task_thread_info(p); 979 typeof(ti->flags) val = READ_ONCE(ti->flags); 980 981 do { 982 if (!(val & _TIF_POLLING_NRFLAG)) 983 return false; 984 if (val & _TIF_NEED_RESCHED) 985 return true; 986 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 987 988 return true; 989 } 990 991 #else 992 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 993 { 994 set_ti_thread_flag(ti, tif); 995 return true; 996 } 997 998 static inline bool set_nr_if_polling(struct task_struct *p) 999 { 1000 return false; 1001 } 1002 #endif 1003 1004 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 1005 { 1006 struct wake_q_node *node = &task->wake_q; 1007 1008 /* 1009 * Atomically grab the task, if ->wake_q is !nil already it means 1010 * it's already queued (either by us or someone else) and will get the 1011 * wakeup due to that. 1012 * 1013 * In order to ensure that a pending wakeup will observe our pending 1014 * state, even in the failed case, an explicit smp_mb() must be used. 1015 */ 1016 smp_mb__before_atomic(); 1017 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 1018 return false; 1019 1020 /* 1021 * The head is context local, there can be no concurrency. 1022 */ 1023 *head->lastp = node; 1024 head->lastp = &node->next; 1025 return true; 1026 } 1027 1028 /** 1029 * wake_q_add() - queue a wakeup for 'later' waking. 1030 * @head: the wake_q_head to add @task to 1031 * @task: the task to queue for 'later' wakeup 1032 * 1033 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1034 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1035 * instantly. 1036 * 1037 * This function must be used as-if it were wake_up_process(); IOW the task 1038 * must be ready to be woken at this location. 1039 */ 1040 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1041 { 1042 if (__wake_q_add(head, task)) 1043 get_task_struct(task); 1044 } 1045 1046 /** 1047 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1048 * @head: the wake_q_head to add @task to 1049 * @task: the task to queue for 'later' wakeup 1050 * 1051 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1052 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1053 * instantly. 1054 * 1055 * This function must be used as-if it were wake_up_process(); IOW the task 1056 * must be ready to be woken at this location. 1057 * 1058 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1059 * that already hold reference to @task can call the 'safe' version and trust 1060 * wake_q to do the right thing depending whether or not the @task is already 1061 * queued for wakeup. 1062 */ 1063 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1064 { 1065 if (!__wake_q_add(head, task)) 1066 put_task_struct(task); 1067 } 1068 1069 void wake_up_q(struct wake_q_head *head) 1070 { 1071 struct wake_q_node *node = head->first; 1072 1073 while (node != WAKE_Q_TAIL) { 1074 struct task_struct *task; 1075 1076 task = container_of(node, struct task_struct, wake_q); 1077 node = node->next; 1078 /* pairs with cmpxchg_relaxed() in __wake_q_add() */ 1079 WRITE_ONCE(task->wake_q.next, NULL); 1080 /* Task can safely be re-inserted now. */ 1081 1082 /* 1083 * wake_up_process() executes a full barrier, which pairs with 1084 * the queueing in wake_q_add() so as not to miss wakeups. 1085 */ 1086 wake_up_process(task); 1087 put_task_struct(task); 1088 } 1089 } 1090 1091 /* 1092 * resched_curr - mark rq's current task 'to be rescheduled now'. 1093 * 1094 * On UP this means the setting of the need_resched flag, on SMP it 1095 * might also involve a cross-CPU call to trigger the scheduler on 1096 * the target CPU. 1097 */ 1098 static void __resched_curr(struct rq *rq, int tif) 1099 { 1100 struct task_struct *curr = rq->curr; 1101 struct thread_info *cti = task_thread_info(curr); 1102 int cpu; 1103 1104 lockdep_assert_rq_held(rq); 1105 1106 /* 1107 * Always immediately preempt the idle task; no point in delaying doing 1108 * actual work. 1109 */ 1110 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1111 tif = TIF_NEED_RESCHED; 1112 1113 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1114 return; 1115 1116 cpu = cpu_of(rq); 1117 1118 trace_sched_set_need_resched_tp(curr, cpu, tif); 1119 if (cpu == smp_processor_id()) { 1120 set_ti_thread_flag(cti, tif); 1121 if (tif == TIF_NEED_RESCHED) 1122 set_preempt_need_resched(); 1123 return; 1124 } 1125 1126 if (set_nr_and_not_polling(cti, tif)) { 1127 if (tif == TIF_NEED_RESCHED) 1128 smp_send_reschedule(cpu); 1129 } else { 1130 trace_sched_wake_idle_without_ipi(cpu); 1131 } 1132 } 1133 1134 void __trace_set_need_resched(struct task_struct *curr, int tif) 1135 { 1136 trace_sched_set_need_resched_tp(curr, smp_processor_id(), tif); 1137 } 1138 1139 void resched_curr(struct rq *rq) 1140 { 1141 __resched_curr(rq, TIF_NEED_RESCHED); 1142 } 1143 1144 #ifdef CONFIG_PREEMPT_DYNAMIC 1145 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1146 static __always_inline bool dynamic_preempt_lazy(void) 1147 { 1148 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1149 } 1150 #else 1151 static __always_inline bool dynamic_preempt_lazy(void) 1152 { 1153 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1154 } 1155 #endif 1156 1157 static __always_inline int get_lazy_tif_bit(void) 1158 { 1159 if (dynamic_preempt_lazy()) 1160 return TIF_NEED_RESCHED_LAZY; 1161 1162 return TIF_NEED_RESCHED; 1163 } 1164 1165 void resched_curr_lazy(struct rq *rq) 1166 { 1167 __resched_curr(rq, get_lazy_tif_bit()); 1168 } 1169 1170 void resched_cpu(int cpu) 1171 { 1172 struct rq *rq = cpu_rq(cpu); 1173 unsigned long flags; 1174 1175 raw_spin_rq_lock_irqsave(rq, flags); 1176 if (cpu_online(cpu) || cpu == smp_processor_id()) 1177 resched_curr(rq); 1178 raw_spin_rq_unlock_irqrestore(rq, flags); 1179 } 1180 1181 #ifdef CONFIG_NO_HZ_COMMON 1182 /* 1183 * In the semi idle case, use the nearest busy CPU for migrating timers 1184 * from an idle CPU. This is good for power-savings. 1185 * 1186 * We don't do similar optimization for completely idle system, as 1187 * selecting an idle CPU will add more delays to the timers than intended 1188 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1189 */ 1190 int get_nohz_timer_target(void) 1191 { 1192 int i, cpu = smp_processor_id(), default_cpu = -1; 1193 struct sched_domain *sd; 1194 const struct cpumask *hk_mask; 1195 1196 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { 1197 if (!idle_cpu(cpu)) 1198 return cpu; 1199 default_cpu = cpu; 1200 } 1201 1202 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 1203 1204 guard(rcu)(); 1205 1206 for_each_domain(cpu, sd) { 1207 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1208 if (cpu == i) 1209 continue; 1210 1211 if (!idle_cpu(i)) 1212 return i; 1213 } 1214 } 1215 1216 if (default_cpu == -1) 1217 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); 1218 1219 return default_cpu; 1220 } 1221 1222 /* 1223 * When add_timer_on() enqueues a timer into the timer wheel of an 1224 * idle CPU then this timer might expire before the next timer event 1225 * which is scheduled to wake up that CPU. In case of a completely 1226 * idle system the next event might even be infinite time into the 1227 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1228 * leaves the inner idle loop so the newly added timer is taken into 1229 * account when the CPU goes back to idle and evaluates the timer 1230 * wheel for the next timer event. 1231 */ 1232 static void wake_up_idle_cpu(int cpu) 1233 { 1234 struct rq *rq = cpu_rq(cpu); 1235 1236 if (cpu == smp_processor_id()) 1237 return; 1238 1239 /* 1240 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1241 * part of the idle loop. This forces an exit from the idle loop 1242 * and a round trip to schedule(). Now this could be optimized 1243 * because a simple new idle loop iteration is enough to 1244 * re-evaluate the next tick. Provided some re-ordering of tick 1245 * nohz functions that would need to follow TIF_NR_POLLING 1246 * clearing: 1247 * 1248 * - On most architectures, a simple fetch_or on ti::flags with a 1249 * "0" value would be enough to know if an IPI needs to be sent. 1250 * 1251 * - x86 needs to perform a last need_resched() check between 1252 * monitor and mwait which doesn't take timers into account. 1253 * There a dedicated TIF_TIMER flag would be required to 1254 * fetch_or here and be checked along with TIF_NEED_RESCHED 1255 * before mwait(). 1256 * 1257 * However, remote timer enqueue is not such a frequent event 1258 * and testing of the above solutions didn't appear to report 1259 * much benefits. 1260 */ 1261 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1262 smp_send_reschedule(cpu); 1263 else 1264 trace_sched_wake_idle_without_ipi(cpu); 1265 } 1266 1267 static bool wake_up_full_nohz_cpu(int cpu) 1268 { 1269 /* 1270 * We just need the target to call irq_exit() and re-evaluate 1271 * the next tick. The nohz full kick at least implies that. 1272 * If needed we can still optimize that later with an 1273 * empty IRQ. 1274 */ 1275 if (cpu_is_offline(cpu)) 1276 return true; /* Don't try to wake offline CPUs. */ 1277 if (tick_nohz_full_cpu(cpu)) { 1278 if (cpu != smp_processor_id() || 1279 tick_nohz_tick_stopped()) 1280 tick_nohz_full_kick_cpu(cpu); 1281 return true; 1282 } 1283 1284 return false; 1285 } 1286 1287 /* 1288 * Wake up the specified CPU. If the CPU is going offline, it is the 1289 * caller's responsibility to deal with the lost wakeup, for example, 1290 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1291 */ 1292 void wake_up_nohz_cpu(int cpu) 1293 { 1294 if (!wake_up_full_nohz_cpu(cpu)) 1295 wake_up_idle_cpu(cpu); 1296 } 1297 1298 static void nohz_csd_func(void *info) 1299 { 1300 struct rq *rq = info; 1301 int cpu = cpu_of(rq); 1302 unsigned int flags; 1303 1304 /* 1305 * Release the rq::nohz_csd. 1306 */ 1307 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1308 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1309 1310 rq->idle_balance = idle_cpu(cpu); 1311 if (rq->idle_balance) { 1312 rq->nohz_idle_balance = flags; 1313 __raise_softirq_irqoff(SCHED_SOFTIRQ); 1314 } 1315 } 1316 1317 #endif /* CONFIG_NO_HZ_COMMON */ 1318 1319 #ifdef CONFIG_NO_HZ_FULL 1320 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1321 { 1322 if (rq->nr_running != 1) 1323 return false; 1324 1325 if (p->sched_class != &fair_sched_class) 1326 return false; 1327 1328 if (!task_on_rq_queued(p)) 1329 return false; 1330 1331 return true; 1332 } 1333 1334 bool sched_can_stop_tick(struct rq *rq) 1335 { 1336 int fifo_nr_running; 1337 1338 /* Deadline tasks, even if single, need the tick */ 1339 if (rq->dl.dl_nr_running) 1340 return false; 1341 1342 /* 1343 * If there are more than one RR tasks, we need the tick to affect the 1344 * actual RR behaviour. 1345 */ 1346 if (rq->rt.rr_nr_running) { 1347 if (rq->rt.rr_nr_running == 1) 1348 return true; 1349 else 1350 return false; 1351 } 1352 1353 /* 1354 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1355 * forced preemption between FIFO tasks. 1356 */ 1357 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1358 if (fifo_nr_running) 1359 return true; 1360 1361 /* 1362 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1363 * left. For CFS, if there's more than one we need the tick for 1364 * involuntary preemption. For SCX, ask. 1365 */ 1366 if (scx_enabled() && !scx_can_stop_tick(rq)) 1367 return false; 1368 1369 if (rq->cfs.h_nr_queued > 1) 1370 return false; 1371 1372 /* 1373 * If there is one task and it has CFS runtime bandwidth constraints 1374 * and it's on the cpu now we don't want to stop the tick. 1375 * This check prevents clearing the bit if a newly enqueued task here is 1376 * dequeued by migrating while the constrained task continues to run. 1377 * E.g. going from 2->1 without going through pick_next_task(). 1378 */ 1379 if (__need_bw_check(rq, rq->curr)) { 1380 if (cfs_task_bw_constrained(rq->curr)) 1381 return false; 1382 } 1383 1384 return true; 1385 } 1386 #endif /* CONFIG_NO_HZ_FULL */ 1387 1388 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED) 1389 /* 1390 * Iterate task_group tree rooted at *from, calling @down when first entering a 1391 * node and @up when leaving it for the final time. 1392 * 1393 * Caller must hold rcu_lock or sufficient equivalent. 1394 */ 1395 int walk_tg_tree_from(struct task_group *from, 1396 tg_visitor down, tg_visitor up, void *data) 1397 { 1398 struct task_group *parent, *child; 1399 int ret; 1400 1401 parent = from; 1402 1403 down: 1404 ret = (*down)(parent, data); 1405 if (ret) 1406 goto out; 1407 list_for_each_entry_rcu(child, &parent->children, siblings) { 1408 parent = child; 1409 goto down; 1410 1411 up: 1412 continue; 1413 } 1414 ret = (*up)(parent, data); 1415 if (ret || parent == from) 1416 goto out; 1417 1418 child = parent; 1419 parent = parent->parent; 1420 if (parent) 1421 goto up; 1422 out: 1423 return ret; 1424 } 1425 1426 int tg_nop(struct task_group *tg, void *data) 1427 { 1428 return 0; 1429 } 1430 #endif 1431 1432 void set_load_weight(struct task_struct *p, bool update_load) 1433 { 1434 int prio = p->static_prio - MAX_RT_PRIO; 1435 struct load_weight lw; 1436 1437 if (task_has_idle_policy(p)) { 1438 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1439 lw.inv_weight = WMULT_IDLEPRIO; 1440 } else { 1441 lw.weight = scale_load(sched_prio_to_weight[prio]); 1442 lw.inv_weight = sched_prio_to_wmult[prio]; 1443 } 1444 1445 /* 1446 * SCHED_OTHER tasks have to update their load when changing their 1447 * weight 1448 */ 1449 if (update_load && p->sched_class->reweight_task) 1450 p->sched_class->reweight_task(task_rq(p), p, &lw); 1451 else 1452 p->se.load = lw; 1453 } 1454 1455 #ifdef CONFIG_UCLAMP_TASK 1456 /* 1457 * Serializes updates of utilization clamp values 1458 * 1459 * The (slow-path) user-space triggers utilization clamp value updates which 1460 * can require updates on (fast-path) scheduler's data structures used to 1461 * support enqueue/dequeue operations. 1462 * While the per-CPU rq lock protects fast-path update operations, user-space 1463 * requests are serialized using a mutex to reduce the risk of conflicting 1464 * updates or API abuses. 1465 */ 1466 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1467 1468 /* Max allowed minimum utilization */ 1469 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1470 1471 /* Max allowed maximum utilization */ 1472 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1473 1474 /* 1475 * By default RT tasks run at the maximum performance point/capacity of the 1476 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1477 * SCHED_CAPACITY_SCALE. 1478 * 1479 * This knob allows admins to change the default behavior when uclamp is being 1480 * used. In battery powered devices, particularly, running at the maximum 1481 * capacity and frequency will increase energy consumption and shorten the 1482 * battery life. 1483 * 1484 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1485 * 1486 * This knob will not override the system default sched_util_clamp_min defined 1487 * above. 1488 */ 1489 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1490 1491 /* All clamps are required to be less or equal than these values */ 1492 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1493 1494 /* 1495 * This static key is used to reduce the uclamp overhead in the fast path. It 1496 * primarily disables the call to uclamp_rq_{inc, dec}() in 1497 * enqueue/dequeue_task(). 1498 * 1499 * This allows users to continue to enable uclamp in their kernel config with 1500 * minimum uclamp overhead in the fast path. 1501 * 1502 * As soon as userspace modifies any of the uclamp knobs, the static key is 1503 * enabled, since we have an actual users that make use of uclamp 1504 * functionality. 1505 * 1506 * The knobs that would enable this static key are: 1507 * 1508 * * A task modifying its uclamp value with sched_setattr(). 1509 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1510 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1511 */ 1512 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1513 1514 static inline unsigned int 1515 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1516 unsigned int clamp_value) 1517 { 1518 /* 1519 * Avoid blocked utilization pushing up the frequency when we go 1520 * idle (which drops the max-clamp) by retaining the last known 1521 * max-clamp. 1522 */ 1523 if (clamp_id == UCLAMP_MAX) { 1524 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1525 return clamp_value; 1526 } 1527 1528 return uclamp_none(UCLAMP_MIN); 1529 } 1530 1531 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1532 unsigned int clamp_value) 1533 { 1534 /* Reset max-clamp retention only on idle exit */ 1535 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1536 return; 1537 1538 uclamp_rq_set(rq, clamp_id, clamp_value); 1539 } 1540 1541 static inline 1542 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1543 unsigned int clamp_value) 1544 { 1545 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1546 int bucket_id = UCLAMP_BUCKETS - 1; 1547 1548 /* 1549 * Since both min and max clamps are max aggregated, find the 1550 * top most bucket with tasks in. 1551 */ 1552 for ( ; bucket_id >= 0; bucket_id--) { 1553 if (!bucket[bucket_id].tasks) 1554 continue; 1555 return bucket[bucket_id].value; 1556 } 1557 1558 /* No tasks -- default clamp values */ 1559 return uclamp_idle_value(rq, clamp_id, clamp_value); 1560 } 1561 1562 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1563 { 1564 unsigned int default_util_min; 1565 struct uclamp_se *uc_se; 1566 1567 lockdep_assert_held(&p->pi_lock); 1568 1569 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1570 1571 /* Only sync if user didn't override the default */ 1572 if (uc_se->user_defined) 1573 return; 1574 1575 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1576 uclamp_se_set(uc_se, default_util_min, false); 1577 } 1578 1579 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1580 { 1581 if (!rt_task(p)) 1582 return; 1583 1584 /* Protect updates to p->uclamp_* */ 1585 guard(task_rq_lock)(p); 1586 __uclamp_update_util_min_rt_default(p); 1587 } 1588 1589 static inline struct uclamp_se 1590 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1591 { 1592 /* Copy by value as we could modify it */ 1593 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1594 #ifdef CONFIG_UCLAMP_TASK_GROUP 1595 unsigned int tg_min, tg_max, value; 1596 1597 /* 1598 * Tasks in autogroups or root task group will be 1599 * restricted by system defaults. 1600 */ 1601 if (task_group_is_autogroup(task_group(p))) 1602 return uc_req; 1603 if (task_group(p) == &root_task_group) 1604 return uc_req; 1605 1606 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1607 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1608 value = uc_req.value; 1609 value = clamp(value, tg_min, tg_max); 1610 uclamp_se_set(&uc_req, value, false); 1611 #endif 1612 1613 return uc_req; 1614 } 1615 1616 /* 1617 * The effective clamp bucket index of a task depends on, by increasing 1618 * priority: 1619 * - the task specific clamp value, when explicitly requested from userspace 1620 * - the task group effective clamp value, for tasks not either in the root 1621 * group or in an autogroup 1622 * - the system default clamp value, defined by the sysadmin 1623 */ 1624 static inline struct uclamp_se 1625 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1626 { 1627 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1628 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1629 1630 /* System default restrictions always apply */ 1631 if (unlikely(uc_req.value > uc_max.value)) 1632 return uc_max; 1633 1634 return uc_req; 1635 } 1636 1637 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1638 { 1639 struct uclamp_se uc_eff; 1640 1641 /* Task currently refcounted: use back-annotated (effective) value */ 1642 if (p->uclamp[clamp_id].active) 1643 return (unsigned long)p->uclamp[clamp_id].value; 1644 1645 uc_eff = uclamp_eff_get(p, clamp_id); 1646 1647 return (unsigned long)uc_eff.value; 1648 } 1649 1650 /* 1651 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1652 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1653 * updates the rq's clamp value if required. 1654 * 1655 * Tasks can have a task-specific value requested from user-space, track 1656 * within each bucket the maximum value for tasks refcounted in it. 1657 * This "local max aggregation" allows to track the exact "requested" value 1658 * for each bucket when all its RUNNABLE tasks require the same clamp. 1659 */ 1660 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1661 enum uclamp_id clamp_id) 1662 { 1663 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1664 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1665 struct uclamp_bucket *bucket; 1666 1667 lockdep_assert_rq_held(rq); 1668 1669 /* Update task effective clamp */ 1670 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1671 1672 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1673 bucket->tasks++; 1674 uc_se->active = true; 1675 1676 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1677 1678 /* 1679 * Local max aggregation: rq buckets always track the max 1680 * "requested" clamp value of its RUNNABLE tasks. 1681 */ 1682 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1683 bucket->value = uc_se->value; 1684 1685 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1686 uclamp_rq_set(rq, clamp_id, uc_se->value); 1687 } 1688 1689 /* 1690 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1691 * is released. If this is the last task reference counting the rq's max 1692 * active clamp value, then the rq's clamp value is updated. 1693 * 1694 * Both refcounted tasks and rq's cached clamp values are expected to be 1695 * always valid. If it's detected they are not, as defensive programming, 1696 * enforce the expected state and warn. 1697 */ 1698 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1699 enum uclamp_id clamp_id) 1700 { 1701 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1702 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1703 struct uclamp_bucket *bucket; 1704 unsigned int bkt_clamp; 1705 unsigned int rq_clamp; 1706 1707 lockdep_assert_rq_held(rq); 1708 1709 /* 1710 * If sched_uclamp_used was enabled after task @p was enqueued, 1711 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1712 * 1713 * In this case the uc_se->active flag should be false since no uclamp 1714 * accounting was performed at enqueue time and we can just return 1715 * here. 1716 * 1717 * Need to be careful of the following enqueue/dequeue ordering 1718 * problem too 1719 * 1720 * enqueue(taskA) 1721 * // sched_uclamp_used gets enabled 1722 * enqueue(taskB) 1723 * dequeue(taskA) 1724 * // Must not decrement bucket->tasks here 1725 * dequeue(taskB) 1726 * 1727 * where we could end up with stale data in uc_se and 1728 * bucket[uc_se->bucket_id]. 1729 * 1730 * The following check here eliminates the possibility of such race. 1731 */ 1732 if (unlikely(!uc_se->active)) 1733 return; 1734 1735 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1736 1737 WARN_ON_ONCE(!bucket->tasks); 1738 if (likely(bucket->tasks)) 1739 bucket->tasks--; 1740 1741 uc_se->active = false; 1742 1743 /* 1744 * Keep "local max aggregation" simple and accept to (possibly) 1745 * overboost some RUNNABLE tasks in the same bucket. 1746 * The rq clamp bucket value is reset to its base value whenever 1747 * there are no more RUNNABLE tasks refcounting it. 1748 */ 1749 if (likely(bucket->tasks)) 1750 return; 1751 1752 rq_clamp = uclamp_rq_get(rq, clamp_id); 1753 /* 1754 * Defensive programming: this should never happen. If it happens, 1755 * e.g. due to future modification, warn and fix up the expected value. 1756 */ 1757 WARN_ON_ONCE(bucket->value > rq_clamp); 1758 if (bucket->value >= rq_clamp) { 1759 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1760 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1761 } 1762 } 1763 1764 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) 1765 { 1766 enum uclamp_id clamp_id; 1767 1768 /* 1769 * Avoid any overhead until uclamp is actually used by the userspace. 1770 * 1771 * The condition is constructed such that a NOP is generated when 1772 * sched_uclamp_used is disabled. 1773 */ 1774 if (!uclamp_is_used()) 1775 return; 1776 1777 if (unlikely(!p->sched_class->uclamp_enabled)) 1778 return; 1779 1780 /* Only inc the delayed task which being woken up. */ 1781 if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED)) 1782 return; 1783 1784 for_each_clamp_id(clamp_id) 1785 uclamp_rq_inc_id(rq, p, clamp_id); 1786 1787 /* Reset clamp idle holding when there is one RUNNABLE task */ 1788 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1789 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1790 } 1791 1792 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1793 { 1794 enum uclamp_id clamp_id; 1795 1796 /* 1797 * Avoid any overhead until uclamp is actually used by the userspace. 1798 * 1799 * The condition is constructed such that a NOP is generated when 1800 * sched_uclamp_used is disabled. 1801 */ 1802 if (!uclamp_is_used()) 1803 return; 1804 1805 if (unlikely(!p->sched_class->uclamp_enabled)) 1806 return; 1807 1808 if (p->se.sched_delayed) 1809 return; 1810 1811 for_each_clamp_id(clamp_id) 1812 uclamp_rq_dec_id(rq, p, clamp_id); 1813 } 1814 1815 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1816 enum uclamp_id clamp_id) 1817 { 1818 if (!p->uclamp[clamp_id].active) 1819 return; 1820 1821 uclamp_rq_dec_id(rq, p, clamp_id); 1822 uclamp_rq_inc_id(rq, p, clamp_id); 1823 1824 /* 1825 * Make sure to clear the idle flag if we've transiently reached 0 1826 * active tasks on rq. 1827 */ 1828 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1829 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1830 } 1831 1832 static inline void 1833 uclamp_update_active(struct task_struct *p) 1834 { 1835 enum uclamp_id clamp_id; 1836 struct rq_flags rf; 1837 struct rq *rq; 1838 1839 /* 1840 * Lock the task and the rq where the task is (or was) queued. 1841 * 1842 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1843 * price to pay to safely serialize util_{min,max} updates with 1844 * enqueues, dequeues and migration operations. 1845 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1846 */ 1847 rq = task_rq_lock(p, &rf); 1848 1849 /* 1850 * Setting the clamp bucket is serialized by task_rq_lock(). 1851 * If the task is not yet RUNNABLE and its task_struct is not 1852 * affecting a valid clamp bucket, the next time it's enqueued, 1853 * it will already see the updated clamp bucket value. 1854 */ 1855 for_each_clamp_id(clamp_id) 1856 uclamp_rq_reinc_id(rq, p, clamp_id); 1857 1858 task_rq_unlock(rq, p, &rf); 1859 } 1860 1861 #ifdef CONFIG_UCLAMP_TASK_GROUP 1862 static inline void 1863 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1864 { 1865 struct css_task_iter it; 1866 struct task_struct *p; 1867 1868 css_task_iter_start(css, 0, &it); 1869 while ((p = css_task_iter_next(&it))) 1870 uclamp_update_active(p); 1871 css_task_iter_end(&it); 1872 } 1873 1874 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1875 #endif 1876 1877 #ifdef CONFIG_SYSCTL 1878 #ifdef CONFIG_UCLAMP_TASK_GROUP 1879 static void uclamp_update_root_tg(void) 1880 { 1881 struct task_group *tg = &root_task_group; 1882 1883 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1884 sysctl_sched_uclamp_util_min, false); 1885 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1886 sysctl_sched_uclamp_util_max, false); 1887 1888 guard(rcu)(); 1889 cpu_util_update_eff(&root_task_group.css); 1890 } 1891 #else 1892 static void uclamp_update_root_tg(void) { } 1893 #endif 1894 1895 static void uclamp_sync_util_min_rt_default(void) 1896 { 1897 struct task_struct *g, *p; 1898 1899 /* 1900 * copy_process() sysctl_uclamp 1901 * uclamp_min_rt = X; 1902 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1903 * // link thread smp_mb__after_spinlock() 1904 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1905 * sched_post_fork() for_each_process_thread() 1906 * __uclamp_sync_rt() __uclamp_sync_rt() 1907 * 1908 * Ensures that either sched_post_fork() will observe the new 1909 * uclamp_min_rt or for_each_process_thread() will observe the new 1910 * task. 1911 */ 1912 read_lock(&tasklist_lock); 1913 smp_mb__after_spinlock(); 1914 read_unlock(&tasklist_lock); 1915 1916 guard(rcu)(); 1917 for_each_process_thread(g, p) 1918 uclamp_update_util_min_rt_default(p); 1919 } 1920 1921 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1922 void *buffer, size_t *lenp, loff_t *ppos) 1923 { 1924 bool update_root_tg = false; 1925 int old_min, old_max, old_min_rt; 1926 int result; 1927 1928 guard(mutex)(&uclamp_mutex); 1929 1930 old_min = sysctl_sched_uclamp_util_min; 1931 old_max = sysctl_sched_uclamp_util_max; 1932 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1933 1934 result = proc_dointvec(table, write, buffer, lenp, ppos); 1935 if (result) 1936 goto undo; 1937 if (!write) 1938 return 0; 1939 1940 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1941 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1942 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1943 1944 result = -EINVAL; 1945 goto undo; 1946 } 1947 1948 if (old_min != sysctl_sched_uclamp_util_min) { 1949 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1950 sysctl_sched_uclamp_util_min, false); 1951 update_root_tg = true; 1952 } 1953 if (old_max != sysctl_sched_uclamp_util_max) { 1954 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1955 sysctl_sched_uclamp_util_max, false); 1956 update_root_tg = true; 1957 } 1958 1959 if (update_root_tg) { 1960 sched_uclamp_enable(); 1961 uclamp_update_root_tg(); 1962 } 1963 1964 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1965 sched_uclamp_enable(); 1966 uclamp_sync_util_min_rt_default(); 1967 } 1968 1969 /* 1970 * We update all RUNNABLE tasks only when task groups are in use. 1971 * Otherwise, keep it simple and do just a lazy update at each next 1972 * task enqueue time. 1973 */ 1974 return 0; 1975 1976 undo: 1977 sysctl_sched_uclamp_util_min = old_min; 1978 sysctl_sched_uclamp_util_max = old_max; 1979 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1980 return result; 1981 } 1982 #endif /* CONFIG_SYSCTL */ 1983 1984 static void uclamp_fork(struct task_struct *p) 1985 { 1986 enum uclamp_id clamp_id; 1987 1988 /* 1989 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1990 * as the task is still at its early fork stages. 1991 */ 1992 for_each_clamp_id(clamp_id) 1993 p->uclamp[clamp_id].active = false; 1994 1995 if (likely(!p->sched_reset_on_fork)) 1996 return; 1997 1998 for_each_clamp_id(clamp_id) { 1999 uclamp_se_set(&p->uclamp_req[clamp_id], 2000 uclamp_none(clamp_id), false); 2001 } 2002 } 2003 2004 static void uclamp_post_fork(struct task_struct *p) 2005 { 2006 uclamp_update_util_min_rt_default(p); 2007 } 2008 2009 static void __init init_uclamp_rq(struct rq *rq) 2010 { 2011 enum uclamp_id clamp_id; 2012 struct uclamp_rq *uc_rq = rq->uclamp; 2013 2014 for_each_clamp_id(clamp_id) { 2015 uc_rq[clamp_id] = (struct uclamp_rq) { 2016 .value = uclamp_none(clamp_id) 2017 }; 2018 } 2019 2020 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2021 } 2022 2023 static void __init init_uclamp(void) 2024 { 2025 struct uclamp_se uc_max = {}; 2026 enum uclamp_id clamp_id; 2027 int cpu; 2028 2029 for_each_possible_cpu(cpu) 2030 init_uclamp_rq(cpu_rq(cpu)); 2031 2032 for_each_clamp_id(clamp_id) { 2033 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2034 uclamp_none(clamp_id), false); 2035 } 2036 2037 /* System defaults allow max clamp values for both indexes */ 2038 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2039 for_each_clamp_id(clamp_id) { 2040 uclamp_default[clamp_id] = uc_max; 2041 #ifdef CONFIG_UCLAMP_TASK_GROUP 2042 root_task_group.uclamp_req[clamp_id] = uc_max; 2043 root_task_group.uclamp[clamp_id] = uc_max; 2044 #endif 2045 } 2046 } 2047 2048 #else /* !CONFIG_UCLAMP_TASK: */ 2049 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { } 2050 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2051 static inline void uclamp_fork(struct task_struct *p) { } 2052 static inline void uclamp_post_fork(struct task_struct *p) { } 2053 static inline void init_uclamp(void) { } 2054 #endif /* !CONFIG_UCLAMP_TASK */ 2055 2056 bool sched_task_on_rq(struct task_struct *p) 2057 { 2058 return task_on_rq_queued(p); 2059 } 2060 2061 unsigned long get_wchan(struct task_struct *p) 2062 { 2063 unsigned long ip = 0; 2064 unsigned int state; 2065 2066 if (!p || p == current) 2067 return 0; 2068 2069 /* Only get wchan if task is blocked and we can keep it that way. */ 2070 raw_spin_lock_irq(&p->pi_lock); 2071 state = READ_ONCE(p->__state); 2072 smp_rmb(); /* see try_to_wake_up() */ 2073 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2074 ip = __get_wchan(p); 2075 raw_spin_unlock_irq(&p->pi_lock); 2076 2077 return ip; 2078 } 2079 2080 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2081 { 2082 if (!(flags & ENQUEUE_NOCLOCK)) 2083 update_rq_clock(rq); 2084 2085 /* 2086 * Can be before ->enqueue_task() because uclamp considers the 2087 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared 2088 * in ->enqueue_task(). 2089 */ 2090 uclamp_rq_inc(rq, p, flags); 2091 2092 p->sched_class->enqueue_task(rq, p, flags); 2093 2094 psi_enqueue(p, flags); 2095 2096 if (!(flags & ENQUEUE_RESTORE)) 2097 sched_info_enqueue(rq, p); 2098 2099 if (sched_core_enabled(rq)) 2100 sched_core_enqueue(rq, p); 2101 } 2102 2103 /* 2104 * Must only return false when DEQUEUE_SLEEP. 2105 */ 2106 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2107 { 2108 if (sched_core_enabled(rq)) 2109 sched_core_dequeue(rq, p, flags); 2110 2111 if (!(flags & DEQUEUE_NOCLOCK)) 2112 update_rq_clock(rq); 2113 2114 if (!(flags & DEQUEUE_SAVE)) 2115 sched_info_dequeue(rq, p); 2116 2117 psi_dequeue(p, flags); 2118 2119 /* 2120 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2121 * and mark the task ->sched_delayed. 2122 */ 2123 uclamp_rq_dec(rq, p); 2124 return p->sched_class->dequeue_task(rq, p, flags); 2125 } 2126 2127 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2128 { 2129 if (task_on_rq_migrating(p)) 2130 flags |= ENQUEUE_MIGRATED; 2131 if (flags & ENQUEUE_MIGRATED) 2132 sched_mm_cid_migrate_to(rq, p); 2133 2134 enqueue_task(rq, p, flags); 2135 2136 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2137 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2138 } 2139 2140 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2141 { 2142 WARN_ON_ONCE(flags & DEQUEUE_SLEEP); 2143 2144 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2145 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2146 2147 /* 2148 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2149 * dequeue_task() and cleared *after* enqueue_task(). 2150 */ 2151 2152 dequeue_task(rq, p, flags); 2153 } 2154 2155 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2156 { 2157 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2158 __block_task(rq, p); 2159 } 2160 2161 /** 2162 * task_curr - is this task currently executing on a CPU? 2163 * @p: the task in question. 2164 * 2165 * Return: 1 if the task is currently executing. 0 otherwise. 2166 */ 2167 inline int task_curr(const struct task_struct *p) 2168 { 2169 return cpu_curr(task_cpu(p)) == p; 2170 } 2171 2172 /* 2173 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2174 * mess with locking. 2175 */ 2176 void check_class_changing(struct rq *rq, struct task_struct *p, 2177 const struct sched_class *prev_class) 2178 { 2179 if (prev_class != p->sched_class && p->sched_class->switching_to) 2180 p->sched_class->switching_to(rq, p); 2181 } 2182 2183 /* 2184 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2185 * use the balance_callback list if you want balancing. 2186 * 2187 * this means any call to check_class_changed() must be followed by a call to 2188 * balance_callback(). 2189 */ 2190 void check_class_changed(struct rq *rq, struct task_struct *p, 2191 const struct sched_class *prev_class, 2192 int oldprio) 2193 { 2194 if (prev_class != p->sched_class) { 2195 if (prev_class->switched_from) 2196 prev_class->switched_from(rq, p); 2197 2198 p->sched_class->switched_to(rq, p); 2199 } else if (oldprio != p->prio || dl_task(p)) 2200 p->sched_class->prio_changed(rq, p, oldprio); 2201 } 2202 2203 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2204 { 2205 struct task_struct *donor = rq->donor; 2206 2207 if (p->sched_class == donor->sched_class) 2208 donor->sched_class->wakeup_preempt(rq, p, flags); 2209 else if (sched_class_above(p->sched_class, donor->sched_class)) 2210 resched_curr(rq); 2211 2212 /* 2213 * A queue event has occurred, and we're going to schedule. In 2214 * this case, we can save a useless back to back clock update. 2215 */ 2216 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2217 rq_clock_skip_update(rq); 2218 } 2219 2220 static __always_inline 2221 int __task_state_match(struct task_struct *p, unsigned int state) 2222 { 2223 if (READ_ONCE(p->__state) & state) 2224 return 1; 2225 2226 if (READ_ONCE(p->saved_state) & state) 2227 return -1; 2228 2229 return 0; 2230 } 2231 2232 static __always_inline 2233 int task_state_match(struct task_struct *p, unsigned int state) 2234 { 2235 /* 2236 * Serialize against current_save_and_set_rtlock_wait_state(), 2237 * current_restore_rtlock_saved_state(), and __refrigerator(). 2238 */ 2239 guard(raw_spinlock_irq)(&p->pi_lock); 2240 return __task_state_match(p, state); 2241 } 2242 2243 /* 2244 * wait_task_inactive - wait for a thread to unschedule. 2245 * 2246 * Wait for the thread to block in any of the states set in @match_state. 2247 * If it changes, i.e. @p might have woken up, then return zero. When we 2248 * succeed in waiting for @p to be off its CPU, we return a positive number 2249 * (its total switch count). If a second call a short while later returns the 2250 * same number, the caller can be sure that @p has remained unscheduled the 2251 * whole time. 2252 * 2253 * The caller must ensure that the task *will* unschedule sometime soon, 2254 * else this function might spin for a *long* time. This function can't 2255 * be called with interrupts off, or it may introduce deadlock with 2256 * smp_call_function() if an IPI is sent by the same process we are 2257 * waiting to become inactive. 2258 */ 2259 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2260 { 2261 int running, queued, match; 2262 struct rq_flags rf; 2263 unsigned long ncsw; 2264 struct rq *rq; 2265 2266 for (;;) { 2267 /* 2268 * We do the initial early heuristics without holding 2269 * any task-queue locks at all. We'll only try to get 2270 * the runqueue lock when things look like they will 2271 * work out! 2272 */ 2273 rq = task_rq(p); 2274 2275 /* 2276 * If the task is actively running on another CPU 2277 * still, just relax and busy-wait without holding 2278 * any locks. 2279 * 2280 * NOTE! Since we don't hold any locks, it's not 2281 * even sure that "rq" stays as the right runqueue! 2282 * But we don't care, since "task_on_cpu()" will 2283 * return false if the runqueue has changed and p 2284 * is actually now running somewhere else! 2285 */ 2286 while (task_on_cpu(rq, p)) { 2287 if (!task_state_match(p, match_state)) 2288 return 0; 2289 cpu_relax(); 2290 } 2291 2292 /* 2293 * Ok, time to look more closely! We need the rq 2294 * lock now, to be *sure*. If we're wrong, we'll 2295 * just go back and repeat. 2296 */ 2297 rq = task_rq_lock(p, &rf); 2298 /* 2299 * If task is sched_delayed, force dequeue it, to avoid always 2300 * hitting the tick timeout in the queued case 2301 */ 2302 if (p->se.sched_delayed) 2303 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 2304 trace_sched_wait_task(p); 2305 running = task_on_cpu(rq, p); 2306 queued = task_on_rq_queued(p); 2307 ncsw = 0; 2308 if ((match = __task_state_match(p, match_state))) { 2309 /* 2310 * When matching on p->saved_state, consider this task 2311 * still queued so it will wait. 2312 */ 2313 if (match < 0) 2314 queued = 1; 2315 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2316 } 2317 task_rq_unlock(rq, p, &rf); 2318 2319 /* 2320 * If it changed from the expected state, bail out now. 2321 */ 2322 if (unlikely(!ncsw)) 2323 break; 2324 2325 /* 2326 * Was it really running after all now that we 2327 * checked with the proper locks actually held? 2328 * 2329 * Oops. Go back and try again.. 2330 */ 2331 if (unlikely(running)) { 2332 cpu_relax(); 2333 continue; 2334 } 2335 2336 /* 2337 * It's not enough that it's not actively running, 2338 * it must be off the runqueue _entirely_, and not 2339 * preempted! 2340 * 2341 * So if it was still runnable (but just not actively 2342 * running right now), it's preempted, and we should 2343 * yield - it could be a while. 2344 */ 2345 if (unlikely(queued)) { 2346 ktime_t to = NSEC_PER_SEC / HZ; 2347 2348 set_current_state(TASK_UNINTERRUPTIBLE); 2349 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2350 continue; 2351 } 2352 2353 /* 2354 * Ahh, all good. It wasn't running, and it wasn't 2355 * runnable, which means that it will never become 2356 * running in the future either. We're all done! 2357 */ 2358 break; 2359 } 2360 2361 return ncsw; 2362 } 2363 2364 static void 2365 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2366 2367 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2368 { 2369 struct affinity_context ac = { 2370 .new_mask = cpumask_of(rq->cpu), 2371 .flags = SCA_MIGRATE_DISABLE, 2372 }; 2373 2374 if (likely(!p->migration_disabled)) 2375 return; 2376 2377 if (p->cpus_ptr != &p->cpus_mask) 2378 return; 2379 2380 /* 2381 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2382 */ 2383 __do_set_cpus_allowed(p, &ac); 2384 } 2385 2386 void ___migrate_enable(void) 2387 { 2388 struct task_struct *p = current; 2389 struct affinity_context ac = { 2390 .new_mask = &p->cpus_mask, 2391 .flags = SCA_MIGRATE_ENABLE, 2392 }; 2393 2394 __set_cpus_allowed_ptr(p, &ac); 2395 } 2396 EXPORT_SYMBOL_GPL(___migrate_enable); 2397 2398 void migrate_disable(void) 2399 { 2400 __migrate_disable(); 2401 } 2402 EXPORT_SYMBOL_GPL(migrate_disable); 2403 2404 void migrate_enable(void) 2405 { 2406 __migrate_enable(); 2407 } 2408 EXPORT_SYMBOL_GPL(migrate_enable); 2409 2410 static inline bool rq_has_pinned_tasks(struct rq *rq) 2411 { 2412 return rq->nr_pinned; 2413 } 2414 2415 /* 2416 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2417 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2418 */ 2419 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2420 { 2421 /* When not in the task's cpumask, no point in looking further. */ 2422 if (!task_allowed_on_cpu(p, cpu)) 2423 return false; 2424 2425 /* migrate_disabled() must be allowed to finish. */ 2426 if (is_migration_disabled(p)) 2427 return cpu_online(cpu); 2428 2429 /* Non kernel threads are not allowed during either online or offline. */ 2430 if (!(p->flags & PF_KTHREAD)) 2431 return cpu_active(cpu); 2432 2433 /* KTHREAD_IS_PER_CPU is always allowed. */ 2434 if (kthread_is_per_cpu(p)) 2435 return cpu_online(cpu); 2436 2437 /* Regular kernel threads don't get to stay during offline. */ 2438 if (cpu_dying(cpu)) 2439 return false; 2440 2441 /* But are allowed during online. */ 2442 return cpu_online(cpu); 2443 } 2444 2445 /* 2446 * This is how migration works: 2447 * 2448 * 1) we invoke migration_cpu_stop() on the target CPU using 2449 * stop_one_cpu(). 2450 * 2) stopper starts to run (implicitly forcing the migrated thread 2451 * off the CPU) 2452 * 3) it checks whether the migrated task is still in the wrong runqueue. 2453 * 4) if it's in the wrong runqueue then the migration thread removes 2454 * it and puts it into the right queue. 2455 * 5) stopper completes and stop_one_cpu() returns and the migration 2456 * is done. 2457 */ 2458 2459 /* 2460 * move_queued_task - move a queued task to new rq. 2461 * 2462 * Returns (locked) new rq. Old rq's lock is released. 2463 */ 2464 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2465 struct task_struct *p, int new_cpu) 2466 { 2467 lockdep_assert_rq_held(rq); 2468 2469 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2470 set_task_cpu(p, new_cpu); 2471 rq_unlock(rq, rf); 2472 2473 rq = cpu_rq(new_cpu); 2474 2475 rq_lock(rq, rf); 2476 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2477 activate_task(rq, p, 0); 2478 wakeup_preempt(rq, p, 0); 2479 2480 return rq; 2481 } 2482 2483 struct migration_arg { 2484 struct task_struct *task; 2485 int dest_cpu; 2486 struct set_affinity_pending *pending; 2487 }; 2488 2489 /* 2490 * @refs: number of wait_for_completion() 2491 * @stop_pending: is @stop_work in use 2492 */ 2493 struct set_affinity_pending { 2494 refcount_t refs; 2495 unsigned int stop_pending; 2496 struct completion done; 2497 struct cpu_stop_work stop_work; 2498 struct migration_arg arg; 2499 }; 2500 2501 /* 2502 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2503 * this because either it can't run here any more (set_cpus_allowed() 2504 * away from this CPU, or CPU going down), or because we're 2505 * attempting to rebalance this task on exec (sched_exec). 2506 * 2507 * So we race with normal scheduler movements, but that's OK, as long 2508 * as the task is no longer on this CPU. 2509 */ 2510 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2511 struct task_struct *p, int dest_cpu) 2512 { 2513 /* Affinity changed (again). */ 2514 if (!is_cpu_allowed(p, dest_cpu)) 2515 return rq; 2516 2517 rq = move_queued_task(rq, rf, p, dest_cpu); 2518 2519 return rq; 2520 } 2521 2522 /* 2523 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2524 * and performs thread migration by bumping thread off CPU then 2525 * 'pushing' onto another runqueue. 2526 */ 2527 static int migration_cpu_stop(void *data) 2528 { 2529 struct migration_arg *arg = data; 2530 struct set_affinity_pending *pending = arg->pending; 2531 struct task_struct *p = arg->task; 2532 struct rq *rq = this_rq(); 2533 bool complete = false; 2534 struct rq_flags rf; 2535 2536 /* 2537 * The original target CPU might have gone down and we might 2538 * be on another CPU but it doesn't matter. 2539 */ 2540 local_irq_save(rf.flags); 2541 /* 2542 * We need to explicitly wake pending tasks before running 2543 * __migrate_task() such that we will not miss enforcing cpus_ptr 2544 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2545 */ 2546 flush_smp_call_function_queue(); 2547 2548 raw_spin_lock(&p->pi_lock); 2549 rq_lock(rq, &rf); 2550 2551 /* 2552 * If we were passed a pending, then ->stop_pending was set, thus 2553 * p->migration_pending must have remained stable. 2554 */ 2555 WARN_ON_ONCE(pending && pending != p->migration_pending); 2556 2557 /* 2558 * If task_rq(p) != rq, it cannot be migrated here, because we're 2559 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2560 * we're holding p->pi_lock. 2561 */ 2562 if (task_rq(p) == rq) { 2563 if (is_migration_disabled(p)) 2564 goto out; 2565 2566 if (pending) { 2567 p->migration_pending = NULL; 2568 complete = true; 2569 2570 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2571 goto out; 2572 } 2573 2574 if (task_on_rq_queued(p)) { 2575 update_rq_clock(rq); 2576 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2577 } else { 2578 p->wake_cpu = arg->dest_cpu; 2579 } 2580 2581 /* 2582 * XXX __migrate_task() can fail, at which point we might end 2583 * up running on a dodgy CPU, AFAICT this can only happen 2584 * during CPU hotplug, at which point we'll get pushed out 2585 * anyway, so it's probably not a big deal. 2586 */ 2587 2588 } else if (pending) { 2589 /* 2590 * This happens when we get migrated between migrate_enable()'s 2591 * preempt_enable() and scheduling the stopper task. At that 2592 * point we're a regular task again and not current anymore. 2593 * 2594 * A !PREEMPT kernel has a giant hole here, which makes it far 2595 * more likely. 2596 */ 2597 2598 /* 2599 * The task moved before the stopper got to run. We're holding 2600 * ->pi_lock, so the allowed mask is stable - if it got 2601 * somewhere allowed, we're done. 2602 */ 2603 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2604 p->migration_pending = NULL; 2605 complete = true; 2606 goto out; 2607 } 2608 2609 /* 2610 * When migrate_enable() hits a rq mis-match we can't reliably 2611 * determine is_migration_disabled() and so have to chase after 2612 * it. 2613 */ 2614 WARN_ON_ONCE(!pending->stop_pending); 2615 preempt_disable(); 2616 task_rq_unlock(rq, p, &rf); 2617 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2618 &pending->arg, &pending->stop_work); 2619 preempt_enable(); 2620 return 0; 2621 } 2622 out: 2623 if (pending) 2624 pending->stop_pending = false; 2625 task_rq_unlock(rq, p, &rf); 2626 2627 if (complete) 2628 complete_all(&pending->done); 2629 2630 return 0; 2631 } 2632 2633 int push_cpu_stop(void *arg) 2634 { 2635 struct rq *lowest_rq = NULL, *rq = this_rq(); 2636 struct task_struct *p = arg; 2637 2638 raw_spin_lock_irq(&p->pi_lock); 2639 raw_spin_rq_lock(rq); 2640 2641 if (task_rq(p) != rq) 2642 goto out_unlock; 2643 2644 if (is_migration_disabled(p)) { 2645 p->migration_flags |= MDF_PUSH; 2646 goto out_unlock; 2647 } 2648 2649 p->migration_flags &= ~MDF_PUSH; 2650 2651 if (p->sched_class->find_lock_rq) 2652 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2653 2654 if (!lowest_rq) 2655 goto out_unlock; 2656 2657 // XXX validate p is still the highest prio task 2658 if (task_rq(p) == rq) { 2659 move_queued_task_locked(rq, lowest_rq, p); 2660 resched_curr(lowest_rq); 2661 } 2662 2663 double_unlock_balance(rq, lowest_rq); 2664 2665 out_unlock: 2666 rq->push_busy = false; 2667 raw_spin_rq_unlock(rq); 2668 raw_spin_unlock_irq(&p->pi_lock); 2669 2670 put_task_struct(p); 2671 return 0; 2672 } 2673 2674 /* 2675 * sched_class::set_cpus_allowed must do the below, but is not required to 2676 * actually call this function. 2677 */ 2678 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2679 { 2680 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2681 p->cpus_ptr = ctx->new_mask; 2682 return; 2683 } 2684 2685 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2686 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2687 2688 /* 2689 * Swap in a new user_cpus_ptr if SCA_USER flag set 2690 */ 2691 if (ctx->flags & SCA_USER) 2692 swap(p->user_cpus_ptr, ctx->user_mask); 2693 } 2694 2695 static void 2696 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2697 { 2698 struct rq *rq = task_rq(p); 2699 bool queued, running; 2700 2701 /* 2702 * This here violates the locking rules for affinity, since we're only 2703 * supposed to change these variables while holding both rq->lock and 2704 * p->pi_lock. 2705 * 2706 * HOWEVER, it magically works, because ttwu() is the only code that 2707 * accesses these variables under p->pi_lock and only does so after 2708 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2709 * before finish_task(). 2710 * 2711 * XXX do further audits, this smells like something putrid. 2712 */ 2713 if (ctx->flags & SCA_MIGRATE_DISABLE) 2714 WARN_ON_ONCE(!p->on_cpu); 2715 else 2716 lockdep_assert_held(&p->pi_lock); 2717 2718 queued = task_on_rq_queued(p); 2719 running = task_current_donor(rq, p); 2720 2721 if (queued) { 2722 /* 2723 * Because __kthread_bind() calls this on blocked tasks without 2724 * holding rq->lock. 2725 */ 2726 lockdep_assert_rq_held(rq); 2727 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2728 } 2729 if (running) 2730 put_prev_task(rq, p); 2731 2732 p->sched_class->set_cpus_allowed(p, ctx); 2733 mm_set_cpus_allowed(p->mm, ctx->new_mask); 2734 2735 if (queued) 2736 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2737 if (running) 2738 set_next_task(rq, p); 2739 } 2740 2741 /* 2742 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2743 * affinity (if any) should be destroyed too. 2744 */ 2745 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2746 { 2747 struct affinity_context ac = { 2748 .new_mask = new_mask, 2749 .user_mask = NULL, 2750 .flags = SCA_USER, /* clear the user requested mask */ 2751 }; 2752 union cpumask_rcuhead { 2753 cpumask_t cpumask; 2754 struct rcu_head rcu; 2755 }; 2756 2757 __do_set_cpus_allowed(p, &ac); 2758 2759 /* 2760 * Because this is called with p->pi_lock held, it is not possible 2761 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2762 * kfree_rcu(). 2763 */ 2764 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2765 } 2766 2767 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2768 int node) 2769 { 2770 cpumask_t *user_mask; 2771 unsigned long flags; 2772 2773 /* 2774 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2775 * may differ by now due to racing. 2776 */ 2777 dst->user_cpus_ptr = NULL; 2778 2779 /* 2780 * This check is racy and losing the race is a valid situation. 2781 * It is not worth the extra overhead of taking the pi_lock on 2782 * every fork/clone. 2783 */ 2784 if (data_race(!src->user_cpus_ptr)) 2785 return 0; 2786 2787 user_mask = alloc_user_cpus_ptr(node); 2788 if (!user_mask) 2789 return -ENOMEM; 2790 2791 /* 2792 * Use pi_lock to protect content of user_cpus_ptr 2793 * 2794 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2795 * do_set_cpus_allowed(). 2796 */ 2797 raw_spin_lock_irqsave(&src->pi_lock, flags); 2798 if (src->user_cpus_ptr) { 2799 swap(dst->user_cpus_ptr, user_mask); 2800 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2801 } 2802 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2803 2804 if (unlikely(user_mask)) 2805 kfree(user_mask); 2806 2807 return 0; 2808 } 2809 2810 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2811 { 2812 struct cpumask *user_mask = NULL; 2813 2814 swap(p->user_cpus_ptr, user_mask); 2815 2816 return user_mask; 2817 } 2818 2819 void release_user_cpus_ptr(struct task_struct *p) 2820 { 2821 kfree(clear_user_cpus_ptr(p)); 2822 } 2823 2824 /* 2825 * This function is wildly self concurrent; here be dragons. 2826 * 2827 * 2828 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2829 * designated task is enqueued on an allowed CPU. If that task is currently 2830 * running, we have to kick it out using the CPU stopper. 2831 * 2832 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2833 * Consider: 2834 * 2835 * Initial conditions: P0->cpus_mask = [0, 1] 2836 * 2837 * P0@CPU0 P1 2838 * 2839 * migrate_disable(); 2840 * <preempted> 2841 * set_cpus_allowed_ptr(P0, [1]); 2842 * 2843 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2844 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2845 * This means we need the following scheme: 2846 * 2847 * P0@CPU0 P1 2848 * 2849 * migrate_disable(); 2850 * <preempted> 2851 * set_cpus_allowed_ptr(P0, [1]); 2852 * <blocks> 2853 * <resumes> 2854 * migrate_enable(); 2855 * __set_cpus_allowed_ptr(); 2856 * <wakes local stopper> 2857 * `--> <woken on migration completion> 2858 * 2859 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2860 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2861 * task p are serialized by p->pi_lock, which we can leverage: the one that 2862 * should come into effect at the end of the Migrate-Disable region is the last 2863 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2864 * but we still need to properly signal those waiting tasks at the appropriate 2865 * moment. 2866 * 2867 * This is implemented using struct set_affinity_pending. The first 2868 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2869 * setup an instance of that struct and install it on the targeted task_struct. 2870 * Any and all further callers will reuse that instance. Those then wait for 2871 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2872 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2873 * 2874 * 2875 * (1) In the cases covered above. There is one more where the completion is 2876 * signaled within affine_move_task() itself: when a subsequent affinity request 2877 * occurs after the stopper bailed out due to the targeted task still being 2878 * Migrate-Disable. Consider: 2879 * 2880 * Initial conditions: P0->cpus_mask = [0, 1] 2881 * 2882 * CPU0 P1 P2 2883 * <P0> 2884 * migrate_disable(); 2885 * <preempted> 2886 * set_cpus_allowed_ptr(P0, [1]); 2887 * <blocks> 2888 * <migration/0> 2889 * migration_cpu_stop() 2890 * is_migration_disabled() 2891 * <bails> 2892 * set_cpus_allowed_ptr(P0, [0, 1]); 2893 * <signal completion> 2894 * <awakes> 2895 * 2896 * Note that the above is safe vs a concurrent migrate_enable(), as any 2897 * pending affinity completion is preceded by an uninstallation of 2898 * p->migration_pending done with p->pi_lock held. 2899 */ 2900 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2901 int dest_cpu, unsigned int flags) 2902 __releases(rq->lock) 2903 __releases(p->pi_lock) 2904 { 2905 struct set_affinity_pending my_pending = { }, *pending = NULL; 2906 bool stop_pending, complete = false; 2907 2908 /* 2909 * Can the task run on the task's current CPU? If so, we're done 2910 * 2911 * We are also done if the task is the current donor, boosting a lock- 2912 * holding proxy, (and potentially has been migrated outside its 2913 * current or previous affinity mask) 2914 */ 2915 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask) || 2916 (task_current_donor(rq, p) && !task_current(rq, p))) { 2917 struct task_struct *push_task = NULL; 2918 2919 if ((flags & SCA_MIGRATE_ENABLE) && 2920 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2921 rq->push_busy = true; 2922 push_task = get_task_struct(p); 2923 } 2924 2925 /* 2926 * If there are pending waiters, but no pending stop_work, 2927 * then complete now. 2928 */ 2929 pending = p->migration_pending; 2930 if (pending && !pending->stop_pending) { 2931 p->migration_pending = NULL; 2932 complete = true; 2933 } 2934 2935 preempt_disable(); 2936 task_rq_unlock(rq, p, rf); 2937 if (push_task) { 2938 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2939 p, &rq->push_work); 2940 } 2941 preempt_enable(); 2942 2943 if (complete) 2944 complete_all(&pending->done); 2945 2946 return 0; 2947 } 2948 2949 if (!(flags & SCA_MIGRATE_ENABLE)) { 2950 /* serialized by p->pi_lock */ 2951 if (!p->migration_pending) { 2952 /* Install the request */ 2953 refcount_set(&my_pending.refs, 1); 2954 init_completion(&my_pending.done); 2955 my_pending.arg = (struct migration_arg) { 2956 .task = p, 2957 .dest_cpu = dest_cpu, 2958 .pending = &my_pending, 2959 }; 2960 2961 p->migration_pending = &my_pending; 2962 } else { 2963 pending = p->migration_pending; 2964 refcount_inc(&pending->refs); 2965 /* 2966 * Affinity has changed, but we've already installed a 2967 * pending. migration_cpu_stop() *must* see this, else 2968 * we risk a completion of the pending despite having a 2969 * task on a disallowed CPU. 2970 * 2971 * Serialized by p->pi_lock, so this is safe. 2972 */ 2973 pending->arg.dest_cpu = dest_cpu; 2974 } 2975 } 2976 pending = p->migration_pending; 2977 /* 2978 * - !MIGRATE_ENABLE: 2979 * we'll have installed a pending if there wasn't one already. 2980 * 2981 * - MIGRATE_ENABLE: 2982 * we're here because the current CPU isn't matching anymore, 2983 * the only way that can happen is because of a concurrent 2984 * set_cpus_allowed_ptr() call, which should then still be 2985 * pending completion. 2986 * 2987 * Either way, we really should have a @pending here. 2988 */ 2989 if (WARN_ON_ONCE(!pending)) { 2990 task_rq_unlock(rq, p, rf); 2991 return -EINVAL; 2992 } 2993 2994 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2995 /* 2996 * MIGRATE_ENABLE gets here because 'p == current', but for 2997 * anything else we cannot do is_migration_disabled(), punt 2998 * and have the stopper function handle it all race-free. 2999 */ 3000 stop_pending = pending->stop_pending; 3001 if (!stop_pending) 3002 pending->stop_pending = true; 3003 3004 if (flags & SCA_MIGRATE_ENABLE) 3005 p->migration_flags &= ~MDF_PUSH; 3006 3007 preempt_disable(); 3008 task_rq_unlock(rq, p, rf); 3009 if (!stop_pending) { 3010 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 3011 &pending->arg, &pending->stop_work); 3012 } 3013 preempt_enable(); 3014 3015 if (flags & SCA_MIGRATE_ENABLE) 3016 return 0; 3017 } else { 3018 3019 if (!is_migration_disabled(p)) { 3020 if (task_on_rq_queued(p)) 3021 rq = move_queued_task(rq, rf, p, dest_cpu); 3022 3023 if (!pending->stop_pending) { 3024 p->migration_pending = NULL; 3025 complete = true; 3026 } 3027 } 3028 task_rq_unlock(rq, p, rf); 3029 3030 if (complete) 3031 complete_all(&pending->done); 3032 } 3033 3034 wait_for_completion(&pending->done); 3035 3036 if (refcount_dec_and_test(&pending->refs)) 3037 wake_up_var(&pending->refs); /* No UaF, just an address */ 3038 3039 /* 3040 * Block the original owner of &pending until all subsequent callers 3041 * have seen the completion and decremented the refcount 3042 */ 3043 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3044 3045 /* ARGH */ 3046 WARN_ON_ONCE(my_pending.stop_pending); 3047 3048 return 0; 3049 } 3050 3051 /* 3052 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3053 */ 3054 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3055 struct affinity_context *ctx, 3056 struct rq *rq, 3057 struct rq_flags *rf) 3058 __releases(rq->lock) 3059 __releases(p->pi_lock) 3060 { 3061 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3062 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3063 bool kthread = p->flags & PF_KTHREAD; 3064 unsigned int dest_cpu; 3065 int ret = 0; 3066 3067 update_rq_clock(rq); 3068 3069 if (kthread || is_migration_disabled(p)) { 3070 /* 3071 * Kernel threads are allowed on online && !active CPUs, 3072 * however, during cpu-hot-unplug, even these might get pushed 3073 * away if not KTHREAD_IS_PER_CPU. 3074 * 3075 * Specifically, migration_disabled() tasks must not fail the 3076 * cpumask_any_and_distribute() pick below, esp. so on 3077 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3078 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3079 */ 3080 cpu_valid_mask = cpu_online_mask; 3081 } 3082 3083 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3084 ret = -EINVAL; 3085 goto out; 3086 } 3087 3088 /* 3089 * Must re-check here, to close a race against __kthread_bind(), 3090 * sched_setaffinity() is not guaranteed to observe the flag. 3091 */ 3092 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3093 ret = -EINVAL; 3094 goto out; 3095 } 3096 3097 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3098 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3099 if (ctx->flags & SCA_USER) 3100 swap(p->user_cpus_ptr, ctx->user_mask); 3101 goto out; 3102 } 3103 3104 if (WARN_ON_ONCE(p == current && 3105 is_migration_disabled(p) && 3106 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3107 ret = -EBUSY; 3108 goto out; 3109 } 3110 } 3111 3112 /* 3113 * Picking a ~random cpu helps in cases where we are changing affinity 3114 * for groups of tasks (ie. cpuset), so that load balancing is not 3115 * immediately required to distribute the tasks within their new mask. 3116 */ 3117 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3118 if (dest_cpu >= nr_cpu_ids) { 3119 ret = -EINVAL; 3120 goto out; 3121 } 3122 3123 __do_set_cpus_allowed(p, ctx); 3124 3125 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3126 3127 out: 3128 task_rq_unlock(rq, p, rf); 3129 3130 return ret; 3131 } 3132 3133 /* 3134 * Change a given task's CPU affinity. Migrate the thread to a 3135 * proper CPU and schedule it away if the CPU it's executing on 3136 * is removed from the allowed bitmask. 3137 * 3138 * NOTE: the caller must have a valid reference to the task, the 3139 * task must not exit() & deallocate itself prematurely. The 3140 * call is not atomic; no spinlocks may be held. 3141 */ 3142 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3143 { 3144 struct rq_flags rf; 3145 struct rq *rq; 3146 3147 rq = task_rq_lock(p, &rf); 3148 /* 3149 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3150 * flags are set. 3151 */ 3152 if (p->user_cpus_ptr && 3153 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3154 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3155 ctx->new_mask = rq->scratch_mask; 3156 3157 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3158 } 3159 3160 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3161 { 3162 struct affinity_context ac = { 3163 .new_mask = new_mask, 3164 .flags = 0, 3165 }; 3166 3167 return __set_cpus_allowed_ptr(p, &ac); 3168 } 3169 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3170 3171 /* 3172 * Change a given task's CPU affinity to the intersection of its current 3173 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3174 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3175 * affinity or use cpu_online_mask instead. 3176 * 3177 * If the resulting mask is empty, leave the affinity unchanged and return 3178 * -EINVAL. 3179 */ 3180 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3181 struct cpumask *new_mask, 3182 const struct cpumask *subset_mask) 3183 { 3184 struct affinity_context ac = { 3185 .new_mask = new_mask, 3186 .flags = 0, 3187 }; 3188 struct rq_flags rf; 3189 struct rq *rq; 3190 int err; 3191 3192 rq = task_rq_lock(p, &rf); 3193 3194 /* 3195 * Forcefully restricting the affinity of a deadline task is 3196 * likely to cause problems, so fail and noisily override the 3197 * mask entirely. 3198 */ 3199 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3200 err = -EPERM; 3201 goto err_unlock; 3202 } 3203 3204 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3205 err = -EINVAL; 3206 goto err_unlock; 3207 } 3208 3209 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3210 3211 err_unlock: 3212 task_rq_unlock(rq, p, &rf); 3213 return err; 3214 } 3215 3216 /* 3217 * Restrict the CPU affinity of task @p so that it is a subset of 3218 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3219 * old affinity mask. If the resulting mask is empty, we warn and walk 3220 * up the cpuset hierarchy until we find a suitable mask. 3221 */ 3222 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3223 { 3224 cpumask_var_t new_mask; 3225 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3226 3227 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3228 3229 /* 3230 * __migrate_task() can fail silently in the face of concurrent 3231 * offlining of the chosen destination CPU, so take the hotplug 3232 * lock to ensure that the migration succeeds. 3233 */ 3234 cpus_read_lock(); 3235 if (!cpumask_available(new_mask)) 3236 goto out_set_mask; 3237 3238 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3239 goto out_free_mask; 3240 3241 /* 3242 * We failed to find a valid subset of the affinity mask for the 3243 * task, so override it based on its cpuset hierarchy. 3244 */ 3245 cpuset_cpus_allowed(p, new_mask); 3246 override_mask = new_mask; 3247 3248 out_set_mask: 3249 if (printk_ratelimit()) { 3250 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3251 task_pid_nr(p), p->comm, 3252 cpumask_pr_args(override_mask)); 3253 } 3254 3255 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3256 out_free_mask: 3257 cpus_read_unlock(); 3258 free_cpumask_var(new_mask); 3259 } 3260 3261 /* 3262 * Restore the affinity of a task @p which was previously restricted by a 3263 * call to force_compatible_cpus_allowed_ptr(). 3264 * 3265 * It is the caller's responsibility to serialise this with any calls to 3266 * force_compatible_cpus_allowed_ptr(@p). 3267 */ 3268 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3269 { 3270 struct affinity_context ac = { 3271 .new_mask = task_user_cpus(p), 3272 .flags = 0, 3273 }; 3274 int ret; 3275 3276 /* 3277 * Try to restore the old affinity mask with __sched_setaffinity(). 3278 * Cpuset masking will be done there too. 3279 */ 3280 ret = __sched_setaffinity(p, &ac); 3281 WARN_ON_ONCE(ret); 3282 } 3283 3284 #ifdef CONFIG_SMP 3285 3286 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3287 { 3288 unsigned int state = READ_ONCE(p->__state); 3289 3290 /* 3291 * We should never call set_task_cpu() on a blocked task, 3292 * ttwu() will sort out the placement. 3293 */ 3294 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3295 3296 /* 3297 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3298 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3299 * time relying on p->on_rq. 3300 */ 3301 WARN_ON_ONCE(state == TASK_RUNNING && 3302 p->sched_class == &fair_sched_class && 3303 (p->on_rq && !task_on_rq_migrating(p))); 3304 3305 #ifdef CONFIG_LOCKDEP 3306 /* 3307 * The caller should hold either p->pi_lock or rq->lock, when changing 3308 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3309 * 3310 * sched_move_task() holds both and thus holding either pins the cgroup, 3311 * see task_group(). 3312 * 3313 * Furthermore, all task_rq users should acquire both locks, see 3314 * task_rq_lock(). 3315 */ 3316 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3317 lockdep_is_held(__rq_lockp(task_rq(p))))); 3318 #endif 3319 /* 3320 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3321 */ 3322 WARN_ON_ONCE(!cpu_online(new_cpu)); 3323 3324 WARN_ON_ONCE(is_migration_disabled(p)); 3325 3326 trace_sched_migrate_task(p, new_cpu); 3327 3328 if (task_cpu(p) != new_cpu) { 3329 if (p->sched_class->migrate_task_rq) 3330 p->sched_class->migrate_task_rq(p, new_cpu); 3331 p->se.nr_migrations++; 3332 rseq_migrate(p); 3333 sched_mm_cid_migrate_from(p); 3334 perf_event_task_migrate(p); 3335 } 3336 3337 __set_task_cpu(p, new_cpu); 3338 } 3339 #endif /* CONFIG_SMP */ 3340 3341 #ifdef CONFIG_NUMA_BALANCING 3342 static void __migrate_swap_task(struct task_struct *p, int cpu) 3343 { 3344 if (task_on_rq_queued(p)) { 3345 struct rq *src_rq, *dst_rq; 3346 struct rq_flags srf, drf; 3347 3348 src_rq = task_rq(p); 3349 dst_rq = cpu_rq(cpu); 3350 3351 rq_pin_lock(src_rq, &srf); 3352 rq_pin_lock(dst_rq, &drf); 3353 3354 move_queued_task_locked(src_rq, dst_rq, p); 3355 wakeup_preempt(dst_rq, p, 0); 3356 3357 rq_unpin_lock(dst_rq, &drf); 3358 rq_unpin_lock(src_rq, &srf); 3359 3360 } else { 3361 /* 3362 * Task isn't running anymore; make it appear like we migrated 3363 * it before it went to sleep. This means on wakeup we make the 3364 * previous CPU our target instead of where it really is. 3365 */ 3366 p->wake_cpu = cpu; 3367 } 3368 } 3369 3370 struct migration_swap_arg { 3371 struct task_struct *src_task, *dst_task; 3372 int src_cpu, dst_cpu; 3373 }; 3374 3375 static int migrate_swap_stop(void *data) 3376 { 3377 struct migration_swap_arg *arg = data; 3378 struct rq *src_rq, *dst_rq; 3379 3380 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3381 return -EAGAIN; 3382 3383 src_rq = cpu_rq(arg->src_cpu); 3384 dst_rq = cpu_rq(arg->dst_cpu); 3385 3386 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3387 guard(double_rq_lock)(src_rq, dst_rq); 3388 3389 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3390 return -EAGAIN; 3391 3392 if (task_cpu(arg->src_task) != arg->src_cpu) 3393 return -EAGAIN; 3394 3395 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3396 return -EAGAIN; 3397 3398 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3399 return -EAGAIN; 3400 3401 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3402 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3403 3404 return 0; 3405 } 3406 3407 /* 3408 * Cross migrate two tasks 3409 */ 3410 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3411 int target_cpu, int curr_cpu) 3412 { 3413 struct migration_swap_arg arg; 3414 int ret = -EINVAL; 3415 3416 arg = (struct migration_swap_arg){ 3417 .src_task = cur, 3418 .src_cpu = curr_cpu, 3419 .dst_task = p, 3420 .dst_cpu = target_cpu, 3421 }; 3422 3423 if (arg.src_cpu == arg.dst_cpu) 3424 goto out; 3425 3426 /* 3427 * These three tests are all lockless; this is OK since all of them 3428 * will be re-checked with proper locks held further down the line. 3429 */ 3430 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3431 goto out; 3432 3433 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3434 goto out; 3435 3436 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3437 goto out; 3438 3439 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3440 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3441 3442 out: 3443 return ret; 3444 } 3445 #endif /* CONFIG_NUMA_BALANCING */ 3446 3447 /*** 3448 * kick_process - kick a running thread to enter/exit the kernel 3449 * @p: the to-be-kicked thread 3450 * 3451 * Cause a process which is running on another CPU to enter 3452 * kernel-mode, without any delay. (to get signals handled.) 3453 * 3454 * NOTE: this function doesn't have to take the runqueue lock, 3455 * because all it wants to ensure is that the remote task enters 3456 * the kernel. If the IPI races and the task has been migrated 3457 * to another CPU then no harm is done and the purpose has been 3458 * achieved as well. 3459 */ 3460 void kick_process(struct task_struct *p) 3461 { 3462 guard(preempt)(); 3463 int cpu = task_cpu(p); 3464 3465 if ((cpu != smp_processor_id()) && task_curr(p)) 3466 smp_send_reschedule(cpu); 3467 } 3468 EXPORT_SYMBOL_GPL(kick_process); 3469 3470 /* 3471 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3472 * 3473 * A few notes on cpu_active vs cpu_online: 3474 * 3475 * - cpu_active must be a subset of cpu_online 3476 * 3477 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3478 * see __set_cpus_allowed_ptr(). At this point the newly online 3479 * CPU isn't yet part of the sched domains, and balancing will not 3480 * see it. 3481 * 3482 * - on CPU-down we clear cpu_active() to mask the sched domains and 3483 * avoid the load balancer to place new tasks on the to be removed 3484 * CPU. Existing tasks will remain running there and will be taken 3485 * off. 3486 * 3487 * This means that fallback selection must not select !active CPUs. 3488 * And can assume that any active CPU must be online. Conversely 3489 * select_task_rq() below may allow selection of !active CPUs in order 3490 * to satisfy the above rules. 3491 */ 3492 static int select_fallback_rq(int cpu, struct task_struct *p) 3493 { 3494 int nid = cpu_to_node(cpu); 3495 const struct cpumask *nodemask = NULL; 3496 enum { cpuset, possible, fail } state = cpuset; 3497 int dest_cpu; 3498 3499 /* 3500 * If the node that the CPU is on has been offlined, cpu_to_node() 3501 * will return -1. There is no CPU on the node, and we should 3502 * select the CPU on the other node. 3503 */ 3504 if (nid != -1) { 3505 nodemask = cpumask_of_node(nid); 3506 3507 /* Look for allowed, online CPU in same node. */ 3508 for_each_cpu(dest_cpu, nodemask) { 3509 if (is_cpu_allowed(p, dest_cpu)) 3510 return dest_cpu; 3511 } 3512 } 3513 3514 for (;;) { 3515 /* Any allowed, online CPU? */ 3516 for_each_cpu(dest_cpu, p->cpus_ptr) { 3517 if (!is_cpu_allowed(p, dest_cpu)) 3518 continue; 3519 3520 goto out; 3521 } 3522 3523 /* No more Mr. Nice Guy. */ 3524 switch (state) { 3525 case cpuset: 3526 if (cpuset_cpus_allowed_fallback(p)) { 3527 state = possible; 3528 break; 3529 } 3530 fallthrough; 3531 case possible: 3532 /* 3533 * XXX When called from select_task_rq() we only 3534 * hold p->pi_lock and again violate locking order. 3535 * 3536 * More yuck to audit. 3537 */ 3538 do_set_cpus_allowed(p, task_cpu_fallback_mask(p)); 3539 state = fail; 3540 break; 3541 case fail: 3542 BUG(); 3543 break; 3544 } 3545 } 3546 3547 out: 3548 if (state != cpuset) { 3549 /* 3550 * Don't tell them about moving exiting tasks or 3551 * kernel threads (both mm NULL), since they never 3552 * leave kernel. 3553 */ 3554 if (p->mm && printk_ratelimit()) { 3555 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3556 task_pid_nr(p), p->comm, cpu); 3557 } 3558 } 3559 3560 return dest_cpu; 3561 } 3562 3563 /* 3564 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3565 */ 3566 static inline 3567 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3568 { 3569 lockdep_assert_held(&p->pi_lock); 3570 3571 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3572 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3573 *wake_flags |= WF_RQ_SELECTED; 3574 } else { 3575 cpu = cpumask_any(p->cpus_ptr); 3576 } 3577 3578 /* 3579 * In order not to call set_task_cpu() on a blocking task we need 3580 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3581 * CPU. 3582 * 3583 * Since this is common to all placement strategies, this lives here. 3584 * 3585 * [ this allows ->select_task() to simply return task_cpu(p) and 3586 * not worry about this generic constraint ] 3587 */ 3588 if (unlikely(!is_cpu_allowed(p, cpu))) 3589 cpu = select_fallback_rq(task_cpu(p), p); 3590 3591 return cpu; 3592 } 3593 3594 void sched_set_stop_task(int cpu, struct task_struct *stop) 3595 { 3596 static struct lock_class_key stop_pi_lock; 3597 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3598 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3599 3600 if (stop) { 3601 /* 3602 * Make it appear like a SCHED_FIFO task, its something 3603 * userspace knows about and won't get confused about. 3604 * 3605 * Also, it will make PI more or less work without too 3606 * much confusion -- but then, stop work should not 3607 * rely on PI working anyway. 3608 */ 3609 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3610 3611 stop->sched_class = &stop_sched_class; 3612 3613 /* 3614 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3615 * adjust the effective priority of a task. As a result, 3616 * rt_mutex_setprio() can trigger (RT) balancing operations, 3617 * which can then trigger wakeups of the stop thread to push 3618 * around the current task. 3619 * 3620 * The stop task itself will never be part of the PI-chain, it 3621 * never blocks, therefore that ->pi_lock recursion is safe. 3622 * Tell lockdep about this by placing the stop->pi_lock in its 3623 * own class. 3624 */ 3625 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3626 } 3627 3628 cpu_rq(cpu)->stop = stop; 3629 3630 if (old_stop) { 3631 /* 3632 * Reset it back to a normal scheduling class so that 3633 * it can die in pieces. 3634 */ 3635 old_stop->sched_class = &rt_sched_class; 3636 } 3637 } 3638 3639 static void 3640 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3641 { 3642 struct rq *rq; 3643 3644 if (!schedstat_enabled()) 3645 return; 3646 3647 rq = this_rq(); 3648 3649 if (cpu == rq->cpu) { 3650 __schedstat_inc(rq->ttwu_local); 3651 __schedstat_inc(p->stats.nr_wakeups_local); 3652 } else { 3653 struct sched_domain *sd; 3654 3655 __schedstat_inc(p->stats.nr_wakeups_remote); 3656 3657 guard(rcu)(); 3658 for_each_domain(rq->cpu, sd) { 3659 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3660 __schedstat_inc(sd->ttwu_wake_remote); 3661 break; 3662 } 3663 } 3664 } 3665 3666 if (wake_flags & WF_MIGRATED) 3667 __schedstat_inc(p->stats.nr_wakeups_migrate); 3668 3669 __schedstat_inc(rq->ttwu_count); 3670 __schedstat_inc(p->stats.nr_wakeups); 3671 3672 if (wake_flags & WF_SYNC) 3673 __schedstat_inc(p->stats.nr_wakeups_sync); 3674 } 3675 3676 /* 3677 * Mark the task runnable. 3678 */ 3679 static inline void ttwu_do_wakeup(struct task_struct *p) 3680 { 3681 WRITE_ONCE(p->__state, TASK_RUNNING); 3682 trace_sched_wakeup(p); 3683 } 3684 3685 static void 3686 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3687 struct rq_flags *rf) 3688 { 3689 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3690 3691 lockdep_assert_rq_held(rq); 3692 3693 if (p->sched_contributes_to_load) 3694 rq->nr_uninterruptible--; 3695 3696 if (wake_flags & WF_RQ_SELECTED) 3697 en_flags |= ENQUEUE_RQ_SELECTED; 3698 if (wake_flags & WF_MIGRATED) 3699 en_flags |= ENQUEUE_MIGRATED; 3700 else 3701 if (p->in_iowait) { 3702 delayacct_blkio_end(p); 3703 atomic_dec(&task_rq(p)->nr_iowait); 3704 } 3705 3706 activate_task(rq, p, en_flags); 3707 wakeup_preempt(rq, p, wake_flags); 3708 3709 ttwu_do_wakeup(p); 3710 3711 if (p->sched_class->task_woken) { 3712 /* 3713 * Our task @p is fully woken up and running; so it's safe to 3714 * drop the rq->lock, hereafter rq is only used for statistics. 3715 */ 3716 rq_unpin_lock(rq, rf); 3717 p->sched_class->task_woken(rq, p); 3718 rq_repin_lock(rq, rf); 3719 } 3720 3721 if (rq->idle_stamp) { 3722 u64 delta = rq_clock(rq) - rq->idle_stamp; 3723 u64 max = 2*rq->max_idle_balance_cost; 3724 3725 update_avg(&rq->avg_idle, delta); 3726 3727 if (rq->avg_idle > max) 3728 rq->avg_idle = max; 3729 3730 rq->idle_stamp = 0; 3731 } 3732 } 3733 3734 /* 3735 * Consider @p being inside a wait loop: 3736 * 3737 * for (;;) { 3738 * set_current_state(TASK_UNINTERRUPTIBLE); 3739 * 3740 * if (CONDITION) 3741 * break; 3742 * 3743 * schedule(); 3744 * } 3745 * __set_current_state(TASK_RUNNING); 3746 * 3747 * between set_current_state() and schedule(). In this case @p is still 3748 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3749 * an atomic manner. 3750 * 3751 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3752 * then schedule() must still happen and p->state can be changed to 3753 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3754 * need to do a full wakeup with enqueue. 3755 * 3756 * Returns: %true when the wakeup is done, 3757 * %false otherwise. 3758 */ 3759 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3760 { 3761 struct rq_flags rf; 3762 struct rq *rq; 3763 int ret = 0; 3764 3765 rq = __task_rq_lock(p, &rf); 3766 if (task_on_rq_queued(p)) { 3767 update_rq_clock(rq); 3768 if (p->se.sched_delayed) 3769 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3770 if (!task_on_cpu(rq, p)) { 3771 /* 3772 * When on_rq && !on_cpu the task is preempted, see if 3773 * it should preempt the task that is current now. 3774 */ 3775 wakeup_preempt(rq, p, wake_flags); 3776 } 3777 ttwu_do_wakeup(p); 3778 ret = 1; 3779 } 3780 __task_rq_unlock(rq, &rf); 3781 3782 return ret; 3783 } 3784 3785 void sched_ttwu_pending(void *arg) 3786 { 3787 struct llist_node *llist = arg; 3788 struct rq *rq = this_rq(); 3789 struct task_struct *p, *t; 3790 struct rq_flags rf; 3791 3792 if (!llist) 3793 return; 3794 3795 rq_lock_irqsave(rq, &rf); 3796 update_rq_clock(rq); 3797 3798 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3799 if (WARN_ON_ONCE(p->on_cpu)) 3800 smp_cond_load_acquire(&p->on_cpu, !VAL); 3801 3802 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3803 set_task_cpu(p, cpu_of(rq)); 3804 3805 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3806 } 3807 3808 /* 3809 * Must be after enqueueing at least once task such that 3810 * idle_cpu() does not observe a false-negative -- if it does, 3811 * it is possible for select_idle_siblings() to stack a number 3812 * of tasks on this CPU during that window. 3813 * 3814 * It is OK to clear ttwu_pending when another task pending. 3815 * We will receive IPI after local IRQ enabled and then enqueue it. 3816 * Since now nr_running > 0, idle_cpu() will always get correct result. 3817 */ 3818 WRITE_ONCE(rq->ttwu_pending, 0); 3819 rq_unlock_irqrestore(rq, &rf); 3820 } 3821 3822 /* 3823 * Prepare the scene for sending an IPI for a remote smp_call 3824 * 3825 * Returns true if the caller can proceed with sending the IPI. 3826 * Returns false otherwise. 3827 */ 3828 bool call_function_single_prep_ipi(int cpu) 3829 { 3830 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3831 trace_sched_wake_idle_without_ipi(cpu); 3832 return false; 3833 } 3834 3835 return true; 3836 } 3837 3838 /* 3839 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3840 * necessary. The wakee CPU on receipt of the IPI will queue the task 3841 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3842 * of the wakeup instead of the waker. 3843 */ 3844 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3845 { 3846 struct rq *rq = cpu_rq(cpu); 3847 3848 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3849 3850 WRITE_ONCE(rq->ttwu_pending, 1); 3851 #ifdef CONFIG_SMP 3852 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3853 #endif 3854 } 3855 3856 void wake_up_if_idle(int cpu) 3857 { 3858 struct rq *rq = cpu_rq(cpu); 3859 3860 guard(rcu)(); 3861 if (is_idle_task(rcu_dereference(rq->curr))) { 3862 guard(rq_lock_irqsave)(rq); 3863 if (is_idle_task(rq->curr)) 3864 resched_curr(rq); 3865 } 3866 } 3867 3868 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3869 { 3870 if (!sched_asym_cpucap_active()) 3871 return true; 3872 3873 if (this_cpu == that_cpu) 3874 return true; 3875 3876 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3877 } 3878 3879 bool cpus_share_cache(int this_cpu, int that_cpu) 3880 { 3881 if (this_cpu == that_cpu) 3882 return true; 3883 3884 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3885 } 3886 3887 /* 3888 * Whether CPUs are share cache resources, which means LLC on non-cluster 3889 * machines and LLC tag or L2 on machines with clusters. 3890 */ 3891 bool cpus_share_resources(int this_cpu, int that_cpu) 3892 { 3893 if (this_cpu == that_cpu) 3894 return true; 3895 3896 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3897 } 3898 3899 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3900 { 3901 /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ 3902 if (!scx_allow_ttwu_queue(p)) 3903 return false; 3904 3905 #ifdef CONFIG_SMP 3906 if (p->sched_class == &stop_sched_class) 3907 return false; 3908 #endif 3909 3910 /* 3911 * Do not complicate things with the async wake_list while the CPU is 3912 * in hotplug state. 3913 */ 3914 if (!cpu_active(cpu)) 3915 return false; 3916 3917 /* Ensure the task will still be allowed to run on the CPU. */ 3918 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3919 return false; 3920 3921 /* 3922 * If the CPU does not share cache, then queue the task on the 3923 * remote rqs wakelist to avoid accessing remote data. 3924 */ 3925 if (!cpus_share_cache(smp_processor_id(), cpu)) 3926 return true; 3927 3928 if (cpu == smp_processor_id()) 3929 return false; 3930 3931 /* 3932 * If the wakee cpu is idle, or the task is descheduling and the 3933 * only running task on the CPU, then use the wakelist to offload 3934 * the task activation to the idle (or soon-to-be-idle) CPU as 3935 * the current CPU is likely busy. nr_running is checked to 3936 * avoid unnecessary task stacking. 3937 * 3938 * Note that we can only get here with (wakee) p->on_rq=0, 3939 * p->on_cpu can be whatever, we've done the dequeue, so 3940 * the wakee has been accounted out of ->nr_running. 3941 */ 3942 if (!cpu_rq(cpu)->nr_running) 3943 return true; 3944 3945 return false; 3946 } 3947 3948 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3949 { 3950 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3951 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3952 __ttwu_queue_wakelist(p, cpu, wake_flags); 3953 return true; 3954 } 3955 3956 return false; 3957 } 3958 3959 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3960 { 3961 struct rq *rq = cpu_rq(cpu); 3962 struct rq_flags rf; 3963 3964 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3965 return; 3966 3967 rq_lock(rq, &rf); 3968 update_rq_clock(rq); 3969 ttwu_do_activate(rq, p, wake_flags, &rf); 3970 rq_unlock(rq, &rf); 3971 } 3972 3973 /* 3974 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3975 * 3976 * The caller holds p::pi_lock if p != current or has preemption 3977 * disabled when p == current. 3978 * 3979 * The rules of saved_state: 3980 * 3981 * The related locking code always holds p::pi_lock when updating 3982 * p::saved_state, which means the code is fully serialized in both cases. 3983 * 3984 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 3985 * No other bits set. This allows to distinguish all wakeup scenarios. 3986 * 3987 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 3988 * allows us to prevent early wakeup of tasks before they can be run on 3989 * asymmetric ISA architectures (eg ARMv9). 3990 */ 3991 static __always_inline 3992 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3993 { 3994 int match; 3995 3996 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3997 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3998 state != TASK_RTLOCK_WAIT); 3999 } 4000 4001 *success = !!(match = __task_state_match(p, state)); 4002 4003 /* 4004 * Saved state preserves the task state across blocking on 4005 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 4006 * set p::saved_state to TASK_RUNNING, but do not wake the task 4007 * because it waits for a lock wakeup or __thaw_task(). Also 4008 * indicate success because from the regular waker's point of 4009 * view this has succeeded. 4010 * 4011 * After acquiring the lock the task will restore p::__state 4012 * from p::saved_state which ensures that the regular 4013 * wakeup is not lost. The restore will also set 4014 * p::saved_state to TASK_RUNNING so any further tests will 4015 * not result in false positives vs. @success 4016 */ 4017 if (match < 0) 4018 p->saved_state = TASK_RUNNING; 4019 4020 return match > 0; 4021 } 4022 4023 /* 4024 * Notes on Program-Order guarantees on SMP systems. 4025 * 4026 * MIGRATION 4027 * 4028 * The basic program-order guarantee on SMP systems is that when a task [t] 4029 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4030 * execution on its new CPU [c1]. 4031 * 4032 * For migration (of runnable tasks) this is provided by the following means: 4033 * 4034 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4035 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4036 * rq(c1)->lock (if not at the same time, then in that order). 4037 * C) LOCK of the rq(c1)->lock scheduling in task 4038 * 4039 * Release/acquire chaining guarantees that B happens after A and C after B. 4040 * Note: the CPU doing B need not be c0 or c1 4041 * 4042 * Example: 4043 * 4044 * CPU0 CPU1 CPU2 4045 * 4046 * LOCK rq(0)->lock 4047 * sched-out X 4048 * sched-in Y 4049 * UNLOCK rq(0)->lock 4050 * 4051 * LOCK rq(0)->lock // orders against CPU0 4052 * dequeue X 4053 * UNLOCK rq(0)->lock 4054 * 4055 * LOCK rq(1)->lock 4056 * enqueue X 4057 * UNLOCK rq(1)->lock 4058 * 4059 * LOCK rq(1)->lock // orders against CPU2 4060 * sched-out Z 4061 * sched-in X 4062 * UNLOCK rq(1)->lock 4063 * 4064 * 4065 * BLOCKING -- aka. SLEEP + WAKEUP 4066 * 4067 * For blocking we (obviously) need to provide the same guarantee as for 4068 * migration. However the means are completely different as there is no lock 4069 * chain to provide order. Instead we do: 4070 * 4071 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4072 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4073 * 4074 * Example: 4075 * 4076 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4077 * 4078 * LOCK rq(0)->lock LOCK X->pi_lock 4079 * dequeue X 4080 * sched-out X 4081 * smp_store_release(X->on_cpu, 0); 4082 * 4083 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4084 * X->state = WAKING 4085 * set_task_cpu(X,2) 4086 * 4087 * LOCK rq(2)->lock 4088 * enqueue X 4089 * X->state = RUNNING 4090 * UNLOCK rq(2)->lock 4091 * 4092 * LOCK rq(2)->lock // orders against CPU1 4093 * sched-out Z 4094 * sched-in X 4095 * UNLOCK rq(2)->lock 4096 * 4097 * UNLOCK X->pi_lock 4098 * UNLOCK rq(0)->lock 4099 * 4100 * 4101 * However, for wakeups there is a second guarantee we must provide, namely we 4102 * must ensure that CONDITION=1 done by the caller can not be reordered with 4103 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4104 */ 4105 4106 /** 4107 * try_to_wake_up - wake up a thread 4108 * @p: the thread to be awakened 4109 * @state: the mask of task states that can be woken 4110 * @wake_flags: wake modifier flags (WF_*) 4111 * 4112 * Conceptually does: 4113 * 4114 * If (@state & @p->state) @p->state = TASK_RUNNING. 4115 * 4116 * If the task was not queued/runnable, also place it back on a runqueue. 4117 * 4118 * This function is atomic against schedule() which would dequeue the task. 4119 * 4120 * It issues a full memory barrier before accessing @p->state, see the comment 4121 * with set_current_state(). 4122 * 4123 * Uses p->pi_lock to serialize against concurrent wake-ups. 4124 * 4125 * Relies on p->pi_lock stabilizing: 4126 * - p->sched_class 4127 * - p->cpus_ptr 4128 * - p->sched_task_group 4129 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4130 * 4131 * Tries really hard to only take one task_rq(p)->lock for performance. 4132 * Takes rq->lock in: 4133 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4134 * - ttwu_queue() -- new rq, for enqueue of the task; 4135 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4136 * 4137 * As a consequence we race really badly with just about everything. See the 4138 * many memory barriers and their comments for details. 4139 * 4140 * Return: %true if @p->state changes (an actual wakeup was done), 4141 * %false otherwise. 4142 */ 4143 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4144 { 4145 guard(preempt)(); 4146 int cpu, success = 0; 4147 4148 wake_flags |= WF_TTWU; 4149 4150 if (p == current) { 4151 /* 4152 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4153 * == smp_processor_id()'. Together this means we can special 4154 * case the whole 'p->on_rq && ttwu_runnable()' case below 4155 * without taking any locks. 4156 * 4157 * Specifically, given current runs ttwu() we must be before 4158 * schedule()'s block_task(), as such this must not observe 4159 * sched_delayed. 4160 * 4161 * In particular: 4162 * - we rely on Program-Order guarantees for all the ordering, 4163 * - we're serialized against set_special_state() by virtue of 4164 * it disabling IRQs (this allows not taking ->pi_lock). 4165 */ 4166 WARN_ON_ONCE(p->se.sched_delayed); 4167 if (!ttwu_state_match(p, state, &success)) 4168 goto out; 4169 4170 trace_sched_waking(p); 4171 ttwu_do_wakeup(p); 4172 goto out; 4173 } 4174 4175 /* 4176 * If we are going to wake up a thread waiting for CONDITION we 4177 * need to ensure that CONDITION=1 done by the caller can not be 4178 * reordered with p->state check below. This pairs with smp_store_mb() 4179 * in set_current_state() that the waiting thread does. 4180 */ 4181 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4182 smp_mb__after_spinlock(); 4183 if (!ttwu_state_match(p, state, &success)) 4184 break; 4185 4186 trace_sched_waking(p); 4187 4188 /* 4189 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4190 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4191 * in smp_cond_load_acquire() below. 4192 * 4193 * sched_ttwu_pending() try_to_wake_up() 4194 * STORE p->on_rq = 1 LOAD p->state 4195 * UNLOCK rq->lock 4196 * 4197 * __schedule() (switch to task 'p') 4198 * LOCK rq->lock smp_rmb(); 4199 * smp_mb__after_spinlock(); 4200 * UNLOCK rq->lock 4201 * 4202 * [task p] 4203 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4204 * 4205 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4206 * __schedule(). See the comment for smp_mb__after_spinlock(). 4207 * 4208 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4209 */ 4210 smp_rmb(); 4211 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4212 break; 4213 4214 /* 4215 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4216 * possible to, falsely, observe p->on_cpu == 0. 4217 * 4218 * One must be running (->on_cpu == 1) in order to remove oneself 4219 * from the runqueue. 4220 * 4221 * __schedule() (switch to task 'p') try_to_wake_up() 4222 * STORE p->on_cpu = 1 LOAD p->on_rq 4223 * UNLOCK rq->lock 4224 * 4225 * __schedule() (put 'p' to sleep) 4226 * LOCK rq->lock smp_rmb(); 4227 * smp_mb__after_spinlock(); 4228 * STORE p->on_rq = 0 LOAD p->on_cpu 4229 * 4230 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4231 * __schedule(). See the comment for smp_mb__after_spinlock(). 4232 * 4233 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4234 * schedule()'s deactivate_task() has 'happened' and p will no longer 4235 * care about it's own p->state. See the comment in __schedule(). 4236 */ 4237 smp_acquire__after_ctrl_dep(); 4238 4239 /* 4240 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4241 * == 0), which means we need to do an enqueue, change p->state to 4242 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4243 * enqueue, such as ttwu_queue_wakelist(). 4244 */ 4245 WRITE_ONCE(p->__state, TASK_WAKING); 4246 4247 /* 4248 * If the owning (remote) CPU is still in the middle of schedule() with 4249 * this task as prev, considering queueing p on the remote CPUs wake_list 4250 * which potentially sends an IPI instead of spinning on p->on_cpu to 4251 * let the waker make forward progress. This is safe because IRQs are 4252 * disabled and the IPI will deliver after on_cpu is cleared. 4253 * 4254 * Ensure we load task_cpu(p) after p->on_cpu: 4255 * 4256 * set_task_cpu(p, cpu); 4257 * STORE p->cpu = @cpu 4258 * __schedule() (switch to task 'p') 4259 * LOCK rq->lock 4260 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4261 * STORE p->on_cpu = 1 LOAD p->cpu 4262 * 4263 * to ensure we observe the correct CPU on which the task is currently 4264 * scheduling. 4265 */ 4266 if (smp_load_acquire(&p->on_cpu) && 4267 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4268 break; 4269 4270 /* 4271 * If the owning (remote) CPU is still in the middle of schedule() with 4272 * this task as prev, wait until it's done referencing the task. 4273 * 4274 * Pairs with the smp_store_release() in finish_task(). 4275 * 4276 * This ensures that tasks getting woken will be fully ordered against 4277 * their previous state and preserve Program Order. 4278 */ 4279 smp_cond_load_acquire(&p->on_cpu, !VAL); 4280 4281 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4282 if (task_cpu(p) != cpu) { 4283 if (p->in_iowait) { 4284 delayacct_blkio_end(p); 4285 atomic_dec(&task_rq(p)->nr_iowait); 4286 } 4287 4288 wake_flags |= WF_MIGRATED; 4289 psi_ttwu_dequeue(p); 4290 set_task_cpu(p, cpu); 4291 } 4292 4293 ttwu_queue(p, cpu, wake_flags); 4294 } 4295 out: 4296 if (success) 4297 ttwu_stat(p, task_cpu(p), wake_flags); 4298 4299 return success; 4300 } 4301 4302 static bool __task_needs_rq_lock(struct task_struct *p) 4303 { 4304 unsigned int state = READ_ONCE(p->__state); 4305 4306 /* 4307 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4308 * the task is blocked. Make sure to check @state since ttwu() can drop 4309 * locks at the end, see ttwu_queue_wakelist(). 4310 */ 4311 if (state == TASK_RUNNING || state == TASK_WAKING) 4312 return true; 4313 4314 /* 4315 * Ensure we load p->on_rq after p->__state, otherwise it would be 4316 * possible to, falsely, observe p->on_rq == 0. 4317 * 4318 * See try_to_wake_up() for a longer comment. 4319 */ 4320 smp_rmb(); 4321 if (p->on_rq) 4322 return true; 4323 4324 /* 4325 * Ensure the task has finished __schedule() and will not be referenced 4326 * anymore. Again, see try_to_wake_up() for a longer comment. 4327 */ 4328 smp_rmb(); 4329 smp_cond_load_acquire(&p->on_cpu, !VAL); 4330 4331 return false; 4332 } 4333 4334 /** 4335 * task_call_func - Invoke a function on task in fixed state 4336 * @p: Process for which the function is to be invoked, can be @current. 4337 * @func: Function to invoke. 4338 * @arg: Argument to function. 4339 * 4340 * Fix the task in it's current state by avoiding wakeups and or rq operations 4341 * and call @func(@arg) on it. This function can use task_is_runnable() and 4342 * task_curr() to work out what the state is, if required. Given that @func 4343 * can be invoked with a runqueue lock held, it had better be quite 4344 * lightweight. 4345 * 4346 * Returns: 4347 * Whatever @func returns 4348 */ 4349 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4350 { 4351 struct rq *rq = NULL; 4352 struct rq_flags rf; 4353 int ret; 4354 4355 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4356 4357 if (__task_needs_rq_lock(p)) 4358 rq = __task_rq_lock(p, &rf); 4359 4360 /* 4361 * At this point the task is pinned; either: 4362 * - blocked and we're holding off wakeups (pi->lock) 4363 * - woken, and we're holding off enqueue (rq->lock) 4364 * - queued, and we're holding off schedule (rq->lock) 4365 * - running, and we're holding off de-schedule (rq->lock) 4366 * 4367 * The called function (@func) can use: task_curr(), p->on_rq and 4368 * p->__state to differentiate between these states. 4369 */ 4370 ret = func(p, arg); 4371 4372 if (rq) 4373 rq_unlock(rq, &rf); 4374 4375 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4376 return ret; 4377 } 4378 4379 /** 4380 * cpu_curr_snapshot - Return a snapshot of the currently running task 4381 * @cpu: The CPU on which to snapshot the task. 4382 * 4383 * Returns the task_struct pointer of the task "currently" running on 4384 * the specified CPU. 4385 * 4386 * If the specified CPU was offline, the return value is whatever it 4387 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4388 * task, but there is no guarantee. Callers wishing a useful return 4389 * value must take some action to ensure that the specified CPU remains 4390 * online throughout. 4391 * 4392 * This function executes full memory barriers before and after fetching 4393 * the pointer, which permits the caller to confine this function's fetch 4394 * with respect to the caller's accesses to other shared variables. 4395 */ 4396 struct task_struct *cpu_curr_snapshot(int cpu) 4397 { 4398 struct rq *rq = cpu_rq(cpu); 4399 struct task_struct *t; 4400 struct rq_flags rf; 4401 4402 rq_lock_irqsave(rq, &rf); 4403 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4404 t = rcu_dereference(cpu_curr(cpu)); 4405 rq_unlock_irqrestore(rq, &rf); 4406 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4407 4408 return t; 4409 } 4410 4411 /** 4412 * wake_up_process - Wake up a specific process 4413 * @p: The process to be woken up. 4414 * 4415 * Attempt to wake up the nominated process and move it to the set of runnable 4416 * processes. 4417 * 4418 * Return: 1 if the process was woken up, 0 if it was already running. 4419 * 4420 * This function executes a full memory barrier before accessing the task state. 4421 */ 4422 int wake_up_process(struct task_struct *p) 4423 { 4424 return try_to_wake_up(p, TASK_NORMAL, 0); 4425 } 4426 EXPORT_SYMBOL(wake_up_process); 4427 4428 int wake_up_state(struct task_struct *p, unsigned int state) 4429 { 4430 return try_to_wake_up(p, state, 0); 4431 } 4432 4433 /* 4434 * Perform scheduler related setup for a newly forked process p. 4435 * p is forked by current. 4436 * 4437 * __sched_fork() is basic setup which is also used by sched_init() to 4438 * initialize the boot CPU's idle task. 4439 */ 4440 static void __sched_fork(u64 clone_flags, struct task_struct *p) 4441 { 4442 p->on_rq = 0; 4443 4444 p->se.on_rq = 0; 4445 p->se.exec_start = 0; 4446 p->se.sum_exec_runtime = 0; 4447 p->se.prev_sum_exec_runtime = 0; 4448 p->se.nr_migrations = 0; 4449 p->se.vruntime = 0; 4450 p->se.vlag = 0; 4451 INIT_LIST_HEAD(&p->se.group_node); 4452 4453 /* A delayed task cannot be in clone(). */ 4454 WARN_ON_ONCE(p->se.sched_delayed); 4455 4456 #ifdef CONFIG_FAIR_GROUP_SCHED 4457 p->se.cfs_rq = NULL; 4458 #ifdef CONFIG_CFS_BANDWIDTH 4459 init_cfs_throttle_work(p); 4460 #endif 4461 #endif 4462 4463 #ifdef CONFIG_SCHEDSTATS 4464 /* Even if schedstat is disabled, there should not be garbage */ 4465 memset(&p->stats, 0, sizeof(p->stats)); 4466 #endif 4467 4468 init_dl_entity(&p->dl); 4469 4470 INIT_LIST_HEAD(&p->rt.run_list); 4471 p->rt.timeout = 0; 4472 p->rt.time_slice = sched_rr_timeslice; 4473 p->rt.on_rq = 0; 4474 p->rt.on_list = 0; 4475 4476 #ifdef CONFIG_SCHED_CLASS_EXT 4477 init_scx_entity(&p->scx); 4478 #endif 4479 4480 #ifdef CONFIG_PREEMPT_NOTIFIERS 4481 INIT_HLIST_HEAD(&p->preempt_notifiers); 4482 #endif 4483 4484 #ifdef CONFIG_COMPACTION 4485 p->capture_control = NULL; 4486 #endif 4487 init_numa_balancing(clone_flags, p); 4488 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4489 p->migration_pending = NULL; 4490 init_sched_mm_cid(p); 4491 } 4492 4493 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4494 4495 #ifdef CONFIG_NUMA_BALANCING 4496 4497 int sysctl_numa_balancing_mode; 4498 4499 static void __set_numabalancing_state(bool enabled) 4500 { 4501 if (enabled) 4502 static_branch_enable(&sched_numa_balancing); 4503 else 4504 static_branch_disable(&sched_numa_balancing); 4505 } 4506 4507 void set_numabalancing_state(bool enabled) 4508 { 4509 if (enabled) 4510 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4511 else 4512 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4513 __set_numabalancing_state(enabled); 4514 } 4515 4516 #ifdef CONFIG_PROC_SYSCTL 4517 static void reset_memory_tiering(void) 4518 { 4519 struct pglist_data *pgdat; 4520 4521 for_each_online_pgdat(pgdat) { 4522 pgdat->nbp_threshold = 0; 4523 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4524 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4525 } 4526 } 4527 4528 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4529 void *buffer, size_t *lenp, loff_t *ppos) 4530 { 4531 struct ctl_table t; 4532 int err; 4533 int state = sysctl_numa_balancing_mode; 4534 4535 if (write && !capable(CAP_SYS_ADMIN)) 4536 return -EPERM; 4537 4538 t = *table; 4539 t.data = &state; 4540 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4541 if (err < 0) 4542 return err; 4543 if (write) { 4544 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4545 (state & NUMA_BALANCING_MEMORY_TIERING)) 4546 reset_memory_tiering(); 4547 sysctl_numa_balancing_mode = state; 4548 __set_numabalancing_state(state); 4549 } 4550 return err; 4551 } 4552 #endif /* CONFIG_PROC_SYSCTL */ 4553 #endif /* CONFIG_NUMA_BALANCING */ 4554 4555 #ifdef CONFIG_SCHEDSTATS 4556 4557 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4558 4559 static void set_schedstats(bool enabled) 4560 { 4561 if (enabled) 4562 static_branch_enable(&sched_schedstats); 4563 else 4564 static_branch_disable(&sched_schedstats); 4565 } 4566 4567 void force_schedstat_enabled(void) 4568 { 4569 if (!schedstat_enabled()) { 4570 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4571 static_branch_enable(&sched_schedstats); 4572 } 4573 } 4574 4575 static int __init setup_schedstats(char *str) 4576 { 4577 int ret = 0; 4578 if (!str) 4579 goto out; 4580 4581 if (!strcmp(str, "enable")) { 4582 set_schedstats(true); 4583 ret = 1; 4584 } else if (!strcmp(str, "disable")) { 4585 set_schedstats(false); 4586 ret = 1; 4587 } 4588 out: 4589 if (!ret) 4590 pr_warn("Unable to parse schedstats=\n"); 4591 4592 return ret; 4593 } 4594 __setup("schedstats=", setup_schedstats); 4595 4596 #ifdef CONFIG_PROC_SYSCTL 4597 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4598 size_t *lenp, loff_t *ppos) 4599 { 4600 struct ctl_table t; 4601 int err; 4602 int state = static_branch_likely(&sched_schedstats); 4603 4604 if (write && !capable(CAP_SYS_ADMIN)) 4605 return -EPERM; 4606 4607 t = *table; 4608 t.data = &state; 4609 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4610 if (err < 0) 4611 return err; 4612 if (write) 4613 set_schedstats(state); 4614 return err; 4615 } 4616 #endif /* CONFIG_PROC_SYSCTL */ 4617 #endif /* CONFIG_SCHEDSTATS */ 4618 4619 #ifdef CONFIG_SYSCTL 4620 static const struct ctl_table sched_core_sysctls[] = { 4621 #ifdef CONFIG_SCHEDSTATS 4622 { 4623 .procname = "sched_schedstats", 4624 .data = NULL, 4625 .maxlen = sizeof(unsigned int), 4626 .mode = 0644, 4627 .proc_handler = sysctl_schedstats, 4628 .extra1 = SYSCTL_ZERO, 4629 .extra2 = SYSCTL_ONE, 4630 }, 4631 #endif /* CONFIG_SCHEDSTATS */ 4632 #ifdef CONFIG_UCLAMP_TASK 4633 { 4634 .procname = "sched_util_clamp_min", 4635 .data = &sysctl_sched_uclamp_util_min, 4636 .maxlen = sizeof(unsigned int), 4637 .mode = 0644, 4638 .proc_handler = sysctl_sched_uclamp_handler, 4639 }, 4640 { 4641 .procname = "sched_util_clamp_max", 4642 .data = &sysctl_sched_uclamp_util_max, 4643 .maxlen = sizeof(unsigned int), 4644 .mode = 0644, 4645 .proc_handler = sysctl_sched_uclamp_handler, 4646 }, 4647 { 4648 .procname = "sched_util_clamp_min_rt_default", 4649 .data = &sysctl_sched_uclamp_util_min_rt_default, 4650 .maxlen = sizeof(unsigned int), 4651 .mode = 0644, 4652 .proc_handler = sysctl_sched_uclamp_handler, 4653 }, 4654 #endif /* CONFIG_UCLAMP_TASK */ 4655 #ifdef CONFIG_NUMA_BALANCING 4656 { 4657 .procname = "numa_balancing", 4658 .data = NULL, /* filled in by handler */ 4659 .maxlen = sizeof(unsigned int), 4660 .mode = 0644, 4661 .proc_handler = sysctl_numa_balancing, 4662 .extra1 = SYSCTL_ZERO, 4663 .extra2 = SYSCTL_FOUR, 4664 }, 4665 #endif /* CONFIG_NUMA_BALANCING */ 4666 }; 4667 static int __init sched_core_sysctl_init(void) 4668 { 4669 register_sysctl_init("kernel", sched_core_sysctls); 4670 return 0; 4671 } 4672 late_initcall(sched_core_sysctl_init); 4673 #endif /* CONFIG_SYSCTL */ 4674 4675 /* 4676 * fork()/clone()-time setup: 4677 */ 4678 int sched_fork(u64 clone_flags, struct task_struct *p) 4679 { 4680 __sched_fork(clone_flags, p); 4681 /* 4682 * We mark the process as NEW here. This guarantees that 4683 * nobody will actually run it, and a signal or other external 4684 * event cannot wake it up and insert it on the runqueue either. 4685 */ 4686 p->__state = TASK_NEW; 4687 4688 /* 4689 * Make sure we do not leak PI boosting priority to the child. 4690 */ 4691 p->prio = current->normal_prio; 4692 4693 uclamp_fork(p); 4694 4695 /* 4696 * Revert to default priority/policy on fork if requested. 4697 */ 4698 if (unlikely(p->sched_reset_on_fork)) { 4699 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4700 p->policy = SCHED_NORMAL; 4701 p->static_prio = NICE_TO_PRIO(0); 4702 p->rt_priority = 0; 4703 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4704 p->static_prio = NICE_TO_PRIO(0); 4705 4706 p->prio = p->normal_prio = p->static_prio; 4707 set_load_weight(p, false); 4708 p->se.custom_slice = 0; 4709 p->se.slice = sysctl_sched_base_slice; 4710 4711 /* 4712 * We don't need the reset flag anymore after the fork. It has 4713 * fulfilled its duty: 4714 */ 4715 p->sched_reset_on_fork = 0; 4716 } 4717 4718 if (dl_prio(p->prio)) 4719 return -EAGAIN; 4720 4721 scx_pre_fork(p); 4722 4723 if (rt_prio(p->prio)) { 4724 p->sched_class = &rt_sched_class; 4725 #ifdef CONFIG_SCHED_CLASS_EXT 4726 } else if (task_should_scx(p->policy)) { 4727 p->sched_class = &ext_sched_class; 4728 #endif 4729 } else { 4730 p->sched_class = &fair_sched_class; 4731 } 4732 4733 init_entity_runnable_average(&p->se); 4734 4735 4736 #ifdef CONFIG_SCHED_INFO 4737 if (likely(sched_info_on())) 4738 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4739 #endif 4740 p->on_cpu = 0; 4741 init_task_preempt_count(p); 4742 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4743 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4744 4745 return 0; 4746 } 4747 4748 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4749 { 4750 unsigned long flags; 4751 4752 /* 4753 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4754 * required yet, but lockdep gets upset if rules are violated. 4755 */ 4756 raw_spin_lock_irqsave(&p->pi_lock, flags); 4757 #ifdef CONFIG_CGROUP_SCHED 4758 if (1) { 4759 struct task_group *tg; 4760 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4761 struct task_group, css); 4762 tg = autogroup_task_group(p, tg); 4763 p->sched_task_group = tg; 4764 } 4765 #endif 4766 rseq_migrate(p); 4767 /* 4768 * We're setting the CPU for the first time, we don't migrate, 4769 * so use __set_task_cpu(). 4770 */ 4771 __set_task_cpu(p, smp_processor_id()); 4772 if (p->sched_class->task_fork) 4773 p->sched_class->task_fork(p); 4774 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4775 4776 return scx_fork(p); 4777 } 4778 4779 void sched_cancel_fork(struct task_struct *p) 4780 { 4781 scx_cancel_fork(p); 4782 } 4783 4784 void sched_post_fork(struct task_struct *p) 4785 { 4786 uclamp_post_fork(p); 4787 scx_post_fork(p); 4788 } 4789 4790 unsigned long to_ratio(u64 period, u64 runtime) 4791 { 4792 if (runtime == RUNTIME_INF) 4793 return BW_UNIT; 4794 4795 /* 4796 * Doing this here saves a lot of checks in all 4797 * the calling paths, and returning zero seems 4798 * safe for them anyway. 4799 */ 4800 if (period == 0) 4801 return 0; 4802 4803 return div64_u64(runtime << BW_SHIFT, period); 4804 } 4805 4806 /* 4807 * wake_up_new_task - wake up a newly created task for the first time. 4808 * 4809 * This function will do some initial scheduler statistics housekeeping 4810 * that must be done for every newly created context, then puts the task 4811 * on the runqueue and wakes it. 4812 */ 4813 void wake_up_new_task(struct task_struct *p) 4814 { 4815 struct rq_flags rf; 4816 struct rq *rq; 4817 int wake_flags = WF_FORK; 4818 4819 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4820 WRITE_ONCE(p->__state, TASK_RUNNING); 4821 /* 4822 * Fork balancing, do it here and not earlier because: 4823 * - cpus_ptr can change in the fork path 4824 * - any previously selected CPU might disappear through hotplug 4825 * 4826 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4827 * as we're not fully set-up yet. 4828 */ 4829 p->recent_used_cpu = task_cpu(p); 4830 rseq_migrate(p); 4831 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4832 rq = __task_rq_lock(p, &rf); 4833 update_rq_clock(rq); 4834 post_init_entity_util_avg(p); 4835 4836 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4837 trace_sched_wakeup_new(p); 4838 wakeup_preempt(rq, p, wake_flags); 4839 if (p->sched_class->task_woken) { 4840 /* 4841 * Nothing relies on rq->lock after this, so it's fine to 4842 * drop it. 4843 */ 4844 rq_unpin_lock(rq, &rf); 4845 p->sched_class->task_woken(rq, p); 4846 rq_repin_lock(rq, &rf); 4847 } 4848 task_rq_unlock(rq, p, &rf); 4849 } 4850 4851 #ifdef CONFIG_PREEMPT_NOTIFIERS 4852 4853 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4854 4855 void preempt_notifier_inc(void) 4856 { 4857 static_branch_inc(&preempt_notifier_key); 4858 } 4859 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4860 4861 void preempt_notifier_dec(void) 4862 { 4863 static_branch_dec(&preempt_notifier_key); 4864 } 4865 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4866 4867 /** 4868 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4869 * @notifier: notifier struct to register 4870 */ 4871 void preempt_notifier_register(struct preempt_notifier *notifier) 4872 { 4873 if (!static_branch_unlikely(&preempt_notifier_key)) 4874 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4875 4876 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4877 } 4878 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4879 4880 /** 4881 * preempt_notifier_unregister - no longer interested in preemption notifications 4882 * @notifier: notifier struct to unregister 4883 * 4884 * This is *not* safe to call from within a preemption notifier. 4885 */ 4886 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4887 { 4888 hlist_del(¬ifier->link); 4889 } 4890 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4891 4892 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4893 { 4894 struct preempt_notifier *notifier; 4895 4896 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4897 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4898 } 4899 4900 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4901 { 4902 if (static_branch_unlikely(&preempt_notifier_key)) 4903 __fire_sched_in_preempt_notifiers(curr); 4904 } 4905 4906 static void 4907 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4908 struct task_struct *next) 4909 { 4910 struct preempt_notifier *notifier; 4911 4912 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4913 notifier->ops->sched_out(notifier, next); 4914 } 4915 4916 static __always_inline void 4917 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4918 struct task_struct *next) 4919 { 4920 if (static_branch_unlikely(&preempt_notifier_key)) 4921 __fire_sched_out_preempt_notifiers(curr, next); 4922 } 4923 4924 #else /* !CONFIG_PREEMPT_NOTIFIERS: */ 4925 4926 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4927 { 4928 } 4929 4930 static inline void 4931 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4932 struct task_struct *next) 4933 { 4934 } 4935 4936 #endif /* !CONFIG_PREEMPT_NOTIFIERS */ 4937 4938 static inline void prepare_task(struct task_struct *next) 4939 { 4940 /* 4941 * Claim the task as running, we do this before switching to it 4942 * such that any running task will have this set. 4943 * 4944 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4945 * its ordering comment. 4946 */ 4947 WRITE_ONCE(next->on_cpu, 1); 4948 } 4949 4950 static inline void finish_task(struct task_struct *prev) 4951 { 4952 /* 4953 * This must be the very last reference to @prev from this CPU. After 4954 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4955 * must ensure this doesn't happen until the switch is completely 4956 * finished. 4957 * 4958 * In particular, the load of prev->state in finish_task_switch() must 4959 * happen before this. 4960 * 4961 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4962 */ 4963 smp_store_release(&prev->on_cpu, 0); 4964 } 4965 4966 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4967 { 4968 void (*func)(struct rq *rq); 4969 struct balance_callback *next; 4970 4971 lockdep_assert_rq_held(rq); 4972 4973 while (head) { 4974 func = (void (*)(struct rq *))head->func; 4975 next = head->next; 4976 head->next = NULL; 4977 head = next; 4978 4979 func(rq); 4980 } 4981 } 4982 4983 static void balance_push(struct rq *rq); 4984 4985 /* 4986 * balance_push_callback is a right abuse of the callback interface and plays 4987 * by significantly different rules. 4988 * 4989 * Where the normal balance_callback's purpose is to be ran in the same context 4990 * that queued it (only later, when it's safe to drop rq->lock again), 4991 * balance_push_callback is specifically targeted at __schedule(). 4992 * 4993 * This abuse is tolerated because it places all the unlikely/odd cases behind 4994 * a single test, namely: rq->balance_callback == NULL. 4995 */ 4996 struct balance_callback balance_push_callback = { 4997 .next = NULL, 4998 .func = balance_push, 4999 }; 5000 5001 static inline struct balance_callback * 5002 __splice_balance_callbacks(struct rq *rq, bool split) 5003 { 5004 struct balance_callback *head = rq->balance_callback; 5005 5006 if (likely(!head)) 5007 return NULL; 5008 5009 lockdep_assert_rq_held(rq); 5010 /* 5011 * Must not take balance_push_callback off the list when 5012 * splice_balance_callbacks() and balance_callbacks() are not 5013 * in the same rq->lock section. 5014 * 5015 * In that case it would be possible for __schedule() to interleave 5016 * and observe the list empty. 5017 */ 5018 if (split && head == &balance_push_callback) 5019 head = NULL; 5020 else 5021 rq->balance_callback = NULL; 5022 5023 return head; 5024 } 5025 5026 struct balance_callback *splice_balance_callbacks(struct rq *rq) 5027 { 5028 return __splice_balance_callbacks(rq, true); 5029 } 5030 5031 static void __balance_callbacks(struct rq *rq) 5032 { 5033 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5034 } 5035 5036 void balance_callbacks(struct rq *rq, struct balance_callback *head) 5037 { 5038 unsigned long flags; 5039 5040 if (unlikely(head)) { 5041 raw_spin_rq_lock_irqsave(rq, flags); 5042 do_balance_callbacks(rq, head); 5043 raw_spin_rq_unlock_irqrestore(rq, flags); 5044 } 5045 } 5046 5047 static inline void 5048 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5049 { 5050 /* 5051 * Since the runqueue lock will be released by the next 5052 * task (which is an invalid locking op but in the case 5053 * of the scheduler it's an obvious special-case), so we 5054 * do an early lockdep release here: 5055 */ 5056 rq_unpin_lock(rq, rf); 5057 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5058 #ifdef CONFIG_DEBUG_SPINLOCK 5059 /* this is a valid case when another task releases the spinlock */ 5060 rq_lockp(rq)->owner = next; 5061 #endif 5062 } 5063 5064 static inline void finish_lock_switch(struct rq *rq) 5065 { 5066 /* 5067 * If we are tracking spinlock dependencies then we have to 5068 * fix up the runqueue lock - which gets 'carried over' from 5069 * prev into current: 5070 */ 5071 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5072 __balance_callbacks(rq); 5073 raw_spin_rq_unlock_irq(rq); 5074 } 5075 5076 /* 5077 * NOP if the arch has not defined these: 5078 */ 5079 5080 #ifndef prepare_arch_switch 5081 # define prepare_arch_switch(next) do { } while (0) 5082 #endif 5083 5084 #ifndef finish_arch_post_lock_switch 5085 # define finish_arch_post_lock_switch() do { } while (0) 5086 #endif 5087 5088 static inline void kmap_local_sched_out(void) 5089 { 5090 #ifdef CONFIG_KMAP_LOCAL 5091 if (unlikely(current->kmap_ctrl.idx)) 5092 __kmap_local_sched_out(); 5093 #endif 5094 } 5095 5096 static inline void kmap_local_sched_in(void) 5097 { 5098 #ifdef CONFIG_KMAP_LOCAL 5099 if (unlikely(current->kmap_ctrl.idx)) 5100 __kmap_local_sched_in(); 5101 #endif 5102 } 5103 5104 /** 5105 * prepare_task_switch - prepare to switch tasks 5106 * @rq: the runqueue preparing to switch 5107 * @prev: the current task that is being switched out 5108 * @next: the task we are going to switch to. 5109 * 5110 * This is called with the rq lock held and interrupts off. It must 5111 * be paired with a subsequent finish_task_switch after the context 5112 * switch. 5113 * 5114 * prepare_task_switch sets up locking and calls architecture specific 5115 * hooks. 5116 */ 5117 static inline void 5118 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5119 struct task_struct *next) 5120 { 5121 kcov_prepare_switch(prev); 5122 sched_info_switch(rq, prev, next); 5123 perf_event_task_sched_out(prev, next); 5124 rseq_preempt(prev); 5125 fire_sched_out_preempt_notifiers(prev, next); 5126 kmap_local_sched_out(); 5127 prepare_task(next); 5128 prepare_arch_switch(next); 5129 } 5130 5131 /** 5132 * finish_task_switch - clean up after a task-switch 5133 * @prev: the thread we just switched away from. 5134 * 5135 * finish_task_switch must be called after the context switch, paired 5136 * with a prepare_task_switch call before the context switch. 5137 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5138 * and do any other architecture-specific cleanup actions. 5139 * 5140 * Note that we may have delayed dropping an mm in context_switch(). If 5141 * so, we finish that here outside of the runqueue lock. (Doing it 5142 * with the lock held can cause deadlocks; see schedule() for 5143 * details.) 5144 * 5145 * The context switch have flipped the stack from under us and restored the 5146 * local variables which were saved when this task called schedule() in the 5147 * past. 'prev == current' is still correct but we need to recalculate this_rq 5148 * because prev may have moved to another CPU. 5149 */ 5150 static struct rq *finish_task_switch(struct task_struct *prev) 5151 __releases(rq->lock) 5152 { 5153 struct rq *rq = this_rq(); 5154 struct mm_struct *mm = rq->prev_mm; 5155 unsigned int prev_state; 5156 5157 /* 5158 * The previous task will have left us with a preempt_count of 2 5159 * because it left us after: 5160 * 5161 * schedule() 5162 * preempt_disable(); // 1 5163 * __schedule() 5164 * raw_spin_lock_irq(&rq->lock) // 2 5165 * 5166 * Also, see FORK_PREEMPT_COUNT. 5167 */ 5168 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5169 "corrupted preempt_count: %s/%d/0x%x\n", 5170 current->comm, current->pid, preempt_count())) 5171 preempt_count_set(FORK_PREEMPT_COUNT); 5172 5173 rq->prev_mm = NULL; 5174 5175 /* 5176 * A task struct has one reference for the use as "current". 5177 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5178 * schedule one last time. The schedule call will never return, and 5179 * the scheduled task must drop that reference. 5180 * 5181 * We must observe prev->state before clearing prev->on_cpu (in 5182 * finish_task), otherwise a concurrent wakeup can get prev 5183 * running on another CPU and we could rave with its RUNNING -> DEAD 5184 * transition, resulting in a double drop. 5185 */ 5186 prev_state = READ_ONCE(prev->__state); 5187 vtime_task_switch(prev); 5188 perf_event_task_sched_in(prev, current); 5189 finish_task(prev); 5190 tick_nohz_task_switch(); 5191 finish_lock_switch(rq); 5192 finish_arch_post_lock_switch(); 5193 kcov_finish_switch(current); 5194 /* 5195 * kmap_local_sched_out() is invoked with rq::lock held and 5196 * interrupts disabled. There is no requirement for that, but the 5197 * sched out code does not have an interrupt enabled section. 5198 * Restoring the maps on sched in does not require interrupts being 5199 * disabled either. 5200 */ 5201 kmap_local_sched_in(); 5202 5203 fire_sched_in_preempt_notifiers(current); 5204 /* 5205 * When switching through a kernel thread, the loop in 5206 * membarrier_{private,global}_expedited() may have observed that 5207 * kernel thread and not issued an IPI. It is therefore possible to 5208 * schedule between user->kernel->user threads without passing though 5209 * switch_mm(). Membarrier requires a barrier after storing to 5210 * rq->curr, before returning to userspace, so provide them here: 5211 * 5212 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5213 * provided by mmdrop_lazy_tlb(), 5214 * - a sync_core for SYNC_CORE. 5215 */ 5216 if (mm) { 5217 membarrier_mm_sync_core_before_usermode(mm); 5218 mmdrop_lazy_tlb_sched(mm); 5219 } 5220 5221 if (unlikely(prev_state == TASK_DEAD)) { 5222 if (prev->sched_class->task_dead) 5223 prev->sched_class->task_dead(prev); 5224 5225 /* Task is done with its stack. */ 5226 put_task_stack(prev); 5227 5228 put_task_struct_rcu_user(prev); 5229 } 5230 5231 return rq; 5232 } 5233 5234 /** 5235 * schedule_tail - first thing a freshly forked thread must call. 5236 * @prev: the thread we just switched away from. 5237 */ 5238 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5239 __releases(rq->lock) 5240 { 5241 /* 5242 * New tasks start with FORK_PREEMPT_COUNT, see there and 5243 * finish_task_switch() for details. 5244 * 5245 * finish_task_switch() will drop rq->lock() and lower preempt_count 5246 * and the preempt_enable() will end up enabling preemption (on 5247 * PREEMPT_COUNT kernels). 5248 */ 5249 5250 finish_task_switch(prev); 5251 /* 5252 * This is a special case: the newly created task has just 5253 * switched the context for the first time. It is returning from 5254 * schedule for the first time in this path. 5255 */ 5256 trace_sched_exit_tp(true); 5257 preempt_enable(); 5258 5259 if (current->set_child_tid) 5260 put_user(task_pid_vnr(current), current->set_child_tid); 5261 5262 calculate_sigpending(); 5263 } 5264 5265 /* 5266 * context_switch - switch to the new MM and the new thread's register state. 5267 */ 5268 static __always_inline struct rq * 5269 context_switch(struct rq *rq, struct task_struct *prev, 5270 struct task_struct *next, struct rq_flags *rf) 5271 { 5272 prepare_task_switch(rq, prev, next); 5273 5274 /* 5275 * For paravirt, this is coupled with an exit in switch_to to 5276 * combine the page table reload and the switch backend into 5277 * one hypercall. 5278 */ 5279 arch_start_context_switch(prev); 5280 5281 /* 5282 * kernel -> kernel lazy + transfer active 5283 * user -> kernel lazy + mmgrab_lazy_tlb() active 5284 * 5285 * kernel -> user switch + mmdrop_lazy_tlb() active 5286 * user -> user switch 5287 * 5288 * switch_mm_cid() needs to be updated if the barriers provided 5289 * by context_switch() are modified. 5290 */ 5291 if (!next->mm) { // to kernel 5292 enter_lazy_tlb(prev->active_mm, next); 5293 5294 next->active_mm = prev->active_mm; 5295 if (prev->mm) // from user 5296 mmgrab_lazy_tlb(prev->active_mm); 5297 else 5298 prev->active_mm = NULL; 5299 } else { // to user 5300 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5301 /* 5302 * sys_membarrier() requires an smp_mb() between setting 5303 * rq->curr / membarrier_switch_mm() and returning to userspace. 5304 * 5305 * The below provides this either through switch_mm(), or in 5306 * case 'prev->active_mm == next->mm' through 5307 * finish_task_switch()'s mmdrop(). 5308 */ 5309 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5310 lru_gen_use_mm(next->mm); 5311 5312 if (!prev->mm) { // from kernel 5313 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5314 rq->prev_mm = prev->active_mm; 5315 prev->active_mm = NULL; 5316 } 5317 } 5318 5319 /* switch_mm_cid() requires the memory barriers above. */ 5320 switch_mm_cid(rq, prev, next); 5321 5322 prepare_lock_switch(rq, next, rf); 5323 5324 /* Here we just switch the register state and the stack. */ 5325 switch_to(prev, next, prev); 5326 barrier(); 5327 5328 return finish_task_switch(prev); 5329 } 5330 5331 /* 5332 * nr_running and nr_context_switches: 5333 * 5334 * externally visible scheduler statistics: current number of runnable 5335 * threads, total number of context switches performed since bootup. 5336 */ 5337 unsigned int nr_running(void) 5338 { 5339 unsigned int i, sum = 0; 5340 5341 for_each_online_cpu(i) 5342 sum += cpu_rq(i)->nr_running; 5343 5344 return sum; 5345 } 5346 5347 /* 5348 * Check if only the current task is running on the CPU. 5349 * 5350 * Caution: this function does not check that the caller has disabled 5351 * preemption, thus the result might have a time-of-check-to-time-of-use 5352 * race. The caller is responsible to use it correctly, for example: 5353 * 5354 * - from a non-preemptible section (of course) 5355 * 5356 * - from a thread that is bound to a single CPU 5357 * 5358 * - in a loop with very short iterations (e.g. a polling loop) 5359 */ 5360 bool single_task_running(void) 5361 { 5362 return raw_rq()->nr_running == 1; 5363 } 5364 EXPORT_SYMBOL(single_task_running); 5365 5366 unsigned long long nr_context_switches_cpu(int cpu) 5367 { 5368 return cpu_rq(cpu)->nr_switches; 5369 } 5370 5371 unsigned long long nr_context_switches(void) 5372 { 5373 int i; 5374 unsigned long long sum = 0; 5375 5376 for_each_possible_cpu(i) 5377 sum += cpu_rq(i)->nr_switches; 5378 5379 return sum; 5380 } 5381 5382 /* 5383 * Consumers of these two interfaces, like for example the cpuidle menu 5384 * governor, are using nonsensical data. Preferring shallow idle state selection 5385 * for a CPU that has IO-wait which might not even end up running the task when 5386 * it does become runnable. 5387 */ 5388 5389 unsigned int nr_iowait_cpu(int cpu) 5390 { 5391 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5392 } 5393 5394 /* 5395 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5396 * 5397 * The idea behind IO-wait account is to account the idle time that we could 5398 * have spend running if it were not for IO. That is, if we were to improve the 5399 * storage performance, we'd have a proportional reduction in IO-wait time. 5400 * 5401 * This all works nicely on UP, where, when a task blocks on IO, we account 5402 * idle time as IO-wait, because if the storage were faster, it could've been 5403 * running and we'd not be idle. 5404 * 5405 * This has been extended to SMP, by doing the same for each CPU. This however 5406 * is broken. 5407 * 5408 * Imagine for instance the case where two tasks block on one CPU, only the one 5409 * CPU will have IO-wait accounted, while the other has regular idle. Even 5410 * though, if the storage were faster, both could've ran at the same time, 5411 * utilising both CPUs. 5412 * 5413 * This means, that when looking globally, the current IO-wait accounting on 5414 * SMP is a lower bound, by reason of under accounting. 5415 * 5416 * Worse, since the numbers are provided per CPU, they are sometimes 5417 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5418 * associated with any one particular CPU, it can wake to another CPU than it 5419 * blocked on. This means the per CPU IO-wait number is meaningless. 5420 * 5421 * Task CPU affinities can make all that even more 'interesting'. 5422 */ 5423 5424 unsigned int nr_iowait(void) 5425 { 5426 unsigned int i, sum = 0; 5427 5428 for_each_possible_cpu(i) 5429 sum += nr_iowait_cpu(i); 5430 5431 return sum; 5432 } 5433 5434 /* 5435 * sched_exec - execve() is a valuable balancing opportunity, because at 5436 * this point the task has the smallest effective memory and cache footprint. 5437 */ 5438 void sched_exec(void) 5439 { 5440 struct task_struct *p = current; 5441 struct migration_arg arg; 5442 int dest_cpu; 5443 5444 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5445 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5446 if (dest_cpu == smp_processor_id()) 5447 return; 5448 5449 if (unlikely(!cpu_active(dest_cpu))) 5450 return; 5451 5452 arg = (struct migration_arg){ p, dest_cpu }; 5453 } 5454 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5455 } 5456 5457 DEFINE_PER_CPU(struct kernel_stat, kstat); 5458 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5459 5460 EXPORT_PER_CPU_SYMBOL(kstat); 5461 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5462 5463 /* 5464 * The function fair_sched_class.update_curr accesses the struct curr 5465 * and its field curr->exec_start; when called from task_sched_runtime(), 5466 * we observe a high rate of cache misses in practice. 5467 * Prefetching this data results in improved performance. 5468 */ 5469 static inline void prefetch_curr_exec_start(struct task_struct *p) 5470 { 5471 #ifdef CONFIG_FAIR_GROUP_SCHED 5472 struct sched_entity *curr = p->se.cfs_rq->curr; 5473 #else 5474 struct sched_entity *curr = task_rq(p)->cfs.curr; 5475 #endif 5476 prefetch(curr); 5477 prefetch(&curr->exec_start); 5478 } 5479 5480 /* 5481 * Return accounted runtime for the task. 5482 * In case the task is currently running, return the runtime plus current's 5483 * pending runtime that have not been accounted yet. 5484 */ 5485 unsigned long long task_sched_runtime(struct task_struct *p) 5486 { 5487 struct rq_flags rf; 5488 struct rq *rq; 5489 u64 ns; 5490 5491 #ifdef CONFIG_64BIT 5492 /* 5493 * 64-bit doesn't need locks to atomically read a 64-bit value. 5494 * So we have a optimization chance when the task's delta_exec is 0. 5495 * Reading ->on_cpu is racy, but this is OK. 5496 * 5497 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5498 * If we race with it entering CPU, unaccounted time is 0. This is 5499 * indistinguishable from the read occurring a few cycles earlier. 5500 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5501 * been accounted, so we're correct here as well. 5502 */ 5503 if (!p->on_cpu || !task_on_rq_queued(p)) 5504 return p->se.sum_exec_runtime; 5505 #endif 5506 5507 rq = task_rq_lock(p, &rf); 5508 /* 5509 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5510 * project cycles that may never be accounted to this 5511 * thread, breaking clock_gettime(). 5512 */ 5513 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5514 prefetch_curr_exec_start(p); 5515 update_rq_clock(rq); 5516 p->sched_class->update_curr(rq); 5517 } 5518 ns = p->se.sum_exec_runtime; 5519 task_rq_unlock(rq, p, &rf); 5520 5521 return ns; 5522 } 5523 5524 static u64 cpu_resched_latency(struct rq *rq) 5525 { 5526 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5527 u64 resched_latency, now = rq_clock(rq); 5528 static bool warned_once; 5529 5530 if (sysctl_resched_latency_warn_once && warned_once) 5531 return 0; 5532 5533 if (!need_resched() || !latency_warn_ms) 5534 return 0; 5535 5536 if (system_state == SYSTEM_BOOTING) 5537 return 0; 5538 5539 if (!rq->last_seen_need_resched_ns) { 5540 rq->last_seen_need_resched_ns = now; 5541 rq->ticks_without_resched = 0; 5542 return 0; 5543 } 5544 5545 rq->ticks_without_resched++; 5546 resched_latency = now - rq->last_seen_need_resched_ns; 5547 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5548 return 0; 5549 5550 warned_once = true; 5551 5552 return resched_latency; 5553 } 5554 5555 static int __init setup_resched_latency_warn_ms(char *str) 5556 { 5557 long val; 5558 5559 if ((kstrtol(str, 0, &val))) { 5560 pr_warn("Unable to set resched_latency_warn_ms\n"); 5561 return 1; 5562 } 5563 5564 sysctl_resched_latency_warn_ms = val; 5565 return 1; 5566 } 5567 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5568 5569 /* 5570 * This function gets called by the timer code, with HZ frequency. 5571 * We call it with interrupts disabled. 5572 */ 5573 void sched_tick(void) 5574 { 5575 int cpu = smp_processor_id(); 5576 struct rq *rq = cpu_rq(cpu); 5577 /* accounting goes to the donor task */ 5578 struct task_struct *donor; 5579 struct rq_flags rf; 5580 unsigned long hw_pressure; 5581 u64 resched_latency; 5582 5583 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5584 arch_scale_freq_tick(); 5585 5586 sched_clock_tick(); 5587 5588 rq_lock(rq, &rf); 5589 donor = rq->donor; 5590 5591 psi_account_irqtime(rq, donor, NULL); 5592 5593 update_rq_clock(rq); 5594 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5595 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5596 5597 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5598 resched_curr(rq); 5599 5600 donor->sched_class->task_tick(rq, donor, 0); 5601 if (sched_feat(LATENCY_WARN)) 5602 resched_latency = cpu_resched_latency(rq); 5603 calc_global_load_tick(rq); 5604 sched_core_tick(rq); 5605 task_tick_mm_cid(rq, donor); 5606 scx_tick(rq); 5607 5608 rq_unlock(rq, &rf); 5609 5610 if (sched_feat(LATENCY_WARN) && resched_latency) 5611 resched_latency_warn(cpu, resched_latency); 5612 5613 perf_event_task_tick(); 5614 5615 if (donor->flags & PF_WQ_WORKER) 5616 wq_worker_tick(donor); 5617 5618 if (!scx_switched_all()) { 5619 rq->idle_balance = idle_cpu(cpu); 5620 sched_balance_trigger(rq); 5621 } 5622 } 5623 5624 #ifdef CONFIG_NO_HZ_FULL 5625 5626 struct tick_work { 5627 int cpu; 5628 atomic_t state; 5629 struct delayed_work work; 5630 }; 5631 /* Values for ->state, see diagram below. */ 5632 #define TICK_SCHED_REMOTE_OFFLINE 0 5633 #define TICK_SCHED_REMOTE_OFFLINING 1 5634 #define TICK_SCHED_REMOTE_RUNNING 2 5635 5636 /* 5637 * State diagram for ->state: 5638 * 5639 * 5640 * TICK_SCHED_REMOTE_OFFLINE 5641 * | ^ 5642 * | | 5643 * | | sched_tick_remote() 5644 * | | 5645 * | | 5646 * +--TICK_SCHED_REMOTE_OFFLINING 5647 * | ^ 5648 * | | 5649 * sched_tick_start() | | sched_tick_stop() 5650 * | | 5651 * V | 5652 * TICK_SCHED_REMOTE_RUNNING 5653 * 5654 * 5655 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5656 * and sched_tick_start() are happy to leave the state in RUNNING. 5657 */ 5658 5659 static struct tick_work __percpu *tick_work_cpu; 5660 5661 static void sched_tick_remote(struct work_struct *work) 5662 { 5663 struct delayed_work *dwork = to_delayed_work(work); 5664 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5665 int cpu = twork->cpu; 5666 struct rq *rq = cpu_rq(cpu); 5667 int os; 5668 5669 /* 5670 * Handle the tick only if it appears the remote CPU is running in full 5671 * dynticks mode. The check is racy by nature, but missing a tick or 5672 * having one too much is no big deal because the scheduler tick updates 5673 * statistics and checks timeslices in a time-independent way, regardless 5674 * of when exactly it is running. 5675 */ 5676 if (tick_nohz_tick_stopped_cpu(cpu)) { 5677 guard(rq_lock_irq)(rq); 5678 struct task_struct *curr = rq->curr; 5679 5680 if (cpu_online(cpu)) { 5681 /* 5682 * Since this is a remote tick for full dynticks mode, 5683 * we are always sure that there is no proxy (only a 5684 * single task is running). 5685 */ 5686 WARN_ON_ONCE(rq->curr != rq->donor); 5687 update_rq_clock(rq); 5688 5689 if (!is_idle_task(curr)) { 5690 /* 5691 * Make sure the next tick runs within a 5692 * reasonable amount of time. 5693 */ 5694 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5695 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5696 } 5697 curr->sched_class->task_tick(rq, curr, 0); 5698 5699 calc_load_nohz_remote(rq); 5700 } 5701 } 5702 5703 /* 5704 * Run the remote tick once per second (1Hz). This arbitrary 5705 * frequency is large enough to avoid overload but short enough 5706 * to keep scheduler internal stats reasonably up to date. But 5707 * first update state to reflect hotplug activity if required. 5708 */ 5709 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5710 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5711 if (os == TICK_SCHED_REMOTE_RUNNING) 5712 queue_delayed_work(system_unbound_wq, dwork, HZ); 5713 } 5714 5715 static void sched_tick_start(int cpu) 5716 { 5717 int os; 5718 struct tick_work *twork; 5719 5720 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5721 return; 5722 5723 WARN_ON_ONCE(!tick_work_cpu); 5724 5725 twork = per_cpu_ptr(tick_work_cpu, cpu); 5726 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5727 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5728 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5729 twork->cpu = cpu; 5730 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5731 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5732 } 5733 } 5734 5735 #ifdef CONFIG_HOTPLUG_CPU 5736 static void sched_tick_stop(int cpu) 5737 { 5738 struct tick_work *twork; 5739 int os; 5740 5741 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5742 return; 5743 5744 WARN_ON_ONCE(!tick_work_cpu); 5745 5746 twork = per_cpu_ptr(tick_work_cpu, cpu); 5747 /* There cannot be competing actions, but don't rely on stop-machine. */ 5748 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5749 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5750 /* Don't cancel, as this would mess up the state machine. */ 5751 } 5752 #endif /* CONFIG_HOTPLUG_CPU */ 5753 5754 int __init sched_tick_offload_init(void) 5755 { 5756 tick_work_cpu = alloc_percpu(struct tick_work); 5757 BUG_ON(!tick_work_cpu); 5758 return 0; 5759 } 5760 5761 #else /* !CONFIG_NO_HZ_FULL: */ 5762 static inline void sched_tick_start(int cpu) { } 5763 static inline void sched_tick_stop(int cpu) { } 5764 #endif /* !CONFIG_NO_HZ_FULL */ 5765 5766 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5767 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5768 /* 5769 * If the value passed in is equal to the current preempt count 5770 * then we just disabled preemption. Start timing the latency. 5771 */ 5772 static inline void preempt_latency_start(int val) 5773 { 5774 if (preempt_count() == val) { 5775 unsigned long ip = get_lock_parent_ip(); 5776 #ifdef CONFIG_DEBUG_PREEMPT 5777 current->preempt_disable_ip = ip; 5778 #endif 5779 trace_preempt_off(CALLER_ADDR0, ip); 5780 } 5781 } 5782 5783 void preempt_count_add(int val) 5784 { 5785 #ifdef CONFIG_DEBUG_PREEMPT 5786 /* 5787 * Underflow? 5788 */ 5789 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5790 return; 5791 #endif 5792 __preempt_count_add(val); 5793 #ifdef CONFIG_DEBUG_PREEMPT 5794 /* 5795 * Spinlock count overflowing soon? 5796 */ 5797 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5798 PREEMPT_MASK - 10); 5799 #endif 5800 preempt_latency_start(val); 5801 } 5802 EXPORT_SYMBOL(preempt_count_add); 5803 NOKPROBE_SYMBOL(preempt_count_add); 5804 5805 /* 5806 * If the value passed in equals to the current preempt count 5807 * then we just enabled preemption. Stop timing the latency. 5808 */ 5809 static inline void preempt_latency_stop(int val) 5810 { 5811 if (preempt_count() == val) 5812 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5813 } 5814 5815 void preempt_count_sub(int val) 5816 { 5817 #ifdef CONFIG_DEBUG_PREEMPT 5818 /* 5819 * Underflow? 5820 */ 5821 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5822 return; 5823 /* 5824 * Is the spinlock portion underflowing? 5825 */ 5826 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5827 !(preempt_count() & PREEMPT_MASK))) 5828 return; 5829 #endif 5830 5831 preempt_latency_stop(val); 5832 __preempt_count_sub(val); 5833 } 5834 EXPORT_SYMBOL(preempt_count_sub); 5835 NOKPROBE_SYMBOL(preempt_count_sub); 5836 5837 #else 5838 static inline void preempt_latency_start(int val) { } 5839 static inline void preempt_latency_stop(int val) { } 5840 #endif 5841 5842 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5843 { 5844 #ifdef CONFIG_DEBUG_PREEMPT 5845 return p->preempt_disable_ip; 5846 #else 5847 return 0; 5848 #endif 5849 } 5850 5851 /* 5852 * Print scheduling while atomic bug: 5853 */ 5854 static noinline void __schedule_bug(struct task_struct *prev) 5855 { 5856 /* Save this before calling printk(), since that will clobber it */ 5857 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5858 5859 if (oops_in_progress) 5860 return; 5861 5862 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5863 prev->comm, prev->pid, preempt_count()); 5864 5865 debug_show_held_locks(prev); 5866 print_modules(); 5867 if (irqs_disabled()) 5868 print_irqtrace_events(prev); 5869 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5870 pr_err("Preemption disabled at:"); 5871 print_ip_sym(KERN_ERR, preempt_disable_ip); 5872 } 5873 check_panic_on_warn("scheduling while atomic"); 5874 5875 dump_stack(); 5876 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5877 } 5878 5879 /* 5880 * Various schedule()-time debugging checks and statistics: 5881 */ 5882 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5883 { 5884 #ifdef CONFIG_SCHED_STACK_END_CHECK 5885 if (task_stack_end_corrupted(prev)) 5886 panic("corrupted stack end detected inside scheduler\n"); 5887 5888 if (task_scs_end_corrupted(prev)) 5889 panic("corrupted shadow stack detected inside scheduler\n"); 5890 #endif 5891 5892 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5893 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5894 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5895 prev->comm, prev->pid, prev->non_block_count); 5896 dump_stack(); 5897 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5898 } 5899 #endif 5900 5901 if (unlikely(in_atomic_preempt_off())) { 5902 __schedule_bug(prev); 5903 preempt_count_set(PREEMPT_DISABLED); 5904 } 5905 rcu_sleep_check(); 5906 WARN_ON_ONCE(ct_state() == CT_STATE_USER); 5907 5908 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5909 5910 schedstat_inc(this_rq()->sched_count); 5911 } 5912 5913 static void prev_balance(struct rq *rq, struct task_struct *prev, 5914 struct rq_flags *rf) 5915 { 5916 const struct sched_class *start_class = prev->sched_class; 5917 const struct sched_class *class; 5918 5919 #ifdef CONFIG_SCHED_CLASS_EXT 5920 /* 5921 * SCX requires a balance() call before every pick_task() including when 5922 * waking up from SCHED_IDLE. If @start_class is below SCX, start from 5923 * SCX instead. Also, set a flag to detect missing balance() call. 5924 */ 5925 if (scx_enabled()) { 5926 rq->scx.flags |= SCX_RQ_BAL_PENDING; 5927 if (sched_class_above(&ext_sched_class, start_class)) 5928 start_class = &ext_sched_class; 5929 } 5930 #endif 5931 5932 /* 5933 * We must do the balancing pass before put_prev_task(), such 5934 * that when we release the rq->lock the task is in the same 5935 * state as before we took rq->lock. 5936 * 5937 * We can terminate the balance pass as soon as we know there is 5938 * a runnable task of @class priority or higher. 5939 */ 5940 for_active_class_range(class, start_class, &idle_sched_class) { 5941 if (class->balance && class->balance(rq, prev, rf)) 5942 break; 5943 } 5944 } 5945 5946 /* 5947 * Pick up the highest-prio task: 5948 */ 5949 static inline struct task_struct * 5950 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5951 { 5952 const struct sched_class *class; 5953 struct task_struct *p; 5954 5955 rq->dl_server = NULL; 5956 5957 if (scx_enabled()) 5958 goto restart; 5959 5960 /* 5961 * Optimization: we know that if all tasks are in the fair class we can 5962 * call that function directly, but only if the @prev task wasn't of a 5963 * higher scheduling class, because otherwise those lose the 5964 * opportunity to pull in more work from other CPUs. 5965 */ 5966 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5967 rq->nr_running == rq->cfs.h_nr_queued)) { 5968 5969 p = pick_next_task_fair(rq, prev, rf); 5970 if (unlikely(p == RETRY_TASK)) 5971 goto restart; 5972 5973 /* Assume the next prioritized class is idle_sched_class */ 5974 if (!p) { 5975 p = pick_task_idle(rq); 5976 put_prev_set_next_task(rq, prev, p); 5977 } 5978 5979 return p; 5980 } 5981 5982 restart: 5983 prev_balance(rq, prev, rf); 5984 5985 for_each_active_class(class) { 5986 if (class->pick_next_task) { 5987 p = class->pick_next_task(rq, prev); 5988 if (p) 5989 return p; 5990 } else { 5991 p = class->pick_task(rq); 5992 if (p) { 5993 put_prev_set_next_task(rq, prev, p); 5994 return p; 5995 } 5996 } 5997 } 5998 5999 BUG(); /* The idle class should always have a runnable task. */ 6000 } 6001 6002 #ifdef CONFIG_SCHED_CORE 6003 static inline bool is_task_rq_idle(struct task_struct *t) 6004 { 6005 return (task_rq(t)->idle == t); 6006 } 6007 6008 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 6009 { 6010 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6011 } 6012 6013 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6014 { 6015 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6016 return true; 6017 6018 return a->core_cookie == b->core_cookie; 6019 } 6020 6021 static inline struct task_struct *pick_task(struct rq *rq) 6022 { 6023 const struct sched_class *class; 6024 struct task_struct *p; 6025 6026 rq->dl_server = NULL; 6027 6028 for_each_active_class(class) { 6029 p = class->pick_task(rq); 6030 if (p) 6031 return p; 6032 } 6033 6034 BUG(); /* The idle class should always have a runnable task. */ 6035 } 6036 6037 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6038 6039 static void queue_core_balance(struct rq *rq); 6040 6041 static struct task_struct * 6042 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6043 { 6044 struct task_struct *next, *p, *max = NULL; 6045 const struct cpumask *smt_mask; 6046 bool fi_before = false; 6047 bool core_clock_updated = (rq == rq->core); 6048 unsigned long cookie; 6049 int i, cpu, occ = 0; 6050 struct rq *rq_i; 6051 bool need_sync; 6052 6053 if (!sched_core_enabled(rq)) 6054 return __pick_next_task(rq, prev, rf); 6055 6056 cpu = cpu_of(rq); 6057 6058 /* Stopper task is switching into idle, no need core-wide selection. */ 6059 if (cpu_is_offline(cpu)) { 6060 /* 6061 * Reset core_pick so that we don't enter the fastpath when 6062 * coming online. core_pick would already be migrated to 6063 * another cpu during offline. 6064 */ 6065 rq->core_pick = NULL; 6066 rq->core_dl_server = NULL; 6067 return __pick_next_task(rq, prev, rf); 6068 } 6069 6070 /* 6071 * If there were no {en,de}queues since we picked (IOW, the task 6072 * pointers are all still valid), and we haven't scheduled the last 6073 * pick yet, do so now. 6074 * 6075 * rq->core_pick can be NULL if no selection was made for a CPU because 6076 * it was either offline or went offline during a sibling's core-wide 6077 * selection. In this case, do a core-wide selection. 6078 */ 6079 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6080 rq->core->core_pick_seq != rq->core_sched_seq && 6081 rq->core_pick) { 6082 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6083 6084 next = rq->core_pick; 6085 rq->dl_server = rq->core_dl_server; 6086 rq->core_pick = NULL; 6087 rq->core_dl_server = NULL; 6088 goto out_set_next; 6089 } 6090 6091 prev_balance(rq, prev, rf); 6092 6093 smt_mask = cpu_smt_mask(cpu); 6094 need_sync = !!rq->core->core_cookie; 6095 6096 /* reset state */ 6097 rq->core->core_cookie = 0UL; 6098 if (rq->core->core_forceidle_count) { 6099 if (!core_clock_updated) { 6100 update_rq_clock(rq->core); 6101 core_clock_updated = true; 6102 } 6103 sched_core_account_forceidle(rq); 6104 /* reset after accounting force idle */ 6105 rq->core->core_forceidle_start = 0; 6106 rq->core->core_forceidle_count = 0; 6107 rq->core->core_forceidle_occupation = 0; 6108 need_sync = true; 6109 fi_before = true; 6110 } 6111 6112 /* 6113 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6114 * 6115 * @task_seq guards the task state ({en,de}queues) 6116 * @pick_seq is the @task_seq we did a selection on 6117 * @sched_seq is the @pick_seq we scheduled 6118 * 6119 * However, preemptions can cause multiple picks on the same task set. 6120 * 'Fix' this by also increasing @task_seq for every pick. 6121 */ 6122 rq->core->core_task_seq++; 6123 6124 /* 6125 * Optimize for common case where this CPU has no cookies 6126 * and there are no cookied tasks running on siblings. 6127 */ 6128 if (!need_sync) { 6129 next = pick_task(rq); 6130 if (!next->core_cookie) { 6131 rq->core_pick = NULL; 6132 rq->core_dl_server = NULL; 6133 /* 6134 * For robustness, update the min_vruntime_fi for 6135 * unconstrained picks as well. 6136 */ 6137 WARN_ON_ONCE(fi_before); 6138 task_vruntime_update(rq, next, false); 6139 goto out_set_next; 6140 } 6141 } 6142 6143 /* 6144 * For each thread: do the regular task pick and find the max prio task 6145 * amongst them. 6146 * 6147 * Tie-break prio towards the current CPU 6148 */ 6149 for_each_cpu_wrap(i, smt_mask, cpu) { 6150 rq_i = cpu_rq(i); 6151 6152 /* 6153 * Current cpu always has its clock updated on entrance to 6154 * pick_next_task(). If the current cpu is not the core, 6155 * the core may also have been updated above. 6156 */ 6157 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6158 update_rq_clock(rq_i); 6159 6160 rq_i->core_pick = p = pick_task(rq_i); 6161 rq_i->core_dl_server = rq_i->dl_server; 6162 6163 if (!max || prio_less(max, p, fi_before)) 6164 max = p; 6165 } 6166 6167 cookie = rq->core->core_cookie = max->core_cookie; 6168 6169 /* 6170 * For each thread: try and find a runnable task that matches @max or 6171 * force idle. 6172 */ 6173 for_each_cpu(i, smt_mask) { 6174 rq_i = cpu_rq(i); 6175 p = rq_i->core_pick; 6176 6177 if (!cookie_equals(p, cookie)) { 6178 p = NULL; 6179 if (cookie) 6180 p = sched_core_find(rq_i, cookie); 6181 if (!p) 6182 p = idle_sched_class.pick_task(rq_i); 6183 } 6184 6185 rq_i->core_pick = p; 6186 rq_i->core_dl_server = NULL; 6187 6188 if (p == rq_i->idle) { 6189 if (rq_i->nr_running) { 6190 rq->core->core_forceidle_count++; 6191 if (!fi_before) 6192 rq->core->core_forceidle_seq++; 6193 } 6194 } else { 6195 occ++; 6196 } 6197 } 6198 6199 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6200 rq->core->core_forceidle_start = rq_clock(rq->core); 6201 rq->core->core_forceidle_occupation = occ; 6202 } 6203 6204 rq->core->core_pick_seq = rq->core->core_task_seq; 6205 next = rq->core_pick; 6206 rq->core_sched_seq = rq->core->core_pick_seq; 6207 6208 /* Something should have been selected for current CPU */ 6209 WARN_ON_ONCE(!next); 6210 6211 /* 6212 * Reschedule siblings 6213 * 6214 * NOTE: L1TF -- at this point we're no longer running the old task and 6215 * sending an IPI (below) ensures the sibling will no longer be running 6216 * their task. This ensures there is no inter-sibling overlap between 6217 * non-matching user state. 6218 */ 6219 for_each_cpu(i, smt_mask) { 6220 rq_i = cpu_rq(i); 6221 6222 /* 6223 * An online sibling might have gone offline before a task 6224 * could be picked for it, or it might be offline but later 6225 * happen to come online, but its too late and nothing was 6226 * picked for it. That's Ok - it will pick tasks for itself, 6227 * so ignore it. 6228 */ 6229 if (!rq_i->core_pick) 6230 continue; 6231 6232 /* 6233 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6234 * fi_before fi update? 6235 * 0 0 1 6236 * 0 1 1 6237 * 1 0 1 6238 * 1 1 0 6239 */ 6240 if (!(fi_before && rq->core->core_forceidle_count)) 6241 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6242 6243 rq_i->core_pick->core_occupation = occ; 6244 6245 if (i == cpu) { 6246 rq_i->core_pick = NULL; 6247 rq_i->core_dl_server = NULL; 6248 continue; 6249 } 6250 6251 /* Did we break L1TF mitigation requirements? */ 6252 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6253 6254 if (rq_i->curr == rq_i->core_pick) { 6255 rq_i->core_pick = NULL; 6256 rq_i->core_dl_server = NULL; 6257 continue; 6258 } 6259 6260 resched_curr(rq_i); 6261 } 6262 6263 out_set_next: 6264 put_prev_set_next_task(rq, prev, next); 6265 if (rq->core->core_forceidle_count && next == rq->idle) 6266 queue_core_balance(rq); 6267 6268 return next; 6269 } 6270 6271 static bool try_steal_cookie(int this, int that) 6272 { 6273 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6274 struct task_struct *p; 6275 unsigned long cookie; 6276 bool success = false; 6277 6278 guard(irq)(); 6279 guard(double_rq_lock)(dst, src); 6280 6281 cookie = dst->core->core_cookie; 6282 if (!cookie) 6283 return false; 6284 6285 if (dst->curr != dst->idle) 6286 return false; 6287 6288 p = sched_core_find(src, cookie); 6289 if (!p) 6290 return false; 6291 6292 do { 6293 if (p == src->core_pick || p == src->curr) 6294 goto next; 6295 6296 if (!is_cpu_allowed(p, this)) 6297 goto next; 6298 6299 if (p->core_occupation > dst->idle->core_occupation) 6300 goto next; 6301 /* 6302 * sched_core_find() and sched_core_next() will ensure 6303 * that task @p is not throttled now, we also need to 6304 * check whether the runqueue of the destination CPU is 6305 * being throttled. 6306 */ 6307 if (sched_task_is_throttled(p, this)) 6308 goto next; 6309 6310 move_queued_task_locked(src, dst, p); 6311 resched_curr(dst); 6312 6313 success = true; 6314 break; 6315 6316 next: 6317 p = sched_core_next(p, cookie); 6318 } while (p); 6319 6320 return success; 6321 } 6322 6323 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6324 { 6325 int i; 6326 6327 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6328 if (i == cpu) 6329 continue; 6330 6331 if (need_resched()) 6332 break; 6333 6334 if (try_steal_cookie(cpu, i)) 6335 return true; 6336 } 6337 6338 return false; 6339 } 6340 6341 static void sched_core_balance(struct rq *rq) 6342 { 6343 struct sched_domain *sd; 6344 int cpu = cpu_of(rq); 6345 6346 guard(preempt)(); 6347 guard(rcu)(); 6348 6349 raw_spin_rq_unlock_irq(rq); 6350 for_each_domain(cpu, sd) { 6351 if (need_resched()) 6352 break; 6353 6354 if (steal_cookie_task(cpu, sd)) 6355 break; 6356 } 6357 raw_spin_rq_lock_irq(rq); 6358 } 6359 6360 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6361 6362 static void queue_core_balance(struct rq *rq) 6363 { 6364 if (!sched_core_enabled(rq)) 6365 return; 6366 6367 if (!rq->core->core_cookie) 6368 return; 6369 6370 if (!rq->nr_running) /* not forced idle */ 6371 return; 6372 6373 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6374 } 6375 6376 DEFINE_LOCK_GUARD_1(core_lock, int, 6377 sched_core_lock(*_T->lock, &_T->flags), 6378 sched_core_unlock(*_T->lock, &_T->flags), 6379 unsigned long flags) 6380 6381 static void sched_core_cpu_starting(unsigned int cpu) 6382 { 6383 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6384 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6385 int t; 6386 6387 guard(core_lock)(&cpu); 6388 6389 WARN_ON_ONCE(rq->core != rq); 6390 6391 /* if we're the first, we'll be our own leader */ 6392 if (cpumask_weight(smt_mask) == 1) 6393 return; 6394 6395 /* find the leader */ 6396 for_each_cpu(t, smt_mask) { 6397 if (t == cpu) 6398 continue; 6399 rq = cpu_rq(t); 6400 if (rq->core == rq) { 6401 core_rq = rq; 6402 break; 6403 } 6404 } 6405 6406 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6407 return; 6408 6409 /* install and validate core_rq */ 6410 for_each_cpu(t, smt_mask) { 6411 rq = cpu_rq(t); 6412 6413 if (t == cpu) 6414 rq->core = core_rq; 6415 6416 WARN_ON_ONCE(rq->core != core_rq); 6417 } 6418 } 6419 6420 static void sched_core_cpu_deactivate(unsigned int cpu) 6421 { 6422 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6423 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6424 int t; 6425 6426 guard(core_lock)(&cpu); 6427 6428 /* if we're the last man standing, nothing to do */ 6429 if (cpumask_weight(smt_mask) == 1) { 6430 WARN_ON_ONCE(rq->core != rq); 6431 return; 6432 } 6433 6434 /* if we're not the leader, nothing to do */ 6435 if (rq->core != rq) 6436 return; 6437 6438 /* find a new leader */ 6439 for_each_cpu(t, smt_mask) { 6440 if (t == cpu) 6441 continue; 6442 core_rq = cpu_rq(t); 6443 break; 6444 } 6445 6446 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6447 return; 6448 6449 /* copy the shared state to the new leader */ 6450 core_rq->core_task_seq = rq->core_task_seq; 6451 core_rq->core_pick_seq = rq->core_pick_seq; 6452 core_rq->core_cookie = rq->core_cookie; 6453 core_rq->core_forceidle_count = rq->core_forceidle_count; 6454 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6455 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6456 6457 /* 6458 * Accounting edge for forced idle is handled in pick_next_task(). 6459 * Don't need another one here, since the hotplug thread shouldn't 6460 * have a cookie. 6461 */ 6462 core_rq->core_forceidle_start = 0; 6463 6464 /* install new leader */ 6465 for_each_cpu(t, smt_mask) { 6466 rq = cpu_rq(t); 6467 rq->core = core_rq; 6468 } 6469 } 6470 6471 static inline void sched_core_cpu_dying(unsigned int cpu) 6472 { 6473 struct rq *rq = cpu_rq(cpu); 6474 6475 if (rq->core != rq) 6476 rq->core = rq; 6477 } 6478 6479 #else /* !CONFIG_SCHED_CORE: */ 6480 6481 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6482 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6483 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6484 6485 static struct task_struct * 6486 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6487 { 6488 return __pick_next_task(rq, prev, rf); 6489 } 6490 6491 #endif /* !CONFIG_SCHED_CORE */ 6492 6493 /* 6494 * Constants for the sched_mode argument of __schedule(). 6495 * 6496 * The mode argument allows RT enabled kernels to differentiate a 6497 * preemption from blocking on an 'sleeping' spin/rwlock. 6498 */ 6499 #define SM_IDLE (-1) 6500 #define SM_NONE 0 6501 #define SM_PREEMPT 1 6502 #define SM_RTLOCK_WAIT 2 6503 6504 /* 6505 * Helper function for __schedule() 6506 * 6507 * Tries to deactivate the task, unless the should_block arg 6508 * is false or if a signal is pending. In the case a signal 6509 * is pending, marks the task's __state as RUNNING (and clear 6510 * blocked_on). 6511 */ 6512 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6513 unsigned long *task_state_p, bool should_block) 6514 { 6515 unsigned long task_state = *task_state_p; 6516 int flags = DEQUEUE_NOCLOCK; 6517 6518 if (signal_pending_state(task_state, p)) { 6519 WRITE_ONCE(p->__state, TASK_RUNNING); 6520 *task_state_p = TASK_RUNNING; 6521 return false; 6522 } 6523 6524 /* 6525 * We check should_block after signal_pending because we 6526 * will want to wake the task in that case. But if 6527 * should_block is false, its likely due to the task being 6528 * blocked on a mutex, and we want to keep it on the runqueue 6529 * to be selectable for proxy-execution. 6530 */ 6531 if (!should_block) 6532 return false; 6533 6534 p->sched_contributes_to_load = 6535 (task_state & TASK_UNINTERRUPTIBLE) && 6536 !(task_state & TASK_NOLOAD) && 6537 !(task_state & TASK_FROZEN); 6538 6539 if (unlikely(is_special_task_state(task_state))) 6540 flags |= DEQUEUE_SPECIAL; 6541 6542 /* 6543 * __schedule() ttwu() 6544 * prev_state = prev->state; if (p->on_rq && ...) 6545 * if (prev_state) goto out; 6546 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6547 * p->state = TASK_WAKING 6548 * 6549 * Where __schedule() and ttwu() have matching control dependencies. 6550 * 6551 * After this, schedule() must not care about p->state any more. 6552 */ 6553 block_task(rq, p, flags); 6554 return true; 6555 } 6556 6557 #ifdef CONFIG_SCHED_PROXY_EXEC 6558 static inline struct task_struct *proxy_resched_idle(struct rq *rq) 6559 { 6560 put_prev_set_next_task(rq, rq->donor, rq->idle); 6561 rq_set_donor(rq, rq->idle); 6562 set_tsk_need_resched(rq->idle); 6563 return rq->idle; 6564 } 6565 6566 static bool __proxy_deactivate(struct rq *rq, struct task_struct *donor) 6567 { 6568 unsigned long state = READ_ONCE(donor->__state); 6569 6570 /* Don't deactivate if the state has been changed to TASK_RUNNING */ 6571 if (state == TASK_RUNNING) 6572 return false; 6573 /* 6574 * Because we got donor from pick_next_task(), it is *crucial* 6575 * that we call proxy_resched_idle() before we deactivate it. 6576 * As once we deactivate donor, donor->on_rq is set to zero, 6577 * which allows ttwu() to immediately try to wake the task on 6578 * another rq. So we cannot use *any* references to donor 6579 * after that point. So things like cfs_rq->curr or rq->donor 6580 * need to be changed from next *before* we deactivate. 6581 */ 6582 proxy_resched_idle(rq); 6583 return try_to_block_task(rq, donor, &state, true); 6584 } 6585 6586 static struct task_struct *proxy_deactivate(struct rq *rq, struct task_struct *donor) 6587 { 6588 if (!__proxy_deactivate(rq, donor)) { 6589 /* 6590 * XXX: For now, if deactivation failed, set donor 6591 * as unblocked, as we aren't doing proxy-migrations 6592 * yet (more logic will be needed then). 6593 */ 6594 donor->blocked_on = NULL; 6595 } 6596 return NULL; 6597 } 6598 6599 /* 6600 * Find runnable lock owner to proxy for mutex blocked donor 6601 * 6602 * Follow the blocked-on relation: 6603 * task->blocked_on -> mutex->owner -> task... 6604 * 6605 * Lock order: 6606 * 6607 * p->pi_lock 6608 * rq->lock 6609 * mutex->wait_lock 6610 * 6611 * Returns the task that is going to be used as execution context (the one 6612 * that is actually going to be run on cpu_of(rq)). 6613 */ 6614 static struct task_struct * 6615 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) 6616 { 6617 struct task_struct *owner = NULL; 6618 int this_cpu = cpu_of(rq); 6619 struct task_struct *p; 6620 struct mutex *mutex; 6621 6622 /* Follow blocked_on chain. */ 6623 for (p = donor; task_is_blocked(p); p = owner) { 6624 mutex = p->blocked_on; 6625 /* Something changed in the chain, so pick again */ 6626 if (!mutex) 6627 return NULL; 6628 /* 6629 * By taking mutex->wait_lock we hold off concurrent mutex_unlock() 6630 * and ensure @owner sticks around. 6631 */ 6632 guard(raw_spinlock)(&mutex->wait_lock); 6633 6634 /* Check again that p is blocked with wait_lock held */ 6635 if (mutex != __get_task_blocked_on(p)) { 6636 /* 6637 * Something changed in the blocked_on chain and 6638 * we don't know if only at this level. So, let's 6639 * just bail out completely and let __schedule() 6640 * figure things out (pick_again loop). 6641 */ 6642 return NULL; 6643 } 6644 6645 owner = __mutex_owner(mutex); 6646 if (!owner) { 6647 __clear_task_blocked_on(p, mutex); 6648 return p; 6649 } 6650 6651 if (!READ_ONCE(owner->on_rq) || owner->se.sched_delayed) { 6652 /* XXX Don't handle blocked owners/delayed dequeue yet */ 6653 return proxy_deactivate(rq, donor); 6654 } 6655 6656 if (task_cpu(owner) != this_cpu) { 6657 /* XXX Don't handle migrations yet */ 6658 return proxy_deactivate(rq, donor); 6659 } 6660 6661 if (task_on_rq_migrating(owner)) { 6662 /* 6663 * One of the chain of mutex owners is currently migrating to this 6664 * CPU, but has not yet been enqueued because we are holding the 6665 * rq lock. As a simple solution, just schedule rq->idle to give 6666 * the migration a chance to complete. Much like the migrate_task 6667 * case we should end up back in find_proxy_task(), this time 6668 * hopefully with all relevant tasks already enqueued. 6669 */ 6670 return proxy_resched_idle(rq); 6671 } 6672 6673 /* 6674 * Its possible to race where after we check owner->on_rq 6675 * but before we check (owner_cpu != this_cpu) that the 6676 * task on another cpu was migrated back to this cpu. In 6677 * that case it could slip by our checks. So double check 6678 * we are still on this cpu and not migrating. If we get 6679 * inconsistent results, try again. 6680 */ 6681 if (!task_on_rq_queued(owner) || task_cpu(owner) != this_cpu) 6682 return NULL; 6683 6684 if (owner == p) { 6685 /* 6686 * It's possible we interleave with mutex_unlock like: 6687 * 6688 * lock(&rq->lock); 6689 * find_proxy_task() 6690 * mutex_unlock() 6691 * lock(&wait_lock); 6692 * donor(owner) = current->blocked_donor; 6693 * unlock(&wait_lock); 6694 * 6695 * wake_up_q(); 6696 * ... 6697 * ttwu_runnable() 6698 * __task_rq_lock() 6699 * lock(&wait_lock); 6700 * owner == p 6701 * 6702 * Which leaves us to finish the ttwu_runnable() and make it go. 6703 * 6704 * So schedule rq->idle so that ttwu_runnable() can get the rq 6705 * lock and mark owner as running. 6706 */ 6707 return proxy_resched_idle(rq); 6708 } 6709 /* 6710 * OK, now we're absolutely sure @owner is on this 6711 * rq, therefore holding @rq->lock is sufficient to 6712 * guarantee its existence, as per ttwu_remote(). 6713 */ 6714 } 6715 6716 WARN_ON_ONCE(owner && !owner->on_rq); 6717 return owner; 6718 } 6719 #else /* SCHED_PROXY_EXEC */ 6720 static struct task_struct * 6721 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf) 6722 { 6723 WARN_ONCE(1, "This should never be called in the !SCHED_PROXY_EXEC case\n"); 6724 return donor; 6725 } 6726 #endif /* SCHED_PROXY_EXEC */ 6727 6728 static inline void proxy_tag_curr(struct rq *rq, struct task_struct *owner) 6729 { 6730 if (!sched_proxy_exec()) 6731 return; 6732 /* 6733 * pick_next_task() calls set_next_task() on the chosen task 6734 * at some point, which ensures it is not push/pullable. 6735 * However, the chosen/donor task *and* the mutex owner form an 6736 * atomic pair wrt push/pull. 6737 * 6738 * Make sure owner we run is not pushable. Unfortunately we can 6739 * only deal with that by means of a dequeue/enqueue cycle. :-/ 6740 */ 6741 dequeue_task(rq, owner, DEQUEUE_NOCLOCK | DEQUEUE_SAVE); 6742 enqueue_task(rq, owner, ENQUEUE_NOCLOCK | ENQUEUE_RESTORE); 6743 } 6744 6745 /* 6746 * __schedule() is the main scheduler function. 6747 * 6748 * The main means of driving the scheduler and thus entering this function are: 6749 * 6750 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6751 * 6752 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6753 * paths. For example, see arch/x86/entry_64.S. 6754 * 6755 * To drive preemption between tasks, the scheduler sets the flag in timer 6756 * interrupt handler sched_tick(). 6757 * 6758 * 3. Wakeups don't really cause entry into schedule(). They add a 6759 * task to the run-queue and that's it. 6760 * 6761 * Now, if the new task added to the run-queue preempts the current 6762 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6763 * called on the nearest possible occasion: 6764 * 6765 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6766 * 6767 * - in syscall or exception context, at the next outmost 6768 * preempt_enable(). (this might be as soon as the wake_up()'s 6769 * spin_unlock()!) 6770 * 6771 * - in IRQ context, return from interrupt-handler to 6772 * preemptible context 6773 * 6774 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6775 * then at the next: 6776 * 6777 * - cond_resched() call 6778 * - explicit schedule() call 6779 * - return from syscall or exception to user-space 6780 * - return from interrupt-handler to user-space 6781 * 6782 * WARNING: must be called with preemption disabled! 6783 */ 6784 static void __sched notrace __schedule(int sched_mode) 6785 { 6786 struct task_struct *prev, *next; 6787 /* 6788 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6789 * as a preemption by schedule_debug() and RCU. 6790 */ 6791 bool preempt = sched_mode > SM_NONE; 6792 bool is_switch = false; 6793 unsigned long *switch_count; 6794 unsigned long prev_state; 6795 struct rq_flags rf; 6796 struct rq *rq; 6797 int cpu; 6798 6799 /* Trace preemptions consistently with task switches */ 6800 trace_sched_entry_tp(sched_mode == SM_PREEMPT); 6801 6802 cpu = smp_processor_id(); 6803 rq = cpu_rq(cpu); 6804 prev = rq->curr; 6805 6806 schedule_debug(prev, preempt); 6807 6808 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6809 hrtick_clear(rq); 6810 6811 klp_sched_try_switch(prev); 6812 6813 local_irq_disable(); 6814 rcu_note_context_switch(preempt); 6815 6816 /* 6817 * Make sure that signal_pending_state()->signal_pending() below 6818 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6819 * done by the caller to avoid the race with signal_wake_up(): 6820 * 6821 * __set_current_state(@state) signal_wake_up() 6822 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6823 * wake_up_state(p, state) 6824 * LOCK rq->lock LOCK p->pi_state 6825 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6826 * if (signal_pending_state()) if (p->state & @state) 6827 * 6828 * Also, the membarrier system call requires a full memory barrier 6829 * after coming from user-space, before storing to rq->curr; this 6830 * barrier matches a full barrier in the proximity of the membarrier 6831 * system call exit. 6832 */ 6833 rq_lock(rq, &rf); 6834 smp_mb__after_spinlock(); 6835 6836 /* Promote REQ to ACT */ 6837 rq->clock_update_flags <<= 1; 6838 update_rq_clock(rq); 6839 rq->clock_update_flags = RQCF_UPDATED; 6840 6841 switch_count = &prev->nivcsw; 6842 6843 /* Task state changes only considers SM_PREEMPT as preemption */ 6844 preempt = sched_mode == SM_PREEMPT; 6845 6846 /* 6847 * We must load prev->state once (task_struct::state is volatile), such 6848 * that we form a control dependency vs deactivate_task() below. 6849 */ 6850 prev_state = READ_ONCE(prev->__state); 6851 if (sched_mode == SM_IDLE) { 6852 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6853 if (!rq->nr_running && !scx_enabled()) { 6854 next = prev; 6855 goto picked; 6856 } 6857 } else if (!preempt && prev_state) { 6858 /* 6859 * We pass task_is_blocked() as the should_block arg 6860 * in order to keep mutex-blocked tasks on the runqueue 6861 * for slection with proxy-exec (without proxy-exec 6862 * task_is_blocked() will always be false). 6863 */ 6864 try_to_block_task(rq, prev, &prev_state, 6865 !task_is_blocked(prev)); 6866 switch_count = &prev->nvcsw; 6867 } 6868 6869 pick_again: 6870 next = pick_next_task(rq, rq->donor, &rf); 6871 rq_set_donor(rq, next); 6872 if (unlikely(task_is_blocked(next))) { 6873 next = find_proxy_task(rq, next, &rf); 6874 if (!next) 6875 goto pick_again; 6876 if (next == rq->idle) 6877 goto keep_resched; 6878 } 6879 picked: 6880 clear_tsk_need_resched(prev); 6881 clear_preempt_need_resched(); 6882 keep_resched: 6883 rq->last_seen_need_resched_ns = 0; 6884 6885 is_switch = prev != next; 6886 if (likely(is_switch)) { 6887 rq->nr_switches++; 6888 /* 6889 * RCU users of rcu_dereference(rq->curr) may not see 6890 * changes to task_struct made by pick_next_task(). 6891 */ 6892 RCU_INIT_POINTER(rq->curr, next); 6893 6894 if (!task_current_donor(rq, next)) 6895 proxy_tag_curr(rq, next); 6896 6897 /* 6898 * The membarrier system call requires each architecture 6899 * to have a full memory barrier after updating 6900 * rq->curr, before returning to user-space. 6901 * 6902 * Here are the schemes providing that barrier on the 6903 * various architectures: 6904 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6905 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6906 * on PowerPC and on RISC-V. 6907 * - finish_lock_switch() for weakly-ordered 6908 * architectures where spin_unlock is a full barrier, 6909 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6910 * is a RELEASE barrier), 6911 * 6912 * The barrier matches a full barrier in the proximity of 6913 * the membarrier system call entry. 6914 * 6915 * On RISC-V, this barrier pairing is also needed for the 6916 * SYNC_CORE command when switching between processes, cf. 6917 * the inline comments in membarrier_arch_switch_mm(). 6918 */ 6919 ++*switch_count; 6920 6921 migrate_disable_switch(rq, prev); 6922 psi_account_irqtime(rq, prev, next); 6923 psi_sched_switch(prev, next, !task_on_rq_queued(prev) || 6924 prev->se.sched_delayed); 6925 6926 trace_sched_switch(preempt, prev, next, prev_state); 6927 6928 /* Also unlocks the rq: */ 6929 rq = context_switch(rq, prev, next, &rf); 6930 } else { 6931 /* In case next was already curr but just got blocked_donor */ 6932 if (!task_current_donor(rq, next)) 6933 proxy_tag_curr(rq, next); 6934 6935 rq_unpin_lock(rq, &rf); 6936 __balance_callbacks(rq); 6937 raw_spin_rq_unlock_irq(rq); 6938 } 6939 trace_sched_exit_tp(is_switch); 6940 } 6941 6942 void __noreturn do_task_dead(void) 6943 { 6944 /* Causes final put_task_struct in finish_task_switch(): */ 6945 set_special_state(TASK_DEAD); 6946 6947 /* Tell freezer to ignore us: */ 6948 current->flags |= PF_NOFREEZE; 6949 6950 __schedule(SM_NONE); 6951 BUG(); 6952 6953 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6954 for (;;) 6955 cpu_relax(); 6956 } 6957 6958 static inline void sched_submit_work(struct task_struct *tsk) 6959 { 6960 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6961 unsigned int task_flags; 6962 6963 /* 6964 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6965 * will use a blocking primitive -- which would lead to recursion. 6966 */ 6967 lock_map_acquire_try(&sched_map); 6968 6969 task_flags = tsk->flags; 6970 /* 6971 * If a worker goes to sleep, notify and ask workqueue whether it 6972 * wants to wake up a task to maintain concurrency. 6973 */ 6974 if (task_flags & PF_WQ_WORKER) 6975 wq_worker_sleeping(tsk); 6976 else if (task_flags & PF_IO_WORKER) 6977 io_wq_worker_sleeping(tsk); 6978 6979 /* 6980 * spinlock and rwlock must not flush block requests. This will 6981 * deadlock if the callback attempts to acquire a lock which is 6982 * already acquired. 6983 */ 6984 WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); 6985 6986 /* 6987 * If we are going to sleep and we have plugged IO queued, 6988 * make sure to submit it to avoid deadlocks. 6989 */ 6990 blk_flush_plug(tsk->plug, true); 6991 6992 lock_map_release(&sched_map); 6993 } 6994 6995 static void sched_update_worker(struct task_struct *tsk) 6996 { 6997 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6998 if (tsk->flags & PF_BLOCK_TS) 6999 blk_plug_invalidate_ts(tsk); 7000 if (tsk->flags & PF_WQ_WORKER) 7001 wq_worker_running(tsk); 7002 else if (tsk->flags & PF_IO_WORKER) 7003 io_wq_worker_running(tsk); 7004 } 7005 } 7006 7007 static __always_inline void __schedule_loop(int sched_mode) 7008 { 7009 do { 7010 preempt_disable(); 7011 __schedule(sched_mode); 7012 sched_preempt_enable_no_resched(); 7013 } while (need_resched()); 7014 } 7015 7016 asmlinkage __visible void __sched schedule(void) 7017 { 7018 struct task_struct *tsk = current; 7019 7020 #ifdef CONFIG_RT_MUTEXES 7021 lockdep_assert(!tsk->sched_rt_mutex); 7022 #endif 7023 7024 if (!task_is_running(tsk)) 7025 sched_submit_work(tsk); 7026 __schedule_loop(SM_NONE); 7027 sched_update_worker(tsk); 7028 } 7029 EXPORT_SYMBOL(schedule); 7030 7031 /* 7032 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 7033 * state (have scheduled out non-voluntarily) by making sure that all 7034 * tasks have either left the run queue or have gone into user space. 7035 * As idle tasks do not do either, they must not ever be preempted 7036 * (schedule out non-voluntarily). 7037 * 7038 * schedule_idle() is similar to schedule_preempt_disable() except that it 7039 * never enables preemption because it does not call sched_submit_work(). 7040 */ 7041 void __sched schedule_idle(void) 7042 { 7043 /* 7044 * As this skips calling sched_submit_work(), which the idle task does 7045 * regardless because that function is a NOP when the task is in a 7046 * TASK_RUNNING state, make sure this isn't used someplace that the 7047 * current task can be in any other state. Note, idle is always in the 7048 * TASK_RUNNING state. 7049 */ 7050 WARN_ON_ONCE(current->__state); 7051 do { 7052 __schedule(SM_IDLE); 7053 } while (need_resched()); 7054 } 7055 7056 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 7057 asmlinkage __visible void __sched schedule_user(void) 7058 { 7059 /* 7060 * If we come here after a random call to set_need_resched(), 7061 * or we have been woken up remotely but the IPI has not yet arrived, 7062 * we haven't yet exited the RCU idle mode. Do it here manually until 7063 * we find a better solution. 7064 * 7065 * NB: There are buggy callers of this function. Ideally we 7066 * should warn if prev_state != CT_STATE_USER, but that will trigger 7067 * too frequently to make sense yet. 7068 */ 7069 enum ctx_state prev_state = exception_enter(); 7070 schedule(); 7071 exception_exit(prev_state); 7072 } 7073 #endif 7074 7075 /** 7076 * schedule_preempt_disabled - called with preemption disabled 7077 * 7078 * Returns with preemption disabled. Note: preempt_count must be 1 7079 */ 7080 void __sched schedule_preempt_disabled(void) 7081 { 7082 sched_preempt_enable_no_resched(); 7083 schedule(); 7084 preempt_disable(); 7085 } 7086 7087 #ifdef CONFIG_PREEMPT_RT 7088 void __sched notrace schedule_rtlock(void) 7089 { 7090 __schedule_loop(SM_RTLOCK_WAIT); 7091 } 7092 NOKPROBE_SYMBOL(schedule_rtlock); 7093 #endif 7094 7095 static void __sched notrace preempt_schedule_common(void) 7096 { 7097 do { 7098 /* 7099 * Because the function tracer can trace preempt_count_sub() 7100 * and it also uses preempt_enable/disable_notrace(), if 7101 * NEED_RESCHED is set, the preempt_enable_notrace() called 7102 * by the function tracer will call this function again and 7103 * cause infinite recursion. 7104 * 7105 * Preemption must be disabled here before the function 7106 * tracer can trace. Break up preempt_disable() into two 7107 * calls. One to disable preemption without fear of being 7108 * traced. The other to still record the preemption latency, 7109 * which can also be traced by the function tracer. 7110 */ 7111 preempt_disable_notrace(); 7112 preempt_latency_start(1); 7113 __schedule(SM_PREEMPT); 7114 preempt_latency_stop(1); 7115 preempt_enable_no_resched_notrace(); 7116 7117 /* 7118 * Check again in case we missed a preemption opportunity 7119 * between schedule and now. 7120 */ 7121 } while (need_resched()); 7122 } 7123 7124 #ifdef CONFIG_PREEMPTION 7125 /* 7126 * This is the entry point to schedule() from in-kernel preemption 7127 * off of preempt_enable. 7128 */ 7129 asmlinkage __visible void __sched notrace preempt_schedule(void) 7130 { 7131 /* 7132 * If there is a non-zero preempt_count or interrupts are disabled, 7133 * we do not want to preempt the current task. Just return.. 7134 */ 7135 if (likely(!preemptible())) 7136 return; 7137 preempt_schedule_common(); 7138 } 7139 NOKPROBE_SYMBOL(preempt_schedule); 7140 EXPORT_SYMBOL(preempt_schedule); 7141 7142 #ifdef CONFIG_PREEMPT_DYNAMIC 7143 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7144 # ifndef preempt_schedule_dynamic_enabled 7145 # define preempt_schedule_dynamic_enabled preempt_schedule 7146 # define preempt_schedule_dynamic_disabled NULL 7147 # endif 7148 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 7149 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 7150 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7151 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 7152 void __sched notrace dynamic_preempt_schedule(void) 7153 { 7154 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 7155 return; 7156 preempt_schedule(); 7157 } 7158 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 7159 EXPORT_SYMBOL(dynamic_preempt_schedule); 7160 # endif 7161 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7162 7163 /** 7164 * preempt_schedule_notrace - preempt_schedule called by tracing 7165 * 7166 * The tracing infrastructure uses preempt_enable_notrace to prevent 7167 * recursion and tracing preempt enabling caused by the tracing 7168 * infrastructure itself. But as tracing can happen in areas coming 7169 * from userspace or just about to enter userspace, a preempt enable 7170 * can occur before user_exit() is called. This will cause the scheduler 7171 * to be called when the system is still in usermode. 7172 * 7173 * To prevent this, the preempt_enable_notrace will use this function 7174 * instead of preempt_schedule() to exit user context if needed before 7175 * calling the scheduler. 7176 */ 7177 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 7178 { 7179 enum ctx_state prev_ctx; 7180 7181 if (likely(!preemptible())) 7182 return; 7183 7184 do { 7185 /* 7186 * Because the function tracer can trace preempt_count_sub() 7187 * and it also uses preempt_enable/disable_notrace(), if 7188 * NEED_RESCHED is set, the preempt_enable_notrace() called 7189 * by the function tracer will call this function again and 7190 * cause infinite recursion. 7191 * 7192 * Preemption must be disabled here before the function 7193 * tracer can trace. Break up preempt_disable() into two 7194 * calls. One to disable preemption without fear of being 7195 * traced. The other to still record the preemption latency, 7196 * which can also be traced by the function tracer. 7197 */ 7198 preempt_disable_notrace(); 7199 preempt_latency_start(1); 7200 /* 7201 * Needs preempt disabled in case user_exit() is traced 7202 * and the tracer calls preempt_enable_notrace() causing 7203 * an infinite recursion. 7204 */ 7205 prev_ctx = exception_enter(); 7206 __schedule(SM_PREEMPT); 7207 exception_exit(prev_ctx); 7208 7209 preempt_latency_stop(1); 7210 preempt_enable_no_resched_notrace(); 7211 } while (need_resched()); 7212 } 7213 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 7214 7215 #ifdef CONFIG_PREEMPT_DYNAMIC 7216 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7217 # ifndef preempt_schedule_notrace_dynamic_enabled 7218 # define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 7219 # define preempt_schedule_notrace_dynamic_disabled NULL 7220 # endif 7221 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 7222 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 7223 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7224 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 7225 void __sched notrace dynamic_preempt_schedule_notrace(void) 7226 { 7227 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 7228 return; 7229 preempt_schedule_notrace(); 7230 } 7231 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 7232 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 7233 # endif 7234 #endif 7235 7236 #endif /* CONFIG_PREEMPTION */ 7237 7238 /* 7239 * This is the entry point to schedule() from kernel preemption 7240 * off of IRQ context. 7241 * Note, that this is called and return with IRQs disabled. This will 7242 * protect us against recursive calling from IRQ contexts. 7243 */ 7244 asmlinkage __visible void __sched preempt_schedule_irq(void) 7245 { 7246 enum ctx_state prev_state; 7247 7248 /* Catch callers which need to be fixed */ 7249 BUG_ON(preempt_count() || !irqs_disabled()); 7250 7251 prev_state = exception_enter(); 7252 7253 do { 7254 preempt_disable(); 7255 local_irq_enable(); 7256 __schedule(SM_PREEMPT); 7257 local_irq_disable(); 7258 sched_preempt_enable_no_resched(); 7259 } while (need_resched()); 7260 7261 exception_exit(prev_state); 7262 } 7263 7264 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7265 void *key) 7266 { 7267 WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7268 return try_to_wake_up(curr->private, mode, wake_flags); 7269 } 7270 EXPORT_SYMBOL(default_wake_function); 7271 7272 const struct sched_class *__setscheduler_class(int policy, int prio) 7273 { 7274 if (dl_prio(prio)) 7275 return &dl_sched_class; 7276 7277 if (rt_prio(prio)) 7278 return &rt_sched_class; 7279 7280 #ifdef CONFIG_SCHED_CLASS_EXT 7281 if (task_should_scx(policy)) 7282 return &ext_sched_class; 7283 #endif 7284 7285 return &fair_sched_class; 7286 } 7287 7288 #ifdef CONFIG_RT_MUTEXES 7289 7290 /* 7291 * Would be more useful with typeof()/auto_type but they don't mix with 7292 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7293 * name such that if someone were to implement this function we get to compare 7294 * notes. 7295 */ 7296 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7297 7298 void rt_mutex_pre_schedule(void) 7299 { 7300 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7301 sched_submit_work(current); 7302 } 7303 7304 void rt_mutex_schedule(void) 7305 { 7306 lockdep_assert(current->sched_rt_mutex); 7307 __schedule_loop(SM_NONE); 7308 } 7309 7310 void rt_mutex_post_schedule(void) 7311 { 7312 sched_update_worker(current); 7313 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7314 } 7315 7316 /* 7317 * rt_mutex_setprio - set the current priority of a task 7318 * @p: task to boost 7319 * @pi_task: donor task 7320 * 7321 * This function changes the 'effective' priority of a task. It does 7322 * not touch ->normal_prio like __setscheduler(). 7323 * 7324 * Used by the rt_mutex code to implement priority inheritance 7325 * logic. Call site only calls if the priority of the task changed. 7326 */ 7327 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7328 { 7329 int prio, oldprio, queued, running, queue_flag = 7330 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7331 const struct sched_class *prev_class, *next_class; 7332 struct rq_flags rf; 7333 struct rq *rq; 7334 7335 /* XXX used to be waiter->prio, not waiter->task->prio */ 7336 prio = __rt_effective_prio(pi_task, p->normal_prio); 7337 7338 /* 7339 * If nothing changed; bail early. 7340 */ 7341 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7342 return; 7343 7344 rq = __task_rq_lock(p, &rf); 7345 update_rq_clock(rq); 7346 /* 7347 * Set under pi_lock && rq->lock, such that the value can be used under 7348 * either lock. 7349 * 7350 * Note that there is loads of tricky to make this pointer cache work 7351 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7352 * ensure a task is de-boosted (pi_task is set to NULL) before the 7353 * task is allowed to run again (and can exit). This ensures the pointer 7354 * points to a blocked task -- which guarantees the task is present. 7355 */ 7356 p->pi_top_task = pi_task; 7357 7358 /* 7359 * For FIFO/RR we only need to set prio, if that matches we're done. 7360 */ 7361 if (prio == p->prio && !dl_prio(prio)) 7362 goto out_unlock; 7363 7364 /* 7365 * Idle task boosting is a no-no in general. There is one 7366 * exception, when PREEMPT_RT and NOHZ is active: 7367 * 7368 * The idle task calls get_next_timer_interrupt() and holds 7369 * the timer wheel base->lock on the CPU and another CPU wants 7370 * to access the timer (probably to cancel it). We can safely 7371 * ignore the boosting request, as the idle CPU runs this code 7372 * with interrupts disabled and will complete the lock 7373 * protected section without being interrupted. So there is no 7374 * real need to boost. 7375 */ 7376 if (unlikely(p == rq->idle)) { 7377 WARN_ON(p != rq->curr); 7378 WARN_ON(p->pi_blocked_on); 7379 goto out_unlock; 7380 } 7381 7382 trace_sched_pi_setprio(p, pi_task); 7383 oldprio = p->prio; 7384 7385 if (oldprio == prio) 7386 queue_flag &= ~DEQUEUE_MOVE; 7387 7388 prev_class = p->sched_class; 7389 next_class = __setscheduler_class(p->policy, prio); 7390 7391 if (prev_class != next_class && p->se.sched_delayed) 7392 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 7393 7394 queued = task_on_rq_queued(p); 7395 running = task_current_donor(rq, p); 7396 if (queued) 7397 dequeue_task(rq, p, queue_flag); 7398 if (running) 7399 put_prev_task(rq, p); 7400 7401 /* 7402 * Boosting condition are: 7403 * 1. -rt task is running and holds mutex A 7404 * --> -dl task blocks on mutex A 7405 * 7406 * 2. -dl task is running and holds mutex A 7407 * --> -dl task blocks on mutex A and could preempt the 7408 * running task 7409 */ 7410 if (dl_prio(prio)) { 7411 if (!dl_prio(p->normal_prio) || 7412 (pi_task && dl_prio(pi_task->prio) && 7413 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7414 p->dl.pi_se = pi_task->dl.pi_se; 7415 queue_flag |= ENQUEUE_REPLENISH; 7416 } else { 7417 p->dl.pi_se = &p->dl; 7418 } 7419 } else if (rt_prio(prio)) { 7420 if (dl_prio(oldprio)) 7421 p->dl.pi_se = &p->dl; 7422 if (oldprio < prio) 7423 queue_flag |= ENQUEUE_HEAD; 7424 } else { 7425 if (dl_prio(oldprio)) 7426 p->dl.pi_se = &p->dl; 7427 if (rt_prio(oldprio)) 7428 p->rt.timeout = 0; 7429 } 7430 7431 p->sched_class = next_class; 7432 p->prio = prio; 7433 7434 check_class_changing(rq, p, prev_class); 7435 7436 if (queued) 7437 enqueue_task(rq, p, queue_flag); 7438 if (running) 7439 set_next_task(rq, p); 7440 7441 check_class_changed(rq, p, prev_class, oldprio); 7442 out_unlock: 7443 /* Avoid rq from going away on us: */ 7444 preempt_disable(); 7445 7446 rq_unpin_lock(rq, &rf); 7447 __balance_callbacks(rq); 7448 raw_spin_rq_unlock(rq); 7449 7450 preempt_enable(); 7451 } 7452 #endif /* CONFIG_RT_MUTEXES */ 7453 7454 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7455 int __sched __cond_resched(void) 7456 { 7457 if (should_resched(0) && !irqs_disabled()) { 7458 preempt_schedule_common(); 7459 return 1; 7460 } 7461 /* 7462 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick 7463 * whether the current CPU is in an RCU read-side critical section, 7464 * so the tick can report quiescent states even for CPUs looping 7465 * in kernel context. In contrast, in non-preemptible kernels, 7466 * RCU readers leave no in-memory hints, which means that CPU-bound 7467 * processes executing in kernel context might never report an 7468 * RCU quiescent state. Therefore, the following code causes 7469 * cond_resched() to report a quiescent state, but only when RCU 7470 * is in urgent need of one. 7471 * A third case, preemptible, but non-PREEMPT_RCU provides for 7472 * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). 7473 */ 7474 #ifndef CONFIG_PREEMPT_RCU 7475 rcu_all_qs(); 7476 #endif 7477 return 0; 7478 } 7479 EXPORT_SYMBOL(__cond_resched); 7480 #endif 7481 7482 #ifdef CONFIG_PREEMPT_DYNAMIC 7483 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7484 # define cond_resched_dynamic_enabled __cond_resched 7485 # define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7486 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7487 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7488 7489 # define might_resched_dynamic_enabled __cond_resched 7490 # define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7491 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7492 EXPORT_STATIC_CALL_TRAMP(might_resched); 7493 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7494 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7495 int __sched dynamic_cond_resched(void) 7496 { 7497 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7498 return 0; 7499 return __cond_resched(); 7500 } 7501 EXPORT_SYMBOL(dynamic_cond_resched); 7502 7503 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7504 int __sched dynamic_might_resched(void) 7505 { 7506 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7507 return 0; 7508 return __cond_resched(); 7509 } 7510 EXPORT_SYMBOL(dynamic_might_resched); 7511 # endif 7512 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7513 7514 /* 7515 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7516 * call schedule, and on return reacquire the lock. 7517 * 7518 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7519 * operations here to prevent schedule() from being called twice (once via 7520 * spin_unlock(), once by hand). 7521 */ 7522 int __cond_resched_lock(spinlock_t *lock) 7523 { 7524 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7525 int ret = 0; 7526 7527 lockdep_assert_held(lock); 7528 7529 if (spin_needbreak(lock) || resched) { 7530 spin_unlock(lock); 7531 if (!_cond_resched()) 7532 cpu_relax(); 7533 ret = 1; 7534 spin_lock(lock); 7535 } 7536 return ret; 7537 } 7538 EXPORT_SYMBOL(__cond_resched_lock); 7539 7540 int __cond_resched_rwlock_read(rwlock_t *lock) 7541 { 7542 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7543 int ret = 0; 7544 7545 lockdep_assert_held_read(lock); 7546 7547 if (rwlock_needbreak(lock) || resched) { 7548 read_unlock(lock); 7549 if (!_cond_resched()) 7550 cpu_relax(); 7551 ret = 1; 7552 read_lock(lock); 7553 } 7554 return ret; 7555 } 7556 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7557 7558 int __cond_resched_rwlock_write(rwlock_t *lock) 7559 { 7560 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7561 int ret = 0; 7562 7563 lockdep_assert_held_write(lock); 7564 7565 if (rwlock_needbreak(lock) || resched) { 7566 write_unlock(lock); 7567 if (!_cond_resched()) 7568 cpu_relax(); 7569 ret = 1; 7570 write_lock(lock); 7571 } 7572 return ret; 7573 } 7574 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7575 7576 #ifdef CONFIG_PREEMPT_DYNAMIC 7577 7578 # ifdef CONFIG_GENERIC_IRQ_ENTRY 7579 # include <linux/irq-entry-common.h> 7580 # endif 7581 7582 /* 7583 * SC:cond_resched 7584 * SC:might_resched 7585 * SC:preempt_schedule 7586 * SC:preempt_schedule_notrace 7587 * SC:irqentry_exit_cond_resched 7588 * 7589 * 7590 * NONE: 7591 * cond_resched <- __cond_resched 7592 * might_resched <- RET0 7593 * preempt_schedule <- NOP 7594 * preempt_schedule_notrace <- NOP 7595 * irqentry_exit_cond_resched <- NOP 7596 * dynamic_preempt_lazy <- false 7597 * 7598 * VOLUNTARY: 7599 * cond_resched <- __cond_resched 7600 * might_resched <- __cond_resched 7601 * preempt_schedule <- NOP 7602 * preempt_schedule_notrace <- NOP 7603 * irqentry_exit_cond_resched <- NOP 7604 * dynamic_preempt_lazy <- false 7605 * 7606 * FULL: 7607 * cond_resched <- RET0 7608 * might_resched <- RET0 7609 * preempt_schedule <- preempt_schedule 7610 * preempt_schedule_notrace <- preempt_schedule_notrace 7611 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7612 * dynamic_preempt_lazy <- false 7613 * 7614 * LAZY: 7615 * cond_resched <- RET0 7616 * might_resched <- RET0 7617 * preempt_schedule <- preempt_schedule 7618 * preempt_schedule_notrace <- preempt_schedule_notrace 7619 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7620 * dynamic_preempt_lazy <- true 7621 */ 7622 7623 enum { 7624 preempt_dynamic_undefined = -1, 7625 preempt_dynamic_none, 7626 preempt_dynamic_voluntary, 7627 preempt_dynamic_full, 7628 preempt_dynamic_lazy, 7629 }; 7630 7631 int preempt_dynamic_mode = preempt_dynamic_undefined; 7632 7633 int sched_dynamic_mode(const char *str) 7634 { 7635 # ifndef CONFIG_PREEMPT_RT 7636 if (!strcmp(str, "none")) 7637 return preempt_dynamic_none; 7638 7639 if (!strcmp(str, "voluntary")) 7640 return preempt_dynamic_voluntary; 7641 # endif 7642 7643 if (!strcmp(str, "full")) 7644 return preempt_dynamic_full; 7645 7646 # ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7647 if (!strcmp(str, "lazy")) 7648 return preempt_dynamic_lazy; 7649 # endif 7650 7651 return -EINVAL; 7652 } 7653 7654 # define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7655 # define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7656 7657 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7658 # define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7659 # define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7660 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7661 # define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7662 # define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7663 # else 7664 # error "Unsupported PREEMPT_DYNAMIC mechanism" 7665 # endif 7666 7667 static DEFINE_MUTEX(sched_dynamic_mutex); 7668 7669 static void __sched_dynamic_update(int mode) 7670 { 7671 /* 7672 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7673 * the ZERO state, which is invalid. 7674 */ 7675 preempt_dynamic_enable(cond_resched); 7676 preempt_dynamic_enable(might_resched); 7677 preempt_dynamic_enable(preempt_schedule); 7678 preempt_dynamic_enable(preempt_schedule_notrace); 7679 preempt_dynamic_enable(irqentry_exit_cond_resched); 7680 preempt_dynamic_key_disable(preempt_lazy); 7681 7682 switch (mode) { 7683 case preempt_dynamic_none: 7684 preempt_dynamic_enable(cond_resched); 7685 preempt_dynamic_disable(might_resched); 7686 preempt_dynamic_disable(preempt_schedule); 7687 preempt_dynamic_disable(preempt_schedule_notrace); 7688 preempt_dynamic_disable(irqentry_exit_cond_resched); 7689 preempt_dynamic_key_disable(preempt_lazy); 7690 if (mode != preempt_dynamic_mode) 7691 pr_info("Dynamic Preempt: none\n"); 7692 break; 7693 7694 case preempt_dynamic_voluntary: 7695 preempt_dynamic_enable(cond_resched); 7696 preempt_dynamic_enable(might_resched); 7697 preempt_dynamic_disable(preempt_schedule); 7698 preempt_dynamic_disable(preempt_schedule_notrace); 7699 preempt_dynamic_disable(irqentry_exit_cond_resched); 7700 preempt_dynamic_key_disable(preempt_lazy); 7701 if (mode != preempt_dynamic_mode) 7702 pr_info("Dynamic Preempt: voluntary\n"); 7703 break; 7704 7705 case preempt_dynamic_full: 7706 preempt_dynamic_disable(cond_resched); 7707 preempt_dynamic_disable(might_resched); 7708 preempt_dynamic_enable(preempt_schedule); 7709 preempt_dynamic_enable(preempt_schedule_notrace); 7710 preempt_dynamic_enable(irqentry_exit_cond_resched); 7711 preempt_dynamic_key_disable(preempt_lazy); 7712 if (mode != preempt_dynamic_mode) 7713 pr_info("Dynamic Preempt: full\n"); 7714 break; 7715 7716 case preempt_dynamic_lazy: 7717 preempt_dynamic_disable(cond_resched); 7718 preempt_dynamic_disable(might_resched); 7719 preempt_dynamic_enable(preempt_schedule); 7720 preempt_dynamic_enable(preempt_schedule_notrace); 7721 preempt_dynamic_enable(irqentry_exit_cond_resched); 7722 preempt_dynamic_key_enable(preempt_lazy); 7723 if (mode != preempt_dynamic_mode) 7724 pr_info("Dynamic Preempt: lazy\n"); 7725 break; 7726 } 7727 7728 preempt_dynamic_mode = mode; 7729 } 7730 7731 void sched_dynamic_update(int mode) 7732 { 7733 mutex_lock(&sched_dynamic_mutex); 7734 __sched_dynamic_update(mode); 7735 mutex_unlock(&sched_dynamic_mutex); 7736 } 7737 7738 static int __init setup_preempt_mode(char *str) 7739 { 7740 int mode = sched_dynamic_mode(str); 7741 if (mode < 0) { 7742 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7743 return 0; 7744 } 7745 7746 sched_dynamic_update(mode); 7747 return 1; 7748 } 7749 __setup("preempt=", setup_preempt_mode); 7750 7751 static void __init preempt_dynamic_init(void) 7752 { 7753 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7754 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7755 sched_dynamic_update(preempt_dynamic_none); 7756 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7757 sched_dynamic_update(preempt_dynamic_voluntary); 7758 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7759 sched_dynamic_update(preempt_dynamic_lazy); 7760 } else { 7761 /* Default static call setting, nothing to do */ 7762 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7763 preempt_dynamic_mode = preempt_dynamic_full; 7764 pr_info("Dynamic Preempt: full\n"); 7765 } 7766 } 7767 } 7768 7769 # define PREEMPT_MODEL_ACCESSOR(mode) \ 7770 bool preempt_model_##mode(void) \ 7771 { \ 7772 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7773 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7774 } \ 7775 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7776 7777 PREEMPT_MODEL_ACCESSOR(none); 7778 PREEMPT_MODEL_ACCESSOR(voluntary); 7779 PREEMPT_MODEL_ACCESSOR(full); 7780 PREEMPT_MODEL_ACCESSOR(lazy); 7781 7782 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7783 7784 #define preempt_dynamic_mode -1 7785 7786 static inline void preempt_dynamic_init(void) { } 7787 7788 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7789 7790 const char *preempt_modes[] = { 7791 "none", "voluntary", "full", "lazy", NULL, 7792 }; 7793 7794 const char *preempt_model_str(void) 7795 { 7796 bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && 7797 (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || 7798 IS_ENABLED(CONFIG_PREEMPT_LAZY)); 7799 static char buf[128]; 7800 7801 if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { 7802 struct seq_buf s; 7803 7804 seq_buf_init(&s, buf, sizeof(buf)); 7805 seq_buf_puts(&s, "PREEMPT"); 7806 7807 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 7808 seq_buf_printf(&s, "%sRT%s", 7809 brace ? "_{" : "_", 7810 brace ? "," : ""); 7811 7812 if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { 7813 seq_buf_printf(&s, "(%s)%s", 7814 preempt_dynamic_mode >= 0 ? 7815 preempt_modes[preempt_dynamic_mode] : "undef", 7816 brace ? "}" : ""); 7817 return seq_buf_str(&s); 7818 } 7819 7820 if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7821 seq_buf_printf(&s, "LAZY%s", 7822 brace ? "}" : ""); 7823 return seq_buf_str(&s); 7824 } 7825 7826 return seq_buf_str(&s); 7827 } 7828 7829 if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) 7830 return "VOLUNTARY"; 7831 7832 return "NONE"; 7833 } 7834 7835 int io_schedule_prepare(void) 7836 { 7837 int old_iowait = current->in_iowait; 7838 7839 current->in_iowait = 1; 7840 blk_flush_plug(current->plug, true); 7841 return old_iowait; 7842 } 7843 7844 void io_schedule_finish(int token) 7845 { 7846 current->in_iowait = token; 7847 } 7848 7849 /* 7850 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7851 * that process accounting knows that this is a task in IO wait state. 7852 */ 7853 long __sched io_schedule_timeout(long timeout) 7854 { 7855 int token; 7856 long ret; 7857 7858 token = io_schedule_prepare(); 7859 ret = schedule_timeout(timeout); 7860 io_schedule_finish(token); 7861 7862 return ret; 7863 } 7864 EXPORT_SYMBOL(io_schedule_timeout); 7865 7866 void __sched io_schedule(void) 7867 { 7868 int token; 7869 7870 token = io_schedule_prepare(); 7871 schedule(); 7872 io_schedule_finish(token); 7873 } 7874 EXPORT_SYMBOL(io_schedule); 7875 7876 void sched_show_task(struct task_struct *p) 7877 { 7878 unsigned long free; 7879 int ppid; 7880 7881 if (!try_get_task_stack(p)) 7882 return; 7883 7884 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7885 7886 if (task_is_running(p)) 7887 pr_cont(" running task "); 7888 free = stack_not_used(p); 7889 ppid = 0; 7890 rcu_read_lock(); 7891 if (pid_alive(p)) 7892 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7893 rcu_read_unlock(); 7894 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", 7895 free, task_pid_nr(p), task_tgid_nr(p), 7896 ppid, p->flags, read_task_thread_flags(p)); 7897 7898 print_worker_info(KERN_INFO, p); 7899 print_stop_info(KERN_INFO, p); 7900 print_scx_info(KERN_INFO, p); 7901 show_stack(p, NULL, KERN_INFO); 7902 put_task_stack(p); 7903 } 7904 EXPORT_SYMBOL_GPL(sched_show_task); 7905 7906 static inline bool 7907 state_filter_match(unsigned long state_filter, struct task_struct *p) 7908 { 7909 unsigned int state = READ_ONCE(p->__state); 7910 7911 /* no filter, everything matches */ 7912 if (!state_filter) 7913 return true; 7914 7915 /* filter, but doesn't match */ 7916 if (!(state & state_filter)) 7917 return false; 7918 7919 /* 7920 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7921 * TASK_KILLABLE). 7922 */ 7923 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7924 return false; 7925 7926 return true; 7927 } 7928 7929 7930 void show_state_filter(unsigned int state_filter) 7931 { 7932 struct task_struct *g, *p; 7933 7934 rcu_read_lock(); 7935 for_each_process_thread(g, p) { 7936 /* 7937 * reset the NMI-timeout, listing all files on a slow 7938 * console might take a lot of time: 7939 * Also, reset softlockup watchdogs on all CPUs, because 7940 * another CPU might be blocked waiting for us to process 7941 * an IPI. 7942 */ 7943 touch_nmi_watchdog(); 7944 touch_all_softlockup_watchdogs(); 7945 if (state_filter_match(state_filter, p)) 7946 sched_show_task(p); 7947 } 7948 7949 if (!state_filter) 7950 sysrq_sched_debug_show(); 7951 7952 rcu_read_unlock(); 7953 /* 7954 * Only show locks if all tasks are dumped: 7955 */ 7956 if (!state_filter) 7957 debug_show_all_locks(); 7958 } 7959 7960 /** 7961 * init_idle - set up an idle thread for a given CPU 7962 * @idle: task in question 7963 * @cpu: CPU the idle task belongs to 7964 * 7965 * NOTE: this function does not set the idle thread's NEED_RESCHED 7966 * flag, to make booting more robust. 7967 */ 7968 void __init init_idle(struct task_struct *idle, int cpu) 7969 { 7970 struct affinity_context ac = (struct affinity_context) { 7971 .new_mask = cpumask_of(cpu), 7972 .flags = 0, 7973 }; 7974 struct rq *rq = cpu_rq(cpu); 7975 unsigned long flags; 7976 7977 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7978 raw_spin_rq_lock(rq); 7979 7980 idle->__state = TASK_RUNNING; 7981 idle->se.exec_start = sched_clock(); 7982 /* 7983 * PF_KTHREAD should already be set at this point; regardless, make it 7984 * look like a proper per-CPU kthread. 7985 */ 7986 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7987 kthread_set_per_cpu(idle, cpu); 7988 7989 /* 7990 * No validation and serialization required at boot time and for 7991 * setting up the idle tasks of not yet online CPUs. 7992 */ 7993 set_cpus_allowed_common(idle, &ac); 7994 /* 7995 * We're having a chicken and egg problem, even though we are 7996 * holding rq->lock, the CPU isn't yet set to this CPU so the 7997 * lockdep check in task_group() will fail. 7998 * 7999 * Similar case to sched_fork(). / Alternatively we could 8000 * use task_rq_lock() here and obtain the other rq->lock. 8001 * 8002 * Silence PROVE_RCU 8003 */ 8004 rcu_read_lock(); 8005 __set_task_cpu(idle, cpu); 8006 rcu_read_unlock(); 8007 8008 rq->idle = idle; 8009 rq_set_donor(rq, idle); 8010 rcu_assign_pointer(rq->curr, idle); 8011 idle->on_rq = TASK_ON_RQ_QUEUED; 8012 idle->on_cpu = 1; 8013 raw_spin_rq_unlock(rq); 8014 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 8015 8016 /* Set the preempt count _outside_ the spinlocks! */ 8017 init_idle_preempt_count(idle, cpu); 8018 8019 /* 8020 * The idle tasks have their own, simple scheduling class: 8021 */ 8022 idle->sched_class = &idle_sched_class; 8023 ftrace_graph_init_idle_task(idle, cpu); 8024 vtime_init_idle(idle, cpu); 8025 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 8026 } 8027 8028 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 8029 const struct cpumask *trial) 8030 { 8031 int ret = 1; 8032 8033 if (cpumask_empty(cur)) 8034 return ret; 8035 8036 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 8037 8038 return ret; 8039 } 8040 8041 int task_can_attach(struct task_struct *p) 8042 { 8043 int ret = 0; 8044 8045 /* 8046 * Kthreads which disallow setaffinity shouldn't be moved 8047 * to a new cpuset; we don't want to change their CPU 8048 * affinity and isolating such threads by their set of 8049 * allowed nodes is unnecessary. Thus, cpusets are not 8050 * applicable for such threads. This prevents checking for 8051 * success of set_cpus_allowed_ptr() on all attached tasks 8052 * before cpus_mask may be changed. 8053 */ 8054 if (p->flags & PF_NO_SETAFFINITY) 8055 ret = -EINVAL; 8056 8057 return ret; 8058 } 8059 8060 bool sched_smp_initialized __read_mostly; 8061 8062 #ifdef CONFIG_NUMA_BALANCING 8063 /* Migrate current task p to target_cpu */ 8064 int migrate_task_to(struct task_struct *p, int target_cpu) 8065 { 8066 struct migration_arg arg = { p, target_cpu }; 8067 int curr_cpu = task_cpu(p); 8068 8069 if (curr_cpu == target_cpu) 8070 return 0; 8071 8072 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 8073 return -EINVAL; 8074 8075 /* TODO: This is not properly updating schedstats */ 8076 8077 trace_sched_move_numa(p, curr_cpu, target_cpu); 8078 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 8079 } 8080 8081 /* 8082 * Requeue a task on a given node and accurately track the number of NUMA 8083 * tasks on the runqueues 8084 */ 8085 void sched_setnuma(struct task_struct *p, int nid) 8086 { 8087 bool queued, running; 8088 struct rq_flags rf; 8089 struct rq *rq; 8090 8091 rq = task_rq_lock(p, &rf); 8092 queued = task_on_rq_queued(p); 8093 running = task_current_donor(rq, p); 8094 8095 if (queued) 8096 dequeue_task(rq, p, DEQUEUE_SAVE); 8097 if (running) 8098 put_prev_task(rq, p); 8099 8100 p->numa_preferred_nid = nid; 8101 8102 if (queued) 8103 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 8104 if (running) 8105 set_next_task(rq, p); 8106 task_rq_unlock(rq, p, &rf); 8107 } 8108 #endif /* CONFIG_NUMA_BALANCING */ 8109 8110 #ifdef CONFIG_HOTPLUG_CPU 8111 /* 8112 * Invoked on the outgoing CPU in context of the CPU hotplug thread 8113 * after ensuring that there are no user space tasks left on the CPU. 8114 * 8115 * If there is a lazy mm in use on the hotplug thread, drop it and 8116 * switch to init_mm. 8117 * 8118 * The reference count on init_mm is dropped in finish_cpu(). 8119 */ 8120 static void sched_force_init_mm(void) 8121 { 8122 struct mm_struct *mm = current->active_mm; 8123 8124 if (mm != &init_mm) { 8125 mmgrab_lazy_tlb(&init_mm); 8126 local_irq_disable(); 8127 current->active_mm = &init_mm; 8128 switch_mm_irqs_off(mm, &init_mm, current); 8129 local_irq_enable(); 8130 finish_arch_post_lock_switch(); 8131 mmdrop_lazy_tlb(mm); 8132 } 8133 8134 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 8135 } 8136 8137 static int __balance_push_cpu_stop(void *arg) 8138 { 8139 struct task_struct *p = arg; 8140 struct rq *rq = this_rq(); 8141 struct rq_flags rf; 8142 int cpu; 8143 8144 raw_spin_lock_irq(&p->pi_lock); 8145 rq_lock(rq, &rf); 8146 8147 update_rq_clock(rq); 8148 8149 if (task_rq(p) == rq && task_on_rq_queued(p)) { 8150 cpu = select_fallback_rq(rq->cpu, p); 8151 rq = __migrate_task(rq, &rf, p, cpu); 8152 } 8153 8154 rq_unlock(rq, &rf); 8155 raw_spin_unlock_irq(&p->pi_lock); 8156 8157 put_task_struct(p); 8158 8159 return 0; 8160 } 8161 8162 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8163 8164 /* 8165 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8166 * 8167 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8168 * effective when the hotplug motion is down. 8169 */ 8170 static void balance_push(struct rq *rq) 8171 { 8172 struct task_struct *push_task = rq->curr; 8173 8174 lockdep_assert_rq_held(rq); 8175 8176 /* 8177 * Ensure the thing is persistent until balance_push_set(.on = false); 8178 */ 8179 rq->balance_callback = &balance_push_callback; 8180 8181 /* 8182 * Only active while going offline and when invoked on the outgoing 8183 * CPU. 8184 */ 8185 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8186 return; 8187 8188 /* 8189 * Both the cpu-hotplug and stop task are in this case and are 8190 * required to complete the hotplug process. 8191 */ 8192 if (kthread_is_per_cpu(push_task) || 8193 is_migration_disabled(push_task)) { 8194 8195 /* 8196 * If this is the idle task on the outgoing CPU try to wake 8197 * up the hotplug control thread which might wait for the 8198 * last task to vanish. The rcuwait_active() check is 8199 * accurate here because the waiter is pinned on this CPU 8200 * and can't obviously be running in parallel. 8201 * 8202 * On RT kernels this also has to check whether there are 8203 * pinned and scheduled out tasks on the runqueue. They 8204 * need to leave the migrate disabled section first. 8205 */ 8206 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8207 rcuwait_active(&rq->hotplug_wait)) { 8208 raw_spin_rq_unlock(rq); 8209 rcuwait_wake_up(&rq->hotplug_wait); 8210 raw_spin_rq_lock(rq); 8211 } 8212 return; 8213 } 8214 8215 get_task_struct(push_task); 8216 /* 8217 * Temporarily drop rq->lock such that we can wake-up the stop task. 8218 * Both preemption and IRQs are still disabled. 8219 */ 8220 preempt_disable(); 8221 raw_spin_rq_unlock(rq); 8222 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8223 this_cpu_ptr(&push_work)); 8224 preempt_enable(); 8225 /* 8226 * At this point need_resched() is true and we'll take the loop in 8227 * schedule(). The next pick is obviously going to be the stop task 8228 * which kthread_is_per_cpu() and will push this task away. 8229 */ 8230 raw_spin_rq_lock(rq); 8231 } 8232 8233 static void balance_push_set(int cpu, bool on) 8234 { 8235 struct rq *rq = cpu_rq(cpu); 8236 struct rq_flags rf; 8237 8238 rq_lock_irqsave(rq, &rf); 8239 if (on) { 8240 WARN_ON_ONCE(rq->balance_callback); 8241 rq->balance_callback = &balance_push_callback; 8242 } else if (rq->balance_callback == &balance_push_callback) { 8243 rq->balance_callback = NULL; 8244 } 8245 rq_unlock_irqrestore(rq, &rf); 8246 } 8247 8248 /* 8249 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8250 * inactive. All tasks which are not per CPU kernel threads are either 8251 * pushed off this CPU now via balance_push() or placed on a different CPU 8252 * during wakeup. Wait until the CPU is quiescent. 8253 */ 8254 static void balance_hotplug_wait(void) 8255 { 8256 struct rq *rq = this_rq(); 8257 8258 rcuwait_wait_event(&rq->hotplug_wait, 8259 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8260 TASK_UNINTERRUPTIBLE); 8261 } 8262 8263 #else /* !CONFIG_HOTPLUG_CPU: */ 8264 8265 static inline void balance_push(struct rq *rq) 8266 { 8267 } 8268 8269 static inline void balance_push_set(int cpu, bool on) 8270 { 8271 } 8272 8273 static inline void balance_hotplug_wait(void) 8274 { 8275 } 8276 8277 #endif /* !CONFIG_HOTPLUG_CPU */ 8278 8279 void set_rq_online(struct rq *rq) 8280 { 8281 if (!rq->online) { 8282 const struct sched_class *class; 8283 8284 cpumask_set_cpu(rq->cpu, rq->rd->online); 8285 rq->online = 1; 8286 8287 for_each_class(class) { 8288 if (class->rq_online) 8289 class->rq_online(rq); 8290 } 8291 } 8292 } 8293 8294 void set_rq_offline(struct rq *rq) 8295 { 8296 if (rq->online) { 8297 const struct sched_class *class; 8298 8299 update_rq_clock(rq); 8300 for_each_class(class) { 8301 if (class->rq_offline) 8302 class->rq_offline(rq); 8303 } 8304 8305 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8306 rq->online = 0; 8307 } 8308 } 8309 8310 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8311 { 8312 struct rq_flags rf; 8313 8314 rq_lock_irqsave(rq, &rf); 8315 if (rq->rd) { 8316 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8317 set_rq_online(rq); 8318 } 8319 rq_unlock_irqrestore(rq, &rf); 8320 } 8321 8322 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8323 { 8324 struct rq_flags rf; 8325 8326 rq_lock_irqsave(rq, &rf); 8327 if (rq->rd) { 8328 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8329 set_rq_offline(rq); 8330 } 8331 rq_unlock_irqrestore(rq, &rf); 8332 } 8333 8334 /* 8335 * used to mark begin/end of suspend/resume: 8336 */ 8337 static int num_cpus_frozen; 8338 8339 /* 8340 * Update cpusets according to cpu_active mask. If cpusets are 8341 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8342 * around partition_sched_domains(). 8343 * 8344 * If we come here as part of a suspend/resume, don't touch cpusets because we 8345 * want to restore it back to its original state upon resume anyway. 8346 */ 8347 static void cpuset_cpu_active(void) 8348 { 8349 if (cpuhp_tasks_frozen) { 8350 /* 8351 * num_cpus_frozen tracks how many CPUs are involved in suspend 8352 * resume sequence. As long as this is not the last online 8353 * operation in the resume sequence, just build a single sched 8354 * domain, ignoring cpusets. 8355 */ 8356 cpuset_reset_sched_domains(); 8357 if (--num_cpus_frozen) 8358 return; 8359 /* 8360 * This is the last CPU online operation. So fall through and 8361 * restore the original sched domains by considering the 8362 * cpuset configurations. 8363 */ 8364 cpuset_force_rebuild(); 8365 } 8366 cpuset_update_active_cpus(); 8367 } 8368 8369 static void cpuset_cpu_inactive(unsigned int cpu) 8370 { 8371 if (!cpuhp_tasks_frozen) { 8372 cpuset_update_active_cpus(); 8373 } else { 8374 num_cpus_frozen++; 8375 cpuset_reset_sched_domains(); 8376 } 8377 } 8378 8379 static inline void sched_smt_present_inc(int cpu) 8380 { 8381 #ifdef CONFIG_SCHED_SMT 8382 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8383 static_branch_inc_cpuslocked(&sched_smt_present); 8384 #endif 8385 } 8386 8387 static inline void sched_smt_present_dec(int cpu) 8388 { 8389 #ifdef CONFIG_SCHED_SMT 8390 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8391 static_branch_dec_cpuslocked(&sched_smt_present); 8392 #endif 8393 } 8394 8395 int sched_cpu_activate(unsigned int cpu) 8396 { 8397 struct rq *rq = cpu_rq(cpu); 8398 8399 /* 8400 * Clear the balance_push callback and prepare to schedule 8401 * regular tasks. 8402 */ 8403 balance_push_set(cpu, false); 8404 8405 /* 8406 * When going up, increment the number of cores with SMT present. 8407 */ 8408 sched_smt_present_inc(cpu); 8409 set_cpu_active(cpu, true); 8410 8411 if (sched_smp_initialized) { 8412 sched_update_numa(cpu, true); 8413 sched_domains_numa_masks_set(cpu); 8414 cpuset_cpu_active(); 8415 } 8416 8417 scx_rq_activate(rq); 8418 8419 /* 8420 * Put the rq online, if not already. This happens: 8421 * 8422 * 1) In the early boot process, because we build the real domains 8423 * after all CPUs have been brought up. 8424 * 8425 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8426 * domains. 8427 */ 8428 sched_set_rq_online(rq, cpu); 8429 8430 return 0; 8431 } 8432 8433 int sched_cpu_deactivate(unsigned int cpu) 8434 { 8435 struct rq *rq = cpu_rq(cpu); 8436 int ret; 8437 8438 ret = dl_bw_deactivate(cpu); 8439 8440 if (ret) 8441 return ret; 8442 8443 /* 8444 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8445 * load balancing when not active 8446 */ 8447 nohz_balance_exit_idle(rq); 8448 8449 set_cpu_active(cpu, false); 8450 8451 /* 8452 * From this point forward, this CPU will refuse to run any task that 8453 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8454 * push those tasks away until this gets cleared, see 8455 * sched_cpu_dying(). 8456 */ 8457 balance_push_set(cpu, true); 8458 8459 /* 8460 * We've cleared cpu_active_mask / set balance_push, wait for all 8461 * preempt-disabled and RCU users of this state to go away such that 8462 * all new such users will observe it. 8463 * 8464 * Specifically, we rely on ttwu to no longer target this CPU, see 8465 * ttwu_queue_cond() and is_cpu_allowed(). 8466 * 8467 * Do sync before park smpboot threads to take care the RCU boost case. 8468 */ 8469 synchronize_rcu(); 8470 8471 sched_set_rq_offline(rq, cpu); 8472 8473 scx_rq_deactivate(rq); 8474 8475 /* 8476 * When going down, decrement the number of cores with SMT present. 8477 */ 8478 sched_smt_present_dec(cpu); 8479 8480 #ifdef CONFIG_SCHED_SMT 8481 sched_core_cpu_deactivate(cpu); 8482 #endif 8483 8484 if (!sched_smp_initialized) 8485 return 0; 8486 8487 sched_update_numa(cpu, false); 8488 cpuset_cpu_inactive(cpu); 8489 sched_domains_numa_masks_clear(cpu); 8490 return 0; 8491 } 8492 8493 static void sched_rq_cpu_starting(unsigned int cpu) 8494 { 8495 struct rq *rq = cpu_rq(cpu); 8496 8497 rq->calc_load_update = calc_load_update; 8498 update_max_interval(); 8499 } 8500 8501 int sched_cpu_starting(unsigned int cpu) 8502 { 8503 sched_core_cpu_starting(cpu); 8504 sched_rq_cpu_starting(cpu); 8505 sched_tick_start(cpu); 8506 return 0; 8507 } 8508 8509 #ifdef CONFIG_HOTPLUG_CPU 8510 8511 /* 8512 * Invoked immediately before the stopper thread is invoked to bring the 8513 * CPU down completely. At this point all per CPU kthreads except the 8514 * hotplug thread (current) and the stopper thread (inactive) have been 8515 * either parked or have been unbound from the outgoing CPU. Ensure that 8516 * any of those which might be on the way out are gone. 8517 * 8518 * If after this point a bound task is being woken on this CPU then the 8519 * responsible hotplug callback has failed to do it's job. 8520 * sched_cpu_dying() will catch it with the appropriate fireworks. 8521 */ 8522 int sched_cpu_wait_empty(unsigned int cpu) 8523 { 8524 balance_hotplug_wait(); 8525 sched_force_init_mm(); 8526 return 0; 8527 } 8528 8529 /* 8530 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8531 * might have. Called from the CPU stopper task after ensuring that the 8532 * stopper is the last running task on the CPU, so nr_active count is 8533 * stable. We need to take the tear-down thread which is calling this into 8534 * account, so we hand in adjust = 1 to the load calculation. 8535 * 8536 * Also see the comment "Global load-average calculations". 8537 */ 8538 static void calc_load_migrate(struct rq *rq) 8539 { 8540 long delta = calc_load_fold_active(rq, 1); 8541 8542 if (delta) 8543 atomic_long_add(delta, &calc_load_tasks); 8544 } 8545 8546 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8547 { 8548 struct task_struct *g, *p; 8549 int cpu = cpu_of(rq); 8550 8551 lockdep_assert_rq_held(rq); 8552 8553 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8554 for_each_process_thread(g, p) { 8555 if (task_cpu(p) != cpu) 8556 continue; 8557 8558 if (!task_on_rq_queued(p)) 8559 continue; 8560 8561 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8562 } 8563 } 8564 8565 int sched_cpu_dying(unsigned int cpu) 8566 { 8567 struct rq *rq = cpu_rq(cpu); 8568 struct rq_flags rf; 8569 8570 /* Handle pending wakeups and then migrate everything off */ 8571 sched_tick_stop(cpu); 8572 8573 rq_lock_irqsave(rq, &rf); 8574 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8575 WARN(true, "Dying CPU not properly vacated!"); 8576 dump_rq_tasks(rq, KERN_WARNING); 8577 } 8578 rq_unlock_irqrestore(rq, &rf); 8579 8580 calc_load_migrate(rq); 8581 update_max_interval(); 8582 hrtick_clear(rq); 8583 sched_core_cpu_dying(cpu); 8584 return 0; 8585 } 8586 #endif /* CONFIG_HOTPLUG_CPU */ 8587 8588 void __init sched_init_smp(void) 8589 { 8590 sched_init_numa(NUMA_NO_NODE); 8591 8592 /* 8593 * There's no userspace yet to cause hotplug operations; hence all the 8594 * CPU masks are stable and all blatant races in the below code cannot 8595 * happen. 8596 */ 8597 sched_domains_mutex_lock(); 8598 sched_init_domains(cpu_active_mask); 8599 sched_domains_mutex_unlock(); 8600 8601 /* Move init over to a non-isolated CPU */ 8602 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8603 BUG(); 8604 current->flags &= ~PF_NO_SETAFFINITY; 8605 sched_init_granularity(); 8606 8607 init_sched_rt_class(); 8608 init_sched_dl_class(); 8609 8610 sched_init_dl_servers(); 8611 8612 sched_smp_initialized = true; 8613 } 8614 8615 static int __init migration_init(void) 8616 { 8617 sched_cpu_starting(smp_processor_id()); 8618 return 0; 8619 } 8620 early_initcall(migration_init); 8621 8622 int in_sched_functions(unsigned long addr) 8623 { 8624 return in_lock_functions(addr) || 8625 (addr >= (unsigned long)__sched_text_start 8626 && addr < (unsigned long)__sched_text_end); 8627 } 8628 8629 #ifdef CONFIG_CGROUP_SCHED 8630 /* 8631 * Default task group. 8632 * Every task in system belongs to this group at bootup. 8633 */ 8634 struct task_group root_task_group; 8635 LIST_HEAD(task_groups); 8636 8637 /* Cacheline aligned slab cache for task_group */ 8638 static struct kmem_cache *task_group_cache __ro_after_init; 8639 #endif 8640 8641 void __init sched_init(void) 8642 { 8643 unsigned long ptr = 0; 8644 int i; 8645 8646 /* Make sure the linker didn't screw up */ 8647 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8648 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8649 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8650 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8651 #ifdef CONFIG_SCHED_CLASS_EXT 8652 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8653 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8654 #endif 8655 8656 wait_bit_init(); 8657 8658 #ifdef CONFIG_FAIR_GROUP_SCHED 8659 ptr += 2 * nr_cpu_ids * sizeof(void **); 8660 #endif 8661 #ifdef CONFIG_RT_GROUP_SCHED 8662 ptr += 2 * nr_cpu_ids * sizeof(void **); 8663 #endif 8664 if (ptr) { 8665 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8666 8667 #ifdef CONFIG_FAIR_GROUP_SCHED 8668 root_task_group.se = (struct sched_entity **)ptr; 8669 ptr += nr_cpu_ids * sizeof(void **); 8670 8671 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8672 ptr += nr_cpu_ids * sizeof(void **); 8673 8674 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8675 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8676 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8677 #ifdef CONFIG_EXT_GROUP_SCHED 8678 scx_tg_init(&root_task_group); 8679 #endif /* CONFIG_EXT_GROUP_SCHED */ 8680 #ifdef CONFIG_RT_GROUP_SCHED 8681 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8682 ptr += nr_cpu_ids * sizeof(void **); 8683 8684 root_task_group.rt_rq = (struct rt_rq **)ptr; 8685 ptr += nr_cpu_ids * sizeof(void **); 8686 8687 #endif /* CONFIG_RT_GROUP_SCHED */ 8688 } 8689 8690 init_defrootdomain(); 8691 8692 #ifdef CONFIG_RT_GROUP_SCHED 8693 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8694 global_rt_period(), global_rt_runtime()); 8695 #endif /* CONFIG_RT_GROUP_SCHED */ 8696 8697 #ifdef CONFIG_CGROUP_SCHED 8698 task_group_cache = KMEM_CACHE(task_group, 0); 8699 8700 list_add(&root_task_group.list, &task_groups); 8701 INIT_LIST_HEAD(&root_task_group.children); 8702 INIT_LIST_HEAD(&root_task_group.siblings); 8703 autogroup_init(&init_task); 8704 #endif /* CONFIG_CGROUP_SCHED */ 8705 8706 for_each_possible_cpu(i) { 8707 struct rq *rq; 8708 8709 rq = cpu_rq(i); 8710 raw_spin_lock_init(&rq->__lock); 8711 rq->nr_running = 0; 8712 rq->calc_load_active = 0; 8713 rq->calc_load_update = jiffies + LOAD_FREQ; 8714 init_cfs_rq(&rq->cfs); 8715 init_rt_rq(&rq->rt); 8716 init_dl_rq(&rq->dl); 8717 #ifdef CONFIG_FAIR_GROUP_SCHED 8718 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8719 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8720 /* 8721 * How much CPU bandwidth does root_task_group get? 8722 * 8723 * In case of task-groups formed through the cgroup filesystem, it 8724 * gets 100% of the CPU resources in the system. This overall 8725 * system CPU resource is divided among the tasks of 8726 * root_task_group and its child task-groups in a fair manner, 8727 * based on each entity's (task or task-group's) weight 8728 * (se->load.weight). 8729 * 8730 * In other words, if root_task_group has 10 tasks of weight 8731 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8732 * then A0's share of the CPU resource is: 8733 * 8734 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8735 * 8736 * We achieve this by letting root_task_group's tasks sit 8737 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8738 */ 8739 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8740 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8741 8742 #ifdef CONFIG_RT_GROUP_SCHED 8743 /* 8744 * This is required for init cpu because rt.c:__enable_runtime() 8745 * starts working after scheduler_running, which is not the case 8746 * yet. 8747 */ 8748 rq->rt.rt_runtime = global_rt_runtime(); 8749 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8750 #endif 8751 rq->sd = NULL; 8752 rq->rd = NULL; 8753 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8754 rq->balance_callback = &balance_push_callback; 8755 rq->active_balance = 0; 8756 rq->next_balance = jiffies; 8757 rq->push_cpu = 0; 8758 rq->cpu = i; 8759 rq->online = 0; 8760 rq->idle_stamp = 0; 8761 rq->avg_idle = 2*sysctl_sched_migration_cost; 8762 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8763 8764 INIT_LIST_HEAD(&rq->cfs_tasks); 8765 8766 rq_attach_root(rq, &def_root_domain); 8767 #ifdef CONFIG_NO_HZ_COMMON 8768 rq->last_blocked_load_update_tick = jiffies; 8769 atomic_set(&rq->nohz_flags, 0); 8770 8771 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8772 #endif 8773 #ifdef CONFIG_HOTPLUG_CPU 8774 rcuwait_init(&rq->hotplug_wait); 8775 #endif 8776 hrtick_rq_init(rq); 8777 atomic_set(&rq->nr_iowait, 0); 8778 fair_server_init(rq); 8779 8780 #ifdef CONFIG_SCHED_CORE 8781 rq->core = rq; 8782 rq->core_pick = NULL; 8783 rq->core_dl_server = NULL; 8784 rq->core_enabled = 0; 8785 rq->core_tree = RB_ROOT; 8786 rq->core_forceidle_count = 0; 8787 rq->core_forceidle_occupation = 0; 8788 rq->core_forceidle_start = 0; 8789 8790 rq->core_cookie = 0UL; 8791 #endif 8792 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8793 } 8794 8795 set_load_weight(&init_task, false); 8796 init_task.se.slice = sysctl_sched_base_slice, 8797 8798 /* 8799 * The boot idle thread does lazy MMU switching as well: 8800 */ 8801 mmgrab_lazy_tlb(&init_mm); 8802 enter_lazy_tlb(&init_mm, current); 8803 8804 /* 8805 * The idle task doesn't need the kthread struct to function, but it 8806 * is dressed up as a per-CPU kthread and thus needs to play the part 8807 * if we want to avoid special-casing it in code that deals with per-CPU 8808 * kthreads. 8809 */ 8810 WARN_ON(!set_kthread_struct(current)); 8811 8812 /* 8813 * Make us the idle thread. Technically, schedule() should not be 8814 * called from this thread, however somewhere below it might be, 8815 * but because we are the idle thread, we just pick up running again 8816 * when this runqueue becomes "idle". 8817 */ 8818 __sched_fork(0, current); 8819 init_idle(current, smp_processor_id()); 8820 8821 calc_load_update = jiffies + LOAD_FREQ; 8822 8823 idle_thread_set_boot_cpu(); 8824 8825 balance_push_set(smp_processor_id(), false); 8826 init_sched_fair_class(); 8827 init_sched_ext_class(); 8828 8829 psi_init(); 8830 8831 init_uclamp(); 8832 8833 preempt_dynamic_init(); 8834 8835 scheduler_running = 1; 8836 } 8837 8838 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8839 8840 void __might_sleep(const char *file, int line) 8841 { 8842 unsigned int state = get_current_state(); 8843 /* 8844 * Blocking primitives will set (and therefore destroy) current->state, 8845 * since we will exit with TASK_RUNNING make sure we enter with it, 8846 * otherwise we will destroy state. 8847 */ 8848 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8849 "do not call blocking ops when !TASK_RUNNING; " 8850 "state=%x set at [<%p>] %pS\n", state, 8851 (void *)current->task_state_change, 8852 (void *)current->task_state_change); 8853 8854 __might_resched(file, line, 0); 8855 } 8856 EXPORT_SYMBOL(__might_sleep); 8857 8858 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8859 { 8860 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8861 return; 8862 8863 if (preempt_count() == preempt_offset) 8864 return; 8865 8866 pr_err("Preemption disabled at:"); 8867 print_ip_sym(KERN_ERR, ip); 8868 } 8869 8870 static inline bool resched_offsets_ok(unsigned int offsets) 8871 { 8872 unsigned int nested = preempt_count(); 8873 8874 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8875 8876 return nested == offsets; 8877 } 8878 8879 void __might_resched(const char *file, int line, unsigned int offsets) 8880 { 8881 /* Ratelimiting timestamp: */ 8882 static unsigned long prev_jiffy; 8883 8884 unsigned long preempt_disable_ip; 8885 8886 /* WARN_ON_ONCE() by default, no rate limit required: */ 8887 rcu_sleep_check(); 8888 8889 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8890 !is_idle_task(current) && !current->non_block_count) || 8891 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8892 oops_in_progress) 8893 return; 8894 8895 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8896 return; 8897 prev_jiffy = jiffies; 8898 8899 /* Save this before calling printk(), since that will clobber it: */ 8900 preempt_disable_ip = get_preempt_disable_ip(current); 8901 8902 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8903 file, line); 8904 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8905 in_atomic(), irqs_disabled(), current->non_block_count, 8906 current->pid, current->comm); 8907 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8908 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8909 8910 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8911 pr_err("RCU nest depth: %d, expected: %u\n", 8912 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8913 } 8914 8915 if (task_stack_end_corrupted(current)) 8916 pr_emerg("Thread overran stack, or stack corrupted\n"); 8917 8918 debug_show_held_locks(current); 8919 if (irqs_disabled()) 8920 print_irqtrace_events(current); 8921 8922 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8923 preempt_disable_ip); 8924 8925 dump_stack(); 8926 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8927 } 8928 EXPORT_SYMBOL(__might_resched); 8929 8930 void __cant_sleep(const char *file, int line, int preempt_offset) 8931 { 8932 static unsigned long prev_jiffy; 8933 8934 if (irqs_disabled()) 8935 return; 8936 8937 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8938 return; 8939 8940 if (preempt_count() > preempt_offset) 8941 return; 8942 8943 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8944 return; 8945 prev_jiffy = jiffies; 8946 8947 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8948 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8949 in_atomic(), irqs_disabled(), 8950 current->pid, current->comm); 8951 8952 debug_show_held_locks(current); 8953 dump_stack(); 8954 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8955 } 8956 EXPORT_SYMBOL_GPL(__cant_sleep); 8957 8958 # ifdef CONFIG_SMP 8959 void __cant_migrate(const char *file, int line) 8960 { 8961 static unsigned long prev_jiffy; 8962 8963 if (irqs_disabled()) 8964 return; 8965 8966 if (is_migration_disabled(current)) 8967 return; 8968 8969 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8970 return; 8971 8972 if (preempt_count() > 0) 8973 return; 8974 8975 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8976 return; 8977 prev_jiffy = jiffies; 8978 8979 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8980 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8981 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8982 current->pid, current->comm); 8983 8984 debug_show_held_locks(current); 8985 dump_stack(); 8986 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8987 } 8988 EXPORT_SYMBOL_GPL(__cant_migrate); 8989 # endif /* CONFIG_SMP */ 8990 #endif /* CONFIG_DEBUG_ATOMIC_SLEEP */ 8991 8992 #ifdef CONFIG_MAGIC_SYSRQ 8993 void normalize_rt_tasks(void) 8994 { 8995 struct task_struct *g, *p; 8996 struct sched_attr attr = { 8997 .sched_policy = SCHED_NORMAL, 8998 }; 8999 9000 read_lock(&tasklist_lock); 9001 for_each_process_thread(g, p) { 9002 /* 9003 * Only normalize user tasks: 9004 */ 9005 if (p->flags & PF_KTHREAD) 9006 continue; 9007 9008 p->se.exec_start = 0; 9009 schedstat_set(p->stats.wait_start, 0); 9010 schedstat_set(p->stats.sleep_start, 0); 9011 schedstat_set(p->stats.block_start, 0); 9012 9013 if (!rt_or_dl_task(p)) { 9014 /* 9015 * Renice negative nice level userspace 9016 * tasks back to 0: 9017 */ 9018 if (task_nice(p) < 0) 9019 set_user_nice(p, 0); 9020 continue; 9021 } 9022 9023 __sched_setscheduler(p, &attr, false, false); 9024 } 9025 read_unlock(&tasklist_lock); 9026 } 9027 9028 #endif /* CONFIG_MAGIC_SYSRQ */ 9029 9030 #ifdef CONFIG_KGDB_KDB 9031 /* 9032 * These functions are only useful for KDB. 9033 * 9034 * They can only be called when the whole system has been 9035 * stopped - every CPU needs to be quiescent, and no scheduling 9036 * activity can take place. Using them for anything else would 9037 * be a serious bug, and as a result, they aren't even visible 9038 * under any other configuration. 9039 */ 9040 9041 /** 9042 * curr_task - return the current task for a given CPU. 9043 * @cpu: the processor in question. 9044 * 9045 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9046 * 9047 * Return: The current task for @cpu. 9048 */ 9049 struct task_struct *curr_task(int cpu) 9050 { 9051 return cpu_curr(cpu); 9052 } 9053 9054 #endif /* CONFIG_KGDB_KDB */ 9055 9056 #ifdef CONFIG_CGROUP_SCHED 9057 /* task_group_lock serializes the addition/removal of task groups */ 9058 static DEFINE_SPINLOCK(task_group_lock); 9059 9060 static inline void alloc_uclamp_sched_group(struct task_group *tg, 9061 struct task_group *parent) 9062 { 9063 #ifdef CONFIG_UCLAMP_TASK_GROUP 9064 enum uclamp_id clamp_id; 9065 9066 for_each_clamp_id(clamp_id) { 9067 uclamp_se_set(&tg->uclamp_req[clamp_id], 9068 uclamp_none(clamp_id), false); 9069 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 9070 } 9071 #endif 9072 } 9073 9074 static void sched_free_group(struct task_group *tg) 9075 { 9076 free_fair_sched_group(tg); 9077 free_rt_sched_group(tg); 9078 autogroup_free(tg); 9079 kmem_cache_free(task_group_cache, tg); 9080 } 9081 9082 static void sched_free_group_rcu(struct rcu_head *rcu) 9083 { 9084 sched_free_group(container_of(rcu, struct task_group, rcu)); 9085 } 9086 9087 static void sched_unregister_group(struct task_group *tg) 9088 { 9089 unregister_fair_sched_group(tg); 9090 unregister_rt_sched_group(tg); 9091 /* 9092 * We have to wait for yet another RCU grace period to expire, as 9093 * print_cfs_stats() might run concurrently. 9094 */ 9095 call_rcu(&tg->rcu, sched_free_group_rcu); 9096 } 9097 9098 /* allocate runqueue etc for a new task group */ 9099 struct task_group *sched_create_group(struct task_group *parent) 9100 { 9101 struct task_group *tg; 9102 9103 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 9104 if (!tg) 9105 return ERR_PTR(-ENOMEM); 9106 9107 if (!alloc_fair_sched_group(tg, parent)) 9108 goto err; 9109 9110 if (!alloc_rt_sched_group(tg, parent)) 9111 goto err; 9112 9113 scx_tg_init(tg); 9114 alloc_uclamp_sched_group(tg, parent); 9115 9116 return tg; 9117 9118 err: 9119 sched_free_group(tg); 9120 return ERR_PTR(-ENOMEM); 9121 } 9122 9123 void sched_online_group(struct task_group *tg, struct task_group *parent) 9124 { 9125 unsigned long flags; 9126 9127 spin_lock_irqsave(&task_group_lock, flags); 9128 list_add_tail_rcu(&tg->list, &task_groups); 9129 9130 /* Root should already exist: */ 9131 WARN_ON(!parent); 9132 9133 tg->parent = parent; 9134 INIT_LIST_HEAD(&tg->children); 9135 list_add_rcu(&tg->siblings, &parent->children); 9136 spin_unlock_irqrestore(&task_group_lock, flags); 9137 9138 online_fair_sched_group(tg); 9139 } 9140 9141 /* RCU callback to free various structures associated with a task group */ 9142 static void sched_unregister_group_rcu(struct rcu_head *rhp) 9143 { 9144 /* Now it should be safe to free those cfs_rqs: */ 9145 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 9146 } 9147 9148 void sched_destroy_group(struct task_group *tg) 9149 { 9150 /* Wait for possible concurrent references to cfs_rqs complete: */ 9151 call_rcu(&tg->rcu, sched_unregister_group_rcu); 9152 } 9153 9154 void sched_release_group(struct task_group *tg) 9155 { 9156 unsigned long flags; 9157 9158 /* 9159 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 9160 * sched_cfs_period_timer()). 9161 * 9162 * For this to be effective, we have to wait for all pending users of 9163 * this task group to leave their RCU critical section to ensure no new 9164 * user will see our dying task group any more. Specifically ensure 9165 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9166 * 9167 * We therefore defer calling unregister_fair_sched_group() to 9168 * sched_unregister_group() which is guarantied to get called only after the 9169 * current RCU grace period has expired. 9170 */ 9171 spin_lock_irqsave(&task_group_lock, flags); 9172 list_del_rcu(&tg->list); 9173 list_del_rcu(&tg->siblings); 9174 spin_unlock_irqrestore(&task_group_lock, flags); 9175 } 9176 9177 static void sched_change_group(struct task_struct *tsk) 9178 { 9179 struct task_group *tg; 9180 9181 /* 9182 * All callers are synchronized by task_rq_lock(); we do not use RCU 9183 * which is pointless here. Thus, we pass "true" to task_css_check() 9184 * to prevent lockdep warnings. 9185 */ 9186 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9187 struct task_group, css); 9188 tg = autogroup_task_group(tsk, tg); 9189 tsk->sched_task_group = tg; 9190 9191 #ifdef CONFIG_FAIR_GROUP_SCHED 9192 if (tsk->sched_class->task_change_group) 9193 tsk->sched_class->task_change_group(tsk); 9194 else 9195 #endif 9196 set_task_rq(tsk, task_cpu(tsk)); 9197 } 9198 9199 /* 9200 * Change task's runqueue when it moves between groups. 9201 * 9202 * The caller of this function should have put the task in its new group by 9203 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9204 * its new group. 9205 */ 9206 void sched_move_task(struct task_struct *tsk, bool for_autogroup) 9207 { 9208 int queued, running, queue_flags = 9209 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9210 struct rq *rq; 9211 9212 CLASS(task_rq_lock, rq_guard)(tsk); 9213 rq = rq_guard.rq; 9214 9215 update_rq_clock(rq); 9216 9217 running = task_current_donor(rq, tsk); 9218 queued = task_on_rq_queued(tsk); 9219 9220 if (queued) 9221 dequeue_task(rq, tsk, queue_flags); 9222 if (running) 9223 put_prev_task(rq, tsk); 9224 9225 sched_change_group(tsk); 9226 if (!for_autogroup) 9227 scx_cgroup_move_task(tsk); 9228 9229 if (queued) 9230 enqueue_task(rq, tsk, queue_flags); 9231 if (running) { 9232 set_next_task(rq, tsk); 9233 /* 9234 * After changing group, the running task may have joined a 9235 * throttled one but it's still the running task. Trigger a 9236 * resched to make sure that task can still run. 9237 */ 9238 resched_curr(rq); 9239 } 9240 } 9241 9242 static struct cgroup_subsys_state * 9243 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9244 { 9245 struct task_group *parent = css_tg(parent_css); 9246 struct task_group *tg; 9247 9248 if (!parent) { 9249 /* This is early initialization for the top cgroup */ 9250 return &root_task_group.css; 9251 } 9252 9253 tg = sched_create_group(parent); 9254 if (IS_ERR(tg)) 9255 return ERR_PTR(-ENOMEM); 9256 9257 return &tg->css; 9258 } 9259 9260 /* Expose task group only after completing cgroup initialization */ 9261 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9262 { 9263 struct task_group *tg = css_tg(css); 9264 struct task_group *parent = css_tg(css->parent); 9265 int ret; 9266 9267 ret = scx_tg_online(tg); 9268 if (ret) 9269 return ret; 9270 9271 if (parent) 9272 sched_online_group(tg, parent); 9273 9274 #ifdef CONFIG_UCLAMP_TASK_GROUP 9275 /* Propagate the effective uclamp value for the new group */ 9276 guard(mutex)(&uclamp_mutex); 9277 guard(rcu)(); 9278 cpu_util_update_eff(css); 9279 #endif 9280 9281 return 0; 9282 } 9283 9284 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9285 { 9286 struct task_group *tg = css_tg(css); 9287 9288 scx_tg_offline(tg); 9289 } 9290 9291 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9292 { 9293 struct task_group *tg = css_tg(css); 9294 9295 sched_release_group(tg); 9296 } 9297 9298 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9299 { 9300 struct task_group *tg = css_tg(css); 9301 9302 /* 9303 * Relies on the RCU grace period between css_released() and this. 9304 */ 9305 sched_unregister_group(tg); 9306 } 9307 9308 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9309 { 9310 #ifdef CONFIG_RT_GROUP_SCHED 9311 struct task_struct *task; 9312 struct cgroup_subsys_state *css; 9313 9314 if (!rt_group_sched_enabled()) 9315 goto scx_check; 9316 9317 cgroup_taskset_for_each(task, css, tset) { 9318 if (!sched_rt_can_attach(css_tg(css), task)) 9319 return -EINVAL; 9320 } 9321 scx_check: 9322 #endif /* CONFIG_RT_GROUP_SCHED */ 9323 return scx_cgroup_can_attach(tset); 9324 } 9325 9326 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9327 { 9328 struct task_struct *task; 9329 struct cgroup_subsys_state *css; 9330 9331 cgroup_taskset_for_each(task, css, tset) 9332 sched_move_task(task, false); 9333 } 9334 9335 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9336 { 9337 scx_cgroup_cancel_attach(tset); 9338 } 9339 9340 #ifdef CONFIG_UCLAMP_TASK_GROUP 9341 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9342 { 9343 struct cgroup_subsys_state *top_css = css; 9344 struct uclamp_se *uc_parent = NULL; 9345 struct uclamp_se *uc_se = NULL; 9346 unsigned int eff[UCLAMP_CNT]; 9347 enum uclamp_id clamp_id; 9348 unsigned int clamps; 9349 9350 lockdep_assert_held(&uclamp_mutex); 9351 WARN_ON_ONCE(!rcu_read_lock_held()); 9352 9353 css_for_each_descendant_pre(css, top_css) { 9354 uc_parent = css_tg(css)->parent 9355 ? css_tg(css)->parent->uclamp : NULL; 9356 9357 for_each_clamp_id(clamp_id) { 9358 /* Assume effective clamps matches requested clamps */ 9359 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9360 /* Cap effective clamps with parent's effective clamps */ 9361 if (uc_parent && 9362 eff[clamp_id] > uc_parent[clamp_id].value) { 9363 eff[clamp_id] = uc_parent[clamp_id].value; 9364 } 9365 } 9366 /* Ensure protection is always capped by limit */ 9367 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9368 9369 /* Propagate most restrictive effective clamps */ 9370 clamps = 0x0; 9371 uc_se = css_tg(css)->uclamp; 9372 for_each_clamp_id(clamp_id) { 9373 if (eff[clamp_id] == uc_se[clamp_id].value) 9374 continue; 9375 uc_se[clamp_id].value = eff[clamp_id]; 9376 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9377 clamps |= (0x1 << clamp_id); 9378 } 9379 if (!clamps) { 9380 css = css_rightmost_descendant(css); 9381 continue; 9382 } 9383 9384 /* Immediately update descendants RUNNABLE tasks */ 9385 uclamp_update_active_tasks(css); 9386 } 9387 } 9388 9389 /* 9390 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9391 * C expression. Since there is no way to convert a macro argument (N) into a 9392 * character constant, use two levels of macros. 9393 */ 9394 #define _POW10(exp) ((unsigned int)1e##exp) 9395 #define POW10(exp) _POW10(exp) 9396 9397 struct uclamp_request { 9398 #define UCLAMP_PERCENT_SHIFT 2 9399 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9400 s64 percent; 9401 u64 util; 9402 int ret; 9403 }; 9404 9405 static inline struct uclamp_request 9406 capacity_from_percent(char *buf) 9407 { 9408 struct uclamp_request req = { 9409 .percent = UCLAMP_PERCENT_SCALE, 9410 .util = SCHED_CAPACITY_SCALE, 9411 .ret = 0, 9412 }; 9413 9414 buf = strim(buf); 9415 if (strcmp(buf, "max")) { 9416 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9417 &req.percent); 9418 if (req.ret) 9419 return req; 9420 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9421 req.ret = -ERANGE; 9422 return req; 9423 } 9424 9425 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9426 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9427 } 9428 9429 return req; 9430 } 9431 9432 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9433 size_t nbytes, loff_t off, 9434 enum uclamp_id clamp_id) 9435 { 9436 struct uclamp_request req; 9437 struct task_group *tg; 9438 9439 req = capacity_from_percent(buf); 9440 if (req.ret) 9441 return req.ret; 9442 9443 sched_uclamp_enable(); 9444 9445 guard(mutex)(&uclamp_mutex); 9446 guard(rcu)(); 9447 9448 tg = css_tg(of_css(of)); 9449 if (tg->uclamp_req[clamp_id].value != req.util) 9450 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9451 9452 /* 9453 * Because of not recoverable conversion rounding we keep track of the 9454 * exact requested value 9455 */ 9456 tg->uclamp_pct[clamp_id] = req.percent; 9457 9458 /* Update effective clamps to track the most restrictive value */ 9459 cpu_util_update_eff(of_css(of)); 9460 9461 return nbytes; 9462 } 9463 9464 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9465 char *buf, size_t nbytes, 9466 loff_t off) 9467 { 9468 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9469 } 9470 9471 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9472 char *buf, size_t nbytes, 9473 loff_t off) 9474 { 9475 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9476 } 9477 9478 static inline void cpu_uclamp_print(struct seq_file *sf, 9479 enum uclamp_id clamp_id) 9480 { 9481 struct task_group *tg; 9482 u64 util_clamp; 9483 u64 percent; 9484 u32 rem; 9485 9486 scoped_guard (rcu) { 9487 tg = css_tg(seq_css(sf)); 9488 util_clamp = tg->uclamp_req[clamp_id].value; 9489 } 9490 9491 if (util_clamp == SCHED_CAPACITY_SCALE) { 9492 seq_puts(sf, "max\n"); 9493 return; 9494 } 9495 9496 percent = tg->uclamp_pct[clamp_id]; 9497 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9498 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9499 } 9500 9501 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9502 { 9503 cpu_uclamp_print(sf, UCLAMP_MIN); 9504 return 0; 9505 } 9506 9507 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9508 { 9509 cpu_uclamp_print(sf, UCLAMP_MAX); 9510 return 0; 9511 } 9512 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9513 9514 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9515 static unsigned long tg_weight(struct task_group *tg) 9516 { 9517 #ifdef CONFIG_FAIR_GROUP_SCHED 9518 return scale_load_down(tg->shares); 9519 #else 9520 return sched_weight_from_cgroup(tg->scx.weight); 9521 #endif 9522 } 9523 9524 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9525 struct cftype *cftype, u64 shareval) 9526 { 9527 int ret; 9528 9529 if (shareval > scale_load_down(ULONG_MAX)) 9530 shareval = MAX_SHARES; 9531 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9532 if (!ret) 9533 scx_group_set_weight(css_tg(css), 9534 sched_weight_to_cgroup(shareval)); 9535 return ret; 9536 } 9537 9538 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9539 struct cftype *cft) 9540 { 9541 return tg_weight(css_tg(css)); 9542 } 9543 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9544 9545 #ifdef CONFIG_CFS_BANDWIDTH 9546 static DEFINE_MUTEX(cfs_constraints_mutex); 9547 9548 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9549 9550 static int tg_set_cfs_bandwidth(struct task_group *tg, 9551 u64 period_us, u64 quota_us, u64 burst_us) 9552 { 9553 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9554 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9555 u64 period, quota, burst; 9556 9557 period = (u64)period_us * NSEC_PER_USEC; 9558 9559 if (quota_us == RUNTIME_INF) 9560 quota = RUNTIME_INF; 9561 else 9562 quota = (u64)quota_us * NSEC_PER_USEC; 9563 9564 burst = (u64)burst_us * NSEC_PER_USEC; 9565 9566 /* 9567 * Prevent race between setting of cfs_rq->runtime_enabled and 9568 * unthrottle_offline_cfs_rqs(). 9569 */ 9570 guard(cpus_read_lock)(); 9571 guard(mutex)(&cfs_constraints_mutex); 9572 9573 ret = __cfs_schedulable(tg, period, quota); 9574 if (ret) 9575 return ret; 9576 9577 runtime_enabled = quota != RUNTIME_INF; 9578 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9579 /* 9580 * If we need to toggle cfs_bandwidth_used, off->on must occur 9581 * before making related changes, and on->off must occur afterwards 9582 */ 9583 if (runtime_enabled && !runtime_was_enabled) 9584 cfs_bandwidth_usage_inc(); 9585 9586 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9587 cfs_b->period = ns_to_ktime(period); 9588 cfs_b->quota = quota; 9589 cfs_b->burst = burst; 9590 9591 __refill_cfs_bandwidth_runtime(cfs_b); 9592 9593 /* 9594 * Restart the period timer (if active) to handle new 9595 * period expiry: 9596 */ 9597 if (runtime_enabled) 9598 start_cfs_bandwidth(cfs_b); 9599 } 9600 9601 for_each_online_cpu(i) { 9602 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9603 struct rq *rq = cfs_rq->rq; 9604 9605 guard(rq_lock_irq)(rq); 9606 cfs_rq->runtime_enabled = runtime_enabled; 9607 cfs_rq->runtime_remaining = 0; 9608 9609 if (cfs_rq->throttled) 9610 unthrottle_cfs_rq(cfs_rq); 9611 } 9612 9613 if (runtime_was_enabled && !runtime_enabled) 9614 cfs_bandwidth_usage_dec(); 9615 9616 return 0; 9617 } 9618 9619 static u64 tg_get_cfs_period(struct task_group *tg) 9620 { 9621 u64 cfs_period_us; 9622 9623 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9624 do_div(cfs_period_us, NSEC_PER_USEC); 9625 9626 return cfs_period_us; 9627 } 9628 9629 static u64 tg_get_cfs_quota(struct task_group *tg) 9630 { 9631 u64 quota_us; 9632 9633 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9634 return RUNTIME_INF; 9635 9636 quota_us = tg->cfs_bandwidth.quota; 9637 do_div(quota_us, NSEC_PER_USEC); 9638 9639 return quota_us; 9640 } 9641 9642 static u64 tg_get_cfs_burst(struct task_group *tg) 9643 { 9644 u64 burst_us; 9645 9646 burst_us = tg->cfs_bandwidth.burst; 9647 do_div(burst_us, NSEC_PER_USEC); 9648 9649 return burst_us; 9650 } 9651 9652 struct cfs_schedulable_data { 9653 struct task_group *tg; 9654 u64 period, quota; 9655 }; 9656 9657 /* 9658 * normalize group quota/period to be quota/max_period 9659 * note: units are usecs 9660 */ 9661 static u64 normalize_cfs_quota(struct task_group *tg, 9662 struct cfs_schedulable_data *d) 9663 { 9664 u64 quota, period; 9665 9666 if (tg == d->tg) { 9667 period = d->period; 9668 quota = d->quota; 9669 } else { 9670 period = tg_get_cfs_period(tg); 9671 quota = tg_get_cfs_quota(tg); 9672 } 9673 9674 /* note: these should typically be equivalent */ 9675 if (quota == RUNTIME_INF || quota == -1) 9676 return RUNTIME_INF; 9677 9678 return to_ratio(period, quota); 9679 } 9680 9681 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9682 { 9683 struct cfs_schedulable_data *d = data; 9684 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9685 s64 quota = 0, parent_quota = -1; 9686 9687 if (!tg->parent) { 9688 quota = RUNTIME_INF; 9689 } else { 9690 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9691 9692 quota = normalize_cfs_quota(tg, d); 9693 parent_quota = parent_b->hierarchical_quota; 9694 9695 /* 9696 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9697 * always take the non-RUNTIME_INF min. On cgroup1, only 9698 * inherit when no limit is set. In both cases this is used 9699 * by the scheduler to determine if a given CFS task has a 9700 * bandwidth constraint at some higher level. 9701 */ 9702 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9703 if (quota == RUNTIME_INF) 9704 quota = parent_quota; 9705 else if (parent_quota != RUNTIME_INF) 9706 quota = min(quota, parent_quota); 9707 } else { 9708 if (quota == RUNTIME_INF) 9709 quota = parent_quota; 9710 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9711 return -EINVAL; 9712 } 9713 } 9714 cfs_b->hierarchical_quota = quota; 9715 9716 return 0; 9717 } 9718 9719 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9720 { 9721 struct cfs_schedulable_data data = { 9722 .tg = tg, 9723 .period = period, 9724 .quota = quota, 9725 }; 9726 9727 if (quota != RUNTIME_INF) { 9728 do_div(data.period, NSEC_PER_USEC); 9729 do_div(data.quota, NSEC_PER_USEC); 9730 } 9731 9732 guard(rcu)(); 9733 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9734 } 9735 9736 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9737 { 9738 struct task_group *tg = css_tg(seq_css(sf)); 9739 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9740 9741 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9742 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9743 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9744 9745 if (schedstat_enabled() && tg != &root_task_group) { 9746 struct sched_statistics *stats; 9747 u64 ws = 0; 9748 int i; 9749 9750 for_each_possible_cpu(i) { 9751 stats = __schedstats_from_se(tg->se[i]); 9752 ws += schedstat_val(stats->wait_sum); 9753 } 9754 9755 seq_printf(sf, "wait_sum %llu\n", ws); 9756 } 9757 9758 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9759 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9760 9761 return 0; 9762 } 9763 9764 static u64 throttled_time_self(struct task_group *tg) 9765 { 9766 int i; 9767 u64 total = 0; 9768 9769 for_each_possible_cpu(i) { 9770 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9771 } 9772 9773 return total; 9774 } 9775 9776 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9777 { 9778 struct task_group *tg = css_tg(seq_css(sf)); 9779 9780 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9781 9782 return 0; 9783 } 9784 #endif /* CONFIG_CFS_BANDWIDTH */ 9785 9786 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 9787 const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */ 9788 static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */ 9789 /* More than 203 days if BW_SHIFT equals 20. */ 9790 static const u64 max_bw_runtime_us = MAX_BW; 9791 9792 static void tg_bandwidth(struct task_group *tg, 9793 u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p) 9794 { 9795 #ifdef CONFIG_CFS_BANDWIDTH 9796 if (period_us_p) 9797 *period_us_p = tg_get_cfs_period(tg); 9798 if (quota_us_p) 9799 *quota_us_p = tg_get_cfs_quota(tg); 9800 if (burst_us_p) 9801 *burst_us_p = tg_get_cfs_burst(tg); 9802 #else /* !CONFIG_CFS_BANDWIDTH */ 9803 if (period_us_p) 9804 *period_us_p = tg->scx.bw_period_us; 9805 if (quota_us_p) 9806 *quota_us_p = tg->scx.bw_quota_us; 9807 if (burst_us_p) 9808 *burst_us_p = tg->scx.bw_burst_us; 9809 #endif /* CONFIG_CFS_BANDWIDTH */ 9810 } 9811 9812 static u64 cpu_period_read_u64(struct cgroup_subsys_state *css, 9813 struct cftype *cft) 9814 { 9815 u64 period_us; 9816 9817 tg_bandwidth(css_tg(css), &period_us, NULL, NULL); 9818 return period_us; 9819 } 9820 9821 static int tg_set_bandwidth(struct task_group *tg, 9822 u64 period_us, u64 quota_us, u64 burst_us) 9823 { 9824 const u64 max_usec = U64_MAX / NSEC_PER_USEC; 9825 int ret = 0; 9826 9827 if (tg == &root_task_group) 9828 return -EINVAL; 9829 9830 /* Values should survive translation to nsec */ 9831 if (period_us > max_usec || 9832 (quota_us != RUNTIME_INF && quota_us > max_usec) || 9833 burst_us > max_usec) 9834 return -EINVAL; 9835 9836 /* 9837 * Ensure we have some amount of bandwidth every period. This is to 9838 * prevent reaching a state of large arrears when throttled via 9839 * entity_tick() resulting in prolonged exit starvation. 9840 */ 9841 if (quota_us < min_bw_quota_period_us || 9842 period_us < min_bw_quota_period_us) 9843 return -EINVAL; 9844 9845 /* 9846 * Likewise, bound things on the other side by preventing insane quota 9847 * periods. This also allows us to normalize in computing quota 9848 * feasibility. 9849 */ 9850 if (period_us > max_bw_quota_period_us) 9851 return -EINVAL; 9852 9853 /* 9854 * Bound quota to defend quota against overflow during bandwidth shift. 9855 */ 9856 if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us) 9857 return -EINVAL; 9858 9859 if (quota_us != RUNTIME_INF && (burst_us > quota_us || 9860 burst_us + quota_us > max_bw_runtime_us)) 9861 return -EINVAL; 9862 9863 #ifdef CONFIG_CFS_BANDWIDTH 9864 ret = tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us); 9865 #endif /* CONFIG_CFS_BANDWIDTH */ 9866 if (!ret) 9867 scx_group_set_bandwidth(tg, period_us, quota_us, burst_us); 9868 return ret; 9869 } 9870 9871 static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css, 9872 struct cftype *cft) 9873 { 9874 u64 quota_us; 9875 9876 tg_bandwidth(css_tg(css), NULL, "a_us, NULL); 9877 return quota_us; /* (s64)RUNTIME_INF becomes -1 */ 9878 } 9879 9880 static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css, 9881 struct cftype *cft) 9882 { 9883 u64 burst_us; 9884 9885 tg_bandwidth(css_tg(css), NULL, NULL, &burst_us); 9886 return burst_us; 9887 } 9888 9889 static int cpu_period_write_u64(struct cgroup_subsys_state *css, 9890 struct cftype *cftype, u64 period_us) 9891 { 9892 struct task_group *tg = css_tg(css); 9893 u64 quota_us, burst_us; 9894 9895 tg_bandwidth(tg, NULL, "a_us, &burst_us); 9896 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9897 } 9898 9899 static int cpu_quota_write_s64(struct cgroup_subsys_state *css, 9900 struct cftype *cftype, s64 quota_us) 9901 { 9902 struct task_group *tg = css_tg(css); 9903 u64 period_us, burst_us; 9904 9905 if (quota_us < 0) 9906 quota_us = RUNTIME_INF; 9907 9908 tg_bandwidth(tg, &period_us, NULL, &burst_us); 9909 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9910 } 9911 9912 static int cpu_burst_write_u64(struct cgroup_subsys_state *css, 9913 struct cftype *cftype, u64 burst_us) 9914 { 9915 struct task_group *tg = css_tg(css); 9916 u64 period_us, quota_us; 9917 9918 tg_bandwidth(tg, &period_us, "a_us, NULL); 9919 return tg_set_bandwidth(tg, period_us, quota_us, burst_us); 9920 } 9921 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ 9922 9923 #ifdef CONFIG_RT_GROUP_SCHED 9924 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9925 struct cftype *cft, s64 val) 9926 { 9927 return sched_group_set_rt_runtime(css_tg(css), val); 9928 } 9929 9930 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9931 struct cftype *cft) 9932 { 9933 return sched_group_rt_runtime(css_tg(css)); 9934 } 9935 9936 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9937 struct cftype *cftype, u64 rt_period_us) 9938 { 9939 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9940 } 9941 9942 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9943 struct cftype *cft) 9944 { 9945 return sched_group_rt_period(css_tg(css)); 9946 } 9947 #endif /* CONFIG_RT_GROUP_SCHED */ 9948 9949 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9950 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9951 struct cftype *cft) 9952 { 9953 return css_tg(css)->idle; 9954 } 9955 9956 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9957 struct cftype *cft, s64 idle) 9958 { 9959 int ret; 9960 9961 ret = sched_group_set_idle(css_tg(css), idle); 9962 if (!ret) 9963 scx_group_set_idle(css_tg(css), idle); 9964 return ret; 9965 } 9966 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9967 9968 static struct cftype cpu_legacy_files[] = { 9969 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9970 { 9971 .name = "shares", 9972 .read_u64 = cpu_shares_read_u64, 9973 .write_u64 = cpu_shares_write_u64, 9974 }, 9975 { 9976 .name = "idle", 9977 .read_s64 = cpu_idle_read_s64, 9978 .write_s64 = cpu_idle_write_s64, 9979 }, 9980 #endif 9981 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 9982 { 9983 .name = "cfs_period_us", 9984 .read_u64 = cpu_period_read_u64, 9985 .write_u64 = cpu_period_write_u64, 9986 }, 9987 { 9988 .name = "cfs_quota_us", 9989 .read_s64 = cpu_quota_read_s64, 9990 .write_s64 = cpu_quota_write_s64, 9991 }, 9992 { 9993 .name = "cfs_burst_us", 9994 .read_u64 = cpu_burst_read_u64, 9995 .write_u64 = cpu_burst_write_u64, 9996 }, 9997 #endif 9998 #ifdef CONFIG_CFS_BANDWIDTH 9999 { 10000 .name = "stat", 10001 .seq_show = cpu_cfs_stat_show, 10002 }, 10003 { 10004 .name = "stat.local", 10005 .seq_show = cpu_cfs_local_stat_show, 10006 }, 10007 #endif 10008 #ifdef CONFIG_UCLAMP_TASK_GROUP 10009 { 10010 .name = "uclamp.min", 10011 .flags = CFTYPE_NOT_ON_ROOT, 10012 .seq_show = cpu_uclamp_min_show, 10013 .write = cpu_uclamp_min_write, 10014 }, 10015 { 10016 .name = "uclamp.max", 10017 .flags = CFTYPE_NOT_ON_ROOT, 10018 .seq_show = cpu_uclamp_max_show, 10019 .write = cpu_uclamp_max_write, 10020 }, 10021 #endif 10022 { } /* Terminate */ 10023 }; 10024 10025 #ifdef CONFIG_RT_GROUP_SCHED 10026 static struct cftype rt_group_files[] = { 10027 { 10028 .name = "rt_runtime_us", 10029 .read_s64 = cpu_rt_runtime_read, 10030 .write_s64 = cpu_rt_runtime_write, 10031 }, 10032 { 10033 .name = "rt_period_us", 10034 .read_u64 = cpu_rt_period_read_uint, 10035 .write_u64 = cpu_rt_period_write_uint, 10036 }, 10037 { } /* Terminate */ 10038 }; 10039 10040 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 10041 DEFINE_STATIC_KEY_FALSE(rt_group_sched); 10042 # else 10043 DEFINE_STATIC_KEY_TRUE(rt_group_sched); 10044 # endif 10045 10046 static int __init setup_rt_group_sched(char *str) 10047 { 10048 long val; 10049 10050 if (kstrtol(str, 0, &val) || val < 0 || val > 1) { 10051 pr_warn("Unable to set rt_group_sched\n"); 10052 return 1; 10053 } 10054 if (val) 10055 static_branch_enable(&rt_group_sched); 10056 else 10057 static_branch_disable(&rt_group_sched); 10058 10059 return 1; 10060 } 10061 __setup("rt_group_sched=", setup_rt_group_sched); 10062 10063 static int __init cpu_rt_group_init(void) 10064 { 10065 if (!rt_group_sched_enabled()) 10066 return 0; 10067 10068 WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files)); 10069 return 0; 10070 } 10071 subsys_initcall(cpu_rt_group_init); 10072 #endif /* CONFIG_RT_GROUP_SCHED */ 10073 10074 static int cpu_extra_stat_show(struct seq_file *sf, 10075 struct cgroup_subsys_state *css) 10076 { 10077 #ifdef CONFIG_CFS_BANDWIDTH 10078 { 10079 struct task_group *tg = css_tg(css); 10080 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10081 u64 throttled_usec, burst_usec; 10082 10083 throttled_usec = cfs_b->throttled_time; 10084 do_div(throttled_usec, NSEC_PER_USEC); 10085 burst_usec = cfs_b->burst_time; 10086 do_div(burst_usec, NSEC_PER_USEC); 10087 10088 seq_printf(sf, "nr_periods %d\n" 10089 "nr_throttled %d\n" 10090 "throttled_usec %llu\n" 10091 "nr_bursts %d\n" 10092 "burst_usec %llu\n", 10093 cfs_b->nr_periods, cfs_b->nr_throttled, 10094 throttled_usec, cfs_b->nr_burst, burst_usec); 10095 } 10096 #endif /* CONFIG_CFS_BANDWIDTH */ 10097 return 0; 10098 } 10099 10100 static int cpu_local_stat_show(struct seq_file *sf, 10101 struct cgroup_subsys_state *css) 10102 { 10103 #ifdef CONFIG_CFS_BANDWIDTH 10104 { 10105 struct task_group *tg = css_tg(css); 10106 u64 throttled_self_usec; 10107 10108 throttled_self_usec = throttled_time_self(tg); 10109 do_div(throttled_self_usec, NSEC_PER_USEC); 10110 10111 seq_printf(sf, "throttled_usec %llu\n", 10112 throttled_self_usec); 10113 } 10114 #endif 10115 return 0; 10116 } 10117 10118 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10119 10120 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10121 struct cftype *cft) 10122 { 10123 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 10124 } 10125 10126 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10127 struct cftype *cft, u64 cgrp_weight) 10128 { 10129 unsigned long weight; 10130 int ret; 10131 10132 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 10133 return -ERANGE; 10134 10135 weight = sched_weight_from_cgroup(cgrp_weight); 10136 10137 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 10138 if (!ret) 10139 scx_group_set_weight(css_tg(css), cgrp_weight); 10140 return ret; 10141 } 10142 10143 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10144 struct cftype *cft) 10145 { 10146 unsigned long weight = tg_weight(css_tg(css)); 10147 int last_delta = INT_MAX; 10148 int prio, delta; 10149 10150 /* find the closest nice value to the current weight */ 10151 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10152 delta = abs(sched_prio_to_weight[prio] - weight); 10153 if (delta >= last_delta) 10154 break; 10155 last_delta = delta; 10156 } 10157 10158 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10159 } 10160 10161 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10162 struct cftype *cft, s64 nice) 10163 { 10164 unsigned long weight; 10165 int idx, ret; 10166 10167 if (nice < MIN_NICE || nice > MAX_NICE) 10168 return -ERANGE; 10169 10170 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10171 idx = array_index_nospec(idx, 40); 10172 weight = sched_prio_to_weight[idx]; 10173 10174 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 10175 if (!ret) 10176 scx_group_set_weight(css_tg(css), 10177 sched_weight_to_cgroup(weight)); 10178 return ret; 10179 } 10180 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 10181 10182 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10183 long period, long quota) 10184 { 10185 if (quota < 0) 10186 seq_puts(sf, "max"); 10187 else 10188 seq_printf(sf, "%ld", quota); 10189 10190 seq_printf(sf, " %ld\n", period); 10191 } 10192 10193 /* caller should put the current value in *@periodp before calling */ 10194 static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p, 10195 u64 *quota_us_p) 10196 { 10197 char tok[21]; /* U64_MAX */ 10198 10199 if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1) 10200 return -EINVAL; 10201 10202 if (sscanf(tok, "%llu", quota_us_p) < 1) { 10203 if (!strcmp(tok, "max")) 10204 *quota_us_p = RUNTIME_INF; 10205 else 10206 return -EINVAL; 10207 } 10208 10209 return 0; 10210 } 10211 10212 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 10213 static int cpu_max_show(struct seq_file *sf, void *v) 10214 { 10215 struct task_group *tg = css_tg(seq_css(sf)); 10216 u64 period_us, quota_us; 10217 10218 tg_bandwidth(tg, &period_us, "a_us, NULL); 10219 cpu_period_quota_print(sf, period_us, quota_us); 10220 return 0; 10221 } 10222 10223 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10224 char *buf, size_t nbytes, loff_t off) 10225 { 10226 struct task_group *tg = css_tg(of_css(of)); 10227 u64 period_us, quota_us, burst_us; 10228 int ret; 10229 10230 tg_bandwidth(tg, &period_us, NULL, &burst_us); 10231 ret = cpu_period_quota_parse(buf, &period_us, "a_us); 10232 if (!ret) 10233 ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us); 10234 return ret ?: nbytes; 10235 } 10236 #endif /* CONFIG_CFS_BANDWIDTH */ 10237 10238 static struct cftype cpu_files[] = { 10239 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10240 { 10241 .name = "weight", 10242 .flags = CFTYPE_NOT_ON_ROOT, 10243 .read_u64 = cpu_weight_read_u64, 10244 .write_u64 = cpu_weight_write_u64, 10245 }, 10246 { 10247 .name = "weight.nice", 10248 .flags = CFTYPE_NOT_ON_ROOT, 10249 .read_s64 = cpu_weight_nice_read_s64, 10250 .write_s64 = cpu_weight_nice_write_s64, 10251 }, 10252 { 10253 .name = "idle", 10254 .flags = CFTYPE_NOT_ON_ROOT, 10255 .read_s64 = cpu_idle_read_s64, 10256 .write_s64 = cpu_idle_write_s64, 10257 }, 10258 #endif 10259 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 10260 { 10261 .name = "max", 10262 .flags = CFTYPE_NOT_ON_ROOT, 10263 .seq_show = cpu_max_show, 10264 .write = cpu_max_write, 10265 }, 10266 { 10267 .name = "max.burst", 10268 .flags = CFTYPE_NOT_ON_ROOT, 10269 .read_u64 = cpu_burst_read_u64, 10270 .write_u64 = cpu_burst_write_u64, 10271 }, 10272 #endif /* CONFIG_CFS_BANDWIDTH */ 10273 #ifdef CONFIG_UCLAMP_TASK_GROUP 10274 { 10275 .name = "uclamp.min", 10276 .flags = CFTYPE_NOT_ON_ROOT, 10277 .seq_show = cpu_uclamp_min_show, 10278 .write = cpu_uclamp_min_write, 10279 }, 10280 { 10281 .name = "uclamp.max", 10282 .flags = CFTYPE_NOT_ON_ROOT, 10283 .seq_show = cpu_uclamp_max_show, 10284 .write = cpu_uclamp_max_write, 10285 }, 10286 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10287 { } /* terminate */ 10288 }; 10289 10290 struct cgroup_subsys cpu_cgrp_subsys = { 10291 .css_alloc = cpu_cgroup_css_alloc, 10292 .css_online = cpu_cgroup_css_online, 10293 .css_offline = cpu_cgroup_css_offline, 10294 .css_released = cpu_cgroup_css_released, 10295 .css_free = cpu_cgroup_css_free, 10296 .css_extra_stat_show = cpu_extra_stat_show, 10297 .css_local_stat_show = cpu_local_stat_show, 10298 .can_attach = cpu_cgroup_can_attach, 10299 .attach = cpu_cgroup_attach, 10300 .cancel_attach = cpu_cgroup_cancel_attach, 10301 .legacy_cftypes = cpu_legacy_files, 10302 .dfl_cftypes = cpu_files, 10303 .early_init = true, 10304 .threaded = true, 10305 }; 10306 10307 #endif /* CONFIG_CGROUP_SCHED */ 10308 10309 void dump_cpu_task(int cpu) 10310 { 10311 if (in_hardirq() && cpu == smp_processor_id()) { 10312 struct pt_regs *regs; 10313 10314 regs = get_irq_regs(); 10315 if (regs) { 10316 show_regs(regs); 10317 return; 10318 } 10319 } 10320 10321 if (trigger_single_cpu_backtrace(cpu)) 10322 return; 10323 10324 pr_info("Task dump for CPU %d:\n", cpu); 10325 sched_show_task(cpu_curr(cpu)); 10326 } 10327 10328 /* 10329 * Nice levels are multiplicative, with a gentle 10% change for every 10330 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10331 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10332 * that remained on nice 0. 10333 * 10334 * The "10% effect" is relative and cumulative: from _any_ nice level, 10335 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10336 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10337 * If a task goes up by ~10% and another task goes down by ~10% then 10338 * the relative distance between them is ~25%.) 10339 */ 10340 const int sched_prio_to_weight[40] = { 10341 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10342 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10343 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10344 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10345 /* 0 */ 1024, 820, 655, 526, 423, 10346 /* 5 */ 335, 272, 215, 172, 137, 10347 /* 10 */ 110, 87, 70, 56, 45, 10348 /* 15 */ 36, 29, 23, 18, 15, 10349 }; 10350 10351 /* 10352 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10353 * 10354 * In cases where the weight does not change often, we can use the 10355 * pre-calculated inverse to speed up arithmetics by turning divisions 10356 * into multiplications: 10357 */ 10358 const u32 sched_prio_to_wmult[40] = { 10359 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10360 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10361 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10362 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10363 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10364 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10365 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10366 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10367 }; 10368 10369 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10370 { 10371 trace_sched_update_nr_running_tp(rq, count); 10372 } 10373 10374 #ifdef CONFIG_SCHED_MM_CID 10375 10376 /* 10377 * @cid_lock: Guarantee forward-progress of cid allocation. 10378 * 10379 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 10380 * is only used when contention is detected by the lock-free allocation so 10381 * forward progress can be guaranteed. 10382 */ 10383 DEFINE_RAW_SPINLOCK(cid_lock); 10384 10385 /* 10386 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 10387 * 10388 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 10389 * detected, it is set to 1 to ensure that all newly coming allocations are 10390 * serialized by @cid_lock until the allocation which detected contention 10391 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 10392 * of a cid allocation. 10393 */ 10394 int use_cid_lock; 10395 10396 /* 10397 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 10398 * concurrently with respect to the execution of the source runqueue context 10399 * switch. 10400 * 10401 * There is one basic properties we want to guarantee here: 10402 * 10403 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 10404 * used by a task. That would lead to concurrent allocation of the cid and 10405 * userspace corruption. 10406 * 10407 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 10408 * that a pair of loads observe at least one of a pair of stores, which can be 10409 * shown as: 10410 * 10411 * X = Y = 0 10412 * 10413 * w[X]=1 w[Y]=1 10414 * MB MB 10415 * r[Y]=y r[X]=x 10416 * 10417 * Which guarantees that x==0 && y==0 is impossible. But rather than using 10418 * values 0 and 1, this algorithm cares about specific state transitions of the 10419 * runqueue current task (as updated by the scheduler context switch), and the 10420 * per-mm/cpu cid value. 10421 * 10422 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 10423 * task->mm != mm for the rest of the discussion. There are two scheduler state 10424 * transitions on context switch we care about: 10425 * 10426 * (TSA) Store to rq->curr with transition from (N) to (Y) 10427 * 10428 * (TSB) Store to rq->curr with transition from (Y) to (N) 10429 * 10430 * On the remote-clear side, there is one transition we care about: 10431 * 10432 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 10433 * 10434 * There is also a transition to UNSET state which can be performed from all 10435 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 10436 * guarantees that only a single thread will succeed: 10437 * 10438 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 10439 * 10440 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 10441 * when a thread is actively using the cid (property (1)). 10442 * 10443 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 10444 * 10445 * Scenario A) (TSA)+(TMA) (from next task perspective) 10446 * 10447 * CPU0 CPU1 10448 * 10449 * Context switch CS-1 Remote-clear 10450 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 10451 * (implied barrier after cmpxchg) 10452 * - switch_mm_cid() 10453 * - memory barrier (see switch_mm_cid() 10454 * comment explaining how this barrier 10455 * is combined with other scheduler 10456 * barriers) 10457 * - mm_cid_get (next) 10458 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 10459 * 10460 * This Dekker ensures that either task (Y) is observed by the 10461 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 10462 * observed. 10463 * 10464 * If task (Y) store is observed by rcu_dereference(), it means that there is 10465 * still an active task on the cpu. Remote-clear will therefore not transition 10466 * to UNSET, which fulfills property (1). 10467 * 10468 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 10469 * it will move its state to UNSET, which clears the percpu cid perhaps 10470 * uselessly (which is not an issue for correctness). Because task (Y) is not 10471 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 10472 * state to UNSET is done with a cmpxchg expecting that the old state has the 10473 * LAZY flag set, only one thread will successfully UNSET. 10474 * 10475 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 10476 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 10477 * CPU1 will observe task (Y) and do nothing more, which is fine. 10478 * 10479 * What we are effectively preventing with this Dekker is a scenario where 10480 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 10481 * because this would UNSET a cid which is actively used. 10482 */ 10483 10484 void sched_mm_cid_migrate_from(struct task_struct *t) 10485 { 10486 t->migrate_from_cpu = task_cpu(t); 10487 } 10488 10489 static 10490 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 10491 struct task_struct *t, 10492 struct mm_cid *src_pcpu_cid) 10493 { 10494 struct mm_struct *mm = t->mm; 10495 struct task_struct *src_task; 10496 int src_cid, last_mm_cid; 10497 10498 if (!mm) 10499 return -1; 10500 10501 last_mm_cid = t->last_mm_cid; 10502 /* 10503 * If the migrated task has no last cid, or if the current 10504 * task on src rq uses the cid, it means the source cid does not need 10505 * to be moved to the destination cpu. 10506 */ 10507 if (last_mm_cid == -1) 10508 return -1; 10509 src_cid = READ_ONCE(src_pcpu_cid->cid); 10510 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10511 return -1; 10512 10513 /* 10514 * If we observe an active task using the mm on this rq, it means we 10515 * are not the last task to be migrated from this cpu for this mm, so 10516 * there is no need to move src_cid to the destination cpu. 10517 */ 10518 guard(rcu)(); 10519 src_task = rcu_dereference(src_rq->curr); 10520 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10521 t->last_mm_cid = -1; 10522 return -1; 10523 } 10524 10525 return src_cid; 10526 } 10527 10528 static 10529 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10530 struct task_struct *t, 10531 struct mm_cid *src_pcpu_cid, 10532 int src_cid) 10533 { 10534 struct task_struct *src_task; 10535 struct mm_struct *mm = t->mm; 10536 int lazy_cid; 10537 10538 if (src_cid == -1) 10539 return -1; 10540 10541 /* 10542 * Attempt to clear the source cpu cid to move it to the destination 10543 * cpu. 10544 */ 10545 lazy_cid = mm_cid_set_lazy_put(src_cid); 10546 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10547 return -1; 10548 10549 /* 10550 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10551 * rq->curr->mm matches the scheduler barrier in context_switch() 10552 * between store to rq->curr and load of prev and next task's 10553 * per-mm/cpu cid. 10554 * 10555 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10556 * rq->curr->mm_cid_active matches the barrier in 10557 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10558 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10559 * load of per-mm/cpu cid. 10560 */ 10561 10562 /* 10563 * If we observe an active task using the mm on this rq after setting 10564 * the lazy-put flag, this task will be responsible for transitioning 10565 * from lazy-put flag set to MM_CID_UNSET. 10566 */ 10567 scoped_guard (rcu) { 10568 src_task = rcu_dereference(src_rq->curr); 10569 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10570 /* 10571 * We observed an active task for this mm, there is therefore 10572 * no point in moving this cid to the destination cpu. 10573 */ 10574 t->last_mm_cid = -1; 10575 return -1; 10576 } 10577 } 10578 10579 /* 10580 * The src_cid is unused, so it can be unset. 10581 */ 10582 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10583 return -1; 10584 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); 10585 return src_cid; 10586 } 10587 10588 /* 10589 * Migration to dst cpu. Called with dst_rq lock held. 10590 * Interrupts are disabled, which keeps the window of cid ownership without the 10591 * source rq lock held small. 10592 */ 10593 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10594 { 10595 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10596 struct mm_struct *mm = t->mm; 10597 int src_cid, src_cpu; 10598 bool dst_cid_is_set; 10599 struct rq *src_rq; 10600 10601 lockdep_assert_rq_held(dst_rq); 10602 10603 if (!mm) 10604 return; 10605 src_cpu = t->migrate_from_cpu; 10606 if (src_cpu == -1) { 10607 t->last_mm_cid = -1; 10608 return; 10609 } 10610 /* 10611 * Move the src cid if the dst cid is unset. This keeps id 10612 * allocation closest to 0 in cases where few threads migrate around 10613 * many CPUs. 10614 * 10615 * If destination cid or recent cid is already set, we may have 10616 * to just clear the src cid to ensure compactness in frequent 10617 * migrations scenarios. 10618 * 10619 * It is not useful to clear the src cid when the number of threads is 10620 * greater or equal to the number of allowed CPUs, because user-space 10621 * can expect that the number of allowed cids can reach the number of 10622 * allowed CPUs. 10623 */ 10624 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10625 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || 10626 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); 10627 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) 10628 return; 10629 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10630 src_rq = cpu_rq(src_cpu); 10631 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10632 if (src_cid == -1) 10633 return; 10634 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10635 src_cid); 10636 if (src_cid == -1) 10637 return; 10638 if (dst_cid_is_set) { 10639 __mm_cid_put(mm, src_cid); 10640 return; 10641 } 10642 /* Move src_cid to dst cpu. */ 10643 mm_cid_snapshot_time(dst_rq, mm); 10644 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10645 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); 10646 } 10647 10648 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10649 int cpu) 10650 { 10651 struct rq *rq = cpu_rq(cpu); 10652 struct task_struct *t; 10653 int cid, lazy_cid; 10654 10655 cid = READ_ONCE(pcpu_cid->cid); 10656 if (!mm_cid_is_valid(cid)) 10657 return; 10658 10659 /* 10660 * Clear the cpu cid if it is set to keep cid allocation compact. If 10661 * there happens to be other tasks left on the source cpu using this 10662 * mm, the next task using this mm will reallocate its cid on context 10663 * switch. 10664 */ 10665 lazy_cid = mm_cid_set_lazy_put(cid); 10666 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10667 return; 10668 10669 /* 10670 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10671 * rq->curr->mm matches the scheduler barrier in context_switch() 10672 * between store to rq->curr and load of prev and next task's 10673 * per-mm/cpu cid. 10674 * 10675 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10676 * rq->curr->mm_cid_active matches the barrier in 10677 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10678 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10679 * load of per-mm/cpu cid. 10680 */ 10681 10682 /* 10683 * If we observe an active task using the mm on this rq after setting 10684 * the lazy-put flag, that task will be responsible for transitioning 10685 * from lazy-put flag set to MM_CID_UNSET. 10686 */ 10687 scoped_guard (rcu) { 10688 t = rcu_dereference(rq->curr); 10689 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10690 return; 10691 } 10692 10693 /* 10694 * The cid is unused, so it can be unset. 10695 * Disable interrupts to keep the window of cid ownership without rq 10696 * lock small. 10697 */ 10698 scoped_guard (irqsave) { 10699 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10700 __mm_cid_put(mm, cid); 10701 } 10702 } 10703 10704 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10705 { 10706 struct rq *rq = cpu_rq(cpu); 10707 struct mm_cid *pcpu_cid; 10708 struct task_struct *curr; 10709 u64 rq_clock; 10710 10711 /* 10712 * rq->clock load is racy on 32-bit but one spurious clear once in a 10713 * while is irrelevant. 10714 */ 10715 rq_clock = READ_ONCE(rq->clock); 10716 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10717 10718 /* 10719 * In order to take care of infrequently scheduled tasks, bump the time 10720 * snapshot associated with this cid if an active task using the mm is 10721 * observed on this rq. 10722 */ 10723 scoped_guard (rcu) { 10724 curr = rcu_dereference(rq->curr); 10725 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10726 WRITE_ONCE(pcpu_cid->time, rq_clock); 10727 return; 10728 } 10729 } 10730 10731 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10732 return; 10733 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10734 } 10735 10736 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10737 int weight) 10738 { 10739 struct mm_cid *pcpu_cid; 10740 int cid; 10741 10742 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10743 cid = READ_ONCE(pcpu_cid->cid); 10744 if (!mm_cid_is_valid(cid) || cid < weight) 10745 return; 10746 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10747 } 10748 10749 static void task_mm_cid_work(struct callback_head *work) 10750 { 10751 unsigned long now = jiffies, old_scan, next_scan; 10752 struct task_struct *t = current; 10753 struct cpumask *cidmask; 10754 struct mm_struct *mm; 10755 int weight, cpu; 10756 10757 WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work)); 10758 10759 work->next = work; /* Prevent double-add */ 10760 if (t->flags & PF_EXITING) 10761 return; 10762 mm = t->mm; 10763 if (!mm) 10764 return; 10765 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10766 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10767 if (!old_scan) { 10768 unsigned long res; 10769 10770 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10771 if (res != old_scan) 10772 old_scan = res; 10773 else 10774 old_scan = next_scan; 10775 } 10776 if (time_before(now, old_scan)) 10777 return; 10778 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10779 return; 10780 cidmask = mm_cidmask(mm); 10781 /* Clear cids that were not recently used. */ 10782 for_each_possible_cpu(cpu) 10783 sched_mm_cid_remote_clear_old(mm, cpu); 10784 weight = cpumask_weight(cidmask); 10785 /* 10786 * Clear cids that are greater or equal to the cidmask weight to 10787 * recompact it. 10788 */ 10789 for_each_possible_cpu(cpu) 10790 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10791 } 10792 10793 void init_sched_mm_cid(struct task_struct *t) 10794 { 10795 struct mm_struct *mm = t->mm; 10796 int mm_users = 0; 10797 10798 if (mm) { 10799 mm_users = atomic_read(&mm->mm_users); 10800 if (mm_users == 1) 10801 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10802 } 10803 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10804 init_task_work(&t->cid_work, task_mm_cid_work); 10805 } 10806 10807 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10808 { 10809 struct callback_head *work = &curr->cid_work; 10810 unsigned long now = jiffies; 10811 10812 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10813 work->next != work) 10814 return; 10815 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10816 return; 10817 10818 /* No page allocation under rq lock */ 10819 task_work_add(curr, work, TWA_RESUME); 10820 } 10821 10822 void sched_mm_cid_exit_signals(struct task_struct *t) 10823 { 10824 struct mm_struct *mm = t->mm; 10825 struct rq *rq; 10826 10827 if (!mm) 10828 return; 10829 10830 preempt_disable(); 10831 rq = this_rq(); 10832 guard(rq_lock_irqsave)(rq); 10833 preempt_enable_no_resched(); /* holding spinlock */ 10834 WRITE_ONCE(t->mm_cid_active, 0); 10835 /* 10836 * Store t->mm_cid_active before loading per-mm/cpu cid. 10837 * Matches barrier in sched_mm_cid_remote_clear_old(). 10838 */ 10839 smp_mb(); 10840 mm_cid_put(mm); 10841 t->last_mm_cid = t->mm_cid = -1; 10842 } 10843 10844 void sched_mm_cid_before_execve(struct task_struct *t) 10845 { 10846 struct mm_struct *mm = t->mm; 10847 struct rq *rq; 10848 10849 if (!mm) 10850 return; 10851 10852 preempt_disable(); 10853 rq = this_rq(); 10854 guard(rq_lock_irqsave)(rq); 10855 preempt_enable_no_resched(); /* holding spinlock */ 10856 WRITE_ONCE(t->mm_cid_active, 0); 10857 /* 10858 * Store t->mm_cid_active before loading per-mm/cpu cid. 10859 * Matches barrier in sched_mm_cid_remote_clear_old(). 10860 */ 10861 smp_mb(); 10862 mm_cid_put(mm); 10863 t->last_mm_cid = t->mm_cid = -1; 10864 } 10865 10866 void sched_mm_cid_after_execve(struct task_struct *t) 10867 { 10868 struct mm_struct *mm = t->mm; 10869 struct rq *rq; 10870 10871 if (!mm) 10872 return; 10873 10874 preempt_disable(); 10875 rq = this_rq(); 10876 scoped_guard (rq_lock_irqsave, rq) { 10877 preempt_enable_no_resched(); /* holding spinlock */ 10878 WRITE_ONCE(t->mm_cid_active, 1); 10879 /* 10880 * Store t->mm_cid_active before loading per-mm/cpu cid. 10881 * Matches barrier in sched_mm_cid_remote_clear_old(). 10882 */ 10883 smp_mb(); 10884 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); 10885 } 10886 } 10887 10888 void sched_mm_cid_fork(struct task_struct *t) 10889 { 10890 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10891 t->mm_cid_active = 1; 10892 } 10893 #endif /* CONFIG_SCHED_MM_CID */ 10894 10895 #ifdef CONFIG_SCHED_CLASS_EXT 10896 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10897 struct sched_enq_and_set_ctx *ctx) 10898 { 10899 struct rq *rq = task_rq(p); 10900 10901 lockdep_assert_rq_held(rq); 10902 10903 *ctx = (struct sched_enq_and_set_ctx){ 10904 .p = p, 10905 .queue_flags = queue_flags, 10906 .queued = task_on_rq_queued(p), 10907 .running = task_current(rq, p), 10908 }; 10909 10910 update_rq_clock(rq); 10911 if (ctx->queued) 10912 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10913 if (ctx->running) 10914 put_prev_task(rq, p); 10915 } 10916 10917 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10918 { 10919 struct rq *rq = task_rq(ctx->p); 10920 10921 lockdep_assert_rq_held(rq); 10922 10923 if (ctx->queued) 10924 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10925 if (ctx->running) 10926 set_next_task(rq, ctx->p); 10927 } 10928 #endif /* CONFIG_SCHED_CLASS_EXT */ 10929