xref: /linux/kernel/sched/core.c (revision 079c9534a96da9a85a2a2f9715851050fbfbf749)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
80 #endif
81 
82 #include "sched.h"
83 #include "../workqueue_sched.h"
84 
85 #define CREATE_TRACE_POINTS
86 #include <trace/events/sched.h>
87 
88 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
89 {
90 	unsigned long delta;
91 	ktime_t soft, hard, now;
92 
93 	for (;;) {
94 		if (hrtimer_active(period_timer))
95 			break;
96 
97 		now = hrtimer_cb_get_time(period_timer);
98 		hrtimer_forward(period_timer, now, period);
99 
100 		soft = hrtimer_get_softexpires(period_timer);
101 		hard = hrtimer_get_expires(period_timer);
102 		delta = ktime_to_ns(ktime_sub(hard, soft));
103 		__hrtimer_start_range_ns(period_timer, soft, delta,
104 					 HRTIMER_MODE_ABS_PINNED, 0);
105 	}
106 }
107 
108 DEFINE_MUTEX(sched_domains_mutex);
109 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
110 
111 static void update_rq_clock_task(struct rq *rq, s64 delta);
112 
113 void update_rq_clock(struct rq *rq)
114 {
115 	s64 delta;
116 
117 	if (rq->skip_clock_update > 0)
118 		return;
119 
120 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
121 	rq->clock += delta;
122 	update_rq_clock_task(rq, delta);
123 }
124 
125 /*
126  * Debugging: various feature bits
127  */
128 
129 #define SCHED_FEAT(name, enabled)	\
130 	(1UL << __SCHED_FEAT_##name) * enabled |
131 
132 const_debug unsigned int sysctl_sched_features =
133 #include "features.h"
134 	0;
135 
136 #undef SCHED_FEAT
137 
138 #ifdef CONFIG_SCHED_DEBUG
139 #define SCHED_FEAT(name, enabled)	\
140 	#name ,
141 
142 static __read_mostly char *sched_feat_names[] = {
143 #include "features.h"
144 	NULL
145 };
146 
147 #undef SCHED_FEAT
148 
149 static int sched_feat_show(struct seq_file *m, void *v)
150 {
151 	int i;
152 
153 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
154 		if (!(sysctl_sched_features & (1UL << i)))
155 			seq_puts(m, "NO_");
156 		seq_printf(m, "%s ", sched_feat_names[i]);
157 	}
158 	seq_puts(m, "\n");
159 
160 	return 0;
161 }
162 
163 #ifdef HAVE_JUMP_LABEL
164 
165 #define jump_label_key__true  jump_label_key_enabled
166 #define jump_label_key__false jump_label_key_disabled
167 
168 #define SCHED_FEAT(name, enabled)	\
169 	jump_label_key__##enabled ,
170 
171 struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
172 #include "features.h"
173 };
174 
175 #undef SCHED_FEAT
176 
177 static void sched_feat_disable(int i)
178 {
179 	if (jump_label_enabled(&sched_feat_keys[i]))
180 		jump_label_dec(&sched_feat_keys[i]);
181 }
182 
183 static void sched_feat_enable(int i)
184 {
185 	if (!jump_label_enabled(&sched_feat_keys[i]))
186 		jump_label_inc(&sched_feat_keys[i]);
187 }
188 #else
189 static void sched_feat_disable(int i) { };
190 static void sched_feat_enable(int i) { };
191 #endif /* HAVE_JUMP_LABEL */
192 
193 static ssize_t
194 sched_feat_write(struct file *filp, const char __user *ubuf,
195 		size_t cnt, loff_t *ppos)
196 {
197 	char buf[64];
198 	char *cmp;
199 	int neg = 0;
200 	int i;
201 
202 	if (cnt > 63)
203 		cnt = 63;
204 
205 	if (copy_from_user(&buf, ubuf, cnt))
206 		return -EFAULT;
207 
208 	buf[cnt] = 0;
209 	cmp = strstrip(buf);
210 
211 	if (strncmp(cmp, "NO_", 3) == 0) {
212 		neg = 1;
213 		cmp += 3;
214 	}
215 
216 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
217 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
218 			if (neg) {
219 				sysctl_sched_features &= ~(1UL << i);
220 				sched_feat_disable(i);
221 			} else {
222 				sysctl_sched_features |= (1UL << i);
223 				sched_feat_enable(i);
224 			}
225 			break;
226 		}
227 	}
228 
229 	if (i == __SCHED_FEAT_NR)
230 		return -EINVAL;
231 
232 	*ppos += cnt;
233 
234 	return cnt;
235 }
236 
237 static int sched_feat_open(struct inode *inode, struct file *filp)
238 {
239 	return single_open(filp, sched_feat_show, NULL);
240 }
241 
242 static const struct file_operations sched_feat_fops = {
243 	.open		= sched_feat_open,
244 	.write		= sched_feat_write,
245 	.read		= seq_read,
246 	.llseek		= seq_lseek,
247 	.release	= single_release,
248 };
249 
250 static __init int sched_init_debug(void)
251 {
252 	debugfs_create_file("sched_features", 0644, NULL, NULL,
253 			&sched_feat_fops);
254 
255 	return 0;
256 }
257 late_initcall(sched_init_debug);
258 #endif /* CONFIG_SCHED_DEBUG */
259 
260 /*
261  * Number of tasks to iterate in a single balance run.
262  * Limited because this is done with IRQs disabled.
263  */
264 const_debug unsigned int sysctl_sched_nr_migrate = 32;
265 
266 /*
267  * period over which we average the RT time consumption, measured
268  * in ms.
269  *
270  * default: 1s
271  */
272 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
273 
274 /*
275  * period over which we measure -rt task cpu usage in us.
276  * default: 1s
277  */
278 unsigned int sysctl_sched_rt_period = 1000000;
279 
280 __read_mostly int scheduler_running;
281 
282 /*
283  * part of the period that we allow rt tasks to run in us.
284  * default: 0.95s
285  */
286 int sysctl_sched_rt_runtime = 950000;
287 
288 
289 
290 /*
291  * __task_rq_lock - lock the rq @p resides on.
292  */
293 static inline struct rq *__task_rq_lock(struct task_struct *p)
294 	__acquires(rq->lock)
295 {
296 	struct rq *rq;
297 
298 	lockdep_assert_held(&p->pi_lock);
299 
300 	for (;;) {
301 		rq = task_rq(p);
302 		raw_spin_lock(&rq->lock);
303 		if (likely(rq == task_rq(p)))
304 			return rq;
305 		raw_spin_unlock(&rq->lock);
306 	}
307 }
308 
309 /*
310  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
311  */
312 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
313 	__acquires(p->pi_lock)
314 	__acquires(rq->lock)
315 {
316 	struct rq *rq;
317 
318 	for (;;) {
319 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
320 		rq = task_rq(p);
321 		raw_spin_lock(&rq->lock);
322 		if (likely(rq == task_rq(p)))
323 			return rq;
324 		raw_spin_unlock(&rq->lock);
325 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
326 	}
327 }
328 
329 static void __task_rq_unlock(struct rq *rq)
330 	__releases(rq->lock)
331 {
332 	raw_spin_unlock(&rq->lock);
333 }
334 
335 static inline void
336 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
337 	__releases(rq->lock)
338 	__releases(p->pi_lock)
339 {
340 	raw_spin_unlock(&rq->lock);
341 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
342 }
343 
344 /*
345  * this_rq_lock - lock this runqueue and disable interrupts.
346  */
347 static struct rq *this_rq_lock(void)
348 	__acquires(rq->lock)
349 {
350 	struct rq *rq;
351 
352 	local_irq_disable();
353 	rq = this_rq();
354 	raw_spin_lock(&rq->lock);
355 
356 	return rq;
357 }
358 
359 #ifdef CONFIG_SCHED_HRTICK
360 /*
361  * Use HR-timers to deliver accurate preemption points.
362  *
363  * Its all a bit involved since we cannot program an hrt while holding the
364  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
365  * reschedule event.
366  *
367  * When we get rescheduled we reprogram the hrtick_timer outside of the
368  * rq->lock.
369  */
370 
371 static void hrtick_clear(struct rq *rq)
372 {
373 	if (hrtimer_active(&rq->hrtick_timer))
374 		hrtimer_cancel(&rq->hrtick_timer);
375 }
376 
377 /*
378  * High-resolution timer tick.
379  * Runs from hardirq context with interrupts disabled.
380  */
381 static enum hrtimer_restart hrtick(struct hrtimer *timer)
382 {
383 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
384 
385 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
386 
387 	raw_spin_lock(&rq->lock);
388 	update_rq_clock(rq);
389 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
390 	raw_spin_unlock(&rq->lock);
391 
392 	return HRTIMER_NORESTART;
393 }
394 
395 #ifdef CONFIG_SMP
396 /*
397  * called from hardirq (IPI) context
398  */
399 static void __hrtick_start(void *arg)
400 {
401 	struct rq *rq = arg;
402 
403 	raw_spin_lock(&rq->lock);
404 	hrtimer_restart(&rq->hrtick_timer);
405 	rq->hrtick_csd_pending = 0;
406 	raw_spin_unlock(&rq->lock);
407 }
408 
409 /*
410  * Called to set the hrtick timer state.
411  *
412  * called with rq->lock held and irqs disabled
413  */
414 void hrtick_start(struct rq *rq, u64 delay)
415 {
416 	struct hrtimer *timer = &rq->hrtick_timer;
417 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
418 
419 	hrtimer_set_expires(timer, time);
420 
421 	if (rq == this_rq()) {
422 		hrtimer_restart(timer);
423 	} else if (!rq->hrtick_csd_pending) {
424 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
425 		rq->hrtick_csd_pending = 1;
426 	}
427 }
428 
429 static int
430 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
431 {
432 	int cpu = (int)(long)hcpu;
433 
434 	switch (action) {
435 	case CPU_UP_CANCELED:
436 	case CPU_UP_CANCELED_FROZEN:
437 	case CPU_DOWN_PREPARE:
438 	case CPU_DOWN_PREPARE_FROZEN:
439 	case CPU_DEAD:
440 	case CPU_DEAD_FROZEN:
441 		hrtick_clear(cpu_rq(cpu));
442 		return NOTIFY_OK;
443 	}
444 
445 	return NOTIFY_DONE;
446 }
447 
448 static __init void init_hrtick(void)
449 {
450 	hotcpu_notifier(hotplug_hrtick, 0);
451 }
452 #else
453 /*
454  * Called to set the hrtick timer state.
455  *
456  * called with rq->lock held and irqs disabled
457  */
458 void hrtick_start(struct rq *rq, u64 delay)
459 {
460 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
461 			HRTIMER_MODE_REL_PINNED, 0);
462 }
463 
464 static inline void init_hrtick(void)
465 {
466 }
467 #endif /* CONFIG_SMP */
468 
469 static void init_rq_hrtick(struct rq *rq)
470 {
471 #ifdef CONFIG_SMP
472 	rq->hrtick_csd_pending = 0;
473 
474 	rq->hrtick_csd.flags = 0;
475 	rq->hrtick_csd.func = __hrtick_start;
476 	rq->hrtick_csd.info = rq;
477 #endif
478 
479 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
480 	rq->hrtick_timer.function = hrtick;
481 }
482 #else	/* CONFIG_SCHED_HRTICK */
483 static inline void hrtick_clear(struct rq *rq)
484 {
485 }
486 
487 static inline void init_rq_hrtick(struct rq *rq)
488 {
489 }
490 
491 static inline void init_hrtick(void)
492 {
493 }
494 #endif	/* CONFIG_SCHED_HRTICK */
495 
496 /*
497  * resched_task - mark a task 'to be rescheduled now'.
498  *
499  * On UP this means the setting of the need_resched flag, on SMP it
500  * might also involve a cross-CPU call to trigger the scheduler on
501  * the target CPU.
502  */
503 #ifdef CONFIG_SMP
504 
505 #ifndef tsk_is_polling
506 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
507 #endif
508 
509 void resched_task(struct task_struct *p)
510 {
511 	int cpu;
512 
513 	assert_raw_spin_locked(&task_rq(p)->lock);
514 
515 	if (test_tsk_need_resched(p))
516 		return;
517 
518 	set_tsk_need_resched(p);
519 
520 	cpu = task_cpu(p);
521 	if (cpu == smp_processor_id())
522 		return;
523 
524 	/* NEED_RESCHED must be visible before we test polling */
525 	smp_mb();
526 	if (!tsk_is_polling(p))
527 		smp_send_reschedule(cpu);
528 }
529 
530 void resched_cpu(int cpu)
531 {
532 	struct rq *rq = cpu_rq(cpu);
533 	unsigned long flags;
534 
535 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
536 		return;
537 	resched_task(cpu_curr(cpu));
538 	raw_spin_unlock_irqrestore(&rq->lock, flags);
539 }
540 
541 #ifdef CONFIG_NO_HZ
542 /*
543  * In the semi idle case, use the nearest busy cpu for migrating timers
544  * from an idle cpu.  This is good for power-savings.
545  *
546  * We don't do similar optimization for completely idle system, as
547  * selecting an idle cpu will add more delays to the timers than intended
548  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
549  */
550 int get_nohz_timer_target(void)
551 {
552 	int cpu = smp_processor_id();
553 	int i;
554 	struct sched_domain *sd;
555 
556 	rcu_read_lock();
557 	for_each_domain(cpu, sd) {
558 		for_each_cpu(i, sched_domain_span(sd)) {
559 			if (!idle_cpu(i)) {
560 				cpu = i;
561 				goto unlock;
562 			}
563 		}
564 	}
565 unlock:
566 	rcu_read_unlock();
567 	return cpu;
568 }
569 /*
570  * When add_timer_on() enqueues a timer into the timer wheel of an
571  * idle CPU then this timer might expire before the next timer event
572  * which is scheduled to wake up that CPU. In case of a completely
573  * idle system the next event might even be infinite time into the
574  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
575  * leaves the inner idle loop so the newly added timer is taken into
576  * account when the CPU goes back to idle and evaluates the timer
577  * wheel for the next timer event.
578  */
579 void wake_up_idle_cpu(int cpu)
580 {
581 	struct rq *rq = cpu_rq(cpu);
582 
583 	if (cpu == smp_processor_id())
584 		return;
585 
586 	/*
587 	 * This is safe, as this function is called with the timer
588 	 * wheel base lock of (cpu) held. When the CPU is on the way
589 	 * to idle and has not yet set rq->curr to idle then it will
590 	 * be serialized on the timer wheel base lock and take the new
591 	 * timer into account automatically.
592 	 */
593 	if (rq->curr != rq->idle)
594 		return;
595 
596 	/*
597 	 * We can set TIF_RESCHED on the idle task of the other CPU
598 	 * lockless. The worst case is that the other CPU runs the
599 	 * idle task through an additional NOOP schedule()
600 	 */
601 	set_tsk_need_resched(rq->idle);
602 
603 	/* NEED_RESCHED must be visible before we test polling */
604 	smp_mb();
605 	if (!tsk_is_polling(rq->idle))
606 		smp_send_reschedule(cpu);
607 }
608 
609 static inline bool got_nohz_idle_kick(void)
610 {
611 	int cpu = smp_processor_id();
612 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
613 }
614 
615 #else /* CONFIG_NO_HZ */
616 
617 static inline bool got_nohz_idle_kick(void)
618 {
619 	return false;
620 }
621 
622 #endif /* CONFIG_NO_HZ */
623 
624 void sched_avg_update(struct rq *rq)
625 {
626 	s64 period = sched_avg_period();
627 
628 	while ((s64)(rq->clock - rq->age_stamp) > period) {
629 		/*
630 		 * Inline assembly required to prevent the compiler
631 		 * optimising this loop into a divmod call.
632 		 * See __iter_div_u64_rem() for another example of this.
633 		 */
634 		asm("" : "+rm" (rq->age_stamp));
635 		rq->age_stamp += period;
636 		rq->rt_avg /= 2;
637 	}
638 }
639 
640 #else /* !CONFIG_SMP */
641 void resched_task(struct task_struct *p)
642 {
643 	assert_raw_spin_locked(&task_rq(p)->lock);
644 	set_tsk_need_resched(p);
645 }
646 #endif /* CONFIG_SMP */
647 
648 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
650 /*
651  * Iterate task_group tree rooted at *from, calling @down when first entering a
652  * node and @up when leaving it for the final time.
653  *
654  * Caller must hold rcu_lock or sufficient equivalent.
655  */
656 int walk_tg_tree_from(struct task_group *from,
657 			     tg_visitor down, tg_visitor up, void *data)
658 {
659 	struct task_group *parent, *child;
660 	int ret;
661 
662 	parent = from;
663 
664 down:
665 	ret = (*down)(parent, data);
666 	if (ret)
667 		goto out;
668 	list_for_each_entry_rcu(child, &parent->children, siblings) {
669 		parent = child;
670 		goto down;
671 
672 up:
673 		continue;
674 	}
675 	ret = (*up)(parent, data);
676 	if (ret || parent == from)
677 		goto out;
678 
679 	child = parent;
680 	parent = parent->parent;
681 	if (parent)
682 		goto up;
683 out:
684 	return ret;
685 }
686 
687 int tg_nop(struct task_group *tg, void *data)
688 {
689 	return 0;
690 }
691 #endif
692 
693 void update_cpu_load(struct rq *this_rq);
694 
695 static void set_load_weight(struct task_struct *p)
696 {
697 	int prio = p->static_prio - MAX_RT_PRIO;
698 	struct load_weight *load = &p->se.load;
699 
700 	/*
701 	 * SCHED_IDLE tasks get minimal weight:
702 	 */
703 	if (p->policy == SCHED_IDLE) {
704 		load->weight = scale_load(WEIGHT_IDLEPRIO);
705 		load->inv_weight = WMULT_IDLEPRIO;
706 		return;
707 	}
708 
709 	load->weight = scale_load(prio_to_weight[prio]);
710 	load->inv_weight = prio_to_wmult[prio];
711 }
712 
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714 {
715 	update_rq_clock(rq);
716 	sched_info_queued(p);
717 	p->sched_class->enqueue_task(rq, p, flags);
718 }
719 
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721 {
722 	update_rq_clock(rq);
723 	sched_info_dequeued(p);
724 	p->sched_class->dequeue_task(rq, p, flags);
725 }
726 
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 {
729 	if (task_contributes_to_load(p))
730 		rq->nr_uninterruptible--;
731 
732 	enqueue_task(rq, p, flags);
733 }
734 
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 {
737 	if (task_contributes_to_load(p))
738 		rq->nr_uninterruptible++;
739 
740 	dequeue_task(rq, p, flags);
741 }
742 
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
744 
745 /*
746  * There are no locks covering percpu hardirq/softirq time.
747  * They are only modified in account_system_vtime, on corresponding CPU
748  * with interrupts disabled. So, writes are safe.
749  * They are read and saved off onto struct rq in update_rq_clock().
750  * This may result in other CPU reading this CPU's irq time and can
751  * race with irq/account_system_vtime on this CPU. We would either get old
752  * or new value with a side effect of accounting a slice of irq time to wrong
753  * task when irq is in progress while we read rq->clock. That is a worthy
754  * compromise in place of having locks on each irq in account_system_time.
755  */
756 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757 static DEFINE_PER_CPU(u64, cpu_softirq_time);
758 
759 static DEFINE_PER_CPU(u64, irq_start_time);
760 static int sched_clock_irqtime;
761 
762 void enable_sched_clock_irqtime(void)
763 {
764 	sched_clock_irqtime = 1;
765 }
766 
767 void disable_sched_clock_irqtime(void)
768 {
769 	sched_clock_irqtime = 0;
770 }
771 
772 #ifndef CONFIG_64BIT
773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774 
775 static inline void irq_time_write_begin(void)
776 {
777 	__this_cpu_inc(irq_time_seq.sequence);
778 	smp_wmb();
779 }
780 
781 static inline void irq_time_write_end(void)
782 {
783 	smp_wmb();
784 	__this_cpu_inc(irq_time_seq.sequence);
785 }
786 
787 static inline u64 irq_time_read(int cpu)
788 {
789 	u64 irq_time;
790 	unsigned seq;
791 
792 	do {
793 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 		irq_time = per_cpu(cpu_softirq_time, cpu) +
795 			   per_cpu(cpu_hardirq_time, cpu);
796 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797 
798 	return irq_time;
799 }
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
802 {
803 }
804 
805 static inline void irq_time_write_end(void)
806 {
807 }
808 
809 static inline u64 irq_time_read(int cpu)
810 {
811 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812 }
813 #endif /* CONFIG_64BIT */
814 
815 /*
816  * Called before incrementing preempt_count on {soft,}irq_enter
817  * and before decrementing preempt_count on {soft,}irq_exit.
818  */
819 void account_system_vtime(struct task_struct *curr)
820 {
821 	unsigned long flags;
822 	s64 delta;
823 	int cpu;
824 
825 	if (!sched_clock_irqtime)
826 		return;
827 
828 	local_irq_save(flags);
829 
830 	cpu = smp_processor_id();
831 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 	__this_cpu_add(irq_start_time, delta);
833 
834 	irq_time_write_begin();
835 	/*
836 	 * We do not account for softirq time from ksoftirqd here.
837 	 * We want to continue accounting softirq time to ksoftirqd thread
838 	 * in that case, so as not to confuse scheduler with a special task
839 	 * that do not consume any time, but still wants to run.
840 	 */
841 	if (hardirq_count())
842 		__this_cpu_add(cpu_hardirq_time, delta);
843 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844 		__this_cpu_add(cpu_softirq_time, delta);
845 
846 	irq_time_write_end();
847 	local_irq_restore(flags);
848 }
849 EXPORT_SYMBOL_GPL(account_system_vtime);
850 
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852 
853 #ifdef CONFIG_PARAVIRT
854 static inline u64 steal_ticks(u64 steal)
855 {
856 	if (unlikely(steal > NSEC_PER_SEC))
857 		return div_u64(steal, TICK_NSEC);
858 
859 	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860 }
861 #endif
862 
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
864 {
865 /*
866  * In theory, the compile should just see 0 here, and optimize out the call
867  * to sched_rt_avg_update. But I don't trust it...
868  */
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 	s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874 
875 	/*
876 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 	 * this case when a previous update_rq_clock() happened inside a
878 	 * {soft,}irq region.
879 	 *
880 	 * When this happens, we stop ->clock_task and only update the
881 	 * prev_irq_time stamp to account for the part that fit, so that a next
882 	 * update will consume the rest. This ensures ->clock_task is
883 	 * monotonic.
884 	 *
885 	 * It does however cause some slight miss-attribution of {soft,}irq
886 	 * time, a more accurate solution would be to update the irq_time using
887 	 * the current rq->clock timestamp, except that would require using
888 	 * atomic ops.
889 	 */
890 	if (irq_delta > delta)
891 		irq_delta = delta;
892 
893 	rq->prev_irq_time += irq_delta;
894 	delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 	if (static_branch((&paravirt_steal_rq_enabled))) {
898 		u64 st;
899 
900 		steal = paravirt_steal_clock(cpu_of(rq));
901 		steal -= rq->prev_steal_time_rq;
902 
903 		if (unlikely(steal > delta))
904 			steal = delta;
905 
906 		st = steal_ticks(steal);
907 		steal = st * TICK_NSEC;
908 
909 		rq->prev_steal_time_rq += steal;
910 
911 		delta -= steal;
912 	}
913 #endif
914 
915 	rq->clock_task += delta;
916 
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 		sched_rt_avg_update(rq, irq_delta + steal);
920 #endif
921 }
922 
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
925 {
926 	u64 *cpustat = kcpustat_this_cpu->cpustat;
927 	unsigned long flags;
928 	u64 latest_ns;
929 	int ret = 0;
930 
931 	local_irq_save(flags);
932 	latest_ns = this_cpu_read(cpu_hardirq_time);
933 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 		ret = 1;
935 	local_irq_restore(flags);
936 	return ret;
937 }
938 
939 static int irqtime_account_si_update(void)
940 {
941 	u64 *cpustat = kcpustat_this_cpu->cpustat;
942 	unsigned long flags;
943 	u64 latest_ns;
944 	int ret = 0;
945 
946 	local_irq_save(flags);
947 	latest_ns = this_cpu_read(cpu_softirq_time);
948 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 		ret = 1;
950 	local_irq_restore(flags);
951 	return ret;
952 }
953 
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
955 
956 #define sched_clock_irqtime	(0)
957 
958 #endif
959 
960 void sched_set_stop_task(int cpu, struct task_struct *stop)
961 {
962 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
964 
965 	if (stop) {
966 		/*
967 		 * Make it appear like a SCHED_FIFO task, its something
968 		 * userspace knows about and won't get confused about.
969 		 *
970 		 * Also, it will make PI more or less work without too
971 		 * much confusion -- but then, stop work should not
972 		 * rely on PI working anyway.
973 		 */
974 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975 
976 		stop->sched_class = &stop_sched_class;
977 	}
978 
979 	cpu_rq(cpu)->stop = stop;
980 
981 	if (old_stop) {
982 		/*
983 		 * Reset it back to a normal scheduling class so that
984 		 * it can die in pieces.
985 		 */
986 		old_stop->sched_class = &rt_sched_class;
987 	}
988 }
989 
990 /*
991  * __normal_prio - return the priority that is based on the static prio
992  */
993 static inline int __normal_prio(struct task_struct *p)
994 {
995 	return p->static_prio;
996 }
997 
998 /*
999  * Calculate the expected normal priority: i.e. priority
1000  * without taking RT-inheritance into account. Might be
1001  * boosted by interactivity modifiers. Changes upon fork,
1002  * setprio syscalls, and whenever the interactivity
1003  * estimator recalculates.
1004  */
1005 static inline int normal_prio(struct task_struct *p)
1006 {
1007 	int prio;
1008 
1009 	if (task_has_rt_policy(p))
1010 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 	else
1012 		prio = __normal_prio(p);
1013 	return prio;
1014 }
1015 
1016 /*
1017  * Calculate the current priority, i.e. the priority
1018  * taken into account by the scheduler. This value might
1019  * be boosted by RT tasks, or might be boosted by
1020  * interactivity modifiers. Will be RT if the task got
1021  * RT-boosted. If not then it returns p->normal_prio.
1022  */
1023 static int effective_prio(struct task_struct *p)
1024 {
1025 	p->normal_prio = normal_prio(p);
1026 	/*
1027 	 * If we are RT tasks or we were boosted to RT priority,
1028 	 * keep the priority unchanged. Otherwise, update priority
1029 	 * to the normal priority:
1030 	 */
1031 	if (!rt_prio(p->prio))
1032 		return p->normal_prio;
1033 	return p->prio;
1034 }
1035 
1036 /**
1037  * task_curr - is this task currently executing on a CPU?
1038  * @p: the task in question.
1039  */
1040 inline int task_curr(const struct task_struct *p)
1041 {
1042 	return cpu_curr(task_cpu(p)) == p;
1043 }
1044 
1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 				       const struct sched_class *prev_class,
1047 				       int oldprio)
1048 {
1049 	if (prev_class != p->sched_class) {
1050 		if (prev_class->switched_from)
1051 			prev_class->switched_from(rq, p);
1052 		p->sched_class->switched_to(rq, p);
1053 	} else if (oldprio != p->prio)
1054 		p->sched_class->prio_changed(rq, p, oldprio);
1055 }
1056 
1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058 {
1059 	const struct sched_class *class;
1060 
1061 	if (p->sched_class == rq->curr->sched_class) {
1062 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 	} else {
1064 		for_each_class(class) {
1065 			if (class == rq->curr->sched_class)
1066 				break;
1067 			if (class == p->sched_class) {
1068 				resched_task(rq->curr);
1069 				break;
1070 			}
1071 		}
1072 	}
1073 
1074 	/*
1075 	 * A queue event has occurred, and we're going to schedule.  In
1076 	 * this case, we can save a useless back to back clock update.
1077 	 */
1078 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 		rq->skip_clock_update = 1;
1080 }
1081 
1082 #ifdef CONFIG_SMP
1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084 {
1085 #ifdef CONFIG_SCHED_DEBUG
1086 	/*
1087 	 * We should never call set_task_cpu() on a blocked task,
1088 	 * ttwu() will sort out the placement.
1089 	 */
1090 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092 
1093 #ifdef CONFIG_LOCKDEP
1094 	/*
1095 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 	 *
1098 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 	 * see set_task_rq().
1100 	 *
1101 	 * Furthermore, all task_rq users should acquire both locks, see
1102 	 * task_rq_lock().
1103 	 */
1104 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 				      lockdep_is_held(&task_rq(p)->lock)));
1106 #endif
1107 #endif
1108 
1109 	trace_sched_migrate_task(p, new_cpu);
1110 
1111 	if (task_cpu(p) != new_cpu) {
1112 		p->se.nr_migrations++;
1113 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114 	}
1115 
1116 	__set_task_cpu(p, new_cpu);
1117 }
1118 
1119 struct migration_arg {
1120 	struct task_struct *task;
1121 	int dest_cpu;
1122 };
1123 
1124 static int migration_cpu_stop(void *data);
1125 
1126 /*
1127  * wait_task_inactive - wait for a thread to unschedule.
1128  *
1129  * If @match_state is nonzero, it's the @p->state value just checked and
1130  * not expected to change.  If it changes, i.e. @p might have woken up,
1131  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1132  * we return a positive number (its total switch count).  If a second call
1133  * a short while later returns the same number, the caller can be sure that
1134  * @p has remained unscheduled the whole time.
1135  *
1136  * The caller must ensure that the task *will* unschedule sometime soon,
1137  * else this function might spin for a *long* time. This function can't
1138  * be called with interrupts off, or it may introduce deadlock with
1139  * smp_call_function() if an IPI is sent by the same process we are
1140  * waiting to become inactive.
1141  */
1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143 {
1144 	unsigned long flags;
1145 	int running, on_rq;
1146 	unsigned long ncsw;
1147 	struct rq *rq;
1148 
1149 	for (;;) {
1150 		/*
1151 		 * We do the initial early heuristics without holding
1152 		 * any task-queue locks at all. We'll only try to get
1153 		 * the runqueue lock when things look like they will
1154 		 * work out!
1155 		 */
1156 		rq = task_rq(p);
1157 
1158 		/*
1159 		 * If the task is actively running on another CPU
1160 		 * still, just relax and busy-wait without holding
1161 		 * any locks.
1162 		 *
1163 		 * NOTE! Since we don't hold any locks, it's not
1164 		 * even sure that "rq" stays as the right runqueue!
1165 		 * But we don't care, since "task_running()" will
1166 		 * return false if the runqueue has changed and p
1167 		 * is actually now running somewhere else!
1168 		 */
1169 		while (task_running(rq, p)) {
1170 			if (match_state && unlikely(p->state != match_state))
1171 				return 0;
1172 			cpu_relax();
1173 		}
1174 
1175 		/*
1176 		 * Ok, time to look more closely! We need the rq
1177 		 * lock now, to be *sure*. If we're wrong, we'll
1178 		 * just go back and repeat.
1179 		 */
1180 		rq = task_rq_lock(p, &flags);
1181 		trace_sched_wait_task(p);
1182 		running = task_running(rq, p);
1183 		on_rq = p->on_rq;
1184 		ncsw = 0;
1185 		if (!match_state || p->state == match_state)
1186 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187 		task_rq_unlock(rq, p, &flags);
1188 
1189 		/*
1190 		 * If it changed from the expected state, bail out now.
1191 		 */
1192 		if (unlikely(!ncsw))
1193 			break;
1194 
1195 		/*
1196 		 * Was it really running after all now that we
1197 		 * checked with the proper locks actually held?
1198 		 *
1199 		 * Oops. Go back and try again..
1200 		 */
1201 		if (unlikely(running)) {
1202 			cpu_relax();
1203 			continue;
1204 		}
1205 
1206 		/*
1207 		 * It's not enough that it's not actively running,
1208 		 * it must be off the runqueue _entirely_, and not
1209 		 * preempted!
1210 		 *
1211 		 * So if it was still runnable (but just not actively
1212 		 * running right now), it's preempted, and we should
1213 		 * yield - it could be a while.
1214 		 */
1215 		if (unlikely(on_rq)) {
1216 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217 
1218 			set_current_state(TASK_UNINTERRUPTIBLE);
1219 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 			continue;
1221 		}
1222 
1223 		/*
1224 		 * Ahh, all good. It wasn't running, and it wasn't
1225 		 * runnable, which means that it will never become
1226 		 * running in the future either. We're all done!
1227 		 */
1228 		break;
1229 	}
1230 
1231 	return ncsw;
1232 }
1233 
1234 /***
1235  * kick_process - kick a running thread to enter/exit the kernel
1236  * @p: the to-be-kicked thread
1237  *
1238  * Cause a process which is running on another CPU to enter
1239  * kernel-mode, without any delay. (to get signals handled.)
1240  *
1241  * NOTE: this function doesn't have to take the runqueue lock,
1242  * because all it wants to ensure is that the remote task enters
1243  * the kernel. If the IPI races and the task has been migrated
1244  * to another CPU then no harm is done and the purpose has been
1245  * achieved as well.
1246  */
1247 void kick_process(struct task_struct *p)
1248 {
1249 	int cpu;
1250 
1251 	preempt_disable();
1252 	cpu = task_cpu(p);
1253 	if ((cpu != smp_processor_id()) && task_curr(p))
1254 		smp_send_reschedule(cpu);
1255 	preempt_enable();
1256 }
1257 EXPORT_SYMBOL_GPL(kick_process);
1258 #endif /* CONFIG_SMP */
1259 
1260 #ifdef CONFIG_SMP
1261 /*
1262  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263  */
1264 static int select_fallback_rq(int cpu, struct task_struct *p)
1265 {
1266 	int dest_cpu;
1267 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1268 
1269 	/* Look for allowed, online CPU in same node. */
1270 	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1271 		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1272 			return dest_cpu;
1273 
1274 	/* Any allowed, online CPU? */
1275 	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1276 	if (dest_cpu < nr_cpu_ids)
1277 		return dest_cpu;
1278 
1279 	/* No more Mr. Nice Guy. */
1280 	dest_cpu = cpuset_cpus_allowed_fallback(p);
1281 	/*
1282 	 * Don't tell them about moving exiting tasks or
1283 	 * kernel threads (both mm NULL), since they never
1284 	 * leave kernel.
1285 	 */
1286 	if (p->mm && printk_ratelimit()) {
1287 		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1288 				task_pid_nr(p), p->comm, cpu);
1289 	}
1290 
1291 	return dest_cpu;
1292 }
1293 
1294 /*
1295  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1296  */
1297 static inline
1298 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1299 {
1300 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1301 
1302 	/*
1303 	 * In order not to call set_task_cpu() on a blocking task we need
1304 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1305 	 * cpu.
1306 	 *
1307 	 * Since this is common to all placement strategies, this lives here.
1308 	 *
1309 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1310 	 *   not worry about this generic constraint ]
1311 	 */
1312 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1313 		     !cpu_online(cpu)))
1314 		cpu = select_fallback_rq(task_cpu(p), p);
1315 
1316 	return cpu;
1317 }
1318 
1319 static void update_avg(u64 *avg, u64 sample)
1320 {
1321 	s64 diff = sample - *avg;
1322 	*avg += diff >> 3;
1323 }
1324 #endif
1325 
1326 static void
1327 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1328 {
1329 #ifdef CONFIG_SCHEDSTATS
1330 	struct rq *rq = this_rq();
1331 
1332 #ifdef CONFIG_SMP
1333 	int this_cpu = smp_processor_id();
1334 
1335 	if (cpu == this_cpu) {
1336 		schedstat_inc(rq, ttwu_local);
1337 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1338 	} else {
1339 		struct sched_domain *sd;
1340 
1341 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1342 		rcu_read_lock();
1343 		for_each_domain(this_cpu, sd) {
1344 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1345 				schedstat_inc(sd, ttwu_wake_remote);
1346 				break;
1347 			}
1348 		}
1349 		rcu_read_unlock();
1350 	}
1351 
1352 	if (wake_flags & WF_MIGRATED)
1353 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1354 
1355 #endif /* CONFIG_SMP */
1356 
1357 	schedstat_inc(rq, ttwu_count);
1358 	schedstat_inc(p, se.statistics.nr_wakeups);
1359 
1360 	if (wake_flags & WF_SYNC)
1361 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1362 
1363 #endif /* CONFIG_SCHEDSTATS */
1364 }
1365 
1366 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1367 {
1368 	activate_task(rq, p, en_flags);
1369 	p->on_rq = 1;
1370 
1371 	/* if a worker is waking up, notify workqueue */
1372 	if (p->flags & PF_WQ_WORKER)
1373 		wq_worker_waking_up(p, cpu_of(rq));
1374 }
1375 
1376 /*
1377  * Mark the task runnable and perform wakeup-preemption.
1378  */
1379 static void
1380 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1381 {
1382 	trace_sched_wakeup(p, true);
1383 	check_preempt_curr(rq, p, wake_flags);
1384 
1385 	p->state = TASK_RUNNING;
1386 #ifdef CONFIG_SMP
1387 	if (p->sched_class->task_woken)
1388 		p->sched_class->task_woken(rq, p);
1389 
1390 	if (rq->idle_stamp) {
1391 		u64 delta = rq->clock - rq->idle_stamp;
1392 		u64 max = 2*sysctl_sched_migration_cost;
1393 
1394 		if (delta > max)
1395 			rq->avg_idle = max;
1396 		else
1397 			update_avg(&rq->avg_idle, delta);
1398 		rq->idle_stamp = 0;
1399 	}
1400 #endif
1401 }
1402 
1403 static void
1404 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1405 {
1406 #ifdef CONFIG_SMP
1407 	if (p->sched_contributes_to_load)
1408 		rq->nr_uninterruptible--;
1409 #endif
1410 
1411 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1412 	ttwu_do_wakeup(rq, p, wake_flags);
1413 }
1414 
1415 /*
1416  * Called in case the task @p isn't fully descheduled from its runqueue,
1417  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1418  * since all we need to do is flip p->state to TASK_RUNNING, since
1419  * the task is still ->on_rq.
1420  */
1421 static int ttwu_remote(struct task_struct *p, int wake_flags)
1422 {
1423 	struct rq *rq;
1424 	int ret = 0;
1425 
1426 	rq = __task_rq_lock(p);
1427 	if (p->on_rq) {
1428 		ttwu_do_wakeup(rq, p, wake_flags);
1429 		ret = 1;
1430 	}
1431 	__task_rq_unlock(rq);
1432 
1433 	return ret;
1434 }
1435 
1436 #ifdef CONFIG_SMP
1437 static void sched_ttwu_pending(void)
1438 {
1439 	struct rq *rq = this_rq();
1440 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1441 	struct task_struct *p;
1442 
1443 	raw_spin_lock(&rq->lock);
1444 
1445 	while (llist) {
1446 		p = llist_entry(llist, struct task_struct, wake_entry);
1447 		llist = llist_next(llist);
1448 		ttwu_do_activate(rq, p, 0);
1449 	}
1450 
1451 	raw_spin_unlock(&rq->lock);
1452 }
1453 
1454 void scheduler_ipi(void)
1455 {
1456 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1457 		return;
1458 
1459 	/*
1460 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1461 	 * traditionally all their work was done from the interrupt return
1462 	 * path. Now that we actually do some work, we need to make sure
1463 	 * we do call them.
1464 	 *
1465 	 * Some archs already do call them, luckily irq_enter/exit nest
1466 	 * properly.
1467 	 *
1468 	 * Arguably we should visit all archs and update all handlers,
1469 	 * however a fair share of IPIs are still resched only so this would
1470 	 * somewhat pessimize the simple resched case.
1471 	 */
1472 	irq_enter();
1473 	sched_ttwu_pending();
1474 
1475 	/*
1476 	 * Check if someone kicked us for doing the nohz idle load balance.
1477 	 */
1478 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1479 		this_rq()->idle_balance = 1;
1480 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1481 	}
1482 	irq_exit();
1483 }
1484 
1485 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1486 {
1487 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1488 		smp_send_reschedule(cpu);
1489 }
1490 
1491 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1492 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1493 {
1494 	struct rq *rq;
1495 	int ret = 0;
1496 
1497 	rq = __task_rq_lock(p);
1498 	if (p->on_cpu) {
1499 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1500 		ttwu_do_wakeup(rq, p, wake_flags);
1501 		ret = 1;
1502 	}
1503 	__task_rq_unlock(rq);
1504 
1505 	return ret;
1506 
1507 }
1508 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1509 
1510 static inline int ttwu_share_cache(int this_cpu, int that_cpu)
1511 {
1512 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1513 }
1514 #endif /* CONFIG_SMP */
1515 
1516 static void ttwu_queue(struct task_struct *p, int cpu)
1517 {
1518 	struct rq *rq = cpu_rq(cpu);
1519 
1520 #if defined(CONFIG_SMP)
1521 	if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
1522 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1523 		ttwu_queue_remote(p, cpu);
1524 		return;
1525 	}
1526 #endif
1527 
1528 	raw_spin_lock(&rq->lock);
1529 	ttwu_do_activate(rq, p, 0);
1530 	raw_spin_unlock(&rq->lock);
1531 }
1532 
1533 /**
1534  * try_to_wake_up - wake up a thread
1535  * @p: the thread to be awakened
1536  * @state: the mask of task states that can be woken
1537  * @wake_flags: wake modifier flags (WF_*)
1538  *
1539  * Put it on the run-queue if it's not already there. The "current"
1540  * thread is always on the run-queue (except when the actual
1541  * re-schedule is in progress), and as such you're allowed to do
1542  * the simpler "current->state = TASK_RUNNING" to mark yourself
1543  * runnable without the overhead of this.
1544  *
1545  * Returns %true if @p was woken up, %false if it was already running
1546  * or @state didn't match @p's state.
1547  */
1548 static int
1549 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1550 {
1551 	unsigned long flags;
1552 	int cpu, success = 0;
1553 
1554 	smp_wmb();
1555 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1556 	if (!(p->state & state))
1557 		goto out;
1558 
1559 	success = 1; /* we're going to change ->state */
1560 	cpu = task_cpu(p);
1561 
1562 	if (p->on_rq && ttwu_remote(p, wake_flags))
1563 		goto stat;
1564 
1565 #ifdef CONFIG_SMP
1566 	/*
1567 	 * If the owning (remote) cpu is still in the middle of schedule() with
1568 	 * this task as prev, wait until its done referencing the task.
1569 	 */
1570 	while (p->on_cpu) {
1571 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1572 		/*
1573 		 * In case the architecture enables interrupts in
1574 		 * context_switch(), we cannot busy wait, since that
1575 		 * would lead to deadlocks when an interrupt hits and
1576 		 * tries to wake up @prev. So bail and do a complete
1577 		 * remote wakeup.
1578 		 */
1579 		if (ttwu_activate_remote(p, wake_flags))
1580 			goto stat;
1581 #else
1582 		cpu_relax();
1583 #endif
1584 	}
1585 	/*
1586 	 * Pairs with the smp_wmb() in finish_lock_switch().
1587 	 */
1588 	smp_rmb();
1589 
1590 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1591 	p->state = TASK_WAKING;
1592 
1593 	if (p->sched_class->task_waking)
1594 		p->sched_class->task_waking(p);
1595 
1596 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1597 	if (task_cpu(p) != cpu) {
1598 		wake_flags |= WF_MIGRATED;
1599 		set_task_cpu(p, cpu);
1600 	}
1601 #endif /* CONFIG_SMP */
1602 
1603 	ttwu_queue(p, cpu);
1604 stat:
1605 	ttwu_stat(p, cpu, wake_flags);
1606 out:
1607 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1608 
1609 	return success;
1610 }
1611 
1612 /**
1613  * try_to_wake_up_local - try to wake up a local task with rq lock held
1614  * @p: the thread to be awakened
1615  *
1616  * Put @p on the run-queue if it's not already there. The caller must
1617  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1618  * the current task.
1619  */
1620 static void try_to_wake_up_local(struct task_struct *p)
1621 {
1622 	struct rq *rq = task_rq(p);
1623 
1624 	BUG_ON(rq != this_rq());
1625 	BUG_ON(p == current);
1626 	lockdep_assert_held(&rq->lock);
1627 
1628 	if (!raw_spin_trylock(&p->pi_lock)) {
1629 		raw_spin_unlock(&rq->lock);
1630 		raw_spin_lock(&p->pi_lock);
1631 		raw_spin_lock(&rq->lock);
1632 	}
1633 
1634 	if (!(p->state & TASK_NORMAL))
1635 		goto out;
1636 
1637 	if (!p->on_rq)
1638 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1639 
1640 	ttwu_do_wakeup(rq, p, 0);
1641 	ttwu_stat(p, smp_processor_id(), 0);
1642 out:
1643 	raw_spin_unlock(&p->pi_lock);
1644 }
1645 
1646 /**
1647  * wake_up_process - Wake up a specific process
1648  * @p: The process to be woken up.
1649  *
1650  * Attempt to wake up the nominated process and move it to the set of runnable
1651  * processes.  Returns 1 if the process was woken up, 0 if it was already
1652  * running.
1653  *
1654  * It may be assumed that this function implies a write memory barrier before
1655  * changing the task state if and only if any tasks are woken up.
1656  */
1657 int wake_up_process(struct task_struct *p)
1658 {
1659 	return try_to_wake_up(p, TASK_ALL, 0);
1660 }
1661 EXPORT_SYMBOL(wake_up_process);
1662 
1663 int wake_up_state(struct task_struct *p, unsigned int state)
1664 {
1665 	return try_to_wake_up(p, state, 0);
1666 }
1667 
1668 /*
1669  * Perform scheduler related setup for a newly forked process p.
1670  * p is forked by current.
1671  *
1672  * __sched_fork() is basic setup used by init_idle() too:
1673  */
1674 static void __sched_fork(struct task_struct *p)
1675 {
1676 	p->on_rq			= 0;
1677 
1678 	p->se.on_rq			= 0;
1679 	p->se.exec_start		= 0;
1680 	p->se.sum_exec_runtime		= 0;
1681 	p->se.prev_sum_exec_runtime	= 0;
1682 	p->se.nr_migrations		= 0;
1683 	p->se.vruntime			= 0;
1684 	INIT_LIST_HEAD(&p->se.group_node);
1685 
1686 #ifdef CONFIG_SCHEDSTATS
1687 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1688 #endif
1689 
1690 	INIT_LIST_HEAD(&p->rt.run_list);
1691 
1692 #ifdef CONFIG_PREEMPT_NOTIFIERS
1693 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1694 #endif
1695 }
1696 
1697 /*
1698  * fork()/clone()-time setup:
1699  */
1700 void sched_fork(struct task_struct *p)
1701 {
1702 	unsigned long flags;
1703 	int cpu = get_cpu();
1704 
1705 	__sched_fork(p);
1706 	/*
1707 	 * We mark the process as running here. This guarantees that
1708 	 * nobody will actually run it, and a signal or other external
1709 	 * event cannot wake it up and insert it on the runqueue either.
1710 	 */
1711 	p->state = TASK_RUNNING;
1712 
1713 	/*
1714 	 * Make sure we do not leak PI boosting priority to the child.
1715 	 */
1716 	p->prio = current->normal_prio;
1717 
1718 	/*
1719 	 * Revert to default priority/policy on fork if requested.
1720 	 */
1721 	if (unlikely(p->sched_reset_on_fork)) {
1722 		if (task_has_rt_policy(p)) {
1723 			p->policy = SCHED_NORMAL;
1724 			p->static_prio = NICE_TO_PRIO(0);
1725 			p->rt_priority = 0;
1726 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1727 			p->static_prio = NICE_TO_PRIO(0);
1728 
1729 		p->prio = p->normal_prio = __normal_prio(p);
1730 		set_load_weight(p);
1731 
1732 		/*
1733 		 * We don't need the reset flag anymore after the fork. It has
1734 		 * fulfilled its duty:
1735 		 */
1736 		p->sched_reset_on_fork = 0;
1737 	}
1738 
1739 	if (!rt_prio(p->prio))
1740 		p->sched_class = &fair_sched_class;
1741 
1742 	if (p->sched_class->task_fork)
1743 		p->sched_class->task_fork(p);
1744 
1745 	/*
1746 	 * The child is not yet in the pid-hash so no cgroup attach races,
1747 	 * and the cgroup is pinned to this child due to cgroup_fork()
1748 	 * is ran before sched_fork().
1749 	 *
1750 	 * Silence PROVE_RCU.
1751 	 */
1752 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1753 	set_task_cpu(p, cpu);
1754 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1755 
1756 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1757 	if (likely(sched_info_on()))
1758 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1759 #endif
1760 #if defined(CONFIG_SMP)
1761 	p->on_cpu = 0;
1762 #endif
1763 #ifdef CONFIG_PREEMPT_COUNT
1764 	/* Want to start with kernel preemption disabled. */
1765 	task_thread_info(p)->preempt_count = 1;
1766 #endif
1767 #ifdef CONFIG_SMP
1768 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1769 #endif
1770 
1771 	put_cpu();
1772 }
1773 
1774 /*
1775  * wake_up_new_task - wake up a newly created task for the first time.
1776  *
1777  * This function will do some initial scheduler statistics housekeeping
1778  * that must be done for every newly created context, then puts the task
1779  * on the runqueue and wakes it.
1780  */
1781 void wake_up_new_task(struct task_struct *p)
1782 {
1783 	unsigned long flags;
1784 	struct rq *rq;
1785 
1786 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1787 #ifdef CONFIG_SMP
1788 	/*
1789 	 * Fork balancing, do it here and not earlier because:
1790 	 *  - cpus_allowed can change in the fork path
1791 	 *  - any previously selected cpu might disappear through hotplug
1792 	 */
1793 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1794 #endif
1795 
1796 	rq = __task_rq_lock(p);
1797 	activate_task(rq, p, 0);
1798 	p->on_rq = 1;
1799 	trace_sched_wakeup_new(p, true);
1800 	check_preempt_curr(rq, p, WF_FORK);
1801 #ifdef CONFIG_SMP
1802 	if (p->sched_class->task_woken)
1803 		p->sched_class->task_woken(rq, p);
1804 #endif
1805 	task_rq_unlock(rq, p, &flags);
1806 }
1807 
1808 #ifdef CONFIG_PREEMPT_NOTIFIERS
1809 
1810 /**
1811  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1812  * @notifier: notifier struct to register
1813  */
1814 void preempt_notifier_register(struct preempt_notifier *notifier)
1815 {
1816 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1817 }
1818 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1819 
1820 /**
1821  * preempt_notifier_unregister - no longer interested in preemption notifications
1822  * @notifier: notifier struct to unregister
1823  *
1824  * This is safe to call from within a preemption notifier.
1825  */
1826 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1827 {
1828 	hlist_del(&notifier->link);
1829 }
1830 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1831 
1832 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1833 {
1834 	struct preempt_notifier *notifier;
1835 	struct hlist_node *node;
1836 
1837 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1838 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1839 }
1840 
1841 static void
1842 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1843 				 struct task_struct *next)
1844 {
1845 	struct preempt_notifier *notifier;
1846 	struct hlist_node *node;
1847 
1848 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1849 		notifier->ops->sched_out(notifier, next);
1850 }
1851 
1852 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1853 
1854 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1855 {
1856 }
1857 
1858 static void
1859 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1860 				 struct task_struct *next)
1861 {
1862 }
1863 
1864 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1865 
1866 /**
1867  * prepare_task_switch - prepare to switch tasks
1868  * @rq: the runqueue preparing to switch
1869  * @prev: the current task that is being switched out
1870  * @next: the task we are going to switch to.
1871  *
1872  * This is called with the rq lock held and interrupts off. It must
1873  * be paired with a subsequent finish_task_switch after the context
1874  * switch.
1875  *
1876  * prepare_task_switch sets up locking and calls architecture specific
1877  * hooks.
1878  */
1879 static inline void
1880 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1881 		    struct task_struct *next)
1882 {
1883 	sched_info_switch(prev, next);
1884 	perf_event_task_sched_out(prev, next);
1885 	fire_sched_out_preempt_notifiers(prev, next);
1886 	prepare_lock_switch(rq, next);
1887 	prepare_arch_switch(next);
1888 	trace_sched_switch(prev, next);
1889 }
1890 
1891 /**
1892  * finish_task_switch - clean up after a task-switch
1893  * @rq: runqueue associated with task-switch
1894  * @prev: the thread we just switched away from.
1895  *
1896  * finish_task_switch must be called after the context switch, paired
1897  * with a prepare_task_switch call before the context switch.
1898  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1899  * and do any other architecture-specific cleanup actions.
1900  *
1901  * Note that we may have delayed dropping an mm in context_switch(). If
1902  * so, we finish that here outside of the runqueue lock. (Doing it
1903  * with the lock held can cause deadlocks; see schedule() for
1904  * details.)
1905  */
1906 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1907 	__releases(rq->lock)
1908 {
1909 	struct mm_struct *mm = rq->prev_mm;
1910 	long prev_state;
1911 
1912 	rq->prev_mm = NULL;
1913 
1914 	/*
1915 	 * A task struct has one reference for the use as "current".
1916 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1917 	 * schedule one last time. The schedule call will never return, and
1918 	 * the scheduled task must drop that reference.
1919 	 * The test for TASK_DEAD must occur while the runqueue locks are
1920 	 * still held, otherwise prev could be scheduled on another cpu, die
1921 	 * there before we look at prev->state, and then the reference would
1922 	 * be dropped twice.
1923 	 *		Manfred Spraul <manfred@colorfullife.com>
1924 	 */
1925 	prev_state = prev->state;
1926 	finish_arch_switch(prev);
1927 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1928 	local_irq_disable();
1929 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1930 	perf_event_task_sched_in(prev, current);
1931 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1932 	local_irq_enable();
1933 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1934 	finish_lock_switch(rq, prev);
1935 	trace_sched_stat_sleeptime(current, rq->clock);
1936 
1937 	fire_sched_in_preempt_notifiers(current);
1938 	if (mm)
1939 		mmdrop(mm);
1940 	if (unlikely(prev_state == TASK_DEAD)) {
1941 		/*
1942 		 * Remove function-return probe instances associated with this
1943 		 * task and put them back on the free list.
1944 		 */
1945 		kprobe_flush_task(prev);
1946 		put_task_struct(prev);
1947 	}
1948 }
1949 
1950 #ifdef CONFIG_SMP
1951 
1952 /* assumes rq->lock is held */
1953 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1954 {
1955 	if (prev->sched_class->pre_schedule)
1956 		prev->sched_class->pre_schedule(rq, prev);
1957 }
1958 
1959 /* rq->lock is NOT held, but preemption is disabled */
1960 static inline void post_schedule(struct rq *rq)
1961 {
1962 	if (rq->post_schedule) {
1963 		unsigned long flags;
1964 
1965 		raw_spin_lock_irqsave(&rq->lock, flags);
1966 		if (rq->curr->sched_class->post_schedule)
1967 			rq->curr->sched_class->post_schedule(rq);
1968 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1969 
1970 		rq->post_schedule = 0;
1971 	}
1972 }
1973 
1974 #else
1975 
1976 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1977 {
1978 }
1979 
1980 static inline void post_schedule(struct rq *rq)
1981 {
1982 }
1983 
1984 #endif
1985 
1986 /**
1987  * schedule_tail - first thing a freshly forked thread must call.
1988  * @prev: the thread we just switched away from.
1989  */
1990 asmlinkage void schedule_tail(struct task_struct *prev)
1991 	__releases(rq->lock)
1992 {
1993 	struct rq *rq = this_rq();
1994 
1995 	finish_task_switch(rq, prev);
1996 
1997 	/*
1998 	 * FIXME: do we need to worry about rq being invalidated by the
1999 	 * task_switch?
2000 	 */
2001 	post_schedule(rq);
2002 
2003 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2004 	/* In this case, finish_task_switch does not reenable preemption */
2005 	preempt_enable();
2006 #endif
2007 	if (current->set_child_tid)
2008 		put_user(task_pid_vnr(current), current->set_child_tid);
2009 }
2010 
2011 /*
2012  * context_switch - switch to the new MM and the new
2013  * thread's register state.
2014  */
2015 static inline void
2016 context_switch(struct rq *rq, struct task_struct *prev,
2017 	       struct task_struct *next)
2018 {
2019 	struct mm_struct *mm, *oldmm;
2020 
2021 	prepare_task_switch(rq, prev, next);
2022 
2023 	mm = next->mm;
2024 	oldmm = prev->active_mm;
2025 	/*
2026 	 * For paravirt, this is coupled with an exit in switch_to to
2027 	 * combine the page table reload and the switch backend into
2028 	 * one hypercall.
2029 	 */
2030 	arch_start_context_switch(prev);
2031 
2032 	if (!mm) {
2033 		next->active_mm = oldmm;
2034 		atomic_inc(&oldmm->mm_count);
2035 		enter_lazy_tlb(oldmm, next);
2036 	} else
2037 		switch_mm(oldmm, mm, next);
2038 
2039 	if (!prev->mm) {
2040 		prev->active_mm = NULL;
2041 		rq->prev_mm = oldmm;
2042 	}
2043 	/*
2044 	 * Since the runqueue lock will be released by the next
2045 	 * task (which is an invalid locking op but in the case
2046 	 * of the scheduler it's an obvious special-case), so we
2047 	 * do an early lockdep release here:
2048 	 */
2049 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2050 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2051 #endif
2052 
2053 	/* Here we just switch the register state and the stack. */
2054 	switch_to(prev, next, prev);
2055 
2056 	barrier();
2057 	/*
2058 	 * this_rq must be evaluated again because prev may have moved
2059 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2060 	 * frame will be invalid.
2061 	 */
2062 	finish_task_switch(this_rq(), prev);
2063 }
2064 
2065 /*
2066  * nr_running, nr_uninterruptible and nr_context_switches:
2067  *
2068  * externally visible scheduler statistics: current number of runnable
2069  * threads, current number of uninterruptible-sleeping threads, total
2070  * number of context switches performed since bootup.
2071  */
2072 unsigned long nr_running(void)
2073 {
2074 	unsigned long i, sum = 0;
2075 
2076 	for_each_online_cpu(i)
2077 		sum += cpu_rq(i)->nr_running;
2078 
2079 	return sum;
2080 }
2081 
2082 unsigned long nr_uninterruptible(void)
2083 {
2084 	unsigned long i, sum = 0;
2085 
2086 	for_each_possible_cpu(i)
2087 		sum += cpu_rq(i)->nr_uninterruptible;
2088 
2089 	/*
2090 	 * Since we read the counters lockless, it might be slightly
2091 	 * inaccurate. Do not allow it to go below zero though:
2092 	 */
2093 	if (unlikely((long)sum < 0))
2094 		sum = 0;
2095 
2096 	return sum;
2097 }
2098 
2099 unsigned long long nr_context_switches(void)
2100 {
2101 	int i;
2102 	unsigned long long sum = 0;
2103 
2104 	for_each_possible_cpu(i)
2105 		sum += cpu_rq(i)->nr_switches;
2106 
2107 	return sum;
2108 }
2109 
2110 unsigned long nr_iowait(void)
2111 {
2112 	unsigned long i, sum = 0;
2113 
2114 	for_each_possible_cpu(i)
2115 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2116 
2117 	return sum;
2118 }
2119 
2120 unsigned long nr_iowait_cpu(int cpu)
2121 {
2122 	struct rq *this = cpu_rq(cpu);
2123 	return atomic_read(&this->nr_iowait);
2124 }
2125 
2126 unsigned long this_cpu_load(void)
2127 {
2128 	struct rq *this = this_rq();
2129 	return this->cpu_load[0];
2130 }
2131 
2132 
2133 /* Variables and functions for calc_load */
2134 static atomic_long_t calc_load_tasks;
2135 static unsigned long calc_load_update;
2136 unsigned long avenrun[3];
2137 EXPORT_SYMBOL(avenrun);
2138 
2139 static long calc_load_fold_active(struct rq *this_rq)
2140 {
2141 	long nr_active, delta = 0;
2142 
2143 	nr_active = this_rq->nr_running;
2144 	nr_active += (long) this_rq->nr_uninterruptible;
2145 
2146 	if (nr_active != this_rq->calc_load_active) {
2147 		delta = nr_active - this_rq->calc_load_active;
2148 		this_rq->calc_load_active = nr_active;
2149 	}
2150 
2151 	return delta;
2152 }
2153 
2154 static unsigned long
2155 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2156 {
2157 	load *= exp;
2158 	load += active * (FIXED_1 - exp);
2159 	load += 1UL << (FSHIFT - 1);
2160 	return load >> FSHIFT;
2161 }
2162 
2163 #ifdef CONFIG_NO_HZ
2164 /*
2165  * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2166  *
2167  * When making the ILB scale, we should try to pull this in as well.
2168  */
2169 static atomic_long_t calc_load_tasks_idle;
2170 
2171 void calc_load_account_idle(struct rq *this_rq)
2172 {
2173 	long delta;
2174 
2175 	delta = calc_load_fold_active(this_rq);
2176 	if (delta)
2177 		atomic_long_add(delta, &calc_load_tasks_idle);
2178 }
2179 
2180 static long calc_load_fold_idle(void)
2181 {
2182 	long delta = 0;
2183 
2184 	/*
2185 	 * Its got a race, we don't care...
2186 	 */
2187 	if (atomic_long_read(&calc_load_tasks_idle))
2188 		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2189 
2190 	return delta;
2191 }
2192 
2193 /**
2194  * fixed_power_int - compute: x^n, in O(log n) time
2195  *
2196  * @x:         base of the power
2197  * @frac_bits: fractional bits of @x
2198  * @n:         power to raise @x to.
2199  *
2200  * By exploiting the relation between the definition of the natural power
2201  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2202  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2203  * (where: n_i \elem {0, 1}, the binary vector representing n),
2204  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2205  * of course trivially computable in O(log_2 n), the length of our binary
2206  * vector.
2207  */
2208 static unsigned long
2209 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2210 {
2211 	unsigned long result = 1UL << frac_bits;
2212 
2213 	if (n) for (;;) {
2214 		if (n & 1) {
2215 			result *= x;
2216 			result += 1UL << (frac_bits - 1);
2217 			result >>= frac_bits;
2218 		}
2219 		n >>= 1;
2220 		if (!n)
2221 			break;
2222 		x *= x;
2223 		x += 1UL << (frac_bits - 1);
2224 		x >>= frac_bits;
2225 	}
2226 
2227 	return result;
2228 }
2229 
2230 /*
2231  * a1 = a0 * e + a * (1 - e)
2232  *
2233  * a2 = a1 * e + a * (1 - e)
2234  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2235  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2236  *
2237  * a3 = a2 * e + a * (1 - e)
2238  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2239  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2240  *
2241  *  ...
2242  *
2243  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2244  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2245  *    = a0 * e^n + a * (1 - e^n)
2246  *
2247  * [1] application of the geometric series:
2248  *
2249  *              n         1 - x^(n+1)
2250  *     S_n := \Sum x^i = -------------
2251  *             i=0          1 - x
2252  */
2253 static unsigned long
2254 calc_load_n(unsigned long load, unsigned long exp,
2255 	    unsigned long active, unsigned int n)
2256 {
2257 
2258 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2259 }
2260 
2261 /*
2262  * NO_HZ can leave us missing all per-cpu ticks calling
2263  * calc_load_account_active(), but since an idle CPU folds its delta into
2264  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2265  * in the pending idle delta if our idle period crossed a load cycle boundary.
2266  *
2267  * Once we've updated the global active value, we need to apply the exponential
2268  * weights adjusted to the number of cycles missed.
2269  */
2270 static void calc_global_nohz(unsigned long ticks)
2271 {
2272 	long delta, active, n;
2273 
2274 	if (time_before(jiffies, calc_load_update))
2275 		return;
2276 
2277 	/*
2278 	 * If we crossed a calc_load_update boundary, make sure to fold
2279 	 * any pending idle changes, the respective CPUs might have
2280 	 * missed the tick driven calc_load_account_active() update
2281 	 * due to NO_HZ.
2282 	 */
2283 	delta = calc_load_fold_idle();
2284 	if (delta)
2285 		atomic_long_add(delta, &calc_load_tasks);
2286 
2287 	/*
2288 	 * If we were idle for multiple load cycles, apply them.
2289 	 */
2290 	if (ticks >= LOAD_FREQ) {
2291 		n = ticks / LOAD_FREQ;
2292 
2293 		active = atomic_long_read(&calc_load_tasks);
2294 		active = active > 0 ? active * FIXED_1 : 0;
2295 
2296 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2297 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2298 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2299 
2300 		calc_load_update += n * LOAD_FREQ;
2301 	}
2302 
2303 	/*
2304 	 * Its possible the remainder of the above division also crosses
2305 	 * a LOAD_FREQ period, the regular check in calc_global_load()
2306 	 * which comes after this will take care of that.
2307 	 *
2308 	 * Consider us being 11 ticks before a cycle completion, and us
2309 	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2310 	 * age us 4 cycles, and the test in calc_global_load() will
2311 	 * pick up the final one.
2312 	 */
2313 }
2314 #else
2315 void calc_load_account_idle(struct rq *this_rq)
2316 {
2317 }
2318 
2319 static inline long calc_load_fold_idle(void)
2320 {
2321 	return 0;
2322 }
2323 
2324 static void calc_global_nohz(unsigned long ticks)
2325 {
2326 }
2327 #endif
2328 
2329 /**
2330  * get_avenrun - get the load average array
2331  * @loads:	pointer to dest load array
2332  * @offset:	offset to add
2333  * @shift:	shift count to shift the result left
2334  *
2335  * These values are estimates at best, so no need for locking.
2336  */
2337 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2338 {
2339 	loads[0] = (avenrun[0] + offset) << shift;
2340 	loads[1] = (avenrun[1] + offset) << shift;
2341 	loads[2] = (avenrun[2] + offset) << shift;
2342 }
2343 
2344 /*
2345  * calc_load - update the avenrun load estimates 10 ticks after the
2346  * CPUs have updated calc_load_tasks.
2347  */
2348 void calc_global_load(unsigned long ticks)
2349 {
2350 	long active;
2351 
2352 	calc_global_nohz(ticks);
2353 
2354 	if (time_before(jiffies, calc_load_update + 10))
2355 		return;
2356 
2357 	active = atomic_long_read(&calc_load_tasks);
2358 	active = active > 0 ? active * FIXED_1 : 0;
2359 
2360 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2361 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2362 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2363 
2364 	calc_load_update += LOAD_FREQ;
2365 }
2366 
2367 /*
2368  * Called from update_cpu_load() to periodically update this CPU's
2369  * active count.
2370  */
2371 static void calc_load_account_active(struct rq *this_rq)
2372 {
2373 	long delta;
2374 
2375 	if (time_before(jiffies, this_rq->calc_load_update))
2376 		return;
2377 
2378 	delta  = calc_load_fold_active(this_rq);
2379 	delta += calc_load_fold_idle();
2380 	if (delta)
2381 		atomic_long_add(delta, &calc_load_tasks);
2382 
2383 	this_rq->calc_load_update += LOAD_FREQ;
2384 }
2385 
2386 /*
2387  * The exact cpuload at various idx values, calculated at every tick would be
2388  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2389  *
2390  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2391  * on nth tick when cpu may be busy, then we have:
2392  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2393  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2394  *
2395  * decay_load_missed() below does efficient calculation of
2396  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2397  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2398  *
2399  * The calculation is approximated on a 128 point scale.
2400  * degrade_zero_ticks is the number of ticks after which load at any
2401  * particular idx is approximated to be zero.
2402  * degrade_factor is a precomputed table, a row for each load idx.
2403  * Each column corresponds to degradation factor for a power of two ticks,
2404  * based on 128 point scale.
2405  * Example:
2406  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2407  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2408  *
2409  * With this power of 2 load factors, we can degrade the load n times
2410  * by looking at 1 bits in n and doing as many mult/shift instead of
2411  * n mult/shifts needed by the exact degradation.
2412  */
2413 #define DEGRADE_SHIFT		7
2414 static const unsigned char
2415 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2416 static const unsigned char
2417 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2418 					{0, 0, 0, 0, 0, 0, 0, 0},
2419 					{64, 32, 8, 0, 0, 0, 0, 0},
2420 					{96, 72, 40, 12, 1, 0, 0},
2421 					{112, 98, 75, 43, 15, 1, 0},
2422 					{120, 112, 98, 76, 45, 16, 2} };
2423 
2424 /*
2425  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2426  * would be when CPU is idle and so we just decay the old load without
2427  * adding any new load.
2428  */
2429 static unsigned long
2430 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2431 {
2432 	int j = 0;
2433 
2434 	if (!missed_updates)
2435 		return load;
2436 
2437 	if (missed_updates >= degrade_zero_ticks[idx])
2438 		return 0;
2439 
2440 	if (idx == 1)
2441 		return load >> missed_updates;
2442 
2443 	while (missed_updates) {
2444 		if (missed_updates % 2)
2445 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2446 
2447 		missed_updates >>= 1;
2448 		j++;
2449 	}
2450 	return load;
2451 }
2452 
2453 /*
2454  * Update rq->cpu_load[] statistics. This function is usually called every
2455  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2456  * every tick. We fix it up based on jiffies.
2457  */
2458 void update_cpu_load(struct rq *this_rq)
2459 {
2460 	unsigned long this_load = this_rq->load.weight;
2461 	unsigned long curr_jiffies = jiffies;
2462 	unsigned long pending_updates;
2463 	int i, scale;
2464 
2465 	this_rq->nr_load_updates++;
2466 
2467 	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
2468 	if (curr_jiffies == this_rq->last_load_update_tick)
2469 		return;
2470 
2471 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2472 	this_rq->last_load_update_tick = curr_jiffies;
2473 
2474 	/* Update our load: */
2475 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2476 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2477 		unsigned long old_load, new_load;
2478 
2479 		/* scale is effectively 1 << i now, and >> i divides by scale */
2480 
2481 		old_load = this_rq->cpu_load[i];
2482 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2483 		new_load = this_load;
2484 		/*
2485 		 * Round up the averaging division if load is increasing. This
2486 		 * prevents us from getting stuck on 9 if the load is 10, for
2487 		 * example.
2488 		 */
2489 		if (new_load > old_load)
2490 			new_load += scale - 1;
2491 
2492 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2493 	}
2494 
2495 	sched_avg_update(this_rq);
2496 }
2497 
2498 static void update_cpu_load_active(struct rq *this_rq)
2499 {
2500 	update_cpu_load(this_rq);
2501 
2502 	calc_load_account_active(this_rq);
2503 }
2504 
2505 #ifdef CONFIG_SMP
2506 
2507 /*
2508  * sched_exec - execve() is a valuable balancing opportunity, because at
2509  * this point the task has the smallest effective memory and cache footprint.
2510  */
2511 void sched_exec(void)
2512 {
2513 	struct task_struct *p = current;
2514 	unsigned long flags;
2515 	int dest_cpu;
2516 
2517 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2518 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2519 	if (dest_cpu == smp_processor_id())
2520 		goto unlock;
2521 
2522 	if (likely(cpu_active(dest_cpu))) {
2523 		struct migration_arg arg = { p, dest_cpu };
2524 
2525 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2526 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2527 		return;
2528 	}
2529 unlock:
2530 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2531 }
2532 
2533 #endif
2534 
2535 DEFINE_PER_CPU(struct kernel_stat, kstat);
2536 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2537 
2538 EXPORT_PER_CPU_SYMBOL(kstat);
2539 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2540 
2541 /*
2542  * Return any ns on the sched_clock that have not yet been accounted in
2543  * @p in case that task is currently running.
2544  *
2545  * Called with task_rq_lock() held on @rq.
2546  */
2547 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2548 {
2549 	u64 ns = 0;
2550 
2551 	if (task_current(rq, p)) {
2552 		update_rq_clock(rq);
2553 		ns = rq->clock_task - p->se.exec_start;
2554 		if ((s64)ns < 0)
2555 			ns = 0;
2556 	}
2557 
2558 	return ns;
2559 }
2560 
2561 unsigned long long task_delta_exec(struct task_struct *p)
2562 {
2563 	unsigned long flags;
2564 	struct rq *rq;
2565 	u64 ns = 0;
2566 
2567 	rq = task_rq_lock(p, &flags);
2568 	ns = do_task_delta_exec(p, rq);
2569 	task_rq_unlock(rq, p, &flags);
2570 
2571 	return ns;
2572 }
2573 
2574 /*
2575  * Return accounted runtime for the task.
2576  * In case the task is currently running, return the runtime plus current's
2577  * pending runtime that have not been accounted yet.
2578  */
2579 unsigned long long task_sched_runtime(struct task_struct *p)
2580 {
2581 	unsigned long flags;
2582 	struct rq *rq;
2583 	u64 ns = 0;
2584 
2585 	rq = task_rq_lock(p, &flags);
2586 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2587 	task_rq_unlock(rq, p, &flags);
2588 
2589 	return ns;
2590 }
2591 
2592 #ifdef CONFIG_CGROUP_CPUACCT
2593 struct cgroup_subsys cpuacct_subsys;
2594 struct cpuacct root_cpuacct;
2595 #endif
2596 
2597 static inline void task_group_account_field(struct task_struct *p, int index,
2598 					    u64 tmp)
2599 {
2600 #ifdef CONFIG_CGROUP_CPUACCT
2601 	struct kernel_cpustat *kcpustat;
2602 	struct cpuacct *ca;
2603 #endif
2604 	/*
2605 	 * Since all updates are sure to touch the root cgroup, we
2606 	 * get ourselves ahead and touch it first. If the root cgroup
2607 	 * is the only cgroup, then nothing else should be necessary.
2608 	 *
2609 	 */
2610 	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2611 
2612 #ifdef CONFIG_CGROUP_CPUACCT
2613 	if (unlikely(!cpuacct_subsys.active))
2614 		return;
2615 
2616 	rcu_read_lock();
2617 	ca = task_ca(p);
2618 	while (ca && (ca != &root_cpuacct)) {
2619 		kcpustat = this_cpu_ptr(ca->cpustat);
2620 		kcpustat->cpustat[index] += tmp;
2621 		ca = parent_ca(ca);
2622 	}
2623 	rcu_read_unlock();
2624 #endif
2625 }
2626 
2627 
2628 /*
2629  * Account user cpu time to a process.
2630  * @p: the process that the cpu time gets accounted to
2631  * @cputime: the cpu time spent in user space since the last update
2632  * @cputime_scaled: cputime scaled by cpu frequency
2633  */
2634 void account_user_time(struct task_struct *p, cputime_t cputime,
2635 		       cputime_t cputime_scaled)
2636 {
2637 	int index;
2638 
2639 	/* Add user time to process. */
2640 	p->utime += cputime;
2641 	p->utimescaled += cputime_scaled;
2642 	account_group_user_time(p, cputime);
2643 
2644 	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2645 
2646 	/* Add user time to cpustat. */
2647 	task_group_account_field(p, index, (__force u64) cputime);
2648 
2649 	/* Account for user time used */
2650 	acct_update_integrals(p);
2651 }
2652 
2653 /*
2654  * Account guest cpu time to a process.
2655  * @p: the process that the cpu time gets accounted to
2656  * @cputime: the cpu time spent in virtual machine since the last update
2657  * @cputime_scaled: cputime scaled by cpu frequency
2658  */
2659 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2660 			       cputime_t cputime_scaled)
2661 {
2662 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2663 
2664 	/* Add guest time to process. */
2665 	p->utime += cputime;
2666 	p->utimescaled += cputime_scaled;
2667 	account_group_user_time(p, cputime);
2668 	p->gtime += cputime;
2669 
2670 	/* Add guest time to cpustat. */
2671 	if (TASK_NICE(p) > 0) {
2672 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2673 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2674 	} else {
2675 		cpustat[CPUTIME_USER] += (__force u64) cputime;
2676 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2677 	}
2678 }
2679 
2680 /*
2681  * Account system cpu time to a process and desired cpustat field
2682  * @p: the process that the cpu time gets accounted to
2683  * @cputime: the cpu time spent in kernel space since the last update
2684  * @cputime_scaled: cputime scaled by cpu frequency
2685  * @target_cputime64: pointer to cpustat field that has to be updated
2686  */
2687 static inline
2688 void __account_system_time(struct task_struct *p, cputime_t cputime,
2689 			cputime_t cputime_scaled, int index)
2690 {
2691 	/* Add system time to process. */
2692 	p->stime += cputime;
2693 	p->stimescaled += cputime_scaled;
2694 	account_group_system_time(p, cputime);
2695 
2696 	/* Add system time to cpustat. */
2697 	task_group_account_field(p, index, (__force u64) cputime);
2698 
2699 	/* Account for system time used */
2700 	acct_update_integrals(p);
2701 }
2702 
2703 /*
2704  * Account system cpu time to a process.
2705  * @p: the process that the cpu time gets accounted to
2706  * @hardirq_offset: the offset to subtract from hardirq_count()
2707  * @cputime: the cpu time spent in kernel space since the last update
2708  * @cputime_scaled: cputime scaled by cpu frequency
2709  */
2710 void account_system_time(struct task_struct *p, int hardirq_offset,
2711 			 cputime_t cputime, cputime_t cputime_scaled)
2712 {
2713 	int index;
2714 
2715 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2716 		account_guest_time(p, cputime, cputime_scaled);
2717 		return;
2718 	}
2719 
2720 	if (hardirq_count() - hardirq_offset)
2721 		index = CPUTIME_IRQ;
2722 	else if (in_serving_softirq())
2723 		index = CPUTIME_SOFTIRQ;
2724 	else
2725 		index = CPUTIME_SYSTEM;
2726 
2727 	__account_system_time(p, cputime, cputime_scaled, index);
2728 }
2729 
2730 /*
2731  * Account for involuntary wait time.
2732  * @cputime: the cpu time spent in involuntary wait
2733  */
2734 void account_steal_time(cputime_t cputime)
2735 {
2736 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2737 
2738 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2739 }
2740 
2741 /*
2742  * Account for idle time.
2743  * @cputime: the cpu time spent in idle wait
2744  */
2745 void account_idle_time(cputime_t cputime)
2746 {
2747 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2748 	struct rq *rq = this_rq();
2749 
2750 	if (atomic_read(&rq->nr_iowait) > 0)
2751 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2752 	else
2753 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2754 }
2755 
2756 static __always_inline bool steal_account_process_tick(void)
2757 {
2758 #ifdef CONFIG_PARAVIRT
2759 	if (static_branch(&paravirt_steal_enabled)) {
2760 		u64 steal, st = 0;
2761 
2762 		steal = paravirt_steal_clock(smp_processor_id());
2763 		steal -= this_rq()->prev_steal_time;
2764 
2765 		st = steal_ticks(steal);
2766 		this_rq()->prev_steal_time += st * TICK_NSEC;
2767 
2768 		account_steal_time(st);
2769 		return st;
2770 	}
2771 #endif
2772 	return false;
2773 }
2774 
2775 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2776 
2777 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2778 /*
2779  * Account a tick to a process and cpustat
2780  * @p: the process that the cpu time gets accounted to
2781  * @user_tick: is the tick from userspace
2782  * @rq: the pointer to rq
2783  *
2784  * Tick demultiplexing follows the order
2785  * - pending hardirq update
2786  * - pending softirq update
2787  * - user_time
2788  * - idle_time
2789  * - system time
2790  *   - check for guest_time
2791  *   - else account as system_time
2792  *
2793  * Check for hardirq is done both for system and user time as there is
2794  * no timer going off while we are on hardirq and hence we may never get an
2795  * opportunity to update it solely in system time.
2796  * p->stime and friends are only updated on system time and not on irq
2797  * softirq as those do not count in task exec_runtime any more.
2798  */
2799 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2800 						struct rq *rq)
2801 {
2802 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2803 	u64 *cpustat = kcpustat_this_cpu->cpustat;
2804 
2805 	if (steal_account_process_tick())
2806 		return;
2807 
2808 	if (irqtime_account_hi_update()) {
2809 		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2810 	} else if (irqtime_account_si_update()) {
2811 		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2812 	} else if (this_cpu_ksoftirqd() == p) {
2813 		/*
2814 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2815 		 * So, we have to handle it separately here.
2816 		 * Also, p->stime needs to be updated for ksoftirqd.
2817 		 */
2818 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2819 					CPUTIME_SOFTIRQ);
2820 	} else if (user_tick) {
2821 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2822 	} else if (p == rq->idle) {
2823 		account_idle_time(cputime_one_jiffy);
2824 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2825 		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2826 	} else {
2827 		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2828 					CPUTIME_SYSTEM);
2829 	}
2830 }
2831 
2832 static void irqtime_account_idle_ticks(int ticks)
2833 {
2834 	int i;
2835 	struct rq *rq = this_rq();
2836 
2837 	for (i = 0; i < ticks; i++)
2838 		irqtime_account_process_tick(current, 0, rq);
2839 }
2840 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2841 static void irqtime_account_idle_ticks(int ticks) {}
2842 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2843 						struct rq *rq) {}
2844 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2845 
2846 /*
2847  * Account a single tick of cpu time.
2848  * @p: the process that the cpu time gets accounted to
2849  * @user_tick: indicates if the tick is a user or a system tick
2850  */
2851 void account_process_tick(struct task_struct *p, int user_tick)
2852 {
2853 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2854 	struct rq *rq = this_rq();
2855 
2856 	if (sched_clock_irqtime) {
2857 		irqtime_account_process_tick(p, user_tick, rq);
2858 		return;
2859 	}
2860 
2861 	if (steal_account_process_tick())
2862 		return;
2863 
2864 	if (user_tick)
2865 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2866 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2867 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2868 				    one_jiffy_scaled);
2869 	else
2870 		account_idle_time(cputime_one_jiffy);
2871 }
2872 
2873 /*
2874  * Account multiple ticks of steal time.
2875  * @p: the process from which the cpu time has been stolen
2876  * @ticks: number of stolen ticks
2877  */
2878 void account_steal_ticks(unsigned long ticks)
2879 {
2880 	account_steal_time(jiffies_to_cputime(ticks));
2881 }
2882 
2883 /*
2884  * Account multiple ticks of idle time.
2885  * @ticks: number of stolen ticks
2886  */
2887 void account_idle_ticks(unsigned long ticks)
2888 {
2889 
2890 	if (sched_clock_irqtime) {
2891 		irqtime_account_idle_ticks(ticks);
2892 		return;
2893 	}
2894 
2895 	account_idle_time(jiffies_to_cputime(ticks));
2896 }
2897 
2898 #endif
2899 
2900 /*
2901  * Use precise platform statistics if available:
2902  */
2903 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2904 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2905 {
2906 	*ut = p->utime;
2907 	*st = p->stime;
2908 }
2909 
2910 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2911 {
2912 	struct task_cputime cputime;
2913 
2914 	thread_group_cputime(p, &cputime);
2915 
2916 	*ut = cputime.utime;
2917 	*st = cputime.stime;
2918 }
2919 #else
2920 
2921 #ifndef nsecs_to_cputime
2922 # define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2923 #endif
2924 
2925 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2926 {
2927 	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2928 
2929 	/*
2930 	 * Use CFS's precise accounting:
2931 	 */
2932 	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2933 
2934 	if (total) {
2935 		u64 temp = (__force u64) rtime;
2936 
2937 		temp *= (__force u64) utime;
2938 		do_div(temp, (__force u32) total);
2939 		utime = (__force cputime_t) temp;
2940 	} else
2941 		utime = rtime;
2942 
2943 	/*
2944 	 * Compare with previous values, to keep monotonicity:
2945 	 */
2946 	p->prev_utime = max(p->prev_utime, utime);
2947 	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2948 
2949 	*ut = p->prev_utime;
2950 	*st = p->prev_stime;
2951 }
2952 
2953 /*
2954  * Must be called with siglock held.
2955  */
2956 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2957 {
2958 	struct signal_struct *sig = p->signal;
2959 	struct task_cputime cputime;
2960 	cputime_t rtime, utime, total;
2961 
2962 	thread_group_cputime(p, &cputime);
2963 
2964 	total = cputime.utime + cputime.stime;
2965 	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2966 
2967 	if (total) {
2968 		u64 temp = (__force u64) rtime;
2969 
2970 		temp *= (__force u64) cputime.utime;
2971 		do_div(temp, (__force u32) total);
2972 		utime = (__force cputime_t) temp;
2973 	} else
2974 		utime = rtime;
2975 
2976 	sig->prev_utime = max(sig->prev_utime, utime);
2977 	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2978 
2979 	*ut = sig->prev_utime;
2980 	*st = sig->prev_stime;
2981 }
2982 #endif
2983 
2984 /*
2985  * This function gets called by the timer code, with HZ frequency.
2986  * We call it with interrupts disabled.
2987  */
2988 void scheduler_tick(void)
2989 {
2990 	int cpu = smp_processor_id();
2991 	struct rq *rq = cpu_rq(cpu);
2992 	struct task_struct *curr = rq->curr;
2993 
2994 	sched_clock_tick();
2995 
2996 	raw_spin_lock(&rq->lock);
2997 	update_rq_clock(rq);
2998 	update_cpu_load_active(rq);
2999 	curr->sched_class->task_tick(rq, curr, 0);
3000 	raw_spin_unlock(&rq->lock);
3001 
3002 	perf_event_task_tick();
3003 
3004 #ifdef CONFIG_SMP
3005 	rq->idle_balance = idle_cpu(cpu);
3006 	trigger_load_balance(rq, cpu);
3007 #endif
3008 }
3009 
3010 notrace unsigned long get_parent_ip(unsigned long addr)
3011 {
3012 	if (in_lock_functions(addr)) {
3013 		addr = CALLER_ADDR2;
3014 		if (in_lock_functions(addr))
3015 			addr = CALLER_ADDR3;
3016 	}
3017 	return addr;
3018 }
3019 
3020 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3021 				defined(CONFIG_PREEMPT_TRACER))
3022 
3023 void __kprobes add_preempt_count(int val)
3024 {
3025 #ifdef CONFIG_DEBUG_PREEMPT
3026 	/*
3027 	 * Underflow?
3028 	 */
3029 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3030 		return;
3031 #endif
3032 	preempt_count() += val;
3033 #ifdef CONFIG_DEBUG_PREEMPT
3034 	/*
3035 	 * Spinlock count overflowing soon?
3036 	 */
3037 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3038 				PREEMPT_MASK - 10);
3039 #endif
3040 	if (preempt_count() == val)
3041 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3042 }
3043 EXPORT_SYMBOL(add_preempt_count);
3044 
3045 void __kprobes sub_preempt_count(int val)
3046 {
3047 #ifdef CONFIG_DEBUG_PREEMPT
3048 	/*
3049 	 * Underflow?
3050 	 */
3051 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3052 		return;
3053 	/*
3054 	 * Is the spinlock portion underflowing?
3055 	 */
3056 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3057 			!(preempt_count() & PREEMPT_MASK)))
3058 		return;
3059 #endif
3060 
3061 	if (preempt_count() == val)
3062 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3063 	preempt_count() -= val;
3064 }
3065 EXPORT_SYMBOL(sub_preempt_count);
3066 
3067 #endif
3068 
3069 /*
3070  * Print scheduling while atomic bug:
3071  */
3072 static noinline void __schedule_bug(struct task_struct *prev)
3073 {
3074 	struct pt_regs *regs = get_irq_regs();
3075 
3076 	if (oops_in_progress)
3077 		return;
3078 
3079 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3080 		prev->comm, prev->pid, preempt_count());
3081 
3082 	debug_show_held_locks(prev);
3083 	print_modules();
3084 	if (irqs_disabled())
3085 		print_irqtrace_events(prev);
3086 
3087 	if (regs)
3088 		show_regs(regs);
3089 	else
3090 		dump_stack();
3091 }
3092 
3093 /*
3094  * Various schedule()-time debugging checks and statistics:
3095  */
3096 static inline void schedule_debug(struct task_struct *prev)
3097 {
3098 	/*
3099 	 * Test if we are atomic. Since do_exit() needs to call into
3100 	 * schedule() atomically, we ignore that path for now.
3101 	 * Otherwise, whine if we are scheduling when we should not be.
3102 	 */
3103 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3104 		__schedule_bug(prev);
3105 	rcu_sleep_check();
3106 
3107 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3108 
3109 	schedstat_inc(this_rq(), sched_count);
3110 }
3111 
3112 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3113 {
3114 	if (prev->on_rq || rq->skip_clock_update < 0)
3115 		update_rq_clock(rq);
3116 	prev->sched_class->put_prev_task(rq, prev);
3117 }
3118 
3119 /*
3120  * Pick up the highest-prio task:
3121  */
3122 static inline struct task_struct *
3123 pick_next_task(struct rq *rq)
3124 {
3125 	const struct sched_class *class;
3126 	struct task_struct *p;
3127 
3128 	/*
3129 	 * Optimization: we know that if all tasks are in
3130 	 * the fair class we can call that function directly:
3131 	 */
3132 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3133 		p = fair_sched_class.pick_next_task(rq);
3134 		if (likely(p))
3135 			return p;
3136 	}
3137 
3138 	for_each_class(class) {
3139 		p = class->pick_next_task(rq);
3140 		if (p)
3141 			return p;
3142 	}
3143 
3144 	BUG(); /* the idle class will always have a runnable task */
3145 }
3146 
3147 /*
3148  * __schedule() is the main scheduler function.
3149  */
3150 static void __sched __schedule(void)
3151 {
3152 	struct task_struct *prev, *next;
3153 	unsigned long *switch_count;
3154 	struct rq *rq;
3155 	int cpu;
3156 
3157 need_resched:
3158 	preempt_disable();
3159 	cpu = smp_processor_id();
3160 	rq = cpu_rq(cpu);
3161 	rcu_note_context_switch(cpu);
3162 	prev = rq->curr;
3163 
3164 	schedule_debug(prev);
3165 
3166 	if (sched_feat(HRTICK))
3167 		hrtick_clear(rq);
3168 
3169 	raw_spin_lock_irq(&rq->lock);
3170 
3171 	switch_count = &prev->nivcsw;
3172 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3173 		if (unlikely(signal_pending_state(prev->state, prev))) {
3174 			prev->state = TASK_RUNNING;
3175 		} else {
3176 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3177 			prev->on_rq = 0;
3178 
3179 			/*
3180 			 * If a worker went to sleep, notify and ask workqueue
3181 			 * whether it wants to wake up a task to maintain
3182 			 * concurrency.
3183 			 */
3184 			if (prev->flags & PF_WQ_WORKER) {
3185 				struct task_struct *to_wakeup;
3186 
3187 				to_wakeup = wq_worker_sleeping(prev, cpu);
3188 				if (to_wakeup)
3189 					try_to_wake_up_local(to_wakeup);
3190 			}
3191 		}
3192 		switch_count = &prev->nvcsw;
3193 	}
3194 
3195 	pre_schedule(rq, prev);
3196 
3197 	if (unlikely(!rq->nr_running))
3198 		idle_balance(cpu, rq);
3199 
3200 	put_prev_task(rq, prev);
3201 	next = pick_next_task(rq);
3202 	clear_tsk_need_resched(prev);
3203 	rq->skip_clock_update = 0;
3204 
3205 	if (likely(prev != next)) {
3206 		rq->nr_switches++;
3207 		rq->curr = next;
3208 		++*switch_count;
3209 
3210 		context_switch(rq, prev, next); /* unlocks the rq */
3211 		/*
3212 		 * The context switch have flipped the stack from under us
3213 		 * and restored the local variables which were saved when
3214 		 * this task called schedule() in the past. prev == current
3215 		 * is still correct, but it can be moved to another cpu/rq.
3216 		 */
3217 		cpu = smp_processor_id();
3218 		rq = cpu_rq(cpu);
3219 	} else
3220 		raw_spin_unlock_irq(&rq->lock);
3221 
3222 	post_schedule(rq);
3223 
3224 	preempt_enable_no_resched();
3225 	if (need_resched())
3226 		goto need_resched;
3227 }
3228 
3229 static inline void sched_submit_work(struct task_struct *tsk)
3230 {
3231 	if (!tsk->state)
3232 		return;
3233 	/*
3234 	 * If we are going to sleep and we have plugged IO queued,
3235 	 * make sure to submit it to avoid deadlocks.
3236 	 */
3237 	if (blk_needs_flush_plug(tsk))
3238 		blk_schedule_flush_plug(tsk);
3239 }
3240 
3241 asmlinkage void __sched schedule(void)
3242 {
3243 	struct task_struct *tsk = current;
3244 
3245 	sched_submit_work(tsk);
3246 	__schedule();
3247 }
3248 EXPORT_SYMBOL(schedule);
3249 
3250 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3251 
3252 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3253 {
3254 	if (lock->owner != owner)
3255 		return false;
3256 
3257 	/*
3258 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3259 	 * lock->owner still matches owner, if that fails, owner might
3260 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3261 	 * ensures the memory stays valid.
3262 	 */
3263 	barrier();
3264 
3265 	return owner->on_cpu;
3266 }
3267 
3268 /*
3269  * Look out! "owner" is an entirely speculative pointer
3270  * access and not reliable.
3271  */
3272 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3273 {
3274 	if (!sched_feat(OWNER_SPIN))
3275 		return 0;
3276 
3277 	rcu_read_lock();
3278 	while (owner_running(lock, owner)) {
3279 		if (need_resched())
3280 			break;
3281 
3282 		arch_mutex_cpu_relax();
3283 	}
3284 	rcu_read_unlock();
3285 
3286 	/*
3287 	 * We break out the loop above on need_resched() and when the
3288 	 * owner changed, which is a sign for heavy contention. Return
3289 	 * success only when lock->owner is NULL.
3290 	 */
3291 	return lock->owner == NULL;
3292 }
3293 #endif
3294 
3295 #ifdef CONFIG_PREEMPT
3296 /*
3297  * this is the entry point to schedule() from in-kernel preemption
3298  * off of preempt_enable. Kernel preemptions off return from interrupt
3299  * occur there and call schedule directly.
3300  */
3301 asmlinkage void __sched notrace preempt_schedule(void)
3302 {
3303 	struct thread_info *ti = current_thread_info();
3304 
3305 	/*
3306 	 * If there is a non-zero preempt_count or interrupts are disabled,
3307 	 * we do not want to preempt the current task. Just return..
3308 	 */
3309 	if (likely(ti->preempt_count || irqs_disabled()))
3310 		return;
3311 
3312 	do {
3313 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3314 		__schedule();
3315 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3316 
3317 		/*
3318 		 * Check again in case we missed a preemption opportunity
3319 		 * between schedule and now.
3320 		 */
3321 		barrier();
3322 	} while (need_resched());
3323 }
3324 EXPORT_SYMBOL(preempt_schedule);
3325 
3326 /*
3327  * this is the entry point to schedule() from kernel preemption
3328  * off of irq context.
3329  * Note, that this is called and return with irqs disabled. This will
3330  * protect us against recursive calling from irq.
3331  */
3332 asmlinkage void __sched preempt_schedule_irq(void)
3333 {
3334 	struct thread_info *ti = current_thread_info();
3335 
3336 	/* Catch callers which need to be fixed */
3337 	BUG_ON(ti->preempt_count || !irqs_disabled());
3338 
3339 	do {
3340 		add_preempt_count(PREEMPT_ACTIVE);
3341 		local_irq_enable();
3342 		__schedule();
3343 		local_irq_disable();
3344 		sub_preempt_count(PREEMPT_ACTIVE);
3345 
3346 		/*
3347 		 * Check again in case we missed a preemption opportunity
3348 		 * between schedule and now.
3349 		 */
3350 		barrier();
3351 	} while (need_resched());
3352 }
3353 
3354 #endif /* CONFIG_PREEMPT */
3355 
3356 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3357 			  void *key)
3358 {
3359 	return try_to_wake_up(curr->private, mode, wake_flags);
3360 }
3361 EXPORT_SYMBOL(default_wake_function);
3362 
3363 /*
3364  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3365  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3366  * number) then we wake all the non-exclusive tasks and one exclusive task.
3367  *
3368  * There are circumstances in which we can try to wake a task which has already
3369  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3370  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3371  */
3372 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3373 			int nr_exclusive, int wake_flags, void *key)
3374 {
3375 	wait_queue_t *curr, *next;
3376 
3377 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3378 		unsigned flags = curr->flags;
3379 
3380 		if (curr->func(curr, mode, wake_flags, key) &&
3381 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3382 			break;
3383 	}
3384 }
3385 
3386 /**
3387  * __wake_up - wake up threads blocked on a waitqueue.
3388  * @q: the waitqueue
3389  * @mode: which threads
3390  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3391  * @key: is directly passed to the wakeup function
3392  *
3393  * It may be assumed that this function implies a write memory barrier before
3394  * changing the task state if and only if any tasks are woken up.
3395  */
3396 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3397 			int nr_exclusive, void *key)
3398 {
3399 	unsigned long flags;
3400 
3401 	spin_lock_irqsave(&q->lock, flags);
3402 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3403 	spin_unlock_irqrestore(&q->lock, flags);
3404 }
3405 EXPORT_SYMBOL(__wake_up);
3406 
3407 /*
3408  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3409  */
3410 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3411 {
3412 	__wake_up_common(q, mode, 1, 0, NULL);
3413 }
3414 EXPORT_SYMBOL_GPL(__wake_up_locked);
3415 
3416 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3417 {
3418 	__wake_up_common(q, mode, 1, 0, key);
3419 }
3420 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3421 
3422 /**
3423  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3424  * @q: the waitqueue
3425  * @mode: which threads
3426  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3427  * @key: opaque value to be passed to wakeup targets
3428  *
3429  * The sync wakeup differs that the waker knows that it will schedule
3430  * away soon, so while the target thread will be woken up, it will not
3431  * be migrated to another CPU - ie. the two threads are 'synchronized'
3432  * with each other. This can prevent needless bouncing between CPUs.
3433  *
3434  * On UP it can prevent extra preemption.
3435  *
3436  * It may be assumed that this function implies a write memory barrier before
3437  * changing the task state if and only if any tasks are woken up.
3438  */
3439 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3440 			int nr_exclusive, void *key)
3441 {
3442 	unsigned long flags;
3443 	int wake_flags = WF_SYNC;
3444 
3445 	if (unlikely(!q))
3446 		return;
3447 
3448 	if (unlikely(!nr_exclusive))
3449 		wake_flags = 0;
3450 
3451 	spin_lock_irqsave(&q->lock, flags);
3452 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3453 	spin_unlock_irqrestore(&q->lock, flags);
3454 }
3455 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3456 
3457 /*
3458  * __wake_up_sync - see __wake_up_sync_key()
3459  */
3460 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3461 {
3462 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3463 }
3464 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3465 
3466 /**
3467  * complete: - signals a single thread waiting on this completion
3468  * @x:  holds the state of this particular completion
3469  *
3470  * This will wake up a single thread waiting on this completion. Threads will be
3471  * awakened in the same order in which they were queued.
3472  *
3473  * See also complete_all(), wait_for_completion() and related routines.
3474  *
3475  * It may be assumed that this function implies a write memory barrier before
3476  * changing the task state if and only if any tasks are woken up.
3477  */
3478 void complete(struct completion *x)
3479 {
3480 	unsigned long flags;
3481 
3482 	spin_lock_irqsave(&x->wait.lock, flags);
3483 	x->done++;
3484 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3485 	spin_unlock_irqrestore(&x->wait.lock, flags);
3486 }
3487 EXPORT_SYMBOL(complete);
3488 
3489 /**
3490  * complete_all: - signals all threads waiting on this completion
3491  * @x:  holds the state of this particular completion
3492  *
3493  * This will wake up all threads waiting on this particular completion event.
3494  *
3495  * It may be assumed that this function implies a write memory barrier before
3496  * changing the task state if and only if any tasks are woken up.
3497  */
3498 void complete_all(struct completion *x)
3499 {
3500 	unsigned long flags;
3501 
3502 	spin_lock_irqsave(&x->wait.lock, flags);
3503 	x->done += UINT_MAX/2;
3504 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3505 	spin_unlock_irqrestore(&x->wait.lock, flags);
3506 }
3507 EXPORT_SYMBOL(complete_all);
3508 
3509 static inline long __sched
3510 do_wait_for_common(struct completion *x, long timeout, int state)
3511 {
3512 	if (!x->done) {
3513 		DECLARE_WAITQUEUE(wait, current);
3514 
3515 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3516 		do {
3517 			if (signal_pending_state(state, current)) {
3518 				timeout = -ERESTARTSYS;
3519 				break;
3520 			}
3521 			__set_current_state(state);
3522 			spin_unlock_irq(&x->wait.lock);
3523 			timeout = schedule_timeout(timeout);
3524 			spin_lock_irq(&x->wait.lock);
3525 		} while (!x->done && timeout);
3526 		__remove_wait_queue(&x->wait, &wait);
3527 		if (!x->done)
3528 			return timeout;
3529 	}
3530 	x->done--;
3531 	return timeout ?: 1;
3532 }
3533 
3534 static long __sched
3535 wait_for_common(struct completion *x, long timeout, int state)
3536 {
3537 	might_sleep();
3538 
3539 	spin_lock_irq(&x->wait.lock);
3540 	timeout = do_wait_for_common(x, timeout, state);
3541 	spin_unlock_irq(&x->wait.lock);
3542 	return timeout;
3543 }
3544 
3545 /**
3546  * wait_for_completion: - waits for completion of a task
3547  * @x:  holds the state of this particular completion
3548  *
3549  * This waits to be signaled for completion of a specific task. It is NOT
3550  * interruptible and there is no timeout.
3551  *
3552  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3553  * and interrupt capability. Also see complete().
3554  */
3555 void __sched wait_for_completion(struct completion *x)
3556 {
3557 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3558 }
3559 EXPORT_SYMBOL(wait_for_completion);
3560 
3561 /**
3562  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3563  * @x:  holds the state of this particular completion
3564  * @timeout:  timeout value in jiffies
3565  *
3566  * This waits for either a completion of a specific task to be signaled or for a
3567  * specified timeout to expire. The timeout is in jiffies. It is not
3568  * interruptible.
3569  *
3570  * The return value is 0 if timed out, and positive (at least 1, or number of
3571  * jiffies left till timeout) if completed.
3572  */
3573 unsigned long __sched
3574 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3575 {
3576 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3577 }
3578 EXPORT_SYMBOL(wait_for_completion_timeout);
3579 
3580 /**
3581  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3582  * @x:  holds the state of this particular completion
3583  *
3584  * This waits for completion of a specific task to be signaled. It is
3585  * interruptible.
3586  *
3587  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3588  */
3589 int __sched wait_for_completion_interruptible(struct completion *x)
3590 {
3591 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3592 	if (t == -ERESTARTSYS)
3593 		return t;
3594 	return 0;
3595 }
3596 EXPORT_SYMBOL(wait_for_completion_interruptible);
3597 
3598 /**
3599  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3600  * @x:  holds the state of this particular completion
3601  * @timeout:  timeout value in jiffies
3602  *
3603  * This waits for either a completion of a specific task to be signaled or for a
3604  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3605  *
3606  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3607  * positive (at least 1, or number of jiffies left till timeout) if completed.
3608  */
3609 long __sched
3610 wait_for_completion_interruptible_timeout(struct completion *x,
3611 					  unsigned long timeout)
3612 {
3613 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3614 }
3615 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3616 
3617 /**
3618  * wait_for_completion_killable: - waits for completion of a task (killable)
3619  * @x:  holds the state of this particular completion
3620  *
3621  * This waits to be signaled for completion of a specific task. It can be
3622  * interrupted by a kill signal.
3623  *
3624  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3625  */
3626 int __sched wait_for_completion_killable(struct completion *x)
3627 {
3628 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3629 	if (t == -ERESTARTSYS)
3630 		return t;
3631 	return 0;
3632 }
3633 EXPORT_SYMBOL(wait_for_completion_killable);
3634 
3635 /**
3636  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3637  * @x:  holds the state of this particular completion
3638  * @timeout:  timeout value in jiffies
3639  *
3640  * This waits for either a completion of a specific task to be
3641  * signaled or for a specified timeout to expire. It can be
3642  * interrupted by a kill signal. The timeout is in jiffies.
3643  *
3644  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3645  * positive (at least 1, or number of jiffies left till timeout) if completed.
3646  */
3647 long __sched
3648 wait_for_completion_killable_timeout(struct completion *x,
3649 				     unsigned long timeout)
3650 {
3651 	return wait_for_common(x, timeout, TASK_KILLABLE);
3652 }
3653 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3654 
3655 /**
3656  *	try_wait_for_completion - try to decrement a completion without blocking
3657  *	@x:	completion structure
3658  *
3659  *	Returns: 0 if a decrement cannot be done without blocking
3660  *		 1 if a decrement succeeded.
3661  *
3662  *	If a completion is being used as a counting completion,
3663  *	attempt to decrement the counter without blocking. This
3664  *	enables us to avoid waiting if the resource the completion
3665  *	is protecting is not available.
3666  */
3667 bool try_wait_for_completion(struct completion *x)
3668 {
3669 	unsigned long flags;
3670 	int ret = 1;
3671 
3672 	spin_lock_irqsave(&x->wait.lock, flags);
3673 	if (!x->done)
3674 		ret = 0;
3675 	else
3676 		x->done--;
3677 	spin_unlock_irqrestore(&x->wait.lock, flags);
3678 	return ret;
3679 }
3680 EXPORT_SYMBOL(try_wait_for_completion);
3681 
3682 /**
3683  *	completion_done - Test to see if a completion has any waiters
3684  *	@x:	completion structure
3685  *
3686  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3687  *		 1 if there are no waiters.
3688  *
3689  */
3690 bool completion_done(struct completion *x)
3691 {
3692 	unsigned long flags;
3693 	int ret = 1;
3694 
3695 	spin_lock_irqsave(&x->wait.lock, flags);
3696 	if (!x->done)
3697 		ret = 0;
3698 	spin_unlock_irqrestore(&x->wait.lock, flags);
3699 	return ret;
3700 }
3701 EXPORT_SYMBOL(completion_done);
3702 
3703 static long __sched
3704 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3705 {
3706 	unsigned long flags;
3707 	wait_queue_t wait;
3708 
3709 	init_waitqueue_entry(&wait, current);
3710 
3711 	__set_current_state(state);
3712 
3713 	spin_lock_irqsave(&q->lock, flags);
3714 	__add_wait_queue(q, &wait);
3715 	spin_unlock(&q->lock);
3716 	timeout = schedule_timeout(timeout);
3717 	spin_lock_irq(&q->lock);
3718 	__remove_wait_queue(q, &wait);
3719 	spin_unlock_irqrestore(&q->lock, flags);
3720 
3721 	return timeout;
3722 }
3723 
3724 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3725 {
3726 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3727 }
3728 EXPORT_SYMBOL(interruptible_sleep_on);
3729 
3730 long __sched
3731 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3732 {
3733 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3734 }
3735 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3736 
3737 void __sched sleep_on(wait_queue_head_t *q)
3738 {
3739 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3740 }
3741 EXPORT_SYMBOL(sleep_on);
3742 
3743 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3744 {
3745 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3746 }
3747 EXPORT_SYMBOL(sleep_on_timeout);
3748 
3749 #ifdef CONFIG_RT_MUTEXES
3750 
3751 /*
3752  * rt_mutex_setprio - set the current priority of a task
3753  * @p: task
3754  * @prio: prio value (kernel-internal form)
3755  *
3756  * This function changes the 'effective' priority of a task. It does
3757  * not touch ->normal_prio like __setscheduler().
3758  *
3759  * Used by the rt_mutex code to implement priority inheritance logic.
3760  */
3761 void rt_mutex_setprio(struct task_struct *p, int prio)
3762 {
3763 	int oldprio, on_rq, running;
3764 	struct rq *rq;
3765 	const struct sched_class *prev_class;
3766 
3767 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3768 
3769 	rq = __task_rq_lock(p);
3770 
3771 	trace_sched_pi_setprio(p, prio);
3772 	oldprio = p->prio;
3773 	prev_class = p->sched_class;
3774 	on_rq = p->on_rq;
3775 	running = task_current(rq, p);
3776 	if (on_rq)
3777 		dequeue_task(rq, p, 0);
3778 	if (running)
3779 		p->sched_class->put_prev_task(rq, p);
3780 
3781 	if (rt_prio(prio))
3782 		p->sched_class = &rt_sched_class;
3783 	else
3784 		p->sched_class = &fair_sched_class;
3785 
3786 	p->prio = prio;
3787 
3788 	if (running)
3789 		p->sched_class->set_curr_task(rq);
3790 	if (on_rq)
3791 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3792 
3793 	check_class_changed(rq, p, prev_class, oldprio);
3794 	__task_rq_unlock(rq);
3795 }
3796 
3797 #endif
3798 
3799 void set_user_nice(struct task_struct *p, long nice)
3800 {
3801 	int old_prio, delta, on_rq;
3802 	unsigned long flags;
3803 	struct rq *rq;
3804 
3805 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3806 		return;
3807 	/*
3808 	 * We have to be careful, if called from sys_setpriority(),
3809 	 * the task might be in the middle of scheduling on another CPU.
3810 	 */
3811 	rq = task_rq_lock(p, &flags);
3812 	/*
3813 	 * The RT priorities are set via sched_setscheduler(), but we still
3814 	 * allow the 'normal' nice value to be set - but as expected
3815 	 * it wont have any effect on scheduling until the task is
3816 	 * SCHED_FIFO/SCHED_RR:
3817 	 */
3818 	if (task_has_rt_policy(p)) {
3819 		p->static_prio = NICE_TO_PRIO(nice);
3820 		goto out_unlock;
3821 	}
3822 	on_rq = p->on_rq;
3823 	if (on_rq)
3824 		dequeue_task(rq, p, 0);
3825 
3826 	p->static_prio = NICE_TO_PRIO(nice);
3827 	set_load_weight(p);
3828 	old_prio = p->prio;
3829 	p->prio = effective_prio(p);
3830 	delta = p->prio - old_prio;
3831 
3832 	if (on_rq) {
3833 		enqueue_task(rq, p, 0);
3834 		/*
3835 		 * If the task increased its priority or is running and
3836 		 * lowered its priority, then reschedule its CPU:
3837 		 */
3838 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3839 			resched_task(rq->curr);
3840 	}
3841 out_unlock:
3842 	task_rq_unlock(rq, p, &flags);
3843 }
3844 EXPORT_SYMBOL(set_user_nice);
3845 
3846 /*
3847  * can_nice - check if a task can reduce its nice value
3848  * @p: task
3849  * @nice: nice value
3850  */
3851 int can_nice(const struct task_struct *p, const int nice)
3852 {
3853 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3854 	int nice_rlim = 20 - nice;
3855 
3856 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3857 		capable(CAP_SYS_NICE));
3858 }
3859 
3860 #ifdef __ARCH_WANT_SYS_NICE
3861 
3862 /*
3863  * sys_nice - change the priority of the current process.
3864  * @increment: priority increment
3865  *
3866  * sys_setpriority is a more generic, but much slower function that
3867  * does similar things.
3868  */
3869 SYSCALL_DEFINE1(nice, int, increment)
3870 {
3871 	long nice, retval;
3872 
3873 	/*
3874 	 * Setpriority might change our priority at the same moment.
3875 	 * We don't have to worry. Conceptually one call occurs first
3876 	 * and we have a single winner.
3877 	 */
3878 	if (increment < -40)
3879 		increment = -40;
3880 	if (increment > 40)
3881 		increment = 40;
3882 
3883 	nice = TASK_NICE(current) + increment;
3884 	if (nice < -20)
3885 		nice = -20;
3886 	if (nice > 19)
3887 		nice = 19;
3888 
3889 	if (increment < 0 && !can_nice(current, nice))
3890 		return -EPERM;
3891 
3892 	retval = security_task_setnice(current, nice);
3893 	if (retval)
3894 		return retval;
3895 
3896 	set_user_nice(current, nice);
3897 	return 0;
3898 }
3899 
3900 #endif
3901 
3902 /**
3903  * task_prio - return the priority value of a given task.
3904  * @p: the task in question.
3905  *
3906  * This is the priority value as seen by users in /proc.
3907  * RT tasks are offset by -200. Normal tasks are centered
3908  * around 0, value goes from -16 to +15.
3909  */
3910 int task_prio(const struct task_struct *p)
3911 {
3912 	return p->prio - MAX_RT_PRIO;
3913 }
3914 
3915 /**
3916  * task_nice - return the nice value of a given task.
3917  * @p: the task in question.
3918  */
3919 int task_nice(const struct task_struct *p)
3920 {
3921 	return TASK_NICE(p);
3922 }
3923 EXPORT_SYMBOL(task_nice);
3924 
3925 /**
3926  * idle_cpu - is a given cpu idle currently?
3927  * @cpu: the processor in question.
3928  */
3929 int idle_cpu(int cpu)
3930 {
3931 	struct rq *rq = cpu_rq(cpu);
3932 
3933 	if (rq->curr != rq->idle)
3934 		return 0;
3935 
3936 	if (rq->nr_running)
3937 		return 0;
3938 
3939 #ifdef CONFIG_SMP
3940 	if (!llist_empty(&rq->wake_list))
3941 		return 0;
3942 #endif
3943 
3944 	return 1;
3945 }
3946 
3947 /**
3948  * idle_task - return the idle task for a given cpu.
3949  * @cpu: the processor in question.
3950  */
3951 struct task_struct *idle_task(int cpu)
3952 {
3953 	return cpu_rq(cpu)->idle;
3954 }
3955 
3956 /**
3957  * find_process_by_pid - find a process with a matching PID value.
3958  * @pid: the pid in question.
3959  */
3960 static struct task_struct *find_process_by_pid(pid_t pid)
3961 {
3962 	return pid ? find_task_by_vpid(pid) : current;
3963 }
3964 
3965 /* Actually do priority change: must hold rq lock. */
3966 static void
3967 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3968 {
3969 	p->policy = policy;
3970 	p->rt_priority = prio;
3971 	p->normal_prio = normal_prio(p);
3972 	/* we are holding p->pi_lock already */
3973 	p->prio = rt_mutex_getprio(p);
3974 	if (rt_prio(p->prio))
3975 		p->sched_class = &rt_sched_class;
3976 	else
3977 		p->sched_class = &fair_sched_class;
3978 	set_load_weight(p);
3979 }
3980 
3981 /*
3982  * check the target process has a UID that matches the current process's
3983  */
3984 static bool check_same_owner(struct task_struct *p)
3985 {
3986 	const struct cred *cred = current_cred(), *pcred;
3987 	bool match;
3988 
3989 	rcu_read_lock();
3990 	pcred = __task_cred(p);
3991 	if (cred->user->user_ns == pcred->user->user_ns)
3992 		match = (cred->euid == pcred->euid ||
3993 			 cred->euid == pcred->uid);
3994 	else
3995 		match = false;
3996 	rcu_read_unlock();
3997 	return match;
3998 }
3999 
4000 static int __sched_setscheduler(struct task_struct *p, int policy,
4001 				const struct sched_param *param, bool user)
4002 {
4003 	int retval, oldprio, oldpolicy = -1, on_rq, running;
4004 	unsigned long flags;
4005 	const struct sched_class *prev_class;
4006 	struct rq *rq;
4007 	int reset_on_fork;
4008 
4009 	/* may grab non-irq protected spin_locks */
4010 	BUG_ON(in_interrupt());
4011 recheck:
4012 	/* double check policy once rq lock held */
4013 	if (policy < 0) {
4014 		reset_on_fork = p->sched_reset_on_fork;
4015 		policy = oldpolicy = p->policy;
4016 	} else {
4017 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4018 		policy &= ~SCHED_RESET_ON_FORK;
4019 
4020 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4021 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4022 				policy != SCHED_IDLE)
4023 			return -EINVAL;
4024 	}
4025 
4026 	/*
4027 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4028 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4029 	 * SCHED_BATCH and SCHED_IDLE is 0.
4030 	 */
4031 	if (param->sched_priority < 0 ||
4032 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4033 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4034 		return -EINVAL;
4035 	if (rt_policy(policy) != (param->sched_priority != 0))
4036 		return -EINVAL;
4037 
4038 	/*
4039 	 * Allow unprivileged RT tasks to decrease priority:
4040 	 */
4041 	if (user && !capable(CAP_SYS_NICE)) {
4042 		if (rt_policy(policy)) {
4043 			unsigned long rlim_rtprio =
4044 					task_rlimit(p, RLIMIT_RTPRIO);
4045 
4046 			/* can't set/change the rt policy */
4047 			if (policy != p->policy && !rlim_rtprio)
4048 				return -EPERM;
4049 
4050 			/* can't increase priority */
4051 			if (param->sched_priority > p->rt_priority &&
4052 			    param->sched_priority > rlim_rtprio)
4053 				return -EPERM;
4054 		}
4055 
4056 		/*
4057 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4058 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4059 		 */
4060 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4061 			if (!can_nice(p, TASK_NICE(p)))
4062 				return -EPERM;
4063 		}
4064 
4065 		/* can't change other user's priorities */
4066 		if (!check_same_owner(p))
4067 			return -EPERM;
4068 
4069 		/* Normal users shall not reset the sched_reset_on_fork flag */
4070 		if (p->sched_reset_on_fork && !reset_on_fork)
4071 			return -EPERM;
4072 	}
4073 
4074 	if (user) {
4075 		retval = security_task_setscheduler(p);
4076 		if (retval)
4077 			return retval;
4078 	}
4079 
4080 	/*
4081 	 * make sure no PI-waiters arrive (or leave) while we are
4082 	 * changing the priority of the task:
4083 	 *
4084 	 * To be able to change p->policy safely, the appropriate
4085 	 * runqueue lock must be held.
4086 	 */
4087 	rq = task_rq_lock(p, &flags);
4088 
4089 	/*
4090 	 * Changing the policy of the stop threads its a very bad idea
4091 	 */
4092 	if (p == rq->stop) {
4093 		task_rq_unlock(rq, p, &flags);
4094 		return -EINVAL;
4095 	}
4096 
4097 	/*
4098 	 * If not changing anything there's no need to proceed further:
4099 	 */
4100 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4101 			param->sched_priority == p->rt_priority))) {
4102 
4103 		__task_rq_unlock(rq);
4104 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4105 		return 0;
4106 	}
4107 
4108 #ifdef CONFIG_RT_GROUP_SCHED
4109 	if (user) {
4110 		/*
4111 		 * Do not allow realtime tasks into groups that have no runtime
4112 		 * assigned.
4113 		 */
4114 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4115 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4116 				!task_group_is_autogroup(task_group(p))) {
4117 			task_rq_unlock(rq, p, &flags);
4118 			return -EPERM;
4119 		}
4120 	}
4121 #endif
4122 
4123 	/* recheck policy now with rq lock held */
4124 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4125 		policy = oldpolicy = -1;
4126 		task_rq_unlock(rq, p, &flags);
4127 		goto recheck;
4128 	}
4129 	on_rq = p->on_rq;
4130 	running = task_current(rq, p);
4131 	if (on_rq)
4132 		dequeue_task(rq, p, 0);
4133 	if (running)
4134 		p->sched_class->put_prev_task(rq, p);
4135 
4136 	p->sched_reset_on_fork = reset_on_fork;
4137 
4138 	oldprio = p->prio;
4139 	prev_class = p->sched_class;
4140 	__setscheduler(rq, p, policy, param->sched_priority);
4141 
4142 	if (running)
4143 		p->sched_class->set_curr_task(rq);
4144 	if (on_rq)
4145 		enqueue_task(rq, p, 0);
4146 
4147 	check_class_changed(rq, p, prev_class, oldprio);
4148 	task_rq_unlock(rq, p, &flags);
4149 
4150 	rt_mutex_adjust_pi(p);
4151 
4152 	return 0;
4153 }
4154 
4155 /**
4156  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4157  * @p: the task in question.
4158  * @policy: new policy.
4159  * @param: structure containing the new RT priority.
4160  *
4161  * NOTE that the task may be already dead.
4162  */
4163 int sched_setscheduler(struct task_struct *p, int policy,
4164 		       const struct sched_param *param)
4165 {
4166 	return __sched_setscheduler(p, policy, param, true);
4167 }
4168 EXPORT_SYMBOL_GPL(sched_setscheduler);
4169 
4170 /**
4171  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4172  * @p: the task in question.
4173  * @policy: new policy.
4174  * @param: structure containing the new RT priority.
4175  *
4176  * Just like sched_setscheduler, only don't bother checking if the
4177  * current context has permission.  For example, this is needed in
4178  * stop_machine(): we create temporary high priority worker threads,
4179  * but our caller might not have that capability.
4180  */
4181 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4182 			       const struct sched_param *param)
4183 {
4184 	return __sched_setscheduler(p, policy, param, false);
4185 }
4186 
4187 static int
4188 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4189 {
4190 	struct sched_param lparam;
4191 	struct task_struct *p;
4192 	int retval;
4193 
4194 	if (!param || pid < 0)
4195 		return -EINVAL;
4196 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4197 		return -EFAULT;
4198 
4199 	rcu_read_lock();
4200 	retval = -ESRCH;
4201 	p = find_process_by_pid(pid);
4202 	if (p != NULL)
4203 		retval = sched_setscheduler(p, policy, &lparam);
4204 	rcu_read_unlock();
4205 
4206 	return retval;
4207 }
4208 
4209 /**
4210  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4211  * @pid: the pid in question.
4212  * @policy: new policy.
4213  * @param: structure containing the new RT priority.
4214  */
4215 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4216 		struct sched_param __user *, param)
4217 {
4218 	/* negative values for policy are not valid */
4219 	if (policy < 0)
4220 		return -EINVAL;
4221 
4222 	return do_sched_setscheduler(pid, policy, param);
4223 }
4224 
4225 /**
4226  * sys_sched_setparam - set/change the RT priority of a thread
4227  * @pid: the pid in question.
4228  * @param: structure containing the new RT priority.
4229  */
4230 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4231 {
4232 	return do_sched_setscheduler(pid, -1, param);
4233 }
4234 
4235 /**
4236  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4237  * @pid: the pid in question.
4238  */
4239 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4240 {
4241 	struct task_struct *p;
4242 	int retval;
4243 
4244 	if (pid < 0)
4245 		return -EINVAL;
4246 
4247 	retval = -ESRCH;
4248 	rcu_read_lock();
4249 	p = find_process_by_pid(pid);
4250 	if (p) {
4251 		retval = security_task_getscheduler(p);
4252 		if (!retval)
4253 			retval = p->policy
4254 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4255 	}
4256 	rcu_read_unlock();
4257 	return retval;
4258 }
4259 
4260 /**
4261  * sys_sched_getparam - get the RT priority of a thread
4262  * @pid: the pid in question.
4263  * @param: structure containing the RT priority.
4264  */
4265 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4266 {
4267 	struct sched_param lp;
4268 	struct task_struct *p;
4269 	int retval;
4270 
4271 	if (!param || pid < 0)
4272 		return -EINVAL;
4273 
4274 	rcu_read_lock();
4275 	p = find_process_by_pid(pid);
4276 	retval = -ESRCH;
4277 	if (!p)
4278 		goto out_unlock;
4279 
4280 	retval = security_task_getscheduler(p);
4281 	if (retval)
4282 		goto out_unlock;
4283 
4284 	lp.sched_priority = p->rt_priority;
4285 	rcu_read_unlock();
4286 
4287 	/*
4288 	 * This one might sleep, we cannot do it with a spinlock held ...
4289 	 */
4290 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4291 
4292 	return retval;
4293 
4294 out_unlock:
4295 	rcu_read_unlock();
4296 	return retval;
4297 }
4298 
4299 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4300 {
4301 	cpumask_var_t cpus_allowed, new_mask;
4302 	struct task_struct *p;
4303 	int retval;
4304 
4305 	get_online_cpus();
4306 	rcu_read_lock();
4307 
4308 	p = find_process_by_pid(pid);
4309 	if (!p) {
4310 		rcu_read_unlock();
4311 		put_online_cpus();
4312 		return -ESRCH;
4313 	}
4314 
4315 	/* Prevent p going away */
4316 	get_task_struct(p);
4317 	rcu_read_unlock();
4318 
4319 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4320 		retval = -ENOMEM;
4321 		goto out_put_task;
4322 	}
4323 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4324 		retval = -ENOMEM;
4325 		goto out_free_cpus_allowed;
4326 	}
4327 	retval = -EPERM;
4328 	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4329 		goto out_unlock;
4330 
4331 	retval = security_task_setscheduler(p);
4332 	if (retval)
4333 		goto out_unlock;
4334 
4335 	cpuset_cpus_allowed(p, cpus_allowed);
4336 	cpumask_and(new_mask, in_mask, cpus_allowed);
4337 again:
4338 	retval = set_cpus_allowed_ptr(p, new_mask);
4339 
4340 	if (!retval) {
4341 		cpuset_cpus_allowed(p, cpus_allowed);
4342 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4343 			/*
4344 			 * We must have raced with a concurrent cpuset
4345 			 * update. Just reset the cpus_allowed to the
4346 			 * cpuset's cpus_allowed
4347 			 */
4348 			cpumask_copy(new_mask, cpus_allowed);
4349 			goto again;
4350 		}
4351 	}
4352 out_unlock:
4353 	free_cpumask_var(new_mask);
4354 out_free_cpus_allowed:
4355 	free_cpumask_var(cpus_allowed);
4356 out_put_task:
4357 	put_task_struct(p);
4358 	put_online_cpus();
4359 	return retval;
4360 }
4361 
4362 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4363 			     struct cpumask *new_mask)
4364 {
4365 	if (len < cpumask_size())
4366 		cpumask_clear(new_mask);
4367 	else if (len > cpumask_size())
4368 		len = cpumask_size();
4369 
4370 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4371 }
4372 
4373 /**
4374  * sys_sched_setaffinity - set the cpu affinity of a process
4375  * @pid: pid of the process
4376  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4377  * @user_mask_ptr: user-space pointer to the new cpu mask
4378  */
4379 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4380 		unsigned long __user *, user_mask_ptr)
4381 {
4382 	cpumask_var_t new_mask;
4383 	int retval;
4384 
4385 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4386 		return -ENOMEM;
4387 
4388 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4389 	if (retval == 0)
4390 		retval = sched_setaffinity(pid, new_mask);
4391 	free_cpumask_var(new_mask);
4392 	return retval;
4393 }
4394 
4395 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4396 {
4397 	struct task_struct *p;
4398 	unsigned long flags;
4399 	int retval;
4400 
4401 	get_online_cpus();
4402 	rcu_read_lock();
4403 
4404 	retval = -ESRCH;
4405 	p = find_process_by_pid(pid);
4406 	if (!p)
4407 		goto out_unlock;
4408 
4409 	retval = security_task_getscheduler(p);
4410 	if (retval)
4411 		goto out_unlock;
4412 
4413 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4414 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4415 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4416 
4417 out_unlock:
4418 	rcu_read_unlock();
4419 	put_online_cpus();
4420 
4421 	return retval;
4422 }
4423 
4424 /**
4425  * sys_sched_getaffinity - get the cpu affinity of a process
4426  * @pid: pid of the process
4427  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4428  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4429  */
4430 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4431 		unsigned long __user *, user_mask_ptr)
4432 {
4433 	int ret;
4434 	cpumask_var_t mask;
4435 
4436 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4437 		return -EINVAL;
4438 	if (len & (sizeof(unsigned long)-1))
4439 		return -EINVAL;
4440 
4441 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4442 		return -ENOMEM;
4443 
4444 	ret = sched_getaffinity(pid, mask);
4445 	if (ret == 0) {
4446 		size_t retlen = min_t(size_t, len, cpumask_size());
4447 
4448 		if (copy_to_user(user_mask_ptr, mask, retlen))
4449 			ret = -EFAULT;
4450 		else
4451 			ret = retlen;
4452 	}
4453 	free_cpumask_var(mask);
4454 
4455 	return ret;
4456 }
4457 
4458 /**
4459  * sys_sched_yield - yield the current processor to other threads.
4460  *
4461  * This function yields the current CPU to other tasks. If there are no
4462  * other threads running on this CPU then this function will return.
4463  */
4464 SYSCALL_DEFINE0(sched_yield)
4465 {
4466 	struct rq *rq = this_rq_lock();
4467 
4468 	schedstat_inc(rq, yld_count);
4469 	current->sched_class->yield_task(rq);
4470 
4471 	/*
4472 	 * Since we are going to call schedule() anyway, there's
4473 	 * no need to preempt or enable interrupts:
4474 	 */
4475 	__release(rq->lock);
4476 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4477 	do_raw_spin_unlock(&rq->lock);
4478 	preempt_enable_no_resched();
4479 
4480 	schedule();
4481 
4482 	return 0;
4483 }
4484 
4485 static inline int should_resched(void)
4486 {
4487 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4488 }
4489 
4490 static void __cond_resched(void)
4491 {
4492 	add_preempt_count(PREEMPT_ACTIVE);
4493 	__schedule();
4494 	sub_preempt_count(PREEMPT_ACTIVE);
4495 }
4496 
4497 int __sched _cond_resched(void)
4498 {
4499 	if (should_resched()) {
4500 		__cond_resched();
4501 		return 1;
4502 	}
4503 	return 0;
4504 }
4505 EXPORT_SYMBOL(_cond_resched);
4506 
4507 /*
4508  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4509  * call schedule, and on return reacquire the lock.
4510  *
4511  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4512  * operations here to prevent schedule() from being called twice (once via
4513  * spin_unlock(), once by hand).
4514  */
4515 int __cond_resched_lock(spinlock_t *lock)
4516 {
4517 	int resched = should_resched();
4518 	int ret = 0;
4519 
4520 	lockdep_assert_held(lock);
4521 
4522 	if (spin_needbreak(lock) || resched) {
4523 		spin_unlock(lock);
4524 		if (resched)
4525 			__cond_resched();
4526 		else
4527 			cpu_relax();
4528 		ret = 1;
4529 		spin_lock(lock);
4530 	}
4531 	return ret;
4532 }
4533 EXPORT_SYMBOL(__cond_resched_lock);
4534 
4535 int __sched __cond_resched_softirq(void)
4536 {
4537 	BUG_ON(!in_softirq());
4538 
4539 	if (should_resched()) {
4540 		local_bh_enable();
4541 		__cond_resched();
4542 		local_bh_disable();
4543 		return 1;
4544 	}
4545 	return 0;
4546 }
4547 EXPORT_SYMBOL(__cond_resched_softirq);
4548 
4549 /**
4550  * yield - yield the current processor to other threads.
4551  *
4552  * This is a shortcut for kernel-space yielding - it marks the
4553  * thread runnable and calls sys_sched_yield().
4554  */
4555 void __sched yield(void)
4556 {
4557 	set_current_state(TASK_RUNNING);
4558 	sys_sched_yield();
4559 }
4560 EXPORT_SYMBOL(yield);
4561 
4562 /**
4563  * yield_to - yield the current processor to another thread in
4564  * your thread group, or accelerate that thread toward the
4565  * processor it's on.
4566  * @p: target task
4567  * @preempt: whether task preemption is allowed or not
4568  *
4569  * It's the caller's job to ensure that the target task struct
4570  * can't go away on us before we can do any checks.
4571  *
4572  * Returns true if we indeed boosted the target task.
4573  */
4574 bool __sched yield_to(struct task_struct *p, bool preempt)
4575 {
4576 	struct task_struct *curr = current;
4577 	struct rq *rq, *p_rq;
4578 	unsigned long flags;
4579 	bool yielded = 0;
4580 
4581 	local_irq_save(flags);
4582 	rq = this_rq();
4583 
4584 again:
4585 	p_rq = task_rq(p);
4586 	double_rq_lock(rq, p_rq);
4587 	while (task_rq(p) != p_rq) {
4588 		double_rq_unlock(rq, p_rq);
4589 		goto again;
4590 	}
4591 
4592 	if (!curr->sched_class->yield_to_task)
4593 		goto out;
4594 
4595 	if (curr->sched_class != p->sched_class)
4596 		goto out;
4597 
4598 	if (task_running(p_rq, p) || p->state)
4599 		goto out;
4600 
4601 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4602 	if (yielded) {
4603 		schedstat_inc(rq, yld_count);
4604 		/*
4605 		 * Make p's CPU reschedule; pick_next_entity takes care of
4606 		 * fairness.
4607 		 */
4608 		if (preempt && rq != p_rq)
4609 			resched_task(p_rq->curr);
4610 	} else {
4611 		/*
4612 		 * We might have set it in task_yield_fair(), but are
4613 		 * not going to schedule(), so don't want to skip
4614 		 * the next update.
4615 		 */
4616 		rq->skip_clock_update = 0;
4617 	}
4618 
4619 out:
4620 	double_rq_unlock(rq, p_rq);
4621 	local_irq_restore(flags);
4622 
4623 	if (yielded)
4624 		schedule();
4625 
4626 	return yielded;
4627 }
4628 EXPORT_SYMBOL_GPL(yield_to);
4629 
4630 /*
4631  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4632  * that process accounting knows that this is a task in IO wait state.
4633  */
4634 void __sched io_schedule(void)
4635 {
4636 	struct rq *rq = raw_rq();
4637 
4638 	delayacct_blkio_start();
4639 	atomic_inc(&rq->nr_iowait);
4640 	blk_flush_plug(current);
4641 	current->in_iowait = 1;
4642 	schedule();
4643 	current->in_iowait = 0;
4644 	atomic_dec(&rq->nr_iowait);
4645 	delayacct_blkio_end();
4646 }
4647 EXPORT_SYMBOL(io_schedule);
4648 
4649 long __sched io_schedule_timeout(long timeout)
4650 {
4651 	struct rq *rq = raw_rq();
4652 	long ret;
4653 
4654 	delayacct_blkio_start();
4655 	atomic_inc(&rq->nr_iowait);
4656 	blk_flush_plug(current);
4657 	current->in_iowait = 1;
4658 	ret = schedule_timeout(timeout);
4659 	current->in_iowait = 0;
4660 	atomic_dec(&rq->nr_iowait);
4661 	delayacct_blkio_end();
4662 	return ret;
4663 }
4664 
4665 /**
4666  * sys_sched_get_priority_max - return maximum RT priority.
4667  * @policy: scheduling class.
4668  *
4669  * this syscall returns the maximum rt_priority that can be used
4670  * by a given scheduling class.
4671  */
4672 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4673 {
4674 	int ret = -EINVAL;
4675 
4676 	switch (policy) {
4677 	case SCHED_FIFO:
4678 	case SCHED_RR:
4679 		ret = MAX_USER_RT_PRIO-1;
4680 		break;
4681 	case SCHED_NORMAL:
4682 	case SCHED_BATCH:
4683 	case SCHED_IDLE:
4684 		ret = 0;
4685 		break;
4686 	}
4687 	return ret;
4688 }
4689 
4690 /**
4691  * sys_sched_get_priority_min - return minimum RT priority.
4692  * @policy: scheduling class.
4693  *
4694  * this syscall returns the minimum rt_priority that can be used
4695  * by a given scheduling class.
4696  */
4697 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4698 {
4699 	int ret = -EINVAL;
4700 
4701 	switch (policy) {
4702 	case SCHED_FIFO:
4703 	case SCHED_RR:
4704 		ret = 1;
4705 		break;
4706 	case SCHED_NORMAL:
4707 	case SCHED_BATCH:
4708 	case SCHED_IDLE:
4709 		ret = 0;
4710 	}
4711 	return ret;
4712 }
4713 
4714 /**
4715  * sys_sched_rr_get_interval - return the default timeslice of a process.
4716  * @pid: pid of the process.
4717  * @interval: userspace pointer to the timeslice value.
4718  *
4719  * this syscall writes the default timeslice value of a given process
4720  * into the user-space timespec buffer. A value of '0' means infinity.
4721  */
4722 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4723 		struct timespec __user *, interval)
4724 {
4725 	struct task_struct *p;
4726 	unsigned int time_slice;
4727 	unsigned long flags;
4728 	struct rq *rq;
4729 	int retval;
4730 	struct timespec t;
4731 
4732 	if (pid < 0)
4733 		return -EINVAL;
4734 
4735 	retval = -ESRCH;
4736 	rcu_read_lock();
4737 	p = find_process_by_pid(pid);
4738 	if (!p)
4739 		goto out_unlock;
4740 
4741 	retval = security_task_getscheduler(p);
4742 	if (retval)
4743 		goto out_unlock;
4744 
4745 	rq = task_rq_lock(p, &flags);
4746 	time_slice = p->sched_class->get_rr_interval(rq, p);
4747 	task_rq_unlock(rq, p, &flags);
4748 
4749 	rcu_read_unlock();
4750 	jiffies_to_timespec(time_slice, &t);
4751 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4752 	return retval;
4753 
4754 out_unlock:
4755 	rcu_read_unlock();
4756 	return retval;
4757 }
4758 
4759 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4760 
4761 void sched_show_task(struct task_struct *p)
4762 {
4763 	unsigned long free = 0;
4764 	unsigned state;
4765 
4766 	state = p->state ? __ffs(p->state) + 1 : 0;
4767 	printk(KERN_INFO "%-15.15s %c", p->comm,
4768 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4769 #if BITS_PER_LONG == 32
4770 	if (state == TASK_RUNNING)
4771 		printk(KERN_CONT " running  ");
4772 	else
4773 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4774 #else
4775 	if (state == TASK_RUNNING)
4776 		printk(KERN_CONT "  running task    ");
4777 	else
4778 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4779 #endif
4780 #ifdef CONFIG_DEBUG_STACK_USAGE
4781 	free = stack_not_used(p);
4782 #endif
4783 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4784 		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4785 		(unsigned long)task_thread_info(p)->flags);
4786 
4787 	show_stack(p, NULL);
4788 }
4789 
4790 void show_state_filter(unsigned long state_filter)
4791 {
4792 	struct task_struct *g, *p;
4793 
4794 #if BITS_PER_LONG == 32
4795 	printk(KERN_INFO
4796 		"  task                PC stack   pid father\n");
4797 #else
4798 	printk(KERN_INFO
4799 		"  task                        PC stack   pid father\n");
4800 #endif
4801 	rcu_read_lock();
4802 	do_each_thread(g, p) {
4803 		/*
4804 		 * reset the NMI-timeout, listing all files on a slow
4805 		 * console might take a lot of time:
4806 		 */
4807 		touch_nmi_watchdog();
4808 		if (!state_filter || (p->state & state_filter))
4809 			sched_show_task(p);
4810 	} while_each_thread(g, p);
4811 
4812 	touch_all_softlockup_watchdogs();
4813 
4814 #ifdef CONFIG_SCHED_DEBUG
4815 	sysrq_sched_debug_show();
4816 #endif
4817 	rcu_read_unlock();
4818 	/*
4819 	 * Only show locks if all tasks are dumped:
4820 	 */
4821 	if (!state_filter)
4822 		debug_show_all_locks();
4823 }
4824 
4825 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4826 {
4827 	idle->sched_class = &idle_sched_class;
4828 }
4829 
4830 /**
4831  * init_idle - set up an idle thread for a given CPU
4832  * @idle: task in question
4833  * @cpu: cpu the idle task belongs to
4834  *
4835  * NOTE: this function does not set the idle thread's NEED_RESCHED
4836  * flag, to make booting more robust.
4837  */
4838 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4839 {
4840 	struct rq *rq = cpu_rq(cpu);
4841 	unsigned long flags;
4842 
4843 	raw_spin_lock_irqsave(&rq->lock, flags);
4844 
4845 	__sched_fork(idle);
4846 	idle->state = TASK_RUNNING;
4847 	idle->se.exec_start = sched_clock();
4848 
4849 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4850 	/*
4851 	 * We're having a chicken and egg problem, even though we are
4852 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4853 	 * lockdep check in task_group() will fail.
4854 	 *
4855 	 * Similar case to sched_fork(). / Alternatively we could
4856 	 * use task_rq_lock() here and obtain the other rq->lock.
4857 	 *
4858 	 * Silence PROVE_RCU
4859 	 */
4860 	rcu_read_lock();
4861 	__set_task_cpu(idle, cpu);
4862 	rcu_read_unlock();
4863 
4864 	rq->curr = rq->idle = idle;
4865 #if defined(CONFIG_SMP)
4866 	idle->on_cpu = 1;
4867 #endif
4868 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4869 
4870 	/* Set the preempt count _outside_ the spinlocks! */
4871 	task_thread_info(idle)->preempt_count = 0;
4872 
4873 	/*
4874 	 * The idle tasks have their own, simple scheduling class:
4875 	 */
4876 	idle->sched_class = &idle_sched_class;
4877 	ftrace_graph_init_idle_task(idle, cpu);
4878 #if defined(CONFIG_SMP)
4879 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4880 #endif
4881 }
4882 
4883 #ifdef CONFIG_SMP
4884 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4885 {
4886 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4887 		p->sched_class->set_cpus_allowed(p, new_mask);
4888 
4889 	cpumask_copy(&p->cpus_allowed, new_mask);
4890 	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4891 }
4892 
4893 /*
4894  * This is how migration works:
4895  *
4896  * 1) we invoke migration_cpu_stop() on the target CPU using
4897  *    stop_one_cpu().
4898  * 2) stopper starts to run (implicitly forcing the migrated thread
4899  *    off the CPU)
4900  * 3) it checks whether the migrated task is still in the wrong runqueue.
4901  * 4) if it's in the wrong runqueue then the migration thread removes
4902  *    it and puts it into the right queue.
4903  * 5) stopper completes and stop_one_cpu() returns and the migration
4904  *    is done.
4905  */
4906 
4907 /*
4908  * Change a given task's CPU affinity. Migrate the thread to a
4909  * proper CPU and schedule it away if the CPU it's executing on
4910  * is removed from the allowed bitmask.
4911  *
4912  * NOTE: the caller must have a valid reference to the task, the
4913  * task must not exit() & deallocate itself prematurely. The
4914  * call is not atomic; no spinlocks may be held.
4915  */
4916 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4917 {
4918 	unsigned long flags;
4919 	struct rq *rq;
4920 	unsigned int dest_cpu;
4921 	int ret = 0;
4922 
4923 	rq = task_rq_lock(p, &flags);
4924 
4925 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4926 		goto out;
4927 
4928 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4929 		ret = -EINVAL;
4930 		goto out;
4931 	}
4932 
4933 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4934 		ret = -EINVAL;
4935 		goto out;
4936 	}
4937 
4938 	do_set_cpus_allowed(p, new_mask);
4939 
4940 	/* Can the task run on the task's current CPU? If so, we're done */
4941 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4942 		goto out;
4943 
4944 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4945 	if (p->on_rq) {
4946 		struct migration_arg arg = { p, dest_cpu };
4947 		/* Need help from migration thread: drop lock and wait. */
4948 		task_rq_unlock(rq, p, &flags);
4949 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4950 		tlb_migrate_finish(p->mm);
4951 		return 0;
4952 	}
4953 out:
4954 	task_rq_unlock(rq, p, &flags);
4955 
4956 	return ret;
4957 }
4958 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4959 
4960 /*
4961  * Move (not current) task off this cpu, onto dest cpu. We're doing
4962  * this because either it can't run here any more (set_cpus_allowed()
4963  * away from this CPU, or CPU going down), or because we're
4964  * attempting to rebalance this task on exec (sched_exec).
4965  *
4966  * So we race with normal scheduler movements, but that's OK, as long
4967  * as the task is no longer on this CPU.
4968  *
4969  * Returns non-zero if task was successfully migrated.
4970  */
4971 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4972 {
4973 	struct rq *rq_dest, *rq_src;
4974 	int ret = 0;
4975 
4976 	if (unlikely(!cpu_active(dest_cpu)))
4977 		return ret;
4978 
4979 	rq_src = cpu_rq(src_cpu);
4980 	rq_dest = cpu_rq(dest_cpu);
4981 
4982 	raw_spin_lock(&p->pi_lock);
4983 	double_rq_lock(rq_src, rq_dest);
4984 	/* Already moved. */
4985 	if (task_cpu(p) != src_cpu)
4986 		goto done;
4987 	/* Affinity changed (again). */
4988 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4989 		goto fail;
4990 
4991 	/*
4992 	 * If we're not on a rq, the next wake-up will ensure we're
4993 	 * placed properly.
4994 	 */
4995 	if (p->on_rq) {
4996 		dequeue_task(rq_src, p, 0);
4997 		set_task_cpu(p, dest_cpu);
4998 		enqueue_task(rq_dest, p, 0);
4999 		check_preempt_curr(rq_dest, p, 0);
5000 	}
5001 done:
5002 	ret = 1;
5003 fail:
5004 	double_rq_unlock(rq_src, rq_dest);
5005 	raw_spin_unlock(&p->pi_lock);
5006 	return ret;
5007 }
5008 
5009 /*
5010  * migration_cpu_stop - this will be executed by a highprio stopper thread
5011  * and performs thread migration by bumping thread off CPU then
5012  * 'pushing' onto another runqueue.
5013  */
5014 static int migration_cpu_stop(void *data)
5015 {
5016 	struct migration_arg *arg = data;
5017 
5018 	/*
5019 	 * The original target cpu might have gone down and we might
5020 	 * be on another cpu but it doesn't matter.
5021 	 */
5022 	local_irq_disable();
5023 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5024 	local_irq_enable();
5025 	return 0;
5026 }
5027 
5028 #ifdef CONFIG_HOTPLUG_CPU
5029 
5030 /*
5031  * Ensures that the idle task is using init_mm right before its cpu goes
5032  * offline.
5033  */
5034 void idle_task_exit(void)
5035 {
5036 	struct mm_struct *mm = current->active_mm;
5037 
5038 	BUG_ON(cpu_online(smp_processor_id()));
5039 
5040 	if (mm != &init_mm)
5041 		switch_mm(mm, &init_mm, current);
5042 	mmdrop(mm);
5043 }
5044 
5045 /*
5046  * While a dead CPU has no uninterruptible tasks queued at this point,
5047  * it might still have a nonzero ->nr_uninterruptible counter, because
5048  * for performance reasons the counter is not stricly tracking tasks to
5049  * their home CPUs. So we just add the counter to another CPU's counter,
5050  * to keep the global sum constant after CPU-down:
5051  */
5052 static void migrate_nr_uninterruptible(struct rq *rq_src)
5053 {
5054 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5055 
5056 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5057 	rq_src->nr_uninterruptible = 0;
5058 }
5059 
5060 /*
5061  * remove the tasks which were accounted by rq from calc_load_tasks.
5062  */
5063 static void calc_global_load_remove(struct rq *rq)
5064 {
5065 	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5066 	rq->calc_load_active = 0;
5067 }
5068 
5069 /*
5070  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5071  * try_to_wake_up()->select_task_rq().
5072  *
5073  * Called with rq->lock held even though we'er in stop_machine() and
5074  * there's no concurrency possible, we hold the required locks anyway
5075  * because of lock validation efforts.
5076  */
5077 static void migrate_tasks(unsigned int dead_cpu)
5078 {
5079 	struct rq *rq = cpu_rq(dead_cpu);
5080 	struct task_struct *next, *stop = rq->stop;
5081 	int dest_cpu;
5082 
5083 	/*
5084 	 * Fudge the rq selection such that the below task selection loop
5085 	 * doesn't get stuck on the currently eligible stop task.
5086 	 *
5087 	 * We're currently inside stop_machine() and the rq is either stuck
5088 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5089 	 * either way we should never end up calling schedule() until we're
5090 	 * done here.
5091 	 */
5092 	rq->stop = NULL;
5093 
5094 	/* Ensure any throttled groups are reachable by pick_next_task */
5095 	unthrottle_offline_cfs_rqs(rq);
5096 
5097 	for ( ; ; ) {
5098 		/*
5099 		 * There's this thread running, bail when that's the only
5100 		 * remaining thread.
5101 		 */
5102 		if (rq->nr_running == 1)
5103 			break;
5104 
5105 		next = pick_next_task(rq);
5106 		BUG_ON(!next);
5107 		next->sched_class->put_prev_task(rq, next);
5108 
5109 		/* Find suitable destination for @next, with force if needed. */
5110 		dest_cpu = select_fallback_rq(dead_cpu, next);
5111 		raw_spin_unlock(&rq->lock);
5112 
5113 		__migrate_task(next, dead_cpu, dest_cpu);
5114 
5115 		raw_spin_lock(&rq->lock);
5116 	}
5117 
5118 	rq->stop = stop;
5119 }
5120 
5121 #endif /* CONFIG_HOTPLUG_CPU */
5122 
5123 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5124 
5125 static struct ctl_table sd_ctl_dir[] = {
5126 	{
5127 		.procname	= "sched_domain",
5128 		.mode		= 0555,
5129 	},
5130 	{}
5131 };
5132 
5133 static struct ctl_table sd_ctl_root[] = {
5134 	{
5135 		.procname	= "kernel",
5136 		.mode		= 0555,
5137 		.child		= sd_ctl_dir,
5138 	},
5139 	{}
5140 };
5141 
5142 static struct ctl_table *sd_alloc_ctl_entry(int n)
5143 {
5144 	struct ctl_table *entry =
5145 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5146 
5147 	return entry;
5148 }
5149 
5150 static void sd_free_ctl_entry(struct ctl_table **tablep)
5151 {
5152 	struct ctl_table *entry;
5153 
5154 	/*
5155 	 * In the intermediate directories, both the child directory and
5156 	 * procname are dynamically allocated and could fail but the mode
5157 	 * will always be set. In the lowest directory the names are
5158 	 * static strings and all have proc handlers.
5159 	 */
5160 	for (entry = *tablep; entry->mode; entry++) {
5161 		if (entry->child)
5162 			sd_free_ctl_entry(&entry->child);
5163 		if (entry->proc_handler == NULL)
5164 			kfree(entry->procname);
5165 	}
5166 
5167 	kfree(*tablep);
5168 	*tablep = NULL;
5169 }
5170 
5171 static void
5172 set_table_entry(struct ctl_table *entry,
5173 		const char *procname, void *data, int maxlen,
5174 		umode_t mode, proc_handler *proc_handler)
5175 {
5176 	entry->procname = procname;
5177 	entry->data = data;
5178 	entry->maxlen = maxlen;
5179 	entry->mode = mode;
5180 	entry->proc_handler = proc_handler;
5181 }
5182 
5183 static struct ctl_table *
5184 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5185 {
5186 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5187 
5188 	if (table == NULL)
5189 		return NULL;
5190 
5191 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5192 		sizeof(long), 0644, proc_doulongvec_minmax);
5193 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5194 		sizeof(long), 0644, proc_doulongvec_minmax);
5195 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5196 		sizeof(int), 0644, proc_dointvec_minmax);
5197 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5198 		sizeof(int), 0644, proc_dointvec_minmax);
5199 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5200 		sizeof(int), 0644, proc_dointvec_minmax);
5201 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5202 		sizeof(int), 0644, proc_dointvec_minmax);
5203 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5204 		sizeof(int), 0644, proc_dointvec_minmax);
5205 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5206 		sizeof(int), 0644, proc_dointvec_minmax);
5207 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5208 		sizeof(int), 0644, proc_dointvec_minmax);
5209 	set_table_entry(&table[9], "cache_nice_tries",
5210 		&sd->cache_nice_tries,
5211 		sizeof(int), 0644, proc_dointvec_minmax);
5212 	set_table_entry(&table[10], "flags", &sd->flags,
5213 		sizeof(int), 0644, proc_dointvec_minmax);
5214 	set_table_entry(&table[11], "name", sd->name,
5215 		CORENAME_MAX_SIZE, 0444, proc_dostring);
5216 	/* &table[12] is terminator */
5217 
5218 	return table;
5219 }
5220 
5221 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5222 {
5223 	struct ctl_table *entry, *table;
5224 	struct sched_domain *sd;
5225 	int domain_num = 0, i;
5226 	char buf[32];
5227 
5228 	for_each_domain(cpu, sd)
5229 		domain_num++;
5230 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5231 	if (table == NULL)
5232 		return NULL;
5233 
5234 	i = 0;
5235 	for_each_domain(cpu, sd) {
5236 		snprintf(buf, 32, "domain%d", i);
5237 		entry->procname = kstrdup(buf, GFP_KERNEL);
5238 		entry->mode = 0555;
5239 		entry->child = sd_alloc_ctl_domain_table(sd);
5240 		entry++;
5241 		i++;
5242 	}
5243 	return table;
5244 }
5245 
5246 static struct ctl_table_header *sd_sysctl_header;
5247 static void register_sched_domain_sysctl(void)
5248 {
5249 	int i, cpu_num = num_possible_cpus();
5250 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5251 	char buf[32];
5252 
5253 	WARN_ON(sd_ctl_dir[0].child);
5254 	sd_ctl_dir[0].child = entry;
5255 
5256 	if (entry == NULL)
5257 		return;
5258 
5259 	for_each_possible_cpu(i) {
5260 		snprintf(buf, 32, "cpu%d", i);
5261 		entry->procname = kstrdup(buf, GFP_KERNEL);
5262 		entry->mode = 0555;
5263 		entry->child = sd_alloc_ctl_cpu_table(i);
5264 		entry++;
5265 	}
5266 
5267 	WARN_ON(sd_sysctl_header);
5268 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5269 }
5270 
5271 /* may be called multiple times per register */
5272 static void unregister_sched_domain_sysctl(void)
5273 {
5274 	if (sd_sysctl_header)
5275 		unregister_sysctl_table(sd_sysctl_header);
5276 	sd_sysctl_header = NULL;
5277 	if (sd_ctl_dir[0].child)
5278 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5279 }
5280 #else
5281 static void register_sched_domain_sysctl(void)
5282 {
5283 }
5284 static void unregister_sched_domain_sysctl(void)
5285 {
5286 }
5287 #endif
5288 
5289 static void set_rq_online(struct rq *rq)
5290 {
5291 	if (!rq->online) {
5292 		const struct sched_class *class;
5293 
5294 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5295 		rq->online = 1;
5296 
5297 		for_each_class(class) {
5298 			if (class->rq_online)
5299 				class->rq_online(rq);
5300 		}
5301 	}
5302 }
5303 
5304 static void set_rq_offline(struct rq *rq)
5305 {
5306 	if (rq->online) {
5307 		const struct sched_class *class;
5308 
5309 		for_each_class(class) {
5310 			if (class->rq_offline)
5311 				class->rq_offline(rq);
5312 		}
5313 
5314 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5315 		rq->online = 0;
5316 	}
5317 }
5318 
5319 /*
5320  * migration_call - callback that gets triggered when a CPU is added.
5321  * Here we can start up the necessary migration thread for the new CPU.
5322  */
5323 static int __cpuinit
5324 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5325 {
5326 	int cpu = (long)hcpu;
5327 	unsigned long flags;
5328 	struct rq *rq = cpu_rq(cpu);
5329 
5330 	switch (action & ~CPU_TASKS_FROZEN) {
5331 
5332 	case CPU_UP_PREPARE:
5333 		rq->calc_load_update = calc_load_update;
5334 		break;
5335 
5336 	case CPU_ONLINE:
5337 		/* Update our root-domain */
5338 		raw_spin_lock_irqsave(&rq->lock, flags);
5339 		if (rq->rd) {
5340 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5341 
5342 			set_rq_online(rq);
5343 		}
5344 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5345 		break;
5346 
5347 #ifdef CONFIG_HOTPLUG_CPU
5348 	case CPU_DYING:
5349 		sched_ttwu_pending();
5350 		/* Update our root-domain */
5351 		raw_spin_lock_irqsave(&rq->lock, flags);
5352 		if (rq->rd) {
5353 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5354 			set_rq_offline(rq);
5355 		}
5356 		migrate_tasks(cpu);
5357 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5358 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5359 
5360 		migrate_nr_uninterruptible(rq);
5361 		calc_global_load_remove(rq);
5362 		break;
5363 #endif
5364 	}
5365 
5366 	update_max_interval();
5367 
5368 	return NOTIFY_OK;
5369 }
5370 
5371 /*
5372  * Register at high priority so that task migration (migrate_all_tasks)
5373  * happens before everything else.  This has to be lower priority than
5374  * the notifier in the perf_event subsystem, though.
5375  */
5376 static struct notifier_block __cpuinitdata migration_notifier = {
5377 	.notifier_call = migration_call,
5378 	.priority = CPU_PRI_MIGRATION,
5379 };
5380 
5381 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5382 				      unsigned long action, void *hcpu)
5383 {
5384 	switch (action & ~CPU_TASKS_FROZEN) {
5385 	case CPU_ONLINE:
5386 	case CPU_DOWN_FAILED:
5387 		set_cpu_active((long)hcpu, true);
5388 		return NOTIFY_OK;
5389 	default:
5390 		return NOTIFY_DONE;
5391 	}
5392 }
5393 
5394 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5395 					unsigned long action, void *hcpu)
5396 {
5397 	switch (action & ~CPU_TASKS_FROZEN) {
5398 	case CPU_DOWN_PREPARE:
5399 		set_cpu_active((long)hcpu, false);
5400 		return NOTIFY_OK;
5401 	default:
5402 		return NOTIFY_DONE;
5403 	}
5404 }
5405 
5406 static int __init migration_init(void)
5407 {
5408 	void *cpu = (void *)(long)smp_processor_id();
5409 	int err;
5410 
5411 	/* Initialize migration for the boot CPU */
5412 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5413 	BUG_ON(err == NOTIFY_BAD);
5414 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5415 	register_cpu_notifier(&migration_notifier);
5416 
5417 	/* Register cpu active notifiers */
5418 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5419 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5420 
5421 	return 0;
5422 }
5423 early_initcall(migration_init);
5424 #endif
5425 
5426 #ifdef CONFIG_SMP
5427 
5428 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5429 
5430 #ifdef CONFIG_SCHED_DEBUG
5431 
5432 static __read_mostly int sched_domain_debug_enabled;
5433 
5434 static int __init sched_domain_debug_setup(char *str)
5435 {
5436 	sched_domain_debug_enabled = 1;
5437 
5438 	return 0;
5439 }
5440 early_param("sched_debug", sched_domain_debug_setup);
5441 
5442 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5443 				  struct cpumask *groupmask)
5444 {
5445 	struct sched_group *group = sd->groups;
5446 	char str[256];
5447 
5448 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5449 	cpumask_clear(groupmask);
5450 
5451 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5452 
5453 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5454 		printk("does not load-balance\n");
5455 		if (sd->parent)
5456 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5457 					" has parent");
5458 		return -1;
5459 	}
5460 
5461 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5462 
5463 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5464 		printk(KERN_ERR "ERROR: domain->span does not contain "
5465 				"CPU%d\n", cpu);
5466 	}
5467 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5468 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5469 				" CPU%d\n", cpu);
5470 	}
5471 
5472 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5473 	do {
5474 		if (!group) {
5475 			printk("\n");
5476 			printk(KERN_ERR "ERROR: group is NULL\n");
5477 			break;
5478 		}
5479 
5480 		if (!group->sgp->power) {
5481 			printk(KERN_CONT "\n");
5482 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5483 					"set\n");
5484 			break;
5485 		}
5486 
5487 		if (!cpumask_weight(sched_group_cpus(group))) {
5488 			printk(KERN_CONT "\n");
5489 			printk(KERN_ERR "ERROR: empty group\n");
5490 			break;
5491 		}
5492 
5493 		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5494 			printk(KERN_CONT "\n");
5495 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5496 			break;
5497 		}
5498 
5499 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5500 
5501 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5502 
5503 		printk(KERN_CONT " %s", str);
5504 		if (group->sgp->power != SCHED_POWER_SCALE) {
5505 			printk(KERN_CONT " (cpu_power = %d)",
5506 				group->sgp->power);
5507 		}
5508 
5509 		group = group->next;
5510 	} while (group != sd->groups);
5511 	printk(KERN_CONT "\n");
5512 
5513 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5514 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5515 
5516 	if (sd->parent &&
5517 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5518 		printk(KERN_ERR "ERROR: parent span is not a superset "
5519 			"of domain->span\n");
5520 	return 0;
5521 }
5522 
5523 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5524 {
5525 	int level = 0;
5526 
5527 	if (!sched_domain_debug_enabled)
5528 		return;
5529 
5530 	if (!sd) {
5531 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5532 		return;
5533 	}
5534 
5535 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5536 
5537 	for (;;) {
5538 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5539 			break;
5540 		level++;
5541 		sd = sd->parent;
5542 		if (!sd)
5543 			break;
5544 	}
5545 }
5546 #else /* !CONFIG_SCHED_DEBUG */
5547 # define sched_domain_debug(sd, cpu) do { } while (0)
5548 #endif /* CONFIG_SCHED_DEBUG */
5549 
5550 static int sd_degenerate(struct sched_domain *sd)
5551 {
5552 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5553 		return 1;
5554 
5555 	/* Following flags need at least 2 groups */
5556 	if (sd->flags & (SD_LOAD_BALANCE |
5557 			 SD_BALANCE_NEWIDLE |
5558 			 SD_BALANCE_FORK |
5559 			 SD_BALANCE_EXEC |
5560 			 SD_SHARE_CPUPOWER |
5561 			 SD_SHARE_PKG_RESOURCES)) {
5562 		if (sd->groups != sd->groups->next)
5563 			return 0;
5564 	}
5565 
5566 	/* Following flags don't use groups */
5567 	if (sd->flags & (SD_WAKE_AFFINE))
5568 		return 0;
5569 
5570 	return 1;
5571 }
5572 
5573 static int
5574 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5575 {
5576 	unsigned long cflags = sd->flags, pflags = parent->flags;
5577 
5578 	if (sd_degenerate(parent))
5579 		return 1;
5580 
5581 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5582 		return 0;
5583 
5584 	/* Flags needing groups don't count if only 1 group in parent */
5585 	if (parent->groups == parent->groups->next) {
5586 		pflags &= ~(SD_LOAD_BALANCE |
5587 				SD_BALANCE_NEWIDLE |
5588 				SD_BALANCE_FORK |
5589 				SD_BALANCE_EXEC |
5590 				SD_SHARE_CPUPOWER |
5591 				SD_SHARE_PKG_RESOURCES);
5592 		if (nr_node_ids == 1)
5593 			pflags &= ~SD_SERIALIZE;
5594 	}
5595 	if (~cflags & pflags)
5596 		return 0;
5597 
5598 	return 1;
5599 }
5600 
5601 static void free_rootdomain(struct rcu_head *rcu)
5602 {
5603 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5604 
5605 	cpupri_cleanup(&rd->cpupri);
5606 	free_cpumask_var(rd->rto_mask);
5607 	free_cpumask_var(rd->online);
5608 	free_cpumask_var(rd->span);
5609 	kfree(rd);
5610 }
5611 
5612 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5613 {
5614 	struct root_domain *old_rd = NULL;
5615 	unsigned long flags;
5616 
5617 	raw_spin_lock_irqsave(&rq->lock, flags);
5618 
5619 	if (rq->rd) {
5620 		old_rd = rq->rd;
5621 
5622 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5623 			set_rq_offline(rq);
5624 
5625 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5626 
5627 		/*
5628 		 * If we dont want to free the old_rt yet then
5629 		 * set old_rd to NULL to skip the freeing later
5630 		 * in this function:
5631 		 */
5632 		if (!atomic_dec_and_test(&old_rd->refcount))
5633 			old_rd = NULL;
5634 	}
5635 
5636 	atomic_inc(&rd->refcount);
5637 	rq->rd = rd;
5638 
5639 	cpumask_set_cpu(rq->cpu, rd->span);
5640 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5641 		set_rq_online(rq);
5642 
5643 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5644 
5645 	if (old_rd)
5646 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5647 }
5648 
5649 static int init_rootdomain(struct root_domain *rd)
5650 {
5651 	memset(rd, 0, sizeof(*rd));
5652 
5653 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5654 		goto out;
5655 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5656 		goto free_span;
5657 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5658 		goto free_online;
5659 
5660 	if (cpupri_init(&rd->cpupri) != 0)
5661 		goto free_rto_mask;
5662 	return 0;
5663 
5664 free_rto_mask:
5665 	free_cpumask_var(rd->rto_mask);
5666 free_online:
5667 	free_cpumask_var(rd->online);
5668 free_span:
5669 	free_cpumask_var(rd->span);
5670 out:
5671 	return -ENOMEM;
5672 }
5673 
5674 /*
5675  * By default the system creates a single root-domain with all cpus as
5676  * members (mimicking the global state we have today).
5677  */
5678 struct root_domain def_root_domain;
5679 
5680 static void init_defrootdomain(void)
5681 {
5682 	init_rootdomain(&def_root_domain);
5683 
5684 	atomic_set(&def_root_domain.refcount, 1);
5685 }
5686 
5687 static struct root_domain *alloc_rootdomain(void)
5688 {
5689 	struct root_domain *rd;
5690 
5691 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5692 	if (!rd)
5693 		return NULL;
5694 
5695 	if (init_rootdomain(rd) != 0) {
5696 		kfree(rd);
5697 		return NULL;
5698 	}
5699 
5700 	return rd;
5701 }
5702 
5703 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5704 {
5705 	struct sched_group *tmp, *first;
5706 
5707 	if (!sg)
5708 		return;
5709 
5710 	first = sg;
5711 	do {
5712 		tmp = sg->next;
5713 
5714 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5715 			kfree(sg->sgp);
5716 
5717 		kfree(sg);
5718 		sg = tmp;
5719 	} while (sg != first);
5720 }
5721 
5722 static void free_sched_domain(struct rcu_head *rcu)
5723 {
5724 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5725 
5726 	/*
5727 	 * If its an overlapping domain it has private groups, iterate and
5728 	 * nuke them all.
5729 	 */
5730 	if (sd->flags & SD_OVERLAP) {
5731 		free_sched_groups(sd->groups, 1);
5732 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5733 		kfree(sd->groups->sgp);
5734 		kfree(sd->groups);
5735 	}
5736 	kfree(sd);
5737 }
5738 
5739 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5740 {
5741 	call_rcu(&sd->rcu, free_sched_domain);
5742 }
5743 
5744 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5745 {
5746 	for (; sd; sd = sd->parent)
5747 		destroy_sched_domain(sd, cpu);
5748 }
5749 
5750 /*
5751  * Keep a special pointer to the highest sched_domain that has
5752  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5753  * allows us to avoid some pointer chasing select_idle_sibling().
5754  *
5755  * Also keep a unique ID per domain (we use the first cpu number in
5756  * the cpumask of the domain), this allows us to quickly tell if
5757  * two cpus are in the same cache domain, see ttwu_share_cache().
5758  */
5759 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5760 DEFINE_PER_CPU(int, sd_llc_id);
5761 
5762 static void update_top_cache_domain(int cpu)
5763 {
5764 	struct sched_domain *sd;
5765 	int id = cpu;
5766 
5767 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5768 	if (sd)
5769 		id = cpumask_first(sched_domain_span(sd));
5770 
5771 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5772 	per_cpu(sd_llc_id, cpu) = id;
5773 }
5774 
5775 /*
5776  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5777  * hold the hotplug lock.
5778  */
5779 static void
5780 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5781 {
5782 	struct rq *rq = cpu_rq(cpu);
5783 	struct sched_domain *tmp;
5784 
5785 	/* Remove the sched domains which do not contribute to scheduling. */
5786 	for (tmp = sd; tmp; ) {
5787 		struct sched_domain *parent = tmp->parent;
5788 		if (!parent)
5789 			break;
5790 
5791 		if (sd_parent_degenerate(tmp, parent)) {
5792 			tmp->parent = parent->parent;
5793 			if (parent->parent)
5794 				parent->parent->child = tmp;
5795 			destroy_sched_domain(parent, cpu);
5796 		} else
5797 			tmp = tmp->parent;
5798 	}
5799 
5800 	if (sd && sd_degenerate(sd)) {
5801 		tmp = sd;
5802 		sd = sd->parent;
5803 		destroy_sched_domain(tmp, cpu);
5804 		if (sd)
5805 			sd->child = NULL;
5806 	}
5807 
5808 	sched_domain_debug(sd, cpu);
5809 
5810 	rq_attach_root(rq, rd);
5811 	tmp = rq->sd;
5812 	rcu_assign_pointer(rq->sd, sd);
5813 	destroy_sched_domains(tmp, cpu);
5814 
5815 	update_top_cache_domain(cpu);
5816 }
5817 
5818 /* cpus with isolated domains */
5819 static cpumask_var_t cpu_isolated_map;
5820 
5821 /* Setup the mask of cpus configured for isolated domains */
5822 static int __init isolated_cpu_setup(char *str)
5823 {
5824 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5825 	cpulist_parse(str, cpu_isolated_map);
5826 	return 1;
5827 }
5828 
5829 __setup("isolcpus=", isolated_cpu_setup);
5830 
5831 #ifdef CONFIG_NUMA
5832 
5833 /**
5834  * find_next_best_node - find the next node to include in a sched_domain
5835  * @node: node whose sched_domain we're building
5836  * @used_nodes: nodes already in the sched_domain
5837  *
5838  * Find the next node to include in a given scheduling domain. Simply
5839  * finds the closest node not already in the @used_nodes map.
5840  *
5841  * Should use nodemask_t.
5842  */
5843 static int find_next_best_node(int node, nodemask_t *used_nodes)
5844 {
5845 	int i, n, val, min_val, best_node = -1;
5846 
5847 	min_val = INT_MAX;
5848 
5849 	for (i = 0; i < nr_node_ids; i++) {
5850 		/* Start at @node */
5851 		n = (node + i) % nr_node_ids;
5852 
5853 		if (!nr_cpus_node(n))
5854 			continue;
5855 
5856 		/* Skip already used nodes */
5857 		if (node_isset(n, *used_nodes))
5858 			continue;
5859 
5860 		/* Simple min distance search */
5861 		val = node_distance(node, n);
5862 
5863 		if (val < min_val) {
5864 			min_val = val;
5865 			best_node = n;
5866 		}
5867 	}
5868 
5869 	if (best_node != -1)
5870 		node_set(best_node, *used_nodes);
5871 	return best_node;
5872 }
5873 
5874 /**
5875  * sched_domain_node_span - get a cpumask for a node's sched_domain
5876  * @node: node whose cpumask we're constructing
5877  * @span: resulting cpumask
5878  *
5879  * Given a node, construct a good cpumask for its sched_domain to span. It
5880  * should be one that prevents unnecessary balancing, but also spreads tasks
5881  * out optimally.
5882  */
5883 static void sched_domain_node_span(int node, struct cpumask *span)
5884 {
5885 	nodemask_t used_nodes;
5886 	int i;
5887 
5888 	cpumask_clear(span);
5889 	nodes_clear(used_nodes);
5890 
5891 	cpumask_or(span, span, cpumask_of_node(node));
5892 	node_set(node, used_nodes);
5893 
5894 	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5895 		int next_node = find_next_best_node(node, &used_nodes);
5896 		if (next_node < 0)
5897 			break;
5898 		cpumask_or(span, span, cpumask_of_node(next_node));
5899 	}
5900 }
5901 
5902 static const struct cpumask *cpu_node_mask(int cpu)
5903 {
5904 	lockdep_assert_held(&sched_domains_mutex);
5905 
5906 	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5907 
5908 	return sched_domains_tmpmask;
5909 }
5910 
5911 static const struct cpumask *cpu_allnodes_mask(int cpu)
5912 {
5913 	return cpu_possible_mask;
5914 }
5915 #endif /* CONFIG_NUMA */
5916 
5917 static const struct cpumask *cpu_cpu_mask(int cpu)
5918 {
5919 	return cpumask_of_node(cpu_to_node(cpu));
5920 }
5921 
5922 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5923 
5924 struct sd_data {
5925 	struct sched_domain **__percpu sd;
5926 	struct sched_group **__percpu sg;
5927 	struct sched_group_power **__percpu sgp;
5928 };
5929 
5930 struct s_data {
5931 	struct sched_domain ** __percpu sd;
5932 	struct root_domain	*rd;
5933 };
5934 
5935 enum s_alloc {
5936 	sa_rootdomain,
5937 	sa_sd,
5938 	sa_sd_storage,
5939 	sa_none,
5940 };
5941 
5942 struct sched_domain_topology_level;
5943 
5944 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5945 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5946 
5947 #define SDTL_OVERLAP	0x01
5948 
5949 struct sched_domain_topology_level {
5950 	sched_domain_init_f init;
5951 	sched_domain_mask_f mask;
5952 	int		    flags;
5953 	struct sd_data      data;
5954 };
5955 
5956 static int
5957 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5958 {
5959 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5960 	const struct cpumask *span = sched_domain_span(sd);
5961 	struct cpumask *covered = sched_domains_tmpmask;
5962 	struct sd_data *sdd = sd->private;
5963 	struct sched_domain *child;
5964 	int i;
5965 
5966 	cpumask_clear(covered);
5967 
5968 	for_each_cpu(i, span) {
5969 		struct cpumask *sg_span;
5970 
5971 		if (cpumask_test_cpu(i, covered))
5972 			continue;
5973 
5974 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5975 				GFP_KERNEL, cpu_to_node(cpu));
5976 
5977 		if (!sg)
5978 			goto fail;
5979 
5980 		sg_span = sched_group_cpus(sg);
5981 
5982 		child = *per_cpu_ptr(sdd->sd, i);
5983 		if (child->child) {
5984 			child = child->child;
5985 			cpumask_copy(sg_span, sched_domain_span(child));
5986 		} else
5987 			cpumask_set_cpu(i, sg_span);
5988 
5989 		cpumask_or(covered, covered, sg_span);
5990 
5991 		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
5992 		atomic_inc(&sg->sgp->ref);
5993 
5994 		if (cpumask_test_cpu(cpu, sg_span))
5995 			groups = sg;
5996 
5997 		if (!first)
5998 			first = sg;
5999 		if (last)
6000 			last->next = sg;
6001 		last = sg;
6002 		last->next = first;
6003 	}
6004 	sd->groups = groups;
6005 
6006 	return 0;
6007 
6008 fail:
6009 	free_sched_groups(first, 0);
6010 
6011 	return -ENOMEM;
6012 }
6013 
6014 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6015 {
6016 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6017 	struct sched_domain *child = sd->child;
6018 
6019 	if (child)
6020 		cpu = cpumask_first(sched_domain_span(child));
6021 
6022 	if (sg) {
6023 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6024 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6025 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6026 	}
6027 
6028 	return cpu;
6029 }
6030 
6031 /*
6032  * build_sched_groups will build a circular linked list of the groups
6033  * covered by the given span, and will set each group's ->cpumask correctly,
6034  * and ->cpu_power to 0.
6035  *
6036  * Assumes the sched_domain tree is fully constructed
6037  */
6038 static int
6039 build_sched_groups(struct sched_domain *sd, int cpu)
6040 {
6041 	struct sched_group *first = NULL, *last = NULL;
6042 	struct sd_data *sdd = sd->private;
6043 	const struct cpumask *span = sched_domain_span(sd);
6044 	struct cpumask *covered;
6045 	int i;
6046 
6047 	get_group(cpu, sdd, &sd->groups);
6048 	atomic_inc(&sd->groups->ref);
6049 
6050 	if (cpu != cpumask_first(sched_domain_span(sd)))
6051 		return 0;
6052 
6053 	lockdep_assert_held(&sched_domains_mutex);
6054 	covered = sched_domains_tmpmask;
6055 
6056 	cpumask_clear(covered);
6057 
6058 	for_each_cpu(i, span) {
6059 		struct sched_group *sg;
6060 		int group = get_group(i, sdd, &sg);
6061 		int j;
6062 
6063 		if (cpumask_test_cpu(i, covered))
6064 			continue;
6065 
6066 		cpumask_clear(sched_group_cpus(sg));
6067 		sg->sgp->power = 0;
6068 
6069 		for_each_cpu(j, span) {
6070 			if (get_group(j, sdd, NULL) != group)
6071 				continue;
6072 
6073 			cpumask_set_cpu(j, covered);
6074 			cpumask_set_cpu(j, sched_group_cpus(sg));
6075 		}
6076 
6077 		if (!first)
6078 			first = sg;
6079 		if (last)
6080 			last->next = sg;
6081 		last = sg;
6082 	}
6083 	last->next = first;
6084 
6085 	return 0;
6086 }
6087 
6088 /*
6089  * Initialize sched groups cpu_power.
6090  *
6091  * cpu_power indicates the capacity of sched group, which is used while
6092  * distributing the load between different sched groups in a sched domain.
6093  * Typically cpu_power for all the groups in a sched domain will be same unless
6094  * there are asymmetries in the topology. If there are asymmetries, group
6095  * having more cpu_power will pickup more load compared to the group having
6096  * less cpu_power.
6097  */
6098 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6099 {
6100 	struct sched_group *sg = sd->groups;
6101 
6102 	WARN_ON(!sd || !sg);
6103 
6104 	do {
6105 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6106 		sg = sg->next;
6107 	} while (sg != sd->groups);
6108 
6109 	if (cpu != group_first_cpu(sg))
6110 		return;
6111 
6112 	update_group_power(sd, cpu);
6113 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6114 }
6115 
6116 int __weak arch_sd_sibling_asym_packing(void)
6117 {
6118        return 0*SD_ASYM_PACKING;
6119 }
6120 
6121 /*
6122  * Initializers for schedule domains
6123  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6124  */
6125 
6126 #ifdef CONFIG_SCHED_DEBUG
6127 # define SD_INIT_NAME(sd, type)		sd->name = #type
6128 #else
6129 # define SD_INIT_NAME(sd, type)		do { } while (0)
6130 #endif
6131 
6132 #define SD_INIT_FUNC(type)						\
6133 static noinline struct sched_domain *					\
6134 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6135 {									\
6136 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6137 	*sd = SD_##type##_INIT;						\
6138 	SD_INIT_NAME(sd, type);						\
6139 	sd->private = &tl->data;					\
6140 	return sd;							\
6141 }
6142 
6143 SD_INIT_FUNC(CPU)
6144 #ifdef CONFIG_NUMA
6145  SD_INIT_FUNC(ALLNODES)
6146  SD_INIT_FUNC(NODE)
6147 #endif
6148 #ifdef CONFIG_SCHED_SMT
6149  SD_INIT_FUNC(SIBLING)
6150 #endif
6151 #ifdef CONFIG_SCHED_MC
6152  SD_INIT_FUNC(MC)
6153 #endif
6154 #ifdef CONFIG_SCHED_BOOK
6155  SD_INIT_FUNC(BOOK)
6156 #endif
6157 
6158 static int default_relax_domain_level = -1;
6159 int sched_domain_level_max;
6160 
6161 static int __init setup_relax_domain_level(char *str)
6162 {
6163 	unsigned long val;
6164 
6165 	val = simple_strtoul(str, NULL, 0);
6166 	if (val < sched_domain_level_max)
6167 		default_relax_domain_level = val;
6168 
6169 	return 1;
6170 }
6171 __setup("relax_domain_level=", setup_relax_domain_level);
6172 
6173 static void set_domain_attribute(struct sched_domain *sd,
6174 				 struct sched_domain_attr *attr)
6175 {
6176 	int request;
6177 
6178 	if (!attr || attr->relax_domain_level < 0) {
6179 		if (default_relax_domain_level < 0)
6180 			return;
6181 		else
6182 			request = default_relax_domain_level;
6183 	} else
6184 		request = attr->relax_domain_level;
6185 	if (request < sd->level) {
6186 		/* turn off idle balance on this domain */
6187 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6188 	} else {
6189 		/* turn on idle balance on this domain */
6190 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6191 	}
6192 }
6193 
6194 static void __sdt_free(const struct cpumask *cpu_map);
6195 static int __sdt_alloc(const struct cpumask *cpu_map);
6196 
6197 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6198 				 const struct cpumask *cpu_map)
6199 {
6200 	switch (what) {
6201 	case sa_rootdomain:
6202 		if (!atomic_read(&d->rd->refcount))
6203 			free_rootdomain(&d->rd->rcu); /* fall through */
6204 	case sa_sd:
6205 		free_percpu(d->sd); /* fall through */
6206 	case sa_sd_storage:
6207 		__sdt_free(cpu_map); /* fall through */
6208 	case sa_none:
6209 		break;
6210 	}
6211 }
6212 
6213 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6214 						   const struct cpumask *cpu_map)
6215 {
6216 	memset(d, 0, sizeof(*d));
6217 
6218 	if (__sdt_alloc(cpu_map))
6219 		return sa_sd_storage;
6220 	d->sd = alloc_percpu(struct sched_domain *);
6221 	if (!d->sd)
6222 		return sa_sd_storage;
6223 	d->rd = alloc_rootdomain();
6224 	if (!d->rd)
6225 		return sa_sd;
6226 	return sa_rootdomain;
6227 }
6228 
6229 /*
6230  * NULL the sd_data elements we've used to build the sched_domain and
6231  * sched_group structure so that the subsequent __free_domain_allocs()
6232  * will not free the data we're using.
6233  */
6234 static void claim_allocations(int cpu, struct sched_domain *sd)
6235 {
6236 	struct sd_data *sdd = sd->private;
6237 
6238 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6239 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6240 
6241 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6242 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6243 
6244 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6245 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6246 }
6247 
6248 #ifdef CONFIG_SCHED_SMT
6249 static const struct cpumask *cpu_smt_mask(int cpu)
6250 {
6251 	return topology_thread_cpumask(cpu);
6252 }
6253 #endif
6254 
6255 /*
6256  * Topology list, bottom-up.
6257  */
6258 static struct sched_domain_topology_level default_topology[] = {
6259 #ifdef CONFIG_SCHED_SMT
6260 	{ sd_init_SIBLING, cpu_smt_mask, },
6261 #endif
6262 #ifdef CONFIG_SCHED_MC
6263 	{ sd_init_MC, cpu_coregroup_mask, },
6264 #endif
6265 #ifdef CONFIG_SCHED_BOOK
6266 	{ sd_init_BOOK, cpu_book_mask, },
6267 #endif
6268 	{ sd_init_CPU, cpu_cpu_mask, },
6269 #ifdef CONFIG_NUMA
6270 	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6271 	{ sd_init_ALLNODES, cpu_allnodes_mask, },
6272 #endif
6273 	{ NULL, },
6274 };
6275 
6276 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6277 
6278 static int __sdt_alloc(const struct cpumask *cpu_map)
6279 {
6280 	struct sched_domain_topology_level *tl;
6281 	int j;
6282 
6283 	for (tl = sched_domain_topology; tl->init; tl++) {
6284 		struct sd_data *sdd = &tl->data;
6285 
6286 		sdd->sd = alloc_percpu(struct sched_domain *);
6287 		if (!sdd->sd)
6288 			return -ENOMEM;
6289 
6290 		sdd->sg = alloc_percpu(struct sched_group *);
6291 		if (!sdd->sg)
6292 			return -ENOMEM;
6293 
6294 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6295 		if (!sdd->sgp)
6296 			return -ENOMEM;
6297 
6298 		for_each_cpu(j, cpu_map) {
6299 			struct sched_domain *sd;
6300 			struct sched_group *sg;
6301 			struct sched_group_power *sgp;
6302 
6303 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6304 					GFP_KERNEL, cpu_to_node(j));
6305 			if (!sd)
6306 				return -ENOMEM;
6307 
6308 			*per_cpu_ptr(sdd->sd, j) = sd;
6309 
6310 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6311 					GFP_KERNEL, cpu_to_node(j));
6312 			if (!sg)
6313 				return -ENOMEM;
6314 
6315 			*per_cpu_ptr(sdd->sg, j) = sg;
6316 
6317 			sgp = kzalloc_node(sizeof(struct sched_group_power),
6318 					GFP_KERNEL, cpu_to_node(j));
6319 			if (!sgp)
6320 				return -ENOMEM;
6321 
6322 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6323 		}
6324 	}
6325 
6326 	return 0;
6327 }
6328 
6329 static void __sdt_free(const struct cpumask *cpu_map)
6330 {
6331 	struct sched_domain_topology_level *tl;
6332 	int j;
6333 
6334 	for (tl = sched_domain_topology; tl->init; tl++) {
6335 		struct sd_data *sdd = &tl->data;
6336 
6337 		for_each_cpu(j, cpu_map) {
6338 			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6339 			if (sd && (sd->flags & SD_OVERLAP))
6340 				free_sched_groups(sd->groups, 0);
6341 			kfree(*per_cpu_ptr(sdd->sd, j));
6342 			kfree(*per_cpu_ptr(sdd->sg, j));
6343 			kfree(*per_cpu_ptr(sdd->sgp, j));
6344 		}
6345 		free_percpu(sdd->sd);
6346 		free_percpu(sdd->sg);
6347 		free_percpu(sdd->sgp);
6348 	}
6349 }
6350 
6351 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6352 		struct s_data *d, const struct cpumask *cpu_map,
6353 		struct sched_domain_attr *attr, struct sched_domain *child,
6354 		int cpu)
6355 {
6356 	struct sched_domain *sd = tl->init(tl, cpu);
6357 	if (!sd)
6358 		return child;
6359 
6360 	set_domain_attribute(sd, attr);
6361 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6362 	if (child) {
6363 		sd->level = child->level + 1;
6364 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6365 		child->parent = sd;
6366 	}
6367 	sd->child = child;
6368 
6369 	return sd;
6370 }
6371 
6372 /*
6373  * Build sched domains for a given set of cpus and attach the sched domains
6374  * to the individual cpus
6375  */
6376 static int build_sched_domains(const struct cpumask *cpu_map,
6377 			       struct sched_domain_attr *attr)
6378 {
6379 	enum s_alloc alloc_state = sa_none;
6380 	struct sched_domain *sd;
6381 	struct s_data d;
6382 	int i, ret = -ENOMEM;
6383 
6384 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6385 	if (alloc_state != sa_rootdomain)
6386 		goto error;
6387 
6388 	/* Set up domains for cpus specified by the cpu_map. */
6389 	for_each_cpu(i, cpu_map) {
6390 		struct sched_domain_topology_level *tl;
6391 
6392 		sd = NULL;
6393 		for (tl = sched_domain_topology; tl->init; tl++) {
6394 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6395 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6396 				sd->flags |= SD_OVERLAP;
6397 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6398 				break;
6399 		}
6400 
6401 		while (sd->child)
6402 			sd = sd->child;
6403 
6404 		*per_cpu_ptr(d.sd, i) = sd;
6405 	}
6406 
6407 	/* Build the groups for the domains */
6408 	for_each_cpu(i, cpu_map) {
6409 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6410 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6411 			if (sd->flags & SD_OVERLAP) {
6412 				if (build_overlap_sched_groups(sd, i))
6413 					goto error;
6414 			} else {
6415 				if (build_sched_groups(sd, i))
6416 					goto error;
6417 			}
6418 		}
6419 	}
6420 
6421 	/* Calculate CPU power for physical packages and nodes */
6422 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6423 		if (!cpumask_test_cpu(i, cpu_map))
6424 			continue;
6425 
6426 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6427 			claim_allocations(i, sd);
6428 			init_sched_groups_power(i, sd);
6429 		}
6430 	}
6431 
6432 	/* Attach the domains */
6433 	rcu_read_lock();
6434 	for_each_cpu(i, cpu_map) {
6435 		sd = *per_cpu_ptr(d.sd, i);
6436 		cpu_attach_domain(sd, d.rd, i);
6437 	}
6438 	rcu_read_unlock();
6439 
6440 	ret = 0;
6441 error:
6442 	__free_domain_allocs(&d, alloc_state, cpu_map);
6443 	return ret;
6444 }
6445 
6446 static cpumask_var_t *doms_cur;	/* current sched domains */
6447 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6448 static struct sched_domain_attr *dattr_cur;
6449 				/* attribues of custom domains in 'doms_cur' */
6450 
6451 /*
6452  * Special case: If a kmalloc of a doms_cur partition (array of
6453  * cpumask) fails, then fallback to a single sched domain,
6454  * as determined by the single cpumask fallback_doms.
6455  */
6456 static cpumask_var_t fallback_doms;
6457 
6458 /*
6459  * arch_update_cpu_topology lets virtualized architectures update the
6460  * cpu core maps. It is supposed to return 1 if the topology changed
6461  * or 0 if it stayed the same.
6462  */
6463 int __attribute__((weak)) arch_update_cpu_topology(void)
6464 {
6465 	return 0;
6466 }
6467 
6468 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6469 {
6470 	int i;
6471 	cpumask_var_t *doms;
6472 
6473 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6474 	if (!doms)
6475 		return NULL;
6476 	for (i = 0; i < ndoms; i++) {
6477 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6478 			free_sched_domains(doms, i);
6479 			return NULL;
6480 		}
6481 	}
6482 	return doms;
6483 }
6484 
6485 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6486 {
6487 	unsigned int i;
6488 	for (i = 0; i < ndoms; i++)
6489 		free_cpumask_var(doms[i]);
6490 	kfree(doms);
6491 }
6492 
6493 /*
6494  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6495  * For now this just excludes isolated cpus, but could be used to
6496  * exclude other special cases in the future.
6497  */
6498 static int init_sched_domains(const struct cpumask *cpu_map)
6499 {
6500 	int err;
6501 
6502 	arch_update_cpu_topology();
6503 	ndoms_cur = 1;
6504 	doms_cur = alloc_sched_domains(ndoms_cur);
6505 	if (!doms_cur)
6506 		doms_cur = &fallback_doms;
6507 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6508 	dattr_cur = NULL;
6509 	err = build_sched_domains(doms_cur[0], NULL);
6510 	register_sched_domain_sysctl();
6511 
6512 	return err;
6513 }
6514 
6515 /*
6516  * Detach sched domains from a group of cpus specified in cpu_map
6517  * These cpus will now be attached to the NULL domain
6518  */
6519 static void detach_destroy_domains(const struct cpumask *cpu_map)
6520 {
6521 	int i;
6522 
6523 	rcu_read_lock();
6524 	for_each_cpu(i, cpu_map)
6525 		cpu_attach_domain(NULL, &def_root_domain, i);
6526 	rcu_read_unlock();
6527 }
6528 
6529 /* handle null as "default" */
6530 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6531 			struct sched_domain_attr *new, int idx_new)
6532 {
6533 	struct sched_domain_attr tmp;
6534 
6535 	/* fast path */
6536 	if (!new && !cur)
6537 		return 1;
6538 
6539 	tmp = SD_ATTR_INIT;
6540 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6541 			new ? (new + idx_new) : &tmp,
6542 			sizeof(struct sched_domain_attr));
6543 }
6544 
6545 /*
6546  * Partition sched domains as specified by the 'ndoms_new'
6547  * cpumasks in the array doms_new[] of cpumasks. This compares
6548  * doms_new[] to the current sched domain partitioning, doms_cur[].
6549  * It destroys each deleted domain and builds each new domain.
6550  *
6551  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6552  * The masks don't intersect (don't overlap.) We should setup one
6553  * sched domain for each mask. CPUs not in any of the cpumasks will
6554  * not be load balanced. If the same cpumask appears both in the
6555  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6556  * it as it is.
6557  *
6558  * The passed in 'doms_new' should be allocated using
6559  * alloc_sched_domains.  This routine takes ownership of it and will
6560  * free_sched_domains it when done with it. If the caller failed the
6561  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6562  * and partition_sched_domains() will fallback to the single partition
6563  * 'fallback_doms', it also forces the domains to be rebuilt.
6564  *
6565  * If doms_new == NULL it will be replaced with cpu_online_mask.
6566  * ndoms_new == 0 is a special case for destroying existing domains,
6567  * and it will not create the default domain.
6568  *
6569  * Call with hotplug lock held
6570  */
6571 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6572 			     struct sched_domain_attr *dattr_new)
6573 {
6574 	int i, j, n;
6575 	int new_topology;
6576 
6577 	mutex_lock(&sched_domains_mutex);
6578 
6579 	/* always unregister in case we don't destroy any domains */
6580 	unregister_sched_domain_sysctl();
6581 
6582 	/* Let architecture update cpu core mappings. */
6583 	new_topology = arch_update_cpu_topology();
6584 
6585 	n = doms_new ? ndoms_new : 0;
6586 
6587 	/* Destroy deleted domains */
6588 	for (i = 0; i < ndoms_cur; i++) {
6589 		for (j = 0; j < n && !new_topology; j++) {
6590 			if (cpumask_equal(doms_cur[i], doms_new[j])
6591 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6592 				goto match1;
6593 		}
6594 		/* no match - a current sched domain not in new doms_new[] */
6595 		detach_destroy_domains(doms_cur[i]);
6596 match1:
6597 		;
6598 	}
6599 
6600 	if (doms_new == NULL) {
6601 		ndoms_cur = 0;
6602 		doms_new = &fallback_doms;
6603 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6604 		WARN_ON_ONCE(dattr_new);
6605 	}
6606 
6607 	/* Build new domains */
6608 	for (i = 0; i < ndoms_new; i++) {
6609 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6610 			if (cpumask_equal(doms_new[i], doms_cur[j])
6611 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6612 				goto match2;
6613 		}
6614 		/* no match - add a new doms_new */
6615 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6616 match2:
6617 		;
6618 	}
6619 
6620 	/* Remember the new sched domains */
6621 	if (doms_cur != &fallback_doms)
6622 		free_sched_domains(doms_cur, ndoms_cur);
6623 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6624 	doms_cur = doms_new;
6625 	dattr_cur = dattr_new;
6626 	ndoms_cur = ndoms_new;
6627 
6628 	register_sched_domain_sysctl();
6629 
6630 	mutex_unlock(&sched_domains_mutex);
6631 }
6632 
6633 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6634 static void reinit_sched_domains(void)
6635 {
6636 	get_online_cpus();
6637 
6638 	/* Destroy domains first to force the rebuild */
6639 	partition_sched_domains(0, NULL, NULL);
6640 
6641 	rebuild_sched_domains();
6642 	put_online_cpus();
6643 }
6644 
6645 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6646 {
6647 	unsigned int level = 0;
6648 
6649 	if (sscanf(buf, "%u", &level) != 1)
6650 		return -EINVAL;
6651 
6652 	/*
6653 	 * level is always be positive so don't check for
6654 	 * level < POWERSAVINGS_BALANCE_NONE which is 0
6655 	 * What happens on 0 or 1 byte write,
6656 	 * need to check for count as well?
6657 	 */
6658 
6659 	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6660 		return -EINVAL;
6661 
6662 	if (smt)
6663 		sched_smt_power_savings = level;
6664 	else
6665 		sched_mc_power_savings = level;
6666 
6667 	reinit_sched_domains();
6668 
6669 	return count;
6670 }
6671 
6672 #ifdef CONFIG_SCHED_MC
6673 static ssize_t sched_mc_power_savings_show(struct device *dev,
6674 					   struct device_attribute *attr,
6675 					   char *buf)
6676 {
6677 	return sprintf(buf, "%u\n", sched_mc_power_savings);
6678 }
6679 static ssize_t sched_mc_power_savings_store(struct device *dev,
6680 					    struct device_attribute *attr,
6681 					    const char *buf, size_t count)
6682 {
6683 	return sched_power_savings_store(buf, count, 0);
6684 }
6685 static DEVICE_ATTR(sched_mc_power_savings, 0644,
6686 		   sched_mc_power_savings_show,
6687 		   sched_mc_power_savings_store);
6688 #endif
6689 
6690 #ifdef CONFIG_SCHED_SMT
6691 static ssize_t sched_smt_power_savings_show(struct device *dev,
6692 					    struct device_attribute *attr,
6693 					    char *buf)
6694 {
6695 	return sprintf(buf, "%u\n", sched_smt_power_savings);
6696 }
6697 static ssize_t sched_smt_power_savings_store(struct device *dev,
6698 					    struct device_attribute *attr,
6699 					     const char *buf, size_t count)
6700 {
6701 	return sched_power_savings_store(buf, count, 1);
6702 }
6703 static DEVICE_ATTR(sched_smt_power_savings, 0644,
6704 		   sched_smt_power_savings_show,
6705 		   sched_smt_power_savings_store);
6706 #endif
6707 
6708 int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6709 {
6710 	int err = 0;
6711 
6712 #ifdef CONFIG_SCHED_SMT
6713 	if (smt_capable())
6714 		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6715 #endif
6716 #ifdef CONFIG_SCHED_MC
6717 	if (!err && mc_capable())
6718 		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6719 #endif
6720 	return err;
6721 }
6722 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6723 
6724 /*
6725  * Update cpusets according to cpu_active mask.  If cpusets are
6726  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6727  * around partition_sched_domains().
6728  */
6729 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6730 			     void *hcpu)
6731 {
6732 	switch (action & ~CPU_TASKS_FROZEN) {
6733 	case CPU_ONLINE:
6734 	case CPU_DOWN_FAILED:
6735 		cpuset_update_active_cpus();
6736 		return NOTIFY_OK;
6737 	default:
6738 		return NOTIFY_DONE;
6739 	}
6740 }
6741 
6742 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6743 			       void *hcpu)
6744 {
6745 	switch (action & ~CPU_TASKS_FROZEN) {
6746 	case CPU_DOWN_PREPARE:
6747 		cpuset_update_active_cpus();
6748 		return NOTIFY_OK;
6749 	default:
6750 		return NOTIFY_DONE;
6751 	}
6752 }
6753 
6754 void __init sched_init_smp(void)
6755 {
6756 	cpumask_var_t non_isolated_cpus;
6757 
6758 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6759 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6760 
6761 	get_online_cpus();
6762 	mutex_lock(&sched_domains_mutex);
6763 	init_sched_domains(cpu_active_mask);
6764 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6765 	if (cpumask_empty(non_isolated_cpus))
6766 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6767 	mutex_unlock(&sched_domains_mutex);
6768 	put_online_cpus();
6769 
6770 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6771 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6772 
6773 	/* RT runtime code needs to handle some hotplug events */
6774 	hotcpu_notifier(update_runtime, 0);
6775 
6776 	init_hrtick();
6777 
6778 	/* Move init over to a non-isolated CPU */
6779 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6780 		BUG();
6781 	sched_init_granularity();
6782 	free_cpumask_var(non_isolated_cpus);
6783 
6784 	init_sched_rt_class();
6785 }
6786 #else
6787 void __init sched_init_smp(void)
6788 {
6789 	sched_init_granularity();
6790 }
6791 #endif /* CONFIG_SMP */
6792 
6793 const_debug unsigned int sysctl_timer_migration = 1;
6794 
6795 int in_sched_functions(unsigned long addr)
6796 {
6797 	return in_lock_functions(addr) ||
6798 		(addr >= (unsigned long)__sched_text_start
6799 		&& addr < (unsigned long)__sched_text_end);
6800 }
6801 
6802 #ifdef CONFIG_CGROUP_SCHED
6803 struct task_group root_task_group;
6804 #endif
6805 
6806 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6807 
6808 void __init sched_init(void)
6809 {
6810 	int i, j;
6811 	unsigned long alloc_size = 0, ptr;
6812 
6813 #ifdef CONFIG_FAIR_GROUP_SCHED
6814 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6815 #endif
6816 #ifdef CONFIG_RT_GROUP_SCHED
6817 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6818 #endif
6819 #ifdef CONFIG_CPUMASK_OFFSTACK
6820 	alloc_size += num_possible_cpus() * cpumask_size();
6821 #endif
6822 	if (alloc_size) {
6823 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6824 
6825 #ifdef CONFIG_FAIR_GROUP_SCHED
6826 		root_task_group.se = (struct sched_entity **)ptr;
6827 		ptr += nr_cpu_ids * sizeof(void **);
6828 
6829 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6830 		ptr += nr_cpu_ids * sizeof(void **);
6831 
6832 #endif /* CONFIG_FAIR_GROUP_SCHED */
6833 #ifdef CONFIG_RT_GROUP_SCHED
6834 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6835 		ptr += nr_cpu_ids * sizeof(void **);
6836 
6837 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6838 		ptr += nr_cpu_ids * sizeof(void **);
6839 
6840 #endif /* CONFIG_RT_GROUP_SCHED */
6841 #ifdef CONFIG_CPUMASK_OFFSTACK
6842 		for_each_possible_cpu(i) {
6843 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6844 			ptr += cpumask_size();
6845 		}
6846 #endif /* CONFIG_CPUMASK_OFFSTACK */
6847 	}
6848 
6849 #ifdef CONFIG_SMP
6850 	init_defrootdomain();
6851 #endif
6852 
6853 	init_rt_bandwidth(&def_rt_bandwidth,
6854 			global_rt_period(), global_rt_runtime());
6855 
6856 #ifdef CONFIG_RT_GROUP_SCHED
6857 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6858 			global_rt_period(), global_rt_runtime());
6859 #endif /* CONFIG_RT_GROUP_SCHED */
6860 
6861 #ifdef CONFIG_CGROUP_SCHED
6862 	list_add(&root_task_group.list, &task_groups);
6863 	INIT_LIST_HEAD(&root_task_group.children);
6864 	INIT_LIST_HEAD(&root_task_group.siblings);
6865 	autogroup_init(&init_task);
6866 
6867 #endif /* CONFIG_CGROUP_SCHED */
6868 
6869 #ifdef CONFIG_CGROUP_CPUACCT
6870 	root_cpuacct.cpustat = &kernel_cpustat;
6871 	root_cpuacct.cpuusage = alloc_percpu(u64);
6872 	/* Too early, not expected to fail */
6873 	BUG_ON(!root_cpuacct.cpuusage);
6874 #endif
6875 	for_each_possible_cpu(i) {
6876 		struct rq *rq;
6877 
6878 		rq = cpu_rq(i);
6879 		raw_spin_lock_init(&rq->lock);
6880 		rq->nr_running = 0;
6881 		rq->calc_load_active = 0;
6882 		rq->calc_load_update = jiffies + LOAD_FREQ;
6883 		init_cfs_rq(&rq->cfs);
6884 		init_rt_rq(&rq->rt, rq);
6885 #ifdef CONFIG_FAIR_GROUP_SCHED
6886 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6887 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6888 		/*
6889 		 * How much cpu bandwidth does root_task_group get?
6890 		 *
6891 		 * In case of task-groups formed thr' the cgroup filesystem, it
6892 		 * gets 100% of the cpu resources in the system. This overall
6893 		 * system cpu resource is divided among the tasks of
6894 		 * root_task_group and its child task-groups in a fair manner,
6895 		 * based on each entity's (task or task-group's) weight
6896 		 * (se->load.weight).
6897 		 *
6898 		 * In other words, if root_task_group has 10 tasks of weight
6899 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6900 		 * then A0's share of the cpu resource is:
6901 		 *
6902 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6903 		 *
6904 		 * We achieve this by letting root_task_group's tasks sit
6905 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6906 		 */
6907 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6908 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6909 #endif /* CONFIG_FAIR_GROUP_SCHED */
6910 
6911 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6912 #ifdef CONFIG_RT_GROUP_SCHED
6913 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6914 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6915 #endif
6916 
6917 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6918 			rq->cpu_load[j] = 0;
6919 
6920 		rq->last_load_update_tick = jiffies;
6921 
6922 #ifdef CONFIG_SMP
6923 		rq->sd = NULL;
6924 		rq->rd = NULL;
6925 		rq->cpu_power = SCHED_POWER_SCALE;
6926 		rq->post_schedule = 0;
6927 		rq->active_balance = 0;
6928 		rq->next_balance = jiffies;
6929 		rq->push_cpu = 0;
6930 		rq->cpu = i;
6931 		rq->online = 0;
6932 		rq->idle_stamp = 0;
6933 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6934 		rq_attach_root(rq, &def_root_domain);
6935 #ifdef CONFIG_NO_HZ
6936 		rq->nohz_flags = 0;
6937 #endif
6938 #endif
6939 		init_rq_hrtick(rq);
6940 		atomic_set(&rq->nr_iowait, 0);
6941 	}
6942 
6943 	set_load_weight(&init_task);
6944 
6945 #ifdef CONFIG_PREEMPT_NOTIFIERS
6946 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6947 #endif
6948 
6949 #ifdef CONFIG_RT_MUTEXES
6950 	plist_head_init(&init_task.pi_waiters);
6951 #endif
6952 
6953 	/*
6954 	 * The boot idle thread does lazy MMU switching as well:
6955 	 */
6956 	atomic_inc(&init_mm.mm_count);
6957 	enter_lazy_tlb(&init_mm, current);
6958 
6959 	/*
6960 	 * Make us the idle thread. Technically, schedule() should not be
6961 	 * called from this thread, however somewhere below it might be,
6962 	 * but because we are the idle thread, we just pick up running again
6963 	 * when this runqueue becomes "idle".
6964 	 */
6965 	init_idle(current, smp_processor_id());
6966 
6967 	calc_load_update = jiffies + LOAD_FREQ;
6968 
6969 	/*
6970 	 * During early bootup we pretend to be a normal task:
6971 	 */
6972 	current->sched_class = &fair_sched_class;
6973 
6974 #ifdef CONFIG_SMP
6975 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6976 	/* May be allocated at isolcpus cmdline parse time */
6977 	if (cpu_isolated_map == NULL)
6978 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6979 #endif
6980 	init_sched_fair_class();
6981 
6982 	scheduler_running = 1;
6983 }
6984 
6985 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6986 static inline int preempt_count_equals(int preempt_offset)
6987 {
6988 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6989 
6990 	return (nested == preempt_offset);
6991 }
6992 
6993 void __might_sleep(const char *file, int line, int preempt_offset)
6994 {
6995 	static unsigned long prev_jiffy;	/* ratelimiting */
6996 
6997 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6998 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6999 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7000 		return;
7001 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7002 		return;
7003 	prev_jiffy = jiffies;
7004 
7005 	printk(KERN_ERR
7006 		"BUG: sleeping function called from invalid context at %s:%d\n",
7007 			file, line);
7008 	printk(KERN_ERR
7009 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7010 			in_atomic(), irqs_disabled(),
7011 			current->pid, current->comm);
7012 
7013 	debug_show_held_locks(current);
7014 	if (irqs_disabled())
7015 		print_irqtrace_events(current);
7016 	dump_stack();
7017 }
7018 EXPORT_SYMBOL(__might_sleep);
7019 #endif
7020 
7021 #ifdef CONFIG_MAGIC_SYSRQ
7022 static void normalize_task(struct rq *rq, struct task_struct *p)
7023 {
7024 	const struct sched_class *prev_class = p->sched_class;
7025 	int old_prio = p->prio;
7026 	int on_rq;
7027 
7028 	on_rq = p->on_rq;
7029 	if (on_rq)
7030 		dequeue_task(rq, p, 0);
7031 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7032 	if (on_rq) {
7033 		enqueue_task(rq, p, 0);
7034 		resched_task(rq->curr);
7035 	}
7036 
7037 	check_class_changed(rq, p, prev_class, old_prio);
7038 }
7039 
7040 void normalize_rt_tasks(void)
7041 {
7042 	struct task_struct *g, *p;
7043 	unsigned long flags;
7044 	struct rq *rq;
7045 
7046 	read_lock_irqsave(&tasklist_lock, flags);
7047 	do_each_thread(g, p) {
7048 		/*
7049 		 * Only normalize user tasks:
7050 		 */
7051 		if (!p->mm)
7052 			continue;
7053 
7054 		p->se.exec_start		= 0;
7055 #ifdef CONFIG_SCHEDSTATS
7056 		p->se.statistics.wait_start	= 0;
7057 		p->se.statistics.sleep_start	= 0;
7058 		p->se.statistics.block_start	= 0;
7059 #endif
7060 
7061 		if (!rt_task(p)) {
7062 			/*
7063 			 * Renice negative nice level userspace
7064 			 * tasks back to 0:
7065 			 */
7066 			if (TASK_NICE(p) < 0 && p->mm)
7067 				set_user_nice(p, 0);
7068 			continue;
7069 		}
7070 
7071 		raw_spin_lock(&p->pi_lock);
7072 		rq = __task_rq_lock(p);
7073 
7074 		normalize_task(rq, p);
7075 
7076 		__task_rq_unlock(rq);
7077 		raw_spin_unlock(&p->pi_lock);
7078 	} while_each_thread(g, p);
7079 
7080 	read_unlock_irqrestore(&tasklist_lock, flags);
7081 }
7082 
7083 #endif /* CONFIG_MAGIC_SYSRQ */
7084 
7085 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7086 /*
7087  * These functions are only useful for the IA64 MCA handling, or kdb.
7088  *
7089  * They can only be called when the whole system has been
7090  * stopped - every CPU needs to be quiescent, and no scheduling
7091  * activity can take place. Using them for anything else would
7092  * be a serious bug, and as a result, they aren't even visible
7093  * under any other configuration.
7094  */
7095 
7096 /**
7097  * curr_task - return the current task for a given cpu.
7098  * @cpu: the processor in question.
7099  *
7100  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7101  */
7102 struct task_struct *curr_task(int cpu)
7103 {
7104 	return cpu_curr(cpu);
7105 }
7106 
7107 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7108 
7109 #ifdef CONFIG_IA64
7110 /**
7111  * set_curr_task - set the current task for a given cpu.
7112  * @cpu: the processor in question.
7113  * @p: the task pointer to set.
7114  *
7115  * Description: This function must only be used when non-maskable interrupts
7116  * are serviced on a separate stack. It allows the architecture to switch the
7117  * notion of the current task on a cpu in a non-blocking manner. This function
7118  * must be called with all CPU's synchronized, and interrupts disabled, the
7119  * and caller must save the original value of the current task (see
7120  * curr_task() above) and restore that value before reenabling interrupts and
7121  * re-starting the system.
7122  *
7123  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7124  */
7125 void set_curr_task(int cpu, struct task_struct *p)
7126 {
7127 	cpu_curr(cpu) = p;
7128 }
7129 
7130 #endif
7131 
7132 #ifdef CONFIG_CGROUP_SCHED
7133 /* task_group_lock serializes the addition/removal of task groups */
7134 static DEFINE_SPINLOCK(task_group_lock);
7135 
7136 static void free_sched_group(struct task_group *tg)
7137 {
7138 	free_fair_sched_group(tg);
7139 	free_rt_sched_group(tg);
7140 	autogroup_free(tg);
7141 	kfree(tg);
7142 }
7143 
7144 /* allocate runqueue etc for a new task group */
7145 struct task_group *sched_create_group(struct task_group *parent)
7146 {
7147 	struct task_group *tg;
7148 	unsigned long flags;
7149 
7150 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7151 	if (!tg)
7152 		return ERR_PTR(-ENOMEM);
7153 
7154 	if (!alloc_fair_sched_group(tg, parent))
7155 		goto err;
7156 
7157 	if (!alloc_rt_sched_group(tg, parent))
7158 		goto err;
7159 
7160 	spin_lock_irqsave(&task_group_lock, flags);
7161 	list_add_rcu(&tg->list, &task_groups);
7162 
7163 	WARN_ON(!parent); /* root should already exist */
7164 
7165 	tg->parent = parent;
7166 	INIT_LIST_HEAD(&tg->children);
7167 	list_add_rcu(&tg->siblings, &parent->children);
7168 	spin_unlock_irqrestore(&task_group_lock, flags);
7169 
7170 	return tg;
7171 
7172 err:
7173 	free_sched_group(tg);
7174 	return ERR_PTR(-ENOMEM);
7175 }
7176 
7177 /* rcu callback to free various structures associated with a task group */
7178 static void free_sched_group_rcu(struct rcu_head *rhp)
7179 {
7180 	/* now it should be safe to free those cfs_rqs */
7181 	free_sched_group(container_of(rhp, struct task_group, rcu));
7182 }
7183 
7184 /* Destroy runqueue etc associated with a task group */
7185 void sched_destroy_group(struct task_group *tg)
7186 {
7187 	unsigned long flags;
7188 	int i;
7189 
7190 	/* end participation in shares distribution */
7191 	for_each_possible_cpu(i)
7192 		unregister_fair_sched_group(tg, i);
7193 
7194 	spin_lock_irqsave(&task_group_lock, flags);
7195 	list_del_rcu(&tg->list);
7196 	list_del_rcu(&tg->siblings);
7197 	spin_unlock_irqrestore(&task_group_lock, flags);
7198 
7199 	/* wait for possible concurrent references to cfs_rqs complete */
7200 	call_rcu(&tg->rcu, free_sched_group_rcu);
7201 }
7202 
7203 /* change task's runqueue when it moves between groups.
7204  *	The caller of this function should have put the task in its new group
7205  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7206  *	reflect its new group.
7207  */
7208 void sched_move_task(struct task_struct *tsk)
7209 {
7210 	int on_rq, running;
7211 	unsigned long flags;
7212 	struct rq *rq;
7213 
7214 	rq = task_rq_lock(tsk, &flags);
7215 
7216 	running = task_current(rq, tsk);
7217 	on_rq = tsk->on_rq;
7218 
7219 	if (on_rq)
7220 		dequeue_task(rq, tsk, 0);
7221 	if (unlikely(running))
7222 		tsk->sched_class->put_prev_task(rq, tsk);
7223 
7224 #ifdef CONFIG_FAIR_GROUP_SCHED
7225 	if (tsk->sched_class->task_move_group)
7226 		tsk->sched_class->task_move_group(tsk, on_rq);
7227 	else
7228 #endif
7229 		set_task_rq(tsk, task_cpu(tsk));
7230 
7231 	if (unlikely(running))
7232 		tsk->sched_class->set_curr_task(rq);
7233 	if (on_rq)
7234 		enqueue_task(rq, tsk, 0);
7235 
7236 	task_rq_unlock(rq, tsk, &flags);
7237 }
7238 #endif /* CONFIG_CGROUP_SCHED */
7239 
7240 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7241 static unsigned long to_ratio(u64 period, u64 runtime)
7242 {
7243 	if (runtime == RUNTIME_INF)
7244 		return 1ULL << 20;
7245 
7246 	return div64_u64(runtime << 20, period);
7247 }
7248 #endif
7249 
7250 #ifdef CONFIG_RT_GROUP_SCHED
7251 /*
7252  * Ensure that the real time constraints are schedulable.
7253  */
7254 static DEFINE_MUTEX(rt_constraints_mutex);
7255 
7256 /* Must be called with tasklist_lock held */
7257 static inline int tg_has_rt_tasks(struct task_group *tg)
7258 {
7259 	struct task_struct *g, *p;
7260 
7261 	do_each_thread(g, p) {
7262 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7263 			return 1;
7264 	} while_each_thread(g, p);
7265 
7266 	return 0;
7267 }
7268 
7269 struct rt_schedulable_data {
7270 	struct task_group *tg;
7271 	u64 rt_period;
7272 	u64 rt_runtime;
7273 };
7274 
7275 static int tg_rt_schedulable(struct task_group *tg, void *data)
7276 {
7277 	struct rt_schedulable_data *d = data;
7278 	struct task_group *child;
7279 	unsigned long total, sum = 0;
7280 	u64 period, runtime;
7281 
7282 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7283 	runtime = tg->rt_bandwidth.rt_runtime;
7284 
7285 	if (tg == d->tg) {
7286 		period = d->rt_period;
7287 		runtime = d->rt_runtime;
7288 	}
7289 
7290 	/*
7291 	 * Cannot have more runtime than the period.
7292 	 */
7293 	if (runtime > period && runtime != RUNTIME_INF)
7294 		return -EINVAL;
7295 
7296 	/*
7297 	 * Ensure we don't starve existing RT tasks.
7298 	 */
7299 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7300 		return -EBUSY;
7301 
7302 	total = to_ratio(period, runtime);
7303 
7304 	/*
7305 	 * Nobody can have more than the global setting allows.
7306 	 */
7307 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7308 		return -EINVAL;
7309 
7310 	/*
7311 	 * The sum of our children's runtime should not exceed our own.
7312 	 */
7313 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7314 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7315 		runtime = child->rt_bandwidth.rt_runtime;
7316 
7317 		if (child == d->tg) {
7318 			period = d->rt_period;
7319 			runtime = d->rt_runtime;
7320 		}
7321 
7322 		sum += to_ratio(period, runtime);
7323 	}
7324 
7325 	if (sum > total)
7326 		return -EINVAL;
7327 
7328 	return 0;
7329 }
7330 
7331 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7332 {
7333 	int ret;
7334 
7335 	struct rt_schedulable_data data = {
7336 		.tg = tg,
7337 		.rt_period = period,
7338 		.rt_runtime = runtime,
7339 	};
7340 
7341 	rcu_read_lock();
7342 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7343 	rcu_read_unlock();
7344 
7345 	return ret;
7346 }
7347 
7348 static int tg_set_rt_bandwidth(struct task_group *tg,
7349 		u64 rt_period, u64 rt_runtime)
7350 {
7351 	int i, err = 0;
7352 
7353 	mutex_lock(&rt_constraints_mutex);
7354 	read_lock(&tasklist_lock);
7355 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7356 	if (err)
7357 		goto unlock;
7358 
7359 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7360 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7361 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7362 
7363 	for_each_possible_cpu(i) {
7364 		struct rt_rq *rt_rq = tg->rt_rq[i];
7365 
7366 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7367 		rt_rq->rt_runtime = rt_runtime;
7368 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7369 	}
7370 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7371 unlock:
7372 	read_unlock(&tasklist_lock);
7373 	mutex_unlock(&rt_constraints_mutex);
7374 
7375 	return err;
7376 }
7377 
7378 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7379 {
7380 	u64 rt_runtime, rt_period;
7381 
7382 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7383 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7384 	if (rt_runtime_us < 0)
7385 		rt_runtime = RUNTIME_INF;
7386 
7387 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7388 }
7389 
7390 long sched_group_rt_runtime(struct task_group *tg)
7391 {
7392 	u64 rt_runtime_us;
7393 
7394 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7395 		return -1;
7396 
7397 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7398 	do_div(rt_runtime_us, NSEC_PER_USEC);
7399 	return rt_runtime_us;
7400 }
7401 
7402 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7403 {
7404 	u64 rt_runtime, rt_period;
7405 
7406 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7407 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7408 
7409 	if (rt_period == 0)
7410 		return -EINVAL;
7411 
7412 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7413 }
7414 
7415 long sched_group_rt_period(struct task_group *tg)
7416 {
7417 	u64 rt_period_us;
7418 
7419 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7420 	do_div(rt_period_us, NSEC_PER_USEC);
7421 	return rt_period_us;
7422 }
7423 
7424 static int sched_rt_global_constraints(void)
7425 {
7426 	u64 runtime, period;
7427 	int ret = 0;
7428 
7429 	if (sysctl_sched_rt_period <= 0)
7430 		return -EINVAL;
7431 
7432 	runtime = global_rt_runtime();
7433 	period = global_rt_period();
7434 
7435 	/*
7436 	 * Sanity check on the sysctl variables.
7437 	 */
7438 	if (runtime > period && runtime != RUNTIME_INF)
7439 		return -EINVAL;
7440 
7441 	mutex_lock(&rt_constraints_mutex);
7442 	read_lock(&tasklist_lock);
7443 	ret = __rt_schedulable(NULL, 0, 0);
7444 	read_unlock(&tasklist_lock);
7445 	mutex_unlock(&rt_constraints_mutex);
7446 
7447 	return ret;
7448 }
7449 
7450 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7451 {
7452 	/* Don't accept realtime tasks when there is no way for them to run */
7453 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7454 		return 0;
7455 
7456 	return 1;
7457 }
7458 
7459 #else /* !CONFIG_RT_GROUP_SCHED */
7460 static int sched_rt_global_constraints(void)
7461 {
7462 	unsigned long flags;
7463 	int i;
7464 
7465 	if (sysctl_sched_rt_period <= 0)
7466 		return -EINVAL;
7467 
7468 	/*
7469 	 * There's always some RT tasks in the root group
7470 	 * -- migration, kstopmachine etc..
7471 	 */
7472 	if (sysctl_sched_rt_runtime == 0)
7473 		return -EBUSY;
7474 
7475 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7476 	for_each_possible_cpu(i) {
7477 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7478 
7479 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7480 		rt_rq->rt_runtime = global_rt_runtime();
7481 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7482 	}
7483 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7484 
7485 	return 0;
7486 }
7487 #endif /* CONFIG_RT_GROUP_SCHED */
7488 
7489 int sched_rt_handler(struct ctl_table *table, int write,
7490 		void __user *buffer, size_t *lenp,
7491 		loff_t *ppos)
7492 {
7493 	int ret;
7494 	int old_period, old_runtime;
7495 	static DEFINE_MUTEX(mutex);
7496 
7497 	mutex_lock(&mutex);
7498 	old_period = sysctl_sched_rt_period;
7499 	old_runtime = sysctl_sched_rt_runtime;
7500 
7501 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7502 
7503 	if (!ret && write) {
7504 		ret = sched_rt_global_constraints();
7505 		if (ret) {
7506 			sysctl_sched_rt_period = old_period;
7507 			sysctl_sched_rt_runtime = old_runtime;
7508 		} else {
7509 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7510 			def_rt_bandwidth.rt_period =
7511 				ns_to_ktime(global_rt_period());
7512 		}
7513 	}
7514 	mutex_unlock(&mutex);
7515 
7516 	return ret;
7517 }
7518 
7519 #ifdef CONFIG_CGROUP_SCHED
7520 
7521 /* return corresponding task_group object of a cgroup */
7522 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7523 {
7524 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7525 			    struct task_group, css);
7526 }
7527 
7528 static struct cgroup_subsys_state *
7529 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7530 {
7531 	struct task_group *tg, *parent;
7532 
7533 	if (!cgrp->parent) {
7534 		/* This is early initialization for the top cgroup */
7535 		return &root_task_group.css;
7536 	}
7537 
7538 	parent = cgroup_tg(cgrp->parent);
7539 	tg = sched_create_group(parent);
7540 	if (IS_ERR(tg))
7541 		return ERR_PTR(-ENOMEM);
7542 
7543 	return &tg->css;
7544 }
7545 
7546 static void
7547 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7548 {
7549 	struct task_group *tg = cgroup_tg(cgrp);
7550 
7551 	sched_destroy_group(tg);
7552 }
7553 
7554 static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7555 				 struct cgroup_taskset *tset)
7556 {
7557 	struct task_struct *task;
7558 
7559 	cgroup_taskset_for_each(task, cgrp, tset) {
7560 #ifdef CONFIG_RT_GROUP_SCHED
7561 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7562 			return -EINVAL;
7563 #else
7564 		/* We don't support RT-tasks being in separate groups */
7565 		if (task->sched_class != &fair_sched_class)
7566 			return -EINVAL;
7567 #endif
7568 	}
7569 	return 0;
7570 }
7571 
7572 static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7573 			      struct cgroup_taskset *tset)
7574 {
7575 	struct task_struct *task;
7576 
7577 	cgroup_taskset_for_each(task, cgrp, tset)
7578 		sched_move_task(task);
7579 }
7580 
7581 static void
7582 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7583 		struct cgroup *old_cgrp, struct task_struct *task)
7584 {
7585 	/*
7586 	 * cgroup_exit() is called in the copy_process() failure path.
7587 	 * Ignore this case since the task hasn't ran yet, this avoids
7588 	 * trying to poke a half freed task state from generic code.
7589 	 */
7590 	if (!(task->flags & PF_EXITING))
7591 		return;
7592 
7593 	sched_move_task(task);
7594 }
7595 
7596 #ifdef CONFIG_FAIR_GROUP_SCHED
7597 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7598 				u64 shareval)
7599 {
7600 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7601 }
7602 
7603 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7604 {
7605 	struct task_group *tg = cgroup_tg(cgrp);
7606 
7607 	return (u64) scale_load_down(tg->shares);
7608 }
7609 
7610 #ifdef CONFIG_CFS_BANDWIDTH
7611 static DEFINE_MUTEX(cfs_constraints_mutex);
7612 
7613 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7614 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7615 
7616 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7617 
7618 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7619 {
7620 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7621 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7622 
7623 	if (tg == &root_task_group)
7624 		return -EINVAL;
7625 
7626 	/*
7627 	 * Ensure we have at some amount of bandwidth every period.  This is
7628 	 * to prevent reaching a state of large arrears when throttled via
7629 	 * entity_tick() resulting in prolonged exit starvation.
7630 	 */
7631 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7632 		return -EINVAL;
7633 
7634 	/*
7635 	 * Likewise, bound things on the otherside by preventing insane quota
7636 	 * periods.  This also allows us to normalize in computing quota
7637 	 * feasibility.
7638 	 */
7639 	if (period > max_cfs_quota_period)
7640 		return -EINVAL;
7641 
7642 	mutex_lock(&cfs_constraints_mutex);
7643 	ret = __cfs_schedulable(tg, period, quota);
7644 	if (ret)
7645 		goto out_unlock;
7646 
7647 	runtime_enabled = quota != RUNTIME_INF;
7648 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7649 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7650 	raw_spin_lock_irq(&cfs_b->lock);
7651 	cfs_b->period = ns_to_ktime(period);
7652 	cfs_b->quota = quota;
7653 
7654 	__refill_cfs_bandwidth_runtime(cfs_b);
7655 	/* restart the period timer (if active) to handle new period expiry */
7656 	if (runtime_enabled && cfs_b->timer_active) {
7657 		/* force a reprogram */
7658 		cfs_b->timer_active = 0;
7659 		__start_cfs_bandwidth(cfs_b);
7660 	}
7661 	raw_spin_unlock_irq(&cfs_b->lock);
7662 
7663 	for_each_possible_cpu(i) {
7664 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7665 		struct rq *rq = cfs_rq->rq;
7666 
7667 		raw_spin_lock_irq(&rq->lock);
7668 		cfs_rq->runtime_enabled = runtime_enabled;
7669 		cfs_rq->runtime_remaining = 0;
7670 
7671 		if (cfs_rq->throttled)
7672 			unthrottle_cfs_rq(cfs_rq);
7673 		raw_spin_unlock_irq(&rq->lock);
7674 	}
7675 out_unlock:
7676 	mutex_unlock(&cfs_constraints_mutex);
7677 
7678 	return ret;
7679 }
7680 
7681 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7682 {
7683 	u64 quota, period;
7684 
7685 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7686 	if (cfs_quota_us < 0)
7687 		quota = RUNTIME_INF;
7688 	else
7689 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7690 
7691 	return tg_set_cfs_bandwidth(tg, period, quota);
7692 }
7693 
7694 long tg_get_cfs_quota(struct task_group *tg)
7695 {
7696 	u64 quota_us;
7697 
7698 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7699 		return -1;
7700 
7701 	quota_us = tg->cfs_bandwidth.quota;
7702 	do_div(quota_us, NSEC_PER_USEC);
7703 
7704 	return quota_us;
7705 }
7706 
7707 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7708 {
7709 	u64 quota, period;
7710 
7711 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7712 	quota = tg->cfs_bandwidth.quota;
7713 
7714 	return tg_set_cfs_bandwidth(tg, period, quota);
7715 }
7716 
7717 long tg_get_cfs_period(struct task_group *tg)
7718 {
7719 	u64 cfs_period_us;
7720 
7721 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7722 	do_div(cfs_period_us, NSEC_PER_USEC);
7723 
7724 	return cfs_period_us;
7725 }
7726 
7727 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7728 {
7729 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7730 }
7731 
7732 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7733 				s64 cfs_quota_us)
7734 {
7735 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7736 }
7737 
7738 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7739 {
7740 	return tg_get_cfs_period(cgroup_tg(cgrp));
7741 }
7742 
7743 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7744 				u64 cfs_period_us)
7745 {
7746 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7747 }
7748 
7749 struct cfs_schedulable_data {
7750 	struct task_group *tg;
7751 	u64 period, quota;
7752 };
7753 
7754 /*
7755  * normalize group quota/period to be quota/max_period
7756  * note: units are usecs
7757  */
7758 static u64 normalize_cfs_quota(struct task_group *tg,
7759 			       struct cfs_schedulable_data *d)
7760 {
7761 	u64 quota, period;
7762 
7763 	if (tg == d->tg) {
7764 		period = d->period;
7765 		quota = d->quota;
7766 	} else {
7767 		period = tg_get_cfs_period(tg);
7768 		quota = tg_get_cfs_quota(tg);
7769 	}
7770 
7771 	/* note: these should typically be equivalent */
7772 	if (quota == RUNTIME_INF || quota == -1)
7773 		return RUNTIME_INF;
7774 
7775 	return to_ratio(period, quota);
7776 }
7777 
7778 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7779 {
7780 	struct cfs_schedulable_data *d = data;
7781 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7782 	s64 quota = 0, parent_quota = -1;
7783 
7784 	if (!tg->parent) {
7785 		quota = RUNTIME_INF;
7786 	} else {
7787 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7788 
7789 		quota = normalize_cfs_quota(tg, d);
7790 		parent_quota = parent_b->hierarchal_quota;
7791 
7792 		/*
7793 		 * ensure max(child_quota) <= parent_quota, inherit when no
7794 		 * limit is set
7795 		 */
7796 		if (quota == RUNTIME_INF)
7797 			quota = parent_quota;
7798 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7799 			return -EINVAL;
7800 	}
7801 	cfs_b->hierarchal_quota = quota;
7802 
7803 	return 0;
7804 }
7805 
7806 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7807 {
7808 	int ret;
7809 	struct cfs_schedulable_data data = {
7810 		.tg = tg,
7811 		.period = period,
7812 		.quota = quota,
7813 	};
7814 
7815 	if (quota != RUNTIME_INF) {
7816 		do_div(data.period, NSEC_PER_USEC);
7817 		do_div(data.quota, NSEC_PER_USEC);
7818 	}
7819 
7820 	rcu_read_lock();
7821 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7822 	rcu_read_unlock();
7823 
7824 	return ret;
7825 }
7826 
7827 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7828 		struct cgroup_map_cb *cb)
7829 {
7830 	struct task_group *tg = cgroup_tg(cgrp);
7831 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7832 
7833 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7834 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7835 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7836 
7837 	return 0;
7838 }
7839 #endif /* CONFIG_CFS_BANDWIDTH */
7840 #endif /* CONFIG_FAIR_GROUP_SCHED */
7841 
7842 #ifdef CONFIG_RT_GROUP_SCHED
7843 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7844 				s64 val)
7845 {
7846 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7847 }
7848 
7849 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7850 {
7851 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7852 }
7853 
7854 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7855 		u64 rt_period_us)
7856 {
7857 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7858 }
7859 
7860 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7861 {
7862 	return sched_group_rt_period(cgroup_tg(cgrp));
7863 }
7864 #endif /* CONFIG_RT_GROUP_SCHED */
7865 
7866 static struct cftype cpu_files[] = {
7867 #ifdef CONFIG_FAIR_GROUP_SCHED
7868 	{
7869 		.name = "shares",
7870 		.read_u64 = cpu_shares_read_u64,
7871 		.write_u64 = cpu_shares_write_u64,
7872 	},
7873 #endif
7874 #ifdef CONFIG_CFS_BANDWIDTH
7875 	{
7876 		.name = "cfs_quota_us",
7877 		.read_s64 = cpu_cfs_quota_read_s64,
7878 		.write_s64 = cpu_cfs_quota_write_s64,
7879 	},
7880 	{
7881 		.name = "cfs_period_us",
7882 		.read_u64 = cpu_cfs_period_read_u64,
7883 		.write_u64 = cpu_cfs_period_write_u64,
7884 	},
7885 	{
7886 		.name = "stat",
7887 		.read_map = cpu_stats_show,
7888 	},
7889 #endif
7890 #ifdef CONFIG_RT_GROUP_SCHED
7891 	{
7892 		.name = "rt_runtime_us",
7893 		.read_s64 = cpu_rt_runtime_read,
7894 		.write_s64 = cpu_rt_runtime_write,
7895 	},
7896 	{
7897 		.name = "rt_period_us",
7898 		.read_u64 = cpu_rt_period_read_uint,
7899 		.write_u64 = cpu_rt_period_write_uint,
7900 	},
7901 #endif
7902 };
7903 
7904 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7905 {
7906 	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7907 }
7908 
7909 struct cgroup_subsys cpu_cgroup_subsys = {
7910 	.name		= "cpu",
7911 	.create		= cpu_cgroup_create,
7912 	.destroy	= cpu_cgroup_destroy,
7913 	.can_attach	= cpu_cgroup_can_attach,
7914 	.attach		= cpu_cgroup_attach,
7915 	.exit		= cpu_cgroup_exit,
7916 	.populate	= cpu_cgroup_populate,
7917 	.subsys_id	= cpu_cgroup_subsys_id,
7918 	.early_init	= 1,
7919 };
7920 
7921 #endif	/* CONFIG_CGROUP_SCHED */
7922 
7923 #ifdef CONFIG_CGROUP_CPUACCT
7924 
7925 /*
7926  * CPU accounting code for task groups.
7927  *
7928  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7929  * (balbir@in.ibm.com).
7930  */
7931 
7932 /* create a new cpu accounting group */
7933 static struct cgroup_subsys_state *cpuacct_create(
7934 	struct cgroup_subsys *ss, struct cgroup *cgrp)
7935 {
7936 	struct cpuacct *ca;
7937 
7938 	if (!cgrp->parent)
7939 		return &root_cpuacct.css;
7940 
7941 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7942 	if (!ca)
7943 		goto out;
7944 
7945 	ca->cpuusage = alloc_percpu(u64);
7946 	if (!ca->cpuusage)
7947 		goto out_free_ca;
7948 
7949 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7950 	if (!ca->cpustat)
7951 		goto out_free_cpuusage;
7952 
7953 	return &ca->css;
7954 
7955 out_free_cpuusage:
7956 	free_percpu(ca->cpuusage);
7957 out_free_ca:
7958 	kfree(ca);
7959 out:
7960 	return ERR_PTR(-ENOMEM);
7961 }
7962 
7963 /* destroy an existing cpu accounting group */
7964 static void
7965 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7966 {
7967 	struct cpuacct *ca = cgroup_ca(cgrp);
7968 
7969 	free_percpu(ca->cpustat);
7970 	free_percpu(ca->cpuusage);
7971 	kfree(ca);
7972 }
7973 
7974 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7975 {
7976 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7977 	u64 data;
7978 
7979 #ifndef CONFIG_64BIT
7980 	/*
7981 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7982 	 */
7983 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7984 	data = *cpuusage;
7985 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7986 #else
7987 	data = *cpuusage;
7988 #endif
7989 
7990 	return data;
7991 }
7992 
7993 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7994 {
7995 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7996 
7997 #ifndef CONFIG_64BIT
7998 	/*
7999 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8000 	 */
8001 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8002 	*cpuusage = val;
8003 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8004 #else
8005 	*cpuusage = val;
8006 #endif
8007 }
8008 
8009 /* return total cpu usage (in nanoseconds) of a group */
8010 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8011 {
8012 	struct cpuacct *ca = cgroup_ca(cgrp);
8013 	u64 totalcpuusage = 0;
8014 	int i;
8015 
8016 	for_each_present_cpu(i)
8017 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8018 
8019 	return totalcpuusage;
8020 }
8021 
8022 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8023 								u64 reset)
8024 {
8025 	struct cpuacct *ca = cgroup_ca(cgrp);
8026 	int err = 0;
8027 	int i;
8028 
8029 	if (reset) {
8030 		err = -EINVAL;
8031 		goto out;
8032 	}
8033 
8034 	for_each_present_cpu(i)
8035 		cpuacct_cpuusage_write(ca, i, 0);
8036 
8037 out:
8038 	return err;
8039 }
8040 
8041 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8042 				   struct seq_file *m)
8043 {
8044 	struct cpuacct *ca = cgroup_ca(cgroup);
8045 	u64 percpu;
8046 	int i;
8047 
8048 	for_each_present_cpu(i) {
8049 		percpu = cpuacct_cpuusage_read(ca, i);
8050 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8051 	}
8052 	seq_printf(m, "\n");
8053 	return 0;
8054 }
8055 
8056 static const char *cpuacct_stat_desc[] = {
8057 	[CPUACCT_STAT_USER] = "user",
8058 	[CPUACCT_STAT_SYSTEM] = "system",
8059 };
8060 
8061 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8062 			      struct cgroup_map_cb *cb)
8063 {
8064 	struct cpuacct *ca = cgroup_ca(cgrp);
8065 	int cpu;
8066 	s64 val = 0;
8067 
8068 	for_each_online_cpu(cpu) {
8069 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8070 		val += kcpustat->cpustat[CPUTIME_USER];
8071 		val += kcpustat->cpustat[CPUTIME_NICE];
8072 	}
8073 	val = cputime64_to_clock_t(val);
8074 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8075 
8076 	val = 0;
8077 	for_each_online_cpu(cpu) {
8078 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8079 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8080 		val += kcpustat->cpustat[CPUTIME_IRQ];
8081 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8082 	}
8083 
8084 	val = cputime64_to_clock_t(val);
8085 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8086 
8087 	return 0;
8088 }
8089 
8090 static struct cftype files[] = {
8091 	{
8092 		.name = "usage",
8093 		.read_u64 = cpuusage_read,
8094 		.write_u64 = cpuusage_write,
8095 	},
8096 	{
8097 		.name = "usage_percpu",
8098 		.read_seq_string = cpuacct_percpu_seq_read,
8099 	},
8100 	{
8101 		.name = "stat",
8102 		.read_map = cpuacct_stats_show,
8103 	},
8104 };
8105 
8106 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8107 {
8108 	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8109 }
8110 
8111 /*
8112  * charge this task's execution time to its accounting group.
8113  *
8114  * called with rq->lock held.
8115  */
8116 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8117 {
8118 	struct cpuacct *ca;
8119 	int cpu;
8120 
8121 	if (unlikely(!cpuacct_subsys.active))
8122 		return;
8123 
8124 	cpu = task_cpu(tsk);
8125 
8126 	rcu_read_lock();
8127 
8128 	ca = task_ca(tsk);
8129 
8130 	for (; ca; ca = parent_ca(ca)) {
8131 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8132 		*cpuusage += cputime;
8133 	}
8134 
8135 	rcu_read_unlock();
8136 }
8137 
8138 struct cgroup_subsys cpuacct_subsys = {
8139 	.name = "cpuacct",
8140 	.create = cpuacct_create,
8141 	.destroy = cpuacct_destroy,
8142 	.populate = cpuacct_populate,
8143 	.subsys_id = cpuacct_subsys_id,
8144 };
8145 #endif	/* CONFIG_CGROUP_CPUACCT */
8146