1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 75 #include <asm/tlb.h> 76 #include <asm/irq_regs.h> 77 #include <asm/mutex.h> 78 #ifdef CONFIG_PARAVIRT 79 #include <asm/paravirt.h> 80 #endif 81 82 #include "sched.h" 83 #include "../workqueue_sched.h" 84 85 #define CREATE_TRACE_POINTS 86 #include <trace/events/sched.h> 87 88 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 89 { 90 unsigned long delta; 91 ktime_t soft, hard, now; 92 93 for (;;) { 94 if (hrtimer_active(period_timer)) 95 break; 96 97 now = hrtimer_cb_get_time(period_timer); 98 hrtimer_forward(period_timer, now, period); 99 100 soft = hrtimer_get_softexpires(period_timer); 101 hard = hrtimer_get_expires(period_timer); 102 delta = ktime_to_ns(ktime_sub(hard, soft)); 103 __hrtimer_start_range_ns(period_timer, soft, delta, 104 HRTIMER_MODE_ABS_PINNED, 0); 105 } 106 } 107 108 DEFINE_MUTEX(sched_domains_mutex); 109 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 110 111 static void update_rq_clock_task(struct rq *rq, s64 delta); 112 113 void update_rq_clock(struct rq *rq) 114 { 115 s64 delta; 116 117 if (rq->skip_clock_update > 0) 118 return; 119 120 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 121 rq->clock += delta; 122 update_rq_clock_task(rq, delta); 123 } 124 125 /* 126 * Debugging: various feature bits 127 */ 128 129 #define SCHED_FEAT(name, enabled) \ 130 (1UL << __SCHED_FEAT_##name) * enabled | 131 132 const_debug unsigned int sysctl_sched_features = 133 #include "features.h" 134 0; 135 136 #undef SCHED_FEAT 137 138 #ifdef CONFIG_SCHED_DEBUG 139 #define SCHED_FEAT(name, enabled) \ 140 #name , 141 142 static __read_mostly char *sched_feat_names[] = { 143 #include "features.h" 144 NULL 145 }; 146 147 #undef SCHED_FEAT 148 149 static int sched_feat_show(struct seq_file *m, void *v) 150 { 151 int i; 152 153 for (i = 0; i < __SCHED_FEAT_NR; i++) { 154 if (!(sysctl_sched_features & (1UL << i))) 155 seq_puts(m, "NO_"); 156 seq_printf(m, "%s ", sched_feat_names[i]); 157 } 158 seq_puts(m, "\n"); 159 160 return 0; 161 } 162 163 #ifdef HAVE_JUMP_LABEL 164 165 #define jump_label_key__true jump_label_key_enabled 166 #define jump_label_key__false jump_label_key_disabled 167 168 #define SCHED_FEAT(name, enabled) \ 169 jump_label_key__##enabled , 170 171 struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = { 172 #include "features.h" 173 }; 174 175 #undef SCHED_FEAT 176 177 static void sched_feat_disable(int i) 178 { 179 if (jump_label_enabled(&sched_feat_keys[i])) 180 jump_label_dec(&sched_feat_keys[i]); 181 } 182 183 static void sched_feat_enable(int i) 184 { 185 if (!jump_label_enabled(&sched_feat_keys[i])) 186 jump_label_inc(&sched_feat_keys[i]); 187 } 188 #else 189 static void sched_feat_disable(int i) { }; 190 static void sched_feat_enable(int i) { }; 191 #endif /* HAVE_JUMP_LABEL */ 192 193 static ssize_t 194 sched_feat_write(struct file *filp, const char __user *ubuf, 195 size_t cnt, loff_t *ppos) 196 { 197 char buf[64]; 198 char *cmp; 199 int neg = 0; 200 int i; 201 202 if (cnt > 63) 203 cnt = 63; 204 205 if (copy_from_user(&buf, ubuf, cnt)) 206 return -EFAULT; 207 208 buf[cnt] = 0; 209 cmp = strstrip(buf); 210 211 if (strncmp(cmp, "NO_", 3) == 0) { 212 neg = 1; 213 cmp += 3; 214 } 215 216 for (i = 0; i < __SCHED_FEAT_NR; i++) { 217 if (strcmp(cmp, sched_feat_names[i]) == 0) { 218 if (neg) { 219 sysctl_sched_features &= ~(1UL << i); 220 sched_feat_disable(i); 221 } else { 222 sysctl_sched_features |= (1UL << i); 223 sched_feat_enable(i); 224 } 225 break; 226 } 227 } 228 229 if (i == __SCHED_FEAT_NR) 230 return -EINVAL; 231 232 *ppos += cnt; 233 234 return cnt; 235 } 236 237 static int sched_feat_open(struct inode *inode, struct file *filp) 238 { 239 return single_open(filp, sched_feat_show, NULL); 240 } 241 242 static const struct file_operations sched_feat_fops = { 243 .open = sched_feat_open, 244 .write = sched_feat_write, 245 .read = seq_read, 246 .llseek = seq_lseek, 247 .release = single_release, 248 }; 249 250 static __init int sched_init_debug(void) 251 { 252 debugfs_create_file("sched_features", 0644, NULL, NULL, 253 &sched_feat_fops); 254 255 return 0; 256 } 257 late_initcall(sched_init_debug); 258 #endif /* CONFIG_SCHED_DEBUG */ 259 260 /* 261 * Number of tasks to iterate in a single balance run. 262 * Limited because this is done with IRQs disabled. 263 */ 264 const_debug unsigned int sysctl_sched_nr_migrate = 32; 265 266 /* 267 * period over which we average the RT time consumption, measured 268 * in ms. 269 * 270 * default: 1s 271 */ 272 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 273 274 /* 275 * period over which we measure -rt task cpu usage in us. 276 * default: 1s 277 */ 278 unsigned int sysctl_sched_rt_period = 1000000; 279 280 __read_mostly int scheduler_running; 281 282 /* 283 * part of the period that we allow rt tasks to run in us. 284 * default: 0.95s 285 */ 286 int sysctl_sched_rt_runtime = 950000; 287 288 289 290 /* 291 * __task_rq_lock - lock the rq @p resides on. 292 */ 293 static inline struct rq *__task_rq_lock(struct task_struct *p) 294 __acquires(rq->lock) 295 { 296 struct rq *rq; 297 298 lockdep_assert_held(&p->pi_lock); 299 300 for (;;) { 301 rq = task_rq(p); 302 raw_spin_lock(&rq->lock); 303 if (likely(rq == task_rq(p))) 304 return rq; 305 raw_spin_unlock(&rq->lock); 306 } 307 } 308 309 /* 310 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 311 */ 312 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 313 __acquires(p->pi_lock) 314 __acquires(rq->lock) 315 { 316 struct rq *rq; 317 318 for (;;) { 319 raw_spin_lock_irqsave(&p->pi_lock, *flags); 320 rq = task_rq(p); 321 raw_spin_lock(&rq->lock); 322 if (likely(rq == task_rq(p))) 323 return rq; 324 raw_spin_unlock(&rq->lock); 325 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 326 } 327 } 328 329 static void __task_rq_unlock(struct rq *rq) 330 __releases(rq->lock) 331 { 332 raw_spin_unlock(&rq->lock); 333 } 334 335 static inline void 336 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 337 __releases(rq->lock) 338 __releases(p->pi_lock) 339 { 340 raw_spin_unlock(&rq->lock); 341 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 342 } 343 344 /* 345 * this_rq_lock - lock this runqueue and disable interrupts. 346 */ 347 static struct rq *this_rq_lock(void) 348 __acquires(rq->lock) 349 { 350 struct rq *rq; 351 352 local_irq_disable(); 353 rq = this_rq(); 354 raw_spin_lock(&rq->lock); 355 356 return rq; 357 } 358 359 #ifdef CONFIG_SCHED_HRTICK 360 /* 361 * Use HR-timers to deliver accurate preemption points. 362 * 363 * Its all a bit involved since we cannot program an hrt while holding the 364 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 365 * reschedule event. 366 * 367 * When we get rescheduled we reprogram the hrtick_timer outside of the 368 * rq->lock. 369 */ 370 371 static void hrtick_clear(struct rq *rq) 372 { 373 if (hrtimer_active(&rq->hrtick_timer)) 374 hrtimer_cancel(&rq->hrtick_timer); 375 } 376 377 /* 378 * High-resolution timer tick. 379 * Runs from hardirq context with interrupts disabled. 380 */ 381 static enum hrtimer_restart hrtick(struct hrtimer *timer) 382 { 383 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 384 385 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 386 387 raw_spin_lock(&rq->lock); 388 update_rq_clock(rq); 389 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 390 raw_spin_unlock(&rq->lock); 391 392 return HRTIMER_NORESTART; 393 } 394 395 #ifdef CONFIG_SMP 396 /* 397 * called from hardirq (IPI) context 398 */ 399 static void __hrtick_start(void *arg) 400 { 401 struct rq *rq = arg; 402 403 raw_spin_lock(&rq->lock); 404 hrtimer_restart(&rq->hrtick_timer); 405 rq->hrtick_csd_pending = 0; 406 raw_spin_unlock(&rq->lock); 407 } 408 409 /* 410 * Called to set the hrtick timer state. 411 * 412 * called with rq->lock held and irqs disabled 413 */ 414 void hrtick_start(struct rq *rq, u64 delay) 415 { 416 struct hrtimer *timer = &rq->hrtick_timer; 417 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 418 419 hrtimer_set_expires(timer, time); 420 421 if (rq == this_rq()) { 422 hrtimer_restart(timer); 423 } else if (!rq->hrtick_csd_pending) { 424 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 425 rq->hrtick_csd_pending = 1; 426 } 427 } 428 429 static int 430 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 431 { 432 int cpu = (int)(long)hcpu; 433 434 switch (action) { 435 case CPU_UP_CANCELED: 436 case CPU_UP_CANCELED_FROZEN: 437 case CPU_DOWN_PREPARE: 438 case CPU_DOWN_PREPARE_FROZEN: 439 case CPU_DEAD: 440 case CPU_DEAD_FROZEN: 441 hrtick_clear(cpu_rq(cpu)); 442 return NOTIFY_OK; 443 } 444 445 return NOTIFY_DONE; 446 } 447 448 static __init void init_hrtick(void) 449 { 450 hotcpu_notifier(hotplug_hrtick, 0); 451 } 452 #else 453 /* 454 * Called to set the hrtick timer state. 455 * 456 * called with rq->lock held and irqs disabled 457 */ 458 void hrtick_start(struct rq *rq, u64 delay) 459 { 460 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 461 HRTIMER_MODE_REL_PINNED, 0); 462 } 463 464 static inline void init_hrtick(void) 465 { 466 } 467 #endif /* CONFIG_SMP */ 468 469 static void init_rq_hrtick(struct rq *rq) 470 { 471 #ifdef CONFIG_SMP 472 rq->hrtick_csd_pending = 0; 473 474 rq->hrtick_csd.flags = 0; 475 rq->hrtick_csd.func = __hrtick_start; 476 rq->hrtick_csd.info = rq; 477 #endif 478 479 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 480 rq->hrtick_timer.function = hrtick; 481 } 482 #else /* CONFIG_SCHED_HRTICK */ 483 static inline void hrtick_clear(struct rq *rq) 484 { 485 } 486 487 static inline void init_rq_hrtick(struct rq *rq) 488 { 489 } 490 491 static inline void init_hrtick(void) 492 { 493 } 494 #endif /* CONFIG_SCHED_HRTICK */ 495 496 /* 497 * resched_task - mark a task 'to be rescheduled now'. 498 * 499 * On UP this means the setting of the need_resched flag, on SMP it 500 * might also involve a cross-CPU call to trigger the scheduler on 501 * the target CPU. 502 */ 503 #ifdef CONFIG_SMP 504 505 #ifndef tsk_is_polling 506 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) 507 #endif 508 509 void resched_task(struct task_struct *p) 510 { 511 int cpu; 512 513 assert_raw_spin_locked(&task_rq(p)->lock); 514 515 if (test_tsk_need_resched(p)) 516 return; 517 518 set_tsk_need_resched(p); 519 520 cpu = task_cpu(p); 521 if (cpu == smp_processor_id()) 522 return; 523 524 /* NEED_RESCHED must be visible before we test polling */ 525 smp_mb(); 526 if (!tsk_is_polling(p)) 527 smp_send_reschedule(cpu); 528 } 529 530 void resched_cpu(int cpu) 531 { 532 struct rq *rq = cpu_rq(cpu); 533 unsigned long flags; 534 535 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 536 return; 537 resched_task(cpu_curr(cpu)); 538 raw_spin_unlock_irqrestore(&rq->lock, flags); 539 } 540 541 #ifdef CONFIG_NO_HZ 542 /* 543 * In the semi idle case, use the nearest busy cpu for migrating timers 544 * from an idle cpu. This is good for power-savings. 545 * 546 * We don't do similar optimization for completely idle system, as 547 * selecting an idle cpu will add more delays to the timers than intended 548 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 549 */ 550 int get_nohz_timer_target(void) 551 { 552 int cpu = smp_processor_id(); 553 int i; 554 struct sched_domain *sd; 555 556 rcu_read_lock(); 557 for_each_domain(cpu, sd) { 558 for_each_cpu(i, sched_domain_span(sd)) { 559 if (!idle_cpu(i)) { 560 cpu = i; 561 goto unlock; 562 } 563 } 564 } 565 unlock: 566 rcu_read_unlock(); 567 return cpu; 568 } 569 /* 570 * When add_timer_on() enqueues a timer into the timer wheel of an 571 * idle CPU then this timer might expire before the next timer event 572 * which is scheduled to wake up that CPU. In case of a completely 573 * idle system the next event might even be infinite time into the 574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 575 * leaves the inner idle loop so the newly added timer is taken into 576 * account when the CPU goes back to idle and evaluates the timer 577 * wheel for the next timer event. 578 */ 579 void wake_up_idle_cpu(int cpu) 580 { 581 struct rq *rq = cpu_rq(cpu); 582 583 if (cpu == smp_processor_id()) 584 return; 585 586 /* 587 * This is safe, as this function is called with the timer 588 * wheel base lock of (cpu) held. When the CPU is on the way 589 * to idle and has not yet set rq->curr to idle then it will 590 * be serialized on the timer wheel base lock and take the new 591 * timer into account automatically. 592 */ 593 if (rq->curr != rq->idle) 594 return; 595 596 /* 597 * We can set TIF_RESCHED on the idle task of the other CPU 598 * lockless. The worst case is that the other CPU runs the 599 * idle task through an additional NOOP schedule() 600 */ 601 set_tsk_need_resched(rq->idle); 602 603 /* NEED_RESCHED must be visible before we test polling */ 604 smp_mb(); 605 if (!tsk_is_polling(rq->idle)) 606 smp_send_reschedule(cpu); 607 } 608 609 static inline bool got_nohz_idle_kick(void) 610 { 611 int cpu = smp_processor_id(); 612 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 613 } 614 615 #else /* CONFIG_NO_HZ */ 616 617 static inline bool got_nohz_idle_kick(void) 618 { 619 return false; 620 } 621 622 #endif /* CONFIG_NO_HZ */ 623 624 void sched_avg_update(struct rq *rq) 625 { 626 s64 period = sched_avg_period(); 627 628 while ((s64)(rq->clock - rq->age_stamp) > period) { 629 /* 630 * Inline assembly required to prevent the compiler 631 * optimising this loop into a divmod call. 632 * See __iter_div_u64_rem() for another example of this. 633 */ 634 asm("" : "+rm" (rq->age_stamp)); 635 rq->age_stamp += period; 636 rq->rt_avg /= 2; 637 } 638 } 639 640 #else /* !CONFIG_SMP */ 641 void resched_task(struct task_struct *p) 642 { 643 assert_raw_spin_locked(&task_rq(p)->lock); 644 set_tsk_need_resched(p); 645 } 646 #endif /* CONFIG_SMP */ 647 648 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 650 /* 651 * Iterate task_group tree rooted at *from, calling @down when first entering a 652 * node and @up when leaving it for the final time. 653 * 654 * Caller must hold rcu_lock or sufficient equivalent. 655 */ 656 int walk_tg_tree_from(struct task_group *from, 657 tg_visitor down, tg_visitor up, void *data) 658 { 659 struct task_group *parent, *child; 660 int ret; 661 662 parent = from; 663 664 down: 665 ret = (*down)(parent, data); 666 if (ret) 667 goto out; 668 list_for_each_entry_rcu(child, &parent->children, siblings) { 669 parent = child; 670 goto down; 671 672 up: 673 continue; 674 } 675 ret = (*up)(parent, data); 676 if (ret || parent == from) 677 goto out; 678 679 child = parent; 680 parent = parent->parent; 681 if (parent) 682 goto up; 683 out: 684 return ret; 685 } 686 687 int tg_nop(struct task_group *tg, void *data) 688 { 689 return 0; 690 } 691 #endif 692 693 void update_cpu_load(struct rq *this_rq); 694 695 static void set_load_weight(struct task_struct *p) 696 { 697 int prio = p->static_prio - MAX_RT_PRIO; 698 struct load_weight *load = &p->se.load; 699 700 /* 701 * SCHED_IDLE tasks get minimal weight: 702 */ 703 if (p->policy == SCHED_IDLE) { 704 load->weight = scale_load(WEIGHT_IDLEPRIO); 705 load->inv_weight = WMULT_IDLEPRIO; 706 return; 707 } 708 709 load->weight = scale_load(prio_to_weight[prio]); 710 load->inv_weight = prio_to_wmult[prio]; 711 } 712 713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 714 { 715 update_rq_clock(rq); 716 sched_info_queued(p); 717 p->sched_class->enqueue_task(rq, p, flags); 718 } 719 720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 721 { 722 update_rq_clock(rq); 723 sched_info_dequeued(p); 724 p->sched_class->dequeue_task(rq, p, flags); 725 } 726 727 void activate_task(struct rq *rq, struct task_struct *p, int flags) 728 { 729 if (task_contributes_to_load(p)) 730 rq->nr_uninterruptible--; 731 732 enqueue_task(rq, p, flags); 733 } 734 735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 736 { 737 if (task_contributes_to_load(p)) 738 rq->nr_uninterruptible++; 739 740 dequeue_task(rq, p, flags); 741 } 742 743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 744 745 /* 746 * There are no locks covering percpu hardirq/softirq time. 747 * They are only modified in account_system_vtime, on corresponding CPU 748 * with interrupts disabled. So, writes are safe. 749 * They are read and saved off onto struct rq in update_rq_clock(). 750 * This may result in other CPU reading this CPU's irq time and can 751 * race with irq/account_system_vtime on this CPU. We would either get old 752 * or new value with a side effect of accounting a slice of irq time to wrong 753 * task when irq is in progress while we read rq->clock. That is a worthy 754 * compromise in place of having locks on each irq in account_system_time. 755 */ 756 static DEFINE_PER_CPU(u64, cpu_hardirq_time); 757 static DEFINE_PER_CPU(u64, cpu_softirq_time); 758 759 static DEFINE_PER_CPU(u64, irq_start_time); 760 static int sched_clock_irqtime; 761 762 void enable_sched_clock_irqtime(void) 763 { 764 sched_clock_irqtime = 1; 765 } 766 767 void disable_sched_clock_irqtime(void) 768 { 769 sched_clock_irqtime = 0; 770 } 771 772 #ifndef CONFIG_64BIT 773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq); 774 775 static inline void irq_time_write_begin(void) 776 { 777 __this_cpu_inc(irq_time_seq.sequence); 778 smp_wmb(); 779 } 780 781 static inline void irq_time_write_end(void) 782 { 783 smp_wmb(); 784 __this_cpu_inc(irq_time_seq.sequence); 785 } 786 787 static inline u64 irq_time_read(int cpu) 788 { 789 u64 irq_time; 790 unsigned seq; 791 792 do { 793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 794 irq_time = per_cpu(cpu_softirq_time, cpu) + 795 per_cpu(cpu_hardirq_time, cpu); 796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 797 798 return irq_time; 799 } 800 #else /* CONFIG_64BIT */ 801 static inline void irq_time_write_begin(void) 802 { 803 } 804 805 static inline void irq_time_write_end(void) 806 { 807 } 808 809 static inline u64 irq_time_read(int cpu) 810 { 811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 812 } 813 #endif /* CONFIG_64BIT */ 814 815 /* 816 * Called before incrementing preempt_count on {soft,}irq_enter 817 * and before decrementing preempt_count on {soft,}irq_exit. 818 */ 819 void account_system_vtime(struct task_struct *curr) 820 { 821 unsigned long flags; 822 s64 delta; 823 int cpu; 824 825 if (!sched_clock_irqtime) 826 return; 827 828 local_irq_save(flags); 829 830 cpu = smp_processor_id(); 831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 832 __this_cpu_add(irq_start_time, delta); 833 834 irq_time_write_begin(); 835 /* 836 * We do not account for softirq time from ksoftirqd here. 837 * We want to continue accounting softirq time to ksoftirqd thread 838 * in that case, so as not to confuse scheduler with a special task 839 * that do not consume any time, but still wants to run. 840 */ 841 if (hardirq_count()) 842 __this_cpu_add(cpu_hardirq_time, delta); 843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 844 __this_cpu_add(cpu_softirq_time, delta); 845 846 irq_time_write_end(); 847 local_irq_restore(flags); 848 } 849 EXPORT_SYMBOL_GPL(account_system_vtime); 850 851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 852 853 #ifdef CONFIG_PARAVIRT 854 static inline u64 steal_ticks(u64 steal) 855 { 856 if (unlikely(steal > NSEC_PER_SEC)) 857 return div_u64(steal, TICK_NSEC); 858 859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal); 860 } 861 #endif 862 863 static void update_rq_clock_task(struct rq *rq, s64 delta) 864 { 865 /* 866 * In theory, the compile should just see 0 here, and optimize out the call 867 * to sched_rt_avg_update. But I don't trust it... 868 */ 869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 870 s64 steal = 0, irq_delta = 0; 871 #endif 872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 874 875 /* 876 * Since irq_time is only updated on {soft,}irq_exit, we might run into 877 * this case when a previous update_rq_clock() happened inside a 878 * {soft,}irq region. 879 * 880 * When this happens, we stop ->clock_task and only update the 881 * prev_irq_time stamp to account for the part that fit, so that a next 882 * update will consume the rest. This ensures ->clock_task is 883 * monotonic. 884 * 885 * It does however cause some slight miss-attribution of {soft,}irq 886 * time, a more accurate solution would be to update the irq_time using 887 * the current rq->clock timestamp, except that would require using 888 * atomic ops. 889 */ 890 if (irq_delta > delta) 891 irq_delta = delta; 892 893 rq->prev_irq_time += irq_delta; 894 delta -= irq_delta; 895 #endif 896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 897 if (static_branch((¶virt_steal_rq_enabled))) { 898 u64 st; 899 900 steal = paravirt_steal_clock(cpu_of(rq)); 901 steal -= rq->prev_steal_time_rq; 902 903 if (unlikely(steal > delta)) 904 steal = delta; 905 906 st = steal_ticks(steal); 907 steal = st * TICK_NSEC; 908 909 rq->prev_steal_time_rq += steal; 910 911 delta -= steal; 912 } 913 #endif 914 915 rq->clock_task += delta; 916 917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 919 sched_rt_avg_update(rq, irq_delta + steal); 920 #endif 921 } 922 923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 924 static int irqtime_account_hi_update(void) 925 { 926 u64 *cpustat = kcpustat_this_cpu->cpustat; 927 unsigned long flags; 928 u64 latest_ns; 929 int ret = 0; 930 931 local_irq_save(flags); 932 latest_ns = this_cpu_read(cpu_hardirq_time); 933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) 934 ret = 1; 935 local_irq_restore(flags); 936 return ret; 937 } 938 939 static int irqtime_account_si_update(void) 940 { 941 u64 *cpustat = kcpustat_this_cpu->cpustat; 942 unsigned long flags; 943 u64 latest_ns; 944 int ret = 0; 945 946 local_irq_save(flags); 947 latest_ns = this_cpu_read(cpu_softirq_time); 948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) 949 ret = 1; 950 local_irq_restore(flags); 951 return ret; 952 } 953 954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 955 956 #define sched_clock_irqtime (0) 957 958 #endif 959 960 void sched_set_stop_task(int cpu, struct task_struct *stop) 961 { 962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 963 struct task_struct *old_stop = cpu_rq(cpu)->stop; 964 965 if (stop) { 966 /* 967 * Make it appear like a SCHED_FIFO task, its something 968 * userspace knows about and won't get confused about. 969 * 970 * Also, it will make PI more or less work without too 971 * much confusion -- but then, stop work should not 972 * rely on PI working anyway. 973 */ 974 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 975 976 stop->sched_class = &stop_sched_class; 977 } 978 979 cpu_rq(cpu)->stop = stop; 980 981 if (old_stop) { 982 /* 983 * Reset it back to a normal scheduling class so that 984 * it can die in pieces. 985 */ 986 old_stop->sched_class = &rt_sched_class; 987 } 988 } 989 990 /* 991 * __normal_prio - return the priority that is based on the static prio 992 */ 993 static inline int __normal_prio(struct task_struct *p) 994 { 995 return p->static_prio; 996 } 997 998 /* 999 * Calculate the expected normal priority: i.e. priority 1000 * without taking RT-inheritance into account. Might be 1001 * boosted by interactivity modifiers. Changes upon fork, 1002 * setprio syscalls, and whenever the interactivity 1003 * estimator recalculates. 1004 */ 1005 static inline int normal_prio(struct task_struct *p) 1006 { 1007 int prio; 1008 1009 if (task_has_rt_policy(p)) 1010 prio = MAX_RT_PRIO-1 - p->rt_priority; 1011 else 1012 prio = __normal_prio(p); 1013 return prio; 1014 } 1015 1016 /* 1017 * Calculate the current priority, i.e. the priority 1018 * taken into account by the scheduler. This value might 1019 * be boosted by RT tasks, or might be boosted by 1020 * interactivity modifiers. Will be RT if the task got 1021 * RT-boosted. If not then it returns p->normal_prio. 1022 */ 1023 static int effective_prio(struct task_struct *p) 1024 { 1025 p->normal_prio = normal_prio(p); 1026 /* 1027 * If we are RT tasks or we were boosted to RT priority, 1028 * keep the priority unchanged. Otherwise, update priority 1029 * to the normal priority: 1030 */ 1031 if (!rt_prio(p->prio)) 1032 return p->normal_prio; 1033 return p->prio; 1034 } 1035 1036 /** 1037 * task_curr - is this task currently executing on a CPU? 1038 * @p: the task in question. 1039 */ 1040 inline int task_curr(const struct task_struct *p) 1041 { 1042 return cpu_curr(task_cpu(p)) == p; 1043 } 1044 1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1046 const struct sched_class *prev_class, 1047 int oldprio) 1048 { 1049 if (prev_class != p->sched_class) { 1050 if (prev_class->switched_from) 1051 prev_class->switched_from(rq, p); 1052 p->sched_class->switched_to(rq, p); 1053 } else if (oldprio != p->prio) 1054 p->sched_class->prio_changed(rq, p, oldprio); 1055 } 1056 1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1058 { 1059 const struct sched_class *class; 1060 1061 if (p->sched_class == rq->curr->sched_class) { 1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1063 } else { 1064 for_each_class(class) { 1065 if (class == rq->curr->sched_class) 1066 break; 1067 if (class == p->sched_class) { 1068 resched_task(rq->curr); 1069 break; 1070 } 1071 } 1072 } 1073 1074 /* 1075 * A queue event has occurred, and we're going to schedule. In 1076 * this case, we can save a useless back to back clock update. 1077 */ 1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 1079 rq->skip_clock_update = 1; 1080 } 1081 1082 #ifdef CONFIG_SMP 1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1084 { 1085 #ifdef CONFIG_SCHED_DEBUG 1086 /* 1087 * We should never call set_task_cpu() on a blocked task, 1088 * ttwu() will sort out the placement. 1089 */ 1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 1092 1093 #ifdef CONFIG_LOCKDEP 1094 /* 1095 * The caller should hold either p->pi_lock or rq->lock, when changing 1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1097 * 1098 * sched_move_task() holds both and thus holding either pins the cgroup, 1099 * see set_task_rq(). 1100 * 1101 * Furthermore, all task_rq users should acquire both locks, see 1102 * task_rq_lock(). 1103 */ 1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1105 lockdep_is_held(&task_rq(p)->lock))); 1106 #endif 1107 #endif 1108 1109 trace_sched_migrate_task(p, new_cpu); 1110 1111 if (task_cpu(p) != new_cpu) { 1112 p->se.nr_migrations++; 1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1114 } 1115 1116 __set_task_cpu(p, new_cpu); 1117 } 1118 1119 struct migration_arg { 1120 struct task_struct *task; 1121 int dest_cpu; 1122 }; 1123 1124 static int migration_cpu_stop(void *data); 1125 1126 /* 1127 * wait_task_inactive - wait for a thread to unschedule. 1128 * 1129 * If @match_state is nonzero, it's the @p->state value just checked and 1130 * not expected to change. If it changes, i.e. @p might have woken up, 1131 * then return zero. When we succeed in waiting for @p to be off its CPU, 1132 * we return a positive number (its total switch count). If a second call 1133 * a short while later returns the same number, the caller can be sure that 1134 * @p has remained unscheduled the whole time. 1135 * 1136 * The caller must ensure that the task *will* unschedule sometime soon, 1137 * else this function might spin for a *long* time. This function can't 1138 * be called with interrupts off, or it may introduce deadlock with 1139 * smp_call_function() if an IPI is sent by the same process we are 1140 * waiting to become inactive. 1141 */ 1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1143 { 1144 unsigned long flags; 1145 int running, on_rq; 1146 unsigned long ncsw; 1147 struct rq *rq; 1148 1149 for (;;) { 1150 /* 1151 * We do the initial early heuristics without holding 1152 * any task-queue locks at all. We'll only try to get 1153 * the runqueue lock when things look like they will 1154 * work out! 1155 */ 1156 rq = task_rq(p); 1157 1158 /* 1159 * If the task is actively running on another CPU 1160 * still, just relax and busy-wait without holding 1161 * any locks. 1162 * 1163 * NOTE! Since we don't hold any locks, it's not 1164 * even sure that "rq" stays as the right runqueue! 1165 * But we don't care, since "task_running()" will 1166 * return false if the runqueue has changed and p 1167 * is actually now running somewhere else! 1168 */ 1169 while (task_running(rq, p)) { 1170 if (match_state && unlikely(p->state != match_state)) 1171 return 0; 1172 cpu_relax(); 1173 } 1174 1175 /* 1176 * Ok, time to look more closely! We need the rq 1177 * lock now, to be *sure*. If we're wrong, we'll 1178 * just go back and repeat. 1179 */ 1180 rq = task_rq_lock(p, &flags); 1181 trace_sched_wait_task(p); 1182 running = task_running(rq, p); 1183 on_rq = p->on_rq; 1184 ncsw = 0; 1185 if (!match_state || p->state == match_state) 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1187 task_rq_unlock(rq, p, &flags); 1188 1189 /* 1190 * If it changed from the expected state, bail out now. 1191 */ 1192 if (unlikely(!ncsw)) 1193 break; 1194 1195 /* 1196 * Was it really running after all now that we 1197 * checked with the proper locks actually held? 1198 * 1199 * Oops. Go back and try again.. 1200 */ 1201 if (unlikely(running)) { 1202 cpu_relax(); 1203 continue; 1204 } 1205 1206 /* 1207 * It's not enough that it's not actively running, 1208 * it must be off the runqueue _entirely_, and not 1209 * preempted! 1210 * 1211 * So if it was still runnable (but just not actively 1212 * running right now), it's preempted, and we should 1213 * yield - it could be a while. 1214 */ 1215 if (unlikely(on_rq)) { 1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1217 1218 set_current_state(TASK_UNINTERRUPTIBLE); 1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1220 continue; 1221 } 1222 1223 /* 1224 * Ahh, all good. It wasn't running, and it wasn't 1225 * runnable, which means that it will never become 1226 * running in the future either. We're all done! 1227 */ 1228 break; 1229 } 1230 1231 return ncsw; 1232 } 1233 1234 /*** 1235 * kick_process - kick a running thread to enter/exit the kernel 1236 * @p: the to-be-kicked thread 1237 * 1238 * Cause a process which is running on another CPU to enter 1239 * kernel-mode, without any delay. (to get signals handled.) 1240 * 1241 * NOTE: this function doesn't have to take the runqueue lock, 1242 * because all it wants to ensure is that the remote task enters 1243 * the kernel. If the IPI races and the task has been migrated 1244 * to another CPU then no harm is done and the purpose has been 1245 * achieved as well. 1246 */ 1247 void kick_process(struct task_struct *p) 1248 { 1249 int cpu; 1250 1251 preempt_disable(); 1252 cpu = task_cpu(p); 1253 if ((cpu != smp_processor_id()) && task_curr(p)) 1254 smp_send_reschedule(cpu); 1255 preempt_enable(); 1256 } 1257 EXPORT_SYMBOL_GPL(kick_process); 1258 #endif /* CONFIG_SMP */ 1259 1260 #ifdef CONFIG_SMP 1261 /* 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1263 */ 1264 static int select_fallback_rq(int cpu, struct task_struct *p) 1265 { 1266 int dest_cpu; 1267 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); 1268 1269 /* Look for allowed, online CPU in same node. */ 1270 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) 1271 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1272 return dest_cpu; 1273 1274 /* Any allowed, online CPU? */ 1275 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask); 1276 if (dest_cpu < nr_cpu_ids) 1277 return dest_cpu; 1278 1279 /* No more Mr. Nice Guy. */ 1280 dest_cpu = cpuset_cpus_allowed_fallback(p); 1281 /* 1282 * Don't tell them about moving exiting tasks or 1283 * kernel threads (both mm NULL), since they never 1284 * leave kernel. 1285 */ 1286 if (p->mm && printk_ratelimit()) { 1287 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n", 1288 task_pid_nr(p), p->comm, cpu); 1289 } 1290 1291 return dest_cpu; 1292 } 1293 1294 /* 1295 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1296 */ 1297 static inline 1298 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1299 { 1300 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1301 1302 /* 1303 * In order not to call set_task_cpu() on a blocking task we need 1304 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1305 * cpu. 1306 * 1307 * Since this is common to all placement strategies, this lives here. 1308 * 1309 * [ this allows ->select_task() to simply return task_cpu(p) and 1310 * not worry about this generic constraint ] 1311 */ 1312 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1313 !cpu_online(cpu))) 1314 cpu = select_fallback_rq(task_cpu(p), p); 1315 1316 return cpu; 1317 } 1318 1319 static void update_avg(u64 *avg, u64 sample) 1320 { 1321 s64 diff = sample - *avg; 1322 *avg += diff >> 3; 1323 } 1324 #endif 1325 1326 static void 1327 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1328 { 1329 #ifdef CONFIG_SCHEDSTATS 1330 struct rq *rq = this_rq(); 1331 1332 #ifdef CONFIG_SMP 1333 int this_cpu = smp_processor_id(); 1334 1335 if (cpu == this_cpu) { 1336 schedstat_inc(rq, ttwu_local); 1337 schedstat_inc(p, se.statistics.nr_wakeups_local); 1338 } else { 1339 struct sched_domain *sd; 1340 1341 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1342 rcu_read_lock(); 1343 for_each_domain(this_cpu, sd) { 1344 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1345 schedstat_inc(sd, ttwu_wake_remote); 1346 break; 1347 } 1348 } 1349 rcu_read_unlock(); 1350 } 1351 1352 if (wake_flags & WF_MIGRATED) 1353 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1354 1355 #endif /* CONFIG_SMP */ 1356 1357 schedstat_inc(rq, ttwu_count); 1358 schedstat_inc(p, se.statistics.nr_wakeups); 1359 1360 if (wake_flags & WF_SYNC) 1361 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1362 1363 #endif /* CONFIG_SCHEDSTATS */ 1364 } 1365 1366 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1367 { 1368 activate_task(rq, p, en_flags); 1369 p->on_rq = 1; 1370 1371 /* if a worker is waking up, notify workqueue */ 1372 if (p->flags & PF_WQ_WORKER) 1373 wq_worker_waking_up(p, cpu_of(rq)); 1374 } 1375 1376 /* 1377 * Mark the task runnable and perform wakeup-preemption. 1378 */ 1379 static void 1380 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1381 { 1382 trace_sched_wakeup(p, true); 1383 check_preempt_curr(rq, p, wake_flags); 1384 1385 p->state = TASK_RUNNING; 1386 #ifdef CONFIG_SMP 1387 if (p->sched_class->task_woken) 1388 p->sched_class->task_woken(rq, p); 1389 1390 if (rq->idle_stamp) { 1391 u64 delta = rq->clock - rq->idle_stamp; 1392 u64 max = 2*sysctl_sched_migration_cost; 1393 1394 if (delta > max) 1395 rq->avg_idle = max; 1396 else 1397 update_avg(&rq->avg_idle, delta); 1398 rq->idle_stamp = 0; 1399 } 1400 #endif 1401 } 1402 1403 static void 1404 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1405 { 1406 #ifdef CONFIG_SMP 1407 if (p->sched_contributes_to_load) 1408 rq->nr_uninterruptible--; 1409 #endif 1410 1411 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1412 ttwu_do_wakeup(rq, p, wake_flags); 1413 } 1414 1415 /* 1416 * Called in case the task @p isn't fully descheduled from its runqueue, 1417 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1418 * since all we need to do is flip p->state to TASK_RUNNING, since 1419 * the task is still ->on_rq. 1420 */ 1421 static int ttwu_remote(struct task_struct *p, int wake_flags) 1422 { 1423 struct rq *rq; 1424 int ret = 0; 1425 1426 rq = __task_rq_lock(p); 1427 if (p->on_rq) { 1428 ttwu_do_wakeup(rq, p, wake_flags); 1429 ret = 1; 1430 } 1431 __task_rq_unlock(rq); 1432 1433 return ret; 1434 } 1435 1436 #ifdef CONFIG_SMP 1437 static void sched_ttwu_pending(void) 1438 { 1439 struct rq *rq = this_rq(); 1440 struct llist_node *llist = llist_del_all(&rq->wake_list); 1441 struct task_struct *p; 1442 1443 raw_spin_lock(&rq->lock); 1444 1445 while (llist) { 1446 p = llist_entry(llist, struct task_struct, wake_entry); 1447 llist = llist_next(llist); 1448 ttwu_do_activate(rq, p, 0); 1449 } 1450 1451 raw_spin_unlock(&rq->lock); 1452 } 1453 1454 void scheduler_ipi(void) 1455 { 1456 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1457 return; 1458 1459 /* 1460 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1461 * traditionally all their work was done from the interrupt return 1462 * path. Now that we actually do some work, we need to make sure 1463 * we do call them. 1464 * 1465 * Some archs already do call them, luckily irq_enter/exit nest 1466 * properly. 1467 * 1468 * Arguably we should visit all archs and update all handlers, 1469 * however a fair share of IPIs are still resched only so this would 1470 * somewhat pessimize the simple resched case. 1471 */ 1472 irq_enter(); 1473 sched_ttwu_pending(); 1474 1475 /* 1476 * Check if someone kicked us for doing the nohz idle load balance. 1477 */ 1478 if (unlikely(got_nohz_idle_kick() && !need_resched())) { 1479 this_rq()->idle_balance = 1; 1480 raise_softirq_irqoff(SCHED_SOFTIRQ); 1481 } 1482 irq_exit(); 1483 } 1484 1485 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1486 { 1487 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1488 smp_send_reschedule(cpu); 1489 } 1490 1491 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1492 static int ttwu_activate_remote(struct task_struct *p, int wake_flags) 1493 { 1494 struct rq *rq; 1495 int ret = 0; 1496 1497 rq = __task_rq_lock(p); 1498 if (p->on_cpu) { 1499 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1500 ttwu_do_wakeup(rq, p, wake_flags); 1501 ret = 1; 1502 } 1503 __task_rq_unlock(rq); 1504 1505 return ret; 1506 1507 } 1508 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1509 1510 static inline int ttwu_share_cache(int this_cpu, int that_cpu) 1511 { 1512 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1513 } 1514 #endif /* CONFIG_SMP */ 1515 1516 static void ttwu_queue(struct task_struct *p, int cpu) 1517 { 1518 struct rq *rq = cpu_rq(cpu); 1519 1520 #if defined(CONFIG_SMP) 1521 if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) { 1522 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1523 ttwu_queue_remote(p, cpu); 1524 return; 1525 } 1526 #endif 1527 1528 raw_spin_lock(&rq->lock); 1529 ttwu_do_activate(rq, p, 0); 1530 raw_spin_unlock(&rq->lock); 1531 } 1532 1533 /** 1534 * try_to_wake_up - wake up a thread 1535 * @p: the thread to be awakened 1536 * @state: the mask of task states that can be woken 1537 * @wake_flags: wake modifier flags (WF_*) 1538 * 1539 * Put it on the run-queue if it's not already there. The "current" 1540 * thread is always on the run-queue (except when the actual 1541 * re-schedule is in progress), and as such you're allowed to do 1542 * the simpler "current->state = TASK_RUNNING" to mark yourself 1543 * runnable without the overhead of this. 1544 * 1545 * Returns %true if @p was woken up, %false if it was already running 1546 * or @state didn't match @p's state. 1547 */ 1548 static int 1549 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1550 { 1551 unsigned long flags; 1552 int cpu, success = 0; 1553 1554 smp_wmb(); 1555 raw_spin_lock_irqsave(&p->pi_lock, flags); 1556 if (!(p->state & state)) 1557 goto out; 1558 1559 success = 1; /* we're going to change ->state */ 1560 cpu = task_cpu(p); 1561 1562 if (p->on_rq && ttwu_remote(p, wake_flags)) 1563 goto stat; 1564 1565 #ifdef CONFIG_SMP 1566 /* 1567 * If the owning (remote) cpu is still in the middle of schedule() with 1568 * this task as prev, wait until its done referencing the task. 1569 */ 1570 while (p->on_cpu) { 1571 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1572 /* 1573 * In case the architecture enables interrupts in 1574 * context_switch(), we cannot busy wait, since that 1575 * would lead to deadlocks when an interrupt hits and 1576 * tries to wake up @prev. So bail and do a complete 1577 * remote wakeup. 1578 */ 1579 if (ttwu_activate_remote(p, wake_flags)) 1580 goto stat; 1581 #else 1582 cpu_relax(); 1583 #endif 1584 } 1585 /* 1586 * Pairs with the smp_wmb() in finish_lock_switch(). 1587 */ 1588 smp_rmb(); 1589 1590 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1591 p->state = TASK_WAKING; 1592 1593 if (p->sched_class->task_waking) 1594 p->sched_class->task_waking(p); 1595 1596 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1597 if (task_cpu(p) != cpu) { 1598 wake_flags |= WF_MIGRATED; 1599 set_task_cpu(p, cpu); 1600 } 1601 #endif /* CONFIG_SMP */ 1602 1603 ttwu_queue(p, cpu); 1604 stat: 1605 ttwu_stat(p, cpu, wake_flags); 1606 out: 1607 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1608 1609 return success; 1610 } 1611 1612 /** 1613 * try_to_wake_up_local - try to wake up a local task with rq lock held 1614 * @p: the thread to be awakened 1615 * 1616 * Put @p on the run-queue if it's not already there. The caller must 1617 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1618 * the current task. 1619 */ 1620 static void try_to_wake_up_local(struct task_struct *p) 1621 { 1622 struct rq *rq = task_rq(p); 1623 1624 BUG_ON(rq != this_rq()); 1625 BUG_ON(p == current); 1626 lockdep_assert_held(&rq->lock); 1627 1628 if (!raw_spin_trylock(&p->pi_lock)) { 1629 raw_spin_unlock(&rq->lock); 1630 raw_spin_lock(&p->pi_lock); 1631 raw_spin_lock(&rq->lock); 1632 } 1633 1634 if (!(p->state & TASK_NORMAL)) 1635 goto out; 1636 1637 if (!p->on_rq) 1638 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1639 1640 ttwu_do_wakeup(rq, p, 0); 1641 ttwu_stat(p, smp_processor_id(), 0); 1642 out: 1643 raw_spin_unlock(&p->pi_lock); 1644 } 1645 1646 /** 1647 * wake_up_process - Wake up a specific process 1648 * @p: The process to be woken up. 1649 * 1650 * Attempt to wake up the nominated process and move it to the set of runnable 1651 * processes. Returns 1 if the process was woken up, 0 if it was already 1652 * running. 1653 * 1654 * It may be assumed that this function implies a write memory barrier before 1655 * changing the task state if and only if any tasks are woken up. 1656 */ 1657 int wake_up_process(struct task_struct *p) 1658 { 1659 return try_to_wake_up(p, TASK_ALL, 0); 1660 } 1661 EXPORT_SYMBOL(wake_up_process); 1662 1663 int wake_up_state(struct task_struct *p, unsigned int state) 1664 { 1665 return try_to_wake_up(p, state, 0); 1666 } 1667 1668 /* 1669 * Perform scheduler related setup for a newly forked process p. 1670 * p is forked by current. 1671 * 1672 * __sched_fork() is basic setup used by init_idle() too: 1673 */ 1674 static void __sched_fork(struct task_struct *p) 1675 { 1676 p->on_rq = 0; 1677 1678 p->se.on_rq = 0; 1679 p->se.exec_start = 0; 1680 p->se.sum_exec_runtime = 0; 1681 p->se.prev_sum_exec_runtime = 0; 1682 p->se.nr_migrations = 0; 1683 p->se.vruntime = 0; 1684 INIT_LIST_HEAD(&p->se.group_node); 1685 1686 #ifdef CONFIG_SCHEDSTATS 1687 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1688 #endif 1689 1690 INIT_LIST_HEAD(&p->rt.run_list); 1691 1692 #ifdef CONFIG_PREEMPT_NOTIFIERS 1693 INIT_HLIST_HEAD(&p->preempt_notifiers); 1694 #endif 1695 } 1696 1697 /* 1698 * fork()/clone()-time setup: 1699 */ 1700 void sched_fork(struct task_struct *p) 1701 { 1702 unsigned long flags; 1703 int cpu = get_cpu(); 1704 1705 __sched_fork(p); 1706 /* 1707 * We mark the process as running here. This guarantees that 1708 * nobody will actually run it, and a signal or other external 1709 * event cannot wake it up and insert it on the runqueue either. 1710 */ 1711 p->state = TASK_RUNNING; 1712 1713 /* 1714 * Make sure we do not leak PI boosting priority to the child. 1715 */ 1716 p->prio = current->normal_prio; 1717 1718 /* 1719 * Revert to default priority/policy on fork if requested. 1720 */ 1721 if (unlikely(p->sched_reset_on_fork)) { 1722 if (task_has_rt_policy(p)) { 1723 p->policy = SCHED_NORMAL; 1724 p->static_prio = NICE_TO_PRIO(0); 1725 p->rt_priority = 0; 1726 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1727 p->static_prio = NICE_TO_PRIO(0); 1728 1729 p->prio = p->normal_prio = __normal_prio(p); 1730 set_load_weight(p); 1731 1732 /* 1733 * We don't need the reset flag anymore after the fork. It has 1734 * fulfilled its duty: 1735 */ 1736 p->sched_reset_on_fork = 0; 1737 } 1738 1739 if (!rt_prio(p->prio)) 1740 p->sched_class = &fair_sched_class; 1741 1742 if (p->sched_class->task_fork) 1743 p->sched_class->task_fork(p); 1744 1745 /* 1746 * The child is not yet in the pid-hash so no cgroup attach races, 1747 * and the cgroup is pinned to this child due to cgroup_fork() 1748 * is ran before sched_fork(). 1749 * 1750 * Silence PROVE_RCU. 1751 */ 1752 raw_spin_lock_irqsave(&p->pi_lock, flags); 1753 set_task_cpu(p, cpu); 1754 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1755 1756 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1757 if (likely(sched_info_on())) 1758 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1759 #endif 1760 #if defined(CONFIG_SMP) 1761 p->on_cpu = 0; 1762 #endif 1763 #ifdef CONFIG_PREEMPT_COUNT 1764 /* Want to start with kernel preemption disabled. */ 1765 task_thread_info(p)->preempt_count = 1; 1766 #endif 1767 #ifdef CONFIG_SMP 1768 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1769 #endif 1770 1771 put_cpu(); 1772 } 1773 1774 /* 1775 * wake_up_new_task - wake up a newly created task for the first time. 1776 * 1777 * This function will do some initial scheduler statistics housekeeping 1778 * that must be done for every newly created context, then puts the task 1779 * on the runqueue and wakes it. 1780 */ 1781 void wake_up_new_task(struct task_struct *p) 1782 { 1783 unsigned long flags; 1784 struct rq *rq; 1785 1786 raw_spin_lock_irqsave(&p->pi_lock, flags); 1787 #ifdef CONFIG_SMP 1788 /* 1789 * Fork balancing, do it here and not earlier because: 1790 * - cpus_allowed can change in the fork path 1791 * - any previously selected cpu might disappear through hotplug 1792 */ 1793 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1794 #endif 1795 1796 rq = __task_rq_lock(p); 1797 activate_task(rq, p, 0); 1798 p->on_rq = 1; 1799 trace_sched_wakeup_new(p, true); 1800 check_preempt_curr(rq, p, WF_FORK); 1801 #ifdef CONFIG_SMP 1802 if (p->sched_class->task_woken) 1803 p->sched_class->task_woken(rq, p); 1804 #endif 1805 task_rq_unlock(rq, p, &flags); 1806 } 1807 1808 #ifdef CONFIG_PREEMPT_NOTIFIERS 1809 1810 /** 1811 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1812 * @notifier: notifier struct to register 1813 */ 1814 void preempt_notifier_register(struct preempt_notifier *notifier) 1815 { 1816 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1817 } 1818 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1819 1820 /** 1821 * preempt_notifier_unregister - no longer interested in preemption notifications 1822 * @notifier: notifier struct to unregister 1823 * 1824 * This is safe to call from within a preemption notifier. 1825 */ 1826 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1827 { 1828 hlist_del(¬ifier->link); 1829 } 1830 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1831 1832 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1833 { 1834 struct preempt_notifier *notifier; 1835 struct hlist_node *node; 1836 1837 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1838 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1839 } 1840 1841 static void 1842 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1843 struct task_struct *next) 1844 { 1845 struct preempt_notifier *notifier; 1846 struct hlist_node *node; 1847 1848 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1849 notifier->ops->sched_out(notifier, next); 1850 } 1851 1852 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1853 1854 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1855 { 1856 } 1857 1858 static void 1859 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1860 struct task_struct *next) 1861 { 1862 } 1863 1864 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1865 1866 /** 1867 * prepare_task_switch - prepare to switch tasks 1868 * @rq: the runqueue preparing to switch 1869 * @prev: the current task that is being switched out 1870 * @next: the task we are going to switch to. 1871 * 1872 * This is called with the rq lock held and interrupts off. It must 1873 * be paired with a subsequent finish_task_switch after the context 1874 * switch. 1875 * 1876 * prepare_task_switch sets up locking and calls architecture specific 1877 * hooks. 1878 */ 1879 static inline void 1880 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1881 struct task_struct *next) 1882 { 1883 sched_info_switch(prev, next); 1884 perf_event_task_sched_out(prev, next); 1885 fire_sched_out_preempt_notifiers(prev, next); 1886 prepare_lock_switch(rq, next); 1887 prepare_arch_switch(next); 1888 trace_sched_switch(prev, next); 1889 } 1890 1891 /** 1892 * finish_task_switch - clean up after a task-switch 1893 * @rq: runqueue associated with task-switch 1894 * @prev: the thread we just switched away from. 1895 * 1896 * finish_task_switch must be called after the context switch, paired 1897 * with a prepare_task_switch call before the context switch. 1898 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1899 * and do any other architecture-specific cleanup actions. 1900 * 1901 * Note that we may have delayed dropping an mm in context_switch(). If 1902 * so, we finish that here outside of the runqueue lock. (Doing it 1903 * with the lock held can cause deadlocks; see schedule() for 1904 * details.) 1905 */ 1906 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1907 __releases(rq->lock) 1908 { 1909 struct mm_struct *mm = rq->prev_mm; 1910 long prev_state; 1911 1912 rq->prev_mm = NULL; 1913 1914 /* 1915 * A task struct has one reference for the use as "current". 1916 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1917 * schedule one last time. The schedule call will never return, and 1918 * the scheduled task must drop that reference. 1919 * The test for TASK_DEAD must occur while the runqueue locks are 1920 * still held, otherwise prev could be scheduled on another cpu, die 1921 * there before we look at prev->state, and then the reference would 1922 * be dropped twice. 1923 * Manfred Spraul <manfred@colorfullife.com> 1924 */ 1925 prev_state = prev->state; 1926 finish_arch_switch(prev); 1927 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1928 local_irq_disable(); 1929 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1930 perf_event_task_sched_in(prev, current); 1931 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1932 local_irq_enable(); 1933 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1934 finish_lock_switch(rq, prev); 1935 trace_sched_stat_sleeptime(current, rq->clock); 1936 1937 fire_sched_in_preempt_notifiers(current); 1938 if (mm) 1939 mmdrop(mm); 1940 if (unlikely(prev_state == TASK_DEAD)) { 1941 /* 1942 * Remove function-return probe instances associated with this 1943 * task and put them back on the free list. 1944 */ 1945 kprobe_flush_task(prev); 1946 put_task_struct(prev); 1947 } 1948 } 1949 1950 #ifdef CONFIG_SMP 1951 1952 /* assumes rq->lock is held */ 1953 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1954 { 1955 if (prev->sched_class->pre_schedule) 1956 prev->sched_class->pre_schedule(rq, prev); 1957 } 1958 1959 /* rq->lock is NOT held, but preemption is disabled */ 1960 static inline void post_schedule(struct rq *rq) 1961 { 1962 if (rq->post_schedule) { 1963 unsigned long flags; 1964 1965 raw_spin_lock_irqsave(&rq->lock, flags); 1966 if (rq->curr->sched_class->post_schedule) 1967 rq->curr->sched_class->post_schedule(rq); 1968 raw_spin_unlock_irqrestore(&rq->lock, flags); 1969 1970 rq->post_schedule = 0; 1971 } 1972 } 1973 1974 #else 1975 1976 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 1977 { 1978 } 1979 1980 static inline void post_schedule(struct rq *rq) 1981 { 1982 } 1983 1984 #endif 1985 1986 /** 1987 * schedule_tail - first thing a freshly forked thread must call. 1988 * @prev: the thread we just switched away from. 1989 */ 1990 asmlinkage void schedule_tail(struct task_struct *prev) 1991 __releases(rq->lock) 1992 { 1993 struct rq *rq = this_rq(); 1994 1995 finish_task_switch(rq, prev); 1996 1997 /* 1998 * FIXME: do we need to worry about rq being invalidated by the 1999 * task_switch? 2000 */ 2001 post_schedule(rq); 2002 2003 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2004 /* In this case, finish_task_switch does not reenable preemption */ 2005 preempt_enable(); 2006 #endif 2007 if (current->set_child_tid) 2008 put_user(task_pid_vnr(current), current->set_child_tid); 2009 } 2010 2011 /* 2012 * context_switch - switch to the new MM and the new 2013 * thread's register state. 2014 */ 2015 static inline void 2016 context_switch(struct rq *rq, struct task_struct *prev, 2017 struct task_struct *next) 2018 { 2019 struct mm_struct *mm, *oldmm; 2020 2021 prepare_task_switch(rq, prev, next); 2022 2023 mm = next->mm; 2024 oldmm = prev->active_mm; 2025 /* 2026 * For paravirt, this is coupled with an exit in switch_to to 2027 * combine the page table reload and the switch backend into 2028 * one hypercall. 2029 */ 2030 arch_start_context_switch(prev); 2031 2032 if (!mm) { 2033 next->active_mm = oldmm; 2034 atomic_inc(&oldmm->mm_count); 2035 enter_lazy_tlb(oldmm, next); 2036 } else 2037 switch_mm(oldmm, mm, next); 2038 2039 if (!prev->mm) { 2040 prev->active_mm = NULL; 2041 rq->prev_mm = oldmm; 2042 } 2043 /* 2044 * Since the runqueue lock will be released by the next 2045 * task (which is an invalid locking op but in the case 2046 * of the scheduler it's an obvious special-case), so we 2047 * do an early lockdep release here: 2048 */ 2049 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2050 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2051 #endif 2052 2053 /* Here we just switch the register state and the stack. */ 2054 switch_to(prev, next, prev); 2055 2056 barrier(); 2057 /* 2058 * this_rq must be evaluated again because prev may have moved 2059 * CPUs since it called schedule(), thus the 'rq' on its stack 2060 * frame will be invalid. 2061 */ 2062 finish_task_switch(this_rq(), prev); 2063 } 2064 2065 /* 2066 * nr_running, nr_uninterruptible and nr_context_switches: 2067 * 2068 * externally visible scheduler statistics: current number of runnable 2069 * threads, current number of uninterruptible-sleeping threads, total 2070 * number of context switches performed since bootup. 2071 */ 2072 unsigned long nr_running(void) 2073 { 2074 unsigned long i, sum = 0; 2075 2076 for_each_online_cpu(i) 2077 sum += cpu_rq(i)->nr_running; 2078 2079 return sum; 2080 } 2081 2082 unsigned long nr_uninterruptible(void) 2083 { 2084 unsigned long i, sum = 0; 2085 2086 for_each_possible_cpu(i) 2087 sum += cpu_rq(i)->nr_uninterruptible; 2088 2089 /* 2090 * Since we read the counters lockless, it might be slightly 2091 * inaccurate. Do not allow it to go below zero though: 2092 */ 2093 if (unlikely((long)sum < 0)) 2094 sum = 0; 2095 2096 return sum; 2097 } 2098 2099 unsigned long long nr_context_switches(void) 2100 { 2101 int i; 2102 unsigned long long sum = 0; 2103 2104 for_each_possible_cpu(i) 2105 sum += cpu_rq(i)->nr_switches; 2106 2107 return sum; 2108 } 2109 2110 unsigned long nr_iowait(void) 2111 { 2112 unsigned long i, sum = 0; 2113 2114 for_each_possible_cpu(i) 2115 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2116 2117 return sum; 2118 } 2119 2120 unsigned long nr_iowait_cpu(int cpu) 2121 { 2122 struct rq *this = cpu_rq(cpu); 2123 return atomic_read(&this->nr_iowait); 2124 } 2125 2126 unsigned long this_cpu_load(void) 2127 { 2128 struct rq *this = this_rq(); 2129 return this->cpu_load[0]; 2130 } 2131 2132 2133 /* Variables and functions for calc_load */ 2134 static atomic_long_t calc_load_tasks; 2135 static unsigned long calc_load_update; 2136 unsigned long avenrun[3]; 2137 EXPORT_SYMBOL(avenrun); 2138 2139 static long calc_load_fold_active(struct rq *this_rq) 2140 { 2141 long nr_active, delta = 0; 2142 2143 nr_active = this_rq->nr_running; 2144 nr_active += (long) this_rq->nr_uninterruptible; 2145 2146 if (nr_active != this_rq->calc_load_active) { 2147 delta = nr_active - this_rq->calc_load_active; 2148 this_rq->calc_load_active = nr_active; 2149 } 2150 2151 return delta; 2152 } 2153 2154 static unsigned long 2155 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2156 { 2157 load *= exp; 2158 load += active * (FIXED_1 - exp); 2159 load += 1UL << (FSHIFT - 1); 2160 return load >> FSHIFT; 2161 } 2162 2163 #ifdef CONFIG_NO_HZ 2164 /* 2165 * For NO_HZ we delay the active fold to the next LOAD_FREQ update. 2166 * 2167 * When making the ILB scale, we should try to pull this in as well. 2168 */ 2169 static atomic_long_t calc_load_tasks_idle; 2170 2171 void calc_load_account_idle(struct rq *this_rq) 2172 { 2173 long delta; 2174 2175 delta = calc_load_fold_active(this_rq); 2176 if (delta) 2177 atomic_long_add(delta, &calc_load_tasks_idle); 2178 } 2179 2180 static long calc_load_fold_idle(void) 2181 { 2182 long delta = 0; 2183 2184 /* 2185 * Its got a race, we don't care... 2186 */ 2187 if (atomic_long_read(&calc_load_tasks_idle)) 2188 delta = atomic_long_xchg(&calc_load_tasks_idle, 0); 2189 2190 return delta; 2191 } 2192 2193 /** 2194 * fixed_power_int - compute: x^n, in O(log n) time 2195 * 2196 * @x: base of the power 2197 * @frac_bits: fractional bits of @x 2198 * @n: power to raise @x to. 2199 * 2200 * By exploiting the relation between the definition of the natural power 2201 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2202 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2203 * (where: n_i \elem {0, 1}, the binary vector representing n), 2204 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2205 * of course trivially computable in O(log_2 n), the length of our binary 2206 * vector. 2207 */ 2208 static unsigned long 2209 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2210 { 2211 unsigned long result = 1UL << frac_bits; 2212 2213 if (n) for (;;) { 2214 if (n & 1) { 2215 result *= x; 2216 result += 1UL << (frac_bits - 1); 2217 result >>= frac_bits; 2218 } 2219 n >>= 1; 2220 if (!n) 2221 break; 2222 x *= x; 2223 x += 1UL << (frac_bits - 1); 2224 x >>= frac_bits; 2225 } 2226 2227 return result; 2228 } 2229 2230 /* 2231 * a1 = a0 * e + a * (1 - e) 2232 * 2233 * a2 = a1 * e + a * (1 - e) 2234 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2235 * = a0 * e^2 + a * (1 - e) * (1 + e) 2236 * 2237 * a3 = a2 * e + a * (1 - e) 2238 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2239 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2240 * 2241 * ... 2242 * 2243 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2244 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2245 * = a0 * e^n + a * (1 - e^n) 2246 * 2247 * [1] application of the geometric series: 2248 * 2249 * n 1 - x^(n+1) 2250 * S_n := \Sum x^i = ------------- 2251 * i=0 1 - x 2252 */ 2253 static unsigned long 2254 calc_load_n(unsigned long load, unsigned long exp, 2255 unsigned long active, unsigned int n) 2256 { 2257 2258 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2259 } 2260 2261 /* 2262 * NO_HZ can leave us missing all per-cpu ticks calling 2263 * calc_load_account_active(), but since an idle CPU folds its delta into 2264 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2265 * in the pending idle delta if our idle period crossed a load cycle boundary. 2266 * 2267 * Once we've updated the global active value, we need to apply the exponential 2268 * weights adjusted to the number of cycles missed. 2269 */ 2270 static void calc_global_nohz(unsigned long ticks) 2271 { 2272 long delta, active, n; 2273 2274 if (time_before(jiffies, calc_load_update)) 2275 return; 2276 2277 /* 2278 * If we crossed a calc_load_update boundary, make sure to fold 2279 * any pending idle changes, the respective CPUs might have 2280 * missed the tick driven calc_load_account_active() update 2281 * due to NO_HZ. 2282 */ 2283 delta = calc_load_fold_idle(); 2284 if (delta) 2285 atomic_long_add(delta, &calc_load_tasks); 2286 2287 /* 2288 * If we were idle for multiple load cycles, apply them. 2289 */ 2290 if (ticks >= LOAD_FREQ) { 2291 n = ticks / LOAD_FREQ; 2292 2293 active = atomic_long_read(&calc_load_tasks); 2294 active = active > 0 ? active * FIXED_1 : 0; 2295 2296 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2297 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2298 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2299 2300 calc_load_update += n * LOAD_FREQ; 2301 } 2302 2303 /* 2304 * Its possible the remainder of the above division also crosses 2305 * a LOAD_FREQ period, the regular check in calc_global_load() 2306 * which comes after this will take care of that. 2307 * 2308 * Consider us being 11 ticks before a cycle completion, and us 2309 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will 2310 * age us 4 cycles, and the test in calc_global_load() will 2311 * pick up the final one. 2312 */ 2313 } 2314 #else 2315 void calc_load_account_idle(struct rq *this_rq) 2316 { 2317 } 2318 2319 static inline long calc_load_fold_idle(void) 2320 { 2321 return 0; 2322 } 2323 2324 static void calc_global_nohz(unsigned long ticks) 2325 { 2326 } 2327 #endif 2328 2329 /** 2330 * get_avenrun - get the load average array 2331 * @loads: pointer to dest load array 2332 * @offset: offset to add 2333 * @shift: shift count to shift the result left 2334 * 2335 * These values are estimates at best, so no need for locking. 2336 */ 2337 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2338 { 2339 loads[0] = (avenrun[0] + offset) << shift; 2340 loads[1] = (avenrun[1] + offset) << shift; 2341 loads[2] = (avenrun[2] + offset) << shift; 2342 } 2343 2344 /* 2345 * calc_load - update the avenrun load estimates 10 ticks after the 2346 * CPUs have updated calc_load_tasks. 2347 */ 2348 void calc_global_load(unsigned long ticks) 2349 { 2350 long active; 2351 2352 calc_global_nohz(ticks); 2353 2354 if (time_before(jiffies, calc_load_update + 10)) 2355 return; 2356 2357 active = atomic_long_read(&calc_load_tasks); 2358 active = active > 0 ? active * FIXED_1 : 0; 2359 2360 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2361 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2362 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2363 2364 calc_load_update += LOAD_FREQ; 2365 } 2366 2367 /* 2368 * Called from update_cpu_load() to periodically update this CPU's 2369 * active count. 2370 */ 2371 static void calc_load_account_active(struct rq *this_rq) 2372 { 2373 long delta; 2374 2375 if (time_before(jiffies, this_rq->calc_load_update)) 2376 return; 2377 2378 delta = calc_load_fold_active(this_rq); 2379 delta += calc_load_fold_idle(); 2380 if (delta) 2381 atomic_long_add(delta, &calc_load_tasks); 2382 2383 this_rq->calc_load_update += LOAD_FREQ; 2384 } 2385 2386 /* 2387 * The exact cpuload at various idx values, calculated at every tick would be 2388 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2389 * 2390 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2391 * on nth tick when cpu may be busy, then we have: 2392 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2393 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2394 * 2395 * decay_load_missed() below does efficient calculation of 2396 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2397 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2398 * 2399 * The calculation is approximated on a 128 point scale. 2400 * degrade_zero_ticks is the number of ticks after which load at any 2401 * particular idx is approximated to be zero. 2402 * degrade_factor is a precomputed table, a row for each load idx. 2403 * Each column corresponds to degradation factor for a power of two ticks, 2404 * based on 128 point scale. 2405 * Example: 2406 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2407 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2408 * 2409 * With this power of 2 load factors, we can degrade the load n times 2410 * by looking at 1 bits in n and doing as many mult/shift instead of 2411 * n mult/shifts needed by the exact degradation. 2412 */ 2413 #define DEGRADE_SHIFT 7 2414 static const unsigned char 2415 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2416 static const unsigned char 2417 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2418 {0, 0, 0, 0, 0, 0, 0, 0}, 2419 {64, 32, 8, 0, 0, 0, 0, 0}, 2420 {96, 72, 40, 12, 1, 0, 0}, 2421 {112, 98, 75, 43, 15, 1, 0}, 2422 {120, 112, 98, 76, 45, 16, 2} }; 2423 2424 /* 2425 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2426 * would be when CPU is idle and so we just decay the old load without 2427 * adding any new load. 2428 */ 2429 static unsigned long 2430 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2431 { 2432 int j = 0; 2433 2434 if (!missed_updates) 2435 return load; 2436 2437 if (missed_updates >= degrade_zero_ticks[idx]) 2438 return 0; 2439 2440 if (idx == 1) 2441 return load >> missed_updates; 2442 2443 while (missed_updates) { 2444 if (missed_updates % 2) 2445 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2446 2447 missed_updates >>= 1; 2448 j++; 2449 } 2450 return load; 2451 } 2452 2453 /* 2454 * Update rq->cpu_load[] statistics. This function is usually called every 2455 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2456 * every tick. We fix it up based on jiffies. 2457 */ 2458 void update_cpu_load(struct rq *this_rq) 2459 { 2460 unsigned long this_load = this_rq->load.weight; 2461 unsigned long curr_jiffies = jiffies; 2462 unsigned long pending_updates; 2463 int i, scale; 2464 2465 this_rq->nr_load_updates++; 2466 2467 /* Avoid repeated calls on same jiffy, when moving in and out of idle */ 2468 if (curr_jiffies == this_rq->last_load_update_tick) 2469 return; 2470 2471 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2472 this_rq->last_load_update_tick = curr_jiffies; 2473 2474 /* Update our load: */ 2475 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2476 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2477 unsigned long old_load, new_load; 2478 2479 /* scale is effectively 1 << i now, and >> i divides by scale */ 2480 2481 old_load = this_rq->cpu_load[i]; 2482 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2483 new_load = this_load; 2484 /* 2485 * Round up the averaging division if load is increasing. This 2486 * prevents us from getting stuck on 9 if the load is 10, for 2487 * example. 2488 */ 2489 if (new_load > old_load) 2490 new_load += scale - 1; 2491 2492 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2493 } 2494 2495 sched_avg_update(this_rq); 2496 } 2497 2498 static void update_cpu_load_active(struct rq *this_rq) 2499 { 2500 update_cpu_load(this_rq); 2501 2502 calc_load_account_active(this_rq); 2503 } 2504 2505 #ifdef CONFIG_SMP 2506 2507 /* 2508 * sched_exec - execve() is a valuable balancing opportunity, because at 2509 * this point the task has the smallest effective memory and cache footprint. 2510 */ 2511 void sched_exec(void) 2512 { 2513 struct task_struct *p = current; 2514 unsigned long flags; 2515 int dest_cpu; 2516 2517 raw_spin_lock_irqsave(&p->pi_lock, flags); 2518 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2519 if (dest_cpu == smp_processor_id()) 2520 goto unlock; 2521 2522 if (likely(cpu_active(dest_cpu))) { 2523 struct migration_arg arg = { p, dest_cpu }; 2524 2525 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2526 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2527 return; 2528 } 2529 unlock: 2530 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2531 } 2532 2533 #endif 2534 2535 DEFINE_PER_CPU(struct kernel_stat, kstat); 2536 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2537 2538 EXPORT_PER_CPU_SYMBOL(kstat); 2539 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2540 2541 /* 2542 * Return any ns on the sched_clock that have not yet been accounted in 2543 * @p in case that task is currently running. 2544 * 2545 * Called with task_rq_lock() held on @rq. 2546 */ 2547 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2548 { 2549 u64 ns = 0; 2550 2551 if (task_current(rq, p)) { 2552 update_rq_clock(rq); 2553 ns = rq->clock_task - p->se.exec_start; 2554 if ((s64)ns < 0) 2555 ns = 0; 2556 } 2557 2558 return ns; 2559 } 2560 2561 unsigned long long task_delta_exec(struct task_struct *p) 2562 { 2563 unsigned long flags; 2564 struct rq *rq; 2565 u64 ns = 0; 2566 2567 rq = task_rq_lock(p, &flags); 2568 ns = do_task_delta_exec(p, rq); 2569 task_rq_unlock(rq, p, &flags); 2570 2571 return ns; 2572 } 2573 2574 /* 2575 * Return accounted runtime for the task. 2576 * In case the task is currently running, return the runtime plus current's 2577 * pending runtime that have not been accounted yet. 2578 */ 2579 unsigned long long task_sched_runtime(struct task_struct *p) 2580 { 2581 unsigned long flags; 2582 struct rq *rq; 2583 u64 ns = 0; 2584 2585 rq = task_rq_lock(p, &flags); 2586 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2587 task_rq_unlock(rq, p, &flags); 2588 2589 return ns; 2590 } 2591 2592 #ifdef CONFIG_CGROUP_CPUACCT 2593 struct cgroup_subsys cpuacct_subsys; 2594 struct cpuacct root_cpuacct; 2595 #endif 2596 2597 static inline void task_group_account_field(struct task_struct *p, int index, 2598 u64 tmp) 2599 { 2600 #ifdef CONFIG_CGROUP_CPUACCT 2601 struct kernel_cpustat *kcpustat; 2602 struct cpuacct *ca; 2603 #endif 2604 /* 2605 * Since all updates are sure to touch the root cgroup, we 2606 * get ourselves ahead and touch it first. If the root cgroup 2607 * is the only cgroup, then nothing else should be necessary. 2608 * 2609 */ 2610 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; 2611 2612 #ifdef CONFIG_CGROUP_CPUACCT 2613 if (unlikely(!cpuacct_subsys.active)) 2614 return; 2615 2616 rcu_read_lock(); 2617 ca = task_ca(p); 2618 while (ca && (ca != &root_cpuacct)) { 2619 kcpustat = this_cpu_ptr(ca->cpustat); 2620 kcpustat->cpustat[index] += tmp; 2621 ca = parent_ca(ca); 2622 } 2623 rcu_read_unlock(); 2624 #endif 2625 } 2626 2627 2628 /* 2629 * Account user cpu time to a process. 2630 * @p: the process that the cpu time gets accounted to 2631 * @cputime: the cpu time spent in user space since the last update 2632 * @cputime_scaled: cputime scaled by cpu frequency 2633 */ 2634 void account_user_time(struct task_struct *p, cputime_t cputime, 2635 cputime_t cputime_scaled) 2636 { 2637 int index; 2638 2639 /* Add user time to process. */ 2640 p->utime += cputime; 2641 p->utimescaled += cputime_scaled; 2642 account_group_user_time(p, cputime); 2643 2644 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 2645 2646 /* Add user time to cpustat. */ 2647 task_group_account_field(p, index, (__force u64) cputime); 2648 2649 /* Account for user time used */ 2650 acct_update_integrals(p); 2651 } 2652 2653 /* 2654 * Account guest cpu time to a process. 2655 * @p: the process that the cpu time gets accounted to 2656 * @cputime: the cpu time spent in virtual machine since the last update 2657 * @cputime_scaled: cputime scaled by cpu frequency 2658 */ 2659 static void account_guest_time(struct task_struct *p, cputime_t cputime, 2660 cputime_t cputime_scaled) 2661 { 2662 u64 *cpustat = kcpustat_this_cpu->cpustat; 2663 2664 /* Add guest time to process. */ 2665 p->utime += cputime; 2666 p->utimescaled += cputime_scaled; 2667 account_group_user_time(p, cputime); 2668 p->gtime += cputime; 2669 2670 /* Add guest time to cpustat. */ 2671 if (TASK_NICE(p) > 0) { 2672 cpustat[CPUTIME_NICE] += (__force u64) cputime; 2673 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 2674 } else { 2675 cpustat[CPUTIME_USER] += (__force u64) cputime; 2676 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 2677 } 2678 } 2679 2680 /* 2681 * Account system cpu time to a process and desired cpustat field 2682 * @p: the process that the cpu time gets accounted to 2683 * @cputime: the cpu time spent in kernel space since the last update 2684 * @cputime_scaled: cputime scaled by cpu frequency 2685 * @target_cputime64: pointer to cpustat field that has to be updated 2686 */ 2687 static inline 2688 void __account_system_time(struct task_struct *p, cputime_t cputime, 2689 cputime_t cputime_scaled, int index) 2690 { 2691 /* Add system time to process. */ 2692 p->stime += cputime; 2693 p->stimescaled += cputime_scaled; 2694 account_group_system_time(p, cputime); 2695 2696 /* Add system time to cpustat. */ 2697 task_group_account_field(p, index, (__force u64) cputime); 2698 2699 /* Account for system time used */ 2700 acct_update_integrals(p); 2701 } 2702 2703 /* 2704 * Account system cpu time to a process. 2705 * @p: the process that the cpu time gets accounted to 2706 * @hardirq_offset: the offset to subtract from hardirq_count() 2707 * @cputime: the cpu time spent in kernel space since the last update 2708 * @cputime_scaled: cputime scaled by cpu frequency 2709 */ 2710 void account_system_time(struct task_struct *p, int hardirq_offset, 2711 cputime_t cputime, cputime_t cputime_scaled) 2712 { 2713 int index; 2714 2715 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 2716 account_guest_time(p, cputime, cputime_scaled); 2717 return; 2718 } 2719 2720 if (hardirq_count() - hardirq_offset) 2721 index = CPUTIME_IRQ; 2722 else if (in_serving_softirq()) 2723 index = CPUTIME_SOFTIRQ; 2724 else 2725 index = CPUTIME_SYSTEM; 2726 2727 __account_system_time(p, cputime, cputime_scaled, index); 2728 } 2729 2730 /* 2731 * Account for involuntary wait time. 2732 * @cputime: the cpu time spent in involuntary wait 2733 */ 2734 void account_steal_time(cputime_t cputime) 2735 { 2736 u64 *cpustat = kcpustat_this_cpu->cpustat; 2737 2738 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 2739 } 2740 2741 /* 2742 * Account for idle time. 2743 * @cputime: the cpu time spent in idle wait 2744 */ 2745 void account_idle_time(cputime_t cputime) 2746 { 2747 u64 *cpustat = kcpustat_this_cpu->cpustat; 2748 struct rq *rq = this_rq(); 2749 2750 if (atomic_read(&rq->nr_iowait) > 0) 2751 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 2752 else 2753 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 2754 } 2755 2756 static __always_inline bool steal_account_process_tick(void) 2757 { 2758 #ifdef CONFIG_PARAVIRT 2759 if (static_branch(¶virt_steal_enabled)) { 2760 u64 steal, st = 0; 2761 2762 steal = paravirt_steal_clock(smp_processor_id()); 2763 steal -= this_rq()->prev_steal_time; 2764 2765 st = steal_ticks(steal); 2766 this_rq()->prev_steal_time += st * TICK_NSEC; 2767 2768 account_steal_time(st); 2769 return st; 2770 } 2771 #endif 2772 return false; 2773 } 2774 2775 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 2776 2777 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2778 /* 2779 * Account a tick to a process and cpustat 2780 * @p: the process that the cpu time gets accounted to 2781 * @user_tick: is the tick from userspace 2782 * @rq: the pointer to rq 2783 * 2784 * Tick demultiplexing follows the order 2785 * - pending hardirq update 2786 * - pending softirq update 2787 * - user_time 2788 * - idle_time 2789 * - system time 2790 * - check for guest_time 2791 * - else account as system_time 2792 * 2793 * Check for hardirq is done both for system and user time as there is 2794 * no timer going off while we are on hardirq and hence we may never get an 2795 * opportunity to update it solely in system time. 2796 * p->stime and friends are only updated on system time and not on irq 2797 * softirq as those do not count in task exec_runtime any more. 2798 */ 2799 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 2800 struct rq *rq) 2801 { 2802 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 2803 u64 *cpustat = kcpustat_this_cpu->cpustat; 2804 2805 if (steal_account_process_tick()) 2806 return; 2807 2808 if (irqtime_account_hi_update()) { 2809 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; 2810 } else if (irqtime_account_si_update()) { 2811 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; 2812 } else if (this_cpu_ksoftirqd() == p) { 2813 /* 2814 * ksoftirqd time do not get accounted in cpu_softirq_time. 2815 * So, we have to handle it separately here. 2816 * Also, p->stime needs to be updated for ksoftirqd. 2817 */ 2818 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 2819 CPUTIME_SOFTIRQ); 2820 } else if (user_tick) { 2821 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 2822 } else if (p == rq->idle) { 2823 account_idle_time(cputime_one_jiffy); 2824 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 2825 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); 2826 } else { 2827 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 2828 CPUTIME_SYSTEM); 2829 } 2830 } 2831 2832 static void irqtime_account_idle_ticks(int ticks) 2833 { 2834 int i; 2835 struct rq *rq = this_rq(); 2836 2837 for (i = 0; i < ticks; i++) 2838 irqtime_account_process_tick(current, 0, rq); 2839 } 2840 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 2841 static void irqtime_account_idle_ticks(int ticks) {} 2842 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 2843 struct rq *rq) {} 2844 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2845 2846 /* 2847 * Account a single tick of cpu time. 2848 * @p: the process that the cpu time gets accounted to 2849 * @user_tick: indicates if the tick is a user or a system tick 2850 */ 2851 void account_process_tick(struct task_struct *p, int user_tick) 2852 { 2853 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 2854 struct rq *rq = this_rq(); 2855 2856 if (sched_clock_irqtime) { 2857 irqtime_account_process_tick(p, user_tick, rq); 2858 return; 2859 } 2860 2861 if (steal_account_process_tick()) 2862 return; 2863 2864 if (user_tick) 2865 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 2866 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 2867 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 2868 one_jiffy_scaled); 2869 else 2870 account_idle_time(cputime_one_jiffy); 2871 } 2872 2873 /* 2874 * Account multiple ticks of steal time. 2875 * @p: the process from which the cpu time has been stolen 2876 * @ticks: number of stolen ticks 2877 */ 2878 void account_steal_ticks(unsigned long ticks) 2879 { 2880 account_steal_time(jiffies_to_cputime(ticks)); 2881 } 2882 2883 /* 2884 * Account multiple ticks of idle time. 2885 * @ticks: number of stolen ticks 2886 */ 2887 void account_idle_ticks(unsigned long ticks) 2888 { 2889 2890 if (sched_clock_irqtime) { 2891 irqtime_account_idle_ticks(ticks); 2892 return; 2893 } 2894 2895 account_idle_time(jiffies_to_cputime(ticks)); 2896 } 2897 2898 #endif 2899 2900 /* 2901 * Use precise platform statistics if available: 2902 */ 2903 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 2904 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2905 { 2906 *ut = p->utime; 2907 *st = p->stime; 2908 } 2909 2910 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2911 { 2912 struct task_cputime cputime; 2913 2914 thread_group_cputime(p, &cputime); 2915 2916 *ut = cputime.utime; 2917 *st = cputime.stime; 2918 } 2919 #else 2920 2921 #ifndef nsecs_to_cputime 2922 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) 2923 #endif 2924 2925 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2926 { 2927 cputime_t rtime, utime = p->utime, total = utime + p->stime; 2928 2929 /* 2930 * Use CFS's precise accounting: 2931 */ 2932 rtime = nsecs_to_cputime(p->se.sum_exec_runtime); 2933 2934 if (total) { 2935 u64 temp = (__force u64) rtime; 2936 2937 temp *= (__force u64) utime; 2938 do_div(temp, (__force u32) total); 2939 utime = (__force cputime_t) temp; 2940 } else 2941 utime = rtime; 2942 2943 /* 2944 * Compare with previous values, to keep monotonicity: 2945 */ 2946 p->prev_utime = max(p->prev_utime, utime); 2947 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); 2948 2949 *ut = p->prev_utime; 2950 *st = p->prev_stime; 2951 } 2952 2953 /* 2954 * Must be called with siglock held. 2955 */ 2956 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2957 { 2958 struct signal_struct *sig = p->signal; 2959 struct task_cputime cputime; 2960 cputime_t rtime, utime, total; 2961 2962 thread_group_cputime(p, &cputime); 2963 2964 total = cputime.utime + cputime.stime; 2965 rtime = nsecs_to_cputime(cputime.sum_exec_runtime); 2966 2967 if (total) { 2968 u64 temp = (__force u64) rtime; 2969 2970 temp *= (__force u64) cputime.utime; 2971 do_div(temp, (__force u32) total); 2972 utime = (__force cputime_t) temp; 2973 } else 2974 utime = rtime; 2975 2976 sig->prev_utime = max(sig->prev_utime, utime); 2977 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); 2978 2979 *ut = sig->prev_utime; 2980 *st = sig->prev_stime; 2981 } 2982 #endif 2983 2984 /* 2985 * This function gets called by the timer code, with HZ frequency. 2986 * We call it with interrupts disabled. 2987 */ 2988 void scheduler_tick(void) 2989 { 2990 int cpu = smp_processor_id(); 2991 struct rq *rq = cpu_rq(cpu); 2992 struct task_struct *curr = rq->curr; 2993 2994 sched_clock_tick(); 2995 2996 raw_spin_lock(&rq->lock); 2997 update_rq_clock(rq); 2998 update_cpu_load_active(rq); 2999 curr->sched_class->task_tick(rq, curr, 0); 3000 raw_spin_unlock(&rq->lock); 3001 3002 perf_event_task_tick(); 3003 3004 #ifdef CONFIG_SMP 3005 rq->idle_balance = idle_cpu(cpu); 3006 trigger_load_balance(rq, cpu); 3007 #endif 3008 } 3009 3010 notrace unsigned long get_parent_ip(unsigned long addr) 3011 { 3012 if (in_lock_functions(addr)) { 3013 addr = CALLER_ADDR2; 3014 if (in_lock_functions(addr)) 3015 addr = CALLER_ADDR3; 3016 } 3017 return addr; 3018 } 3019 3020 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3021 defined(CONFIG_PREEMPT_TRACER)) 3022 3023 void __kprobes add_preempt_count(int val) 3024 { 3025 #ifdef CONFIG_DEBUG_PREEMPT 3026 /* 3027 * Underflow? 3028 */ 3029 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3030 return; 3031 #endif 3032 preempt_count() += val; 3033 #ifdef CONFIG_DEBUG_PREEMPT 3034 /* 3035 * Spinlock count overflowing soon? 3036 */ 3037 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3038 PREEMPT_MASK - 10); 3039 #endif 3040 if (preempt_count() == val) 3041 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3042 } 3043 EXPORT_SYMBOL(add_preempt_count); 3044 3045 void __kprobes sub_preempt_count(int val) 3046 { 3047 #ifdef CONFIG_DEBUG_PREEMPT 3048 /* 3049 * Underflow? 3050 */ 3051 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3052 return; 3053 /* 3054 * Is the spinlock portion underflowing? 3055 */ 3056 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3057 !(preempt_count() & PREEMPT_MASK))) 3058 return; 3059 #endif 3060 3061 if (preempt_count() == val) 3062 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3063 preempt_count() -= val; 3064 } 3065 EXPORT_SYMBOL(sub_preempt_count); 3066 3067 #endif 3068 3069 /* 3070 * Print scheduling while atomic bug: 3071 */ 3072 static noinline void __schedule_bug(struct task_struct *prev) 3073 { 3074 struct pt_regs *regs = get_irq_regs(); 3075 3076 if (oops_in_progress) 3077 return; 3078 3079 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3080 prev->comm, prev->pid, preempt_count()); 3081 3082 debug_show_held_locks(prev); 3083 print_modules(); 3084 if (irqs_disabled()) 3085 print_irqtrace_events(prev); 3086 3087 if (regs) 3088 show_regs(regs); 3089 else 3090 dump_stack(); 3091 } 3092 3093 /* 3094 * Various schedule()-time debugging checks and statistics: 3095 */ 3096 static inline void schedule_debug(struct task_struct *prev) 3097 { 3098 /* 3099 * Test if we are atomic. Since do_exit() needs to call into 3100 * schedule() atomically, we ignore that path for now. 3101 * Otherwise, whine if we are scheduling when we should not be. 3102 */ 3103 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 3104 __schedule_bug(prev); 3105 rcu_sleep_check(); 3106 3107 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3108 3109 schedstat_inc(this_rq(), sched_count); 3110 } 3111 3112 static void put_prev_task(struct rq *rq, struct task_struct *prev) 3113 { 3114 if (prev->on_rq || rq->skip_clock_update < 0) 3115 update_rq_clock(rq); 3116 prev->sched_class->put_prev_task(rq, prev); 3117 } 3118 3119 /* 3120 * Pick up the highest-prio task: 3121 */ 3122 static inline struct task_struct * 3123 pick_next_task(struct rq *rq) 3124 { 3125 const struct sched_class *class; 3126 struct task_struct *p; 3127 3128 /* 3129 * Optimization: we know that if all tasks are in 3130 * the fair class we can call that function directly: 3131 */ 3132 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 3133 p = fair_sched_class.pick_next_task(rq); 3134 if (likely(p)) 3135 return p; 3136 } 3137 3138 for_each_class(class) { 3139 p = class->pick_next_task(rq); 3140 if (p) 3141 return p; 3142 } 3143 3144 BUG(); /* the idle class will always have a runnable task */ 3145 } 3146 3147 /* 3148 * __schedule() is the main scheduler function. 3149 */ 3150 static void __sched __schedule(void) 3151 { 3152 struct task_struct *prev, *next; 3153 unsigned long *switch_count; 3154 struct rq *rq; 3155 int cpu; 3156 3157 need_resched: 3158 preempt_disable(); 3159 cpu = smp_processor_id(); 3160 rq = cpu_rq(cpu); 3161 rcu_note_context_switch(cpu); 3162 prev = rq->curr; 3163 3164 schedule_debug(prev); 3165 3166 if (sched_feat(HRTICK)) 3167 hrtick_clear(rq); 3168 3169 raw_spin_lock_irq(&rq->lock); 3170 3171 switch_count = &prev->nivcsw; 3172 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3173 if (unlikely(signal_pending_state(prev->state, prev))) { 3174 prev->state = TASK_RUNNING; 3175 } else { 3176 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3177 prev->on_rq = 0; 3178 3179 /* 3180 * If a worker went to sleep, notify and ask workqueue 3181 * whether it wants to wake up a task to maintain 3182 * concurrency. 3183 */ 3184 if (prev->flags & PF_WQ_WORKER) { 3185 struct task_struct *to_wakeup; 3186 3187 to_wakeup = wq_worker_sleeping(prev, cpu); 3188 if (to_wakeup) 3189 try_to_wake_up_local(to_wakeup); 3190 } 3191 } 3192 switch_count = &prev->nvcsw; 3193 } 3194 3195 pre_schedule(rq, prev); 3196 3197 if (unlikely(!rq->nr_running)) 3198 idle_balance(cpu, rq); 3199 3200 put_prev_task(rq, prev); 3201 next = pick_next_task(rq); 3202 clear_tsk_need_resched(prev); 3203 rq->skip_clock_update = 0; 3204 3205 if (likely(prev != next)) { 3206 rq->nr_switches++; 3207 rq->curr = next; 3208 ++*switch_count; 3209 3210 context_switch(rq, prev, next); /* unlocks the rq */ 3211 /* 3212 * The context switch have flipped the stack from under us 3213 * and restored the local variables which were saved when 3214 * this task called schedule() in the past. prev == current 3215 * is still correct, but it can be moved to another cpu/rq. 3216 */ 3217 cpu = smp_processor_id(); 3218 rq = cpu_rq(cpu); 3219 } else 3220 raw_spin_unlock_irq(&rq->lock); 3221 3222 post_schedule(rq); 3223 3224 preempt_enable_no_resched(); 3225 if (need_resched()) 3226 goto need_resched; 3227 } 3228 3229 static inline void sched_submit_work(struct task_struct *tsk) 3230 { 3231 if (!tsk->state) 3232 return; 3233 /* 3234 * If we are going to sleep and we have plugged IO queued, 3235 * make sure to submit it to avoid deadlocks. 3236 */ 3237 if (blk_needs_flush_plug(tsk)) 3238 blk_schedule_flush_plug(tsk); 3239 } 3240 3241 asmlinkage void __sched schedule(void) 3242 { 3243 struct task_struct *tsk = current; 3244 3245 sched_submit_work(tsk); 3246 __schedule(); 3247 } 3248 EXPORT_SYMBOL(schedule); 3249 3250 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 3251 3252 static inline bool owner_running(struct mutex *lock, struct task_struct *owner) 3253 { 3254 if (lock->owner != owner) 3255 return false; 3256 3257 /* 3258 * Ensure we emit the owner->on_cpu, dereference _after_ checking 3259 * lock->owner still matches owner, if that fails, owner might 3260 * point to free()d memory, if it still matches, the rcu_read_lock() 3261 * ensures the memory stays valid. 3262 */ 3263 barrier(); 3264 3265 return owner->on_cpu; 3266 } 3267 3268 /* 3269 * Look out! "owner" is an entirely speculative pointer 3270 * access and not reliable. 3271 */ 3272 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 3273 { 3274 if (!sched_feat(OWNER_SPIN)) 3275 return 0; 3276 3277 rcu_read_lock(); 3278 while (owner_running(lock, owner)) { 3279 if (need_resched()) 3280 break; 3281 3282 arch_mutex_cpu_relax(); 3283 } 3284 rcu_read_unlock(); 3285 3286 /* 3287 * We break out the loop above on need_resched() and when the 3288 * owner changed, which is a sign for heavy contention. Return 3289 * success only when lock->owner is NULL. 3290 */ 3291 return lock->owner == NULL; 3292 } 3293 #endif 3294 3295 #ifdef CONFIG_PREEMPT 3296 /* 3297 * this is the entry point to schedule() from in-kernel preemption 3298 * off of preempt_enable. Kernel preemptions off return from interrupt 3299 * occur there and call schedule directly. 3300 */ 3301 asmlinkage void __sched notrace preempt_schedule(void) 3302 { 3303 struct thread_info *ti = current_thread_info(); 3304 3305 /* 3306 * If there is a non-zero preempt_count or interrupts are disabled, 3307 * we do not want to preempt the current task. Just return.. 3308 */ 3309 if (likely(ti->preempt_count || irqs_disabled())) 3310 return; 3311 3312 do { 3313 add_preempt_count_notrace(PREEMPT_ACTIVE); 3314 __schedule(); 3315 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3316 3317 /* 3318 * Check again in case we missed a preemption opportunity 3319 * between schedule and now. 3320 */ 3321 barrier(); 3322 } while (need_resched()); 3323 } 3324 EXPORT_SYMBOL(preempt_schedule); 3325 3326 /* 3327 * this is the entry point to schedule() from kernel preemption 3328 * off of irq context. 3329 * Note, that this is called and return with irqs disabled. This will 3330 * protect us against recursive calling from irq. 3331 */ 3332 asmlinkage void __sched preempt_schedule_irq(void) 3333 { 3334 struct thread_info *ti = current_thread_info(); 3335 3336 /* Catch callers which need to be fixed */ 3337 BUG_ON(ti->preempt_count || !irqs_disabled()); 3338 3339 do { 3340 add_preempt_count(PREEMPT_ACTIVE); 3341 local_irq_enable(); 3342 __schedule(); 3343 local_irq_disable(); 3344 sub_preempt_count(PREEMPT_ACTIVE); 3345 3346 /* 3347 * Check again in case we missed a preemption opportunity 3348 * between schedule and now. 3349 */ 3350 barrier(); 3351 } while (need_resched()); 3352 } 3353 3354 #endif /* CONFIG_PREEMPT */ 3355 3356 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3357 void *key) 3358 { 3359 return try_to_wake_up(curr->private, mode, wake_flags); 3360 } 3361 EXPORT_SYMBOL(default_wake_function); 3362 3363 /* 3364 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3365 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3366 * number) then we wake all the non-exclusive tasks and one exclusive task. 3367 * 3368 * There are circumstances in which we can try to wake a task which has already 3369 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3370 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3371 */ 3372 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3373 int nr_exclusive, int wake_flags, void *key) 3374 { 3375 wait_queue_t *curr, *next; 3376 3377 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3378 unsigned flags = curr->flags; 3379 3380 if (curr->func(curr, mode, wake_flags, key) && 3381 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3382 break; 3383 } 3384 } 3385 3386 /** 3387 * __wake_up - wake up threads blocked on a waitqueue. 3388 * @q: the waitqueue 3389 * @mode: which threads 3390 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3391 * @key: is directly passed to the wakeup function 3392 * 3393 * It may be assumed that this function implies a write memory barrier before 3394 * changing the task state if and only if any tasks are woken up. 3395 */ 3396 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3397 int nr_exclusive, void *key) 3398 { 3399 unsigned long flags; 3400 3401 spin_lock_irqsave(&q->lock, flags); 3402 __wake_up_common(q, mode, nr_exclusive, 0, key); 3403 spin_unlock_irqrestore(&q->lock, flags); 3404 } 3405 EXPORT_SYMBOL(__wake_up); 3406 3407 /* 3408 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3409 */ 3410 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) 3411 { 3412 __wake_up_common(q, mode, 1, 0, NULL); 3413 } 3414 EXPORT_SYMBOL_GPL(__wake_up_locked); 3415 3416 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3417 { 3418 __wake_up_common(q, mode, 1, 0, key); 3419 } 3420 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3421 3422 /** 3423 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3424 * @q: the waitqueue 3425 * @mode: which threads 3426 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3427 * @key: opaque value to be passed to wakeup targets 3428 * 3429 * The sync wakeup differs that the waker knows that it will schedule 3430 * away soon, so while the target thread will be woken up, it will not 3431 * be migrated to another CPU - ie. the two threads are 'synchronized' 3432 * with each other. This can prevent needless bouncing between CPUs. 3433 * 3434 * On UP it can prevent extra preemption. 3435 * 3436 * It may be assumed that this function implies a write memory barrier before 3437 * changing the task state if and only if any tasks are woken up. 3438 */ 3439 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3440 int nr_exclusive, void *key) 3441 { 3442 unsigned long flags; 3443 int wake_flags = WF_SYNC; 3444 3445 if (unlikely(!q)) 3446 return; 3447 3448 if (unlikely(!nr_exclusive)) 3449 wake_flags = 0; 3450 3451 spin_lock_irqsave(&q->lock, flags); 3452 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3453 spin_unlock_irqrestore(&q->lock, flags); 3454 } 3455 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3456 3457 /* 3458 * __wake_up_sync - see __wake_up_sync_key() 3459 */ 3460 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3461 { 3462 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3463 } 3464 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3465 3466 /** 3467 * complete: - signals a single thread waiting on this completion 3468 * @x: holds the state of this particular completion 3469 * 3470 * This will wake up a single thread waiting on this completion. Threads will be 3471 * awakened in the same order in which they were queued. 3472 * 3473 * See also complete_all(), wait_for_completion() and related routines. 3474 * 3475 * It may be assumed that this function implies a write memory barrier before 3476 * changing the task state if and only if any tasks are woken up. 3477 */ 3478 void complete(struct completion *x) 3479 { 3480 unsigned long flags; 3481 3482 spin_lock_irqsave(&x->wait.lock, flags); 3483 x->done++; 3484 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3485 spin_unlock_irqrestore(&x->wait.lock, flags); 3486 } 3487 EXPORT_SYMBOL(complete); 3488 3489 /** 3490 * complete_all: - signals all threads waiting on this completion 3491 * @x: holds the state of this particular completion 3492 * 3493 * This will wake up all threads waiting on this particular completion event. 3494 * 3495 * It may be assumed that this function implies a write memory barrier before 3496 * changing the task state if and only if any tasks are woken up. 3497 */ 3498 void complete_all(struct completion *x) 3499 { 3500 unsigned long flags; 3501 3502 spin_lock_irqsave(&x->wait.lock, flags); 3503 x->done += UINT_MAX/2; 3504 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3505 spin_unlock_irqrestore(&x->wait.lock, flags); 3506 } 3507 EXPORT_SYMBOL(complete_all); 3508 3509 static inline long __sched 3510 do_wait_for_common(struct completion *x, long timeout, int state) 3511 { 3512 if (!x->done) { 3513 DECLARE_WAITQUEUE(wait, current); 3514 3515 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3516 do { 3517 if (signal_pending_state(state, current)) { 3518 timeout = -ERESTARTSYS; 3519 break; 3520 } 3521 __set_current_state(state); 3522 spin_unlock_irq(&x->wait.lock); 3523 timeout = schedule_timeout(timeout); 3524 spin_lock_irq(&x->wait.lock); 3525 } while (!x->done && timeout); 3526 __remove_wait_queue(&x->wait, &wait); 3527 if (!x->done) 3528 return timeout; 3529 } 3530 x->done--; 3531 return timeout ?: 1; 3532 } 3533 3534 static long __sched 3535 wait_for_common(struct completion *x, long timeout, int state) 3536 { 3537 might_sleep(); 3538 3539 spin_lock_irq(&x->wait.lock); 3540 timeout = do_wait_for_common(x, timeout, state); 3541 spin_unlock_irq(&x->wait.lock); 3542 return timeout; 3543 } 3544 3545 /** 3546 * wait_for_completion: - waits for completion of a task 3547 * @x: holds the state of this particular completion 3548 * 3549 * This waits to be signaled for completion of a specific task. It is NOT 3550 * interruptible and there is no timeout. 3551 * 3552 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3553 * and interrupt capability. Also see complete(). 3554 */ 3555 void __sched wait_for_completion(struct completion *x) 3556 { 3557 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3558 } 3559 EXPORT_SYMBOL(wait_for_completion); 3560 3561 /** 3562 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3563 * @x: holds the state of this particular completion 3564 * @timeout: timeout value in jiffies 3565 * 3566 * This waits for either a completion of a specific task to be signaled or for a 3567 * specified timeout to expire. The timeout is in jiffies. It is not 3568 * interruptible. 3569 * 3570 * The return value is 0 if timed out, and positive (at least 1, or number of 3571 * jiffies left till timeout) if completed. 3572 */ 3573 unsigned long __sched 3574 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3575 { 3576 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3577 } 3578 EXPORT_SYMBOL(wait_for_completion_timeout); 3579 3580 /** 3581 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3582 * @x: holds the state of this particular completion 3583 * 3584 * This waits for completion of a specific task to be signaled. It is 3585 * interruptible. 3586 * 3587 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3588 */ 3589 int __sched wait_for_completion_interruptible(struct completion *x) 3590 { 3591 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3592 if (t == -ERESTARTSYS) 3593 return t; 3594 return 0; 3595 } 3596 EXPORT_SYMBOL(wait_for_completion_interruptible); 3597 3598 /** 3599 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3600 * @x: holds the state of this particular completion 3601 * @timeout: timeout value in jiffies 3602 * 3603 * This waits for either a completion of a specific task to be signaled or for a 3604 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3605 * 3606 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3607 * positive (at least 1, or number of jiffies left till timeout) if completed. 3608 */ 3609 long __sched 3610 wait_for_completion_interruptible_timeout(struct completion *x, 3611 unsigned long timeout) 3612 { 3613 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3614 } 3615 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3616 3617 /** 3618 * wait_for_completion_killable: - waits for completion of a task (killable) 3619 * @x: holds the state of this particular completion 3620 * 3621 * This waits to be signaled for completion of a specific task. It can be 3622 * interrupted by a kill signal. 3623 * 3624 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3625 */ 3626 int __sched wait_for_completion_killable(struct completion *x) 3627 { 3628 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3629 if (t == -ERESTARTSYS) 3630 return t; 3631 return 0; 3632 } 3633 EXPORT_SYMBOL(wait_for_completion_killable); 3634 3635 /** 3636 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3637 * @x: holds the state of this particular completion 3638 * @timeout: timeout value in jiffies 3639 * 3640 * This waits for either a completion of a specific task to be 3641 * signaled or for a specified timeout to expire. It can be 3642 * interrupted by a kill signal. The timeout is in jiffies. 3643 * 3644 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3645 * positive (at least 1, or number of jiffies left till timeout) if completed. 3646 */ 3647 long __sched 3648 wait_for_completion_killable_timeout(struct completion *x, 3649 unsigned long timeout) 3650 { 3651 return wait_for_common(x, timeout, TASK_KILLABLE); 3652 } 3653 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3654 3655 /** 3656 * try_wait_for_completion - try to decrement a completion without blocking 3657 * @x: completion structure 3658 * 3659 * Returns: 0 if a decrement cannot be done without blocking 3660 * 1 if a decrement succeeded. 3661 * 3662 * If a completion is being used as a counting completion, 3663 * attempt to decrement the counter without blocking. This 3664 * enables us to avoid waiting if the resource the completion 3665 * is protecting is not available. 3666 */ 3667 bool try_wait_for_completion(struct completion *x) 3668 { 3669 unsigned long flags; 3670 int ret = 1; 3671 3672 spin_lock_irqsave(&x->wait.lock, flags); 3673 if (!x->done) 3674 ret = 0; 3675 else 3676 x->done--; 3677 spin_unlock_irqrestore(&x->wait.lock, flags); 3678 return ret; 3679 } 3680 EXPORT_SYMBOL(try_wait_for_completion); 3681 3682 /** 3683 * completion_done - Test to see if a completion has any waiters 3684 * @x: completion structure 3685 * 3686 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3687 * 1 if there are no waiters. 3688 * 3689 */ 3690 bool completion_done(struct completion *x) 3691 { 3692 unsigned long flags; 3693 int ret = 1; 3694 3695 spin_lock_irqsave(&x->wait.lock, flags); 3696 if (!x->done) 3697 ret = 0; 3698 spin_unlock_irqrestore(&x->wait.lock, flags); 3699 return ret; 3700 } 3701 EXPORT_SYMBOL(completion_done); 3702 3703 static long __sched 3704 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3705 { 3706 unsigned long flags; 3707 wait_queue_t wait; 3708 3709 init_waitqueue_entry(&wait, current); 3710 3711 __set_current_state(state); 3712 3713 spin_lock_irqsave(&q->lock, flags); 3714 __add_wait_queue(q, &wait); 3715 spin_unlock(&q->lock); 3716 timeout = schedule_timeout(timeout); 3717 spin_lock_irq(&q->lock); 3718 __remove_wait_queue(q, &wait); 3719 spin_unlock_irqrestore(&q->lock, flags); 3720 3721 return timeout; 3722 } 3723 3724 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3725 { 3726 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3727 } 3728 EXPORT_SYMBOL(interruptible_sleep_on); 3729 3730 long __sched 3731 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3732 { 3733 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3734 } 3735 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3736 3737 void __sched sleep_on(wait_queue_head_t *q) 3738 { 3739 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3740 } 3741 EXPORT_SYMBOL(sleep_on); 3742 3743 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3744 { 3745 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3746 } 3747 EXPORT_SYMBOL(sleep_on_timeout); 3748 3749 #ifdef CONFIG_RT_MUTEXES 3750 3751 /* 3752 * rt_mutex_setprio - set the current priority of a task 3753 * @p: task 3754 * @prio: prio value (kernel-internal form) 3755 * 3756 * This function changes the 'effective' priority of a task. It does 3757 * not touch ->normal_prio like __setscheduler(). 3758 * 3759 * Used by the rt_mutex code to implement priority inheritance logic. 3760 */ 3761 void rt_mutex_setprio(struct task_struct *p, int prio) 3762 { 3763 int oldprio, on_rq, running; 3764 struct rq *rq; 3765 const struct sched_class *prev_class; 3766 3767 BUG_ON(prio < 0 || prio > MAX_PRIO); 3768 3769 rq = __task_rq_lock(p); 3770 3771 trace_sched_pi_setprio(p, prio); 3772 oldprio = p->prio; 3773 prev_class = p->sched_class; 3774 on_rq = p->on_rq; 3775 running = task_current(rq, p); 3776 if (on_rq) 3777 dequeue_task(rq, p, 0); 3778 if (running) 3779 p->sched_class->put_prev_task(rq, p); 3780 3781 if (rt_prio(prio)) 3782 p->sched_class = &rt_sched_class; 3783 else 3784 p->sched_class = &fair_sched_class; 3785 3786 p->prio = prio; 3787 3788 if (running) 3789 p->sched_class->set_curr_task(rq); 3790 if (on_rq) 3791 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 3792 3793 check_class_changed(rq, p, prev_class, oldprio); 3794 __task_rq_unlock(rq); 3795 } 3796 3797 #endif 3798 3799 void set_user_nice(struct task_struct *p, long nice) 3800 { 3801 int old_prio, delta, on_rq; 3802 unsigned long flags; 3803 struct rq *rq; 3804 3805 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3806 return; 3807 /* 3808 * We have to be careful, if called from sys_setpriority(), 3809 * the task might be in the middle of scheduling on another CPU. 3810 */ 3811 rq = task_rq_lock(p, &flags); 3812 /* 3813 * The RT priorities are set via sched_setscheduler(), but we still 3814 * allow the 'normal' nice value to be set - but as expected 3815 * it wont have any effect on scheduling until the task is 3816 * SCHED_FIFO/SCHED_RR: 3817 */ 3818 if (task_has_rt_policy(p)) { 3819 p->static_prio = NICE_TO_PRIO(nice); 3820 goto out_unlock; 3821 } 3822 on_rq = p->on_rq; 3823 if (on_rq) 3824 dequeue_task(rq, p, 0); 3825 3826 p->static_prio = NICE_TO_PRIO(nice); 3827 set_load_weight(p); 3828 old_prio = p->prio; 3829 p->prio = effective_prio(p); 3830 delta = p->prio - old_prio; 3831 3832 if (on_rq) { 3833 enqueue_task(rq, p, 0); 3834 /* 3835 * If the task increased its priority or is running and 3836 * lowered its priority, then reschedule its CPU: 3837 */ 3838 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3839 resched_task(rq->curr); 3840 } 3841 out_unlock: 3842 task_rq_unlock(rq, p, &flags); 3843 } 3844 EXPORT_SYMBOL(set_user_nice); 3845 3846 /* 3847 * can_nice - check if a task can reduce its nice value 3848 * @p: task 3849 * @nice: nice value 3850 */ 3851 int can_nice(const struct task_struct *p, const int nice) 3852 { 3853 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3854 int nice_rlim = 20 - nice; 3855 3856 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3857 capable(CAP_SYS_NICE)); 3858 } 3859 3860 #ifdef __ARCH_WANT_SYS_NICE 3861 3862 /* 3863 * sys_nice - change the priority of the current process. 3864 * @increment: priority increment 3865 * 3866 * sys_setpriority is a more generic, but much slower function that 3867 * does similar things. 3868 */ 3869 SYSCALL_DEFINE1(nice, int, increment) 3870 { 3871 long nice, retval; 3872 3873 /* 3874 * Setpriority might change our priority at the same moment. 3875 * We don't have to worry. Conceptually one call occurs first 3876 * and we have a single winner. 3877 */ 3878 if (increment < -40) 3879 increment = -40; 3880 if (increment > 40) 3881 increment = 40; 3882 3883 nice = TASK_NICE(current) + increment; 3884 if (nice < -20) 3885 nice = -20; 3886 if (nice > 19) 3887 nice = 19; 3888 3889 if (increment < 0 && !can_nice(current, nice)) 3890 return -EPERM; 3891 3892 retval = security_task_setnice(current, nice); 3893 if (retval) 3894 return retval; 3895 3896 set_user_nice(current, nice); 3897 return 0; 3898 } 3899 3900 #endif 3901 3902 /** 3903 * task_prio - return the priority value of a given task. 3904 * @p: the task in question. 3905 * 3906 * This is the priority value as seen by users in /proc. 3907 * RT tasks are offset by -200. Normal tasks are centered 3908 * around 0, value goes from -16 to +15. 3909 */ 3910 int task_prio(const struct task_struct *p) 3911 { 3912 return p->prio - MAX_RT_PRIO; 3913 } 3914 3915 /** 3916 * task_nice - return the nice value of a given task. 3917 * @p: the task in question. 3918 */ 3919 int task_nice(const struct task_struct *p) 3920 { 3921 return TASK_NICE(p); 3922 } 3923 EXPORT_SYMBOL(task_nice); 3924 3925 /** 3926 * idle_cpu - is a given cpu idle currently? 3927 * @cpu: the processor in question. 3928 */ 3929 int idle_cpu(int cpu) 3930 { 3931 struct rq *rq = cpu_rq(cpu); 3932 3933 if (rq->curr != rq->idle) 3934 return 0; 3935 3936 if (rq->nr_running) 3937 return 0; 3938 3939 #ifdef CONFIG_SMP 3940 if (!llist_empty(&rq->wake_list)) 3941 return 0; 3942 #endif 3943 3944 return 1; 3945 } 3946 3947 /** 3948 * idle_task - return the idle task for a given cpu. 3949 * @cpu: the processor in question. 3950 */ 3951 struct task_struct *idle_task(int cpu) 3952 { 3953 return cpu_rq(cpu)->idle; 3954 } 3955 3956 /** 3957 * find_process_by_pid - find a process with a matching PID value. 3958 * @pid: the pid in question. 3959 */ 3960 static struct task_struct *find_process_by_pid(pid_t pid) 3961 { 3962 return pid ? find_task_by_vpid(pid) : current; 3963 } 3964 3965 /* Actually do priority change: must hold rq lock. */ 3966 static void 3967 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 3968 { 3969 p->policy = policy; 3970 p->rt_priority = prio; 3971 p->normal_prio = normal_prio(p); 3972 /* we are holding p->pi_lock already */ 3973 p->prio = rt_mutex_getprio(p); 3974 if (rt_prio(p->prio)) 3975 p->sched_class = &rt_sched_class; 3976 else 3977 p->sched_class = &fair_sched_class; 3978 set_load_weight(p); 3979 } 3980 3981 /* 3982 * check the target process has a UID that matches the current process's 3983 */ 3984 static bool check_same_owner(struct task_struct *p) 3985 { 3986 const struct cred *cred = current_cred(), *pcred; 3987 bool match; 3988 3989 rcu_read_lock(); 3990 pcred = __task_cred(p); 3991 if (cred->user->user_ns == pcred->user->user_ns) 3992 match = (cred->euid == pcred->euid || 3993 cred->euid == pcred->uid); 3994 else 3995 match = false; 3996 rcu_read_unlock(); 3997 return match; 3998 } 3999 4000 static int __sched_setscheduler(struct task_struct *p, int policy, 4001 const struct sched_param *param, bool user) 4002 { 4003 int retval, oldprio, oldpolicy = -1, on_rq, running; 4004 unsigned long flags; 4005 const struct sched_class *prev_class; 4006 struct rq *rq; 4007 int reset_on_fork; 4008 4009 /* may grab non-irq protected spin_locks */ 4010 BUG_ON(in_interrupt()); 4011 recheck: 4012 /* double check policy once rq lock held */ 4013 if (policy < 0) { 4014 reset_on_fork = p->sched_reset_on_fork; 4015 policy = oldpolicy = p->policy; 4016 } else { 4017 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 4018 policy &= ~SCHED_RESET_ON_FORK; 4019 4020 if (policy != SCHED_FIFO && policy != SCHED_RR && 4021 policy != SCHED_NORMAL && policy != SCHED_BATCH && 4022 policy != SCHED_IDLE) 4023 return -EINVAL; 4024 } 4025 4026 /* 4027 * Valid priorities for SCHED_FIFO and SCHED_RR are 4028 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4029 * SCHED_BATCH and SCHED_IDLE is 0. 4030 */ 4031 if (param->sched_priority < 0 || 4032 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 4033 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 4034 return -EINVAL; 4035 if (rt_policy(policy) != (param->sched_priority != 0)) 4036 return -EINVAL; 4037 4038 /* 4039 * Allow unprivileged RT tasks to decrease priority: 4040 */ 4041 if (user && !capable(CAP_SYS_NICE)) { 4042 if (rt_policy(policy)) { 4043 unsigned long rlim_rtprio = 4044 task_rlimit(p, RLIMIT_RTPRIO); 4045 4046 /* can't set/change the rt policy */ 4047 if (policy != p->policy && !rlim_rtprio) 4048 return -EPERM; 4049 4050 /* can't increase priority */ 4051 if (param->sched_priority > p->rt_priority && 4052 param->sched_priority > rlim_rtprio) 4053 return -EPERM; 4054 } 4055 4056 /* 4057 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4058 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4059 */ 4060 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 4061 if (!can_nice(p, TASK_NICE(p))) 4062 return -EPERM; 4063 } 4064 4065 /* can't change other user's priorities */ 4066 if (!check_same_owner(p)) 4067 return -EPERM; 4068 4069 /* Normal users shall not reset the sched_reset_on_fork flag */ 4070 if (p->sched_reset_on_fork && !reset_on_fork) 4071 return -EPERM; 4072 } 4073 4074 if (user) { 4075 retval = security_task_setscheduler(p); 4076 if (retval) 4077 return retval; 4078 } 4079 4080 /* 4081 * make sure no PI-waiters arrive (or leave) while we are 4082 * changing the priority of the task: 4083 * 4084 * To be able to change p->policy safely, the appropriate 4085 * runqueue lock must be held. 4086 */ 4087 rq = task_rq_lock(p, &flags); 4088 4089 /* 4090 * Changing the policy of the stop threads its a very bad idea 4091 */ 4092 if (p == rq->stop) { 4093 task_rq_unlock(rq, p, &flags); 4094 return -EINVAL; 4095 } 4096 4097 /* 4098 * If not changing anything there's no need to proceed further: 4099 */ 4100 if (unlikely(policy == p->policy && (!rt_policy(policy) || 4101 param->sched_priority == p->rt_priority))) { 4102 4103 __task_rq_unlock(rq); 4104 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4105 return 0; 4106 } 4107 4108 #ifdef CONFIG_RT_GROUP_SCHED 4109 if (user) { 4110 /* 4111 * Do not allow realtime tasks into groups that have no runtime 4112 * assigned. 4113 */ 4114 if (rt_bandwidth_enabled() && rt_policy(policy) && 4115 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4116 !task_group_is_autogroup(task_group(p))) { 4117 task_rq_unlock(rq, p, &flags); 4118 return -EPERM; 4119 } 4120 } 4121 #endif 4122 4123 /* recheck policy now with rq lock held */ 4124 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4125 policy = oldpolicy = -1; 4126 task_rq_unlock(rq, p, &flags); 4127 goto recheck; 4128 } 4129 on_rq = p->on_rq; 4130 running = task_current(rq, p); 4131 if (on_rq) 4132 dequeue_task(rq, p, 0); 4133 if (running) 4134 p->sched_class->put_prev_task(rq, p); 4135 4136 p->sched_reset_on_fork = reset_on_fork; 4137 4138 oldprio = p->prio; 4139 prev_class = p->sched_class; 4140 __setscheduler(rq, p, policy, param->sched_priority); 4141 4142 if (running) 4143 p->sched_class->set_curr_task(rq); 4144 if (on_rq) 4145 enqueue_task(rq, p, 0); 4146 4147 check_class_changed(rq, p, prev_class, oldprio); 4148 task_rq_unlock(rq, p, &flags); 4149 4150 rt_mutex_adjust_pi(p); 4151 4152 return 0; 4153 } 4154 4155 /** 4156 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4157 * @p: the task in question. 4158 * @policy: new policy. 4159 * @param: structure containing the new RT priority. 4160 * 4161 * NOTE that the task may be already dead. 4162 */ 4163 int sched_setscheduler(struct task_struct *p, int policy, 4164 const struct sched_param *param) 4165 { 4166 return __sched_setscheduler(p, policy, param, true); 4167 } 4168 EXPORT_SYMBOL_GPL(sched_setscheduler); 4169 4170 /** 4171 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4172 * @p: the task in question. 4173 * @policy: new policy. 4174 * @param: structure containing the new RT priority. 4175 * 4176 * Just like sched_setscheduler, only don't bother checking if the 4177 * current context has permission. For example, this is needed in 4178 * stop_machine(): we create temporary high priority worker threads, 4179 * but our caller might not have that capability. 4180 */ 4181 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4182 const struct sched_param *param) 4183 { 4184 return __sched_setscheduler(p, policy, param, false); 4185 } 4186 4187 static int 4188 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4189 { 4190 struct sched_param lparam; 4191 struct task_struct *p; 4192 int retval; 4193 4194 if (!param || pid < 0) 4195 return -EINVAL; 4196 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4197 return -EFAULT; 4198 4199 rcu_read_lock(); 4200 retval = -ESRCH; 4201 p = find_process_by_pid(pid); 4202 if (p != NULL) 4203 retval = sched_setscheduler(p, policy, &lparam); 4204 rcu_read_unlock(); 4205 4206 return retval; 4207 } 4208 4209 /** 4210 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4211 * @pid: the pid in question. 4212 * @policy: new policy. 4213 * @param: structure containing the new RT priority. 4214 */ 4215 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4216 struct sched_param __user *, param) 4217 { 4218 /* negative values for policy are not valid */ 4219 if (policy < 0) 4220 return -EINVAL; 4221 4222 return do_sched_setscheduler(pid, policy, param); 4223 } 4224 4225 /** 4226 * sys_sched_setparam - set/change the RT priority of a thread 4227 * @pid: the pid in question. 4228 * @param: structure containing the new RT priority. 4229 */ 4230 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4231 { 4232 return do_sched_setscheduler(pid, -1, param); 4233 } 4234 4235 /** 4236 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4237 * @pid: the pid in question. 4238 */ 4239 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4240 { 4241 struct task_struct *p; 4242 int retval; 4243 4244 if (pid < 0) 4245 return -EINVAL; 4246 4247 retval = -ESRCH; 4248 rcu_read_lock(); 4249 p = find_process_by_pid(pid); 4250 if (p) { 4251 retval = security_task_getscheduler(p); 4252 if (!retval) 4253 retval = p->policy 4254 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4255 } 4256 rcu_read_unlock(); 4257 return retval; 4258 } 4259 4260 /** 4261 * sys_sched_getparam - get the RT priority of a thread 4262 * @pid: the pid in question. 4263 * @param: structure containing the RT priority. 4264 */ 4265 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4266 { 4267 struct sched_param lp; 4268 struct task_struct *p; 4269 int retval; 4270 4271 if (!param || pid < 0) 4272 return -EINVAL; 4273 4274 rcu_read_lock(); 4275 p = find_process_by_pid(pid); 4276 retval = -ESRCH; 4277 if (!p) 4278 goto out_unlock; 4279 4280 retval = security_task_getscheduler(p); 4281 if (retval) 4282 goto out_unlock; 4283 4284 lp.sched_priority = p->rt_priority; 4285 rcu_read_unlock(); 4286 4287 /* 4288 * This one might sleep, we cannot do it with a spinlock held ... 4289 */ 4290 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4291 4292 return retval; 4293 4294 out_unlock: 4295 rcu_read_unlock(); 4296 return retval; 4297 } 4298 4299 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4300 { 4301 cpumask_var_t cpus_allowed, new_mask; 4302 struct task_struct *p; 4303 int retval; 4304 4305 get_online_cpus(); 4306 rcu_read_lock(); 4307 4308 p = find_process_by_pid(pid); 4309 if (!p) { 4310 rcu_read_unlock(); 4311 put_online_cpus(); 4312 return -ESRCH; 4313 } 4314 4315 /* Prevent p going away */ 4316 get_task_struct(p); 4317 rcu_read_unlock(); 4318 4319 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4320 retval = -ENOMEM; 4321 goto out_put_task; 4322 } 4323 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4324 retval = -ENOMEM; 4325 goto out_free_cpus_allowed; 4326 } 4327 retval = -EPERM; 4328 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE)) 4329 goto out_unlock; 4330 4331 retval = security_task_setscheduler(p); 4332 if (retval) 4333 goto out_unlock; 4334 4335 cpuset_cpus_allowed(p, cpus_allowed); 4336 cpumask_and(new_mask, in_mask, cpus_allowed); 4337 again: 4338 retval = set_cpus_allowed_ptr(p, new_mask); 4339 4340 if (!retval) { 4341 cpuset_cpus_allowed(p, cpus_allowed); 4342 if (!cpumask_subset(new_mask, cpus_allowed)) { 4343 /* 4344 * We must have raced with a concurrent cpuset 4345 * update. Just reset the cpus_allowed to the 4346 * cpuset's cpus_allowed 4347 */ 4348 cpumask_copy(new_mask, cpus_allowed); 4349 goto again; 4350 } 4351 } 4352 out_unlock: 4353 free_cpumask_var(new_mask); 4354 out_free_cpus_allowed: 4355 free_cpumask_var(cpus_allowed); 4356 out_put_task: 4357 put_task_struct(p); 4358 put_online_cpus(); 4359 return retval; 4360 } 4361 4362 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4363 struct cpumask *new_mask) 4364 { 4365 if (len < cpumask_size()) 4366 cpumask_clear(new_mask); 4367 else if (len > cpumask_size()) 4368 len = cpumask_size(); 4369 4370 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4371 } 4372 4373 /** 4374 * sys_sched_setaffinity - set the cpu affinity of a process 4375 * @pid: pid of the process 4376 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4377 * @user_mask_ptr: user-space pointer to the new cpu mask 4378 */ 4379 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4380 unsigned long __user *, user_mask_ptr) 4381 { 4382 cpumask_var_t new_mask; 4383 int retval; 4384 4385 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4386 return -ENOMEM; 4387 4388 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4389 if (retval == 0) 4390 retval = sched_setaffinity(pid, new_mask); 4391 free_cpumask_var(new_mask); 4392 return retval; 4393 } 4394 4395 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4396 { 4397 struct task_struct *p; 4398 unsigned long flags; 4399 int retval; 4400 4401 get_online_cpus(); 4402 rcu_read_lock(); 4403 4404 retval = -ESRCH; 4405 p = find_process_by_pid(pid); 4406 if (!p) 4407 goto out_unlock; 4408 4409 retval = security_task_getscheduler(p); 4410 if (retval) 4411 goto out_unlock; 4412 4413 raw_spin_lock_irqsave(&p->pi_lock, flags); 4414 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4415 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4416 4417 out_unlock: 4418 rcu_read_unlock(); 4419 put_online_cpus(); 4420 4421 return retval; 4422 } 4423 4424 /** 4425 * sys_sched_getaffinity - get the cpu affinity of a process 4426 * @pid: pid of the process 4427 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4428 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4429 */ 4430 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4431 unsigned long __user *, user_mask_ptr) 4432 { 4433 int ret; 4434 cpumask_var_t mask; 4435 4436 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4437 return -EINVAL; 4438 if (len & (sizeof(unsigned long)-1)) 4439 return -EINVAL; 4440 4441 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4442 return -ENOMEM; 4443 4444 ret = sched_getaffinity(pid, mask); 4445 if (ret == 0) { 4446 size_t retlen = min_t(size_t, len, cpumask_size()); 4447 4448 if (copy_to_user(user_mask_ptr, mask, retlen)) 4449 ret = -EFAULT; 4450 else 4451 ret = retlen; 4452 } 4453 free_cpumask_var(mask); 4454 4455 return ret; 4456 } 4457 4458 /** 4459 * sys_sched_yield - yield the current processor to other threads. 4460 * 4461 * This function yields the current CPU to other tasks. If there are no 4462 * other threads running on this CPU then this function will return. 4463 */ 4464 SYSCALL_DEFINE0(sched_yield) 4465 { 4466 struct rq *rq = this_rq_lock(); 4467 4468 schedstat_inc(rq, yld_count); 4469 current->sched_class->yield_task(rq); 4470 4471 /* 4472 * Since we are going to call schedule() anyway, there's 4473 * no need to preempt or enable interrupts: 4474 */ 4475 __release(rq->lock); 4476 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4477 do_raw_spin_unlock(&rq->lock); 4478 preempt_enable_no_resched(); 4479 4480 schedule(); 4481 4482 return 0; 4483 } 4484 4485 static inline int should_resched(void) 4486 { 4487 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4488 } 4489 4490 static void __cond_resched(void) 4491 { 4492 add_preempt_count(PREEMPT_ACTIVE); 4493 __schedule(); 4494 sub_preempt_count(PREEMPT_ACTIVE); 4495 } 4496 4497 int __sched _cond_resched(void) 4498 { 4499 if (should_resched()) { 4500 __cond_resched(); 4501 return 1; 4502 } 4503 return 0; 4504 } 4505 EXPORT_SYMBOL(_cond_resched); 4506 4507 /* 4508 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4509 * call schedule, and on return reacquire the lock. 4510 * 4511 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4512 * operations here to prevent schedule() from being called twice (once via 4513 * spin_unlock(), once by hand). 4514 */ 4515 int __cond_resched_lock(spinlock_t *lock) 4516 { 4517 int resched = should_resched(); 4518 int ret = 0; 4519 4520 lockdep_assert_held(lock); 4521 4522 if (spin_needbreak(lock) || resched) { 4523 spin_unlock(lock); 4524 if (resched) 4525 __cond_resched(); 4526 else 4527 cpu_relax(); 4528 ret = 1; 4529 spin_lock(lock); 4530 } 4531 return ret; 4532 } 4533 EXPORT_SYMBOL(__cond_resched_lock); 4534 4535 int __sched __cond_resched_softirq(void) 4536 { 4537 BUG_ON(!in_softirq()); 4538 4539 if (should_resched()) { 4540 local_bh_enable(); 4541 __cond_resched(); 4542 local_bh_disable(); 4543 return 1; 4544 } 4545 return 0; 4546 } 4547 EXPORT_SYMBOL(__cond_resched_softirq); 4548 4549 /** 4550 * yield - yield the current processor to other threads. 4551 * 4552 * This is a shortcut for kernel-space yielding - it marks the 4553 * thread runnable and calls sys_sched_yield(). 4554 */ 4555 void __sched yield(void) 4556 { 4557 set_current_state(TASK_RUNNING); 4558 sys_sched_yield(); 4559 } 4560 EXPORT_SYMBOL(yield); 4561 4562 /** 4563 * yield_to - yield the current processor to another thread in 4564 * your thread group, or accelerate that thread toward the 4565 * processor it's on. 4566 * @p: target task 4567 * @preempt: whether task preemption is allowed or not 4568 * 4569 * It's the caller's job to ensure that the target task struct 4570 * can't go away on us before we can do any checks. 4571 * 4572 * Returns true if we indeed boosted the target task. 4573 */ 4574 bool __sched yield_to(struct task_struct *p, bool preempt) 4575 { 4576 struct task_struct *curr = current; 4577 struct rq *rq, *p_rq; 4578 unsigned long flags; 4579 bool yielded = 0; 4580 4581 local_irq_save(flags); 4582 rq = this_rq(); 4583 4584 again: 4585 p_rq = task_rq(p); 4586 double_rq_lock(rq, p_rq); 4587 while (task_rq(p) != p_rq) { 4588 double_rq_unlock(rq, p_rq); 4589 goto again; 4590 } 4591 4592 if (!curr->sched_class->yield_to_task) 4593 goto out; 4594 4595 if (curr->sched_class != p->sched_class) 4596 goto out; 4597 4598 if (task_running(p_rq, p) || p->state) 4599 goto out; 4600 4601 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4602 if (yielded) { 4603 schedstat_inc(rq, yld_count); 4604 /* 4605 * Make p's CPU reschedule; pick_next_entity takes care of 4606 * fairness. 4607 */ 4608 if (preempt && rq != p_rq) 4609 resched_task(p_rq->curr); 4610 } else { 4611 /* 4612 * We might have set it in task_yield_fair(), but are 4613 * not going to schedule(), so don't want to skip 4614 * the next update. 4615 */ 4616 rq->skip_clock_update = 0; 4617 } 4618 4619 out: 4620 double_rq_unlock(rq, p_rq); 4621 local_irq_restore(flags); 4622 4623 if (yielded) 4624 schedule(); 4625 4626 return yielded; 4627 } 4628 EXPORT_SYMBOL_GPL(yield_to); 4629 4630 /* 4631 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4632 * that process accounting knows that this is a task in IO wait state. 4633 */ 4634 void __sched io_schedule(void) 4635 { 4636 struct rq *rq = raw_rq(); 4637 4638 delayacct_blkio_start(); 4639 atomic_inc(&rq->nr_iowait); 4640 blk_flush_plug(current); 4641 current->in_iowait = 1; 4642 schedule(); 4643 current->in_iowait = 0; 4644 atomic_dec(&rq->nr_iowait); 4645 delayacct_blkio_end(); 4646 } 4647 EXPORT_SYMBOL(io_schedule); 4648 4649 long __sched io_schedule_timeout(long timeout) 4650 { 4651 struct rq *rq = raw_rq(); 4652 long ret; 4653 4654 delayacct_blkio_start(); 4655 atomic_inc(&rq->nr_iowait); 4656 blk_flush_plug(current); 4657 current->in_iowait = 1; 4658 ret = schedule_timeout(timeout); 4659 current->in_iowait = 0; 4660 atomic_dec(&rq->nr_iowait); 4661 delayacct_blkio_end(); 4662 return ret; 4663 } 4664 4665 /** 4666 * sys_sched_get_priority_max - return maximum RT priority. 4667 * @policy: scheduling class. 4668 * 4669 * this syscall returns the maximum rt_priority that can be used 4670 * by a given scheduling class. 4671 */ 4672 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4673 { 4674 int ret = -EINVAL; 4675 4676 switch (policy) { 4677 case SCHED_FIFO: 4678 case SCHED_RR: 4679 ret = MAX_USER_RT_PRIO-1; 4680 break; 4681 case SCHED_NORMAL: 4682 case SCHED_BATCH: 4683 case SCHED_IDLE: 4684 ret = 0; 4685 break; 4686 } 4687 return ret; 4688 } 4689 4690 /** 4691 * sys_sched_get_priority_min - return minimum RT priority. 4692 * @policy: scheduling class. 4693 * 4694 * this syscall returns the minimum rt_priority that can be used 4695 * by a given scheduling class. 4696 */ 4697 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4698 { 4699 int ret = -EINVAL; 4700 4701 switch (policy) { 4702 case SCHED_FIFO: 4703 case SCHED_RR: 4704 ret = 1; 4705 break; 4706 case SCHED_NORMAL: 4707 case SCHED_BATCH: 4708 case SCHED_IDLE: 4709 ret = 0; 4710 } 4711 return ret; 4712 } 4713 4714 /** 4715 * sys_sched_rr_get_interval - return the default timeslice of a process. 4716 * @pid: pid of the process. 4717 * @interval: userspace pointer to the timeslice value. 4718 * 4719 * this syscall writes the default timeslice value of a given process 4720 * into the user-space timespec buffer. A value of '0' means infinity. 4721 */ 4722 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4723 struct timespec __user *, interval) 4724 { 4725 struct task_struct *p; 4726 unsigned int time_slice; 4727 unsigned long flags; 4728 struct rq *rq; 4729 int retval; 4730 struct timespec t; 4731 4732 if (pid < 0) 4733 return -EINVAL; 4734 4735 retval = -ESRCH; 4736 rcu_read_lock(); 4737 p = find_process_by_pid(pid); 4738 if (!p) 4739 goto out_unlock; 4740 4741 retval = security_task_getscheduler(p); 4742 if (retval) 4743 goto out_unlock; 4744 4745 rq = task_rq_lock(p, &flags); 4746 time_slice = p->sched_class->get_rr_interval(rq, p); 4747 task_rq_unlock(rq, p, &flags); 4748 4749 rcu_read_unlock(); 4750 jiffies_to_timespec(time_slice, &t); 4751 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4752 return retval; 4753 4754 out_unlock: 4755 rcu_read_unlock(); 4756 return retval; 4757 } 4758 4759 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4760 4761 void sched_show_task(struct task_struct *p) 4762 { 4763 unsigned long free = 0; 4764 unsigned state; 4765 4766 state = p->state ? __ffs(p->state) + 1 : 0; 4767 printk(KERN_INFO "%-15.15s %c", p->comm, 4768 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4769 #if BITS_PER_LONG == 32 4770 if (state == TASK_RUNNING) 4771 printk(KERN_CONT " running "); 4772 else 4773 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4774 #else 4775 if (state == TASK_RUNNING) 4776 printk(KERN_CONT " running task "); 4777 else 4778 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4779 #endif 4780 #ifdef CONFIG_DEBUG_STACK_USAGE 4781 free = stack_not_used(p); 4782 #endif 4783 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4784 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)), 4785 (unsigned long)task_thread_info(p)->flags); 4786 4787 show_stack(p, NULL); 4788 } 4789 4790 void show_state_filter(unsigned long state_filter) 4791 { 4792 struct task_struct *g, *p; 4793 4794 #if BITS_PER_LONG == 32 4795 printk(KERN_INFO 4796 " task PC stack pid father\n"); 4797 #else 4798 printk(KERN_INFO 4799 " task PC stack pid father\n"); 4800 #endif 4801 rcu_read_lock(); 4802 do_each_thread(g, p) { 4803 /* 4804 * reset the NMI-timeout, listing all files on a slow 4805 * console might take a lot of time: 4806 */ 4807 touch_nmi_watchdog(); 4808 if (!state_filter || (p->state & state_filter)) 4809 sched_show_task(p); 4810 } while_each_thread(g, p); 4811 4812 touch_all_softlockup_watchdogs(); 4813 4814 #ifdef CONFIG_SCHED_DEBUG 4815 sysrq_sched_debug_show(); 4816 #endif 4817 rcu_read_unlock(); 4818 /* 4819 * Only show locks if all tasks are dumped: 4820 */ 4821 if (!state_filter) 4822 debug_show_all_locks(); 4823 } 4824 4825 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 4826 { 4827 idle->sched_class = &idle_sched_class; 4828 } 4829 4830 /** 4831 * init_idle - set up an idle thread for a given CPU 4832 * @idle: task in question 4833 * @cpu: cpu the idle task belongs to 4834 * 4835 * NOTE: this function does not set the idle thread's NEED_RESCHED 4836 * flag, to make booting more robust. 4837 */ 4838 void __cpuinit init_idle(struct task_struct *idle, int cpu) 4839 { 4840 struct rq *rq = cpu_rq(cpu); 4841 unsigned long flags; 4842 4843 raw_spin_lock_irqsave(&rq->lock, flags); 4844 4845 __sched_fork(idle); 4846 idle->state = TASK_RUNNING; 4847 idle->se.exec_start = sched_clock(); 4848 4849 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4850 /* 4851 * We're having a chicken and egg problem, even though we are 4852 * holding rq->lock, the cpu isn't yet set to this cpu so the 4853 * lockdep check in task_group() will fail. 4854 * 4855 * Similar case to sched_fork(). / Alternatively we could 4856 * use task_rq_lock() here and obtain the other rq->lock. 4857 * 4858 * Silence PROVE_RCU 4859 */ 4860 rcu_read_lock(); 4861 __set_task_cpu(idle, cpu); 4862 rcu_read_unlock(); 4863 4864 rq->curr = rq->idle = idle; 4865 #if defined(CONFIG_SMP) 4866 idle->on_cpu = 1; 4867 #endif 4868 raw_spin_unlock_irqrestore(&rq->lock, flags); 4869 4870 /* Set the preempt count _outside_ the spinlocks! */ 4871 task_thread_info(idle)->preempt_count = 0; 4872 4873 /* 4874 * The idle tasks have their own, simple scheduling class: 4875 */ 4876 idle->sched_class = &idle_sched_class; 4877 ftrace_graph_init_idle_task(idle, cpu); 4878 #if defined(CONFIG_SMP) 4879 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4880 #endif 4881 } 4882 4883 #ifdef CONFIG_SMP 4884 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4885 { 4886 if (p->sched_class && p->sched_class->set_cpus_allowed) 4887 p->sched_class->set_cpus_allowed(p, new_mask); 4888 4889 cpumask_copy(&p->cpus_allowed, new_mask); 4890 p->rt.nr_cpus_allowed = cpumask_weight(new_mask); 4891 } 4892 4893 /* 4894 * This is how migration works: 4895 * 4896 * 1) we invoke migration_cpu_stop() on the target CPU using 4897 * stop_one_cpu(). 4898 * 2) stopper starts to run (implicitly forcing the migrated thread 4899 * off the CPU) 4900 * 3) it checks whether the migrated task is still in the wrong runqueue. 4901 * 4) if it's in the wrong runqueue then the migration thread removes 4902 * it and puts it into the right queue. 4903 * 5) stopper completes and stop_one_cpu() returns and the migration 4904 * is done. 4905 */ 4906 4907 /* 4908 * Change a given task's CPU affinity. Migrate the thread to a 4909 * proper CPU and schedule it away if the CPU it's executing on 4910 * is removed from the allowed bitmask. 4911 * 4912 * NOTE: the caller must have a valid reference to the task, the 4913 * task must not exit() & deallocate itself prematurely. The 4914 * call is not atomic; no spinlocks may be held. 4915 */ 4916 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4917 { 4918 unsigned long flags; 4919 struct rq *rq; 4920 unsigned int dest_cpu; 4921 int ret = 0; 4922 4923 rq = task_rq_lock(p, &flags); 4924 4925 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4926 goto out; 4927 4928 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4929 ret = -EINVAL; 4930 goto out; 4931 } 4932 4933 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { 4934 ret = -EINVAL; 4935 goto out; 4936 } 4937 4938 do_set_cpus_allowed(p, new_mask); 4939 4940 /* Can the task run on the task's current CPU? If so, we're done */ 4941 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4942 goto out; 4943 4944 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4945 if (p->on_rq) { 4946 struct migration_arg arg = { p, dest_cpu }; 4947 /* Need help from migration thread: drop lock and wait. */ 4948 task_rq_unlock(rq, p, &flags); 4949 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4950 tlb_migrate_finish(p->mm); 4951 return 0; 4952 } 4953 out: 4954 task_rq_unlock(rq, p, &flags); 4955 4956 return ret; 4957 } 4958 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4959 4960 /* 4961 * Move (not current) task off this cpu, onto dest cpu. We're doing 4962 * this because either it can't run here any more (set_cpus_allowed() 4963 * away from this CPU, or CPU going down), or because we're 4964 * attempting to rebalance this task on exec (sched_exec). 4965 * 4966 * So we race with normal scheduler movements, but that's OK, as long 4967 * as the task is no longer on this CPU. 4968 * 4969 * Returns non-zero if task was successfully migrated. 4970 */ 4971 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4972 { 4973 struct rq *rq_dest, *rq_src; 4974 int ret = 0; 4975 4976 if (unlikely(!cpu_active(dest_cpu))) 4977 return ret; 4978 4979 rq_src = cpu_rq(src_cpu); 4980 rq_dest = cpu_rq(dest_cpu); 4981 4982 raw_spin_lock(&p->pi_lock); 4983 double_rq_lock(rq_src, rq_dest); 4984 /* Already moved. */ 4985 if (task_cpu(p) != src_cpu) 4986 goto done; 4987 /* Affinity changed (again). */ 4988 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4989 goto fail; 4990 4991 /* 4992 * If we're not on a rq, the next wake-up will ensure we're 4993 * placed properly. 4994 */ 4995 if (p->on_rq) { 4996 dequeue_task(rq_src, p, 0); 4997 set_task_cpu(p, dest_cpu); 4998 enqueue_task(rq_dest, p, 0); 4999 check_preempt_curr(rq_dest, p, 0); 5000 } 5001 done: 5002 ret = 1; 5003 fail: 5004 double_rq_unlock(rq_src, rq_dest); 5005 raw_spin_unlock(&p->pi_lock); 5006 return ret; 5007 } 5008 5009 /* 5010 * migration_cpu_stop - this will be executed by a highprio stopper thread 5011 * and performs thread migration by bumping thread off CPU then 5012 * 'pushing' onto another runqueue. 5013 */ 5014 static int migration_cpu_stop(void *data) 5015 { 5016 struct migration_arg *arg = data; 5017 5018 /* 5019 * The original target cpu might have gone down and we might 5020 * be on another cpu but it doesn't matter. 5021 */ 5022 local_irq_disable(); 5023 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 5024 local_irq_enable(); 5025 return 0; 5026 } 5027 5028 #ifdef CONFIG_HOTPLUG_CPU 5029 5030 /* 5031 * Ensures that the idle task is using init_mm right before its cpu goes 5032 * offline. 5033 */ 5034 void idle_task_exit(void) 5035 { 5036 struct mm_struct *mm = current->active_mm; 5037 5038 BUG_ON(cpu_online(smp_processor_id())); 5039 5040 if (mm != &init_mm) 5041 switch_mm(mm, &init_mm, current); 5042 mmdrop(mm); 5043 } 5044 5045 /* 5046 * While a dead CPU has no uninterruptible tasks queued at this point, 5047 * it might still have a nonzero ->nr_uninterruptible counter, because 5048 * for performance reasons the counter is not stricly tracking tasks to 5049 * their home CPUs. So we just add the counter to another CPU's counter, 5050 * to keep the global sum constant after CPU-down: 5051 */ 5052 static void migrate_nr_uninterruptible(struct rq *rq_src) 5053 { 5054 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); 5055 5056 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; 5057 rq_src->nr_uninterruptible = 0; 5058 } 5059 5060 /* 5061 * remove the tasks which were accounted by rq from calc_load_tasks. 5062 */ 5063 static void calc_global_load_remove(struct rq *rq) 5064 { 5065 atomic_long_sub(rq->calc_load_active, &calc_load_tasks); 5066 rq->calc_load_active = 0; 5067 } 5068 5069 /* 5070 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5071 * try_to_wake_up()->select_task_rq(). 5072 * 5073 * Called with rq->lock held even though we'er in stop_machine() and 5074 * there's no concurrency possible, we hold the required locks anyway 5075 * because of lock validation efforts. 5076 */ 5077 static void migrate_tasks(unsigned int dead_cpu) 5078 { 5079 struct rq *rq = cpu_rq(dead_cpu); 5080 struct task_struct *next, *stop = rq->stop; 5081 int dest_cpu; 5082 5083 /* 5084 * Fudge the rq selection such that the below task selection loop 5085 * doesn't get stuck on the currently eligible stop task. 5086 * 5087 * We're currently inside stop_machine() and the rq is either stuck 5088 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5089 * either way we should never end up calling schedule() until we're 5090 * done here. 5091 */ 5092 rq->stop = NULL; 5093 5094 /* Ensure any throttled groups are reachable by pick_next_task */ 5095 unthrottle_offline_cfs_rqs(rq); 5096 5097 for ( ; ; ) { 5098 /* 5099 * There's this thread running, bail when that's the only 5100 * remaining thread. 5101 */ 5102 if (rq->nr_running == 1) 5103 break; 5104 5105 next = pick_next_task(rq); 5106 BUG_ON(!next); 5107 next->sched_class->put_prev_task(rq, next); 5108 5109 /* Find suitable destination for @next, with force if needed. */ 5110 dest_cpu = select_fallback_rq(dead_cpu, next); 5111 raw_spin_unlock(&rq->lock); 5112 5113 __migrate_task(next, dead_cpu, dest_cpu); 5114 5115 raw_spin_lock(&rq->lock); 5116 } 5117 5118 rq->stop = stop; 5119 } 5120 5121 #endif /* CONFIG_HOTPLUG_CPU */ 5122 5123 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5124 5125 static struct ctl_table sd_ctl_dir[] = { 5126 { 5127 .procname = "sched_domain", 5128 .mode = 0555, 5129 }, 5130 {} 5131 }; 5132 5133 static struct ctl_table sd_ctl_root[] = { 5134 { 5135 .procname = "kernel", 5136 .mode = 0555, 5137 .child = sd_ctl_dir, 5138 }, 5139 {} 5140 }; 5141 5142 static struct ctl_table *sd_alloc_ctl_entry(int n) 5143 { 5144 struct ctl_table *entry = 5145 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5146 5147 return entry; 5148 } 5149 5150 static void sd_free_ctl_entry(struct ctl_table **tablep) 5151 { 5152 struct ctl_table *entry; 5153 5154 /* 5155 * In the intermediate directories, both the child directory and 5156 * procname are dynamically allocated and could fail but the mode 5157 * will always be set. In the lowest directory the names are 5158 * static strings and all have proc handlers. 5159 */ 5160 for (entry = *tablep; entry->mode; entry++) { 5161 if (entry->child) 5162 sd_free_ctl_entry(&entry->child); 5163 if (entry->proc_handler == NULL) 5164 kfree(entry->procname); 5165 } 5166 5167 kfree(*tablep); 5168 *tablep = NULL; 5169 } 5170 5171 static void 5172 set_table_entry(struct ctl_table *entry, 5173 const char *procname, void *data, int maxlen, 5174 umode_t mode, proc_handler *proc_handler) 5175 { 5176 entry->procname = procname; 5177 entry->data = data; 5178 entry->maxlen = maxlen; 5179 entry->mode = mode; 5180 entry->proc_handler = proc_handler; 5181 } 5182 5183 static struct ctl_table * 5184 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5185 { 5186 struct ctl_table *table = sd_alloc_ctl_entry(13); 5187 5188 if (table == NULL) 5189 return NULL; 5190 5191 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5192 sizeof(long), 0644, proc_doulongvec_minmax); 5193 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5194 sizeof(long), 0644, proc_doulongvec_minmax); 5195 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5196 sizeof(int), 0644, proc_dointvec_minmax); 5197 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5198 sizeof(int), 0644, proc_dointvec_minmax); 5199 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5200 sizeof(int), 0644, proc_dointvec_minmax); 5201 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5202 sizeof(int), 0644, proc_dointvec_minmax); 5203 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5204 sizeof(int), 0644, proc_dointvec_minmax); 5205 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5206 sizeof(int), 0644, proc_dointvec_minmax); 5207 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5208 sizeof(int), 0644, proc_dointvec_minmax); 5209 set_table_entry(&table[9], "cache_nice_tries", 5210 &sd->cache_nice_tries, 5211 sizeof(int), 0644, proc_dointvec_minmax); 5212 set_table_entry(&table[10], "flags", &sd->flags, 5213 sizeof(int), 0644, proc_dointvec_minmax); 5214 set_table_entry(&table[11], "name", sd->name, 5215 CORENAME_MAX_SIZE, 0444, proc_dostring); 5216 /* &table[12] is terminator */ 5217 5218 return table; 5219 } 5220 5221 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5222 { 5223 struct ctl_table *entry, *table; 5224 struct sched_domain *sd; 5225 int domain_num = 0, i; 5226 char buf[32]; 5227 5228 for_each_domain(cpu, sd) 5229 domain_num++; 5230 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5231 if (table == NULL) 5232 return NULL; 5233 5234 i = 0; 5235 for_each_domain(cpu, sd) { 5236 snprintf(buf, 32, "domain%d", i); 5237 entry->procname = kstrdup(buf, GFP_KERNEL); 5238 entry->mode = 0555; 5239 entry->child = sd_alloc_ctl_domain_table(sd); 5240 entry++; 5241 i++; 5242 } 5243 return table; 5244 } 5245 5246 static struct ctl_table_header *sd_sysctl_header; 5247 static void register_sched_domain_sysctl(void) 5248 { 5249 int i, cpu_num = num_possible_cpus(); 5250 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5251 char buf[32]; 5252 5253 WARN_ON(sd_ctl_dir[0].child); 5254 sd_ctl_dir[0].child = entry; 5255 5256 if (entry == NULL) 5257 return; 5258 5259 for_each_possible_cpu(i) { 5260 snprintf(buf, 32, "cpu%d", i); 5261 entry->procname = kstrdup(buf, GFP_KERNEL); 5262 entry->mode = 0555; 5263 entry->child = sd_alloc_ctl_cpu_table(i); 5264 entry++; 5265 } 5266 5267 WARN_ON(sd_sysctl_header); 5268 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5269 } 5270 5271 /* may be called multiple times per register */ 5272 static void unregister_sched_domain_sysctl(void) 5273 { 5274 if (sd_sysctl_header) 5275 unregister_sysctl_table(sd_sysctl_header); 5276 sd_sysctl_header = NULL; 5277 if (sd_ctl_dir[0].child) 5278 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5279 } 5280 #else 5281 static void register_sched_domain_sysctl(void) 5282 { 5283 } 5284 static void unregister_sched_domain_sysctl(void) 5285 { 5286 } 5287 #endif 5288 5289 static void set_rq_online(struct rq *rq) 5290 { 5291 if (!rq->online) { 5292 const struct sched_class *class; 5293 5294 cpumask_set_cpu(rq->cpu, rq->rd->online); 5295 rq->online = 1; 5296 5297 for_each_class(class) { 5298 if (class->rq_online) 5299 class->rq_online(rq); 5300 } 5301 } 5302 } 5303 5304 static void set_rq_offline(struct rq *rq) 5305 { 5306 if (rq->online) { 5307 const struct sched_class *class; 5308 5309 for_each_class(class) { 5310 if (class->rq_offline) 5311 class->rq_offline(rq); 5312 } 5313 5314 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5315 rq->online = 0; 5316 } 5317 } 5318 5319 /* 5320 * migration_call - callback that gets triggered when a CPU is added. 5321 * Here we can start up the necessary migration thread for the new CPU. 5322 */ 5323 static int __cpuinit 5324 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5325 { 5326 int cpu = (long)hcpu; 5327 unsigned long flags; 5328 struct rq *rq = cpu_rq(cpu); 5329 5330 switch (action & ~CPU_TASKS_FROZEN) { 5331 5332 case CPU_UP_PREPARE: 5333 rq->calc_load_update = calc_load_update; 5334 break; 5335 5336 case CPU_ONLINE: 5337 /* Update our root-domain */ 5338 raw_spin_lock_irqsave(&rq->lock, flags); 5339 if (rq->rd) { 5340 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5341 5342 set_rq_online(rq); 5343 } 5344 raw_spin_unlock_irqrestore(&rq->lock, flags); 5345 break; 5346 5347 #ifdef CONFIG_HOTPLUG_CPU 5348 case CPU_DYING: 5349 sched_ttwu_pending(); 5350 /* Update our root-domain */ 5351 raw_spin_lock_irqsave(&rq->lock, flags); 5352 if (rq->rd) { 5353 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5354 set_rq_offline(rq); 5355 } 5356 migrate_tasks(cpu); 5357 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5358 raw_spin_unlock_irqrestore(&rq->lock, flags); 5359 5360 migrate_nr_uninterruptible(rq); 5361 calc_global_load_remove(rq); 5362 break; 5363 #endif 5364 } 5365 5366 update_max_interval(); 5367 5368 return NOTIFY_OK; 5369 } 5370 5371 /* 5372 * Register at high priority so that task migration (migrate_all_tasks) 5373 * happens before everything else. This has to be lower priority than 5374 * the notifier in the perf_event subsystem, though. 5375 */ 5376 static struct notifier_block __cpuinitdata migration_notifier = { 5377 .notifier_call = migration_call, 5378 .priority = CPU_PRI_MIGRATION, 5379 }; 5380 5381 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5382 unsigned long action, void *hcpu) 5383 { 5384 switch (action & ~CPU_TASKS_FROZEN) { 5385 case CPU_ONLINE: 5386 case CPU_DOWN_FAILED: 5387 set_cpu_active((long)hcpu, true); 5388 return NOTIFY_OK; 5389 default: 5390 return NOTIFY_DONE; 5391 } 5392 } 5393 5394 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5395 unsigned long action, void *hcpu) 5396 { 5397 switch (action & ~CPU_TASKS_FROZEN) { 5398 case CPU_DOWN_PREPARE: 5399 set_cpu_active((long)hcpu, false); 5400 return NOTIFY_OK; 5401 default: 5402 return NOTIFY_DONE; 5403 } 5404 } 5405 5406 static int __init migration_init(void) 5407 { 5408 void *cpu = (void *)(long)smp_processor_id(); 5409 int err; 5410 5411 /* Initialize migration for the boot CPU */ 5412 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5413 BUG_ON(err == NOTIFY_BAD); 5414 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5415 register_cpu_notifier(&migration_notifier); 5416 5417 /* Register cpu active notifiers */ 5418 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5419 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5420 5421 return 0; 5422 } 5423 early_initcall(migration_init); 5424 #endif 5425 5426 #ifdef CONFIG_SMP 5427 5428 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5429 5430 #ifdef CONFIG_SCHED_DEBUG 5431 5432 static __read_mostly int sched_domain_debug_enabled; 5433 5434 static int __init sched_domain_debug_setup(char *str) 5435 { 5436 sched_domain_debug_enabled = 1; 5437 5438 return 0; 5439 } 5440 early_param("sched_debug", sched_domain_debug_setup); 5441 5442 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5443 struct cpumask *groupmask) 5444 { 5445 struct sched_group *group = sd->groups; 5446 char str[256]; 5447 5448 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5449 cpumask_clear(groupmask); 5450 5451 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5452 5453 if (!(sd->flags & SD_LOAD_BALANCE)) { 5454 printk("does not load-balance\n"); 5455 if (sd->parent) 5456 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5457 " has parent"); 5458 return -1; 5459 } 5460 5461 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5462 5463 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5464 printk(KERN_ERR "ERROR: domain->span does not contain " 5465 "CPU%d\n", cpu); 5466 } 5467 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5468 printk(KERN_ERR "ERROR: domain->groups does not contain" 5469 " CPU%d\n", cpu); 5470 } 5471 5472 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5473 do { 5474 if (!group) { 5475 printk("\n"); 5476 printk(KERN_ERR "ERROR: group is NULL\n"); 5477 break; 5478 } 5479 5480 if (!group->sgp->power) { 5481 printk(KERN_CONT "\n"); 5482 printk(KERN_ERR "ERROR: domain->cpu_power not " 5483 "set\n"); 5484 break; 5485 } 5486 5487 if (!cpumask_weight(sched_group_cpus(group))) { 5488 printk(KERN_CONT "\n"); 5489 printk(KERN_ERR "ERROR: empty group\n"); 5490 break; 5491 } 5492 5493 if (cpumask_intersects(groupmask, sched_group_cpus(group))) { 5494 printk(KERN_CONT "\n"); 5495 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5496 break; 5497 } 5498 5499 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5500 5501 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5502 5503 printk(KERN_CONT " %s", str); 5504 if (group->sgp->power != SCHED_POWER_SCALE) { 5505 printk(KERN_CONT " (cpu_power = %d)", 5506 group->sgp->power); 5507 } 5508 5509 group = group->next; 5510 } while (group != sd->groups); 5511 printk(KERN_CONT "\n"); 5512 5513 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5514 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5515 5516 if (sd->parent && 5517 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5518 printk(KERN_ERR "ERROR: parent span is not a superset " 5519 "of domain->span\n"); 5520 return 0; 5521 } 5522 5523 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5524 { 5525 int level = 0; 5526 5527 if (!sched_domain_debug_enabled) 5528 return; 5529 5530 if (!sd) { 5531 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5532 return; 5533 } 5534 5535 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5536 5537 for (;;) { 5538 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5539 break; 5540 level++; 5541 sd = sd->parent; 5542 if (!sd) 5543 break; 5544 } 5545 } 5546 #else /* !CONFIG_SCHED_DEBUG */ 5547 # define sched_domain_debug(sd, cpu) do { } while (0) 5548 #endif /* CONFIG_SCHED_DEBUG */ 5549 5550 static int sd_degenerate(struct sched_domain *sd) 5551 { 5552 if (cpumask_weight(sched_domain_span(sd)) == 1) 5553 return 1; 5554 5555 /* Following flags need at least 2 groups */ 5556 if (sd->flags & (SD_LOAD_BALANCE | 5557 SD_BALANCE_NEWIDLE | 5558 SD_BALANCE_FORK | 5559 SD_BALANCE_EXEC | 5560 SD_SHARE_CPUPOWER | 5561 SD_SHARE_PKG_RESOURCES)) { 5562 if (sd->groups != sd->groups->next) 5563 return 0; 5564 } 5565 5566 /* Following flags don't use groups */ 5567 if (sd->flags & (SD_WAKE_AFFINE)) 5568 return 0; 5569 5570 return 1; 5571 } 5572 5573 static int 5574 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5575 { 5576 unsigned long cflags = sd->flags, pflags = parent->flags; 5577 5578 if (sd_degenerate(parent)) 5579 return 1; 5580 5581 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5582 return 0; 5583 5584 /* Flags needing groups don't count if only 1 group in parent */ 5585 if (parent->groups == parent->groups->next) { 5586 pflags &= ~(SD_LOAD_BALANCE | 5587 SD_BALANCE_NEWIDLE | 5588 SD_BALANCE_FORK | 5589 SD_BALANCE_EXEC | 5590 SD_SHARE_CPUPOWER | 5591 SD_SHARE_PKG_RESOURCES); 5592 if (nr_node_ids == 1) 5593 pflags &= ~SD_SERIALIZE; 5594 } 5595 if (~cflags & pflags) 5596 return 0; 5597 5598 return 1; 5599 } 5600 5601 static void free_rootdomain(struct rcu_head *rcu) 5602 { 5603 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5604 5605 cpupri_cleanup(&rd->cpupri); 5606 free_cpumask_var(rd->rto_mask); 5607 free_cpumask_var(rd->online); 5608 free_cpumask_var(rd->span); 5609 kfree(rd); 5610 } 5611 5612 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5613 { 5614 struct root_domain *old_rd = NULL; 5615 unsigned long flags; 5616 5617 raw_spin_lock_irqsave(&rq->lock, flags); 5618 5619 if (rq->rd) { 5620 old_rd = rq->rd; 5621 5622 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5623 set_rq_offline(rq); 5624 5625 cpumask_clear_cpu(rq->cpu, old_rd->span); 5626 5627 /* 5628 * If we dont want to free the old_rt yet then 5629 * set old_rd to NULL to skip the freeing later 5630 * in this function: 5631 */ 5632 if (!atomic_dec_and_test(&old_rd->refcount)) 5633 old_rd = NULL; 5634 } 5635 5636 atomic_inc(&rd->refcount); 5637 rq->rd = rd; 5638 5639 cpumask_set_cpu(rq->cpu, rd->span); 5640 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5641 set_rq_online(rq); 5642 5643 raw_spin_unlock_irqrestore(&rq->lock, flags); 5644 5645 if (old_rd) 5646 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5647 } 5648 5649 static int init_rootdomain(struct root_domain *rd) 5650 { 5651 memset(rd, 0, sizeof(*rd)); 5652 5653 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5654 goto out; 5655 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5656 goto free_span; 5657 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5658 goto free_online; 5659 5660 if (cpupri_init(&rd->cpupri) != 0) 5661 goto free_rto_mask; 5662 return 0; 5663 5664 free_rto_mask: 5665 free_cpumask_var(rd->rto_mask); 5666 free_online: 5667 free_cpumask_var(rd->online); 5668 free_span: 5669 free_cpumask_var(rd->span); 5670 out: 5671 return -ENOMEM; 5672 } 5673 5674 /* 5675 * By default the system creates a single root-domain with all cpus as 5676 * members (mimicking the global state we have today). 5677 */ 5678 struct root_domain def_root_domain; 5679 5680 static void init_defrootdomain(void) 5681 { 5682 init_rootdomain(&def_root_domain); 5683 5684 atomic_set(&def_root_domain.refcount, 1); 5685 } 5686 5687 static struct root_domain *alloc_rootdomain(void) 5688 { 5689 struct root_domain *rd; 5690 5691 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5692 if (!rd) 5693 return NULL; 5694 5695 if (init_rootdomain(rd) != 0) { 5696 kfree(rd); 5697 return NULL; 5698 } 5699 5700 return rd; 5701 } 5702 5703 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5704 { 5705 struct sched_group *tmp, *first; 5706 5707 if (!sg) 5708 return; 5709 5710 first = sg; 5711 do { 5712 tmp = sg->next; 5713 5714 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5715 kfree(sg->sgp); 5716 5717 kfree(sg); 5718 sg = tmp; 5719 } while (sg != first); 5720 } 5721 5722 static void free_sched_domain(struct rcu_head *rcu) 5723 { 5724 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5725 5726 /* 5727 * If its an overlapping domain it has private groups, iterate and 5728 * nuke them all. 5729 */ 5730 if (sd->flags & SD_OVERLAP) { 5731 free_sched_groups(sd->groups, 1); 5732 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5733 kfree(sd->groups->sgp); 5734 kfree(sd->groups); 5735 } 5736 kfree(sd); 5737 } 5738 5739 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5740 { 5741 call_rcu(&sd->rcu, free_sched_domain); 5742 } 5743 5744 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5745 { 5746 for (; sd; sd = sd->parent) 5747 destroy_sched_domain(sd, cpu); 5748 } 5749 5750 /* 5751 * Keep a special pointer to the highest sched_domain that has 5752 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5753 * allows us to avoid some pointer chasing select_idle_sibling(). 5754 * 5755 * Also keep a unique ID per domain (we use the first cpu number in 5756 * the cpumask of the domain), this allows us to quickly tell if 5757 * two cpus are in the same cache domain, see ttwu_share_cache(). 5758 */ 5759 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5760 DEFINE_PER_CPU(int, sd_llc_id); 5761 5762 static void update_top_cache_domain(int cpu) 5763 { 5764 struct sched_domain *sd; 5765 int id = cpu; 5766 5767 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5768 if (sd) 5769 id = cpumask_first(sched_domain_span(sd)); 5770 5771 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5772 per_cpu(sd_llc_id, cpu) = id; 5773 } 5774 5775 /* 5776 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5777 * hold the hotplug lock. 5778 */ 5779 static void 5780 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5781 { 5782 struct rq *rq = cpu_rq(cpu); 5783 struct sched_domain *tmp; 5784 5785 /* Remove the sched domains which do not contribute to scheduling. */ 5786 for (tmp = sd; tmp; ) { 5787 struct sched_domain *parent = tmp->parent; 5788 if (!parent) 5789 break; 5790 5791 if (sd_parent_degenerate(tmp, parent)) { 5792 tmp->parent = parent->parent; 5793 if (parent->parent) 5794 parent->parent->child = tmp; 5795 destroy_sched_domain(parent, cpu); 5796 } else 5797 tmp = tmp->parent; 5798 } 5799 5800 if (sd && sd_degenerate(sd)) { 5801 tmp = sd; 5802 sd = sd->parent; 5803 destroy_sched_domain(tmp, cpu); 5804 if (sd) 5805 sd->child = NULL; 5806 } 5807 5808 sched_domain_debug(sd, cpu); 5809 5810 rq_attach_root(rq, rd); 5811 tmp = rq->sd; 5812 rcu_assign_pointer(rq->sd, sd); 5813 destroy_sched_domains(tmp, cpu); 5814 5815 update_top_cache_domain(cpu); 5816 } 5817 5818 /* cpus with isolated domains */ 5819 static cpumask_var_t cpu_isolated_map; 5820 5821 /* Setup the mask of cpus configured for isolated domains */ 5822 static int __init isolated_cpu_setup(char *str) 5823 { 5824 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5825 cpulist_parse(str, cpu_isolated_map); 5826 return 1; 5827 } 5828 5829 __setup("isolcpus=", isolated_cpu_setup); 5830 5831 #ifdef CONFIG_NUMA 5832 5833 /** 5834 * find_next_best_node - find the next node to include in a sched_domain 5835 * @node: node whose sched_domain we're building 5836 * @used_nodes: nodes already in the sched_domain 5837 * 5838 * Find the next node to include in a given scheduling domain. Simply 5839 * finds the closest node not already in the @used_nodes map. 5840 * 5841 * Should use nodemask_t. 5842 */ 5843 static int find_next_best_node(int node, nodemask_t *used_nodes) 5844 { 5845 int i, n, val, min_val, best_node = -1; 5846 5847 min_val = INT_MAX; 5848 5849 for (i = 0; i < nr_node_ids; i++) { 5850 /* Start at @node */ 5851 n = (node + i) % nr_node_ids; 5852 5853 if (!nr_cpus_node(n)) 5854 continue; 5855 5856 /* Skip already used nodes */ 5857 if (node_isset(n, *used_nodes)) 5858 continue; 5859 5860 /* Simple min distance search */ 5861 val = node_distance(node, n); 5862 5863 if (val < min_val) { 5864 min_val = val; 5865 best_node = n; 5866 } 5867 } 5868 5869 if (best_node != -1) 5870 node_set(best_node, *used_nodes); 5871 return best_node; 5872 } 5873 5874 /** 5875 * sched_domain_node_span - get a cpumask for a node's sched_domain 5876 * @node: node whose cpumask we're constructing 5877 * @span: resulting cpumask 5878 * 5879 * Given a node, construct a good cpumask for its sched_domain to span. It 5880 * should be one that prevents unnecessary balancing, but also spreads tasks 5881 * out optimally. 5882 */ 5883 static void sched_domain_node_span(int node, struct cpumask *span) 5884 { 5885 nodemask_t used_nodes; 5886 int i; 5887 5888 cpumask_clear(span); 5889 nodes_clear(used_nodes); 5890 5891 cpumask_or(span, span, cpumask_of_node(node)); 5892 node_set(node, used_nodes); 5893 5894 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { 5895 int next_node = find_next_best_node(node, &used_nodes); 5896 if (next_node < 0) 5897 break; 5898 cpumask_or(span, span, cpumask_of_node(next_node)); 5899 } 5900 } 5901 5902 static const struct cpumask *cpu_node_mask(int cpu) 5903 { 5904 lockdep_assert_held(&sched_domains_mutex); 5905 5906 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask); 5907 5908 return sched_domains_tmpmask; 5909 } 5910 5911 static const struct cpumask *cpu_allnodes_mask(int cpu) 5912 { 5913 return cpu_possible_mask; 5914 } 5915 #endif /* CONFIG_NUMA */ 5916 5917 static const struct cpumask *cpu_cpu_mask(int cpu) 5918 { 5919 return cpumask_of_node(cpu_to_node(cpu)); 5920 } 5921 5922 int sched_smt_power_savings = 0, sched_mc_power_savings = 0; 5923 5924 struct sd_data { 5925 struct sched_domain **__percpu sd; 5926 struct sched_group **__percpu sg; 5927 struct sched_group_power **__percpu sgp; 5928 }; 5929 5930 struct s_data { 5931 struct sched_domain ** __percpu sd; 5932 struct root_domain *rd; 5933 }; 5934 5935 enum s_alloc { 5936 sa_rootdomain, 5937 sa_sd, 5938 sa_sd_storage, 5939 sa_none, 5940 }; 5941 5942 struct sched_domain_topology_level; 5943 5944 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5945 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5946 5947 #define SDTL_OVERLAP 0x01 5948 5949 struct sched_domain_topology_level { 5950 sched_domain_init_f init; 5951 sched_domain_mask_f mask; 5952 int flags; 5953 struct sd_data data; 5954 }; 5955 5956 static int 5957 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5958 { 5959 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5960 const struct cpumask *span = sched_domain_span(sd); 5961 struct cpumask *covered = sched_domains_tmpmask; 5962 struct sd_data *sdd = sd->private; 5963 struct sched_domain *child; 5964 int i; 5965 5966 cpumask_clear(covered); 5967 5968 for_each_cpu(i, span) { 5969 struct cpumask *sg_span; 5970 5971 if (cpumask_test_cpu(i, covered)) 5972 continue; 5973 5974 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5975 GFP_KERNEL, cpu_to_node(cpu)); 5976 5977 if (!sg) 5978 goto fail; 5979 5980 sg_span = sched_group_cpus(sg); 5981 5982 child = *per_cpu_ptr(sdd->sd, i); 5983 if (child->child) { 5984 child = child->child; 5985 cpumask_copy(sg_span, sched_domain_span(child)); 5986 } else 5987 cpumask_set_cpu(i, sg_span); 5988 5989 cpumask_or(covered, covered, sg_span); 5990 5991 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span)); 5992 atomic_inc(&sg->sgp->ref); 5993 5994 if (cpumask_test_cpu(cpu, sg_span)) 5995 groups = sg; 5996 5997 if (!first) 5998 first = sg; 5999 if (last) 6000 last->next = sg; 6001 last = sg; 6002 last->next = first; 6003 } 6004 sd->groups = groups; 6005 6006 return 0; 6007 6008 fail: 6009 free_sched_groups(first, 0); 6010 6011 return -ENOMEM; 6012 } 6013 6014 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6015 { 6016 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6017 struct sched_domain *child = sd->child; 6018 6019 if (child) 6020 cpu = cpumask_first(sched_domain_span(child)); 6021 6022 if (sg) { 6023 *sg = *per_cpu_ptr(sdd->sg, cpu); 6024 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 6025 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 6026 } 6027 6028 return cpu; 6029 } 6030 6031 /* 6032 * build_sched_groups will build a circular linked list of the groups 6033 * covered by the given span, and will set each group's ->cpumask correctly, 6034 * and ->cpu_power to 0. 6035 * 6036 * Assumes the sched_domain tree is fully constructed 6037 */ 6038 static int 6039 build_sched_groups(struct sched_domain *sd, int cpu) 6040 { 6041 struct sched_group *first = NULL, *last = NULL; 6042 struct sd_data *sdd = sd->private; 6043 const struct cpumask *span = sched_domain_span(sd); 6044 struct cpumask *covered; 6045 int i; 6046 6047 get_group(cpu, sdd, &sd->groups); 6048 atomic_inc(&sd->groups->ref); 6049 6050 if (cpu != cpumask_first(sched_domain_span(sd))) 6051 return 0; 6052 6053 lockdep_assert_held(&sched_domains_mutex); 6054 covered = sched_domains_tmpmask; 6055 6056 cpumask_clear(covered); 6057 6058 for_each_cpu(i, span) { 6059 struct sched_group *sg; 6060 int group = get_group(i, sdd, &sg); 6061 int j; 6062 6063 if (cpumask_test_cpu(i, covered)) 6064 continue; 6065 6066 cpumask_clear(sched_group_cpus(sg)); 6067 sg->sgp->power = 0; 6068 6069 for_each_cpu(j, span) { 6070 if (get_group(j, sdd, NULL) != group) 6071 continue; 6072 6073 cpumask_set_cpu(j, covered); 6074 cpumask_set_cpu(j, sched_group_cpus(sg)); 6075 } 6076 6077 if (!first) 6078 first = sg; 6079 if (last) 6080 last->next = sg; 6081 last = sg; 6082 } 6083 last->next = first; 6084 6085 return 0; 6086 } 6087 6088 /* 6089 * Initialize sched groups cpu_power. 6090 * 6091 * cpu_power indicates the capacity of sched group, which is used while 6092 * distributing the load between different sched groups in a sched domain. 6093 * Typically cpu_power for all the groups in a sched domain will be same unless 6094 * there are asymmetries in the topology. If there are asymmetries, group 6095 * having more cpu_power will pickup more load compared to the group having 6096 * less cpu_power. 6097 */ 6098 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 6099 { 6100 struct sched_group *sg = sd->groups; 6101 6102 WARN_ON(!sd || !sg); 6103 6104 do { 6105 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6106 sg = sg->next; 6107 } while (sg != sd->groups); 6108 6109 if (cpu != group_first_cpu(sg)) 6110 return; 6111 6112 update_group_power(sd, cpu); 6113 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 6114 } 6115 6116 int __weak arch_sd_sibling_asym_packing(void) 6117 { 6118 return 0*SD_ASYM_PACKING; 6119 } 6120 6121 /* 6122 * Initializers for schedule domains 6123 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6124 */ 6125 6126 #ifdef CONFIG_SCHED_DEBUG 6127 # define SD_INIT_NAME(sd, type) sd->name = #type 6128 #else 6129 # define SD_INIT_NAME(sd, type) do { } while (0) 6130 #endif 6131 6132 #define SD_INIT_FUNC(type) \ 6133 static noinline struct sched_domain * \ 6134 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 6135 { \ 6136 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 6137 *sd = SD_##type##_INIT; \ 6138 SD_INIT_NAME(sd, type); \ 6139 sd->private = &tl->data; \ 6140 return sd; \ 6141 } 6142 6143 SD_INIT_FUNC(CPU) 6144 #ifdef CONFIG_NUMA 6145 SD_INIT_FUNC(ALLNODES) 6146 SD_INIT_FUNC(NODE) 6147 #endif 6148 #ifdef CONFIG_SCHED_SMT 6149 SD_INIT_FUNC(SIBLING) 6150 #endif 6151 #ifdef CONFIG_SCHED_MC 6152 SD_INIT_FUNC(MC) 6153 #endif 6154 #ifdef CONFIG_SCHED_BOOK 6155 SD_INIT_FUNC(BOOK) 6156 #endif 6157 6158 static int default_relax_domain_level = -1; 6159 int sched_domain_level_max; 6160 6161 static int __init setup_relax_domain_level(char *str) 6162 { 6163 unsigned long val; 6164 6165 val = simple_strtoul(str, NULL, 0); 6166 if (val < sched_domain_level_max) 6167 default_relax_domain_level = val; 6168 6169 return 1; 6170 } 6171 __setup("relax_domain_level=", setup_relax_domain_level); 6172 6173 static void set_domain_attribute(struct sched_domain *sd, 6174 struct sched_domain_attr *attr) 6175 { 6176 int request; 6177 6178 if (!attr || attr->relax_domain_level < 0) { 6179 if (default_relax_domain_level < 0) 6180 return; 6181 else 6182 request = default_relax_domain_level; 6183 } else 6184 request = attr->relax_domain_level; 6185 if (request < sd->level) { 6186 /* turn off idle balance on this domain */ 6187 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6188 } else { 6189 /* turn on idle balance on this domain */ 6190 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6191 } 6192 } 6193 6194 static void __sdt_free(const struct cpumask *cpu_map); 6195 static int __sdt_alloc(const struct cpumask *cpu_map); 6196 6197 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6198 const struct cpumask *cpu_map) 6199 { 6200 switch (what) { 6201 case sa_rootdomain: 6202 if (!atomic_read(&d->rd->refcount)) 6203 free_rootdomain(&d->rd->rcu); /* fall through */ 6204 case sa_sd: 6205 free_percpu(d->sd); /* fall through */ 6206 case sa_sd_storage: 6207 __sdt_free(cpu_map); /* fall through */ 6208 case sa_none: 6209 break; 6210 } 6211 } 6212 6213 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6214 const struct cpumask *cpu_map) 6215 { 6216 memset(d, 0, sizeof(*d)); 6217 6218 if (__sdt_alloc(cpu_map)) 6219 return sa_sd_storage; 6220 d->sd = alloc_percpu(struct sched_domain *); 6221 if (!d->sd) 6222 return sa_sd_storage; 6223 d->rd = alloc_rootdomain(); 6224 if (!d->rd) 6225 return sa_sd; 6226 return sa_rootdomain; 6227 } 6228 6229 /* 6230 * NULL the sd_data elements we've used to build the sched_domain and 6231 * sched_group structure so that the subsequent __free_domain_allocs() 6232 * will not free the data we're using. 6233 */ 6234 static void claim_allocations(int cpu, struct sched_domain *sd) 6235 { 6236 struct sd_data *sdd = sd->private; 6237 6238 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6239 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6240 6241 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6242 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6243 6244 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6245 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6246 } 6247 6248 #ifdef CONFIG_SCHED_SMT 6249 static const struct cpumask *cpu_smt_mask(int cpu) 6250 { 6251 return topology_thread_cpumask(cpu); 6252 } 6253 #endif 6254 6255 /* 6256 * Topology list, bottom-up. 6257 */ 6258 static struct sched_domain_topology_level default_topology[] = { 6259 #ifdef CONFIG_SCHED_SMT 6260 { sd_init_SIBLING, cpu_smt_mask, }, 6261 #endif 6262 #ifdef CONFIG_SCHED_MC 6263 { sd_init_MC, cpu_coregroup_mask, }, 6264 #endif 6265 #ifdef CONFIG_SCHED_BOOK 6266 { sd_init_BOOK, cpu_book_mask, }, 6267 #endif 6268 { sd_init_CPU, cpu_cpu_mask, }, 6269 #ifdef CONFIG_NUMA 6270 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, }, 6271 { sd_init_ALLNODES, cpu_allnodes_mask, }, 6272 #endif 6273 { NULL, }, 6274 }; 6275 6276 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6277 6278 static int __sdt_alloc(const struct cpumask *cpu_map) 6279 { 6280 struct sched_domain_topology_level *tl; 6281 int j; 6282 6283 for (tl = sched_domain_topology; tl->init; tl++) { 6284 struct sd_data *sdd = &tl->data; 6285 6286 sdd->sd = alloc_percpu(struct sched_domain *); 6287 if (!sdd->sd) 6288 return -ENOMEM; 6289 6290 sdd->sg = alloc_percpu(struct sched_group *); 6291 if (!sdd->sg) 6292 return -ENOMEM; 6293 6294 sdd->sgp = alloc_percpu(struct sched_group_power *); 6295 if (!sdd->sgp) 6296 return -ENOMEM; 6297 6298 for_each_cpu(j, cpu_map) { 6299 struct sched_domain *sd; 6300 struct sched_group *sg; 6301 struct sched_group_power *sgp; 6302 6303 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6304 GFP_KERNEL, cpu_to_node(j)); 6305 if (!sd) 6306 return -ENOMEM; 6307 6308 *per_cpu_ptr(sdd->sd, j) = sd; 6309 6310 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6311 GFP_KERNEL, cpu_to_node(j)); 6312 if (!sg) 6313 return -ENOMEM; 6314 6315 *per_cpu_ptr(sdd->sg, j) = sg; 6316 6317 sgp = kzalloc_node(sizeof(struct sched_group_power), 6318 GFP_KERNEL, cpu_to_node(j)); 6319 if (!sgp) 6320 return -ENOMEM; 6321 6322 *per_cpu_ptr(sdd->sgp, j) = sgp; 6323 } 6324 } 6325 6326 return 0; 6327 } 6328 6329 static void __sdt_free(const struct cpumask *cpu_map) 6330 { 6331 struct sched_domain_topology_level *tl; 6332 int j; 6333 6334 for (tl = sched_domain_topology; tl->init; tl++) { 6335 struct sd_data *sdd = &tl->data; 6336 6337 for_each_cpu(j, cpu_map) { 6338 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j); 6339 if (sd && (sd->flags & SD_OVERLAP)) 6340 free_sched_groups(sd->groups, 0); 6341 kfree(*per_cpu_ptr(sdd->sd, j)); 6342 kfree(*per_cpu_ptr(sdd->sg, j)); 6343 kfree(*per_cpu_ptr(sdd->sgp, j)); 6344 } 6345 free_percpu(sdd->sd); 6346 free_percpu(sdd->sg); 6347 free_percpu(sdd->sgp); 6348 } 6349 } 6350 6351 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6352 struct s_data *d, const struct cpumask *cpu_map, 6353 struct sched_domain_attr *attr, struct sched_domain *child, 6354 int cpu) 6355 { 6356 struct sched_domain *sd = tl->init(tl, cpu); 6357 if (!sd) 6358 return child; 6359 6360 set_domain_attribute(sd, attr); 6361 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6362 if (child) { 6363 sd->level = child->level + 1; 6364 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6365 child->parent = sd; 6366 } 6367 sd->child = child; 6368 6369 return sd; 6370 } 6371 6372 /* 6373 * Build sched domains for a given set of cpus and attach the sched domains 6374 * to the individual cpus 6375 */ 6376 static int build_sched_domains(const struct cpumask *cpu_map, 6377 struct sched_domain_attr *attr) 6378 { 6379 enum s_alloc alloc_state = sa_none; 6380 struct sched_domain *sd; 6381 struct s_data d; 6382 int i, ret = -ENOMEM; 6383 6384 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6385 if (alloc_state != sa_rootdomain) 6386 goto error; 6387 6388 /* Set up domains for cpus specified by the cpu_map. */ 6389 for_each_cpu(i, cpu_map) { 6390 struct sched_domain_topology_level *tl; 6391 6392 sd = NULL; 6393 for (tl = sched_domain_topology; tl->init; tl++) { 6394 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6395 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6396 sd->flags |= SD_OVERLAP; 6397 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6398 break; 6399 } 6400 6401 while (sd->child) 6402 sd = sd->child; 6403 6404 *per_cpu_ptr(d.sd, i) = sd; 6405 } 6406 6407 /* Build the groups for the domains */ 6408 for_each_cpu(i, cpu_map) { 6409 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6410 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6411 if (sd->flags & SD_OVERLAP) { 6412 if (build_overlap_sched_groups(sd, i)) 6413 goto error; 6414 } else { 6415 if (build_sched_groups(sd, i)) 6416 goto error; 6417 } 6418 } 6419 } 6420 6421 /* Calculate CPU power for physical packages and nodes */ 6422 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6423 if (!cpumask_test_cpu(i, cpu_map)) 6424 continue; 6425 6426 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6427 claim_allocations(i, sd); 6428 init_sched_groups_power(i, sd); 6429 } 6430 } 6431 6432 /* Attach the domains */ 6433 rcu_read_lock(); 6434 for_each_cpu(i, cpu_map) { 6435 sd = *per_cpu_ptr(d.sd, i); 6436 cpu_attach_domain(sd, d.rd, i); 6437 } 6438 rcu_read_unlock(); 6439 6440 ret = 0; 6441 error: 6442 __free_domain_allocs(&d, alloc_state, cpu_map); 6443 return ret; 6444 } 6445 6446 static cpumask_var_t *doms_cur; /* current sched domains */ 6447 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6448 static struct sched_domain_attr *dattr_cur; 6449 /* attribues of custom domains in 'doms_cur' */ 6450 6451 /* 6452 * Special case: If a kmalloc of a doms_cur partition (array of 6453 * cpumask) fails, then fallback to a single sched domain, 6454 * as determined by the single cpumask fallback_doms. 6455 */ 6456 static cpumask_var_t fallback_doms; 6457 6458 /* 6459 * arch_update_cpu_topology lets virtualized architectures update the 6460 * cpu core maps. It is supposed to return 1 if the topology changed 6461 * or 0 if it stayed the same. 6462 */ 6463 int __attribute__((weak)) arch_update_cpu_topology(void) 6464 { 6465 return 0; 6466 } 6467 6468 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6469 { 6470 int i; 6471 cpumask_var_t *doms; 6472 6473 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6474 if (!doms) 6475 return NULL; 6476 for (i = 0; i < ndoms; i++) { 6477 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6478 free_sched_domains(doms, i); 6479 return NULL; 6480 } 6481 } 6482 return doms; 6483 } 6484 6485 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6486 { 6487 unsigned int i; 6488 for (i = 0; i < ndoms; i++) 6489 free_cpumask_var(doms[i]); 6490 kfree(doms); 6491 } 6492 6493 /* 6494 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6495 * For now this just excludes isolated cpus, but could be used to 6496 * exclude other special cases in the future. 6497 */ 6498 static int init_sched_domains(const struct cpumask *cpu_map) 6499 { 6500 int err; 6501 6502 arch_update_cpu_topology(); 6503 ndoms_cur = 1; 6504 doms_cur = alloc_sched_domains(ndoms_cur); 6505 if (!doms_cur) 6506 doms_cur = &fallback_doms; 6507 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6508 dattr_cur = NULL; 6509 err = build_sched_domains(doms_cur[0], NULL); 6510 register_sched_domain_sysctl(); 6511 6512 return err; 6513 } 6514 6515 /* 6516 * Detach sched domains from a group of cpus specified in cpu_map 6517 * These cpus will now be attached to the NULL domain 6518 */ 6519 static void detach_destroy_domains(const struct cpumask *cpu_map) 6520 { 6521 int i; 6522 6523 rcu_read_lock(); 6524 for_each_cpu(i, cpu_map) 6525 cpu_attach_domain(NULL, &def_root_domain, i); 6526 rcu_read_unlock(); 6527 } 6528 6529 /* handle null as "default" */ 6530 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6531 struct sched_domain_attr *new, int idx_new) 6532 { 6533 struct sched_domain_attr tmp; 6534 6535 /* fast path */ 6536 if (!new && !cur) 6537 return 1; 6538 6539 tmp = SD_ATTR_INIT; 6540 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6541 new ? (new + idx_new) : &tmp, 6542 sizeof(struct sched_domain_attr)); 6543 } 6544 6545 /* 6546 * Partition sched domains as specified by the 'ndoms_new' 6547 * cpumasks in the array doms_new[] of cpumasks. This compares 6548 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6549 * It destroys each deleted domain and builds each new domain. 6550 * 6551 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6552 * The masks don't intersect (don't overlap.) We should setup one 6553 * sched domain for each mask. CPUs not in any of the cpumasks will 6554 * not be load balanced. If the same cpumask appears both in the 6555 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6556 * it as it is. 6557 * 6558 * The passed in 'doms_new' should be allocated using 6559 * alloc_sched_domains. This routine takes ownership of it and will 6560 * free_sched_domains it when done with it. If the caller failed the 6561 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6562 * and partition_sched_domains() will fallback to the single partition 6563 * 'fallback_doms', it also forces the domains to be rebuilt. 6564 * 6565 * If doms_new == NULL it will be replaced with cpu_online_mask. 6566 * ndoms_new == 0 is a special case for destroying existing domains, 6567 * and it will not create the default domain. 6568 * 6569 * Call with hotplug lock held 6570 */ 6571 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6572 struct sched_domain_attr *dattr_new) 6573 { 6574 int i, j, n; 6575 int new_topology; 6576 6577 mutex_lock(&sched_domains_mutex); 6578 6579 /* always unregister in case we don't destroy any domains */ 6580 unregister_sched_domain_sysctl(); 6581 6582 /* Let architecture update cpu core mappings. */ 6583 new_topology = arch_update_cpu_topology(); 6584 6585 n = doms_new ? ndoms_new : 0; 6586 6587 /* Destroy deleted domains */ 6588 for (i = 0; i < ndoms_cur; i++) { 6589 for (j = 0; j < n && !new_topology; j++) { 6590 if (cpumask_equal(doms_cur[i], doms_new[j]) 6591 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6592 goto match1; 6593 } 6594 /* no match - a current sched domain not in new doms_new[] */ 6595 detach_destroy_domains(doms_cur[i]); 6596 match1: 6597 ; 6598 } 6599 6600 if (doms_new == NULL) { 6601 ndoms_cur = 0; 6602 doms_new = &fallback_doms; 6603 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6604 WARN_ON_ONCE(dattr_new); 6605 } 6606 6607 /* Build new domains */ 6608 for (i = 0; i < ndoms_new; i++) { 6609 for (j = 0; j < ndoms_cur && !new_topology; j++) { 6610 if (cpumask_equal(doms_new[i], doms_cur[j]) 6611 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6612 goto match2; 6613 } 6614 /* no match - add a new doms_new */ 6615 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6616 match2: 6617 ; 6618 } 6619 6620 /* Remember the new sched domains */ 6621 if (doms_cur != &fallback_doms) 6622 free_sched_domains(doms_cur, ndoms_cur); 6623 kfree(dattr_cur); /* kfree(NULL) is safe */ 6624 doms_cur = doms_new; 6625 dattr_cur = dattr_new; 6626 ndoms_cur = ndoms_new; 6627 6628 register_sched_domain_sysctl(); 6629 6630 mutex_unlock(&sched_domains_mutex); 6631 } 6632 6633 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 6634 static void reinit_sched_domains(void) 6635 { 6636 get_online_cpus(); 6637 6638 /* Destroy domains first to force the rebuild */ 6639 partition_sched_domains(0, NULL, NULL); 6640 6641 rebuild_sched_domains(); 6642 put_online_cpus(); 6643 } 6644 6645 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) 6646 { 6647 unsigned int level = 0; 6648 6649 if (sscanf(buf, "%u", &level) != 1) 6650 return -EINVAL; 6651 6652 /* 6653 * level is always be positive so don't check for 6654 * level < POWERSAVINGS_BALANCE_NONE which is 0 6655 * What happens on 0 or 1 byte write, 6656 * need to check for count as well? 6657 */ 6658 6659 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) 6660 return -EINVAL; 6661 6662 if (smt) 6663 sched_smt_power_savings = level; 6664 else 6665 sched_mc_power_savings = level; 6666 6667 reinit_sched_domains(); 6668 6669 return count; 6670 } 6671 6672 #ifdef CONFIG_SCHED_MC 6673 static ssize_t sched_mc_power_savings_show(struct device *dev, 6674 struct device_attribute *attr, 6675 char *buf) 6676 { 6677 return sprintf(buf, "%u\n", sched_mc_power_savings); 6678 } 6679 static ssize_t sched_mc_power_savings_store(struct device *dev, 6680 struct device_attribute *attr, 6681 const char *buf, size_t count) 6682 { 6683 return sched_power_savings_store(buf, count, 0); 6684 } 6685 static DEVICE_ATTR(sched_mc_power_savings, 0644, 6686 sched_mc_power_savings_show, 6687 sched_mc_power_savings_store); 6688 #endif 6689 6690 #ifdef CONFIG_SCHED_SMT 6691 static ssize_t sched_smt_power_savings_show(struct device *dev, 6692 struct device_attribute *attr, 6693 char *buf) 6694 { 6695 return sprintf(buf, "%u\n", sched_smt_power_savings); 6696 } 6697 static ssize_t sched_smt_power_savings_store(struct device *dev, 6698 struct device_attribute *attr, 6699 const char *buf, size_t count) 6700 { 6701 return sched_power_savings_store(buf, count, 1); 6702 } 6703 static DEVICE_ATTR(sched_smt_power_savings, 0644, 6704 sched_smt_power_savings_show, 6705 sched_smt_power_savings_store); 6706 #endif 6707 6708 int __init sched_create_sysfs_power_savings_entries(struct device *dev) 6709 { 6710 int err = 0; 6711 6712 #ifdef CONFIG_SCHED_SMT 6713 if (smt_capable()) 6714 err = device_create_file(dev, &dev_attr_sched_smt_power_savings); 6715 #endif 6716 #ifdef CONFIG_SCHED_MC 6717 if (!err && mc_capable()) 6718 err = device_create_file(dev, &dev_attr_sched_mc_power_savings); 6719 #endif 6720 return err; 6721 } 6722 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 6723 6724 /* 6725 * Update cpusets according to cpu_active mask. If cpusets are 6726 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6727 * around partition_sched_domains(). 6728 */ 6729 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6730 void *hcpu) 6731 { 6732 switch (action & ~CPU_TASKS_FROZEN) { 6733 case CPU_ONLINE: 6734 case CPU_DOWN_FAILED: 6735 cpuset_update_active_cpus(); 6736 return NOTIFY_OK; 6737 default: 6738 return NOTIFY_DONE; 6739 } 6740 } 6741 6742 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6743 void *hcpu) 6744 { 6745 switch (action & ~CPU_TASKS_FROZEN) { 6746 case CPU_DOWN_PREPARE: 6747 cpuset_update_active_cpus(); 6748 return NOTIFY_OK; 6749 default: 6750 return NOTIFY_DONE; 6751 } 6752 } 6753 6754 void __init sched_init_smp(void) 6755 { 6756 cpumask_var_t non_isolated_cpus; 6757 6758 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6759 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6760 6761 get_online_cpus(); 6762 mutex_lock(&sched_domains_mutex); 6763 init_sched_domains(cpu_active_mask); 6764 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6765 if (cpumask_empty(non_isolated_cpus)) 6766 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6767 mutex_unlock(&sched_domains_mutex); 6768 put_online_cpus(); 6769 6770 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6771 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6772 6773 /* RT runtime code needs to handle some hotplug events */ 6774 hotcpu_notifier(update_runtime, 0); 6775 6776 init_hrtick(); 6777 6778 /* Move init over to a non-isolated CPU */ 6779 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6780 BUG(); 6781 sched_init_granularity(); 6782 free_cpumask_var(non_isolated_cpus); 6783 6784 init_sched_rt_class(); 6785 } 6786 #else 6787 void __init sched_init_smp(void) 6788 { 6789 sched_init_granularity(); 6790 } 6791 #endif /* CONFIG_SMP */ 6792 6793 const_debug unsigned int sysctl_timer_migration = 1; 6794 6795 int in_sched_functions(unsigned long addr) 6796 { 6797 return in_lock_functions(addr) || 6798 (addr >= (unsigned long)__sched_text_start 6799 && addr < (unsigned long)__sched_text_end); 6800 } 6801 6802 #ifdef CONFIG_CGROUP_SCHED 6803 struct task_group root_task_group; 6804 #endif 6805 6806 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 6807 6808 void __init sched_init(void) 6809 { 6810 int i, j; 6811 unsigned long alloc_size = 0, ptr; 6812 6813 #ifdef CONFIG_FAIR_GROUP_SCHED 6814 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6815 #endif 6816 #ifdef CONFIG_RT_GROUP_SCHED 6817 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6818 #endif 6819 #ifdef CONFIG_CPUMASK_OFFSTACK 6820 alloc_size += num_possible_cpus() * cpumask_size(); 6821 #endif 6822 if (alloc_size) { 6823 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6824 6825 #ifdef CONFIG_FAIR_GROUP_SCHED 6826 root_task_group.se = (struct sched_entity **)ptr; 6827 ptr += nr_cpu_ids * sizeof(void **); 6828 6829 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6830 ptr += nr_cpu_ids * sizeof(void **); 6831 6832 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6833 #ifdef CONFIG_RT_GROUP_SCHED 6834 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6835 ptr += nr_cpu_ids * sizeof(void **); 6836 6837 root_task_group.rt_rq = (struct rt_rq **)ptr; 6838 ptr += nr_cpu_ids * sizeof(void **); 6839 6840 #endif /* CONFIG_RT_GROUP_SCHED */ 6841 #ifdef CONFIG_CPUMASK_OFFSTACK 6842 for_each_possible_cpu(i) { 6843 per_cpu(load_balance_tmpmask, i) = (void *)ptr; 6844 ptr += cpumask_size(); 6845 } 6846 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6847 } 6848 6849 #ifdef CONFIG_SMP 6850 init_defrootdomain(); 6851 #endif 6852 6853 init_rt_bandwidth(&def_rt_bandwidth, 6854 global_rt_period(), global_rt_runtime()); 6855 6856 #ifdef CONFIG_RT_GROUP_SCHED 6857 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6858 global_rt_period(), global_rt_runtime()); 6859 #endif /* CONFIG_RT_GROUP_SCHED */ 6860 6861 #ifdef CONFIG_CGROUP_SCHED 6862 list_add(&root_task_group.list, &task_groups); 6863 INIT_LIST_HEAD(&root_task_group.children); 6864 INIT_LIST_HEAD(&root_task_group.siblings); 6865 autogroup_init(&init_task); 6866 6867 #endif /* CONFIG_CGROUP_SCHED */ 6868 6869 #ifdef CONFIG_CGROUP_CPUACCT 6870 root_cpuacct.cpustat = &kernel_cpustat; 6871 root_cpuacct.cpuusage = alloc_percpu(u64); 6872 /* Too early, not expected to fail */ 6873 BUG_ON(!root_cpuacct.cpuusage); 6874 #endif 6875 for_each_possible_cpu(i) { 6876 struct rq *rq; 6877 6878 rq = cpu_rq(i); 6879 raw_spin_lock_init(&rq->lock); 6880 rq->nr_running = 0; 6881 rq->calc_load_active = 0; 6882 rq->calc_load_update = jiffies + LOAD_FREQ; 6883 init_cfs_rq(&rq->cfs); 6884 init_rt_rq(&rq->rt, rq); 6885 #ifdef CONFIG_FAIR_GROUP_SCHED 6886 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6887 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6888 /* 6889 * How much cpu bandwidth does root_task_group get? 6890 * 6891 * In case of task-groups formed thr' the cgroup filesystem, it 6892 * gets 100% of the cpu resources in the system. This overall 6893 * system cpu resource is divided among the tasks of 6894 * root_task_group and its child task-groups in a fair manner, 6895 * based on each entity's (task or task-group's) weight 6896 * (se->load.weight). 6897 * 6898 * In other words, if root_task_group has 10 tasks of weight 6899 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6900 * then A0's share of the cpu resource is: 6901 * 6902 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6903 * 6904 * We achieve this by letting root_task_group's tasks sit 6905 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6906 */ 6907 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6908 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6909 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6910 6911 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6912 #ifdef CONFIG_RT_GROUP_SCHED 6913 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6914 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6915 #endif 6916 6917 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6918 rq->cpu_load[j] = 0; 6919 6920 rq->last_load_update_tick = jiffies; 6921 6922 #ifdef CONFIG_SMP 6923 rq->sd = NULL; 6924 rq->rd = NULL; 6925 rq->cpu_power = SCHED_POWER_SCALE; 6926 rq->post_schedule = 0; 6927 rq->active_balance = 0; 6928 rq->next_balance = jiffies; 6929 rq->push_cpu = 0; 6930 rq->cpu = i; 6931 rq->online = 0; 6932 rq->idle_stamp = 0; 6933 rq->avg_idle = 2*sysctl_sched_migration_cost; 6934 rq_attach_root(rq, &def_root_domain); 6935 #ifdef CONFIG_NO_HZ 6936 rq->nohz_flags = 0; 6937 #endif 6938 #endif 6939 init_rq_hrtick(rq); 6940 atomic_set(&rq->nr_iowait, 0); 6941 } 6942 6943 set_load_weight(&init_task); 6944 6945 #ifdef CONFIG_PREEMPT_NOTIFIERS 6946 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 6947 #endif 6948 6949 #ifdef CONFIG_RT_MUTEXES 6950 plist_head_init(&init_task.pi_waiters); 6951 #endif 6952 6953 /* 6954 * The boot idle thread does lazy MMU switching as well: 6955 */ 6956 atomic_inc(&init_mm.mm_count); 6957 enter_lazy_tlb(&init_mm, current); 6958 6959 /* 6960 * Make us the idle thread. Technically, schedule() should not be 6961 * called from this thread, however somewhere below it might be, 6962 * but because we are the idle thread, we just pick up running again 6963 * when this runqueue becomes "idle". 6964 */ 6965 init_idle(current, smp_processor_id()); 6966 6967 calc_load_update = jiffies + LOAD_FREQ; 6968 6969 /* 6970 * During early bootup we pretend to be a normal task: 6971 */ 6972 current->sched_class = &fair_sched_class; 6973 6974 #ifdef CONFIG_SMP 6975 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6976 /* May be allocated at isolcpus cmdline parse time */ 6977 if (cpu_isolated_map == NULL) 6978 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6979 #endif 6980 init_sched_fair_class(); 6981 6982 scheduler_running = 1; 6983 } 6984 6985 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6986 static inline int preempt_count_equals(int preempt_offset) 6987 { 6988 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 6989 6990 return (nested == preempt_offset); 6991 } 6992 6993 void __might_sleep(const char *file, int line, int preempt_offset) 6994 { 6995 static unsigned long prev_jiffy; /* ratelimiting */ 6996 6997 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 6998 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 6999 system_state != SYSTEM_RUNNING || oops_in_progress) 7000 return; 7001 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7002 return; 7003 prev_jiffy = jiffies; 7004 7005 printk(KERN_ERR 7006 "BUG: sleeping function called from invalid context at %s:%d\n", 7007 file, line); 7008 printk(KERN_ERR 7009 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7010 in_atomic(), irqs_disabled(), 7011 current->pid, current->comm); 7012 7013 debug_show_held_locks(current); 7014 if (irqs_disabled()) 7015 print_irqtrace_events(current); 7016 dump_stack(); 7017 } 7018 EXPORT_SYMBOL(__might_sleep); 7019 #endif 7020 7021 #ifdef CONFIG_MAGIC_SYSRQ 7022 static void normalize_task(struct rq *rq, struct task_struct *p) 7023 { 7024 const struct sched_class *prev_class = p->sched_class; 7025 int old_prio = p->prio; 7026 int on_rq; 7027 7028 on_rq = p->on_rq; 7029 if (on_rq) 7030 dequeue_task(rq, p, 0); 7031 __setscheduler(rq, p, SCHED_NORMAL, 0); 7032 if (on_rq) { 7033 enqueue_task(rq, p, 0); 7034 resched_task(rq->curr); 7035 } 7036 7037 check_class_changed(rq, p, prev_class, old_prio); 7038 } 7039 7040 void normalize_rt_tasks(void) 7041 { 7042 struct task_struct *g, *p; 7043 unsigned long flags; 7044 struct rq *rq; 7045 7046 read_lock_irqsave(&tasklist_lock, flags); 7047 do_each_thread(g, p) { 7048 /* 7049 * Only normalize user tasks: 7050 */ 7051 if (!p->mm) 7052 continue; 7053 7054 p->se.exec_start = 0; 7055 #ifdef CONFIG_SCHEDSTATS 7056 p->se.statistics.wait_start = 0; 7057 p->se.statistics.sleep_start = 0; 7058 p->se.statistics.block_start = 0; 7059 #endif 7060 7061 if (!rt_task(p)) { 7062 /* 7063 * Renice negative nice level userspace 7064 * tasks back to 0: 7065 */ 7066 if (TASK_NICE(p) < 0 && p->mm) 7067 set_user_nice(p, 0); 7068 continue; 7069 } 7070 7071 raw_spin_lock(&p->pi_lock); 7072 rq = __task_rq_lock(p); 7073 7074 normalize_task(rq, p); 7075 7076 __task_rq_unlock(rq); 7077 raw_spin_unlock(&p->pi_lock); 7078 } while_each_thread(g, p); 7079 7080 read_unlock_irqrestore(&tasklist_lock, flags); 7081 } 7082 7083 #endif /* CONFIG_MAGIC_SYSRQ */ 7084 7085 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7086 /* 7087 * These functions are only useful for the IA64 MCA handling, or kdb. 7088 * 7089 * They can only be called when the whole system has been 7090 * stopped - every CPU needs to be quiescent, and no scheduling 7091 * activity can take place. Using them for anything else would 7092 * be a serious bug, and as a result, they aren't even visible 7093 * under any other configuration. 7094 */ 7095 7096 /** 7097 * curr_task - return the current task for a given cpu. 7098 * @cpu: the processor in question. 7099 * 7100 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7101 */ 7102 struct task_struct *curr_task(int cpu) 7103 { 7104 return cpu_curr(cpu); 7105 } 7106 7107 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7108 7109 #ifdef CONFIG_IA64 7110 /** 7111 * set_curr_task - set the current task for a given cpu. 7112 * @cpu: the processor in question. 7113 * @p: the task pointer to set. 7114 * 7115 * Description: This function must only be used when non-maskable interrupts 7116 * are serviced on a separate stack. It allows the architecture to switch the 7117 * notion of the current task on a cpu in a non-blocking manner. This function 7118 * must be called with all CPU's synchronized, and interrupts disabled, the 7119 * and caller must save the original value of the current task (see 7120 * curr_task() above) and restore that value before reenabling interrupts and 7121 * re-starting the system. 7122 * 7123 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7124 */ 7125 void set_curr_task(int cpu, struct task_struct *p) 7126 { 7127 cpu_curr(cpu) = p; 7128 } 7129 7130 #endif 7131 7132 #ifdef CONFIG_CGROUP_SCHED 7133 /* task_group_lock serializes the addition/removal of task groups */ 7134 static DEFINE_SPINLOCK(task_group_lock); 7135 7136 static void free_sched_group(struct task_group *tg) 7137 { 7138 free_fair_sched_group(tg); 7139 free_rt_sched_group(tg); 7140 autogroup_free(tg); 7141 kfree(tg); 7142 } 7143 7144 /* allocate runqueue etc for a new task group */ 7145 struct task_group *sched_create_group(struct task_group *parent) 7146 { 7147 struct task_group *tg; 7148 unsigned long flags; 7149 7150 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7151 if (!tg) 7152 return ERR_PTR(-ENOMEM); 7153 7154 if (!alloc_fair_sched_group(tg, parent)) 7155 goto err; 7156 7157 if (!alloc_rt_sched_group(tg, parent)) 7158 goto err; 7159 7160 spin_lock_irqsave(&task_group_lock, flags); 7161 list_add_rcu(&tg->list, &task_groups); 7162 7163 WARN_ON(!parent); /* root should already exist */ 7164 7165 tg->parent = parent; 7166 INIT_LIST_HEAD(&tg->children); 7167 list_add_rcu(&tg->siblings, &parent->children); 7168 spin_unlock_irqrestore(&task_group_lock, flags); 7169 7170 return tg; 7171 7172 err: 7173 free_sched_group(tg); 7174 return ERR_PTR(-ENOMEM); 7175 } 7176 7177 /* rcu callback to free various structures associated with a task group */ 7178 static void free_sched_group_rcu(struct rcu_head *rhp) 7179 { 7180 /* now it should be safe to free those cfs_rqs */ 7181 free_sched_group(container_of(rhp, struct task_group, rcu)); 7182 } 7183 7184 /* Destroy runqueue etc associated with a task group */ 7185 void sched_destroy_group(struct task_group *tg) 7186 { 7187 unsigned long flags; 7188 int i; 7189 7190 /* end participation in shares distribution */ 7191 for_each_possible_cpu(i) 7192 unregister_fair_sched_group(tg, i); 7193 7194 spin_lock_irqsave(&task_group_lock, flags); 7195 list_del_rcu(&tg->list); 7196 list_del_rcu(&tg->siblings); 7197 spin_unlock_irqrestore(&task_group_lock, flags); 7198 7199 /* wait for possible concurrent references to cfs_rqs complete */ 7200 call_rcu(&tg->rcu, free_sched_group_rcu); 7201 } 7202 7203 /* change task's runqueue when it moves between groups. 7204 * The caller of this function should have put the task in its new group 7205 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7206 * reflect its new group. 7207 */ 7208 void sched_move_task(struct task_struct *tsk) 7209 { 7210 int on_rq, running; 7211 unsigned long flags; 7212 struct rq *rq; 7213 7214 rq = task_rq_lock(tsk, &flags); 7215 7216 running = task_current(rq, tsk); 7217 on_rq = tsk->on_rq; 7218 7219 if (on_rq) 7220 dequeue_task(rq, tsk, 0); 7221 if (unlikely(running)) 7222 tsk->sched_class->put_prev_task(rq, tsk); 7223 7224 #ifdef CONFIG_FAIR_GROUP_SCHED 7225 if (tsk->sched_class->task_move_group) 7226 tsk->sched_class->task_move_group(tsk, on_rq); 7227 else 7228 #endif 7229 set_task_rq(tsk, task_cpu(tsk)); 7230 7231 if (unlikely(running)) 7232 tsk->sched_class->set_curr_task(rq); 7233 if (on_rq) 7234 enqueue_task(rq, tsk, 0); 7235 7236 task_rq_unlock(rq, tsk, &flags); 7237 } 7238 #endif /* CONFIG_CGROUP_SCHED */ 7239 7240 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7241 static unsigned long to_ratio(u64 period, u64 runtime) 7242 { 7243 if (runtime == RUNTIME_INF) 7244 return 1ULL << 20; 7245 7246 return div64_u64(runtime << 20, period); 7247 } 7248 #endif 7249 7250 #ifdef CONFIG_RT_GROUP_SCHED 7251 /* 7252 * Ensure that the real time constraints are schedulable. 7253 */ 7254 static DEFINE_MUTEX(rt_constraints_mutex); 7255 7256 /* Must be called with tasklist_lock held */ 7257 static inline int tg_has_rt_tasks(struct task_group *tg) 7258 { 7259 struct task_struct *g, *p; 7260 7261 do_each_thread(g, p) { 7262 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7263 return 1; 7264 } while_each_thread(g, p); 7265 7266 return 0; 7267 } 7268 7269 struct rt_schedulable_data { 7270 struct task_group *tg; 7271 u64 rt_period; 7272 u64 rt_runtime; 7273 }; 7274 7275 static int tg_rt_schedulable(struct task_group *tg, void *data) 7276 { 7277 struct rt_schedulable_data *d = data; 7278 struct task_group *child; 7279 unsigned long total, sum = 0; 7280 u64 period, runtime; 7281 7282 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7283 runtime = tg->rt_bandwidth.rt_runtime; 7284 7285 if (tg == d->tg) { 7286 period = d->rt_period; 7287 runtime = d->rt_runtime; 7288 } 7289 7290 /* 7291 * Cannot have more runtime than the period. 7292 */ 7293 if (runtime > period && runtime != RUNTIME_INF) 7294 return -EINVAL; 7295 7296 /* 7297 * Ensure we don't starve existing RT tasks. 7298 */ 7299 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7300 return -EBUSY; 7301 7302 total = to_ratio(period, runtime); 7303 7304 /* 7305 * Nobody can have more than the global setting allows. 7306 */ 7307 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7308 return -EINVAL; 7309 7310 /* 7311 * The sum of our children's runtime should not exceed our own. 7312 */ 7313 list_for_each_entry_rcu(child, &tg->children, siblings) { 7314 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7315 runtime = child->rt_bandwidth.rt_runtime; 7316 7317 if (child == d->tg) { 7318 period = d->rt_period; 7319 runtime = d->rt_runtime; 7320 } 7321 7322 sum += to_ratio(period, runtime); 7323 } 7324 7325 if (sum > total) 7326 return -EINVAL; 7327 7328 return 0; 7329 } 7330 7331 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7332 { 7333 int ret; 7334 7335 struct rt_schedulable_data data = { 7336 .tg = tg, 7337 .rt_period = period, 7338 .rt_runtime = runtime, 7339 }; 7340 7341 rcu_read_lock(); 7342 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7343 rcu_read_unlock(); 7344 7345 return ret; 7346 } 7347 7348 static int tg_set_rt_bandwidth(struct task_group *tg, 7349 u64 rt_period, u64 rt_runtime) 7350 { 7351 int i, err = 0; 7352 7353 mutex_lock(&rt_constraints_mutex); 7354 read_lock(&tasklist_lock); 7355 err = __rt_schedulable(tg, rt_period, rt_runtime); 7356 if (err) 7357 goto unlock; 7358 7359 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7360 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7361 tg->rt_bandwidth.rt_runtime = rt_runtime; 7362 7363 for_each_possible_cpu(i) { 7364 struct rt_rq *rt_rq = tg->rt_rq[i]; 7365 7366 raw_spin_lock(&rt_rq->rt_runtime_lock); 7367 rt_rq->rt_runtime = rt_runtime; 7368 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7369 } 7370 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7371 unlock: 7372 read_unlock(&tasklist_lock); 7373 mutex_unlock(&rt_constraints_mutex); 7374 7375 return err; 7376 } 7377 7378 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7379 { 7380 u64 rt_runtime, rt_period; 7381 7382 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7383 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7384 if (rt_runtime_us < 0) 7385 rt_runtime = RUNTIME_INF; 7386 7387 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7388 } 7389 7390 long sched_group_rt_runtime(struct task_group *tg) 7391 { 7392 u64 rt_runtime_us; 7393 7394 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7395 return -1; 7396 7397 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7398 do_div(rt_runtime_us, NSEC_PER_USEC); 7399 return rt_runtime_us; 7400 } 7401 7402 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7403 { 7404 u64 rt_runtime, rt_period; 7405 7406 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7407 rt_runtime = tg->rt_bandwidth.rt_runtime; 7408 7409 if (rt_period == 0) 7410 return -EINVAL; 7411 7412 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7413 } 7414 7415 long sched_group_rt_period(struct task_group *tg) 7416 { 7417 u64 rt_period_us; 7418 7419 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7420 do_div(rt_period_us, NSEC_PER_USEC); 7421 return rt_period_us; 7422 } 7423 7424 static int sched_rt_global_constraints(void) 7425 { 7426 u64 runtime, period; 7427 int ret = 0; 7428 7429 if (sysctl_sched_rt_period <= 0) 7430 return -EINVAL; 7431 7432 runtime = global_rt_runtime(); 7433 period = global_rt_period(); 7434 7435 /* 7436 * Sanity check on the sysctl variables. 7437 */ 7438 if (runtime > period && runtime != RUNTIME_INF) 7439 return -EINVAL; 7440 7441 mutex_lock(&rt_constraints_mutex); 7442 read_lock(&tasklist_lock); 7443 ret = __rt_schedulable(NULL, 0, 0); 7444 read_unlock(&tasklist_lock); 7445 mutex_unlock(&rt_constraints_mutex); 7446 7447 return ret; 7448 } 7449 7450 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7451 { 7452 /* Don't accept realtime tasks when there is no way for them to run */ 7453 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7454 return 0; 7455 7456 return 1; 7457 } 7458 7459 #else /* !CONFIG_RT_GROUP_SCHED */ 7460 static int sched_rt_global_constraints(void) 7461 { 7462 unsigned long flags; 7463 int i; 7464 7465 if (sysctl_sched_rt_period <= 0) 7466 return -EINVAL; 7467 7468 /* 7469 * There's always some RT tasks in the root group 7470 * -- migration, kstopmachine etc.. 7471 */ 7472 if (sysctl_sched_rt_runtime == 0) 7473 return -EBUSY; 7474 7475 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7476 for_each_possible_cpu(i) { 7477 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7478 7479 raw_spin_lock(&rt_rq->rt_runtime_lock); 7480 rt_rq->rt_runtime = global_rt_runtime(); 7481 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7482 } 7483 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7484 7485 return 0; 7486 } 7487 #endif /* CONFIG_RT_GROUP_SCHED */ 7488 7489 int sched_rt_handler(struct ctl_table *table, int write, 7490 void __user *buffer, size_t *lenp, 7491 loff_t *ppos) 7492 { 7493 int ret; 7494 int old_period, old_runtime; 7495 static DEFINE_MUTEX(mutex); 7496 7497 mutex_lock(&mutex); 7498 old_period = sysctl_sched_rt_period; 7499 old_runtime = sysctl_sched_rt_runtime; 7500 7501 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7502 7503 if (!ret && write) { 7504 ret = sched_rt_global_constraints(); 7505 if (ret) { 7506 sysctl_sched_rt_period = old_period; 7507 sysctl_sched_rt_runtime = old_runtime; 7508 } else { 7509 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7510 def_rt_bandwidth.rt_period = 7511 ns_to_ktime(global_rt_period()); 7512 } 7513 } 7514 mutex_unlock(&mutex); 7515 7516 return ret; 7517 } 7518 7519 #ifdef CONFIG_CGROUP_SCHED 7520 7521 /* return corresponding task_group object of a cgroup */ 7522 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7523 { 7524 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7525 struct task_group, css); 7526 } 7527 7528 static struct cgroup_subsys_state * 7529 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) 7530 { 7531 struct task_group *tg, *parent; 7532 7533 if (!cgrp->parent) { 7534 /* This is early initialization for the top cgroup */ 7535 return &root_task_group.css; 7536 } 7537 7538 parent = cgroup_tg(cgrp->parent); 7539 tg = sched_create_group(parent); 7540 if (IS_ERR(tg)) 7541 return ERR_PTR(-ENOMEM); 7542 7543 return &tg->css; 7544 } 7545 7546 static void 7547 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) 7548 { 7549 struct task_group *tg = cgroup_tg(cgrp); 7550 7551 sched_destroy_group(tg); 7552 } 7553 7554 static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 7555 struct cgroup_taskset *tset) 7556 { 7557 struct task_struct *task; 7558 7559 cgroup_taskset_for_each(task, cgrp, tset) { 7560 #ifdef CONFIG_RT_GROUP_SCHED 7561 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 7562 return -EINVAL; 7563 #else 7564 /* We don't support RT-tasks being in separate groups */ 7565 if (task->sched_class != &fair_sched_class) 7566 return -EINVAL; 7567 #endif 7568 } 7569 return 0; 7570 } 7571 7572 static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 7573 struct cgroup_taskset *tset) 7574 { 7575 struct task_struct *task; 7576 7577 cgroup_taskset_for_each(task, cgrp, tset) 7578 sched_move_task(task); 7579 } 7580 7581 static void 7582 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, 7583 struct cgroup *old_cgrp, struct task_struct *task) 7584 { 7585 /* 7586 * cgroup_exit() is called in the copy_process() failure path. 7587 * Ignore this case since the task hasn't ran yet, this avoids 7588 * trying to poke a half freed task state from generic code. 7589 */ 7590 if (!(task->flags & PF_EXITING)) 7591 return; 7592 7593 sched_move_task(task); 7594 } 7595 7596 #ifdef CONFIG_FAIR_GROUP_SCHED 7597 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7598 u64 shareval) 7599 { 7600 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 7601 } 7602 7603 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 7604 { 7605 struct task_group *tg = cgroup_tg(cgrp); 7606 7607 return (u64) scale_load_down(tg->shares); 7608 } 7609 7610 #ifdef CONFIG_CFS_BANDWIDTH 7611 static DEFINE_MUTEX(cfs_constraints_mutex); 7612 7613 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7614 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7615 7616 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7617 7618 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7619 { 7620 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7621 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7622 7623 if (tg == &root_task_group) 7624 return -EINVAL; 7625 7626 /* 7627 * Ensure we have at some amount of bandwidth every period. This is 7628 * to prevent reaching a state of large arrears when throttled via 7629 * entity_tick() resulting in prolonged exit starvation. 7630 */ 7631 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7632 return -EINVAL; 7633 7634 /* 7635 * Likewise, bound things on the otherside by preventing insane quota 7636 * periods. This also allows us to normalize in computing quota 7637 * feasibility. 7638 */ 7639 if (period > max_cfs_quota_period) 7640 return -EINVAL; 7641 7642 mutex_lock(&cfs_constraints_mutex); 7643 ret = __cfs_schedulable(tg, period, quota); 7644 if (ret) 7645 goto out_unlock; 7646 7647 runtime_enabled = quota != RUNTIME_INF; 7648 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7649 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 7650 raw_spin_lock_irq(&cfs_b->lock); 7651 cfs_b->period = ns_to_ktime(period); 7652 cfs_b->quota = quota; 7653 7654 __refill_cfs_bandwidth_runtime(cfs_b); 7655 /* restart the period timer (if active) to handle new period expiry */ 7656 if (runtime_enabled && cfs_b->timer_active) { 7657 /* force a reprogram */ 7658 cfs_b->timer_active = 0; 7659 __start_cfs_bandwidth(cfs_b); 7660 } 7661 raw_spin_unlock_irq(&cfs_b->lock); 7662 7663 for_each_possible_cpu(i) { 7664 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7665 struct rq *rq = cfs_rq->rq; 7666 7667 raw_spin_lock_irq(&rq->lock); 7668 cfs_rq->runtime_enabled = runtime_enabled; 7669 cfs_rq->runtime_remaining = 0; 7670 7671 if (cfs_rq->throttled) 7672 unthrottle_cfs_rq(cfs_rq); 7673 raw_spin_unlock_irq(&rq->lock); 7674 } 7675 out_unlock: 7676 mutex_unlock(&cfs_constraints_mutex); 7677 7678 return ret; 7679 } 7680 7681 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7682 { 7683 u64 quota, period; 7684 7685 period = ktime_to_ns(tg->cfs_bandwidth.period); 7686 if (cfs_quota_us < 0) 7687 quota = RUNTIME_INF; 7688 else 7689 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7690 7691 return tg_set_cfs_bandwidth(tg, period, quota); 7692 } 7693 7694 long tg_get_cfs_quota(struct task_group *tg) 7695 { 7696 u64 quota_us; 7697 7698 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7699 return -1; 7700 7701 quota_us = tg->cfs_bandwidth.quota; 7702 do_div(quota_us, NSEC_PER_USEC); 7703 7704 return quota_us; 7705 } 7706 7707 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7708 { 7709 u64 quota, period; 7710 7711 period = (u64)cfs_period_us * NSEC_PER_USEC; 7712 quota = tg->cfs_bandwidth.quota; 7713 7714 return tg_set_cfs_bandwidth(tg, period, quota); 7715 } 7716 7717 long tg_get_cfs_period(struct task_group *tg) 7718 { 7719 u64 cfs_period_us; 7720 7721 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7722 do_div(cfs_period_us, NSEC_PER_USEC); 7723 7724 return cfs_period_us; 7725 } 7726 7727 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 7728 { 7729 return tg_get_cfs_quota(cgroup_tg(cgrp)); 7730 } 7731 7732 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 7733 s64 cfs_quota_us) 7734 { 7735 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 7736 } 7737 7738 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 7739 { 7740 return tg_get_cfs_period(cgroup_tg(cgrp)); 7741 } 7742 7743 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7744 u64 cfs_period_us) 7745 { 7746 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 7747 } 7748 7749 struct cfs_schedulable_data { 7750 struct task_group *tg; 7751 u64 period, quota; 7752 }; 7753 7754 /* 7755 * normalize group quota/period to be quota/max_period 7756 * note: units are usecs 7757 */ 7758 static u64 normalize_cfs_quota(struct task_group *tg, 7759 struct cfs_schedulable_data *d) 7760 { 7761 u64 quota, period; 7762 7763 if (tg == d->tg) { 7764 period = d->period; 7765 quota = d->quota; 7766 } else { 7767 period = tg_get_cfs_period(tg); 7768 quota = tg_get_cfs_quota(tg); 7769 } 7770 7771 /* note: these should typically be equivalent */ 7772 if (quota == RUNTIME_INF || quota == -1) 7773 return RUNTIME_INF; 7774 7775 return to_ratio(period, quota); 7776 } 7777 7778 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7779 { 7780 struct cfs_schedulable_data *d = data; 7781 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7782 s64 quota = 0, parent_quota = -1; 7783 7784 if (!tg->parent) { 7785 quota = RUNTIME_INF; 7786 } else { 7787 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7788 7789 quota = normalize_cfs_quota(tg, d); 7790 parent_quota = parent_b->hierarchal_quota; 7791 7792 /* 7793 * ensure max(child_quota) <= parent_quota, inherit when no 7794 * limit is set 7795 */ 7796 if (quota == RUNTIME_INF) 7797 quota = parent_quota; 7798 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7799 return -EINVAL; 7800 } 7801 cfs_b->hierarchal_quota = quota; 7802 7803 return 0; 7804 } 7805 7806 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7807 { 7808 int ret; 7809 struct cfs_schedulable_data data = { 7810 .tg = tg, 7811 .period = period, 7812 .quota = quota, 7813 }; 7814 7815 if (quota != RUNTIME_INF) { 7816 do_div(data.period, NSEC_PER_USEC); 7817 do_div(data.quota, NSEC_PER_USEC); 7818 } 7819 7820 rcu_read_lock(); 7821 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7822 rcu_read_unlock(); 7823 7824 return ret; 7825 } 7826 7827 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 7828 struct cgroup_map_cb *cb) 7829 { 7830 struct task_group *tg = cgroup_tg(cgrp); 7831 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7832 7833 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7834 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7835 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7836 7837 return 0; 7838 } 7839 #endif /* CONFIG_CFS_BANDWIDTH */ 7840 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7841 7842 #ifdef CONFIG_RT_GROUP_SCHED 7843 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 7844 s64 val) 7845 { 7846 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 7847 } 7848 7849 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 7850 { 7851 return sched_group_rt_runtime(cgroup_tg(cgrp)); 7852 } 7853 7854 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 7855 u64 rt_period_us) 7856 { 7857 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 7858 } 7859 7860 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 7861 { 7862 return sched_group_rt_period(cgroup_tg(cgrp)); 7863 } 7864 #endif /* CONFIG_RT_GROUP_SCHED */ 7865 7866 static struct cftype cpu_files[] = { 7867 #ifdef CONFIG_FAIR_GROUP_SCHED 7868 { 7869 .name = "shares", 7870 .read_u64 = cpu_shares_read_u64, 7871 .write_u64 = cpu_shares_write_u64, 7872 }, 7873 #endif 7874 #ifdef CONFIG_CFS_BANDWIDTH 7875 { 7876 .name = "cfs_quota_us", 7877 .read_s64 = cpu_cfs_quota_read_s64, 7878 .write_s64 = cpu_cfs_quota_write_s64, 7879 }, 7880 { 7881 .name = "cfs_period_us", 7882 .read_u64 = cpu_cfs_period_read_u64, 7883 .write_u64 = cpu_cfs_period_write_u64, 7884 }, 7885 { 7886 .name = "stat", 7887 .read_map = cpu_stats_show, 7888 }, 7889 #endif 7890 #ifdef CONFIG_RT_GROUP_SCHED 7891 { 7892 .name = "rt_runtime_us", 7893 .read_s64 = cpu_rt_runtime_read, 7894 .write_s64 = cpu_rt_runtime_write, 7895 }, 7896 { 7897 .name = "rt_period_us", 7898 .read_u64 = cpu_rt_period_read_uint, 7899 .write_u64 = cpu_rt_period_write_uint, 7900 }, 7901 #endif 7902 }; 7903 7904 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) 7905 { 7906 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); 7907 } 7908 7909 struct cgroup_subsys cpu_cgroup_subsys = { 7910 .name = "cpu", 7911 .create = cpu_cgroup_create, 7912 .destroy = cpu_cgroup_destroy, 7913 .can_attach = cpu_cgroup_can_attach, 7914 .attach = cpu_cgroup_attach, 7915 .exit = cpu_cgroup_exit, 7916 .populate = cpu_cgroup_populate, 7917 .subsys_id = cpu_cgroup_subsys_id, 7918 .early_init = 1, 7919 }; 7920 7921 #endif /* CONFIG_CGROUP_SCHED */ 7922 7923 #ifdef CONFIG_CGROUP_CPUACCT 7924 7925 /* 7926 * CPU accounting code for task groups. 7927 * 7928 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh 7929 * (balbir@in.ibm.com). 7930 */ 7931 7932 /* create a new cpu accounting group */ 7933 static struct cgroup_subsys_state *cpuacct_create( 7934 struct cgroup_subsys *ss, struct cgroup *cgrp) 7935 { 7936 struct cpuacct *ca; 7937 7938 if (!cgrp->parent) 7939 return &root_cpuacct.css; 7940 7941 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 7942 if (!ca) 7943 goto out; 7944 7945 ca->cpuusage = alloc_percpu(u64); 7946 if (!ca->cpuusage) 7947 goto out_free_ca; 7948 7949 ca->cpustat = alloc_percpu(struct kernel_cpustat); 7950 if (!ca->cpustat) 7951 goto out_free_cpuusage; 7952 7953 return &ca->css; 7954 7955 out_free_cpuusage: 7956 free_percpu(ca->cpuusage); 7957 out_free_ca: 7958 kfree(ca); 7959 out: 7960 return ERR_PTR(-ENOMEM); 7961 } 7962 7963 /* destroy an existing cpu accounting group */ 7964 static void 7965 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) 7966 { 7967 struct cpuacct *ca = cgroup_ca(cgrp); 7968 7969 free_percpu(ca->cpustat); 7970 free_percpu(ca->cpuusage); 7971 kfree(ca); 7972 } 7973 7974 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) 7975 { 7976 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 7977 u64 data; 7978 7979 #ifndef CONFIG_64BIT 7980 /* 7981 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 7982 */ 7983 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 7984 data = *cpuusage; 7985 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 7986 #else 7987 data = *cpuusage; 7988 #endif 7989 7990 return data; 7991 } 7992 7993 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) 7994 { 7995 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 7996 7997 #ifndef CONFIG_64BIT 7998 /* 7999 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 8000 */ 8001 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8002 *cpuusage = val; 8003 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8004 #else 8005 *cpuusage = val; 8006 #endif 8007 } 8008 8009 /* return total cpu usage (in nanoseconds) of a group */ 8010 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 8011 { 8012 struct cpuacct *ca = cgroup_ca(cgrp); 8013 u64 totalcpuusage = 0; 8014 int i; 8015 8016 for_each_present_cpu(i) 8017 totalcpuusage += cpuacct_cpuusage_read(ca, i); 8018 8019 return totalcpuusage; 8020 } 8021 8022 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, 8023 u64 reset) 8024 { 8025 struct cpuacct *ca = cgroup_ca(cgrp); 8026 int err = 0; 8027 int i; 8028 8029 if (reset) { 8030 err = -EINVAL; 8031 goto out; 8032 } 8033 8034 for_each_present_cpu(i) 8035 cpuacct_cpuusage_write(ca, i, 0); 8036 8037 out: 8038 return err; 8039 } 8040 8041 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, 8042 struct seq_file *m) 8043 { 8044 struct cpuacct *ca = cgroup_ca(cgroup); 8045 u64 percpu; 8046 int i; 8047 8048 for_each_present_cpu(i) { 8049 percpu = cpuacct_cpuusage_read(ca, i); 8050 seq_printf(m, "%llu ", (unsigned long long) percpu); 8051 } 8052 seq_printf(m, "\n"); 8053 return 0; 8054 } 8055 8056 static const char *cpuacct_stat_desc[] = { 8057 [CPUACCT_STAT_USER] = "user", 8058 [CPUACCT_STAT_SYSTEM] = "system", 8059 }; 8060 8061 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, 8062 struct cgroup_map_cb *cb) 8063 { 8064 struct cpuacct *ca = cgroup_ca(cgrp); 8065 int cpu; 8066 s64 val = 0; 8067 8068 for_each_online_cpu(cpu) { 8069 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8070 val += kcpustat->cpustat[CPUTIME_USER]; 8071 val += kcpustat->cpustat[CPUTIME_NICE]; 8072 } 8073 val = cputime64_to_clock_t(val); 8074 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); 8075 8076 val = 0; 8077 for_each_online_cpu(cpu) { 8078 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8079 val += kcpustat->cpustat[CPUTIME_SYSTEM]; 8080 val += kcpustat->cpustat[CPUTIME_IRQ]; 8081 val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; 8082 } 8083 8084 val = cputime64_to_clock_t(val); 8085 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); 8086 8087 return 0; 8088 } 8089 8090 static struct cftype files[] = { 8091 { 8092 .name = "usage", 8093 .read_u64 = cpuusage_read, 8094 .write_u64 = cpuusage_write, 8095 }, 8096 { 8097 .name = "usage_percpu", 8098 .read_seq_string = cpuacct_percpu_seq_read, 8099 }, 8100 { 8101 .name = "stat", 8102 .read_map = cpuacct_stats_show, 8103 }, 8104 }; 8105 8106 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) 8107 { 8108 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); 8109 } 8110 8111 /* 8112 * charge this task's execution time to its accounting group. 8113 * 8114 * called with rq->lock held. 8115 */ 8116 void cpuacct_charge(struct task_struct *tsk, u64 cputime) 8117 { 8118 struct cpuacct *ca; 8119 int cpu; 8120 8121 if (unlikely(!cpuacct_subsys.active)) 8122 return; 8123 8124 cpu = task_cpu(tsk); 8125 8126 rcu_read_lock(); 8127 8128 ca = task_ca(tsk); 8129 8130 for (; ca; ca = parent_ca(ca)) { 8131 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8132 *cpuusage += cputime; 8133 } 8134 8135 rcu_read_unlock(); 8136 } 8137 8138 struct cgroup_subsys cpuacct_subsys = { 8139 .name = "cpuacct", 8140 .create = cpuacct_create, 8141 .destroy = cpuacct_destroy, 8142 .populate = cpuacct_populate, 8143 .subsys_id = cpuacct_subsys_id, 8144 }; 8145 #endif /* CONFIG_CGROUP_CPUACCT */ 8146