1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 70 #ifdef CONFIG_PREEMPT_DYNAMIC 71 # ifdef CONFIG_GENERIC_ENTRY 72 # include <linux/entry-common.h> 73 # endif 74 #endif 75 76 #include <uapi/linux/sched/types.h> 77 78 #include <asm/irq_regs.h> 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <linux/sched/rseq_api.h> 84 #include <trace/events/sched.h> 85 #include <trace/events/ipi.h> 86 #undef CREATE_TRACE_POINTS 87 88 #include "sched.h" 89 #include "stats.h" 90 91 #include "autogroup.h" 92 #include "pelt.h" 93 #include "smp.h" 94 #include "stats.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 #ifdef CONFIG_SCHED_DEBUG 123 /* 124 * Debugging: various feature bits 125 * 126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 127 * sysctl_sched_features, defined in sched.h, to allow constants propagation 128 * at compile time and compiler optimization based on features default. 129 */ 130 #define SCHED_FEAT(name, enabled) \ 131 (1UL << __SCHED_FEAT_##name) * enabled | 132 const_debug unsigned int sysctl_sched_features = 133 #include "features.h" 134 0; 135 #undef SCHED_FEAT 136 137 /* 138 * Print a warning if need_resched is set for the given duration (if 139 * LATENCY_WARN is enabled). 140 * 141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 142 * per boot. 143 */ 144 __read_mostly int sysctl_resched_latency_warn_ms = 100; 145 __read_mostly int sysctl_resched_latency_warn_once = 1; 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 /* 149 * Number of tasks to iterate in a single balance run. 150 * Limited because this is done with IRQs disabled. 151 */ 152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 153 154 __read_mostly int scheduler_running; 155 156 #ifdef CONFIG_SCHED_CORE 157 158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 159 160 /* kernel prio, less is more */ 161 static inline int __task_prio(const struct task_struct *p) 162 { 163 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 164 return -2; 165 166 if (rt_prio(p->prio)) /* includes deadline */ 167 return p->prio; /* [-1, 99] */ 168 169 if (p->sched_class == &idle_sched_class) 170 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 171 172 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 173 } 174 175 /* 176 * l(a,b) 177 * le(a,b) := !l(b,a) 178 * g(a,b) := l(b,a) 179 * ge(a,b) := !l(a,b) 180 */ 181 182 /* real prio, less is less */ 183 static inline bool prio_less(const struct task_struct *a, 184 const struct task_struct *b, bool in_fi) 185 { 186 187 int pa = __task_prio(a), pb = __task_prio(b); 188 189 if (-pa < -pb) 190 return true; 191 192 if (-pb < -pa) 193 return false; 194 195 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 196 return !dl_time_before(a->dl.deadline, b->dl.deadline); 197 198 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 199 return cfs_prio_less(a, b, in_fi); 200 201 return false; 202 } 203 204 static inline bool __sched_core_less(const struct task_struct *a, 205 const struct task_struct *b) 206 { 207 if (a->core_cookie < b->core_cookie) 208 return true; 209 210 if (a->core_cookie > b->core_cookie) 211 return false; 212 213 /* flip prio, so high prio is leftmost */ 214 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 215 return true; 216 217 return false; 218 } 219 220 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 221 222 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 223 { 224 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 225 } 226 227 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 228 { 229 const struct task_struct *p = __node_2_sc(node); 230 unsigned long cookie = (unsigned long)key; 231 232 if (cookie < p->core_cookie) 233 return -1; 234 235 if (cookie > p->core_cookie) 236 return 1; 237 238 return 0; 239 } 240 241 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 242 { 243 rq->core->core_task_seq++; 244 245 if (!p->core_cookie) 246 return; 247 248 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 249 } 250 251 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 252 { 253 rq->core->core_task_seq++; 254 255 if (sched_core_enqueued(p)) { 256 rb_erase(&p->core_node, &rq->core_tree); 257 RB_CLEAR_NODE(&p->core_node); 258 } 259 260 /* 261 * Migrating the last task off the cpu, with the cpu in forced idle 262 * state. Reschedule to create an accounting edge for forced idle, 263 * and re-examine whether the core is still in forced idle state. 264 */ 265 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 266 rq->core->core_forceidle_count && rq->curr == rq->idle) 267 resched_curr(rq); 268 } 269 270 static int sched_task_is_throttled(struct task_struct *p, int cpu) 271 { 272 if (p->sched_class->task_is_throttled) 273 return p->sched_class->task_is_throttled(p, cpu); 274 275 return 0; 276 } 277 278 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 279 { 280 struct rb_node *node = &p->core_node; 281 int cpu = task_cpu(p); 282 283 do { 284 node = rb_next(node); 285 if (!node) 286 return NULL; 287 288 p = __node_2_sc(node); 289 if (p->core_cookie != cookie) 290 return NULL; 291 292 } while (sched_task_is_throttled(p, cpu)); 293 294 return p; 295 } 296 297 /* 298 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 299 * If no suitable task is found, NULL will be returned. 300 */ 301 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 302 { 303 struct task_struct *p; 304 struct rb_node *node; 305 306 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 307 if (!node) 308 return NULL; 309 310 p = __node_2_sc(node); 311 if (!sched_task_is_throttled(p, rq->cpu)) 312 return p; 313 314 return sched_core_next(p, cookie); 315 } 316 317 /* 318 * Magic required such that: 319 * 320 * raw_spin_rq_lock(rq); 321 * ... 322 * raw_spin_rq_unlock(rq); 323 * 324 * ends up locking and unlocking the _same_ lock, and all CPUs 325 * always agree on what rq has what lock. 326 * 327 * XXX entirely possible to selectively enable cores, don't bother for now. 328 */ 329 330 static DEFINE_MUTEX(sched_core_mutex); 331 static atomic_t sched_core_count; 332 static struct cpumask sched_core_mask; 333 334 static void sched_core_lock(int cpu, unsigned long *flags) 335 { 336 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 337 int t, i = 0; 338 339 local_irq_save(*flags); 340 for_each_cpu(t, smt_mask) 341 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 342 } 343 344 static void sched_core_unlock(int cpu, unsigned long *flags) 345 { 346 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 347 int t; 348 349 for_each_cpu(t, smt_mask) 350 raw_spin_unlock(&cpu_rq(t)->__lock); 351 local_irq_restore(*flags); 352 } 353 354 static void __sched_core_flip(bool enabled) 355 { 356 unsigned long flags; 357 int cpu, t; 358 359 cpus_read_lock(); 360 361 /* 362 * Toggle the online cores, one by one. 363 */ 364 cpumask_copy(&sched_core_mask, cpu_online_mask); 365 for_each_cpu(cpu, &sched_core_mask) { 366 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 367 368 sched_core_lock(cpu, &flags); 369 370 for_each_cpu(t, smt_mask) 371 cpu_rq(t)->core_enabled = enabled; 372 373 cpu_rq(cpu)->core->core_forceidle_start = 0; 374 375 sched_core_unlock(cpu, &flags); 376 377 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 378 } 379 380 /* 381 * Toggle the offline CPUs. 382 */ 383 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 384 cpu_rq(cpu)->core_enabled = enabled; 385 386 cpus_read_unlock(); 387 } 388 389 static void sched_core_assert_empty(void) 390 { 391 int cpu; 392 393 for_each_possible_cpu(cpu) 394 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 395 } 396 397 static void __sched_core_enable(void) 398 { 399 static_branch_enable(&__sched_core_enabled); 400 /* 401 * Ensure all previous instances of raw_spin_rq_*lock() have finished 402 * and future ones will observe !sched_core_disabled(). 403 */ 404 synchronize_rcu(); 405 __sched_core_flip(true); 406 sched_core_assert_empty(); 407 } 408 409 static void __sched_core_disable(void) 410 { 411 sched_core_assert_empty(); 412 __sched_core_flip(false); 413 static_branch_disable(&__sched_core_enabled); 414 } 415 416 void sched_core_get(void) 417 { 418 if (atomic_inc_not_zero(&sched_core_count)) 419 return; 420 421 mutex_lock(&sched_core_mutex); 422 if (!atomic_read(&sched_core_count)) 423 __sched_core_enable(); 424 425 smp_mb__before_atomic(); 426 atomic_inc(&sched_core_count); 427 mutex_unlock(&sched_core_mutex); 428 } 429 430 static void __sched_core_put(struct work_struct *work) 431 { 432 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 433 __sched_core_disable(); 434 mutex_unlock(&sched_core_mutex); 435 } 436 } 437 438 void sched_core_put(void) 439 { 440 static DECLARE_WORK(_work, __sched_core_put); 441 442 /* 443 * "There can be only one" 444 * 445 * Either this is the last one, or we don't actually need to do any 446 * 'work'. If it is the last *again*, we rely on 447 * WORK_STRUCT_PENDING_BIT. 448 */ 449 if (!atomic_add_unless(&sched_core_count, -1, 1)) 450 schedule_work(&_work); 451 } 452 453 #else /* !CONFIG_SCHED_CORE */ 454 455 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 456 static inline void 457 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 458 459 #endif /* CONFIG_SCHED_CORE */ 460 461 /* 462 * Serialization rules: 463 * 464 * Lock order: 465 * 466 * p->pi_lock 467 * rq->lock 468 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 469 * 470 * rq1->lock 471 * rq2->lock where: rq1 < rq2 472 * 473 * Regular state: 474 * 475 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 476 * local CPU's rq->lock, it optionally removes the task from the runqueue and 477 * always looks at the local rq data structures to find the most eligible task 478 * to run next. 479 * 480 * Task enqueue is also under rq->lock, possibly taken from another CPU. 481 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 482 * the local CPU to avoid bouncing the runqueue state around [ see 483 * ttwu_queue_wakelist() ] 484 * 485 * Task wakeup, specifically wakeups that involve migration, are horribly 486 * complicated to avoid having to take two rq->locks. 487 * 488 * Special state: 489 * 490 * System-calls and anything external will use task_rq_lock() which acquires 491 * both p->pi_lock and rq->lock. As a consequence the state they change is 492 * stable while holding either lock: 493 * 494 * - sched_setaffinity()/ 495 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 496 * - set_user_nice(): p->se.load, p->*prio 497 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 498 * p->se.load, p->rt_priority, 499 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 500 * - sched_setnuma(): p->numa_preferred_nid 501 * - sched_move_task(): p->sched_task_group 502 * - uclamp_update_active() p->uclamp* 503 * 504 * p->state <- TASK_*: 505 * 506 * is changed locklessly using set_current_state(), __set_current_state() or 507 * set_special_state(), see their respective comments, or by 508 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 509 * concurrent self. 510 * 511 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 512 * 513 * is set by activate_task() and cleared by deactivate_task(), under 514 * rq->lock. Non-zero indicates the task is runnable, the special 515 * ON_RQ_MIGRATING state is used for migration without holding both 516 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 517 * 518 * p->on_cpu <- { 0, 1 }: 519 * 520 * is set by prepare_task() and cleared by finish_task() such that it will be 521 * set before p is scheduled-in and cleared after p is scheduled-out, both 522 * under rq->lock. Non-zero indicates the task is running on its CPU. 523 * 524 * [ The astute reader will observe that it is possible for two tasks on one 525 * CPU to have ->on_cpu = 1 at the same time. ] 526 * 527 * task_cpu(p): is changed by set_task_cpu(), the rules are: 528 * 529 * - Don't call set_task_cpu() on a blocked task: 530 * 531 * We don't care what CPU we're not running on, this simplifies hotplug, 532 * the CPU assignment of blocked tasks isn't required to be valid. 533 * 534 * - for try_to_wake_up(), called under p->pi_lock: 535 * 536 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 537 * 538 * - for migration called under rq->lock: 539 * [ see task_on_rq_migrating() in task_rq_lock() ] 540 * 541 * o move_queued_task() 542 * o detach_task() 543 * 544 * - for migration called under double_rq_lock(): 545 * 546 * o __migrate_swap_task() 547 * o push_rt_task() / pull_rt_task() 548 * o push_dl_task() / pull_dl_task() 549 * o dl_task_offline_migration() 550 * 551 */ 552 553 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 554 { 555 raw_spinlock_t *lock; 556 557 /* Matches synchronize_rcu() in __sched_core_enable() */ 558 preempt_disable(); 559 if (sched_core_disabled()) { 560 raw_spin_lock_nested(&rq->__lock, subclass); 561 /* preempt_count *MUST* be > 1 */ 562 preempt_enable_no_resched(); 563 return; 564 } 565 566 for (;;) { 567 lock = __rq_lockp(rq); 568 raw_spin_lock_nested(lock, subclass); 569 if (likely(lock == __rq_lockp(rq))) { 570 /* preempt_count *MUST* be > 1 */ 571 preempt_enable_no_resched(); 572 return; 573 } 574 raw_spin_unlock(lock); 575 } 576 } 577 578 bool raw_spin_rq_trylock(struct rq *rq) 579 { 580 raw_spinlock_t *lock; 581 bool ret; 582 583 /* Matches synchronize_rcu() in __sched_core_enable() */ 584 preempt_disable(); 585 if (sched_core_disabled()) { 586 ret = raw_spin_trylock(&rq->__lock); 587 preempt_enable(); 588 return ret; 589 } 590 591 for (;;) { 592 lock = __rq_lockp(rq); 593 ret = raw_spin_trylock(lock); 594 if (!ret || (likely(lock == __rq_lockp(rq)))) { 595 preempt_enable(); 596 return ret; 597 } 598 raw_spin_unlock(lock); 599 } 600 } 601 602 void raw_spin_rq_unlock(struct rq *rq) 603 { 604 raw_spin_unlock(rq_lockp(rq)); 605 } 606 607 #ifdef CONFIG_SMP 608 /* 609 * double_rq_lock - safely lock two runqueues 610 */ 611 void double_rq_lock(struct rq *rq1, struct rq *rq2) 612 { 613 lockdep_assert_irqs_disabled(); 614 615 if (rq_order_less(rq2, rq1)) 616 swap(rq1, rq2); 617 618 raw_spin_rq_lock(rq1); 619 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 620 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 621 622 double_rq_clock_clear_update(rq1, rq2); 623 } 624 #endif 625 626 /* 627 * __task_rq_lock - lock the rq @p resides on. 628 */ 629 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 630 __acquires(rq->lock) 631 { 632 struct rq *rq; 633 634 lockdep_assert_held(&p->pi_lock); 635 636 for (;;) { 637 rq = task_rq(p); 638 raw_spin_rq_lock(rq); 639 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 640 rq_pin_lock(rq, rf); 641 return rq; 642 } 643 raw_spin_rq_unlock(rq); 644 645 while (unlikely(task_on_rq_migrating(p))) 646 cpu_relax(); 647 } 648 } 649 650 /* 651 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 652 */ 653 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 654 __acquires(p->pi_lock) 655 __acquires(rq->lock) 656 { 657 struct rq *rq; 658 659 for (;;) { 660 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 661 rq = task_rq(p); 662 raw_spin_rq_lock(rq); 663 /* 664 * move_queued_task() task_rq_lock() 665 * 666 * ACQUIRE (rq->lock) 667 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 668 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 669 * [S] ->cpu = new_cpu [L] task_rq() 670 * [L] ->on_rq 671 * RELEASE (rq->lock) 672 * 673 * If we observe the old CPU in task_rq_lock(), the acquire of 674 * the old rq->lock will fully serialize against the stores. 675 * 676 * If we observe the new CPU in task_rq_lock(), the address 677 * dependency headed by '[L] rq = task_rq()' and the acquire 678 * will pair with the WMB to ensure we then also see migrating. 679 */ 680 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 681 rq_pin_lock(rq, rf); 682 return rq; 683 } 684 raw_spin_rq_unlock(rq); 685 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 686 687 while (unlikely(task_on_rq_migrating(p))) 688 cpu_relax(); 689 } 690 } 691 692 /* 693 * RQ-clock updating methods: 694 */ 695 696 static void update_rq_clock_task(struct rq *rq, s64 delta) 697 { 698 /* 699 * In theory, the compile should just see 0 here, and optimize out the call 700 * to sched_rt_avg_update. But I don't trust it... 701 */ 702 s64 __maybe_unused steal = 0, irq_delta = 0; 703 704 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 705 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 706 707 /* 708 * Since irq_time is only updated on {soft,}irq_exit, we might run into 709 * this case when a previous update_rq_clock() happened inside a 710 * {soft,}IRQ region. 711 * 712 * When this happens, we stop ->clock_task and only update the 713 * prev_irq_time stamp to account for the part that fit, so that a next 714 * update will consume the rest. This ensures ->clock_task is 715 * monotonic. 716 * 717 * It does however cause some slight miss-attribution of {soft,}IRQ 718 * time, a more accurate solution would be to update the irq_time using 719 * the current rq->clock timestamp, except that would require using 720 * atomic ops. 721 */ 722 if (irq_delta > delta) 723 irq_delta = delta; 724 725 rq->prev_irq_time += irq_delta; 726 delta -= irq_delta; 727 psi_account_irqtime(rq->curr, irq_delta); 728 delayacct_irq(rq->curr, irq_delta); 729 #endif 730 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 731 if (static_key_false((¶virt_steal_rq_enabled))) { 732 steal = paravirt_steal_clock(cpu_of(rq)); 733 steal -= rq->prev_steal_time_rq; 734 735 if (unlikely(steal > delta)) 736 steal = delta; 737 738 rq->prev_steal_time_rq += steal; 739 delta -= steal; 740 } 741 #endif 742 743 rq->clock_task += delta; 744 745 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 746 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 747 update_irq_load_avg(rq, irq_delta + steal); 748 #endif 749 update_rq_clock_pelt(rq, delta); 750 } 751 752 void update_rq_clock(struct rq *rq) 753 { 754 s64 delta; 755 756 lockdep_assert_rq_held(rq); 757 758 if (rq->clock_update_flags & RQCF_ACT_SKIP) 759 return; 760 761 #ifdef CONFIG_SCHED_DEBUG 762 if (sched_feat(WARN_DOUBLE_CLOCK)) 763 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 764 rq->clock_update_flags |= RQCF_UPDATED; 765 #endif 766 767 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 768 if (delta < 0) 769 return; 770 rq->clock += delta; 771 update_rq_clock_task(rq, delta); 772 } 773 774 #ifdef CONFIG_SCHED_HRTICK 775 /* 776 * Use HR-timers to deliver accurate preemption points. 777 */ 778 779 static void hrtick_clear(struct rq *rq) 780 { 781 if (hrtimer_active(&rq->hrtick_timer)) 782 hrtimer_cancel(&rq->hrtick_timer); 783 } 784 785 /* 786 * High-resolution timer tick. 787 * Runs from hardirq context with interrupts disabled. 788 */ 789 static enum hrtimer_restart hrtick(struct hrtimer *timer) 790 { 791 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 792 struct rq_flags rf; 793 794 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 795 796 rq_lock(rq, &rf); 797 update_rq_clock(rq); 798 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 799 rq_unlock(rq, &rf); 800 801 return HRTIMER_NORESTART; 802 } 803 804 #ifdef CONFIG_SMP 805 806 static void __hrtick_restart(struct rq *rq) 807 { 808 struct hrtimer *timer = &rq->hrtick_timer; 809 ktime_t time = rq->hrtick_time; 810 811 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 812 } 813 814 /* 815 * called from hardirq (IPI) context 816 */ 817 static void __hrtick_start(void *arg) 818 { 819 struct rq *rq = arg; 820 struct rq_flags rf; 821 822 rq_lock(rq, &rf); 823 __hrtick_restart(rq); 824 rq_unlock(rq, &rf); 825 } 826 827 /* 828 * Called to set the hrtick timer state. 829 * 830 * called with rq->lock held and IRQs disabled 831 */ 832 void hrtick_start(struct rq *rq, u64 delay) 833 { 834 struct hrtimer *timer = &rq->hrtick_timer; 835 s64 delta; 836 837 /* 838 * Don't schedule slices shorter than 10000ns, that just 839 * doesn't make sense and can cause timer DoS. 840 */ 841 delta = max_t(s64, delay, 10000LL); 842 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 843 844 if (rq == this_rq()) 845 __hrtick_restart(rq); 846 else 847 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 848 } 849 850 #else 851 /* 852 * Called to set the hrtick timer state. 853 * 854 * called with rq->lock held and IRQs disabled 855 */ 856 void hrtick_start(struct rq *rq, u64 delay) 857 { 858 /* 859 * Don't schedule slices shorter than 10000ns, that just 860 * doesn't make sense. Rely on vruntime for fairness. 861 */ 862 delay = max_t(u64, delay, 10000LL); 863 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 864 HRTIMER_MODE_REL_PINNED_HARD); 865 } 866 867 #endif /* CONFIG_SMP */ 868 869 static void hrtick_rq_init(struct rq *rq) 870 { 871 #ifdef CONFIG_SMP 872 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 873 #endif 874 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 875 rq->hrtick_timer.function = hrtick; 876 } 877 #else /* CONFIG_SCHED_HRTICK */ 878 static inline void hrtick_clear(struct rq *rq) 879 { 880 } 881 882 static inline void hrtick_rq_init(struct rq *rq) 883 { 884 } 885 #endif /* CONFIG_SCHED_HRTICK */ 886 887 /* 888 * try_cmpxchg based fetch_or() macro so it works for different integer types: 889 */ 890 #define fetch_or(ptr, mask) \ 891 ({ \ 892 typeof(ptr) _ptr = (ptr); \ 893 typeof(mask) _mask = (mask); \ 894 typeof(*_ptr) _val = *_ptr; \ 895 \ 896 do { \ 897 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 898 _val; \ 899 }) 900 901 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 902 /* 903 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 904 * this avoids any races wrt polling state changes and thereby avoids 905 * spurious IPIs. 906 */ 907 static inline bool set_nr_and_not_polling(struct task_struct *p) 908 { 909 struct thread_info *ti = task_thread_info(p); 910 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 911 } 912 913 /* 914 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 915 * 916 * If this returns true, then the idle task promises to call 917 * sched_ttwu_pending() and reschedule soon. 918 */ 919 static bool set_nr_if_polling(struct task_struct *p) 920 { 921 struct thread_info *ti = task_thread_info(p); 922 typeof(ti->flags) val = READ_ONCE(ti->flags); 923 924 do { 925 if (!(val & _TIF_POLLING_NRFLAG)) 926 return false; 927 if (val & _TIF_NEED_RESCHED) 928 return true; 929 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 930 931 return true; 932 } 933 934 #else 935 static inline bool set_nr_and_not_polling(struct task_struct *p) 936 { 937 set_tsk_need_resched(p); 938 return true; 939 } 940 941 #ifdef CONFIG_SMP 942 static inline bool set_nr_if_polling(struct task_struct *p) 943 { 944 return false; 945 } 946 #endif 947 #endif 948 949 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 950 { 951 struct wake_q_node *node = &task->wake_q; 952 953 /* 954 * Atomically grab the task, if ->wake_q is !nil already it means 955 * it's already queued (either by us or someone else) and will get the 956 * wakeup due to that. 957 * 958 * In order to ensure that a pending wakeup will observe our pending 959 * state, even in the failed case, an explicit smp_mb() must be used. 960 */ 961 smp_mb__before_atomic(); 962 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 963 return false; 964 965 /* 966 * The head is context local, there can be no concurrency. 967 */ 968 *head->lastp = node; 969 head->lastp = &node->next; 970 return true; 971 } 972 973 /** 974 * wake_q_add() - queue a wakeup for 'later' waking. 975 * @head: the wake_q_head to add @task to 976 * @task: the task to queue for 'later' wakeup 977 * 978 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 979 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 980 * instantly. 981 * 982 * This function must be used as-if it were wake_up_process(); IOW the task 983 * must be ready to be woken at this location. 984 */ 985 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 986 { 987 if (__wake_q_add(head, task)) 988 get_task_struct(task); 989 } 990 991 /** 992 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 993 * @head: the wake_q_head to add @task to 994 * @task: the task to queue for 'later' wakeup 995 * 996 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 997 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 998 * instantly. 999 * 1000 * This function must be used as-if it were wake_up_process(); IOW the task 1001 * must be ready to be woken at this location. 1002 * 1003 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1004 * that already hold reference to @task can call the 'safe' version and trust 1005 * wake_q to do the right thing depending whether or not the @task is already 1006 * queued for wakeup. 1007 */ 1008 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1009 { 1010 if (!__wake_q_add(head, task)) 1011 put_task_struct(task); 1012 } 1013 1014 void wake_up_q(struct wake_q_head *head) 1015 { 1016 struct wake_q_node *node = head->first; 1017 1018 while (node != WAKE_Q_TAIL) { 1019 struct task_struct *task; 1020 1021 task = container_of(node, struct task_struct, wake_q); 1022 /* Task can safely be re-inserted now: */ 1023 node = node->next; 1024 task->wake_q.next = NULL; 1025 1026 /* 1027 * wake_up_process() executes a full barrier, which pairs with 1028 * the queueing in wake_q_add() so as not to miss wakeups. 1029 */ 1030 wake_up_process(task); 1031 put_task_struct(task); 1032 } 1033 } 1034 1035 /* 1036 * resched_curr - mark rq's current task 'to be rescheduled now'. 1037 * 1038 * On UP this means the setting of the need_resched flag, on SMP it 1039 * might also involve a cross-CPU call to trigger the scheduler on 1040 * the target CPU. 1041 */ 1042 void resched_curr(struct rq *rq) 1043 { 1044 struct task_struct *curr = rq->curr; 1045 int cpu; 1046 1047 lockdep_assert_rq_held(rq); 1048 1049 if (test_tsk_need_resched(curr)) 1050 return; 1051 1052 cpu = cpu_of(rq); 1053 1054 if (cpu == smp_processor_id()) { 1055 set_tsk_need_resched(curr); 1056 set_preempt_need_resched(); 1057 return; 1058 } 1059 1060 if (set_nr_and_not_polling(curr)) 1061 smp_send_reschedule(cpu); 1062 else 1063 trace_sched_wake_idle_without_ipi(cpu); 1064 } 1065 1066 void resched_cpu(int cpu) 1067 { 1068 struct rq *rq = cpu_rq(cpu); 1069 unsigned long flags; 1070 1071 raw_spin_rq_lock_irqsave(rq, flags); 1072 if (cpu_online(cpu) || cpu == smp_processor_id()) 1073 resched_curr(rq); 1074 raw_spin_rq_unlock_irqrestore(rq, flags); 1075 } 1076 1077 #ifdef CONFIG_SMP 1078 #ifdef CONFIG_NO_HZ_COMMON 1079 /* 1080 * In the semi idle case, use the nearest busy CPU for migrating timers 1081 * from an idle CPU. This is good for power-savings. 1082 * 1083 * We don't do similar optimization for completely idle system, as 1084 * selecting an idle CPU will add more delays to the timers than intended 1085 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1086 */ 1087 int get_nohz_timer_target(void) 1088 { 1089 int i, cpu = smp_processor_id(), default_cpu = -1; 1090 struct sched_domain *sd; 1091 const struct cpumask *hk_mask; 1092 1093 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1094 if (!idle_cpu(cpu)) 1095 return cpu; 1096 default_cpu = cpu; 1097 } 1098 1099 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1100 1101 guard(rcu)(); 1102 1103 for_each_domain(cpu, sd) { 1104 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1105 if (cpu == i) 1106 continue; 1107 1108 if (!idle_cpu(i)) 1109 return i; 1110 } 1111 } 1112 1113 if (default_cpu == -1) 1114 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1115 1116 return default_cpu; 1117 } 1118 1119 /* 1120 * When add_timer_on() enqueues a timer into the timer wheel of an 1121 * idle CPU then this timer might expire before the next timer event 1122 * which is scheduled to wake up that CPU. In case of a completely 1123 * idle system the next event might even be infinite time into the 1124 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1125 * leaves the inner idle loop so the newly added timer is taken into 1126 * account when the CPU goes back to idle and evaluates the timer 1127 * wheel for the next timer event. 1128 */ 1129 static void wake_up_idle_cpu(int cpu) 1130 { 1131 struct rq *rq = cpu_rq(cpu); 1132 1133 if (cpu == smp_processor_id()) 1134 return; 1135 1136 /* 1137 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1138 * part of the idle loop. This forces an exit from the idle loop 1139 * and a round trip to schedule(). Now this could be optimized 1140 * because a simple new idle loop iteration is enough to 1141 * re-evaluate the next tick. Provided some re-ordering of tick 1142 * nohz functions that would need to follow TIF_NR_POLLING 1143 * clearing: 1144 * 1145 * - On most architectures, a simple fetch_or on ti::flags with a 1146 * "0" value would be enough to know if an IPI needs to be sent. 1147 * 1148 * - x86 needs to perform a last need_resched() check between 1149 * monitor and mwait which doesn't take timers into account. 1150 * There a dedicated TIF_TIMER flag would be required to 1151 * fetch_or here and be checked along with TIF_NEED_RESCHED 1152 * before mwait(). 1153 * 1154 * However, remote timer enqueue is not such a frequent event 1155 * and testing of the above solutions didn't appear to report 1156 * much benefits. 1157 */ 1158 if (set_nr_and_not_polling(rq->idle)) 1159 smp_send_reschedule(cpu); 1160 else 1161 trace_sched_wake_idle_without_ipi(cpu); 1162 } 1163 1164 static bool wake_up_full_nohz_cpu(int cpu) 1165 { 1166 /* 1167 * We just need the target to call irq_exit() and re-evaluate 1168 * the next tick. The nohz full kick at least implies that. 1169 * If needed we can still optimize that later with an 1170 * empty IRQ. 1171 */ 1172 if (cpu_is_offline(cpu)) 1173 return true; /* Don't try to wake offline CPUs. */ 1174 if (tick_nohz_full_cpu(cpu)) { 1175 if (cpu != smp_processor_id() || 1176 tick_nohz_tick_stopped()) 1177 tick_nohz_full_kick_cpu(cpu); 1178 return true; 1179 } 1180 1181 return false; 1182 } 1183 1184 /* 1185 * Wake up the specified CPU. If the CPU is going offline, it is the 1186 * caller's responsibility to deal with the lost wakeup, for example, 1187 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1188 */ 1189 void wake_up_nohz_cpu(int cpu) 1190 { 1191 if (!wake_up_full_nohz_cpu(cpu)) 1192 wake_up_idle_cpu(cpu); 1193 } 1194 1195 static void nohz_csd_func(void *info) 1196 { 1197 struct rq *rq = info; 1198 int cpu = cpu_of(rq); 1199 unsigned int flags; 1200 1201 /* 1202 * Release the rq::nohz_csd. 1203 */ 1204 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1205 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1206 1207 rq->idle_balance = idle_cpu(cpu); 1208 if (rq->idle_balance && !need_resched()) { 1209 rq->nohz_idle_balance = flags; 1210 raise_softirq_irqoff(SCHED_SOFTIRQ); 1211 } 1212 } 1213 1214 #endif /* CONFIG_NO_HZ_COMMON */ 1215 1216 #ifdef CONFIG_NO_HZ_FULL 1217 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1218 { 1219 if (rq->nr_running != 1) 1220 return false; 1221 1222 if (p->sched_class != &fair_sched_class) 1223 return false; 1224 1225 if (!task_on_rq_queued(p)) 1226 return false; 1227 1228 return true; 1229 } 1230 1231 bool sched_can_stop_tick(struct rq *rq) 1232 { 1233 int fifo_nr_running; 1234 1235 /* Deadline tasks, even if single, need the tick */ 1236 if (rq->dl.dl_nr_running) 1237 return false; 1238 1239 /* 1240 * If there are more than one RR tasks, we need the tick to affect the 1241 * actual RR behaviour. 1242 */ 1243 if (rq->rt.rr_nr_running) { 1244 if (rq->rt.rr_nr_running == 1) 1245 return true; 1246 else 1247 return false; 1248 } 1249 1250 /* 1251 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1252 * forced preemption between FIFO tasks. 1253 */ 1254 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1255 if (fifo_nr_running) 1256 return true; 1257 1258 /* 1259 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1260 * if there's more than one we need the tick for involuntary 1261 * preemption. 1262 */ 1263 if (rq->nr_running > 1) 1264 return false; 1265 1266 /* 1267 * If there is one task and it has CFS runtime bandwidth constraints 1268 * and it's on the cpu now we don't want to stop the tick. 1269 * This check prevents clearing the bit if a newly enqueued task here is 1270 * dequeued by migrating while the constrained task continues to run. 1271 * E.g. going from 2->1 without going through pick_next_task(). 1272 */ 1273 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) { 1274 if (cfs_task_bw_constrained(rq->curr)) 1275 return false; 1276 } 1277 1278 return true; 1279 } 1280 #endif /* CONFIG_NO_HZ_FULL */ 1281 #endif /* CONFIG_SMP */ 1282 1283 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1284 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1285 /* 1286 * Iterate task_group tree rooted at *from, calling @down when first entering a 1287 * node and @up when leaving it for the final time. 1288 * 1289 * Caller must hold rcu_lock or sufficient equivalent. 1290 */ 1291 int walk_tg_tree_from(struct task_group *from, 1292 tg_visitor down, tg_visitor up, void *data) 1293 { 1294 struct task_group *parent, *child; 1295 int ret; 1296 1297 parent = from; 1298 1299 down: 1300 ret = (*down)(parent, data); 1301 if (ret) 1302 goto out; 1303 list_for_each_entry_rcu(child, &parent->children, siblings) { 1304 parent = child; 1305 goto down; 1306 1307 up: 1308 continue; 1309 } 1310 ret = (*up)(parent, data); 1311 if (ret || parent == from) 1312 goto out; 1313 1314 child = parent; 1315 parent = parent->parent; 1316 if (parent) 1317 goto up; 1318 out: 1319 return ret; 1320 } 1321 1322 int tg_nop(struct task_group *tg, void *data) 1323 { 1324 return 0; 1325 } 1326 #endif 1327 1328 void set_load_weight(struct task_struct *p, bool update_load) 1329 { 1330 int prio = p->static_prio - MAX_RT_PRIO; 1331 struct load_weight *load = &p->se.load; 1332 1333 /* 1334 * SCHED_IDLE tasks get minimal weight: 1335 */ 1336 if (task_has_idle_policy(p)) { 1337 load->weight = scale_load(WEIGHT_IDLEPRIO); 1338 load->inv_weight = WMULT_IDLEPRIO; 1339 return; 1340 } 1341 1342 /* 1343 * SCHED_OTHER tasks have to update their load when changing their 1344 * weight 1345 */ 1346 if (update_load && p->sched_class->reweight_task) { 1347 p->sched_class->reweight_task(task_rq(p), p, prio); 1348 } else { 1349 load->weight = scale_load(sched_prio_to_weight[prio]); 1350 load->inv_weight = sched_prio_to_wmult[prio]; 1351 } 1352 } 1353 1354 #ifdef CONFIG_UCLAMP_TASK 1355 /* 1356 * Serializes updates of utilization clamp values 1357 * 1358 * The (slow-path) user-space triggers utilization clamp value updates which 1359 * can require updates on (fast-path) scheduler's data structures used to 1360 * support enqueue/dequeue operations. 1361 * While the per-CPU rq lock protects fast-path update operations, user-space 1362 * requests are serialized using a mutex to reduce the risk of conflicting 1363 * updates or API abuses. 1364 */ 1365 static DEFINE_MUTEX(uclamp_mutex); 1366 1367 /* Max allowed minimum utilization */ 1368 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1369 1370 /* Max allowed maximum utilization */ 1371 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1372 1373 /* 1374 * By default RT tasks run at the maximum performance point/capacity of the 1375 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1376 * SCHED_CAPACITY_SCALE. 1377 * 1378 * This knob allows admins to change the default behavior when uclamp is being 1379 * used. In battery powered devices, particularly, running at the maximum 1380 * capacity and frequency will increase energy consumption and shorten the 1381 * battery life. 1382 * 1383 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1384 * 1385 * This knob will not override the system default sched_util_clamp_min defined 1386 * above. 1387 */ 1388 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1389 1390 /* All clamps are required to be less or equal than these values */ 1391 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1392 1393 /* 1394 * This static key is used to reduce the uclamp overhead in the fast path. It 1395 * primarily disables the call to uclamp_rq_{inc, dec}() in 1396 * enqueue/dequeue_task(). 1397 * 1398 * This allows users to continue to enable uclamp in their kernel config with 1399 * minimum uclamp overhead in the fast path. 1400 * 1401 * As soon as userspace modifies any of the uclamp knobs, the static key is 1402 * enabled, since we have an actual users that make use of uclamp 1403 * functionality. 1404 * 1405 * The knobs that would enable this static key are: 1406 * 1407 * * A task modifying its uclamp value with sched_setattr(). 1408 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1409 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1410 */ 1411 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1412 1413 static inline unsigned int 1414 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1415 unsigned int clamp_value) 1416 { 1417 /* 1418 * Avoid blocked utilization pushing up the frequency when we go 1419 * idle (which drops the max-clamp) by retaining the last known 1420 * max-clamp. 1421 */ 1422 if (clamp_id == UCLAMP_MAX) { 1423 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1424 return clamp_value; 1425 } 1426 1427 return uclamp_none(UCLAMP_MIN); 1428 } 1429 1430 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1431 unsigned int clamp_value) 1432 { 1433 /* Reset max-clamp retention only on idle exit */ 1434 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1435 return; 1436 1437 uclamp_rq_set(rq, clamp_id, clamp_value); 1438 } 1439 1440 static inline 1441 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1442 unsigned int clamp_value) 1443 { 1444 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1445 int bucket_id = UCLAMP_BUCKETS - 1; 1446 1447 /* 1448 * Since both min and max clamps are max aggregated, find the 1449 * top most bucket with tasks in. 1450 */ 1451 for ( ; bucket_id >= 0; bucket_id--) { 1452 if (!bucket[bucket_id].tasks) 1453 continue; 1454 return bucket[bucket_id].value; 1455 } 1456 1457 /* No tasks -- default clamp values */ 1458 return uclamp_idle_value(rq, clamp_id, clamp_value); 1459 } 1460 1461 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1462 { 1463 unsigned int default_util_min; 1464 struct uclamp_se *uc_se; 1465 1466 lockdep_assert_held(&p->pi_lock); 1467 1468 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1469 1470 /* Only sync if user didn't override the default */ 1471 if (uc_se->user_defined) 1472 return; 1473 1474 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1475 uclamp_se_set(uc_se, default_util_min, false); 1476 } 1477 1478 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1479 { 1480 if (!rt_task(p)) 1481 return; 1482 1483 /* Protect updates to p->uclamp_* */ 1484 guard(task_rq_lock)(p); 1485 __uclamp_update_util_min_rt_default(p); 1486 } 1487 1488 static inline struct uclamp_se 1489 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1490 { 1491 /* Copy by value as we could modify it */ 1492 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1493 #ifdef CONFIG_UCLAMP_TASK_GROUP 1494 unsigned int tg_min, tg_max, value; 1495 1496 /* 1497 * Tasks in autogroups or root task group will be 1498 * restricted by system defaults. 1499 */ 1500 if (task_group_is_autogroup(task_group(p))) 1501 return uc_req; 1502 if (task_group(p) == &root_task_group) 1503 return uc_req; 1504 1505 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1506 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1507 value = uc_req.value; 1508 value = clamp(value, tg_min, tg_max); 1509 uclamp_se_set(&uc_req, value, false); 1510 #endif 1511 1512 return uc_req; 1513 } 1514 1515 /* 1516 * The effective clamp bucket index of a task depends on, by increasing 1517 * priority: 1518 * - the task specific clamp value, when explicitly requested from userspace 1519 * - the task group effective clamp value, for tasks not either in the root 1520 * group or in an autogroup 1521 * - the system default clamp value, defined by the sysadmin 1522 */ 1523 static inline struct uclamp_se 1524 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1525 { 1526 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1527 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1528 1529 /* System default restrictions always apply */ 1530 if (unlikely(uc_req.value > uc_max.value)) 1531 return uc_max; 1532 1533 return uc_req; 1534 } 1535 1536 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1537 { 1538 struct uclamp_se uc_eff; 1539 1540 /* Task currently refcounted: use back-annotated (effective) value */ 1541 if (p->uclamp[clamp_id].active) 1542 return (unsigned long)p->uclamp[clamp_id].value; 1543 1544 uc_eff = uclamp_eff_get(p, clamp_id); 1545 1546 return (unsigned long)uc_eff.value; 1547 } 1548 1549 /* 1550 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1551 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1552 * updates the rq's clamp value if required. 1553 * 1554 * Tasks can have a task-specific value requested from user-space, track 1555 * within each bucket the maximum value for tasks refcounted in it. 1556 * This "local max aggregation" allows to track the exact "requested" value 1557 * for each bucket when all its RUNNABLE tasks require the same clamp. 1558 */ 1559 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1560 enum uclamp_id clamp_id) 1561 { 1562 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1563 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1564 struct uclamp_bucket *bucket; 1565 1566 lockdep_assert_rq_held(rq); 1567 1568 /* Update task effective clamp */ 1569 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1570 1571 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1572 bucket->tasks++; 1573 uc_se->active = true; 1574 1575 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1576 1577 /* 1578 * Local max aggregation: rq buckets always track the max 1579 * "requested" clamp value of its RUNNABLE tasks. 1580 */ 1581 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1582 bucket->value = uc_se->value; 1583 1584 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1585 uclamp_rq_set(rq, clamp_id, uc_se->value); 1586 } 1587 1588 /* 1589 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1590 * is released. If this is the last task reference counting the rq's max 1591 * active clamp value, then the rq's clamp value is updated. 1592 * 1593 * Both refcounted tasks and rq's cached clamp values are expected to be 1594 * always valid. If it's detected they are not, as defensive programming, 1595 * enforce the expected state and warn. 1596 */ 1597 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1598 enum uclamp_id clamp_id) 1599 { 1600 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1601 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1602 struct uclamp_bucket *bucket; 1603 unsigned int bkt_clamp; 1604 unsigned int rq_clamp; 1605 1606 lockdep_assert_rq_held(rq); 1607 1608 /* 1609 * If sched_uclamp_used was enabled after task @p was enqueued, 1610 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1611 * 1612 * In this case the uc_se->active flag should be false since no uclamp 1613 * accounting was performed at enqueue time and we can just return 1614 * here. 1615 * 1616 * Need to be careful of the following enqueue/dequeue ordering 1617 * problem too 1618 * 1619 * enqueue(taskA) 1620 * // sched_uclamp_used gets enabled 1621 * enqueue(taskB) 1622 * dequeue(taskA) 1623 * // Must not decrement bucket->tasks here 1624 * dequeue(taskB) 1625 * 1626 * where we could end up with stale data in uc_se and 1627 * bucket[uc_se->bucket_id]. 1628 * 1629 * The following check here eliminates the possibility of such race. 1630 */ 1631 if (unlikely(!uc_se->active)) 1632 return; 1633 1634 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1635 1636 SCHED_WARN_ON(!bucket->tasks); 1637 if (likely(bucket->tasks)) 1638 bucket->tasks--; 1639 1640 uc_se->active = false; 1641 1642 /* 1643 * Keep "local max aggregation" simple and accept to (possibly) 1644 * overboost some RUNNABLE tasks in the same bucket. 1645 * The rq clamp bucket value is reset to its base value whenever 1646 * there are no more RUNNABLE tasks refcounting it. 1647 */ 1648 if (likely(bucket->tasks)) 1649 return; 1650 1651 rq_clamp = uclamp_rq_get(rq, clamp_id); 1652 /* 1653 * Defensive programming: this should never happen. If it happens, 1654 * e.g. due to future modification, warn and fix up the expected value. 1655 */ 1656 SCHED_WARN_ON(bucket->value > rq_clamp); 1657 if (bucket->value >= rq_clamp) { 1658 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1659 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1660 } 1661 } 1662 1663 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1664 { 1665 enum uclamp_id clamp_id; 1666 1667 /* 1668 * Avoid any overhead until uclamp is actually used by the userspace. 1669 * 1670 * The condition is constructed such that a NOP is generated when 1671 * sched_uclamp_used is disabled. 1672 */ 1673 if (!static_branch_unlikely(&sched_uclamp_used)) 1674 return; 1675 1676 if (unlikely(!p->sched_class->uclamp_enabled)) 1677 return; 1678 1679 for_each_clamp_id(clamp_id) 1680 uclamp_rq_inc_id(rq, p, clamp_id); 1681 1682 /* Reset clamp idle holding when there is one RUNNABLE task */ 1683 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1684 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1685 } 1686 1687 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1688 { 1689 enum uclamp_id clamp_id; 1690 1691 /* 1692 * Avoid any overhead until uclamp is actually used by the userspace. 1693 * 1694 * The condition is constructed such that a NOP is generated when 1695 * sched_uclamp_used is disabled. 1696 */ 1697 if (!static_branch_unlikely(&sched_uclamp_used)) 1698 return; 1699 1700 if (unlikely(!p->sched_class->uclamp_enabled)) 1701 return; 1702 1703 for_each_clamp_id(clamp_id) 1704 uclamp_rq_dec_id(rq, p, clamp_id); 1705 } 1706 1707 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1708 enum uclamp_id clamp_id) 1709 { 1710 if (!p->uclamp[clamp_id].active) 1711 return; 1712 1713 uclamp_rq_dec_id(rq, p, clamp_id); 1714 uclamp_rq_inc_id(rq, p, clamp_id); 1715 1716 /* 1717 * Make sure to clear the idle flag if we've transiently reached 0 1718 * active tasks on rq. 1719 */ 1720 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1721 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1722 } 1723 1724 static inline void 1725 uclamp_update_active(struct task_struct *p) 1726 { 1727 enum uclamp_id clamp_id; 1728 struct rq_flags rf; 1729 struct rq *rq; 1730 1731 /* 1732 * Lock the task and the rq where the task is (or was) queued. 1733 * 1734 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1735 * price to pay to safely serialize util_{min,max} updates with 1736 * enqueues, dequeues and migration operations. 1737 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1738 */ 1739 rq = task_rq_lock(p, &rf); 1740 1741 /* 1742 * Setting the clamp bucket is serialized by task_rq_lock(). 1743 * If the task is not yet RUNNABLE and its task_struct is not 1744 * affecting a valid clamp bucket, the next time it's enqueued, 1745 * it will already see the updated clamp bucket value. 1746 */ 1747 for_each_clamp_id(clamp_id) 1748 uclamp_rq_reinc_id(rq, p, clamp_id); 1749 1750 task_rq_unlock(rq, p, &rf); 1751 } 1752 1753 #ifdef CONFIG_UCLAMP_TASK_GROUP 1754 static inline void 1755 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1756 { 1757 struct css_task_iter it; 1758 struct task_struct *p; 1759 1760 css_task_iter_start(css, 0, &it); 1761 while ((p = css_task_iter_next(&it))) 1762 uclamp_update_active(p); 1763 css_task_iter_end(&it); 1764 } 1765 1766 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1767 #endif 1768 1769 #ifdef CONFIG_SYSCTL 1770 #ifdef CONFIG_UCLAMP_TASK_GROUP 1771 static void uclamp_update_root_tg(void) 1772 { 1773 struct task_group *tg = &root_task_group; 1774 1775 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1776 sysctl_sched_uclamp_util_min, false); 1777 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1778 sysctl_sched_uclamp_util_max, false); 1779 1780 guard(rcu)(); 1781 cpu_util_update_eff(&root_task_group.css); 1782 } 1783 #else 1784 static void uclamp_update_root_tg(void) { } 1785 #endif 1786 1787 static void uclamp_sync_util_min_rt_default(void) 1788 { 1789 struct task_struct *g, *p; 1790 1791 /* 1792 * copy_process() sysctl_uclamp 1793 * uclamp_min_rt = X; 1794 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1795 * // link thread smp_mb__after_spinlock() 1796 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1797 * sched_post_fork() for_each_process_thread() 1798 * __uclamp_sync_rt() __uclamp_sync_rt() 1799 * 1800 * Ensures that either sched_post_fork() will observe the new 1801 * uclamp_min_rt or for_each_process_thread() will observe the new 1802 * task. 1803 */ 1804 read_lock(&tasklist_lock); 1805 smp_mb__after_spinlock(); 1806 read_unlock(&tasklist_lock); 1807 1808 guard(rcu)(); 1809 for_each_process_thread(g, p) 1810 uclamp_update_util_min_rt_default(p); 1811 } 1812 1813 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1814 void *buffer, size_t *lenp, loff_t *ppos) 1815 { 1816 bool update_root_tg = false; 1817 int old_min, old_max, old_min_rt; 1818 int result; 1819 1820 guard(mutex)(&uclamp_mutex); 1821 1822 old_min = sysctl_sched_uclamp_util_min; 1823 old_max = sysctl_sched_uclamp_util_max; 1824 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1825 1826 result = proc_dointvec(table, write, buffer, lenp, ppos); 1827 if (result) 1828 goto undo; 1829 if (!write) 1830 return 0; 1831 1832 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1833 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1834 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1835 1836 result = -EINVAL; 1837 goto undo; 1838 } 1839 1840 if (old_min != sysctl_sched_uclamp_util_min) { 1841 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1842 sysctl_sched_uclamp_util_min, false); 1843 update_root_tg = true; 1844 } 1845 if (old_max != sysctl_sched_uclamp_util_max) { 1846 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1847 sysctl_sched_uclamp_util_max, false); 1848 update_root_tg = true; 1849 } 1850 1851 if (update_root_tg) { 1852 static_branch_enable(&sched_uclamp_used); 1853 uclamp_update_root_tg(); 1854 } 1855 1856 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1857 static_branch_enable(&sched_uclamp_used); 1858 uclamp_sync_util_min_rt_default(); 1859 } 1860 1861 /* 1862 * We update all RUNNABLE tasks only when task groups are in use. 1863 * Otherwise, keep it simple and do just a lazy update at each next 1864 * task enqueue time. 1865 */ 1866 return 0; 1867 1868 undo: 1869 sysctl_sched_uclamp_util_min = old_min; 1870 sysctl_sched_uclamp_util_max = old_max; 1871 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1872 return result; 1873 } 1874 #endif 1875 1876 static void uclamp_fork(struct task_struct *p) 1877 { 1878 enum uclamp_id clamp_id; 1879 1880 /* 1881 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1882 * as the task is still at its early fork stages. 1883 */ 1884 for_each_clamp_id(clamp_id) 1885 p->uclamp[clamp_id].active = false; 1886 1887 if (likely(!p->sched_reset_on_fork)) 1888 return; 1889 1890 for_each_clamp_id(clamp_id) { 1891 uclamp_se_set(&p->uclamp_req[clamp_id], 1892 uclamp_none(clamp_id), false); 1893 } 1894 } 1895 1896 static void uclamp_post_fork(struct task_struct *p) 1897 { 1898 uclamp_update_util_min_rt_default(p); 1899 } 1900 1901 static void __init init_uclamp_rq(struct rq *rq) 1902 { 1903 enum uclamp_id clamp_id; 1904 struct uclamp_rq *uc_rq = rq->uclamp; 1905 1906 for_each_clamp_id(clamp_id) { 1907 uc_rq[clamp_id] = (struct uclamp_rq) { 1908 .value = uclamp_none(clamp_id) 1909 }; 1910 } 1911 1912 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1913 } 1914 1915 static void __init init_uclamp(void) 1916 { 1917 struct uclamp_se uc_max = {}; 1918 enum uclamp_id clamp_id; 1919 int cpu; 1920 1921 for_each_possible_cpu(cpu) 1922 init_uclamp_rq(cpu_rq(cpu)); 1923 1924 for_each_clamp_id(clamp_id) { 1925 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1926 uclamp_none(clamp_id), false); 1927 } 1928 1929 /* System defaults allow max clamp values for both indexes */ 1930 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1931 for_each_clamp_id(clamp_id) { 1932 uclamp_default[clamp_id] = uc_max; 1933 #ifdef CONFIG_UCLAMP_TASK_GROUP 1934 root_task_group.uclamp_req[clamp_id] = uc_max; 1935 root_task_group.uclamp[clamp_id] = uc_max; 1936 #endif 1937 } 1938 } 1939 1940 #else /* !CONFIG_UCLAMP_TASK */ 1941 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1942 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1943 static inline void uclamp_fork(struct task_struct *p) { } 1944 static inline void uclamp_post_fork(struct task_struct *p) { } 1945 static inline void init_uclamp(void) { } 1946 #endif /* CONFIG_UCLAMP_TASK */ 1947 1948 bool sched_task_on_rq(struct task_struct *p) 1949 { 1950 return task_on_rq_queued(p); 1951 } 1952 1953 unsigned long get_wchan(struct task_struct *p) 1954 { 1955 unsigned long ip = 0; 1956 unsigned int state; 1957 1958 if (!p || p == current) 1959 return 0; 1960 1961 /* Only get wchan if task is blocked and we can keep it that way. */ 1962 raw_spin_lock_irq(&p->pi_lock); 1963 state = READ_ONCE(p->__state); 1964 smp_rmb(); /* see try_to_wake_up() */ 1965 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 1966 ip = __get_wchan(p); 1967 raw_spin_unlock_irq(&p->pi_lock); 1968 1969 return ip; 1970 } 1971 1972 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1973 { 1974 if (!(flags & ENQUEUE_NOCLOCK)) 1975 update_rq_clock(rq); 1976 1977 if (!(flags & ENQUEUE_RESTORE)) { 1978 sched_info_enqueue(rq, p); 1979 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 1980 } 1981 1982 uclamp_rq_inc(rq, p); 1983 p->sched_class->enqueue_task(rq, p, flags); 1984 1985 if (sched_core_enabled(rq)) 1986 sched_core_enqueue(rq, p); 1987 } 1988 1989 void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1990 { 1991 if (sched_core_enabled(rq)) 1992 sched_core_dequeue(rq, p, flags); 1993 1994 if (!(flags & DEQUEUE_NOCLOCK)) 1995 update_rq_clock(rq); 1996 1997 if (!(flags & DEQUEUE_SAVE)) { 1998 sched_info_dequeue(rq, p); 1999 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2000 } 2001 2002 uclamp_rq_dec(rq, p); 2003 p->sched_class->dequeue_task(rq, p, flags); 2004 } 2005 2006 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2007 { 2008 if (task_on_rq_migrating(p)) 2009 flags |= ENQUEUE_MIGRATED; 2010 if (flags & ENQUEUE_MIGRATED) 2011 sched_mm_cid_migrate_to(rq, p); 2012 2013 enqueue_task(rq, p, flags); 2014 2015 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2016 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2017 } 2018 2019 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2020 { 2021 WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING); 2022 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2023 2024 dequeue_task(rq, p, flags); 2025 } 2026 2027 /** 2028 * task_curr - is this task currently executing on a CPU? 2029 * @p: the task in question. 2030 * 2031 * Return: 1 if the task is currently executing. 0 otherwise. 2032 */ 2033 inline int task_curr(const struct task_struct *p) 2034 { 2035 return cpu_curr(task_cpu(p)) == p; 2036 } 2037 2038 /* 2039 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2040 * mess with locking. 2041 */ 2042 void check_class_changing(struct rq *rq, struct task_struct *p, 2043 const struct sched_class *prev_class) 2044 { 2045 if (prev_class != p->sched_class && p->sched_class->switching_to) 2046 p->sched_class->switching_to(rq, p); 2047 } 2048 2049 /* 2050 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2051 * use the balance_callback list if you want balancing. 2052 * 2053 * this means any call to check_class_changed() must be followed by a call to 2054 * balance_callback(). 2055 */ 2056 void check_class_changed(struct rq *rq, struct task_struct *p, 2057 const struct sched_class *prev_class, 2058 int oldprio) 2059 { 2060 if (prev_class != p->sched_class) { 2061 if (prev_class->switched_from) 2062 prev_class->switched_from(rq, p); 2063 2064 p->sched_class->switched_to(rq, p); 2065 } else if (oldprio != p->prio || dl_task(p)) 2066 p->sched_class->prio_changed(rq, p, oldprio); 2067 } 2068 2069 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2070 { 2071 if (p->sched_class == rq->curr->sched_class) 2072 rq->curr->sched_class->wakeup_preempt(rq, p, flags); 2073 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2074 resched_curr(rq); 2075 2076 /* 2077 * A queue event has occurred, and we're going to schedule. In 2078 * this case, we can save a useless back to back clock update. 2079 */ 2080 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2081 rq_clock_skip_update(rq); 2082 } 2083 2084 static __always_inline 2085 int __task_state_match(struct task_struct *p, unsigned int state) 2086 { 2087 if (READ_ONCE(p->__state) & state) 2088 return 1; 2089 2090 if (READ_ONCE(p->saved_state) & state) 2091 return -1; 2092 2093 return 0; 2094 } 2095 2096 static __always_inline 2097 int task_state_match(struct task_struct *p, unsigned int state) 2098 { 2099 /* 2100 * Serialize against current_save_and_set_rtlock_wait_state(), 2101 * current_restore_rtlock_saved_state(), and __refrigerator(). 2102 */ 2103 guard(raw_spinlock_irq)(&p->pi_lock); 2104 return __task_state_match(p, state); 2105 } 2106 2107 /* 2108 * wait_task_inactive - wait for a thread to unschedule. 2109 * 2110 * Wait for the thread to block in any of the states set in @match_state. 2111 * If it changes, i.e. @p might have woken up, then return zero. When we 2112 * succeed in waiting for @p to be off its CPU, we return a positive number 2113 * (its total switch count). If a second call a short while later returns the 2114 * same number, the caller can be sure that @p has remained unscheduled the 2115 * whole time. 2116 * 2117 * The caller must ensure that the task *will* unschedule sometime soon, 2118 * else this function might spin for a *long* time. This function can't 2119 * be called with interrupts off, or it may introduce deadlock with 2120 * smp_call_function() if an IPI is sent by the same process we are 2121 * waiting to become inactive. 2122 */ 2123 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2124 { 2125 int running, queued, match; 2126 struct rq_flags rf; 2127 unsigned long ncsw; 2128 struct rq *rq; 2129 2130 for (;;) { 2131 /* 2132 * We do the initial early heuristics without holding 2133 * any task-queue locks at all. We'll only try to get 2134 * the runqueue lock when things look like they will 2135 * work out! 2136 */ 2137 rq = task_rq(p); 2138 2139 /* 2140 * If the task is actively running on another CPU 2141 * still, just relax and busy-wait without holding 2142 * any locks. 2143 * 2144 * NOTE! Since we don't hold any locks, it's not 2145 * even sure that "rq" stays as the right runqueue! 2146 * But we don't care, since "task_on_cpu()" will 2147 * return false if the runqueue has changed and p 2148 * is actually now running somewhere else! 2149 */ 2150 while (task_on_cpu(rq, p)) { 2151 if (!task_state_match(p, match_state)) 2152 return 0; 2153 cpu_relax(); 2154 } 2155 2156 /* 2157 * Ok, time to look more closely! We need the rq 2158 * lock now, to be *sure*. If we're wrong, we'll 2159 * just go back and repeat. 2160 */ 2161 rq = task_rq_lock(p, &rf); 2162 trace_sched_wait_task(p); 2163 running = task_on_cpu(rq, p); 2164 queued = task_on_rq_queued(p); 2165 ncsw = 0; 2166 if ((match = __task_state_match(p, match_state))) { 2167 /* 2168 * When matching on p->saved_state, consider this task 2169 * still queued so it will wait. 2170 */ 2171 if (match < 0) 2172 queued = 1; 2173 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2174 } 2175 task_rq_unlock(rq, p, &rf); 2176 2177 /* 2178 * If it changed from the expected state, bail out now. 2179 */ 2180 if (unlikely(!ncsw)) 2181 break; 2182 2183 /* 2184 * Was it really running after all now that we 2185 * checked with the proper locks actually held? 2186 * 2187 * Oops. Go back and try again.. 2188 */ 2189 if (unlikely(running)) { 2190 cpu_relax(); 2191 continue; 2192 } 2193 2194 /* 2195 * It's not enough that it's not actively running, 2196 * it must be off the runqueue _entirely_, and not 2197 * preempted! 2198 * 2199 * So if it was still runnable (but just not actively 2200 * running right now), it's preempted, and we should 2201 * yield - it could be a while. 2202 */ 2203 if (unlikely(queued)) { 2204 ktime_t to = NSEC_PER_SEC / HZ; 2205 2206 set_current_state(TASK_UNINTERRUPTIBLE); 2207 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2208 continue; 2209 } 2210 2211 /* 2212 * Ahh, all good. It wasn't running, and it wasn't 2213 * runnable, which means that it will never become 2214 * running in the future either. We're all done! 2215 */ 2216 break; 2217 } 2218 2219 return ncsw; 2220 } 2221 2222 #ifdef CONFIG_SMP 2223 2224 static void 2225 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2226 2227 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2228 { 2229 struct affinity_context ac = { 2230 .new_mask = cpumask_of(rq->cpu), 2231 .flags = SCA_MIGRATE_DISABLE, 2232 }; 2233 2234 if (likely(!p->migration_disabled)) 2235 return; 2236 2237 if (p->cpus_ptr != &p->cpus_mask) 2238 return; 2239 2240 /* 2241 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2242 */ 2243 __do_set_cpus_allowed(p, &ac); 2244 } 2245 2246 void migrate_disable(void) 2247 { 2248 struct task_struct *p = current; 2249 2250 if (p->migration_disabled) { 2251 p->migration_disabled++; 2252 return; 2253 } 2254 2255 guard(preempt)(); 2256 this_rq()->nr_pinned++; 2257 p->migration_disabled = 1; 2258 } 2259 EXPORT_SYMBOL_GPL(migrate_disable); 2260 2261 void migrate_enable(void) 2262 { 2263 struct task_struct *p = current; 2264 struct affinity_context ac = { 2265 .new_mask = &p->cpus_mask, 2266 .flags = SCA_MIGRATE_ENABLE, 2267 }; 2268 2269 if (p->migration_disabled > 1) { 2270 p->migration_disabled--; 2271 return; 2272 } 2273 2274 if (WARN_ON_ONCE(!p->migration_disabled)) 2275 return; 2276 2277 /* 2278 * Ensure stop_task runs either before or after this, and that 2279 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2280 */ 2281 guard(preempt)(); 2282 if (p->cpus_ptr != &p->cpus_mask) 2283 __set_cpus_allowed_ptr(p, &ac); 2284 /* 2285 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2286 * regular cpus_mask, otherwise things that race (eg. 2287 * select_fallback_rq) get confused. 2288 */ 2289 barrier(); 2290 p->migration_disabled = 0; 2291 this_rq()->nr_pinned--; 2292 } 2293 EXPORT_SYMBOL_GPL(migrate_enable); 2294 2295 static inline bool rq_has_pinned_tasks(struct rq *rq) 2296 { 2297 return rq->nr_pinned; 2298 } 2299 2300 /* 2301 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2302 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2303 */ 2304 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2305 { 2306 /* When not in the task's cpumask, no point in looking further. */ 2307 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2308 return false; 2309 2310 /* migrate_disabled() must be allowed to finish. */ 2311 if (is_migration_disabled(p)) 2312 return cpu_online(cpu); 2313 2314 /* Non kernel threads are not allowed during either online or offline. */ 2315 if (!(p->flags & PF_KTHREAD)) 2316 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2317 2318 /* KTHREAD_IS_PER_CPU is always allowed. */ 2319 if (kthread_is_per_cpu(p)) 2320 return cpu_online(cpu); 2321 2322 /* Regular kernel threads don't get to stay during offline. */ 2323 if (cpu_dying(cpu)) 2324 return false; 2325 2326 /* But are allowed during online. */ 2327 return cpu_online(cpu); 2328 } 2329 2330 /* 2331 * This is how migration works: 2332 * 2333 * 1) we invoke migration_cpu_stop() on the target CPU using 2334 * stop_one_cpu(). 2335 * 2) stopper starts to run (implicitly forcing the migrated thread 2336 * off the CPU) 2337 * 3) it checks whether the migrated task is still in the wrong runqueue. 2338 * 4) if it's in the wrong runqueue then the migration thread removes 2339 * it and puts it into the right queue. 2340 * 5) stopper completes and stop_one_cpu() returns and the migration 2341 * is done. 2342 */ 2343 2344 /* 2345 * move_queued_task - move a queued task to new rq. 2346 * 2347 * Returns (locked) new rq. Old rq's lock is released. 2348 */ 2349 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2350 struct task_struct *p, int new_cpu) 2351 { 2352 lockdep_assert_rq_held(rq); 2353 2354 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2355 set_task_cpu(p, new_cpu); 2356 rq_unlock(rq, rf); 2357 2358 rq = cpu_rq(new_cpu); 2359 2360 rq_lock(rq, rf); 2361 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2362 activate_task(rq, p, 0); 2363 wakeup_preempt(rq, p, 0); 2364 2365 return rq; 2366 } 2367 2368 struct migration_arg { 2369 struct task_struct *task; 2370 int dest_cpu; 2371 struct set_affinity_pending *pending; 2372 }; 2373 2374 /* 2375 * @refs: number of wait_for_completion() 2376 * @stop_pending: is @stop_work in use 2377 */ 2378 struct set_affinity_pending { 2379 refcount_t refs; 2380 unsigned int stop_pending; 2381 struct completion done; 2382 struct cpu_stop_work stop_work; 2383 struct migration_arg arg; 2384 }; 2385 2386 /* 2387 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2388 * this because either it can't run here any more (set_cpus_allowed() 2389 * away from this CPU, or CPU going down), or because we're 2390 * attempting to rebalance this task on exec (sched_exec). 2391 * 2392 * So we race with normal scheduler movements, but that's OK, as long 2393 * as the task is no longer on this CPU. 2394 */ 2395 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2396 struct task_struct *p, int dest_cpu) 2397 { 2398 /* Affinity changed (again). */ 2399 if (!is_cpu_allowed(p, dest_cpu)) 2400 return rq; 2401 2402 rq = move_queued_task(rq, rf, p, dest_cpu); 2403 2404 return rq; 2405 } 2406 2407 /* 2408 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2409 * and performs thread migration by bumping thread off CPU then 2410 * 'pushing' onto another runqueue. 2411 */ 2412 static int migration_cpu_stop(void *data) 2413 { 2414 struct migration_arg *arg = data; 2415 struct set_affinity_pending *pending = arg->pending; 2416 struct task_struct *p = arg->task; 2417 struct rq *rq = this_rq(); 2418 bool complete = false; 2419 struct rq_flags rf; 2420 2421 /* 2422 * The original target CPU might have gone down and we might 2423 * be on another CPU but it doesn't matter. 2424 */ 2425 local_irq_save(rf.flags); 2426 /* 2427 * We need to explicitly wake pending tasks before running 2428 * __migrate_task() such that we will not miss enforcing cpus_ptr 2429 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2430 */ 2431 flush_smp_call_function_queue(); 2432 2433 raw_spin_lock(&p->pi_lock); 2434 rq_lock(rq, &rf); 2435 2436 /* 2437 * If we were passed a pending, then ->stop_pending was set, thus 2438 * p->migration_pending must have remained stable. 2439 */ 2440 WARN_ON_ONCE(pending && pending != p->migration_pending); 2441 2442 /* 2443 * If task_rq(p) != rq, it cannot be migrated here, because we're 2444 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2445 * we're holding p->pi_lock. 2446 */ 2447 if (task_rq(p) == rq) { 2448 if (is_migration_disabled(p)) 2449 goto out; 2450 2451 if (pending) { 2452 p->migration_pending = NULL; 2453 complete = true; 2454 2455 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2456 goto out; 2457 } 2458 2459 if (task_on_rq_queued(p)) { 2460 update_rq_clock(rq); 2461 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2462 } else { 2463 p->wake_cpu = arg->dest_cpu; 2464 } 2465 2466 /* 2467 * XXX __migrate_task() can fail, at which point we might end 2468 * up running on a dodgy CPU, AFAICT this can only happen 2469 * during CPU hotplug, at which point we'll get pushed out 2470 * anyway, so it's probably not a big deal. 2471 */ 2472 2473 } else if (pending) { 2474 /* 2475 * This happens when we get migrated between migrate_enable()'s 2476 * preempt_enable() and scheduling the stopper task. At that 2477 * point we're a regular task again and not current anymore. 2478 * 2479 * A !PREEMPT kernel has a giant hole here, which makes it far 2480 * more likely. 2481 */ 2482 2483 /* 2484 * The task moved before the stopper got to run. We're holding 2485 * ->pi_lock, so the allowed mask is stable - if it got 2486 * somewhere allowed, we're done. 2487 */ 2488 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2489 p->migration_pending = NULL; 2490 complete = true; 2491 goto out; 2492 } 2493 2494 /* 2495 * When migrate_enable() hits a rq mis-match we can't reliably 2496 * determine is_migration_disabled() and so have to chase after 2497 * it. 2498 */ 2499 WARN_ON_ONCE(!pending->stop_pending); 2500 preempt_disable(); 2501 task_rq_unlock(rq, p, &rf); 2502 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2503 &pending->arg, &pending->stop_work); 2504 preempt_enable(); 2505 return 0; 2506 } 2507 out: 2508 if (pending) 2509 pending->stop_pending = false; 2510 task_rq_unlock(rq, p, &rf); 2511 2512 if (complete) 2513 complete_all(&pending->done); 2514 2515 return 0; 2516 } 2517 2518 int push_cpu_stop(void *arg) 2519 { 2520 struct rq *lowest_rq = NULL, *rq = this_rq(); 2521 struct task_struct *p = arg; 2522 2523 raw_spin_lock_irq(&p->pi_lock); 2524 raw_spin_rq_lock(rq); 2525 2526 if (task_rq(p) != rq) 2527 goto out_unlock; 2528 2529 if (is_migration_disabled(p)) { 2530 p->migration_flags |= MDF_PUSH; 2531 goto out_unlock; 2532 } 2533 2534 p->migration_flags &= ~MDF_PUSH; 2535 2536 if (p->sched_class->find_lock_rq) 2537 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2538 2539 if (!lowest_rq) 2540 goto out_unlock; 2541 2542 // XXX validate p is still the highest prio task 2543 if (task_rq(p) == rq) { 2544 deactivate_task(rq, p, 0); 2545 set_task_cpu(p, lowest_rq->cpu); 2546 activate_task(lowest_rq, p, 0); 2547 resched_curr(lowest_rq); 2548 } 2549 2550 double_unlock_balance(rq, lowest_rq); 2551 2552 out_unlock: 2553 rq->push_busy = false; 2554 raw_spin_rq_unlock(rq); 2555 raw_spin_unlock_irq(&p->pi_lock); 2556 2557 put_task_struct(p); 2558 return 0; 2559 } 2560 2561 /* 2562 * sched_class::set_cpus_allowed must do the below, but is not required to 2563 * actually call this function. 2564 */ 2565 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2566 { 2567 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2568 p->cpus_ptr = ctx->new_mask; 2569 return; 2570 } 2571 2572 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2573 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2574 2575 /* 2576 * Swap in a new user_cpus_ptr if SCA_USER flag set 2577 */ 2578 if (ctx->flags & SCA_USER) 2579 swap(p->user_cpus_ptr, ctx->user_mask); 2580 } 2581 2582 static void 2583 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2584 { 2585 struct rq *rq = task_rq(p); 2586 bool queued, running; 2587 2588 /* 2589 * This here violates the locking rules for affinity, since we're only 2590 * supposed to change these variables while holding both rq->lock and 2591 * p->pi_lock. 2592 * 2593 * HOWEVER, it magically works, because ttwu() is the only code that 2594 * accesses these variables under p->pi_lock and only does so after 2595 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2596 * before finish_task(). 2597 * 2598 * XXX do further audits, this smells like something putrid. 2599 */ 2600 if (ctx->flags & SCA_MIGRATE_DISABLE) 2601 SCHED_WARN_ON(!p->on_cpu); 2602 else 2603 lockdep_assert_held(&p->pi_lock); 2604 2605 queued = task_on_rq_queued(p); 2606 running = task_current(rq, p); 2607 2608 if (queued) { 2609 /* 2610 * Because __kthread_bind() calls this on blocked tasks without 2611 * holding rq->lock. 2612 */ 2613 lockdep_assert_rq_held(rq); 2614 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2615 } 2616 if (running) 2617 put_prev_task(rq, p); 2618 2619 p->sched_class->set_cpus_allowed(p, ctx); 2620 2621 if (queued) 2622 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2623 if (running) 2624 set_next_task(rq, p); 2625 } 2626 2627 /* 2628 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2629 * affinity (if any) should be destroyed too. 2630 */ 2631 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2632 { 2633 struct affinity_context ac = { 2634 .new_mask = new_mask, 2635 .user_mask = NULL, 2636 .flags = SCA_USER, /* clear the user requested mask */ 2637 }; 2638 union cpumask_rcuhead { 2639 cpumask_t cpumask; 2640 struct rcu_head rcu; 2641 }; 2642 2643 __do_set_cpus_allowed(p, &ac); 2644 2645 /* 2646 * Because this is called with p->pi_lock held, it is not possible 2647 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2648 * kfree_rcu(). 2649 */ 2650 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2651 } 2652 2653 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2654 int node) 2655 { 2656 cpumask_t *user_mask; 2657 unsigned long flags; 2658 2659 /* 2660 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2661 * may differ by now due to racing. 2662 */ 2663 dst->user_cpus_ptr = NULL; 2664 2665 /* 2666 * This check is racy and losing the race is a valid situation. 2667 * It is not worth the extra overhead of taking the pi_lock on 2668 * every fork/clone. 2669 */ 2670 if (data_race(!src->user_cpus_ptr)) 2671 return 0; 2672 2673 user_mask = alloc_user_cpus_ptr(node); 2674 if (!user_mask) 2675 return -ENOMEM; 2676 2677 /* 2678 * Use pi_lock to protect content of user_cpus_ptr 2679 * 2680 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2681 * do_set_cpus_allowed(). 2682 */ 2683 raw_spin_lock_irqsave(&src->pi_lock, flags); 2684 if (src->user_cpus_ptr) { 2685 swap(dst->user_cpus_ptr, user_mask); 2686 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2687 } 2688 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2689 2690 if (unlikely(user_mask)) 2691 kfree(user_mask); 2692 2693 return 0; 2694 } 2695 2696 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2697 { 2698 struct cpumask *user_mask = NULL; 2699 2700 swap(p->user_cpus_ptr, user_mask); 2701 2702 return user_mask; 2703 } 2704 2705 void release_user_cpus_ptr(struct task_struct *p) 2706 { 2707 kfree(clear_user_cpus_ptr(p)); 2708 } 2709 2710 /* 2711 * This function is wildly self concurrent; here be dragons. 2712 * 2713 * 2714 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2715 * designated task is enqueued on an allowed CPU. If that task is currently 2716 * running, we have to kick it out using the CPU stopper. 2717 * 2718 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2719 * Consider: 2720 * 2721 * Initial conditions: P0->cpus_mask = [0, 1] 2722 * 2723 * P0@CPU0 P1 2724 * 2725 * migrate_disable(); 2726 * <preempted> 2727 * set_cpus_allowed_ptr(P0, [1]); 2728 * 2729 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2730 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2731 * This means we need the following scheme: 2732 * 2733 * P0@CPU0 P1 2734 * 2735 * migrate_disable(); 2736 * <preempted> 2737 * set_cpus_allowed_ptr(P0, [1]); 2738 * <blocks> 2739 * <resumes> 2740 * migrate_enable(); 2741 * __set_cpus_allowed_ptr(); 2742 * <wakes local stopper> 2743 * `--> <woken on migration completion> 2744 * 2745 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2746 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2747 * task p are serialized by p->pi_lock, which we can leverage: the one that 2748 * should come into effect at the end of the Migrate-Disable region is the last 2749 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2750 * but we still need to properly signal those waiting tasks at the appropriate 2751 * moment. 2752 * 2753 * This is implemented using struct set_affinity_pending. The first 2754 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2755 * setup an instance of that struct and install it on the targeted task_struct. 2756 * Any and all further callers will reuse that instance. Those then wait for 2757 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2758 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2759 * 2760 * 2761 * (1) In the cases covered above. There is one more where the completion is 2762 * signaled within affine_move_task() itself: when a subsequent affinity request 2763 * occurs after the stopper bailed out due to the targeted task still being 2764 * Migrate-Disable. Consider: 2765 * 2766 * Initial conditions: P0->cpus_mask = [0, 1] 2767 * 2768 * CPU0 P1 P2 2769 * <P0> 2770 * migrate_disable(); 2771 * <preempted> 2772 * set_cpus_allowed_ptr(P0, [1]); 2773 * <blocks> 2774 * <migration/0> 2775 * migration_cpu_stop() 2776 * is_migration_disabled() 2777 * <bails> 2778 * set_cpus_allowed_ptr(P0, [0, 1]); 2779 * <signal completion> 2780 * <awakes> 2781 * 2782 * Note that the above is safe vs a concurrent migrate_enable(), as any 2783 * pending affinity completion is preceded by an uninstallation of 2784 * p->migration_pending done with p->pi_lock held. 2785 */ 2786 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2787 int dest_cpu, unsigned int flags) 2788 __releases(rq->lock) 2789 __releases(p->pi_lock) 2790 { 2791 struct set_affinity_pending my_pending = { }, *pending = NULL; 2792 bool stop_pending, complete = false; 2793 2794 /* Can the task run on the task's current CPU? If so, we're done */ 2795 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2796 struct task_struct *push_task = NULL; 2797 2798 if ((flags & SCA_MIGRATE_ENABLE) && 2799 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2800 rq->push_busy = true; 2801 push_task = get_task_struct(p); 2802 } 2803 2804 /* 2805 * If there are pending waiters, but no pending stop_work, 2806 * then complete now. 2807 */ 2808 pending = p->migration_pending; 2809 if (pending && !pending->stop_pending) { 2810 p->migration_pending = NULL; 2811 complete = true; 2812 } 2813 2814 preempt_disable(); 2815 task_rq_unlock(rq, p, rf); 2816 if (push_task) { 2817 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2818 p, &rq->push_work); 2819 } 2820 preempt_enable(); 2821 2822 if (complete) 2823 complete_all(&pending->done); 2824 2825 return 0; 2826 } 2827 2828 if (!(flags & SCA_MIGRATE_ENABLE)) { 2829 /* serialized by p->pi_lock */ 2830 if (!p->migration_pending) { 2831 /* Install the request */ 2832 refcount_set(&my_pending.refs, 1); 2833 init_completion(&my_pending.done); 2834 my_pending.arg = (struct migration_arg) { 2835 .task = p, 2836 .dest_cpu = dest_cpu, 2837 .pending = &my_pending, 2838 }; 2839 2840 p->migration_pending = &my_pending; 2841 } else { 2842 pending = p->migration_pending; 2843 refcount_inc(&pending->refs); 2844 /* 2845 * Affinity has changed, but we've already installed a 2846 * pending. migration_cpu_stop() *must* see this, else 2847 * we risk a completion of the pending despite having a 2848 * task on a disallowed CPU. 2849 * 2850 * Serialized by p->pi_lock, so this is safe. 2851 */ 2852 pending->arg.dest_cpu = dest_cpu; 2853 } 2854 } 2855 pending = p->migration_pending; 2856 /* 2857 * - !MIGRATE_ENABLE: 2858 * we'll have installed a pending if there wasn't one already. 2859 * 2860 * - MIGRATE_ENABLE: 2861 * we're here because the current CPU isn't matching anymore, 2862 * the only way that can happen is because of a concurrent 2863 * set_cpus_allowed_ptr() call, which should then still be 2864 * pending completion. 2865 * 2866 * Either way, we really should have a @pending here. 2867 */ 2868 if (WARN_ON_ONCE(!pending)) { 2869 task_rq_unlock(rq, p, rf); 2870 return -EINVAL; 2871 } 2872 2873 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2874 /* 2875 * MIGRATE_ENABLE gets here because 'p == current', but for 2876 * anything else we cannot do is_migration_disabled(), punt 2877 * and have the stopper function handle it all race-free. 2878 */ 2879 stop_pending = pending->stop_pending; 2880 if (!stop_pending) 2881 pending->stop_pending = true; 2882 2883 if (flags & SCA_MIGRATE_ENABLE) 2884 p->migration_flags &= ~MDF_PUSH; 2885 2886 preempt_disable(); 2887 task_rq_unlock(rq, p, rf); 2888 if (!stop_pending) { 2889 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2890 &pending->arg, &pending->stop_work); 2891 } 2892 preempt_enable(); 2893 2894 if (flags & SCA_MIGRATE_ENABLE) 2895 return 0; 2896 } else { 2897 2898 if (!is_migration_disabled(p)) { 2899 if (task_on_rq_queued(p)) 2900 rq = move_queued_task(rq, rf, p, dest_cpu); 2901 2902 if (!pending->stop_pending) { 2903 p->migration_pending = NULL; 2904 complete = true; 2905 } 2906 } 2907 task_rq_unlock(rq, p, rf); 2908 2909 if (complete) 2910 complete_all(&pending->done); 2911 } 2912 2913 wait_for_completion(&pending->done); 2914 2915 if (refcount_dec_and_test(&pending->refs)) 2916 wake_up_var(&pending->refs); /* No UaF, just an address */ 2917 2918 /* 2919 * Block the original owner of &pending until all subsequent callers 2920 * have seen the completion and decremented the refcount 2921 */ 2922 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2923 2924 /* ARGH */ 2925 WARN_ON_ONCE(my_pending.stop_pending); 2926 2927 return 0; 2928 } 2929 2930 /* 2931 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2932 */ 2933 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2934 struct affinity_context *ctx, 2935 struct rq *rq, 2936 struct rq_flags *rf) 2937 __releases(rq->lock) 2938 __releases(p->pi_lock) 2939 { 2940 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2941 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2942 bool kthread = p->flags & PF_KTHREAD; 2943 unsigned int dest_cpu; 2944 int ret = 0; 2945 2946 update_rq_clock(rq); 2947 2948 if (kthread || is_migration_disabled(p)) { 2949 /* 2950 * Kernel threads are allowed on online && !active CPUs, 2951 * however, during cpu-hot-unplug, even these might get pushed 2952 * away if not KTHREAD_IS_PER_CPU. 2953 * 2954 * Specifically, migration_disabled() tasks must not fail the 2955 * cpumask_any_and_distribute() pick below, esp. so on 2956 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2957 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2958 */ 2959 cpu_valid_mask = cpu_online_mask; 2960 } 2961 2962 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 2963 ret = -EINVAL; 2964 goto out; 2965 } 2966 2967 /* 2968 * Must re-check here, to close a race against __kthread_bind(), 2969 * sched_setaffinity() is not guaranteed to observe the flag. 2970 */ 2971 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2972 ret = -EINVAL; 2973 goto out; 2974 } 2975 2976 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 2977 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 2978 if (ctx->flags & SCA_USER) 2979 swap(p->user_cpus_ptr, ctx->user_mask); 2980 goto out; 2981 } 2982 2983 if (WARN_ON_ONCE(p == current && 2984 is_migration_disabled(p) && 2985 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 2986 ret = -EBUSY; 2987 goto out; 2988 } 2989 } 2990 2991 /* 2992 * Picking a ~random cpu helps in cases where we are changing affinity 2993 * for groups of tasks (ie. cpuset), so that load balancing is not 2994 * immediately required to distribute the tasks within their new mask. 2995 */ 2996 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 2997 if (dest_cpu >= nr_cpu_ids) { 2998 ret = -EINVAL; 2999 goto out; 3000 } 3001 3002 __do_set_cpus_allowed(p, ctx); 3003 3004 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3005 3006 out: 3007 task_rq_unlock(rq, p, rf); 3008 3009 return ret; 3010 } 3011 3012 /* 3013 * Change a given task's CPU affinity. Migrate the thread to a 3014 * proper CPU and schedule it away if the CPU it's executing on 3015 * is removed from the allowed bitmask. 3016 * 3017 * NOTE: the caller must have a valid reference to the task, the 3018 * task must not exit() & deallocate itself prematurely. The 3019 * call is not atomic; no spinlocks may be held. 3020 */ 3021 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3022 { 3023 struct rq_flags rf; 3024 struct rq *rq; 3025 3026 rq = task_rq_lock(p, &rf); 3027 /* 3028 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3029 * flags are set. 3030 */ 3031 if (p->user_cpus_ptr && 3032 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3033 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3034 ctx->new_mask = rq->scratch_mask; 3035 3036 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3037 } 3038 3039 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3040 { 3041 struct affinity_context ac = { 3042 .new_mask = new_mask, 3043 .flags = 0, 3044 }; 3045 3046 return __set_cpus_allowed_ptr(p, &ac); 3047 } 3048 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3049 3050 /* 3051 * Change a given task's CPU affinity to the intersection of its current 3052 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3053 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3054 * affinity or use cpu_online_mask instead. 3055 * 3056 * If the resulting mask is empty, leave the affinity unchanged and return 3057 * -EINVAL. 3058 */ 3059 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3060 struct cpumask *new_mask, 3061 const struct cpumask *subset_mask) 3062 { 3063 struct affinity_context ac = { 3064 .new_mask = new_mask, 3065 .flags = 0, 3066 }; 3067 struct rq_flags rf; 3068 struct rq *rq; 3069 int err; 3070 3071 rq = task_rq_lock(p, &rf); 3072 3073 /* 3074 * Forcefully restricting the affinity of a deadline task is 3075 * likely to cause problems, so fail and noisily override the 3076 * mask entirely. 3077 */ 3078 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3079 err = -EPERM; 3080 goto err_unlock; 3081 } 3082 3083 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3084 err = -EINVAL; 3085 goto err_unlock; 3086 } 3087 3088 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3089 3090 err_unlock: 3091 task_rq_unlock(rq, p, &rf); 3092 return err; 3093 } 3094 3095 /* 3096 * Restrict the CPU affinity of task @p so that it is a subset of 3097 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3098 * old affinity mask. If the resulting mask is empty, we warn and walk 3099 * up the cpuset hierarchy until we find a suitable mask. 3100 */ 3101 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3102 { 3103 cpumask_var_t new_mask; 3104 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3105 3106 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3107 3108 /* 3109 * __migrate_task() can fail silently in the face of concurrent 3110 * offlining of the chosen destination CPU, so take the hotplug 3111 * lock to ensure that the migration succeeds. 3112 */ 3113 cpus_read_lock(); 3114 if (!cpumask_available(new_mask)) 3115 goto out_set_mask; 3116 3117 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3118 goto out_free_mask; 3119 3120 /* 3121 * We failed to find a valid subset of the affinity mask for the 3122 * task, so override it based on its cpuset hierarchy. 3123 */ 3124 cpuset_cpus_allowed(p, new_mask); 3125 override_mask = new_mask; 3126 3127 out_set_mask: 3128 if (printk_ratelimit()) { 3129 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3130 task_pid_nr(p), p->comm, 3131 cpumask_pr_args(override_mask)); 3132 } 3133 3134 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3135 out_free_mask: 3136 cpus_read_unlock(); 3137 free_cpumask_var(new_mask); 3138 } 3139 3140 /* 3141 * Restore the affinity of a task @p which was previously restricted by a 3142 * call to force_compatible_cpus_allowed_ptr(). 3143 * 3144 * It is the caller's responsibility to serialise this with any calls to 3145 * force_compatible_cpus_allowed_ptr(@p). 3146 */ 3147 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3148 { 3149 struct affinity_context ac = { 3150 .new_mask = task_user_cpus(p), 3151 .flags = 0, 3152 }; 3153 int ret; 3154 3155 /* 3156 * Try to restore the old affinity mask with __sched_setaffinity(). 3157 * Cpuset masking will be done there too. 3158 */ 3159 ret = __sched_setaffinity(p, &ac); 3160 WARN_ON_ONCE(ret); 3161 } 3162 3163 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3164 { 3165 #ifdef CONFIG_SCHED_DEBUG 3166 unsigned int state = READ_ONCE(p->__state); 3167 3168 /* 3169 * We should never call set_task_cpu() on a blocked task, 3170 * ttwu() will sort out the placement. 3171 */ 3172 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3173 3174 /* 3175 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3176 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3177 * time relying on p->on_rq. 3178 */ 3179 WARN_ON_ONCE(state == TASK_RUNNING && 3180 p->sched_class == &fair_sched_class && 3181 (p->on_rq && !task_on_rq_migrating(p))); 3182 3183 #ifdef CONFIG_LOCKDEP 3184 /* 3185 * The caller should hold either p->pi_lock or rq->lock, when changing 3186 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3187 * 3188 * sched_move_task() holds both and thus holding either pins the cgroup, 3189 * see task_group(). 3190 * 3191 * Furthermore, all task_rq users should acquire both locks, see 3192 * task_rq_lock(). 3193 */ 3194 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3195 lockdep_is_held(__rq_lockp(task_rq(p))))); 3196 #endif 3197 /* 3198 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3199 */ 3200 WARN_ON_ONCE(!cpu_online(new_cpu)); 3201 3202 WARN_ON_ONCE(is_migration_disabled(p)); 3203 #endif 3204 3205 trace_sched_migrate_task(p, new_cpu); 3206 3207 if (task_cpu(p) != new_cpu) { 3208 if (p->sched_class->migrate_task_rq) 3209 p->sched_class->migrate_task_rq(p, new_cpu); 3210 p->se.nr_migrations++; 3211 rseq_migrate(p); 3212 sched_mm_cid_migrate_from(p); 3213 perf_event_task_migrate(p); 3214 } 3215 3216 __set_task_cpu(p, new_cpu); 3217 } 3218 3219 #ifdef CONFIG_NUMA_BALANCING 3220 static void __migrate_swap_task(struct task_struct *p, int cpu) 3221 { 3222 if (task_on_rq_queued(p)) { 3223 struct rq *src_rq, *dst_rq; 3224 struct rq_flags srf, drf; 3225 3226 src_rq = task_rq(p); 3227 dst_rq = cpu_rq(cpu); 3228 3229 rq_pin_lock(src_rq, &srf); 3230 rq_pin_lock(dst_rq, &drf); 3231 3232 deactivate_task(src_rq, p, 0); 3233 set_task_cpu(p, cpu); 3234 activate_task(dst_rq, p, 0); 3235 wakeup_preempt(dst_rq, p, 0); 3236 3237 rq_unpin_lock(dst_rq, &drf); 3238 rq_unpin_lock(src_rq, &srf); 3239 3240 } else { 3241 /* 3242 * Task isn't running anymore; make it appear like we migrated 3243 * it before it went to sleep. This means on wakeup we make the 3244 * previous CPU our target instead of where it really is. 3245 */ 3246 p->wake_cpu = cpu; 3247 } 3248 } 3249 3250 struct migration_swap_arg { 3251 struct task_struct *src_task, *dst_task; 3252 int src_cpu, dst_cpu; 3253 }; 3254 3255 static int migrate_swap_stop(void *data) 3256 { 3257 struct migration_swap_arg *arg = data; 3258 struct rq *src_rq, *dst_rq; 3259 3260 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3261 return -EAGAIN; 3262 3263 src_rq = cpu_rq(arg->src_cpu); 3264 dst_rq = cpu_rq(arg->dst_cpu); 3265 3266 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3267 guard(double_rq_lock)(src_rq, dst_rq); 3268 3269 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3270 return -EAGAIN; 3271 3272 if (task_cpu(arg->src_task) != arg->src_cpu) 3273 return -EAGAIN; 3274 3275 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3276 return -EAGAIN; 3277 3278 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3279 return -EAGAIN; 3280 3281 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3282 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3283 3284 return 0; 3285 } 3286 3287 /* 3288 * Cross migrate two tasks 3289 */ 3290 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3291 int target_cpu, int curr_cpu) 3292 { 3293 struct migration_swap_arg arg; 3294 int ret = -EINVAL; 3295 3296 arg = (struct migration_swap_arg){ 3297 .src_task = cur, 3298 .src_cpu = curr_cpu, 3299 .dst_task = p, 3300 .dst_cpu = target_cpu, 3301 }; 3302 3303 if (arg.src_cpu == arg.dst_cpu) 3304 goto out; 3305 3306 /* 3307 * These three tests are all lockless; this is OK since all of them 3308 * will be re-checked with proper locks held further down the line. 3309 */ 3310 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3311 goto out; 3312 3313 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3314 goto out; 3315 3316 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3317 goto out; 3318 3319 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3320 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3321 3322 out: 3323 return ret; 3324 } 3325 #endif /* CONFIG_NUMA_BALANCING */ 3326 3327 /*** 3328 * kick_process - kick a running thread to enter/exit the kernel 3329 * @p: the to-be-kicked thread 3330 * 3331 * Cause a process which is running on another CPU to enter 3332 * kernel-mode, without any delay. (to get signals handled.) 3333 * 3334 * NOTE: this function doesn't have to take the runqueue lock, 3335 * because all it wants to ensure is that the remote task enters 3336 * the kernel. If the IPI races and the task has been migrated 3337 * to another CPU then no harm is done and the purpose has been 3338 * achieved as well. 3339 */ 3340 void kick_process(struct task_struct *p) 3341 { 3342 guard(preempt)(); 3343 int cpu = task_cpu(p); 3344 3345 if ((cpu != smp_processor_id()) && task_curr(p)) 3346 smp_send_reschedule(cpu); 3347 } 3348 EXPORT_SYMBOL_GPL(kick_process); 3349 3350 /* 3351 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3352 * 3353 * A few notes on cpu_active vs cpu_online: 3354 * 3355 * - cpu_active must be a subset of cpu_online 3356 * 3357 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3358 * see __set_cpus_allowed_ptr(). At this point the newly online 3359 * CPU isn't yet part of the sched domains, and balancing will not 3360 * see it. 3361 * 3362 * - on CPU-down we clear cpu_active() to mask the sched domains and 3363 * avoid the load balancer to place new tasks on the to be removed 3364 * CPU. Existing tasks will remain running there and will be taken 3365 * off. 3366 * 3367 * This means that fallback selection must not select !active CPUs. 3368 * And can assume that any active CPU must be online. Conversely 3369 * select_task_rq() below may allow selection of !active CPUs in order 3370 * to satisfy the above rules. 3371 */ 3372 static int select_fallback_rq(int cpu, struct task_struct *p) 3373 { 3374 int nid = cpu_to_node(cpu); 3375 const struct cpumask *nodemask = NULL; 3376 enum { cpuset, possible, fail } state = cpuset; 3377 int dest_cpu; 3378 3379 /* 3380 * If the node that the CPU is on has been offlined, cpu_to_node() 3381 * will return -1. There is no CPU on the node, and we should 3382 * select the CPU on the other node. 3383 */ 3384 if (nid != -1) { 3385 nodemask = cpumask_of_node(nid); 3386 3387 /* Look for allowed, online CPU in same node. */ 3388 for_each_cpu(dest_cpu, nodemask) { 3389 if (is_cpu_allowed(p, dest_cpu)) 3390 return dest_cpu; 3391 } 3392 } 3393 3394 for (;;) { 3395 /* Any allowed, online CPU? */ 3396 for_each_cpu(dest_cpu, p->cpus_ptr) { 3397 if (!is_cpu_allowed(p, dest_cpu)) 3398 continue; 3399 3400 goto out; 3401 } 3402 3403 /* No more Mr. Nice Guy. */ 3404 switch (state) { 3405 case cpuset: 3406 if (cpuset_cpus_allowed_fallback(p)) { 3407 state = possible; 3408 break; 3409 } 3410 fallthrough; 3411 case possible: 3412 /* 3413 * XXX When called from select_task_rq() we only 3414 * hold p->pi_lock and again violate locking order. 3415 * 3416 * More yuck to audit. 3417 */ 3418 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3419 state = fail; 3420 break; 3421 case fail: 3422 BUG(); 3423 break; 3424 } 3425 } 3426 3427 out: 3428 if (state != cpuset) { 3429 /* 3430 * Don't tell them about moving exiting tasks or 3431 * kernel threads (both mm NULL), since they never 3432 * leave kernel. 3433 */ 3434 if (p->mm && printk_ratelimit()) { 3435 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3436 task_pid_nr(p), p->comm, cpu); 3437 } 3438 } 3439 3440 return dest_cpu; 3441 } 3442 3443 /* 3444 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3445 */ 3446 static inline 3447 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3448 { 3449 lockdep_assert_held(&p->pi_lock); 3450 3451 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3452 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3453 else 3454 cpu = cpumask_any(p->cpus_ptr); 3455 3456 /* 3457 * In order not to call set_task_cpu() on a blocking task we need 3458 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3459 * CPU. 3460 * 3461 * Since this is common to all placement strategies, this lives here. 3462 * 3463 * [ this allows ->select_task() to simply return task_cpu(p) and 3464 * not worry about this generic constraint ] 3465 */ 3466 if (unlikely(!is_cpu_allowed(p, cpu))) 3467 cpu = select_fallback_rq(task_cpu(p), p); 3468 3469 return cpu; 3470 } 3471 3472 void sched_set_stop_task(int cpu, struct task_struct *stop) 3473 { 3474 static struct lock_class_key stop_pi_lock; 3475 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3476 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3477 3478 if (stop) { 3479 /* 3480 * Make it appear like a SCHED_FIFO task, its something 3481 * userspace knows about and won't get confused about. 3482 * 3483 * Also, it will make PI more or less work without too 3484 * much confusion -- but then, stop work should not 3485 * rely on PI working anyway. 3486 */ 3487 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3488 3489 stop->sched_class = &stop_sched_class; 3490 3491 /* 3492 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3493 * adjust the effective priority of a task. As a result, 3494 * rt_mutex_setprio() can trigger (RT) balancing operations, 3495 * which can then trigger wakeups of the stop thread to push 3496 * around the current task. 3497 * 3498 * The stop task itself will never be part of the PI-chain, it 3499 * never blocks, therefore that ->pi_lock recursion is safe. 3500 * Tell lockdep about this by placing the stop->pi_lock in its 3501 * own class. 3502 */ 3503 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3504 } 3505 3506 cpu_rq(cpu)->stop = stop; 3507 3508 if (old_stop) { 3509 /* 3510 * Reset it back to a normal scheduling class so that 3511 * it can die in pieces. 3512 */ 3513 old_stop->sched_class = &rt_sched_class; 3514 } 3515 } 3516 3517 #else /* CONFIG_SMP */ 3518 3519 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3520 3521 static inline bool rq_has_pinned_tasks(struct rq *rq) 3522 { 3523 return false; 3524 } 3525 3526 #endif /* !CONFIG_SMP */ 3527 3528 static void 3529 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3530 { 3531 struct rq *rq; 3532 3533 if (!schedstat_enabled()) 3534 return; 3535 3536 rq = this_rq(); 3537 3538 #ifdef CONFIG_SMP 3539 if (cpu == rq->cpu) { 3540 __schedstat_inc(rq->ttwu_local); 3541 __schedstat_inc(p->stats.nr_wakeups_local); 3542 } else { 3543 struct sched_domain *sd; 3544 3545 __schedstat_inc(p->stats.nr_wakeups_remote); 3546 3547 guard(rcu)(); 3548 for_each_domain(rq->cpu, sd) { 3549 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3550 __schedstat_inc(sd->ttwu_wake_remote); 3551 break; 3552 } 3553 } 3554 } 3555 3556 if (wake_flags & WF_MIGRATED) 3557 __schedstat_inc(p->stats.nr_wakeups_migrate); 3558 #endif /* CONFIG_SMP */ 3559 3560 __schedstat_inc(rq->ttwu_count); 3561 __schedstat_inc(p->stats.nr_wakeups); 3562 3563 if (wake_flags & WF_SYNC) 3564 __schedstat_inc(p->stats.nr_wakeups_sync); 3565 } 3566 3567 /* 3568 * Mark the task runnable. 3569 */ 3570 static inline void ttwu_do_wakeup(struct task_struct *p) 3571 { 3572 WRITE_ONCE(p->__state, TASK_RUNNING); 3573 trace_sched_wakeup(p); 3574 } 3575 3576 static void 3577 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3578 struct rq_flags *rf) 3579 { 3580 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3581 3582 lockdep_assert_rq_held(rq); 3583 3584 if (p->sched_contributes_to_load) 3585 rq->nr_uninterruptible--; 3586 3587 #ifdef CONFIG_SMP 3588 if (wake_flags & WF_MIGRATED) 3589 en_flags |= ENQUEUE_MIGRATED; 3590 else 3591 #endif 3592 if (p->in_iowait) { 3593 delayacct_blkio_end(p); 3594 atomic_dec(&task_rq(p)->nr_iowait); 3595 } 3596 3597 activate_task(rq, p, en_flags); 3598 wakeup_preempt(rq, p, wake_flags); 3599 3600 ttwu_do_wakeup(p); 3601 3602 #ifdef CONFIG_SMP 3603 if (p->sched_class->task_woken) { 3604 /* 3605 * Our task @p is fully woken up and running; so it's safe to 3606 * drop the rq->lock, hereafter rq is only used for statistics. 3607 */ 3608 rq_unpin_lock(rq, rf); 3609 p->sched_class->task_woken(rq, p); 3610 rq_repin_lock(rq, rf); 3611 } 3612 3613 if (rq->idle_stamp) { 3614 u64 delta = rq_clock(rq) - rq->idle_stamp; 3615 u64 max = 2*rq->max_idle_balance_cost; 3616 3617 update_avg(&rq->avg_idle, delta); 3618 3619 if (rq->avg_idle > max) 3620 rq->avg_idle = max; 3621 3622 rq->idle_stamp = 0; 3623 } 3624 #endif 3625 3626 p->dl_server = NULL; 3627 } 3628 3629 /* 3630 * Consider @p being inside a wait loop: 3631 * 3632 * for (;;) { 3633 * set_current_state(TASK_UNINTERRUPTIBLE); 3634 * 3635 * if (CONDITION) 3636 * break; 3637 * 3638 * schedule(); 3639 * } 3640 * __set_current_state(TASK_RUNNING); 3641 * 3642 * between set_current_state() and schedule(). In this case @p is still 3643 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3644 * an atomic manner. 3645 * 3646 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3647 * then schedule() must still happen and p->state can be changed to 3648 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3649 * need to do a full wakeup with enqueue. 3650 * 3651 * Returns: %true when the wakeup is done, 3652 * %false otherwise. 3653 */ 3654 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3655 { 3656 struct rq_flags rf; 3657 struct rq *rq; 3658 int ret = 0; 3659 3660 rq = __task_rq_lock(p, &rf); 3661 if (task_on_rq_queued(p)) { 3662 if (!task_on_cpu(rq, p)) { 3663 /* 3664 * When on_rq && !on_cpu the task is preempted, see if 3665 * it should preempt the task that is current now. 3666 */ 3667 update_rq_clock(rq); 3668 wakeup_preempt(rq, p, wake_flags); 3669 } 3670 ttwu_do_wakeup(p); 3671 ret = 1; 3672 } 3673 __task_rq_unlock(rq, &rf); 3674 3675 return ret; 3676 } 3677 3678 #ifdef CONFIG_SMP 3679 void sched_ttwu_pending(void *arg) 3680 { 3681 struct llist_node *llist = arg; 3682 struct rq *rq = this_rq(); 3683 struct task_struct *p, *t; 3684 struct rq_flags rf; 3685 3686 if (!llist) 3687 return; 3688 3689 rq_lock_irqsave(rq, &rf); 3690 update_rq_clock(rq); 3691 3692 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3693 if (WARN_ON_ONCE(p->on_cpu)) 3694 smp_cond_load_acquire(&p->on_cpu, !VAL); 3695 3696 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3697 set_task_cpu(p, cpu_of(rq)); 3698 3699 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3700 } 3701 3702 /* 3703 * Must be after enqueueing at least once task such that 3704 * idle_cpu() does not observe a false-negative -- if it does, 3705 * it is possible for select_idle_siblings() to stack a number 3706 * of tasks on this CPU during that window. 3707 * 3708 * It is OK to clear ttwu_pending when another task pending. 3709 * We will receive IPI after local IRQ enabled and then enqueue it. 3710 * Since now nr_running > 0, idle_cpu() will always get correct result. 3711 */ 3712 WRITE_ONCE(rq->ttwu_pending, 0); 3713 rq_unlock_irqrestore(rq, &rf); 3714 } 3715 3716 /* 3717 * Prepare the scene for sending an IPI for a remote smp_call 3718 * 3719 * Returns true if the caller can proceed with sending the IPI. 3720 * Returns false otherwise. 3721 */ 3722 bool call_function_single_prep_ipi(int cpu) 3723 { 3724 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3725 trace_sched_wake_idle_without_ipi(cpu); 3726 return false; 3727 } 3728 3729 return true; 3730 } 3731 3732 /* 3733 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3734 * necessary. The wakee CPU on receipt of the IPI will queue the task 3735 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3736 * of the wakeup instead of the waker. 3737 */ 3738 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3739 { 3740 struct rq *rq = cpu_rq(cpu); 3741 3742 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3743 3744 WRITE_ONCE(rq->ttwu_pending, 1); 3745 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3746 } 3747 3748 void wake_up_if_idle(int cpu) 3749 { 3750 struct rq *rq = cpu_rq(cpu); 3751 3752 guard(rcu)(); 3753 if (is_idle_task(rcu_dereference(rq->curr))) { 3754 guard(rq_lock_irqsave)(rq); 3755 if (is_idle_task(rq->curr)) 3756 resched_curr(rq); 3757 } 3758 } 3759 3760 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3761 { 3762 if (!sched_asym_cpucap_active()) 3763 return true; 3764 3765 if (this_cpu == that_cpu) 3766 return true; 3767 3768 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3769 } 3770 3771 bool cpus_share_cache(int this_cpu, int that_cpu) 3772 { 3773 if (this_cpu == that_cpu) 3774 return true; 3775 3776 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3777 } 3778 3779 /* 3780 * Whether CPUs are share cache resources, which means LLC on non-cluster 3781 * machines and LLC tag or L2 on machines with clusters. 3782 */ 3783 bool cpus_share_resources(int this_cpu, int that_cpu) 3784 { 3785 if (this_cpu == that_cpu) 3786 return true; 3787 3788 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3789 } 3790 3791 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3792 { 3793 /* 3794 * The BPF scheduler may depend on select_task_rq() being invoked during 3795 * wakeups. In addition, @p may end up executing on a different CPU 3796 * regardless of what happens in the wakeup path making the ttwu_queue 3797 * optimization less meaningful. Skip if on SCX. 3798 */ 3799 if (task_on_scx(p)) 3800 return false; 3801 3802 /* 3803 * Do not complicate things with the async wake_list while the CPU is 3804 * in hotplug state. 3805 */ 3806 if (!cpu_active(cpu)) 3807 return false; 3808 3809 /* Ensure the task will still be allowed to run on the CPU. */ 3810 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3811 return false; 3812 3813 /* 3814 * If the CPU does not share cache, then queue the task on the 3815 * remote rqs wakelist to avoid accessing remote data. 3816 */ 3817 if (!cpus_share_cache(smp_processor_id(), cpu)) 3818 return true; 3819 3820 if (cpu == smp_processor_id()) 3821 return false; 3822 3823 /* 3824 * If the wakee cpu is idle, or the task is descheduling and the 3825 * only running task on the CPU, then use the wakelist to offload 3826 * the task activation to the idle (or soon-to-be-idle) CPU as 3827 * the current CPU is likely busy. nr_running is checked to 3828 * avoid unnecessary task stacking. 3829 * 3830 * Note that we can only get here with (wakee) p->on_rq=0, 3831 * p->on_cpu can be whatever, we've done the dequeue, so 3832 * the wakee has been accounted out of ->nr_running. 3833 */ 3834 if (!cpu_rq(cpu)->nr_running) 3835 return true; 3836 3837 return false; 3838 } 3839 3840 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3841 { 3842 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3843 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3844 __ttwu_queue_wakelist(p, cpu, wake_flags); 3845 return true; 3846 } 3847 3848 return false; 3849 } 3850 3851 #else /* !CONFIG_SMP */ 3852 3853 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3854 { 3855 return false; 3856 } 3857 3858 #endif /* CONFIG_SMP */ 3859 3860 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3861 { 3862 struct rq *rq = cpu_rq(cpu); 3863 struct rq_flags rf; 3864 3865 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3866 return; 3867 3868 rq_lock(rq, &rf); 3869 update_rq_clock(rq); 3870 ttwu_do_activate(rq, p, wake_flags, &rf); 3871 rq_unlock(rq, &rf); 3872 } 3873 3874 /* 3875 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3876 * 3877 * The caller holds p::pi_lock if p != current or has preemption 3878 * disabled when p == current. 3879 * 3880 * The rules of saved_state: 3881 * 3882 * The related locking code always holds p::pi_lock when updating 3883 * p::saved_state, which means the code is fully serialized in both cases. 3884 * 3885 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 3886 * No other bits set. This allows to distinguish all wakeup scenarios. 3887 * 3888 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 3889 * allows us to prevent early wakeup of tasks before they can be run on 3890 * asymmetric ISA architectures (eg ARMv9). 3891 */ 3892 static __always_inline 3893 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3894 { 3895 int match; 3896 3897 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3898 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3899 state != TASK_RTLOCK_WAIT); 3900 } 3901 3902 *success = !!(match = __task_state_match(p, state)); 3903 3904 /* 3905 * Saved state preserves the task state across blocking on 3906 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 3907 * set p::saved_state to TASK_RUNNING, but do not wake the task 3908 * because it waits for a lock wakeup or __thaw_task(). Also 3909 * indicate success because from the regular waker's point of 3910 * view this has succeeded. 3911 * 3912 * After acquiring the lock the task will restore p::__state 3913 * from p::saved_state which ensures that the regular 3914 * wakeup is not lost. The restore will also set 3915 * p::saved_state to TASK_RUNNING so any further tests will 3916 * not result in false positives vs. @success 3917 */ 3918 if (match < 0) 3919 p->saved_state = TASK_RUNNING; 3920 3921 return match > 0; 3922 } 3923 3924 /* 3925 * Notes on Program-Order guarantees on SMP systems. 3926 * 3927 * MIGRATION 3928 * 3929 * The basic program-order guarantee on SMP systems is that when a task [t] 3930 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3931 * execution on its new CPU [c1]. 3932 * 3933 * For migration (of runnable tasks) this is provided by the following means: 3934 * 3935 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3936 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3937 * rq(c1)->lock (if not at the same time, then in that order). 3938 * C) LOCK of the rq(c1)->lock scheduling in task 3939 * 3940 * Release/acquire chaining guarantees that B happens after A and C after B. 3941 * Note: the CPU doing B need not be c0 or c1 3942 * 3943 * Example: 3944 * 3945 * CPU0 CPU1 CPU2 3946 * 3947 * LOCK rq(0)->lock 3948 * sched-out X 3949 * sched-in Y 3950 * UNLOCK rq(0)->lock 3951 * 3952 * LOCK rq(0)->lock // orders against CPU0 3953 * dequeue X 3954 * UNLOCK rq(0)->lock 3955 * 3956 * LOCK rq(1)->lock 3957 * enqueue X 3958 * UNLOCK rq(1)->lock 3959 * 3960 * LOCK rq(1)->lock // orders against CPU2 3961 * sched-out Z 3962 * sched-in X 3963 * UNLOCK rq(1)->lock 3964 * 3965 * 3966 * BLOCKING -- aka. SLEEP + WAKEUP 3967 * 3968 * For blocking we (obviously) need to provide the same guarantee as for 3969 * migration. However the means are completely different as there is no lock 3970 * chain to provide order. Instead we do: 3971 * 3972 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3973 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3974 * 3975 * Example: 3976 * 3977 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3978 * 3979 * LOCK rq(0)->lock LOCK X->pi_lock 3980 * dequeue X 3981 * sched-out X 3982 * smp_store_release(X->on_cpu, 0); 3983 * 3984 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3985 * X->state = WAKING 3986 * set_task_cpu(X,2) 3987 * 3988 * LOCK rq(2)->lock 3989 * enqueue X 3990 * X->state = RUNNING 3991 * UNLOCK rq(2)->lock 3992 * 3993 * LOCK rq(2)->lock // orders against CPU1 3994 * sched-out Z 3995 * sched-in X 3996 * UNLOCK rq(2)->lock 3997 * 3998 * UNLOCK X->pi_lock 3999 * UNLOCK rq(0)->lock 4000 * 4001 * 4002 * However, for wakeups there is a second guarantee we must provide, namely we 4003 * must ensure that CONDITION=1 done by the caller can not be reordered with 4004 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4005 */ 4006 4007 /** 4008 * try_to_wake_up - wake up a thread 4009 * @p: the thread to be awakened 4010 * @state: the mask of task states that can be woken 4011 * @wake_flags: wake modifier flags (WF_*) 4012 * 4013 * Conceptually does: 4014 * 4015 * If (@state & @p->state) @p->state = TASK_RUNNING. 4016 * 4017 * If the task was not queued/runnable, also place it back on a runqueue. 4018 * 4019 * This function is atomic against schedule() which would dequeue the task. 4020 * 4021 * It issues a full memory barrier before accessing @p->state, see the comment 4022 * with set_current_state(). 4023 * 4024 * Uses p->pi_lock to serialize against concurrent wake-ups. 4025 * 4026 * Relies on p->pi_lock stabilizing: 4027 * - p->sched_class 4028 * - p->cpus_ptr 4029 * - p->sched_task_group 4030 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4031 * 4032 * Tries really hard to only take one task_rq(p)->lock for performance. 4033 * Takes rq->lock in: 4034 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4035 * - ttwu_queue() -- new rq, for enqueue of the task; 4036 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4037 * 4038 * As a consequence we race really badly with just about everything. See the 4039 * many memory barriers and their comments for details. 4040 * 4041 * Return: %true if @p->state changes (an actual wakeup was done), 4042 * %false otherwise. 4043 */ 4044 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4045 { 4046 guard(preempt)(); 4047 int cpu, success = 0; 4048 4049 if (p == current) { 4050 /* 4051 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4052 * == smp_processor_id()'. Together this means we can special 4053 * case the whole 'p->on_rq && ttwu_runnable()' case below 4054 * without taking any locks. 4055 * 4056 * In particular: 4057 * - we rely on Program-Order guarantees for all the ordering, 4058 * - we're serialized against set_special_state() by virtue of 4059 * it disabling IRQs (this allows not taking ->pi_lock). 4060 */ 4061 if (!ttwu_state_match(p, state, &success)) 4062 goto out; 4063 4064 trace_sched_waking(p); 4065 ttwu_do_wakeup(p); 4066 goto out; 4067 } 4068 4069 /* 4070 * If we are going to wake up a thread waiting for CONDITION we 4071 * need to ensure that CONDITION=1 done by the caller can not be 4072 * reordered with p->state check below. This pairs with smp_store_mb() 4073 * in set_current_state() that the waiting thread does. 4074 */ 4075 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4076 smp_mb__after_spinlock(); 4077 if (!ttwu_state_match(p, state, &success)) 4078 break; 4079 4080 trace_sched_waking(p); 4081 4082 /* 4083 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4084 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4085 * in smp_cond_load_acquire() below. 4086 * 4087 * sched_ttwu_pending() try_to_wake_up() 4088 * STORE p->on_rq = 1 LOAD p->state 4089 * UNLOCK rq->lock 4090 * 4091 * __schedule() (switch to task 'p') 4092 * LOCK rq->lock smp_rmb(); 4093 * smp_mb__after_spinlock(); 4094 * UNLOCK rq->lock 4095 * 4096 * [task p] 4097 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4098 * 4099 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4100 * __schedule(). See the comment for smp_mb__after_spinlock(). 4101 * 4102 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4103 */ 4104 smp_rmb(); 4105 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4106 break; 4107 4108 #ifdef CONFIG_SMP 4109 /* 4110 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4111 * possible to, falsely, observe p->on_cpu == 0. 4112 * 4113 * One must be running (->on_cpu == 1) in order to remove oneself 4114 * from the runqueue. 4115 * 4116 * __schedule() (switch to task 'p') try_to_wake_up() 4117 * STORE p->on_cpu = 1 LOAD p->on_rq 4118 * UNLOCK rq->lock 4119 * 4120 * __schedule() (put 'p' to sleep) 4121 * LOCK rq->lock smp_rmb(); 4122 * smp_mb__after_spinlock(); 4123 * STORE p->on_rq = 0 LOAD p->on_cpu 4124 * 4125 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4126 * __schedule(). See the comment for smp_mb__after_spinlock(). 4127 * 4128 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4129 * schedule()'s deactivate_task() has 'happened' and p will no longer 4130 * care about it's own p->state. See the comment in __schedule(). 4131 */ 4132 smp_acquire__after_ctrl_dep(); 4133 4134 /* 4135 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4136 * == 0), which means we need to do an enqueue, change p->state to 4137 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4138 * enqueue, such as ttwu_queue_wakelist(). 4139 */ 4140 WRITE_ONCE(p->__state, TASK_WAKING); 4141 4142 /* 4143 * If the owning (remote) CPU is still in the middle of schedule() with 4144 * this task as prev, considering queueing p on the remote CPUs wake_list 4145 * which potentially sends an IPI instead of spinning on p->on_cpu to 4146 * let the waker make forward progress. This is safe because IRQs are 4147 * disabled and the IPI will deliver after on_cpu is cleared. 4148 * 4149 * Ensure we load task_cpu(p) after p->on_cpu: 4150 * 4151 * set_task_cpu(p, cpu); 4152 * STORE p->cpu = @cpu 4153 * __schedule() (switch to task 'p') 4154 * LOCK rq->lock 4155 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4156 * STORE p->on_cpu = 1 LOAD p->cpu 4157 * 4158 * to ensure we observe the correct CPU on which the task is currently 4159 * scheduling. 4160 */ 4161 if (smp_load_acquire(&p->on_cpu) && 4162 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4163 break; 4164 4165 /* 4166 * If the owning (remote) CPU is still in the middle of schedule() with 4167 * this task as prev, wait until it's done referencing the task. 4168 * 4169 * Pairs with the smp_store_release() in finish_task(). 4170 * 4171 * This ensures that tasks getting woken will be fully ordered against 4172 * their previous state and preserve Program Order. 4173 */ 4174 smp_cond_load_acquire(&p->on_cpu, !VAL); 4175 4176 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4177 if (task_cpu(p) != cpu) { 4178 if (p->in_iowait) { 4179 delayacct_blkio_end(p); 4180 atomic_dec(&task_rq(p)->nr_iowait); 4181 } 4182 4183 wake_flags |= WF_MIGRATED; 4184 psi_ttwu_dequeue(p); 4185 set_task_cpu(p, cpu); 4186 } 4187 #else 4188 cpu = task_cpu(p); 4189 #endif /* CONFIG_SMP */ 4190 4191 ttwu_queue(p, cpu, wake_flags); 4192 } 4193 out: 4194 if (success) 4195 ttwu_stat(p, task_cpu(p), wake_flags); 4196 4197 return success; 4198 } 4199 4200 static bool __task_needs_rq_lock(struct task_struct *p) 4201 { 4202 unsigned int state = READ_ONCE(p->__state); 4203 4204 /* 4205 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4206 * the task is blocked. Make sure to check @state since ttwu() can drop 4207 * locks at the end, see ttwu_queue_wakelist(). 4208 */ 4209 if (state == TASK_RUNNING || state == TASK_WAKING) 4210 return true; 4211 4212 /* 4213 * Ensure we load p->on_rq after p->__state, otherwise it would be 4214 * possible to, falsely, observe p->on_rq == 0. 4215 * 4216 * See try_to_wake_up() for a longer comment. 4217 */ 4218 smp_rmb(); 4219 if (p->on_rq) 4220 return true; 4221 4222 #ifdef CONFIG_SMP 4223 /* 4224 * Ensure the task has finished __schedule() and will not be referenced 4225 * anymore. Again, see try_to_wake_up() for a longer comment. 4226 */ 4227 smp_rmb(); 4228 smp_cond_load_acquire(&p->on_cpu, !VAL); 4229 #endif 4230 4231 return false; 4232 } 4233 4234 /** 4235 * task_call_func - Invoke a function on task in fixed state 4236 * @p: Process for which the function is to be invoked, can be @current. 4237 * @func: Function to invoke. 4238 * @arg: Argument to function. 4239 * 4240 * Fix the task in it's current state by avoiding wakeups and or rq operations 4241 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4242 * to work out what the state is, if required. Given that @func can be invoked 4243 * with a runqueue lock held, it had better be quite lightweight. 4244 * 4245 * Returns: 4246 * Whatever @func returns 4247 */ 4248 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4249 { 4250 struct rq *rq = NULL; 4251 struct rq_flags rf; 4252 int ret; 4253 4254 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4255 4256 if (__task_needs_rq_lock(p)) 4257 rq = __task_rq_lock(p, &rf); 4258 4259 /* 4260 * At this point the task is pinned; either: 4261 * - blocked and we're holding off wakeups (pi->lock) 4262 * - woken, and we're holding off enqueue (rq->lock) 4263 * - queued, and we're holding off schedule (rq->lock) 4264 * - running, and we're holding off de-schedule (rq->lock) 4265 * 4266 * The called function (@func) can use: task_curr(), p->on_rq and 4267 * p->__state to differentiate between these states. 4268 */ 4269 ret = func(p, arg); 4270 4271 if (rq) 4272 rq_unlock(rq, &rf); 4273 4274 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4275 return ret; 4276 } 4277 4278 /** 4279 * cpu_curr_snapshot - Return a snapshot of the currently running task 4280 * @cpu: The CPU on which to snapshot the task. 4281 * 4282 * Returns the task_struct pointer of the task "currently" running on 4283 * the specified CPU. If the same task is running on that CPU throughout, 4284 * the return value will be a pointer to that task's task_struct structure. 4285 * If the CPU did any context switches even vaguely concurrently with the 4286 * execution of this function, the return value will be a pointer to the 4287 * task_struct structure of a randomly chosen task that was running on 4288 * that CPU somewhere around the time that this function was executing. 4289 * 4290 * If the specified CPU was offline, the return value is whatever it 4291 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4292 * task, but there is no guarantee. Callers wishing a useful return 4293 * value must take some action to ensure that the specified CPU remains 4294 * online throughout. 4295 * 4296 * This function executes full memory barriers before and after fetching 4297 * the pointer, which permits the caller to confine this function's fetch 4298 * with respect to the caller's accesses to other shared variables. 4299 */ 4300 struct task_struct *cpu_curr_snapshot(int cpu) 4301 { 4302 struct task_struct *t; 4303 4304 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4305 t = rcu_dereference(cpu_curr(cpu)); 4306 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4307 return t; 4308 } 4309 4310 /** 4311 * wake_up_process - Wake up a specific process 4312 * @p: The process to be woken up. 4313 * 4314 * Attempt to wake up the nominated process and move it to the set of runnable 4315 * processes. 4316 * 4317 * Return: 1 if the process was woken up, 0 if it was already running. 4318 * 4319 * This function executes a full memory barrier before accessing the task state. 4320 */ 4321 int wake_up_process(struct task_struct *p) 4322 { 4323 return try_to_wake_up(p, TASK_NORMAL, 0); 4324 } 4325 EXPORT_SYMBOL(wake_up_process); 4326 4327 int wake_up_state(struct task_struct *p, unsigned int state) 4328 { 4329 return try_to_wake_up(p, state, 0); 4330 } 4331 4332 /* 4333 * Perform scheduler related setup for a newly forked process p. 4334 * p is forked by current. 4335 * 4336 * __sched_fork() is basic setup used by init_idle() too: 4337 */ 4338 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4339 { 4340 p->on_rq = 0; 4341 4342 p->se.on_rq = 0; 4343 p->se.exec_start = 0; 4344 p->se.sum_exec_runtime = 0; 4345 p->se.prev_sum_exec_runtime = 0; 4346 p->se.nr_migrations = 0; 4347 p->se.vruntime = 0; 4348 p->se.vlag = 0; 4349 p->se.slice = sysctl_sched_base_slice; 4350 INIT_LIST_HEAD(&p->se.group_node); 4351 4352 #ifdef CONFIG_FAIR_GROUP_SCHED 4353 p->se.cfs_rq = NULL; 4354 #endif 4355 4356 #ifdef CONFIG_SCHEDSTATS 4357 /* Even if schedstat is disabled, there should not be garbage */ 4358 memset(&p->stats, 0, sizeof(p->stats)); 4359 #endif 4360 4361 init_dl_entity(&p->dl); 4362 4363 INIT_LIST_HEAD(&p->rt.run_list); 4364 p->rt.timeout = 0; 4365 p->rt.time_slice = sched_rr_timeslice; 4366 p->rt.on_rq = 0; 4367 p->rt.on_list = 0; 4368 4369 #ifdef CONFIG_SCHED_CLASS_EXT 4370 init_scx_entity(&p->scx); 4371 #endif 4372 4373 #ifdef CONFIG_PREEMPT_NOTIFIERS 4374 INIT_HLIST_HEAD(&p->preempt_notifiers); 4375 #endif 4376 4377 #ifdef CONFIG_COMPACTION 4378 p->capture_control = NULL; 4379 #endif 4380 init_numa_balancing(clone_flags, p); 4381 #ifdef CONFIG_SMP 4382 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4383 p->migration_pending = NULL; 4384 #endif 4385 init_sched_mm_cid(p); 4386 } 4387 4388 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4389 4390 #ifdef CONFIG_NUMA_BALANCING 4391 4392 int sysctl_numa_balancing_mode; 4393 4394 static void __set_numabalancing_state(bool enabled) 4395 { 4396 if (enabled) 4397 static_branch_enable(&sched_numa_balancing); 4398 else 4399 static_branch_disable(&sched_numa_balancing); 4400 } 4401 4402 void set_numabalancing_state(bool enabled) 4403 { 4404 if (enabled) 4405 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4406 else 4407 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4408 __set_numabalancing_state(enabled); 4409 } 4410 4411 #ifdef CONFIG_PROC_SYSCTL 4412 static void reset_memory_tiering(void) 4413 { 4414 struct pglist_data *pgdat; 4415 4416 for_each_online_pgdat(pgdat) { 4417 pgdat->nbp_threshold = 0; 4418 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4419 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4420 } 4421 } 4422 4423 static int sysctl_numa_balancing(struct ctl_table *table, int write, 4424 void *buffer, size_t *lenp, loff_t *ppos) 4425 { 4426 struct ctl_table t; 4427 int err; 4428 int state = sysctl_numa_balancing_mode; 4429 4430 if (write && !capable(CAP_SYS_ADMIN)) 4431 return -EPERM; 4432 4433 t = *table; 4434 t.data = &state; 4435 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4436 if (err < 0) 4437 return err; 4438 if (write) { 4439 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4440 (state & NUMA_BALANCING_MEMORY_TIERING)) 4441 reset_memory_tiering(); 4442 sysctl_numa_balancing_mode = state; 4443 __set_numabalancing_state(state); 4444 } 4445 return err; 4446 } 4447 #endif 4448 #endif 4449 4450 #ifdef CONFIG_SCHEDSTATS 4451 4452 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4453 4454 static void set_schedstats(bool enabled) 4455 { 4456 if (enabled) 4457 static_branch_enable(&sched_schedstats); 4458 else 4459 static_branch_disable(&sched_schedstats); 4460 } 4461 4462 void force_schedstat_enabled(void) 4463 { 4464 if (!schedstat_enabled()) { 4465 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4466 static_branch_enable(&sched_schedstats); 4467 } 4468 } 4469 4470 static int __init setup_schedstats(char *str) 4471 { 4472 int ret = 0; 4473 if (!str) 4474 goto out; 4475 4476 if (!strcmp(str, "enable")) { 4477 set_schedstats(true); 4478 ret = 1; 4479 } else if (!strcmp(str, "disable")) { 4480 set_schedstats(false); 4481 ret = 1; 4482 } 4483 out: 4484 if (!ret) 4485 pr_warn("Unable to parse schedstats=\n"); 4486 4487 return ret; 4488 } 4489 __setup("schedstats=", setup_schedstats); 4490 4491 #ifdef CONFIG_PROC_SYSCTL 4492 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4493 size_t *lenp, loff_t *ppos) 4494 { 4495 struct ctl_table t; 4496 int err; 4497 int state = static_branch_likely(&sched_schedstats); 4498 4499 if (write && !capable(CAP_SYS_ADMIN)) 4500 return -EPERM; 4501 4502 t = *table; 4503 t.data = &state; 4504 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4505 if (err < 0) 4506 return err; 4507 if (write) 4508 set_schedstats(state); 4509 return err; 4510 } 4511 #endif /* CONFIG_PROC_SYSCTL */ 4512 #endif /* CONFIG_SCHEDSTATS */ 4513 4514 #ifdef CONFIG_SYSCTL 4515 static struct ctl_table sched_core_sysctls[] = { 4516 #ifdef CONFIG_SCHEDSTATS 4517 { 4518 .procname = "sched_schedstats", 4519 .data = NULL, 4520 .maxlen = sizeof(unsigned int), 4521 .mode = 0644, 4522 .proc_handler = sysctl_schedstats, 4523 .extra1 = SYSCTL_ZERO, 4524 .extra2 = SYSCTL_ONE, 4525 }, 4526 #endif /* CONFIG_SCHEDSTATS */ 4527 #ifdef CONFIG_UCLAMP_TASK 4528 { 4529 .procname = "sched_util_clamp_min", 4530 .data = &sysctl_sched_uclamp_util_min, 4531 .maxlen = sizeof(unsigned int), 4532 .mode = 0644, 4533 .proc_handler = sysctl_sched_uclamp_handler, 4534 }, 4535 { 4536 .procname = "sched_util_clamp_max", 4537 .data = &sysctl_sched_uclamp_util_max, 4538 .maxlen = sizeof(unsigned int), 4539 .mode = 0644, 4540 .proc_handler = sysctl_sched_uclamp_handler, 4541 }, 4542 { 4543 .procname = "sched_util_clamp_min_rt_default", 4544 .data = &sysctl_sched_uclamp_util_min_rt_default, 4545 .maxlen = sizeof(unsigned int), 4546 .mode = 0644, 4547 .proc_handler = sysctl_sched_uclamp_handler, 4548 }, 4549 #endif /* CONFIG_UCLAMP_TASK */ 4550 #ifdef CONFIG_NUMA_BALANCING 4551 { 4552 .procname = "numa_balancing", 4553 .data = NULL, /* filled in by handler */ 4554 .maxlen = sizeof(unsigned int), 4555 .mode = 0644, 4556 .proc_handler = sysctl_numa_balancing, 4557 .extra1 = SYSCTL_ZERO, 4558 .extra2 = SYSCTL_FOUR, 4559 }, 4560 #endif /* CONFIG_NUMA_BALANCING */ 4561 }; 4562 static int __init sched_core_sysctl_init(void) 4563 { 4564 register_sysctl_init("kernel", sched_core_sysctls); 4565 return 0; 4566 } 4567 late_initcall(sched_core_sysctl_init); 4568 #endif /* CONFIG_SYSCTL */ 4569 4570 /* 4571 * fork()/clone()-time setup: 4572 */ 4573 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4574 { 4575 int ret; 4576 4577 __sched_fork(clone_flags, p); 4578 /* 4579 * We mark the process as NEW here. This guarantees that 4580 * nobody will actually run it, and a signal or other external 4581 * event cannot wake it up and insert it on the runqueue either. 4582 */ 4583 p->__state = TASK_NEW; 4584 4585 /* 4586 * Make sure we do not leak PI boosting priority to the child. 4587 */ 4588 p->prio = current->normal_prio; 4589 4590 uclamp_fork(p); 4591 4592 /* 4593 * Revert to default priority/policy on fork if requested. 4594 */ 4595 if (unlikely(p->sched_reset_on_fork)) { 4596 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4597 p->policy = SCHED_NORMAL; 4598 p->static_prio = NICE_TO_PRIO(0); 4599 p->rt_priority = 0; 4600 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4601 p->static_prio = NICE_TO_PRIO(0); 4602 4603 p->prio = p->normal_prio = p->static_prio; 4604 set_load_weight(p, false); 4605 4606 /* 4607 * We don't need the reset flag anymore after the fork. It has 4608 * fulfilled its duty: 4609 */ 4610 p->sched_reset_on_fork = 0; 4611 } 4612 4613 scx_pre_fork(p); 4614 4615 if (dl_prio(p->prio)) { 4616 ret = -EAGAIN; 4617 goto out_cancel; 4618 } else if (rt_prio(p->prio)) { 4619 p->sched_class = &rt_sched_class; 4620 #ifdef CONFIG_SCHED_CLASS_EXT 4621 } else if (task_should_scx(p)) { 4622 p->sched_class = &ext_sched_class; 4623 #endif 4624 } else { 4625 p->sched_class = &fair_sched_class; 4626 } 4627 4628 init_entity_runnable_average(&p->se); 4629 4630 4631 #ifdef CONFIG_SCHED_INFO 4632 if (likely(sched_info_on())) 4633 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4634 #endif 4635 #if defined(CONFIG_SMP) 4636 p->on_cpu = 0; 4637 #endif 4638 init_task_preempt_count(p); 4639 #ifdef CONFIG_SMP 4640 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4641 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4642 #endif 4643 return 0; 4644 4645 out_cancel: 4646 scx_cancel_fork(p); 4647 return ret; 4648 } 4649 4650 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4651 { 4652 unsigned long flags; 4653 4654 /* 4655 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4656 * required yet, but lockdep gets upset if rules are violated. 4657 */ 4658 raw_spin_lock_irqsave(&p->pi_lock, flags); 4659 #ifdef CONFIG_CGROUP_SCHED 4660 if (1) { 4661 struct task_group *tg; 4662 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4663 struct task_group, css); 4664 tg = autogroup_task_group(p, tg); 4665 p->sched_task_group = tg; 4666 } 4667 #endif 4668 rseq_migrate(p); 4669 /* 4670 * We're setting the CPU for the first time, we don't migrate, 4671 * so use __set_task_cpu(). 4672 */ 4673 __set_task_cpu(p, smp_processor_id()); 4674 if (p->sched_class->task_fork) 4675 p->sched_class->task_fork(p); 4676 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4677 4678 return scx_fork(p); 4679 } 4680 4681 void sched_cancel_fork(struct task_struct *p) 4682 { 4683 scx_cancel_fork(p); 4684 } 4685 4686 void sched_post_fork(struct task_struct *p) 4687 { 4688 uclamp_post_fork(p); 4689 scx_post_fork(p); 4690 } 4691 4692 unsigned long to_ratio(u64 period, u64 runtime) 4693 { 4694 if (runtime == RUNTIME_INF) 4695 return BW_UNIT; 4696 4697 /* 4698 * Doing this here saves a lot of checks in all 4699 * the calling paths, and returning zero seems 4700 * safe for them anyway. 4701 */ 4702 if (period == 0) 4703 return 0; 4704 4705 return div64_u64(runtime << BW_SHIFT, period); 4706 } 4707 4708 /* 4709 * wake_up_new_task - wake up a newly created task for the first time. 4710 * 4711 * This function will do some initial scheduler statistics housekeeping 4712 * that must be done for every newly created context, then puts the task 4713 * on the runqueue and wakes it. 4714 */ 4715 void wake_up_new_task(struct task_struct *p) 4716 { 4717 struct rq_flags rf; 4718 struct rq *rq; 4719 4720 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4721 WRITE_ONCE(p->__state, TASK_RUNNING); 4722 #ifdef CONFIG_SMP 4723 /* 4724 * Fork balancing, do it here and not earlier because: 4725 * - cpus_ptr can change in the fork path 4726 * - any previously selected CPU might disappear through hotplug 4727 * 4728 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4729 * as we're not fully set-up yet. 4730 */ 4731 p->recent_used_cpu = task_cpu(p); 4732 rseq_migrate(p); 4733 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4734 #endif 4735 rq = __task_rq_lock(p, &rf); 4736 update_rq_clock(rq); 4737 post_init_entity_util_avg(p); 4738 4739 activate_task(rq, p, ENQUEUE_NOCLOCK); 4740 trace_sched_wakeup_new(p); 4741 wakeup_preempt(rq, p, WF_FORK); 4742 #ifdef CONFIG_SMP 4743 if (p->sched_class->task_woken) { 4744 /* 4745 * Nothing relies on rq->lock after this, so it's fine to 4746 * drop it. 4747 */ 4748 rq_unpin_lock(rq, &rf); 4749 p->sched_class->task_woken(rq, p); 4750 rq_repin_lock(rq, &rf); 4751 } 4752 #endif 4753 task_rq_unlock(rq, p, &rf); 4754 } 4755 4756 #ifdef CONFIG_PREEMPT_NOTIFIERS 4757 4758 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4759 4760 void preempt_notifier_inc(void) 4761 { 4762 static_branch_inc(&preempt_notifier_key); 4763 } 4764 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4765 4766 void preempt_notifier_dec(void) 4767 { 4768 static_branch_dec(&preempt_notifier_key); 4769 } 4770 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4771 4772 /** 4773 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4774 * @notifier: notifier struct to register 4775 */ 4776 void preempt_notifier_register(struct preempt_notifier *notifier) 4777 { 4778 if (!static_branch_unlikely(&preempt_notifier_key)) 4779 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4780 4781 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4782 } 4783 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4784 4785 /** 4786 * preempt_notifier_unregister - no longer interested in preemption notifications 4787 * @notifier: notifier struct to unregister 4788 * 4789 * This is *not* safe to call from within a preemption notifier. 4790 */ 4791 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4792 { 4793 hlist_del(¬ifier->link); 4794 } 4795 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4796 4797 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4798 { 4799 struct preempt_notifier *notifier; 4800 4801 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4802 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4803 } 4804 4805 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4806 { 4807 if (static_branch_unlikely(&preempt_notifier_key)) 4808 __fire_sched_in_preempt_notifiers(curr); 4809 } 4810 4811 static void 4812 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4813 struct task_struct *next) 4814 { 4815 struct preempt_notifier *notifier; 4816 4817 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4818 notifier->ops->sched_out(notifier, next); 4819 } 4820 4821 static __always_inline void 4822 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4823 struct task_struct *next) 4824 { 4825 if (static_branch_unlikely(&preempt_notifier_key)) 4826 __fire_sched_out_preempt_notifiers(curr, next); 4827 } 4828 4829 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4830 4831 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4832 { 4833 } 4834 4835 static inline void 4836 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4837 struct task_struct *next) 4838 { 4839 } 4840 4841 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4842 4843 static inline void prepare_task(struct task_struct *next) 4844 { 4845 #ifdef CONFIG_SMP 4846 /* 4847 * Claim the task as running, we do this before switching to it 4848 * such that any running task will have this set. 4849 * 4850 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4851 * its ordering comment. 4852 */ 4853 WRITE_ONCE(next->on_cpu, 1); 4854 #endif 4855 } 4856 4857 static inline void finish_task(struct task_struct *prev) 4858 { 4859 #ifdef CONFIG_SMP 4860 /* 4861 * This must be the very last reference to @prev from this CPU. After 4862 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4863 * must ensure this doesn't happen until the switch is completely 4864 * finished. 4865 * 4866 * In particular, the load of prev->state in finish_task_switch() must 4867 * happen before this. 4868 * 4869 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4870 */ 4871 smp_store_release(&prev->on_cpu, 0); 4872 #endif 4873 } 4874 4875 #ifdef CONFIG_SMP 4876 4877 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4878 { 4879 void (*func)(struct rq *rq); 4880 struct balance_callback *next; 4881 4882 lockdep_assert_rq_held(rq); 4883 4884 while (head) { 4885 func = (void (*)(struct rq *))head->func; 4886 next = head->next; 4887 head->next = NULL; 4888 head = next; 4889 4890 func(rq); 4891 } 4892 } 4893 4894 static void balance_push(struct rq *rq); 4895 4896 /* 4897 * balance_push_callback is a right abuse of the callback interface and plays 4898 * by significantly different rules. 4899 * 4900 * Where the normal balance_callback's purpose is to be ran in the same context 4901 * that queued it (only later, when it's safe to drop rq->lock again), 4902 * balance_push_callback is specifically targeted at __schedule(). 4903 * 4904 * This abuse is tolerated because it places all the unlikely/odd cases behind 4905 * a single test, namely: rq->balance_callback == NULL. 4906 */ 4907 struct balance_callback balance_push_callback = { 4908 .next = NULL, 4909 .func = balance_push, 4910 }; 4911 4912 static inline struct balance_callback * 4913 __splice_balance_callbacks(struct rq *rq, bool split) 4914 { 4915 struct balance_callback *head = rq->balance_callback; 4916 4917 if (likely(!head)) 4918 return NULL; 4919 4920 lockdep_assert_rq_held(rq); 4921 /* 4922 * Must not take balance_push_callback off the list when 4923 * splice_balance_callbacks() and balance_callbacks() are not 4924 * in the same rq->lock section. 4925 * 4926 * In that case it would be possible for __schedule() to interleave 4927 * and observe the list empty. 4928 */ 4929 if (split && head == &balance_push_callback) 4930 head = NULL; 4931 else 4932 rq->balance_callback = NULL; 4933 4934 return head; 4935 } 4936 4937 struct balance_callback *splice_balance_callbacks(struct rq *rq) 4938 { 4939 return __splice_balance_callbacks(rq, true); 4940 } 4941 4942 static void __balance_callbacks(struct rq *rq) 4943 { 4944 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4945 } 4946 4947 void balance_callbacks(struct rq *rq, struct balance_callback *head) 4948 { 4949 unsigned long flags; 4950 4951 if (unlikely(head)) { 4952 raw_spin_rq_lock_irqsave(rq, flags); 4953 do_balance_callbacks(rq, head); 4954 raw_spin_rq_unlock_irqrestore(rq, flags); 4955 } 4956 } 4957 4958 #else 4959 4960 static inline void __balance_callbacks(struct rq *rq) 4961 { 4962 } 4963 4964 #endif 4965 4966 static inline void 4967 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4968 { 4969 /* 4970 * Since the runqueue lock will be released by the next 4971 * task (which is an invalid locking op but in the case 4972 * of the scheduler it's an obvious special-case), so we 4973 * do an early lockdep release here: 4974 */ 4975 rq_unpin_lock(rq, rf); 4976 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4977 #ifdef CONFIG_DEBUG_SPINLOCK 4978 /* this is a valid case when another task releases the spinlock */ 4979 rq_lockp(rq)->owner = next; 4980 #endif 4981 } 4982 4983 static inline void finish_lock_switch(struct rq *rq) 4984 { 4985 /* 4986 * If we are tracking spinlock dependencies then we have to 4987 * fix up the runqueue lock - which gets 'carried over' from 4988 * prev into current: 4989 */ 4990 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4991 __balance_callbacks(rq); 4992 raw_spin_rq_unlock_irq(rq); 4993 } 4994 4995 /* 4996 * NOP if the arch has not defined these: 4997 */ 4998 4999 #ifndef prepare_arch_switch 5000 # define prepare_arch_switch(next) do { } while (0) 5001 #endif 5002 5003 #ifndef finish_arch_post_lock_switch 5004 # define finish_arch_post_lock_switch() do { } while (0) 5005 #endif 5006 5007 static inline void kmap_local_sched_out(void) 5008 { 5009 #ifdef CONFIG_KMAP_LOCAL 5010 if (unlikely(current->kmap_ctrl.idx)) 5011 __kmap_local_sched_out(); 5012 #endif 5013 } 5014 5015 static inline void kmap_local_sched_in(void) 5016 { 5017 #ifdef CONFIG_KMAP_LOCAL 5018 if (unlikely(current->kmap_ctrl.idx)) 5019 __kmap_local_sched_in(); 5020 #endif 5021 } 5022 5023 /** 5024 * prepare_task_switch - prepare to switch tasks 5025 * @rq: the runqueue preparing to switch 5026 * @prev: the current task that is being switched out 5027 * @next: the task we are going to switch to. 5028 * 5029 * This is called with the rq lock held and interrupts off. It must 5030 * be paired with a subsequent finish_task_switch after the context 5031 * switch. 5032 * 5033 * prepare_task_switch sets up locking and calls architecture specific 5034 * hooks. 5035 */ 5036 static inline void 5037 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5038 struct task_struct *next) 5039 { 5040 kcov_prepare_switch(prev); 5041 sched_info_switch(rq, prev, next); 5042 perf_event_task_sched_out(prev, next); 5043 rseq_preempt(prev); 5044 fire_sched_out_preempt_notifiers(prev, next); 5045 kmap_local_sched_out(); 5046 prepare_task(next); 5047 prepare_arch_switch(next); 5048 } 5049 5050 /** 5051 * finish_task_switch - clean up after a task-switch 5052 * @prev: the thread we just switched away from. 5053 * 5054 * finish_task_switch must be called after the context switch, paired 5055 * with a prepare_task_switch call before the context switch. 5056 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5057 * and do any other architecture-specific cleanup actions. 5058 * 5059 * Note that we may have delayed dropping an mm in context_switch(). If 5060 * so, we finish that here outside of the runqueue lock. (Doing it 5061 * with the lock held can cause deadlocks; see schedule() for 5062 * details.) 5063 * 5064 * The context switch have flipped the stack from under us and restored the 5065 * local variables which were saved when this task called schedule() in the 5066 * past. 'prev == current' is still correct but we need to recalculate this_rq 5067 * because prev may have moved to another CPU. 5068 */ 5069 static struct rq *finish_task_switch(struct task_struct *prev) 5070 __releases(rq->lock) 5071 { 5072 struct rq *rq = this_rq(); 5073 struct mm_struct *mm = rq->prev_mm; 5074 unsigned int prev_state; 5075 5076 /* 5077 * The previous task will have left us with a preempt_count of 2 5078 * because it left us after: 5079 * 5080 * schedule() 5081 * preempt_disable(); // 1 5082 * __schedule() 5083 * raw_spin_lock_irq(&rq->lock) // 2 5084 * 5085 * Also, see FORK_PREEMPT_COUNT. 5086 */ 5087 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5088 "corrupted preempt_count: %s/%d/0x%x\n", 5089 current->comm, current->pid, preempt_count())) 5090 preempt_count_set(FORK_PREEMPT_COUNT); 5091 5092 rq->prev_mm = NULL; 5093 5094 /* 5095 * A task struct has one reference for the use as "current". 5096 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5097 * schedule one last time. The schedule call will never return, and 5098 * the scheduled task must drop that reference. 5099 * 5100 * We must observe prev->state before clearing prev->on_cpu (in 5101 * finish_task), otherwise a concurrent wakeup can get prev 5102 * running on another CPU and we could rave with its RUNNING -> DEAD 5103 * transition, resulting in a double drop. 5104 */ 5105 prev_state = READ_ONCE(prev->__state); 5106 vtime_task_switch(prev); 5107 perf_event_task_sched_in(prev, current); 5108 finish_task(prev); 5109 tick_nohz_task_switch(); 5110 finish_lock_switch(rq); 5111 finish_arch_post_lock_switch(); 5112 kcov_finish_switch(current); 5113 /* 5114 * kmap_local_sched_out() is invoked with rq::lock held and 5115 * interrupts disabled. There is no requirement for that, but the 5116 * sched out code does not have an interrupt enabled section. 5117 * Restoring the maps on sched in does not require interrupts being 5118 * disabled either. 5119 */ 5120 kmap_local_sched_in(); 5121 5122 fire_sched_in_preempt_notifiers(current); 5123 /* 5124 * When switching through a kernel thread, the loop in 5125 * membarrier_{private,global}_expedited() may have observed that 5126 * kernel thread and not issued an IPI. It is therefore possible to 5127 * schedule between user->kernel->user threads without passing though 5128 * switch_mm(). Membarrier requires a barrier after storing to 5129 * rq->curr, before returning to userspace, so provide them here: 5130 * 5131 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5132 * provided by mmdrop_lazy_tlb(), 5133 * - a sync_core for SYNC_CORE. 5134 */ 5135 if (mm) { 5136 membarrier_mm_sync_core_before_usermode(mm); 5137 mmdrop_lazy_tlb_sched(mm); 5138 } 5139 5140 if (unlikely(prev_state == TASK_DEAD)) { 5141 if (prev->sched_class->task_dead) 5142 prev->sched_class->task_dead(prev); 5143 5144 /* Task is done with its stack. */ 5145 put_task_stack(prev); 5146 5147 put_task_struct_rcu_user(prev); 5148 } 5149 5150 return rq; 5151 } 5152 5153 /** 5154 * schedule_tail - first thing a freshly forked thread must call. 5155 * @prev: the thread we just switched away from. 5156 */ 5157 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5158 __releases(rq->lock) 5159 { 5160 /* 5161 * New tasks start with FORK_PREEMPT_COUNT, see there and 5162 * finish_task_switch() for details. 5163 * 5164 * finish_task_switch() will drop rq->lock() and lower preempt_count 5165 * and the preempt_enable() will end up enabling preemption (on 5166 * PREEMPT_COUNT kernels). 5167 */ 5168 5169 finish_task_switch(prev); 5170 preempt_enable(); 5171 5172 if (current->set_child_tid) 5173 put_user(task_pid_vnr(current), current->set_child_tid); 5174 5175 calculate_sigpending(); 5176 } 5177 5178 /* 5179 * context_switch - switch to the new MM and the new thread's register state. 5180 */ 5181 static __always_inline struct rq * 5182 context_switch(struct rq *rq, struct task_struct *prev, 5183 struct task_struct *next, struct rq_flags *rf) 5184 { 5185 prepare_task_switch(rq, prev, next); 5186 5187 /* 5188 * For paravirt, this is coupled with an exit in switch_to to 5189 * combine the page table reload and the switch backend into 5190 * one hypercall. 5191 */ 5192 arch_start_context_switch(prev); 5193 5194 /* 5195 * kernel -> kernel lazy + transfer active 5196 * user -> kernel lazy + mmgrab_lazy_tlb() active 5197 * 5198 * kernel -> user switch + mmdrop_lazy_tlb() active 5199 * user -> user switch 5200 * 5201 * switch_mm_cid() needs to be updated if the barriers provided 5202 * by context_switch() are modified. 5203 */ 5204 if (!next->mm) { // to kernel 5205 enter_lazy_tlb(prev->active_mm, next); 5206 5207 next->active_mm = prev->active_mm; 5208 if (prev->mm) // from user 5209 mmgrab_lazy_tlb(prev->active_mm); 5210 else 5211 prev->active_mm = NULL; 5212 } else { // to user 5213 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5214 /* 5215 * sys_membarrier() requires an smp_mb() between setting 5216 * rq->curr / membarrier_switch_mm() and returning to userspace. 5217 * 5218 * The below provides this either through switch_mm(), or in 5219 * case 'prev->active_mm == next->mm' through 5220 * finish_task_switch()'s mmdrop(). 5221 */ 5222 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5223 lru_gen_use_mm(next->mm); 5224 5225 if (!prev->mm) { // from kernel 5226 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5227 rq->prev_mm = prev->active_mm; 5228 prev->active_mm = NULL; 5229 } 5230 } 5231 5232 /* switch_mm_cid() requires the memory barriers above. */ 5233 switch_mm_cid(rq, prev, next); 5234 5235 prepare_lock_switch(rq, next, rf); 5236 5237 /* Here we just switch the register state and the stack. */ 5238 switch_to(prev, next, prev); 5239 barrier(); 5240 5241 return finish_task_switch(prev); 5242 } 5243 5244 /* 5245 * nr_running and nr_context_switches: 5246 * 5247 * externally visible scheduler statistics: current number of runnable 5248 * threads, total number of context switches performed since bootup. 5249 */ 5250 unsigned int nr_running(void) 5251 { 5252 unsigned int i, sum = 0; 5253 5254 for_each_online_cpu(i) 5255 sum += cpu_rq(i)->nr_running; 5256 5257 return sum; 5258 } 5259 5260 /* 5261 * Check if only the current task is running on the CPU. 5262 * 5263 * Caution: this function does not check that the caller has disabled 5264 * preemption, thus the result might have a time-of-check-to-time-of-use 5265 * race. The caller is responsible to use it correctly, for example: 5266 * 5267 * - from a non-preemptible section (of course) 5268 * 5269 * - from a thread that is bound to a single CPU 5270 * 5271 * - in a loop with very short iterations (e.g. a polling loop) 5272 */ 5273 bool single_task_running(void) 5274 { 5275 return raw_rq()->nr_running == 1; 5276 } 5277 EXPORT_SYMBOL(single_task_running); 5278 5279 unsigned long long nr_context_switches_cpu(int cpu) 5280 { 5281 return cpu_rq(cpu)->nr_switches; 5282 } 5283 5284 unsigned long long nr_context_switches(void) 5285 { 5286 int i; 5287 unsigned long long sum = 0; 5288 5289 for_each_possible_cpu(i) 5290 sum += cpu_rq(i)->nr_switches; 5291 5292 return sum; 5293 } 5294 5295 /* 5296 * Consumers of these two interfaces, like for example the cpuidle menu 5297 * governor, are using nonsensical data. Preferring shallow idle state selection 5298 * for a CPU that has IO-wait which might not even end up running the task when 5299 * it does become runnable. 5300 */ 5301 5302 unsigned int nr_iowait_cpu(int cpu) 5303 { 5304 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5305 } 5306 5307 /* 5308 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5309 * 5310 * The idea behind IO-wait account is to account the idle time that we could 5311 * have spend running if it were not for IO. That is, if we were to improve the 5312 * storage performance, we'd have a proportional reduction in IO-wait time. 5313 * 5314 * This all works nicely on UP, where, when a task blocks on IO, we account 5315 * idle time as IO-wait, because if the storage were faster, it could've been 5316 * running and we'd not be idle. 5317 * 5318 * This has been extended to SMP, by doing the same for each CPU. This however 5319 * is broken. 5320 * 5321 * Imagine for instance the case where two tasks block on one CPU, only the one 5322 * CPU will have IO-wait accounted, while the other has regular idle. Even 5323 * though, if the storage were faster, both could've ran at the same time, 5324 * utilising both CPUs. 5325 * 5326 * This means, that when looking globally, the current IO-wait accounting on 5327 * SMP is a lower bound, by reason of under accounting. 5328 * 5329 * Worse, since the numbers are provided per CPU, they are sometimes 5330 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5331 * associated with any one particular CPU, it can wake to another CPU than it 5332 * blocked on. This means the per CPU IO-wait number is meaningless. 5333 * 5334 * Task CPU affinities can make all that even more 'interesting'. 5335 */ 5336 5337 unsigned int nr_iowait(void) 5338 { 5339 unsigned int i, sum = 0; 5340 5341 for_each_possible_cpu(i) 5342 sum += nr_iowait_cpu(i); 5343 5344 return sum; 5345 } 5346 5347 #ifdef CONFIG_SMP 5348 5349 /* 5350 * sched_exec - execve() is a valuable balancing opportunity, because at 5351 * this point the task has the smallest effective memory and cache footprint. 5352 */ 5353 void sched_exec(void) 5354 { 5355 struct task_struct *p = current; 5356 struct migration_arg arg; 5357 int dest_cpu; 5358 5359 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5360 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5361 if (dest_cpu == smp_processor_id()) 5362 return; 5363 5364 if (unlikely(!cpu_active(dest_cpu))) 5365 return; 5366 5367 arg = (struct migration_arg){ p, dest_cpu }; 5368 } 5369 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5370 } 5371 5372 #endif 5373 5374 DEFINE_PER_CPU(struct kernel_stat, kstat); 5375 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5376 5377 EXPORT_PER_CPU_SYMBOL(kstat); 5378 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5379 5380 /* 5381 * The function fair_sched_class.update_curr accesses the struct curr 5382 * and its field curr->exec_start; when called from task_sched_runtime(), 5383 * we observe a high rate of cache misses in practice. 5384 * Prefetching this data results in improved performance. 5385 */ 5386 static inline void prefetch_curr_exec_start(struct task_struct *p) 5387 { 5388 #ifdef CONFIG_FAIR_GROUP_SCHED 5389 struct sched_entity *curr = p->se.cfs_rq->curr; 5390 #else 5391 struct sched_entity *curr = task_rq(p)->cfs.curr; 5392 #endif 5393 prefetch(curr); 5394 prefetch(&curr->exec_start); 5395 } 5396 5397 /* 5398 * Return accounted runtime for the task. 5399 * In case the task is currently running, return the runtime plus current's 5400 * pending runtime that have not been accounted yet. 5401 */ 5402 unsigned long long task_sched_runtime(struct task_struct *p) 5403 { 5404 struct rq_flags rf; 5405 struct rq *rq; 5406 u64 ns; 5407 5408 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5409 /* 5410 * 64-bit doesn't need locks to atomically read a 64-bit value. 5411 * So we have a optimization chance when the task's delta_exec is 0. 5412 * Reading ->on_cpu is racy, but this is OK. 5413 * 5414 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5415 * If we race with it entering CPU, unaccounted time is 0. This is 5416 * indistinguishable from the read occurring a few cycles earlier. 5417 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5418 * been accounted, so we're correct here as well. 5419 */ 5420 if (!p->on_cpu || !task_on_rq_queued(p)) 5421 return p->se.sum_exec_runtime; 5422 #endif 5423 5424 rq = task_rq_lock(p, &rf); 5425 /* 5426 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5427 * project cycles that may never be accounted to this 5428 * thread, breaking clock_gettime(). 5429 */ 5430 if (task_current(rq, p) && task_on_rq_queued(p)) { 5431 prefetch_curr_exec_start(p); 5432 update_rq_clock(rq); 5433 p->sched_class->update_curr(rq); 5434 } 5435 ns = p->se.sum_exec_runtime; 5436 task_rq_unlock(rq, p, &rf); 5437 5438 return ns; 5439 } 5440 5441 #ifdef CONFIG_SCHED_DEBUG 5442 static u64 cpu_resched_latency(struct rq *rq) 5443 { 5444 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5445 u64 resched_latency, now = rq_clock(rq); 5446 static bool warned_once; 5447 5448 if (sysctl_resched_latency_warn_once && warned_once) 5449 return 0; 5450 5451 if (!need_resched() || !latency_warn_ms) 5452 return 0; 5453 5454 if (system_state == SYSTEM_BOOTING) 5455 return 0; 5456 5457 if (!rq->last_seen_need_resched_ns) { 5458 rq->last_seen_need_resched_ns = now; 5459 rq->ticks_without_resched = 0; 5460 return 0; 5461 } 5462 5463 rq->ticks_without_resched++; 5464 resched_latency = now - rq->last_seen_need_resched_ns; 5465 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5466 return 0; 5467 5468 warned_once = true; 5469 5470 return resched_latency; 5471 } 5472 5473 static int __init setup_resched_latency_warn_ms(char *str) 5474 { 5475 long val; 5476 5477 if ((kstrtol(str, 0, &val))) { 5478 pr_warn("Unable to set resched_latency_warn_ms\n"); 5479 return 1; 5480 } 5481 5482 sysctl_resched_latency_warn_ms = val; 5483 return 1; 5484 } 5485 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5486 #else 5487 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5488 #endif /* CONFIG_SCHED_DEBUG */ 5489 5490 /* 5491 * This function gets called by the timer code, with HZ frequency. 5492 * We call it with interrupts disabled. 5493 */ 5494 void sched_tick(void) 5495 { 5496 int cpu = smp_processor_id(); 5497 struct rq *rq = cpu_rq(cpu); 5498 struct task_struct *curr = rq->curr; 5499 struct rq_flags rf; 5500 unsigned long hw_pressure; 5501 u64 resched_latency; 5502 5503 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5504 arch_scale_freq_tick(); 5505 5506 sched_clock_tick(); 5507 5508 rq_lock(rq, &rf); 5509 5510 update_rq_clock(rq); 5511 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5512 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5513 curr->sched_class->task_tick(rq, curr, 0); 5514 if (sched_feat(LATENCY_WARN)) 5515 resched_latency = cpu_resched_latency(rq); 5516 calc_global_load_tick(rq); 5517 sched_core_tick(rq); 5518 task_tick_mm_cid(rq, curr); 5519 scx_tick(rq); 5520 5521 rq_unlock(rq, &rf); 5522 5523 if (sched_feat(LATENCY_WARN) && resched_latency) 5524 resched_latency_warn(cpu, resched_latency); 5525 5526 perf_event_task_tick(); 5527 5528 if (curr->flags & PF_WQ_WORKER) 5529 wq_worker_tick(curr); 5530 5531 #ifdef CONFIG_SMP 5532 if (!scx_switched_all()) { 5533 rq->idle_balance = idle_cpu(cpu); 5534 sched_balance_trigger(rq); 5535 } 5536 #endif 5537 } 5538 5539 #ifdef CONFIG_NO_HZ_FULL 5540 5541 struct tick_work { 5542 int cpu; 5543 atomic_t state; 5544 struct delayed_work work; 5545 }; 5546 /* Values for ->state, see diagram below. */ 5547 #define TICK_SCHED_REMOTE_OFFLINE 0 5548 #define TICK_SCHED_REMOTE_OFFLINING 1 5549 #define TICK_SCHED_REMOTE_RUNNING 2 5550 5551 /* 5552 * State diagram for ->state: 5553 * 5554 * 5555 * TICK_SCHED_REMOTE_OFFLINE 5556 * | ^ 5557 * | | 5558 * | | sched_tick_remote() 5559 * | | 5560 * | | 5561 * +--TICK_SCHED_REMOTE_OFFLINING 5562 * | ^ 5563 * | | 5564 * sched_tick_start() | | sched_tick_stop() 5565 * | | 5566 * V | 5567 * TICK_SCHED_REMOTE_RUNNING 5568 * 5569 * 5570 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5571 * and sched_tick_start() are happy to leave the state in RUNNING. 5572 */ 5573 5574 static struct tick_work __percpu *tick_work_cpu; 5575 5576 static void sched_tick_remote(struct work_struct *work) 5577 { 5578 struct delayed_work *dwork = to_delayed_work(work); 5579 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5580 int cpu = twork->cpu; 5581 struct rq *rq = cpu_rq(cpu); 5582 int os; 5583 5584 /* 5585 * Handle the tick only if it appears the remote CPU is running in full 5586 * dynticks mode. The check is racy by nature, but missing a tick or 5587 * having one too much is no big deal because the scheduler tick updates 5588 * statistics and checks timeslices in a time-independent way, regardless 5589 * of when exactly it is running. 5590 */ 5591 if (tick_nohz_tick_stopped_cpu(cpu)) { 5592 guard(rq_lock_irq)(rq); 5593 struct task_struct *curr = rq->curr; 5594 5595 if (cpu_online(cpu)) { 5596 update_rq_clock(rq); 5597 5598 if (!is_idle_task(curr)) { 5599 /* 5600 * Make sure the next tick runs within a 5601 * reasonable amount of time. 5602 */ 5603 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5604 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5605 } 5606 curr->sched_class->task_tick(rq, curr, 0); 5607 5608 calc_load_nohz_remote(rq); 5609 } 5610 } 5611 5612 /* 5613 * Run the remote tick once per second (1Hz). This arbitrary 5614 * frequency is large enough to avoid overload but short enough 5615 * to keep scheduler internal stats reasonably up to date. But 5616 * first update state to reflect hotplug activity if required. 5617 */ 5618 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5619 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5620 if (os == TICK_SCHED_REMOTE_RUNNING) 5621 queue_delayed_work(system_unbound_wq, dwork, HZ); 5622 } 5623 5624 static void sched_tick_start(int cpu) 5625 { 5626 int os; 5627 struct tick_work *twork; 5628 5629 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5630 return; 5631 5632 WARN_ON_ONCE(!tick_work_cpu); 5633 5634 twork = per_cpu_ptr(tick_work_cpu, cpu); 5635 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5636 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5637 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5638 twork->cpu = cpu; 5639 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5640 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5641 } 5642 } 5643 5644 #ifdef CONFIG_HOTPLUG_CPU 5645 static void sched_tick_stop(int cpu) 5646 { 5647 struct tick_work *twork; 5648 int os; 5649 5650 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5651 return; 5652 5653 WARN_ON_ONCE(!tick_work_cpu); 5654 5655 twork = per_cpu_ptr(tick_work_cpu, cpu); 5656 /* There cannot be competing actions, but don't rely on stop-machine. */ 5657 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5658 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5659 /* Don't cancel, as this would mess up the state machine. */ 5660 } 5661 #endif /* CONFIG_HOTPLUG_CPU */ 5662 5663 int __init sched_tick_offload_init(void) 5664 { 5665 tick_work_cpu = alloc_percpu(struct tick_work); 5666 BUG_ON(!tick_work_cpu); 5667 return 0; 5668 } 5669 5670 #else /* !CONFIG_NO_HZ_FULL */ 5671 static inline void sched_tick_start(int cpu) { } 5672 static inline void sched_tick_stop(int cpu) { } 5673 #endif 5674 5675 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5676 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5677 /* 5678 * If the value passed in is equal to the current preempt count 5679 * then we just disabled preemption. Start timing the latency. 5680 */ 5681 static inline void preempt_latency_start(int val) 5682 { 5683 if (preempt_count() == val) { 5684 unsigned long ip = get_lock_parent_ip(); 5685 #ifdef CONFIG_DEBUG_PREEMPT 5686 current->preempt_disable_ip = ip; 5687 #endif 5688 trace_preempt_off(CALLER_ADDR0, ip); 5689 } 5690 } 5691 5692 void preempt_count_add(int val) 5693 { 5694 #ifdef CONFIG_DEBUG_PREEMPT 5695 /* 5696 * Underflow? 5697 */ 5698 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5699 return; 5700 #endif 5701 __preempt_count_add(val); 5702 #ifdef CONFIG_DEBUG_PREEMPT 5703 /* 5704 * Spinlock count overflowing soon? 5705 */ 5706 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5707 PREEMPT_MASK - 10); 5708 #endif 5709 preempt_latency_start(val); 5710 } 5711 EXPORT_SYMBOL(preempt_count_add); 5712 NOKPROBE_SYMBOL(preempt_count_add); 5713 5714 /* 5715 * If the value passed in equals to the current preempt count 5716 * then we just enabled preemption. Stop timing the latency. 5717 */ 5718 static inline void preempt_latency_stop(int val) 5719 { 5720 if (preempt_count() == val) 5721 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5722 } 5723 5724 void preempt_count_sub(int val) 5725 { 5726 #ifdef CONFIG_DEBUG_PREEMPT 5727 /* 5728 * Underflow? 5729 */ 5730 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5731 return; 5732 /* 5733 * Is the spinlock portion underflowing? 5734 */ 5735 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5736 !(preempt_count() & PREEMPT_MASK))) 5737 return; 5738 #endif 5739 5740 preempt_latency_stop(val); 5741 __preempt_count_sub(val); 5742 } 5743 EXPORT_SYMBOL(preempt_count_sub); 5744 NOKPROBE_SYMBOL(preempt_count_sub); 5745 5746 #else 5747 static inline void preempt_latency_start(int val) { } 5748 static inline void preempt_latency_stop(int val) { } 5749 #endif 5750 5751 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5752 { 5753 #ifdef CONFIG_DEBUG_PREEMPT 5754 return p->preempt_disable_ip; 5755 #else 5756 return 0; 5757 #endif 5758 } 5759 5760 /* 5761 * Print scheduling while atomic bug: 5762 */ 5763 static noinline void __schedule_bug(struct task_struct *prev) 5764 { 5765 /* Save this before calling printk(), since that will clobber it */ 5766 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5767 5768 if (oops_in_progress) 5769 return; 5770 5771 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5772 prev->comm, prev->pid, preempt_count()); 5773 5774 debug_show_held_locks(prev); 5775 print_modules(); 5776 if (irqs_disabled()) 5777 print_irqtrace_events(prev); 5778 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5779 pr_err("Preemption disabled at:"); 5780 print_ip_sym(KERN_ERR, preempt_disable_ip); 5781 } 5782 check_panic_on_warn("scheduling while atomic"); 5783 5784 dump_stack(); 5785 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5786 } 5787 5788 /* 5789 * Various schedule()-time debugging checks and statistics: 5790 */ 5791 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5792 { 5793 #ifdef CONFIG_SCHED_STACK_END_CHECK 5794 if (task_stack_end_corrupted(prev)) 5795 panic("corrupted stack end detected inside scheduler\n"); 5796 5797 if (task_scs_end_corrupted(prev)) 5798 panic("corrupted shadow stack detected inside scheduler\n"); 5799 #endif 5800 5801 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5802 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5803 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5804 prev->comm, prev->pid, prev->non_block_count); 5805 dump_stack(); 5806 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5807 } 5808 #endif 5809 5810 if (unlikely(in_atomic_preempt_off())) { 5811 __schedule_bug(prev); 5812 preempt_count_set(PREEMPT_DISABLED); 5813 } 5814 rcu_sleep_check(); 5815 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5816 5817 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5818 5819 schedstat_inc(this_rq()->sched_count); 5820 } 5821 5822 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5823 struct rq_flags *rf) 5824 { 5825 #ifdef CONFIG_SMP 5826 const struct sched_class *class; 5827 /* 5828 * We must do the balancing pass before put_prev_task(), such 5829 * that when we release the rq->lock the task is in the same 5830 * state as before we took rq->lock. 5831 * 5832 * We can terminate the balance pass as soon as we know there is 5833 * a runnable task of @class priority or higher. 5834 */ 5835 for_balance_class_range(class, prev->sched_class, &idle_sched_class) { 5836 if (class->balance(rq, prev, rf)) 5837 break; 5838 } 5839 #endif 5840 5841 put_prev_task(rq, prev); 5842 } 5843 5844 /* 5845 * Pick up the highest-prio task: 5846 */ 5847 static inline struct task_struct * 5848 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5849 { 5850 const struct sched_class *class; 5851 struct task_struct *p; 5852 5853 if (scx_enabled()) 5854 goto restart; 5855 5856 /* 5857 * Optimization: we know that if all tasks are in the fair class we can 5858 * call that function directly, but only if the @prev task wasn't of a 5859 * higher scheduling class, because otherwise those lose the 5860 * opportunity to pull in more work from other CPUs. 5861 */ 5862 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5863 rq->nr_running == rq->cfs.h_nr_running)) { 5864 5865 p = pick_next_task_fair(rq, prev, rf); 5866 if (unlikely(p == RETRY_TASK)) 5867 goto restart; 5868 5869 /* Assume the next prioritized class is idle_sched_class */ 5870 if (!p) { 5871 put_prev_task(rq, prev); 5872 p = pick_next_task_idle(rq); 5873 } 5874 5875 /* 5876 * This is the fast path; it cannot be a DL server pick; 5877 * therefore even if @p == @prev, ->dl_server must be NULL. 5878 */ 5879 if (p->dl_server) 5880 p->dl_server = NULL; 5881 5882 return p; 5883 } 5884 5885 restart: 5886 put_prev_task_balance(rq, prev, rf); 5887 5888 /* 5889 * We've updated @prev and no longer need the server link, clear it. 5890 * Must be done before ->pick_next_task() because that can (re)set 5891 * ->dl_server. 5892 */ 5893 if (prev->dl_server) 5894 prev->dl_server = NULL; 5895 5896 for_each_active_class(class) { 5897 p = class->pick_next_task(rq); 5898 if (p) 5899 return p; 5900 } 5901 5902 BUG(); /* The idle class should always have a runnable task. */ 5903 } 5904 5905 #ifdef CONFIG_SCHED_CORE 5906 static inline bool is_task_rq_idle(struct task_struct *t) 5907 { 5908 return (task_rq(t)->idle == t); 5909 } 5910 5911 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5912 { 5913 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5914 } 5915 5916 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5917 { 5918 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5919 return true; 5920 5921 return a->core_cookie == b->core_cookie; 5922 } 5923 5924 static inline struct task_struct *pick_task(struct rq *rq) 5925 { 5926 const struct sched_class *class; 5927 struct task_struct *p; 5928 5929 for_each_active_class(class) { 5930 p = class->pick_task(rq); 5931 if (p) 5932 return p; 5933 } 5934 5935 BUG(); /* The idle class should always have a runnable task. */ 5936 } 5937 5938 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5939 5940 static void queue_core_balance(struct rq *rq); 5941 5942 static struct task_struct * 5943 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5944 { 5945 struct task_struct *next, *p, *max = NULL; 5946 const struct cpumask *smt_mask; 5947 bool fi_before = false; 5948 bool core_clock_updated = (rq == rq->core); 5949 unsigned long cookie; 5950 int i, cpu, occ = 0; 5951 struct rq *rq_i; 5952 bool need_sync; 5953 5954 if (!sched_core_enabled(rq)) 5955 return __pick_next_task(rq, prev, rf); 5956 5957 cpu = cpu_of(rq); 5958 5959 /* Stopper task is switching into idle, no need core-wide selection. */ 5960 if (cpu_is_offline(cpu)) { 5961 /* 5962 * Reset core_pick so that we don't enter the fastpath when 5963 * coming online. core_pick would already be migrated to 5964 * another cpu during offline. 5965 */ 5966 rq->core_pick = NULL; 5967 return __pick_next_task(rq, prev, rf); 5968 } 5969 5970 /* 5971 * If there were no {en,de}queues since we picked (IOW, the task 5972 * pointers are all still valid), and we haven't scheduled the last 5973 * pick yet, do so now. 5974 * 5975 * rq->core_pick can be NULL if no selection was made for a CPU because 5976 * it was either offline or went offline during a sibling's core-wide 5977 * selection. In this case, do a core-wide selection. 5978 */ 5979 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5980 rq->core->core_pick_seq != rq->core_sched_seq && 5981 rq->core_pick) { 5982 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5983 5984 next = rq->core_pick; 5985 if (next != prev) { 5986 put_prev_task(rq, prev); 5987 set_next_task(rq, next); 5988 } 5989 5990 rq->core_pick = NULL; 5991 goto out; 5992 } 5993 5994 put_prev_task_balance(rq, prev, rf); 5995 5996 smt_mask = cpu_smt_mask(cpu); 5997 need_sync = !!rq->core->core_cookie; 5998 5999 /* reset state */ 6000 rq->core->core_cookie = 0UL; 6001 if (rq->core->core_forceidle_count) { 6002 if (!core_clock_updated) { 6003 update_rq_clock(rq->core); 6004 core_clock_updated = true; 6005 } 6006 sched_core_account_forceidle(rq); 6007 /* reset after accounting force idle */ 6008 rq->core->core_forceidle_start = 0; 6009 rq->core->core_forceidle_count = 0; 6010 rq->core->core_forceidle_occupation = 0; 6011 need_sync = true; 6012 fi_before = true; 6013 } 6014 6015 /* 6016 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6017 * 6018 * @task_seq guards the task state ({en,de}queues) 6019 * @pick_seq is the @task_seq we did a selection on 6020 * @sched_seq is the @pick_seq we scheduled 6021 * 6022 * However, preemptions can cause multiple picks on the same task set. 6023 * 'Fix' this by also increasing @task_seq for every pick. 6024 */ 6025 rq->core->core_task_seq++; 6026 6027 /* 6028 * Optimize for common case where this CPU has no cookies 6029 * and there are no cookied tasks running on siblings. 6030 */ 6031 if (!need_sync) { 6032 next = pick_task(rq); 6033 if (!next->core_cookie) { 6034 rq->core_pick = NULL; 6035 /* 6036 * For robustness, update the min_vruntime_fi for 6037 * unconstrained picks as well. 6038 */ 6039 WARN_ON_ONCE(fi_before); 6040 task_vruntime_update(rq, next, false); 6041 goto out_set_next; 6042 } 6043 } 6044 6045 /* 6046 * For each thread: do the regular task pick and find the max prio task 6047 * amongst them. 6048 * 6049 * Tie-break prio towards the current CPU 6050 */ 6051 for_each_cpu_wrap(i, smt_mask, cpu) { 6052 rq_i = cpu_rq(i); 6053 6054 /* 6055 * Current cpu always has its clock updated on entrance to 6056 * pick_next_task(). If the current cpu is not the core, 6057 * the core may also have been updated above. 6058 */ 6059 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6060 update_rq_clock(rq_i); 6061 6062 p = rq_i->core_pick = pick_task(rq_i); 6063 if (!max || prio_less(max, p, fi_before)) 6064 max = p; 6065 } 6066 6067 cookie = rq->core->core_cookie = max->core_cookie; 6068 6069 /* 6070 * For each thread: try and find a runnable task that matches @max or 6071 * force idle. 6072 */ 6073 for_each_cpu(i, smt_mask) { 6074 rq_i = cpu_rq(i); 6075 p = rq_i->core_pick; 6076 6077 if (!cookie_equals(p, cookie)) { 6078 p = NULL; 6079 if (cookie) 6080 p = sched_core_find(rq_i, cookie); 6081 if (!p) 6082 p = idle_sched_class.pick_task(rq_i); 6083 } 6084 6085 rq_i->core_pick = p; 6086 6087 if (p == rq_i->idle) { 6088 if (rq_i->nr_running) { 6089 rq->core->core_forceidle_count++; 6090 if (!fi_before) 6091 rq->core->core_forceidle_seq++; 6092 } 6093 } else { 6094 occ++; 6095 } 6096 } 6097 6098 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6099 rq->core->core_forceidle_start = rq_clock(rq->core); 6100 rq->core->core_forceidle_occupation = occ; 6101 } 6102 6103 rq->core->core_pick_seq = rq->core->core_task_seq; 6104 next = rq->core_pick; 6105 rq->core_sched_seq = rq->core->core_pick_seq; 6106 6107 /* Something should have been selected for current CPU */ 6108 WARN_ON_ONCE(!next); 6109 6110 /* 6111 * Reschedule siblings 6112 * 6113 * NOTE: L1TF -- at this point we're no longer running the old task and 6114 * sending an IPI (below) ensures the sibling will no longer be running 6115 * their task. This ensures there is no inter-sibling overlap between 6116 * non-matching user state. 6117 */ 6118 for_each_cpu(i, smt_mask) { 6119 rq_i = cpu_rq(i); 6120 6121 /* 6122 * An online sibling might have gone offline before a task 6123 * could be picked for it, or it might be offline but later 6124 * happen to come online, but its too late and nothing was 6125 * picked for it. That's Ok - it will pick tasks for itself, 6126 * so ignore it. 6127 */ 6128 if (!rq_i->core_pick) 6129 continue; 6130 6131 /* 6132 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6133 * fi_before fi update? 6134 * 0 0 1 6135 * 0 1 1 6136 * 1 0 1 6137 * 1 1 0 6138 */ 6139 if (!(fi_before && rq->core->core_forceidle_count)) 6140 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6141 6142 rq_i->core_pick->core_occupation = occ; 6143 6144 if (i == cpu) { 6145 rq_i->core_pick = NULL; 6146 continue; 6147 } 6148 6149 /* Did we break L1TF mitigation requirements? */ 6150 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6151 6152 if (rq_i->curr == rq_i->core_pick) { 6153 rq_i->core_pick = NULL; 6154 continue; 6155 } 6156 6157 resched_curr(rq_i); 6158 } 6159 6160 out_set_next: 6161 set_next_task(rq, next); 6162 out: 6163 if (rq->core->core_forceidle_count && next == rq->idle) 6164 queue_core_balance(rq); 6165 6166 return next; 6167 } 6168 6169 static bool try_steal_cookie(int this, int that) 6170 { 6171 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6172 struct task_struct *p; 6173 unsigned long cookie; 6174 bool success = false; 6175 6176 guard(irq)(); 6177 guard(double_rq_lock)(dst, src); 6178 6179 cookie = dst->core->core_cookie; 6180 if (!cookie) 6181 return false; 6182 6183 if (dst->curr != dst->idle) 6184 return false; 6185 6186 p = sched_core_find(src, cookie); 6187 if (!p) 6188 return false; 6189 6190 do { 6191 if (p == src->core_pick || p == src->curr) 6192 goto next; 6193 6194 if (!is_cpu_allowed(p, this)) 6195 goto next; 6196 6197 if (p->core_occupation > dst->idle->core_occupation) 6198 goto next; 6199 /* 6200 * sched_core_find() and sched_core_next() will ensure 6201 * that task @p is not throttled now, we also need to 6202 * check whether the runqueue of the destination CPU is 6203 * being throttled. 6204 */ 6205 if (sched_task_is_throttled(p, this)) 6206 goto next; 6207 6208 deactivate_task(src, p, 0); 6209 set_task_cpu(p, this); 6210 activate_task(dst, p, 0); 6211 6212 resched_curr(dst); 6213 6214 success = true; 6215 break; 6216 6217 next: 6218 p = sched_core_next(p, cookie); 6219 } while (p); 6220 6221 return success; 6222 } 6223 6224 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6225 { 6226 int i; 6227 6228 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6229 if (i == cpu) 6230 continue; 6231 6232 if (need_resched()) 6233 break; 6234 6235 if (try_steal_cookie(cpu, i)) 6236 return true; 6237 } 6238 6239 return false; 6240 } 6241 6242 static void sched_core_balance(struct rq *rq) 6243 { 6244 struct sched_domain *sd; 6245 int cpu = cpu_of(rq); 6246 6247 guard(preempt)(); 6248 guard(rcu)(); 6249 6250 raw_spin_rq_unlock_irq(rq); 6251 for_each_domain(cpu, sd) { 6252 if (need_resched()) 6253 break; 6254 6255 if (steal_cookie_task(cpu, sd)) 6256 break; 6257 } 6258 raw_spin_rq_lock_irq(rq); 6259 } 6260 6261 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6262 6263 static void queue_core_balance(struct rq *rq) 6264 { 6265 if (!sched_core_enabled(rq)) 6266 return; 6267 6268 if (!rq->core->core_cookie) 6269 return; 6270 6271 if (!rq->nr_running) /* not forced idle */ 6272 return; 6273 6274 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6275 } 6276 6277 DEFINE_LOCK_GUARD_1(core_lock, int, 6278 sched_core_lock(*_T->lock, &_T->flags), 6279 sched_core_unlock(*_T->lock, &_T->flags), 6280 unsigned long flags) 6281 6282 static void sched_core_cpu_starting(unsigned int cpu) 6283 { 6284 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6285 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6286 int t; 6287 6288 guard(core_lock)(&cpu); 6289 6290 WARN_ON_ONCE(rq->core != rq); 6291 6292 /* if we're the first, we'll be our own leader */ 6293 if (cpumask_weight(smt_mask) == 1) 6294 return; 6295 6296 /* find the leader */ 6297 for_each_cpu(t, smt_mask) { 6298 if (t == cpu) 6299 continue; 6300 rq = cpu_rq(t); 6301 if (rq->core == rq) { 6302 core_rq = rq; 6303 break; 6304 } 6305 } 6306 6307 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6308 return; 6309 6310 /* install and validate core_rq */ 6311 for_each_cpu(t, smt_mask) { 6312 rq = cpu_rq(t); 6313 6314 if (t == cpu) 6315 rq->core = core_rq; 6316 6317 WARN_ON_ONCE(rq->core != core_rq); 6318 } 6319 } 6320 6321 static void sched_core_cpu_deactivate(unsigned int cpu) 6322 { 6323 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6324 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6325 int t; 6326 6327 guard(core_lock)(&cpu); 6328 6329 /* if we're the last man standing, nothing to do */ 6330 if (cpumask_weight(smt_mask) == 1) { 6331 WARN_ON_ONCE(rq->core != rq); 6332 return; 6333 } 6334 6335 /* if we're not the leader, nothing to do */ 6336 if (rq->core != rq) 6337 return; 6338 6339 /* find a new leader */ 6340 for_each_cpu(t, smt_mask) { 6341 if (t == cpu) 6342 continue; 6343 core_rq = cpu_rq(t); 6344 break; 6345 } 6346 6347 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6348 return; 6349 6350 /* copy the shared state to the new leader */ 6351 core_rq->core_task_seq = rq->core_task_seq; 6352 core_rq->core_pick_seq = rq->core_pick_seq; 6353 core_rq->core_cookie = rq->core_cookie; 6354 core_rq->core_forceidle_count = rq->core_forceidle_count; 6355 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6356 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6357 6358 /* 6359 * Accounting edge for forced idle is handled in pick_next_task(). 6360 * Don't need another one here, since the hotplug thread shouldn't 6361 * have a cookie. 6362 */ 6363 core_rq->core_forceidle_start = 0; 6364 6365 /* install new leader */ 6366 for_each_cpu(t, smt_mask) { 6367 rq = cpu_rq(t); 6368 rq->core = core_rq; 6369 } 6370 } 6371 6372 static inline void sched_core_cpu_dying(unsigned int cpu) 6373 { 6374 struct rq *rq = cpu_rq(cpu); 6375 6376 if (rq->core != rq) 6377 rq->core = rq; 6378 } 6379 6380 #else /* !CONFIG_SCHED_CORE */ 6381 6382 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6383 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6384 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6385 6386 static struct task_struct * 6387 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6388 { 6389 return __pick_next_task(rq, prev, rf); 6390 } 6391 6392 #endif /* CONFIG_SCHED_CORE */ 6393 6394 /* 6395 * Constants for the sched_mode argument of __schedule(). 6396 * 6397 * The mode argument allows RT enabled kernels to differentiate a 6398 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6399 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6400 * optimize the AND operation out and just check for zero. 6401 */ 6402 #define SM_NONE 0x0 6403 #define SM_PREEMPT 0x1 6404 #define SM_RTLOCK_WAIT 0x2 6405 6406 #ifndef CONFIG_PREEMPT_RT 6407 # define SM_MASK_PREEMPT (~0U) 6408 #else 6409 # define SM_MASK_PREEMPT SM_PREEMPT 6410 #endif 6411 6412 /* 6413 * __schedule() is the main scheduler function. 6414 * 6415 * The main means of driving the scheduler and thus entering this function are: 6416 * 6417 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6418 * 6419 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6420 * paths. For example, see arch/x86/entry_64.S. 6421 * 6422 * To drive preemption between tasks, the scheduler sets the flag in timer 6423 * interrupt handler sched_tick(). 6424 * 6425 * 3. Wakeups don't really cause entry into schedule(). They add a 6426 * task to the run-queue and that's it. 6427 * 6428 * Now, if the new task added to the run-queue preempts the current 6429 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6430 * called on the nearest possible occasion: 6431 * 6432 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6433 * 6434 * - in syscall or exception context, at the next outmost 6435 * preempt_enable(). (this might be as soon as the wake_up()'s 6436 * spin_unlock()!) 6437 * 6438 * - in IRQ context, return from interrupt-handler to 6439 * preemptible context 6440 * 6441 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6442 * then at the next: 6443 * 6444 * - cond_resched() call 6445 * - explicit schedule() call 6446 * - return from syscall or exception to user-space 6447 * - return from interrupt-handler to user-space 6448 * 6449 * WARNING: must be called with preemption disabled! 6450 */ 6451 static void __sched notrace __schedule(unsigned int sched_mode) 6452 { 6453 struct task_struct *prev, *next; 6454 unsigned long *switch_count; 6455 unsigned long prev_state; 6456 struct rq_flags rf; 6457 struct rq *rq; 6458 int cpu; 6459 6460 cpu = smp_processor_id(); 6461 rq = cpu_rq(cpu); 6462 prev = rq->curr; 6463 6464 schedule_debug(prev, !!sched_mode); 6465 6466 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6467 hrtick_clear(rq); 6468 6469 local_irq_disable(); 6470 rcu_note_context_switch(!!sched_mode); 6471 6472 /* 6473 * Make sure that signal_pending_state()->signal_pending() below 6474 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6475 * done by the caller to avoid the race with signal_wake_up(): 6476 * 6477 * __set_current_state(@state) signal_wake_up() 6478 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6479 * wake_up_state(p, state) 6480 * LOCK rq->lock LOCK p->pi_state 6481 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6482 * if (signal_pending_state()) if (p->state & @state) 6483 * 6484 * Also, the membarrier system call requires a full memory barrier 6485 * after coming from user-space, before storing to rq->curr; this 6486 * barrier matches a full barrier in the proximity of the membarrier 6487 * system call exit. 6488 */ 6489 rq_lock(rq, &rf); 6490 smp_mb__after_spinlock(); 6491 6492 /* Promote REQ to ACT */ 6493 rq->clock_update_flags <<= 1; 6494 update_rq_clock(rq); 6495 rq->clock_update_flags = RQCF_UPDATED; 6496 6497 switch_count = &prev->nivcsw; 6498 6499 /* 6500 * We must load prev->state once (task_struct::state is volatile), such 6501 * that we form a control dependency vs deactivate_task() below. 6502 */ 6503 prev_state = READ_ONCE(prev->__state); 6504 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6505 if (signal_pending_state(prev_state, prev)) { 6506 WRITE_ONCE(prev->__state, TASK_RUNNING); 6507 } else { 6508 prev->sched_contributes_to_load = 6509 (prev_state & TASK_UNINTERRUPTIBLE) && 6510 !(prev_state & TASK_NOLOAD) && 6511 !(prev_state & TASK_FROZEN); 6512 6513 if (prev->sched_contributes_to_load) 6514 rq->nr_uninterruptible++; 6515 6516 /* 6517 * __schedule() ttwu() 6518 * prev_state = prev->state; if (p->on_rq && ...) 6519 * if (prev_state) goto out; 6520 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6521 * p->state = TASK_WAKING 6522 * 6523 * Where __schedule() and ttwu() have matching control dependencies. 6524 * 6525 * After this, schedule() must not care about p->state any more. 6526 */ 6527 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6528 6529 if (prev->in_iowait) { 6530 atomic_inc(&rq->nr_iowait); 6531 delayacct_blkio_start(); 6532 } 6533 } 6534 switch_count = &prev->nvcsw; 6535 } 6536 6537 next = pick_next_task(rq, prev, &rf); 6538 clear_tsk_need_resched(prev); 6539 clear_preempt_need_resched(); 6540 #ifdef CONFIG_SCHED_DEBUG 6541 rq->last_seen_need_resched_ns = 0; 6542 #endif 6543 6544 if (likely(prev != next)) { 6545 rq->nr_switches++; 6546 /* 6547 * RCU users of rcu_dereference(rq->curr) may not see 6548 * changes to task_struct made by pick_next_task(). 6549 */ 6550 RCU_INIT_POINTER(rq->curr, next); 6551 /* 6552 * The membarrier system call requires each architecture 6553 * to have a full memory barrier after updating 6554 * rq->curr, before returning to user-space. 6555 * 6556 * Here are the schemes providing that barrier on the 6557 * various architectures: 6558 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6559 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6560 * on PowerPC and on RISC-V. 6561 * - finish_lock_switch() for weakly-ordered 6562 * architectures where spin_unlock is a full barrier, 6563 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6564 * is a RELEASE barrier), 6565 * 6566 * The barrier matches a full barrier in the proximity of 6567 * the membarrier system call entry. 6568 * 6569 * On RISC-V, this barrier pairing is also needed for the 6570 * SYNC_CORE command when switching between processes, cf. 6571 * the inline comments in membarrier_arch_switch_mm(). 6572 */ 6573 ++*switch_count; 6574 6575 migrate_disable_switch(rq, prev); 6576 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6577 6578 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6579 6580 /* Also unlocks the rq: */ 6581 rq = context_switch(rq, prev, next, &rf); 6582 } else { 6583 rq_unpin_lock(rq, &rf); 6584 __balance_callbacks(rq); 6585 raw_spin_rq_unlock_irq(rq); 6586 } 6587 } 6588 6589 void __noreturn do_task_dead(void) 6590 { 6591 /* Causes final put_task_struct in finish_task_switch(): */ 6592 set_special_state(TASK_DEAD); 6593 6594 /* Tell freezer to ignore us: */ 6595 current->flags |= PF_NOFREEZE; 6596 6597 __schedule(SM_NONE); 6598 BUG(); 6599 6600 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6601 for (;;) 6602 cpu_relax(); 6603 } 6604 6605 static inline void sched_submit_work(struct task_struct *tsk) 6606 { 6607 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6608 unsigned int task_flags; 6609 6610 /* 6611 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6612 * will use a blocking primitive -- which would lead to recursion. 6613 */ 6614 lock_map_acquire_try(&sched_map); 6615 6616 task_flags = tsk->flags; 6617 /* 6618 * If a worker goes to sleep, notify and ask workqueue whether it 6619 * wants to wake up a task to maintain concurrency. 6620 */ 6621 if (task_flags & PF_WQ_WORKER) 6622 wq_worker_sleeping(tsk); 6623 else if (task_flags & PF_IO_WORKER) 6624 io_wq_worker_sleeping(tsk); 6625 6626 /* 6627 * spinlock and rwlock must not flush block requests. This will 6628 * deadlock if the callback attempts to acquire a lock which is 6629 * already acquired. 6630 */ 6631 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6632 6633 /* 6634 * If we are going to sleep and we have plugged IO queued, 6635 * make sure to submit it to avoid deadlocks. 6636 */ 6637 blk_flush_plug(tsk->plug, true); 6638 6639 lock_map_release(&sched_map); 6640 } 6641 6642 static void sched_update_worker(struct task_struct *tsk) 6643 { 6644 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6645 if (tsk->flags & PF_BLOCK_TS) 6646 blk_plug_invalidate_ts(tsk); 6647 if (tsk->flags & PF_WQ_WORKER) 6648 wq_worker_running(tsk); 6649 else if (tsk->flags & PF_IO_WORKER) 6650 io_wq_worker_running(tsk); 6651 } 6652 } 6653 6654 static __always_inline void __schedule_loop(unsigned int sched_mode) 6655 { 6656 do { 6657 preempt_disable(); 6658 __schedule(sched_mode); 6659 sched_preempt_enable_no_resched(); 6660 } while (need_resched()); 6661 } 6662 6663 asmlinkage __visible void __sched schedule(void) 6664 { 6665 struct task_struct *tsk = current; 6666 6667 #ifdef CONFIG_RT_MUTEXES 6668 lockdep_assert(!tsk->sched_rt_mutex); 6669 #endif 6670 6671 if (!task_is_running(tsk)) 6672 sched_submit_work(tsk); 6673 __schedule_loop(SM_NONE); 6674 sched_update_worker(tsk); 6675 } 6676 EXPORT_SYMBOL(schedule); 6677 6678 /* 6679 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6680 * state (have scheduled out non-voluntarily) by making sure that all 6681 * tasks have either left the run queue or have gone into user space. 6682 * As idle tasks do not do either, they must not ever be preempted 6683 * (schedule out non-voluntarily). 6684 * 6685 * schedule_idle() is similar to schedule_preempt_disable() except that it 6686 * never enables preemption because it does not call sched_submit_work(). 6687 */ 6688 void __sched schedule_idle(void) 6689 { 6690 /* 6691 * As this skips calling sched_submit_work(), which the idle task does 6692 * regardless because that function is a NOP when the task is in a 6693 * TASK_RUNNING state, make sure this isn't used someplace that the 6694 * current task can be in any other state. Note, idle is always in the 6695 * TASK_RUNNING state. 6696 */ 6697 WARN_ON_ONCE(current->__state); 6698 do { 6699 __schedule(SM_NONE); 6700 } while (need_resched()); 6701 } 6702 6703 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6704 asmlinkage __visible void __sched schedule_user(void) 6705 { 6706 /* 6707 * If we come here after a random call to set_need_resched(), 6708 * or we have been woken up remotely but the IPI has not yet arrived, 6709 * we haven't yet exited the RCU idle mode. Do it here manually until 6710 * we find a better solution. 6711 * 6712 * NB: There are buggy callers of this function. Ideally we 6713 * should warn if prev_state != CONTEXT_USER, but that will trigger 6714 * too frequently to make sense yet. 6715 */ 6716 enum ctx_state prev_state = exception_enter(); 6717 schedule(); 6718 exception_exit(prev_state); 6719 } 6720 #endif 6721 6722 /** 6723 * schedule_preempt_disabled - called with preemption disabled 6724 * 6725 * Returns with preemption disabled. Note: preempt_count must be 1 6726 */ 6727 void __sched schedule_preempt_disabled(void) 6728 { 6729 sched_preempt_enable_no_resched(); 6730 schedule(); 6731 preempt_disable(); 6732 } 6733 6734 #ifdef CONFIG_PREEMPT_RT 6735 void __sched notrace schedule_rtlock(void) 6736 { 6737 __schedule_loop(SM_RTLOCK_WAIT); 6738 } 6739 NOKPROBE_SYMBOL(schedule_rtlock); 6740 #endif 6741 6742 static void __sched notrace preempt_schedule_common(void) 6743 { 6744 do { 6745 /* 6746 * Because the function tracer can trace preempt_count_sub() 6747 * and it also uses preempt_enable/disable_notrace(), if 6748 * NEED_RESCHED is set, the preempt_enable_notrace() called 6749 * by the function tracer will call this function again and 6750 * cause infinite recursion. 6751 * 6752 * Preemption must be disabled here before the function 6753 * tracer can trace. Break up preempt_disable() into two 6754 * calls. One to disable preemption without fear of being 6755 * traced. The other to still record the preemption latency, 6756 * which can also be traced by the function tracer. 6757 */ 6758 preempt_disable_notrace(); 6759 preempt_latency_start(1); 6760 __schedule(SM_PREEMPT); 6761 preempt_latency_stop(1); 6762 preempt_enable_no_resched_notrace(); 6763 6764 /* 6765 * Check again in case we missed a preemption opportunity 6766 * between schedule and now. 6767 */ 6768 } while (need_resched()); 6769 } 6770 6771 #ifdef CONFIG_PREEMPTION 6772 /* 6773 * This is the entry point to schedule() from in-kernel preemption 6774 * off of preempt_enable. 6775 */ 6776 asmlinkage __visible void __sched notrace preempt_schedule(void) 6777 { 6778 /* 6779 * If there is a non-zero preempt_count or interrupts are disabled, 6780 * we do not want to preempt the current task. Just return.. 6781 */ 6782 if (likely(!preemptible())) 6783 return; 6784 preempt_schedule_common(); 6785 } 6786 NOKPROBE_SYMBOL(preempt_schedule); 6787 EXPORT_SYMBOL(preempt_schedule); 6788 6789 #ifdef CONFIG_PREEMPT_DYNAMIC 6790 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6791 #ifndef preempt_schedule_dynamic_enabled 6792 #define preempt_schedule_dynamic_enabled preempt_schedule 6793 #define preempt_schedule_dynamic_disabled NULL 6794 #endif 6795 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6796 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6797 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6798 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6799 void __sched notrace dynamic_preempt_schedule(void) 6800 { 6801 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6802 return; 6803 preempt_schedule(); 6804 } 6805 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6806 EXPORT_SYMBOL(dynamic_preempt_schedule); 6807 #endif 6808 #endif 6809 6810 /** 6811 * preempt_schedule_notrace - preempt_schedule called by tracing 6812 * 6813 * The tracing infrastructure uses preempt_enable_notrace to prevent 6814 * recursion and tracing preempt enabling caused by the tracing 6815 * infrastructure itself. But as tracing can happen in areas coming 6816 * from userspace or just about to enter userspace, a preempt enable 6817 * can occur before user_exit() is called. This will cause the scheduler 6818 * to be called when the system is still in usermode. 6819 * 6820 * To prevent this, the preempt_enable_notrace will use this function 6821 * instead of preempt_schedule() to exit user context if needed before 6822 * calling the scheduler. 6823 */ 6824 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6825 { 6826 enum ctx_state prev_ctx; 6827 6828 if (likely(!preemptible())) 6829 return; 6830 6831 do { 6832 /* 6833 * Because the function tracer can trace preempt_count_sub() 6834 * and it also uses preempt_enable/disable_notrace(), if 6835 * NEED_RESCHED is set, the preempt_enable_notrace() called 6836 * by the function tracer will call this function again and 6837 * cause infinite recursion. 6838 * 6839 * Preemption must be disabled here before the function 6840 * tracer can trace. Break up preempt_disable() into two 6841 * calls. One to disable preemption without fear of being 6842 * traced. The other to still record the preemption latency, 6843 * which can also be traced by the function tracer. 6844 */ 6845 preempt_disable_notrace(); 6846 preempt_latency_start(1); 6847 /* 6848 * Needs preempt disabled in case user_exit() is traced 6849 * and the tracer calls preempt_enable_notrace() causing 6850 * an infinite recursion. 6851 */ 6852 prev_ctx = exception_enter(); 6853 __schedule(SM_PREEMPT); 6854 exception_exit(prev_ctx); 6855 6856 preempt_latency_stop(1); 6857 preempt_enable_no_resched_notrace(); 6858 } while (need_resched()); 6859 } 6860 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6861 6862 #ifdef CONFIG_PREEMPT_DYNAMIC 6863 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6864 #ifndef preempt_schedule_notrace_dynamic_enabled 6865 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6866 #define preempt_schedule_notrace_dynamic_disabled NULL 6867 #endif 6868 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6869 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6870 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6871 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6872 void __sched notrace dynamic_preempt_schedule_notrace(void) 6873 { 6874 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6875 return; 6876 preempt_schedule_notrace(); 6877 } 6878 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6879 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6880 #endif 6881 #endif 6882 6883 #endif /* CONFIG_PREEMPTION */ 6884 6885 /* 6886 * This is the entry point to schedule() from kernel preemption 6887 * off of IRQ context. 6888 * Note, that this is called and return with IRQs disabled. This will 6889 * protect us against recursive calling from IRQ contexts. 6890 */ 6891 asmlinkage __visible void __sched preempt_schedule_irq(void) 6892 { 6893 enum ctx_state prev_state; 6894 6895 /* Catch callers which need to be fixed */ 6896 BUG_ON(preempt_count() || !irqs_disabled()); 6897 6898 prev_state = exception_enter(); 6899 6900 do { 6901 preempt_disable(); 6902 local_irq_enable(); 6903 __schedule(SM_PREEMPT); 6904 local_irq_disable(); 6905 sched_preempt_enable_no_resched(); 6906 } while (need_resched()); 6907 6908 exception_exit(prev_state); 6909 } 6910 6911 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6912 void *key) 6913 { 6914 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 6915 return try_to_wake_up(curr->private, mode, wake_flags); 6916 } 6917 EXPORT_SYMBOL(default_wake_function); 6918 6919 void __setscheduler_prio(struct task_struct *p, int prio) 6920 { 6921 if (dl_prio(prio)) 6922 p->sched_class = &dl_sched_class; 6923 else if (rt_prio(prio)) 6924 p->sched_class = &rt_sched_class; 6925 #ifdef CONFIG_SCHED_CLASS_EXT 6926 else if (task_should_scx(p)) 6927 p->sched_class = &ext_sched_class; 6928 #endif 6929 else 6930 p->sched_class = &fair_sched_class; 6931 6932 p->prio = prio; 6933 } 6934 6935 #ifdef CONFIG_RT_MUTEXES 6936 6937 /* 6938 * Would be more useful with typeof()/auto_type but they don't mix with 6939 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 6940 * name such that if someone were to implement this function we get to compare 6941 * notes. 6942 */ 6943 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 6944 6945 void rt_mutex_pre_schedule(void) 6946 { 6947 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 6948 sched_submit_work(current); 6949 } 6950 6951 void rt_mutex_schedule(void) 6952 { 6953 lockdep_assert(current->sched_rt_mutex); 6954 __schedule_loop(SM_NONE); 6955 } 6956 6957 void rt_mutex_post_schedule(void) 6958 { 6959 sched_update_worker(current); 6960 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 6961 } 6962 6963 /* 6964 * rt_mutex_setprio - set the current priority of a task 6965 * @p: task to boost 6966 * @pi_task: donor task 6967 * 6968 * This function changes the 'effective' priority of a task. It does 6969 * not touch ->normal_prio like __setscheduler(). 6970 * 6971 * Used by the rt_mutex code to implement priority inheritance 6972 * logic. Call site only calls if the priority of the task changed. 6973 */ 6974 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6975 { 6976 int prio, oldprio, queued, running, queue_flag = 6977 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6978 const struct sched_class *prev_class; 6979 struct rq_flags rf; 6980 struct rq *rq; 6981 6982 /* XXX used to be waiter->prio, not waiter->task->prio */ 6983 prio = __rt_effective_prio(pi_task, p->normal_prio); 6984 6985 /* 6986 * If nothing changed; bail early. 6987 */ 6988 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6989 return; 6990 6991 rq = __task_rq_lock(p, &rf); 6992 update_rq_clock(rq); 6993 /* 6994 * Set under pi_lock && rq->lock, such that the value can be used under 6995 * either lock. 6996 * 6997 * Note that there is loads of tricky to make this pointer cache work 6998 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6999 * ensure a task is de-boosted (pi_task is set to NULL) before the 7000 * task is allowed to run again (and can exit). This ensures the pointer 7001 * points to a blocked task -- which guarantees the task is present. 7002 */ 7003 p->pi_top_task = pi_task; 7004 7005 /* 7006 * For FIFO/RR we only need to set prio, if that matches we're done. 7007 */ 7008 if (prio == p->prio && !dl_prio(prio)) 7009 goto out_unlock; 7010 7011 /* 7012 * Idle task boosting is a no-no in general. There is one 7013 * exception, when PREEMPT_RT and NOHZ is active: 7014 * 7015 * The idle task calls get_next_timer_interrupt() and holds 7016 * the timer wheel base->lock on the CPU and another CPU wants 7017 * to access the timer (probably to cancel it). We can safely 7018 * ignore the boosting request, as the idle CPU runs this code 7019 * with interrupts disabled and will complete the lock 7020 * protected section without being interrupted. So there is no 7021 * real need to boost. 7022 */ 7023 if (unlikely(p == rq->idle)) { 7024 WARN_ON(p != rq->curr); 7025 WARN_ON(p->pi_blocked_on); 7026 goto out_unlock; 7027 } 7028 7029 trace_sched_pi_setprio(p, pi_task); 7030 oldprio = p->prio; 7031 7032 if (oldprio == prio) 7033 queue_flag &= ~DEQUEUE_MOVE; 7034 7035 prev_class = p->sched_class; 7036 queued = task_on_rq_queued(p); 7037 running = task_current(rq, p); 7038 if (queued) 7039 dequeue_task(rq, p, queue_flag); 7040 if (running) 7041 put_prev_task(rq, p); 7042 7043 /* 7044 * Boosting condition are: 7045 * 1. -rt task is running and holds mutex A 7046 * --> -dl task blocks on mutex A 7047 * 7048 * 2. -dl task is running and holds mutex A 7049 * --> -dl task blocks on mutex A and could preempt the 7050 * running task 7051 */ 7052 if (dl_prio(prio)) { 7053 if (!dl_prio(p->normal_prio) || 7054 (pi_task && dl_prio(pi_task->prio) && 7055 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7056 p->dl.pi_se = pi_task->dl.pi_se; 7057 queue_flag |= ENQUEUE_REPLENISH; 7058 } else { 7059 p->dl.pi_se = &p->dl; 7060 } 7061 } else if (rt_prio(prio)) { 7062 if (dl_prio(oldprio)) 7063 p->dl.pi_se = &p->dl; 7064 if (oldprio < prio) 7065 queue_flag |= ENQUEUE_HEAD; 7066 } else { 7067 if (dl_prio(oldprio)) 7068 p->dl.pi_se = &p->dl; 7069 if (rt_prio(oldprio)) 7070 p->rt.timeout = 0; 7071 } 7072 7073 __setscheduler_prio(p, prio); 7074 check_class_changing(rq, p, prev_class); 7075 7076 if (queued) 7077 enqueue_task(rq, p, queue_flag); 7078 if (running) 7079 set_next_task(rq, p); 7080 7081 check_class_changed(rq, p, prev_class, oldprio); 7082 out_unlock: 7083 /* Avoid rq from going away on us: */ 7084 preempt_disable(); 7085 7086 rq_unpin_lock(rq, &rf); 7087 __balance_callbacks(rq); 7088 raw_spin_rq_unlock(rq); 7089 7090 preempt_enable(); 7091 } 7092 #endif 7093 7094 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7095 int __sched __cond_resched(void) 7096 { 7097 if (should_resched(0)) { 7098 preempt_schedule_common(); 7099 return 1; 7100 } 7101 /* 7102 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 7103 * whether the current CPU is in an RCU read-side critical section, 7104 * so the tick can report quiescent states even for CPUs looping 7105 * in kernel context. In contrast, in non-preemptible kernels, 7106 * RCU readers leave no in-memory hints, which means that CPU-bound 7107 * processes executing in kernel context might never report an 7108 * RCU quiescent state. Therefore, the following code causes 7109 * cond_resched() to report a quiescent state, but only when RCU 7110 * is in urgent need of one. 7111 */ 7112 #ifndef CONFIG_PREEMPT_RCU 7113 rcu_all_qs(); 7114 #endif 7115 return 0; 7116 } 7117 EXPORT_SYMBOL(__cond_resched); 7118 #endif 7119 7120 #ifdef CONFIG_PREEMPT_DYNAMIC 7121 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7122 #define cond_resched_dynamic_enabled __cond_resched 7123 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7124 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7125 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7126 7127 #define might_resched_dynamic_enabled __cond_resched 7128 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7129 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7130 EXPORT_STATIC_CALL_TRAMP(might_resched); 7131 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7132 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7133 int __sched dynamic_cond_resched(void) 7134 { 7135 klp_sched_try_switch(); 7136 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7137 return 0; 7138 return __cond_resched(); 7139 } 7140 EXPORT_SYMBOL(dynamic_cond_resched); 7141 7142 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7143 int __sched dynamic_might_resched(void) 7144 { 7145 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7146 return 0; 7147 return __cond_resched(); 7148 } 7149 EXPORT_SYMBOL(dynamic_might_resched); 7150 #endif 7151 #endif 7152 7153 /* 7154 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7155 * call schedule, and on return reacquire the lock. 7156 * 7157 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7158 * operations here to prevent schedule() from being called twice (once via 7159 * spin_unlock(), once by hand). 7160 */ 7161 int __cond_resched_lock(spinlock_t *lock) 7162 { 7163 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7164 int ret = 0; 7165 7166 lockdep_assert_held(lock); 7167 7168 if (spin_needbreak(lock) || resched) { 7169 spin_unlock(lock); 7170 if (!_cond_resched()) 7171 cpu_relax(); 7172 ret = 1; 7173 spin_lock(lock); 7174 } 7175 return ret; 7176 } 7177 EXPORT_SYMBOL(__cond_resched_lock); 7178 7179 int __cond_resched_rwlock_read(rwlock_t *lock) 7180 { 7181 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7182 int ret = 0; 7183 7184 lockdep_assert_held_read(lock); 7185 7186 if (rwlock_needbreak(lock) || resched) { 7187 read_unlock(lock); 7188 if (!_cond_resched()) 7189 cpu_relax(); 7190 ret = 1; 7191 read_lock(lock); 7192 } 7193 return ret; 7194 } 7195 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7196 7197 int __cond_resched_rwlock_write(rwlock_t *lock) 7198 { 7199 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7200 int ret = 0; 7201 7202 lockdep_assert_held_write(lock); 7203 7204 if (rwlock_needbreak(lock) || resched) { 7205 write_unlock(lock); 7206 if (!_cond_resched()) 7207 cpu_relax(); 7208 ret = 1; 7209 write_lock(lock); 7210 } 7211 return ret; 7212 } 7213 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7214 7215 #ifdef CONFIG_PREEMPT_DYNAMIC 7216 7217 #ifdef CONFIG_GENERIC_ENTRY 7218 #include <linux/entry-common.h> 7219 #endif 7220 7221 /* 7222 * SC:cond_resched 7223 * SC:might_resched 7224 * SC:preempt_schedule 7225 * SC:preempt_schedule_notrace 7226 * SC:irqentry_exit_cond_resched 7227 * 7228 * 7229 * NONE: 7230 * cond_resched <- __cond_resched 7231 * might_resched <- RET0 7232 * preempt_schedule <- NOP 7233 * preempt_schedule_notrace <- NOP 7234 * irqentry_exit_cond_resched <- NOP 7235 * 7236 * VOLUNTARY: 7237 * cond_resched <- __cond_resched 7238 * might_resched <- __cond_resched 7239 * preempt_schedule <- NOP 7240 * preempt_schedule_notrace <- NOP 7241 * irqentry_exit_cond_resched <- NOP 7242 * 7243 * FULL: 7244 * cond_resched <- RET0 7245 * might_resched <- RET0 7246 * preempt_schedule <- preempt_schedule 7247 * preempt_schedule_notrace <- preempt_schedule_notrace 7248 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7249 */ 7250 7251 enum { 7252 preempt_dynamic_undefined = -1, 7253 preempt_dynamic_none, 7254 preempt_dynamic_voluntary, 7255 preempt_dynamic_full, 7256 }; 7257 7258 int preempt_dynamic_mode = preempt_dynamic_undefined; 7259 7260 int sched_dynamic_mode(const char *str) 7261 { 7262 if (!strcmp(str, "none")) 7263 return preempt_dynamic_none; 7264 7265 if (!strcmp(str, "voluntary")) 7266 return preempt_dynamic_voluntary; 7267 7268 if (!strcmp(str, "full")) 7269 return preempt_dynamic_full; 7270 7271 return -EINVAL; 7272 } 7273 7274 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7275 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7276 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7277 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7278 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 7279 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 7280 #else 7281 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7282 #endif 7283 7284 static DEFINE_MUTEX(sched_dynamic_mutex); 7285 static bool klp_override; 7286 7287 static void __sched_dynamic_update(int mode) 7288 { 7289 /* 7290 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7291 * the ZERO state, which is invalid. 7292 */ 7293 if (!klp_override) 7294 preempt_dynamic_enable(cond_resched); 7295 preempt_dynamic_enable(might_resched); 7296 preempt_dynamic_enable(preempt_schedule); 7297 preempt_dynamic_enable(preempt_schedule_notrace); 7298 preempt_dynamic_enable(irqentry_exit_cond_resched); 7299 7300 switch (mode) { 7301 case preempt_dynamic_none: 7302 if (!klp_override) 7303 preempt_dynamic_enable(cond_resched); 7304 preempt_dynamic_disable(might_resched); 7305 preempt_dynamic_disable(preempt_schedule); 7306 preempt_dynamic_disable(preempt_schedule_notrace); 7307 preempt_dynamic_disable(irqentry_exit_cond_resched); 7308 if (mode != preempt_dynamic_mode) 7309 pr_info("Dynamic Preempt: none\n"); 7310 break; 7311 7312 case preempt_dynamic_voluntary: 7313 if (!klp_override) 7314 preempt_dynamic_enable(cond_resched); 7315 preempt_dynamic_enable(might_resched); 7316 preempt_dynamic_disable(preempt_schedule); 7317 preempt_dynamic_disable(preempt_schedule_notrace); 7318 preempt_dynamic_disable(irqentry_exit_cond_resched); 7319 if (mode != preempt_dynamic_mode) 7320 pr_info("Dynamic Preempt: voluntary\n"); 7321 break; 7322 7323 case preempt_dynamic_full: 7324 if (!klp_override) 7325 preempt_dynamic_disable(cond_resched); 7326 preempt_dynamic_disable(might_resched); 7327 preempt_dynamic_enable(preempt_schedule); 7328 preempt_dynamic_enable(preempt_schedule_notrace); 7329 preempt_dynamic_enable(irqentry_exit_cond_resched); 7330 if (mode != preempt_dynamic_mode) 7331 pr_info("Dynamic Preempt: full\n"); 7332 break; 7333 } 7334 7335 preempt_dynamic_mode = mode; 7336 } 7337 7338 void sched_dynamic_update(int mode) 7339 { 7340 mutex_lock(&sched_dynamic_mutex); 7341 __sched_dynamic_update(mode); 7342 mutex_unlock(&sched_dynamic_mutex); 7343 } 7344 7345 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7346 7347 static int klp_cond_resched(void) 7348 { 7349 __klp_sched_try_switch(); 7350 return __cond_resched(); 7351 } 7352 7353 void sched_dynamic_klp_enable(void) 7354 { 7355 mutex_lock(&sched_dynamic_mutex); 7356 7357 klp_override = true; 7358 static_call_update(cond_resched, klp_cond_resched); 7359 7360 mutex_unlock(&sched_dynamic_mutex); 7361 } 7362 7363 void sched_dynamic_klp_disable(void) 7364 { 7365 mutex_lock(&sched_dynamic_mutex); 7366 7367 klp_override = false; 7368 __sched_dynamic_update(preempt_dynamic_mode); 7369 7370 mutex_unlock(&sched_dynamic_mutex); 7371 } 7372 7373 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 7374 7375 static int __init setup_preempt_mode(char *str) 7376 { 7377 int mode = sched_dynamic_mode(str); 7378 if (mode < 0) { 7379 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7380 return 0; 7381 } 7382 7383 sched_dynamic_update(mode); 7384 return 1; 7385 } 7386 __setup("preempt=", setup_preempt_mode); 7387 7388 static void __init preempt_dynamic_init(void) 7389 { 7390 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7391 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7392 sched_dynamic_update(preempt_dynamic_none); 7393 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7394 sched_dynamic_update(preempt_dynamic_voluntary); 7395 } else { 7396 /* Default static call setting, nothing to do */ 7397 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7398 preempt_dynamic_mode = preempt_dynamic_full; 7399 pr_info("Dynamic Preempt: full\n"); 7400 } 7401 } 7402 } 7403 7404 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7405 bool preempt_model_##mode(void) \ 7406 { \ 7407 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7408 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7409 } \ 7410 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7411 7412 PREEMPT_MODEL_ACCESSOR(none); 7413 PREEMPT_MODEL_ACCESSOR(voluntary); 7414 PREEMPT_MODEL_ACCESSOR(full); 7415 7416 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7417 7418 static inline void preempt_dynamic_init(void) { } 7419 7420 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7421 7422 int io_schedule_prepare(void) 7423 { 7424 int old_iowait = current->in_iowait; 7425 7426 current->in_iowait = 1; 7427 blk_flush_plug(current->plug, true); 7428 return old_iowait; 7429 } 7430 7431 void io_schedule_finish(int token) 7432 { 7433 current->in_iowait = token; 7434 } 7435 7436 /* 7437 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7438 * that process accounting knows that this is a task in IO wait state. 7439 */ 7440 long __sched io_schedule_timeout(long timeout) 7441 { 7442 int token; 7443 long ret; 7444 7445 token = io_schedule_prepare(); 7446 ret = schedule_timeout(timeout); 7447 io_schedule_finish(token); 7448 7449 return ret; 7450 } 7451 EXPORT_SYMBOL(io_schedule_timeout); 7452 7453 void __sched io_schedule(void) 7454 { 7455 int token; 7456 7457 token = io_schedule_prepare(); 7458 schedule(); 7459 io_schedule_finish(token); 7460 } 7461 EXPORT_SYMBOL(io_schedule); 7462 7463 void sched_show_task(struct task_struct *p) 7464 { 7465 unsigned long free = 0; 7466 int ppid; 7467 7468 if (!try_get_task_stack(p)) 7469 return; 7470 7471 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7472 7473 if (task_is_running(p)) 7474 pr_cont(" running task "); 7475 #ifdef CONFIG_DEBUG_STACK_USAGE 7476 free = stack_not_used(p); 7477 #endif 7478 ppid = 0; 7479 rcu_read_lock(); 7480 if (pid_alive(p)) 7481 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7482 rcu_read_unlock(); 7483 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", 7484 free, task_pid_nr(p), task_tgid_nr(p), 7485 ppid, read_task_thread_flags(p)); 7486 7487 print_worker_info(KERN_INFO, p); 7488 print_stop_info(KERN_INFO, p); 7489 print_scx_info(KERN_INFO, p); 7490 show_stack(p, NULL, KERN_INFO); 7491 put_task_stack(p); 7492 } 7493 EXPORT_SYMBOL_GPL(sched_show_task); 7494 7495 static inline bool 7496 state_filter_match(unsigned long state_filter, struct task_struct *p) 7497 { 7498 unsigned int state = READ_ONCE(p->__state); 7499 7500 /* no filter, everything matches */ 7501 if (!state_filter) 7502 return true; 7503 7504 /* filter, but doesn't match */ 7505 if (!(state & state_filter)) 7506 return false; 7507 7508 /* 7509 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7510 * TASK_KILLABLE). 7511 */ 7512 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7513 return false; 7514 7515 return true; 7516 } 7517 7518 7519 void show_state_filter(unsigned int state_filter) 7520 { 7521 struct task_struct *g, *p; 7522 7523 rcu_read_lock(); 7524 for_each_process_thread(g, p) { 7525 /* 7526 * reset the NMI-timeout, listing all files on a slow 7527 * console might take a lot of time: 7528 * Also, reset softlockup watchdogs on all CPUs, because 7529 * another CPU might be blocked waiting for us to process 7530 * an IPI. 7531 */ 7532 touch_nmi_watchdog(); 7533 touch_all_softlockup_watchdogs(); 7534 if (state_filter_match(state_filter, p)) 7535 sched_show_task(p); 7536 } 7537 7538 #ifdef CONFIG_SCHED_DEBUG 7539 if (!state_filter) 7540 sysrq_sched_debug_show(); 7541 #endif 7542 rcu_read_unlock(); 7543 /* 7544 * Only show locks if all tasks are dumped: 7545 */ 7546 if (!state_filter) 7547 debug_show_all_locks(); 7548 } 7549 7550 /** 7551 * init_idle - set up an idle thread for a given CPU 7552 * @idle: task in question 7553 * @cpu: CPU the idle task belongs to 7554 * 7555 * NOTE: this function does not set the idle thread's NEED_RESCHED 7556 * flag, to make booting more robust. 7557 */ 7558 void __init init_idle(struct task_struct *idle, int cpu) 7559 { 7560 #ifdef CONFIG_SMP 7561 struct affinity_context ac = (struct affinity_context) { 7562 .new_mask = cpumask_of(cpu), 7563 .flags = 0, 7564 }; 7565 #endif 7566 struct rq *rq = cpu_rq(cpu); 7567 unsigned long flags; 7568 7569 __sched_fork(0, idle); 7570 7571 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7572 raw_spin_rq_lock(rq); 7573 7574 idle->__state = TASK_RUNNING; 7575 idle->se.exec_start = sched_clock(); 7576 /* 7577 * PF_KTHREAD should already be set at this point; regardless, make it 7578 * look like a proper per-CPU kthread. 7579 */ 7580 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7581 kthread_set_per_cpu(idle, cpu); 7582 7583 #ifdef CONFIG_SMP 7584 /* 7585 * It's possible that init_idle() gets called multiple times on a task, 7586 * in that case do_set_cpus_allowed() will not do the right thing. 7587 * 7588 * And since this is boot we can forgo the serialization. 7589 */ 7590 set_cpus_allowed_common(idle, &ac); 7591 #endif 7592 /* 7593 * We're having a chicken and egg problem, even though we are 7594 * holding rq->lock, the CPU isn't yet set to this CPU so the 7595 * lockdep check in task_group() will fail. 7596 * 7597 * Similar case to sched_fork(). / Alternatively we could 7598 * use task_rq_lock() here and obtain the other rq->lock. 7599 * 7600 * Silence PROVE_RCU 7601 */ 7602 rcu_read_lock(); 7603 __set_task_cpu(idle, cpu); 7604 rcu_read_unlock(); 7605 7606 rq->idle = idle; 7607 rcu_assign_pointer(rq->curr, idle); 7608 idle->on_rq = TASK_ON_RQ_QUEUED; 7609 #ifdef CONFIG_SMP 7610 idle->on_cpu = 1; 7611 #endif 7612 raw_spin_rq_unlock(rq); 7613 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7614 7615 /* Set the preempt count _outside_ the spinlocks! */ 7616 init_idle_preempt_count(idle, cpu); 7617 7618 /* 7619 * The idle tasks have their own, simple scheduling class: 7620 */ 7621 idle->sched_class = &idle_sched_class; 7622 ftrace_graph_init_idle_task(idle, cpu); 7623 vtime_init_idle(idle, cpu); 7624 #ifdef CONFIG_SMP 7625 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7626 #endif 7627 } 7628 7629 #ifdef CONFIG_SMP 7630 7631 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7632 const struct cpumask *trial) 7633 { 7634 int ret = 1; 7635 7636 if (cpumask_empty(cur)) 7637 return ret; 7638 7639 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7640 7641 return ret; 7642 } 7643 7644 int task_can_attach(struct task_struct *p) 7645 { 7646 int ret = 0; 7647 7648 /* 7649 * Kthreads which disallow setaffinity shouldn't be moved 7650 * to a new cpuset; we don't want to change their CPU 7651 * affinity and isolating such threads by their set of 7652 * allowed nodes is unnecessary. Thus, cpusets are not 7653 * applicable for such threads. This prevents checking for 7654 * success of set_cpus_allowed_ptr() on all attached tasks 7655 * before cpus_mask may be changed. 7656 */ 7657 if (p->flags & PF_NO_SETAFFINITY) 7658 ret = -EINVAL; 7659 7660 return ret; 7661 } 7662 7663 bool sched_smp_initialized __read_mostly; 7664 7665 #ifdef CONFIG_NUMA_BALANCING 7666 /* Migrate current task p to target_cpu */ 7667 int migrate_task_to(struct task_struct *p, int target_cpu) 7668 { 7669 struct migration_arg arg = { p, target_cpu }; 7670 int curr_cpu = task_cpu(p); 7671 7672 if (curr_cpu == target_cpu) 7673 return 0; 7674 7675 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7676 return -EINVAL; 7677 7678 /* TODO: This is not properly updating schedstats */ 7679 7680 trace_sched_move_numa(p, curr_cpu, target_cpu); 7681 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7682 } 7683 7684 /* 7685 * Requeue a task on a given node and accurately track the number of NUMA 7686 * tasks on the runqueues 7687 */ 7688 void sched_setnuma(struct task_struct *p, int nid) 7689 { 7690 bool queued, running; 7691 struct rq_flags rf; 7692 struct rq *rq; 7693 7694 rq = task_rq_lock(p, &rf); 7695 queued = task_on_rq_queued(p); 7696 running = task_current(rq, p); 7697 7698 if (queued) 7699 dequeue_task(rq, p, DEQUEUE_SAVE); 7700 if (running) 7701 put_prev_task(rq, p); 7702 7703 p->numa_preferred_nid = nid; 7704 7705 if (queued) 7706 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7707 if (running) 7708 set_next_task(rq, p); 7709 task_rq_unlock(rq, p, &rf); 7710 } 7711 #endif /* CONFIG_NUMA_BALANCING */ 7712 7713 #ifdef CONFIG_HOTPLUG_CPU 7714 /* 7715 * Ensure that the idle task is using init_mm right before its CPU goes 7716 * offline. 7717 */ 7718 void idle_task_exit(void) 7719 { 7720 struct mm_struct *mm = current->active_mm; 7721 7722 BUG_ON(cpu_online(smp_processor_id())); 7723 BUG_ON(current != this_rq()->idle); 7724 7725 if (mm != &init_mm) { 7726 switch_mm(mm, &init_mm, current); 7727 finish_arch_post_lock_switch(); 7728 } 7729 7730 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7731 } 7732 7733 static int __balance_push_cpu_stop(void *arg) 7734 { 7735 struct task_struct *p = arg; 7736 struct rq *rq = this_rq(); 7737 struct rq_flags rf; 7738 int cpu; 7739 7740 raw_spin_lock_irq(&p->pi_lock); 7741 rq_lock(rq, &rf); 7742 7743 update_rq_clock(rq); 7744 7745 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7746 cpu = select_fallback_rq(rq->cpu, p); 7747 rq = __migrate_task(rq, &rf, p, cpu); 7748 } 7749 7750 rq_unlock(rq, &rf); 7751 raw_spin_unlock_irq(&p->pi_lock); 7752 7753 put_task_struct(p); 7754 7755 return 0; 7756 } 7757 7758 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7759 7760 /* 7761 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7762 * 7763 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 7764 * effective when the hotplug motion is down. 7765 */ 7766 static void balance_push(struct rq *rq) 7767 { 7768 struct task_struct *push_task = rq->curr; 7769 7770 lockdep_assert_rq_held(rq); 7771 7772 /* 7773 * Ensure the thing is persistent until balance_push_set(.on = false); 7774 */ 7775 rq->balance_callback = &balance_push_callback; 7776 7777 /* 7778 * Only active while going offline and when invoked on the outgoing 7779 * CPU. 7780 */ 7781 if (!cpu_dying(rq->cpu) || rq != this_rq()) 7782 return; 7783 7784 /* 7785 * Both the cpu-hotplug and stop task are in this case and are 7786 * required to complete the hotplug process. 7787 */ 7788 if (kthread_is_per_cpu(push_task) || 7789 is_migration_disabled(push_task)) { 7790 7791 /* 7792 * If this is the idle task on the outgoing CPU try to wake 7793 * up the hotplug control thread which might wait for the 7794 * last task to vanish. The rcuwait_active() check is 7795 * accurate here because the waiter is pinned on this CPU 7796 * and can't obviously be running in parallel. 7797 * 7798 * On RT kernels this also has to check whether there are 7799 * pinned and scheduled out tasks on the runqueue. They 7800 * need to leave the migrate disabled section first. 7801 */ 7802 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7803 rcuwait_active(&rq->hotplug_wait)) { 7804 raw_spin_rq_unlock(rq); 7805 rcuwait_wake_up(&rq->hotplug_wait); 7806 raw_spin_rq_lock(rq); 7807 } 7808 return; 7809 } 7810 7811 get_task_struct(push_task); 7812 /* 7813 * Temporarily drop rq->lock such that we can wake-up the stop task. 7814 * Both preemption and IRQs are still disabled. 7815 */ 7816 preempt_disable(); 7817 raw_spin_rq_unlock(rq); 7818 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7819 this_cpu_ptr(&push_work)); 7820 preempt_enable(); 7821 /* 7822 * At this point need_resched() is true and we'll take the loop in 7823 * schedule(). The next pick is obviously going to be the stop task 7824 * which kthread_is_per_cpu() and will push this task away. 7825 */ 7826 raw_spin_rq_lock(rq); 7827 } 7828 7829 static void balance_push_set(int cpu, bool on) 7830 { 7831 struct rq *rq = cpu_rq(cpu); 7832 struct rq_flags rf; 7833 7834 rq_lock_irqsave(rq, &rf); 7835 if (on) { 7836 WARN_ON_ONCE(rq->balance_callback); 7837 rq->balance_callback = &balance_push_callback; 7838 } else if (rq->balance_callback == &balance_push_callback) { 7839 rq->balance_callback = NULL; 7840 } 7841 rq_unlock_irqrestore(rq, &rf); 7842 } 7843 7844 /* 7845 * Invoked from a CPUs hotplug control thread after the CPU has been marked 7846 * inactive. All tasks which are not per CPU kernel threads are either 7847 * pushed off this CPU now via balance_push() or placed on a different CPU 7848 * during wakeup. Wait until the CPU is quiescent. 7849 */ 7850 static void balance_hotplug_wait(void) 7851 { 7852 struct rq *rq = this_rq(); 7853 7854 rcuwait_wait_event(&rq->hotplug_wait, 7855 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 7856 TASK_UNINTERRUPTIBLE); 7857 } 7858 7859 #else 7860 7861 static inline void balance_push(struct rq *rq) 7862 { 7863 } 7864 7865 static inline void balance_push_set(int cpu, bool on) 7866 { 7867 } 7868 7869 static inline void balance_hotplug_wait(void) 7870 { 7871 } 7872 7873 #endif /* CONFIG_HOTPLUG_CPU */ 7874 7875 void set_rq_online(struct rq *rq) 7876 { 7877 if (!rq->online) { 7878 const struct sched_class *class; 7879 7880 cpumask_set_cpu(rq->cpu, rq->rd->online); 7881 rq->online = 1; 7882 7883 for_each_class(class) { 7884 if (class->rq_online) 7885 class->rq_online(rq); 7886 } 7887 } 7888 } 7889 7890 void set_rq_offline(struct rq *rq) 7891 { 7892 if (rq->online) { 7893 const struct sched_class *class; 7894 7895 update_rq_clock(rq); 7896 for_each_class(class) { 7897 if (class->rq_offline) 7898 class->rq_offline(rq); 7899 } 7900 7901 cpumask_clear_cpu(rq->cpu, rq->rd->online); 7902 rq->online = 0; 7903 } 7904 } 7905 7906 /* 7907 * used to mark begin/end of suspend/resume: 7908 */ 7909 static int num_cpus_frozen; 7910 7911 /* 7912 * Update cpusets according to cpu_active mask. If cpusets are 7913 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7914 * around partition_sched_domains(). 7915 * 7916 * If we come here as part of a suspend/resume, don't touch cpusets because we 7917 * want to restore it back to its original state upon resume anyway. 7918 */ 7919 static void cpuset_cpu_active(void) 7920 { 7921 if (cpuhp_tasks_frozen) { 7922 /* 7923 * num_cpus_frozen tracks how many CPUs are involved in suspend 7924 * resume sequence. As long as this is not the last online 7925 * operation in the resume sequence, just build a single sched 7926 * domain, ignoring cpusets. 7927 */ 7928 partition_sched_domains(1, NULL, NULL); 7929 if (--num_cpus_frozen) 7930 return; 7931 /* 7932 * This is the last CPU online operation. So fall through and 7933 * restore the original sched domains by considering the 7934 * cpuset configurations. 7935 */ 7936 cpuset_force_rebuild(); 7937 } 7938 cpuset_update_active_cpus(); 7939 } 7940 7941 static int cpuset_cpu_inactive(unsigned int cpu) 7942 { 7943 if (!cpuhp_tasks_frozen) { 7944 int ret = dl_bw_check_overflow(cpu); 7945 7946 if (ret) 7947 return ret; 7948 cpuset_update_active_cpus(); 7949 } else { 7950 num_cpus_frozen++; 7951 partition_sched_domains(1, NULL, NULL); 7952 } 7953 return 0; 7954 } 7955 7956 int sched_cpu_activate(unsigned int cpu) 7957 { 7958 struct rq *rq = cpu_rq(cpu); 7959 struct rq_flags rf; 7960 7961 /* 7962 * Clear the balance_push callback and prepare to schedule 7963 * regular tasks. 7964 */ 7965 balance_push_set(cpu, false); 7966 7967 #ifdef CONFIG_SCHED_SMT 7968 /* 7969 * When going up, increment the number of cores with SMT present. 7970 */ 7971 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7972 static_branch_inc_cpuslocked(&sched_smt_present); 7973 #endif 7974 set_cpu_active(cpu, true); 7975 7976 if (sched_smp_initialized) { 7977 sched_update_numa(cpu, true); 7978 sched_domains_numa_masks_set(cpu); 7979 cpuset_cpu_active(); 7980 } 7981 7982 /* 7983 * Put the rq online, if not already. This happens: 7984 * 7985 * 1) In the early boot process, because we build the real domains 7986 * after all CPUs have been brought up. 7987 * 7988 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7989 * domains. 7990 */ 7991 rq_lock_irqsave(rq, &rf); 7992 if (rq->rd) { 7993 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7994 set_rq_online(rq); 7995 } 7996 rq_unlock_irqrestore(rq, &rf); 7997 7998 return 0; 7999 } 8000 8001 int sched_cpu_deactivate(unsigned int cpu) 8002 { 8003 struct rq *rq = cpu_rq(cpu); 8004 struct rq_flags rf; 8005 int ret; 8006 8007 /* 8008 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8009 * load balancing when not active 8010 */ 8011 nohz_balance_exit_idle(rq); 8012 8013 set_cpu_active(cpu, false); 8014 8015 /* 8016 * From this point forward, this CPU will refuse to run any task that 8017 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8018 * push those tasks away until this gets cleared, see 8019 * sched_cpu_dying(). 8020 */ 8021 balance_push_set(cpu, true); 8022 8023 /* 8024 * We've cleared cpu_active_mask / set balance_push, wait for all 8025 * preempt-disabled and RCU users of this state to go away such that 8026 * all new such users will observe it. 8027 * 8028 * Specifically, we rely on ttwu to no longer target this CPU, see 8029 * ttwu_queue_cond() and is_cpu_allowed(). 8030 * 8031 * Do sync before park smpboot threads to take care the RCU boost case. 8032 */ 8033 synchronize_rcu(); 8034 8035 rq_lock_irqsave(rq, &rf); 8036 if (rq->rd) { 8037 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8038 set_rq_offline(rq); 8039 } 8040 rq_unlock_irqrestore(rq, &rf); 8041 8042 #ifdef CONFIG_SCHED_SMT 8043 /* 8044 * When going down, decrement the number of cores with SMT present. 8045 */ 8046 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8047 static_branch_dec_cpuslocked(&sched_smt_present); 8048 8049 sched_core_cpu_deactivate(cpu); 8050 #endif 8051 8052 if (!sched_smp_initialized) 8053 return 0; 8054 8055 sched_update_numa(cpu, false); 8056 ret = cpuset_cpu_inactive(cpu); 8057 if (ret) { 8058 balance_push_set(cpu, false); 8059 set_cpu_active(cpu, true); 8060 sched_update_numa(cpu, true); 8061 return ret; 8062 } 8063 sched_domains_numa_masks_clear(cpu); 8064 return 0; 8065 } 8066 8067 static void sched_rq_cpu_starting(unsigned int cpu) 8068 { 8069 struct rq *rq = cpu_rq(cpu); 8070 8071 rq->calc_load_update = calc_load_update; 8072 update_max_interval(); 8073 } 8074 8075 int sched_cpu_starting(unsigned int cpu) 8076 { 8077 sched_core_cpu_starting(cpu); 8078 sched_rq_cpu_starting(cpu); 8079 sched_tick_start(cpu); 8080 return 0; 8081 } 8082 8083 #ifdef CONFIG_HOTPLUG_CPU 8084 8085 /* 8086 * Invoked immediately before the stopper thread is invoked to bring the 8087 * CPU down completely. At this point all per CPU kthreads except the 8088 * hotplug thread (current) and the stopper thread (inactive) have been 8089 * either parked or have been unbound from the outgoing CPU. Ensure that 8090 * any of those which might be on the way out are gone. 8091 * 8092 * If after this point a bound task is being woken on this CPU then the 8093 * responsible hotplug callback has failed to do it's job. 8094 * sched_cpu_dying() will catch it with the appropriate fireworks. 8095 */ 8096 int sched_cpu_wait_empty(unsigned int cpu) 8097 { 8098 balance_hotplug_wait(); 8099 return 0; 8100 } 8101 8102 /* 8103 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8104 * might have. Called from the CPU stopper task after ensuring that the 8105 * stopper is the last running task on the CPU, so nr_active count is 8106 * stable. We need to take the tear-down thread which is calling this into 8107 * account, so we hand in adjust = 1 to the load calculation. 8108 * 8109 * Also see the comment "Global load-average calculations". 8110 */ 8111 static void calc_load_migrate(struct rq *rq) 8112 { 8113 long delta = calc_load_fold_active(rq, 1); 8114 8115 if (delta) 8116 atomic_long_add(delta, &calc_load_tasks); 8117 } 8118 8119 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8120 { 8121 struct task_struct *g, *p; 8122 int cpu = cpu_of(rq); 8123 8124 lockdep_assert_rq_held(rq); 8125 8126 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8127 for_each_process_thread(g, p) { 8128 if (task_cpu(p) != cpu) 8129 continue; 8130 8131 if (!task_on_rq_queued(p)) 8132 continue; 8133 8134 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8135 } 8136 } 8137 8138 int sched_cpu_dying(unsigned int cpu) 8139 { 8140 struct rq *rq = cpu_rq(cpu); 8141 struct rq_flags rf; 8142 8143 /* Handle pending wakeups and then migrate everything off */ 8144 sched_tick_stop(cpu); 8145 8146 rq_lock_irqsave(rq, &rf); 8147 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8148 WARN(true, "Dying CPU not properly vacated!"); 8149 dump_rq_tasks(rq, KERN_WARNING); 8150 } 8151 rq_unlock_irqrestore(rq, &rf); 8152 8153 calc_load_migrate(rq); 8154 update_max_interval(); 8155 hrtick_clear(rq); 8156 sched_core_cpu_dying(cpu); 8157 return 0; 8158 } 8159 #endif 8160 8161 void __init sched_init_smp(void) 8162 { 8163 sched_init_numa(NUMA_NO_NODE); 8164 8165 /* 8166 * There's no userspace yet to cause hotplug operations; hence all the 8167 * CPU masks are stable and all blatant races in the below code cannot 8168 * happen. 8169 */ 8170 mutex_lock(&sched_domains_mutex); 8171 sched_init_domains(cpu_active_mask); 8172 mutex_unlock(&sched_domains_mutex); 8173 8174 /* Move init over to a non-isolated CPU */ 8175 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8176 BUG(); 8177 current->flags &= ~PF_NO_SETAFFINITY; 8178 sched_init_granularity(); 8179 8180 init_sched_rt_class(); 8181 init_sched_dl_class(); 8182 8183 sched_smp_initialized = true; 8184 } 8185 8186 static int __init migration_init(void) 8187 { 8188 sched_cpu_starting(smp_processor_id()); 8189 return 0; 8190 } 8191 early_initcall(migration_init); 8192 8193 #else 8194 void __init sched_init_smp(void) 8195 { 8196 sched_init_granularity(); 8197 } 8198 #endif /* CONFIG_SMP */ 8199 8200 int in_sched_functions(unsigned long addr) 8201 { 8202 return in_lock_functions(addr) || 8203 (addr >= (unsigned long)__sched_text_start 8204 && addr < (unsigned long)__sched_text_end); 8205 } 8206 8207 #ifdef CONFIG_CGROUP_SCHED 8208 /* 8209 * Default task group. 8210 * Every task in system belongs to this group at bootup. 8211 */ 8212 struct task_group root_task_group; 8213 LIST_HEAD(task_groups); 8214 8215 /* Cacheline aligned slab cache for task_group */ 8216 static struct kmem_cache *task_group_cache __ro_after_init; 8217 #endif 8218 8219 void __init sched_init(void) 8220 { 8221 unsigned long ptr = 0; 8222 int i; 8223 8224 /* Make sure the linker didn't screw up */ 8225 #ifdef CONFIG_SMP 8226 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8227 #endif 8228 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8229 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8230 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8231 #ifdef CONFIG_SCHED_CLASS_EXT 8232 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8233 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8234 #endif 8235 8236 wait_bit_init(); 8237 8238 #ifdef CONFIG_FAIR_GROUP_SCHED 8239 ptr += 2 * nr_cpu_ids * sizeof(void **); 8240 #endif 8241 #ifdef CONFIG_RT_GROUP_SCHED 8242 ptr += 2 * nr_cpu_ids * sizeof(void **); 8243 #endif 8244 if (ptr) { 8245 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8246 8247 #ifdef CONFIG_FAIR_GROUP_SCHED 8248 root_task_group.se = (struct sched_entity **)ptr; 8249 ptr += nr_cpu_ids * sizeof(void **); 8250 8251 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8252 ptr += nr_cpu_ids * sizeof(void **); 8253 8254 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8255 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8256 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8257 #ifdef CONFIG_RT_GROUP_SCHED 8258 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8259 ptr += nr_cpu_ids * sizeof(void **); 8260 8261 root_task_group.rt_rq = (struct rt_rq **)ptr; 8262 ptr += nr_cpu_ids * sizeof(void **); 8263 8264 #endif /* CONFIG_RT_GROUP_SCHED */ 8265 } 8266 8267 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 8268 8269 #ifdef CONFIG_SMP 8270 init_defrootdomain(); 8271 #endif 8272 8273 #ifdef CONFIG_RT_GROUP_SCHED 8274 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8275 global_rt_period(), global_rt_runtime()); 8276 #endif /* CONFIG_RT_GROUP_SCHED */ 8277 8278 #ifdef CONFIG_CGROUP_SCHED 8279 task_group_cache = KMEM_CACHE(task_group, 0); 8280 8281 list_add(&root_task_group.list, &task_groups); 8282 INIT_LIST_HEAD(&root_task_group.children); 8283 INIT_LIST_HEAD(&root_task_group.siblings); 8284 autogroup_init(&init_task); 8285 #endif /* CONFIG_CGROUP_SCHED */ 8286 8287 for_each_possible_cpu(i) { 8288 struct rq *rq; 8289 8290 rq = cpu_rq(i); 8291 raw_spin_lock_init(&rq->__lock); 8292 rq->nr_running = 0; 8293 rq->calc_load_active = 0; 8294 rq->calc_load_update = jiffies + LOAD_FREQ; 8295 init_cfs_rq(&rq->cfs); 8296 init_rt_rq(&rq->rt); 8297 init_dl_rq(&rq->dl); 8298 #ifdef CONFIG_FAIR_GROUP_SCHED 8299 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8300 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8301 /* 8302 * How much CPU bandwidth does root_task_group get? 8303 * 8304 * In case of task-groups formed through the cgroup filesystem, it 8305 * gets 100% of the CPU resources in the system. This overall 8306 * system CPU resource is divided among the tasks of 8307 * root_task_group and its child task-groups in a fair manner, 8308 * based on each entity's (task or task-group's) weight 8309 * (se->load.weight). 8310 * 8311 * In other words, if root_task_group has 10 tasks of weight 8312 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8313 * then A0's share of the CPU resource is: 8314 * 8315 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8316 * 8317 * We achieve this by letting root_task_group's tasks sit 8318 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8319 */ 8320 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8321 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8322 8323 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 8324 #ifdef CONFIG_RT_GROUP_SCHED 8325 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8326 #endif 8327 #ifdef CONFIG_SMP 8328 rq->sd = NULL; 8329 rq->rd = NULL; 8330 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8331 rq->balance_callback = &balance_push_callback; 8332 rq->active_balance = 0; 8333 rq->next_balance = jiffies; 8334 rq->push_cpu = 0; 8335 rq->cpu = i; 8336 rq->online = 0; 8337 rq->idle_stamp = 0; 8338 rq->avg_idle = 2*sysctl_sched_migration_cost; 8339 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8340 8341 INIT_LIST_HEAD(&rq->cfs_tasks); 8342 8343 rq_attach_root(rq, &def_root_domain); 8344 #ifdef CONFIG_NO_HZ_COMMON 8345 rq->last_blocked_load_update_tick = jiffies; 8346 atomic_set(&rq->nohz_flags, 0); 8347 8348 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8349 #endif 8350 #ifdef CONFIG_HOTPLUG_CPU 8351 rcuwait_init(&rq->hotplug_wait); 8352 #endif 8353 #endif /* CONFIG_SMP */ 8354 hrtick_rq_init(rq); 8355 atomic_set(&rq->nr_iowait, 0); 8356 8357 #ifdef CONFIG_SCHED_CORE 8358 rq->core = rq; 8359 rq->core_pick = NULL; 8360 rq->core_enabled = 0; 8361 rq->core_tree = RB_ROOT; 8362 rq->core_forceidle_count = 0; 8363 rq->core_forceidle_occupation = 0; 8364 rq->core_forceidle_start = 0; 8365 8366 rq->core_cookie = 0UL; 8367 #endif 8368 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8369 } 8370 8371 set_load_weight(&init_task, false); 8372 8373 /* 8374 * The boot idle thread does lazy MMU switching as well: 8375 */ 8376 mmgrab_lazy_tlb(&init_mm); 8377 enter_lazy_tlb(&init_mm, current); 8378 8379 /* 8380 * The idle task doesn't need the kthread struct to function, but it 8381 * is dressed up as a per-CPU kthread and thus needs to play the part 8382 * if we want to avoid special-casing it in code that deals with per-CPU 8383 * kthreads. 8384 */ 8385 WARN_ON(!set_kthread_struct(current)); 8386 8387 /* 8388 * Make us the idle thread. Technically, schedule() should not be 8389 * called from this thread, however somewhere below it might be, 8390 * but because we are the idle thread, we just pick up running again 8391 * when this runqueue becomes "idle". 8392 */ 8393 init_idle(current, smp_processor_id()); 8394 8395 calc_load_update = jiffies + LOAD_FREQ; 8396 8397 #ifdef CONFIG_SMP 8398 idle_thread_set_boot_cpu(); 8399 balance_push_set(smp_processor_id(), false); 8400 #endif 8401 init_sched_fair_class(); 8402 init_sched_ext_class(); 8403 8404 psi_init(); 8405 8406 init_uclamp(); 8407 8408 preempt_dynamic_init(); 8409 8410 scheduler_running = 1; 8411 } 8412 8413 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8414 8415 void __might_sleep(const char *file, int line) 8416 { 8417 unsigned int state = get_current_state(); 8418 /* 8419 * Blocking primitives will set (and therefore destroy) current->state, 8420 * since we will exit with TASK_RUNNING make sure we enter with it, 8421 * otherwise we will destroy state. 8422 */ 8423 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8424 "do not call blocking ops when !TASK_RUNNING; " 8425 "state=%x set at [<%p>] %pS\n", state, 8426 (void *)current->task_state_change, 8427 (void *)current->task_state_change); 8428 8429 __might_resched(file, line, 0); 8430 } 8431 EXPORT_SYMBOL(__might_sleep); 8432 8433 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8434 { 8435 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8436 return; 8437 8438 if (preempt_count() == preempt_offset) 8439 return; 8440 8441 pr_err("Preemption disabled at:"); 8442 print_ip_sym(KERN_ERR, ip); 8443 } 8444 8445 static inline bool resched_offsets_ok(unsigned int offsets) 8446 { 8447 unsigned int nested = preempt_count(); 8448 8449 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8450 8451 return nested == offsets; 8452 } 8453 8454 void __might_resched(const char *file, int line, unsigned int offsets) 8455 { 8456 /* Ratelimiting timestamp: */ 8457 static unsigned long prev_jiffy; 8458 8459 unsigned long preempt_disable_ip; 8460 8461 /* WARN_ON_ONCE() by default, no rate limit required: */ 8462 rcu_sleep_check(); 8463 8464 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8465 !is_idle_task(current) && !current->non_block_count) || 8466 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8467 oops_in_progress) 8468 return; 8469 8470 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8471 return; 8472 prev_jiffy = jiffies; 8473 8474 /* Save this before calling printk(), since that will clobber it: */ 8475 preempt_disable_ip = get_preempt_disable_ip(current); 8476 8477 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8478 file, line); 8479 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8480 in_atomic(), irqs_disabled(), current->non_block_count, 8481 current->pid, current->comm); 8482 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8483 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8484 8485 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8486 pr_err("RCU nest depth: %d, expected: %u\n", 8487 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8488 } 8489 8490 if (task_stack_end_corrupted(current)) 8491 pr_emerg("Thread overran stack, or stack corrupted\n"); 8492 8493 debug_show_held_locks(current); 8494 if (irqs_disabled()) 8495 print_irqtrace_events(current); 8496 8497 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8498 preempt_disable_ip); 8499 8500 dump_stack(); 8501 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8502 } 8503 EXPORT_SYMBOL(__might_resched); 8504 8505 void __cant_sleep(const char *file, int line, int preempt_offset) 8506 { 8507 static unsigned long prev_jiffy; 8508 8509 if (irqs_disabled()) 8510 return; 8511 8512 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8513 return; 8514 8515 if (preempt_count() > preempt_offset) 8516 return; 8517 8518 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8519 return; 8520 prev_jiffy = jiffies; 8521 8522 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8523 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8524 in_atomic(), irqs_disabled(), 8525 current->pid, current->comm); 8526 8527 debug_show_held_locks(current); 8528 dump_stack(); 8529 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8530 } 8531 EXPORT_SYMBOL_GPL(__cant_sleep); 8532 8533 #ifdef CONFIG_SMP 8534 void __cant_migrate(const char *file, int line) 8535 { 8536 static unsigned long prev_jiffy; 8537 8538 if (irqs_disabled()) 8539 return; 8540 8541 if (is_migration_disabled(current)) 8542 return; 8543 8544 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8545 return; 8546 8547 if (preempt_count() > 0) 8548 return; 8549 8550 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8551 return; 8552 prev_jiffy = jiffies; 8553 8554 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8555 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8556 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8557 current->pid, current->comm); 8558 8559 debug_show_held_locks(current); 8560 dump_stack(); 8561 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8562 } 8563 EXPORT_SYMBOL_GPL(__cant_migrate); 8564 #endif 8565 #endif 8566 8567 #ifdef CONFIG_MAGIC_SYSRQ 8568 void normalize_rt_tasks(void) 8569 { 8570 struct task_struct *g, *p; 8571 struct sched_attr attr = { 8572 .sched_policy = SCHED_NORMAL, 8573 }; 8574 8575 read_lock(&tasklist_lock); 8576 for_each_process_thread(g, p) { 8577 /* 8578 * Only normalize user tasks: 8579 */ 8580 if (p->flags & PF_KTHREAD) 8581 continue; 8582 8583 p->se.exec_start = 0; 8584 schedstat_set(p->stats.wait_start, 0); 8585 schedstat_set(p->stats.sleep_start, 0); 8586 schedstat_set(p->stats.block_start, 0); 8587 8588 if (!dl_task(p) && !rt_task(p)) { 8589 /* 8590 * Renice negative nice level userspace 8591 * tasks back to 0: 8592 */ 8593 if (task_nice(p) < 0) 8594 set_user_nice(p, 0); 8595 continue; 8596 } 8597 8598 __sched_setscheduler(p, &attr, false, false); 8599 } 8600 read_unlock(&tasklist_lock); 8601 } 8602 8603 #endif /* CONFIG_MAGIC_SYSRQ */ 8604 8605 #if defined(CONFIG_KGDB_KDB) 8606 /* 8607 * These functions are only useful for KDB. 8608 * 8609 * They can only be called when the whole system has been 8610 * stopped - every CPU needs to be quiescent, and no scheduling 8611 * activity can take place. Using them for anything else would 8612 * be a serious bug, and as a result, they aren't even visible 8613 * under any other configuration. 8614 */ 8615 8616 /** 8617 * curr_task - return the current task for a given CPU. 8618 * @cpu: the processor in question. 8619 * 8620 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8621 * 8622 * Return: The current task for @cpu. 8623 */ 8624 struct task_struct *curr_task(int cpu) 8625 { 8626 return cpu_curr(cpu); 8627 } 8628 8629 #endif /* defined(CONFIG_KGDB_KDB) */ 8630 8631 #ifdef CONFIG_CGROUP_SCHED 8632 /* task_group_lock serializes the addition/removal of task groups */ 8633 static DEFINE_SPINLOCK(task_group_lock); 8634 8635 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8636 struct task_group *parent) 8637 { 8638 #ifdef CONFIG_UCLAMP_TASK_GROUP 8639 enum uclamp_id clamp_id; 8640 8641 for_each_clamp_id(clamp_id) { 8642 uclamp_se_set(&tg->uclamp_req[clamp_id], 8643 uclamp_none(clamp_id), false); 8644 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8645 } 8646 #endif 8647 } 8648 8649 static void sched_free_group(struct task_group *tg) 8650 { 8651 free_fair_sched_group(tg); 8652 free_rt_sched_group(tg); 8653 autogroup_free(tg); 8654 kmem_cache_free(task_group_cache, tg); 8655 } 8656 8657 static void sched_free_group_rcu(struct rcu_head *rcu) 8658 { 8659 sched_free_group(container_of(rcu, struct task_group, rcu)); 8660 } 8661 8662 static void sched_unregister_group(struct task_group *tg) 8663 { 8664 unregister_fair_sched_group(tg); 8665 unregister_rt_sched_group(tg); 8666 /* 8667 * We have to wait for yet another RCU grace period to expire, as 8668 * print_cfs_stats() might run concurrently. 8669 */ 8670 call_rcu(&tg->rcu, sched_free_group_rcu); 8671 } 8672 8673 /* allocate runqueue etc for a new task group */ 8674 struct task_group *sched_create_group(struct task_group *parent) 8675 { 8676 struct task_group *tg; 8677 8678 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8679 if (!tg) 8680 return ERR_PTR(-ENOMEM); 8681 8682 if (!alloc_fair_sched_group(tg, parent)) 8683 goto err; 8684 8685 if (!alloc_rt_sched_group(tg, parent)) 8686 goto err; 8687 8688 alloc_uclamp_sched_group(tg, parent); 8689 8690 return tg; 8691 8692 err: 8693 sched_free_group(tg); 8694 return ERR_PTR(-ENOMEM); 8695 } 8696 8697 void sched_online_group(struct task_group *tg, struct task_group *parent) 8698 { 8699 unsigned long flags; 8700 8701 spin_lock_irqsave(&task_group_lock, flags); 8702 list_add_rcu(&tg->list, &task_groups); 8703 8704 /* Root should already exist: */ 8705 WARN_ON(!parent); 8706 8707 tg->parent = parent; 8708 INIT_LIST_HEAD(&tg->children); 8709 list_add_rcu(&tg->siblings, &parent->children); 8710 spin_unlock_irqrestore(&task_group_lock, flags); 8711 8712 online_fair_sched_group(tg); 8713 } 8714 8715 /* RCU callback to free various structures associated with a task group */ 8716 static void sched_unregister_group_rcu(struct rcu_head *rhp) 8717 { 8718 /* Now it should be safe to free those cfs_rqs: */ 8719 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 8720 } 8721 8722 void sched_destroy_group(struct task_group *tg) 8723 { 8724 /* Wait for possible concurrent references to cfs_rqs complete: */ 8725 call_rcu(&tg->rcu, sched_unregister_group_rcu); 8726 } 8727 8728 void sched_release_group(struct task_group *tg) 8729 { 8730 unsigned long flags; 8731 8732 /* 8733 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 8734 * sched_cfs_period_timer()). 8735 * 8736 * For this to be effective, we have to wait for all pending users of 8737 * this task group to leave their RCU critical section to ensure no new 8738 * user will see our dying task group any more. Specifically ensure 8739 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 8740 * 8741 * We therefore defer calling unregister_fair_sched_group() to 8742 * sched_unregister_group() which is guarantied to get called only after the 8743 * current RCU grace period has expired. 8744 */ 8745 spin_lock_irqsave(&task_group_lock, flags); 8746 list_del_rcu(&tg->list); 8747 list_del_rcu(&tg->siblings); 8748 spin_unlock_irqrestore(&task_group_lock, flags); 8749 } 8750 8751 static struct task_group *sched_get_task_group(struct task_struct *tsk) 8752 { 8753 struct task_group *tg; 8754 8755 /* 8756 * All callers are synchronized by task_rq_lock(); we do not use RCU 8757 * which is pointless here. Thus, we pass "true" to task_css_check() 8758 * to prevent lockdep warnings. 8759 */ 8760 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8761 struct task_group, css); 8762 tg = autogroup_task_group(tsk, tg); 8763 8764 return tg; 8765 } 8766 8767 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 8768 { 8769 tsk->sched_task_group = group; 8770 8771 #ifdef CONFIG_FAIR_GROUP_SCHED 8772 if (tsk->sched_class->task_change_group) 8773 tsk->sched_class->task_change_group(tsk); 8774 else 8775 #endif 8776 set_task_rq(tsk, task_cpu(tsk)); 8777 } 8778 8779 /* 8780 * Change task's runqueue when it moves between groups. 8781 * 8782 * The caller of this function should have put the task in its new group by 8783 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8784 * its new group. 8785 */ 8786 void sched_move_task(struct task_struct *tsk) 8787 { 8788 int queued, running, queue_flags = 8789 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8790 struct task_group *group; 8791 struct rq *rq; 8792 8793 CLASS(task_rq_lock, rq_guard)(tsk); 8794 rq = rq_guard.rq; 8795 8796 /* 8797 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 8798 * group changes. 8799 */ 8800 group = sched_get_task_group(tsk); 8801 if (group == tsk->sched_task_group) 8802 return; 8803 8804 update_rq_clock(rq); 8805 8806 running = task_current(rq, tsk); 8807 queued = task_on_rq_queued(tsk); 8808 8809 if (queued) 8810 dequeue_task(rq, tsk, queue_flags); 8811 if (running) 8812 put_prev_task(rq, tsk); 8813 8814 sched_change_group(tsk, group); 8815 8816 if (queued) 8817 enqueue_task(rq, tsk, queue_flags); 8818 if (running) { 8819 set_next_task(rq, tsk); 8820 /* 8821 * After changing group, the running task may have joined a 8822 * throttled one but it's still the running task. Trigger a 8823 * resched to make sure that task can still run. 8824 */ 8825 resched_curr(rq); 8826 } 8827 } 8828 8829 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8830 { 8831 return css ? container_of(css, struct task_group, css) : NULL; 8832 } 8833 8834 static struct cgroup_subsys_state * 8835 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8836 { 8837 struct task_group *parent = css_tg(parent_css); 8838 struct task_group *tg; 8839 8840 if (!parent) { 8841 /* This is early initialization for the top cgroup */ 8842 return &root_task_group.css; 8843 } 8844 8845 tg = sched_create_group(parent); 8846 if (IS_ERR(tg)) 8847 return ERR_PTR(-ENOMEM); 8848 8849 return &tg->css; 8850 } 8851 8852 /* Expose task group only after completing cgroup initialization */ 8853 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8854 { 8855 struct task_group *tg = css_tg(css); 8856 struct task_group *parent = css_tg(css->parent); 8857 8858 if (parent) 8859 sched_online_group(tg, parent); 8860 8861 #ifdef CONFIG_UCLAMP_TASK_GROUP 8862 /* Propagate the effective uclamp value for the new group */ 8863 guard(mutex)(&uclamp_mutex); 8864 guard(rcu)(); 8865 cpu_util_update_eff(css); 8866 #endif 8867 8868 return 0; 8869 } 8870 8871 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8872 { 8873 struct task_group *tg = css_tg(css); 8874 8875 sched_release_group(tg); 8876 } 8877 8878 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8879 { 8880 struct task_group *tg = css_tg(css); 8881 8882 /* 8883 * Relies on the RCU grace period between css_released() and this. 8884 */ 8885 sched_unregister_group(tg); 8886 } 8887 8888 #ifdef CONFIG_RT_GROUP_SCHED 8889 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8890 { 8891 struct task_struct *task; 8892 struct cgroup_subsys_state *css; 8893 8894 cgroup_taskset_for_each(task, css, tset) { 8895 if (!sched_rt_can_attach(css_tg(css), task)) 8896 return -EINVAL; 8897 } 8898 return 0; 8899 } 8900 #endif 8901 8902 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8903 { 8904 struct task_struct *task; 8905 struct cgroup_subsys_state *css; 8906 8907 cgroup_taskset_for_each(task, css, tset) 8908 sched_move_task(task); 8909 } 8910 8911 #ifdef CONFIG_UCLAMP_TASK_GROUP 8912 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 8913 { 8914 struct cgroup_subsys_state *top_css = css; 8915 struct uclamp_se *uc_parent = NULL; 8916 struct uclamp_se *uc_se = NULL; 8917 unsigned int eff[UCLAMP_CNT]; 8918 enum uclamp_id clamp_id; 8919 unsigned int clamps; 8920 8921 lockdep_assert_held(&uclamp_mutex); 8922 SCHED_WARN_ON(!rcu_read_lock_held()); 8923 8924 css_for_each_descendant_pre(css, top_css) { 8925 uc_parent = css_tg(css)->parent 8926 ? css_tg(css)->parent->uclamp : NULL; 8927 8928 for_each_clamp_id(clamp_id) { 8929 /* Assume effective clamps matches requested clamps */ 8930 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 8931 /* Cap effective clamps with parent's effective clamps */ 8932 if (uc_parent && 8933 eff[clamp_id] > uc_parent[clamp_id].value) { 8934 eff[clamp_id] = uc_parent[clamp_id].value; 8935 } 8936 } 8937 /* Ensure protection is always capped by limit */ 8938 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 8939 8940 /* Propagate most restrictive effective clamps */ 8941 clamps = 0x0; 8942 uc_se = css_tg(css)->uclamp; 8943 for_each_clamp_id(clamp_id) { 8944 if (eff[clamp_id] == uc_se[clamp_id].value) 8945 continue; 8946 uc_se[clamp_id].value = eff[clamp_id]; 8947 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 8948 clamps |= (0x1 << clamp_id); 8949 } 8950 if (!clamps) { 8951 css = css_rightmost_descendant(css); 8952 continue; 8953 } 8954 8955 /* Immediately update descendants RUNNABLE tasks */ 8956 uclamp_update_active_tasks(css); 8957 } 8958 } 8959 8960 /* 8961 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 8962 * C expression. Since there is no way to convert a macro argument (N) into a 8963 * character constant, use two levels of macros. 8964 */ 8965 #define _POW10(exp) ((unsigned int)1e##exp) 8966 #define POW10(exp) _POW10(exp) 8967 8968 struct uclamp_request { 8969 #define UCLAMP_PERCENT_SHIFT 2 8970 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 8971 s64 percent; 8972 u64 util; 8973 int ret; 8974 }; 8975 8976 static inline struct uclamp_request 8977 capacity_from_percent(char *buf) 8978 { 8979 struct uclamp_request req = { 8980 .percent = UCLAMP_PERCENT_SCALE, 8981 .util = SCHED_CAPACITY_SCALE, 8982 .ret = 0, 8983 }; 8984 8985 buf = strim(buf); 8986 if (strcmp(buf, "max")) { 8987 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 8988 &req.percent); 8989 if (req.ret) 8990 return req; 8991 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 8992 req.ret = -ERANGE; 8993 return req; 8994 } 8995 8996 req.util = req.percent << SCHED_CAPACITY_SHIFT; 8997 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 8998 } 8999 9000 return req; 9001 } 9002 9003 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9004 size_t nbytes, loff_t off, 9005 enum uclamp_id clamp_id) 9006 { 9007 struct uclamp_request req; 9008 struct task_group *tg; 9009 9010 req = capacity_from_percent(buf); 9011 if (req.ret) 9012 return req.ret; 9013 9014 static_branch_enable(&sched_uclamp_used); 9015 9016 guard(mutex)(&uclamp_mutex); 9017 guard(rcu)(); 9018 9019 tg = css_tg(of_css(of)); 9020 if (tg->uclamp_req[clamp_id].value != req.util) 9021 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9022 9023 /* 9024 * Because of not recoverable conversion rounding we keep track of the 9025 * exact requested value 9026 */ 9027 tg->uclamp_pct[clamp_id] = req.percent; 9028 9029 /* Update effective clamps to track the most restrictive value */ 9030 cpu_util_update_eff(of_css(of)); 9031 9032 return nbytes; 9033 } 9034 9035 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9036 char *buf, size_t nbytes, 9037 loff_t off) 9038 { 9039 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9040 } 9041 9042 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9043 char *buf, size_t nbytes, 9044 loff_t off) 9045 { 9046 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9047 } 9048 9049 static inline void cpu_uclamp_print(struct seq_file *sf, 9050 enum uclamp_id clamp_id) 9051 { 9052 struct task_group *tg; 9053 u64 util_clamp; 9054 u64 percent; 9055 u32 rem; 9056 9057 scoped_guard (rcu) { 9058 tg = css_tg(seq_css(sf)); 9059 util_clamp = tg->uclamp_req[clamp_id].value; 9060 } 9061 9062 if (util_clamp == SCHED_CAPACITY_SCALE) { 9063 seq_puts(sf, "max\n"); 9064 return; 9065 } 9066 9067 percent = tg->uclamp_pct[clamp_id]; 9068 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9069 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9070 } 9071 9072 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9073 { 9074 cpu_uclamp_print(sf, UCLAMP_MIN); 9075 return 0; 9076 } 9077 9078 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9079 { 9080 cpu_uclamp_print(sf, UCLAMP_MAX); 9081 return 0; 9082 } 9083 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9084 9085 #ifdef CONFIG_FAIR_GROUP_SCHED 9086 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9087 struct cftype *cftype, u64 shareval) 9088 { 9089 if (shareval > scale_load_down(ULONG_MAX)) 9090 shareval = MAX_SHARES; 9091 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 9092 } 9093 9094 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9095 struct cftype *cft) 9096 { 9097 struct task_group *tg = css_tg(css); 9098 9099 return (u64) scale_load_down(tg->shares); 9100 } 9101 9102 #ifdef CONFIG_CFS_BANDWIDTH 9103 static DEFINE_MUTEX(cfs_constraints_mutex); 9104 9105 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9106 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9107 /* More than 203 days if BW_SHIFT equals 20. */ 9108 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9109 9110 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9111 9112 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9113 u64 burst) 9114 { 9115 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9116 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9117 9118 if (tg == &root_task_group) 9119 return -EINVAL; 9120 9121 /* 9122 * Ensure we have at some amount of bandwidth every period. This is 9123 * to prevent reaching a state of large arrears when throttled via 9124 * entity_tick() resulting in prolonged exit starvation. 9125 */ 9126 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9127 return -EINVAL; 9128 9129 /* 9130 * Likewise, bound things on the other side by preventing insane quota 9131 * periods. This also allows us to normalize in computing quota 9132 * feasibility. 9133 */ 9134 if (period > max_cfs_quota_period) 9135 return -EINVAL; 9136 9137 /* 9138 * Bound quota to defend quota against overflow during bandwidth shift. 9139 */ 9140 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9141 return -EINVAL; 9142 9143 if (quota != RUNTIME_INF && (burst > quota || 9144 burst + quota > max_cfs_runtime)) 9145 return -EINVAL; 9146 9147 /* 9148 * Prevent race between setting of cfs_rq->runtime_enabled and 9149 * unthrottle_offline_cfs_rqs(). 9150 */ 9151 guard(cpus_read_lock)(); 9152 guard(mutex)(&cfs_constraints_mutex); 9153 9154 ret = __cfs_schedulable(tg, period, quota); 9155 if (ret) 9156 return ret; 9157 9158 runtime_enabled = quota != RUNTIME_INF; 9159 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9160 /* 9161 * If we need to toggle cfs_bandwidth_used, off->on must occur 9162 * before making related changes, and on->off must occur afterwards 9163 */ 9164 if (runtime_enabled && !runtime_was_enabled) 9165 cfs_bandwidth_usage_inc(); 9166 9167 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9168 cfs_b->period = ns_to_ktime(period); 9169 cfs_b->quota = quota; 9170 cfs_b->burst = burst; 9171 9172 __refill_cfs_bandwidth_runtime(cfs_b); 9173 9174 /* 9175 * Restart the period timer (if active) to handle new 9176 * period expiry: 9177 */ 9178 if (runtime_enabled) 9179 start_cfs_bandwidth(cfs_b); 9180 } 9181 9182 for_each_online_cpu(i) { 9183 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9184 struct rq *rq = cfs_rq->rq; 9185 9186 guard(rq_lock_irq)(rq); 9187 cfs_rq->runtime_enabled = runtime_enabled; 9188 cfs_rq->runtime_remaining = 0; 9189 9190 if (cfs_rq->throttled) 9191 unthrottle_cfs_rq(cfs_rq); 9192 } 9193 9194 if (runtime_was_enabled && !runtime_enabled) 9195 cfs_bandwidth_usage_dec(); 9196 9197 return 0; 9198 } 9199 9200 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9201 { 9202 u64 quota, period, burst; 9203 9204 period = ktime_to_ns(tg->cfs_bandwidth.period); 9205 burst = tg->cfs_bandwidth.burst; 9206 if (cfs_quota_us < 0) 9207 quota = RUNTIME_INF; 9208 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9209 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9210 else 9211 return -EINVAL; 9212 9213 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9214 } 9215 9216 static long tg_get_cfs_quota(struct task_group *tg) 9217 { 9218 u64 quota_us; 9219 9220 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9221 return -1; 9222 9223 quota_us = tg->cfs_bandwidth.quota; 9224 do_div(quota_us, NSEC_PER_USEC); 9225 9226 return quota_us; 9227 } 9228 9229 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9230 { 9231 u64 quota, period, burst; 9232 9233 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9234 return -EINVAL; 9235 9236 period = (u64)cfs_period_us * NSEC_PER_USEC; 9237 quota = tg->cfs_bandwidth.quota; 9238 burst = tg->cfs_bandwidth.burst; 9239 9240 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9241 } 9242 9243 static long tg_get_cfs_period(struct task_group *tg) 9244 { 9245 u64 cfs_period_us; 9246 9247 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9248 do_div(cfs_period_us, NSEC_PER_USEC); 9249 9250 return cfs_period_us; 9251 } 9252 9253 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9254 { 9255 u64 quota, period, burst; 9256 9257 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9258 return -EINVAL; 9259 9260 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9261 period = ktime_to_ns(tg->cfs_bandwidth.period); 9262 quota = tg->cfs_bandwidth.quota; 9263 9264 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9265 } 9266 9267 static long tg_get_cfs_burst(struct task_group *tg) 9268 { 9269 u64 burst_us; 9270 9271 burst_us = tg->cfs_bandwidth.burst; 9272 do_div(burst_us, NSEC_PER_USEC); 9273 9274 return burst_us; 9275 } 9276 9277 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9278 struct cftype *cft) 9279 { 9280 return tg_get_cfs_quota(css_tg(css)); 9281 } 9282 9283 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9284 struct cftype *cftype, s64 cfs_quota_us) 9285 { 9286 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9287 } 9288 9289 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9290 struct cftype *cft) 9291 { 9292 return tg_get_cfs_period(css_tg(css)); 9293 } 9294 9295 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9296 struct cftype *cftype, u64 cfs_period_us) 9297 { 9298 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9299 } 9300 9301 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9302 struct cftype *cft) 9303 { 9304 return tg_get_cfs_burst(css_tg(css)); 9305 } 9306 9307 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9308 struct cftype *cftype, u64 cfs_burst_us) 9309 { 9310 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9311 } 9312 9313 struct cfs_schedulable_data { 9314 struct task_group *tg; 9315 u64 period, quota; 9316 }; 9317 9318 /* 9319 * normalize group quota/period to be quota/max_period 9320 * note: units are usecs 9321 */ 9322 static u64 normalize_cfs_quota(struct task_group *tg, 9323 struct cfs_schedulable_data *d) 9324 { 9325 u64 quota, period; 9326 9327 if (tg == d->tg) { 9328 period = d->period; 9329 quota = d->quota; 9330 } else { 9331 period = tg_get_cfs_period(tg); 9332 quota = tg_get_cfs_quota(tg); 9333 } 9334 9335 /* note: these should typically be equivalent */ 9336 if (quota == RUNTIME_INF || quota == -1) 9337 return RUNTIME_INF; 9338 9339 return to_ratio(period, quota); 9340 } 9341 9342 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9343 { 9344 struct cfs_schedulable_data *d = data; 9345 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9346 s64 quota = 0, parent_quota = -1; 9347 9348 if (!tg->parent) { 9349 quota = RUNTIME_INF; 9350 } else { 9351 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9352 9353 quota = normalize_cfs_quota(tg, d); 9354 parent_quota = parent_b->hierarchical_quota; 9355 9356 /* 9357 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9358 * always take the non-RUNTIME_INF min. On cgroup1, only 9359 * inherit when no limit is set. In both cases this is used 9360 * by the scheduler to determine if a given CFS task has a 9361 * bandwidth constraint at some higher level. 9362 */ 9363 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9364 if (quota == RUNTIME_INF) 9365 quota = parent_quota; 9366 else if (parent_quota != RUNTIME_INF) 9367 quota = min(quota, parent_quota); 9368 } else { 9369 if (quota == RUNTIME_INF) 9370 quota = parent_quota; 9371 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9372 return -EINVAL; 9373 } 9374 } 9375 cfs_b->hierarchical_quota = quota; 9376 9377 return 0; 9378 } 9379 9380 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9381 { 9382 struct cfs_schedulable_data data = { 9383 .tg = tg, 9384 .period = period, 9385 .quota = quota, 9386 }; 9387 9388 if (quota != RUNTIME_INF) { 9389 do_div(data.period, NSEC_PER_USEC); 9390 do_div(data.quota, NSEC_PER_USEC); 9391 } 9392 9393 guard(rcu)(); 9394 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9395 } 9396 9397 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9398 { 9399 struct task_group *tg = css_tg(seq_css(sf)); 9400 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9401 9402 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9403 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9404 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9405 9406 if (schedstat_enabled() && tg != &root_task_group) { 9407 struct sched_statistics *stats; 9408 u64 ws = 0; 9409 int i; 9410 9411 for_each_possible_cpu(i) { 9412 stats = __schedstats_from_se(tg->se[i]); 9413 ws += schedstat_val(stats->wait_sum); 9414 } 9415 9416 seq_printf(sf, "wait_sum %llu\n", ws); 9417 } 9418 9419 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9420 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9421 9422 return 0; 9423 } 9424 9425 static u64 throttled_time_self(struct task_group *tg) 9426 { 9427 int i; 9428 u64 total = 0; 9429 9430 for_each_possible_cpu(i) { 9431 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9432 } 9433 9434 return total; 9435 } 9436 9437 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9438 { 9439 struct task_group *tg = css_tg(seq_css(sf)); 9440 9441 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9442 9443 return 0; 9444 } 9445 #endif /* CONFIG_CFS_BANDWIDTH */ 9446 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9447 9448 #ifdef CONFIG_RT_GROUP_SCHED 9449 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9450 struct cftype *cft, s64 val) 9451 { 9452 return sched_group_set_rt_runtime(css_tg(css), val); 9453 } 9454 9455 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9456 struct cftype *cft) 9457 { 9458 return sched_group_rt_runtime(css_tg(css)); 9459 } 9460 9461 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9462 struct cftype *cftype, u64 rt_period_us) 9463 { 9464 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9465 } 9466 9467 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9468 struct cftype *cft) 9469 { 9470 return sched_group_rt_period(css_tg(css)); 9471 } 9472 #endif /* CONFIG_RT_GROUP_SCHED */ 9473 9474 #ifdef CONFIG_FAIR_GROUP_SCHED 9475 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9476 struct cftype *cft) 9477 { 9478 return css_tg(css)->idle; 9479 } 9480 9481 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9482 struct cftype *cft, s64 idle) 9483 { 9484 return sched_group_set_idle(css_tg(css), idle); 9485 } 9486 #endif 9487 9488 static struct cftype cpu_legacy_files[] = { 9489 #ifdef CONFIG_FAIR_GROUP_SCHED 9490 { 9491 .name = "shares", 9492 .read_u64 = cpu_shares_read_u64, 9493 .write_u64 = cpu_shares_write_u64, 9494 }, 9495 { 9496 .name = "idle", 9497 .read_s64 = cpu_idle_read_s64, 9498 .write_s64 = cpu_idle_write_s64, 9499 }, 9500 #endif 9501 #ifdef CONFIG_CFS_BANDWIDTH 9502 { 9503 .name = "cfs_quota_us", 9504 .read_s64 = cpu_cfs_quota_read_s64, 9505 .write_s64 = cpu_cfs_quota_write_s64, 9506 }, 9507 { 9508 .name = "cfs_period_us", 9509 .read_u64 = cpu_cfs_period_read_u64, 9510 .write_u64 = cpu_cfs_period_write_u64, 9511 }, 9512 { 9513 .name = "cfs_burst_us", 9514 .read_u64 = cpu_cfs_burst_read_u64, 9515 .write_u64 = cpu_cfs_burst_write_u64, 9516 }, 9517 { 9518 .name = "stat", 9519 .seq_show = cpu_cfs_stat_show, 9520 }, 9521 { 9522 .name = "stat.local", 9523 .seq_show = cpu_cfs_local_stat_show, 9524 }, 9525 #endif 9526 #ifdef CONFIG_RT_GROUP_SCHED 9527 { 9528 .name = "rt_runtime_us", 9529 .read_s64 = cpu_rt_runtime_read, 9530 .write_s64 = cpu_rt_runtime_write, 9531 }, 9532 { 9533 .name = "rt_period_us", 9534 .read_u64 = cpu_rt_period_read_uint, 9535 .write_u64 = cpu_rt_period_write_uint, 9536 }, 9537 #endif 9538 #ifdef CONFIG_UCLAMP_TASK_GROUP 9539 { 9540 .name = "uclamp.min", 9541 .flags = CFTYPE_NOT_ON_ROOT, 9542 .seq_show = cpu_uclamp_min_show, 9543 .write = cpu_uclamp_min_write, 9544 }, 9545 { 9546 .name = "uclamp.max", 9547 .flags = CFTYPE_NOT_ON_ROOT, 9548 .seq_show = cpu_uclamp_max_show, 9549 .write = cpu_uclamp_max_write, 9550 }, 9551 #endif 9552 { } /* Terminate */ 9553 }; 9554 9555 static int cpu_extra_stat_show(struct seq_file *sf, 9556 struct cgroup_subsys_state *css) 9557 { 9558 #ifdef CONFIG_CFS_BANDWIDTH 9559 { 9560 struct task_group *tg = css_tg(css); 9561 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9562 u64 throttled_usec, burst_usec; 9563 9564 throttled_usec = cfs_b->throttled_time; 9565 do_div(throttled_usec, NSEC_PER_USEC); 9566 burst_usec = cfs_b->burst_time; 9567 do_div(burst_usec, NSEC_PER_USEC); 9568 9569 seq_printf(sf, "nr_periods %d\n" 9570 "nr_throttled %d\n" 9571 "throttled_usec %llu\n" 9572 "nr_bursts %d\n" 9573 "burst_usec %llu\n", 9574 cfs_b->nr_periods, cfs_b->nr_throttled, 9575 throttled_usec, cfs_b->nr_burst, burst_usec); 9576 } 9577 #endif 9578 return 0; 9579 } 9580 9581 static int cpu_local_stat_show(struct seq_file *sf, 9582 struct cgroup_subsys_state *css) 9583 { 9584 #ifdef CONFIG_CFS_BANDWIDTH 9585 { 9586 struct task_group *tg = css_tg(css); 9587 u64 throttled_self_usec; 9588 9589 throttled_self_usec = throttled_time_self(tg); 9590 do_div(throttled_self_usec, NSEC_PER_USEC); 9591 9592 seq_printf(sf, "throttled_usec %llu\n", 9593 throttled_self_usec); 9594 } 9595 #endif 9596 return 0; 9597 } 9598 9599 #ifdef CONFIG_FAIR_GROUP_SCHED 9600 9601 static unsigned long tg_weight(struct task_group *tg) 9602 { 9603 return scale_load_down(tg->shares); 9604 } 9605 9606 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9607 struct cftype *cft) 9608 { 9609 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9610 } 9611 9612 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9613 struct cftype *cft, u64 cgrp_weight) 9614 { 9615 unsigned long weight; 9616 9617 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9618 return -ERANGE; 9619 9620 weight = sched_weight_from_cgroup(cgrp_weight); 9621 9622 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9623 } 9624 9625 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9626 struct cftype *cft) 9627 { 9628 unsigned long weight = tg_weight(css_tg(css)); 9629 int last_delta = INT_MAX; 9630 int prio, delta; 9631 9632 /* find the closest nice value to the current weight */ 9633 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9634 delta = abs(sched_prio_to_weight[prio] - weight); 9635 if (delta >= last_delta) 9636 break; 9637 last_delta = delta; 9638 } 9639 9640 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9641 } 9642 9643 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9644 struct cftype *cft, s64 nice) 9645 { 9646 unsigned long weight; 9647 int idx; 9648 9649 if (nice < MIN_NICE || nice > MAX_NICE) 9650 return -ERANGE; 9651 9652 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9653 idx = array_index_nospec(idx, 40); 9654 weight = sched_prio_to_weight[idx]; 9655 9656 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9657 } 9658 #endif 9659 9660 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9661 long period, long quota) 9662 { 9663 if (quota < 0) 9664 seq_puts(sf, "max"); 9665 else 9666 seq_printf(sf, "%ld", quota); 9667 9668 seq_printf(sf, " %ld\n", period); 9669 } 9670 9671 /* caller should put the current value in *@periodp before calling */ 9672 static int __maybe_unused cpu_period_quota_parse(char *buf, 9673 u64 *periodp, u64 *quotap) 9674 { 9675 char tok[21]; /* U64_MAX */ 9676 9677 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9678 return -EINVAL; 9679 9680 *periodp *= NSEC_PER_USEC; 9681 9682 if (sscanf(tok, "%llu", quotap)) 9683 *quotap *= NSEC_PER_USEC; 9684 else if (!strcmp(tok, "max")) 9685 *quotap = RUNTIME_INF; 9686 else 9687 return -EINVAL; 9688 9689 return 0; 9690 } 9691 9692 #ifdef CONFIG_CFS_BANDWIDTH 9693 static int cpu_max_show(struct seq_file *sf, void *v) 9694 { 9695 struct task_group *tg = css_tg(seq_css(sf)); 9696 9697 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9698 return 0; 9699 } 9700 9701 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9702 char *buf, size_t nbytes, loff_t off) 9703 { 9704 struct task_group *tg = css_tg(of_css(of)); 9705 u64 period = tg_get_cfs_period(tg); 9706 u64 burst = tg->cfs_bandwidth.burst; 9707 u64 quota; 9708 int ret; 9709 9710 ret = cpu_period_quota_parse(buf, &period, "a); 9711 if (!ret) 9712 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 9713 return ret ?: nbytes; 9714 } 9715 #endif 9716 9717 static struct cftype cpu_files[] = { 9718 #ifdef CONFIG_FAIR_GROUP_SCHED 9719 { 9720 .name = "weight", 9721 .flags = CFTYPE_NOT_ON_ROOT, 9722 .read_u64 = cpu_weight_read_u64, 9723 .write_u64 = cpu_weight_write_u64, 9724 }, 9725 { 9726 .name = "weight.nice", 9727 .flags = CFTYPE_NOT_ON_ROOT, 9728 .read_s64 = cpu_weight_nice_read_s64, 9729 .write_s64 = cpu_weight_nice_write_s64, 9730 }, 9731 { 9732 .name = "idle", 9733 .flags = CFTYPE_NOT_ON_ROOT, 9734 .read_s64 = cpu_idle_read_s64, 9735 .write_s64 = cpu_idle_write_s64, 9736 }, 9737 #endif 9738 #ifdef CONFIG_CFS_BANDWIDTH 9739 { 9740 .name = "max", 9741 .flags = CFTYPE_NOT_ON_ROOT, 9742 .seq_show = cpu_max_show, 9743 .write = cpu_max_write, 9744 }, 9745 { 9746 .name = "max.burst", 9747 .flags = CFTYPE_NOT_ON_ROOT, 9748 .read_u64 = cpu_cfs_burst_read_u64, 9749 .write_u64 = cpu_cfs_burst_write_u64, 9750 }, 9751 #endif 9752 #ifdef CONFIG_UCLAMP_TASK_GROUP 9753 { 9754 .name = "uclamp.min", 9755 .flags = CFTYPE_NOT_ON_ROOT, 9756 .seq_show = cpu_uclamp_min_show, 9757 .write = cpu_uclamp_min_write, 9758 }, 9759 { 9760 .name = "uclamp.max", 9761 .flags = CFTYPE_NOT_ON_ROOT, 9762 .seq_show = cpu_uclamp_max_show, 9763 .write = cpu_uclamp_max_write, 9764 }, 9765 #endif 9766 { } /* terminate */ 9767 }; 9768 9769 struct cgroup_subsys cpu_cgrp_subsys = { 9770 .css_alloc = cpu_cgroup_css_alloc, 9771 .css_online = cpu_cgroup_css_online, 9772 .css_released = cpu_cgroup_css_released, 9773 .css_free = cpu_cgroup_css_free, 9774 .css_extra_stat_show = cpu_extra_stat_show, 9775 .css_local_stat_show = cpu_local_stat_show, 9776 #ifdef CONFIG_RT_GROUP_SCHED 9777 .can_attach = cpu_cgroup_can_attach, 9778 #endif 9779 .attach = cpu_cgroup_attach, 9780 .legacy_cftypes = cpu_legacy_files, 9781 .dfl_cftypes = cpu_files, 9782 .early_init = true, 9783 .threaded = true, 9784 }; 9785 9786 #endif /* CONFIG_CGROUP_SCHED */ 9787 9788 void dump_cpu_task(int cpu) 9789 { 9790 if (cpu == smp_processor_id() && in_hardirq()) { 9791 struct pt_regs *regs; 9792 9793 regs = get_irq_regs(); 9794 if (regs) { 9795 show_regs(regs); 9796 return; 9797 } 9798 } 9799 9800 if (trigger_single_cpu_backtrace(cpu)) 9801 return; 9802 9803 pr_info("Task dump for CPU %d:\n", cpu); 9804 sched_show_task(cpu_curr(cpu)); 9805 } 9806 9807 /* 9808 * Nice levels are multiplicative, with a gentle 10% change for every 9809 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 9810 * nice 1, it will get ~10% less CPU time than another CPU-bound task 9811 * that remained on nice 0. 9812 * 9813 * The "10% effect" is relative and cumulative: from _any_ nice level, 9814 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 9815 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 9816 * If a task goes up by ~10% and another task goes down by ~10% then 9817 * the relative distance between them is ~25%.) 9818 */ 9819 const int sched_prio_to_weight[40] = { 9820 /* -20 */ 88761, 71755, 56483, 46273, 36291, 9821 /* -15 */ 29154, 23254, 18705, 14949, 11916, 9822 /* -10 */ 9548, 7620, 6100, 4904, 3906, 9823 /* -5 */ 3121, 2501, 1991, 1586, 1277, 9824 /* 0 */ 1024, 820, 655, 526, 423, 9825 /* 5 */ 335, 272, 215, 172, 137, 9826 /* 10 */ 110, 87, 70, 56, 45, 9827 /* 15 */ 36, 29, 23, 18, 15, 9828 }; 9829 9830 /* 9831 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 9832 * 9833 * In cases where the weight does not change often, we can use the 9834 * pre-calculated inverse to speed up arithmetics by turning divisions 9835 * into multiplications: 9836 */ 9837 const u32 sched_prio_to_wmult[40] = { 9838 /* -20 */ 48388, 59856, 76040, 92818, 118348, 9839 /* -15 */ 147320, 184698, 229616, 287308, 360437, 9840 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 9841 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 9842 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 9843 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 9844 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 9845 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 9846 }; 9847 9848 void call_trace_sched_update_nr_running(struct rq *rq, int count) 9849 { 9850 trace_sched_update_nr_running_tp(rq, count); 9851 } 9852 9853 #ifdef CONFIG_SCHED_MM_CID 9854 9855 /* 9856 * @cid_lock: Guarantee forward-progress of cid allocation. 9857 * 9858 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 9859 * is only used when contention is detected by the lock-free allocation so 9860 * forward progress can be guaranteed. 9861 */ 9862 DEFINE_RAW_SPINLOCK(cid_lock); 9863 9864 /* 9865 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 9866 * 9867 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 9868 * detected, it is set to 1 to ensure that all newly coming allocations are 9869 * serialized by @cid_lock until the allocation which detected contention 9870 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 9871 * of a cid allocation. 9872 */ 9873 int use_cid_lock; 9874 9875 /* 9876 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 9877 * concurrently with respect to the execution of the source runqueue context 9878 * switch. 9879 * 9880 * There is one basic properties we want to guarantee here: 9881 * 9882 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 9883 * used by a task. That would lead to concurrent allocation of the cid and 9884 * userspace corruption. 9885 * 9886 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 9887 * that a pair of loads observe at least one of a pair of stores, which can be 9888 * shown as: 9889 * 9890 * X = Y = 0 9891 * 9892 * w[X]=1 w[Y]=1 9893 * MB MB 9894 * r[Y]=y r[X]=x 9895 * 9896 * Which guarantees that x==0 && y==0 is impossible. But rather than using 9897 * values 0 and 1, this algorithm cares about specific state transitions of the 9898 * runqueue current task (as updated by the scheduler context switch), and the 9899 * per-mm/cpu cid value. 9900 * 9901 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 9902 * task->mm != mm for the rest of the discussion. There are two scheduler state 9903 * transitions on context switch we care about: 9904 * 9905 * (TSA) Store to rq->curr with transition from (N) to (Y) 9906 * 9907 * (TSB) Store to rq->curr with transition from (Y) to (N) 9908 * 9909 * On the remote-clear side, there is one transition we care about: 9910 * 9911 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 9912 * 9913 * There is also a transition to UNSET state which can be performed from all 9914 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 9915 * guarantees that only a single thread will succeed: 9916 * 9917 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 9918 * 9919 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 9920 * when a thread is actively using the cid (property (1)). 9921 * 9922 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 9923 * 9924 * Scenario A) (TSA)+(TMA) (from next task perspective) 9925 * 9926 * CPU0 CPU1 9927 * 9928 * Context switch CS-1 Remote-clear 9929 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 9930 * (implied barrier after cmpxchg) 9931 * - switch_mm_cid() 9932 * - memory barrier (see switch_mm_cid() 9933 * comment explaining how this barrier 9934 * is combined with other scheduler 9935 * barriers) 9936 * - mm_cid_get (next) 9937 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 9938 * 9939 * This Dekker ensures that either task (Y) is observed by the 9940 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 9941 * observed. 9942 * 9943 * If task (Y) store is observed by rcu_dereference(), it means that there is 9944 * still an active task on the cpu. Remote-clear will therefore not transition 9945 * to UNSET, which fulfills property (1). 9946 * 9947 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 9948 * it will move its state to UNSET, which clears the percpu cid perhaps 9949 * uselessly (which is not an issue for correctness). Because task (Y) is not 9950 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 9951 * state to UNSET is done with a cmpxchg expecting that the old state has the 9952 * LAZY flag set, only one thread will successfully UNSET. 9953 * 9954 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 9955 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 9956 * CPU1 will observe task (Y) and do nothing more, which is fine. 9957 * 9958 * What we are effectively preventing with this Dekker is a scenario where 9959 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 9960 * because this would UNSET a cid which is actively used. 9961 */ 9962 9963 void sched_mm_cid_migrate_from(struct task_struct *t) 9964 { 9965 t->migrate_from_cpu = task_cpu(t); 9966 } 9967 9968 static 9969 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 9970 struct task_struct *t, 9971 struct mm_cid *src_pcpu_cid) 9972 { 9973 struct mm_struct *mm = t->mm; 9974 struct task_struct *src_task; 9975 int src_cid, last_mm_cid; 9976 9977 if (!mm) 9978 return -1; 9979 9980 last_mm_cid = t->last_mm_cid; 9981 /* 9982 * If the migrated task has no last cid, or if the current 9983 * task on src rq uses the cid, it means the source cid does not need 9984 * to be moved to the destination cpu. 9985 */ 9986 if (last_mm_cid == -1) 9987 return -1; 9988 src_cid = READ_ONCE(src_pcpu_cid->cid); 9989 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 9990 return -1; 9991 9992 /* 9993 * If we observe an active task using the mm on this rq, it means we 9994 * are not the last task to be migrated from this cpu for this mm, so 9995 * there is no need to move src_cid to the destination cpu. 9996 */ 9997 guard(rcu)(); 9998 src_task = rcu_dereference(src_rq->curr); 9999 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10000 t->last_mm_cid = -1; 10001 return -1; 10002 } 10003 10004 return src_cid; 10005 } 10006 10007 static 10008 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10009 struct task_struct *t, 10010 struct mm_cid *src_pcpu_cid, 10011 int src_cid) 10012 { 10013 struct task_struct *src_task; 10014 struct mm_struct *mm = t->mm; 10015 int lazy_cid; 10016 10017 if (src_cid == -1) 10018 return -1; 10019 10020 /* 10021 * Attempt to clear the source cpu cid to move it to the destination 10022 * cpu. 10023 */ 10024 lazy_cid = mm_cid_set_lazy_put(src_cid); 10025 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10026 return -1; 10027 10028 /* 10029 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10030 * rq->curr->mm matches the scheduler barrier in context_switch() 10031 * between store to rq->curr and load of prev and next task's 10032 * per-mm/cpu cid. 10033 * 10034 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10035 * rq->curr->mm_cid_active matches the barrier in 10036 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10037 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10038 * load of per-mm/cpu cid. 10039 */ 10040 10041 /* 10042 * If we observe an active task using the mm on this rq after setting 10043 * the lazy-put flag, this task will be responsible for transitioning 10044 * from lazy-put flag set to MM_CID_UNSET. 10045 */ 10046 scoped_guard (rcu) { 10047 src_task = rcu_dereference(src_rq->curr); 10048 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10049 /* 10050 * We observed an active task for this mm, there is therefore 10051 * no point in moving this cid to the destination cpu. 10052 */ 10053 t->last_mm_cid = -1; 10054 return -1; 10055 } 10056 } 10057 10058 /* 10059 * The src_cid is unused, so it can be unset. 10060 */ 10061 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10062 return -1; 10063 return src_cid; 10064 } 10065 10066 /* 10067 * Migration to dst cpu. Called with dst_rq lock held. 10068 * Interrupts are disabled, which keeps the window of cid ownership without the 10069 * source rq lock held small. 10070 */ 10071 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10072 { 10073 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10074 struct mm_struct *mm = t->mm; 10075 int src_cid, dst_cid, src_cpu; 10076 struct rq *src_rq; 10077 10078 lockdep_assert_rq_held(dst_rq); 10079 10080 if (!mm) 10081 return; 10082 src_cpu = t->migrate_from_cpu; 10083 if (src_cpu == -1) { 10084 t->last_mm_cid = -1; 10085 return; 10086 } 10087 /* 10088 * Move the src cid if the dst cid is unset. This keeps id 10089 * allocation closest to 0 in cases where few threads migrate around 10090 * many CPUs. 10091 * 10092 * If destination cid is already set, we may have to just clear 10093 * the src cid to ensure compactness in frequent migrations 10094 * scenarios. 10095 * 10096 * It is not useful to clear the src cid when the number of threads is 10097 * greater or equal to the number of allowed CPUs, because user-space 10098 * can expect that the number of allowed cids can reach the number of 10099 * allowed CPUs. 10100 */ 10101 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10102 dst_cid = READ_ONCE(dst_pcpu_cid->cid); 10103 if (!mm_cid_is_unset(dst_cid) && 10104 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed) 10105 return; 10106 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10107 src_rq = cpu_rq(src_cpu); 10108 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10109 if (src_cid == -1) 10110 return; 10111 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10112 src_cid); 10113 if (src_cid == -1) 10114 return; 10115 if (!mm_cid_is_unset(dst_cid)) { 10116 __mm_cid_put(mm, src_cid); 10117 return; 10118 } 10119 /* Move src_cid to dst cpu. */ 10120 mm_cid_snapshot_time(dst_rq, mm); 10121 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10122 } 10123 10124 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10125 int cpu) 10126 { 10127 struct rq *rq = cpu_rq(cpu); 10128 struct task_struct *t; 10129 int cid, lazy_cid; 10130 10131 cid = READ_ONCE(pcpu_cid->cid); 10132 if (!mm_cid_is_valid(cid)) 10133 return; 10134 10135 /* 10136 * Clear the cpu cid if it is set to keep cid allocation compact. If 10137 * there happens to be other tasks left on the source cpu using this 10138 * mm, the next task using this mm will reallocate its cid on context 10139 * switch. 10140 */ 10141 lazy_cid = mm_cid_set_lazy_put(cid); 10142 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10143 return; 10144 10145 /* 10146 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10147 * rq->curr->mm matches the scheduler barrier in context_switch() 10148 * between store to rq->curr and load of prev and next task's 10149 * per-mm/cpu cid. 10150 * 10151 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10152 * rq->curr->mm_cid_active matches the barrier in 10153 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10154 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10155 * load of per-mm/cpu cid. 10156 */ 10157 10158 /* 10159 * If we observe an active task using the mm on this rq after setting 10160 * the lazy-put flag, that task will be responsible for transitioning 10161 * from lazy-put flag set to MM_CID_UNSET. 10162 */ 10163 scoped_guard (rcu) { 10164 t = rcu_dereference(rq->curr); 10165 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10166 return; 10167 } 10168 10169 /* 10170 * The cid is unused, so it can be unset. 10171 * Disable interrupts to keep the window of cid ownership without rq 10172 * lock small. 10173 */ 10174 scoped_guard (irqsave) { 10175 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10176 __mm_cid_put(mm, cid); 10177 } 10178 } 10179 10180 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10181 { 10182 struct rq *rq = cpu_rq(cpu); 10183 struct mm_cid *pcpu_cid; 10184 struct task_struct *curr; 10185 u64 rq_clock; 10186 10187 /* 10188 * rq->clock load is racy on 32-bit but one spurious clear once in a 10189 * while is irrelevant. 10190 */ 10191 rq_clock = READ_ONCE(rq->clock); 10192 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10193 10194 /* 10195 * In order to take care of infrequently scheduled tasks, bump the time 10196 * snapshot associated with this cid if an active task using the mm is 10197 * observed on this rq. 10198 */ 10199 scoped_guard (rcu) { 10200 curr = rcu_dereference(rq->curr); 10201 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10202 WRITE_ONCE(pcpu_cid->time, rq_clock); 10203 return; 10204 } 10205 } 10206 10207 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10208 return; 10209 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10210 } 10211 10212 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10213 int weight) 10214 { 10215 struct mm_cid *pcpu_cid; 10216 int cid; 10217 10218 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10219 cid = READ_ONCE(pcpu_cid->cid); 10220 if (!mm_cid_is_valid(cid) || cid < weight) 10221 return; 10222 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10223 } 10224 10225 static void task_mm_cid_work(struct callback_head *work) 10226 { 10227 unsigned long now = jiffies, old_scan, next_scan; 10228 struct task_struct *t = current; 10229 struct cpumask *cidmask; 10230 struct mm_struct *mm; 10231 int weight, cpu; 10232 10233 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 10234 10235 work->next = work; /* Prevent double-add */ 10236 if (t->flags & PF_EXITING) 10237 return; 10238 mm = t->mm; 10239 if (!mm) 10240 return; 10241 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10242 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10243 if (!old_scan) { 10244 unsigned long res; 10245 10246 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10247 if (res != old_scan) 10248 old_scan = res; 10249 else 10250 old_scan = next_scan; 10251 } 10252 if (time_before(now, old_scan)) 10253 return; 10254 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10255 return; 10256 cidmask = mm_cidmask(mm); 10257 /* Clear cids that were not recently used. */ 10258 for_each_possible_cpu(cpu) 10259 sched_mm_cid_remote_clear_old(mm, cpu); 10260 weight = cpumask_weight(cidmask); 10261 /* 10262 * Clear cids that are greater or equal to the cidmask weight to 10263 * recompact it. 10264 */ 10265 for_each_possible_cpu(cpu) 10266 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10267 } 10268 10269 void init_sched_mm_cid(struct task_struct *t) 10270 { 10271 struct mm_struct *mm = t->mm; 10272 int mm_users = 0; 10273 10274 if (mm) { 10275 mm_users = atomic_read(&mm->mm_users); 10276 if (mm_users == 1) 10277 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10278 } 10279 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10280 init_task_work(&t->cid_work, task_mm_cid_work); 10281 } 10282 10283 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10284 { 10285 struct callback_head *work = &curr->cid_work; 10286 unsigned long now = jiffies; 10287 10288 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10289 work->next != work) 10290 return; 10291 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10292 return; 10293 task_work_add(curr, work, TWA_RESUME); 10294 } 10295 10296 void sched_mm_cid_exit_signals(struct task_struct *t) 10297 { 10298 struct mm_struct *mm = t->mm; 10299 struct rq *rq; 10300 10301 if (!mm) 10302 return; 10303 10304 preempt_disable(); 10305 rq = this_rq(); 10306 guard(rq_lock_irqsave)(rq); 10307 preempt_enable_no_resched(); /* holding spinlock */ 10308 WRITE_ONCE(t->mm_cid_active, 0); 10309 /* 10310 * Store t->mm_cid_active before loading per-mm/cpu cid. 10311 * Matches barrier in sched_mm_cid_remote_clear_old(). 10312 */ 10313 smp_mb(); 10314 mm_cid_put(mm); 10315 t->last_mm_cid = t->mm_cid = -1; 10316 } 10317 10318 void sched_mm_cid_before_execve(struct task_struct *t) 10319 { 10320 struct mm_struct *mm = t->mm; 10321 struct rq *rq; 10322 10323 if (!mm) 10324 return; 10325 10326 preempt_disable(); 10327 rq = this_rq(); 10328 guard(rq_lock_irqsave)(rq); 10329 preempt_enable_no_resched(); /* holding spinlock */ 10330 WRITE_ONCE(t->mm_cid_active, 0); 10331 /* 10332 * Store t->mm_cid_active before loading per-mm/cpu cid. 10333 * Matches barrier in sched_mm_cid_remote_clear_old(). 10334 */ 10335 smp_mb(); 10336 mm_cid_put(mm); 10337 t->last_mm_cid = t->mm_cid = -1; 10338 } 10339 10340 void sched_mm_cid_after_execve(struct task_struct *t) 10341 { 10342 struct mm_struct *mm = t->mm; 10343 struct rq *rq; 10344 10345 if (!mm) 10346 return; 10347 10348 preempt_disable(); 10349 rq = this_rq(); 10350 scoped_guard (rq_lock_irqsave, rq) { 10351 preempt_enable_no_resched(); /* holding spinlock */ 10352 WRITE_ONCE(t->mm_cid_active, 1); 10353 /* 10354 * Store t->mm_cid_active before loading per-mm/cpu cid. 10355 * Matches barrier in sched_mm_cid_remote_clear_old(). 10356 */ 10357 smp_mb(); 10358 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm); 10359 } 10360 rseq_set_notify_resume(t); 10361 } 10362 10363 void sched_mm_cid_fork(struct task_struct *t) 10364 { 10365 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10366 t->mm_cid_active = 1; 10367 } 10368 #endif 10369 10370 #ifdef CONFIG_SCHED_CLASS_EXT 10371 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10372 struct sched_enq_and_set_ctx *ctx) 10373 { 10374 struct rq *rq = task_rq(p); 10375 10376 lockdep_assert_rq_held(rq); 10377 10378 *ctx = (struct sched_enq_and_set_ctx){ 10379 .p = p, 10380 .queue_flags = queue_flags, 10381 .queued = task_on_rq_queued(p), 10382 .running = task_current(rq, p), 10383 }; 10384 10385 update_rq_clock(rq); 10386 if (ctx->queued) 10387 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10388 if (ctx->running) 10389 put_prev_task(rq, p); 10390 } 10391 10392 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10393 { 10394 struct rq *rq = task_rq(ctx->p); 10395 10396 lockdep_assert_rq_held(rq); 10397 10398 if (ctx->queued) 10399 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10400 if (ctx->running) 10401 set_next_task(rq, ctx->p); 10402 } 10403 #endif /* CONFIG_SCHED_CLASS_EXT */ 10404