1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 70 #ifdef CONFIG_PREEMPT_DYNAMIC 71 # ifdef CONFIG_GENERIC_ENTRY 72 # include <linux/entry-common.h> 73 # endif 74 #endif 75 76 #include <uapi/linux/sched/types.h> 77 78 #include <asm/irq_regs.h> 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <linux/sched/rseq_api.h> 84 #include <trace/events/sched.h> 85 #include <trace/events/ipi.h> 86 #undef CREATE_TRACE_POINTS 87 88 #include "sched.h" 89 #include "stats.h" 90 91 #include "autogroup.h" 92 #include "pelt.h" 93 #include "smp.h" 94 #include "stats.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 #ifdef CONFIG_SCHED_DEBUG 123 /* 124 * Debugging: various feature bits 125 * 126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 127 * sysctl_sched_features, defined in sched.h, to allow constants propagation 128 * at compile time and compiler optimization based on features default. 129 */ 130 #define SCHED_FEAT(name, enabled) \ 131 (1UL << __SCHED_FEAT_##name) * enabled | 132 const_debug unsigned int sysctl_sched_features = 133 #include "features.h" 134 0; 135 #undef SCHED_FEAT 136 137 /* 138 * Print a warning if need_resched is set for the given duration (if 139 * LATENCY_WARN is enabled). 140 * 141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 142 * per boot. 143 */ 144 __read_mostly int sysctl_resched_latency_warn_ms = 100; 145 __read_mostly int sysctl_resched_latency_warn_once = 1; 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 /* 149 * Number of tasks to iterate in a single balance run. 150 * Limited because this is done with IRQs disabled. 151 */ 152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 153 154 __read_mostly int scheduler_running; 155 156 #ifdef CONFIG_SCHED_CORE 157 158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 159 160 /* kernel prio, less is more */ 161 static inline int __task_prio(const struct task_struct *p) 162 { 163 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 164 return -2; 165 166 if (rt_prio(p->prio)) /* includes deadline */ 167 return p->prio; /* [-1, 99] */ 168 169 if (p->sched_class == &idle_sched_class) 170 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 171 172 if (task_on_scx(p)) 173 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 174 175 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 176 } 177 178 /* 179 * l(a,b) 180 * le(a,b) := !l(b,a) 181 * g(a,b) := l(b,a) 182 * ge(a,b) := !l(a,b) 183 */ 184 185 /* real prio, less is less */ 186 static inline bool prio_less(const struct task_struct *a, 187 const struct task_struct *b, bool in_fi) 188 { 189 190 int pa = __task_prio(a), pb = __task_prio(b); 191 192 if (-pa < -pb) 193 return true; 194 195 if (-pb < -pa) 196 return false; 197 198 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 199 return !dl_time_before(a->dl.deadline, b->dl.deadline); 200 201 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 202 return cfs_prio_less(a, b, in_fi); 203 204 #ifdef CONFIG_SCHED_CLASS_EXT 205 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 206 return scx_prio_less(a, b, in_fi); 207 #endif 208 209 return false; 210 } 211 212 static inline bool __sched_core_less(const struct task_struct *a, 213 const struct task_struct *b) 214 { 215 if (a->core_cookie < b->core_cookie) 216 return true; 217 218 if (a->core_cookie > b->core_cookie) 219 return false; 220 221 /* flip prio, so high prio is leftmost */ 222 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 223 return true; 224 225 return false; 226 } 227 228 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 229 230 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 231 { 232 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 233 } 234 235 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 236 { 237 const struct task_struct *p = __node_2_sc(node); 238 unsigned long cookie = (unsigned long)key; 239 240 if (cookie < p->core_cookie) 241 return -1; 242 243 if (cookie > p->core_cookie) 244 return 1; 245 246 return 0; 247 } 248 249 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 250 { 251 rq->core->core_task_seq++; 252 253 if (!p->core_cookie) 254 return; 255 256 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 257 } 258 259 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 260 { 261 rq->core->core_task_seq++; 262 263 if (sched_core_enqueued(p)) { 264 rb_erase(&p->core_node, &rq->core_tree); 265 RB_CLEAR_NODE(&p->core_node); 266 } 267 268 /* 269 * Migrating the last task off the cpu, with the cpu in forced idle 270 * state. Reschedule to create an accounting edge for forced idle, 271 * and re-examine whether the core is still in forced idle state. 272 */ 273 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 274 rq->core->core_forceidle_count && rq->curr == rq->idle) 275 resched_curr(rq); 276 } 277 278 static int sched_task_is_throttled(struct task_struct *p, int cpu) 279 { 280 if (p->sched_class->task_is_throttled) 281 return p->sched_class->task_is_throttled(p, cpu); 282 283 return 0; 284 } 285 286 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 287 { 288 struct rb_node *node = &p->core_node; 289 int cpu = task_cpu(p); 290 291 do { 292 node = rb_next(node); 293 if (!node) 294 return NULL; 295 296 p = __node_2_sc(node); 297 if (p->core_cookie != cookie) 298 return NULL; 299 300 } while (sched_task_is_throttled(p, cpu)); 301 302 return p; 303 } 304 305 /* 306 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 307 * If no suitable task is found, NULL will be returned. 308 */ 309 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 310 { 311 struct task_struct *p; 312 struct rb_node *node; 313 314 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 315 if (!node) 316 return NULL; 317 318 p = __node_2_sc(node); 319 if (!sched_task_is_throttled(p, rq->cpu)) 320 return p; 321 322 return sched_core_next(p, cookie); 323 } 324 325 /* 326 * Magic required such that: 327 * 328 * raw_spin_rq_lock(rq); 329 * ... 330 * raw_spin_rq_unlock(rq); 331 * 332 * ends up locking and unlocking the _same_ lock, and all CPUs 333 * always agree on what rq has what lock. 334 * 335 * XXX entirely possible to selectively enable cores, don't bother for now. 336 */ 337 338 static DEFINE_MUTEX(sched_core_mutex); 339 static atomic_t sched_core_count; 340 static struct cpumask sched_core_mask; 341 342 static void sched_core_lock(int cpu, unsigned long *flags) 343 { 344 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 345 int t, i = 0; 346 347 local_irq_save(*flags); 348 for_each_cpu(t, smt_mask) 349 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 350 } 351 352 static void sched_core_unlock(int cpu, unsigned long *flags) 353 { 354 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 355 int t; 356 357 for_each_cpu(t, smt_mask) 358 raw_spin_unlock(&cpu_rq(t)->__lock); 359 local_irq_restore(*flags); 360 } 361 362 static void __sched_core_flip(bool enabled) 363 { 364 unsigned long flags; 365 int cpu, t; 366 367 cpus_read_lock(); 368 369 /* 370 * Toggle the online cores, one by one. 371 */ 372 cpumask_copy(&sched_core_mask, cpu_online_mask); 373 for_each_cpu(cpu, &sched_core_mask) { 374 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 375 376 sched_core_lock(cpu, &flags); 377 378 for_each_cpu(t, smt_mask) 379 cpu_rq(t)->core_enabled = enabled; 380 381 cpu_rq(cpu)->core->core_forceidle_start = 0; 382 383 sched_core_unlock(cpu, &flags); 384 385 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 386 } 387 388 /* 389 * Toggle the offline CPUs. 390 */ 391 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 392 cpu_rq(cpu)->core_enabled = enabled; 393 394 cpus_read_unlock(); 395 } 396 397 static void sched_core_assert_empty(void) 398 { 399 int cpu; 400 401 for_each_possible_cpu(cpu) 402 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 403 } 404 405 static void __sched_core_enable(void) 406 { 407 static_branch_enable(&__sched_core_enabled); 408 /* 409 * Ensure all previous instances of raw_spin_rq_*lock() have finished 410 * and future ones will observe !sched_core_disabled(). 411 */ 412 synchronize_rcu(); 413 __sched_core_flip(true); 414 sched_core_assert_empty(); 415 } 416 417 static void __sched_core_disable(void) 418 { 419 sched_core_assert_empty(); 420 __sched_core_flip(false); 421 static_branch_disable(&__sched_core_enabled); 422 } 423 424 void sched_core_get(void) 425 { 426 if (atomic_inc_not_zero(&sched_core_count)) 427 return; 428 429 mutex_lock(&sched_core_mutex); 430 if (!atomic_read(&sched_core_count)) 431 __sched_core_enable(); 432 433 smp_mb__before_atomic(); 434 atomic_inc(&sched_core_count); 435 mutex_unlock(&sched_core_mutex); 436 } 437 438 static void __sched_core_put(struct work_struct *work) 439 { 440 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 441 __sched_core_disable(); 442 mutex_unlock(&sched_core_mutex); 443 } 444 } 445 446 void sched_core_put(void) 447 { 448 static DECLARE_WORK(_work, __sched_core_put); 449 450 /* 451 * "There can be only one" 452 * 453 * Either this is the last one, or we don't actually need to do any 454 * 'work'. If it is the last *again*, we rely on 455 * WORK_STRUCT_PENDING_BIT. 456 */ 457 if (!atomic_add_unless(&sched_core_count, -1, 1)) 458 schedule_work(&_work); 459 } 460 461 #else /* !CONFIG_SCHED_CORE */ 462 463 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 464 static inline void 465 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 466 467 #endif /* CONFIG_SCHED_CORE */ 468 469 /* 470 * Serialization rules: 471 * 472 * Lock order: 473 * 474 * p->pi_lock 475 * rq->lock 476 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 477 * 478 * rq1->lock 479 * rq2->lock where: rq1 < rq2 480 * 481 * Regular state: 482 * 483 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 484 * local CPU's rq->lock, it optionally removes the task from the runqueue and 485 * always looks at the local rq data structures to find the most eligible task 486 * to run next. 487 * 488 * Task enqueue is also under rq->lock, possibly taken from another CPU. 489 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 490 * the local CPU to avoid bouncing the runqueue state around [ see 491 * ttwu_queue_wakelist() ] 492 * 493 * Task wakeup, specifically wakeups that involve migration, are horribly 494 * complicated to avoid having to take two rq->locks. 495 * 496 * Special state: 497 * 498 * System-calls and anything external will use task_rq_lock() which acquires 499 * both p->pi_lock and rq->lock. As a consequence the state they change is 500 * stable while holding either lock: 501 * 502 * - sched_setaffinity()/ 503 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 504 * - set_user_nice(): p->se.load, p->*prio 505 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 506 * p->se.load, p->rt_priority, 507 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 508 * - sched_setnuma(): p->numa_preferred_nid 509 * - sched_move_task(): p->sched_task_group 510 * - uclamp_update_active() p->uclamp* 511 * 512 * p->state <- TASK_*: 513 * 514 * is changed locklessly using set_current_state(), __set_current_state() or 515 * set_special_state(), see their respective comments, or by 516 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 517 * concurrent self. 518 * 519 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 520 * 521 * is set by activate_task() and cleared by deactivate_task(), under 522 * rq->lock. Non-zero indicates the task is runnable, the special 523 * ON_RQ_MIGRATING state is used for migration without holding both 524 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 525 * 526 * p->on_cpu <- { 0, 1 }: 527 * 528 * is set by prepare_task() and cleared by finish_task() such that it will be 529 * set before p is scheduled-in and cleared after p is scheduled-out, both 530 * under rq->lock. Non-zero indicates the task is running on its CPU. 531 * 532 * [ The astute reader will observe that it is possible for two tasks on one 533 * CPU to have ->on_cpu = 1 at the same time. ] 534 * 535 * task_cpu(p): is changed by set_task_cpu(), the rules are: 536 * 537 * - Don't call set_task_cpu() on a blocked task: 538 * 539 * We don't care what CPU we're not running on, this simplifies hotplug, 540 * the CPU assignment of blocked tasks isn't required to be valid. 541 * 542 * - for try_to_wake_up(), called under p->pi_lock: 543 * 544 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 545 * 546 * - for migration called under rq->lock: 547 * [ see task_on_rq_migrating() in task_rq_lock() ] 548 * 549 * o move_queued_task() 550 * o detach_task() 551 * 552 * - for migration called under double_rq_lock(): 553 * 554 * o __migrate_swap_task() 555 * o push_rt_task() / pull_rt_task() 556 * o push_dl_task() / pull_dl_task() 557 * o dl_task_offline_migration() 558 * 559 */ 560 561 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 562 { 563 raw_spinlock_t *lock; 564 565 /* Matches synchronize_rcu() in __sched_core_enable() */ 566 preempt_disable(); 567 if (sched_core_disabled()) { 568 raw_spin_lock_nested(&rq->__lock, subclass); 569 /* preempt_count *MUST* be > 1 */ 570 preempt_enable_no_resched(); 571 return; 572 } 573 574 for (;;) { 575 lock = __rq_lockp(rq); 576 raw_spin_lock_nested(lock, subclass); 577 if (likely(lock == __rq_lockp(rq))) { 578 /* preempt_count *MUST* be > 1 */ 579 preempt_enable_no_resched(); 580 return; 581 } 582 raw_spin_unlock(lock); 583 } 584 } 585 586 bool raw_spin_rq_trylock(struct rq *rq) 587 { 588 raw_spinlock_t *lock; 589 bool ret; 590 591 /* Matches synchronize_rcu() in __sched_core_enable() */ 592 preempt_disable(); 593 if (sched_core_disabled()) { 594 ret = raw_spin_trylock(&rq->__lock); 595 preempt_enable(); 596 return ret; 597 } 598 599 for (;;) { 600 lock = __rq_lockp(rq); 601 ret = raw_spin_trylock(lock); 602 if (!ret || (likely(lock == __rq_lockp(rq)))) { 603 preempt_enable(); 604 return ret; 605 } 606 raw_spin_unlock(lock); 607 } 608 } 609 610 void raw_spin_rq_unlock(struct rq *rq) 611 { 612 raw_spin_unlock(rq_lockp(rq)); 613 } 614 615 #ifdef CONFIG_SMP 616 /* 617 * double_rq_lock - safely lock two runqueues 618 */ 619 void double_rq_lock(struct rq *rq1, struct rq *rq2) 620 { 621 lockdep_assert_irqs_disabled(); 622 623 if (rq_order_less(rq2, rq1)) 624 swap(rq1, rq2); 625 626 raw_spin_rq_lock(rq1); 627 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 628 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 629 630 double_rq_clock_clear_update(rq1, rq2); 631 } 632 #endif 633 634 /* 635 * __task_rq_lock - lock the rq @p resides on. 636 */ 637 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 638 __acquires(rq->lock) 639 { 640 struct rq *rq; 641 642 lockdep_assert_held(&p->pi_lock); 643 644 for (;;) { 645 rq = task_rq(p); 646 raw_spin_rq_lock(rq); 647 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 648 rq_pin_lock(rq, rf); 649 return rq; 650 } 651 raw_spin_rq_unlock(rq); 652 653 while (unlikely(task_on_rq_migrating(p))) 654 cpu_relax(); 655 } 656 } 657 658 /* 659 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 660 */ 661 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 662 __acquires(p->pi_lock) 663 __acquires(rq->lock) 664 { 665 struct rq *rq; 666 667 for (;;) { 668 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 669 rq = task_rq(p); 670 raw_spin_rq_lock(rq); 671 /* 672 * move_queued_task() task_rq_lock() 673 * 674 * ACQUIRE (rq->lock) 675 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 676 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 677 * [S] ->cpu = new_cpu [L] task_rq() 678 * [L] ->on_rq 679 * RELEASE (rq->lock) 680 * 681 * If we observe the old CPU in task_rq_lock(), the acquire of 682 * the old rq->lock will fully serialize against the stores. 683 * 684 * If we observe the new CPU in task_rq_lock(), the address 685 * dependency headed by '[L] rq = task_rq()' and the acquire 686 * will pair with the WMB to ensure we then also see migrating. 687 */ 688 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 689 rq_pin_lock(rq, rf); 690 return rq; 691 } 692 raw_spin_rq_unlock(rq); 693 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 694 695 while (unlikely(task_on_rq_migrating(p))) 696 cpu_relax(); 697 } 698 } 699 700 /* 701 * RQ-clock updating methods: 702 */ 703 704 static void update_rq_clock_task(struct rq *rq, s64 delta) 705 { 706 /* 707 * In theory, the compile should just see 0 here, and optimize out the call 708 * to sched_rt_avg_update. But I don't trust it... 709 */ 710 s64 __maybe_unused steal = 0, irq_delta = 0; 711 712 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 713 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 714 715 /* 716 * Since irq_time is only updated on {soft,}irq_exit, we might run into 717 * this case when a previous update_rq_clock() happened inside a 718 * {soft,}IRQ region. 719 * 720 * When this happens, we stop ->clock_task and only update the 721 * prev_irq_time stamp to account for the part that fit, so that a next 722 * update will consume the rest. This ensures ->clock_task is 723 * monotonic. 724 * 725 * It does however cause some slight miss-attribution of {soft,}IRQ 726 * time, a more accurate solution would be to update the irq_time using 727 * the current rq->clock timestamp, except that would require using 728 * atomic ops. 729 */ 730 if (irq_delta > delta) 731 irq_delta = delta; 732 733 rq->prev_irq_time += irq_delta; 734 delta -= irq_delta; 735 psi_account_irqtime(rq->curr, irq_delta); 736 delayacct_irq(rq->curr, irq_delta); 737 #endif 738 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 739 if (static_key_false((¶virt_steal_rq_enabled))) { 740 steal = paravirt_steal_clock(cpu_of(rq)); 741 steal -= rq->prev_steal_time_rq; 742 743 if (unlikely(steal > delta)) 744 steal = delta; 745 746 rq->prev_steal_time_rq += steal; 747 delta -= steal; 748 } 749 #endif 750 751 rq->clock_task += delta; 752 753 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 754 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 755 update_irq_load_avg(rq, irq_delta + steal); 756 #endif 757 update_rq_clock_pelt(rq, delta); 758 } 759 760 void update_rq_clock(struct rq *rq) 761 { 762 s64 delta; 763 764 lockdep_assert_rq_held(rq); 765 766 if (rq->clock_update_flags & RQCF_ACT_SKIP) 767 return; 768 769 #ifdef CONFIG_SCHED_DEBUG 770 if (sched_feat(WARN_DOUBLE_CLOCK)) 771 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 772 rq->clock_update_flags |= RQCF_UPDATED; 773 #endif 774 775 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 776 if (delta < 0) 777 return; 778 rq->clock += delta; 779 update_rq_clock_task(rq, delta); 780 } 781 782 #ifdef CONFIG_SCHED_HRTICK 783 /* 784 * Use HR-timers to deliver accurate preemption points. 785 */ 786 787 static void hrtick_clear(struct rq *rq) 788 { 789 if (hrtimer_active(&rq->hrtick_timer)) 790 hrtimer_cancel(&rq->hrtick_timer); 791 } 792 793 /* 794 * High-resolution timer tick. 795 * Runs from hardirq context with interrupts disabled. 796 */ 797 static enum hrtimer_restart hrtick(struct hrtimer *timer) 798 { 799 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 800 struct rq_flags rf; 801 802 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 803 804 rq_lock(rq, &rf); 805 update_rq_clock(rq); 806 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 807 rq_unlock(rq, &rf); 808 809 return HRTIMER_NORESTART; 810 } 811 812 #ifdef CONFIG_SMP 813 814 static void __hrtick_restart(struct rq *rq) 815 { 816 struct hrtimer *timer = &rq->hrtick_timer; 817 ktime_t time = rq->hrtick_time; 818 819 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 820 } 821 822 /* 823 * called from hardirq (IPI) context 824 */ 825 static void __hrtick_start(void *arg) 826 { 827 struct rq *rq = arg; 828 struct rq_flags rf; 829 830 rq_lock(rq, &rf); 831 __hrtick_restart(rq); 832 rq_unlock(rq, &rf); 833 } 834 835 /* 836 * Called to set the hrtick timer state. 837 * 838 * called with rq->lock held and IRQs disabled 839 */ 840 void hrtick_start(struct rq *rq, u64 delay) 841 { 842 struct hrtimer *timer = &rq->hrtick_timer; 843 s64 delta; 844 845 /* 846 * Don't schedule slices shorter than 10000ns, that just 847 * doesn't make sense and can cause timer DoS. 848 */ 849 delta = max_t(s64, delay, 10000LL); 850 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 851 852 if (rq == this_rq()) 853 __hrtick_restart(rq); 854 else 855 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 856 } 857 858 #else 859 /* 860 * Called to set the hrtick timer state. 861 * 862 * called with rq->lock held and IRQs disabled 863 */ 864 void hrtick_start(struct rq *rq, u64 delay) 865 { 866 /* 867 * Don't schedule slices shorter than 10000ns, that just 868 * doesn't make sense. Rely on vruntime for fairness. 869 */ 870 delay = max_t(u64, delay, 10000LL); 871 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 872 HRTIMER_MODE_REL_PINNED_HARD); 873 } 874 875 #endif /* CONFIG_SMP */ 876 877 static void hrtick_rq_init(struct rq *rq) 878 { 879 #ifdef CONFIG_SMP 880 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 881 #endif 882 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 883 rq->hrtick_timer.function = hrtick; 884 } 885 #else /* CONFIG_SCHED_HRTICK */ 886 static inline void hrtick_clear(struct rq *rq) 887 { 888 } 889 890 static inline void hrtick_rq_init(struct rq *rq) 891 { 892 } 893 #endif /* CONFIG_SCHED_HRTICK */ 894 895 /* 896 * try_cmpxchg based fetch_or() macro so it works for different integer types: 897 */ 898 #define fetch_or(ptr, mask) \ 899 ({ \ 900 typeof(ptr) _ptr = (ptr); \ 901 typeof(mask) _mask = (mask); \ 902 typeof(*_ptr) _val = *_ptr; \ 903 \ 904 do { \ 905 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 906 _val; \ 907 }) 908 909 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 910 /* 911 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 912 * this avoids any races wrt polling state changes and thereby avoids 913 * spurious IPIs. 914 */ 915 static inline bool set_nr_and_not_polling(struct task_struct *p) 916 { 917 struct thread_info *ti = task_thread_info(p); 918 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 919 } 920 921 /* 922 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 923 * 924 * If this returns true, then the idle task promises to call 925 * sched_ttwu_pending() and reschedule soon. 926 */ 927 static bool set_nr_if_polling(struct task_struct *p) 928 { 929 struct thread_info *ti = task_thread_info(p); 930 typeof(ti->flags) val = READ_ONCE(ti->flags); 931 932 do { 933 if (!(val & _TIF_POLLING_NRFLAG)) 934 return false; 935 if (val & _TIF_NEED_RESCHED) 936 return true; 937 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 938 939 return true; 940 } 941 942 #else 943 static inline bool set_nr_and_not_polling(struct task_struct *p) 944 { 945 set_tsk_need_resched(p); 946 return true; 947 } 948 949 #ifdef CONFIG_SMP 950 static inline bool set_nr_if_polling(struct task_struct *p) 951 { 952 return false; 953 } 954 #endif 955 #endif 956 957 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 958 { 959 struct wake_q_node *node = &task->wake_q; 960 961 /* 962 * Atomically grab the task, if ->wake_q is !nil already it means 963 * it's already queued (either by us or someone else) and will get the 964 * wakeup due to that. 965 * 966 * In order to ensure that a pending wakeup will observe our pending 967 * state, even in the failed case, an explicit smp_mb() must be used. 968 */ 969 smp_mb__before_atomic(); 970 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 971 return false; 972 973 /* 974 * The head is context local, there can be no concurrency. 975 */ 976 *head->lastp = node; 977 head->lastp = &node->next; 978 return true; 979 } 980 981 /** 982 * wake_q_add() - queue a wakeup for 'later' waking. 983 * @head: the wake_q_head to add @task to 984 * @task: the task to queue for 'later' wakeup 985 * 986 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 987 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 988 * instantly. 989 * 990 * This function must be used as-if it were wake_up_process(); IOW the task 991 * must be ready to be woken at this location. 992 */ 993 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 994 { 995 if (__wake_q_add(head, task)) 996 get_task_struct(task); 997 } 998 999 /** 1000 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1001 * @head: the wake_q_head to add @task to 1002 * @task: the task to queue for 'later' wakeup 1003 * 1004 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1005 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1006 * instantly. 1007 * 1008 * This function must be used as-if it were wake_up_process(); IOW the task 1009 * must be ready to be woken at this location. 1010 * 1011 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1012 * that already hold reference to @task can call the 'safe' version and trust 1013 * wake_q to do the right thing depending whether or not the @task is already 1014 * queued for wakeup. 1015 */ 1016 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1017 { 1018 if (!__wake_q_add(head, task)) 1019 put_task_struct(task); 1020 } 1021 1022 void wake_up_q(struct wake_q_head *head) 1023 { 1024 struct wake_q_node *node = head->first; 1025 1026 while (node != WAKE_Q_TAIL) { 1027 struct task_struct *task; 1028 1029 task = container_of(node, struct task_struct, wake_q); 1030 /* Task can safely be re-inserted now: */ 1031 node = node->next; 1032 task->wake_q.next = NULL; 1033 1034 /* 1035 * wake_up_process() executes a full barrier, which pairs with 1036 * the queueing in wake_q_add() so as not to miss wakeups. 1037 */ 1038 wake_up_process(task); 1039 put_task_struct(task); 1040 } 1041 } 1042 1043 /* 1044 * resched_curr - mark rq's current task 'to be rescheduled now'. 1045 * 1046 * On UP this means the setting of the need_resched flag, on SMP it 1047 * might also involve a cross-CPU call to trigger the scheduler on 1048 * the target CPU. 1049 */ 1050 void resched_curr(struct rq *rq) 1051 { 1052 struct task_struct *curr = rq->curr; 1053 int cpu; 1054 1055 lockdep_assert_rq_held(rq); 1056 1057 if (test_tsk_need_resched(curr)) 1058 return; 1059 1060 cpu = cpu_of(rq); 1061 1062 if (cpu == smp_processor_id()) { 1063 set_tsk_need_resched(curr); 1064 set_preempt_need_resched(); 1065 return; 1066 } 1067 1068 if (set_nr_and_not_polling(curr)) 1069 smp_send_reschedule(cpu); 1070 else 1071 trace_sched_wake_idle_without_ipi(cpu); 1072 } 1073 1074 void resched_cpu(int cpu) 1075 { 1076 struct rq *rq = cpu_rq(cpu); 1077 unsigned long flags; 1078 1079 raw_spin_rq_lock_irqsave(rq, flags); 1080 if (cpu_online(cpu) || cpu == smp_processor_id()) 1081 resched_curr(rq); 1082 raw_spin_rq_unlock_irqrestore(rq, flags); 1083 } 1084 1085 #ifdef CONFIG_SMP 1086 #ifdef CONFIG_NO_HZ_COMMON 1087 /* 1088 * In the semi idle case, use the nearest busy CPU for migrating timers 1089 * from an idle CPU. This is good for power-savings. 1090 * 1091 * We don't do similar optimization for completely idle system, as 1092 * selecting an idle CPU will add more delays to the timers than intended 1093 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1094 */ 1095 int get_nohz_timer_target(void) 1096 { 1097 int i, cpu = smp_processor_id(), default_cpu = -1; 1098 struct sched_domain *sd; 1099 const struct cpumask *hk_mask; 1100 1101 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1102 if (!idle_cpu(cpu)) 1103 return cpu; 1104 default_cpu = cpu; 1105 } 1106 1107 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1108 1109 guard(rcu)(); 1110 1111 for_each_domain(cpu, sd) { 1112 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1113 if (cpu == i) 1114 continue; 1115 1116 if (!idle_cpu(i)) 1117 return i; 1118 } 1119 } 1120 1121 if (default_cpu == -1) 1122 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1123 1124 return default_cpu; 1125 } 1126 1127 /* 1128 * When add_timer_on() enqueues a timer into the timer wheel of an 1129 * idle CPU then this timer might expire before the next timer event 1130 * which is scheduled to wake up that CPU. In case of a completely 1131 * idle system the next event might even be infinite time into the 1132 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1133 * leaves the inner idle loop so the newly added timer is taken into 1134 * account when the CPU goes back to idle and evaluates the timer 1135 * wheel for the next timer event. 1136 */ 1137 static void wake_up_idle_cpu(int cpu) 1138 { 1139 struct rq *rq = cpu_rq(cpu); 1140 1141 if (cpu == smp_processor_id()) 1142 return; 1143 1144 /* 1145 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1146 * part of the idle loop. This forces an exit from the idle loop 1147 * and a round trip to schedule(). Now this could be optimized 1148 * because a simple new idle loop iteration is enough to 1149 * re-evaluate the next tick. Provided some re-ordering of tick 1150 * nohz functions that would need to follow TIF_NR_POLLING 1151 * clearing: 1152 * 1153 * - On most architectures, a simple fetch_or on ti::flags with a 1154 * "0" value would be enough to know if an IPI needs to be sent. 1155 * 1156 * - x86 needs to perform a last need_resched() check between 1157 * monitor and mwait which doesn't take timers into account. 1158 * There a dedicated TIF_TIMER flag would be required to 1159 * fetch_or here and be checked along with TIF_NEED_RESCHED 1160 * before mwait(). 1161 * 1162 * However, remote timer enqueue is not such a frequent event 1163 * and testing of the above solutions didn't appear to report 1164 * much benefits. 1165 */ 1166 if (set_nr_and_not_polling(rq->idle)) 1167 smp_send_reschedule(cpu); 1168 else 1169 trace_sched_wake_idle_without_ipi(cpu); 1170 } 1171 1172 static bool wake_up_full_nohz_cpu(int cpu) 1173 { 1174 /* 1175 * We just need the target to call irq_exit() and re-evaluate 1176 * the next tick. The nohz full kick at least implies that. 1177 * If needed we can still optimize that later with an 1178 * empty IRQ. 1179 */ 1180 if (cpu_is_offline(cpu)) 1181 return true; /* Don't try to wake offline CPUs. */ 1182 if (tick_nohz_full_cpu(cpu)) { 1183 if (cpu != smp_processor_id() || 1184 tick_nohz_tick_stopped()) 1185 tick_nohz_full_kick_cpu(cpu); 1186 return true; 1187 } 1188 1189 return false; 1190 } 1191 1192 /* 1193 * Wake up the specified CPU. If the CPU is going offline, it is the 1194 * caller's responsibility to deal with the lost wakeup, for example, 1195 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1196 */ 1197 void wake_up_nohz_cpu(int cpu) 1198 { 1199 if (!wake_up_full_nohz_cpu(cpu)) 1200 wake_up_idle_cpu(cpu); 1201 } 1202 1203 static void nohz_csd_func(void *info) 1204 { 1205 struct rq *rq = info; 1206 int cpu = cpu_of(rq); 1207 unsigned int flags; 1208 1209 /* 1210 * Release the rq::nohz_csd. 1211 */ 1212 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1213 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1214 1215 rq->idle_balance = idle_cpu(cpu); 1216 if (rq->idle_balance && !need_resched()) { 1217 rq->nohz_idle_balance = flags; 1218 raise_softirq_irqoff(SCHED_SOFTIRQ); 1219 } 1220 } 1221 1222 #endif /* CONFIG_NO_HZ_COMMON */ 1223 1224 #ifdef CONFIG_NO_HZ_FULL 1225 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1226 { 1227 if (rq->nr_running != 1) 1228 return false; 1229 1230 if (p->sched_class != &fair_sched_class) 1231 return false; 1232 1233 if (!task_on_rq_queued(p)) 1234 return false; 1235 1236 return true; 1237 } 1238 1239 bool sched_can_stop_tick(struct rq *rq) 1240 { 1241 int fifo_nr_running; 1242 1243 /* Deadline tasks, even if single, need the tick */ 1244 if (rq->dl.dl_nr_running) 1245 return false; 1246 1247 /* 1248 * If there are more than one RR tasks, we need the tick to affect the 1249 * actual RR behaviour. 1250 */ 1251 if (rq->rt.rr_nr_running) { 1252 if (rq->rt.rr_nr_running == 1) 1253 return true; 1254 else 1255 return false; 1256 } 1257 1258 /* 1259 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1260 * forced preemption between FIFO tasks. 1261 */ 1262 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1263 if (fifo_nr_running) 1264 return true; 1265 1266 /* 1267 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1268 * left. For CFS, if there's more than one we need the tick for 1269 * involuntary preemption. For SCX, ask. 1270 */ 1271 if (!scx_switched_all() && rq->nr_running > 1) 1272 return false; 1273 1274 if (scx_enabled() && !scx_can_stop_tick(rq)) 1275 return false; 1276 1277 /* 1278 * If there is one task and it has CFS runtime bandwidth constraints 1279 * and it's on the cpu now we don't want to stop the tick. 1280 * This check prevents clearing the bit if a newly enqueued task here is 1281 * dequeued by migrating while the constrained task continues to run. 1282 * E.g. going from 2->1 without going through pick_next_task(). 1283 */ 1284 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) { 1285 if (cfs_task_bw_constrained(rq->curr)) 1286 return false; 1287 } 1288 1289 return true; 1290 } 1291 #endif /* CONFIG_NO_HZ_FULL */ 1292 #endif /* CONFIG_SMP */ 1293 1294 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1295 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1296 /* 1297 * Iterate task_group tree rooted at *from, calling @down when first entering a 1298 * node and @up when leaving it for the final time. 1299 * 1300 * Caller must hold rcu_lock or sufficient equivalent. 1301 */ 1302 int walk_tg_tree_from(struct task_group *from, 1303 tg_visitor down, tg_visitor up, void *data) 1304 { 1305 struct task_group *parent, *child; 1306 int ret; 1307 1308 parent = from; 1309 1310 down: 1311 ret = (*down)(parent, data); 1312 if (ret) 1313 goto out; 1314 list_for_each_entry_rcu(child, &parent->children, siblings) { 1315 parent = child; 1316 goto down; 1317 1318 up: 1319 continue; 1320 } 1321 ret = (*up)(parent, data); 1322 if (ret || parent == from) 1323 goto out; 1324 1325 child = parent; 1326 parent = parent->parent; 1327 if (parent) 1328 goto up; 1329 out: 1330 return ret; 1331 } 1332 1333 int tg_nop(struct task_group *tg, void *data) 1334 { 1335 return 0; 1336 } 1337 #endif 1338 1339 void set_load_weight(struct task_struct *p, bool update_load) 1340 { 1341 int prio = p->static_prio - MAX_RT_PRIO; 1342 struct load_weight *load = &p->se.load; 1343 1344 /* 1345 * SCHED_IDLE tasks get minimal weight: 1346 */ 1347 if (task_has_idle_policy(p)) { 1348 load->weight = scale_load(WEIGHT_IDLEPRIO); 1349 load->inv_weight = WMULT_IDLEPRIO; 1350 return; 1351 } 1352 1353 /* 1354 * SCHED_OTHER tasks have to update their load when changing their 1355 * weight 1356 */ 1357 if (update_load && p->sched_class->reweight_task) { 1358 p->sched_class->reweight_task(task_rq(p), p, prio); 1359 } else { 1360 load->weight = scale_load(sched_prio_to_weight[prio]); 1361 load->inv_weight = sched_prio_to_wmult[prio]; 1362 } 1363 } 1364 1365 #ifdef CONFIG_UCLAMP_TASK 1366 /* 1367 * Serializes updates of utilization clamp values 1368 * 1369 * The (slow-path) user-space triggers utilization clamp value updates which 1370 * can require updates on (fast-path) scheduler's data structures used to 1371 * support enqueue/dequeue operations. 1372 * While the per-CPU rq lock protects fast-path update operations, user-space 1373 * requests are serialized using a mutex to reduce the risk of conflicting 1374 * updates or API abuses. 1375 */ 1376 static DEFINE_MUTEX(uclamp_mutex); 1377 1378 /* Max allowed minimum utilization */ 1379 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1380 1381 /* Max allowed maximum utilization */ 1382 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1383 1384 /* 1385 * By default RT tasks run at the maximum performance point/capacity of the 1386 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1387 * SCHED_CAPACITY_SCALE. 1388 * 1389 * This knob allows admins to change the default behavior when uclamp is being 1390 * used. In battery powered devices, particularly, running at the maximum 1391 * capacity and frequency will increase energy consumption and shorten the 1392 * battery life. 1393 * 1394 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1395 * 1396 * This knob will not override the system default sched_util_clamp_min defined 1397 * above. 1398 */ 1399 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1400 1401 /* All clamps are required to be less or equal than these values */ 1402 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1403 1404 /* 1405 * This static key is used to reduce the uclamp overhead in the fast path. It 1406 * primarily disables the call to uclamp_rq_{inc, dec}() in 1407 * enqueue/dequeue_task(). 1408 * 1409 * This allows users to continue to enable uclamp in their kernel config with 1410 * minimum uclamp overhead in the fast path. 1411 * 1412 * As soon as userspace modifies any of the uclamp knobs, the static key is 1413 * enabled, since we have an actual users that make use of uclamp 1414 * functionality. 1415 * 1416 * The knobs that would enable this static key are: 1417 * 1418 * * A task modifying its uclamp value with sched_setattr(). 1419 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1420 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1421 */ 1422 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1423 1424 static inline unsigned int 1425 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1426 unsigned int clamp_value) 1427 { 1428 /* 1429 * Avoid blocked utilization pushing up the frequency when we go 1430 * idle (which drops the max-clamp) by retaining the last known 1431 * max-clamp. 1432 */ 1433 if (clamp_id == UCLAMP_MAX) { 1434 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1435 return clamp_value; 1436 } 1437 1438 return uclamp_none(UCLAMP_MIN); 1439 } 1440 1441 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1442 unsigned int clamp_value) 1443 { 1444 /* Reset max-clamp retention only on idle exit */ 1445 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1446 return; 1447 1448 uclamp_rq_set(rq, clamp_id, clamp_value); 1449 } 1450 1451 static inline 1452 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1453 unsigned int clamp_value) 1454 { 1455 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1456 int bucket_id = UCLAMP_BUCKETS - 1; 1457 1458 /* 1459 * Since both min and max clamps are max aggregated, find the 1460 * top most bucket with tasks in. 1461 */ 1462 for ( ; bucket_id >= 0; bucket_id--) { 1463 if (!bucket[bucket_id].tasks) 1464 continue; 1465 return bucket[bucket_id].value; 1466 } 1467 1468 /* No tasks -- default clamp values */ 1469 return uclamp_idle_value(rq, clamp_id, clamp_value); 1470 } 1471 1472 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1473 { 1474 unsigned int default_util_min; 1475 struct uclamp_se *uc_se; 1476 1477 lockdep_assert_held(&p->pi_lock); 1478 1479 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1480 1481 /* Only sync if user didn't override the default */ 1482 if (uc_se->user_defined) 1483 return; 1484 1485 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1486 uclamp_se_set(uc_se, default_util_min, false); 1487 } 1488 1489 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1490 { 1491 if (!rt_task(p)) 1492 return; 1493 1494 /* Protect updates to p->uclamp_* */ 1495 guard(task_rq_lock)(p); 1496 __uclamp_update_util_min_rt_default(p); 1497 } 1498 1499 static inline struct uclamp_se 1500 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1501 { 1502 /* Copy by value as we could modify it */ 1503 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1504 #ifdef CONFIG_UCLAMP_TASK_GROUP 1505 unsigned int tg_min, tg_max, value; 1506 1507 /* 1508 * Tasks in autogroups or root task group will be 1509 * restricted by system defaults. 1510 */ 1511 if (task_group_is_autogroup(task_group(p))) 1512 return uc_req; 1513 if (task_group(p) == &root_task_group) 1514 return uc_req; 1515 1516 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1517 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1518 value = uc_req.value; 1519 value = clamp(value, tg_min, tg_max); 1520 uclamp_se_set(&uc_req, value, false); 1521 #endif 1522 1523 return uc_req; 1524 } 1525 1526 /* 1527 * The effective clamp bucket index of a task depends on, by increasing 1528 * priority: 1529 * - the task specific clamp value, when explicitly requested from userspace 1530 * - the task group effective clamp value, for tasks not either in the root 1531 * group or in an autogroup 1532 * - the system default clamp value, defined by the sysadmin 1533 */ 1534 static inline struct uclamp_se 1535 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1536 { 1537 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1538 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1539 1540 /* System default restrictions always apply */ 1541 if (unlikely(uc_req.value > uc_max.value)) 1542 return uc_max; 1543 1544 return uc_req; 1545 } 1546 1547 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1548 { 1549 struct uclamp_se uc_eff; 1550 1551 /* Task currently refcounted: use back-annotated (effective) value */ 1552 if (p->uclamp[clamp_id].active) 1553 return (unsigned long)p->uclamp[clamp_id].value; 1554 1555 uc_eff = uclamp_eff_get(p, clamp_id); 1556 1557 return (unsigned long)uc_eff.value; 1558 } 1559 1560 /* 1561 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1562 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1563 * updates the rq's clamp value if required. 1564 * 1565 * Tasks can have a task-specific value requested from user-space, track 1566 * within each bucket the maximum value for tasks refcounted in it. 1567 * This "local max aggregation" allows to track the exact "requested" value 1568 * for each bucket when all its RUNNABLE tasks require the same clamp. 1569 */ 1570 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1571 enum uclamp_id clamp_id) 1572 { 1573 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1574 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1575 struct uclamp_bucket *bucket; 1576 1577 lockdep_assert_rq_held(rq); 1578 1579 /* Update task effective clamp */ 1580 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1581 1582 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1583 bucket->tasks++; 1584 uc_se->active = true; 1585 1586 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1587 1588 /* 1589 * Local max aggregation: rq buckets always track the max 1590 * "requested" clamp value of its RUNNABLE tasks. 1591 */ 1592 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1593 bucket->value = uc_se->value; 1594 1595 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1596 uclamp_rq_set(rq, clamp_id, uc_se->value); 1597 } 1598 1599 /* 1600 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1601 * is released. If this is the last task reference counting the rq's max 1602 * active clamp value, then the rq's clamp value is updated. 1603 * 1604 * Both refcounted tasks and rq's cached clamp values are expected to be 1605 * always valid. If it's detected they are not, as defensive programming, 1606 * enforce the expected state and warn. 1607 */ 1608 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1609 enum uclamp_id clamp_id) 1610 { 1611 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1612 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1613 struct uclamp_bucket *bucket; 1614 unsigned int bkt_clamp; 1615 unsigned int rq_clamp; 1616 1617 lockdep_assert_rq_held(rq); 1618 1619 /* 1620 * If sched_uclamp_used was enabled after task @p was enqueued, 1621 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1622 * 1623 * In this case the uc_se->active flag should be false since no uclamp 1624 * accounting was performed at enqueue time and we can just return 1625 * here. 1626 * 1627 * Need to be careful of the following enqueue/dequeue ordering 1628 * problem too 1629 * 1630 * enqueue(taskA) 1631 * // sched_uclamp_used gets enabled 1632 * enqueue(taskB) 1633 * dequeue(taskA) 1634 * // Must not decrement bucket->tasks here 1635 * dequeue(taskB) 1636 * 1637 * where we could end up with stale data in uc_se and 1638 * bucket[uc_se->bucket_id]. 1639 * 1640 * The following check here eliminates the possibility of such race. 1641 */ 1642 if (unlikely(!uc_se->active)) 1643 return; 1644 1645 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1646 1647 SCHED_WARN_ON(!bucket->tasks); 1648 if (likely(bucket->tasks)) 1649 bucket->tasks--; 1650 1651 uc_se->active = false; 1652 1653 /* 1654 * Keep "local max aggregation" simple and accept to (possibly) 1655 * overboost some RUNNABLE tasks in the same bucket. 1656 * The rq clamp bucket value is reset to its base value whenever 1657 * there are no more RUNNABLE tasks refcounting it. 1658 */ 1659 if (likely(bucket->tasks)) 1660 return; 1661 1662 rq_clamp = uclamp_rq_get(rq, clamp_id); 1663 /* 1664 * Defensive programming: this should never happen. If it happens, 1665 * e.g. due to future modification, warn and fix up the expected value. 1666 */ 1667 SCHED_WARN_ON(bucket->value > rq_clamp); 1668 if (bucket->value >= rq_clamp) { 1669 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1670 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1671 } 1672 } 1673 1674 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1675 { 1676 enum uclamp_id clamp_id; 1677 1678 /* 1679 * Avoid any overhead until uclamp is actually used by the userspace. 1680 * 1681 * The condition is constructed such that a NOP is generated when 1682 * sched_uclamp_used is disabled. 1683 */ 1684 if (!static_branch_unlikely(&sched_uclamp_used)) 1685 return; 1686 1687 if (unlikely(!p->sched_class->uclamp_enabled)) 1688 return; 1689 1690 for_each_clamp_id(clamp_id) 1691 uclamp_rq_inc_id(rq, p, clamp_id); 1692 1693 /* Reset clamp idle holding when there is one RUNNABLE task */ 1694 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1695 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1696 } 1697 1698 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1699 { 1700 enum uclamp_id clamp_id; 1701 1702 /* 1703 * Avoid any overhead until uclamp is actually used by the userspace. 1704 * 1705 * The condition is constructed such that a NOP is generated when 1706 * sched_uclamp_used is disabled. 1707 */ 1708 if (!static_branch_unlikely(&sched_uclamp_used)) 1709 return; 1710 1711 if (unlikely(!p->sched_class->uclamp_enabled)) 1712 return; 1713 1714 for_each_clamp_id(clamp_id) 1715 uclamp_rq_dec_id(rq, p, clamp_id); 1716 } 1717 1718 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1719 enum uclamp_id clamp_id) 1720 { 1721 if (!p->uclamp[clamp_id].active) 1722 return; 1723 1724 uclamp_rq_dec_id(rq, p, clamp_id); 1725 uclamp_rq_inc_id(rq, p, clamp_id); 1726 1727 /* 1728 * Make sure to clear the idle flag if we've transiently reached 0 1729 * active tasks on rq. 1730 */ 1731 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1732 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1733 } 1734 1735 static inline void 1736 uclamp_update_active(struct task_struct *p) 1737 { 1738 enum uclamp_id clamp_id; 1739 struct rq_flags rf; 1740 struct rq *rq; 1741 1742 /* 1743 * Lock the task and the rq where the task is (or was) queued. 1744 * 1745 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1746 * price to pay to safely serialize util_{min,max} updates with 1747 * enqueues, dequeues and migration operations. 1748 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1749 */ 1750 rq = task_rq_lock(p, &rf); 1751 1752 /* 1753 * Setting the clamp bucket is serialized by task_rq_lock(). 1754 * If the task is not yet RUNNABLE and its task_struct is not 1755 * affecting a valid clamp bucket, the next time it's enqueued, 1756 * it will already see the updated clamp bucket value. 1757 */ 1758 for_each_clamp_id(clamp_id) 1759 uclamp_rq_reinc_id(rq, p, clamp_id); 1760 1761 task_rq_unlock(rq, p, &rf); 1762 } 1763 1764 #ifdef CONFIG_UCLAMP_TASK_GROUP 1765 static inline void 1766 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1767 { 1768 struct css_task_iter it; 1769 struct task_struct *p; 1770 1771 css_task_iter_start(css, 0, &it); 1772 while ((p = css_task_iter_next(&it))) 1773 uclamp_update_active(p); 1774 css_task_iter_end(&it); 1775 } 1776 1777 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1778 #endif 1779 1780 #ifdef CONFIG_SYSCTL 1781 #ifdef CONFIG_UCLAMP_TASK_GROUP 1782 static void uclamp_update_root_tg(void) 1783 { 1784 struct task_group *tg = &root_task_group; 1785 1786 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1787 sysctl_sched_uclamp_util_min, false); 1788 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1789 sysctl_sched_uclamp_util_max, false); 1790 1791 guard(rcu)(); 1792 cpu_util_update_eff(&root_task_group.css); 1793 } 1794 #else 1795 static void uclamp_update_root_tg(void) { } 1796 #endif 1797 1798 static void uclamp_sync_util_min_rt_default(void) 1799 { 1800 struct task_struct *g, *p; 1801 1802 /* 1803 * copy_process() sysctl_uclamp 1804 * uclamp_min_rt = X; 1805 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1806 * // link thread smp_mb__after_spinlock() 1807 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1808 * sched_post_fork() for_each_process_thread() 1809 * __uclamp_sync_rt() __uclamp_sync_rt() 1810 * 1811 * Ensures that either sched_post_fork() will observe the new 1812 * uclamp_min_rt or for_each_process_thread() will observe the new 1813 * task. 1814 */ 1815 read_lock(&tasklist_lock); 1816 smp_mb__after_spinlock(); 1817 read_unlock(&tasklist_lock); 1818 1819 guard(rcu)(); 1820 for_each_process_thread(g, p) 1821 uclamp_update_util_min_rt_default(p); 1822 } 1823 1824 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1825 void *buffer, size_t *lenp, loff_t *ppos) 1826 { 1827 bool update_root_tg = false; 1828 int old_min, old_max, old_min_rt; 1829 int result; 1830 1831 guard(mutex)(&uclamp_mutex); 1832 1833 old_min = sysctl_sched_uclamp_util_min; 1834 old_max = sysctl_sched_uclamp_util_max; 1835 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1836 1837 result = proc_dointvec(table, write, buffer, lenp, ppos); 1838 if (result) 1839 goto undo; 1840 if (!write) 1841 return 0; 1842 1843 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1844 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1845 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1846 1847 result = -EINVAL; 1848 goto undo; 1849 } 1850 1851 if (old_min != sysctl_sched_uclamp_util_min) { 1852 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1853 sysctl_sched_uclamp_util_min, false); 1854 update_root_tg = true; 1855 } 1856 if (old_max != sysctl_sched_uclamp_util_max) { 1857 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1858 sysctl_sched_uclamp_util_max, false); 1859 update_root_tg = true; 1860 } 1861 1862 if (update_root_tg) { 1863 static_branch_enable(&sched_uclamp_used); 1864 uclamp_update_root_tg(); 1865 } 1866 1867 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1868 static_branch_enable(&sched_uclamp_used); 1869 uclamp_sync_util_min_rt_default(); 1870 } 1871 1872 /* 1873 * We update all RUNNABLE tasks only when task groups are in use. 1874 * Otherwise, keep it simple and do just a lazy update at each next 1875 * task enqueue time. 1876 */ 1877 return 0; 1878 1879 undo: 1880 sysctl_sched_uclamp_util_min = old_min; 1881 sysctl_sched_uclamp_util_max = old_max; 1882 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1883 return result; 1884 } 1885 #endif 1886 1887 static void uclamp_fork(struct task_struct *p) 1888 { 1889 enum uclamp_id clamp_id; 1890 1891 /* 1892 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1893 * as the task is still at its early fork stages. 1894 */ 1895 for_each_clamp_id(clamp_id) 1896 p->uclamp[clamp_id].active = false; 1897 1898 if (likely(!p->sched_reset_on_fork)) 1899 return; 1900 1901 for_each_clamp_id(clamp_id) { 1902 uclamp_se_set(&p->uclamp_req[clamp_id], 1903 uclamp_none(clamp_id), false); 1904 } 1905 } 1906 1907 static void uclamp_post_fork(struct task_struct *p) 1908 { 1909 uclamp_update_util_min_rt_default(p); 1910 } 1911 1912 static void __init init_uclamp_rq(struct rq *rq) 1913 { 1914 enum uclamp_id clamp_id; 1915 struct uclamp_rq *uc_rq = rq->uclamp; 1916 1917 for_each_clamp_id(clamp_id) { 1918 uc_rq[clamp_id] = (struct uclamp_rq) { 1919 .value = uclamp_none(clamp_id) 1920 }; 1921 } 1922 1923 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1924 } 1925 1926 static void __init init_uclamp(void) 1927 { 1928 struct uclamp_se uc_max = {}; 1929 enum uclamp_id clamp_id; 1930 int cpu; 1931 1932 for_each_possible_cpu(cpu) 1933 init_uclamp_rq(cpu_rq(cpu)); 1934 1935 for_each_clamp_id(clamp_id) { 1936 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1937 uclamp_none(clamp_id), false); 1938 } 1939 1940 /* System defaults allow max clamp values for both indexes */ 1941 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1942 for_each_clamp_id(clamp_id) { 1943 uclamp_default[clamp_id] = uc_max; 1944 #ifdef CONFIG_UCLAMP_TASK_GROUP 1945 root_task_group.uclamp_req[clamp_id] = uc_max; 1946 root_task_group.uclamp[clamp_id] = uc_max; 1947 #endif 1948 } 1949 } 1950 1951 #else /* !CONFIG_UCLAMP_TASK */ 1952 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1953 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1954 static inline void uclamp_fork(struct task_struct *p) { } 1955 static inline void uclamp_post_fork(struct task_struct *p) { } 1956 static inline void init_uclamp(void) { } 1957 #endif /* CONFIG_UCLAMP_TASK */ 1958 1959 bool sched_task_on_rq(struct task_struct *p) 1960 { 1961 return task_on_rq_queued(p); 1962 } 1963 1964 unsigned long get_wchan(struct task_struct *p) 1965 { 1966 unsigned long ip = 0; 1967 unsigned int state; 1968 1969 if (!p || p == current) 1970 return 0; 1971 1972 /* Only get wchan if task is blocked and we can keep it that way. */ 1973 raw_spin_lock_irq(&p->pi_lock); 1974 state = READ_ONCE(p->__state); 1975 smp_rmb(); /* see try_to_wake_up() */ 1976 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 1977 ip = __get_wchan(p); 1978 raw_spin_unlock_irq(&p->pi_lock); 1979 1980 return ip; 1981 } 1982 1983 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1984 { 1985 if (!(flags & ENQUEUE_NOCLOCK)) 1986 update_rq_clock(rq); 1987 1988 if (!(flags & ENQUEUE_RESTORE)) { 1989 sched_info_enqueue(rq, p); 1990 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 1991 } 1992 1993 uclamp_rq_inc(rq, p); 1994 p->sched_class->enqueue_task(rq, p, flags); 1995 1996 if (sched_core_enabled(rq)) 1997 sched_core_enqueue(rq, p); 1998 } 1999 2000 void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2001 { 2002 if (sched_core_enabled(rq)) 2003 sched_core_dequeue(rq, p, flags); 2004 2005 if (!(flags & DEQUEUE_NOCLOCK)) 2006 update_rq_clock(rq); 2007 2008 if (!(flags & DEQUEUE_SAVE)) { 2009 sched_info_dequeue(rq, p); 2010 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2011 } 2012 2013 uclamp_rq_dec(rq, p); 2014 p->sched_class->dequeue_task(rq, p, flags); 2015 } 2016 2017 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2018 { 2019 if (task_on_rq_migrating(p)) 2020 flags |= ENQUEUE_MIGRATED; 2021 if (flags & ENQUEUE_MIGRATED) 2022 sched_mm_cid_migrate_to(rq, p); 2023 2024 enqueue_task(rq, p, flags); 2025 2026 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2027 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2028 } 2029 2030 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2031 { 2032 WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING); 2033 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2034 2035 dequeue_task(rq, p, flags); 2036 } 2037 2038 /** 2039 * task_curr - is this task currently executing on a CPU? 2040 * @p: the task in question. 2041 * 2042 * Return: 1 if the task is currently executing. 0 otherwise. 2043 */ 2044 inline int task_curr(const struct task_struct *p) 2045 { 2046 return cpu_curr(task_cpu(p)) == p; 2047 } 2048 2049 /* 2050 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2051 * mess with locking. 2052 */ 2053 void check_class_changing(struct rq *rq, struct task_struct *p, 2054 const struct sched_class *prev_class) 2055 { 2056 if (prev_class != p->sched_class && p->sched_class->switching_to) 2057 p->sched_class->switching_to(rq, p); 2058 } 2059 2060 /* 2061 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2062 * use the balance_callback list if you want balancing. 2063 * 2064 * this means any call to check_class_changed() must be followed by a call to 2065 * balance_callback(). 2066 */ 2067 void check_class_changed(struct rq *rq, struct task_struct *p, 2068 const struct sched_class *prev_class, 2069 int oldprio) 2070 { 2071 if (prev_class != p->sched_class) { 2072 if (prev_class->switched_from) 2073 prev_class->switched_from(rq, p); 2074 2075 p->sched_class->switched_to(rq, p); 2076 } else if (oldprio != p->prio || dl_task(p)) 2077 p->sched_class->prio_changed(rq, p, oldprio); 2078 } 2079 2080 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2081 { 2082 if (p->sched_class == rq->curr->sched_class) 2083 rq->curr->sched_class->wakeup_preempt(rq, p, flags); 2084 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2085 resched_curr(rq); 2086 2087 /* 2088 * A queue event has occurred, and we're going to schedule. In 2089 * this case, we can save a useless back to back clock update. 2090 */ 2091 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2092 rq_clock_skip_update(rq); 2093 } 2094 2095 static __always_inline 2096 int __task_state_match(struct task_struct *p, unsigned int state) 2097 { 2098 if (READ_ONCE(p->__state) & state) 2099 return 1; 2100 2101 if (READ_ONCE(p->saved_state) & state) 2102 return -1; 2103 2104 return 0; 2105 } 2106 2107 static __always_inline 2108 int task_state_match(struct task_struct *p, unsigned int state) 2109 { 2110 /* 2111 * Serialize against current_save_and_set_rtlock_wait_state(), 2112 * current_restore_rtlock_saved_state(), and __refrigerator(). 2113 */ 2114 guard(raw_spinlock_irq)(&p->pi_lock); 2115 return __task_state_match(p, state); 2116 } 2117 2118 /* 2119 * wait_task_inactive - wait for a thread to unschedule. 2120 * 2121 * Wait for the thread to block in any of the states set in @match_state. 2122 * If it changes, i.e. @p might have woken up, then return zero. When we 2123 * succeed in waiting for @p to be off its CPU, we return a positive number 2124 * (its total switch count). If a second call a short while later returns the 2125 * same number, the caller can be sure that @p has remained unscheduled the 2126 * whole time. 2127 * 2128 * The caller must ensure that the task *will* unschedule sometime soon, 2129 * else this function might spin for a *long* time. This function can't 2130 * be called with interrupts off, or it may introduce deadlock with 2131 * smp_call_function() if an IPI is sent by the same process we are 2132 * waiting to become inactive. 2133 */ 2134 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2135 { 2136 int running, queued, match; 2137 struct rq_flags rf; 2138 unsigned long ncsw; 2139 struct rq *rq; 2140 2141 for (;;) { 2142 /* 2143 * We do the initial early heuristics without holding 2144 * any task-queue locks at all. We'll only try to get 2145 * the runqueue lock when things look like they will 2146 * work out! 2147 */ 2148 rq = task_rq(p); 2149 2150 /* 2151 * If the task is actively running on another CPU 2152 * still, just relax and busy-wait without holding 2153 * any locks. 2154 * 2155 * NOTE! Since we don't hold any locks, it's not 2156 * even sure that "rq" stays as the right runqueue! 2157 * But we don't care, since "task_on_cpu()" will 2158 * return false if the runqueue has changed and p 2159 * is actually now running somewhere else! 2160 */ 2161 while (task_on_cpu(rq, p)) { 2162 if (!task_state_match(p, match_state)) 2163 return 0; 2164 cpu_relax(); 2165 } 2166 2167 /* 2168 * Ok, time to look more closely! We need the rq 2169 * lock now, to be *sure*. If we're wrong, we'll 2170 * just go back and repeat. 2171 */ 2172 rq = task_rq_lock(p, &rf); 2173 trace_sched_wait_task(p); 2174 running = task_on_cpu(rq, p); 2175 queued = task_on_rq_queued(p); 2176 ncsw = 0; 2177 if ((match = __task_state_match(p, match_state))) { 2178 /* 2179 * When matching on p->saved_state, consider this task 2180 * still queued so it will wait. 2181 */ 2182 if (match < 0) 2183 queued = 1; 2184 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2185 } 2186 task_rq_unlock(rq, p, &rf); 2187 2188 /* 2189 * If it changed from the expected state, bail out now. 2190 */ 2191 if (unlikely(!ncsw)) 2192 break; 2193 2194 /* 2195 * Was it really running after all now that we 2196 * checked with the proper locks actually held? 2197 * 2198 * Oops. Go back and try again.. 2199 */ 2200 if (unlikely(running)) { 2201 cpu_relax(); 2202 continue; 2203 } 2204 2205 /* 2206 * It's not enough that it's not actively running, 2207 * it must be off the runqueue _entirely_, and not 2208 * preempted! 2209 * 2210 * So if it was still runnable (but just not actively 2211 * running right now), it's preempted, and we should 2212 * yield - it could be a while. 2213 */ 2214 if (unlikely(queued)) { 2215 ktime_t to = NSEC_PER_SEC / HZ; 2216 2217 set_current_state(TASK_UNINTERRUPTIBLE); 2218 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2219 continue; 2220 } 2221 2222 /* 2223 * Ahh, all good. It wasn't running, and it wasn't 2224 * runnable, which means that it will never become 2225 * running in the future either. We're all done! 2226 */ 2227 break; 2228 } 2229 2230 return ncsw; 2231 } 2232 2233 #ifdef CONFIG_SMP 2234 2235 static void 2236 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2237 2238 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2239 { 2240 struct affinity_context ac = { 2241 .new_mask = cpumask_of(rq->cpu), 2242 .flags = SCA_MIGRATE_DISABLE, 2243 }; 2244 2245 if (likely(!p->migration_disabled)) 2246 return; 2247 2248 if (p->cpus_ptr != &p->cpus_mask) 2249 return; 2250 2251 /* 2252 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2253 */ 2254 __do_set_cpus_allowed(p, &ac); 2255 } 2256 2257 void migrate_disable(void) 2258 { 2259 struct task_struct *p = current; 2260 2261 if (p->migration_disabled) { 2262 p->migration_disabled++; 2263 return; 2264 } 2265 2266 guard(preempt)(); 2267 this_rq()->nr_pinned++; 2268 p->migration_disabled = 1; 2269 } 2270 EXPORT_SYMBOL_GPL(migrate_disable); 2271 2272 void migrate_enable(void) 2273 { 2274 struct task_struct *p = current; 2275 struct affinity_context ac = { 2276 .new_mask = &p->cpus_mask, 2277 .flags = SCA_MIGRATE_ENABLE, 2278 }; 2279 2280 if (p->migration_disabled > 1) { 2281 p->migration_disabled--; 2282 return; 2283 } 2284 2285 if (WARN_ON_ONCE(!p->migration_disabled)) 2286 return; 2287 2288 /* 2289 * Ensure stop_task runs either before or after this, and that 2290 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2291 */ 2292 guard(preempt)(); 2293 if (p->cpus_ptr != &p->cpus_mask) 2294 __set_cpus_allowed_ptr(p, &ac); 2295 /* 2296 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2297 * regular cpus_mask, otherwise things that race (eg. 2298 * select_fallback_rq) get confused. 2299 */ 2300 barrier(); 2301 p->migration_disabled = 0; 2302 this_rq()->nr_pinned--; 2303 } 2304 EXPORT_SYMBOL_GPL(migrate_enable); 2305 2306 static inline bool rq_has_pinned_tasks(struct rq *rq) 2307 { 2308 return rq->nr_pinned; 2309 } 2310 2311 /* 2312 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2313 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2314 */ 2315 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2316 { 2317 /* When not in the task's cpumask, no point in looking further. */ 2318 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2319 return false; 2320 2321 /* migrate_disabled() must be allowed to finish. */ 2322 if (is_migration_disabled(p)) 2323 return cpu_online(cpu); 2324 2325 /* Non kernel threads are not allowed during either online or offline. */ 2326 if (!(p->flags & PF_KTHREAD)) 2327 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2328 2329 /* KTHREAD_IS_PER_CPU is always allowed. */ 2330 if (kthread_is_per_cpu(p)) 2331 return cpu_online(cpu); 2332 2333 /* Regular kernel threads don't get to stay during offline. */ 2334 if (cpu_dying(cpu)) 2335 return false; 2336 2337 /* But are allowed during online. */ 2338 return cpu_online(cpu); 2339 } 2340 2341 /* 2342 * This is how migration works: 2343 * 2344 * 1) we invoke migration_cpu_stop() on the target CPU using 2345 * stop_one_cpu(). 2346 * 2) stopper starts to run (implicitly forcing the migrated thread 2347 * off the CPU) 2348 * 3) it checks whether the migrated task is still in the wrong runqueue. 2349 * 4) if it's in the wrong runqueue then the migration thread removes 2350 * it and puts it into the right queue. 2351 * 5) stopper completes and stop_one_cpu() returns and the migration 2352 * is done. 2353 */ 2354 2355 /* 2356 * move_queued_task - move a queued task to new rq. 2357 * 2358 * Returns (locked) new rq. Old rq's lock is released. 2359 */ 2360 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2361 struct task_struct *p, int new_cpu) 2362 { 2363 lockdep_assert_rq_held(rq); 2364 2365 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2366 set_task_cpu(p, new_cpu); 2367 rq_unlock(rq, rf); 2368 2369 rq = cpu_rq(new_cpu); 2370 2371 rq_lock(rq, rf); 2372 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2373 activate_task(rq, p, 0); 2374 wakeup_preempt(rq, p, 0); 2375 2376 return rq; 2377 } 2378 2379 struct migration_arg { 2380 struct task_struct *task; 2381 int dest_cpu; 2382 struct set_affinity_pending *pending; 2383 }; 2384 2385 /* 2386 * @refs: number of wait_for_completion() 2387 * @stop_pending: is @stop_work in use 2388 */ 2389 struct set_affinity_pending { 2390 refcount_t refs; 2391 unsigned int stop_pending; 2392 struct completion done; 2393 struct cpu_stop_work stop_work; 2394 struct migration_arg arg; 2395 }; 2396 2397 /* 2398 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2399 * this because either it can't run here any more (set_cpus_allowed() 2400 * away from this CPU, or CPU going down), or because we're 2401 * attempting to rebalance this task on exec (sched_exec). 2402 * 2403 * So we race with normal scheduler movements, but that's OK, as long 2404 * as the task is no longer on this CPU. 2405 */ 2406 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2407 struct task_struct *p, int dest_cpu) 2408 { 2409 /* Affinity changed (again). */ 2410 if (!is_cpu_allowed(p, dest_cpu)) 2411 return rq; 2412 2413 rq = move_queued_task(rq, rf, p, dest_cpu); 2414 2415 return rq; 2416 } 2417 2418 /* 2419 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2420 * and performs thread migration by bumping thread off CPU then 2421 * 'pushing' onto another runqueue. 2422 */ 2423 static int migration_cpu_stop(void *data) 2424 { 2425 struct migration_arg *arg = data; 2426 struct set_affinity_pending *pending = arg->pending; 2427 struct task_struct *p = arg->task; 2428 struct rq *rq = this_rq(); 2429 bool complete = false; 2430 struct rq_flags rf; 2431 2432 /* 2433 * The original target CPU might have gone down and we might 2434 * be on another CPU but it doesn't matter. 2435 */ 2436 local_irq_save(rf.flags); 2437 /* 2438 * We need to explicitly wake pending tasks before running 2439 * __migrate_task() such that we will not miss enforcing cpus_ptr 2440 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2441 */ 2442 flush_smp_call_function_queue(); 2443 2444 raw_spin_lock(&p->pi_lock); 2445 rq_lock(rq, &rf); 2446 2447 /* 2448 * If we were passed a pending, then ->stop_pending was set, thus 2449 * p->migration_pending must have remained stable. 2450 */ 2451 WARN_ON_ONCE(pending && pending != p->migration_pending); 2452 2453 /* 2454 * If task_rq(p) != rq, it cannot be migrated here, because we're 2455 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2456 * we're holding p->pi_lock. 2457 */ 2458 if (task_rq(p) == rq) { 2459 if (is_migration_disabled(p)) 2460 goto out; 2461 2462 if (pending) { 2463 p->migration_pending = NULL; 2464 complete = true; 2465 2466 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2467 goto out; 2468 } 2469 2470 if (task_on_rq_queued(p)) { 2471 update_rq_clock(rq); 2472 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2473 } else { 2474 p->wake_cpu = arg->dest_cpu; 2475 } 2476 2477 /* 2478 * XXX __migrate_task() can fail, at which point we might end 2479 * up running on a dodgy CPU, AFAICT this can only happen 2480 * during CPU hotplug, at which point we'll get pushed out 2481 * anyway, so it's probably not a big deal. 2482 */ 2483 2484 } else if (pending) { 2485 /* 2486 * This happens when we get migrated between migrate_enable()'s 2487 * preempt_enable() and scheduling the stopper task. At that 2488 * point we're a regular task again and not current anymore. 2489 * 2490 * A !PREEMPT kernel has a giant hole here, which makes it far 2491 * more likely. 2492 */ 2493 2494 /* 2495 * The task moved before the stopper got to run. We're holding 2496 * ->pi_lock, so the allowed mask is stable - if it got 2497 * somewhere allowed, we're done. 2498 */ 2499 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2500 p->migration_pending = NULL; 2501 complete = true; 2502 goto out; 2503 } 2504 2505 /* 2506 * When migrate_enable() hits a rq mis-match we can't reliably 2507 * determine is_migration_disabled() and so have to chase after 2508 * it. 2509 */ 2510 WARN_ON_ONCE(!pending->stop_pending); 2511 preempt_disable(); 2512 task_rq_unlock(rq, p, &rf); 2513 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2514 &pending->arg, &pending->stop_work); 2515 preempt_enable(); 2516 return 0; 2517 } 2518 out: 2519 if (pending) 2520 pending->stop_pending = false; 2521 task_rq_unlock(rq, p, &rf); 2522 2523 if (complete) 2524 complete_all(&pending->done); 2525 2526 return 0; 2527 } 2528 2529 int push_cpu_stop(void *arg) 2530 { 2531 struct rq *lowest_rq = NULL, *rq = this_rq(); 2532 struct task_struct *p = arg; 2533 2534 raw_spin_lock_irq(&p->pi_lock); 2535 raw_spin_rq_lock(rq); 2536 2537 if (task_rq(p) != rq) 2538 goto out_unlock; 2539 2540 if (is_migration_disabled(p)) { 2541 p->migration_flags |= MDF_PUSH; 2542 goto out_unlock; 2543 } 2544 2545 p->migration_flags &= ~MDF_PUSH; 2546 2547 if (p->sched_class->find_lock_rq) 2548 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2549 2550 if (!lowest_rq) 2551 goto out_unlock; 2552 2553 // XXX validate p is still the highest prio task 2554 if (task_rq(p) == rq) { 2555 deactivate_task(rq, p, 0); 2556 set_task_cpu(p, lowest_rq->cpu); 2557 activate_task(lowest_rq, p, 0); 2558 resched_curr(lowest_rq); 2559 } 2560 2561 double_unlock_balance(rq, lowest_rq); 2562 2563 out_unlock: 2564 rq->push_busy = false; 2565 raw_spin_rq_unlock(rq); 2566 raw_spin_unlock_irq(&p->pi_lock); 2567 2568 put_task_struct(p); 2569 return 0; 2570 } 2571 2572 /* 2573 * sched_class::set_cpus_allowed must do the below, but is not required to 2574 * actually call this function. 2575 */ 2576 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2577 { 2578 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2579 p->cpus_ptr = ctx->new_mask; 2580 return; 2581 } 2582 2583 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2584 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2585 2586 /* 2587 * Swap in a new user_cpus_ptr if SCA_USER flag set 2588 */ 2589 if (ctx->flags & SCA_USER) 2590 swap(p->user_cpus_ptr, ctx->user_mask); 2591 } 2592 2593 static void 2594 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2595 { 2596 struct rq *rq = task_rq(p); 2597 bool queued, running; 2598 2599 /* 2600 * This here violates the locking rules for affinity, since we're only 2601 * supposed to change these variables while holding both rq->lock and 2602 * p->pi_lock. 2603 * 2604 * HOWEVER, it magically works, because ttwu() is the only code that 2605 * accesses these variables under p->pi_lock and only does so after 2606 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2607 * before finish_task(). 2608 * 2609 * XXX do further audits, this smells like something putrid. 2610 */ 2611 if (ctx->flags & SCA_MIGRATE_DISABLE) 2612 SCHED_WARN_ON(!p->on_cpu); 2613 else 2614 lockdep_assert_held(&p->pi_lock); 2615 2616 queued = task_on_rq_queued(p); 2617 running = task_current(rq, p); 2618 2619 if (queued) { 2620 /* 2621 * Because __kthread_bind() calls this on blocked tasks without 2622 * holding rq->lock. 2623 */ 2624 lockdep_assert_rq_held(rq); 2625 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2626 } 2627 if (running) 2628 put_prev_task(rq, p); 2629 2630 p->sched_class->set_cpus_allowed(p, ctx); 2631 2632 if (queued) 2633 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2634 if (running) 2635 set_next_task(rq, p); 2636 } 2637 2638 /* 2639 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2640 * affinity (if any) should be destroyed too. 2641 */ 2642 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2643 { 2644 struct affinity_context ac = { 2645 .new_mask = new_mask, 2646 .user_mask = NULL, 2647 .flags = SCA_USER, /* clear the user requested mask */ 2648 }; 2649 union cpumask_rcuhead { 2650 cpumask_t cpumask; 2651 struct rcu_head rcu; 2652 }; 2653 2654 __do_set_cpus_allowed(p, &ac); 2655 2656 /* 2657 * Because this is called with p->pi_lock held, it is not possible 2658 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2659 * kfree_rcu(). 2660 */ 2661 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2662 } 2663 2664 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2665 int node) 2666 { 2667 cpumask_t *user_mask; 2668 unsigned long flags; 2669 2670 /* 2671 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2672 * may differ by now due to racing. 2673 */ 2674 dst->user_cpus_ptr = NULL; 2675 2676 /* 2677 * This check is racy and losing the race is a valid situation. 2678 * It is not worth the extra overhead of taking the pi_lock on 2679 * every fork/clone. 2680 */ 2681 if (data_race(!src->user_cpus_ptr)) 2682 return 0; 2683 2684 user_mask = alloc_user_cpus_ptr(node); 2685 if (!user_mask) 2686 return -ENOMEM; 2687 2688 /* 2689 * Use pi_lock to protect content of user_cpus_ptr 2690 * 2691 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2692 * do_set_cpus_allowed(). 2693 */ 2694 raw_spin_lock_irqsave(&src->pi_lock, flags); 2695 if (src->user_cpus_ptr) { 2696 swap(dst->user_cpus_ptr, user_mask); 2697 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2698 } 2699 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2700 2701 if (unlikely(user_mask)) 2702 kfree(user_mask); 2703 2704 return 0; 2705 } 2706 2707 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2708 { 2709 struct cpumask *user_mask = NULL; 2710 2711 swap(p->user_cpus_ptr, user_mask); 2712 2713 return user_mask; 2714 } 2715 2716 void release_user_cpus_ptr(struct task_struct *p) 2717 { 2718 kfree(clear_user_cpus_ptr(p)); 2719 } 2720 2721 /* 2722 * This function is wildly self concurrent; here be dragons. 2723 * 2724 * 2725 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2726 * designated task is enqueued on an allowed CPU. If that task is currently 2727 * running, we have to kick it out using the CPU stopper. 2728 * 2729 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2730 * Consider: 2731 * 2732 * Initial conditions: P0->cpus_mask = [0, 1] 2733 * 2734 * P0@CPU0 P1 2735 * 2736 * migrate_disable(); 2737 * <preempted> 2738 * set_cpus_allowed_ptr(P0, [1]); 2739 * 2740 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2741 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2742 * This means we need the following scheme: 2743 * 2744 * P0@CPU0 P1 2745 * 2746 * migrate_disable(); 2747 * <preempted> 2748 * set_cpus_allowed_ptr(P0, [1]); 2749 * <blocks> 2750 * <resumes> 2751 * migrate_enable(); 2752 * __set_cpus_allowed_ptr(); 2753 * <wakes local stopper> 2754 * `--> <woken on migration completion> 2755 * 2756 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2757 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2758 * task p are serialized by p->pi_lock, which we can leverage: the one that 2759 * should come into effect at the end of the Migrate-Disable region is the last 2760 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2761 * but we still need to properly signal those waiting tasks at the appropriate 2762 * moment. 2763 * 2764 * This is implemented using struct set_affinity_pending. The first 2765 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2766 * setup an instance of that struct and install it on the targeted task_struct. 2767 * Any and all further callers will reuse that instance. Those then wait for 2768 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2769 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2770 * 2771 * 2772 * (1) In the cases covered above. There is one more where the completion is 2773 * signaled within affine_move_task() itself: when a subsequent affinity request 2774 * occurs after the stopper bailed out due to the targeted task still being 2775 * Migrate-Disable. Consider: 2776 * 2777 * Initial conditions: P0->cpus_mask = [0, 1] 2778 * 2779 * CPU0 P1 P2 2780 * <P0> 2781 * migrate_disable(); 2782 * <preempted> 2783 * set_cpus_allowed_ptr(P0, [1]); 2784 * <blocks> 2785 * <migration/0> 2786 * migration_cpu_stop() 2787 * is_migration_disabled() 2788 * <bails> 2789 * set_cpus_allowed_ptr(P0, [0, 1]); 2790 * <signal completion> 2791 * <awakes> 2792 * 2793 * Note that the above is safe vs a concurrent migrate_enable(), as any 2794 * pending affinity completion is preceded by an uninstallation of 2795 * p->migration_pending done with p->pi_lock held. 2796 */ 2797 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2798 int dest_cpu, unsigned int flags) 2799 __releases(rq->lock) 2800 __releases(p->pi_lock) 2801 { 2802 struct set_affinity_pending my_pending = { }, *pending = NULL; 2803 bool stop_pending, complete = false; 2804 2805 /* Can the task run on the task's current CPU? If so, we're done */ 2806 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2807 struct task_struct *push_task = NULL; 2808 2809 if ((flags & SCA_MIGRATE_ENABLE) && 2810 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2811 rq->push_busy = true; 2812 push_task = get_task_struct(p); 2813 } 2814 2815 /* 2816 * If there are pending waiters, but no pending stop_work, 2817 * then complete now. 2818 */ 2819 pending = p->migration_pending; 2820 if (pending && !pending->stop_pending) { 2821 p->migration_pending = NULL; 2822 complete = true; 2823 } 2824 2825 preempt_disable(); 2826 task_rq_unlock(rq, p, rf); 2827 if (push_task) { 2828 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2829 p, &rq->push_work); 2830 } 2831 preempt_enable(); 2832 2833 if (complete) 2834 complete_all(&pending->done); 2835 2836 return 0; 2837 } 2838 2839 if (!(flags & SCA_MIGRATE_ENABLE)) { 2840 /* serialized by p->pi_lock */ 2841 if (!p->migration_pending) { 2842 /* Install the request */ 2843 refcount_set(&my_pending.refs, 1); 2844 init_completion(&my_pending.done); 2845 my_pending.arg = (struct migration_arg) { 2846 .task = p, 2847 .dest_cpu = dest_cpu, 2848 .pending = &my_pending, 2849 }; 2850 2851 p->migration_pending = &my_pending; 2852 } else { 2853 pending = p->migration_pending; 2854 refcount_inc(&pending->refs); 2855 /* 2856 * Affinity has changed, but we've already installed a 2857 * pending. migration_cpu_stop() *must* see this, else 2858 * we risk a completion of the pending despite having a 2859 * task on a disallowed CPU. 2860 * 2861 * Serialized by p->pi_lock, so this is safe. 2862 */ 2863 pending->arg.dest_cpu = dest_cpu; 2864 } 2865 } 2866 pending = p->migration_pending; 2867 /* 2868 * - !MIGRATE_ENABLE: 2869 * we'll have installed a pending if there wasn't one already. 2870 * 2871 * - MIGRATE_ENABLE: 2872 * we're here because the current CPU isn't matching anymore, 2873 * the only way that can happen is because of a concurrent 2874 * set_cpus_allowed_ptr() call, which should then still be 2875 * pending completion. 2876 * 2877 * Either way, we really should have a @pending here. 2878 */ 2879 if (WARN_ON_ONCE(!pending)) { 2880 task_rq_unlock(rq, p, rf); 2881 return -EINVAL; 2882 } 2883 2884 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2885 /* 2886 * MIGRATE_ENABLE gets here because 'p == current', but for 2887 * anything else we cannot do is_migration_disabled(), punt 2888 * and have the stopper function handle it all race-free. 2889 */ 2890 stop_pending = pending->stop_pending; 2891 if (!stop_pending) 2892 pending->stop_pending = true; 2893 2894 if (flags & SCA_MIGRATE_ENABLE) 2895 p->migration_flags &= ~MDF_PUSH; 2896 2897 preempt_disable(); 2898 task_rq_unlock(rq, p, rf); 2899 if (!stop_pending) { 2900 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2901 &pending->arg, &pending->stop_work); 2902 } 2903 preempt_enable(); 2904 2905 if (flags & SCA_MIGRATE_ENABLE) 2906 return 0; 2907 } else { 2908 2909 if (!is_migration_disabled(p)) { 2910 if (task_on_rq_queued(p)) 2911 rq = move_queued_task(rq, rf, p, dest_cpu); 2912 2913 if (!pending->stop_pending) { 2914 p->migration_pending = NULL; 2915 complete = true; 2916 } 2917 } 2918 task_rq_unlock(rq, p, rf); 2919 2920 if (complete) 2921 complete_all(&pending->done); 2922 } 2923 2924 wait_for_completion(&pending->done); 2925 2926 if (refcount_dec_and_test(&pending->refs)) 2927 wake_up_var(&pending->refs); /* No UaF, just an address */ 2928 2929 /* 2930 * Block the original owner of &pending until all subsequent callers 2931 * have seen the completion and decremented the refcount 2932 */ 2933 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2934 2935 /* ARGH */ 2936 WARN_ON_ONCE(my_pending.stop_pending); 2937 2938 return 0; 2939 } 2940 2941 /* 2942 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2943 */ 2944 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2945 struct affinity_context *ctx, 2946 struct rq *rq, 2947 struct rq_flags *rf) 2948 __releases(rq->lock) 2949 __releases(p->pi_lock) 2950 { 2951 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2952 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2953 bool kthread = p->flags & PF_KTHREAD; 2954 unsigned int dest_cpu; 2955 int ret = 0; 2956 2957 update_rq_clock(rq); 2958 2959 if (kthread || is_migration_disabled(p)) { 2960 /* 2961 * Kernel threads are allowed on online && !active CPUs, 2962 * however, during cpu-hot-unplug, even these might get pushed 2963 * away if not KTHREAD_IS_PER_CPU. 2964 * 2965 * Specifically, migration_disabled() tasks must not fail the 2966 * cpumask_any_and_distribute() pick below, esp. so on 2967 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2968 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2969 */ 2970 cpu_valid_mask = cpu_online_mask; 2971 } 2972 2973 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 2974 ret = -EINVAL; 2975 goto out; 2976 } 2977 2978 /* 2979 * Must re-check here, to close a race against __kthread_bind(), 2980 * sched_setaffinity() is not guaranteed to observe the flag. 2981 */ 2982 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2983 ret = -EINVAL; 2984 goto out; 2985 } 2986 2987 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 2988 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 2989 if (ctx->flags & SCA_USER) 2990 swap(p->user_cpus_ptr, ctx->user_mask); 2991 goto out; 2992 } 2993 2994 if (WARN_ON_ONCE(p == current && 2995 is_migration_disabled(p) && 2996 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 2997 ret = -EBUSY; 2998 goto out; 2999 } 3000 } 3001 3002 /* 3003 * Picking a ~random cpu helps in cases where we are changing affinity 3004 * for groups of tasks (ie. cpuset), so that load balancing is not 3005 * immediately required to distribute the tasks within their new mask. 3006 */ 3007 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3008 if (dest_cpu >= nr_cpu_ids) { 3009 ret = -EINVAL; 3010 goto out; 3011 } 3012 3013 __do_set_cpus_allowed(p, ctx); 3014 3015 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3016 3017 out: 3018 task_rq_unlock(rq, p, rf); 3019 3020 return ret; 3021 } 3022 3023 /* 3024 * Change a given task's CPU affinity. Migrate the thread to a 3025 * proper CPU and schedule it away if the CPU it's executing on 3026 * is removed from the allowed bitmask. 3027 * 3028 * NOTE: the caller must have a valid reference to the task, the 3029 * task must not exit() & deallocate itself prematurely. The 3030 * call is not atomic; no spinlocks may be held. 3031 */ 3032 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3033 { 3034 struct rq_flags rf; 3035 struct rq *rq; 3036 3037 rq = task_rq_lock(p, &rf); 3038 /* 3039 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3040 * flags are set. 3041 */ 3042 if (p->user_cpus_ptr && 3043 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3044 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3045 ctx->new_mask = rq->scratch_mask; 3046 3047 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3048 } 3049 3050 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3051 { 3052 struct affinity_context ac = { 3053 .new_mask = new_mask, 3054 .flags = 0, 3055 }; 3056 3057 return __set_cpus_allowed_ptr(p, &ac); 3058 } 3059 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3060 3061 /* 3062 * Change a given task's CPU affinity to the intersection of its current 3063 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3064 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3065 * affinity or use cpu_online_mask instead. 3066 * 3067 * If the resulting mask is empty, leave the affinity unchanged and return 3068 * -EINVAL. 3069 */ 3070 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3071 struct cpumask *new_mask, 3072 const struct cpumask *subset_mask) 3073 { 3074 struct affinity_context ac = { 3075 .new_mask = new_mask, 3076 .flags = 0, 3077 }; 3078 struct rq_flags rf; 3079 struct rq *rq; 3080 int err; 3081 3082 rq = task_rq_lock(p, &rf); 3083 3084 /* 3085 * Forcefully restricting the affinity of a deadline task is 3086 * likely to cause problems, so fail and noisily override the 3087 * mask entirely. 3088 */ 3089 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3090 err = -EPERM; 3091 goto err_unlock; 3092 } 3093 3094 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3095 err = -EINVAL; 3096 goto err_unlock; 3097 } 3098 3099 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3100 3101 err_unlock: 3102 task_rq_unlock(rq, p, &rf); 3103 return err; 3104 } 3105 3106 /* 3107 * Restrict the CPU affinity of task @p so that it is a subset of 3108 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3109 * old affinity mask. If the resulting mask is empty, we warn and walk 3110 * up the cpuset hierarchy until we find a suitable mask. 3111 */ 3112 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3113 { 3114 cpumask_var_t new_mask; 3115 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3116 3117 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3118 3119 /* 3120 * __migrate_task() can fail silently in the face of concurrent 3121 * offlining of the chosen destination CPU, so take the hotplug 3122 * lock to ensure that the migration succeeds. 3123 */ 3124 cpus_read_lock(); 3125 if (!cpumask_available(new_mask)) 3126 goto out_set_mask; 3127 3128 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3129 goto out_free_mask; 3130 3131 /* 3132 * We failed to find a valid subset of the affinity mask for the 3133 * task, so override it based on its cpuset hierarchy. 3134 */ 3135 cpuset_cpus_allowed(p, new_mask); 3136 override_mask = new_mask; 3137 3138 out_set_mask: 3139 if (printk_ratelimit()) { 3140 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3141 task_pid_nr(p), p->comm, 3142 cpumask_pr_args(override_mask)); 3143 } 3144 3145 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3146 out_free_mask: 3147 cpus_read_unlock(); 3148 free_cpumask_var(new_mask); 3149 } 3150 3151 /* 3152 * Restore the affinity of a task @p which was previously restricted by a 3153 * call to force_compatible_cpus_allowed_ptr(). 3154 * 3155 * It is the caller's responsibility to serialise this with any calls to 3156 * force_compatible_cpus_allowed_ptr(@p). 3157 */ 3158 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3159 { 3160 struct affinity_context ac = { 3161 .new_mask = task_user_cpus(p), 3162 .flags = 0, 3163 }; 3164 int ret; 3165 3166 /* 3167 * Try to restore the old affinity mask with __sched_setaffinity(). 3168 * Cpuset masking will be done there too. 3169 */ 3170 ret = __sched_setaffinity(p, &ac); 3171 WARN_ON_ONCE(ret); 3172 } 3173 3174 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3175 { 3176 #ifdef CONFIG_SCHED_DEBUG 3177 unsigned int state = READ_ONCE(p->__state); 3178 3179 /* 3180 * We should never call set_task_cpu() on a blocked task, 3181 * ttwu() will sort out the placement. 3182 */ 3183 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3184 3185 /* 3186 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3187 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3188 * time relying on p->on_rq. 3189 */ 3190 WARN_ON_ONCE(state == TASK_RUNNING && 3191 p->sched_class == &fair_sched_class && 3192 (p->on_rq && !task_on_rq_migrating(p))); 3193 3194 #ifdef CONFIG_LOCKDEP 3195 /* 3196 * The caller should hold either p->pi_lock or rq->lock, when changing 3197 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3198 * 3199 * sched_move_task() holds both and thus holding either pins the cgroup, 3200 * see task_group(). 3201 * 3202 * Furthermore, all task_rq users should acquire both locks, see 3203 * task_rq_lock(). 3204 */ 3205 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3206 lockdep_is_held(__rq_lockp(task_rq(p))))); 3207 #endif 3208 /* 3209 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3210 */ 3211 WARN_ON_ONCE(!cpu_online(new_cpu)); 3212 3213 WARN_ON_ONCE(is_migration_disabled(p)); 3214 #endif 3215 3216 trace_sched_migrate_task(p, new_cpu); 3217 3218 if (task_cpu(p) != new_cpu) { 3219 if (p->sched_class->migrate_task_rq) 3220 p->sched_class->migrate_task_rq(p, new_cpu); 3221 p->se.nr_migrations++; 3222 rseq_migrate(p); 3223 sched_mm_cid_migrate_from(p); 3224 perf_event_task_migrate(p); 3225 } 3226 3227 __set_task_cpu(p, new_cpu); 3228 } 3229 3230 #ifdef CONFIG_NUMA_BALANCING 3231 static void __migrate_swap_task(struct task_struct *p, int cpu) 3232 { 3233 if (task_on_rq_queued(p)) { 3234 struct rq *src_rq, *dst_rq; 3235 struct rq_flags srf, drf; 3236 3237 src_rq = task_rq(p); 3238 dst_rq = cpu_rq(cpu); 3239 3240 rq_pin_lock(src_rq, &srf); 3241 rq_pin_lock(dst_rq, &drf); 3242 3243 deactivate_task(src_rq, p, 0); 3244 set_task_cpu(p, cpu); 3245 activate_task(dst_rq, p, 0); 3246 wakeup_preempt(dst_rq, p, 0); 3247 3248 rq_unpin_lock(dst_rq, &drf); 3249 rq_unpin_lock(src_rq, &srf); 3250 3251 } else { 3252 /* 3253 * Task isn't running anymore; make it appear like we migrated 3254 * it before it went to sleep. This means on wakeup we make the 3255 * previous CPU our target instead of where it really is. 3256 */ 3257 p->wake_cpu = cpu; 3258 } 3259 } 3260 3261 struct migration_swap_arg { 3262 struct task_struct *src_task, *dst_task; 3263 int src_cpu, dst_cpu; 3264 }; 3265 3266 static int migrate_swap_stop(void *data) 3267 { 3268 struct migration_swap_arg *arg = data; 3269 struct rq *src_rq, *dst_rq; 3270 3271 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3272 return -EAGAIN; 3273 3274 src_rq = cpu_rq(arg->src_cpu); 3275 dst_rq = cpu_rq(arg->dst_cpu); 3276 3277 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3278 guard(double_rq_lock)(src_rq, dst_rq); 3279 3280 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3281 return -EAGAIN; 3282 3283 if (task_cpu(arg->src_task) != arg->src_cpu) 3284 return -EAGAIN; 3285 3286 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3287 return -EAGAIN; 3288 3289 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3290 return -EAGAIN; 3291 3292 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3293 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3294 3295 return 0; 3296 } 3297 3298 /* 3299 * Cross migrate two tasks 3300 */ 3301 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3302 int target_cpu, int curr_cpu) 3303 { 3304 struct migration_swap_arg arg; 3305 int ret = -EINVAL; 3306 3307 arg = (struct migration_swap_arg){ 3308 .src_task = cur, 3309 .src_cpu = curr_cpu, 3310 .dst_task = p, 3311 .dst_cpu = target_cpu, 3312 }; 3313 3314 if (arg.src_cpu == arg.dst_cpu) 3315 goto out; 3316 3317 /* 3318 * These three tests are all lockless; this is OK since all of them 3319 * will be re-checked with proper locks held further down the line. 3320 */ 3321 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3322 goto out; 3323 3324 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3325 goto out; 3326 3327 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3328 goto out; 3329 3330 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3331 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3332 3333 out: 3334 return ret; 3335 } 3336 #endif /* CONFIG_NUMA_BALANCING */ 3337 3338 /*** 3339 * kick_process - kick a running thread to enter/exit the kernel 3340 * @p: the to-be-kicked thread 3341 * 3342 * Cause a process which is running on another CPU to enter 3343 * kernel-mode, without any delay. (to get signals handled.) 3344 * 3345 * NOTE: this function doesn't have to take the runqueue lock, 3346 * because all it wants to ensure is that the remote task enters 3347 * the kernel. If the IPI races and the task has been migrated 3348 * to another CPU then no harm is done and the purpose has been 3349 * achieved as well. 3350 */ 3351 void kick_process(struct task_struct *p) 3352 { 3353 guard(preempt)(); 3354 int cpu = task_cpu(p); 3355 3356 if ((cpu != smp_processor_id()) && task_curr(p)) 3357 smp_send_reschedule(cpu); 3358 } 3359 EXPORT_SYMBOL_GPL(kick_process); 3360 3361 /* 3362 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3363 * 3364 * A few notes on cpu_active vs cpu_online: 3365 * 3366 * - cpu_active must be a subset of cpu_online 3367 * 3368 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3369 * see __set_cpus_allowed_ptr(). At this point the newly online 3370 * CPU isn't yet part of the sched domains, and balancing will not 3371 * see it. 3372 * 3373 * - on CPU-down we clear cpu_active() to mask the sched domains and 3374 * avoid the load balancer to place new tasks on the to be removed 3375 * CPU. Existing tasks will remain running there and will be taken 3376 * off. 3377 * 3378 * This means that fallback selection must not select !active CPUs. 3379 * And can assume that any active CPU must be online. Conversely 3380 * select_task_rq() below may allow selection of !active CPUs in order 3381 * to satisfy the above rules. 3382 */ 3383 static int select_fallback_rq(int cpu, struct task_struct *p) 3384 { 3385 int nid = cpu_to_node(cpu); 3386 const struct cpumask *nodemask = NULL; 3387 enum { cpuset, possible, fail } state = cpuset; 3388 int dest_cpu; 3389 3390 /* 3391 * If the node that the CPU is on has been offlined, cpu_to_node() 3392 * will return -1. There is no CPU on the node, and we should 3393 * select the CPU on the other node. 3394 */ 3395 if (nid != -1) { 3396 nodemask = cpumask_of_node(nid); 3397 3398 /* Look for allowed, online CPU in same node. */ 3399 for_each_cpu(dest_cpu, nodemask) { 3400 if (is_cpu_allowed(p, dest_cpu)) 3401 return dest_cpu; 3402 } 3403 } 3404 3405 for (;;) { 3406 /* Any allowed, online CPU? */ 3407 for_each_cpu(dest_cpu, p->cpus_ptr) { 3408 if (!is_cpu_allowed(p, dest_cpu)) 3409 continue; 3410 3411 goto out; 3412 } 3413 3414 /* No more Mr. Nice Guy. */ 3415 switch (state) { 3416 case cpuset: 3417 if (cpuset_cpus_allowed_fallback(p)) { 3418 state = possible; 3419 break; 3420 } 3421 fallthrough; 3422 case possible: 3423 /* 3424 * XXX When called from select_task_rq() we only 3425 * hold p->pi_lock and again violate locking order. 3426 * 3427 * More yuck to audit. 3428 */ 3429 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3430 state = fail; 3431 break; 3432 case fail: 3433 BUG(); 3434 break; 3435 } 3436 } 3437 3438 out: 3439 if (state != cpuset) { 3440 /* 3441 * Don't tell them about moving exiting tasks or 3442 * kernel threads (both mm NULL), since they never 3443 * leave kernel. 3444 */ 3445 if (p->mm && printk_ratelimit()) { 3446 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3447 task_pid_nr(p), p->comm, cpu); 3448 } 3449 } 3450 3451 return dest_cpu; 3452 } 3453 3454 /* 3455 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3456 */ 3457 static inline 3458 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3459 { 3460 lockdep_assert_held(&p->pi_lock); 3461 3462 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3463 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3464 else 3465 cpu = cpumask_any(p->cpus_ptr); 3466 3467 /* 3468 * In order not to call set_task_cpu() on a blocking task we need 3469 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3470 * CPU. 3471 * 3472 * Since this is common to all placement strategies, this lives here. 3473 * 3474 * [ this allows ->select_task() to simply return task_cpu(p) and 3475 * not worry about this generic constraint ] 3476 */ 3477 if (unlikely(!is_cpu_allowed(p, cpu))) 3478 cpu = select_fallback_rq(task_cpu(p), p); 3479 3480 return cpu; 3481 } 3482 3483 void sched_set_stop_task(int cpu, struct task_struct *stop) 3484 { 3485 static struct lock_class_key stop_pi_lock; 3486 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3487 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3488 3489 if (stop) { 3490 /* 3491 * Make it appear like a SCHED_FIFO task, its something 3492 * userspace knows about and won't get confused about. 3493 * 3494 * Also, it will make PI more or less work without too 3495 * much confusion -- but then, stop work should not 3496 * rely on PI working anyway. 3497 */ 3498 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3499 3500 stop->sched_class = &stop_sched_class; 3501 3502 /* 3503 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3504 * adjust the effective priority of a task. As a result, 3505 * rt_mutex_setprio() can trigger (RT) balancing operations, 3506 * which can then trigger wakeups of the stop thread to push 3507 * around the current task. 3508 * 3509 * The stop task itself will never be part of the PI-chain, it 3510 * never blocks, therefore that ->pi_lock recursion is safe. 3511 * Tell lockdep about this by placing the stop->pi_lock in its 3512 * own class. 3513 */ 3514 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3515 } 3516 3517 cpu_rq(cpu)->stop = stop; 3518 3519 if (old_stop) { 3520 /* 3521 * Reset it back to a normal scheduling class so that 3522 * it can die in pieces. 3523 */ 3524 old_stop->sched_class = &rt_sched_class; 3525 } 3526 } 3527 3528 #else /* CONFIG_SMP */ 3529 3530 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3531 3532 static inline bool rq_has_pinned_tasks(struct rq *rq) 3533 { 3534 return false; 3535 } 3536 3537 #endif /* !CONFIG_SMP */ 3538 3539 static void 3540 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3541 { 3542 struct rq *rq; 3543 3544 if (!schedstat_enabled()) 3545 return; 3546 3547 rq = this_rq(); 3548 3549 #ifdef CONFIG_SMP 3550 if (cpu == rq->cpu) { 3551 __schedstat_inc(rq->ttwu_local); 3552 __schedstat_inc(p->stats.nr_wakeups_local); 3553 } else { 3554 struct sched_domain *sd; 3555 3556 __schedstat_inc(p->stats.nr_wakeups_remote); 3557 3558 guard(rcu)(); 3559 for_each_domain(rq->cpu, sd) { 3560 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3561 __schedstat_inc(sd->ttwu_wake_remote); 3562 break; 3563 } 3564 } 3565 } 3566 3567 if (wake_flags & WF_MIGRATED) 3568 __schedstat_inc(p->stats.nr_wakeups_migrate); 3569 #endif /* CONFIG_SMP */ 3570 3571 __schedstat_inc(rq->ttwu_count); 3572 __schedstat_inc(p->stats.nr_wakeups); 3573 3574 if (wake_flags & WF_SYNC) 3575 __schedstat_inc(p->stats.nr_wakeups_sync); 3576 } 3577 3578 /* 3579 * Mark the task runnable. 3580 */ 3581 static inline void ttwu_do_wakeup(struct task_struct *p) 3582 { 3583 WRITE_ONCE(p->__state, TASK_RUNNING); 3584 trace_sched_wakeup(p); 3585 } 3586 3587 static void 3588 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3589 struct rq_flags *rf) 3590 { 3591 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3592 3593 lockdep_assert_rq_held(rq); 3594 3595 if (p->sched_contributes_to_load) 3596 rq->nr_uninterruptible--; 3597 3598 #ifdef CONFIG_SMP 3599 if (wake_flags & WF_MIGRATED) 3600 en_flags |= ENQUEUE_MIGRATED; 3601 else 3602 #endif 3603 if (p->in_iowait) { 3604 delayacct_blkio_end(p); 3605 atomic_dec(&task_rq(p)->nr_iowait); 3606 } 3607 3608 activate_task(rq, p, en_flags); 3609 wakeup_preempt(rq, p, wake_flags); 3610 3611 ttwu_do_wakeup(p); 3612 3613 #ifdef CONFIG_SMP 3614 if (p->sched_class->task_woken) { 3615 /* 3616 * Our task @p is fully woken up and running; so it's safe to 3617 * drop the rq->lock, hereafter rq is only used for statistics. 3618 */ 3619 rq_unpin_lock(rq, rf); 3620 p->sched_class->task_woken(rq, p); 3621 rq_repin_lock(rq, rf); 3622 } 3623 3624 if (rq->idle_stamp) { 3625 u64 delta = rq_clock(rq) - rq->idle_stamp; 3626 u64 max = 2*rq->max_idle_balance_cost; 3627 3628 update_avg(&rq->avg_idle, delta); 3629 3630 if (rq->avg_idle > max) 3631 rq->avg_idle = max; 3632 3633 rq->idle_stamp = 0; 3634 } 3635 #endif 3636 3637 p->dl_server = NULL; 3638 } 3639 3640 /* 3641 * Consider @p being inside a wait loop: 3642 * 3643 * for (;;) { 3644 * set_current_state(TASK_UNINTERRUPTIBLE); 3645 * 3646 * if (CONDITION) 3647 * break; 3648 * 3649 * schedule(); 3650 * } 3651 * __set_current_state(TASK_RUNNING); 3652 * 3653 * between set_current_state() and schedule(). In this case @p is still 3654 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3655 * an atomic manner. 3656 * 3657 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3658 * then schedule() must still happen and p->state can be changed to 3659 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3660 * need to do a full wakeup with enqueue. 3661 * 3662 * Returns: %true when the wakeup is done, 3663 * %false otherwise. 3664 */ 3665 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3666 { 3667 struct rq_flags rf; 3668 struct rq *rq; 3669 int ret = 0; 3670 3671 rq = __task_rq_lock(p, &rf); 3672 if (task_on_rq_queued(p)) { 3673 if (!task_on_cpu(rq, p)) { 3674 /* 3675 * When on_rq && !on_cpu the task is preempted, see if 3676 * it should preempt the task that is current now. 3677 */ 3678 update_rq_clock(rq); 3679 wakeup_preempt(rq, p, wake_flags); 3680 } 3681 ttwu_do_wakeup(p); 3682 ret = 1; 3683 } 3684 __task_rq_unlock(rq, &rf); 3685 3686 return ret; 3687 } 3688 3689 #ifdef CONFIG_SMP 3690 void sched_ttwu_pending(void *arg) 3691 { 3692 struct llist_node *llist = arg; 3693 struct rq *rq = this_rq(); 3694 struct task_struct *p, *t; 3695 struct rq_flags rf; 3696 3697 if (!llist) 3698 return; 3699 3700 rq_lock_irqsave(rq, &rf); 3701 update_rq_clock(rq); 3702 3703 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3704 if (WARN_ON_ONCE(p->on_cpu)) 3705 smp_cond_load_acquire(&p->on_cpu, !VAL); 3706 3707 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3708 set_task_cpu(p, cpu_of(rq)); 3709 3710 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3711 } 3712 3713 /* 3714 * Must be after enqueueing at least once task such that 3715 * idle_cpu() does not observe a false-negative -- if it does, 3716 * it is possible for select_idle_siblings() to stack a number 3717 * of tasks on this CPU during that window. 3718 * 3719 * It is OK to clear ttwu_pending when another task pending. 3720 * We will receive IPI after local IRQ enabled and then enqueue it. 3721 * Since now nr_running > 0, idle_cpu() will always get correct result. 3722 */ 3723 WRITE_ONCE(rq->ttwu_pending, 0); 3724 rq_unlock_irqrestore(rq, &rf); 3725 } 3726 3727 /* 3728 * Prepare the scene for sending an IPI for a remote smp_call 3729 * 3730 * Returns true if the caller can proceed with sending the IPI. 3731 * Returns false otherwise. 3732 */ 3733 bool call_function_single_prep_ipi(int cpu) 3734 { 3735 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3736 trace_sched_wake_idle_without_ipi(cpu); 3737 return false; 3738 } 3739 3740 return true; 3741 } 3742 3743 /* 3744 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3745 * necessary. The wakee CPU on receipt of the IPI will queue the task 3746 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3747 * of the wakeup instead of the waker. 3748 */ 3749 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3750 { 3751 struct rq *rq = cpu_rq(cpu); 3752 3753 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3754 3755 WRITE_ONCE(rq->ttwu_pending, 1); 3756 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3757 } 3758 3759 void wake_up_if_idle(int cpu) 3760 { 3761 struct rq *rq = cpu_rq(cpu); 3762 3763 guard(rcu)(); 3764 if (is_idle_task(rcu_dereference(rq->curr))) { 3765 guard(rq_lock_irqsave)(rq); 3766 if (is_idle_task(rq->curr)) 3767 resched_curr(rq); 3768 } 3769 } 3770 3771 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3772 { 3773 if (!sched_asym_cpucap_active()) 3774 return true; 3775 3776 if (this_cpu == that_cpu) 3777 return true; 3778 3779 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3780 } 3781 3782 bool cpus_share_cache(int this_cpu, int that_cpu) 3783 { 3784 if (this_cpu == that_cpu) 3785 return true; 3786 3787 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3788 } 3789 3790 /* 3791 * Whether CPUs are share cache resources, which means LLC on non-cluster 3792 * machines and LLC tag or L2 on machines with clusters. 3793 */ 3794 bool cpus_share_resources(int this_cpu, int that_cpu) 3795 { 3796 if (this_cpu == that_cpu) 3797 return true; 3798 3799 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3800 } 3801 3802 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3803 { 3804 /* 3805 * The BPF scheduler may depend on select_task_rq() being invoked during 3806 * wakeups. In addition, @p may end up executing on a different CPU 3807 * regardless of what happens in the wakeup path making the ttwu_queue 3808 * optimization less meaningful. Skip if on SCX. 3809 */ 3810 if (task_on_scx(p)) 3811 return false; 3812 3813 /* 3814 * Do not complicate things with the async wake_list while the CPU is 3815 * in hotplug state. 3816 */ 3817 if (!cpu_active(cpu)) 3818 return false; 3819 3820 /* Ensure the task will still be allowed to run on the CPU. */ 3821 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3822 return false; 3823 3824 /* 3825 * If the CPU does not share cache, then queue the task on the 3826 * remote rqs wakelist to avoid accessing remote data. 3827 */ 3828 if (!cpus_share_cache(smp_processor_id(), cpu)) 3829 return true; 3830 3831 if (cpu == smp_processor_id()) 3832 return false; 3833 3834 /* 3835 * If the wakee cpu is idle, or the task is descheduling and the 3836 * only running task on the CPU, then use the wakelist to offload 3837 * the task activation to the idle (or soon-to-be-idle) CPU as 3838 * the current CPU is likely busy. nr_running is checked to 3839 * avoid unnecessary task stacking. 3840 * 3841 * Note that we can only get here with (wakee) p->on_rq=0, 3842 * p->on_cpu can be whatever, we've done the dequeue, so 3843 * the wakee has been accounted out of ->nr_running. 3844 */ 3845 if (!cpu_rq(cpu)->nr_running) 3846 return true; 3847 3848 return false; 3849 } 3850 3851 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3852 { 3853 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3854 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3855 __ttwu_queue_wakelist(p, cpu, wake_flags); 3856 return true; 3857 } 3858 3859 return false; 3860 } 3861 3862 #else /* !CONFIG_SMP */ 3863 3864 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3865 { 3866 return false; 3867 } 3868 3869 #endif /* CONFIG_SMP */ 3870 3871 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3872 { 3873 struct rq *rq = cpu_rq(cpu); 3874 struct rq_flags rf; 3875 3876 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3877 return; 3878 3879 rq_lock(rq, &rf); 3880 update_rq_clock(rq); 3881 ttwu_do_activate(rq, p, wake_flags, &rf); 3882 rq_unlock(rq, &rf); 3883 } 3884 3885 /* 3886 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3887 * 3888 * The caller holds p::pi_lock if p != current or has preemption 3889 * disabled when p == current. 3890 * 3891 * The rules of saved_state: 3892 * 3893 * The related locking code always holds p::pi_lock when updating 3894 * p::saved_state, which means the code is fully serialized in both cases. 3895 * 3896 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 3897 * No other bits set. This allows to distinguish all wakeup scenarios. 3898 * 3899 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 3900 * allows us to prevent early wakeup of tasks before they can be run on 3901 * asymmetric ISA architectures (eg ARMv9). 3902 */ 3903 static __always_inline 3904 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3905 { 3906 int match; 3907 3908 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3909 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3910 state != TASK_RTLOCK_WAIT); 3911 } 3912 3913 *success = !!(match = __task_state_match(p, state)); 3914 3915 /* 3916 * Saved state preserves the task state across blocking on 3917 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 3918 * set p::saved_state to TASK_RUNNING, but do not wake the task 3919 * because it waits for a lock wakeup or __thaw_task(). Also 3920 * indicate success because from the regular waker's point of 3921 * view this has succeeded. 3922 * 3923 * After acquiring the lock the task will restore p::__state 3924 * from p::saved_state which ensures that the regular 3925 * wakeup is not lost. The restore will also set 3926 * p::saved_state to TASK_RUNNING so any further tests will 3927 * not result in false positives vs. @success 3928 */ 3929 if (match < 0) 3930 p->saved_state = TASK_RUNNING; 3931 3932 return match > 0; 3933 } 3934 3935 /* 3936 * Notes on Program-Order guarantees on SMP systems. 3937 * 3938 * MIGRATION 3939 * 3940 * The basic program-order guarantee on SMP systems is that when a task [t] 3941 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3942 * execution on its new CPU [c1]. 3943 * 3944 * For migration (of runnable tasks) this is provided by the following means: 3945 * 3946 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3947 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3948 * rq(c1)->lock (if not at the same time, then in that order). 3949 * C) LOCK of the rq(c1)->lock scheduling in task 3950 * 3951 * Release/acquire chaining guarantees that B happens after A and C after B. 3952 * Note: the CPU doing B need not be c0 or c1 3953 * 3954 * Example: 3955 * 3956 * CPU0 CPU1 CPU2 3957 * 3958 * LOCK rq(0)->lock 3959 * sched-out X 3960 * sched-in Y 3961 * UNLOCK rq(0)->lock 3962 * 3963 * LOCK rq(0)->lock // orders against CPU0 3964 * dequeue X 3965 * UNLOCK rq(0)->lock 3966 * 3967 * LOCK rq(1)->lock 3968 * enqueue X 3969 * UNLOCK rq(1)->lock 3970 * 3971 * LOCK rq(1)->lock // orders against CPU2 3972 * sched-out Z 3973 * sched-in X 3974 * UNLOCK rq(1)->lock 3975 * 3976 * 3977 * BLOCKING -- aka. SLEEP + WAKEUP 3978 * 3979 * For blocking we (obviously) need to provide the same guarantee as for 3980 * migration. However the means are completely different as there is no lock 3981 * chain to provide order. Instead we do: 3982 * 3983 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3984 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3985 * 3986 * Example: 3987 * 3988 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3989 * 3990 * LOCK rq(0)->lock LOCK X->pi_lock 3991 * dequeue X 3992 * sched-out X 3993 * smp_store_release(X->on_cpu, 0); 3994 * 3995 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3996 * X->state = WAKING 3997 * set_task_cpu(X,2) 3998 * 3999 * LOCK rq(2)->lock 4000 * enqueue X 4001 * X->state = RUNNING 4002 * UNLOCK rq(2)->lock 4003 * 4004 * LOCK rq(2)->lock // orders against CPU1 4005 * sched-out Z 4006 * sched-in X 4007 * UNLOCK rq(2)->lock 4008 * 4009 * UNLOCK X->pi_lock 4010 * UNLOCK rq(0)->lock 4011 * 4012 * 4013 * However, for wakeups there is a second guarantee we must provide, namely we 4014 * must ensure that CONDITION=1 done by the caller can not be reordered with 4015 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4016 */ 4017 4018 /** 4019 * try_to_wake_up - wake up a thread 4020 * @p: the thread to be awakened 4021 * @state: the mask of task states that can be woken 4022 * @wake_flags: wake modifier flags (WF_*) 4023 * 4024 * Conceptually does: 4025 * 4026 * If (@state & @p->state) @p->state = TASK_RUNNING. 4027 * 4028 * If the task was not queued/runnable, also place it back on a runqueue. 4029 * 4030 * This function is atomic against schedule() which would dequeue the task. 4031 * 4032 * It issues a full memory barrier before accessing @p->state, see the comment 4033 * with set_current_state(). 4034 * 4035 * Uses p->pi_lock to serialize against concurrent wake-ups. 4036 * 4037 * Relies on p->pi_lock stabilizing: 4038 * - p->sched_class 4039 * - p->cpus_ptr 4040 * - p->sched_task_group 4041 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4042 * 4043 * Tries really hard to only take one task_rq(p)->lock for performance. 4044 * Takes rq->lock in: 4045 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4046 * - ttwu_queue() -- new rq, for enqueue of the task; 4047 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4048 * 4049 * As a consequence we race really badly with just about everything. See the 4050 * many memory barriers and their comments for details. 4051 * 4052 * Return: %true if @p->state changes (an actual wakeup was done), 4053 * %false otherwise. 4054 */ 4055 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4056 { 4057 guard(preempt)(); 4058 int cpu, success = 0; 4059 4060 if (p == current) { 4061 /* 4062 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4063 * == smp_processor_id()'. Together this means we can special 4064 * case the whole 'p->on_rq && ttwu_runnable()' case below 4065 * without taking any locks. 4066 * 4067 * In particular: 4068 * - we rely on Program-Order guarantees for all the ordering, 4069 * - we're serialized against set_special_state() by virtue of 4070 * it disabling IRQs (this allows not taking ->pi_lock). 4071 */ 4072 if (!ttwu_state_match(p, state, &success)) 4073 goto out; 4074 4075 trace_sched_waking(p); 4076 ttwu_do_wakeup(p); 4077 goto out; 4078 } 4079 4080 /* 4081 * If we are going to wake up a thread waiting for CONDITION we 4082 * need to ensure that CONDITION=1 done by the caller can not be 4083 * reordered with p->state check below. This pairs with smp_store_mb() 4084 * in set_current_state() that the waiting thread does. 4085 */ 4086 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4087 smp_mb__after_spinlock(); 4088 if (!ttwu_state_match(p, state, &success)) 4089 break; 4090 4091 trace_sched_waking(p); 4092 4093 /* 4094 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4095 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4096 * in smp_cond_load_acquire() below. 4097 * 4098 * sched_ttwu_pending() try_to_wake_up() 4099 * STORE p->on_rq = 1 LOAD p->state 4100 * UNLOCK rq->lock 4101 * 4102 * __schedule() (switch to task 'p') 4103 * LOCK rq->lock smp_rmb(); 4104 * smp_mb__after_spinlock(); 4105 * UNLOCK rq->lock 4106 * 4107 * [task p] 4108 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4109 * 4110 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4111 * __schedule(). See the comment for smp_mb__after_spinlock(). 4112 * 4113 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4114 */ 4115 smp_rmb(); 4116 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4117 break; 4118 4119 #ifdef CONFIG_SMP 4120 /* 4121 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4122 * possible to, falsely, observe p->on_cpu == 0. 4123 * 4124 * One must be running (->on_cpu == 1) in order to remove oneself 4125 * from the runqueue. 4126 * 4127 * __schedule() (switch to task 'p') try_to_wake_up() 4128 * STORE p->on_cpu = 1 LOAD p->on_rq 4129 * UNLOCK rq->lock 4130 * 4131 * __schedule() (put 'p' to sleep) 4132 * LOCK rq->lock smp_rmb(); 4133 * smp_mb__after_spinlock(); 4134 * STORE p->on_rq = 0 LOAD p->on_cpu 4135 * 4136 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4137 * __schedule(). See the comment for smp_mb__after_spinlock(). 4138 * 4139 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4140 * schedule()'s deactivate_task() has 'happened' and p will no longer 4141 * care about it's own p->state. See the comment in __schedule(). 4142 */ 4143 smp_acquire__after_ctrl_dep(); 4144 4145 /* 4146 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4147 * == 0), which means we need to do an enqueue, change p->state to 4148 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4149 * enqueue, such as ttwu_queue_wakelist(). 4150 */ 4151 WRITE_ONCE(p->__state, TASK_WAKING); 4152 4153 /* 4154 * If the owning (remote) CPU is still in the middle of schedule() with 4155 * this task as prev, considering queueing p on the remote CPUs wake_list 4156 * which potentially sends an IPI instead of spinning on p->on_cpu to 4157 * let the waker make forward progress. This is safe because IRQs are 4158 * disabled and the IPI will deliver after on_cpu is cleared. 4159 * 4160 * Ensure we load task_cpu(p) after p->on_cpu: 4161 * 4162 * set_task_cpu(p, cpu); 4163 * STORE p->cpu = @cpu 4164 * __schedule() (switch to task 'p') 4165 * LOCK rq->lock 4166 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4167 * STORE p->on_cpu = 1 LOAD p->cpu 4168 * 4169 * to ensure we observe the correct CPU on which the task is currently 4170 * scheduling. 4171 */ 4172 if (smp_load_acquire(&p->on_cpu) && 4173 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4174 break; 4175 4176 /* 4177 * If the owning (remote) CPU is still in the middle of schedule() with 4178 * this task as prev, wait until it's done referencing the task. 4179 * 4180 * Pairs with the smp_store_release() in finish_task(). 4181 * 4182 * This ensures that tasks getting woken will be fully ordered against 4183 * their previous state and preserve Program Order. 4184 */ 4185 smp_cond_load_acquire(&p->on_cpu, !VAL); 4186 4187 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4188 if (task_cpu(p) != cpu) { 4189 if (p->in_iowait) { 4190 delayacct_blkio_end(p); 4191 atomic_dec(&task_rq(p)->nr_iowait); 4192 } 4193 4194 wake_flags |= WF_MIGRATED; 4195 psi_ttwu_dequeue(p); 4196 set_task_cpu(p, cpu); 4197 } 4198 #else 4199 cpu = task_cpu(p); 4200 #endif /* CONFIG_SMP */ 4201 4202 ttwu_queue(p, cpu, wake_flags); 4203 } 4204 out: 4205 if (success) 4206 ttwu_stat(p, task_cpu(p), wake_flags); 4207 4208 return success; 4209 } 4210 4211 static bool __task_needs_rq_lock(struct task_struct *p) 4212 { 4213 unsigned int state = READ_ONCE(p->__state); 4214 4215 /* 4216 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4217 * the task is blocked. Make sure to check @state since ttwu() can drop 4218 * locks at the end, see ttwu_queue_wakelist(). 4219 */ 4220 if (state == TASK_RUNNING || state == TASK_WAKING) 4221 return true; 4222 4223 /* 4224 * Ensure we load p->on_rq after p->__state, otherwise it would be 4225 * possible to, falsely, observe p->on_rq == 0. 4226 * 4227 * See try_to_wake_up() for a longer comment. 4228 */ 4229 smp_rmb(); 4230 if (p->on_rq) 4231 return true; 4232 4233 #ifdef CONFIG_SMP 4234 /* 4235 * Ensure the task has finished __schedule() and will not be referenced 4236 * anymore. Again, see try_to_wake_up() for a longer comment. 4237 */ 4238 smp_rmb(); 4239 smp_cond_load_acquire(&p->on_cpu, !VAL); 4240 #endif 4241 4242 return false; 4243 } 4244 4245 /** 4246 * task_call_func - Invoke a function on task in fixed state 4247 * @p: Process for which the function is to be invoked, can be @current. 4248 * @func: Function to invoke. 4249 * @arg: Argument to function. 4250 * 4251 * Fix the task in it's current state by avoiding wakeups and or rq operations 4252 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4253 * to work out what the state is, if required. Given that @func can be invoked 4254 * with a runqueue lock held, it had better be quite lightweight. 4255 * 4256 * Returns: 4257 * Whatever @func returns 4258 */ 4259 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4260 { 4261 struct rq *rq = NULL; 4262 struct rq_flags rf; 4263 int ret; 4264 4265 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4266 4267 if (__task_needs_rq_lock(p)) 4268 rq = __task_rq_lock(p, &rf); 4269 4270 /* 4271 * At this point the task is pinned; either: 4272 * - blocked and we're holding off wakeups (pi->lock) 4273 * - woken, and we're holding off enqueue (rq->lock) 4274 * - queued, and we're holding off schedule (rq->lock) 4275 * - running, and we're holding off de-schedule (rq->lock) 4276 * 4277 * The called function (@func) can use: task_curr(), p->on_rq and 4278 * p->__state to differentiate between these states. 4279 */ 4280 ret = func(p, arg); 4281 4282 if (rq) 4283 rq_unlock(rq, &rf); 4284 4285 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4286 return ret; 4287 } 4288 4289 /** 4290 * cpu_curr_snapshot - Return a snapshot of the currently running task 4291 * @cpu: The CPU on which to snapshot the task. 4292 * 4293 * Returns the task_struct pointer of the task "currently" running on 4294 * the specified CPU. If the same task is running on that CPU throughout, 4295 * the return value will be a pointer to that task's task_struct structure. 4296 * If the CPU did any context switches even vaguely concurrently with the 4297 * execution of this function, the return value will be a pointer to the 4298 * task_struct structure of a randomly chosen task that was running on 4299 * that CPU somewhere around the time that this function was executing. 4300 * 4301 * If the specified CPU was offline, the return value is whatever it 4302 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4303 * task, but there is no guarantee. Callers wishing a useful return 4304 * value must take some action to ensure that the specified CPU remains 4305 * online throughout. 4306 * 4307 * This function executes full memory barriers before and after fetching 4308 * the pointer, which permits the caller to confine this function's fetch 4309 * with respect to the caller's accesses to other shared variables. 4310 */ 4311 struct task_struct *cpu_curr_snapshot(int cpu) 4312 { 4313 struct task_struct *t; 4314 4315 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4316 t = rcu_dereference(cpu_curr(cpu)); 4317 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4318 return t; 4319 } 4320 4321 /** 4322 * wake_up_process - Wake up a specific process 4323 * @p: The process to be woken up. 4324 * 4325 * Attempt to wake up the nominated process and move it to the set of runnable 4326 * processes. 4327 * 4328 * Return: 1 if the process was woken up, 0 if it was already running. 4329 * 4330 * This function executes a full memory barrier before accessing the task state. 4331 */ 4332 int wake_up_process(struct task_struct *p) 4333 { 4334 return try_to_wake_up(p, TASK_NORMAL, 0); 4335 } 4336 EXPORT_SYMBOL(wake_up_process); 4337 4338 int wake_up_state(struct task_struct *p, unsigned int state) 4339 { 4340 return try_to_wake_up(p, state, 0); 4341 } 4342 4343 /* 4344 * Perform scheduler related setup for a newly forked process p. 4345 * p is forked by current. 4346 * 4347 * __sched_fork() is basic setup used by init_idle() too: 4348 */ 4349 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4350 { 4351 p->on_rq = 0; 4352 4353 p->se.on_rq = 0; 4354 p->se.exec_start = 0; 4355 p->se.sum_exec_runtime = 0; 4356 p->se.prev_sum_exec_runtime = 0; 4357 p->se.nr_migrations = 0; 4358 p->se.vruntime = 0; 4359 p->se.vlag = 0; 4360 p->se.slice = sysctl_sched_base_slice; 4361 INIT_LIST_HEAD(&p->se.group_node); 4362 4363 #ifdef CONFIG_FAIR_GROUP_SCHED 4364 p->se.cfs_rq = NULL; 4365 #endif 4366 4367 #ifdef CONFIG_SCHEDSTATS 4368 /* Even if schedstat is disabled, there should not be garbage */ 4369 memset(&p->stats, 0, sizeof(p->stats)); 4370 #endif 4371 4372 init_dl_entity(&p->dl); 4373 4374 INIT_LIST_HEAD(&p->rt.run_list); 4375 p->rt.timeout = 0; 4376 p->rt.time_slice = sched_rr_timeslice; 4377 p->rt.on_rq = 0; 4378 p->rt.on_list = 0; 4379 4380 #ifdef CONFIG_SCHED_CLASS_EXT 4381 init_scx_entity(&p->scx); 4382 #endif 4383 4384 #ifdef CONFIG_PREEMPT_NOTIFIERS 4385 INIT_HLIST_HEAD(&p->preempt_notifiers); 4386 #endif 4387 4388 #ifdef CONFIG_COMPACTION 4389 p->capture_control = NULL; 4390 #endif 4391 init_numa_balancing(clone_flags, p); 4392 #ifdef CONFIG_SMP 4393 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4394 p->migration_pending = NULL; 4395 #endif 4396 init_sched_mm_cid(p); 4397 } 4398 4399 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4400 4401 #ifdef CONFIG_NUMA_BALANCING 4402 4403 int sysctl_numa_balancing_mode; 4404 4405 static void __set_numabalancing_state(bool enabled) 4406 { 4407 if (enabled) 4408 static_branch_enable(&sched_numa_balancing); 4409 else 4410 static_branch_disable(&sched_numa_balancing); 4411 } 4412 4413 void set_numabalancing_state(bool enabled) 4414 { 4415 if (enabled) 4416 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4417 else 4418 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4419 __set_numabalancing_state(enabled); 4420 } 4421 4422 #ifdef CONFIG_PROC_SYSCTL 4423 static void reset_memory_tiering(void) 4424 { 4425 struct pglist_data *pgdat; 4426 4427 for_each_online_pgdat(pgdat) { 4428 pgdat->nbp_threshold = 0; 4429 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4430 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4431 } 4432 } 4433 4434 static int sysctl_numa_balancing(struct ctl_table *table, int write, 4435 void *buffer, size_t *lenp, loff_t *ppos) 4436 { 4437 struct ctl_table t; 4438 int err; 4439 int state = sysctl_numa_balancing_mode; 4440 4441 if (write && !capable(CAP_SYS_ADMIN)) 4442 return -EPERM; 4443 4444 t = *table; 4445 t.data = &state; 4446 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4447 if (err < 0) 4448 return err; 4449 if (write) { 4450 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4451 (state & NUMA_BALANCING_MEMORY_TIERING)) 4452 reset_memory_tiering(); 4453 sysctl_numa_balancing_mode = state; 4454 __set_numabalancing_state(state); 4455 } 4456 return err; 4457 } 4458 #endif 4459 #endif 4460 4461 #ifdef CONFIG_SCHEDSTATS 4462 4463 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4464 4465 static void set_schedstats(bool enabled) 4466 { 4467 if (enabled) 4468 static_branch_enable(&sched_schedstats); 4469 else 4470 static_branch_disable(&sched_schedstats); 4471 } 4472 4473 void force_schedstat_enabled(void) 4474 { 4475 if (!schedstat_enabled()) { 4476 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4477 static_branch_enable(&sched_schedstats); 4478 } 4479 } 4480 4481 static int __init setup_schedstats(char *str) 4482 { 4483 int ret = 0; 4484 if (!str) 4485 goto out; 4486 4487 if (!strcmp(str, "enable")) { 4488 set_schedstats(true); 4489 ret = 1; 4490 } else if (!strcmp(str, "disable")) { 4491 set_schedstats(false); 4492 ret = 1; 4493 } 4494 out: 4495 if (!ret) 4496 pr_warn("Unable to parse schedstats=\n"); 4497 4498 return ret; 4499 } 4500 __setup("schedstats=", setup_schedstats); 4501 4502 #ifdef CONFIG_PROC_SYSCTL 4503 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4504 size_t *lenp, loff_t *ppos) 4505 { 4506 struct ctl_table t; 4507 int err; 4508 int state = static_branch_likely(&sched_schedstats); 4509 4510 if (write && !capable(CAP_SYS_ADMIN)) 4511 return -EPERM; 4512 4513 t = *table; 4514 t.data = &state; 4515 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4516 if (err < 0) 4517 return err; 4518 if (write) 4519 set_schedstats(state); 4520 return err; 4521 } 4522 #endif /* CONFIG_PROC_SYSCTL */ 4523 #endif /* CONFIG_SCHEDSTATS */ 4524 4525 #ifdef CONFIG_SYSCTL 4526 static struct ctl_table sched_core_sysctls[] = { 4527 #ifdef CONFIG_SCHEDSTATS 4528 { 4529 .procname = "sched_schedstats", 4530 .data = NULL, 4531 .maxlen = sizeof(unsigned int), 4532 .mode = 0644, 4533 .proc_handler = sysctl_schedstats, 4534 .extra1 = SYSCTL_ZERO, 4535 .extra2 = SYSCTL_ONE, 4536 }, 4537 #endif /* CONFIG_SCHEDSTATS */ 4538 #ifdef CONFIG_UCLAMP_TASK 4539 { 4540 .procname = "sched_util_clamp_min", 4541 .data = &sysctl_sched_uclamp_util_min, 4542 .maxlen = sizeof(unsigned int), 4543 .mode = 0644, 4544 .proc_handler = sysctl_sched_uclamp_handler, 4545 }, 4546 { 4547 .procname = "sched_util_clamp_max", 4548 .data = &sysctl_sched_uclamp_util_max, 4549 .maxlen = sizeof(unsigned int), 4550 .mode = 0644, 4551 .proc_handler = sysctl_sched_uclamp_handler, 4552 }, 4553 { 4554 .procname = "sched_util_clamp_min_rt_default", 4555 .data = &sysctl_sched_uclamp_util_min_rt_default, 4556 .maxlen = sizeof(unsigned int), 4557 .mode = 0644, 4558 .proc_handler = sysctl_sched_uclamp_handler, 4559 }, 4560 #endif /* CONFIG_UCLAMP_TASK */ 4561 #ifdef CONFIG_NUMA_BALANCING 4562 { 4563 .procname = "numa_balancing", 4564 .data = NULL, /* filled in by handler */ 4565 .maxlen = sizeof(unsigned int), 4566 .mode = 0644, 4567 .proc_handler = sysctl_numa_balancing, 4568 .extra1 = SYSCTL_ZERO, 4569 .extra2 = SYSCTL_FOUR, 4570 }, 4571 #endif /* CONFIG_NUMA_BALANCING */ 4572 }; 4573 static int __init sched_core_sysctl_init(void) 4574 { 4575 register_sysctl_init("kernel", sched_core_sysctls); 4576 return 0; 4577 } 4578 late_initcall(sched_core_sysctl_init); 4579 #endif /* CONFIG_SYSCTL */ 4580 4581 /* 4582 * fork()/clone()-time setup: 4583 */ 4584 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4585 { 4586 int ret; 4587 4588 __sched_fork(clone_flags, p); 4589 /* 4590 * We mark the process as NEW here. This guarantees that 4591 * nobody will actually run it, and a signal or other external 4592 * event cannot wake it up and insert it on the runqueue either. 4593 */ 4594 p->__state = TASK_NEW; 4595 4596 /* 4597 * Make sure we do not leak PI boosting priority to the child. 4598 */ 4599 p->prio = current->normal_prio; 4600 4601 uclamp_fork(p); 4602 4603 /* 4604 * Revert to default priority/policy on fork if requested. 4605 */ 4606 if (unlikely(p->sched_reset_on_fork)) { 4607 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4608 p->policy = SCHED_NORMAL; 4609 p->static_prio = NICE_TO_PRIO(0); 4610 p->rt_priority = 0; 4611 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4612 p->static_prio = NICE_TO_PRIO(0); 4613 4614 p->prio = p->normal_prio = p->static_prio; 4615 set_load_weight(p, false); 4616 4617 /* 4618 * We don't need the reset flag anymore after the fork. It has 4619 * fulfilled its duty: 4620 */ 4621 p->sched_reset_on_fork = 0; 4622 } 4623 4624 scx_pre_fork(p); 4625 4626 if (dl_prio(p->prio)) { 4627 ret = -EAGAIN; 4628 goto out_cancel; 4629 } else if (rt_prio(p->prio)) { 4630 p->sched_class = &rt_sched_class; 4631 #ifdef CONFIG_SCHED_CLASS_EXT 4632 } else if (task_should_scx(p)) { 4633 p->sched_class = &ext_sched_class; 4634 #endif 4635 } else { 4636 p->sched_class = &fair_sched_class; 4637 } 4638 4639 init_entity_runnable_average(&p->se); 4640 4641 4642 #ifdef CONFIG_SCHED_INFO 4643 if (likely(sched_info_on())) 4644 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4645 #endif 4646 #if defined(CONFIG_SMP) 4647 p->on_cpu = 0; 4648 #endif 4649 init_task_preempt_count(p); 4650 #ifdef CONFIG_SMP 4651 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4652 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4653 #endif 4654 return 0; 4655 4656 out_cancel: 4657 scx_cancel_fork(p); 4658 return ret; 4659 } 4660 4661 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4662 { 4663 unsigned long flags; 4664 4665 /* 4666 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4667 * required yet, but lockdep gets upset if rules are violated. 4668 */ 4669 raw_spin_lock_irqsave(&p->pi_lock, flags); 4670 #ifdef CONFIG_CGROUP_SCHED 4671 if (1) { 4672 struct task_group *tg; 4673 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4674 struct task_group, css); 4675 tg = autogroup_task_group(p, tg); 4676 p->sched_task_group = tg; 4677 } 4678 #endif 4679 rseq_migrate(p); 4680 /* 4681 * We're setting the CPU for the first time, we don't migrate, 4682 * so use __set_task_cpu(). 4683 */ 4684 __set_task_cpu(p, smp_processor_id()); 4685 if (p->sched_class->task_fork) 4686 p->sched_class->task_fork(p); 4687 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4688 4689 return scx_fork(p); 4690 } 4691 4692 void sched_cancel_fork(struct task_struct *p) 4693 { 4694 scx_cancel_fork(p); 4695 } 4696 4697 void sched_post_fork(struct task_struct *p) 4698 { 4699 uclamp_post_fork(p); 4700 scx_post_fork(p); 4701 } 4702 4703 unsigned long to_ratio(u64 period, u64 runtime) 4704 { 4705 if (runtime == RUNTIME_INF) 4706 return BW_UNIT; 4707 4708 /* 4709 * Doing this here saves a lot of checks in all 4710 * the calling paths, and returning zero seems 4711 * safe for them anyway. 4712 */ 4713 if (period == 0) 4714 return 0; 4715 4716 return div64_u64(runtime << BW_SHIFT, period); 4717 } 4718 4719 /* 4720 * wake_up_new_task - wake up a newly created task for the first time. 4721 * 4722 * This function will do some initial scheduler statistics housekeeping 4723 * that must be done for every newly created context, then puts the task 4724 * on the runqueue and wakes it. 4725 */ 4726 void wake_up_new_task(struct task_struct *p) 4727 { 4728 struct rq_flags rf; 4729 struct rq *rq; 4730 4731 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4732 WRITE_ONCE(p->__state, TASK_RUNNING); 4733 #ifdef CONFIG_SMP 4734 /* 4735 * Fork balancing, do it here and not earlier because: 4736 * - cpus_ptr can change in the fork path 4737 * - any previously selected CPU might disappear through hotplug 4738 * 4739 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4740 * as we're not fully set-up yet. 4741 */ 4742 p->recent_used_cpu = task_cpu(p); 4743 rseq_migrate(p); 4744 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4745 #endif 4746 rq = __task_rq_lock(p, &rf); 4747 update_rq_clock(rq); 4748 post_init_entity_util_avg(p); 4749 4750 activate_task(rq, p, ENQUEUE_NOCLOCK); 4751 trace_sched_wakeup_new(p); 4752 wakeup_preempt(rq, p, WF_FORK); 4753 #ifdef CONFIG_SMP 4754 if (p->sched_class->task_woken) { 4755 /* 4756 * Nothing relies on rq->lock after this, so it's fine to 4757 * drop it. 4758 */ 4759 rq_unpin_lock(rq, &rf); 4760 p->sched_class->task_woken(rq, p); 4761 rq_repin_lock(rq, &rf); 4762 } 4763 #endif 4764 task_rq_unlock(rq, p, &rf); 4765 } 4766 4767 #ifdef CONFIG_PREEMPT_NOTIFIERS 4768 4769 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4770 4771 void preempt_notifier_inc(void) 4772 { 4773 static_branch_inc(&preempt_notifier_key); 4774 } 4775 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4776 4777 void preempt_notifier_dec(void) 4778 { 4779 static_branch_dec(&preempt_notifier_key); 4780 } 4781 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4782 4783 /** 4784 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4785 * @notifier: notifier struct to register 4786 */ 4787 void preempt_notifier_register(struct preempt_notifier *notifier) 4788 { 4789 if (!static_branch_unlikely(&preempt_notifier_key)) 4790 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4791 4792 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4793 } 4794 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4795 4796 /** 4797 * preempt_notifier_unregister - no longer interested in preemption notifications 4798 * @notifier: notifier struct to unregister 4799 * 4800 * This is *not* safe to call from within a preemption notifier. 4801 */ 4802 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4803 { 4804 hlist_del(¬ifier->link); 4805 } 4806 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4807 4808 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4809 { 4810 struct preempt_notifier *notifier; 4811 4812 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4813 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4814 } 4815 4816 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4817 { 4818 if (static_branch_unlikely(&preempt_notifier_key)) 4819 __fire_sched_in_preempt_notifiers(curr); 4820 } 4821 4822 static void 4823 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4824 struct task_struct *next) 4825 { 4826 struct preempt_notifier *notifier; 4827 4828 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4829 notifier->ops->sched_out(notifier, next); 4830 } 4831 4832 static __always_inline void 4833 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4834 struct task_struct *next) 4835 { 4836 if (static_branch_unlikely(&preempt_notifier_key)) 4837 __fire_sched_out_preempt_notifiers(curr, next); 4838 } 4839 4840 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4841 4842 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4843 { 4844 } 4845 4846 static inline void 4847 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4848 struct task_struct *next) 4849 { 4850 } 4851 4852 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4853 4854 static inline void prepare_task(struct task_struct *next) 4855 { 4856 #ifdef CONFIG_SMP 4857 /* 4858 * Claim the task as running, we do this before switching to it 4859 * such that any running task will have this set. 4860 * 4861 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4862 * its ordering comment. 4863 */ 4864 WRITE_ONCE(next->on_cpu, 1); 4865 #endif 4866 } 4867 4868 static inline void finish_task(struct task_struct *prev) 4869 { 4870 #ifdef CONFIG_SMP 4871 /* 4872 * This must be the very last reference to @prev from this CPU. After 4873 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4874 * must ensure this doesn't happen until the switch is completely 4875 * finished. 4876 * 4877 * In particular, the load of prev->state in finish_task_switch() must 4878 * happen before this. 4879 * 4880 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4881 */ 4882 smp_store_release(&prev->on_cpu, 0); 4883 #endif 4884 } 4885 4886 #ifdef CONFIG_SMP 4887 4888 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4889 { 4890 void (*func)(struct rq *rq); 4891 struct balance_callback *next; 4892 4893 lockdep_assert_rq_held(rq); 4894 4895 while (head) { 4896 func = (void (*)(struct rq *))head->func; 4897 next = head->next; 4898 head->next = NULL; 4899 head = next; 4900 4901 func(rq); 4902 } 4903 } 4904 4905 static void balance_push(struct rq *rq); 4906 4907 /* 4908 * balance_push_callback is a right abuse of the callback interface and plays 4909 * by significantly different rules. 4910 * 4911 * Where the normal balance_callback's purpose is to be ran in the same context 4912 * that queued it (only later, when it's safe to drop rq->lock again), 4913 * balance_push_callback is specifically targeted at __schedule(). 4914 * 4915 * This abuse is tolerated because it places all the unlikely/odd cases behind 4916 * a single test, namely: rq->balance_callback == NULL. 4917 */ 4918 struct balance_callback balance_push_callback = { 4919 .next = NULL, 4920 .func = balance_push, 4921 }; 4922 4923 static inline struct balance_callback * 4924 __splice_balance_callbacks(struct rq *rq, bool split) 4925 { 4926 struct balance_callback *head = rq->balance_callback; 4927 4928 if (likely(!head)) 4929 return NULL; 4930 4931 lockdep_assert_rq_held(rq); 4932 /* 4933 * Must not take balance_push_callback off the list when 4934 * splice_balance_callbacks() and balance_callbacks() are not 4935 * in the same rq->lock section. 4936 * 4937 * In that case it would be possible for __schedule() to interleave 4938 * and observe the list empty. 4939 */ 4940 if (split && head == &balance_push_callback) 4941 head = NULL; 4942 else 4943 rq->balance_callback = NULL; 4944 4945 return head; 4946 } 4947 4948 struct balance_callback *splice_balance_callbacks(struct rq *rq) 4949 { 4950 return __splice_balance_callbacks(rq, true); 4951 } 4952 4953 static void __balance_callbacks(struct rq *rq) 4954 { 4955 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4956 } 4957 4958 void balance_callbacks(struct rq *rq, struct balance_callback *head) 4959 { 4960 unsigned long flags; 4961 4962 if (unlikely(head)) { 4963 raw_spin_rq_lock_irqsave(rq, flags); 4964 do_balance_callbacks(rq, head); 4965 raw_spin_rq_unlock_irqrestore(rq, flags); 4966 } 4967 } 4968 4969 #else 4970 4971 static inline void __balance_callbacks(struct rq *rq) 4972 { 4973 } 4974 4975 #endif 4976 4977 static inline void 4978 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4979 { 4980 /* 4981 * Since the runqueue lock will be released by the next 4982 * task (which is an invalid locking op but in the case 4983 * of the scheduler it's an obvious special-case), so we 4984 * do an early lockdep release here: 4985 */ 4986 rq_unpin_lock(rq, rf); 4987 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4988 #ifdef CONFIG_DEBUG_SPINLOCK 4989 /* this is a valid case when another task releases the spinlock */ 4990 rq_lockp(rq)->owner = next; 4991 #endif 4992 } 4993 4994 static inline void finish_lock_switch(struct rq *rq) 4995 { 4996 /* 4997 * If we are tracking spinlock dependencies then we have to 4998 * fix up the runqueue lock - which gets 'carried over' from 4999 * prev into current: 5000 */ 5001 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5002 __balance_callbacks(rq); 5003 raw_spin_rq_unlock_irq(rq); 5004 } 5005 5006 /* 5007 * NOP if the arch has not defined these: 5008 */ 5009 5010 #ifndef prepare_arch_switch 5011 # define prepare_arch_switch(next) do { } while (0) 5012 #endif 5013 5014 #ifndef finish_arch_post_lock_switch 5015 # define finish_arch_post_lock_switch() do { } while (0) 5016 #endif 5017 5018 static inline void kmap_local_sched_out(void) 5019 { 5020 #ifdef CONFIG_KMAP_LOCAL 5021 if (unlikely(current->kmap_ctrl.idx)) 5022 __kmap_local_sched_out(); 5023 #endif 5024 } 5025 5026 static inline void kmap_local_sched_in(void) 5027 { 5028 #ifdef CONFIG_KMAP_LOCAL 5029 if (unlikely(current->kmap_ctrl.idx)) 5030 __kmap_local_sched_in(); 5031 #endif 5032 } 5033 5034 /** 5035 * prepare_task_switch - prepare to switch tasks 5036 * @rq: the runqueue preparing to switch 5037 * @prev: the current task that is being switched out 5038 * @next: the task we are going to switch to. 5039 * 5040 * This is called with the rq lock held and interrupts off. It must 5041 * be paired with a subsequent finish_task_switch after the context 5042 * switch. 5043 * 5044 * prepare_task_switch sets up locking and calls architecture specific 5045 * hooks. 5046 */ 5047 static inline void 5048 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5049 struct task_struct *next) 5050 { 5051 kcov_prepare_switch(prev); 5052 sched_info_switch(rq, prev, next); 5053 perf_event_task_sched_out(prev, next); 5054 rseq_preempt(prev); 5055 fire_sched_out_preempt_notifiers(prev, next); 5056 kmap_local_sched_out(); 5057 prepare_task(next); 5058 prepare_arch_switch(next); 5059 } 5060 5061 /** 5062 * finish_task_switch - clean up after a task-switch 5063 * @prev: the thread we just switched away from. 5064 * 5065 * finish_task_switch must be called after the context switch, paired 5066 * with a prepare_task_switch call before the context switch. 5067 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5068 * and do any other architecture-specific cleanup actions. 5069 * 5070 * Note that we may have delayed dropping an mm in context_switch(). If 5071 * so, we finish that here outside of the runqueue lock. (Doing it 5072 * with the lock held can cause deadlocks; see schedule() for 5073 * details.) 5074 * 5075 * The context switch have flipped the stack from under us and restored the 5076 * local variables which were saved when this task called schedule() in the 5077 * past. 'prev == current' is still correct but we need to recalculate this_rq 5078 * because prev may have moved to another CPU. 5079 */ 5080 static struct rq *finish_task_switch(struct task_struct *prev) 5081 __releases(rq->lock) 5082 { 5083 struct rq *rq = this_rq(); 5084 struct mm_struct *mm = rq->prev_mm; 5085 unsigned int prev_state; 5086 5087 /* 5088 * The previous task will have left us with a preempt_count of 2 5089 * because it left us after: 5090 * 5091 * schedule() 5092 * preempt_disable(); // 1 5093 * __schedule() 5094 * raw_spin_lock_irq(&rq->lock) // 2 5095 * 5096 * Also, see FORK_PREEMPT_COUNT. 5097 */ 5098 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5099 "corrupted preempt_count: %s/%d/0x%x\n", 5100 current->comm, current->pid, preempt_count())) 5101 preempt_count_set(FORK_PREEMPT_COUNT); 5102 5103 rq->prev_mm = NULL; 5104 5105 /* 5106 * A task struct has one reference for the use as "current". 5107 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5108 * schedule one last time. The schedule call will never return, and 5109 * the scheduled task must drop that reference. 5110 * 5111 * We must observe prev->state before clearing prev->on_cpu (in 5112 * finish_task), otherwise a concurrent wakeup can get prev 5113 * running on another CPU and we could rave with its RUNNING -> DEAD 5114 * transition, resulting in a double drop. 5115 */ 5116 prev_state = READ_ONCE(prev->__state); 5117 vtime_task_switch(prev); 5118 perf_event_task_sched_in(prev, current); 5119 finish_task(prev); 5120 tick_nohz_task_switch(); 5121 finish_lock_switch(rq); 5122 finish_arch_post_lock_switch(); 5123 kcov_finish_switch(current); 5124 /* 5125 * kmap_local_sched_out() is invoked with rq::lock held and 5126 * interrupts disabled. There is no requirement for that, but the 5127 * sched out code does not have an interrupt enabled section. 5128 * Restoring the maps on sched in does not require interrupts being 5129 * disabled either. 5130 */ 5131 kmap_local_sched_in(); 5132 5133 fire_sched_in_preempt_notifiers(current); 5134 /* 5135 * When switching through a kernel thread, the loop in 5136 * membarrier_{private,global}_expedited() may have observed that 5137 * kernel thread and not issued an IPI. It is therefore possible to 5138 * schedule between user->kernel->user threads without passing though 5139 * switch_mm(). Membarrier requires a barrier after storing to 5140 * rq->curr, before returning to userspace, so provide them here: 5141 * 5142 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5143 * provided by mmdrop_lazy_tlb(), 5144 * - a sync_core for SYNC_CORE. 5145 */ 5146 if (mm) { 5147 membarrier_mm_sync_core_before_usermode(mm); 5148 mmdrop_lazy_tlb_sched(mm); 5149 } 5150 5151 if (unlikely(prev_state == TASK_DEAD)) { 5152 if (prev->sched_class->task_dead) 5153 prev->sched_class->task_dead(prev); 5154 5155 /* Task is done with its stack. */ 5156 put_task_stack(prev); 5157 5158 put_task_struct_rcu_user(prev); 5159 } 5160 5161 return rq; 5162 } 5163 5164 /** 5165 * schedule_tail - first thing a freshly forked thread must call. 5166 * @prev: the thread we just switched away from. 5167 */ 5168 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5169 __releases(rq->lock) 5170 { 5171 /* 5172 * New tasks start with FORK_PREEMPT_COUNT, see there and 5173 * finish_task_switch() for details. 5174 * 5175 * finish_task_switch() will drop rq->lock() and lower preempt_count 5176 * and the preempt_enable() will end up enabling preemption (on 5177 * PREEMPT_COUNT kernels). 5178 */ 5179 5180 finish_task_switch(prev); 5181 preempt_enable(); 5182 5183 if (current->set_child_tid) 5184 put_user(task_pid_vnr(current), current->set_child_tid); 5185 5186 calculate_sigpending(); 5187 } 5188 5189 /* 5190 * context_switch - switch to the new MM and the new thread's register state. 5191 */ 5192 static __always_inline struct rq * 5193 context_switch(struct rq *rq, struct task_struct *prev, 5194 struct task_struct *next, struct rq_flags *rf) 5195 { 5196 prepare_task_switch(rq, prev, next); 5197 5198 /* 5199 * For paravirt, this is coupled with an exit in switch_to to 5200 * combine the page table reload and the switch backend into 5201 * one hypercall. 5202 */ 5203 arch_start_context_switch(prev); 5204 5205 /* 5206 * kernel -> kernel lazy + transfer active 5207 * user -> kernel lazy + mmgrab_lazy_tlb() active 5208 * 5209 * kernel -> user switch + mmdrop_lazy_tlb() active 5210 * user -> user switch 5211 * 5212 * switch_mm_cid() needs to be updated if the barriers provided 5213 * by context_switch() are modified. 5214 */ 5215 if (!next->mm) { // to kernel 5216 enter_lazy_tlb(prev->active_mm, next); 5217 5218 next->active_mm = prev->active_mm; 5219 if (prev->mm) // from user 5220 mmgrab_lazy_tlb(prev->active_mm); 5221 else 5222 prev->active_mm = NULL; 5223 } else { // to user 5224 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5225 /* 5226 * sys_membarrier() requires an smp_mb() between setting 5227 * rq->curr / membarrier_switch_mm() and returning to userspace. 5228 * 5229 * The below provides this either through switch_mm(), or in 5230 * case 'prev->active_mm == next->mm' through 5231 * finish_task_switch()'s mmdrop(). 5232 */ 5233 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5234 lru_gen_use_mm(next->mm); 5235 5236 if (!prev->mm) { // from kernel 5237 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5238 rq->prev_mm = prev->active_mm; 5239 prev->active_mm = NULL; 5240 } 5241 } 5242 5243 /* switch_mm_cid() requires the memory barriers above. */ 5244 switch_mm_cid(rq, prev, next); 5245 5246 prepare_lock_switch(rq, next, rf); 5247 5248 /* Here we just switch the register state and the stack. */ 5249 switch_to(prev, next, prev); 5250 barrier(); 5251 5252 return finish_task_switch(prev); 5253 } 5254 5255 /* 5256 * nr_running and nr_context_switches: 5257 * 5258 * externally visible scheduler statistics: current number of runnable 5259 * threads, total number of context switches performed since bootup. 5260 */ 5261 unsigned int nr_running(void) 5262 { 5263 unsigned int i, sum = 0; 5264 5265 for_each_online_cpu(i) 5266 sum += cpu_rq(i)->nr_running; 5267 5268 return sum; 5269 } 5270 5271 /* 5272 * Check if only the current task is running on the CPU. 5273 * 5274 * Caution: this function does not check that the caller has disabled 5275 * preemption, thus the result might have a time-of-check-to-time-of-use 5276 * race. The caller is responsible to use it correctly, for example: 5277 * 5278 * - from a non-preemptible section (of course) 5279 * 5280 * - from a thread that is bound to a single CPU 5281 * 5282 * - in a loop with very short iterations (e.g. a polling loop) 5283 */ 5284 bool single_task_running(void) 5285 { 5286 return raw_rq()->nr_running == 1; 5287 } 5288 EXPORT_SYMBOL(single_task_running); 5289 5290 unsigned long long nr_context_switches_cpu(int cpu) 5291 { 5292 return cpu_rq(cpu)->nr_switches; 5293 } 5294 5295 unsigned long long nr_context_switches(void) 5296 { 5297 int i; 5298 unsigned long long sum = 0; 5299 5300 for_each_possible_cpu(i) 5301 sum += cpu_rq(i)->nr_switches; 5302 5303 return sum; 5304 } 5305 5306 /* 5307 * Consumers of these two interfaces, like for example the cpuidle menu 5308 * governor, are using nonsensical data. Preferring shallow idle state selection 5309 * for a CPU that has IO-wait which might not even end up running the task when 5310 * it does become runnable. 5311 */ 5312 5313 unsigned int nr_iowait_cpu(int cpu) 5314 { 5315 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5316 } 5317 5318 /* 5319 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5320 * 5321 * The idea behind IO-wait account is to account the idle time that we could 5322 * have spend running if it were not for IO. That is, if we were to improve the 5323 * storage performance, we'd have a proportional reduction in IO-wait time. 5324 * 5325 * This all works nicely on UP, where, when a task blocks on IO, we account 5326 * idle time as IO-wait, because if the storage were faster, it could've been 5327 * running and we'd not be idle. 5328 * 5329 * This has been extended to SMP, by doing the same for each CPU. This however 5330 * is broken. 5331 * 5332 * Imagine for instance the case where two tasks block on one CPU, only the one 5333 * CPU will have IO-wait accounted, while the other has regular idle. Even 5334 * though, if the storage were faster, both could've ran at the same time, 5335 * utilising both CPUs. 5336 * 5337 * This means, that when looking globally, the current IO-wait accounting on 5338 * SMP is a lower bound, by reason of under accounting. 5339 * 5340 * Worse, since the numbers are provided per CPU, they are sometimes 5341 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5342 * associated with any one particular CPU, it can wake to another CPU than it 5343 * blocked on. This means the per CPU IO-wait number is meaningless. 5344 * 5345 * Task CPU affinities can make all that even more 'interesting'. 5346 */ 5347 5348 unsigned int nr_iowait(void) 5349 { 5350 unsigned int i, sum = 0; 5351 5352 for_each_possible_cpu(i) 5353 sum += nr_iowait_cpu(i); 5354 5355 return sum; 5356 } 5357 5358 #ifdef CONFIG_SMP 5359 5360 /* 5361 * sched_exec - execve() is a valuable balancing opportunity, because at 5362 * this point the task has the smallest effective memory and cache footprint. 5363 */ 5364 void sched_exec(void) 5365 { 5366 struct task_struct *p = current; 5367 struct migration_arg arg; 5368 int dest_cpu; 5369 5370 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5371 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5372 if (dest_cpu == smp_processor_id()) 5373 return; 5374 5375 if (unlikely(!cpu_active(dest_cpu))) 5376 return; 5377 5378 arg = (struct migration_arg){ p, dest_cpu }; 5379 } 5380 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5381 } 5382 5383 #endif 5384 5385 DEFINE_PER_CPU(struct kernel_stat, kstat); 5386 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5387 5388 EXPORT_PER_CPU_SYMBOL(kstat); 5389 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5390 5391 /* 5392 * The function fair_sched_class.update_curr accesses the struct curr 5393 * and its field curr->exec_start; when called from task_sched_runtime(), 5394 * we observe a high rate of cache misses in practice. 5395 * Prefetching this data results in improved performance. 5396 */ 5397 static inline void prefetch_curr_exec_start(struct task_struct *p) 5398 { 5399 #ifdef CONFIG_FAIR_GROUP_SCHED 5400 struct sched_entity *curr = p->se.cfs_rq->curr; 5401 #else 5402 struct sched_entity *curr = task_rq(p)->cfs.curr; 5403 #endif 5404 prefetch(curr); 5405 prefetch(&curr->exec_start); 5406 } 5407 5408 /* 5409 * Return accounted runtime for the task. 5410 * In case the task is currently running, return the runtime plus current's 5411 * pending runtime that have not been accounted yet. 5412 */ 5413 unsigned long long task_sched_runtime(struct task_struct *p) 5414 { 5415 struct rq_flags rf; 5416 struct rq *rq; 5417 u64 ns; 5418 5419 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5420 /* 5421 * 64-bit doesn't need locks to atomically read a 64-bit value. 5422 * So we have a optimization chance when the task's delta_exec is 0. 5423 * Reading ->on_cpu is racy, but this is OK. 5424 * 5425 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5426 * If we race with it entering CPU, unaccounted time is 0. This is 5427 * indistinguishable from the read occurring a few cycles earlier. 5428 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5429 * been accounted, so we're correct here as well. 5430 */ 5431 if (!p->on_cpu || !task_on_rq_queued(p)) 5432 return p->se.sum_exec_runtime; 5433 #endif 5434 5435 rq = task_rq_lock(p, &rf); 5436 /* 5437 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5438 * project cycles that may never be accounted to this 5439 * thread, breaking clock_gettime(). 5440 */ 5441 if (task_current(rq, p) && task_on_rq_queued(p)) { 5442 prefetch_curr_exec_start(p); 5443 update_rq_clock(rq); 5444 p->sched_class->update_curr(rq); 5445 } 5446 ns = p->se.sum_exec_runtime; 5447 task_rq_unlock(rq, p, &rf); 5448 5449 return ns; 5450 } 5451 5452 #ifdef CONFIG_SCHED_DEBUG 5453 static u64 cpu_resched_latency(struct rq *rq) 5454 { 5455 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5456 u64 resched_latency, now = rq_clock(rq); 5457 static bool warned_once; 5458 5459 if (sysctl_resched_latency_warn_once && warned_once) 5460 return 0; 5461 5462 if (!need_resched() || !latency_warn_ms) 5463 return 0; 5464 5465 if (system_state == SYSTEM_BOOTING) 5466 return 0; 5467 5468 if (!rq->last_seen_need_resched_ns) { 5469 rq->last_seen_need_resched_ns = now; 5470 rq->ticks_without_resched = 0; 5471 return 0; 5472 } 5473 5474 rq->ticks_without_resched++; 5475 resched_latency = now - rq->last_seen_need_resched_ns; 5476 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5477 return 0; 5478 5479 warned_once = true; 5480 5481 return resched_latency; 5482 } 5483 5484 static int __init setup_resched_latency_warn_ms(char *str) 5485 { 5486 long val; 5487 5488 if ((kstrtol(str, 0, &val))) { 5489 pr_warn("Unable to set resched_latency_warn_ms\n"); 5490 return 1; 5491 } 5492 5493 sysctl_resched_latency_warn_ms = val; 5494 return 1; 5495 } 5496 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5497 #else 5498 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5499 #endif /* CONFIG_SCHED_DEBUG */ 5500 5501 /* 5502 * This function gets called by the timer code, with HZ frequency. 5503 * We call it with interrupts disabled. 5504 */ 5505 void sched_tick(void) 5506 { 5507 int cpu = smp_processor_id(); 5508 struct rq *rq = cpu_rq(cpu); 5509 struct task_struct *curr = rq->curr; 5510 struct rq_flags rf; 5511 unsigned long hw_pressure; 5512 u64 resched_latency; 5513 5514 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5515 arch_scale_freq_tick(); 5516 5517 sched_clock_tick(); 5518 5519 rq_lock(rq, &rf); 5520 5521 update_rq_clock(rq); 5522 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5523 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5524 curr->sched_class->task_tick(rq, curr, 0); 5525 if (sched_feat(LATENCY_WARN)) 5526 resched_latency = cpu_resched_latency(rq); 5527 calc_global_load_tick(rq); 5528 sched_core_tick(rq); 5529 task_tick_mm_cid(rq, curr); 5530 scx_tick(rq); 5531 5532 rq_unlock(rq, &rf); 5533 5534 if (sched_feat(LATENCY_WARN) && resched_latency) 5535 resched_latency_warn(cpu, resched_latency); 5536 5537 perf_event_task_tick(); 5538 5539 if (curr->flags & PF_WQ_WORKER) 5540 wq_worker_tick(curr); 5541 5542 #ifdef CONFIG_SMP 5543 if (!scx_switched_all()) { 5544 rq->idle_balance = idle_cpu(cpu); 5545 sched_balance_trigger(rq); 5546 } 5547 #endif 5548 } 5549 5550 #ifdef CONFIG_NO_HZ_FULL 5551 5552 struct tick_work { 5553 int cpu; 5554 atomic_t state; 5555 struct delayed_work work; 5556 }; 5557 /* Values for ->state, see diagram below. */ 5558 #define TICK_SCHED_REMOTE_OFFLINE 0 5559 #define TICK_SCHED_REMOTE_OFFLINING 1 5560 #define TICK_SCHED_REMOTE_RUNNING 2 5561 5562 /* 5563 * State diagram for ->state: 5564 * 5565 * 5566 * TICK_SCHED_REMOTE_OFFLINE 5567 * | ^ 5568 * | | 5569 * | | sched_tick_remote() 5570 * | | 5571 * | | 5572 * +--TICK_SCHED_REMOTE_OFFLINING 5573 * | ^ 5574 * | | 5575 * sched_tick_start() | | sched_tick_stop() 5576 * | | 5577 * V | 5578 * TICK_SCHED_REMOTE_RUNNING 5579 * 5580 * 5581 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5582 * and sched_tick_start() are happy to leave the state in RUNNING. 5583 */ 5584 5585 static struct tick_work __percpu *tick_work_cpu; 5586 5587 static void sched_tick_remote(struct work_struct *work) 5588 { 5589 struct delayed_work *dwork = to_delayed_work(work); 5590 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5591 int cpu = twork->cpu; 5592 struct rq *rq = cpu_rq(cpu); 5593 int os; 5594 5595 /* 5596 * Handle the tick only if it appears the remote CPU is running in full 5597 * dynticks mode. The check is racy by nature, but missing a tick or 5598 * having one too much is no big deal because the scheduler tick updates 5599 * statistics and checks timeslices in a time-independent way, regardless 5600 * of when exactly it is running. 5601 */ 5602 if (tick_nohz_tick_stopped_cpu(cpu)) { 5603 guard(rq_lock_irq)(rq); 5604 struct task_struct *curr = rq->curr; 5605 5606 if (cpu_online(cpu)) { 5607 update_rq_clock(rq); 5608 5609 if (!is_idle_task(curr)) { 5610 /* 5611 * Make sure the next tick runs within a 5612 * reasonable amount of time. 5613 */ 5614 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5615 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5616 } 5617 curr->sched_class->task_tick(rq, curr, 0); 5618 5619 calc_load_nohz_remote(rq); 5620 } 5621 } 5622 5623 /* 5624 * Run the remote tick once per second (1Hz). This arbitrary 5625 * frequency is large enough to avoid overload but short enough 5626 * to keep scheduler internal stats reasonably up to date. But 5627 * first update state to reflect hotplug activity if required. 5628 */ 5629 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5630 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5631 if (os == TICK_SCHED_REMOTE_RUNNING) 5632 queue_delayed_work(system_unbound_wq, dwork, HZ); 5633 } 5634 5635 static void sched_tick_start(int cpu) 5636 { 5637 int os; 5638 struct tick_work *twork; 5639 5640 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5641 return; 5642 5643 WARN_ON_ONCE(!tick_work_cpu); 5644 5645 twork = per_cpu_ptr(tick_work_cpu, cpu); 5646 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5647 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5648 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5649 twork->cpu = cpu; 5650 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5651 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5652 } 5653 } 5654 5655 #ifdef CONFIG_HOTPLUG_CPU 5656 static void sched_tick_stop(int cpu) 5657 { 5658 struct tick_work *twork; 5659 int os; 5660 5661 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5662 return; 5663 5664 WARN_ON_ONCE(!tick_work_cpu); 5665 5666 twork = per_cpu_ptr(tick_work_cpu, cpu); 5667 /* There cannot be competing actions, but don't rely on stop-machine. */ 5668 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5669 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5670 /* Don't cancel, as this would mess up the state machine. */ 5671 } 5672 #endif /* CONFIG_HOTPLUG_CPU */ 5673 5674 int __init sched_tick_offload_init(void) 5675 { 5676 tick_work_cpu = alloc_percpu(struct tick_work); 5677 BUG_ON(!tick_work_cpu); 5678 return 0; 5679 } 5680 5681 #else /* !CONFIG_NO_HZ_FULL */ 5682 static inline void sched_tick_start(int cpu) { } 5683 static inline void sched_tick_stop(int cpu) { } 5684 #endif 5685 5686 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5687 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5688 /* 5689 * If the value passed in is equal to the current preempt count 5690 * then we just disabled preemption. Start timing the latency. 5691 */ 5692 static inline void preempt_latency_start(int val) 5693 { 5694 if (preempt_count() == val) { 5695 unsigned long ip = get_lock_parent_ip(); 5696 #ifdef CONFIG_DEBUG_PREEMPT 5697 current->preempt_disable_ip = ip; 5698 #endif 5699 trace_preempt_off(CALLER_ADDR0, ip); 5700 } 5701 } 5702 5703 void preempt_count_add(int val) 5704 { 5705 #ifdef CONFIG_DEBUG_PREEMPT 5706 /* 5707 * Underflow? 5708 */ 5709 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5710 return; 5711 #endif 5712 __preempt_count_add(val); 5713 #ifdef CONFIG_DEBUG_PREEMPT 5714 /* 5715 * Spinlock count overflowing soon? 5716 */ 5717 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5718 PREEMPT_MASK - 10); 5719 #endif 5720 preempt_latency_start(val); 5721 } 5722 EXPORT_SYMBOL(preempt_count_add); 5723 NOKPROBE_SYMBOL(preempt_count_add); 5724 5725 /* 5726 * If the value passed in equals to the current preempt count 5727 * then we just enabled preemption. Stop timing the latency. 5728 */ 5729 static inline void preempt_latency_stop(int val) 5730 { 5731 if (preempt_count() == val) 5732 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5733 } 5734 5735 void preempt_count_sub(int val) 5736 { 5737 #ifdef CONFIG_DEBUG_PREEMPT 5738 /* 5739 * Underflow? 5740 */ 5741 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5742 return; 5743 /* 5744 * Is the spinlock portion underflowing? 5745 */ 5746 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5747 !(preempt_count() & PREEMPT_MASK))) 5748 return; 5749 #endif 5750 5751 preempt_latency_stop(val); 5752 __preempt_count_sub(val); 5753 } 5754 EXPORT_SYMBOL(preempt_count_sub); 5755 NOKPROBE_SYMBOL(preempt_count_sub); 5756 5757 #else 5758 static inline void preempt_latency_start(int val) { } 5759 static inline void preempt_latency_stop(int val) { } 5760 #endif 5761 5762 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5763 { 5764 #ifdef CONFIG_DEBUG_PREEMPT 5765 return p->preempt_disable_ip; 5766 #else 5767 return 0; 5768 #endif 5769 } 5770 5771 /* 5772 * Print scheduling while atomic bug: 5773 */ 5774 static noinline void __schedule_bug(struct task_struct *prev) 5775 { 5776 /* Save this before calling printk(), since that will clobber it */ 5777 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5778 5779 if (oops_in_progress) 5780 return; 5781 5782 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5783 prev->comm, prev->pid, preempt_count()); 5784 5785 debug_show_held_locks(prev); 5786 print_modules(); 5787 if (irqs_disabled()) 5788 print_irqtrace_events(prev); 5789 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5790 pr_err("Preemption disabled at:"); 5791 print_ip_sym(KERN_ERR, preempt_disable_ip); 5792 } 5793 check_panic_on_warn("scheduling while atomic"); 5794 5795 dump_stack(); 5796 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5797 } 5798 5799 /* 5800 * Various schedule()-time debugging checks and statistics: 5801 */ 5802 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5803 { 5804 #ifdef CONFIG_SCHED_STACK_END_CHECK 5805 if (task_stack_end_corrupted(prev)) 5806 panic("corrupted stack end detected inside scheduler\n"); 5807 5808 if (task_scs_end_corrupted(prev)) 5809 panic("corrupted shadow stack detected inside scheduler\n"); 5810 #endif 5811 5812 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5813 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5814 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5815 prev->comm, prev->pid, prev->non_block_count); 5816 dump_stack(); 5817 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5818 } 5819 #endif 5820 5821 if (unlikely(in_atomic_preempt_off())) { 5822 __schedule_bug(prev); 5823 preempt_count_set(PREEMPT_DISABLED); 5824 } 5825 rcu_sleep_check(); 5826 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5827 5828 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5829 5830 schedstat_inc(this_rq()->sched_count); 5831 } 5832 5833 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5834 struct rq_flags *rf) 5835 { 5836 #ifdef CONFIG_SMP 5837 const struct sched_class *class; 5838 /* 5839 * We must do the balancing pass before put_prev_task(), such 5840 * that when we release the rq->lock the task is in the same 5841 * state as before we took rq->lock. 5842 * 5843 * We can terminate the balance pass as soon as we know there is 5844 * a runnable task of @class priority or higher. 5845 */ 5846 for_balance_class_range(class, prev->sched_class, &idle_sched_class) { 5847 if (class->balance(rq, prev, rf)) 5848 break; 5849 } 5850 #endif 5851 5852 put_prev_task(rq, prev); 5853 } 5854 5855 /* 5856 * Pick up the highest-prio task: 5857 */ 5858 static inline struct task_struct * 5859 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5860 { 5861 const struct sched_class *class; 5862 struct task_struct *p; 5863 5864 if (scx_enabled()) 5865 goto restart; 5866 5867 /* 5868 * Optimization: we know that if all tasks are in the fair class we can 5869 * call that function directly, but only if the @prev task wasn't of a 5870 * higher scheduling class, because otherwise those lose the 5871 * opportunity to pull in more work from other CPUs. 5872 */ 5873 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5874 rq->nr_running == rq->cfs.h_nr_running)) { 5875 5876 p = pick_next_task_fair(rq, prev, rf); 5877 if (unlikely(p == RETRY_TASK)) 5878 goto restart; 5879 5880 /* Assume the next prioritized class is idle_sched_class */ 5881 if (!p) { 5882 put_prev_task(rq, prev); 5883 p = pick_next_task_idle(rq); 5884 } 5885 5886 /* 5887 * This is the fast path; it cannot be a DL server pick; 5888 * therefore even if @p == @prev, ->dl_server must be NULL. 5889 */ 5890 if (p->dl_server) 5891 p->dl_server = NULL; 5892 5893 return p; 5894 } 5895 5896 restart: 5897 put_prev_task_balance(rq, prev, rf); 5898 5899 /* 5900 * We've updated @prev and no longer need the server link, clear it. 5901 * Must be done before ->pick_next_task() because that can (re)set 5902 * ->dl_server. 5903 */ 5904 if (prev->dl_server) 5905 prev->dl_server = NULL; 5906 5907 for_each_active_class(class) { 5908 p = class->pick_next_task(rq); 5909 if (p) { 5910 scx_next_task_picked(rq, p, class); 5911 return p; 5912 } 5913 } 5914 5915 BUG(); /* The idle class should always have a runnable task. */ 5916 } 5917 5918 #ifdef CONFIG_SCHED_CORE 5919 static inline bool is_task_rq_idle(struct task_struct *t) 5920 { 5921 return (task_rq(t)->idle == t); 5922 } 5923 5924 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5925 { 5926 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5927 } 5928 5929 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5930 { 5931 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5932 return true; 5933 5934 return a->core_cookie == b->core_cookie; 5935 } 5936 5937 static inline struct task_struct *pick_task(struct rq *rq) 5938 { 5939 const struct sched_class *class; 5940 struct task_struct *p; 5941 5942 for_each_active_class(class) { 5943 p = class->pick_task(rq); 5944 if (p) 5945 return p; 5946 } 5947 5948 BUG(); /* The idle class should always have a runnable task. */ 5949 } 5950 5951 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5952 5953 static void queue_core_balance(struct rq *rq); 5954 5955 static struct task_struct * 5956 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5957 { 5958 struct task_struct *next, *p, *max = NULL; 5959 const struct cpumask *smt_mask; 5960 bool fi_before = false; 5961 bool core_clock_updated = (rq == rq->core); 5962 unsigned long cookie; 5963 int i, cpu, occ = 0; 5964 struct rq *rq_i; 5965 bool need_sync; 5966 5967 if (!sched_core_enabled(rq)) 5968 return __pick_next_task(rq, prev, rf); 5969 5970 cpu = cpu_of(rq); 5971 5972 /* Stopper task is switching into idle, no need core-wide selection. */ 5973 if (cpu_is_offline(cpu)) { 5974 /* 5975 * Reset core_pick so that we don't enter the fastpath when 5976 * coming online. core_pick would already be migrated to 5977 * another cpu during offline. 5978 */ 5979 rq->core_pick = NULL; 5980 return __pick_next_task(rq, prev, rf); 5981 } 5982 5983 /* 5984 * If there were no {en,de}queues since we picked (IOW, the task 5985 * pointers are all still valid), and we haven't scheduled the last 5986 * pick yet, do so now. 5987 * 5988 * rq->core_pick can be NULL if no selection was made for a CPU because 5989 * it was either offline or went offline during a sibling's core-wide 5990 * selection. In this case, do a core-wide selection. 5991 */ 5992 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5993 rq->core->core_pick_seq != rq->core_sched_seq && 5994 rq->core_pick) { 5995 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5996 5997 next = rq->core_pick; 5998 if (next != prev) { 5999 put_prev_task(rq, prev); 6000 set_next_task(rq, next); 6001 } 6002 6003 rq->core_pick = NULL; 6004 goto out; 6005 } 6006 6007 put_prev_task_balance(rq, prev, rf); 6008 6009 smt_mask = cpu_smt_mask(cpu); 6010 need_sync = !!rq->core->core_cookie; 6011 6012 /* reset state */ 6013 rq->core->core_cookie = 0UL; 6014 if (rq->core->core_forceidle_count) { 6015 if (!core_clock_updated) { 6016 update_rq_clock(rq->core); 6017 core_clock_updated = true; 6018 } 6019 sched_core_account_forceidle(rq); 6020 /* reset after accounting force idle */ 6021 rq->core->core_forceidle_start = 0; 6022 rq->core->core_forceidle_count = 0; 6023 rq->core->core_forceidle_occupation = 0; 6024 need_sync = true; 6025 fi_before = true; 6026 } 6027 6028 /* 6029 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6030 * 6031 * @task_seq guards the task state ({en,de}queues) 6032 * @pick_seq is the @task_seq we did a selection on 6033 * @sched_seq is the @pick_seq we scheduled 6034 * 6035 * However, preemptions can cause multiple picks on the same task set. 6036 * 'Fix' this by also increasing @task_seq for every pick. 6037 */ 6038 rq->core->core_task_seq++; 6039 6040 /* 6041 * Optimize for common case where this CPU has no cookies 6042 * and there are no cookied tasks running on siblings. 6043 */ 6044 if (!need_sync) { 6045 next = pick_task(rq); 6046 if (!next->core_cookie) { 6047 rq->core_pick = NULL; 6048 /* 6049 * For robustness, update the min_vruntime_fi for 6050 * unconstrained picks as well. 6051 */ 6052 WARN_ON_ONCE(fi_before); 6053 task_vruntime_update(rq, next, false); 6054 goto out_set_next; 6055 } 6056 } 6057 6058 /* 6059 * For each thread: do the regular task pick and find the max prio task 6060 * amongst them. 6061 * 6062 * Tie-break prio towards the current CPU 6063 */ 6064 for_each_cpu_wrap(i, smt_mask, cpu) { 6065 rq_i = cpu_rq(i); 6066 6067 /* 6068 * Current cpu always has its clock updated on entrance to 6069 * pick_next_task(). If the current cpu is not the core, 6070 * the core may also have been updated above. 6071 */ 6072 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6073 update_rq_clock(rq_i); 6074 6075 p = rq_i->core_pick = pick_task(rq_i); 6076 if (!max || prio_less(max, p, fi_before)) 6077 max = p; 6078 } 6079 6080 cookie = rq->core->core_cookie = max->core_cookie; 6081 6082 /* 6083 * For each thread: try and find a runnable task that matches @max or 6084 * force idle. 6085 */ 6086 for_each_cpu(i, smt_mask) { 6087 rq_i = cpu_rq(i); 6088 p = rq_i->core_pick; 6089 6090 if (!cookie_equals(p, cookie)) { 6091 p = NULL; 6092 if (cookie) 6093 p = sched_core_find(rq_i, cookie); 6094 if (!p) 6095 p = idle_sched_class.pick_task(rq_i); 6096 } 6097 6098 rq_i->core_pick = p; 6099 6100 if (p == rq_i->idle) { 6101 if (rq_i->nr_running) { 6102 rq->core->core_forceidle_count++; 6103 if (!fi_before) 6104 rq->core->core_forceidle_seq++; 6105 } 6106 } else { 6107 occ++; 6108 } 6109 } 6110 6111 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6112 rq->core->core_forceidle_start = rq_clock(rq->core); 6113 rq->core->core_forceidle_occupation = occ; 6114 } 6115 6116 rq->core->core_pick_seq = rq->core->core_task_seq; 6117 next = rq->core_pick; 6118 rq->core_sched_seq = rq->core->core_pick_seq; 6119 6120 /* Something should have been selected for current CPU */ 6121 WARN_ON_ONCE(!next); 6122 6123 /* 6124 * Reschedule siblings 6125 * 6126 * NOTE: L1TF -- at this point we're no longer running the old task and 6127 * sending an IPI (below) ensures the sibling will no longer be running 6128 * their task. This ensures there is no inter-sibling overlap between 6129 * non-matching user state. 6130 */ 6131 for_each_cpu(i, smt_mask) { 6132 rq_i = cpu_rq(i); 6133 6134 /* 6135 * An online sibling might have gone offline before a task 6136 * could be picked for it, or it might be offline but later 6137 * happen to come online, but its too late and nothing was 6138 * picked for it. That's Ok - it will pick tasks for itself, 6139 * so ignore it. 6140 */ 6141 if (!rq_i->core_pick) 6142 continue; 6143 6144 /* 6145 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6146 * fi_before fi update? 6147 * 0 0 1 6148 * 0 1 1 6149 * 1 0 1 6150 * 1 1 0 6151 */ 6152 if (!(fi_before && rq->core->core_forceidle_count)) 6153 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6154 6155 rq_i->core_pick->core_occupation = occ; 6156 6157 if (i == cpu) { 6158 rq_i->core_pick = NULL; 6159 continue; 6160 } 6161 6162 /* Did we break L1TF mitigation requirements? */ 6163 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6164 6165 if (rq_i->curr == rq_i->core_pick) { 6166 rq_i->core_pick = NULL; 6167 continue; 6168 } 6169 6170 resched_curr(rq_i); 6171 } 6172 6173 out_set_next: 6174 set_next_task(rq, next); 6175 out: 6176 if (rq->core->core_forceidle_count && next == rq->idle) 6177 queue_core_balance(rq); 6178 6179 return next; 6180 } 6181 6182 static bool try_steal_cookie(int this, int that) 6183 { 6184 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6185 struct task_struct *p; 6186 unsigned long cookie; 6187 bool success = false; 6188 6189 guard(irq)(); 6190 guard(double_rq_lock)(dst, src); 6191 6192 cookie = dst->core->core_cookie; 6193 if (!cookie) 6194 return false; 6195 6196 if (dst->curr != dst->idle) 6197 return false; 6198 6199 p = sched_core_find(src, cookie); 6200 if (!p) 6201 return false; 6202 6203 do { 6204 if (p == src->core_pick || p == src->curr) 6205 goto next; 6206 6207 if (!is_cpu_allowed(p, this)) 6208 goto next; 6209 6210 if (p->core_occupation > dst->idle->core_occupation) 6211 goto next; 6212 /* 6213 * sched_core_find() and sched_core_next() will ensure 6214 * that task @p is not throttled now, we also need to 6215 * check whether the runqueue of the destination CPU is 6216 * being throttled. 6217 */ 6218 if (sched_task_is_throttled(p, this)) 6219 goto next; 6220 6221 deactivate_task(src, p, 0); 6222 set_task_cpu(p, this); 6223 activate_task(dst, p, 0); 6224 6225 resched_curr(dst); 6226 6227 success = true; 6228 break; 6229 6230 next: 6231 p = sched_core_next(p, cookie); 6232 } while (p); 6233 6234 return success; 6235 } 6236 6237 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6238 { 6239 int i; 6240 6241 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6242 if (i == cpu) 6243 continue; 6244 6245 if (need_resched()) 6246 break; 6247 6248 if (try_steal_cookie(cpu, i)) 6249 return true; 6250 } 6251 6252 return false; 6253 } 6254 6255 static void sched_core_balance(struct rq *rq) 6256 { 6257 struct sched_domain *sd; 6258 int cpu = cpu_of(rq); 6259 6260 guard(preempt)(); 6261 guard(rcu)(); 6262 6263 raw_spin_rq_unlock_irq(rq); 6264 for_each_domain(cpu, sd) { 6265 if (need_resched()) 6266 break; 6267 6268 if (steal_cookie_task(cpu, sd)) 6269 break; 6270 } 6271 raw_spin_rq_lock_irq(rq); 6272 } 6273 6274 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6275 6276 static void queue_core_balance(struct rq *rq) 6277 { 6278 if (!sched_core_enabled(rq)) 6279 return; 6280 6281 if (!rq->core->core_cookie) 6282 return; 6283 6284 if (!rq->nr_running) /* not forced idle */ 6285 return; 6286 6287 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6288 } 6289 6290 DEFINE_LOCK_GUARD_1(core_lock, int, 6291 sched_core_lock(*_T->lock, &_T->flags), 6292 sched_core_unlock(*_T->lock, &_T->flags), 6293 unsigned long flags) 6294 6295 static void sched_core_cpu_starting(unsigned int cpu) 6296 { 6297 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6298 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6299 int t; 6300 6301 guard(core_lock)(&cpu); 6302 6303 WARN_ON_ONCE(rq->core != rq); 6304 6305 /* if we're the first, we'll be our own leader */ 6306 if (cpumask_weight(smt_mask) == 1) 6307 return; 6308 6309 /* find the leader */ 6310 for_each_cpu(t, smt_mask) { 6311 if (t == cpu) 6312 continue; 6313 rq = cpu_rq(t); 6314 if (rq->core == rq) { 6315 core_rq = rq; 6316 break; 6317 } 6318 } 6319 6320 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6321 return; 6322 6323 /* install and validate core_rq */ 6324 for_each_cpu(t, smt_mask) { 6325 rq = cpu_rq(t); 6326 6327 if (t == cpu) 6328 rq->core = core_rq; 6329 6330 WARN_ON_ONCE(rq->core != core_rq); 6331 } 6332 } 6333 6334 static void sched_core_cpu_deactivate(unsigned int cpu) 6335 { 6336 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6337 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6338 int t; 6339 6340 guard(core_lock)(&cpu); 6341 6342 /* if we're the last man standing, nothing to do */ 6343 if (cpumask_weight(smt_mask) == 1) { 6344 WARN_ON_ONCE(rq->core != rq); 6345 return; 6346 } 6347 6348 /* if we're not the leader, nothing to do */ 6349 if (rq->core != rq) 6350 return; 6351 6352 /* find a new leader */ 6353 for_each_cpu(t, smt_mask) { 6354 if (t == cpu) 6355 continue; 6356 core_rq = cpu_rq(t); 6357 break; 6358 } 6359 6360 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6361 return; 6362 6363 /* copy the shared state to the new leader */ 6364 core_rq->core_task_seq = rq->core_task_seq; 6365 core_rq->core_pick_seq = rq->core_pick_seq; 6366 core_rq->core_cookie = rq->core_cookie; 6367 core_rq->core_forceidle_count = rq->core_forceidle_count; 6368 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6369 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6370 6371 /* 6372 * Accounting edge for forced idle is handled in pick_next_task(). 6373 * Don't need another one here, since the hotplug thread shouldn't 6374 * have a cookie. 6375 */ 6376 core_rq->core_forceidle_start = 0; 6377 6378 /* install new leader */ 6379 for_each_cpu(t, smt_mask) { 6380 rq = cpu_rq(t); 6381 rq->core = core_rq; 6382 } 6383 } 6384 6385 static inline void sched_core_cpu_dying(unsigned int cpu) 6386 { 6387 struct rq *rq = cpu_rq(cpu); 6388 6389 if (rq->core != rq) 6390 rq->core = rq; 6391 } 6392 6393 #else /* !CONFIG_SCHED_CORE */ 6394 6395 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6396 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6397 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6398 6399 static struct task_struct * 6400 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6401 { 6402 return __pick_next_task(rq, prev, rf); 6403 } 6404 6405 #endif /* CONFIG_SCHED_CORE */ 6406 6407 /* 6408 * Constants for the sched_mode argument of __schedule(). 6409 * 6410 * The mode argument allows RT enabled kernels to differentiate a 6411 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6412 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6413 * optimize the AND operation out and just check for zero. 6414 */ 6415 #define SM_NONE 0x0 6416 #define SM_PREEMPT 0x1 6417 #define SM_RTLOCK_WAIT 0x2 6418 6419 #ifndef CONFIG_PREEMPT_RT 6420 # define SM_MASK_PREEMPT (~0U) 6421 #else 6422 # define SM_MASK_PREEMPT SM_PREEMPT 6423 #endif 6424 6425 /* 6426 * __schedule() is the main scheduler function. 6427 * 6428 * The main means of driving the scheduler and thus entering this function are: 6429 * 6430 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6431 * 6432 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6433 * paths. For example, see arch/x86/entry_64.S. 6434 * 6435 * To drive preemption between tasks, the scheduler sets the flag in timer 6436 * interrupt handler sched_tick(). 6437 * 6438 * 3. Wakeups don't really cause entry into schedule(). They add a 6439 * task to the run-queue and that's it. 6440 * 6441 * Now, if the new task added to the run-queue preempts the current 6442 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6443 * called on the nearest possible occasion: 6444 * 6445 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6446 * 6447 * - in syscall or exception context, at the next outmost 6448 * preempt_enable(). (this might be as soon as the wake_up()'s 6449 * spin_unlock()!) 6450 * 6451 * - in IRQ context, return from interrupt-handler to 6452 * preemptible context 6453 * 6454 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6455 * then at the next: 6456 * 6457 * - cond_resched() call 6458 * - explicit schedule() call 6459 * - return from syscall or exception to user-space 6460 * - return from interrupt-handler to user-space 6461 * 6462 * WARNING: must be called with preemption disabled! 6463 */ 6464 static void __sched notrace __schedule(unsigned int sched_mode) 6465 { 6466 struct task_struct *prev, *next; 6467 unsigned long *switch_count; 6468 unsigned long prev_state; 6469 struct rq_flags rf; 6470 struct rq *rq; 6471 int cpu; 6472 6473 cpu = smp_processor_id(); 6474 rq = cpu_rq(cpu); 6475 prev = rq->curr; 6476 6477 schedule_debug(prev, !!sched_mode); 6478 6479 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6480 hrtick_clear(rq); 6481 6482 local_irq_disable(); 6483 rcu_note_context_switch(!!sched_mode); 6484 6485 /* 6486 * Make sure that signal_pending_state()->signal_pending() below 6487 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6488 * done by the caller to avoid the race with signal_wake_up(): 6489 * 6490 * __set_current_state(@state) signal_wake_up() 6491 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6492 * wake_up_state(p, state) 6493 * LOCK rq->lock LOCK p->pi_state 6494 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6495 * if (signal_pending_state()) if (p->state & @state) 6496 * 6497 * Also, the membarrier system call requires a full memory barrier 6498 * after coming from user-space, before storing to rq->curr; this 6499 * barrier matches a full barrier in the proximity of the membarrier 6500 * system call exit. 6501 */ 6502 rq_lock(rq, &rf); 6503 smp_mb__after_spinlock(); 6504 6505 /* Promote REQ to ACT */ 6506 rq->clock_update_flags <<= 1; 6507 update_rq_clock(rq); 6508 rq->clock_update_flags = RQCF_UPDATED; 6509 6510 switch_count = &prev->nivcsw; 6511 6512 /* 6513 * We must load prev->state once (task_struct::state is volatile), such 6514 * that we form a control dependency vs deactivate_task() below. 6515 */ 6516 prev_state = READ_ONCE(prev->__state); 6517 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6518 if (signal_pending_state(prev_state, prev)) { 6519 WRITE_ONCE(prev->__state, TASK_RUNNING); 6520 } else { 6521 prev->sched_contributes_to_load = 6522 (prev_state & TASK_UNINTERRUPTIBLE) && 6523 !(prev_state & TASK_NOLOAD) && 6524 !(prev_state & TASK_FROZEN); 6525 6526 if (prev->sched_contributes_to_load) 6527 rq->nr_uninterruptible++; 6528 6529 /* 6530 * __schedule() ttwu() 6531 * prev_state = prev->state; if (p->on_rq && ...) 6532 * if (prev_state) goto out; 6533 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6534 * p->state = TASK_WAKING 6535 * 6536 * Where __schedule() and ttwu() have matching control dependencies. 6537 * 6538 * After this, schedule() must not care about p->state any more. 6539 */ 6540 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6541 6542 if (prev->in_iowait) { 6543 atomic_inc(&rq->nr_iowait); 6544 delayacct_blkio_start(); 6545 } 6546 } 6547 switch_count = &prev->nvcsw; 6548 } 6549 6550 next = pick_next_task(rq, prev, &rf); 6551 clear_tsk_need_resched(prev); 6552 clear_preempt_need_resched(); 6553 #ifdef CONFIG_SCHED_DEBUG 6554 rq->last_seen_need_resched_ns = 0; 6555 #endif 6556 6557 if (likely(prev != next)) { 6558 rq->nr_switches++; 6559 /* 6560 * RCU users of rcu_dereference(rq->curr) may not see 6561 * changes to task_struct made by pick_next_task(). 6562 */ 6563 RCU_INIT_POINTER(rq->curr, next); 6564 /* 6565 * The membarrier system call requires each architecture 6566 * to have a full memory barrier after updating 6567 * rq->curr, before returning to user-space. 6568 * 6569 * Here are the schemes providing that barrier on the 6570 * various architectures: 6571 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6572 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6573 * on PowerPC and on RISC-V. 6574 * - finish_lock_switch() for weakly-ordered 6575 * architectures where spin_unlock is a full barrier, 6576 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6577 * is a RELEASE barrier), 6578 * 6579 * The barrier matches a full barrier in the proximity of 6580 * the membarrier system call entry. 6581 * 6582 * On RISC-V, this barrier pairing is also needed for the 6583 * SYNC_CORE command when switching between processes, cf. 6584 * the inline comments in membarrier_arch_switch_mm(). 6585 */ 6586 ++*switch_count; 6587 6588 migrate_disable_switch(rq, prev); 6589 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6590 6591 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6592 6593 /* Also unlocks the rq: */ 6594 rq = context_switch(rq, prev, next, &rf); 6595 } else { 6596 rq_unpin_lock(rq, &rf); 6597 __balance_callbacks(rq); 6598 raw_spin_rq_unlock_irq(rq); 6599 } 6600 } 6601 6602 void __noreturn do_task_dead(void) 6603 { 6604 /* Causes final put_task_struct in finish_task_switch(): */ 6605 set_special_state(TASK_DEAD); 6606 6607 /* Tell freezer to ignore us: */ 6608 current->flags |= PF_NOFREEZE; 6609 6610 __schedule(SM_NONE); 6611 BUG(); 6612 6613 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6614 for (;;) 6615 cpu_relax(); 6616 } 6617 6618 static inline void sched_submit_work(struct task_struct *tsk) 6619 { 6620 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6621 unsigned int task_flags; 6622 6623 /* 6624 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6625 * will use a blocking primitive -- which would lead to recursion. 6626 */ 6627 lock_map_acquire_try(&sched_map); 6628 6629 task_flags = tsk->flags; 6630 /* 6631 * If a worker goes to sleep, notify and ask workqueue whether it 6632 * wants to wake up a task to maintain concurrency. 6633 */ 6634 if (task_flags & PF_WQ_WORKER) 6635 wq_worker_sleeping(tsk); 6636 else if (task_flags & PF_IO_WORKER) 6637 io_wq_worker_sleeping(tsk); 6638 6639 /* 6640 * spinlock and rwlock must not flush block requests. This will 6641 * deadlock if the callback attempts to acquire a lock which is 6642 * already acquired. 6643 */ 6644 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6645 6646 /* 6647 * If we are going to sleep and we have plugged IO queued, 6648 * make sure to submit it to avoid deadlocks. 6649 */ 6650 blk_flush_plug(tsk->plug, true); 6651 6652 lock_map_release(&sched_map); 6653 } 6654 6655 static void sched_update_worker(struct task_struct *tsk) 6656 { 6657 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6658 if (tsk->flags & PF_BLOCK_TS) 6659 blk_plug_invalidate_ts(tsk); 6660 if (tsk->flags & PF_WQ_WORKER) 6661 wq_worker_running(tsk); 6662 else if (tsk->flags & PF_IO_WORKER) 6663 io_wq_worker_running(tsk); 6664 } 6665 } 6666 6667 static __always_inline void __schedule_loop(unsigned int sched_mode) 6668 { 6669 do { 6670 preempt_disable(); 6671 __schedule(sched_mode); 6672 sched_preempt_enable_no_resched(); 6673 } while (need_resched()); 6674 } 6675 6676 asmlinkage __visible void __sched schedule(void) 6677 { 6678 struct task_struct *tsk = current; 6679 6680 #ifdef CONFIG_RT_MUTEXES 6681 lockdep_assert(!tsk->sched_rt_mutex); 6682 #endif 6683 6684 if (!task_is_running(tsk)) 6685 sched_submit_work(tsk); 6686 __schedule_loop(SM_NONE); 6687 sched_update_worker(tsk); 6688 } 6689 EXPORT_SYMBOL(schedule); 6690 6691 /* 6692 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6693 * state (have scheduled out non-voluntarily) by making sure that all 6694 * tasks have either left the run queue or have gone into user space. 6695 * As idle tasks do not do either, they must not ever be preempted 6696 * (schedule out non-voluntarily). 6697 * 6698 * schedule_idle() is similar to schedule_preempt_disable() except that it 6699 * never enables preemption because it does not call sched_submit_work(). 6700 */ 6701 void __sched schedule_idle(void) 6702 { 6703 /* 6704 * As this skips calling sched_submit_work(), which the idle task does 6705 * regardless because that function is a NOP when the task is in a 6706 * TASK_RUNNING state, make sure this isn't used someplace that the 6707 * current task can be in any other state. Note, idle is always in the 6708 * TASK_RUNNING state. 6709 */ 6710 WARN_ON_ONCE(current->__state); 6711 do { 6712 __schedule(SM_NONE); 6713 } while (need_resched()); 6714 } 6715 6716 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6717 asmlinkage __visible void __sched schedule_user(void) 6718 { 6719 /* 6720 * If we come here after a random call to set_need_resched(), 6721 * or we have been woken up remotely but the IPI has not yet arrived, 6722 * we haven't yet exited the RCU idle mode. Do it here manually until 6723 * we find a better solution. 6724 * 6725 * NB: There are buggy callers of this function. Ideally we 6726 * should warn if prev_state != CONTEXT_USER, but that will trigger 6727 * too frequently to make sense yet. 6728 */ 6729 enum ctx_state prev_state = exception_enter(); 6730 schedule(); 6731 exception_exit(prev_state); 6732 } 6733 #endif 6734 6735 /** 6736 * schedule_preempt_disabled - called with preemption disabled 6737 * 6738 * Returns with preemption disabled. Note: preempt_count must be 1 6739 */ 6740 void __sched schedule_preempt_disabled(void) 6741 { 6742 sched_preempt_enable_no_resched(); 6743 schedule(); 6744 preempt_disable(); 6745 } 6746 6747 #ifdef CONFIG_PREEMPT_RT 6748 void __sched notrace schedule_rtlock(void) 6749 { 6750 __schedule_loop(SM_RTLOCK_WAIT); 6751 } 6752 NOKPROBE_SYMBOL(schedule_rtlock); 6753 #endif 6754 6755 static void __sched notrace preempt_schedule_common(void) 6756 { 6757 do { 6758 /* 6759 * Because the function tracer can trace preempt_count_sub() 6760 * and it also uses preempt_enable/disable_notrace(), if 6761 * NEED_RESCHED is set, the preempt_enable_notrace() called 6762 * by the function tracer will call this function again and 6763 * cause infinite recursion. 6764 * 6765 * Preemption must be disabled here before the function 6766 * tracer can trace. Break up preempt_disable() into two 6767 * calls. One to disable preemption without fear of being 6768 * traced. The other to still record the preemption latency, 6769 * which can also be traced by the function tracer. 6770 */ 6771 preempt_disable_notrace(); 6772 preempt_latency_start(1); 6773 __schedule(SM_PREEMPT); 6774 preempt_latency_stop(1); 6775 preempt_enable_no_resched_notrace(); 6776 6777 /* 6778 * Check again in case we missed a preemption opportunity 6779 * between schedule and now. 6780 */ 6781 } while (need_resched()); 6782 } 6783 6784 #ifdef CONFIG_PREEMPTION 6785 /* 6786 * This is the entry point to schedule() from in-kernel preemption 6787 * off of preempt_enable. 6788 */ 6789 asmlinkage __visible void __sched notrace preempt_schedule(void) 6790 { 6791 /* 6792 * If there is a non-zero preempt_count or interrupts are disabled, 6793 * we do not want to preempt the current task. Just return.. 6794 */ 6795 if (likely(!preemptible())) 6796 return; 6797 preempt_schedule_common(); 6798 } 6799 NOKPROBE_SYMBOL(preempt_schedule); 6800 EXPORT_SYMBOL(preempt_schedule); 6801 6802 #ifdef CONFIG_PREEMPT_DYNAMIC 6803 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6804 #ifndef preempt_schedule_dynamic_enabled 6805 #define preempt_schedule_dynamic_enabled preempt_schedule 6806 #define preempt_schedule_dynamic_disabled NULL 6807 #endif 6808 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6809 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6810 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6811 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6812 void __sched notrace dynamic_preempt_schedule(void) 6813 { 6814 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6815 return; 6816 preempt_schedule(); 6817 } 6818 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6819 EXPORT_SYMBOL(dynamic_preempt_schedule); 6820 #endif 6821 #endif 6822 6823 /** 6824 * preempt_schedule_notrace - preempt_schedule called by tracing 6825 * 6826 * The tracing infrastructure uses preempt_enable_notrace to prevent 6827 * recursion and tracing preempt enabling caused by the tracing 6828 * infrastructure itself. But as tracing can happen in areas coming 6829 * from userspace or just about to enter userspace, a preempt enable 6830 * can occur before user_exit() is called. This will cause the scheduler 6831 * to be called when the system is still in usermode. 6832 * 6833 * To prevent this, the preempt_enable_notrace will use this function 6834 * instead of preempt_schedule() to exit user context if needed before 6835 * calling the scheduler. 6836 */ 6837 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6838 { 6839 enum ctx_state prev_ctx; 6840 6841 if (likely(!preemptible())) 6842 return; 6843 6844 do { 6845 /* 6846 * Because the function tracer can trace preempt_count_sub() 6847 * and it also uses preempt_enable/disable_notrace(), if 6848 * NEED_RESCHED is set, the preempt_enable_notrace() called 6849 * by the function tracer will call this function again and 6850 * cause infinite recursion. 6851 * 6852 * Preemption must be disabled here before the function 6853 * tracer can trace. Break up preempt_disable() into two 6854 * calls. One to disable preemption without fear of being 6855 * traced. The other to still record the preemption latency, 6856 * which can also be traced by the function tracer. 6857 */ 6858 preempt_disable_notrace(); 6859 preempt_latency_start(1); 6860 /* 6861 * Needs preempt disabled in case user_exit() is traced 6862 * and the tracer calls preempt_enable_notrace() causing 6863 * an infinite recursion. 6864 */ 6865 prev_ctx = exception_enter(); 6866 __schedule(SM_PREEMPT); 6867 exception_exit(prev_ctx); 6868 6869 preempt_latency_stop(1); 6870 preempt_enable_no_resched_notrace(); 6871 } while (need_resched()); 6872 } 6873 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6874 6875 #ifdef CONFIG_PREEMPT_DYNAMIC 6876 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6877 #ifndef preempt_schedule_notrace_dynamic_enabled 6878 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6879 #define preempt_schedule_notrace_dynamic_disabled NULL 6880 #endif 6881 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6882 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6883 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6884 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6885 void __sched notrace dynamic_preempt_schedule_notrace(void) 6886 { 6887 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6888 return; 6889 preempt_schedule_notrace(); 6890 } 6891 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6892 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6893 #endif 6894 #endif 6895 6896 #endif /* CONFIG_PREEMPTION */ 6897 6898 /* 6899 * This is the entry point to schedule() from kernel preemption 6900 * off of IRQ context. 6901 * Note, that this is called and return with IRQs disabled. This will 6902 * protect us against recursive calling from IRQ contexts. 6903 */ 6904 asmlinkage __visible void __sched preempt_schedule_irq(void) 6905 { 6906 enum ctx_state prev_state; 6907 6908 /* Catch callers which need to be fixed */ 6909 BUG_ON(preempt_count() || !irqs_disabled()); 6910 6911 prev_state = exception_enter(); 6912 6913 do { 6914 preempt_disable(); 6915 local_irq_enable(); 6916 __schedule(SM_PREEMPT); 6917 local_irq_disable(); 6918 sched_preempt_enable_no_resched(); 6919 } while (need_resched()); 6920 6921 exception_exit(prev_state); 6922 } 6923 6924 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6925 void *key) 6926 { 6927 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 6928 return try_to_wake_up(curr->private, mode, wake_flags); 6929 } 6930 EXPORT_SYMBOL(default_wake_function); 6931 6932 void __setscheduler_prio(struct task_struct *p, int prio) 6933 { 6934 if (dl_prio(prio)) 6935 p->sched_class = &dl_sched_class; 6936 else if (rt_prio(prio)) 6937 p->sched_class = &rt_sched_class; 6938 #ifdef CONFIG_SCHED_CLASS_EXT 6939 else if (task_should_scx(p)) 6940 p->sched_class = &ext_sched_class; 6941 #endif 6942 else 6943 p->sched_class = &fair_sched_class; 6944 6945 p->prio = prio; 6946 } 6947 6948 #ifdef CONFIG_RT_MUTEXES 6949 6950 /* 6951 * Would be more useful with typeof()/auto_type but they don't mix with 6952 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 6953 * name such that if someone were to implement this function we get to compare 6954 * notes. 6955 */ 6956 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 6957 6958 void rt_mutex_pre_schedule(void) 6959 { 6960 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 6961 sched_submit_work(current); 6962 } 6963 6964 void rt_mutex_schedule(void) 6965 { 6966 lockdep_assert(current->sched_rt_mutex); 6967 __schedule_loop(SM_NONE); 6968 } 6969 6970 void rt_mutex_post_schedule(void) 6971 { 6972 sched_update_worker(current); 6973 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 6974 } 6975 6976 /* 6977 * rt_mutex_setprio - set the current priority of a task 6978 * @p: task to boost 6979 * @pi_task: donor task 6980 * 6981 * This function changes the 'effective' priority of a task. It does 6982 * not touch ->normal_prio like __setscheduler(). 6983 * 6984 * Used by the rt_mutex code to implement priority inheritance 6985 * logic. Call site only calls if the priority of the task changed. 6986 */ 6987 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6988 { 6989 int prio, oldprio, queued, running, queue_flag = 6990 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6991 const struct sched_class *prev_class; 6992 struct rq_flags rf; 6993 struct rq *rq; 6994 6995 /* XXX used to be waiter->prio, not waiter->task->prio */ 6996 prio = __rt_effective_prio(pi_task, p->normal_prio); 6997 6998 /* 6999 * If nothing changed; bail early. 7000 */ 7001 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7002 return; 7003 7004 rq = __task_rq_lock(p, &rf); 7005 update_rq_clock(rq); 7006 /* 7007 * Set under pi_lock && rq->lock, such that the value can be used under 7008 * either lock. 7009 * 7010 * Note that there is loads of tricky to make this pointer cache work 7011 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7012 * ensure a task is de-boosted (pi_task is set to NULL) before the 7013 * task is allowed to run again (and can exit). This ensures the pointer 7014 * points to a blocked task -- which guarantees the task is present. 7015 */ 7016 p->pi_top_task = pi_task; 7017 7018 /* 7019 * For FIFO/RR we only need to set prio, if that matches we're done. 7020 */ 7021 if (prio == p->prio && !dl_prio(prio)) 7022 goto out_unlock; 7023 7024 /* 7025 * Idle task boosting is a no-no in general. There is one 7026 * exception, when PREEMPT_RT and NOHZ is active: 7027 * 7028 * The idle task calls get_next_timer_interrupt() and holds 7029 * the timer wheel base->lock on the CPU and another CPU wants 7030 * to access the timer (probably to cancel it). We can safely 7031 * ignore the boosting request, as the idle CPU runs this code 7032 * with interrupts disabled and will complete the lock 7033 * protected section without being interrupted. So there is no 7034 * real need to boost. 7035 */ 7036 if (unlikely(p == rq->idle)) { 7037 WARN_ON(p != rq->curr); 7038 WARN_ON(p->pi_blocked_on); 7039 goto out_unlock; 7040 } 7041 7042 trace_sched_pi_setprio(p, pi_task); 7043 oldprio = p->prio; 7044 7045 if (oldprio == prio) 7046 queue_flag &= ~DEQUEUE_MOVE; 7047 7048 prev_class = p->sched_class; 7049 queued = task_on_rq_queued(p); 7050 running = task_current(rq, p); 7051 if (queued) 7052 dequeue_task(rq, p, queue_flag); 7053 if (running) 7054 put_prev_task(rq, p); 7055 7056 /* 7057 * Boosting condition are: 7058 * 1. -rt task is running and holds mutex A 7059 * --> -dl task blocks on mutex A 7060 * 7061 * 2. -dl task is running and holds mutex A 7062 * --> -dl task blocks on mutex A and could preempt the 7063 * running task 7064 */ 7065 if (dl_prio(prio)) { 7066 if (!dl_prio(p->normal_prio) || 7067 (pi_task && dl_prio(pi_task->prio) && 7068 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7069 p->dl.pi_se = pi_task->dl.pi_se; 7070 queue_flag |= ENQUEUE_REPLENISH; 7071 } else { 7072 p->dl.pi_se = &p->dl; 7073 } 7074 } else if (rt_prio(prio)) { 7075 if (dl_prio(oldprio)) 7076 p->dl.pi_se = &p->dl; 7077 if (oldprio < prio) 7078 queue_flag |= ENQUEUE_HEAD; 7079 } else { 7080 if (dl_prio(oldprio)) 7081 p->dl.pi_se = &p->dl; 7082 if (rt_prio(oldprio)) 7083 p->rt.timeout = 0; 7084 } 7085 7086 __setscheduler_prio(p, prio); 7087 check_class_changing(rq, p, prev_class); 7088 7089 if (queued) 7090 enqueue_task(rq, p, queue_flag); 7091 if (running) 7092 set_next_task(rq, p); 7093 7094 check_class_changed(rq, p, prev_class, oldprio); 7095 out_unlock: 7096 /* Avoid rq from going away on us: */ 7097 preempt_disable(); 7098 7099 rq_unpin_lock(rq, &rf); 7100 __balance_callbacks(rq); 7101 raw_spin_rq_unlock(rq); 7102 7103 preempt_enable(); 7104 } 7105 #endif 7106 7107 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7108 int __sched __cond_resched(void) 7109 { 7110 if (should_resched(0)) { 7111 preempt_schedule_common(); 7112 return 1; 7113 } 7114 /* 7115 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 7116 * whether the current CPU is in an RCU read-side critical section, 7117 * so the tick can report quiescent states even for CPUs looping 7118 * in kernel context. In contrast, in non-preemptible kernels, 7119 * RCU readers leave no in-memory hints, which means that CPU-bound 7120 * processes executing in kernel context might never report an 7121 * RCU quiescent state. Therefore, the following code causes 7122 * cond_resched() to report a quiescent state, but only when RCU 7123 * is in urgent need of one. 7124 */ 7125 #ifndef CONFIG_PREEMPT_RCU 7126 rcu_all_qs(); 7127 #endif 7128 return 0; 7129 } 7130 EXPORT_SYMBOL(__cond_resched); 7131 #endif 7132 7133 #ifdef CONFIG_PREEMPT_DYNAMIC 7134 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7135 #define cond_resched_dynamic_enabled __cond_resched 7136 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7137 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7138 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7139 7140 #define might_resched_dynamic_enabled __cond_resched 7141 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7142 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7143 EXPORT_STATIC_CALL_TRAMP(might_resched); 7144 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7145 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7146 int __sched dynamic_cond_resched(void) 7147 { 7148 klp_sched_try_switch(); 7149 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7150 return 0; 7151 return __cond_resched(); 7152 } 7153 EXPORT_SYMBOL(dynamic_cond_resched); 7154 7155 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7156 int __sched dynamic_might_resched(void) 7157 { 7158 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7159 return 0; 7160 return __cond_resched(); 7161 } 7162 EXPORT_SYMBOL(dynamic_might_resched); 7163 #endif 7164 #endif 7165 7166 /* 7167 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7168 * call schedule, and on return reacquire the lock. 7169 * 7170 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7171 * operations here to prevent schedule() from being called twice (once via 7172 * spin_unlock(), once by hand). 7173 */ 7174 int __cond_resched_lock(spinlock_t *lock) 7175 { 7176 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7177 int ret = 0; 7178 7179 lockdep_assert_held(lock); 7180 7181 if (spin_needbreak(lock) || resched) { 7182 spin_unlock(lock); 7183 if (!_cond_resched()) 7184 cpu_relax(); 7185 ret = 1; 7186 spin_lock(lock); 7187 } 7188 return ret; 7189 } 7190 EXPORT_SYMBOL(__cond_resched_lock); 7191 7192 int __cond_resched_rwlock_read(rwlock_t *lock) 7193 { 7194 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7195 int ret = 0; 7196 7197 lockdep_assert_held_read(lock); 7198 7199 if (rwlock_needbreak(lock) || resched) { 7200 read_unlock(lock); 7201 if (!_cond_resched()) 7202 cpu_relax(); 7203 ret = 1; 7204 read_lock(lock); 7205 } 7206 return ret; 7207 } 7208 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7209 7210 int __cond_resched_rwlock_write(rwlock_t *lock) 7211 { 7212 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7213 int ret = 0; 7214 7215 lockdep_assert_held_write(lock); 7216 7217 if (rwlock_needbreak(lock) || resched) { 7218 write_unlock(lock); 7219 if (!_cond_resched()) 7220 cpu_relax(); 7221 ret = 1; 7222 write_lock(lock); 7223 } 7224 return ret; 7225 } 7226 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7227 7228 #ifdef CONFIG_PREEMPT_DYNAMIC 7229 7230 #ifdef CONFIG_GENERIC_ENTRY 7231 #include <linux/entry-common.h> 7232 #endif 7233 7234 /* 7235 * SC:cond_resched 7236 * SC:might_resched 7237 * SC:preempt_schedule 7238 * SC:preempt_schedule_notrace 7239 * SC:irqentry_exit_cond_resched 7240 * 7241 * 7242 * NONE: 7243 * cond_resched <- __cond_resched 7244 * might_resched <- RET0 7245 * preempt_schedule <- NOP 7246 * preempt_schedule_notrace <- NOP 7247 * irqentry_exit_cond_resched <- NOP 7248 * 7249 * VOLUNTARY: 7250 * cond_resched <- __cond_resched 7251 * might_resched <- __cond_resched 7252 * preempt_schedule <- NOP 7253 * preempt_schedule_notrace <- NOP 7254 * irqentry_exit_cond_resched <- NOP 7255 * 7256 * FULL: 7257 * cond_resched <- RET0 7258 * might_resched <- RET0 7259 * preempt_schedule <- preempt_schedule 7260 * preempt_schedule_notrace <- preempt_schedule_notrace 7261 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7262 */ 7263 7264 enum { 7265 preempt_dynamic_undefined = -1, 7266 preempt_dynamic_none, 7267 preempt_dynamic_voluntary, 7268 preempt_dynamic_full, 7269 }; 7270 7271 int preempt_dynamic_mode = preempt_dynamic_undefined; 7272 7273 int sched_dynamic_mode(const char *str) 7274 { 7275 if (!strcmp(str, "none")) 7276 return preempt_dynamic_none; 7277 7278 if (!strcmp(str, "voluntary")) 7279 return preempt_dynamic_voluntary; 7280 7281 if (!strcmp(str, "full")) 7282 return preempt_dynamic_full; 7283 7284 return -EINVAL; 7285 } 7286 7287 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7288 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7289 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7290 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7291 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 7292 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 7293 #else 7294 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7295 #endif 7296 7297 static DEFINE_MUTEX(sched_dynamic_mutex); 7298 static bool klp_override; 7299 7300 static void __sched_dynamic_update(int mode) 7301 { 7302 /* 7303 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7304 * the ZERO state, which is invalid. 7305 */ 7306 if (!klp_override) 7307 preempt_dynamic_enable(cond_resched); 7308 preempt_dynamic_enable(might_resched); 7309 preempt_dynamic_enable(preempt_schedule); 7310 preempt_dynamic_enable(preempt_schedule_notrace); 7311 preempt_dynamic_enable(irqentry_exit_cond_resched); 7312 7313 switch (mode) { 7314 case preempt_dynamic_none: 7315 if (!klp_override) 7316 preempt_dynamic_enable(cond_resched); 7317 preempt_dynamic_disable(might_resched); 7318 preempt_dynamic_disable(preempt_schedule); 7319 preempt_dynamic_disable(preempt_schedule_notrace); 7320 preempt_dynamic_disable(irqentry_exit_cond_resched); 7321 if (mode != preempt_dynamic_mode) 7322 pr_info("Dynamic Preempt: none\n"); 7323 break; 7324 7325 case preempt_dynamic_voluntary: 7326 if (!klp_override) 7327 preempt_dynamic_enable(cond_resched); 7328 preempt_dynamic_enable(might_resched); 7329 preempt_dynamic_disable(preempt_schedule); 7330 preempt_dynamic_disable(preempt_schedule_notrace); 7331 preempt_dynamic_disable(irqentry_exit_cond_resched); 7332 if (mode != preempt_dynamic_mode) 7333 pr_info("Dynamic Preempt: voluntary\n"); 7334 break; 7335 7336 case preempt_dynamic_full: 7337 if (!klp_override) 7338 preempt_dynamic_disable(cond_resched); 7339 preempt_dynamic_disable(might_resched); 7340 preempt_dynamic_enable(preempt_schedule); 7341 preempt_dynamic_enable(preempt_schedule_notrace); 7342 preempt_dynamic_enable(irqentry_exit_cond_resched); 7343 if (mode != preempt_dynamic_mode) 7344 pr_info("Dynamic Preempt: full\n"); 7345 break; 7346 } 7347 7348 preempt_dynamic_mode = mode; 7349 } 7350 7351 void sched_dynamic_update(int mode) 7352 { 7353 mutex_lock(&sched_dynamic_mutex); 7354 __sched_dynamic_update(mode); 7355 mutex_unlock(&sched_dynamic_mutex); 7356 } 7357 7358 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7359 7360 static int klp_cond_resched(void) 7361 { 7362 __klp_sched_try_switch(); 7363 return __cond_resched(); 7364 } 7365 7366 void sched_dynamic_klp_enable(void) 7367 { 7368 mutex_lock(&sched_dynamic_mutex); 7369 7370 klp_override = true; 7371 static_call_update(cond_resched, klp_cond_resched); 7372 7373 mutex_unlock(&sched_dynamic_mutex); 7374 } 7375 7376 void sched_dynamic_klp_disable(void) 7377 { 7378 mutex_lock(&sched_dynamic_mutex); 7379 7380 klp_override = false; 7381 __sched_dynamic_update(preempt_dynamic_mode); 7382 7383 mutex_unlock(&sched_dynamic_mutex); 7384 } 7385 7386 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 7387 7388 static int __init setup_preempt_mode(char *str) 7389 { 7390 int mode = sched_dynamic_mode(str); 7391 if (mode < 0) { 7392 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7393 return 0; 7394 } 7395 7396 sched_dynamic_update(mode); 7397 return 1; 7398 } 7399 __setup("preempt=", setup_preempt_mode); 7400 7401 static void __init preempt_dynamic_init(void) 7402 { 7403 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7404 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7405 sched_dynamic_update(preempt_dynamic_none); 7406 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7407 sched_dynamic_update(preempt_dynamic_voluntary); 7408 } else { 7409 /* Default static call setting, nothing to do */ 7410 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7411 preempt_dynamic_mode = preempt_dynamic_full; 7412 pr_info("Dynamic Preempt: full\n"); 7413 } 7414 } 7415 } 7416 7417 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7418 bool preempt_model_##mode(void) \ 7419 { \ 7420 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7421 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7422 } \ 7423 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7424 7425 PREEMPT_MODEL_ACCESSOR(none); 7426 PREEMPT_MODEL_ACCESSOR(voluntary); 7427 PREEMPT_MODEL_ACCESSOR(full); 7428 7429 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7430 7431 static inline void preempt_dynamic_init(void) { } 7432 7433 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7434 7435 int io_schedule_prepare(void) 7436 { 7437 int old_iowait = current->in_iowait; 7438 7439 current->in_iowait = 1; 7440 blk_flush_plug(current->plug, true); 7441 return old_iowait; 7442 } 7443 7444 void io_schedule_finish(int token) 7445 { 7446 current->in_iowait = token; 7447 } 7448 7449 /* 7450 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7451 * that process accounting knows that this is a task in IO wait state. 7452 */ 7453 long __sched io_schedule_timeout(long timeout) 7454 { 7455 int token; 7456 long ret; 7457 7458 token = io_schedule_prepare(); 7459 ret = schedule_timeout(timeout); 7460 io_schedule_finish(token); 7461 7462 return ret; 7463 } 7464 EXPORT_SYMBOL(io_schedule_timeout); 7465 7466 void __sched io_schedule(void) 7467 { 7468 int token; 7469 7470 token = io_schedule_prepare(); 7471 schedule(); 7472 io_schedule_finish(token); 7473 } 7474 EXPORT_SYMBOL(io_schedule); 7475 7476 void sched_show_task(struct task_struct *p) 7477 { 7478 unsigned long free = 0; 7479 int ppid; 7480 7481 if (!try_get_task_stack(p)) 7482 return; 7483 7484 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7485 7486 if (task_is_running(p)) 7487 pr_cont(" running task "); 7488 #ifdef CONFIG_DEBUG_STACK_USAGE 7489 free = stack_not_used(p); 7490 #endif 7491 ppid = 0; 7492 rcu_read_lock(); 7493 if (pid_alive(p)) 7494 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7495 rcu_read_unlock(); 7496 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", 7497 free, task_pid_nr(p), task_tgid_nr(p), 7498 ppid, read_task_thread_flags(p)); 7499 7500 print_worker_info(KERN_INFO, p); 7501 print_stop_info(KERN_INFO, p); 7502 print_scx_info(KERN_INFO, p); 7503 show_stack(p, NULL, KERN_INFO); 7504 put_task_stack(p); 7505 } 7506 EXPORT_SYMBOL_GPL(sched_show_task); 7507 7508 static inline bool 7509 state_filter_match(unsigned long state_filter, struct task_struct *p) 7510 { 7511 unsigned int state = READ_ONCE(p->__state); 7512 7513 /* no filter, everything matches */ 7514 if (!state_filter) 7515 return true; 7516 7517 /* filter, but doesn't match */ 7518 if (!(state & state_filter)) 7519 return false; 7520 7521 /* 7522 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7523 * TASK_KILLABLE). 7524 */ 7525 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7526 return false; 7527 7528 return true; 7529 } 7530 7531 7532 void show_state_filter(unsigned int state_filter) 7533 { 7534 struct task_struct *g, *p; 7535 7536 rcu_read_lock(); 7537 for_each_process_thread(g, p) { 7538 /* 7539 * reset the NMI-timeout, listing all files on a slow 7540 * console might take a lot of time: 7541 * Also, reset softlockup watchdogs on all CPUs, because 7542 * another CPU might be blocked waiting for us to process 7543 * an IPI. 7544 */ 7545 touch_nmi_watchdog(); 7546 touch_all_softlockup_watchdogs(); 7547 if (state_filter_match(state_filter, p)) 7548 sched_show_task(p); 7549 } 7550 7551 #ifdef CONFIG_SCHED_DEBUG 7552 if (!state_filter) 7553 sysrq_sched_debug_show(); 7554 #endif 7555 rcu_read_unlock(); 7556 /* 7557 * Only show locks if all tasks are dumped: 7558 */ 7559 if (!state_filter) 7560 debug_show_all_locks(); 7561 } 7562 7563 /** 7564 * init_idle - set up an idle thread for a given CPU 7565 * @idle: task in question 7566 * @cpu: CPU the idle task belongs to 7567 * 7568 * NOTE: this function does not set the idle thread's NEED_RESCHED 7569 * flag, to make booting more robust. 7570 */ 7571 void __init init_idle(struct task_struct *idle, int cpu) 7572 { 7573 #ifdef CONFIG_SMP 7574 struct affinity_context ac = (struct affinity_context) { 7575 .new_mask = cpumask_of(cpu), 7576 .flags = 0, 7577 }; 7578 #endif 7579 struct rq *rq = cpu_rq(cpu); 7580 unsigned long flags; 7581 7582 __sched_fork(0, idle); 7583 7584 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7585 raw_spin_rq_lock(rq); 7586 7587 idle->__state = TASK_RUNNING; 7588 idle->se.exec_start = sched_clock(); 7589 /* 7590 * PF_KTHREAD should already be set at this point; regardless, make it 7591 * look like a proper per-CPU kthread. 7592 */ 7593 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7594 kthread_set_per_cpu(idle, cpu); 7595 7596 #ifdef CONFIG_SMP 7597 /* 7598 * It's possible that init_idle() gets called multiple times on a task, 7599 * in that case do_set_cpus_allowed() will not do the right thing. 7600 * 7601 * And since this is boot we can forgo the serialization. 7602 */ 7603 set_cpus_allowed_common(idle, &ac); 7604 #endif 7605 /* 7606 * We're having a chicken and egg problem, even though we are 7607 * holding rq->lock, the CPU isn't yet set to this CPU so the 7608 * lockdep check in task_group() will fail. 7609 * 7610 * Similar case to sched_fork(). / Alternatively we could 7611 * use task_rq_lock() here and obtain the other rq->lock. 7612 * 7613 * Silence PROVE_RCU 7614 */ 7615 rcu_read_lock(); 7616 __set_task_cpu(idle, cpu); 7617 rcu_read_unlock(); 7618 7619 rq->idle = idle; 7620 rcu_assign_pointer(rq->curr, idle); 7621 idle->on_rq = TASK_ON_RQ_QUEUED; 7622 #ifdef CONFIG_SMP 7623 idle->on_cpu = 1; 7624 #endif 7625 raw_spin_rq_unlock(rq); 7626 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7627 7628 /* Set the preempt count _outside_ the spinlocks! */ 7629 init_idle_preempt_count(idle, cpu); 7630 7631 /* 7632 * The idle tasks have their own, simple scheduling class: 7633 */ 7634 idle->sched_class = &idle_sched_class; 7635 ftrace_graph_init_idle_task(idle, cpu); 7636 vtime_init_idle(idle, cpu); 7637 #ifdef CONFIG_SMP 7638 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7639 #endif 7640 } 7641 7642 #ifdef CONFIG_SMP 7643 7644 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7645 const struct cpumask *trial) 7646 { 7647 int ret = 1; 7648 7649 if (cpumask_empty(cur)) 7650 return ret; 7651 7652 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7653 7654 return ret; 7655 } 7656 7657 int task_can_attach(struct task_struct *p) 7658 { 7659 int ret = 0; 7660 7661 /* 7662 * Kthreads which disallow setaffinity shouldn't be moved 7663 * to a new cpuset; we don't want to change their CPU 7664 * affinity and isolating such threads by their set of 7665 * allowed nodes is unnecessary. Thus, cpusets are not 7666 * applicable for such threads. This prevents checking for 7667 * success of set_cpus_allowed_ptr() on all attached tasks 7668 * before cpus_mask may be changed. 7669 */ 7670 if (p->flags & PF_NO_SETAFFINITY) 7671 ret = -EINVAL; 7672 7673 return ret; 7674 } 7675 7676 bool sched_smp_initialized __read_mostly; 7677 7678 #ifdef CONFIG_NUMA_BALANCING 7679 /* Migrate current task p to target_cpu */ 7680 int migrate_task_to(struct task_struct *p, int target_cpu) 7681 { 7682 struct migration_arg arg = { p, target_cpu }; 7683 int curr_cpu = task_cpu(p); 7684 7685 if (curr_cpu == target_cpu) 7686 return 0; 7687 7688 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7689 return -EINVAL; 7690 7691 /* TODO: This is not properly updating schedstats */ 7692 7693 trace_sched_move_numa(p, curr_cpu, target_cpu); 7694 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7695 } 7696 7697 /* 7698 * Requeue a task on a given node and accurately track the number of NUMA 7699 * tasks on the runqueues 7700 */ 7701 void sched_setnuma(struct task_struct *p, int nid) 7702 { 7703 bool queued, running; 7704 struct rq_flags rf; 7705 struct rq *rq; 7706 7707 rq = task_rq_lock(p, &rf); 7708 queued = task_on_rq_queued(p); 7709 running = task_current(rq, p); 7710 7711 if (queued) 7712 dequeue_task(rq, p, DEQUEUE_SAVE); 7713 if (running) 7714 put_prev_task(rq, p); 7715 7716 p->numa_preferred_nid = nid; 7717 7718 if (queued) 7719 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7720 if (running) 7721 set_next_task(rq, p); 7722 task_rq_unlock(rq, p, &rf); 7723 } 7724 #endif /* CONFIG_NUMA_BALANCING */ 7725 7726 #ifdef CONFIG_HOTPLUG_CPU 7727 /* 7728 * Ensure that the idle task is using init_mm right before its CPU goes 7729 * offline. 7730 */ 7731 void idle_task_exit(void) 7732 { 7733 struct mm_struct *mm = current->active_mm; 7734 7735 BUG_ON(cpu_online(smp_processor_id())); 7736 BUG_ON(current != this_rq()->idle); 7737 7738 if (mm != &init_mm) { 7739 switch_mm(mm, &init_mm, current); 7740 finish_arch_post_lock_switch(); 7741 } 7742 7743 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7744 } 7745 7746 static int __balance_push_cpu_stop(void *arg) 7747 { 7748 struct task_struct *p = arg; 7749 struct rq *rq = this_rq(); 7750 struct rq_flags rf; 7751 int cpu; 7752 7753 raw_spin_lock_irq(&p->pi_lock); 7754 rq_lock(rq, &rf); 7755 7756 update_rq_clock(rq); 7757 7758 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7759 cpu = select_fallback_rq(rq->cpu, p); 7760 rq = __migrate_task(rq, &rf, p, cpu); 7761 } 7762 7763 rq_unlock(rq, &rf); 7764 raw_spin_unlock_irq(&p->pi_lock); 7765 7766 put_task_struct(p); 7767 7768 return 0; 7769 } 7770 7771 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7772 7773 /* 7774 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7775 * 7776 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 7777 * effective when the hotplug motion is down. 7778 */ 7779 static void balance_push(struct rq *rq) 7780 { 7781 struct task_struct *push_task = rq->curr; 7782 7783 lockdep_assert_rq_held(rq); 7784 7785 /* 7786 * Ensure the thing is persistent until balance_push_set(.on = false); 7787 */ 7788 rq->balance_callback = &balance_push_callback; 7789 7790 /* 7791 * Only active while going offline and when invoked on the outgoing 7792 * CPU. 7793 */ 7794 if (!cpu_dying(rq->cpu) || rq != this_rq()) 7795 return; 7796 7797 /* 7798 * Both the cpu-hotplug and stop task are in this case and are 7799 * required to complete the hotplug process. 7800 */ 7801 if (kthread_is_per_cpu(push_task) || 7802 is_migration_disabled(push_task)) { 7803 7804 /* 7805 * If this is the idle task on the outgoing CPU try to wake 7806 * up the hotplug control thread which might wait for the 7807 * last task to vanish. The rcuwait_active() check is 7808 * accurate here because the waiter is pinned on this CPU 7809 * and can't obviously be running in parallel. 7810 * 7811 * On RT kernels this also has to check whether there are 7812 * pinned and scheduled out tasks on the runqueue. They 7813 * need to leave the migrate disabled section first. 7814 */ 7815 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7816 rcuwait_active(&rq->hotplug_wait)) { 7817 raw_spin_rq_unlock(rq); 7818 rcuwait_wake_up(&rq->hotplug_wait); 7819 raw_spin_rq_lock(rq); 7820 } 7821 return; 7822 } 7823 7824 get_task_struct(push_task); 7825 /* 7826 * Temporarily drop rq->lock such that we can wake-up the stop task. 7827 * Both preemption and IRQs are still disabled. 7828 */ 7829 preempt_disable(); 7830 raw_spin_rq_unlock(rq); 7831 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7832 this_cpu_ptr(&push_work)); 7833 preempt_enable(); 7834 /* 7835 * At this point need_resched() is true and we'll take the loop in 7836 * schedule(). The next pick is obviously going to be the stop task 7837 * which kthread_is_per_cpu() and will push this task away. 7838 */ 7839 raw_spin_rq_lock(rq); 7840 } 7841 7842 static void balance_push_set(int cpu, bool on) 7843 { 7844 struct rq *rq = cpu_rq(cpu); 7845 struct rq_flags rf; 7846 7847 rq_lock_irqsave(rq, &rf); 7848 if (on) { 7849 WARN_ON_ONCE(rq->balance_callback); 7850 rq->balance_callback = &balance_push_callback; 7851 } else if (rq->balance_callback == &balance_push_callback) { 7852 rq->balance_callback = NULL; 7853 } 7854 rq_unlock_irqrestore(rq, &rf); 7855 } 7856 7857 /* 7858 * Invoked from a CPUs hotplug control thread after the CPU has been marked 7859 * inactive. All tasks which are not per CPU kernel threads are either 7860 * pushed off this CPU now via balance_push() or placed on a different CPU 7861 * during wakeup. Wait until the CPU is quiescent. 7862 */ 7863 static void balance_hotplug_wait(void) 7864 { 7865 struct rq *rq = this_rq(); 7866 7867 rcuwait_wait_event(&rq->hotplug_wait, 7868 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 7869 TASK_UNINTERRUPTIBLE); 7870 } 7871 7872 #else 7873 7874 static inline void balance_push(struct rq *rq) 7875 { 7876 } 7877 7878 static inline void balance_push_set(int cpu, bool on) 7879 { 7880 } 7881 7882 static inline void balance_hotplug_wait(void) 7883 { 7884 } 7885 7886 #endif /* CONFIG_HOTPLUG_CPU */ 7887 7888 void set_rq_online(struct rq *rq) 7889 { 7890 if (!rq->online) { 7891 const struct sched_class *class; 7892 7893 cpumask_set_cpu(rq->cpu, rq->rd->online); 7894 rq->online = 1; 7895 7896 for_each_class(class) { 7897 if (class->rq_online) 7898 class->rq_online(rq); 7899 } 7900 } 7901 } 7902 7903 void set_rq_offline(struct rq *rq) 7904 { 7905 if (rq->online) { 7906 const struct sched_class *class; 7907 7908 update_rq_clock(rq); 7909 for_each_class(class) { 7910 if (class->rq_offline) 7911 class->rq_offline(rq); 7912 } 7913 7914 cpumask_clear_cpu(rq->cpu, rq->rd->online); 7915 rq->online = 0; 7916 } 7917 } 7918 7919 /* 7920 * used to mark begin/end of suspend/resume: 7921 */ 7922 static int num_cpus_frozen; 7923 7924 /* 7925 * Update cpusets according to cpu_active mask. If cpusets are 7926 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7927 * around partition_sched_domains(). 7928 * 7929 * If we come here as part of a suspend/resume, don't touch cpusets because we 7930 * want to restore it back to its original state upon resume anyway. 7931 */ 7932 static void cpuset_cpu_active(void) 7933 { 7934 if (cpuhp_tasks_frozen) { 7935 /* 7936 * num_cpus_frozen tracks how many CPUs are involved in suspend 7937 * resume sequence. As long as this is not the last online 7938 * operation in the resume sequence, just build a single sched 7939 * domain, ignoring cpusets. 7940 */ 7941 partition_sched_domains(1, NULL, NULL); 7942 if (--num_cpus_frozen) 7943 return; 7944 /* 7945 * This is the last CPU online operation. So fall through and 7946 * restore the original sched domains by considering the 7947 * cpuset configurations. 7948 */ 7949 cpuset_force_rebuild(); 7950 } 7951 cpuset_update_active_cpus(); 7952 } 7953 7954 static int cpuset_cpu_inactive(unsigned int cpu) 7955 { 7956 if (!cpuhp_tasks_frozen) { 7957 int ret = dl_bw_check_overflow(cpu); 7958 7959 if (ret) 7960 return ret; 7961 cpuset_update_active_cpus(); 7962 } else { 7963 num_cpus_frozen++; 7964 partition_sched_domains(1, NULL, NULL); 7965 } 7966 return 0; 7967 } 7968 7969 int sched_cpu_activate(unsigned int cpu) 7970 { 7971 struct rq *rq = cpu_rq(cpu); 7972 struct rq_flags rf; 7973 7974 /* 7975 * Clear the balance_push callback and prepare to schedule 7976 * regular tasks. 7977 */ 7978 balance_push_set(cpu, false); 7979 7980 #ifdef CONFIG_SCHED_SMT 7981 /* 7982 * When going up, increment the number of cores with SMT present. 7983 */ 7984 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7985 static_branch_inc_cpuslocked(&sched_smt_present); 7986 #endif 7987 set_cpu_active(cpu, true); 7988 7989 if (sched_smp_initialized) { 7990 sched_update_numa(cpu, true); 7991 sched_domains_numa_masks_set(cpu); 7992 cpuset_cpu_active(); 7993 } 7994 7995 scx_rq_activate(rq); 7996 7997 /* 7998 * Put the rq online, if not already. This happens: 7999 * 8000 * 1) In the early boot process, because we build the real domains 8001 * after all CPUs have been brought up. 8002 * 8003 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8004 * domains. 8005 */ 8006 rq_lock_irqsave(rq, &rf); 8007 if (rq->rd) { 8008 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8009 set_rq_online(rq); 8010 } 8011 rq_unlock_irqrestore(rq, &rf); 8012 8013 return 0; 8014 } 8015 8016 int sched_cpu_deactivate(unsigned int cpu) 8017 { 8018 struct rq *rq = cpu_rq(cpu); 8019 struct rq_flags rf; 8020 int ret; 8021 8022 /* 8023 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8024 * load balancing when not active 8025 */ 8026 nohz_balance_exit_idle(rq); 8027 8028 set_cpu_active(cpu, false); 8029 8030 /* 8031 * From this point forward, this CPU will refuse to run any task that 8032 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8033 * push those tasks away until this gets cleared, see 8034 * sched_cpu_dying(). 8035 */ 8036 balance_push_set(cpu, true); 8037 8038 /* 8039 * We've cleared cpu_active_mask / set balance_push, wait for all 8040 * preempt-disabled and RCU users of this state to go away such that 8041 * all new such users will observe it. 8042 * 8043 * Specifically, we rely on ttwu to no longer target this CPU, see 8044 * ttwu_queue_cond() and is_cpu_allowed(). 8045 * 8046 * Do sync before park smpboot threads to take care the RCU boost case. 8047 */ 8048 synchronize_rcu(); 8049 8050 rq_lock_irqsave(rq, &rf); 8051 if (rq->rd) { 8052 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8053 set_rq_offline(rq); 8054 } 8055 rq_unlock_irqrestore(rq, &rf); 8056 8057 scx_rq_deactivate(rq); 8058 8059 #ifdef CONFIG_SCHED_SMT 8060 /* 8061 * When going down, decrement the number of cores with SMT present. 8062 */ 8063 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8064 static_branch_dec_cpuslocked(&sched_smt_present); 8065 8066 sched_core_cpu_deactivate(cpu); 8067 #endif 8068 8069 if (!sched_smp_initialized) 8070 return 0; 8071 8072 sched_update_numa(cpu, false); 8073 ret = cpuset_cpu_inactive(cpu); 8074 if (ret) { 8075 balance_push_set(cpu, false); 8076 set_cpu_active(cpu, true); 8077 sched_update_numa(cpu, true); 8078 return ret; 8079 } 8080 sched_domains_numa_masks_clear(cpu); 8081 return 0; 8082 } 8083 8084 static void sched_rq_cpu_starting(unsigned int cpu) 8085 { 8086 struct rq *rq = cpu_rq(cpu); 8087 8088 rq->calc_load_update = calc_load_update; 8089 update_max_interval(); 8090 } 8091 8092 int sched_cpu_starting(unsigned int cpu) 8093 { 8094 sched_core_cpu_starting(cpu); 8095 sched_rq_cpu_starting(cpu); 8096 sched_tick_start(cpu); 8097 return 0; 8098 } 8099 8100 #ifdef CONFIG_HOTPLUG_CPU 8101 8102 /* 8103 * Invoked immediately before the stopper thread is invoked to bring the 8104 * CPU down completely. At this point all per CPU kthreads except the 8105 * hotplug thread (current) and the stopper thread (inactive) have been 8106 * either parked or have been unbound from the outgoing CPU. Ensure that 8107 * any of those which might be on the way out are gone. 8108 * 8109 * If after this point a bound task is being woken on this CPU then the 8110 * responsible hotplug callback has failed to do it's job. 8111 * sched_cpu_dying() will catch it with the appropriate fireworks. 8112 */ 8113 int sched_cpu_wait_empty(unsigned int cpu) 8114 { 8115 balance_hotplug_wait(); 8116 return 0; 8117 } 8118 8119 /* 8120 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8121 * might have. Called from the CPU stopper task after ensuring that the 8122 * stopper is the last running task on the CPU, so nr_active count is 8123 * stable. We need to take the tear-down thread which is calling this into 8124 * account, so we hand in adjust = 1 to the load calculation. 8125 * 8126 * Also see the comment "Global load-average calculations". 8127 */ 8128 static void calc_load_migrate(struct rq *rq) 8129 { 8130 long delta = calc_load_fold_active(rq, 1); 8131 8132 if (delta) 8133 atomic_long_add(delta, &calc_load_tasks); 8134 } 8135 8136 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8137 { 8138 struct task_struct *g, *p; 8139 int cpu = cpu_of(rq); 8140 8141 lockdep_assert_rq_held(rq); 8142 8143 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8144 for_each_process_thread(g, p) { 8145 if (task_cpu(p) != cpu) 8146 continue; 8147 8148 if (!task_on_rq_queued(p)) 8149 continue; 8150 8151 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8152 } 8153 } 8154 8155 int sched_cpu_dying(unsigned int cpu) 8156 { 8157 struct rq *rq = cpu_rq(cpu); 8158 struct rq_flags rf; 8159 8160 /* Handle pending wakeups and then migrate everything off */ 8161 sched_tick_stop(cpu); 8162 8163 rq_lock_irqsave(rq, &rf); 8164 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8165 WARN(true, "Dying CPU not properly vacated!"); 8166 dump_rq_tasks(rq, KERN_WARNING); 8167 } 8168 rq_unlock_irqrestore(rq, &rf); 8169 8170 calc_load_migrate(rq); 8171 update_max_interval(); 8172 hrtick_clear(rq); 8173 sched_core_cpu_dying(cpu); 8174 return 0; 8175 } 8176 #endif 8177 8178 void __init sched_init_smp(void) 8179 { 8180 sched_init_numa(NUMA_NO_NODE); 8181 8182 /* 8183 * There's no userspace yet to cause hotplug operations; hence all the 8184 * CPU masks are stable and all blatant races in the below code cannot 8185 * happen. 8186 */ 8187 mutex_lock(&sched_domains_mutex); 8188 sched_init_domains(cpu_active_mask); 8189 mutex_unlock(&sched_domains_mutex); 8190 8191 /* Move init over to a non-isolated CPU */ 8192 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8193 BUG(); 8194 current->flags &= ~PF_NO_SETAFFINITY; 8195 sched_init_granularity(); 8196 8197 init_sched_rt_class(); 8198 init_sched_dl_class(); 8199 8200 sched_smp_initialized = true; 8201 } 8202 8203 static int __init migration_init(void) 8204 { 8205 sched_cpu_starting(smp_processor_id()); 8206 return 0; 8207 } 8208 early_initcall(migration_init); 8209 8210 #else 8211 void __init sched_init_smp(void) 8212 { 8213 sched_init_granularity(); 8214 } 8215 #endif /* CONFIG_SMP */ 8216 8217 int in_sched_functions(unsigned long addr) 8218 { 8219 return in_lock_functions(addr) || 8220 (addr >= (unsigned long)__sched_text_start 8221 && addr < (unsigned long)__sched_text_end); 8222 } 8223 8224 #ifdef CONFIG_CGROUP_SCHED 8225 /* 8226 * Default task group. 8227 * Every task in system belongs to this group at bootup. 8228 */ 8229 struct task_group root_task_group; 8230 LIST_HEAD(task_groups); 8231 8232 /* Cacheline aligned slab cache for task_group */ 8233 static struct kmem_cache *task_group_cache __ro_after_init; 8234 #endif 8235 8236 void __init sched_init(void) 8237 { 8238 unsigned long ptr = 0; 8239 int i; 8240 8241 /* Make sure the linker didn't screw up */ 8242 #ifdef CONFIG_SMP 8243 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8244 #endif 8245 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8246 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8247 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8248 #ifdef CONFIG_SCHED_CLASS_EXT 8249 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8250 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8251 #endif 8252 8253 wait_bit_init(); 8254 8255 #ifdef CONFIG_FAIR_GROUP_SCHED 8256 ptr += 2 * nr_cpu_ids * sizeof(void **); 8257 #endif 8258 #ifdef CONFIG_RT_GROUP_SCHED 8259 ptr += 2 * nr_cpu_ids * sizeof(void **); 8260 #endif 8261 if (ptr) { 8262 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8263 8264 #ifdef CONFIG_FAIR_GROUP_SCHED 8265 root_task_group.se = (struct sched_entity **)ptr; 8266 ptr += nr_cpu_ids * sizeof(void **); 8267 8268 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8269 ptr += nr_cpu_ids * sizeof(void **); 8270 8271 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8272 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8273 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8274 #ifdef CONFIG_RT_GROUP_SCHED 8275 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8276 ptr += nr_cpu_ids * sizeof(void **); 8277 8278 root_task_group.rt_rq = (struct rt_rq **)ptr; 8279 ptr += nr_cpu_ids * sizeof(void **); 8280 8281 #endif /* CONFIG_RT_GROUP_SCHED */ 8282 } 8283 8284 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 8285 8286 #ifdef CONFIG_SMP 8287 init_defrootdomain(); 8288 #endif 8289 8290 #ifdef CONFIG_RT_GROUP_SCHED 8291 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8292 global_rt_period(), global_rt_runtime()); 8293 #endif /* CONFIG_RT_GROUP_SCHED */ 8294 8295 #ifdef CONFIG_CGROUP_SCHED 8296 task_group_cache = KMEM_CACHE(task_group, 0); 8297 8298 list_add(&root_task_group.list, &task_groups); 8299 INIT_LIST_HEAD(&root_task_group.children); 8300 INIT_LIST_HEAD(&root_task_group.siblings); 8301 autogroup_init(&init_task); 8302 #endif /* CONFIG_CGROUP_SCHED */ 8303 8304 for_each_possible_cpu(i) { 8305 struct rq *rq; 8306 8307 rq = cpu_rq(i); 8308 raw_spin_lock_init(&rq->__lock); 8309 rq->nr_running = 0; 8310 rq->calc_load_active = 0; 8311 rq->calc_load_update = jiffies + LOAD_FREQ; 8312 init_cfs_rq(&rq->cfs); 8313 init_rt_rq(&rq->rt); 8314 init_dl_rq(&rq->dl); 8315 #ifdef CONFIG_FAIR_GROUP_SCHED 8316 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8317 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8318 /* 8319 * How much CPU bandwidth does root_task_group get? 8320 * 8321 * In case of task-groups formed through the cgroup filesystem, it 8322 * gets 100% of the CPU resources in the system. This overall 8323 * system CPU resource is divided among the tasks of 8324 * root_task_group and its child task-groups in a fair manner, 8325 * based on each entity's (task or task-group's) weight 8326 * (se->load.weight). 8327 * 8328 * In other words, if root_task_group has 10 tasks of weight 8329 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8330 * then A0's share of the CPU resource is: 8331 * 8332 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8333 * 8334 * We achieve this by letting root_task_group's tasks sit 8335 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8336 */ 8337 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8338 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8339 8340 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 8341 #ifdef CONFIG_RT_GROUP_SCHED 8342 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8343 #endif 8344 #ifdef CONFIG_SMP 8345 rq->sd = NULL; 8346 rq->rd = NULL; 8347 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8348 rq->balance_callback = &balance_push_callback; 8349 rq->active_balance = 0; 8350 rq->next_balance = jiffies; 8351 rq->push_cpu = 0; 8352 rq->cpu = i; 8353 rq->online = 0; 8354 rq->idle_stamp = 0; 8355 rq->avg_idle = 2*sysctl_sched_migration_cost; 8356 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8357 8358 INIT_LIST_HEAD(&rq->cfs_tasks); 8359 8360 rq_attach_root(rq, &def_root_domain); 8361 #ifdef CONFIG_NO_HZ_COMMON 8362 rq->last_blocked_load_update_tick = jiffies; 8363 atomic_set(&rq->nohz_flags, 0); 8364 8365 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8366 #endif 8367 #ifdef CONFIG_HOTPLUG_CPU 8368 rcuwait_init(&rq->hotplug_wait); 8369 #endif 8370 #endif /* CONFIG_SMP */ 8371 hrtick_rq_init(rq); 8372 atomic_set(&rq->nr_iowait, 0); 8373 8374 #ifdef CONFIG_SCHED_CORE 8375 rq->core = rq; 8376 rq->core_pick = NULL; 8377 rq->core_enabled = 0; 8378 rq->core_tree = RB_ROOT; 8379 rq->core_forceidle_count = 0; 8380 rq->core_forceidle_occupation = 0; 8381 rq->core_forceidle_start = 0; 8382 8383 rq->core_cookie = 0UL; 8384 #endif 8385 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8386 } 8387 8388 set_load_weight(&init_task, false); 8389 8390 /* 8391 * The boot idle thread does lazy MMU switching as well: 8392 */ 8393 mmgrab_lazy_tlb(&init_mm); 8394 enter_lazy_tlb(&init_mm, current); 8395 8396 /* 8397 * The idle task doesn't need the kthread struct to function, but it 8398 * is dressed up as a per-CPU kthread and thus needs to play the part 8399 * if we want to avoid special-casing it in code that deals with per-CPU 8400 * kthreads. 8401 */ 8402 WARN_ON(!set_kthread_struct(current)); 8403 8404 /* 8405 * Make us the idle thread. Technically, schedule() should not be 8406 * called from this thread, however somewhere below it might be, 8407 * but because we are the idle thread, we just pick up running again 8408 * when this runqueue becomes "idle". 8409 */ 8410 init_idle(current, smp_processor_id()); 8411 8412 calc_load_update = jiffies + LOAD_FREQ; 8413 8414 #ifdef CONFIG_SMP 8415 idle_thread_set_boot_cpu(); 8416 balance_push_set(smp_processor_id(), false); 8417 #endif 8418 init_sched_fair_class(); 8419 init_sched_ext_class(); 8420 8421 psi_init(); 8422 8423 init_uclamp(); 8424 8425 preempt_dynamic_init(); 8426 8427 scheduler_running = 1; 8428 } 8429 8430 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8431 8432 void __might_sleep(const char *file, int line) 8433 { 8434 unsigned int state = get_current_state(); 8435 /* 8436 * Blocking primitives will set (and therefore destroy) current->state, 8437 * since we will exit with TASK_RUNNING make sure we enter with it, 8438 * otherwise we will destroy state. 8439 */ 8440 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8441 "do not call blocking ops when !TASK_RUNNING; " 8442 "state=%x set at [<%p>] %pS\n", state, 8443 (void *)current->task_state_change, 8444 (void *)current->task_state_change); 8445 8446 __might_resched(file, line, 0); 8447 } 8448 EXPORT_SYMBOL(__might_sleep); 8449 8450 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8451 { 8452 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8453 return; 8454 8455 if (preempt_count() == preempt_offset) 8456 return; 8457 8458 pr_err("Preemption disabled at:"); 8459 print_ip_sym(KERN_ERR, ip); 8460 } 8461 8462 static inline bool resched_offsets_ok(unsigned int offsets) 8463 { 8464 unsigned int nested = preempt_count(); 8465 8466 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8467 8468 return nested == offsets; 8469 } 8470 8471 void __might_resched(const char *file, int line, unsigned int offsets) 8472 { 8473 /* Ratelimiting timestamp: */ 8474 static unsigned long prev_jiffy; 8475 8476 unsigned long preempt_disable_ip; 8477 8478 /* WARN_ON_ONCE() by default, no rate limit required: */ 8479 rcu_sleep_check(); 8480 8481 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8482 !is_idle_task(current) && !current->non_block_count) || 8483 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8484 oops_in_progress) 8485 return; 8486 8487 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8488 return; 8489 prev_jiffy = jiffies; 8490 8491 /* Save this before calling printk(), since that will clobber it: */ 8492 preempt_disable_ip = get_preempt_disable_ip(current); 8493 8494 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8495 file, line); 8496 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8497 in_atomic(), irqs_disabled(), current->non_block_count, 8498 current->pid, current->comm); 8499 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8500 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8501 8502 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8503 pr_err("RCU nest depth: %d, expected: %u\n", 8504 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8505 } 8506 8507 if (task_stack_end_corrupted(current)) 8508 pr_emerg("Thread overran stack, or stack corrupted\n"); 8509 8510 debug_show_held_locks(current); 8511 if (irqs_disabled()) 8512 print_irqtrace_events(current); 8513 8514 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8515 preempt_disable_ip); 8516 8517 dump_stack(); 8518 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8519 } 8520 EXPORT_SYMBOL(__might_resched); 8521 8522 void __cant_sleep(const char *file, int line, int preempt_offset) 8523 { 8524 static unsigned long prev_jiffy; 8525 8526 if (irqs_disabled()) 8527 return; 8528 8529 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8530 return; 8531 8532 if (preempt_count() > preempt_offset) 8533 return; 8534 8535 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8536 return; 8537 prev_jiffy = jiffies; 8538 8539 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8540 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8541 in_atomic(), irqs_disabled(), 8542 current->pid, current->comm); 8543 8544 debug_show_held_locks(current); 8545 dump_stack(); 8546 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8547 } 8548 EXPORT_SYMBOL_GPL(__cant_sleep); 8549 8550 #ifdef CONFIG_SMP 8551 void __cant_migrate(const char *file, int line) 8552 { 8553 static unsigned long prev_jiffy; 8554 8555 if (irqs_disabled()) 8556 return; 8557 8558 if (is_migration_disabled(current)) 8559 return; 8560 8561 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8562 return; 8563 8564 if (preempt_count() > 0) 8565 return; 8566 8567 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8568 return; 8569 prev_jiffy = jiffies; 8570 8571 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8572 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8573 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8574 current->pid, current->comm); 8575 8576 debug_show_held_locks(current); 8577 dump_stack(); 8578 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8579 } 8580 EXPORT_SYMBOL_GPL(__cant_migrate); 8581 #endif 8582 #endif 8583 8584 #ifdef CONFIG_MAGIC_SYSRQ 8585 void normalize_rt_tasks(void) 8586 { 8587 struct task_struct *g, *p; 8588 struct sched_attr attr = { 8589 .sched_policy = SCHED_NORMAL, 8590 }; 8591 8592 read_lock(&tasklist_lock); 8593 for_each_process_thread(g, p) { 8594 /* 8595 * Only normalize user tasks: 8596 */ 8597 if (p->flags & PF_KTHREAD) 8598 continue; 8599 8600 p->se.exec_start = 0; 8601 schedstat_set(p->stats.wait_start, 0); 8602 schedstat_set(p->stats.sleep_start, 0); 8603 schedstat_set(p->stats.block_start, 0); 8604 8605 if (!dl_task(p) && !rt_task(p)) { 8606 /* 8607 * Renice negative nice level userspace 8608 * tasks back to 0: 8609 */ 8610 if (task_nice(p) < 0) 8611 set_user_nice(p, 0); 8612 continue; 8613 } 8614 8615 __sched_setscheduler(p, &attr, false, false); 8616 } 8617 read_unlock(&tasklist_lock); 8618 } 8619 8620 #endif /* CONFIG_MAGIC_SYSRQ */ 8621 8622 #if defined(CONFIG_KGDB_KDB) 8623 /* 8624 * These functions are only useful for KDB. 8625 * 8626 * They can only be called when the whole system has been 8627 * stopped - every CPU needs to be quiescent, and no scheduling 8628 * activity can take place. Using them for anything else would 8629 * be a serious bug, and as a result, they aren't even visible 8630 * under any other configuration. 8631 */ 8632 8633 /** 8634 * curr_task - return the current task for a given CPU. 8635 * @cpu: the processor in question. 8636 * 8637 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8638 * 8639 * Return: The current task for @cpu. 8640 */ 8641 struct task_struct *curr_task(int cpu) 8642 { 8643 return cpu_curr(cpu); 8644 } 8645 8646 #endif /* defined(CONFIG_KGDB_KDB) */ 8647 8648 #ifdef CONFIG_CGROUP_SCHED 8649 /* task_group_lock serializes the addition/removal of task groups */ 8650 static DEFINE_SPINLOCK(task_group_lock); 8651 8652 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8653 struct task_group *parent) 8654 { 8655 #ifdef CONFIG_UCLAMP_TASK_GROUP 8656 enum uclamp_id clamp_id; 8657 8658 for_each_clamp_id(clamp_id) { 8659 uclamp_se_set(&tg->uclamp_req[clamp_id], 8660 uclamp_none(clamp_id), false); 8661 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8662 } 8663 #endif 8664 } 8665 8666 static void sched_free_group(struct task_group *tg) 8667 { 8668 free_fair_sched_group(tg); 8669 free_rt_sched_group(tg); 8670 autogroup_free(tg); 8671 kmem_cache_free(task_group_cache, tg); 8672 } 8673 8674 static void sched_free_group_rcu(struct rcu_head *rcu) 8675 { 8676 sched_free_group(container_of(rcu, struct task_group, rcu)); 8677 } 8678 8679 static void sched_unregister_group(struct task_group *tg) 8680 { 8681 unregister_fair_sched_group(tg); 8682 unregister_rt_sched_group(tg); 8683 /* 8684 * We have to wait for yet another RCU grace period to expire, as 8685 * print_cfs_stats() might run concurrently. 8686 */ 8687 call_rcu(&tg->rcu, sched_free_group_rcu); 8688 } 8689 8690 /* allocate runqueue etc for a new task group */ 8691 struct task_group *sched_create_group(struct task_group *parent) 8692 { 8693 struct task_group *tg; 8694 8695 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8696 if (!tg) 8697 return ERR_PTR(-ENOMEM); 8698 8699 if (!alloc_fair_sched_group(tg, parent)) 8700 goto err; 8701 8702 if (!alloc_rt_sched_group(tg, parent)) 8703 goto err; 8704 8705 alloc_uclamp_sched_group(tg, parent); 8706 8707 return tg; 8708 8709 err: 8710 sched_free_group(tg); 8711 return ERR_PTR(-ENOMEM); 8712 } 8713 8714 void sched_online_group(struct task_group *tg, struct task_group *parent) 8715 { 8716 unsigned long flags; 8717 8718 spin_lock_irqsave(&task_group_lock, flags); 8719 list_add_rcu(&tg->list, &task_groups); 8720 8721 /* Root should already exist: */ 8722 WARN_ON(!parent); 8723 8724 tg->parent = parent; 8725 INIT_LIST_HEAD(&tg->children); 8726 list_add_rcu(&tg->siblings, &parent->children); 8727 spin_unlock_irqrestore(&task_group_lock, flags); 8728 8729 online_fair_sched_group(tg); 8730 } 8731 8732 /* RCU callback to free various structures associated with a task group */ 8733 static void sched_unregister_group_rcu(struct rcu_head *rhp) 8734 { 8735 /* Now it should be safe to free those cfs_rqs: */ 8736 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 8737 } 8738 8739 void sched_destroy_group(struct task_group *tg) 8740 { 8741 /* Wait for possible concurrent references to cfs_rqs complete: */ 8742 call_rcu(&tg->rcu, sched_unregister_group_rcu); 8743 } 8744 8745 void sched_release_group(struct task_group *tg) 8746 { 8747 unsigned long flags; 8748 8749 /* 8750 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 8751 * sched_cfs_period_timer()). 8752 * 8753 * For this to be effective, we have to wait for all pending users of 8754 * this task group to leave their RCU critical section to ensure no new 8755 * user will see our dying task group any more. Specifically ensure 8756 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 8757 * 8758 * We therefore defer calling unregister_fair_sched_group() to 8759 * sched_unregister_group() which is guarantied to get called only after the 8760 * current RCU grace period has expired. 8761 */ 8762 spin_lock_irqsave(&task_group_lock, flags); 8763 list_del_rcu(&tg->list); 8764 list_del_rcu(&tg->siblings); 8765 spin_unlock_irqrestore(&task_group_lock, flags); 8766 } 8767 8768 static struct task_group *sched_get_task_group(struct task_struct *tsk) 8769 { 8770 struct task_group *tg; 8771 8772 /* 8773 * All callers are synchronized by task_rq_lock(); we do not use RCU 8774 * which is pointless here. Thus, we pass "true" to task_css_check() 8775 * to prevent lockdep warnings. 8776 */ 8777 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8778 struct task_group, css); 8779 tg = autogroup_task_group(tsk, tg); 8780 8781 return tg; 8782 } 8783 8784 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 8785 { 8786 tsk->sched_task_group = group; 8787 8788 #ifdef CONFIG_FAIR_GROUP_SCHED 8789 if (tsk->sched_class->task_change_group) 8790 tsk->sched_class->task_change_group(tsk); 8791 else 8792 #endif 8793 set_task_rq(tsk, task_cpu(tsk)); 8794 } 8795 8796 /* 8797 * Change task's runqueue when it moves between groups. 8798 * 8799 * The caller of this function should have put the task in its new group by 8800 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8801 * its new group. 8802 */ 8803 void sched_move_task(struct task_struct *tsk) 8804 { 8805 int queued, running, queue_flags = 8806 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8807 struct task_group *group; 8808 struct rq *rq; 8809 8810 CLASS(task_rq_lock, rq_guard)(tsk); 8811 rq = rq_guard.rq; 8812 8813 /* 8814 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 8815 * group changes. 8816 */ 8817 group = sched_get_task_group(tsk); 8818 if (group == tsk->sched_task_group) 8819 return; 8820 8821 update_rq_clock(rq); 8822 8823 running = task_current(rq, tsk); 8824 queued = task_on_rq_queued(tsk); 8825 8826 if (queued) 8827 dequeue_task(rq, tsk, queue_flags); 8828 if (running) 8829 put_prev_task(rq, tsk); 8830 8831 sched_change_group(tsk, group); 8832 8833 if (queued) 8834 enqueue_task(rq, tsk, queue_flags); 8835 if (running) { 8836 set_next_task(rq, tsk); 8837 /* 8838 * After changing group, the running task may have joined a 8839 * throttled one but it's still the running task. Trigger a 8840 * resched to make sure that task can still run. 8841 */ 8842 resched_curr(rq); 8843 } 8844 } 8845 8846 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8847 { 8848 return css ? container_of(css, struct task_group, css) : NULL; 8849 } 8850 8851 static struct cgroup_subsys_state * 8852 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8853 { 8854 struct task_group *parent = css_tg(parent_css); 8855 struct task_group *tg; 8856 8857 if (!parent) { 8858 /* This is early initialization for the top cgroup */ 8859 return &root_task_group.css; 8860 } 8861 8862 tg = sched_create_group(parent); 8863 if (IS_ERR(tg)) 8864 return ERR_PTR(-ENOMEM); 8865 8866 return &tg->css; 8867 } 8868 8869 /* Expose task group only after completing cgroup initialization */ 8870 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8871 { 8872 struct task_group *tg = css_tg(css); 8873 struct task_group *parent = css_tg(css->parent); 8874 8875 if (parent) 8876 sched_online_group(tg, parent); 8877 8878 #ifdef CONFIG_UCLAMP_TASK_GROUP 8879 /* Propagate the effective uclamp value for the new group */ 8880 guard(mutex)(&uclamp_mutex); 8881 guard(rcu)(); 8882 cpu_util_update_eff(css); 8883 #endif 8884 8885 return 0; 8886 } 8887 8888 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8889 { 8890 struct task_group *tg = css_tg(css); 8891 8892 sched_release_group(tg); 8893 } 8894 8895 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8896 { 8897 struct task_group *tg = css_tg(css); 8898 8899 /* 8900 * Relies on the RCU grace period between css_released() and this. 8901 */ 8902 sched_unregister_group(tg); 8903 } 8904 8905 #ifdef CONFIG_RT_GROUP_SCHED 8906 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8907 { 8908 struct task_struct *task; 8909 struct cgroup_subsys_state *css; 8910 8911 cgroup_taskset_for_each(task, css, tset) { 8912 if (!sched_rt_can_attach(css_tg(css), task)) 8913 return -EINVAL; 8914 } 8915 return 0; 8916 } 8917 #endif 8918 8919 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8920 { 8921 struct task_struct *task; 8922 struct cgroup_subsys_state *css; 8923 8924 cgroup_taskset_for_each(task, css, tset) 8925 sched_move_task(task); 8926 } 8927 8928 #ifdef CONFIG_UCLAMP_TASK_GROUP 8929 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 8930 { 8931 struct cgroup_subsys_state *top_css = css; 8932 struct uclamp_se *uc_parent = NULL; 8933 struct uclamp_se *uc_se = NULL; 8934 unsigned int eff[UCLAMP_CNT]; 8935 enum uclamp_id clamp_id; 8936 unsigned int clamps; 8937 8938 lockdep_assert_held(&uclamp_mutex); 8939 SCHED_WARN_ON(!rcu_read_lock_held()); 8940 8941 css_for_each_descendant_pre(css, top_css) { 8942 uc_parent = css_tg(css)->parent 8943 ? css_tg(css)->parent->uclamp : NULL; 8944 8945 for_each_clamp_id(clamp_id) { 8946 /* Assume effective clamps matches requested clamps */ 8947 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 8948 /* Cap effective clamps with parent's effective clamps */ 8949 if (uc_parent && 8950 eff[clamp_id] > uc_parent[clamp_id].value) { 8951 eff[clamp_id] = uc_parent[clamp_id].value; 8952 } 8953 } 8954 /* Ensure protection is always capped by limit */ 8955 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 8956 8957 /* Propagate most restrictive effective clamps */ 8958 clamps = 0x0; 8959 uc_se = css_tg(css)->uclamp; 8960 for_each_clamp_id(clamp_id) { 8961 if (eff[clamp_id] == uc_se[clamp_id].value) 8962 continue; 8963 uc_se[clamp_id].value = eff[clamp_id]; 8964 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 8965 clamps |= (0x1 << clamp_id); 8966 } 8967 if (!clamps) { 8968 css = css_rightmost_descendant(css); 8969 continue; 8970 } 8971 8972 /* Immediately update descendants RUNNABLE tasks */ 8973 uclamp_update_active_tasks(css); 8974 } 8975 } 8976 8977 /* 8978 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 8979 * C expression. Since there is no way to convert a macro argument (N) into a 8980 * character constant, use two levels of macros. 8981 */ 8982 #define _POW10(exp) ((unsigned int)1e##exp) 8983 #define POW10(exp) _POW10(exp) 8984 8985 struct uclamp_request { 8986 #define UCLAMP_PERCENT_SHIFT 2 8987 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 8988 s64 percent; 8989 u64 util; 8990 int ret; 8991 }; 8992 8993 static inline struct uclamp_request 8994 capacity_from_percent(char *buf) 8995 { 8996 struct uclamp_request req = { 8997 .percent = UCLAMP_PERCENT_SCALE, 8998 .util = SCHED_CAPACITY_SCALE, 8999 .ret = 0, 9000 }; 9001 9002 buf = strim(buf); 9003 if (strcmp(buf, "max")) { 9004 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9005 &req.percent); 9006 if (req.ret) 9007 return req; 9008 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9009 req.ret = -ERANGE; 9010 return req; 9011 } 9012 9013 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9014 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9015 } 9016 9017 return req; 9018 } 9019 9020 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9021 size_t nbytes, loff_t off, 9022 enum uclamp_id clamp_id) 9023 { 9024 struct uclamp_request req; 9025 struct task_group *tg; 9026 9027 req = capacity_from_percent(buf); 9028 if (req.ret) 9029 return req.ret; 9030 9031 static_branch_enable(&sched_uclamp_used); 9032 9033 guard(mutex)(&uclamp_mutex); 9034 guard(rcu)(); 9035 9036 tg = css_tg(of_css(of)); 9037 if (tg->uclamp_req[clamp_id].value != req.util) 9038 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9039 9040 /* 9041 * Because of not recoverable conversion rounding we keep track of the 9042 * exact requested value 9043 */ 9044 tg->uclamp_pct[clamp_id] = req.percent; 9045 9046 /* Update effective clamps to track the most restrictive value */ 9047 cpu_util_update_eff(of_css(of)); 9048 9049 return nbytes; 9050 } 9051 9052 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9053 char *buf, size_t nbytes, 9054 loff_t off) 9055 { 9056 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9057 } 9058 9059 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9060 char *buf, size_t nbytes, 9061 loff_t off) 9062 { 9063 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9064 } 9065 9066 static inline void cpu_uclamp_print(struct seq_file *sf, 9067 enum uclamp_id clamp_id) 9068 { 9069 struct task_group *tg; 9070 u64 util_clamp; 9071 u64 percent; 9072 u32 rem; 9073 9074 scoped_guard (rcu) { 9075 tg = css_tg(seq_css(sf)); 9076 util_clamp = tg->uclamp_req[clamp_id].value; 9077 } 9078 9079 if (util_clamp == SCHED_CAPACITY_SCALE) { 9080 seq_puts(sf, "max\n"); 9081 return; 9082 } 9083 9084 percent = tg->uclamp_pct[clamp_id]; 9085 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9086 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9087 } 9088 9089 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9090 { 9091 cpu_uclamp_print(sf, UCLAMP_MIN); 9092 return 0; 9093 } 9094 9095 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9096 { 9097 cpu_uclamp_print(sf, UCLAMP_MAX); 9098 return 0; 9099 } 9100 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9101 9102 #ifdef CONFIG_FAIR_GROUP_SCHED 9103 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9104 struct cftype *cftype, u64 shareval) 9105 { 9106 if (shareval > scale_load_down(ULONG_MAX)) 9107 shareval = MAX_SHARES; 9108 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 9109 } 9110 9111 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9112 struct cftype *cft) 9113 { 9114 struct task_group *tg = css_tg(css); 9115 9116 return (u64) scale_load_down(tg->shares); 9117 } 9118 9119 #ifdef CONFIG_CFS_BANDWIDTH 9120 static DEFINE_MUTEX(cfs_constraints_mutex); 9121 9122 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9123 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9124 /* More than 203 days if BW_SHIFT equals 20. */ 9125 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9126 9127 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9128 9129 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9130 u64 burst) 9131 { 9132 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9133 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9134 9135 if (tg == &root_task_group) 9136 return -EINVAL; 9137 9138 /* 9139 * Ensure we have at some amount of bandwidth every period. This is 9140 * to prevent reaching a state of large arrears when throttled via 9141 * entity_tick() resulting in prolonged exit starvation. 9142 */ 9143 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9144 return -EINVAL; 9145 9146 /* 9147 * Likewise, bound things on the other side by preventing insane quota 9148 * periods. This also allows us to normalize in computing quota 9149 * feasibility. 9150 */ 9151 if (period > max_cfs_quota_period) 9152 return -EINVAL; 9153 9154 /* 9155 * Bound quota to defend quota against overflow during bandwidth shift. 9156 */ 9157 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9158 return -EINVAL; 9159 9160 if (quota != RUNTIME_INF && (burst > quota || 9161 burst + quota > max_cfs_runtime)) 9162 return -EINVAL; 9163 9164 /* 9165 * Prevent race between setting of cfs_rq->runtime_enabled and 9166 * unthrottle_offline_cfs_rqs(). 9167 */ 9168 guard(cpus_read_lock)(); 9169 guard(mutex)(&cfs_constraints_mutex); 9170 9171 ret = __cfs_schedulable(tg, period, quota); 9172 if (ret) 9173 return ret; 9174 9175 runtime_enabled = quota != RUNTIME_INF; 9176 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9177 /* 9178 * If we need to toggle cfs_bandwidth_used, off->on must occur 9179 * before making related changes, and on->off must occur afterwards 9180 */ 9181 if (runtime_enabled && !runtime_was_enabled) 9182 cfs_bandwidth_usage_inc(); 9183 9184 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9185 cfs_b->period = ns_to_ktime(period); 9186 cfs_b->quota = quota; 9187 cfs_b->burst = burst; 9188 9189 __refill_cfs_bandwidth_runtime(cfs_b); 9190 9191 /* 9192 * Restart the period timer (if active) to handle new 9193 * period expiry: 9194 */ 9195 if (runtime_enabled) 9196 start_cfs_bandwidth(cfs_b); 9197 } 9198 9199 for_each_online_cpu(i) { 9200 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9201 struct rq *rq = cfs_rq->rq; 9202 9203 guard(rq_lock_irq)(rq); 9204 cfs_rq->runtime_enabled = runtime_enabled; 9205 cfs_rq->runtime_remaining = 0; 9206 9207 if (cfs_rq->throttled) 9208 unthrottle_cfs_rq(cfs_rq); 9209 } 9210 9211 if (runtime_was_enabled && !runtime_enabled) 9212 cfs_bandwidth_usage_dec(); 9213 9214 return 0; 9215 } 9216 9217 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9218 { 9219 u64 quota, period, burst; 9220 9221 period = ktime_to_ns(tg->cfs_bandwidth.period); 9222 burst = tg->cfs_bandwidth.burst; 9223 if (cfs_quota_us < 0) 9224 quota = RUNTIME_INF; 9225 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9226 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9227 else 9228 return -EINVAL; 9229 9230 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9231 } 9232 9233 static long tg_get_cfs_quota(struct task_group *tg) 9234 { 9235 u64 quota_us; 9236 9237 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9238 return -1; 9239 9240 quota_us = tg->cfs_bandwidth.quota; 9241 do_div(quota_us, NSEC_PER_USEC); 9242 9243 return quota_us; 9244 } 9245 9246 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9247 { 9248 u64 quota, period, burst; 9249 9250 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9251 return -EINVAL; 9252 9253 period = (u64)cfs_period_us * NSEC_PER_USEC; 9254 quota = tg->cfs_bandwidth.quota; 9255 burst = tg->cfs_bandwidth.burst; 9256 9257 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9258 } 9259 9260 static long tg_get_cfs_period(struct task_group *tg) 9261 { 9262 u64 cfs_period_us; 9263 9264 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9265 do_div(cfs_period_us, NSEC_PER_USEC); 9266 9267 return cfs_period_us; 9268 } 9269 9270 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9271 { 9272 u64 quota, period, burst; 9273 9274 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9275 return -EINVAL; 9276 9277 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9278 period = ktime_to_ns(tg->cfs_bandwidth.period); 9279 quota = tg->cfs_bandwidth.quota; 9280 9281 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9282 } 9283 9284 static long tg_get_cfs_burst(struct task_group *tg) 9285 { 9286 u64 burst_us; 9287 9288 burst_us = tg->cfs_bandwidth.burst; 9289 do_div(burst_us, NSEC_PER_USEC); 9290 9291 return burst_us; 9292 } 9293 9294 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9295 struct cftype *cft) 9296 { 9297 return tg_get_cfs_quota(css_tg(css)); 9298 } 9299 9300 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9301 struct cftype *cftype, s64 cfs_quota_us) 9302 { 9303 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9304 } 9305 9306 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9307 struct cftype *cft) 9308 { 9309 return tg_get_cfs_period(css_tg(css)); 9310 } 9311 9312 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9313 struct cftype *cftype, u64 cfs_period_us) 9314 { 9315 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9316 } 9317 9318 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9319 struct cftype *cft) 9320 { 9321 return tg_get_cfs_burst(css_tg(css)); 9322 } 9323 9324 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9325 struct cftype *cftype, u64 cfs_burst_us) 9326 { 9327 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9328 } 9329 9330 struct cfs_schedulable_data { 9331 struct task_group *tg; 9332 u64 period, quota; 9333 }; 9334 9335 /* 9336 * normalize group quota/period to be quota/max_period 9337 * note: units are usecs 9338 */ 9339 static u64 normalize_cfs_quota(struct task_group *tg, 9340 struct cfs_schedulable_data *d) 9341 { 9342 u64 quota, period; 9343 9344 if (tg == d->tg) { 9345 period = d->period; 9346 quota = d->quota; 9347 } else { 9348 period = tg_get_cfs_period(tg); 9349 quota = tg_get_cfs_quota(tg); 9350 } 9351 9352 /* note: these should typically be equivalent */ 9353 if (quota == RUNTIME_INF || quota == -1) 9354 return RUNTIME_INF; 9355 9356 return to_ratio(period, quota); 9357 } 9358 9359 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9360 { 9361 struct cfs_schedulable_data *d = data; 9362 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9363 s64 quota = 0, parent_quota = -1; 9364 9365 if (!tg->parent) { 9366 quota = RUNTIME_INF; 9367 } else { 9368 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9369 9370 quota = normalize_cfs_quota(tg, d); 9371 parent_quota = parent_b->hierarchical_quota; 9372 9373 /* 9374 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9375 * always take the non-RUNTIME_INF min. On cgroup1, only 9376 * inherit when no limit is set. In both cases this is used 9377 * by the scheduler to determine if a given CFS task has a 9378 * bandwidth constraint at some higher level. 9379 */ 9380 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9381 if (quota == RUNTIME_INF) 9382 quota = parent_quota; 9383 else if (parent_quota != RUNTIME_INF) 9384 quota = min(quota, parent_quota); 9385 } else { 9386 if (quota == RUNTIME_INF) 9387 quota = parent_quota; 9388 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9389 return -EINVAL; 9390 } 9391 } 9392 cfs_b->hierarchical_quota = quota; 9393 9394 return 0; 9395 } 9396 9397 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9398 { 9399 struct cfs_schedulable_data data = { 9400 .tg = tg, 9401 .period = period, 9402 .quota = quota, 9403 }; 9404 9405 if (quota != RUNTIME_INF) { 9406 do_div(data.period, NSEC_PER_USEC); 9407 do_div(data.quota, NSEC_PER_USEC); 9408 } 9409 9410 guard(rcu)(); 9411 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9412 } 9413 9414 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9415 { 9416 struct task_group *tg = css_tg(seq_css(sf)); 9417 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9418 9419 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9420 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9421 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9422 9423 if (schedstat_enabled() && tg != &root_task_group) { 9424 struct sched_statistics *stats; 9425 u64 ws = 0; 9426 int i; 9427 9428 for_each_possible_cpu(i) { 9429 stats = __schedstats_from_se(tg->se[i]); 9430 ws += schedstat_val(stats->wait_sum); 9431 } 9432 9433 seq_printf(sf, "wait_sum %llu\n", ws); 9434 } 9435 9436 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9437 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9438 9439 return 0; 9440 } 9441 9442 static u64 throttled_time_self(struct task_group *tg) 9443 { 9444 int i; 9445 u64 total = 0; 9446 9447 for_each_possible_cpu(i) { 9448 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9449 } 9450 9451 return total; 9452 } 9453 9454 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9455 { 9456 struct task_group *tg = css_tg(seq_css(sf)); 9457 9458 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9459 9460 return 0; 9461 } 9462 #endif /* CONFIG_CFS_BANDWIDTH */ 9463 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9464 9465 #ifdef CONFIG_RT_GROUP_SCHED 9466 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9467 struct cftype *cft, s64 val) 9468 { 9469 return sched_group_set_rt_runtime(css_tg(css), val); 9470 } 9471 9472 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9473 struct cftype *cft) 9474 { 9475 return sched_group_rt_runtime(css_tg(css)); 9476 } 9477 9478 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9479 struct cftype *cftype, u64 rt_period_us) 9480 { 9481 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9482 } 9483 9484 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9485 struct cftype *cft) 9486 { 9487 return sched_group_rt_period(css_tg(css)); 9488 } 9489 #endif /* CONFIG_RT_GROUP_SCHED */ 9490 9491 #ifdef CONFIG_FAIR_GROUP_SCHED 9492 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9493 struct cftype *cft) 9494 { 9495 return css_tg(css)->idle; 9496 } 9497 9498 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9499 struct cftype *cft, s64 idle) 9500 { 9501 return sched_group_set_idle(css_tg(css), idle); 9502 } 9503 #endif 9504 9505 static struct cftype cpu_legacy_files[] = { 9506 #ifdef CONFIG_FAIR_GROUP_SCHED 9507 { 9508 .name = "shares", 9509 .read_u64 = cpu_shares_read_u64, 9510 .write_u64 = cpu_shares_write_u64, 9511 }, 9512 { 9513 .name = "idle", 9514 .read_s64 = cpu_idle_read_s64, 9515 .write_s64 = cpu_idle_write_s64, 9516 }, 9517 #endif 9518 #ifdef CONFIG_CFS_BANDWIDTH 9519 { 9520 .name = "cfs_quota_us", 9521 .read_s64 = cpu_cfs_quota_read_s64, 9522 .write_s64 = cpu_cfs_quota_write_s64, 9523 }, 9524 { 9525 .name = "cfs_period_us", 9526 .read_u64 = cpu_cfs_period_read_u64, 9527 .write_u64 = cpu_cfs_period_write_u64, 9528 }, 9529 { 9530 .name = "cfs_burst_us", 9531 .read_u64 = cpu_cfs_burst_read_u64, 9532 .write_u64 = cpu_cfs_burst_write_u64, 9533 }, 9534 { 9535 .name = "stat", 9536 .seq_show = cpu_cfs_stat_show, 9537 }, 9538 { 9539 .name = "stat.local", 9540 .seq_show = cpu_cfs_local_stat_show, 9541 }, 9542 #endif 9543 #ifdef CONFIG_RT_GROUP_SCHED 9544 { 9545 .name = "rt_runtime_us", 9546 .read_s64 = cpu_rt_runtime_read, 9547 .write_s64 = cpu_rt_runtime_write, 9548 }, 9549 { 9550 .name = "rt_period_us", 9551 .read_u64 = cpu_rt_period_read_uint, 9552 .write_u64 = cpu_rt_period_write_uint, 9553 }, 9554 #endif 9555 #ifdef CONFIG_UCLAMP_TASK_GROUP 9556 { 9557 .name = "uclamp.min", 9558 .flags = CFTYPE_NOT_ON_ROOT, 9559 .seq_show = cpu_uclamp_min_show, 9560 .write = cpu_uclamp_min_write, 9561 }, 9562 { 9563 .name = "uclamp.max", 9564 .flags = CFTYPE_NOT_ON_ROOT, 9565 .seq_show = cpu_uclamp_max_show, 9566 .write = cpu_uclamp_max_write, 9567 }, 9568 #endif 9569 { } /* Terminate */ 9570 }; 9571 9572 static int cpu_extra_stat_show(struct seq_file *sf, 9573 struct cgroup_subsys_state *css) 9574 { 9575 #ifdef CONFIG_CFS_BANDWIDTH 9576 { 9577 struct task_group *tg = css_tg(css); 9578 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9579 u64 throttled_usec, burst_usec; 9580 9581 throttled_usec = cfs_b->throttled_time; 9582 do_div(throttled_usec, NSEC_PER_USEC); 9583 burst_usec = cfs_b->burst_time; 9584 do_div(burst_usec, NSEC_PER_USEC); 9585 9586 seq_printf(sf, "nr_periods %d\n" 9587 "nr_throttled %d\n" 9588 "throttled_usec %llu\n" 9589 "nr_bursts %d\n" 9590 "burst_usec %llu\n", 9591 cfs_b->nr_periods, cfs_b->nr_throttled, 9592 throttled_usec, cfs_b->nr_burst, burst_usec); 9593 } 9594 #endif 9595 return 0; 9596 } 9597 9598 static int cpu_local_stat_show(struct seq_file *sf, 9599 struct cgroup_subsys_state *css) 9600 { 9601 #ifdef CONFIG_CFS_BANDWIDTH 9602 { 9603 struct task_group *tg = css_tg(css); 9604 u64 throttled_self_usec; 9605 9606 throttled_self_usec = throttled_time_self(tg); 9607 do_div(throttled_self_usec, NSEC_PER_USEC); 9608 9609 seq_printf(sf, "throttled_usec %llu\n", 9610 throttled_self_usec); 9611 } 9612 #endif 9613 return 0; 9614 } 9615 9616 #ifdef CONFIG_FAIR_GROUP_SCHED 9617 9618 static unsigned long tg_weight(struct task_group *tg) 9619 { 9620 return scale_load_down(tg->shares); 9621 } 9622 9623 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9624 struct cftype *cft) 9625 { 9626 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9627 } 9628 9629 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9630 struct cftype *cft, u64 cgrp_weight) 9631 { 9632 unsigned long weight; 9633 9634 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9635 return -ERANGE; 9636 9637 weight = sched_weight_from_cgroup(cgrp_weight); 9638 9639 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9640 } 9641 9642 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9643 struct cftype *cft) 9644 { 9645 unsigned long weight = tg_weight(css_tg(css)); 9646 int last_delta = INT_MAX; 9647 int prio, delta; 9648 9649 /* find the closest nice value to the current weight */ 9650 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9651 delta = abs(sched_prio_to_weight[prio] - weight); 9652 if (delta >= last_delta) 9653 break; 9654 last_delta = delta; 9655 } 9656 9657 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9658 } 9659 9660 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9661 struct cftype *cft, s64 nice) 9662 { 9663 unsigned long weight; 9664 int idx; 9665 9666 if (nice < MIN_NICE || nice > MAX_NICE) 9667 return -ERANGE; 9668 9669 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9670 idx = array_index_nospec(idx, 40); 9671 weight = sched_prio_to_weight[idx]; 9672 9673 return sched_group_set_shares(css_tg(css), scale_load(weight)); 9674 } 9675 #endif 9676 9677 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9678 long period, long quota) 9679 { 9680 if (quota < 0) 9681 seq_puts(sf, "max"); 9682 else 9683 seq_printf(sf, "%ld", quota); 9684 9685 seq_printf(sf, " %ld\n", period); 9686 } 9687 9688 /* caller should put the current value in *@periodp before calling */ 9689 static int __maybe_unused cpu_period_quota_parse(char *buf, 9690 u64 *periodp, u64 *quotap) 9691 { 9692 char tok[21]; /* U64_MAX */ 9693 9694 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9695 return -EINVAL; 9696 9697 *periodp *= NSEC_PER_USEC; 9698 9699 if (sscanf(tok, "%llu", quotap)) 9700 *quotap *= NSEC_PER_USEC; 9701 else if (!strcmp(tok, "max")) 9702 *quotap = RUNTIME_INF; 9703 else 9704 return -EINVAL; 9705 9706 return 0; 9707 } 9708 9709 #ifdef CONFIG_CFS_BANDWIDTH 9710 static int cpu_max_show(struct seq_file *sf, void *v) 9711 { 9712 struct task_group *tg = css_tg(seq_css(sf)); 9713 9714 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9715 return 0; 9716 } 9717 9718 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9719 char *buf, size_t nbytes, loff_t off) 9720 { 9721 struct task_group *tg = css_tg(of_css(of)); 9722 u64 period = tg_get_cfs_period(tg); 9723 u64 burst = tg->cfs_bandwidth.burst; 9724 u64 quota; 9725 int ret; 9726 9727 ret = cpu_period_quota_parse(buf, &period, "a); 9728 if (!ret) 9729 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 9730 return ret ?: nbytes; 9731 } 9732 #endif 9733 9734 static struct cftype cpu_files[] = { 9735 #ifdef CONFIG_FAIR_GROUP_SCHED 9736 { 9737 .name = "weight", 9738 .flags = CFTYPE_NOT_ON_ROOT, 9739 .read_u64 = cpu_weight_read_u64, 9740 .write_u64 = cpu_weight_write_u64, 9741 }, 9742 { 9743 .name = "weight.nice", 9744 .flags = CFTYPE_NOT_ON_ROOT, 9745 .read_s64 = cpu_weight_nice_read_s64, 9746 .write_s64 = cpu_weight_nice_write_s64, 9747 }, 9748 { 9749 .name = "idle", 9750 .flags = CFTYPE_NOT_ON_ROOT, 9751 .read_s64 = cpu_idle_read_s64, 9752 .write_s64 = cpu_idle_write_s64, 9753 }, 9754 #endif 9755 #ifdef CONFIG_CFS_BANDWIDTH 9756 { 9757 .name = "max", 9758 .flags = CFTYPE_NOT_ON_ROOT, 9759 .seq_show = cpu_max_show, 9760 .write = cpu_max_write, 9761 }, 9762 { 9763 .name = "max.burst", 9764 .flags = CFTYPE_NOT_ON_ROOT, 9765 .read_u64 = cpu_cfs_burst_read_u64, 9766 .write_u64 = cpu_cfs_burst_write_u64, 9767 }, 9768 #endif 9769 #ifdef CONFIG_UCLAMP_TASK_GROUP 9770 { 9771 .name = "uclamp.min", 9772 .flags = CFTYPE_NOT_ON_ROOT, 9773 .seq_show = cpu_uclamp_min_show, 9774 .write = cpu_uclamp_min_write, 9775 }, 9776 { 9777 .name = "uclamp.max", 9778 .flags = CFTYPE_NOT_ON_ROOT, 9779 .seq_show = cpu_uclamp_max_show, 9780 .write = cpu_uclamp_max_write, 9781 }, 9782 #endif 9783 { } /* terminate */ 9784 }; 9785 9786 struct cgroup_subsys cpu_cgrp_subsys = { 9787 .css_alloc = cpu_cgroup_css_alloc, 9788 .css_online = cpu_cgroup_css_online, 9789 .css_released = cpu_cgroup_css_released, 9790 .css_free = cpu_cgroup_css_free, 9791 .css_extra_stat_show = cpu_extra_stat_show, 9792 .css_local_stat_show = cpu_local_stat_show, 9793 #ifdef CONFIG_RT_GROUP_SCHED 9794 .can_attach = cpu_cgroup_can_attach, 9795 #endif 9796 .attach = cpu_cgroup_attach, 9797 .legacy_cftypes = cpu_legacy_files, 9798 .dfl_cftypes = cpu_files, 9799 .early_init = true, 9800 .threaded = true, 9801 }; 9802 9803 #endif /* CONFIG_CGROUP_SCHED */ 9804 9805 void dump_cpu_task(int cpu) 9806 { 9807 if (cpu == smp_processor_id() && in_hardirq()) { 9808 struct pt_regs *regs; 9809 9810 regs = get_irq_regs(); 9811 if (regs) { 9812 show_regs(regs); 9813 return; 9814 } 9815 } 9816 9817 if (trigger_single_cpu_backtrace(cpu)) 9818 return; 9819 9820 pr_info("Task dump for CPU %d:\n", cpu); 9821 sched_show_task(cpu_curr(cpu)); 9822 } 9823 9824 /* 9825 * Nice levels are multiplicative, with a gentle 10% change for every 9826 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 9827 * nice 1, it will get ~10% less CPU time than another CPU-bound task 9828 * that remained on nice 0. 9829 * 9830 * The "10% effect" is relative and cumulative: from _any_ nice level, 9831 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 9832 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 9833 * If a task goes up by ~10% and another task goes down by ~10% then 9834 * the relative distance between them is ~25%.) 9835 */ 9836 const int sched_prio_to_weight[40] = { 9837 /* -20 */ 88761, 71755, 56483, 46273, 36291, 9838 /* -15 */ 29154, 23254, 18705, 14949, 11916, 9839 /* -10 */ 9548, 7620, 6100, 4904, 3906, 9840 /* -5 */ 3121, 2501, 1991, 1586, 1277, 9841 /* 0 */ 1024, 820, 655, 526, 423, 9842 /* 5 */ 335, 272, 215, 172, 137, 9843 /* 10 */ 110, 87, 70, 56, 45, 9844 /* 15 */ 36, 29, 23, 18, 15, 9845 }; 9846 9847 /* 9848 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 9849 * 9850 * In cases where the weight does not change often, we can use the 9851 * pre-calculated inverse to speed up arithmetics by turning divisions 9852 * into multiplications: 9853 */ 9854 const u32 sched_prio_to_wmult[40] = { 9855 /* -20 */ 48388, 59856, 76040, 92818, 118348, 9856 /* -15 */ 147320, 184698, 229616, 287308, 360437, 9857 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 9858 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 9859 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 9860 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 9861 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 9862 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 9863 }; 9864 9865 void call_trace_sched_update_nr_running(struct rq *rq, int count) 9866 { 9867 trace_sched_update_nr_running_tp(rq, count); 9868 } 9869 9870 #ifdef CONFIG_SCHED_MM_CID 9871 9872 /* 9873 * @cid_lock: Guarantee forward-progress of cid allocation. 9874 * 9875 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 9876 * is only used when contention is detected by the lock-free allocation so 9877 * forward progress can be guaranteed. 9878 */ 9879 DEFINE_RAW_SPINLOCK(cid_lock); 9880 9881 /* 9882 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 9883 * 9884 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 9885 * detected, it is set to 1 to ensure that all newly coming allocations are 9886 * serialized by @cid_lock until the allocation which detected contention 9887 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 9888 * of a cid allocation. 9889 */ 9890 int use_cid_lock; 9891 9892 /* 9893 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 9894 * concurrently with respect to the execution of the source runqueue context 9895 * switch. 9896 * 9897 * There is one basic properties we want to guarantee here: 9898 * 9899 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 9900 * used by a task. That would lead to concurrent allocation of the cid and 9901 * userspace corruption. 9902 * 9903 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 9904 * that a pair of loads observe at least one of a pair of stores, which can be 9905 * shown as: 9906 * 9907 * X = Y = 0 9908 * 9909 * w[X]=1 w[Y]=1 9910 * MB MB 9911 * r[Y]=y r[X]=x 9912 * 9913 * Which guarantees that x==0 && y==0 is impossible. But rather than using 9914 * values 0 and 1, this algorithm cares about specific state transitions of the 9915 * runqueue current task (as updated by the scheduler context switch), and the 9916 * per-mm/cpu cid value. 9917 * 9918 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 9919 * task->mm != mm for the rest of the discussion. There are two scheduler state 9920 * transitions on context switch we care about: 9921 * 9922 * (TSA) Store to rq->curr with transition from (N) to (Y) 9923 * 9924 * (TSB) Store to rq->curr with transition from (Y) to (N) 9925 * 9926 * On the remote-clear side, there is one transition we care about: 9927 * 9928 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 9929 * 9930 * There is also a transition to UNSET state which can be performed from all 9931 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 9932 * guarantees that only a single thread will succeed: 9933 * 9934 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 9935 * 9936 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 9937 * when a thread is actively using the cid (property (1)). 9938 * 9939 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 9940 * 9941 * Scenario A) (TSA)+(TMA) (from next task perspective) 9942 * 9943 * CPU0 CPU1 9944 * 9945 * Context switch CS-1 Remote-clear 9946 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 9947 * (implied barrier after cmpxchg) 9948 * - switch_mm_cid() 9949 * - memory barrier (see switch_mm_cid() 9950 * comment explaining how this barrier 9951 * is combined with other scheduler 9952 * barriers) 9953 * - mm_cid_get (next) 9954 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 9955 * 9956 * This Dekker ensures that either task (Y) is observed by the 9957 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 9958 * observed. 9959 * 9960 * If task (Y) store is observed by rcu_dereference(), it means that there is 9961 * still an active task on the cpu. Remote-clear will therefore not transition 9962 * to UNSET, which fulfills property (1). 9963 * 9964 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 9965 * it will move its state to UNSET, which clears the percpu cid perhaps 9966 * uselessly (which is not an issue for correctness). Because task (Y) is not 9967 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 9968 * state to UNSET is done with a cmpxchg expecting that the old state has the 9969 * LAZY flag set, only one thread will successfully UNSET. 9970 * 9971 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 9972 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 9973 * CPU1 will observe task (Y) and do nothing more, which is fine. 9974 * 9975 * What we are effectively preventing with this Dekker is a scenario where 9976 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 9977 * because this would UNSET a cid which is actively used. 9978 */ 9979 9980 void sched_mm_cid_migrate_from(struct task_struct *t) 9981 { 9982 t->migrate_from_cpu = task_cpu(t); 9983 } 9984 9985 static 9986 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 9987 struct task_struct *t, 9988 struct mm_cid *src_pcpu_cid) 9989 { 9990 struct mm_struct *mm = t->mm; 9991 struct task_struct *src_task; 9992 int src_cid, last_mm_cid; 9993 9994 if (!mm) 9995 return -1; 9996 9997 last_mm_cid = t->last_mm_cid; 9998 /* 9999 * If the migrated task has no last cid, or if the current 10000 * task on src rq uses the cid, it means the source cid does not need 10001 * to be moved to the destination cpu. 10002 */ 10003 if (last_mm_cid == -1) 10004 return -1; 10005 src_cid = READ_ONCE(src_pcpu_cid->cid); 10006 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10007 return -1; 10008 10009 /* 10010 * If we observe an active task using the mm on this rq, it means we 10011 * are not the last task to be migrated from this cpu for this mm, so 10012 * there is no need to move src_cid to the destination cpu. 10013 */ 10014 guard(rcu)(); 10015 src_task = rcu_dereference(src_rq->curr); 10016 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10017 t->last_mm_cid = -1; 10018 return -1; 10019 } 10020 10021 return src_cid; 10022 } 10023 10024 static 10025 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10026 struct task_struct *t, 10027 struct mm_cid *src_pcpu_cid, 10028 int src_cid) 10029 { 10030 struct task_struct *src_task; 10031 struct mm_struct *mm = t->mm; 10032 int lazy_cid; 10033 10034 if (src_cid == -1) 10035 return -1; 10036 10037 /* 10038 * Attempt to clear the source cpu cid to move it to the destination 10039 * cpu. 10040 */ 10041 lazy_cid = mm_cid_set_lazy_put(src_cid); 10042 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10043 return -1; 10044 10045 /* 10046 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10047 * rq->curr->mm matches the scheduler barrier in context_switch() 10048 * between store to rq->curr and load of prev and next task's 10049 * per-mm/cpu cid. 10050 * 10051 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10052 * rq->curr->mm_cid_active matches the barrier in 10053 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10054 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10055 * load of per-mm/cpu cid. 10056 */ 10057 10058 /* 10059 * If we observe an active task using the mm on this rq after setting 10060 * the lazy-put flag, this task will be responsible for transitioning 10061 * from lazy-put flag set to MM_CID_UNSET. 10062 */ 10063 scoped_guard (rcu) { 10064 src_task = rcu_dereference(src_rq->curr); 10065 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10066 /* 10067 * We observed an active task for this mm, there is therefore 10068 * no point in moving this cid to the destination cpu. 10069 */ 10070 t->last_mm_cid = -1; 10071 return -1; 10072 } 10073 } 10074 10075 /* 10076 * The src_cid is unused, so it can be unset. 10077 */ 10078 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10079 return -1; 10080 return src_cid; 10081 } 10082 10083 /* 10084 * Migration to dst cpu. Called with dst_rq lock held. 10085 * Interrupts are disabled, which keeps the window of cid ownership without the 10086 * source rq lock held small. 10087 */ 10088 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10089 { 10090 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10091 struct mm_struct *mm = t->mm; 10092 int src_cid, dst_cid, src_cpu; 10093 struct rq *src_rq; 10094 10095 lockdep_assert_rq_held(dst_rq); 10096 10097 if (!mm) 10098 return; 10099 src_cpu = t->migrate_from_cpu; 10100 if (src_cpu == -1) { 10101 t->last_mm_cid = -1; 10102 return; 10103 } 10104 /* 10105 * Move the src cid if the dst cid is unset. This keeps id 10106 * allocation closest to 0 in cases where few threads migrate around 10107 * many CPUs. 10108 * 10109 * If destination cid is already set, we may have to just clear 10110 * the src cid to ensure compactness in frequent migrations 10111 * scenarios. 10112 * 10113 * It is not useful to clear the src cid when the number of threads is 10114 * greater or equal to the number of allowed CPUs, because user-space 10115 * can expect that the number of allowed cids can reach the number of 10116 * allowed CPUs. 10117 */ 10118 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10119 dst_cid = READ_ONCE(dst_pcpu_cid->cid); 10120 if (!mm_cid_is_unset(dst_cid) && 10121 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed) 10122 return; 10123 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10124 src_rq = cpu_rq(src_cpu); 10125 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10126 if (src_cid == -1) 10127 return; 10128 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10129 src_cid); 10130 if (src_cid == -1) 10131 return; 10132 if (!mm_cid_is_unset(dst_cid)) { 10133 __mm_cid_put(mm, src_cid); 10134 return; 10135 } 10136 /* Move src_cid to dst cpu. */ 10137 mm_cid_snapshot_time(dst_rq, mm); 10138 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10139 } 10140 10141 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10142 int cpu) 10143 { 10144 struct rq *rq = cpu_rq(cpu); 10145 struct task_struct *t; 10146 int cid, lazy_cid; 10147 10148 cid = READ_ONCE(pcpu_cid->cid); 10149 if (!mm_cid_is_valid(cid)) 10150 return; 10151 10152 /* 10153 * Clear the cpu cid if it is set to keep cid allocation compact. If 10154 * there happens to be other tasks left on the source cpu using this 10155 * mm, the next task using this mm will reallocate its cid on context 10156 * switch. 10157 */ 10158 lazy_cid = mm_cid_set_lazy_put(cid); 10159 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10160 return; 10161 10162 /* 10163 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10164 * rq->curr->mm matches the scheduler barrier in context_switch() 10165 * between store to rq->curr and load of prev and next task's 10166 * per-mm/cpu cid. 10167 * 10168 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10169 * rq->curr->mm_cid_active matches the barrier in 10170 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10171 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10172 * load of per-mm/cpu cid. 10173 */ 10174 10175 /* 10176 * If we observe an active task using the mm on this rq after setting 10177 * the lazy-put flag, that task will be responsible for transitioning 10178 * from lazy-put flag set to MM_CID_UNSET. 10179 */ 10180 scoped_guard (rcu) { 10181 t = rcu_dereference(rq->curr); 10182 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10183 return; 10184 } 10185 10186 /* 10187 * The cid is unused, so it can be unset. 10188 * Disable interrupts to keep the window of cid ownership without rq 10189 * lock small. 10190 */ 10191 scoped_guard (irqsave) { 10192 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10193 __mm_cid_put(mm, cid); 10194 } 10195 } 10196 10197 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10198 { 10199 struct rq *rq = cpu_rq(cpu); 10200 struct mm_cid *pcpu_cid; 10201 struct task_struct *curr; 10202 u64 rq_clock; 10203 10204 /* 10205 * rq->clock load is racy on 32-bit but one spurious clear once in a 10206 * while is irrelevant. 10207 */ 10208 rq_clock = READ_ONCE(rq->clock); 10209 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10210 10211 /* 10212 * In order to take care of infrequently scheduled tasks, bump the time 10213 * snapshot associated with this cid if an active task using the mm is 10214 * observed on this rq. 10215 */ 10216 scoped_guard (rcu) { 10217 curr = rcu_dereference(rq->curr); 10218 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10219 WRITE_ONCE(pcpu_cid->time, rq_clock); 10220 return; 10221 } 10222 } 10223 10224 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10225 return; 10226 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10227 } 10228 10229 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10230 int weight) 10231 { 10232 struct mm_cid *pcpu_cid; 10233 int cid; 10234 10235 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10236 cid = READ_ONCE(pcpu_cid->cid); 10237 if (!mm_cid_is_valid(cid) || cid < weight) 10238 return; 10239 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10240 } 10241 10242 static void task_mm_cid_work(struct callback_head *work) 10243 { 10244 unsigned long now = jiffies, old_scan, next_scan; 10245 struct task_struct *t = current; 10246 struct cpumask *cidmask; 10247 struct mm_struct *mm; 10248 int weight, cpu; 10249 10250 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 10251 10252 work->next = work; /* Prevent double-add */ 10253 if (t->flags & PF_EXITING) 10254 return; 10255 mm = t->mm; 10256 if (!mm) 10257 return; 10258 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10259 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10260 if (!old_scan) { 10261 unsigned long res; 10262 10263 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10264 if (res != old_scan) 10265 old_scan = res; 10266 else 10267 old_scan = next_scan; 10268 } 10269 if (time_before(now, old_scan)) 10270 return; 10271 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10272 return; 10273 cidmask = mm_cidmask(mm); 10274 /* Clear cids that were not recently used. */ 10275 for_each_possible_cpu(cpu) 10276 sched_mm_cid_remote_clear_old(mm, cpu); 10277 weight = cpumask_weight(cidmask); 10278 /* 10279 * Clear cids that are greater or equal to the cidmask weight to 10280 * recompact it. 10281 */ 10282 for_each_possible_cpu(cpu) 10283 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10284 } 10285 10286 void init_sched_mm_cid(struct task_struct *t) 10287 { 10288 struct mm_struct *mm = t->mm; 10289 int mm_users = 0; 10290 10291 if (mm) { 10292 mm_users = atomic_read(&mm->mm_users); 10293 if (mm_users == 1) 10294 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10295 } 10296 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10297 init_task_work(&t->cid_work, task_mm_cid_work); 10298 } 10299 10300 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10301 { 10302 struct callback_head *work = &curr->cid_work; 10303 unsigned long now = jiffies; 10304 10305 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10306 work->next != work) 10307 return; 10308 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10309 return; 10310 task_work_add(curr, work, TWA_RESUME); 10311 } 10312 10313 void sched_mm_cid_exit_signals(struct task_struct *t) 10314 { 10315 struct mm_struct *mm = t->mm; 10316 struct rq *rq; 10317 10318 if (!mm) 10319 return; 10320 10321 preempt_disable(); 10322 rq = this_rq(); 10323 guard(rq_lock_irqsave)(rq); 10324 preempt_enable_no_resched(); /* holding spinlock */ 10325 WRITE_ONCE(t->mm_cid_active, 0); 10326 /* 10327 * Store t->mm_cid_active before loading per-mm/cpu cid. 10328 * Matches barrier in sched_mm_cid_remote_clear_old(). 10329 */ 10330 smp_mb(); 10331 mm_cid_put(mm); 10332 t->last_mm_cid = t->mm_cid = -1; 10333 } 10334 10335 void sched_mm_cid_before_execve(struct task_struct *t) 10336 { 10337 struct mm_struct *mm = t->mm; 10338 struct rq *rq; 10339 10340 if (!mm) 10341 return; 10342 10343 preempt_disable(); 10344 rq = this_rq(); 10345 guard(rq_lock_irqsave)(rq); 10346 preempt_enable_no_resched(); /* holding spinlock */ 10347 WRITE_ONCE(t->mm_cid_active, 0); 10348 /* 10349 * Store t->mm_cid_active before loading per-mm/cpu cid. 10350 * Matches barrier in sched_mm_cid_remote_clear_old(). 10351 */ 10352 smp_mb(); 10353 mm_cid_put(mm); 10354 t->last_mm_cid = t->mm_cid = -1; 10355 } 10356 10357 void sched_mm_cid_after_execve(struct task_struct *t) 10358 { 10359 struct mm_struct *mm = t->mm; 10360 struct rq *rq; 10361 10362 if (!mm) 10363 return; 10364 10365 preempt_disable(); 10366 rq = this_rq(); 10367 scoped_guard (rq_lock_irqsave, rq) { 10368 preempt_enable_no_resched(); /* holding spinlock */ 10369 WRITE_ONCE(t->mm_cid_active, 1); 10370 /* 10371 * Store t->mm_cid_active before loading per-mm/cpu cid. 10372 * Matches barrier in sched_mm_cid_remote_clear_old(). 10373 */ 10374 smp_mb(); 10375 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm); 10376 } 10377 rseq_set_notify_resume(t); 10378 } 10379 10380 void sched_mm_cid_fork(struct task_struct *t) 10381 { 10382 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10383 t->mm_cid_active = 1; 10384 } 10385 #endif 10386 10387 #ifdef CONFIG_SCHED_CLASS_EXT 10388 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10389 struct sched_enq_and_set_ctx *ctx) 10390 { 10391 struct rq *rq = task_rq(p); 10392 10393 lockdep_assert_rq_held(rq); 10394 10395 *ctx = (struct sched_enq_and_set_ctx){ 10396 .p = p, 10397 .queue_flags = queue_flags, 10398 .queued = task_on_rq_queued(p), 10399 .running = task_current(rq, p), 10400 }; 10401 10402 update_rq_clock(rq); 10403 if (ctx->queued) 10404 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10405 if (ctx->running) 10406 put_prev_task(rq, p); 10407 } 10408 10409 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10410 { 10411 struct rq *rq = task_rq(ctx->p); 10412 10413 lockdep_assert_rq_held(rq); 10414 10415 if (ctx->queued) 10416 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10417 if (ctx->running) 10418 set_next_task(rq, ctx->p); 10419 } 10420 #endif /* CONFIG_SCHED_CLASS_EXT */ 10421