xref: /linux/kernel/sched/core.c (revision 04303f8ec14269b0ea2553863553bc7eaadca1f8)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 	unsigned long delta;
96 	ktime_t soft, hard, now;
97 
98 	for (;;) {
99 		if (hrtimer_active(period_timer))
100 			break;
101 
102 		now = hrtimer_cb_get_time(period_timer);
103 		hrtimer_forward(period_timer, now, period);
104 
105 		soft = hrtimer_get_softexpires(period_timer);
106 		hard = hrtimer_get_expires(period_timer);
107 		delta = ktime_to_ns(ktime_sub(hard, soft));
108 		__hrtimer_start_range_ns(period_timer, soft, delta,
109 					 HRTIMER_MODE_ABS_PINNED, 0);
110 	}
111 }
112 
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 
118 void update_rq_clock(struct rq *rq)
119 {
120 	s64 delta;
121 
122 	lockdep_assert_held(&rq->lock);
123 
124 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
125 		return;
126 
127 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128 	if (delta < 0)
129 		return;
130 	rq->clock += delta;
131 	update_rq_clock_task(rq, delta);
132 }
133 
134 /*
135  * Debugging: various feature bits
136  */
137 
138 #define SCHED_FEAT(name, enabled)	\
139 	(1UL << __SCHED_FEAT_##name) * enabled |
140 
141 const_debug unsigned int sysctl_sched_features =
142 #include "features.h"
143 	0;
144 
145 #undef SCHED_FEAT
146 
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled)	\
149 	#name ,
150 
151 static const char * const sched_feat_names[] = {
152 #include "features.h"
153 };
154 
155 #undef SCHED_FEAT
156 
157 static int sched_feat_show(struct seq_file *m, void *v)
158 {
159 	int i;
160 
161 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
162 		if (!(sysctl_sched_features & (1UL << i)))
163 			seq_puts(m, "NO_");
164 		seq_printf(m, "%s ", sched_feat_names[i]);
165 	}
166 	seq_puts(m, "\n");
167 
168 	return 0;
169 }
170 
171 #ifdef HAVE_JUMP_LABEL
172 
173 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
175 
176 #define SCHED_FEAT(name, enabled)	\
177 	jump_label_key__##enabled ,
178 
179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 #include "features.h"
181 };
182 
183 #undef SCHED_FEAT
184 
185 static void sched_feat_disable(int i)
186 {
187 	if (static_key_enabled(&sched_feat_keys[i]))
188 		static_key_slow_dec(&sched_feat_keys[i]);
189 }
190 
191 static void sched_feat_enable(int i)
192 {
193 	if (!static_key_enabled(&sched_feat_keys[i]))
194 		static_key_slow_inc(&sched_feat_keys[i]);
195 }
196 #else
197 static void sched_feat_disable(int i) { };
198 static void sched_feat_enable(int i) { };
199 #endif /* HAVE_JUMP_LABEL */
200 
201 static int sched_feat_set(char *cmp)
202 {
203 	int i;
204 	int neg = 0;
205 
206 	if (strncmp(cmp, "NO_", 3) == 0) {
207 		neg = 1;
208 		cmp += 3;
209 	}
210 
211 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
212 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
213 			if (neg) {
214 				sysctl_sched_features &= ~(1UL << i);
215 				sched_feat_disable(i);
216 			} else {
217 				sysctl_sched_features |= (1UL << i);
218 				sched_feat_enable(i);
219 			}
220 			break;
221 		}
222 	}
223 
224 	return i;
225 }
226 
227 static ssize_t
228 sched_feat_write(struct file *filp, const char __user *ubuf,
229 		size_t cnt, loff_t *ppos)
230 {
231 	char buf[64];
232 	char *cmp;
233 	int i;
234 	struct inode *inode;
235 
236 	if (cnt > 63)
237 		cnt = 63;
238 
239 	if (copy_from_user(&buf, ubuf, cnt))
240 		return -EFAULT;
241 
242 	buf[cnt] = 0;
243 	cmp = strstrip(buf);
244 
245 	/* Ensure the static_key remains in a consistent state */
246 	inode = file_inode(filp);
247 	mutex_lock(&inode->i_mutex);
248 	i = sched_feat_set(cmp);
249 	mutex_unlock(&inode->i_mutex);
250 	if (i == __SCHED_FEAT_NR)
251 		return -EINVAL;
252 
253 	*ppos += cnt;
254 
255 	return cnt;
256 }
257 
258 static int sched_feat_open(struct inode *inode, struct file *filp)
259 {
260 	return single_open(filp, sched_feat_show, NULL);
261 }
262 
263 static const struct file_operations sched_feat_fops = {
264 	.open		= sched_feat_open,
265 	.write		= sched_feat_write,
266 	.read		= seq_read,
267 	.llseek		= seq_lseek,
268 	.release	= single_release,
269 };
270 
271 static __init int sched_init_debug(void)
272 {
273 	debugfs_create_file("sched_features", 0644, NULL, NULL,
274 			&sched_feat_fops);
275 
276 	return 0;
277 }
278 late_initcall(sched_init_debug);
279 #endif /* CONFIG_SCHED_DEBUG */
280 
281 /*
282  * Number of tasks to iterate in a single balance run.
283  * Limited because this is done with IRQs disabled.
284  */
285 const_debug unsigned int sysctl_sched_nr_migrate = 32;
286 
287 /*
288  * period over which we average the RT time consumption, measured
289  * in ms.
290  *
291  * default: 1s
292  */
293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294 
295 /*
296  * period over which we measure -rt task cpu usage in us.
297  * default: 1s
298  */
299 unsigned int sysctl_sched_rt_period = 1000000;
300 
301 __read_mostly int scheduler_running;
302 
303 /*
304  * part of the period that we allow rt tasks to run in us.
305  * default: 0.95s
306  */
307 int sysctl_sched_rt_runtime = 950000;
308 
309 /*
310  * __task_rq_lock - lock the rq @p resides on.
311  */
312 static inline struct rq *__task_rq_lock(struct task_struct *p)
313 	__acquires(rq->lock)
314 {
315 	struct rq *rq;
316 
317 	lockdep_assert_held(&p->pi_lock);
318 
319 	for (;;) {
320 		rq = task_rq(p);
321 		raw_spin_lock(&rq->lock);
322 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
323 			return rq;
324 		raw_spin_unlock(&rq->lock);
325 
326 		while (unlikely(task_on_rq_migrating(p)))
327 			cpu_relax();
328 	}
329 }
330 
331 /*
332  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
333  */
334 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
335 	__acquires(p->pi_lock)
336 	__acquires(rq->lock)
337 {
338 	struct rq *rq;
339 
340 	for (;;) {
341 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
342 		rq = task_rq(p);
343 		raw_spin_lock(&rq->lock);
344 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
345 			return rq;
346 		raw_spin_unlock(&rq->lock);
347 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
348 
349 		while (unlikely(task_on_rq_migrating(p)))
350 			cpu_relax();
351 	}
352 }
353 
354 static void __task_rq_unlock(struct rq *rq)
355 	__releases(rq->lock)
356 {
357 	raw_spin_unlock(&rq->lock);
358 }
359 
360 static inline void
361 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
362 	__releases(rq->lock)
363 	__releases(p->pi_lock)
364 {
365 	raw_spin_unlock(&rq->lock);
366 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
367 }
368 
369 /*
370  * this_rq_lock - lock this runqueue and disable interrupts.
371  */
372 static struct rq *this_rq_lock(void)
373 	__acquires(rq->lock)
374 {
375 	struct rq *rq;
376 
377 	local_irq_disable();
378 	rq = this_rq();
379 	raw_spin_lock(&rq->lock);
380 
381 	return rq;
382 }
383 
384 #ifdef CONFIG_SCHED_HRTICK
385 /*
386  * Use HR-timers to deliver accurate preemption points.
387  */
388 
389 static void hrtick_clear(struct rq *rq)
390 {
391 	if (hrtimer_active(&rq->hrtick_timer))
392 		hrtimer_cancel(&rq->hrtick_timer);
393 }
394 
395 /*
396  * High-resolution timer tick.
397  * Runs from hardirq context with interrupts disabled.
398  */
399 static enum hrtimer_restart hrtick(struct hrtimer *timer)
400 {
401 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
402 
403 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
404 
405 	raw_spin_lock(&rq->lock);
406 	update_rq_clock(rq);
407 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
408 	raw_spin_unlock(&rq->lock);
409 
410 	return HRTIMER_NORESTART;
411 }
412 
413 #ifdef CONFIG_SMP
414 
415 static int __hrtick_restart(struct rq *rq)
416 {
417 	struct hrtimer *timer = &rq->hrtick_timer;
418 	ktime_t time = hrtimer_get_softexpires(timer);
419 
420 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
421 }
422 
423 /*
424  * called from hardirq (IPI) context
425  */
426 static void __hrtick_start(void *arg)
427 {
428 	struct rq *rq = arg;
429 
430 	raw_spin_lock(&rq->lock);
431 	__hrtick_restart(rq);
432 	rq->hrtick_csd_pending = 0;
433 	raw_spin_unlock(&rq->lock);
434 }
435 
436 /*
437  * Called to set the hrtick timer state.
438  *
439  * called with rq->lock held and irqs disabled
440  */
441 void hrtick_start(struct rq *rq, u64 delay)
442 {
443 	struct hrtimer *timer = &rq->hrtick_timer;
444 	ktime_t time;
445 	s64 delta;
446 
447 	/*
448 	 * Don't schedule slices shorter than 10000ns, that just
449 	 * doesn't make sense and can cause timer DoS.
450 	 */
451 	delta = max_t(s64, delay, 10000LL);
452 	time = ktime_add_ns(timer->base->get_time(), delta);
453 
454 	hrtimer_set_expires(timer, time);
455 
456 	if (rq == this_rq()) {
457 		__hrtick_restart(rq);
458 	} else if (!rq->hrtick_csd_pending) {
459 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
460 		rq->hrtick_csd_pending = 1;
461 	}
462 }
463 
464 static int
465 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
466 {
467 	int cpu = (int)(long)hcpu;
468 
469 	switch (action) {
470 	case CPU_UP_CANCELED:
471 	case CPU_UP_CANCELED_FROZEN:
472 	case CPU_DOWN_PREPARE:
473 	case CPU_DOWN_PREPARE_FROZEN:
474 	case CPU_DEAD:
475 	case CPU_DEAD_FROZEN:
476 		hrtick_clear(cpu_rq(cpu));
477 		return NOTIFY_OK;
478 	}
479 
480 	return NOTIFY_DONE;
481 }
482 
483 static __init void init_hrtick(void)
484 {
485 	hotcpu_notifier(hotplug_hrtick, 0);
486 }
487 #else
488 /*
489  * Called to set the hrtick timer state.
490  *
491  * called with rq->lock held and irqs disabled
492  */
493 void hrtick_start(struct rq *rq, u64 delay)
494 {
495 	/*
496 	 * Don't schedule slices shorter than 10000ns, that just
497 	 * doesn't make sense. Rely on vruntime for fairness.
498 	 */
499 	delay = max_t(u64, delay, 10000LL);
500 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
501 			HRTIMER_MODE_REL_PINNED, 0);
502 }
503 
504 static inline void init_hrtick(void)
505 {
506 }
507 #endif /* CONFIG_SMP */
508 
509 static void init_rq_hrtick(struct rq *rq)
510 {
511 #ifdef CONFIG_SMP
512 	rq->hrtick_csd_pending = 0;
513 
514 	rq->hrtick_csd.flags = 0;
515 	rq->hrtick_csd.func = __hrtick_start;
516 	rq->hrtick_csd.info = rq;
517 #endif
518 
519 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
520 	rq->hrtick_timer.function = hrtick;
521 }
522 #else	/* CONFIG_SCHED_HRTICK */
523 static inline void hrtick_clear(struct rq *rq)
524 {
525 }
526 
527 static inline void init_rq_hrtick(struct rq *rq)
528 {
529 }
530 
531 static inline void init_hrtick(void)
532 {
533 }
534 #endif	/* CONFIG_SCHED_HRTICK */
535 
536 /*
537  * cmpxchg based fetch_or, macro so it works for different integer types
538  */
539 #define fetch_or(ptr, val)						\
540 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
541  	for (;;) {							\
542  		__old = cmpxchg((ptr), __val, __val | (val));		\
543  		if (__old == __val)					\
544  			break;						\
545  		__val = __old;						\
546  	}								\
547  	__old;								\
548 })
549 
550 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
551 /*
552  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
553  * this avoids any races wrt polling state changes and thereby avoids
554  * spurious IPIs.
555  */
556 static bool set_nr_and_not_polling(struct task_struct *p)
557 {
558 	struct thread_info *ti = task_thread_info(p);
559 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
560 }
561 
562 /*
563  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
564  *
565  * If this returns true, then the idle task promises to call
566  * sched_ttwu_pending() and reschedule soon.
567  */
568 static bool set_nr_if_polling(struct task_struct *p)
569 {
570 	struct thread_info *ti = task_thread_info(p);
571 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
572 
573 	for (;;) {
574 		if (!(val & _TIF_POLLING_NRFLAG))
575 			return false;
576 		if (val & _TIF_NEED_RESCHED)
577 			return true;
578 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
579 		if (old == val)
580 			break;
581 		val = old;
582 	}
583 	return true;
584 }
585 
586 #else
587 static bool set_nr_and_not_polling(struct task_struct *p)
588 {
589 	set_tsk_need_resched(p);
590 	return true;
591 }
592 
593 #ifdef CONFIG_SMP
594 static bool set_nr_if_polling(struct task_struct *p)
595 {
596 	return false;
597 }
598 #endif
599 #endif
600 
601 /*
602  * resched_curr - mark rq's current task 'to be rescheduled now'.
603  *
604  * On UP this means the setting of the need_resched flag, on SMP it
605  * might also involve a cross-CPU call to trigger the scheduler on
606  * the target CPU.
607  */
608 void resched_curr(struct rq *rq)
609 {
610 	struct task_struct *curr = rq->curr;
611 	int cpu;
612 
613 	lockdep_assert_held(&rq->lock);
614 
615 	if (test_tsk_need_resched(curr))
616 		return;
617 
618 	cpu = cpu_of(rq);
619 
620 	if (cpu == smp_processor_id()) {
621 		set_tsk_need_resched(curr);
622 		set_preempt_need_resched();
623 		return;
624 	}
625 
626 	if (set_nr_and_not_polling(curr))
627 		smp_send_reschedule(cpu);
628 	else
629 		trace_sched_wake_idle_without_ipi(cpu);
630 }
631 
632 void resched_cpu(int cpu)
633 {
634 	struct rq *rq = cpu_rq(cpu);
635 	unsigned long flags;
636 
637 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
638 		return;
639 	resched_curr(rq);
640 	raw_spin_unlock_irqrestore(&rq->lock, flags);
641 }
642 
643 #ifdef CONFIG_SMP
644 #ifdef CONFIG_NO_HZ_COMMON
645 /*
646  * In the semi idle case, use the nearest busy cpu for migrating timers
647  * from an idle cpu.  This is good for power-savings.
648  *
649  * We don't do similar optimization for completely idle system, as
650  * selecting an idle cpu will add more delays to the timers than intended
651  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
652  */
653 int get_nohz_timer_target(int pinned)
654 {
655 	int cpu = smp_processor_id();
656 	int i;
657 	struct sched_domain *sd;
658 
659 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
660 		return cpu;
661 
662 	rcu_read_lock();
663 	for_each_domain(cpu, sd) {
664 		for_each_cpu(i, sched_domain_span(sd)) {
665 			if (!idle_cpu(i)) {
666 				cpu = i;
667 				goto unlock;
668 			}
669 		}
670 	}
671 unlock:
672 	rcu_read_unlock();
673 	return cpu;
674 }
675 /*
676  * When add_timer_on() enqueues a timer into the timer wheel of an
677  * idle CPU then this timer might expire before the next timer event
678  * which is scheduled to wake up that CPU. In case of a completely
679  * idle system the next event might even be infinite time into the
680  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
681  * leaves the inner idle loop so the newly added timer is taken into
682  * account when the CPU goes back to idle and evaluates the timer
683  * wheel for the next timer event.
684  */
685 static void wake_up_idle_cpu(int cpu)
686 {
687 	struct rq *rq = cpu_rq(cpu);
688 
689 	if (cpu == smp_processor_id())
690 		return;
691 
692 	if (set_nr_and_not_polling(rq->idle))
693 		smp_send_reschedule(cpu);
694 	else
695 		trace_sched_wake_idle_without_ipi(cpu);
696 }
697 
698 static bool wake_up_full_nohz_cpu(int cpu)
699 {
700 	/*
701 	 * We just need the target to call irq_exit() and re-evaluate
702 	 * the next tick. The nohz full kick at least implies that.
703 	 * If needed we can still optimize that later with an
704 	 * empty IRQ.
705 	 */
706 	if (tick_nohz_full_cpu(cpu)) {
707 		if (cpu != smp_processor_id() ||
708 		    tick_nohz_tick_stopped())
709 			tick_nohz_full_kick_cpu(cpu);
710 		return true;
711 	}
712 
713 	return false;
714 }
715 
716 void wake_up_nohz_cpu(int cpu)
717 {
718 	if (!wake_up_full_nohz_cpu(cpu))
719 		wake_up_idle_cpu(cpu);
720 }
721 
722 static inline bool got_nohz_idle_kick(void)
723 {
724 	int cpu = smp_processor_id();
725 
726 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
727 		return false;
728 
729 	if (idle_cpu(cpu) && !need_resched())
730 		return true;
731 
732 	/*
733 	 * We can't run Idle Load Balance on this CPU for this time so we
734 	 * cancel it and clear NOHZ_BALANCE_KICK
735 	 */
736 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
737 	return false;
738 }
739 
740 #else /* CONFIG_NO_HZ_COMMON */
741 
742 static inline bool got_nohz_idle_kick(void)
743 {
744 	return false;
745 }
746 
747 #endif /* CONFIG_NO_HZ_COMMON */
748 
749 #ifdef CONFIG_NO_HZ_FULL
750 bool sched_can_stop_tick(void)
751 {
752 	/*
753 	 * More than one running task need preemption.
754 	 * nr_running update is assumed to be visible
755 	 * after IPI is sent from wakers.
756 	 */
757 	if (this_rq()->nr_running > 1)
758 		return false;
759 
760 	return true;
761 }
762 #endif /* CONFIG_NO_HZ_FULL */
763 
764 void sched_avg_update(struct rq *rq)
765 {
766 	s64 period = sched_avg_period();
767 
768 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
769 		/*
770 		 * Inline assembly required to prevent the compiler
771 		 * optimising this loop into a divmod call.
772 		 * See __iter_div_u64_rem() for another example of this.
773 		 */
774 		asm("" : "+rm" (rq->age_stamp));
775 		rq->age_stamp += period;
776 		rq->rt_avg /= 2;
777 	}
778 }
779 
780 #endif /* CONFIG_SMP */
781 
782 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
783 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
784 /*
785  * Iterate task_group tree rooted at *from, calling @down when first entering a
786  * node and @up when leaving it for the final time.
787  *
788  * Caller must hold rcu_lock or sufficient equivalent.
789  */
790 int walk_tg_tree_from(struct task_group *from,
791 			     tg_visitor down, tg_visitor up, void *data)
792 {
793 	struct task_group *parent, *child;
794 	int ret;
795 
796 	parent = from;
797 
798 down:
799 	ret = (*down)(parent, data);
800 	if (ret)
801 		goto out;
802 	list_for_each_entry_rcu(child, &parent->children, siblings) {
803 		parent = child;
804 		goto down;
805 
806 up:
807 		continue;
808 	}
809 	ret = (*up)(parent, data);
810 	if (ret || parent == from)
811 		goto out;
812 
813 	child = parent;
814 	parent = parent->parent;
815 	if (parent)
816 		goto up;
817 out:
818 	return ret;
819 }
820 
821 int tg_nop(struct task_group *tg, void *data)
822 {
823 	return 0;
824 }
825 #endif
826 
827 static void set_load_weight(struct task_struct *p)
828 {
829 	int prio = p->static_prio - MAX_RT_PRIO;
830 	struct load_weight *load = &p->se.load;
831 
832 	/*
833 	 * SCHED_IDLE tasks get minimal weight:
834 	 */
835 	if (p->policy == SCHED_IDLE) {
836 		load->weight = scale_load(WEIGHT_IDLEPRIO);
837 		load->inv_weight = WMULT_IDLEPRIO;
838 		return;
839 	}
840 
841 	load->weight = scale_load(prio_to_weight[prio]);
842 	load->inv_weight = prio_to_wmult[prio];
843 }
844 
845 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
846 {
847 	update_rq_clock(rq);
848 	sched_info_queued(rq, p);
849 	p->sched_class->enqueue_task(rq, p, flags);
850 }
851 
852 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 	update_rq_clock(rq);
855 	sched_info_dequeued(rq, p);
856 	p->sched_class->dequeue_task(rq, p, flags);
857 }
858 
859 void activate_task(struct rq *rq, struct task_struct *p, int flags)
860 {
861 	if (task_contributes_to_load(p))
862 		rq->nr_uninterruptible--;
863 
864 	enqueue_task(rq, p, flags);
865 }
866 
867 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
868 {
869 	if (task_contributes_to_load(p))
870 		rq->nr_uninterruptible++;
871 
872 	dequeue_task(rq, p, flags);
873 }
874 
875 static void update_rq_clock_task(struct rq *rq, s64 delta)
876 {
877 /*
878  * In theory, the compile should just see 0 here, and optimize out the call
879  * to sched_rt_avg_update. But I don't trust it...
880  */
881 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
882 	s64 steal = 0, irq_delta = 0;
883 #endif
884 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
885 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
886 
887 	/*
888 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
889 	 * this case when a previous update_rq_clock() happened inside a
890 	 * {soft,}irq region.
891 	 *
892 	 * When this happens, we stop ->clock_task and only update the
893 	 * prev_irq_time stamp to account for the part that fit, so that a next
894 	 * update will consume the rest. This ensures ->clock_task is
895 	 * monotonic.
896 	 *
897 	 * It does however cause some slight miss-attribution of {soft,}irq
898 	 * time, a more accurate solution would be to update the irq_time using
899 	 * the current rq->clock timestamp, except that would require using
900 	 * atomic ops.
901 	 */
902 	if (irq_delta > delta)
903 		irq_delta = delta;
904 
905 	rq->prev_irq_time += irq_delta;
906 	delta -= irq_delta;
907 #endif
908 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
909 	if (static_key_false((&paravirt_steal_rq_enabled))) {
910 		steal = paravirt_steal_clock(cpu_of(rq));
911 		steal -= rq->prev_steal_time_rq;
912 
913 		if (unlikely(steal > delta))
914 			steal = delta;
915 
916 		rq->prev_steal_time_rq += steal;
917 		delta -= steal;
918 	}
919 #endif
920 
921 	rq->clock_task += delta;
922 
923 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
924 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
925 		sched_rt_avg_update(rq, irq_delta + steal);
926 #endif
927 }
928 
929 void sched_set_stop_task(int cpu, struct task_struct *stop)
930 {
931 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
932 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
933 
934 	if (stop) {
935 		/*
936 		 * Make it appear like a SCHED_FIFO task, its something
937 		 * userspace knows about and won't get confused about.
938 		 *
939 		 * Also, it will make PI more or less work without too
940 		 * much confusion -- but then, stop work should not
941 		 * rely on PI working anyway.
942 		 */
943 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
944 
945 		stop->sched_class = &stop_sched_class;
946 	}
947 
948 	cpu_rq(cpu)->stop = stop;
949 
950 	if (old_stop) {
951 		/*
952 		 * Reset it back to a normal scheduling class so that
953 		 * it can die in pieces.
954 		 */
955 		old_stop->sched_class = &rt_sched_class;
956 	}
957 }
958 
959 /*
960  * __normal_prio - return the priority that is based on the static prio
961  */
962 static inline int __normal_prio(struct task_struct *p)
963 {
964 	return p->static_prio;
965 }
966 
967 /*
968  * Calculate the expected normal priority: i.e. priority
969  * without taking RT-inheritance into account. Might be
970  * boosted by interactivity modifiers. Changes upon fork,
971  * setprio syscalls, and whenever the interactivity
972  * estimator recalculates.
973  */
974 static inline int normal_prio(struct task_struct *p)
975 {
976 	int prio;
977 
978 	if (task_has_dl_policy(p))
979 		prio = MAX_DL_PRIO-1;
980 	else if (task_has_rt_policy(p))
981 		prio = MAX_RT_PRIO-1 - p->rt_priority;
982 	else
983 		prio = __normal_prio(p);
984 	return prio;
985 }
986 
987 /*
988  * Calculate the current priority, i.e. the priority
989  * taken into account by the scheduler. This value might
990  * be boosted by RT tasks, or might be boosted by
991  * interactivity modifiers. Will be RT if the task got
992  * RT-boosted. If not then it returns p->normal_prio.
993  */
994 static int effective_prio(struct task_struct *p)
995 {
996 	p->normal_prio = normal_prio(p);
997 	/*
998 	 * If we are RT tasks or we were boosted to RT priority,
999 	 * keep the priority unchanged. Otherwise, update priority
1000 	 * to the normal priority:
1001 	 */
1002 	if (!rt_prio(p->prio))
1003 		return p->normal_prio;
1004 	return p->prio;
1005 }
1006 
1007 /**
1008  * task_curr - is this task currently executing on a CPU?
1009  * @p: the task in question.
1010  *
1011  * Return: 1 if the task is currently executing. 0 otherwise.
1012  */
1013 inline int task_curr(const struct task_struct *p)
1014 {
1015 	return cpu_curr(task_cpu(p)) == p;
1016 }
1017 
1018 /*
1019  * Can drop rq->lock because from sched_class::switched_from() methods drop it.
1020  */
1021 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1022 				       const struct sched_class *prev_class,
1023 				       int oldprio)
1024 {
1025 	if (prev_class != p->sched_class) {
1026 		if (prev_class->switched_from)
1027 			prev_class->switched_from(rq, p);
1028 		/* Possble rq->lock 'hole'.  */
1029 		p->sched_class->switched_to(rq, p);
1030 	} else if (oldprio != p->prio || dl_task(p))
1031 		p->sched_class->prio_changed(rq, p, oldprio);
1032 }
1033 
1034 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1035 {
1036 	const struct sched_class *class;
1037 
1038 	if (p->sched_class == rq->curr->sched_class) {
1039 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1040 	} else {
1041 		for_each_class(class) {
1042 			if (class == rq->curr->sched_class)
1043 				break;
1044 			if (class == p->sched_class) {
1045 				resched_curr(rq);
1046 				break;
1047 			}
1048 		}
1049 	}
1050 
1051 	/*
1052 	 * A queue event has occurred, and we're going to schedule.  In
1053 	 * this case, we can save a useless back to back clock update.
1054 	 */
1055 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1056 		rq_clock_skip_update(rq, true);
1057 }
1058 
1059 #ifdef CONFIG_SMP
1060 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1061 {
1062 #ifdef CONFIG_SCHED_DEBUG
1063 	/*
1064 	 * We should never call set_task_cpu() on a blocked task,
1065 	 * ttwu() will sort out the placement.
1066 	 */
1067 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1068 			!p->on_rq);
1069 
1070 #ifdef CONFIG_LOCKDEP
1071 	/*
1072 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1073 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1074 	 *
1075 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1076 	 * see task_group().
1077 	 *
1078 	 * Furthermore, all task_rq users should acquire both locks, see
1079 	 * task_rq_lock().
1080 	 */
1081 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1082 				      lockdep_is_held(&task_rq(p)->lock)));
1083 #endif
1084 #endif
1085 
1086 	trace_sched_migrate_task(p, new_cpu);
1087 
1088 	if (task_cpu(p) != new_cpu) {
1089 		if (p->sched_class->migrate_task_rq)
1090 			p->sched_class->migrate_task_rq(p, new_cpu);
1091 		p->se.nr_migrations++;
1092 		perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1093 	}
1094 
1095 	__set_task_cpu(p, new_cpu);
1096 }
1097 
1098 static void __migrate_swap_task(struct task_struct *p, int cpu)
1099 {
1100 	if (task_on_rq_queued(p)) {
1101 		struct rq *src_rq, *dst_rq;
1102 
1103 		src_rq = task_rq(p);
1104 		dst_rq = cpu_rq(cpu);
1105 
1106 		deactivate_task(src_rq, p, 0);
1107 		set_task_cpu(p, cpu);
1108 		activate_task(dst_rq, p, 0);
1109 		check_preempt_curr(dst_rq, p, 0);
1110 	} else {
1111 		/*
1112 		 * Task isn't running anymore; make it appear like we migrated
1113 		 * it before it went to sleep. This means on wakeup we make the
1114 		 * previous cpu our targer instead of where it really is.
1115 		 */
1116 		p->wake_cpu = cpu;
1117 	}
1118 }
1119 
1120 struct migration_swap_arg {
1121 	struct task_struct *src_task, *dst_task;
1122 	int src_cpu, dst_cpu;
1123 };
1124 
1125 static int migrate_swap_stop(void *data)
1126 {
1127 	struct migration_swap_arg *arg = data;
1128 	struct rq *src_rq, *dst_rq;
1129 	int ret = -EAGAIN;
1130 
1131 	src_rq = cpu_rq(arg->src_cpu);
1132 	dst_rq = cpu_rq(arg->dst_cpu);
1133 
1134 	double_raw_lock(&arg->src_task->pi_lock,
1135 			&arg->dst_task->pi_lock);
1136 	double_rq_lock(src_rq, dst_rq);
1137 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1138 		goto unlock;
1139 
1140 	if (task_cpu(arg->src_task) != arg->src_cpu)
1141 		goto unlock;
1142 
1143 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1144 		goto unlock;
1145 
1146 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1147 		goto unlock;
1148 
1149 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1150 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1151 
1152 	ret = 0;
1153 
1154 unlock:
1155 	double_rq_unlock(src_rq, dst_rq);
1156 	raw_spin_unlock(&arg->dst_task->pi_lock);
1157 	raw_spin_unlock(&arg->src_task->pi_lock);
1158 
1159 	return ret;
1160 }
1161 
1162 /*
1163  * Cross migrate two tasks
1164  */
1165 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1166 {
1167 	struct migration_swap_arg arg;
1168 	int ret = -EINVAL;
1169 
1170 	arg = (struct migration_swap_arg){
1171 		.src_task = cur,
1172 		.src_cpu = task_cpu(cur),
1173 		.dst_task = p,
1174 		.dst_cpu = task_cpu(p),
1175 	};
1176 
1177 	if (arg.src_cpu == arg.dst_cpu)
1178 		goto out;
1179 
1180 	/*
1181 	 * These three tests are all lockless; this is OK since all of them
1182 	 * will be re-checked with proper locks held further down the line.
1183 	 */
1184 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1185 		goto out;
1186 
1187 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1188 		goto out;
1189 
1190 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1191 		goto out;
1192 
1193 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1194 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1195 
1196 out:
1197 	return ret;
1198 }
1199 
1200 struct migration_arg {
1201 	struct task_struct *task;
1202 	int dest_cpu;
1203 };
1204 
1205 static int migration_cpu_stop(void *data);
1206 
1207 /*
1208  * wait_task_inactive - wait for a thread to unschedule.
1209  *
1210  * If @match_state is nonzero, it's the @p->state value just checked and
1211  * not expected to change.  If it changes, i.e. @p might have woken up,
1212  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1213  * we return a positive number (its total switch count).  If a second call
1214  * a short while later returns the same number, the caller can be sure that
1215  * @p has remained unscheduled the whole time.
1216  *
1217  * The caller must ensure that the task *will* unschedule sometime soon,
1218  * else this function might spin for a *long* time. This function can't
1219  * be called with interrupts off, or it may introduce deadlock with
1220  * smp_call_function() if an IPI is sent by the same process we are
1221  * waiting to become inactive.
1222  */
1223 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1224 {
1225 	unsigned long flags;
1226 	int running, queued;
1227 	unsigned long ncsw;
1228 	struct rq *rq;
1229 
1230 	for (;;) {
1231 		/*
1232 		 * We do the initial early heuristics without holding
1233 		 * any task-queue locks at all. We'll only try to get
1234 		 * the runqueue lock when things look like they will
1235 		 * work out!
1236 		 */
1237 		rq = task_rq(p);
1238 
1239 		/*
1240 		 * If the task is actively running on another CPU
1241 		 * still, just relax and busy-wait without holding
1242 		 * any locks.
1243 		 *
1244 		 * NOTE! Since we don't hold any locks, it's not
1245 		 * even sure that "rq" stays as the right runqueue!
1246 		 * But we don't care, since "task_running()" will
1247 		 * return false if the runqueue has changed and p
1248 		 * is actually now running somewhere else!
1249 		 */
1250 		while (task_running(rq, p)) {
1251 			if (match_state && unlikely(p->state != match_state))
1252 				return 0;
1253 			cpu_relax();
1254 		}
1255 
1256 		/*
1257 		 * Ok, time to look more closely! We need the rq
1258 		 * lock now, to be *sure*. If we're wrong, we'll
1259 		 * just go back and repeat.
1260 		 */
1261 		rq = task_rq_lock(p, &flags);
1262 		trace_sched_wait_task(p);
1263 		running = task_running(rq, p);
1264 		queued = task_on_rq_queued(p);
1265 		ncsw = 0;
1266 		if (!match_state || p->state == match_state)
1267 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1268 		task_rq_unlock(rq, p, &flags);
1269 
1270 		/*
1271 		 * If it changed from the expected state, bail out now.
1272 		 */
1273 		if (unlikely(!ncsw))
1274 			break;
1275 
1276 		/*
1277 		 * Was it really running after all now that we
1278 		 * checked with the proper locks actually held?
1279 		 *
1280 		 * Oops. Go back and try again..
1281 		 */
1282 		if (unlikely(running)) {
1283 			cpu_relax();
1284 			continue;
1285 		}
1286 
1287 		/*
1288 		 * It's not enough that it's not actively running,
1289 		 * it must be off the runqueue _entirely_, and not
1290 		 * preempted!
1291 		 *
1292 		 * So if it was still runnable (but just not actively
1293 		 * running right now), it's preempted, and we should
1294 		 * yield - it could be a while.
1295 		 */
1296 		if (unlikely(queued)) {
1297 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1298 
1299 			set_current_state(TASK_UNINTERRUPTIBLE);
1300 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1301 			continue;
1302 		}
1303 
1304 		/*
1305 		 * Ahh, all good. It wasn't running, and it wasn't
1306 		 * runnable, which means that it will never become
1307 		 * running in the future either. We're all done!
1308 		 */
1309 		break;
1310 	}
1311 
1312 	return ncsw;
1313 }
1314 
1315 /***
1316  * kick_process - kick a running thread to enter/exit the kernel
1317  * @p: the to-be-kicked thread
1318  *
1319  * Cause a process which is running on another CPU to enter
1320  * kernel-mode, without any delay. (to get signals handled.)
1321  *
1322  * NOTE: this function doesn't have to take the runqueue lock,
1323  * because all it wants to ensure is that the remote task enters
1324  * the kernel. If the IPI races and the task has been migrated
1325  * to another CPU then no harm is done and the purpose has been
1326  * achieved as well.
1327  */
1328 void kick_process(struct task_struct *p)
1329 {
1330 	int cpu;
1331 
1332 	preempt_disable();
1333 	cpu = task_cpu(p);
1334 	if ((cpu != smp_processor_id()) && task_curr(p))
1335 		smp_send_reschedule(cpu);
1336 	preempt_enable();
1337 }
1338 EXPORT_SYMBOL_GPL(kick_process);
1339 #endif /* CONFIG_SMP */
1340 
1341 #ifdef CONFIG_SMP
1342 /*
1343  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1344  */
1345 static int select_fallback_rq(int cpu, struct task_struct *p)
1346 {
1347 	int nid = cpu_to_node(cpu);
1348 	const struct cpumask *nodemask = NULL;
1349 	enum { cpuset, possible, fail } state = cpuset;
1350 	int dest_cpu;
1351 
1352 	/*
1353 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1354 	 * will return -1. There is no cpu on the node, and we should
1355 	 * select the cpu on the other node.
1356 	 */
1357 	if (nid != -1) {
1358 		nodemask = cpumask_of_node(nid);
1359 
1360 		/* Look for allowed, online CPU in same node. */
1361 		for_each_cpu(dest_cpu, nodemask) {
1362 			if (!cpu_online(dest_cpu))
1363 				continue;
1364 			if (!cpu_active(dest_cpu))
1365 				continue;
1366 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1367 				return dest_cpu;
1368 		}
1369 	}
1370 
1371 	for (;;) {
1372 		/* Any allowed, online CPU? */
1373 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1374 			if (!cpu_online(dest_cpu))
1375 				continue;
1376 			if (!cpu_active(dest_cpu))
1377 				continue;
1378 			goto out;
1379 		}
1380 
1381 		switch (state) {
1382 		case cpuset:
1383 			/* No more Mr. Nice Guy. */
1384 			cpuset_cpus_allowed_fallback(p);
1385 			state = possible;
1386 			break;
1387 
1388 		case possible:
1389 			do_set_cpus_allowed(p, cpu_possible_mask);
1390 			state = fail;
1391 			break;
1392 
1393 		case fail:
1394 			BUG();
1395 			break;
1396 		}
1397 	}
1398 
1399 out:
1400 	if (state != cpuset) {
1401 		/*
1402 		 * Don't tell them about moving exiting tasks or
1403 		 * kernel threads (both mm NULL), since they never
1404 		 * leave kernel.
1405 		 */
1406 		if (p->mm && printk_ratelimit()) {
1407 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1408 					task_pid_nr(p), p->comm, cpu);
1409 		}
1410 	}
1411 
1412 	return dest_cpu;
1413 }
1414 
1415 /*
1416  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1417  */
1418 static inline
1419 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1420 {
1421 	if (p->nr_cpus_allowed > 1)
1422 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1423 
1424 	/*
1425 	 * In order not to call set_task_cpu() on a blocking task we need
1426 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1427 	 * cpu.
1428 	 *
1429 	 * Since this is common to all placement strategies, this lives here.
1430 	 *
1431 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1432 	 *   not worry about this generic constraint ]
1433 	 */
1434 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1435 		     !cpu_online(cpu)))
1436 		cpu = select_fallback_rq(task_cpu(p), p);
1437 
1438 	return cpu;
1439 }
1440 
1441 static void update_avg(u64 *avg, u64 sample)
1442 {
1443 	s64 diff = sample - *avg;
1444 	*avg += diff >> 3;
1445 }
1446 #endif
1447 
1448 static void
1449 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1450 {
1451 #ifdef CONFIG_SCHEDSTATS
1452 	struct rq *rq = this_rq();
1453 
1454 #ifdef CONFIG_SMP
1455 	int this_cpu = smp_processor_id();
1456 
1457 	if (cpu == this_cpu) {
1458 		schedstat_inc(rq, ttwu_local);
1459 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1460 	} else {
1461 		struct sched_domain *sd;
1462 
1463 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1464 		rcu_read_lock();
1465 		for_each_domain(this_cpu, sd) {
1466 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1467 				schedstat_inc(sd, ttwu_wake_remote);
1468 				break;
1469 			}
1470 		}
1471 		rcu_read_unlock();
1472 	}
1473 
1474 	if (wake_flags & WF_MIGRATED)
1475 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1476 
1477 #endif /* CONFIG_SMP */
1478 
1479 	schedstat_inc(rq, ttwu_count);
1480 	schedstat_inc(p, se.statistics.nr_wakeups);
1481 
1482 	if (wake_flags & WF_SYNC)
1483 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1484 
1485 #endif /* CONFIG_SCHEDSTATS */
1486 }
1487 
1488 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1489 {
1490 	activate_task(rq, p, en_flags);
1491 	p->on_rq = TASK_ON_RQ_QUEUED;
1492 
1493 	/* if a worker is waking up, notify workqueue */
1494 	if (p->flags & PF_WQ_WORKER)
1495 		wq_worker_waking_up(p, cpu_of(rq));
1496 }
1497 
1498 /*
1499  * Mark the task runnable and perform wakeup-preemption.
1500  */
1501 static void
1502 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1503 {
1504 	check_preempt_curr(rq, p, wake_flags);
1505 	trace_sched_wakeup(p, true);
1506 
1507 	p->state = TASK_RUNNING;
1508 #ifdef CONFIG_SMP
1509 	if (p->sched_class->task_woken)
1510 		p->sched_class->task_woken(rq, p);
1511 
1512 	if (rq->idle_stamp) {
1513 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1514 		u64 max = 2*rq->max_idle_balance_cost;
1515 
1516 		update_avg(&rq->avg_idle, delta);
1517 
1518 		if (rq->avg_idle > max)
1519 			rq->avg_idle = max;
1520 
1521 		rq->idle_stamp = 0;
1522 	}
1523 #endif
1524 }
1525 
1526 static void
1527 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1528 {
1529 #ifdef CONFIG_SMP
1530 	if (p->sched_contributes_to_load)
1531 		rq->nr_uninterruptible--;
1532 #endif
1533 
1534 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1535 	ttwu_do_wakeup(rq, p, wake_flags);
1536 }
1537 
1538 /*
1539  * Called in case the task @p isn't fully descheduled from its runqueue,
1540  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1541  * since all we need to do is flip p->state to TASK_RUNNING, since
1542  * the task is still ->on_rq.
1543  */
1544 static int ttwu_remote(struct task_struct *p, int wake_flags)
1545 {
1546 	struct rq *rq;
1547 	int ret = 0;
1548 
1549 	rq = __task_rq_lock(p);
1550 	if (task_on_rq_queued(p)) {
1551 		/* check_preempt_curr() may use rq clock */
1552 		update_rq_clock(rq);
1553 		ttwu_do_wakeup(rq, p, wake_flags);
1554 		ret = 1;
1555 	}
1556 	__task_rq_unlock(rq);
1557 
1558 	return ret;
1559 }
1560 
1561 #ifdef CONFIG_SMP
1562 void sched_ttwu_pending(void)
1563 {
1564 	struct rq *rq = this_rq();
1565 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1566 	struct task_struct *p;
1567 	unsigned long flags;
1568 
1569 	if (!llist)
1570 		return;
1571 
1572 	raw_spin_lock_irqsave(&rq->lock, flags);
1573 
1574 	while (llist) {
1575 		p = llist_entry(llist, struct task_struct, wake_entry);
1576 		llist = llist_next(llist);
1577 		ttwu_do_activate(rq, p, 0);
1578 	}
1579 
1580 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1581 }
1582 
1583 void scheduler_ipi(void)
1584 {
1585 	/*
1586 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1587 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1588 	 * this IPI.
1589 	 */
1590 	preempt_fold_need_resched();
1591 
1592 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1593 		return;
1594 
1595 	/*
1596 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1597 	 * traditionally all their work was done from the interrupt return
1598 	 * path. Now that we actually do some work, we need to make sure
1599 	 * we do call them.
1600 	 *
1601 	 * Some archs already do call them, luckily irq_enter/exit nest
1602 	 * properly.
1603 	 *
1604 	 * Arguably we should visit all archs and update all handlers,
1605 	 * however a fair share of IPIs are still resched only so this would
1606 	 * somewhat pessimize the simple resched case.
1607 	 */
1608 	irq_enter();
1609 	sched_ttwu_pending();
1610 
1611 	/*
1612 	 * Check if someone kicked us for doing the nohz idle load balance.
1613 	 */
1614 	if (unlikely(got_nohz_idle_kick())) {
1615 		this_rq()->idle_balance = 1;
1616 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1617 	}
1618 	irq_exit();
1619 }
1620 
1621 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1622 {
1623 	struct rq *rq = cpu_rq(cpu);
1624 
1625 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1626 		if (!set_nr_if_polling(rq->idle))
1627 			smp_send_reschedule(cpu);
1628 		else
1629 			trace_sched_wake_idle_without_ipi(cpu);
1630 	}
1631 }
1632 
1633 void wake_up_if_idle(int cpu)
1634 {
1635 	struct rq *rq = cpu_rq(cpu);
1636 	unsigned long flags;
1637 
1638 	rcu_read_lock();
1639 
1640 	if (!is_idle_task(rcu_dereference(rq->curr)))
1641 		goto out;
1642 
1643 	if (set_nr_if_polling(rq->idle)) {
1644 		trace_sched_wake_idle_without_ipi(cpu);
1645 	} else {
1646 		raw_spin_lock_irqsave(&rq->lock, flags);
1647 		if (is_idle_task(rq->curr))
1648 			smp_send_reschedule(cpu);
1649 		/* Else cpu is not in idle, do nothing here */
1650 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1651 	}
1652 
1653 out:
1654 	rcu_read_unlock();
1655 }
1656 
1657 bool cpus_share_cache(int this_cpu, int that_cpu)
1658 {
1659 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1660 }
1661 #endif /* CONFIG_SMP */
1662 
1663 static void ttwu_queue(struct task_struct *p, int cpu)
1664 {
1665 	struct rq *rq = cpu_rq(cpu);
1666 
1667 #if defined(CONFIG_SMP)
1668 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1669 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1670 		ttwu_queue_remote(p, cpu);
1671 		return;
1672 	}
1673 #endif
1674 
1675 	raw_spin_lock(&rq->lock);
1676 	ttwu_do_activate(rq, p, 0);
1677 	raw_spin_unlock(&rq->lock);
1678 }
1679 
1680 /**
1681  * try_to_wake_up - wake up a thread
1682  * @p: the thread to be awakened
1683  * @state: the mask of task states that can be woken
1684  * @wake_flags: wake modifier flags (WF_*)
1685  *
1686  * Put it on the run-queue if it's not already there. The "current"
1687  * thread is always on the run-queue (except when the actual
1688  * re-schedule is in progress), and as such you're allowed to do
1689  * the simpler "current->state = TASK_RUNNING" to mark yourself
1690  * runnable without the overhead of this.
1691  *
1692  * Return: %true if @p was woken up, %false if it was already running.
1693  * or @state didn't match @p's state.
1694  */
1695 static int
1696 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1697 {
1698 	unsigned long flags;
1699 	int cpu, success = 0;
1700 
1701 	/*
1702 	 * If we are going to wake up a thread waiting for CONDITION we
1703 	 * need to ensure that CONDITION=1 done by the caller can not be
1704 	 * reordered with p->state check below. This pairs with mb() in
1705 	 * set_current_state() the waiting thread does.
1706 	 */
1707 	smp_mb__before_spinlock();
1708 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1709 	if (!(p->state & state))
1710 		goto out;
1711 
1712 	success = 1; /* we're going to change ->state */
1713 	cpu = task_cpu(p);
1714 
1715 	if (p->on_rq && ttwu_remote(p, wake_flags))
1716 		goto stat;
1717 
1718 #ifdef CONFIG_SMP
1719 	/*
1720 	 * If the owning (remote) cpu is still in the middle of schedule() with
1721 	 * this task as prev, wait until its done referencing the task.
1722 	 */
1723 	while (p->on_cpu)
1724 		cpu_relax();
1725 	/*
1726 	 * Pairs with the smp_wmb() in finish_lock_switch().
1727 	 */
1728 	smp_rmb();
1729 
1730 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1731 	p->state = TASK_WAKING;
1732 
1733 	if (p->sched_class->task_waking)
1734 		p->sched_class->task_waking(p);
1735 
1736 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1737 	if (task_cpu(p) != cpu) {
1738 		wake_flags |= WF_MIGRATED;
1739 		set_task_cpu(p, cpu);
1740 	}
1741 #endif /* CONFIG_SMP */
1742 
1743 	ttwu_queue(p, cpu);
1744 stat:
1745 	ttwu_stat(p, cpu, wake_flags);
1746 out:
1747 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1748 
1749 	return success;
1750 }
1751 
1752 /**
1753  * try_to_wake_up_local - try to wake up a local task with rq lock held
1754  * @p: the thread to be awakened
1755  *
1756  * Put @p on the run-queue if it's not already there. The caller must
1757  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1758  * the current task.
1759  */
1760 static void try_to_wake_up_local(struct task_struct *p)
1761 {
1762 	struct rq *rq = task_rq(p);
1763 
1764 	if (WARN_ON_ONCE(rq != this_rq()) ||
1765 	    WARN_ON_ONCE(p == current))
1766 		return;
1767 
1768 	lockdep_assert_held(&rq->lock);
1769 
1770 	if (!raw_spin_trylock(&p->pi_lock)) {
1771 		raw_spin_unlock(&rq->lock);
1772 		raw_spin_lock(&p->pi_lock);
1773 		raw_spin_lock(&rq->lock);
1774 	}
1775 
1776 	if (!(p->state & TASK_NORMAL))
1777 		goto out;
1778 
1779 	if (!task_on_rq_queued(p))
1780 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1781 
1782 	ttwu_do_wakeup(rq, p, 0);
1783 	ttwu_stat(p, smp_processor_id(), 0);
1784 out:
1785 	raw_spin_unlock(&p->pi_lock);
1786 }
1787 
1788 /**
1789  * wake_up_process - Wake up a specific process
1790  * @p: The process to be woken up.
1791  *
1792  * Attempt to wake up the nominated process and move it to the set of runnable
1793  * processes.
1794  *
1795  * Return: 1 if the process was woken up, 0 if it was already running.
1796  *
1797  * It may be assumed that this function implies a write memory barrier before
1798  * changing the task state if and only if any tasks are woken up.
1799  */
1800 int wake_up_process(struct task_struct *p)
1801 {
1802 	WARN_ON(task_is_stopped_or_traced(p));
1803 	return try_to_wake_up(p, TASK_NORMAL, 0);
1804 }
1805 EXPORT_SYMBOL(wake_up_process);
1806 
1807 int wake_up_state(struct task_struct *p, unsigned int state)
1808 {
1809 	return try_to_wake_up(p, state, 0);
1810 }
1811 
1812 /*
1813  * This function clears the sched_dl_entity static params.
1814  */
1815 void __dl_clear_params(struct task_struct *p)
1816 {
1817 	struct sched_dl_entity *dl_se = &p->dl;
1818 
1819 	dl_se->dl_runtime = 0;
1820 	dl_se->dl_deadline = 0;
1821 	dl_se->dl_period = 0;
1822 	dl_se->flags = 0;
1823 	dl_se->dl_bw = 0;
1824 
1825 	dl_se->dl_throttled = 0;
1826 	dl_se->dl_new = 1;
1827 	dl_se->dl_yielded = 0;
1828 }
1829 
1830 /*
1831  * Perform scheduler related setup for a newly forked process p.
1832  * p is forked by current.
1833  *
1834  * __sched_fork() is basic setup used by init_idle() too:
1835  */
1836 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1837 {
1838 	p->on_rq			= 0;
1839 
1840 	p->se.on_rq			= 0;
1841 	p->se.exec_start		= 0;
1842 	p->se.sum_exec_runtime		= 0;
1843 	p->se.prev_sum_exec_runtime	= 0;
1844 	p->se.nr_migrations		= 0;
1845 	p->se.vruntime			= 0;
1846 #ifdef CONFIG_SMP
1847 	p->se.avg.decay_count		= 0;
1848 #endif
1849 	INIT_LIST_HEAD(&p->se.group_node);
1850 
1851 #ifdef CONFIG_SCHEDSTATS
1852 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1853 #endif
1854 
1855 	RB_CLEAR_NODE(&p->dl.rb_node);
1856 	init_dl_task_timer(&p->dl);
1857 	__dl_clear_params(p);
1858 
1859 	INIT_LIST_HEAD(&p->rt.run_list);
1860 
1861 #ifdef CONFIG_PREEMPT_NOTIFIERS
1862 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1863 #endif
1864 
1865 #ifdef CONFIG_NUMA_BALANCING
1866 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1867 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1868 		p->mm->numa_scan_seq = 0;
1869 	}
1870 
1871 	if (clone_flags & CLONE_VM)
1872 		p->numa_preferred_nid = current->numa_preferred_nid;
1873 	else
1874 		p->numa_preferred_nid = -1;
1875 
1876 	p->node_stamp = 0ULL;
1877 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1878 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1879 	p->numa_work.next = &p->numa_work;
1880 	p->numa_faults = NULL;
1881 	p->last_task_numa_placement = 0;
1882 	p->last_sum_exec_runtime = 0;
1883 
1884 	p->numa_group = NULL;
1885 #endif /* CONFIG_NUMA_BALANCING */
1886 }
1887 
1888 #ifdef CONFIG_NUMA_BALANCING
1889 #ifdef CONFIG_SCHED_DEBUG
1890 void set_numabalancing_state(bool enabled)
1891 {
1892 	if (enabled)
1893 		sched_feat_set("NUMA");
1894 	else
1895 		sched_feat_set("NO_NUMA");
1896 }
1897 #else
1898 __read_mostly bool numabalancing_enabled;
1899 
1900 void set_numabalancing_state(bool enabled)
1901 {
1902 	numabalancing_enabled = enabled;
1903 }
1904 #endif /* CONFIG_SCHED_DEBUG */
1905 
1906 #ifdef CONFIG_PROC_SYSCTL
1907 int sysctl_numa_balancing(struct ctl_table *table, int write,
1908 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1909 {
1910 	struct ctl_table t;
1911 	int err;
1912 	int state = numabalancing_enabled;
1913 
1914 	if (write && !capable(CAP_SYS_ADMIN))
1915 		return -EPERM;
1916 
1917 	t = *table;
1918 	t.data = &state;
1919 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1920 	if (err < 0)
1921 		return err;
1922 	if (write)
1923 		set_numabalancing_state(state);
1924 	return err;
1925 }
1926 #endif
1927 #endif
1928 
1929 /*
1930  * fork()/clone()-time setup:
1931  */
1932 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1933 {
1934 	unsigned long flags;
1935 	int cpu = get_cpu();
1936 
1937 	__sched_fork(clone_flags, p);
1938 	/*
1939 	 * We mark the process as running here. This guarantees that
1940 	 * nobody will actually run it, and a signal or other external
1941 	 * event cannot wake it up and insert it on the runqueue either.
1942 	 */
1943 	p->state = TASK_RUNNING;
1944 
1945 	/*
1946 	 * Make sure we do not leak PI boosting priority to the child.
1947 	 */
1948 	p->prio = current->normal_prio;
1949 
1950 	/*
1951 	 * Revert to default priority/policy on fork if requested.
1952 	 */
1953 	if (unlikely(p->sched_reset_on_fork)) {
1954 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1955 			p->policy = SCHED_NORMAL;
1956 			p->static_prio = NICE_TO_PRIO(0);
1957 			p->rt_priority = 0;
1958 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1959 			p->static_prio = NICE_TO_PRIO(0);
1960 
1961 		p->prio = p->normal_prio = __normal_prio(p);
1962 		set_load_weight(p);
1963 
1964 		/*
1965 		 * We don't need the reset flag anymore after the fork. It has
1966 		 * fulfilled its duty:
1967 		 */
1968 		p->sched_reset_on_fork = 0;
1969 	}
1970 
1971 	if (dl_prio(p->prio)) {
1972 		put_cpu();
1973 		return -EAGAIN;
1974 	} else if (rt_prio(p->prio)) {
1975 		p->sched_class = &rt_sched_class;
1976 	} else {
1977 		p->sched_class = &fair_sched_class;
1978 	}
1979 
1980 	if (p->sched_class->task_fork)
1981 		p->sched_class->task_fork(p);
1982 
1983 	/*
1984 	 * The child is not yet in the pid-hash so no cgroup attach races,
1985 	 * and the cgroup is pinned to this child due to cgroup_fork()
1986 	 * is ran before sched_fork().
1987 	 *
1988 	 * Silence PROVE_RCU.
1989 	 */
1990 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1991 	set_task_cpu(p, cpu);
1992 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1993 
1994 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1995 	if (likely(sched_info_on()))
1996 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1997 #endif
1998 #if defined(CONFIG_SMP)
1999 	p->on_cpu = 0;
2000 #endif
2001 	init_task_preempt_count(p);
2002 #ifdef CONFIG_SMP
2003 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2004 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2005 #endif
2006 
2007 	put_cpu();
2008 	return 0;
2009 }
2010 
2011 unsigned long to_ratio(u64 period, u64 runtime)
2012 {
2013 	if (runtime == RUNTIME_INF)
2014 		return 1ULL << 20;
2015 
2016 	/*
2017 	 * Doing this here saves a lot of checks in all
2018 	 * the calling paths, and returning zero seems
2019 	 * safe for them anyway.
2020 	 */
2021 	if (period == 0)
2022 		return 0;
2023 
2024 	return div64_u64(runtime << 20, period);
2025 }
2026 
2027 #ifdef CONFIG_SMP
2028 inline struct dl_bw *dl_bw_of(int i)
2029 {
2030 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2031 			   "sched RCU must be held");
2032 	return &cpu_rq(i)->rd->dl_bw;
2033 }
2034 
2035 static inline int dl_bw_cpus(int i)
2036 {
2037 	struct root_domain *rd = cpu_rq(i)->rd;
2038 	int cpus = 0;
2039 
2040 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2041 			   "sched RCU must be held");
2042 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2043 		cpus++;
2044 
2045 	return cpus;
2046 }
2047 #else
2048 inline struct dl_bw *dl_bw_of(int i)
2049 {
2050 	return &cpu_rq(i)->dl.dl_bw;
2051 }
2052 
2053 static inline int dl_bw_cpus(int i)
2054 {
2055 	return 1;
2056 }
2057 #endif
2058 
2059 /*
2060  * We must be sure that accepting a new task (or allowing changing the
2061  * parameters of an existing one) is consistent with the bandwidth
2062  * constraints. If yes, this function also accordingly updates the currently
2063  * allocated bandwidth to reflect the new situation.
2064  *
2065  * This function is called while holding p's rq->lock.
2066  *
2067  * XXX we should delay bw change until the task's 0-lag point, see
2068  * __setparam_dl().
2069  */
2070 static int dl_overflow(struct task_struct *p, int policy,
2071 		       const struct sched_attr *attr)
2072 {
2073 
2074 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2075 	u64 period = attr->sched_period ?: attr->sched_deadline;
2076 	u64 runtime = attr->sched_runtime;
2077 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2078 	int cpus, err = -1;
2079 
2080 	if (new_bw == p->dl.dl_bw)
2081 		return 0;
2082 
2083 	/*
2084 	 * Either if a task, enters, leave, or stays -deadline but changes
2085 	 * its parameters, we may need to update accordingly the total
2086 	 * allocated bandwidth of the container.
2087 	 */
2088 	raw_spin_lock(&dl_b->lock);
2089 	cpus = dl_bw_cpus(task_cpu(p));
2090 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2091 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2092 		__dl_add(dl_b, new_bw);
2093 		err = 0;
2094 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2095 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2096 		__dl_clear(dl_b, p->dl.dl_bw);
2097 		__dl_add(dl_b, new_bw);
2098 		err = 0;
2099 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2100 		__dl_clear(dl_b, p->dl.dl_bw);
2101 		err = 0;
2102 	}
2103 	raw_spin_unlock(&dl_b->lock);
2104 
2105 	return err;
2106 }
2107 
2108 extern void init_dl_bw(struct dl_bw *dl_b);
2109 
2110 /*
2111  * wake_up_new_task - wake up a newly created task for the first time.
2112  *
2113  * This function will do some initial scheduler statistics housekeeping
2114  * that must be done for every newly created context, then puts the task
2115  * on the runqueue and wakes it.
2116  */
2117 void wake_up_new_task(struct task_struct *p)
2118 {
2119 	unsigned long flags;
2120 	struct rq *rq;
2121 
2122 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2123 #ifdef CONFIG_SMP
2124 	/*
2125 	 * Fork balancing, do it here and not earlier because:
2126 	 *  - cpus_allowed can change in the fork path
2127 	 *  - any previously selected cpu might disappear through hotplug
2128 	 */
2129 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2130 #endif
2131 
2132 	/* Initialize new task's runnable average */
2133 	init_task_runnable_average(p);
2134 	rq = __task_rq_lock(p);
2135 	activate_task(rq, p, 0);
2136 	p->on_rq = TASK_ON_RQ_QUEUED;
2137 	trace_sched_wakeup_new(p, true);
2138 	check_preempt_curr(rq, p, WF_FORK);
2139 #ifdef CONFIG_SMP
2140 	if (p->sched_class->task_woken)
2141 		p->sched_class->task_woken(rq, p);
2142 #endif
2143 	task_rq_unlock(rq, p, &flags);
2144 }
2145 
2146 #ifdef CONFIG_PREEMPT_NOTIFIERS
2147 
2148 /**
2149  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2150  * @notifier: notifier struct to register
2151  */
2152 void preempt_notifier_register(struct preempt_notifier *notifier)
2153 {
2154 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2155 }
2156 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2157 
2158 /**
2159  * preempt_notifier_unregister - no longer interested in preemption notifications
2160  * @notifier: notifier struct to unregister
2161  *
2162  * This is safe to call from within a preemption notifier.
2163  */
2164 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2165 {
2166 	hlist_del(&notifier->link);
2167 }
2168 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2169 
2170 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2171 {
2172 	struct preempt_notifier *notifier;
2173 
2174 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2175 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2176 }
2177 
2178 static void
2179 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2180 				 struct task_struct *next)
2181 {
2182 	struct preempt_notifier *notifier;
2183 
2184 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2185 		notifier->ops->sched_out(notifier, next);
2186 }
2187 
2188 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2189 
2190 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2191 {
2192 }
2193 
2194 static void
2195 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2196 				 struct task_struct *next)
2197 {
2198 }
2199 
2200 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2201 
2202 /**
2203  * prepare_task_switch - prepare to switch tasks
2204  * @rq: the runqueue preparing to switch
2205  * @prev: the current task that is being switched out
2206  * @next: the task we are going to switch to.
2207  *
2208  * This is called with the rq lock held and interrupts off. It must
2209  * be paired with a subsequent finish_task_switch after the context
2210  * switch.
2211  *
2212  * prepare_task_switch sets up locking and calls architecture specific
2213  * hooks.
2214  */
2215 static inline void
2216 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2217 		    struct task_struct *next)
2218 {
2219 	trace_sched_switch(prev, next);
2220 	sched_info_switch(rq, prev, next);
2221 	perf_event_task_sched_out(prev, next);
2222 	fire_sched_out_preempt_notifiers(prev, next);
2223 	prepare_lock_switch(rq, next);
2224 	prepare_arch_switch(next);
2225 }
2226 
2227 /**
2228  * finish_task_switch - clean up after a task-switch
2229  * @prev: the thread we just switched away from.
2230  *
2231  * finish_task_switch must be called after the context switch, paired
2232  * with a prepare_task_switch call before the context switch.
2233  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2234  * and do any other architecture-specific cleanup actions.
2235  *
2236  * Note that we may have delayed dropping an mm in context_switch(). If
2237  * so, we finish that here outside of the runqueue lock. (Doing it
2238  * with the lock held can cause deadlocks; see schedule() for
2239  * details.)
2240  *
2241  * The context switch have flipped the stack from under us and restored the
2242  * local variables which were saved when this task called schedule() in the
2243  * past. prev == current is still correct but we need to recalculate this_rq
2244  * because prev may have moved to another CPU.
2245  */
2246 static struct rq *finish_task_switch(struct task_struct *prev)
2247 	__releases(rq->lock)
2248 {
2249 	struct rq *rq = this_rq();
2250 	struct mm_struct *mm = rq->prev_mm;
2251 	long prev_state;
2252 
2253 	rq->prev_mm = NULL;
2254 
2255 	/*
2256 	 * A task struct has one reference for the use as "current".
2257 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2258 	 * schedule one last time. The schedule call will never return, and
2259 	 * the scheduled task must drop that reference.
2260 	 * The test for TASK_DEAD must occur while the runqueue locks are
2261 	 * still held, otherwise prev could be scheduled on another cpu, die
2262 	 * there before we look at prev->state, and then the reference would
2263 	 * be dropped twice.
2264 	 *		Manfred Spraul <manfred@colorfullife.com>
2265 	 */
2266 	prev_state = prev->state;
2267 	vtime_task_switch(prev);
2268 	finish_arch_switch(prev);
2269 	perf_event_task_sched_in(prev, current);
2270 	finish_lock_switch(rq, prev);
2271 	finish_arch_post_lock_switch();
2272 
2273 	fire_sched_in_preempt_notifiers(current);
2274 	if (mm)
2275 		mmdrop(mm);
2276 	if (unlikely(prev_state == TASK_DEAD)) {
2277 		if (prev->sched_class->task_dead)
2278 			prev->sched_class->task_dead(prev);
2279 
2280 		/*
2281 		 * Remove function-return probe instances associated with this
2282 		 * task and put them back on the free list.
2283 		 */
2284 		kprobe_flush_task(prev);
2285 		put_task_struct(prev);
2286 	}
2287 
2288 	tick_nohz_task_switch(current);
2289 	return rq;
2290 }
2291 
2292 #ifdef CONFIG_SMP
2293 
2294 /* rq->lock is NOT held, but preemption is disabled */
2295 static inline void post_schedule(struct rq *rq)
2296 {
2297 	if (rq->post_schedule) {
2298 		unsigned long flags;
2299 
2300 		raw_spin_lock_irqsave(&rq->lock, flags);
2301 		if (rq->curr->sched_class->post_schedule)
2302 			rq->curr->sched_class->post_schedule(rq);
2303 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2304 
2305 		rq->post_schedule = 0;
2306 	}
2307 }
2308 
2309 #else
2310 
2311 static inline void post_schedule(struct rq *rq)
2312 {
2313 }
2314 
2315 #endif
2316 
2317 /**
2318  * schedule_tail - first thing a freshly forked thread must call.
2319  * @prev: the thread we just switched away from.
2320  */
2321 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2322 	__releases(rq->lock)
2323 {
2324 	struct rq *rq;
2325 
2326 	/* finish_task_switch() drops rq->lock and enables preemtion */
2327 	preempt_disable();
2328 	rq = finish_task_switch(prev);
2329 	post_schedule(rq);
2330 	preempt_enable();
2331 
2332 	if (current->set_child_tid)
2333 		put_user(task_pid_vnr(current), current->set_child_tid);
2334 }
2335 
2336 /*
2337  * context_switch - switch to the new MM and the new thread's register state.
2338  */
2339 static inline struct rq *
2340 context_switch(struct rq *rq, struct task_struct *prev,
2341 	       struct task_struct *next)
2342 {
2343 	struct mm_struct *mm, *oldmm;
2344 
2345 	prepare_task_switch(rq, prev, next);
2346 
2347 	mm = next->mm;
2348 	oldmm = prev->active_mm;
2349 	/*
2350 	 * For paravirt, this is coupled with an exit in switch_to to
2351 	 * combine the page table reload and the switch backend into
2352 	 * one hypercall.
2353 	 */
2354 	arch_start_context_switch(prev);
2355 
2356 	if (!mm) {
2357 		next->active_mm = oldmm;
2358 		atomic_inc(&oldmm->mm_count);
2359 		enter_lazy_tlb(oldmm, next);
2360 	} else
2361 		switch_mm(oldmm, mm, next);
2362 
2363 	if (!prev->mm) {
2364 		prev->active_mm = NULL;
2365 		rq->prev_mm = oldmm;
2366 	}
2367 	/*
2368 	 * Since the runqueue lock will be released by the next
2369 	 * task (which is an invalid locking op but in the case
2370 	 * of the scheduler it's an obvious special-case), so we
2371 	 * do an early lockdep release here:
2372 	 */
2373 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2374 
2375 	context_tracking_task_switch(prev, next);
2376 	/* Here we just switch the register state and the stack. */
2377 	switch_to(prev, next, prev);
2378 	barrier();
2379 
2380 	return finish_task_switch(prev);
2381 }
2382 
2383 /*
2384  * nr_running and nr_context_switches:
2385  *
2386  * externally visible scheduler statistics: current number of runnable
2387  * threads, total number of context switches performed since bootup.
2388  */
2389 unsigned long nr_running(void)
2390 {
2391 	unsigned long i, sum = 0;
2392 
2393 	for_each_online_cpu(i)
2394 		sum += cpu_rq(i)->nr_running;
2395 
2396 	return sum;
2397 }
2398 
2399 /*
2400  * Check if only the current task is running on the cpu.
2401  */
2402 bool single_task_running(void)
2403 {
2404 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2405 		return true;
2406 	else
2407 		return false;
2408 }
2409 EXPORT_SYMBOL(single_task_running);
2410 
2411 unsigned long long nr_context_switches(void)
2412 {
2413 	int i;
2414 	unsigned long long sum = 0;
2415 
2416 	for_each_possible_cpu(i)
2417 		sum += cpu_rq(i)->nr_switches;
2418 
2419 	return sum;
2420 }
2421 
2422 unsigned long nr_iowait(void)
2423 {
2424 	unsigned long i, sum = 0;
2425 
2426 	for_each_possible_cpu(i)
2427 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2428 
2429 	return sum;
2430 }
2431 
2432 unsigned long nr_iowait_cpu(int cpu)
2433 {
2434 	struct rq *this = cpu_rq(cpu);
2435 	return atomic_read(&this->nr_iowait);
2436 }
2437 
2438 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2439 {
2440 	struct rq *this = this_rq();
2441 	*nr_waiters = atomic_read(&this->nr_iowait);
2442 	*load = this->cpu_load[0];
2443 }
2444 
2445 #ifdef CONFIG_SMP
2446 
2447 /*
2448  * sched_exec - execve() is a valuable balancing opportunity, because at
2449  * this point the task has the smallest effective memory and cache footprint.
2450  */
2451 void sched_exec(void)
2452 {
2453 	struct task_struct *p = current;
2454 	unsigned long flags;
2455 	int dest_cpu;
2456 
2457 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2458 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2459 	if (dest_cpu == smp_processor_id())
2460 		goto unlock;
2461 
2462 	if (likely(cpu_active(dest_cpu))) {
2463 		struct migration_arg arg = { p, dest_cpu };
2464 
2465 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2466 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2467 		return;
2468 	}
2469 unlock:
2470 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2471 }
2472 
2473 #endif
2474 
2475 DEFINE_PER_CPU(struct kernel_stat, kstat);
2476 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2477 
2478 EXPORT_PER_CPU_SYMBOL(kstat);
2479 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2480 
2481 /*
2482  * Return accounted runtime for the task.
2483  * In case the task is currently running, return the runtime plus current's
2484  * pending runtime that have not been accounted yet.
2485  */
2486 unsigned long long task_sched_runtime(struct task_struct *p)
2487 {
2488 	unsigned long flags;
2489 	struct rq *rq;
2490 	u64 ns;
2491 
2492 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2493 	/*
2494 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2495 	 * So we have a optimization chance when the task's delta_exec is 0.
2496 	 * Reading ->on_cpu is racy, but this is ok.
2497 	 *
2498 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2499 	 * If we race with it entering cpu, unaccounted time is 0. This is
2500 	 * indistinguishable from the read occurring a few cycles earlier.
2501 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2502 	 * been accounted, so we're correct here as well.
2503 	 */
2504 	if (!p->on_cpu || !task_on_rq_queued(p))
2505 		return p->se.sum_exec_runtime;
2506 #endif
2507 
2508 	rq = task_rq_lock(p, &flags);
2509 	/*
2510 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2511 	 * project cycles that may never be accounted to this
2512 	 * thread, breaking clock_gettime().
2513 	 */
2514 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2515 		update_rq_clock(rq);
2516 		p->sched_class->update_curr(rq);
2517 	}
2518 	ns = p->se.sum_exec_runtime;
2519 	task_rq_unlock(rq, p, &flags);
2520 
2521 	return ns;
2522 }
2523 
2524 /*
2525  * This function gets called by the timer code, with HZ frequency.
2526  * We call it with interrupts disabled.
2527  */
2528 void scheduler_tick(void)
2529 {
2530 	int cpu = smp_processor_id();
2531 	struct rq *rq = cpu_rq(cpu);
2532 	struct task_struct *curr = rq->curr;
2533 
2534 	sched_clock_tick();
2535 
2536 	raw_spin_lock(&rq->lock);
2537 	update_rq_clock(rq);
2538 	curr->sched_class->task_tick(rq, curr, 0);
2539 	update_cpu_load_active(rq);
2540 	raw_spin_unlock(&rq->lock);
2541 
2542 	perf_event_task_tick();
2543 
2544 #ifdef CONFIG_SMP
2545 	rq->idle_balance = idle_cpu(cpu);
2546 	trigger_load_balance(rq);
2547 #endif
2548 	rq_last_tick_reset(rq);
2549 }
2550 
2551 #ifdef CONFIG_NO_HZ_FULL
2552 /**
2553  * scheduler_tick_max_deferment
2554  *
2555  * Keep at least one tick per second when a single
2556  * active task is running because the scheduler doesn't
2557  * yet completely support full dynticks environment.
2558  *
2559  * This makes sure that uptime, CFS vruntime, load
2560  * balancing, etc... continue to move forward, even
2561  * with a very low granularity.
2562  *
2563  * Return: Maximum deferment in nanoseconds.
2564  */
2565 u64 scheduler_tick_max_deferment(void)
2566 {
2567 	struct rq *rq = this_rq();
2568 	unsigned long next, now = ACCESS_ONCE(jiffies);
2569 
2570 	next = rq->last_sched_tick + HZ;
2571 
2572 	if (time_before_eq(next, now))
2573 		return 0;
2574 
2575 	return jiffies_to_nsecs(next - now);
2576 }
2577 #endif
2578 
2579 notrace unsigned long get_parent_ip(unsigned long addr)
2580 {
2581 	if (in_lock_functions(addr)) {
2582 		addr = CALLER_ADDR2;
2583 		if (in_lock_functions(addr))
2584 			addr = CALLER_ADDR3;
2585 	}
2586 	return addr;
2587 }
2588 
2589 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2590 				defined(CONFIG_PREEMPT_TRACER))
2591 
2592 void preempt_count_add(int val)
2593 {
2594 #ifdef CONFIG_DEBUG_PREEMPT
2595 	/*
2596 	 * Underflow?
2597 	 */
2598 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2599 		return;
2600 #endif
2601 	__preempt_count_add(val);
2602 #ifdef CONFIG_DEBUG_PREEMPT
2603 	/*
2604 	 * Spinlock count overflowing soon?
2605 	 */
2606 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2607 				PREEMPT_MASK - 10);
2608 #endif
2609 	if (preempt_count() == val) {
2610 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2611 #ifdef CONFIG_DEBUG_PREEMPT
2612 		current->preempt_disable_ip = ip;
2613 #endif
2614 		trace_preempt_off(CALLER_ADDR0, ip);
2615 	}
2616 }
2617 EXPORT_SYMBOL(preempt_count_add);
2618 NOKPROBE_SYMBOL(preempt_count_add);
2619 
2620 void preempt_count_sub(int val)
2621 {
2622 #ifdef CONFIG_DEBUG_PREEMPT
2623 	/*
2624 	 * Underflow?
2625 	 */
2626 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2627 		return;
2628 	/*
2629 	 * Is the spinlock portion underflowing?
2630 	 */
2631 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2632 			!(preempt_count() & PREEMPT_MASK)))
2633 		return;
2634 #endif
2635 
2636 	if (preempt_count() == val)
2637 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2638 	__preempt_count_sub(val);
2639 }
2640 EXPORT_SYMBOL(preempt_count_sub);
2641 NOKPROBE_SYMBOL(preempt_count_sub);
2642 
2643 #endif
2644 
2645 /*
2646  * Print scheduling while atomic bug:
2647  */
2648 static noinline void __schedule_bug(struct task_struct *prev)
2649 {
2650 	if (oops_in_progress)
2651 		return;
2652 
2653 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2654 		prev->comm, prev->pid, preempt_count());
2655 
2656 	debug_show_held_locks(prev);
2657 	print_modules();
2658 	if (irqs_disabled())
2659 		print_irqtrace_events(prev);
2660 #ifdef CONFIG_DEBUG_PREEMPT
2661 	if (in_atomic_preempt_off()) {
2662 		pr_err("Preemption disabled at:");
2663 		print_ip_sym(current->preempt_disable_ip);
2664 		pr_cont("\n");
2665 	}
2666 #endif
2667 	dump_stack();
2668 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2669 }
2670 
2671 /*
2672  * Various schedule()-time debugging checks and statistics:
2673  */
2674 static inline void schedule_debug(struct task_struct *prev)
2675 {
2676 #ifdef CONFIG_SCHED_STACK_END_CHECK
2677 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2678 #endif
2679 	/*
2680 	 * Test if we are atomic. Since do_exit() needs to call into
2681 	 * schedule() atomically, we ignore that path. Otherwise whine
2682 	 * if we are scheduling when we should not.
2683 	 */
2684 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2685 		__schedule_bug(prev);
2686 	rcu_sleep_check();
2687 
2688 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2689 
2690 	schedstat_inc(this_rq(), sched_count);
2691 }
2692 
2693 /*
2694  * Pick up the highest-prio task:
2695  */
2696 static inline struct task_struct *
2697 pick_next_task(struct rq *rq, struct task_struct *prev)
2698 {
2699 	const struct sched_class *class = &fair_sched_class;
2700 	struct task_struct *p;
2701 
2702 	/*
2703 	 * Optimization: we know that if all tasks are in
2704 	 * the fair class we can call that function directly:
2705 	 */
2706 	if (likely(prev->sched_class == class &&
2707 		   rq->nr_running == rq->cfs.h_nr_running)) {
2708 		p = fair_sched_class.pick_next_task(rq, prev);
2709 		if (unlikely(p == RETRY_TASK))
2710 			goto again;
2711 
2712 		/* assumes fair_sched_class->next == idle_sched_class */
2713 		if (unlikely(!p))
2714 			p = idle_sched_class.pick_next_task(rq, prev);
2715 
2716 		return p;
2717 	}
2718 
2719 again:
2720 	for_each_class(class) {
2721 		p = class->pick_next_task(rq, prev);
2722 		if (p) {
2723 			if (unlikely(p == RETRY_TASK))
2724 				goto again;
2725 			return p;
2726 		}
2727 	}
2728 
2729 	BUG(); /* the idle class will always have a runnable task */
2730 }
2731 
2732 /*
2733  * __schedule() is the main scheduler function.
2734  *
2735  * The main means of driving the scheduler and thus entering this function are:
2736  *
2737  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2738  *
2739  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2740  *      paths. For example, see arch/x86/entry_64.S.
2741  *
2742  *      To drive preemption between tasks, the scheduler sets the flag in timer
2743  *      interrupt handler scheduler_tick().
2744  *
2745  *   3. Wakeups don't really cause entry into schedule(). They add a
2746  *      task to the run-queue and that's it.
2747  *
2748  *      Now, if the new task added to the run-queue preempts the current
2749  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2750  *      called on the nearest possible occasion:
2751  *
2752  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2753  *
2754  *         - in syscall or exception context, at the next outmost
2755  *           preempt_enable(). (this might be as soon as the wake_up()'s
2756  *           spin_unlock()!)
2757  *
2758  *         - in IRQ context, return from interrupt-handler to
2759  *           preemptible context
2760  *
2761  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2762  *         then at the next:
2763  *
2764  *          - cond_resched() call
2765  *          - explicit schedule() call
2766  *          - return from syscall or exception to user-space
2767  *          - return from interrupt-handler to user-space
2768  *
2769  * WARNING: all callers must re-check need_resched() afterward and reschedule
2770  * accordingly in case an event triggered the need for rescheduling (such as
2771  * an interrupt waking up a task) while preemption was disabled in __schedule().
2772  */
2773 static void __sched __schedule(void)
2774 {
2775 	struct task_struct *prev, *next;
2776 	unsigned long *switch_count;
2777 	struct rq *rq;
2778 	int cpu;
2779 
2780 	preempt_disable();
2781 	cpu = smp_processor_id();
2782 	rq = cpu_rq(cpu);
2783 	rcu_note_context_switch();
2784 	prev = rq->curr;
2785 
2786 	schedule_debug(prev);
2787 
2788 	if (sched_feat(HRTICK))
2789 		hrtick_clear(rq);
2790 
2791 	/*
2792 	 * Make sure that signal_pending_state()->signal_pending() below
2793 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2794 	 * done by the caller to avoid the race with signal_wake_up().
2795 	 */
2796 	smp_mb__before_spinlock();
2797 	raw_spin_lock_irq(&rq->lock);
2798 
2799 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2800 
2801 	switch_count = &prev->nivcsw;
2802 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2803 		if (unlikely(signal_pending_state(prev->state, prev))) {
2804 			prev->state = TASK_RUNNING;
2805 		} else {
2806 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2807 			prev->on_rq = 0;
2808 
2809 			/*
2810 			 * If a worker went to sleep, notify and ask workqueue
2811 			 * whether it wants to wake up a task to maintain
2812 			 * concurrency.
2813 			 */
2814 			if (prev->flags & PF_WQ_WORKER) {
2815 				struct task_struct *to_wakeup;
2816 
2817 				to_wakeup = wq_worker_sleeping(prev, cpu);
2818 				if (to_wakeup)
2819 					try_to_wake_up_local(to_wakeup);
2820 			}
2821 		}
2822 		switch_count = &prev->nvcsw;
2823 	}
2824 
2825 	if (task_on_rq_queued(prev))
2826 		update_rq_clock(rq);
2827 
2828 	next = pick_next_task(rq, prev);
2829 	clear_tsk_need_resched(prev);
2830 	clear_preempt_need_resched();
2831 	rq->clock_skip_update = 0;
2832 
2833 	if (likely(prev != next)) {
2834 		rq->nr_switches++;
2835 		rq->curr = next;
2836 		++*switch_count;
2837 
2838 		rq = context_switch(rq, prev, next); /* unlocks the rq */
2839 		cpu = cpu_of(rq);
2840 	} else
2841 		raw_spin_unlock_irq(&rq->lock);
2842 
2843 	post_schedule(rq);
2844 
2845 	sched_preempt_enable_no_resched();
2846 }
2847 
2848 static inline void sched_submit_work(struct task_struct *tsk)
2849 {
2850 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2851 		return;
2852 	/*
2853 	 * If we are going to sleep and we have plugged IO queued,
2854 	 * make sure to submit it to avoid deadlocks.
2855 	 */
2856 	if (blk_needs_flush_plug(tsk))
2857 		blk_schedule_flush_plug(tsk);
2858 }
2859 
2860 asmlinkage __visible void __sched schedule(void)
2861 {
2862 	struct task_struct *tsk = current;
2863 
2864 	sched_submit_work(tsk);
2865 	do {
2866 		__schedule();
2867 	} while (need_resched());
2868 }
2869 EXPORT_SYMBOL(schedule);
2870 
2871 #ifdef CONFIG_CONTEXT_TRACKING
2872 asmlinkage __visible void __sched schedule_user(void)
2873 {
2874 	/*
2875 	 * If we come here after a random call to set_need_resched(),
2876 	 * or we have been woken up remotely but the IPI has not yet arrived,
2877 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2878 	 * we find a better solution.
2879 	 *
2880 	 * NB: There are buggy callers of this function.  Ideally we
2881 	 * should warn if prev_state != IN_USER, but that will trigger
2882 	 * too frequently to make sense yet.
2883 	 */
2884 	enum ctx_state prev_state = exception_enter();
2885 	schedule();
2886 	exception_exit(prev_state);
2887 }
2888 #endif
2889 
2890 /**
2891  * schedule_preempt_disabled - called with preemption disabled
2892  *
2893  * Returns with preemption disabled. Note: preempt_count must be 1
2894  */
2895 void __sched schedule_preempt_disabled(void)
2896 {
2897 	sched_preempt_enable_no_resched();
2898 	schedule();
2899 	preempt_disable();
2900 }
2901 
2902 static void preempt_schedule_common(void)
2903 {
2904 	do {
2905 		__preempt_count_add(PREEMPT_ACTIVE);
2906 		__schedule();
2907 		__preempt_count_sub(PREEMPT_ACTIVE);
2908 
2909 		/*
2910 		 * Check again in case we missed a preemption opportunity
2911 		 * between schedule and now.
2912 		 */
2913 		barrier();
2914 	} while (need_resched());
2915 }
2916 
2917 #ifdef CONFIG_PREEMPT
2918 /*
2919  * this is the entry point to schedule() from in-kernel preemption
2920  * off of preempt_enable. Kernel preemptions off return from interrupt
2921  * occur there and call schedule directly.
2922  */
2923 asmlinkage __visible void __sched notrace preempt_schedule(void)
2924 {
2925 	/*
2926 	 * If there is a non-zero preempt_count or interrupts are disabled,
2927 	 * we do not want to preempt the current task. Just return..
2928 	 */
2929 	if (likely(!preemptible()))
2930 		return;
2931 
2932 	preempt_schedule_common();
2933 }
2934 NOKPROBE_SYMBOL(preempt_schedule);
2935 EXPORT_SYMBOL(preempt_schedule);
2936 
2937 #ifdef CONFIG_CONTEXT_TRACKING
2938 /**
2939  * preempt_schedule_context - preempt_schedule called by tracing
2940  *
2941  * The tracing infrastructure uses preempt_enable_notrace to prevent
2942  * recursion and tracing preempt enabling caused by the tracing
2943  * infrastructure itself. But as tracing can happen in areas coming
2944  * from userspace or just about to enter userspace, a preempt enable
2945  * can occur before user_exit() is called. This will cause the scheduler
2946  * to be called when the system is still in usermode.
2947  *
2948  * To prevent this, the preempt_enable_notrace will use this function
2949  * instead of preempt_schedule() to exit user context if needed before
2950  * calling the scheduler.
2951  */
2952 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2953 {
2954 	enum ctx_state prev_ctx;
2955 
2956 	if (likely(!preemptible()))
2957 		return;
2958 
2959 	do {
2960 		__preempt_count_add(PREEMPT_ACTIVE);
2961 		/*
2962 		 * Needs preempt disabled in case user_exit() is traced
2963 		 * and the tracer calls preempt_enable_notrace() causing
2964 		 * an infinite recursion.
2965 		 */
2966 		prev_ctx = exception_enter();
2967 		__schedule();
2968 		exception_exit(prev_ctx);
2969 
2970 		__preempt_count_sub(PREEMPT_ACTIVE);
2971 		barrier();
2972 	} while (need_resched());
2973 }
2974 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2975 #endif /* CONFIG_CONTEXT_TRACKING */
2976 
2977 #endif /* CONFIG_PREEMPT */
2978 
2979 /*
2980  * this is the entry point to schedule() from kernel preemption
2981  * off of irq context.
2982  * Note, that this is called and return with irqs disabled. This will
2983  * protect us against recursive calling from irq.
2984  */
2985 asmlinkage __visible void __sched preempt_schedule_irq(void)
2986 {
2987 	enum ctx_state prev_state;
2988 
2989 	/* Catch callers which need to be fixed */
2990 	BUG_ON(preempt_count() || !irqs_disabled());
2991 
2992 	prev_state = exception_enter();
2993 
2994 	do {
2995 		__preempt_count_add(PREEMPT_ACTIVE);
2996 		local_irq_enable();
2997 		__schedule();
2998 		local_irq_disable();
2999 		__preempt_count_sub(PREEMPT_ACTIVE);
3000 
3001 		/*
3002 		 * Check again in case we missed a preemption opportunity
3003 		 * between schedule and now.
3004 		 */
3005 		barrier();
3006 	} while (need_resched());
3007 
3008 	exception_exit(prev_state);
3009 }
3010 
3011 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3012 			  void *key)
3013 {
3014 	return try_to_wake_up(curr->private, mode, wake_flags);
3015 }
3016 EXPORT_SYMBOL(default_wake_function);
3017 
3018 #ifdef CONFIG_RT_MUTEXES
3019 
3020 /*
3021  * rt_mutex_setprio - set the current priority of a task
3022  * @p: task
3023  * @prio: prio value (kernel-internal form)
3024  *
3025  * This function changes the 'effective' priority of a task. It does
3026  * not touch ->normal_prio like __setscheduler().
3027  *
3028  * Used by the rt_mutex code to implement priority inheritance
3029  * logic. Call site only calls if the priority of the task changed.
3030  */
3031 void rt_mutex_setprio(struct task_struct *p, int prio)
3032 {
3033 	int oldprio, queued, running, enqueue_flag = 0;
3034 	struct rq *rq;
3035 	const struct sched_class *prev_class;
3036 
3037 	BUG_ON(prio > MAX_PRIO);
3038 
3039 	rq = __task_rq_lock(p);
3040 
3041 	/*
3042 	 * Idle task boosting is a nono in general. There is one
3043 	 * exception, when PREEMPT_RT and NOHZ is active:
3044 	 *
3045 	 * The idle task calls get_next_timer_interrupt() and holds
3046 	 * the timer wheel base->lock on the CPU and another CPU wants
3047 	 * to access the timer (probably to cancel it). We can safely
3048 	 * ignore the boosting request, as the idle CPU runs this code
3049 	 * with interrupts disabled and will complete the lock
3050 	 * protected section without being interrupted. So there is no
3051 	 * real need to boost.
3052 	 */
3053 	if (unlikely(p == rq->idle)) {
3054 		WARN_ON(p != rq->curr);
3055 		WARN_ON(p->pi_blocked_on);
3056 		goto out_unlock;
3057 	}
3058 
3059 	trace_sched_pi_setprio(p, prio);
3060 	oldprio = p->prio;
3061 	prev_class = p->sched_class;
3062 	queued = task_on_rq_queued(p);
3063 	running = task_current(rq, p);
3064 	if (queued)
3065 		dequeue_task(rq, p, 0);
3066 	if (running)
3067 		put_prev_task(rq, p);
3068 
3069 	/*
3070 	 * Boosting condition are:
3071 	 * 1. -rt task is running and holds mutex A
3072 	 *      --> -dl task blocks on mutex A
3073 	 *
3074 	 * 2. -dl task is running and holds mutex A
3075 	 *      --> -dl task blocks on mutex A and could preempt the
3076 	 *          running task
3077 	 */
3078 	if (dl_prio(prio)) {
3079 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3080 		if (!dl_prio(p->normal_prio) ||
3081 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3082 			p->dl.dl_boosted = 1;
3083 			p->dl.dl_throttled = 0;
3084 			enqueue_flag = ENQUEUE_REPLENISH;
3085 		} else
3086 			p->dl.dl_boosted = 0;
3087 		p->sched_class = &dl_sched_class;
3088 	} else if (rt_prio(prio)) {
3089 		if (dl_prio(oldprio))
3090 			p->dl.dl_boosted = 0;
3091 		if (oldprio < prio)
3092 			enqueue_flag = ENQUEUE_HEAD;
3093 		p->sched_class = &rt_sched_class;
3094 	} else {
3095 		if (dl_prio(oldprio))
3096 			p->dl.dl_boosted = 0;
3097 		p->sched_class = &fair_sched_class;
3098 	}
3099 
3100 	p->prio = prio;
3101 
3102 	if (running)
3103 		p->sched_class->set_curr_task(rq);
3104 	if (queued)
3105 		enqueue_task(rq, p, enqueue_flag);
3106 
3107 	check_class_changed(rq, p, prev_class, oldprio);
3108 out_unlock:
3109 	__task_rq_unlock(rq);
3110 }
3111 #endif
3112 
3113 void set_user_nice(struct task_struct *p, long nice)
3114 {
3115 	int old_prio, delta, queued;
3116 	unsigned long flags;
3117 	struct rq *rq;
3118 
3119 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3120 		return;
3121 	/*
3122 	 * We have to be careful, if called from sys_setpriority(),
3123 	 * the task might be in the middle of scheduling on another CPU.
3124 	 */
3125 	rq = task_rq_lock(p, &flags);
3126 	/*
3127 	 * The RT priorities are set via sched_setscheduler(), but we still
3128 	 * allow the 'normal' nice value to be set - but as expected
3129 	 * it wont have any effect on scheduling until the task is
3130 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3131 	 */
3132 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3133 		p->static_prio = NICE_TO_PRIO(nice);
3134 		goto out_unlock;
3135 	}
3136 	queued = task_on_rq_queued(p);
3137 	if (queued)
3138 		dequeue_task(rq, p, 0);
3139 
3140 	p->static_prio = NICE_TO_PRIO(nice);
3141 	set_load_weight(p);
3142 	old_prio = p->prio;
3143 	p->prio = effective_prio(p);
3144 	delta = p->prio - old_prio;
3145 
3146 	if (queued) {
3147 		enqueue_task(rq, p, 0);
3148 		/*
3149 		 * If the task increased its priority or is running and
3150 		 * lowered its priority, then reschedule its CPU:
3151 		 */
3152 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3153 			resched_curr(rq);
3154 	}
3155 out_unlock:
3156 	task_rq_unlock(rq, p, &flags);
3157 }
3158 EXPORT_SYMBOL(set_user_nice);
3159 
3160 /*
3161  * can_nice - check if a task can reduce its nice value
3162  * @p: task
3163  * @nice: nice value
3164  */
3165 int can_nice(const struct task_struct *p, const int nice)
3166 {
3167 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3168 	int nice_rlim = nice_to_rlimit(nice);
3169 
3170 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3171 		capable(CAP_SYS_NICE));
3172 }
3173 
3174 #ifdef __ARCH_WANT_SYS_NICE
3175 
3176 /*
3177  * sys_nice - change the priority of the current process.
3178  * @increment: priority increment
3179  *
3180  * sys_setpriority is a more generic, but much slower function that
3181  * does similar things.
3182  */
3183 SYSCALL_DEFINE1(nice, int, increment)
3184 {
3185 	long nice, retval;
3186 
3187 	/*
3188 	 * Setpriority might change our priority at the same moment.
3189 	 * We don't have to worry. Conceptually one call occurs first
3190 	 * and we have a single winner.
3191 	 */
3192 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3193 	nice = task_nice(current) + increment;
3194 
3195 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3196 	if (increment < 0 && !can_nice(current, nice))
3197 		return -EPERM;
3198 
3199 	retval = security_task_setnice(current, nice);
3200 	if (retval)
3201 		return retval;
3202 
3203 	set_user_nice(current, nice);
3204 	return 0;
3205 }
3206 
3207 #endif
3208 
3209 /**
3210  * task_prio - return the priority value of a given task.
3211  * @p: the task in question.
3212  *
3213  * Return: The priority value as seen by users in /proc.
3214  * RT tasks are offset by -200. Normal tasks are centered
3215  * around 0, value goes from -16 to +15.
3216  */
3217 int task_prio(const struct task_struct *p)
3218 {
3219 	return p->prio - MAX_RT_PRIO;
3220 }
3221 
3222 /**
3223  * idle_cpu - is a given cpu idle currently?
3224  * @cpu: the processor in question.
3225  *
3226  * Return: 1 if the CPU is currently idle. 0 otherwise.
3227  */
3228 int idle_cpu(int cpu)
3229 {
3230 	struct rq *rq = cpu_rq(cpu);
3231 
3232 	if (rq->curr != rq->idle)
3233 		return 0;
3234 
3235 	if (rq->nr_running)
3236 		return 0;
3237 
3238 #ifdef CONFIG_SMP
3239 	if (!llist_empty(&rq->wake_list))
3240 		return 0;
3241 #endif
3242 
3243 	return 1;
3244 }
3245 
3246 /**
3247  * idle_task - return the idle task for a given cpu.
3248  * @cpu: the processor in question.
3249  *
3250  * Return: The idle task for the cpu @cpu.
3251  */
3252 struct task_struct *idle_task(int cpu)
3253 {
3254 	return cpu_rq(cpu)->idle;
3255 }
3256 
3257 /**
3258  * find_process_by_pid - find a process with a matching PID value.
3259  * @pid: the pid in question.
3260  *
3261  * The task of @pid, if found. %NULL otherwise.
3262  */
3263 static struct task_struct *find_process_by_pid(pid_t pid)
3264 {
3265 	return pid ? find_task_by_vpid(pid) : current;
3266 }
3267 
3268 /*
3269  * This function initializes the sched_dl_entity of a newly becoming
3270  * SCHED_DEADLINE task.
3271  *
3272  * Only the static values are considered here, the actual runtime and the
3273  * absolute deadline will be properly calculated when the task is enqueued
3274  * for the first time with its new policy.
3275  */
3276 static void
3277 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3278 {
3279 	struct sched_dl_entity *dl_se = &p->dl;
3280 
3281 	dl_se->dl_runtime = attr->sched_runtime;
3282 	dl_se->dl_deadline = attr->sched_deadline;
3283 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3284 	dl_se->flags = attr->sched_flags;
3285 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3286 
3287 	/*
3288 	 * Changing the parameters of a task is 'tricky' and we're not doing
3289 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3290 	 *
3291 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3292 	 * point. This would include retaining the task_struct until that time
3293 	 * and change dl_overflow() to not immediately decrement the current
3294 	 * amount.
3295 	 *
3296 	 * Instead we retain the current runtime/deadline and let the new
3297 	 * parameters take effect after the current reservation period lapses.
3298 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3299 	 * before the current scheduling deadline.
3300 	 *
3301 	 * We can still have temporary overloads because we do not delay the
3302 	 * change in bandwidth until that time; so admission control is
3303 	 * not on the safe side. It does however guarantee tasks will never
3304 	 * consume more than promised.
3305 	 */
3306 }
3307 
3308 /*
3309  * sched_setparam() passes in -1 for its policy, to let the functions
3310  * it calls know not to change it.
3311  */
3312 #define SETPARAM_POLICY	-1
3313 
3314 static void __setscheduler_params(struct task_struct *p,
3315 		const struct sched_attr *attr)
3316 {
3317 	int policy = attr->sched_policy;
3318 
3319 	if (policy == SETPARAM_POLICY)
3320 		policy = p->policy;
3321 
3322 	p->policy = policy;
3323 
3324 	if (dl_policy(policy))
3325 		__setparam_dl(p, attr);
3326 	else if (fair_policy(policy))
3327 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3328 
3329 	/*
3330 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3331 	 * !rt_policy. Always setting this ensures that things like
3332 	 * getparam()/getattr() don't report silly values for !rt tasks.
3333 	 */
3334 	p->rt_priority = attr->sched_priority;
3335 	p->normal_prio = normal_prio(p);
3336 	set_load_weight(p);
3337 }
3338 
3339 /* Actually do priority change: must hold pi & rq lock. */
3340 static void __setscheduler(struct rq *rq, struct task_struct *p,
3341 			   const struct sched_attr *attr)
3342 {
3343 	__setscheduler_params(p, attr);
3344 
3345 	/*
3346 	 * If we get here, there was no pi waiters boosting the
3347 	 * task. It is safe to use the normal prio.
3348 	 */
3349 	p->prio = normal_prio(p);
3350 
3351 	if (dl_prio(p->prio))
3352 		p->sched_class = &dl_sched_class;
3353 	else if (rt_prio(p->prio))
3354 		p->sched_class = &rt_sched_class;
3355 	else
3356 		p->sched_class = &fair_sched_class;
3357 }
3358 
3359 static void
3360 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3361 {
3362 	struct sched_dl_entity *dl_se = &p->dl;
3363 
3364 	attr->sched_priority = p->rt_priority;
3365 	attr->sched_runtime = dl_se->dl_runtime;
3366 	attr->sched_deadline = dl_se->dl_deadline;
3367 	attr->sched_period = dl_se->dl_period;
3368 	attr->sched_flags = dl_se->flags;
3369 }
3370 
3371 /*
3372  * This function validates the new parameters of a -deadline task.
3373  * We ask for the deadline not being zero, and greater or equal
3374  * than the runtime, as well as the period of being zero or
3375  * greater than deadline. Furthermore, we have to be sure that
3376  * user parameters are above the internal resolution of 1us (we
3377  * check sched_runtime only since it is always the smaller one) and
3378  * below 2^63 ns (we have to check both sched_deadline and
3379  * sched_period, as the latter can be zero).
3380  */
3381 static bool
3382 __checkparam_dl(const struct sched_attr *attr)
3383 {
3384 	/* deadline != 0 */
3385 	if (attr->sched_deadline == 0)
3386 		return false;
3387 
3388 	/*
3389 	 * Since we truncate DL_SCALE bits, make sure we're at least
3390 	 * that big.
3391 	 */
3392 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3393 		return false;
3394 
3395 	/*
3396 	 * Since we use the MSB for wrap-around and sign issues, make
3397 	 * sure it's not set (mind that period can be equal to zero).
3398 	 */
3399 	if (attr->sched_deadline & (1ULL << 63) ||
3400 	    attr->sched_period & (1ULL << 63))
3401 		return false;
3402 
3403 	/* runtime <= deadline <= period (if period != 0) */
3404 	if ((attr->sched_period != 0 &&
3405 	     attr->sched_period < attr->sched_deadline) ||
3406 	    attr->sched_deadline < attr->sched_runtime)
3407 		return false;
3408 
3409 	return true;
3410 }
3411 
3412 /*
3413  * check the target process has a UID that matches the current process's
3414  */
3415 static bool check_same_owner(struct task_struct *p)
3416 {
3417 	const struct cred *cred = current_cred(), *pcred;
3418 	bool match;
3419 
3420 	rcu_read_lock();
3421 	pcred = __task_cred(p);
3422 	match = (uid_eq(cred->euid, pcred->euid) ||
3423 		 uid_eq(cred->euid, pcred->uid));
3424 	rcu_read_unlock();
3425 	return match;
3426 }
3427 
3428 static bool dl_param_changed(struct task_struct *p,
3429 		const struct sched_attr *attr)
3430 {
3431 	struct sched_dl_entity *dl_se = &p->dl;
3432 
3433 	if (dl_se->dl_runtime != attr->sched_runtime ||
3434 		dl_se->dl_deadline != attr->sched_deadline ||
3435 		dl_se->dl_period != attr->sched_period ||
3436 		dl_se->flags != attr->sched_flags)
3437 		return true;
3438 
3439 	return false;
3440 }
3441 
3442 static int __sched_setscheduler(struct task_struct *p,
3443 				const struct sched_attr *attr,
3444 				bool user)
3445 {
3446 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3447 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3448 	int retval, oldprio, oldpolicy = -1, queued, running;
3449 	int policy = attr->sched_policy;
3450 	unsigned long flags;
3451 	const struct sched_class *prev_class;
3452 	struct rq *rq;
3453 	int reset_on_fork;
3454 
3455 	/* may grab non-irq protected spin_locks */
3456 	BUG_ON(in_interrupt());
3457 recheck:
3458 	/* double check policy once rq lock held */
3459 	if (policy < 0) {
3460 		reset_on_fork = p->sched_reset_on_fork;
3461 		policy = oldpolicy = p->policy;
3462 	} else {
3463 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3464 
3465 		if (policy != SCHED_DEADLINE &&
3466 				policy != SCHED_FIFO && policy != SCHED_RR &&
3467 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3468 				policy != SCHED_IDLE)
3469 			return -EINVAL;
3470 	}
3471 
3472 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3473 		return -EINVAL;
3474 
3475 	/*
3476 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3477 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3478 	 * SCHED_BATCH and SCHED_IDLE is 0.
3479 	 */
3480 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3481 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3482 		return -EINVAL;
3483 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3484 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3485 		return -EINVAL;
3486 
3487 	/*
3488 	 * Allow unprivileged RT tasks to decrease priority:
3489 	 */
3490 	if (user && !capable(CAP_SYS_NICE)) {
3491 		if (fair_policy(policy)) {
3492 			if (attr->sched_nice < task_nice(p) &&
3493 			    !can_nice(p, attr->sched_nice))
3494 				return -EPERM;
3495 		}
3496 
3497 		if (rt_policy(policy)) {
3498 			unsigned long rlim_rtprio =
3499 					task_rlimit(p, RLIMIT_RTPRIO);
3500 
3501 			/* can't set/change the rt policy */
3502 			if (policy != p->policy && !rlim_rtprio)
3503 				return -EPERM;
3504 
3505 			/* can't increase priority */
3506 			if (attr->sched_priority > p->rt_priority &&
3507 			    attr->sched_priority > rlim_rtprio)
3508 				return -EPERM;
3509 		}
3510 
3511 		 /*
3512 		  * Can't set/change SCHED_DEADLINE policy at all for now
3513 		  * (safest behavior); in the future we would like to allow
3514 		  * unprivileged DL tasks to increase their relative deadline
3515 		  * or reduce their runtime (both ways reducing utilization)
3516 		  */
3517 		if (dl_policy(policy))
3518 			return -EPERM;
3519 
3520 		/*
3521 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3522 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3523 		 */
3524 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3525 			if (!can_nice(p, task_nice(p)))
3526 				return -EPERM;
3527 		}
3528 
3529 		/* can't change other user's priorities */
3530 		if (!check_same_owner(p))
3531 			return -EPERM;
3532 
3533 		/* Normal users shall not reset the sched_reset_on_fork flag */
3534 		if (p->sched_reset_on_fork && !reset_on_fork)
3535 			return -EPERM;
3536 	}
3537 
3538 	if (user) {
3539 		retval = security_task_setscheduler(p);
3540 		if (retval)
3541 			return retval;
3542 	}
3543 
3544 	/*
3545 	 * make sure no PI-waiters arrive (or leave) while we are
3546 	 * changing the priority of the task:
3547 	 *
3548 	 * To be able to change p->policy safely, the appropriate
3549 	 * runqueue lock must be held.
3550 	 */
3551 	rq = task_rq_lock(p, &flags);
3552 
3553 	/*
3554 	 * Changing the policy of the stop threads its a very bad idea
3555 	 */
3556 	if (p == rq->stop) {
3557 		task_rq_unlock(rq, p, &flags);
3558 		return -EINVAL;
3559 	}
3560 
3561 	/*
3562 	 * If not changing anything there's no need to proceed further,
3563 	 * but store a possible modification of reset_on_fork.
3564 	 */
3565 	if (unlikely(policy == p->policy)) {
3566 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3567 			goto change;
3568 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3569 			goto change;
3570 		if (dl_policy(policy) && dl_param_changed(p, attr))
3571 			goto change;
3572 
3573 		p->sched_reset_on_fork = reset_on_fork;
3574 		task_rq_unlock(rq, p, &flags);
3575 		return 0;
3576 	}
3577 change:
3578 
3579 	if (user) {
3580 #ifdef CONFIG_RT_GROUP_SCHED
3581 		/*
3582 		 * Do not allow realtime tasks into groups that have no runtime
3583 		 * assigned.
3584 		 */
3585 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3586 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3587 				!task_group_is_autogroup(task_group(p))) {
3588 			task_rq_unlock(rq, p, &flags);
3589 			return -EPERM;
3590 		}
3591 #endif
3592 #ifdef CONFIG_SMP
3593 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3594 			cpumask_t *span = rq->rd->span;
3595 
3596 			/*
3597 			 * Don't allow tasks with an affinity mask smaller than
3598 			 * the entire root_domain to become SCHED_DEADLINE. We
3599 			 * will also fail if there's no bandwidth available.
3600 			 */
3601 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3602 			    rq->rd->dl_bw.bw == 0) {
3603 				task_rq_unlock(rq, p, &flags);
3604 				return -EPERM;
3605 			}
3606 		}
3607 #endif
3608 	}
3609 
3610 	/* recheck policy now with rq lock held */
3611 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3612 		policy = oldpolicy = -1;
3613 		task_rq_unlock(rq, p, &flags);
3614 		goto recheck;
3615 	}
3616 
3617 	/*
3618 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3619 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3620 	 * is available.
3621 	 */
3622 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3623 		task_rq_unlock(rq, p, &flags);
3624 		return -EBUSY;
3625 	}
3626 
3627 	p->sched_reset_on_fork = reset_on_fork;
3628 	oldprio = p->prio;
3629 
3630 	/*
3631 	 * Special case for priority boosted tasks.
3632 	 *
3633 	 * If the new priority is lower or equal (user space view)
3634 	 * than the current (boosted) priority, we just store the new
3635 	 * normal parameters and do not touch the scheduler class and
3636 	 * the runqueue. This will be done when the task deboost
3637 	 * itself.
3638 	 */
3639 	if (rt_mutex_check_prio(p, newprio)) {
3640 		__setscheduler_params(p, attr);
3641 		task_rq_unlock(rq, p, &flags);
3642 		return 0;
3643 	}
3644 
3645 	queued = task_on_rq_queued(p);
3646 	running = task_current(rq, p);
3647 	if (queued)
3648 		dequeue_task(rq, p, 0);
3649 	if (running)
3650 		put_prev_task(rq, p);
3651 
3652 	prev_class = p->sched_class;
3653 	__setscheduler(rq, p, attr);
3654 
3655 	if (running)
3656 		p->sched_class->set_curr_task(rq);
3657 	if (queued) {
3658 		/*
3659 		 * We enqueue to tail when the priority of a task is
3660 		 * increased (user space view).
3661 		 */
3662 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3663 	}
3664 
3665 	check_class_changed(rq, p, prev_class, oldprio);
3666 	task_rq_unlock(rq, p, &flags);
3667 
3668 	rt_mutex_adjust_pi(p);
3669 
3670 	return 0;
3671 }
3672 
3673 static int _sched_setscheduler(struct task_struct *p, int policy,
3674 			       const struct sched_param *param, bool check)
3675 {
3676 	struct sched_attr attr = {
3677 		.sched_policy   = policy,
3678 		.sched_priority = param->sched_priority,
3679 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3680 	};
3681 
3682 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3683 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3684 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3685 		policy &= ~SCHED_RESET_ON_FORK;
3686 		attr.sched_policy = policy;
3687 	}
3688 
3689 	return __sched_setscheduler(p, &attr, check);
3690 }
3691 /**
3692  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3693  * @p: the task in question.
3694  * @policy: new policy.
3695  * @param: structure containing the new RT priority.
3696  *
3697  * Return: 0 on success. An error code otherwise.
3698  *
3699  * NOTE that the task may be already dead.
3700  */
3701 int sched_setscheduler(struct task_struct *p, int policy,
3702 		       const struct sched_param *param)
3703 {
3704 	return _sched_setscheduler(p, policy, param, true);
3705 }
3706 EXPORT_SYMBOL_GPL(sched_setscheduler);
3707 
3708 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3709 {
3710 	return __sched_setscheduler(p, attr, true);
3711 }
3712 EXPORT_SYMBOL_GPL(sched_setattr);
3713 
3714 /**
3715  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3716  * @p: the task in question.
3717  * @policy: new policy.
3718  * @param: structure containing the new RT priority.
3719  *
3720  * Just like sched_setscheduler, only don't bother checking if the
3721  * current context has permission.  For example, this is needed in
3722  * stop_machine(): we create temporary high priority worker threads,
3723  * but our caller might not have that capability.
3724  *
3725  * Return: 0 on success. An error code otherwise.
3726  */
3727 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3728 			       const struct sched_param *param)
3729 {
3730 	return _sched_setscheduler(p, policy, param, false);
3731 }
3732 
3733 static int
3734 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3735 {
3736 	struct sched_param lparam;
3737 	struct task_struct *p;
3738 	int retval;
3739 
3740 	if (!param || pid < 0)
3741 		return -EINVAL;
3742 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3743 		return -EFAULT;
3744 
3745 	rcu_read_lock();
3746 	retval = -ESRCH;
3747 	p = find_process_by_pid(pid);
3748 	if (p != NULL)
3749 		retval = sched_setscheduler(p, policy, &lparam);
3750 	rcu_read_unlock();
3751 
3752 	return retval;
3753 }
3754 
3755 /*
3756  * Mimics kernel/events/core.c perf_copy_attr().
3757  */
3758 static int sched_copy_attr(struct sched_attr __user *uattr,
3759 			   struct sched_attr *attr)
3760 {
3761 	u32 size;
3762 	int ret;
3763 
3764 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3765 		return -EFAULT;
3766 
3767 	/*
3768 	 * zero the full structure, so that a short copy will be nice.
3769 	 */
3770 	memset(attr, 0, sizeof(*attr));
3771 
3772 	ret = get_user(size, &uattr->size);
3773 	if (ret)
3774 		return ret;
3775 
3776 	if (size > PAGE_SIZE)	/* silly large */
3777 		goto err_size;
3778 
3779 	if (!size)		/* abi compat */
3780 		size = SCHED_ATTR_SIZE_VER0;
3781 
3782 	if (size < SCHED_ATTR_SIZE_VER0)
3783 		goto err_size;
3784 
3785 	/*
3786 	 * If we're handed a bigger struct than we know of,
3787 	 * ensure all the unknown bits are 0 - i.e. new
3788 	 * user-space does not rely on any kernel feature
3789 	 * extensions we dont know about yet.
3790 	 */
3791 	if (size > sizeof(*attr)) {
3792 		unsigned char __user *addr;
3793 		unsigned char __user *end;
3794 		unsigned char val;
3795 
3796 		addr = (void __user *)uattr + sizeof(*attr);
3797 		end  = (void __user *)uattr + size;
3798 
3799 		for (; addr < end; addr++) {
3800 			ret = get_user(val, addr);
3801 			if (ret)
3802 				return ret;
3803 			if (val)
3804 				goto err_size;
3805 		}
3806 		size = sizeof(*attr);
3807 	}
3808 
3809 	ret = copy_from_user(attr, uattr, size);
3810 	if (ret)
3811 		return -EFAULT;
3812 
3813 	/*
3814 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3815 	 * to be strict and return an error on out-of-bounds values?
3816 	 */
3817 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3818 
3819 	return 0;
3820 
3821 err_size:
3822 	put_user(sizeof(*attr), &uattr->size);
3823 	return -E2BIG;
3824 }
3825 
3826 /**
3827  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3828  * @pid: the pid in question.
3829  * @policy: new policy.
3830  * @param: structure containing the new RT priority.
3831  *
3832  * Return: 0 on success. An error code otherwise.
3833  */
3834 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3835 		struct sched_param __user *, param)
3836 {
3837 	/* negative values for policy are not valid */
3838 	if (policy < 0)
3839 		return -EINVAL;
3840 
3841 	return do_sched_setscheduler(pid, policy, param);
3842 }
3843 
3844 /**
3845  * sys_sched_setparam - set/change the RT priority of a thread
3846  * @pid: the pid in question.
3847  * @param: structure containing the new RT priority.
3848  *
3849  * Return: 0 on success. An error code otherwise.
3850  */
3851 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3852 {
3853 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3854 }
3855 
3856 /**
3857  * sys_sched_setattr - same as above, but with extended sched_attr
3858  * @pid: the pid in question.
3859  * @uattr: structure containing the extended parameters.
3860  * @flags: for future extension.
3861  */
3862 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3863 			       unsigned int, flags)
3864 {
3865 	struct sched_attr attr;
3866 	struct task_struct *p;
3867 	int retval;
3868 
3869 	if (!uattr || pid < 0 || flags)
3870 		return -EINVAL;
3871 
3872 	retval = sched_copy_attr(uattr, &attr);
3873 	if (retval)
3874 		return retval;
3875 
3876 	if ((int)attr.sched_policy < 0)
3877 		return -EINVAL;
3878 
3879 	rcu_read_lock();
3880 	retval = -ESRCH;
3881 	p = find_process_by_pid(pid);
3882 	if (p != NULL)
3883 		retval = sched_setattr(p, &attr);
3884 	rcu_read_unlock();
3885 
3886 	return retval;
3887 }
3888 
3889 /**
3890  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3891  * @pid: the pid in question.
3892  *
3893  * Return: On success, the policy of the thread. Otherwise, a negative error
3894  * code.
3895  */
3896 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3897 {
3898 	struct task_struct *p;
3899 	int retval;
3900 
3901 	if (pid < 0)
3902 		return -EINVAL;
3903 
3904 	retval = -ESRCH;
3905 	rcu_read_lock();
3906 	p = find_process_by_pid(pid);
3907 	if (p) {
3908 		retval = security_task_getscheduler(p);
3909 		if (!retval)
3910 			retval = p->policy
3911 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3912 	}
3913 	rcu_read_unlock();
3914 	return retval;
3915 }
3916 
3917 /**
3918  * sys_sched_getparam - get the RT priority of a thread
3919  * @pid: the pid in question.
3920  * @param: structure containing the RT priority.
3921  *
3922  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3923  * code.
3924  */
3925 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3926 {
3927 	struct sched_param lp = { .sched_priority = 0 };
3928 	struct task_struct *p;
3929 	int retval;
3930 
3931 	if (!param || pid < 0)
3932 		return -EINVAL;
3933 
3934 	rcu_read_lock();
3935 	p = find_process_by_pid(pid);
3936 	retval = -ESRCH;
3937 	if (!p)
3938 		goto out_unlock;
3939 
3940 	retval = security_task_getscheduler(p);
3941 	if (retval)
3942 		goto out_unlock;
3943 
3944 	if (task_has_rt_policy(p))
3945 		lp.sched_priority = p->rt_priority;
3946 	rcu_read_unlock();
3947 
3948 	/*
3949 	 * This one might sleep, we cannot do it with a spinlock held ...
3950 	 */
3951 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3952 
3953 	return retval;
3954 
3955 out_unlock:
3956 	rcu_read_unlock();
3957 	return retval;
3958 }
3959 
3960 static int sched_read_attr(struct sched_attr __user *uattr,
3961 			   struct sched_attr *attr,
3962 			   unsigned int usize)
3963 {
3964 	int ret;
3965 
3966 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3967 		return -EFAULT;
3968 
3969 	/*
3970 	 * If we're handed a smaller struct than we know of,
3971 	 * ensure all the unknown bits are 0 - i.e. old
3972 	 * user-space does not get uncomplete information.
3973 	 */
3974 	if (usize < sizeof(*attr)) {
3975 		unsigned char *addr;
3976 		unsigned char *end;
3977 
3978 		addr = (void *)attr + usize;
3979 		end  = (void *)attr + sizeof(*attr);
3980 
3981 		for (; addr < end; addr++) {
3982 			if (*addr)
3983 				return -EFBIG;
3984 		}
3985 
3986 		attr->size = usize;
3987 	}
3988 
3989 	ret = copy_to_user(uattr, attr, attr->size);
3990 	if (ret)
3991 		return -EFAULT;
3992 
3993 	return 0;
3994 }
3995 
3996 /**
3997  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3998  * @pid: the pid in question.
3999  * @uattr: structure containing the extended parameters.
4000  * @size: sizeof(attr) for fwd/bwd comp.
4001  * @flags: for future extension.
4002  */
4003 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4004 		unsigned int, size, unsigned int, flags)
4005 {
4006 	struct sched_attr attr = {
4007 		.size = sizeof(struct sched_attr),
4008 	};
4009 	struct task_struct *p;
4010 	int retval;
4011 
4012 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4013 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4014 		return -EINVAL;
4015 
4016 	rcu_read_lock();
4017 	p = find_process_by_pid(pid);
4018 	retval = -ESRCH;
4019 	if (!p)
4020 		goto out_unlock;
4021 
4022 	retval = security_task_getscheduler(p);
4023 	if (retval)
4024 		goto out_unlock;
4025 
4026 	attr.sched_policy = p->policy;
4027 	if (p->sched_reset_on_fork)
4028 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4029 	if (task_has_dl_policy(p))
4030 		__getparam_dl(p, &attr);
4031 	else if (task_has_rt_policy(p))
4032 		attr.sched_priority = p->rt_priority;
4033 	else
4034 		attr.sched_nice = task_nice(p);
4035 
4036 	rcu_read_unlock();
4037 
4038 	retval = sched_read_attr(uattr, &attr, size);
4039 	return retval;
4040 
4041 out_unlock:
4042 	rcu_read_unlock();
4043 	return retval;
4044 }
4045 
4046 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4047 {
4048 	cpumask_var_t cpus_allowed, new_mask;
4049 	struct task_struct *p;
4050 	int retval;
4051 
4052 	rcu_read_lock();
4053 
4054 	p = find_process_by_pid(pid);
4055 	if (!p) {
4056 		rcu_read_unlock();
4057 		return -ESRCH;
4058 	}
4059 
4060 	/* Prevent p going away */
4061 	get_task_struct(p);
4062 	rcu_read_unlock();
4063 
4064 	if (p->flags & PF_NO_SETAFFINITY) {
4065 		retval = -EINVAL;
4066 		goto out_put_task;
4067 	}
4068 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4069 		retval = -ENOMEM;
4070 		goto out_put_task;
4071 	}
4072 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4073 		retval = -ENOMEM;
4074 		goto out_free_cpus_allowed;
4075 	}
4076 	retval = -EPERM;
4077 	if (!check_same_owner(p)) {
4078 		rcu_read_lock();
4079 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4080 			rcu_read_unlock();
4081 			goto out_free_new_mask;
4082 		}
4083 		rcu_read_unlock();
4084 	}
4085 
4086 	retval = security_task_setscheduler(p);
4087 	if (retval)
4088 		goto out_free_new_mask;
4089 
4090 
4091 	cpuset_cpus_allowed(p, cpus_allowed);
4092 	cpumask_and(new_mask, in_mask, cpus_allowed);
4093 
4094 	/*
4095 	 * Since bandwidth control happens on root_domain basis,
4096 	 * if admission test is enabled, we only admit -deadline
4097 	 * tasks allowed to run on all the CPUs in the task's
4098 	 * root_domain.
4099 	 */
4100 #ifdef CONFIG_SMP
4101 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4102 		rcu_read_lock();
4103 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4104 			retval = -EBUSY;
4105 			rcu_read_unlock();
4106 			goto out_free_new_mask;
4107 		}
4108 		rcu_read_unlock();
4109 	}
4110 #endif
4111 again:
4112 	retval = set_cpus_allowed_ptr(p, new_mask);
4113 
4114 	if (!retval) {
4115 		cpuset_cpus_allowed(p, cpus_allowed);
4116 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4117 			/*
4118 			 * We must have raced with a concurrent cpuset
4119 			 * update. Just reset the cpus_allowed to the
4120 			 * cpuset's cpus_allowed
4121 			 */
4122 			cpumask_copy(new_mask, cpus_allowed);
4123 			goto again;
4124 		}
4125 	}
4126 out_free_new_mask:
4127 	free_cpumask_var(new_mask);
4128 out_free_cpus_allowed:
4129 	free_cpumask_var(cpus_allowed);
4130 out_put_task:
4131 	put_task_struct(p);
4132 	return retval;
4133 }
4134 
4135 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4136 			     struct cpumask *new_mask)
4137 {
4138 	if (len < cpumask_size())
4139 		cpumask_clear(new_mask);
4140 	else if (len > cpumask_size())
4141 		len = cpumask_size();
4142 
4143 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4144 }
4145 
4146 /**
4147  * sys_sched_setaffinity - set the cpu affinity of a process
4148  * @pid: pid of the process
4149  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4150  * @user_mask_ptr: user-space pointer to the new cpu mask
4151  *
4152  * Return: 0 on success. An error code otherwise.
4153  */
4154 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4155 		unsigned long __user *, user_mask_ptr)
4156 {
4157 	cpumask_var_t new_mask;
4158 	int retval;
4159 
4160 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4161 		return -ENOMEM;
4162 
4163 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4164 	if (retval == 0)
4165 		retval = sched_setaffinity(pid, new_mask);
4166 	free_cpumask_var(new_mask);
4167 	return retval;
4168 }
4169 
4170 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4171 {
4172 	struct task_struct *p;
4173 	unsigned long flags;
4174 	int retval;
4175 
4176 	rcu_read_lock();
4177 
4178 	retval = -ESRCH;
4179 	p = find_process_by_pid(pid);
4180 	if (!p)
4181 		goto out_unlock;
4182 
4183 	retval = security_task_getscheduler(p);
4184 	if (retval)
4185 		goto out_unlock;
4186 
4187 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4188 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4189 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4190 
4191 out_unlock:
4192 	rcu_read_unlock();
4193 
4194 	return retval;
4195 }
4196 
4197 /**
4198  * sys_sched_getaffinity - get the cpu affinity of a process
4199  * @pid: pid of the process
4200  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4201  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4202  *
4203  * Return: 0 on success. An error code otherwise.
4204  */
4205 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4206 		unsigned long __user *, user_mask_ptr)
4207 {
4208 	int ret;
4209 	cpumask_var_t mask;
4210 
4211 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4212 		return -EINVAL;
4213 	if (len & (sizeof(unsigned long)-1))
4214 		return -EINVAL;
4215 
4216 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4217 		return -ENOMEM;
4218 
4219 	ret = sched_getaffinity(pid, mask);
4220 	if (ret == 0) {
4221 		size_t retlen = min_t(size_t, len, cpumask_size());
4222 
4223 		if (copy_to_user(user_mask_ptr, mask, retlen))
4224 			ret = -EFAULT;
4225 		else
4226 			ret = retlen;
4227 	}
4228 	free_cpumask_var(mask);
4229 
4230 	return ret;
4231 }
4232 
4233 /**
4234  * sys_sched_yield - yield the current processor to other threads.
4235  *
4236  * This function yields the current CPU to other tasks. If there are no
4237  * other threads running on this CPU then this function will return.
4238  *
4239  * Return: 0.
4240  */
4241 SYSCALL_DEFINE0(sched_yield)
4242 {
4243 	struct rq *rq = this_rq_lock();
4244 
4245 	schedstat_inc(rq, yld_count);
4246 	current->sched_class->yield_task(rq);
4247 
4248 	/*
4249 	 * Since we are going to call schedule() anyway, there's
4250 	 * no need to preempt or enable interrupts:
4251 	 */
4252 	__release(rq->lock);
4253 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4254 	do_raw_spin_unlock(&rq->lock);
4255 	sched_preempt_enable_no_resched();
4256 
4257 	schedule();
4258 
4259 	return 0;
4260 }
4261 
4262 int __sched _cond_resched(void)
4263 {
4264 	if (should_resched()) {
4265 		preempt_schedule_common();
4266 		return 1;
4267 	}
4268 	return 0;
4269 }
4270 EXPORT_SYMBOL(_cond_resched);
4271 
4272 /*
4273  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4274  * call schedule, and on return reacquire the lock.
4275  *
4276  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4277  * operations here to prevent schedule() from being called twice (once via
4278  * spin_unlock(), once by hand).
4279  */
4280 int __cond_resched_lock(spinlock_t *lock)
4281 {
4282 	int resched = should_resched();
4283 	int ret = 0;
4284 
4285 	lockdep_assert_held(lock);
4286 
4287 	if (spin_needbreak(lock) || resched) {
4288 		spin_unlock(lock);
4289 		if (resched)
4290 			preempt_schedule_common();
4291 		else
4292 			cpu_relax();
4293 		ret = 1;
4294 		spin_lock(lock);
4295 	}
4296 	return ret;
4297 }
4298 EXPORT_SYMBOL(__cond_resched_lock);
4299 
4300 int __sched __cond_resched_softirq(void)
4301 {
4302 	BUG_ON(!in_softirq());
4303 
4304 	if (should_resched()) {
4305 		local_bh_enable();
4306 		preempt_schedule_common();
4307 		local_bh_disable();
4308 		return 1;
4309 	}
4310 	return 0;
4311 }
4312 EXPORT_SYMBOL(__cond_resched_softirq);
4313 
4314 /**
4315  * yield - yield the current processor to other threads.
4316  *
4317  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4318  *
4319  * The scheduler is at all times free to pick the calling task as the most
4320  * eligible task to run, if removing the yield() call from your code breaks
4321  * it, its already broken.
4322  *
4323  * Typical broken usage is:
4324  *
4325  * while (!event)
4326  * 	yield();
4327  *
4328  * where one assumes that yield() will let 'the other' process run that will
4329  * make event true. If the current task is a SCHED_FIFO task that will never
4330  * happen. Never use yield() as a progress guarantee!!
4331  *
4332  * If you want to use yield() to wait for something, use wait_event().
4333  * If you want to use yield() to be 'nice' for others, use cond_resched().
4334  * If you still want to use yield(), do not!
4335  */
4336 void __sched yield(void)
4337 {
4338 	set_current_state(TASK_RUNNING);
4339 	sys_sched_yield();
4340 }
4341 EXPORT_SYMBOL(yield);
4342 
4343 /**
4344  * yield_to - yield the current processor to another thread in
4345  * your thread group, or accelerate that thread toward the
4346  * processor it's on.
4347  * @p: target task
4348  * @preempt: whether task preemption is allowed or not
4349  *
4350  * It's the caller's job to ensure that the target task struct
4351  * can't go away on us before we can do any checks.
4352  *
4353  * Return:
4354  *	true (>0) if we indeed boosted the target task.
4355  *	false (0) if we failed to boost the target.
4356  *	-ESRCH if there's no task to yield to.
4357  */
4358 int __sched yield_to(struct task_struct *p, bool preempt)
4359 {
4360 	struct task_struct *curr = current;
4361 	struct rq *rq, *p_rq;
4362 	unsigned long flags;
4363 	int yielded = 0;
4364 
4365 	local_irq_save(flags);
4366 	rq = this_rq();
4367 
4368 again:
4369 	p_rq = task_rq(p);
4370 	/*
4371 	 * If we're the only runnable task on the rq and target rq also
4372 	 * has only one task, there's absolutely no point in yielding.
4373 	 */
4374 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4375 		yielded = -ESRCH;
4376 		goto out_irq;
4377 	}
4378 
4379 	double_rq_lock(rq, p_rq);
4380 	if (task_rq(p) != p_rq) {
4381 		double_rq_unlock(rq, p_rq);
4382 		goto again;
4383 	}
4384 
4385 	if (!curr->sched_class->yield_to_task)
4386 		goto out_unlock;
4387 
4388 	if (curr->sched_class != p->sched_class)
4389 		goto out_unlock;
4390 
4391 	if (task_running(p_rq, p) || p->state)
4392 		goto out_unlock;
4393 
4394 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4395 	if (yielded) {
4396 		schedstat_inc(rq, yld_count);
4397 		/*
4398 		 * Make p's CPU reschedule; pick_next_entity takes care of
4399 		 * fairness.
4400 		 */
4401 		if (preempt && rq != p_rq)
4402 			resched_curr(p_rq);
4403 	}
4404 
4405 out_unlock:
4406 	double_rq_unlock(rq, p_rq);
4407 out_irq:
4408 	local_irq_restore(flags);
4409 
4410 	if (yielded > 0)
4411 		schedule();
4412 
4413 	return yielded;
4414 }
4415 EXPORT_SYMBOL_GPL(yield_to);
4416 
4417 /*
4418  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4419  * that process accounting knows that this is a task in IO wait state.
4420  */
4421 void __sched io_schedule(void)
4422 {
4423 	struct rq *rq = raw_rq();
4424 
4425 	delayacct_blkio_start();
4426 	atomic_inc(&rq->nr_iowait);
4427 	blk_flush_plug(current);
4428 	current->in_iowait = 1;
4429 	schedule();
4430 	current->in_iowait = 0;
4431 	atomic_dec(&rq->nr_iowait);
4432 	delayacct_blkio_end();
4433 }
4434 EXPORT_SYMBOL(io_schedule);
4435 
4436 long __sched io_schedule_timeout(long timeout)
4437 {
4438 	struct rq *rq = raw_rq();
4439 	long ret;
4440 
4441 	delayacct_blkio_start();
4442 	atomic_inc(&rq->nr_iowait);
4443 	blk_flush_plug(current);
4444 	current->in_iowait = 1;
4445 	ret = schedule_timeout(timeout);
4446 	current->in_iowait = 0;
4447 	atomic_dec(&rq->nr_iowait);
4448 	delayacct_blkio_end();
4449 	return ret;
4450 }
4451 
4452 /**
4453  * sys_sched_get_priority_max - return maximum RT priority.
4454  * @policy: scheduling class.
4455  *
4456  * Return: On success, this syscall returns the maximum
4457  * rt_priority that can be used by a given scheduling class.
4458  * On failure, a negative error code is returned.
4459  */
4460 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4461 {
4462 	int ret = -EINVAL;
4463 
4464 	switch (policy) {
4465 	case SCHED_FIFO:
4466 	case SCHED_RR:
4467 		ret = MAX_USER_RT_PRIO-1;
4468 		break;
4469 	case SCHED_DEADLINE:
4470 	case SCHED_NORMAL:
4471 	case SCHED_BATCH:
4472 	case SCHED_IDLE:
4473 		ret = 0;
4474 		break;
4475 	}
4476 	return ret;
4477 }
4478 
4479 /**
4480  * sys_sched_get_priority_min - return minimum RT priority.
4481  * @policy: scheduling class.
4482  *
4483  * Return: On success, this syscall returns the minimum
4484  * rt_priority that can be used by a given scheduling class.
4485  * On failure, a negative error code is returned.
4486  */
4487 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4488 {
4489 	int ret = -EINVAL;
4490 
4491 	switch (policy) {
4492 	case SCHED_FIFO:
4493 	case SCHED_RR:
4494 		ret = 1;
4495 		break;
4496 	case SCHED_DEADLINE:
4497 	case SCHED_NORMAL:
4498 	case SCHED_BATCH:
4499 	case SCHED_IDLE:
4500 		ret = 0;
4501 	}
4502 	return ret;
4503 }
4504 
4505 /**
4506  * sys_sched_rr_get_interval - return the default timeslice of a process.
4507  * @pid: pid of the process.
4508  * @interval: userspace pointer to the timeslice value.
4509  *
4510  * this syscall writes the default timeslice value of a given process
4511  * into the user-space timespec buffer. A value of '0' means infinity.
4512  *
4513  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4514  * an error code.
4515  */
4516 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4517 		struct timespec __user *, interval)
4518 {
4519 	struct task_struct *p;
4520 	unsigned int time_slice;
4521 	unsigned long flags;
4522 	struct rq *rq;
4523 	int retval;
4524 	struct timespec t;
4525 
4526 	if (pid < 0)
4527 		return -EINVAL;
4528 
4529 	retval = -ESRCH;
4530 	rcu_read_lock();
4531 	p = find_process_by_pid(pid);
4532 	if (!p)
4533 		goto out_unlock;
4534 
4535 	retval = security_task_getscheduler(p);
4536 	if (retval)
4537 		goto out_unlock;
4538 
4539 	rq = task_rq_lock(p, &flags);
4540 	time_slice = 0;
4541 	if (p->sched_class->get_rr_interval)
4542 		time_slice = p->sched_class->get_rr_interval(rq, p);
4543 	task_rq_unlock(rq, p, &flags);
4544 
4545 	rcu_read_unlock();
4546 	jiffies_to_timespec(time_slice, &t);
4547 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4548 	return retval;
4549 
4550 out_unlock:
4551 	rcu_read_unlock();
4552 	return retval;
4553 }
4554 
4555 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4556 
4557 void sched_show_task(struct task_struct *p)
4558 {
4559 	unsigned long free = 0;
4560 	int ppid;
4561 	unsigned long state = p->state;
4562 
4563 	if (state)
4564 		state = __ffs(state) + 1;
4565 	printk(KERN_INFO "%-15.15s %c", p->comm,
4566 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4567 #if BITS_PER_LONG == 32
4568 	if (state == TASK_RUNNING)
4569 		printk(KERN_CONT " running  ");
4570 	else
4571 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4572 #else
4573 	if (state == TASK_RUNNING)
4574 		printk(KERN_CONT "  running task    ");
4575 	else
4576 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4577 #endif
4578 #ifdef CONFIG_DEBUG_STACK_USAGE
4579 	free = stack_not_used(p);
4580 #endif
4581 	ppid = 0;
4582 	rcu_read_lock();
4583 	if (pid_alive(p))
4584 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4585 	rcu_read_unlock();
4586 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4587 		task_pid_nr(p), ppid,
4588 		(unsigned long)task_thread_info(p)->flags);
4589 
4590 	print_worker_info(KERN_INFO, p);
4591 	show_stack(p, NULL);
4592 }
4593 
4594 void show_state_filter(unsigned long state_filter)
4595 {
4596 	struct task_struct *g, *p;
4597 
4598 #if BITS_PER_LONG == 32
4599 	printk(KERN_INFO
4600 		"  task                PC stack   pid father\n");
4601 #else
4602 	printk(KERN_INFO
4603 		"  task                        PC stack   pid father\n");
4604 #endif
4605 	rcu_read_lock();
4606 	for_each_process_thread(g, p) {
4607 		/*
4608 		 * reset the NMI-timeout, listing all files on a slow
4609 		 * console might take a lot of time:
4610 		 */
4611 		touch_nmi_watchdog();
4612 		if (!state_filter || (p->state & state_filter))
4613 			sched_show_task(p);
4614 	}
4615 
4616 	touch_all_softlockup_watchdogs();
4617 
4618 #ifdef CONFIG_SCHED_DEBUG
4619 	sysrq_sched_debug_show();
4620 #endif
4621 	rcu_read_unlock();
4622 	/*
4623 	 * Only show locks if all tasks are dumped:
4624 	 */
4625 	if (!state_filter)
4626 		debug_show_all_locks();
4627 }
4628 
4629 void init_idle_bootup_task(struct task_struct *idle)
4630 {
4631 	idle->sched_class = &idle_sched_class;
4632 }
4633 
4634 /**
4635  * init_idle - set up an idle thread for a given CPU
4636  * @idle: task in question
4637  * @cpu: cpu the idle task belongs to
4638  *
4639  * NOTE: this function does not set the idle thread's NEED_RESCHED
4640  * flag, to make booting more robust.
4641  */
4642 void init_idle(struct task_struct *idle, int cpu)
4643 {
4644 	struct rq *rq = cpu_rq(cpu);
4645 	unsigned long flags;
4646 
4647 	raw_spin_lock_irqsave(&rq->lock, flags);
4648 
4649 	__sched_fork(0, idle);
4650 	idle->state = TASK_RUNNING;
4651 	idle->se.exec_start = sched_clock();
4652 
4653 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4654 	/*
4655 	 * We're having a chicken and egg problem, even though we are
4656 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4657 	 * lockdep check in task_group() will fail.
4658 	 *
4659 	 * Similar case to sched_fork(). / Alternatively we could
4660 	 * use task_rq_lock() here and obtain the other rq->lock.
4661 	 *
4662 	 * Silence PROVE_RCU
4663 	 */
4664 	rcu_read_lock();
4665 	__set_task_cpu(idle, cpu);
4666 	rcu_read_unlock();
4667 
4668 	rq->curr = rq->idle = idle;
4669 	idle->on_rq = TASK_ON_RQ_QUEUED;
4670 #if defined(CONFIG_SMP)
4671 	idle->on_cpu = 1;
4672 #endif
4673 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4674 
4675 	/* Set the preempt count _outside_ the spinlocks! */
4676 	init_idle_preempt_count(idle, cpu);
4677 
4678 	/*
4679 	 * The idle tasks have their own, simple scheduling class:
4680 	 */
4681 	idle->sched_class = &idle_sched_class;
4682 	ftrace_graph_init_idle_task(idle, cpu);
4683 	vtime_init_idle(idle, cpu);
4684 #if defined(CONFIG_SMP)
4685 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4686 #endif
4687 }
4688 
4689 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4690 			      const struct cpumask *trial)
4691 {
4692 	int ret = 1, trial_cpus;
4693 	struct dl_bw *cur_dl_b;
4694 	unsigned long flags;
4695 
4696 	if (!cpumask_weight(cur))
4697 		return ret;
4698 
4699 	rcu_read_lock_sched();
4700 	cur_dl_b = dl_bw_of(cpumask_any(cur));
4701 	trial_cpus = cpumask_weight(trial);
4702 
4703 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4704 	if (cur_dl_b->bw != -1 &&
4705 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4706 		ret = 0;
4707 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4708 	rcu_read_unlock_sched();
4709 
4710 	return ret;
4711 }
4712 
4713 int task_can_attach(struct task_struct *p,
4714 		    const struct cpumask *cs_cpus_allowed)
4715 {
4716 	int ret = 0;
4717 
4718 	/*
4719 	 * Kthreads which disallow setaffinity shouldn't be moved
4720 	 * to a new cpuset; we don't want to change their cpu
4721 	 * affinity and isolating such threads by their set of
4722 	 * allowed nodes is unnecessary.  Thus, cpusets are not
4723 	 * applicable for such threads.  This prevents checking for
4724 	 * success of set_cpus_allowed_ptr() on all attached tasks
4725 	 * before cpus_allowed may be changed.
4726 	 */
4727 	if (p->flags & PF_NO_SETAFFINITY) {
4728 		ret = -EINVAL;
4729 		goto out;
4730 	}
4731 
4732 #ifdef CONFIG_SMP
4733 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4734 					      cs_cpus_allowed)) {
4735 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4736 							cs_cpus_allowed);
4737 		struct dl_bw *dl_b;
4738 		bool overflow;
4739 		int cpus;
4740 		unsigned long flags;
4741 
4742 		rcu_read_lock_sched();
4743 		dl_b = dl_bw_of(dest_cpu);
4744 		raw_spin_lock_irqsave(&dl_b->lock, flags);
4745 		cpus = dl_bw_cpus(dest_cpu);
4746 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4747 		if (overflow)
4748 			ret = -EBUSY;
4749 		else {
4750 			/*
4751 			 * We reserve space for this task in the destination
4752 			 * root_domain, as we can't fail after this point.
4753 			 * We will free resources in the source root_domain
4754 			 * later on (see set_cpus_allowed_dl()).
4755 			 */
4756 			__dl_add(dl_b, p->dl.dl_bw);
4757 		}
4758 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4759 		rcu_read_unlock_sched();
4760 
4761 	}
4762 #endif
4763 out:
4764 	return ret;
4765 }
4766 
4767 #ifdef CONFIG_SMP
4768 /*
4769  * move_queued_task - move a queued task to new rq.
4770  *
4771  * Returns (locked) new rq. Old rq's lock is released.
4772  */
4773 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4774 {
4775 	struct rq *rq = task_rq(p);
4776 
4777 	lockdep_assert_held(&rq->lock);
4778 
4779 	dequeue_task(rq, p, 0);
4780 	p->on_rq = TASK_ON_RQ_MIGRATING;
4781 	set_task_cpu(p, new_cpu);
4782 	raw_spin_unlock(&rq->lock);
4783 
4784 	rq = cpu_rq(new_cpu);
4785 
4786 	raw_spin_lock(&rq->lock);
4787 	BUG_ON(task_cpu(p) != new_cpu);
4788 	p->on_rq = TASK_ON_RQ_QUEUED;
4789 	enqueue_task(rq, p, 0);
4790 	check_preempt_curr(rq, p, 0);
4791 
4792 	return rq;
4793 }
4794 
4795 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4796 {
4797 	if (p->sched_class->set_cpus_allowed)
4798 		p->sched_class->set_cpus_allowed(p, new_mask);
4799 
4800 	cpumask_copy(&p->cpus_allowed, new_mask);
4801 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4802 }
4803 
4804 /*
4805  * This is how migration works:
4806  *
4807  * 1) we invoke migration_cpu_stop() on the target CPU using
4808  *    stop_one_cpu().
4809  * 2) stopper starts to run (implicitly forcing the migrated thread
4810  *    off the CPU)
4811  * 3) it checks whether the migrated task is still in the wrong runqueue.
4812  * 4) if it's in the wrong runqueue then the migration thread removes
4813  *    it and puts it into the right queue.
4814  * 5) stopper completes and stop_one_cpu() returns and the migration
4815  *    is done.
4816  */
4817 
4818 /*
4819  * Change a given task's CPU affinity. Migrate the thread to a
4820  * proper CPU and schedule it away if the CPU it's executing on
4821  * is removed from the allowed bitmask.
4822  *
4823  * NOTE: the caller must have a valid reference to the task, the
4824  * task must not exit() & deallocate itself prematurely. The
4825  * call is not atomic; no spinlocks may be held.
4826  */
4827 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4828 {
4829 	unsigned long flags;
4830 	struct rq *rq;
4831 	unsigned int dest_cpu;
4832 	int ret = 0;
4833 
4834 	rq = task_rq_lock(p, &flags);
4835 
4836 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4837 		goto out;
4838 
4839 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4840 		ret = -EINVAL;
4841 		goto out;
4842 	}
4843 
4844 	do_set_cpus_allowed(p, new_mask);
4845 
4846 	/* Can the task run on the task's current CPU? If so, we're done */
4847 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4848 		goto out;
4849 
4850 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4851 	if (task_running(rq, p) || p->state == TASK_WAKING) {
4852 		struct migration_arg arg = { p, dest_cpu };
4853 		/* Need help from migration thread: drop lock and wait. */
4854 		task_rq_unlock(rq, p, &flags);
4855 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4856 		tlb_migrate_finish(p->mm);
4857 		return 0;
4858 	} else if (task_on_rq_queued(p))
4859 		rq = move_queued_task(p, dest_cpu);
4860 out:
4861 	task_rq_unlock(rq, p, &flags);
4862 
4863 	return ret;
4864 }
4865 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4866 
4867 /*
4868  * Move (not current) task off this cpu, onto dest cpu. We're doing
4869  * this because either it can't run here any more (set_cpus_allowed()
4870  * away from this CPU, or CPU going down), or because we're
4871  * attempting to rebalance this task on exec (sched_exec).
4872  *
4873  * So we race with normal scheduler movements, but that's OK, as long
4874  * as the task is no longer on this CPU.
4875  *
4876  * Returns non-zero if task was successfully migrated.
4877  */
4878 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4879 {
4880 	struct rq *rq;
4881 	int ret = 0;
4882 
4883 	if (unlikely(!cpu_active(dest_cpu)))
4884 		return ret;
4885 
4886 	rq = cpu_rq(src_cpu);
4887 
4888 	raw_spin_lock(&p->pi_lock);
4889 	raw_spin_lock(&rq->lock);
4890 	/* Already moved. */
4891 	if (task_cpu(p) != src_cpu)
4892 		goto done;
4893 
4894 	/* Affinity changed (again). */
4895 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4896 		goto fail;
4897 
4898 	/*
4899 	 * If we're not on a rq, the next wake-up will ensure we're
4900 	 * placed properly.
4901 	 */
4902 	if (task_on_rq_queued(p))
4903 		rq = move_queued_task(p, dest_cpu);
4904 done:
4905 	ret = 1;
4906 fail:
4907 	raw_spin_unlock(&rq->lock);
4908 	raw_spin_unlock(&p->pi_lock);
4909 	return ret;
4910 }
4911 
4912 #ifdef CONFIG_NUMA_BALANCING
4913 /* Migrate current task p to target_cpu */
4914 int migrate_task_to(struct task_struct *p, int target_cpu)
4915 {
4916 	struct migration_arg arg = { p, target_cpu };
4917 	int curr_cpu = task_cpu(p);
4918 
4919 	if (curr_cpu == target_cpu)
4920 		return 0;
4921 
4922 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4923 		return -EINVAL;
4924 
4925 	/* TODO: This is not properly updating schedstats */
4926 
4927 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4928 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4929 }
4930 
4931 /*
4932  * Requeue a task on a given node and accurately track the number of NUMA
4933  * tasks on the runqueues
4934  */
4935 void sched_setnuma(struct task_struct *p, int nid)
4936 {
4937 	struct rq *rq;
4938 	unsigned long flags;
4939 	bool queued, running;
4940 
4941 	rq = task_rq_lock(p, &flags);
4942 	queued = task_on_rq_queued(p);
4943 	running = task_current(rq, p);
4944 
4945 	if (queued)
4946 		dequeue_task(rq, p, 0);
4947 	if (running)
4948 		put_prev_task(rq, p);
4949 
4950 	p->numa_preferred_nid = nid;
4951 
4952 	if (running)
4953 		p->sched_class->set_curr_task(rq);
4954 	if (queued)
4955 		enqueue_task(rq, p, 0);
4956 	task_rq_unlock(rq, p, &flags);
4957 }
4958 #endif
4959 
4960 /*
4961  * migration_cpu_stop - this will be executed by a highprio stopper thread
4962  * and performs thread migration by bumping thread off CPU then
4963  * 'pushing' onto another runqueue.
4964  */
4965 static int migration_cpu_stop(void *data)
4966 {
4967 	struct migration_arg *arg = data;
4968 
4969 	/*
4970 	 * The original target cpu might have gone down and we might
4971 	 * be on another cpu but it doesn't matter.
4972 	 */
4973 	local_irq_disable();
4974 	/*
4975 	 * We need to explicitly wake pending tasks before running
4976 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4977 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4978 	 */
4979 	sched_ttwu_pending();
4980 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4981 	local_irq_enable();
4982 	return 0;
4983 }
4984 
4985 #ifdef CONFIG_HOTPLUG_CPU
4986 
4987 /*
4988  * Ensures that the idle task is using init_mm right before its cpu goes
4989  * offline.
4990  */
4991 void idle_task_exit(void)
4992 {
4993 	struct mm_struct *mm = current->active_mm;
4994 
4995 	BUG_ON(cpu_online(smp_processor_id()));
4996 
4997 	if (mm != &init_mm) {
4998 		switch_mm(mm, &init_mm, current);
4999 		finish_arch_post_lock_switch();
5000 	}
5001 	mmdrop(mm);
5002 }
5003 
5004 /*
5005  * Since this CPU is going 'away' for a while, fold any nr_active delta
5006  * we might have. Assumes we're called after migrate_tasks() so that the
5007  * nr_active count is stable.
5008  *
5009  * Also see the comment "Global load-average calculations".
5010  */
5011 static void calc_load_migrate(struct rq *rq)
5012 {
5013 	long delta = calc_load_fold_active(rq);
5014 	if (delta)
5015 		atomic_long_add(delta, &calc_load_tasks);
5016 }
5017 
5018 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5019 {
5020 }
5021 
5022 static const struct sched_class fake_sched_class = {
5023 	.put_prev_task = put_prev_task_fake,
5024 };
5025 
5026 static struct task_struct fake_task = {
5027 	/*
5028 	 * Avoid pull_{rt,dl}_task()
5029 	 */
5030 	.prio = MAX_PRIO + 1,
5031 	.sched_class = &fake_sched_class,
5032 };
5033 
5034 /*
5035  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5036  * try_to_wake_up()->select_task_rq().
5037  *
5038  * Called with rq->lock held even though we'er in stop_machine() and
5039  * there's no concurrency possible, we hold the required locks anyway
5040  * because of lock validation efforts.
5041  */
5042 static void migrate_tasks(unsigned int dead_cpu)
5043 {
5044 	struct rq *rq = cpu_rq(dead_cpu);
5045 	struct task_struct *next, *stop = rq->stop;
5046 	int dest_cpu;
5047 
5048 	/*
5049 	 * Fudge the rq selection such that the below task selection loop
5050 	 * doesn't get stuck on the currently eligible stop task.
5051 	 *
5052 	 * We're currently inside stop_machine() and the rq is either stuck
5053 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5054 	 * either way we should never end up calling schedule() until we're
5055 	 * done here.
5056 	 */
5057 	rq->stop = NULL;
5058 
5059 	/*
5060 	 * put_prev_task() and pick_next_task() sched
5061 	 * class method both need to have an up-to-date
5062 	 * value of rq->clock[_task]
5063 	 */
5064 	update_rq_clock(rq);
5065 
5066 	for ( ; ; ) {
5067 		/*
5068 		 * There's this thread running, bail when that's the only
5069 		 * remaining thread.
5070 		 */
5071 		if (rq->nr_running == 1)
5072 			break;
5073 
5074 		next = pick_next_task(rq, &fake_task);
5075 		BUG_ON(!next);
5076 		next->sched_class->put_prev_task(rq, next);
5077 
5078 		/* Find suitable destination for @next, with force if needed. */
5079 		dest_cpu = select_fallback_rq(dead_cpu, next);
5080 		raw_spin_unlock(&rq->lock);
5081 
5082 		__migrate_task(next, dead_cpu, dest_cpu);
5083 
5084 		raw_spin_lock(&rq->lock);
5085 	}
5086 
5087 	rq->stop = stop;
5088 }
5089 
5090 #endif /* CONFIG_HOTPLUG_CPU */
5091 
5092 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5093 
5094 static struct ctl_table sd_ctl_dir[] = {
5095 	{
5096 		.procname	= "sched_domain",
5097 		.mode		= 0555,
5098 	},
5099 	{}
5100 };
5101 
5102 static struct ctl_table sd_ctl_root[] = {
5103 	{
5104 		.procname	= "kernel",
5105 		.mode		= 0555,
5106 		.child		= sd_ctl_dir,
5107 	},
5108 	{}
5109 };
5110 
5111 static struct ctl_table *sd_alloc_ctl_entry(int n)
5112 {
5113 	struct ctl_table *entry =
5114 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5115 
5116 	return entry;
5117 }
5118 
5119 static void sd_free_ctl_entry(struct ctl_table **tablep)
5120 {
5121 	struct ctl_table *entry;
5122 
5123 	/*
5124 	 * In the intermediate directories, both the child directory and
5125 	 * procname are dynamically allocated and could fail but the mode
5126 	 * will always be set. In the lowest directory the names are
5127 	 * static strings and all have proc handlers.
5128 	 */
5129 	for (entry = *tablep; entry->mode; entry++) {
5130 		if (entry->child)
5131 			sd_free_ctl_entry(&entry->child);
5132 		if (entry->proc_handler == NULL)
5133 			kfree(entry->procname);
5134 	}
5135 
5136 	kfree(*tablep);
5137 	*tablep = NULL;
5138 }
5139 
5140 static int min_load_idx = 0;
5141 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5142 
5143 static void
5144 set_table_entry(struct ctl_table *entry,
5145 		const char *procname, void *data, int maxlen,
5146 		umode_t mode, proc_handler *proc_handler,
5147 		bool load_idx)
5148 {
5149 	entry->procname = procname;
5150 	entry->data = data;
5151 	entry->maxlen = maxlen;
5152 	entry->mode = mode;
5153 	entry->proc_handler = proc_handler;
5154 
5155 	if (load_idx) {
5156 		entry->extra1 = &min_load_idx;
5157 		entry->extra2 = &max_load_idx;
5158 	}
5159 }
5160 
5161 static struct ctl_table *
5162 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5163 {
5164 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5165 
5166 	if (table == NULL)
5167 		return NULL;
5168 
5169 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5170 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5171 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5172 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5173 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5174 		sizeof(int), 0644, proc_dointvec_minmax, true);
5175 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5176 		sizeof(int), 0644, proc_dointvec_minmax, true);
5177 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5178 		sizeof(int), 0644, proc_dointvec_minmax, true);
5179 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5180 		sizeof(int), 0644, proc_dointvec_minmax, true);
5181 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5182 		sizeof(int), 0644, proc_dointvec_minmax, true);
5183 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5184 		sizeof(int), 0644, proc_dointvec_minmax, false);
5185 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5186 		sizeof(int), 0644, proc_dointvec_minmax, false);
5187 	set_table_entry(&table[9], "cache_nice_tries",
5188 		&sd->cache_nice_tries,
5189 		sizeof(int), 0644, proc_dointvec_minmax, false);
5190 	set_table_entry(&table[10], "flags", &sd->flags,
5191 		sizeof(int), 0644, proc_dointvec_minmax, false);
5192 	set_table_entry(&table[11], "max_newidle_lb_cost",
5193 		&sd->max_newidle_lb_cost,
5194 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5195 	set_table_entry(&table[12], "name", sd->name,
5196 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5197 	/* &table[13] is terminator */
5198 
5199 	return table;
5200 }
5201 
5202 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5203 {
5204 	struct ctl_table *entry, *table;
5205 	struct sched_domain *sd;
5206 	int domain_num = 0, i;
5207 	char buf[32];
5208 
5209 	for_each_domain(cpu, sd)
5210 		domain_num++;
5211 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5212 	if (table == NULL)
5213 		return NULL;
5214 
5215 	i = 0;
5216 	for_each_domain(cpu, sd) {
5217 		snprintf(buf, 32, "domain%d", i);
5218 		entry->procname = kstrdup(buf, GFP_KERNEL);
5219 		entry->mode = 0555;
5220 		entry->child = sd_alloc_ctl_domain_table(sd);
5221 		entry++;
5222 		i++;
5223 	}
5224 	return table;
5225 }
5226 
5227 static struct ctl_table_header *sd_sysctl_header;
5228 static void register_sched_domain_sysctl(void)
5229 {
5230 	int i, cpu_num = num_possible_cpus();
5231 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5232 	char buf[32];
5233 
5234 	WARN_ON(sd_ctl_dir[0].child);
5235 	sd_ctl_dir[0].child = entry;
5236 
5237 	if (entry == NULL)
5238 		return;
5239 
5240 	for_each_possible_cpu(i) {
5241 		snprintf(buf, 32, "cpu%d", i);
5242 		entry->procname = kstrdup(buf, GFP_KERNEL);
5243 		entry->mode = 0555;
5244 		entry->child = sd_alloc_ctl_cpu_table(i);
5245 		entry++;
5246 	}
5247 
5248 	WARN_ON(sd_sysctl_header);
5249 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5250 }
5251 
5252 /* may be called multiple times per register */
5253 static void unregister_sched_domain_sysctl(void)
5254 {
5255 	if (sd_sysctl_header)
5256 		unregister_sysctl_table(sd_sysctl_header);
5257 	sd_sysctl_header = NULL;
5258 	if (sd_ctl_dir[0].child)
5259 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5260 }
5261 #else
5262 static void register_sched_domain_sysctl(void)
5263 {
5264 }
5265 static void unregister_sched_domain_sysctl(void)
5266 {
5267 }
5268 #endif
5269 
5270 static void set_rq_online(struct rq *rq)
5271 {
5272 	if (!rq->online) {
5273 		const struct sched_class *class;
5274 
5275 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5276 		rq->online = 1;
5277 
5278 		for_each_class(class) {
5279 			if (class->rq_online)
5280 				class->rq_online(rq);
5281 		}
5282 	}
5283 }
5284 
5285 static void set_rq_offline(struct rq *rq)
5286 {
5287 	if (rq->online) {
5288 		const struct sched_class *class;
5289 
5290 		for_each_class(class) {
5291 			if (class->rq_offline)
5292 				class->rq_offline(rq);
5293 		}
5294 
5295 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5296 		rq->online = 0;
5297 	}
5298 }
5299 
5300 /*
5301  * migration_call - callback that gets triggered when a CPU is added.
5302  * Here we can start up the necessary migration thread for the new CPU.
5303  */
5304 static int
5305 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5306 {
5307 	int cpu = (long)hcpu;
5308 	unsigned long flags;
5309 	struct rq *rq = cpu_rq(cpu);
5310 
5311 	switch (action & ~CPU_TASKS_FROZEN) {
5312 
5313 	case CPU_UP_PREPARE:
5314 		rq->calc_load_update = calc_load_update;
5315 		break;
5316 
5317 	case CPU_ONLINE:
5318 		/* Update our root-domain */
5319 		raw_spin_lock_irqsave(&rq->lock, flags);
5320 		if (rq->rd) {
5321 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5322 
5323 			set_rq_online(rq);
5324 		}
5325 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5326 		break;
5327 
5328 #ifdef CONFIG_HOTPLUG_CPU
5329 	case CPU_DYING:
5330 		sched_ttwu_pending();
5331 		/* Update our root-domain */
5332 		raw_spin_lock_irqsave(&rq->lock, flags);
5333 		if (rq->rd) {
5334 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5335 			set_rq_offline(rq);
5336 		}
5337 		migrate_tasks(cpu);
5338 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5339 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5340 		break;
5341 
5342 	case CPU_DEAD:
5343 		calc_load_migrate(rq);
5344 		break;
5345 #endif
5346 	}
5347 
5348 	update_max_interval();
5349 
5350 	return NOTIFY_OK;
5351 }
5352 
5353 /*
5354  * Register at high priority so that task migration (migrate_all_tasks)
5355  * happens before everything else.  This has to be lower priority than
5356  * the notifier in the perf_event subsystem, though.
5357  */
5358 static struct notifier_block migration_notifier = {
5359 	.notifier_call = migration_call,
5360 	.priority = CPU_PRI_MIGRATION,
5361 };
5362 
5363 static void __cpuinit set_cpu_rq_start_time(void)
5364 {
5365 	int cpu = smp_processor_id();
5366 	struct rq *rq = cpu_rq(cpu);
5367 	rq->age_stamp = sched_clock_cpu(cpu);
5368 }
5369 
5370 static int sched_cpu_active(struct notifier_block *nfb,
5371 				      unsigned long action, void *hcpu)
5372 {
5373 	switch (action & ~CPU_TASKS_FROZEN) {
5374 	case CPU_STARTING:
5375 		set_cpu_rq_start_time();
5376 		return NOTIFY_OK;
5377 	case CPU_DOWN_FAILED:
5378 		set_cpu_active((long)hcpu, true);
5379 		return NOTIFY_OK;
5380 	default:
5381 		return NOTIFY_DONE;
5382 	}
5383 }
5384 
5385 static int sched_cpu_inactive(struct notifier_block *nfb,
5386 					unsigned long action, void *hcpu)
5387 {
5388 	unsigned long flags;
5389 	long cpu = (long)hcpu;
5390 	struct dl_bw *dl_b;
5391 
5392 	switch (action & ~CPU_TASKS_FROZEN) {
5393 	case CPU_DOWN_PREPARE:
5394 		set_cpu_active(cpu, false);
5395 
5396 		/* explicitly allow suspend */
5397 		if (!(action & CPU_TASKS_FROZEN)) {
5398 			bool overflow;
5399 			int cpus;
5400 
5401 			rcu_read_lock_sched();
5402 			dl_b = dl_bw_of(cpu);
5403 
5404 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5405 			cpus = dl_bw_cpus(cpu);
5406 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5407 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5408 
5409 			rcu_read_unlock_sched();
5410 
5411 			if (overflow)
5412 				return notifier_from_errno(-EBUSY);
5413 		}
5414 		return NOTIFY_OK;
5415 	}
5416 
5417 	return NOTIFY_DONE;
5418 }
5419 
5420 static int __init migration_init(void)
5421 {
5422 	void *cpu = (void *)(long)smp_processor_id();
5423 	int err;
5424 
5425 	/* Initialize migration for the boot CPU */
5426 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5427 	BUG_ON(err == NOTIFY_BAD);
5428 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5429 	register_cpu_notifier(&migration_notifier);
5430 
5431 	/* Register cpu active notifiers */
5432 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5433 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5434 
5435 	return 0;
5436 }
5437 early_initcall(migration_init);
5438 #endif
5439 
5440 #ifdef CONFIG_SMP
5441 
5442 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5443 
5444 #ifdef CONFIG_SCHED_DEBUG
5445 
5446 static __read_mostly int sched_debug_enabled;
5447 
5448 static int __init sched_debug_setup(char *str)
5449 {
5450 	sched_debug_enabled = 1;
5451 
5452 	return 0;
5453 }
5454 early_param("sched_debug", sched_debug_setup);
5455 
5456 static inline bool sched_debug(void)
5457 {
5458 	return sched_debug_enabled;
5459 }
5460 
5461 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5462 				  struct cpumask *groupmask)
5463 {
5464 	struct sched_group *group = sd->groups;
5465 	char str[256];
5466 
5467 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5468 	cpumask_clear(groupmask);
5469 
5470 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5471 
5472 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5473 		printk("does not load-balance\n");
5474 		if (sd->parent)
5475 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5476 					" has parent");
5477 		return -1;
5478 	}
5479 
5480 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5481 
5482 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5483 		printk(KERN_ERR "ERROR: domain->span does not contain "
5484 				"CPU%d\n", cpu);
5485 	}
5486 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5487 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5488 				" CPU%d\n", cpu);
5489 	}
5490 
5491 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5492 	do {
5493 		if (!group) {
5494 			printk("\n");
5495 			printk(KERN_ERR "ERROR: group is NULL\n");
5496 			break;
5497 		}
5498 
5499 		/*
5500 		 * Even though we initialize ->capacity to something semi-sane,
5501 		 * we leave capacity_orig unset. This allows us to detect if
5502 		 * domain iteration is still funny without causing /0 traps.
5503 		 */
5504 		if (!group->sgc->capacity_orig) {
5505 			printk(KERN_CONT "\n");
5506 			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5507 			break;
5508 		}
5509 
5510 		if (!cpumask_weight(sched_group_cpus(group))) {
5511 			printk(KERN_CONT "\n");
5512 			printk(KERN_ERR "ERROR: empty group\n");
5513 			break;
5514 		}
5515 
5516 		if (!(sd->flags & SD_OVERLAP) &&
5517 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5518 			printk(KERN_CONT "\n");
5519 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5520 			break;
5521 		}
5522 
5523 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5524 
5525 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5526 
5527 		printk(KERN_CONT " %s", str);
5528 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5529 			printk(KERN_CONT " (cpu_capacity = %d)",
5530 				group->sgc->capacity);
5531 		}
5532 
5533 		group = group->next;
5534 	} while (group != sd->groups);
5535 	printk(KERN_CONT "\n");
5536 
5537 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5538 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5539 
5540 	if (sd->parent &&
5541 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5542 		printk(KERN_ERR "ERROR: parent span is not a superset "
5543 			"of domain->span\n");
5544 	return 0;
5545 }
5546 
5547 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5548 {
5549 	int level = 0;
5550 
5551 	if (!sched_debug_enabled)
5552 		return;
5553 
5554 	if (!sd) {
5555 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5556 		return;
5557 	}
5558 
5559 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5560 
5561 	for (;;) {
5562 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5563 			break;
5564 		level++;
5565 		sd = sd->parent;
5566 		if (!sd)
5567 			break;
5568 	}
5569 }
5570 #else /* !CONFIG_SCHED_DEBUG */
5571 # define sched_domain_debug(sd, cpu) do { } while (0)
5572 static inline bool sched_debug(void)
5573 {
5574 	return false;
5575 }
5576 #endif /* CONFIG_SCHED_DEBUG */
5577 
5578 static int sd_degenerate(struct sched_domain *sd)
5579 {
5580 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5581 		return 1;
5582 
5583 	/* Following flags need at least 2 groups */
5584 	if (sd->flags & (SD_LOAD_BALANCE |
5585 			 SD_BALANCE_NEWIDLE |
5586 			 SD_BALANCE_FORK |
5587 			 SD_BALANCE_EXEC |
5588 			 SD_SHARE_CPUCAPACITY |
5589 			 SD_SHARE_PKG_RESOURCES |
5590 			 SD_SHARE_POWERDOMAIN)) {
5591 		if (sd->groups != sd->groups->next)
5592 			return 0;
5593 	}
5594 
5595 	/* Following flags don't use groups */
5596 	if (sd->flags & (SD_WAKE_AFFINE))
5597 		return 0;
5598 
5599 	return 1;
5600 }
5601 
5602 static int
5603 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5604 {
5605 	unsigned long cflags = sd->flags, pflags = parent->flags;
5606 
5607 	if (sd_degenerate(parent))
5608 		return 1;
5609 
5610 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5611 		return 0;
5612 
5613 	/* Flags needing groups don't count if only 1 group in parent */
5614 	if (parent->groups == parent->groups->next) {
5615 		pflags &= ~(SD_LOAD_BALANCE |
5616 				SD_BALANCE_NEWIDLE |
5617 				SD_BALANCE_FORK |
5618 				SD_BALANCE_EXEC |
5619 				SD_SHARE_CPUCAPACITY |
5620 				SD_SHARE_PKG_RESOURCES |
5621 				SD_PREFER_SIBLING |
5622 				SD_SHARE_POWERDOMAIN);
5623 		if (nr_node_ids == 1)
5624 			pflags &= ~SD_SERIALIZE;
5625 	}
5626 	if (~cflags & pflags)
5627 		return 0;
5628 
5629 	return 1;
5630 }
5631 
5632 static void free_rootdomain(struct rcu_head *rcu)
5633 {
5634 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5635 
5636 	cpupri_cleanup(&rd->cpupri);
5637 	cpudl_cleanup(&rd->cpudl);
5638 	free_cpumask_var(rd->dlo_mask);
5639 	free_cpumask_var(rd->rto_mask);
5640 	free_cpumask_var(rd->online);
5641 	free_cpumask_var(rd->span);
5642 	kfree(rd);
5643 }
5644 
5645 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5646 {
5647 	struct root_domain *old_rd = NULL;
5648 	unsigned long flags;
5649 
5650 	raw_spin_lock_irqsave(&rq->lock, flags);
5651 
5652 	if (rq->rd) {
5653 		old_rd = rq->rd;
5654 
5655 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5656 			set_rq_offline(rq);
5657 
5658 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5659 
5660 		/*
5661 		 * If we dont want to free the old_rd yet then
5662 		 * set old_rd to NULL to skip the freeing later
5663 		 * in this function:
5664 		 */
5665 		if (!atomic_dec_and_test(&old_rd->refcount))
5666 			old_rd = NULL;
5667 	}
5668 
5669 	atomic_inc(&rd->refcount);
5670 	rq->rd = rd;
5671 
5672 	cpumask_set_cpu(rq->cpu, rd->span);
5673 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5674 		set_rq_online(rq);
5675 
5676 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5677 
5678 	if (old_rd)
5679 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5680 }
5681 
5682 static int init_rootdomain(struct root_domain *rd)
5683 {
5684 	memset(rd, 0, sizeof(*rd));
5685 
5686 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5687 		goto out;
5688 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5689 		goto free_span;
5690 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5691 		goto free_online;
5692 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5693 		goto free_dlo_mask;
5694 
5695 	init_dl_bw(&rd->dl_bw);
5696 	if (cpudl_init(&rd->cpudl) != 0)
5697 		goto free_dlo_mask;
5698 
5699 	if (cpupri_init(&rd->cpupri) != 0)
5700 		goto free_rto_mask;
5701 	return 0;
5702 
5703 free_rto_mask:
5704 	free_cpumask_var(rd->rto_mask);
5705 free_dlo_mask:
5706 	free_cpumask_var(rd->dlo_mask);
5707 free_online:
5708 	free_cpumask_var(rd->online);
5709 free_span:
5710 	free_cpumask_var(rd->span);
5711 out:
5712 	return -ENOMEM;
5713 }
5714 
5715 /*
5716  * By default the system creates a single root-domain with all cpus as
5717  * members (mimicking the global state we have today).
5718  */
5719 struct root_domain def_root_domain;
5720 
5721 static void init_defrootdomain(void)
5722 {
5723 	init_rootdomain(&def_root_domain);
5724 
5725 	atomic_set(&def_root_domain.refcount, 1);
5726 }
5727 
5728 static struct root_domain *alloc_rootdomain(void)
5729 {
5730 	struct root_domain *rd;
5731 
5732 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5733 	if (!rd)
5734 		return NULL;
5735 
5736 	if (init_rootdomain(rd) != 0) {
5737 		kfree(rd);
5738 		return NULL;
5739 	}
5740 
5741 	return rd;
5742 }
5743 
5744 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5745 {
5746 	struct sched_group *tmp, *first;
5747 
5748 	if (!sg)
5749 		return;
5750 
5751 	first = sg;
5752 	do {
5753 		tmp = sg->next;
5754 
5755 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5756 			kfree(sg->sgc);
5757 
5758 		kfree(sg);
5759 		sg = tmp;
5760 	} while (sg != first);
5761 }
5762 
5763 static void free_sched_domain(struct rcu_head *rcu)
5764 {
5765 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5766 
5767 	/*
5768 	 * If its an overlapping domain it has private groups, iterate and
5769 	 * nuke them all.
5770 	 */
5771 	if (sd->flags & SD_OVERLAP) {
5772 		free_sched_groups(sd->groups, 1);
5773 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5774 		kfree(sd->groups->sgc);
5775 		kfree(sd->groups);
5776 	}
5777 	kfree(sd);
5778 }
5779 
5780 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5781 {
5782 	call_rcu(&sd->rcu, free_sched_domain);
5783 }
5784 
5785 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5786 {
5787 	for (; sd; sd = sd->parent)
5788 		destroy_sched_domain(sd, cpu);
5789 }
5790 
5791 /*
5792  * Keep a special pointer to the highest sched_domain that has
5793  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5794  * allows us to avoid some pointer chasing select_idle_sibling().
5795  *
5796  * Also keep a unique ID per domain (we use the first cpu number in
5797  * the cpumask of the domain), this allows us to quickly tell if
5798  * two cpus are in the same cache domain, see cpus_share_cache().
5799  */
5800 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5801 DEFINE_PER_CPU(int, sd_llc_size);
5802 DEFINE_PER_CPU(int, sd_llc_id);
5803 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5804 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5805 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5806 
5807 static void update_top_cache_domain(int cpu)
5808 {
5809 	struct sched_domain *sd;
5810 	struct sched_domain *busy_sd = NULL;
5811 	int id = cpu;
5812 	int size = 1;
5813 
5814 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5815 	if (sd) {
5816 		id = cpumask_first(sched_domain_span(sd));
5817 		size = cpumask_weight(sched_domain_span(sd));
5818 		busy_sd = sd->parent; /* sd_busy */
5819 	}
5820 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5821 
5822 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5823 	per_cpu(sd_llc_size, cpu) = size;
5824 	per_cpu(sd_llc_id, cpu) = id;
5825 
5826 	sd = lowest_flag_domain(cpu, SD_NUMA);
5827 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5828 
5829 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5830 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5831 }
5832 
5833 /*
5834  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5835  * hold the hotplug lock.
5836  */
5837 static void
5838 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5839 {
5840 	struct rq *rq = cpu_rq(cpu);
5841 	struct sched_domain *tmp;
5842 
5843 	/* Remove the sched domains which do not contribute to scheduling. */
5844 	for (tmp = sd; tmp; ) {
5845 		struct sched_domain *parent = tmp->parent;
5846 		if (!parent)
5847 			break;
5848 
5849 		if (sd_parent_degenerate(tmp, parent)) {
5850 			tmp->parent = parent->parent;
5851 			if (parent->parent)
5852 				parent->parent->child = tmp;
5853 			/*
5854 			 * Transfer SD_PREFER_SIBLING down in case of a
5855 			 * degenerate parent; the spans match for this
5856 			 * so the property transfers.
5857 			 */
5858 			if (parent->flags & SD_PREFER_SIBLING)
5859 				tmp->flags |= SD_PREFER_SIBLING;
5860 			destroy_sched_domain(parent, cpu);
5861 		} else
5862 			tmp = tmp->parent;
5863 	}
5864 
5865 	if (sd && sd_degenerate(sd)) {
5866 		tmp = sd;
5867 		sd = sd->parent;
5868 		destroy_sched_domain(tmp, cpu);
5869 		if (sd)
5870 			sd->child = NULL;
5871 	}
5872 
5873 	sched_domain_debug(sd, cpu);
5874 
5875 	rq_attach_root(rq, rd);
5876 	tmp = rq->sd;
5877 	rcu_assign_pointer(rq->sd, sd);
5878 	destroy_sched_domains(tmp, cpu);
5879 
5880 	update_top_cache_domain(cpu);
5881 }
5882 
5883 /* cpus with isolated domains */
5884 static cpumask_var_t cpu_isolated_map;
5885 
5886 /* Setup the mask of cpus configured for isolated domains */
5887 static int __init isolated_cpu_setup(char *str)
5888 {
5889 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5890 	cpulist_parse(str, cpu_isolated_map);
5891 	return 1;
5892 }
5893 
5894 __setup("isolcpus=", isolated_cpu_setup);
5895 
5896 struct s_data {
5897 	struct sched_domain ** __percpu sd;
5898 	struct root_domain	*rd;
5899 };
5900 
5901 enum s_alloc {
5902 	sa_rootdomain,
5903 	sa_sd,
5904 	sa_sd_storage,
5905 	sa_none,
5906 };
5907 
5908 /*
5909  * Build an iteration mask that can exclude certain CPUs from the upwards
5910  * domain traversal.
5911  *
5912  * Asymmetric node setups can result in situations where the domain tree is of
5913  * unequal depth, make sure to skip domains that already cover the entire
5914  * range.
5915  *
5916  * In that case build_sched_domains() will have terminated the iteration early
5917  * and our sibling sd spans will be empty. Domains should always include the
5918  * cpu they're built on, so check that.
5919  *
5920  */
5921 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5922 {
5923 	const struct cpumask *span = sched_domain_span(sd);
5924 	struct sd_data *sdd = sd->private;
5925 	struct sched_domain *sibling;
5926 	int i;
5927 
5928 	for_each_cpu(i, span) {
5929 		sibling = *per_cpu_ptr(sdd->sd, i);
5930 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5931 			continue;
5932 
5933 		cpumask_set_cpu(i, sched_group_mask(sg));
5934 	}
5935 }
5936 
5937 /*
5938  * Return the canonical balance cpu for this group, this is the first cpu
5939  * of this group that's also in the iteration mask.
5940  */
5941 int group_balance_cpu(struct sched_group *sg)
5942 {
5943 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5944 }
5945 
5946 static int
5947 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5948 {
5949 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5950 	const struct cpumask *span = sched_domain_span(sd);
5951 	struct cpumask *covered = sched_domains_tmpmask;
5952 	struct sd_data *sdd = sd->private;
5953 	struct sched_domain *sibling;
5954 	int i;
5955 
5956 	cpumask_clear(covered);
5957 
5958 	for_each_cpu(i, span) {
5959 		struct cpumask *sg_span;
5960 
5961 		if (cpumask_test_cpu(i, covered))
5962 			continue;
5963 
5964 		sibling = *per_cpu_ptr(sdd->sd, i);
5965 
5966 		/* See the comment near build_group_mask(). */
5967 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5968 			continue;
5969 
5970 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5971 				GFP_KERNEL, cpu_to_node(cpu));
5972 
5973 		if (!sg)
5974 			goto fail;
5975 
5976 		sg_span = sched_group_cpus(sg);
5977 		if (sibling->child)
5978 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5979 		else
5980 			cpumask_set_cpu(i, sg_span);
5981 
5982 		cpumask_or(covered, covered, sg_span);
5983 
5984 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5985 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5986 			build_group_mask(sd, sg);
5987 
5988 		/*
5989 		 * Initialize sgc->capacity such that even if we mess up the
5990 		 * domains and no possible iteration will get us here, we won't
5991 		 * die on a /0 trap.
5992 		 */
5993 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5994 		sg->sgc->capacity_orig = sg->sgc->capacity;
5995 
5996 		/*
5997 		 * Make sure the first group of this domain contains the
5998 		 * canonical balance cpu. Otherwise the sched_domain iteration
5999 		 * breaks. See update_sg_lb_stats().
6000 		 */
6001 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6002 		    group_balance_cpu(sg) == cpu)
6003 			groups = sg;
6004 
6005 		if (!first)
6006 			first = sg;
6007 		if (last)
6008 			last->next = sg;
6009 		last = sg;
6010 		last->next = first;
6011 	}
6012 	sd->groups = groups;
6013 
6014 	return 0;
6015 
6016 fail:
6017 	free_sched_groups(first, 0);
6018 
6019 	return -ENOMEM;
6020 }
6021 
6022 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6023 {
6024 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6025 	struct sched_domain *child = sd->child;
6026 
6027 	if (child)
6028 		cpu = cpumask_first(sched_domain_span(child));
6029 
6030 	if (sg) {
6031 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6032 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6033 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6034 	}
6035 
6036 	return cpu;
6037 }
6038 
6039 /*
6040  * build_sched_groups will build a circular linked list of the groups
6041  * covered by the given span, and will set each group's ->cpumask correctly,
6042  * and ->cpu_capacity to 0.
6043  *
6044  * Assumes the sched_domain tree is fully constructed
6045  */
6046 static int
6047 build_sched_groups(struct sched_domain *sd, int cpu)
6048 {
6049 	struct sched_group *first = NULL, *last = NULL;
6050 	struct sd_data *sdd = sd->private;
6051 	const struct cpumask *span = sched_domain_span(sd);
6052 	struct cpumask *covered;
6053 	int i;
6054 
6055 	get_group(cpu, sdd, &sd->groups);
6056 	atomic_inc(&sd->groups->ref);
6057 
6058 	if (cpu != cpumask_first(span))
6059 		return 0;
6060 
6061 	lockdep_assert_held(&sched_domains_mutex);
6062 	covered = sched_domains_tmpmask;
6063 
6064 	cpumask_clear(covered);
6065 
6066 	for_each_cpu(i, span) {
6067 		struct sched_group *sg;
6068 		int group, j;
6069 
6070 		if (cpumask_test_cpu(i, covered))
6071 			continue;
6072 
6073 		group = get_group(i, sdd, &sg);
6074 		cpumask_setall(sched_group_mask(sg));
6075 
6076 		for_each_cpu(j, span) {
6077 			if (get_group(j, sdd, NULL) != group)
6078 				continue;
6079 
6080 			cpumask_set_cpu(j, covered);
6081 			cpumask_set_cpu(j, sched_group_cpus(sg));
6082 		}
6083 
6084 		if (!first)
6085 			first = sg;
6086 		if (last)
6087 			last->next = sg;
6088 		last = sg;
6089 	}
6090 	last->next = first;
6091 
6092 	return 0;
6093 }
6094 
6095 /*
6096  * Initialize sched groups cpu_capacity.
6097  *
6098  * cpu_capacity indicates the capacity of sched group, which is used while
6099  * distributing the load between different sched groups in a sched domain.
6100  * Typically cpu_capacity for all the groups in a sched domain will be same
6101  * unless there are asymmetries in the topology. If there are asymmetries,
6102  * group having more cpu_capacity will pickup more load compared to the
6103  * group having less cpu_capacity.
6104  */
6105 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6106 {
6107 	struct sched_group *sg = sd->groups;
6108 
6109 	WARN_ON(!sg);
6110 
6111 	do {
6112 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6113 		sg = sg->next;
6114 	} while (sg != sd->groups);
6115 
6116 	if (cpu != group_balance_cpu(sg))
6117 		return;
6118 
6119 	update_group_capacity(sd, cpu);
6120 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6121 }
6122 
6123 /*
6124  * Initializers for schedule domains
6125  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6126  */
6127 
6128 static int default_relax_domain_level = -1;
6129 int sched_domain_level_max;
6130 
6131 static int __init setup_relax_domain_level(char *str)
6132 {
6133 	if (kstrtoint(str, 0, &default_relax_domain_level))
6134 		pr_warn("Unable to set relax_domain_level\n");
6135 
6136 	return 1;
6137 }
6138 __setup("relax_domain_level=", setup_relax_domain_level);
6139 
6140 static void set_domain_attribute(struct sched_domain *sd,
6141 				 struct sched_domain_attr *attr)
6142 {
6143 	int request;
6144 
6145 	if (!attr || attr->relax_domain_level < 0) {
6146 		if (default_relax_domain_level < 0)
6147 			return;
6148 		else
6149 			request = default_relax_domain_level;
6150 	} else
6151 		request = attr->relax_domain_level;
6152 	if (request < sd->level) {
6153 		/* turn off idle balance on this domain */
6154 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6155 	} else {
6156 		/* turn on idle balance on this domain */
6157 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6158 	}
6159 }
6160 
6161 static void __sdt_free(const struct cpumask *cpu_map);
6162 static int __sdt_alloc(const struct cpumask *cpu_map);
6163 
6164 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6165 				 const struct cpumask *cpu_map)
6166 {
6167 	switch (what) {
6168 	case sa_rootdomain:
6169 		if (!atomic_read(&d->rd->refcount))
6170 			free_rootdomain(&d->rd->rcu); /* fall through */
6171 	case sa_sd:
6172 		free_percpu(d->sd); /* fall through */
6173 	case sa_sd_storage:
6174 		__sdt_free(cpu_map); /* fall through */
6175 	case sa_none:
6176 		break;
6177 	}
6178 }
6179 
6180 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6181 						   const struct cpumask *cpu_map)
6182 {
6183 	memset(d, 0, sizeof(*d));
6184 
6185 	if (__sdt_alloc(cpu_map))
6186 		return sa_sd_storage;
6187 	d->sd = alloc_percpu(struct sched_domain *);
6188 	if (!d->sd)
6189 		return sa_sd_storage;
6190 	d->rd = alloc_rootdomain();
6191 	if (!d->rd)
6192 		return sa_sd;
6193 	return sa_rootdomain;
6194 }
6195 
6196 /*
6197  * NULL the sd_data elements we've used to build the sched_domain and
6198  * sched_group structure so that the subsequent __free_domain_allocs()
6199  * will not free the data we're using.
6200  */
6201 static void claim_allocations(int cpu, struct sched_domain *sd)
6202 {
6203 	struct sd_data *sdd = sd->private;
6204 
6205 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6206 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6207 
6208 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6209 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6210 
6211 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6212 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6213 }
6214 
6215 #ifdef CONFIG_NUMA
6216 static int sched_domains_numa_levels;
6217 enum numa_topology_type sched_numa_topology_type;
6218 static int *sched_domains_numa_distance;
6219 int sched_max_numa_distance;
6220 static struct cpumask ***sched_domains_numa_masks;
6221 static int sched_domains_curr_level;
6222 #endif
6223 
6224 /*
6225  * SD_flags allowed in topology descriptions.
6226  *
6227  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6228  * SD_SHARE_PKG_RESOURCES - describes shared caches
6229  * SD_NUMA                - describes NUMA topologies
6230  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6231  *
6232  * Odd one out:
6233  * SD_ASYM_PACKING        - describes SMT quirks
6234  */
6235 #define TOPOLOGY_SD_FLAGS		\
6236 	(SD_SHARE_CPUCAPACITY |		\
6237 	 SD_SHARE_PKG_RESOURCES |	\
6238 	 SD_NUMA |			\
6239 	 SD_ASYM_PACKING |		\
6240 	 SD_SHARE_POWERDOMAIN)
6241 
6242 static struct sched_domain *
6243 sd_init(struct sched_domain_topology_level *tl, int cpu)
6244 {
6245 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6246 	int sd_weight, sd_flags = 0;
6247 
6248 #ifdef CONFIG_NUMA
6249 	/*
6250 	 * Ugly hack to pass state to sd_numa_mask()...
6251 	 */
6252 	sched_domains_curr_level = tl->numa_level;
6253 #endif
6254 
6255 	sd_weight = cpumask_weight(tl->mask(cpu));
6256 
6257 	if (tl->sd_flags)
6258 		sd_flags = (*tl->sd_flags)();
6259 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6260 			"wrong sd_flags in topology description\n"))
6261 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6262 
6263 	*sd = (struct sched_domain){
6264 		.min_interval		= sd_weight,
6265 		.max_interval		= 2*sd_weight,
6266 		.busy_factor		= 32,
6267 		.imbalance_pct		= 125,
6268 
6269 		.cache_nice_tries	= 0,
6270 		.busy_idx		= 0,
6271 		.idle_idx		= 0,
6272 		.newidle_idx		= 0,
6273 		.wake_idx		= 0,
6274 		.forkexec_idx		= 0,
6275 
6276 		.flags			= 1*SD_LOAD_BALANCE
6277 					| 1*SD_BALANCE_NEWIDLE
6278 					| 1*SD_BALANCE_EXEC
6279 					| 1*SD_BALANCE_FORK
6280 					| 0*SD_BALANCE_WAKE
6281 					| 1*SD_WAKE_AFFINE
6282 					| 0*SD_SHARE_CPUCAPACITY
6283 					| 0*SD_SHARE_PKG_RESOURCES
6284 					| 0*SD_SERIALIZE
6285 					| 0*SD_PREFER_SIBLING
6286 					| 0*SD_NUMA
6287 					| sd_flags
6288 					,
6289 
6290 		.last_balance		= jiffies,
6291 		.balance_interval	= sd_weight,
6292 		.smt_gain		= 0,
6293 		.max_newidle_lb_cost	= 0,
6294 		.next_decay_max_lb_cost	= jiffies,
6295 #ifdef CONFIG_SCHED_DEBUG
6296 		.name			= tl->name,
6297 #endif
6298 	};
6299 
6300 	/*
6301 	 * Convert topological properties into behaviour.
6302 	 */
6303 
6304 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6305 		sd->imbalance_pct = 110;
6306 		sd->smt_gain = 1178; /* ~15% */
6307 
6308 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6309 		sd->imbalance_pct = 117;
6310 		sd->cache_nice_tries = 1;
6311 		sd->busy_idx = 2;
6312 
6313 #ifdef CONFIG_NUMA
6314 	} else if (sd->flags & SD_NUMA) {
6315 		sd->cache_nice_tries = 2;
6316 		sd->busy_idx = 3;
6317 		sd->idle_idx = 2;
6318 
6319 		sd->flags |= SD_SERIALIZE;
6320 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6321 			sd->flags &= ~(SD_BALANCE_EXEC |
6322 				       SD_BALANCE_FORK |
6323 				       SD_WAKE_AFFINE);
6324 		}
6325 
6326 #endif
6327 	} else {
6328 		sd->flags |= SD_PREFER_SIBLING;
6329 		sd->cache_nice_tries = 1;
6330 		sd->busy_idx = 2;
6331 		sd->idle_idx = 1;
6332 	}
6333 
6334 	sd->private = &tl->data;
6335 
6336 	return sd;
6337 }
6338 
6339 /*
6340  * Topology list, bottom-up.
6341  */
6342 static struct sched_domain_topology_level default_topology[] = {
6343 #ifdef CONFIG_SCHED_SMT
6344 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6345 #endif
6346 #ifdef CONFIG_SCHED_MC
6347 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6348 #endif
6349 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6350 	{ NULL, },
6351 };
6352 
6353 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6354 
6355 #define for_each_sd_topology(tl)			\
6356 	for (tl = sched_domain_topology; tl->mask; tl++)
6357 
6358 void set_sched_topology(struct sched_domain_topology_level *tl)
6359 {
6360 	sched_domain_topology = tl;
6361 }
6362 
6363 #ifdef CONFIG_NUMA
6364 
6365 static const struct cpumask *sd_numa_mask(int cpu)
6366 {
6367 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6368 }
6369 
6370 static void sched_numa_warn(const char *str)
6371 {
6372 	static int done = false;
6373 	int i,j;
6374 
6375 	if (done)
6376 		return;
6377 
6378 	done = true;
6379 
6380 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6381 
6382 	for (i = 0; i < nr_node_ids; i++) {
6383 		printk(KERN_WARNING "  ");
6384 		for (j = 0; j < nr_node_ids; j++)
6385 			printk(KERN_CONT "%02d ", node_distance(i,j));
6386 		printk(KERN_CONT "\n");
6387 	}
6388 	printk(KERN_WARNING "\n");
6389 }
6390 
6391 bool find_numa_distance(int distance)
6392 {
6393 	int i;
6394 
6395 	if (distance == node_distance(0, 0))
6396 		return true;
6397 
6398 	for (i = 0; i < sched_domains_numa_levels; i++) {
6399 		if (sched_domains_numa_distance[i] == distance)
6400 			return true;
6401 	}
6402 
6403 	return false;
6404 }
6405 
6406 /*
6407  * A system can have three types of NUMA topology:
6408  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6409  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6410  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6411  *
6412  * The difference between a glueless mesh topology and a backplane
6413  * topology lies in whether communication between not directly
6414  * connected nodes goes through intermediary nodes (where programs
6415  * could run), or through backplane controllers. This affects
6416  * placement of programs.
6417  *
6418  * The type of topology can be discerned with the following tests:
6419  * - If the maximum distance between any nodes is 1 hop, the system
6420  *   is directly connected.
6421  * - If for two nodes A and B, located N > 1 hops away from each other,
6422  *   there is an intermediary node C, which is < N hops away from both
6423  *   nodes A and B, the system is a glueless mesh.
6424  */
6425 static void init_numa_topology_type(void)
6426 {
6427 	int a, b, c, n;
6428 
6429 	n = sched_max_numa_distance;
6430 
6431 	if (n <= 1)
6432 		sched_numa_topology_type = NUMA_DIRECT;
6433 
6434 	for_each_online_node(a) {
6435 		for_each_online_node(b) {
6436 			/* Find two nodes furthest removed from each other. */
6437 			if (node_distance(a, b) < n)
6438 				continue;
6439 
6440 			/* Is there an intermediary node between a and b? */
6441 			for_each_online_node(c) {
6442 				if (node_distance(a, c) < n &&
6443 				    node_distance(b, c) < n) {
6444 					sched_numa_topology_type =
6445 							NUMA_GLUELESS_MESH;
6446 					return;
6447 				}
6448 			}
6449 
6450 			sched_numa_topology_type = NUMA_BACKPLANE;
6451 			return;
6452 		}
6453 	}
6454 }
6455 
6456 static void sched_init_numa(void)
6457 {
6458 	int next_distance, curr_distance = node_distance(0, 0);
6459 	struct sched_domain_topology_level *tl;
6460 	int level = 0;
6461 	int i, j, k;
6462 
6463 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6464 	if (!sched_domains_numa_distance)
6465 		return;
6466 
6467 	/*
6468 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6469 	 * unique distances in the node_distance() table.
6470 	 *
6471 	 * Assumes node_distance(0,j) includes all distances in
6472 	 * node_distance(i,j) in order to avoid cubic time.
6473 	 */
6474 	next_distance = curr_distance;
6475 	for (i = 0; i < nr_node_ids; i++) {
6476 		for (j = 0; j < nr_node_ids; j++) {
6477 			for (k = 0; k < nr_node_ids; k++) {
6478 				int distance = node_distance(i, k);
6479 
6480 				if (distance > curr_distance &&
6481 				    (distance < next_distance ||
6482 				     next_distance == curr_distance))
6483 					next_distance = distance;
6484 
6485 				/*
6486 				 * While not a strong assumption it would be nice to know
6487 				 * about cases where if node A is connected to B, B is not
6488 				 * equally connected to A.
6489 				 */
6490 				if (sched_debug() && node_distance(k, i) != distance)
6491 					sched_numa_warn("Node-distance not symmetric");
6492 
6493 				if (sched_debug() && i && !find_numa_distance(distance))
6494 					sched_numa_warn("Node-0 not representative");
6495 			}
6496 			if (next_distance != curr_distance) {
6497 				sched_domains_numa_distance[level++] = next_distance;
6498 				sched_domains_numa_levels = level;
6499 				curr_distance = next_distance;
6500 			} else break;
6501 		}
6502 
6503 		/*
6504 		 * In case of sched_debug() we verify the above assumption.
6505 		 */
6506 		if (!sched_debug())
6507 			break;
6508 	}
6509 
6510 	if (!level)
6511 		return;
6512 
6513 	/*
6514 	 * 'level' contains the number of unique distances, excluding the
6515 	 * identity distance node_distance(i,i).
6516 	 *
6517 	 * The sched_domains_numa_distance[] array includes the actual distance
6518 	 * numbers.
6519 	 */
6520 
6521 	/*
6522 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6523 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6524 	 * the array will contain less then 'level' members. This could be
6525 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6526 	 * in other functions.
6527 	 *
6528 	 * We reset it to 'level' at the end of this function.
6529 	 */
6530 	sched_domains_numa_levels = 0;
6531 
6532 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6533 	if (!sched_domains_numa_masks)
6534 		return;
6535 
6536 	/*
6537 	 * Now for each level, construct a mask per node which contains all
6538 	 * cpus of nodes that are that many hops away from us.
6539 	 */
6540 	for (i = 0; i < level; i++) {
6541 		sched_domains_numa_masks[i] =
6542 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6543 		if (!sched_domains_numa_masks[i])
6544 			return;
6545 
6546 		for (j = 0; j < nr_node_ids; j++) {
6547 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6548 			if (!mask)
6549 				return;
6550 
6551 			sched_domains_numa_masks[i][j] = mask;
6552 
6553 			for (k = 0; k < nr_node_ids; k++) {
6554 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6555 					continue;
6556 
6557 				cpumask_or(mask, mask, cpumask_of_node(k));
6558 			}
6559 		}
6560 	}
6561 
6562 	/* Compute default topology size */
6563 	for (i = 0; sched_domain_topology[i].mask; i++);
6564 
6565 	tl = kzalloc((i + level + 1) *
6566 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6567 	if (!tl)
6568 		return;
6569 
6570 	/*
6571 	 * Copy the default topology bits..
6572 	 */
6573 	for (i = 0; sched_domain_topology[i].mask; i++)
6574 		tl[i] = sched_domain_topology[i];
6575 
6576 	/*
6577 	 * .. and append 'j' levels of NUMA goodness.
6578 	 */
6579 	for (j = 0; j < level; i++, j++) {
6580 		tl[i] = (struct sched_domain_topology_level){
6581 			.mask = sd_numa_mask,
6582 			.sd_flags = cpu_numa_flags,
6583 			.flags = SDTL_OVERLAP,
6584 			.numa_level = j,
6585 			SD_INIT_NAME(NUMA)
6586 		};
6587 	}
6588 
6589 	sched_domain_topology = tl;
6590 
6591 	sched_domains_numa_levels = level;
6592 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6593 
6594 	init_numa_topology_type();
6595 }
6596 
6597 static void sched_domains_numa_masks_set(int cpu)
6598 {
6599 	int i, j;
6600 	int node = cpu_to_node(cpu);
6601 
6602 	for (i = 0; i < sched_domains_numa_levels; i++) {
6603 		for (j = 0; j < nr_node_ids; j++) {
6604 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6605 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6606 		}
6607 	}
6608 }
6609 
6610 static void sched_domains_numa_masks_clear(int cpu)
6611 {
6612 	int i, j;
6613 	for (i = 0; i < sched_domains_numa_levels; i++) {
6614 		for (j = 0; j < nr_node_ids; j++)
6615 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6616 	}
6617 }
6618 
6619 /*
6620  * Update sched_domains_numa_masks[level][node] array when new cpus
6621  * are onlined.
6622  */
6623 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6624 					   unsigned long action,
6625 					   void *hcpu)
6626 {
6627 	int cpu = (long)hcpu;
6628 
6629 	switch (action & ~CPU_TASKS_FROZEN) {
6630 	case CPU_ONLINE:
6631 		sched_domains_numa_masks_set(cpu);
6632 		break;
6633 
6634 	case CPU_DEAD:
6635 		sched_domains_numa_masks_clear(cpu);
6636 		break;
6637 
6638 	default:
6639 		return NOTIFY_DONE;
6640 	}
6641 
6642 	return NOTIFY_OK;
6643 }
6644 #else
6645 static inline void sched_init_numa(void)
6646 {
6647 }
6648 
6649 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6650 					   unsigned long action,
6651 					   void *hcpu)
6652 {
6653 	return 0;
6654 }
6655 #endif /* CONFIG_NUMA */
6656 
6657 static int __sdt_alloc(const struct cpumask *cpu_map)
6658 {
6659 	struct sched_domain_topology_level *tl;
6660 	int j;
6661 
6662 	for_each_sd_topology(tl) {
6663 		struct sd_data *sdd = &tl->data;
6664 
6665 		sdd->sd = alloc_percpu(struct sched_domain *);
6666 		if (!sdd->sd)
6667 			return -ENOMEM;
6668 
6669 		sdd->sg = alloc_percpu(struct sched_group *);
6670 		if (!sdd->sg)
6671 			return -ENOMEM;
6672 
6673 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6674 		if (!sdd->sgc)
6675 			return -ENOMEM;
6676 
6677 		for_each_cpu(j, cpu_map) {
6678 			struct sched_domain *sd;
6679 			struct sched_group *sg;
6680 			struct sched_group_capacity *sgc;
6681 
6682 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6683 					GFP_KERNEL, cpu_to_node(j));
6684 			if (!sd)
6685 				return -ENOMEM;
6686 
6687 			*per_cpu_ptr(sdd->sd, j) = sd;
6688 
6689 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6690 					GFP_KERNEL, cpu_to_node(j));
6691 			if (!sg)
6692 				return -ENOMEM;
6693 
6694 			sg->next = sg;
6695 
6696 			*per_cpu_ptr(sdd->sg, j) = sg;
6697 
6698 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6699 					GFP_KERNEL, cpu_to_node(j));
6700 			if (!sgc)
6701 				return -ENOMEM;
6702 
6703 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6704 		}
6705 	}
6706 
6707 	return 0;
6708 }
6709 
6710 static void __sdt_free(const struct cpumask *cpu_map)
6711 {
6712 	struct sched_domain_topology_level *tl;
6713 	int j;
6714 
6715 	for_each_sd_topology(tl) {
6716 		struct sd_data *sdd = &tl->data;
6717 
6718 		for_each_cpu(j, cpu_map) {
6719 			struct sched_domain *sd;
6720 
6721 			if (sdd->sd) {
6722 				sd = *per_cpu_ptr(sdd->sd, j);
6723 				if (sd && (sd->flags & SD_OVERLAP))
6724 					free_sched_groups(sd->groups, 0);
6725 				kfree(*per_cpu_ptr(sdd->sd, j));
6726 			}
6727 
6728 			if (sdd->sg)
6729 				kfree(*per_cpu_ptr(sdd->sg, j));
6730 			if (sdd->sgc)
6731 				kfree(*per_cpu_ptr(sdd->sgc, j));
6732 		}
6733 		free_percpu(sdd->sd);
6734 		sdd->sd = NULL;
6735 		free_percpu(sdd->sg);
6736 		sdd->sg = NULL;
6737 		free_percpu(sdd->sgc);
6738 		sdd->sgc = NULL;
6739 	}
6740 }
6741 
6742 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6743 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6744 		struct sched_domain *child, int cpu)
6745 {
6746 	struct sched_domain *sd = sd_init(tl, cpu);
6747 	if (!sd)
6748 		return child;
6749 
6750 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6751 	if (child) {
6752 		sd->level = child->level + 1;
6753 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6754 		child->parent = sd;
6755 		sd->child = child;
6756 
6757 		if (!cpumask_subset(sched_domain_span(child),
6758 				    sched_domain_span(sd))) {
6759 			pr_err("BUG: arch topology borken\n");
6760 #ifdef CONFIG_SCHED_DEBUG
6761 			pr_err("     the %s domain not a subset of the %s domain\n",
6762 					child->name, sd->name);
6763 #endif
6764 			/* Fixup, ensure @sd has at least @child cpus. */
6765 			cpumask_or(sched_domain_span(sd),
6766 				   sched_domain_span(sd),
6767 				   sched_domain_span(child));
6768 		}
6769 
6770 	}
6771 	set_domain_attribute(sd, attr);
6772 
6773 	return sd;
6774 }
6775 
6776 /*
6777  * Build sched domains for a given set of cpus and attach the sched domains
6778  * to the individual cpus
6779  */
6780 static int build_sched_domains(const struct cpumask *cpu_map,
6781 			       struct sched_domain_attr *attr)
6782 {
6783 	enum s_alloc alloc_state;
6784 	struct sched_domain *sd;
6785 	struct s_data d;
6786 	int i, ret = -ENOMEM;
6787 
6788 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6789 	if (alloc_state != sa_rootdomain)
6790 		goto error;
6791 
6792 	/* Set up domains for cpus specified by the cpu_map. */
6793 	for_each_cpu(i, cpu_map) {
6794 		struct sched_domain_topology_level *tl;
6795 
6796 		sd = NULL;
6797 		for_each_sd_topology(tl) {
6798 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6799 			if (tl == sched_domain_topology)
6800 				*per_cpu_ptr(d.sd, i) = sd;
6801 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6802 				sd->flags |= SD_OVERLAP;
6803 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6804 				break;
6805 		}
6806 	}
6807 
6808 	/* Build the groups for the domains */
6809 	for_each_cpu(i, cpu_map) {
6810 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6811 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6812 			if (sd->flags & SD_OVERLAP) {
6813 				if (build_overlap_sched_groups(sd, i))
6814 					goto error;
6815 			} else {
6816 				if (build_sched_groups(sd, i))
6817 					goto error;
6818 			}
6819 		}
6820 	}
6821 
6822 	/* Calculate CPU capacity for physical packages and nodes */
6823 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6824 		if (!cpumask_test_cpu(i, cpu_map))
6825 			continue;
6826 
6827 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6828 			claim_allocations(i, sd);
6829 			init_sched_groups_capacity(i, sd);
6830 		}
6831 	}
6832 
6833 	/* Attach the domains */
6834 	rcu_read_lock();
6835 	for_each_cpu(i, cpu_map) {
6836 		sd = *per_cpu_ptr(d.sd, i);
6837 		cpu_attach_domain(sd, d.rd, i);
6838 	}
6839 	rcu_read_unlock();
6840 
6841 	ret = 0;
6842 error:
6843 	__free_domain_allocs(&d, alloc_state, cpu_map);
6844 	return ret;
6845 }
6846 
6847 static cpumask_var_t *doms_cur;	/* current sched domains */
6848 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6849 static struct sched_domain_attr *dattr_cur;
6850 				/* attribues of custom domains in 'doms_cur' */
6851 
6852 /*
6853  * Special case: If a kmalloc of a doms_cur partition (array of
6854  * cpumask) fails, then fallback to a single sched domain,
6855  * as determined by the single cpumask fallback_doms.
6856  */
6857 static cpumask_var_t fallback_doms;
6858 
6859 /*
6860  * arch_update_cpu_topology lets virtualized architectures update the
6861  * cpu core maps. It is supposed to return 1 if the topology changed
6862  * or 0 if it stayed the same.
6863  */
6864 int __weak arch_update_cpu_topology(void)
6865 {
6866 	return 0;
6867 }
6868 
6869 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6870 {
6871 	int i;
6872 	cpumask_var_t *doms;
6873 
6874 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6875 	if (!doms)
6876 		return NULL;
6877 	for (i = 0; i < ndoms; i++) {
6878 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6879 			free_sched_domains(doms, i);
6880 			return NULL;
6881 		}
6882 	}
6883 	return doms;
6884 }
6885 
6886 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6887 {
6888 	unsigned int i;
6889 	for (i = 0; i < ndoms; i++)
6890 		free_cpumask_var(doms[i]);
6891 	kfree(doms);
6892 }
6893 
6894 /*
6895  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6896  * For now this just excludes isolated cpus, but could be used to
6897  * exclude other special cases in the future.
6898  */
6899 static int init_sched_domains(const struct cpumask *cpu_map)
6900 {
6901 	int err;
6902 
6903 	arch_update_cpu_topology();
6904 	ndoms_cur = 1;
6905 	doms_cur = alloc_sched_domains(ndoms_cur);
6906 	if (!doms_cur)
6907 		doms_cur = &fallback_doms;
6908 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6909 	err = build_sched_domains(doms_cur[0], NULL);
6910 	register_sched_domain_sysctl();
6911 
6912 	return err;
6913 }
6914 
6915 /*
6916  * Detach sched domains from a group of cpus specified in cpu_map
6917  * These cpus will now be attached to the NULL domain
6918  */
6919 static void detach_destroy_domains(const struct cpumask *cpu_map)
6920 {
6921 	int i;
6922 
6923 	rcu_read_lock();
6924 	for_each_cpu(i, cpu_map)
6925 		cpu_attach_domain(NULL, &def_root_domain, i);
6926 	rcu_read_unlock();
6927 }
6928 
6929 /* handle null as "default" */
6930 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6931 			struct sched_domain_attr *new, int idx_new)
6932 {
6933 	struct sched_domain_attr tmp;
6934 
6935 	/* fast path */
6936 	if (!new && !cur)
6937 		return 1;
6938 
6939 	tmp = SD_ATTR_INIT;
6940 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6941 			new ? (new + idx_new) : &tmp,
6942 			sizeof(struct sched_domain_attr));
6943 }
6944 
6945 /*
6946  * Partition sched domains as specified by the 'ndoms_new'
6947  * cpumasks in the array doms_new[] of cpumasks. This compares
6948  * doms_new[] to the current sched domain partitioning, doms_cur[].
6949  * It destroys each deleted domain and builds each new domain.
6950  *
6951  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6952  * The masks don't intersect (don't overlap.) We should setup one
6953  * sched domain for each mask. CPUs not in any of the cpumasks will
6954  * not be load balanced. If the same cpumask appears both in the
6955  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6956  * it as it is.
6957  *
6958  * The passed in 'doms_new' should be allocated using
6959  * alloc_sched_domains.  This routine takes ownership of it and will
6960  * free_sched_domains it when done with it. If the caller failed the
6961  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6962  * and partition_sched_domains() will fallback to the single partition
6963  * 'fallback_doms', it also forces the domains to be rebuilt.
6964  *
6965  * If doms_new == NULL it will be replaced with cpu_online_mask.
6966  * ndoms_new == 0 is a special case for destroying existing domains,
6967  * and it will not create the default domain.
6968  *
6969  * Call with hotplug lock held
6970  */
6971 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6972 			     struct sched_domain_attr *dattr_new)
6973 {
6974 	int i, j, n;
6975 	int new_topology;
6976 
6977 	mutex_lock(&sched_domains_mutex);
6978 
6979 	/* always unregister in case we don't destroy any domains */
6980 	unregister_sched_domain_sysctl();
6981 
6982 	/* Let architecture update cpu core mappings. */
6983 	new_topology = arch_update_cpu_topology();
6984 
6985 	n = doms_new ? ndoms_new : 0;
6986 
6987 	/* Destroy deleted domains */
6988 	for (i = 0; i < ndoms_cur; i++) {
6989 		for (j = 0; j < n && !new_topology; j++) {
6990 			if (cpumask_equal(doms_cur[i], doms_new[j])
6991 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6992 				goto match1;
6993 		}
6994 		/* no match - a current sched domain not in new doms_new[] */
6995 		detach_destroy_domains(doms_cur[i]);
6996 match1:
6997 		;
6998 	}
6999 
7000 	n = ndoms_cur;
7001 	if (doms_new == NULL) {
7002 		n = 0;
7003 		doms_new = &fallback_doms;
7004 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7005 		WARN_ON_ONCE(dattr_new);
7006 	}
7007 
7008 	/* Build new domains */
7009 	for (i = 0; i < ndoms_new; i++) {
7010 		for (j = 0; j < n && !new_topology; j++) {
7011 			if (cpumask_equal(doms_new[i], doms_cur[j])
7012 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7013 				goto match2;
7014 		}
7015 		/* no match - add a new doms_new */
7016 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7017 match2:
7018 		;
7019 	}
7020 
7021 	/* Remember the new sched domains */
7022 	if (doms_cur != &fallback_doms)
7023 		free_sched_domains(doms_cur, ndoms_cur);
7024 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7025 	doms_cur = doms_new;
7026 	dattr_cur = dattr_new;
7027 	ndoms_cur = ndoms_new;
7028 
7029 	register_sched_domain_sysctl();
7030 
7031 	mutex_unlock(&sched_domains_mutex);
7032 }
7033 
7034 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7035 
7036 /*
7037  * Update cpusets according to cpu_active mask.  If cpusets are
7038  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7039  * around partition_sched_domains().
7040  *
7041  * If we come here as part of a suspend/resume, don't touch cpusets because we
7042  * want to restore it back to its original state upon resume anyway.
7043  */
7044 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7045 			     void *hcpu)
7046 {
7047 	switch (action) {
7048 	case CPU_ONLINE_FROZEN:
7049 	case CPU_DOWN_FAILED_FROZEN:
7050 
7051 		/*
7052 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7053 		 * resume sequence. As long as this is not the last online
7054 		 * operation in the resume sequence, just build a single sched
7055 		 * domain, ignoring cpusets.
7056 		 */
7057 		num_cpus_frozen--;
7058 		if (likely(num_cpus_frozen)) {
7059 			partition_sched_domains(1, NULL, NULL);
7060 			break;
7061 		}
7062 
7063 		/*
7064 		 * This is the last CPU online operation. So fall through and
7065 		 * restore the original sched domains by considering the
7066 		 * cpuset configurations.
7067 		 */
7068 
7069 	case CPU_ONLINE:
7070 	case CPU_DOWN_FAILED:
7071 		cpuset_update_active_cpus(true);
7072 		break;
7073 	default:
7074 		return NOTIFY_DONE;
7075 	}
7076 	return NOTIFY_OK;
7077 }
7078 
7079 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7080 			       void *hcpu)
7081 {
7082 	switch (action) {
7083 	case CPU_DOWN_PREPARE:
7084 		cpuset_update_active_cpus(false);
7085 		break;
7086 	case CPU_DOWN_PREPARE_FROZEN:
7087 		num_cpus_frozen++;
7088 		partition_sched_domains(1, NULL, NULL);
7089 		break;
7090 	default:
7091 		return NOTIFY_DONE;
7092 	}
7093 	return NOTIFY_OK;
7094 }
7095 
7096 void __init sched_init_smp(void)
7097 {
7098 	cpumask_var_t non_isolated_cpus;
7099 
7100 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7101 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7102 
7103 	sched_init_numa();
7104 
7105 	/*
7106 	 * There's no userspace yet to cause hotplug operations; hence all the
7107 	 * cpu masks are stable and all blatant races in the below code cannot
7108 	 * happen.
7109 	 */
7110 	mutex_lock(&sched_domains_mutex);
7111 	init_sched_domains(cpu_active_mask);
7112 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7113 	if (cpumask_empty(non_isolated_cpus))
7114 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7115 	mutex_unlock(&sched_domains_mutex);
7116 
7117 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7118 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7119 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7120 
7121 	init_hrtick();
7122 
7123 	/* Move init over to a non-isolated CPU */
7124 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7125 		BUG();
7126 	sched_init_granularity();
7127 	free_cpumask_var(non_isolated_cpus);
7128 
7129 	init_sched_rt_class();
7130 	init_sched_dl_class();
7131 }
7132 #else
7133 void __init sched_init_smp(void)
7134 {
7135 	sched_init_granularity();
7136 }
7137 #endif /* CONFIG_SMP */
7138 
7139 const_debug unsigned int sysctl_timer_migration = 1;
7140 
7141 int in_sched_functions(unsigned long addr)
7142 {
7143 	return in_lock_functions(addr) ||
7144 		(addr >= (unsigned long)__sched_text_start
7145 		&& addr < (unsigned long)__sched_text_end);
7146 }
7147 
7148 #ifdef CONFIG_CGROUP_SCHED
7149 /*
7150  * Default task group.
7151  * Every task in system belongs to this group at bootup.
7152  */
7153 struct task_group root_task_group;
7154 LIST_HEAD(task_groups);
7155 #endif
7156 
7157 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7158 
7159 void __init sched_init(void)
7160 {
7161 	int i, j;
7162 	unsigned long alloc_size = 0, ptr;
7163 
7164 #ifdef CONFIG_FAIR_GROUP_SCHED
7165 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7166 #endif
7167 #ifdef CONFIG_RT_GROUP_SCHED
7168 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7169 #endif
7170 	if (alloc_size) {
7171 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7172 
7173 #ifdef CONFIG_FAIR_GROUP_SCHED
7174 		root_task_group.se = (struct sched_entity **)ptr;
7175 		ptr += nr_cpu_ids * sizeof(void **);
7176 
7177 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7178 		ptr += nr_cpu_ids * sizeof(void **);
7179 
7180 #endif /* CONFIG_FAIR_GROUP_SCHED */
7181 #ifdef CONFIG_RT_GROUP_SCHED
7182 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7183 		ptr += nr_cpu_ids * sizeof(void **);
7184 
7185 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7186 		ptr += nr_cpu_ids * sizeof(void **);
7187 
7188 #endif /* CONFIG_RT_GROUP_SCHED */
7189 	}
7190 #ifdef CONFIG_CPUMASK_OFFSTACK
7191 	for_each_possible_cpu(i) {
7192 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7193 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7194 	}
7195 #endif /* CONFIG_CPUMASK_OFFSTACK */
7196 
7197 	init_rt_bandwidth(&def_rt_bandwidth,
7198 			global_rt_period(), global_rt_runtime());
7199 	init_dl_bandwidth(&def_dl_bandwidth,
7200 			global_rt_period(), global_rt_runtime());
7201 
7202 #ifdef CONFIG_SMP
7203 	init_defrootdomain();
7204 #endif
7205 
7206 #ifdef CONFIG_RT_GROUP_SCHED
7207 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7208 			global_rt_period(), global_rt_runtime());
7209 #endif /* CONFIG_RT_GROUP_SCHED */
7210 
7211 #ifdef CONFIG_CGROUP_SCHED
7212 	list_add(&root_task_group.list, &task_groups);
7213 	INIT_LIST_HEAD(&root_task_group.children);
7214 	INIT_LIST_HEAD(&root_task_group.siblings);
7215 	autogroup_init(&init_task);
7216 
7217 #endif /* CONFIG_CGROUP_SCHED */
7218 
7219 	for_each_possible_cpu(i) {
7220 		struct rq *rq;
7221 
7222 		rq = cpu_rq(i);
7223 		raw_spin_lock_init(&rq->lock);
7224 		rq->nr_running = 0;
7225 		rq->calc_load_active = 0;
7226 		rq->calc_load_update = jiffies + LOAD_FREQ;
7227 		init_cfs_rq(&rq->cfs);
7228 		init_rt_rq(&rq->rt, rq);
7229 		init_dl_rq(&rq->dl, rq);
7230 #ifdef CONFIG_FAIR_GROUP_SCHED
7231 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7232 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7233 		/*
7234 		 * How much cpu bandwidth does root_task_group get?
7235 		 *
7236 		 * In case of task-groups formed thr' the cgroup filesystem, it
7237 		 * gets 100% of the cpu resources in the system. This overall
7238 		 * system cpu resource is divided among the tasks of
7239 		 * root_task_group and its child task-groups in a fair manner,
7240 		 * based on each entity's (task or task-group's) weight
7241 		 * (se->load.weight).
7242 		 *
7243 		 * In other words, if root_task_group has 10 tasks of weight
7244 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7245 		 * then A0's share of the cpu resource is:
7246 		 *
7247 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7248 		 *
7249 		 * We achieve this by letting root_task_group's tasks sit
7250 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7251 		 */
7252 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7253 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7254 #endif /* CONFIG_FAIR_GROUP_SCHED */
7255 
7256 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7257 #ifdef CONFIG_RT_GROUP_SCHED
7258 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7259 #endif
7260 
7261 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7262 			rq->cpu_load[j] = 0;
7263 
7264 		rq->last_load_update_tick = jiffies;
7265 
7266 #ifdef CONFIG_SMP
7267 		rq->sd = NULL;
7268 		rq->rd = NULL;
7269 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7270 		rq->post_schedule = 0;
7271 		rq->active_balance = 0;
7272 		rq->next_balance = jiffies;
7273 		rq->push_cpu = 0;
7274 		rq->cpu = i;
7275 		rq->online = 0;
7276 		rq->idle_stamp = 0;
7277 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7278 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7279 
7280 		INIT_LIST_HEAD(&rq->cfs_tasks);
7281 
7282 		rq_attach_root(rq, &def_root_domain);
7283 #ifdef CONFIG_NO_HZ_COMMON
7284 		rq->nohz_flags = 0;
7285 #endif
7286 #ifdef CONFIG_NO_HZ_FULL
7287 		rq->last_sched_tick = 0;
7288 #endif
7289 #endif
7290 		init_rq_hrtick(rq);
7291 		atomic_set(&rq->nr_iowait, 0);
7292 	}
7293 
7294 	set_load_weight(&init_task);
7295 
7296 #ifdef CONFIG_PREEMPT_NOTIFIERS
7297 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7298 #endif
7299 
7300 	/*
7301 	 * The boot idle thread does lazy MMU switching as well:
7302 	 */
7303 	atomic_inc(&init_mm.mm_count);
7304 	enter_lazy_tlb(&init_mm, current);
7305 
7306 	/*
7307 	 * During early bootup we pretend to be a normal task:
7308 	 */
7309 	current->sched_class = &fair_sched_class;
7310 
7311 	/*
7312 	 * Make us the idle thread. Technically, schedule() should not be
7313 	 * called from this thread, however somewhere below it might be,
7314 	 * but because we are the idle thread, we just pick up running again
7315 	 * when this runqueue becomes "idle".
7316 	 */
7317 	init_idle(current, smp_processor_id());
7318 
7319 	calc_load_update = jiffies + LOAD_FREQ;
7320 
7321 #ifdef CONFIG_SMP
7322 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7323 	/* May be allocated at isolcpus cmdline parse time */
7324 	if (cpu_isolated_map == NULL)
7325 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7326 	idle_thread_set_boot_cpu();
7327 	set_cpu_rq_start_time();
7328 #endif
7329 	init_sched_fair_class();
7330 
7331 	scheduler_running = 1;
7332 }
7333 
7334 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7335 static inline int preempt_count_equals(int preempt_offset)
7336 {
7337 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7338 
7339 	return (nested == preempt_offset);
7340 }
7341 
7342 void __might_sleep(const char *file, int line, int preempt_offset)
7343 {
7344 	/*
7345 	 * Blocking primitives will set (and therefore destroy) current->state,
7346 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7347 	 * otherwise we will destroy state.
7348 	 */
7349 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7350 			"do not call blocking ops when !TASK_RUNNING; "
7351 			"state=%lx set at [<%p>] %pS\n",
7352 			current->state,
7353 			(void *)current->task_state_change,
7354 			(void *)current->task_state_change);
7355 
7356 	___might_sleep(file, line, preempt_offset);
7357 }
7358 EXPORT_SYMBOL(__might_sleep);
7359 
7360 void ___might_sleep(const char *file, int line, int preempt_offset)
7361 {
7362 	static unsigned long prev_jiffy;	/* ratelimiting */
7363 
7364 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7365 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7366 	     !is_idle_task(current)) ||
7367 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7368 		return;
7369 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7370 		return;
7371 	prev_jiffy = jiffies;
7372 
7373 	printk(KERN_ERR
7374 		"BUG: sleeping function called from invalid context at %s:%d\n",
7375 			file, line);
7376 	printk(KERN_ERR
7377 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7378 			in_atomic(), irqs_disabled(),
7379 			current->pid, current->comm);
7380 
7381 	if (task_stack_end_corrupted(current))
7382 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7383 
7384 	debug_show_held_locks(current);
7385 	if (irqs_disabled())
7386 		print_irqtrace_events(current);
7387 #ifdef CONFIG_DEBUG_PREEMPT
7388 	if (!preempt_count_equals(preempt_offset)) {
7389 		pr_err("Preemption disabled at:");
7390 		print_ip_sym(current->preempt_disable_ip);
7391 		pr_cont("\n");
7392 	}
7393 #endif
7394 	dump_stack();
7395 }
7396 EXPORT_SYMBOL(___might_sleep);
7397 #endif
7398 
7399 #ifdef CONFIG_MAGIC_SYSRQ
7400 static void normalize_task(struct rq *rq, struct task_struct *p)
7401 {
7402 	const struct sched_class *prev_class = p->sched_class;
7403 	struct sched_attr attr = {
7404 		.sched_policy = SCHED_NORMAL,
7405 	};
7406 	int old_prio = p->prio;
7407 	int queued;
7408 
7409 	queued = task_on_rq_queued(p);
7410 	if (queued)
7411 		dequeue_task(rq, p, 0);
7412 	__setscheduler(rq, p, &attr);
7413 	if (queued) {
7414 		enqueue_task(rq, p, 0);
7415 		resched_curr(rq);
7416 	}
7417 
7418 	check_class_changed(rq, p, prev_class, old_prio);
7419 }
7420 
7421 void normalize_rt_tasks(void)
7422 {
7423 	struct task_struct *g, *p;
7424 	unsigned long flags;
7425 	struct rq *rq;
7426 
7427 	read_lock(&tasklist_lock);
7428 	for_each_process_thread(g, p) {
7429 		/*
7430 		 * Only normalize user tasks:
7431 		 */
7432 		if (p->flags & PF_KTHREAD)
7433 			continue;
7434 
7435 		p->se.exec_start		= 0;
7436 #ifdef CONFIG_SCHEDSTATS
7437 		p->se.statistics.wait_start	= 0;
7438 		p->se.statistics.sleep_start	= 0;
7439 		p->se.statistics.block_start	= 0;
7440 #endif
7441 
7442 		if (!dl_task(p) && !rt_task(p)) {
7443 			/*
7444 			 * Renice negative nice level userspace
7445 			 * tasks back to 0:
7446 			 */
7447 			if (task_nice(p) < 0)
7448 				set_user_nice(p, 0);
7449 			continue;
7450 		}
7451 
7452 		rq = task_rq_lock(p, &flags);
7453 		normalize_task(rq, p);
7454 		task_rq_unlock(rq, p, &flags);
7455 	}
7456 	read_unlock(&tasklist_lock);
7457 }
7458 
7459 #endif /* CONFIG_MAGIC_SYSRQ */
7460 
7461 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7462 /*
7463  * These functions are only useful for the IA64 MCA handling, or kdb.
7464  *
7465  * They can only be called when the whole system has been
7466  * stopped - every CPU needs to be quiescent, and no scheduling
7467  * activity can take place. Using them for anything else would
7468  * be a serious bug, and as a result, they aren't even visible
7469  * under any other configuration.
7470  */
7471 
7472 /**
7473  * curr_task - return the current task for a given cpu.
7474  * @cpu: the processor in question.
7475  *
7476  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7477  *
7478  * Return: The current task for @cpu.
7479  */
7480 struct task_struct *curr_task(int cpu)
7481 {
7482 	return cpu_curr(cpu);
7483 }
7484 
7485 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7486 
7487 #ifdef CONFIG_IA64
7488 /**
7489  * set_curr_task - set the current task for a given cpu.
7490  * @cpu: the processor in question.
7491  * @p: the task pointer to set.
7492  *
7493  * Description: This function must only be used when non-maskable interrupts
7494  * are serviced on a separate stack. It allows the architecture to switch the
7495  * notion of the current task on a cpu in a non-blocking manner. This function
7496  * must be called with all CPU's synchronized, and interrupts disabled, the
7497  * and caller must save the original value of the current task (see
7498  * curr_task() above) and restore that value before reenabling interrupts and
7499  * re-starting the system.
7500  *
7501  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7502  */
7503 void set_curr_task(int cpu, struct task_struct *p)
7504 {
7505 	cpu_curr(cpu) = p;
7506 }
7507 
7508 #endif
7509 
7510 #ifdef CONFIG_CGROUP_SCHED
7511 /* task_group_lock serializes the addition/removal of task groups */
7512 static DEFINE_SPINLOCK(task_group_lock);
7513 
7514 static void free_sched_group(struct task_group *tg)
7515 {
7516 	free_fair_sched_group(tg);
7517 	free_rt_sched_group(tg);
7518 	autogroup_free(tg);
7519 	kfree(tg);
7520 }
7521 
7522 /* allocate runqueue etc for a new task group */
7523 struct task_group *sched_create_group(struct task_group *parent)
7524 {
7525 	struct task_group *tg;
7526 
7527 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7528 	if (!tg)
7529 		return ERR_PTR(-ENOMEM);
7530 
7531 	if (!alloc_fair_sched_group(tg, parent))
7532 		goto err;
7533 
7534 	if (!alloc_rt_sched_group(tg, parent))
7535 		goto err;
7536 
7537 	return tg;
7538 
7539 err:
7540 	free_sched_group(tg);
7541 	return ERR_PTR(-ENOMEM);
7542 }
7543 
7544 void sched_online_group(struct task_group *tg, struct task_group *parent)
7545 {
7546 	unsigned long flags;
7547 
7548 	spin_lock_irqsave(&task_group_lock, flags);
7549 	list_add_rcu(&tg->list, &task_groups);
7550 
7551 	WARN_ON(!parent); /* root should already exist */
7552 
7553 	tg->parent = parent;
7554 	INIT_LIST_HEAD(&tg->children);
7555 	list_add_rcu(&tg->siblings, &parent->children);
7556 	spin_unlock_irqrestore(&task_group_lock, flags);
7557 }
7558 
7559 /* rcu callback to free various structures associated with a task group */
7560 static void free_sched_group_rcu(struct rcu_head *rhp)
7561 {
7562 	/* now it should be safe to free those cfs_rqs */
7563 	free_sched_group(container_of(rhp, struct task_group, rcu));
7564 }
7565 
7566 /* Destroy runqueue etc associated with a task group */
7567 void sched_destroy_group(struct task_group *tg)
7568 {
7569 	/* wait for possible concurrent references to cfs_rqs complete */
7570 	call_rcu(&tg->rcu, free_sched_group_rcu);
7571 }
7572 
7573 void sched_offline_group(struct task_group *tg)
7574 {
7575 	unsigned long flags;
7576 	int i;
7577 
7578 	/* end participation in shares distribution */
7579 	for_each_possible_cpu(i)
7580 		unregister_fair_sched_group(tg, i);
7581 
7582 	spin_lock_irqsave(&task_group_lock, flags);
7583 	list_del_rcu(&tg->list);
7584 	list_del_rcu(&tg->siblings);
7585 	spin_unlock_irqrestore(&task_group_lock, flags);
7586 }
7587 
7588 /* change task's runqueue when it moves between groups.
7589  *	The caller of this function should have put the task in its new group
7590  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7591  *	reflect its new group.
7592  */
7593 void sched_move_task(struct task_struct *tsk)
7594 {
7595 	struct task_group *tg;
7596 	int queued, running;
7597 	unsigned long flags;
7598 	struct rq *rq;
7599 
7600 	rq = task_rq_lock(tsk, &flags);
7601 
7602 	running = task_current(rq, tsk);
7603 	queued = task_on_rq_queued(tsk);
7604 
7605 	if (queued)
7606 		dequeue_task(rq, tsk, 0);
7607 	if (unlikely(running))
7608 		put_prev_task(rq, tsk);
7609 
7610 	/*
7611 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7612 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7613 	 * to prevent lockdep warnings.
7614 	 */
7615 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7616 			  struct task_group, css);
7617 	tg = autogroup_task_group(tsk, tg);
7618 	tsk->sched_task_group = tg;
7619 
7620 #ifdef CONFIG_FAIR_GROUP_SCHED
7621 	if (tsk->sched_class->task_move_group)
7622 		tsk->sched_class->task_move_group(tsk, queued);
7623 	else
7624 #endif
7625 		set_task_rq(tsk, task_cpu(tsk));
7626 
7627 	if (unlikely(running))
7628 		tsk->sched_class->set_curr_task(rq);
7629 	if (queued)
7630 		enqueue_task(rq, tsk, 0);
7631 
7632 	task_rq_unlock(rq, tsk, &flags);
7633 }
7634 #endif /* CONFIG_CGROUP_SCHED */
7635 
7636 #ifdef CONFIG_RT_GROUP_SCHED
7637 /*
7638  * Ensure that the real time constraints are schedulable.
7639  */
7640 static DEFINE_MUTEX(rt_constraints_mutex);
7641 
7642 /* Must be called with tasklist_lock held */
7643 static inline int tg_has_rt_tasks(struct task_group *tg)
7644 {
7645 	struct task_struct *g, *p;
7646 
7647 	for_each_process_thread(g, p) {
7648 		if (rt_task(p) && task_group(p) == tg)
7649 			return 1;
7650 	}
7651 
7652 	return 0;
7653 }
7654 
7655 struct rt_schedulable_data {
7656 	struct task_group *tg;
7657 	u64 rt_period;
7658 	u64 rt_runtime;
7659 };
7660 
7661 static int tg_rt_schedulable(struct task_group *tg, void *data)
7662 {
7663 	struct rt_schedulable_data *d = data;
7664 	struct task_group *child;
7665 	unsigned long total, sum = 0;
7666 	u64 period, runtime;
7667 
7668 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7669 	runtime = tg->rt_bandwidth.rt_runtime;
7670 
7671 	if (tg == d->tg) {
7672 		period = d->rt_period;
7673 		runtime = d->rt_runtime;
7674 	}
7675 
7676 	/*
7677 	 * Cannot have more runtime than the period.
7678 	 */
7679 	if (runtime > period && runtime != RUNTIME_INF)
7680 		return -EINVAL;
7681 
7682 	/*
7683 	 * Ensure we don't starve existing RT tasks.
7684 	 */
7685 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7686 		return -EBUSY;
7687 
7688 	total = to_ratio(period, runtime);
7689 
7690 	/*
7691 	 * Nobody can have more than the global setting allows.
7692 	 */
7693 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7694 		return -EINVAL;
7695 
7696 	/*
7697 	 * The sum of our children's runtime should not exceed our own.
7698 	 */
7699 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7700 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7701 		runtime = child->rt_bandwidth.rt_runtime;
7702 
7703 		if (child == d->tg) {
7704 			period = d->rt_period;
7705 			runtime = d->rt_runtime;
7706 		}
7707 
7708 		sum += to_ratio(period, runtime);
7709 	}
7710 
7711 	if (sum > total)
7712 		return -EINVAL;
7713 
7714 	return 0;
7715 }
7716 
7717 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7718 {
7719 	int ret;
7720 
7721 	struct rt_schedulable_data data = {
7722 		.tg = tg,
7723 		.rt_period = period,
7724 		.rt_runtime = runtime,
7725 	};
7726 
7727 	rcu_read_lock();
7728 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7729 	rcu_read_unlock();
7730 
7731 	return ret;
7732 }
7733 
7734 static int tg_set_rt_bandwidth(struct task_group *tg,
7735 		u64 rt_period, u64 rt_runtime)
7736 {
7737 	int i, err = 0;
7738 
7739 	mutex_lock(&rt_constraints_mutex);
7740 	read_lock(&tasklist_lock);
7741 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7742 	if (err)
7743 		goto unlock;
7744 
7745 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7746 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7747 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7748 
7749 	for_each_possible_cpu(i) {
7750 		struct rt_rq *rt_rq = tg->rt_rq[i];
7751 
7752 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7753 		rt_rq->rt_runtime = rt_runtime;
7754 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7755 	}
7756 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7757 unlock:
7758 	read_unlock(&tasklist_lock);
7759 	mutex_unlock(&rt_constraints_mutex);
7760 
7761 	return err;
7762 }
7763 
7764 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7765 {
7766 	u64 rt_runtime, rt_period;
7767 
7768 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7769 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7770 	if (rt_runtime_us < 0)
7771 		rt_runtime = RUNTIME_INF;
7772 
7773 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7774 }
7775 
7776 static long sched_group_rt_runtime(struct task_group *tg)
7777 {
7778 	u64 rt_runtime_us;
7779 
7780 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7781 		return -1;
7782 
7783 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7784 	do_div(rt_runtime_us, NSEC_PER_USEC);
7785 	return rt_runtime_us;
7786 }
7787 
7788 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7789 {
7790 	u64 rt_runtime, rt_period;
7791 
7792 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7793 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7794 
7795 	if (rt_period == 0)
7796 		return -EINVAL;
7797 
7798 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7799 }
7800 
7801 static long sched_group_rt_period(struct task_group *tg)
7802 {
7803 	u64 rt_period_us;
7804 
7805 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7806 	do_div(rt_period_us, NSEC_PER_USEC);
7807 	return rt_period_us;
7808 }
7809 #endif /* CONFIG_RT_GROUP_SCHED */
7810 
7811 #ifdef CONFIG_RT_GROUP_SCHED
7812 static int sched_rt_global_constraints(void)
7813 {
7814 	int ret = 0;
7815 
7816 	mutex_lock(&rt_constraints_mutex);
7817 	read_lock(&tasklist_lock);
7818 	ret = __rt_schedulable(NULL, 0, 0);
7819 	read_unlock(&tasklist_lock);
7820 	mutex_unlock(&rt_constraints_mutex);
7821 
7822 	return ret;
7823 }
7824 
7825 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7826 {
7827 	/* Don't accept realtime tasks when there is no way for them to run */
7828 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7829 		return 0;
7830 
7831 	return 1;
7832 }
7833 
7834 #else /* !CONFIG_RT_GROUP_SCHED */
7835 static int sched_rt_global_constraints(void)
7836 {
7837 	unsigned long flags;
7838 	int i, ret = 0;
7839 
7840 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7841 	for_each_possible_cpu(i) {
7842 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7843 
7844 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7845 		rt_rq->rt_runtime = global_rt_runtime();
7846 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7847 	}
7848 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7849 
7850 	return ret;
7851 }
7852 #endif /* CONFIG_RT_GROUP_SCHED */
7853 
7854 static int sched_dl_global_constraints(void)
7855 {
7856 	u64 runtime = global_rt_runtime();
7857 	u64 period = global_rt_period();
7858 	u64 new_bw = to_ratio(period, runtime);
7859 	struct dl_bw *dl_b;
7860 	int cpu, ret = 0;
7861 	unsigned long flags;
7862 
7863 	/*
7864 	 * Here we want to check the bandwidth not being set to some
7865 	 * value smaller than the currently allocated bandwidth in
7866 	 * any of the root_domains.
7867 	 *
7868 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7869 	 * cycling on root_domains... Discussion on different/better
7870 	 * solutions is welcome!
7871 	 */
7872 	for_each_possible_cpu(cpu) {
7873 		rcu_read_lock_sched();
7874 		dl_b = dl_bw_of(cpu);
7875 
7876 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7877 		if (new_bw < dl_b->total_bw)
7878 			ret = -EBUSY;
7879 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7880 
7881 		rcu_read_unlock_sched();
7882 
7883 		if (ret)
7884 			break;
7885 	}
7886 
7887 	return ret;
7888 }
7889 
7890 static void sched_dl_do_global(void)
7891 {
7892 	u64 new_bw = -1;
7893 	struct dl_bw *dl_b;
7894 	int cpu;
7895 	unsigned long flags;
7896 
7897 	def_dl_bandwidth.dl_period = global_rt_period();
7898 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7899 
7900 	if (global_rt_runtime() != RUNTIME_INF)
7901 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7902 
7903 	/*
7904 	 * FIXME: As above...
7905 	 */
7906 	for_each_possible_cpu(cpu) {
7907 		rcu_read_lock_sched();
7908 		dl_b = dl_bw_of(cpu);
7909 
7910 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7911 		dl_b->bw = new_bw;
7912 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7913 
7914 		rcu_read_unlock_sched();
7915 	}
7916 }
7917 
7918 static int sched_rt_global_validate(void)
7919 {
7920 	if (sysctl_sched_rt_period <= 0)
7921 		return -EINVAL;
7922 
7923 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7924 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7925 		return -EINVAL;
7926 
7927 	return 0;
7928 }
7929 
7930 static void sched_rt_do_global(void)
7931 {
7932 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7933 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7934 }
7935 
7936 int sched_rt_handler(struct ctl_table *table, int write,
7937 		void __user *buffer, size_t *lenp,
7938 		loff_t *ppos)
7939 {
7940 	int old_period, old_runtime;
7941 	static DEFINE_MUTEX(mutex);
7942 	int ret;
7943 
7944 	mutex_lock(&mutex);
7945 	old_period = sysctl_sched_rt_period;
7946 	old_runtime = sysctl_sched_rt_runtime;
7947 
7948 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7949 
7950 	if (!ret && write) {
7951 		ret = sched_rt_global_validate();
7952 		if (ret)
7953 			goto undo;
7954 
7955 		ret = sched_rt_global_constraints();
7956 		if (ret)
7957 			goto undo;
7958 
7959 		ret = sched_dl_global_constraints();
7960 		if (ret)
7961 			goto undo;
7962 
7963 		sched_rt_do_global();
7964 		sched_dl_do_global();
7965 	}
7966 	if (0) {
7967 undo:
7968 		sysctl_sched_rt_period = old_period;
7969 		sysctl_sched_rt_runtime = old_runtime;
7970 	}
7971 	mutex_unlock(&mutex);
7972 
7973 	return ret;
7974 }
7975 
7976 int sched_rr_handler(struct ctl_table *table, int write,
7977 		void __user *buffer, size_t *lenp,
7978 		loff_t *ppos)
7979 {
7980 	int ret;
7981 	static DEFINE_MUTEX(mutex);
7982 
7983 	mutex_lock(&mutex);
7984 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7985 	/* make sure that internally we keep jiffies */
7986 	/* also, writing zero resets timeslice to default */
7987 	if (!ret && write) {
7988 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7989 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7990 	}
7991 	mutex_unlock(&mutex);
7992 	return ret;
7993 }
7994 
7995 #ifdef CONFIG_CGROUP_SCHED
7996 
7997 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7998 {
7999 	return css ? container_of(css, struct task_group, css) : NULL;
8000 }
8001 
8002 static struct cgroup_subsys_state *
8003 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8004 {
8005 	struct task_group *parent = css_tg(parent_css);
8006 	struct task_group *tg;
8007 
8008 	if (!parent) {
8009 		/* This is early initialization for the top cgroup */
8010 		return &root_task_group.css;
8011 	}
8012 
8013 	tg = sched_create_group(parent);
8014 	if (IS_ERR(tg))
8015 		return ERR_PTR(-ENOMEM);
8016 
8017 	return &tg->css;
8018 }
8019 
8020 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8021 {
8022 	struct task_group *tg = css_tg(css);
8023 	struct task_group *parent = css_tg(css->parent);
8024 
8025 	if (parent)
8026 		sched_online_group(tg, parent);
8027 	return 0;
8028 }
8029 
8030 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8031 {
8032 	struct task_group *tg = css_tg(css);
8033 
8034 	sched_destroy_group(tg);
8035 }
8036 
8037 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8038 {
8039 	struct task_group *tg = css_tg(css);
8040 
8041 	sched_offline_group(tg);
8042 }
8043 
8044 static void cpu_cgroup_fork(struct task_struct *task)
8045 {
8046 	sched_move_task(task);
8047 }
8048 
8049 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8050 				 struct cgroup_taskset *tset)
8051 {
8052 	struct task_struct *task;
8053 
8054 	cgroup_taskset_for_each(task, tset) {
8055 #ifdef CONFIG_RT_GROUP_SCHED
8056 		if (!sched_rt_can_attach(css_tg(css), task))
8057 			return -EINVAL;
8058 #else
8059 		/* We don't support RT-tasks being in separate groups */
8060 		if (task->sched_class != &fair_sched_class)
8061 			return -EINVAL;
8062 #endif
8063 	}
8064 	return 0;
8065 }
8066 
8067 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8068 			      struct cgroup_taskset *tset)
8069 {
8070 	struct task_struct *task;
8071 
8072 	cgroup_taskset_for_each(task, tset)
8073 		sched_move_task(task);
8074 }
8075 
8076 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8077 			    struct cgroup_subsys_state *old_css,
8078 			    struct task_struct *task)
8079 {
8080 	/*
8081 	 * cgroup_exit() is called in the copy_process() failure path.
8082 	 * Ignore this case since the task hasn't ran yet, this avoids
8083 	 * trying to poke a half freed task state from generic code.
8084 	 */
8085 	if (!(task->flags & PF_EXITING))
8086 		return;
8087 
8088 	sched_move_task(task);
8089 }
8090 
8091 #ifdef CONFIG_FAIR_GROUP_SCHED
8092 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8093 				struct cftype *cftype, u64 shareval)
8094 {
8095 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8096 }
8097 
8098 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8099 			       struct cftype *cft)
8100 {
8101 	struct task_group *tg = css_tg(css);
8102 
8103 	return (u64) scale_load_down(tg->shares);
8104 }
8105 
8106 #ifdef CONFIG_CFS_BANDWIDTH
8107 static DEFINE_MUTEX(cfs_constraints_mutex);
8108 
8109 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8110 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8111 
8112 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8113 
8114 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8115 {
8116 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8117 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8118 
8119 	if (tg == &root_task_group)
8120 		return -EINVAL;
8121 
8122 	/*
8123 	 * Ensure we have at some amount of bandwidth every period.  This is
8124 	 * to prevent reaching a state of large arrears when throttled via
8125 	 * entity_tick() resulting in prolonged exit starvation.
8126 	 */
8127 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8128 		return -EINVAL;
8129 
8130 	/*
8131 	 * Likewise, bound things on the otherside by preventing insane quota
8132 	 * periods.  This also allows us to normalize in computing quota
8133 	 * feasibility.
8134 	 */
8135 	if (period > max_cfs_quota_period)
8136 		return -EINVAL;
8137 
8138 	/*
8139 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8140 	 * unthrottle_offline_cfs_rqs().
8141 	 */
8142 	get_online_cpus();
8143 	mutex_lock(&cfs_constraints_mutex);
8144 	ret = __cfs_schedulable(tg, period, quota);
8145 	if (ret)
8146 		goto out_unlock;
8147 
8148 	runtime_enabled = quota != RUNTIME_INF;
8149 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8150 	/*
8151 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8152 	 * before making related changes, and on->off must occur afterwards
8153 	 */
8154 	if (runtime_enabled && !runtime_was_enabled)
8155 		cfs_bandwidth_usage_inc();
8156 	raw_spin_lock_irq(&cfs_b->lock);
8157 	cfs_b->period = ns_to_ktime(period);
8158 	cfs_b->quota = quota;
8159 
8160 	__refill_cfs_bandwidth_runtime(cfs_b);
8161 	/* restart the period timer (if active) to handle new period expiry */
8162 	if (runtime_enabled && cfs_b->timer_active) {
8163 		/* force a reprogram */
8164 		__start_cfs_bandwidth(cfs_b, true);
8165 	}
8166 	raw_spin_unlock_irq(&cfs_b->lock);
8167 
8168 	for_each_online_cpu(i) {
8169 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8170 		struct rq *rq = cfs_rq->rq;
8171 
8172 		raw_spin_lock_irq(&rq->lock);
8173 		cfs_rq->runtime_enabled = runtime_enabled;
8174 		cfs_rq->runtime_remaining = 0;
8175 
8176 		if (cfs_rq->throttled)
8177 			unthrottle_cfs_rq(cfs_rq);
8178 		raw_spin_unlock_irq(&rq->lock);
8179 	}
8180 	if (runtime_was_enabled && !runtime_enabled)
8181 		cfs_bandwidth_usage_dec();
8182 out_unlock:
8183 	mutex_unlock(&cfs_constraints_mutex);
8184 	put_online_cpus();
8185 
8186 	return ret;
8187 }
8188 
8189 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8190 {
8191 	u64 quota, period;
8192 
8193 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8194 	if (cfs_quota_us < 0)
8195 		quota = RUNTIME_INF;
8196 	else
8197 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8198 
8199 	return tg_set_cfs_bandwidth(tg, period, quota);
8200 }
8201 
8202 long tg_get_cfs_quota(struct task_group *tg)
8203 {
8204 	u64 quota_us;
8205 
8206 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8207 		return -1;
8208 
8209 	quota_us = tg->cfs_bandwidth.quota;
8210 	do_div(quota_us, NSEC_PER_USEC);
8211 
8212 	return quota_us;
8213 }
8214 
8215 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8216 {
8217 	u64 quota, period;
8218 
8219 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8220 	quota = tg->cfs_bandwidth.quota;
8221 
8222 	return tg_set_cfs_bandwidth(tg, period, quota);
8223 }
8224 
8225 long tg_get_cfs_period(struct task_group *tg)
8226 {
8227 	u64 cfs_period_us;
8228 
8229 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8230 	do_div(cfs_period_us, NSEC_PER_USEC);
8231 
8232 	return cfs_period_us;
8233 }
8234 
8235 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8236 				  struct cftype *cft)
8237 {
8238 	return tg_get_cfs_quota(css_tg(css));
8239 }
8240 
8241 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8242 				   struct cftype *cftype, s64 cfs_quota_us)
8243 {
8244 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8245 }
8246 
8247 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8248 				   struct cftype *cft)
8249 {
8250 	return tg_get_cfs_period(css_tg(css));
8251 }
8252 
8253 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8254 				    struct cftype *cftype, u64 cfs_period_us)
8255 {
8256 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8257 }
8258 
8259 struct cfs_schedulable_data {
8260 	struct task_group *tg;
8261 	u64 period, quota;
8262 };
8263 
8264 /*
8265  * normalize group quota/period to be quota/max_period
8266  * note: units are usecs
8267  */
8268 static u64 normalize_cfs_quota(struct task_group *tg,
8269 			       struct cfs_schedulable_data *d)
8270 {
8271 	u64 quota, period;
8272 
8273 	if (tg == d->tg) {
8274 		period = d->period;
8275 		quota = d->quota;
8276 	} else {
8277 		period = tg_get_cfs_period(tg);
8278 		quota = tg_get_cfs_quota(tg);
8279 	}
8280 
8281 	/* note: these should typically be equivalent */
8282 	if (quota == RUNTIME_INF || quota == -1)
8283 		return RUNTIME_INF;
8284 
8285 	return to_ratio(period, quota);
8286 }
8287 
8288 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8289 {
8290 	struct cfs_schedulable_data *d = data;
8291 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8292 	s64 quota = 0, parent_quota = -1;
8293 
8294 	if (!tg->parent) {
8295 		quota = RUNTIME_INF;
8296 	} else {
8297 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8298 
8299 		quota = normalize_cfs_quota(tg, d);
8300 		parent_quota = parent_b->hierarchical_quota;
8301 
8302 		/*
8303 		 * ensure max(child_quota) <= parent_quota, inherit when no
8304 		 * limit is set
8305 		 */
8306 		if (quota == RUNTIME_INF)
8307 			quota = parent_quota;
8308 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8309 			return -EINVAL;
8310 	}
8311 	cfs_b->hierarchical_quota = quota;
8312 
8313 	return 0;
8314 }
8315 
8316 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8317 {
8318 	int ret;
8319 	struct cfs_schedulable_data data = {
8320 		.tg = tg,
8321 		.period = period,
8322 		.quota = quota,
8323 	};
8324 
8325 	if (quota != RUNTIME_INF) {
8326 		do_div(data.period, NSEC_PER_USEC);
8327 		do_div(data.quota, NSEC_PER_USEC);
8328 	}
8329 
8330 	rcu_read_lock();
8331 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8332 	rcu_read_unlock();
8333 
8334 	return ret;
8335 }
8336 
8337 static int cpu_stats_show(struct seq_file *sf, void *v)
8338 {
8339 	struct task_group *tg = css_tg(seq_css(sf));
8340 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8341 
8342 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8343 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8344 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8345 
8346 	return 0;
8347 }
8348 #endif /* CONFIG_CFS_BANDWIDTH */
8349 #endif /* CONFIG_FAIR_GROUP_SCHED */
8350 
8351 #ifdef CONFIG_RT_GROUP_SCHED
8352 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8353 				struct cftype *cft, s64 val)
8354 {
8355 	return sched_group_set_rt_runtime(css_tg(css), val);
8356 }
8357 
8358 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8359 			       struct cftype *cft)
8360 {
8361 	return sched_group_rt_runtime(css_tg(css));
8362 }
8363 
8364 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8365 				    struct cftype *cftype, u64 rt_period_us)
8366 {
8367 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8368 }
8369 
8370 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8371 				   struct cftype *cft)
8372 {
8373 	return sched_group_rt_period(css_tg(css));
8374 }
8375 #endif /* CONFIG_RT_GROUP_SCHED */
8376 
8377 static struct cftype cpu_files[] = {
8378 #ifdef CONFIG_FAIR_GROUP_SCHED
8379 	{
8380 		.name = "shares",
8381 		.read_u64 = cpu_shares_read_u64,
8382 		.write_u64 = cpu_shares_write_u64,
8383 	},
8384 #endif
8385 #ifdef CONFIG_CFS_BANDWIDTH
8386 	{
8387 		.name = "cfs_quota_us",
8388 		.read_s64 = cpu_cfs_quota_read_s64,
8389 		.write_s64 = cpu_cfs_quota_write_s64,
8390 	},
8391 	{
8392 		.name = "cfs_period_us",
8393 		.read_u64 = cpu_cfs_period_read_u64,
8394 		.write_u64 = cpu_cfs_period_write_u64,
8395 	},
8396 	{
8397 		.name = "stat",
8398 		.seq_show = cpu_stats_show,
8399 	},
8400 #endif
8401 #ifdef CONFIG_RT_GROUP_SCHED
8402 	{
8403 		.name = "rt_runtime_us",
8404 		.read_s64 = cpu_rt_runtime_read,
8405 		.write_s64 = cpu_rt_runtime_write,
8406 	},
8407 	{
8408 		.name = "rt_period_us",
8409 		.read_u64 = cpu_rt_period_read_uint,
8410 		.write_u64 = cpu_rt_period_write_uint,
8411 	},
8412 #endif
8413 	{ }	/* terminate */
8414 };
8415 
8416 struct cgroup_subsys cpu_cgrp_subsys = {
8417 	.css_alloc	= cpu_cgroup_css_alloc,
8418 	.css_free	= cpu_cgroup_css_free,
8419 	.css_online	= cpu_cgroup_css_online,
8420 	.css_offline	= cpu_cgroup_css_offline,
8421 	.fork		= cpu_cgroup_fork,
8422 	.can_attach	= cpu_cgroup_can_attach,
8423 	.attach		= cpu_cgroup_attach,
8424 	.exit		= cpu_cgroup_exit,
8425 	.legacy_cftypes	= cpu_files,
8426 	.early_init	= 1,
8427 };
8428 
8429 #endif	/* CONFIG_CGROUP_SCHED */
8430 
8431 void dump_cpu_task(int cpu)
8432 {
8433 	pr_info("Task dump for CPU %d:\n", cpu);
8434 	sched_show_task(cpu_curr(cpu));
8435 }
8436