1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 94 { 95 unsigned long delta; 96 ktime_t soft, hard, now; 97 98 for (;;) { 99 if (hrtimer_active(period_timer)) 100 break; 101 102 now = hrtimer_cb_get_time(period_timer); 103 hrtimer_forward(period_timer, now, period); 104 105 soft = hrtimer_get_softexpires(period_timer); 106 hard = hrtimer_get_expires(period_timer); 107 delta = ktime_to_ns(ktime_sub(hard, soft)); 108 __hrtimer_start_range_ns(period_timer, soft, delta, 109 HRTIMER_MODE_ABS_PINNED, 0); 110 } 111 } 112 113 DEFINE_MUTEX(sched_domains_mutex); 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 static void update_rq_clock_task(struct rq *rq, s64 delta); 117 118 void update_rq_clock(struct rq *rq) 119 { 120 s64 delta; 121 122 lockdep_assert_held(&rq->lock); 123 124 if (rq->clock_skip_update & RQCF_ACT_SKIP) 125 return; 126 127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 128 if (delta < 0) 129 return; 130 rq->clock += delta; 131 update_rq_clock_task(rq, delta); 132 } 133 134 /* 135 * Debugging: various feature bits 136 */ 137 138 #define SCHED_FEAT(name, enabled) \ 139 (1UL << __SCHED_FEAT_##name) * enabled | 140 141 const_debug unsigned int sysctl_sched_features = 142 #include "features.h" 143 0; 144 145 #undef SCHED_FEAT 146 147 #ifdef CONFIG_SCHED_DEBUG 148 #define SCHED_FEAT(name, enabled) \ 149 #name , 150 151 static const char * const sched_feat_names[] = { 152 #include "features.h" 153 }; 154 155 #undef SCHED_FEAT 156 157 static int sched_feat_show(struct seq_file *m, void *v) 158 { 159 int i; 160 161 for (i = 0; i < __SCHED_FEAT_NR; i++) { 162 if (!(sysctl_sched_features & (1UL << i))) 163 seq_puts(m, "NO_"); 164 seq_printf(m, "%s ", sched_feat_names[i]); 165 } 166 seq_puts(m, "\n"); 167 168 return 0; 169 } 170 171 #ifdef HAVE_JUMP_LABEL 172 173 #define jump_label_key__true STATIC_KEY_INIT_TRUE 174 #define jump_label_key__false STATIC_KEY_INIT_FALSE 175 176 #define SCHED_FEAT(name, enabled) \ 177 jump_label_key__##enabled , 178 179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 180 #include "features.h" 181 }; 182 183 #undef SCHED_FEAT 184 185 static void sched_feat_disable(int i) 186 { 187 if (static_key_enabled(&sched_feat_keys[i])) 188 static_key_slow_dec(&sched_feat_keys[i]); 189 } 190 191 static void sched_feat_enable(int i) 192 { 193 if (!static_key_enabled(&sched_feat_keys[i])) 194 static_key_slow_inc(&sched_feat_keys[i]); 195 } 196 #else 197 static void sched_feat_disable(int i) { }; 198 static void sched_feat_enable(int i) { }; 199 #endif /* HAVE_JUMP_LABEL */ 200 201 static int sched_feat_set(char *cmp) 202 { 203 int i; 204 int neg = 0; 205 206 if (strncmp(cmp, "NO_", 3) == 0) { 207 neg = 1; 208 cmp += 3; 209 } 210 211 for (i = 0; i < __SCHED_FEAT_NR; i++) { 212 if (strcmp(cmp, sched_feat_names[i]) == 0) { 213 if (neg) { 214 sysctl_sched_features &= ~(1UL << i); 215 sched_feat_disable(i); 216 } else { 217 sysctl_sched_features |= (1UL << i); 218 sched_feat_enable(i); 219 } 220 break; 221 } 222 } 223 224 return i; 225 } 226 227 static ssize_t 228 sched_feat_write(struct file *filp, const char __user *ubuf, 229 size_t cnt, loff_t *ppos) 230 { 231 char buf[64]; 232 char *cmp; 233 int i; 234 struct inode *inode; 235 236 if (cnt > 63) 237 cnt = 63; 238 239 if (copy_from_user(&buf, ubuf, cnt)) 240 return -EFAULT; 241 242 buf[cnt] = 0; 243 cmp = strstrip(buf); 244 245 /* Ensure the static_key remains in a consistent state */ 246 inode = file_inode(filp); 247 mutex_lock(&inode->i_mutex); 248 i = sched_feat_set(cmp); 249 mutex_unlock(&inode->i_mutex); 250 if (i == __SCHED_FEAT_NR) 251 return -EINVAL; 252 253 *ppos += cnt; 254 255 return cnt; 256 } 257 258 static int sched_feat_open(struct inode *inode, struct file *filp) 259 { 260 return single_open(filp, sched_feat_show, NULL); 261 } 262 263 static const struct file_operations sched_feat_fops = { 264 .open = sched_feat_open, 265 .write = sched_feat_write, 266 .read = seq_read, 267 .llseek = seq_lseek, 268 .release = single_release, 269 }; 270 271 static __init int sched_init_debug(void) 272 { 273 debugfs_create_file("sched_features", 0644, NULL, NULL, 274 &sched_feat_fops); 275 276 return 0; 277 } 278 late_initcall(sched_init_debug); 279 #endif /* CONFIG_SCHED_DEBUG */ 280 281 /* 282 * Number of tasks to iterate in a single balance run. 283 * Limited because this is done with IRQs disabled. 284 */ 285 const_debug unsigned int sysctl_sched_nr_migrate = 32; 286 287 /* 288 * period over which we average the RT time consumption, measured 289 * in ms. 290 * 291 * default: 1s 292 */ 293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 294 295 /* 296 * period over which we measure -rt task cpu usage in us. 297 * default: 1s 298 */ 299 unsigned int sysctl_sched_rt_period = 1000000; 300 301 __read_mostly int scheduler_running; 302 303 /* 304 * part of the period that we allow rt tasks to run in us. 305 * default: 0.95s 306 */ 307 int sysctl_sched_rt_runtime = 950000; 308 309 /* 310 * __task_rq_lock - lock the rq @p resides on. 311 */ 312 static inline struct rq *__task_rq_lock(struct task_struct *p) 313 __acquires(rq->lock) 314 { 315 struct rq *rq; 316 317 lockdep_assert_held(&p->pi_lock); 318 319 for (;;) { 320 rq = task_rq(p); 321 raw_spin_lock(&rq->lock); 322 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) 323 return rq; 324 raw_spin_unlock(&rq->lock); 325 326 while (unlikely(task_on_rq_migrating(p))) 327 cpu_relax(); 328 } 329 } 330 331 /* 332 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 333 */ 334 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 335 __acquires(p->pi_lock) 336 __acquires(rq->lock) 337 { 338 struct rq *rq; 339 340 for (;;) { 341 raw_spin_lock_irqsave(&p->pi_lock, *flags); 342 rq = task_rq(p); 343 raw_spin_lock(&rq->lock); 344 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) 345 return rq; 346 raw_spin_unlock(&rq->lock); 347 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 348 349 while (unlikely(task_on_rq_migrating(p))) 350 cpu_relax(); 351 } 352 } 353 354 static void __task_rq_unlock(struct rq *rq) 355 __releases(rq->lock) 356 { 357 raw_spin_unlock(&rq->lock); 358 } 359 360 static inline void 361 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 362 __releases(rq->lock) 363 __releases(p->pi_lock) 364 { 365 raw_spin_unlock(&rq->lock); 366 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 367 } 368 369 /* 370 * this_rq_lock - lock this runqueue and disable interrupts. 371 */ 372 static struct rq *this_rq_lock(void) 373 __acquires(rq->lock) 374 { 375 struct rq *rq; 376 377 local_irq_disable(); 378 rq = this_rq(); 379 raw_spin_lock(&rq->lock); 380 381 return rq; 382 } 383 384 #ifdef CONFIG_SCHED_HRTICK 385 /* 386 * Use HR-timers to deliver accurate preemption points. 387 */ 388 389 static void hrtick_clear(struct rq *rq) 390 { 391 if (hrtimer_active(&rq->hrtick_timer)) 392 hrtimer_cancel(&rq->hrtick_timer); 393 } 394 395 /* 396 * High-resolution timer tick. 397 * Runs from hardirq context with interrupts disabled. 398 */ 399 static enum hrtimer_restart hrtick(struct hrtimer *timer) 400 { 401 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 402 403 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 404 405 raw_spin_lock(&rq->lock); 406 update_rq_clock(rq); 407 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 408 raw_spin_unlock(&rq->lock); 409 410 return HRTIMER_NORESTART; 411 } 412 413 #ifdef CONFIG_SMP 414 415 static int __hrtick_restart(struct rq *rq) 416 { 417 struct hrtimer *timer = &rq->hrtick_timer; 418 ktime_t time = hrtimer_get_softexpires(timer); 419 420 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 421 } 422 423 /* 424 * called from hardirq (IPI) context 425 */ 426 static void __hrtick_start(void *arg) 427 { 428 struct rq *rq = arg; 429 430 raw_spin_lock(&rq->lock); 431 __hrtick_restart(rq); 432 rq->hrtick_csd_pending = 0; 433 raw_spin_unlock(&rq->lock); 434 } 435 436 /* 437 * Called to set the hrtick timer state. 438 * 439 * called with rq->lock held and irqs disabled 440 */ 441 void hrtick_start(struct rq *rq, u64 delay) 442 { 443 struct hrtimer *timer = &rq->hrtick_timer; 444 ktime_t time; 445 s64 delta; 446 447 /* 448 * Don't schedule slices shorter than 10000ns, that just 449 * doesn't make sense and can cause timer DoS. 450 */ 451 delta = max_t(s64, delay, 10000LL); 452 time = ktime_add_ns(timer->base->get_time(), delta); 453 454 hrtimer_set_expires(timer, time); 455 456 if (rq == this_rq()) { 457 __hrtick_restart(rq); 458 } else if (!rq->hrtick_csd_pending) { 459 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 460 rq->hrtick_csd_pending = 1; 461 } 462 } 463 464 static int 465 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 466 { 467 int cpu = (int)(long)hcpu; 468 469 switch (action) { 470 case CPU_UP_CANCELED: 471 case CPU_UP_CANCELED_FROZEN: 472 case CPU_DOWN_PREPARE: 473 case CPU_DOWN_PREPARE_FROZEN: 474 case CPU_DEAD: 475 case CPU_DEAD_FROZEN: 476 hrtick_clear(cpu_rq(cpu)); 477 return NOTIFY_OK; 478 } 479 480 return NOTIFY_DONE; 481 } 482 483 static __init void init_hrtick(void) 484 { 485 hotcpu_notifier(hotplug_hrtick, 0); 486 } 487 #else 488 /* 489 * Called to set the hrtick timer state. 490 * 491 * called with rq->lock held and irqs disabled 492 */ 493 void hrtick_start(struct rq *rq, u64 delay) 494 { 495 /* 496 * Don't schedule slices shorter than 10000ns, that just 497 * doesn't make sense. Rely on vruntime for fairness. 498 */ 499 delay = max_t(u64, delay, 10000LL); 500 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 501 HRTIMER_MODE_REL_PINNED, 0); 502 } 503 504 static inline void init_hrtick(void) 505 { 506 } 507 #endif /* CONFIG_SMP */ 508 509 static void init_rq_hrtick(struct rq *rq) 510 { 511 #ifdef CONFIG_SMP 512 rq->hrtick_csd_pending = 0; 513 514 rq->hrtick_csd.flags = 0; 515 rq->hrtick_csd.func = __hrtick_start; 516 rq->hrtick_csd.info = rq; 517 #endif 518 519 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 520 rq->hrtick_timer.function = hrtick; 521 } 522 #else /* CONFIG_SCHED_HRTICK */ 523 static inline void hrtick_clear(struct rq *rq) 524 { 525 } 526 527 static inline void init_rq_hrtick(struct rq *rq) 528 { 529 } 530 531 static inline void init_hrtick(void) 532 { 533 } 534 #endif /* CONFIG_SCHED_HRTICK */ 535 536 /* 537 * cmpxchg based fetch_or, macro so it works for different integer types 538 */ 539 #define fetch_or(ptr, val) \ 540 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 541 for (;;) { \ 542 __old = cmpxchg((ptr), __val, __val | (val)); \ 543 if (__old == __val) \ 544 break; \ 545 __val = __old; \ 546 } \ 547 __old; \ 548 }) 549 550 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 551 /* 552 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 553 * this avoids any races wrt polling state changes and thereby avoids 554 * spurious IPIs. 555 */ 556 static bool set_nr_and_not_polling(struct task_struct *p) 557 { 558 struct thread_info *ti = task_thread_info(p); 559 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 560 } 561 562 /* 563 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 564 * 565 * If this returns true, then the idle task promises to call 566 * sched_ttwu_pending() and reschedule soon. 567 */ 568 static bool set_nr_if_polling(struct task_struct *p) 569 { 570 struct thread_info *ti = task_thread_info(p); 571 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags); 572 573 for (;;) { 574 if (!(val & _TIF_POLLING_NRFLAG)) 575 return false; 576 if (val & _TIF_NEED_RESCHED) 577 return true; 578 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 579 if (old == val) 580 break; 581 val = old; 582 } 583 return true; 584 } 585 586 #else 587 static bool set_nr_and_not_polling(struct task_struct *p) 588 { 589 set_tsk_need_resched(p); 590 return true; 591 } 592 593 #ifdef CONFIG_SMP 594 static bool set_nr_if_polling(struct task_struct *p) 595 { 596 return false; 597 } 598 #endif 599 #endif 600 601 /* 602 * resched_curr - mark rq's current task 'to be rescheduled now'. 603 * 604 * On UP this means the setting of the need_resched flag, on SMP it 605 * might also involve a cross-CPU call to trigger the scheduler on 606 * the target CPU. 607 */ 608 void resched_curr(struct rq *rq) 609 { 610 struct task_struct *curr = rq->curr; 611 int cpu; 612 613 lockdep_assert_held(&rq->lock); 614 615 if (test_tsk_need_resched(curr)) 616 return; 617 618 cpu = cpu_of(rq); 619 620 if (cpu == smp_processor_id()) { 621 set_tsk_need_resched(curr); 622 set_preempt_need_resched(); 623 return; 624 } 625 626 if (set_nr_and_not_polling(curr)) 627 smp_send_reschedule(cpu); 628 else 629 trace_sched_wake_idle_without_ipi(cpu); 630 } 631 632 void resched_cpu(int cpu) 633 { 634 struct rq *rq = cpu_rq(cpu); 635 unsigned long flags; 636 637 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 638 return; 639 resched_curr(rq); 640 raw_spin_unlock_irqrestore(&rq->lock, flags); 641 } 642 643 #ifdef CONFIG_SMP 644 #ifdef CONFIG_NO_HZ_COMMON 645 /* 646 * In the semi idle case, use the nearest busy cpu for migrating timers 647 * from an idle cpu. This is good for power-savings. 648 * 649 * We don't do similar optimization for completely idle system, as 650 * selecting an idle cpu will add more delays to the timers than intended 651 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 652 */ 653 int get_nohz_timer_target(int pinned) 654 { 655 int cpu = smp_processor_id(); 656 int i; 657 struct sched_domain *sd; 658 659 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) 660 return cpu; 661 662 rcu_read_lock(); 663 for_each_domain(cpu, sd) { 664 for_each_cpu(i, sched_domain_span(sd)) { 665 if (!idle_cpu(i)) { 666 cpu = i; 667 goto unlock; 668 } 669 } 670 } 671 unlock: 672 rcu_read_unlock(); 673 return cpu; 674 } 675 /* 676 * When add_timer_on() enqueues a timer into the timer wheel of an 677 * idle CPU then this timer might expire before the next timer event 678 * which is scheduled to wake up that CPU. In case of a completely 679 * idle system the next event might even be infinite time into the 680 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 681 * leaves the inner idle loop so the newly added timer is taken into 682 * account when the CPU goes back to idle and evaluates the timer 683 * wheel for the next timer event. 684 */ 685 static void wake_up_idle_cpu(int cpu) 686 { 687 struct rq *rq = cpu_rq(cpu); 688 689 if (cpu == smp_processor_id()) 690 return; 691 692 if (set_nr_and_not_polling(rq->idle)) 693 smp_send_reschedule(cpu); 694 else 695 trace_sched_wake_idle_without_ipi(cpu); 696 } 697 698 static bool wake_up_full_nohz_cpu(int cpu) 699 { 700 /* 701 * We just need the target to call irq_exit() and re-evaluate 702 * the next tick. The nohz full kick at least implies that. 703 * If needed we can still optimize that later with an 704 * empty IRQ. 705 */ 706 if (tick_nohz_full_cpu(cpu)) { 707 if (cpu != smp_processor_id() || 708 tick_nohz_tick_stopped()) 709 tick_nohz_full_kick_cpu(cpu); 710 return true; 711 } 712 713 return false; 714 } 715 716 void wake_up_nohz_cpu(int cpu) 717 { 718 if (!wake_up_full_nohz_cpu(cpu)) 719 wake_up_idle_cpu(cpu); 720 } 721 722 static inline bool got_nohz_idle_kick(void) 723 { 724 int cpu = smp_processor_id(); 725 726 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 727 return false; 728 729 if (idle_cpu(cpu) && !need_resched()) 730 return true; 731 732 /* 733 * We can't run Idle Load Balance on this CPU for this time so we 734 * cancel it and clear NOHZ_BALANCE_KICK 735 */ 736 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 737 return false; 738 } 739 740 #else /* CONFIG_NO_HZ_COMMON */ 741 742 static inline bool got_nohz_idle_kick(void) 743 { 744 return false; 745 } 746 747 #endif /* CONFIG_NO_HZ_COMMON */ 748 749 #ifdef CONFIG_NO_HZ_FULL 750 bool sched_can_stop_tick(void) 751 { 752 /* 753 * More than one running task need preemption. 754 * nr_running update is assumed to be visible 755 * after IPI is sent from wakers. 756 */ 757 if (this_rq()->nr_running > 1) 758 return false; 759 760 return true; 761 } 762 #endif /* CONFIG_NO_HZ_FULL */ 763 764 void sched_avg_update(struct rq *rq) 765 { 766 s64 period = sched_avg_period(); 767 768 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 769 /* 770 * Inline assembly required to prevent the compiler 771 * optimising this loop into a divmod call. 772 * See __iter_div_u64_rem() for another example of this. 773 */ 774 asm("" : "+rm" (rq->age_stamp)); 775 rq->age_stamp += period; 776 rq->rt_avg /= 2; 777 } 778 } 779 780 #endif /* CONFIG_SMP */ 781 782 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 783 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 784 /* 785 * Iterate task_group tree rooted at *from, calling @down when first entering a 786 * node and @up when leaving it for the final time. 787 * 788 * Caller must hold rcu_lock or sufficient equivalent. 789 */ 790 int walk_tg_tree_from(struct task_group *from, 791 tg_visitor down, tg_visitor up, void *data) 792 { 793 struct task_group *parent, *child; 794 int ret; 795 796 parent = from; 797 798 down: 799 ret = (*down)(parent, data); 800 if (ret) 801 goto out; 802 list_for_each_entry_rcu(child, &parent->children, siblings) { 803 parent = child; 804 goto down; 805 806 up: 807 continue; 808 } 809 ret = (*up)(parent, data); 810 if (ret || parent == from) 811 goto out; 812 813 child = parent; 814 parent = parent->parent; 815 if (parent) 816 goto up; 817 out: 818 return ret; 819 } 820 821 int tg_nop(struct task_group *tg, void *data) 822 { 823 return 0; 824 } 825 #endif 826 827 static void set_load_weight(struct task_struct *p) 828 { 829 int prio = p->static_prio - MAX_RT_PRIO; 830 struct load_weight *load = &p->se.load; 831 832 /* 833 * SCHED_IDLE tasks get minimal weight: 834 */ 835 if (p->policy == SCHED_IDLE) { 836 load->weight = scale_load(WEIGHT_IDLEPRIO); 837 load->inv_weight = WMULT_IDLEPRIO; 838 return; 839 } 840 841 load->weight = scale_load(prio_to_weight[prio]); 842 load->inv_weight = prio_to_wmult[prio]; 843 } 844 845 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 846 { 847 update_rq_clock(rq); 848 sched_info_queued(rq, p); 849 p->sched_class->enqueue_task(rq, p, flags); 850 } 851 852 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 853 { 854 update_rq_clock(rq); 855 sched_info_dequeued(rq, p); 856 p->sched_class->dequeue_task(rq, p, flags); 857 } 858 859 void activate_task(struct rq *rq, struct task_struct *p, int flags) 860 { 861 if (task_contributes_to_load(p)) 862 rq->nr_uninterruptible--; 863 864 enqueue_task(rq, p, flags); 865 } 866 867 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 868 { 869 if (task_contributes_to_load(p)) 870 rq->nr_uninterruptible++; 871 872 dequeue_task(rq, p, flags); 873 } 874 875 static void update_rq_clock_task(struct rq *rq, s64 delta) 876 { 877 /* 878 * In theory, the compile should just see 0 here, and optimize out the call 879 * to sched_rt_avg_update. But I don't trust it... 880 */ 881 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 882 s64 steal = 0, irq_delta = 0; 883 #endif 884 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 885 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 886 887 /* 888 * Since irq_time is only updated on {soft,}irq_exit, we might run into 889 * this case when a previous update_rq_clock() happened inside a 890 * {soft,}irq region. 891 * 892 * When this happens, we stop ->clock_task and only update the 893 * prev_irq_time stamp to account for the part that fit, so that a next 894 * update will consume the rest. This ensures ->clock_task is 895 * monotonic. 896 * 897 * It does however cause some slight miss-attribution of {soft,}irq 898 * time, a more accurate solution would be to update the irq_time using 899 * the current rq->clock timestamp, except that would require using 900 * atomic ops. 901 */ 902 if (irq_delta > delta) 903 irq_delta = delta; 904 905 rq->prev_irq_time += irq_delta; 906 delta -= irq_delta; 907 #endif 908 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 909 if (static_key_false((¶virt_steal_rq_enabled))) { 910 steal = paravirt_steal_clock(cpu_of(rq)); 911 steal -= rq->prev_steal_time_rq; 912 913 if (unlikely(steal > delta)) 914 steal = delta; 915 916 rq->prev_steal_time_rq += steal; 917 delta -= steal; 918 } 919 #endif 920 921 rq->clock_task += delta; 922 923 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 924 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 925 sched_rt_avg_update(rq, irq_delta + steal); 926 #endif 927 } 928 929 void sched_set_stop_task(int cpu, struct task_struct *stop) 930 { 931 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 932 struct task_struct *old_stop = cpu_rq(cpu)->stop; 933 934 if (stop) { 935 /* 936 * Make it appear like a SCHED_FIFO task, its something 937 * userspace knows about and won't get confused about. 938 * 939 * Also, it will make PI more or less work without too 940 * much confusion -- but then, stop work should not 941 * rely on PI working anyway. 942 */ 943 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 944 945 stop->sched_class = &stop_sched_class; 946 } 947 948 cpu_rq(cpu)->stop = stop; 949 950 if (old_stop) { 951 /* 952 * Reset it back to a normal scheduling class so that 953 * it can die in pieces. 954 */ 955 old_stop->sched_class = &rt_sched_class; 956 } 957 } 958 959 /* 960 * __normal_prio - return the priority that is based on the static prio 961 */ 962 static inline int __normal_prio(struct task_struct *p) 963 { 964 return p->static_prio; 965 } 966 967 /* 968 * Calculate the expected normal priority: i.e. priority 969 * without taking RT-inheritance into account. Might be 970 * boosted by interactivity modifiers. Changes upon fork, 971 * setprio syscalls, and whenever the interactivity 972 * estimator recalculates. 973 */ 974 static inline int normal_prio(struct task_struct *p) 975 { 976 int prio; 977 978 if (task_has_dl_policy(p)) 979 prio = MAX_DL_PRIO-1; 980 else if (task_has_rt_policy(p)) 981 prio = MAX_RT_PRIO-1 - p->rt_priority; 982 else 983 prio = __normal_prio(p); 984 return prio; 985 } 986 987 /* 988 * Calculate the current priority, i.e. the priority 989 * taken into account by the scheduler. This value might 990 * be boosted by RT tasks, or might be boosted by 991 * interactivity modifiers. Will be RT if the task got 992 * RT-boosted. If not then it returns p->normal_prio. 993 */ 994 static int effective_prio(struct task_struct *p) 995 { 996 p->normal_prio = normal_prio(p); 997 /* 998 * If we are RT tasks or we were boosted to RT priority, 999 * keep the priority unchanged. Otherwise, update priority 1000 * to the normal priority: 1001 */ 1002 if (!rt_prio(p->prio)) 1003 return p->normal_prio; 1004 return p->prio; 1005 } 1006 1007 /** 1008 * task_curr - is this task currently executing on a CPU? 1009 * @p: the task in question. 1010 * 1011 * Return: 1 if the task is currently executing. 0 otherwise. 1012 */ 1013 inline int task_curr(const struct task_struct *p) 1014 { 1015 return cpu_curr(task_cpu(p)) == p; 1016 } 1017 1018 /* 1019 * Can drop rq->lock because from sched_class::switched_from() methods drop it. 1020 */ 1021 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1022 const struct sched_class *prev_class, 1023 int oldprio) 1024 { 1025 if (prev_class != p->sched_class) { 1026 if (prev_class->switched_from) 1027 prev_class->switched_from(rq, p); 1028 /* Possble rq->lock 'hole'. */ 1029 p->sched_class->switched_to(rq, p); 1030 } else if (oldprio != p->prio || dl_task(p)) 1031 p->sched_class->prio_changed(rq, p, oldprio); 1032 } 1033 1034 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1035 { 1036 const struct sched_class *class; 1037 1038 if (p->sched_class == rq->curr->sched_class) { 1039 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1040 } else { 1041 for_each_class(class) { 1042 if (class == rq->curr->sched_class) 1043 break; 1044 if (class == p->sched_class) { 1045 resched_curr(rq); 1046 break; 1047 } 1048 } 1049 } 1050 1051 /* 1052 * A queue event has occurred, and we're going to schedule. In 1053 * this case, we can save a useless back to back clock update. 1054 */ 1055 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1056 rq_clock_skip_update(rq, true); 1057 } 1058 1059 #ifdef CONFIG_SMP 1060 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1061 { 1062 #ifdef CONFIG_SCHED_DEBUG 1063 /* 1064 * We should never call set_task_cpu() on a blocked task, 1065 * ttwu() will sort out the placement. 1066 */ 1067 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1068 !p->on_rq); 1069 1070 #ifdef CONFIG_LOCKDEP 1071 /* 1072 * The caller should hold either p->pi_lock or rq->lock, when changing 1073 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1074 * 1075 * sched_move_task() holds both and thus holding either pins the cgroup, 1076 * see task_group(). 1077 * 1078 * Furthermore, all task_rq users should acquire both locks, see 1079 * task_rq_lock(). 1080 */ 1081 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1082 lockdep_is_held(&task_rq(p)->lock))); 1083 #endif 1084 #endif 1085 1086 trace_sched_migrate_task(p, new_cpu); 1087 1088 if (task_cpu(p) != new_cpu) { 1089 if (p->sched_class->migrate_task_rq) 1090 p->sched_class->migrate_task_rq(p, new_cpu); 1091 p->se.nr_migrations++; 1092 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1093 } 1094 1095 __set_task_cpu(p, new_cpu); 1096 } 1097 1098 static void __migrate_swap_task(struct task_struct *p, int cpu) 1099 { 1100 if (task_on_rq_queued(p)) { 1101 struct rq *src_rq, *dst_rq; 1102 1103 src_rq = task_rq(p); 1104 dst_rq = cpu_rq(cpu); 1105 1106 deactivate_task(src_rq, p, 0); 1107 set_task_cpu(p, cpu); 1108 activate_task(dst_rq, p, 0); 1109 check_preempt_curr(dst_rq, p, 0); 1110 } else { 1111 /* 1112 * Task isn't running anymore; make it appear like we migrated 1113 * it before it went to sleep. This means on wakeup we make the 1114 * previous cpu our targer instead of where it really is. 1115 */ 1116 p->wake_cpu = cpu; 1117 } 1118 } 1119 1120 struct migration_swap_arg { 1121 struct task_struct *src_task, *dst_task; 1122 int src_cpu, dst_cpu; 1123 }; 1124 1125 static int migrate_swap_stop(void *data) 1126 { 1127 struct migration_swap_arg *arg = data; 1128 struct rq *src_rq, *dst_rq; 1129 int ret = -EAGAIN; 1130 1131 src_rq = cpu_rq(arg->src_cpu); 1132 dst_rq = cpu_rq(arg->dst_cpu); 1133 1134 double_raw_lock(&arg->src_task->pi_lock, 1135 &arg->dst_task->pi_lock); 1136 double_rq_lock(src_rq, dst_rq); 1137 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1138 goto unlock; 1139 1140 if (task_cpu(arg->src_task) != arg->src_cpu) 1141 goto unlock; 1142 1143 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1144 goto unlock; 1145 1146 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1147 goto unlock; 1148 1149 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1150 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1151 1152 ret = 0; 1153 1154 unlock: 1155 double_rq_unlock(src_rq, dst_rq); 1156 raw_spin_unlock(&arg->dst_task->pi_lock); 1157 raw_spin_unlock(&arg->src_task->pi_lock); 1158 1159 return ret; 1160 } 1161 1162 /* 1163 * Cross migrate two tasks 1164 */ 1165 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1166 { 1167 struct migration_swap_arg arg; 1168 int ret = -EINVAL; 1169 1170 arg = (struct migration_swap_arg){ 1171 .src_task = cur, 1172 .src_cpu = task_cpu(cur), 1173 .dst_task = p, 1174 .dst_cpu = task_cpu(p), 1175 }; 1176 1177 if (arg.src_cpu == arg.dst_cpu) 1178 goto out; 1179 1180 /* 1181 * These three tests are all lockless; this is OK since all of them 1182 * will be re-checked with proper locks held further down the line. 1183 */ 1184 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1185 goto out; 1186 1187 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1188 goto out; 1189 1190 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1191 goto out; 1192 1193 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1194 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1195 1196 out: 1197 return ret; 1198 } 1199 1200 struct migration_arg { 1201 struct task_struct *task; 1202 int dest_cpu; 1203 }; 1204 1205 static int migration_cpu_stop(void *data); 1206 1207 /* 1208 * wait_task_inactive - wait for a thread to unschedule. 1209 * 1210 * If @match_state is nonzero, it's the @p->state value just checked and 1211 * not expected to change. If it changes, i.e. @p might have woken up, 1212 * then return zero. When we succeed in waiting for @p to be off its CPU, 1213 * we return a positive number (its total switch count). If a second call 1214 * a short while later returns the same number, the caller can be sure that 1215 * @p has remained unscheduled the whole time. 1216 * 1217 * The caller must ensure that the task *will* unschedule sometime soon, 1218 * else this function might spin for a *long* time. This function can't 1219 * be called with interrupts off, or it may introduce deadlock with 1220 * smp_call_function() if an IPI is sent by the same process we are 1221 * waiting to become inactive. 1222 */ 1223 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1224 { 1225 unsigned long flags; 1226 int running, queued; 1227 unsigned long ncsw; 1228 struct rq *rq; 1229 1230 for (;;) { 1231 /* 1232 * We do the initial early heuristics without holding 1233 * any task-queue locks at all. We'll only try to get 1234 * the runqueue lock when things look like they will 1235 * work out! 1236 */ 1237 rq = task_rq(p); 1238 1239 /* 1240 * If the task is actively running on another CPU 1241 * still, just relax and busy-wait without holding 1242 * any locks. 1243 * 1244 * NOTE! Since we don't hold any locks, it's not 1245 * even sure that "rq" stays as the right runqueue! 1246 * But we don't care, since "task_running()" will 1247 * return false if the runqueue has changed and p 1248 * is actually now running somewhere else! 1249 */ 1250 while (task_running(rq, p)) { 1251 if (match_state && unlikely(p->state != match_state)) 1252 return 0; 1253 cpu_relax(); 1254 } 1255 1256 /* 1257 * Ok, time to look more closely! We need the rq 1258 * lock now, to be *sure*. If we're wrong, we'll 1259 * just go back and repeat. 1260 */ 1261 rq = task_rq_lock(p, &flags); 1262 trace_sched_wait_task(p); 1263 running = task_running(rq, p); 1264 queued = task_on_rq_queued(p); 1265 ncsw = 0; 1266 if (!match_state || p->state == match_state) 1267 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1268 task_rq_unlock(rq, p, &flags); 1269 1270 /* 1271 * If it changed from the expected state, bail out now. 1272 */ 1273 if (unlikely(!ncsw)) 1274 break; 1275 1276 /* 1277 * Was it really running after all now that we 1278 * checked with the proper locks actually held? 1279 * 1280 * Oops. Go back and try again.. 1281 */ 1282 if (unlikely(running)) { 1283 cpu_relax(); 1284 continue; 1285 } 1286 1287 /* 1288 * It's not enough that it's not actively running, 1289 * it must be off the runqueue _entirely_, and not 1290 * preempted! 1291 * 1292 * So if it was still runnable (but just not actively 1293 * running right now), it's preempted, and we should 1294 * yield - it could be a while. 1295 */ 1296 if (unlikely(queued)) { 1297 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1298 1299 set_current_state(TASK_UNINTERRUPTIBLE); 1300 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1301 continue; 1302 } 1303 1304 /* 1305 * Ahh, all good. It wasn't running, and it wasn't 1306 * runnable, which means that it will never become 1307 * running in the future either. We're all done! 1308 */ 1309 break; 1310 } 1311 1312 return ncsw; 1313 } 1314 1315 /*** 1316 * kick_process - kick a running thread to enter/exit the kernel 1317 * @p: the to-be-kicked thread 1318 * 1319 * Cause a process which is running on another CPU to enter 1320 * kernel-mode, without any delay. (to get signals handled.) 1321 * 1322 * NOTE: this function doesn't have to take the runqueue lock, 1323 * because all it wants to ensure is that the remote task enters 1324 * the kernel. If the IPI races and the task has been migrated 1325 * to another CPU then no harm is done and the purpose has been 1326 * achieved as well. 1327 */ 1328 void kick_process(struct task_struct *p) 1329 { 1330 int cpu; 1331 1332 preempt_disable(); 1333 cpu = task_cpu(p); 1334 if ((cpu != smp_processor_id()) && task_curr(p)) 1335 smp_send_reschedule(cpu); 1336 preempt_enable(); 1337 } 1338 EXPORT_SYMBOL_GPL(kick_process); 1339 #endif /* CONFIG_SMP */ 1340 1341 #ifdef CONFIG_SMP 1342 /* 1343 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1344 */ 1345 static int select_fallback_rq(int cpu, struct task_struct *p) 1346 { 1347 int nid = cpu_to_node(cpu); 1348 const struct cpumask *nodemask = NULL; 1349 enum { cpuset, possible, fail } state = cpuset; 1350 int dest_cpu; 1351 1352 /* 1353 * If the node that the cpu is on has been offlined, cpu_to_node() 1354 * will return -1. There is no cpu on the node, and we should 1355 * select the cpu on the other node. 1356 */ 1357 if (nid != -1) { 1358 nodemask = cpumask_of_node(nid); 1359 1360 /* Look for allowed, online CPU in same node. */ 1361 for_each_cpu(dest_cpu, nodemask) { 1362 if (!cpu_online(dest_cpu)) 1363 continue; 1364 if (!cpu_active(dest_cpu)) 1365 continue; 1366 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1367 return dest_cpu; 1368 } 1369 } 1370 1371 for (;;) { 1372 /* Any allowed, online CPU? */ 1373 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1374 if (!cpu_online(dest_cpu)) 1375 continue; 1376 if (!cpu_active(dest_cpu)) 1377 continue; 1378 goto out; 1379 } 1380 1381 switch (state) { 1382 case cpuset: 1383 /* No more Mr. Nice Guy. */ 1384 cpuset_cpus_allowed_fallback(p); 1385 state = possible; 1386 break; 1387 1388 case possible: 1389 do_set_cpus_allowed(p, cpu_possible_mask); 1390 state = fail; 1391 break; 1392 1393 case fail: 1394 BUG(); 1395 break; 1396 } 1397 } 1398 1399 out: 1400 if (state != cpuset) { 1401 /* 1402 * Don't tell them about moving exiting tasks or 1403 * kernel threads (both mm NULL), since they never 1404 * leave kernel. 1405 */ 1406 if (p->mm && printk_ratelimit()) { 1407 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1408 task_pid_nr(p), p->comm, cpu); 1409 } 1410 } 1411 1412 return dest_cpu; 1413 } 1414 1415 /* 1416 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1417 */ 1418 static inline 1419 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1420 { 1421 if (p->nr_cpus_allowed > 1) 1422 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1423 1424 /* 1425 * In order not to call set_task_cpu() on a blocking task we need 1426 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1427 * cpu. 1428 * 1429 * Since this is common to all placement strategies, this lives here. 1430 * 1431 * [ this allows ->select_task() to simply return task_cpu(p) and 1432 * not worry about this generic constraint ] 1433 */ 1434 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1435 !cpu_online(cpu))) 1436 cpu = select_fallback_rq(task_cpu(p), p); 1437 1438 return cpu; 1439 } 1440 1441 static void update_avg(u64 *avg, u64 sample) 1442 { 1443 s64 diff = sample - *avg; 1444 *avg += diff >> 3; 1445 } 1446 #endif 1447 1448 static void 1449 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1450 { 1451 #ifdef CONFIG_SCHEDSTATS 1452 struct rq *rq = this_rq(); 1453 1454 #ifdef CONFIG_SMP 1455 int this_cpu = smp_processor_id(); 1456 1457 if (cpu == this_cpu) { 1458 schedstat_inc(rq, ttwu_local); 1459 schedstat_inc(p, se.statistics.nr_wakeups_local); 1460 } else { 1461 struct sched_domain *sd; 1462 1463 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1464 rcu_read_lock(); 1465 for_each_domain(this_cpu, sd) { 1466 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1467 schedstat_inc(sd, ttwu_wake_remote); 1468 break; 1469 } 1470 } 1471 rcu_read_unlock(); 1472 } 1473 1474 if (wake_flags & WF_MIGRATED) 1475 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1476 1477 #endif /* CONFIG_SMP */ 1478 1479 schedstat_inc(rq, ttwu_count); 1480 schedstat_inc(p, se.statistics.nr_wakeups); 1481 1482 if (wake_flags & WF_SYNC) 1483 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1484 1485 #endif /* CONFIG_SCHEDSTATS */ 1486 } 1487 1488 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1489 { 1490 activate_task(rq, p, en_flags); 1491 p->on_rq = TASK_ON_RQ_QUEUED; 1492 1493 /* if a worker is waking up, notify workqueue */ 1494 if (p->flags & PF_WQ_WORKER) 1495 wq_worker_waking_up(p, cpu_of(rq)); 1496 } 1497 1498 /* 1499 * Mark the task runnable and perform wakeup-preemption. 1500 */ 1501 static void 1502 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1503 { 1504 check_preempt_curr(rq, p, wake_flags); 1505 trace_sched_wakeup(p, true); 1506 1507 p->state = TASK_RUNNING; 1508 #ifdef CONFIG_SMP 1509 if (p->sched_class->task_woken) 1510 p->sched_class->task_woken(rq, p); 1511 1512 if (rq->idle_stamp) { 1513 u64 delta = rq_clock(rq) - rq->idle_stamp; 1514 u64 max = 2*rq->max_idle_balance_cost; 1515 1516 update_avg(&rq->avg_idle, delta); 1517 1518 if (rq->avg_idle > max) 1519 rq->avg_idle = max; 1520 1521 rq->idle_stamp = 0; 1522 } 1523 #endif 1524 } 1525 1526 static void 1527 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1528 { 1529 #ifdef CONFIG_SMP 1530 if (p->sched_contributes_to_load) 1531 rq->nr_uninterruptible--; 1532 #endif 1533 1534 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1535 ttwu_do_wakeup(rq, p, wake_flags); 1536 } 1537 1538 /* 1539 * Called in case the task @p isn't fully descheduled from its runqueue, 1540 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1541 * since all we need to do is flip p->state to TASK_RUNNING, since 1542 * the task is still ->on_rq. 1543 */ 1544 static int ttwu_remote(struct task_struct *p, int wake_flags) 1545 { 1546 struct rq *rq; 1547 int ret = 0; 1548 1549 rq = __task_rq_lock(p); 1550 if (task_on_rq_queued(p)) { 1551 /* check_preempt_curr() may use rq clock */ 1552 update_rq_clock(rq); 1553 ttwu_do_wakeup(rq, p, wake_flags); 1554 ret = 1; 1555 } 1556 __task_rq_unlock(rq); 1557 1558 return ret; 1559 } 1560 1561 #ifdef CONFIG_SMP 1562 void sched_ttwu_pending(void) 1563 { 1564 struct rq *rq = this_rq(); 1565 struct llist_node *llist = llist_del_all(&rq->wake_list); 1566 struct task_struct *p; 1567 unsigned long flags; 1568 1569 if (!llist) 1570 return; 1571 1572 raw_spin_lock_irqsave(&rq->lock, flags); 1573 1574 while (llist) { 1575 p = llist_entry(llist, struct task_struct, wake_entry); 1576 llist = llist_next(llist); 1577 ttwu_do_activate(rq, p, 0); 1578 } 1579 1580 raw_spin_unlock_irqrestore(&rq->lock, flags); 1581 } 1582 1583 void scheduler_ipi(void) 1584 { 1585 /* 1586 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1587 * TIF_NEED_RESCHED remotely (for the first time) will also send 1588 * this IPI. 1589 */ 1590 preempt_fold_need_resched(); 1591 1592 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1593 return; 1594 1595 /* 1596 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1597 * traditionally all their work was done from the interrupt return 1598 * path. Now that we actually do some work, we need to make sure 1599 * we do call them. 1600 * 1601 * Some archs already do call them, luckily irq_enter/exit nest 1602 * properly. 1603 * 1604 * Arguably we should visit all archs and update all handlers, 1605 * however a fair share of IPIs are still resched only so this would 1606 * somewhat pessimize the simple resched case. 1607 */ 1608 irq_enter(); 1609 sched_ttwu_pending(); 1610 1611 /* 1612 * Check if someone kicked us for doing the nohz idle load balance. 1613 */ 1614 if (unlikely(got_nohz_idle_kick())) { 1615 this_rq()->idle_balance = 1; 1616 raise_softirq_irqoff(SCHED_SOFTIRQ); 1617 } 1618 irq_exit(); 1619 } 1620 1621 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1622 { 1623 struct rq *rq = cpu_rq(cpu); 1624 1625 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1626 if (!set_nr_if_polling(rq->idle)) 1627 smp_send_reschedule(cpu); 1628 else 1629 trace_sched_wake_idle_without_ipi(cpu); 1630 } 1631 } 1632 1633 void wake_up_if_idle(int cpu) 1634 { 1635 struct rq *rq = cpu_rq(cpu); 1636 unsigned long flags; 1637 1638 rcu_read_lock(); 1639 1640 if (!is_idle_task(rcu_dereference(rq->curr))) 1641 goto out; 1642 1643 if (set_nr_if_polling(rq->idle)) { 1644 trace_sched_wake_idle_without_ipi(cpu); 1645 } else { 1646 raw_spin_lock_irqsave(&rq->lock, flags); 1647 if (is_idle_task(rq->curr)) 1648 smp_send_reschedule(cpu); 1649 /* Else cpu is not in idle, do nothing here */ 1650 raw_spin_unlock_irqrestore(&rq->lock, flags); 1651 } 1652 1653 out: 1654 rcu_read_unlock(); 1655 } 1656 1657 bool cpus_share_cache(int this_cpu, int that_cpu) 1658 { 1659 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1660 } 1661 #endif /* CONFIG_SMP */ 1662 1663 static void ttwu_queue(struct task_struct *p, int cpu) 1664 { 1665 struct rq *rq = cpu_rq(cpu); 1666 1667 #if defined(CONFIG_SMP) 1668 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1669 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1670 ttwu_queue_remote(p, cpu); 1671 return; 1672 } 1673 #endif 1674 1675 raw_spin_lock(&rq->lock); 1676 ttwu_do_activate(rq, p, 0); 1677 raw_spin_unlock(&rq->lock); 1678 } 1679 1680 /** 1681 * try_to_wake_up - wake up a thread 1682 * @p: the thread to be awakened 1683 * @state: the mask of task states that can be woken 1684 * @wake_flags: wake modifier flags (WF_*) 1685 * 1686 * Put it on the run-queue if it's not already there. The "current" 1687 * thread is always on the run-queue (except when the actual 1688 * re-schedule is in progress), and as such you're allowed to do 1689 * the simpler "current->state = TASK_RUNNING" to mark yourself 1690 * runnable without the overhead of this. 1691 * 1692 * Return: %true if @p was woken up, %false if it was already running. 1693 * or @state didn't match @p's state. 1694 */ 1695 static int 1696 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1697 { 1698 unsigned long flags; 1699 int cpu, success = 0; 1700 1701 /* 1702 * If we are going to wake up a thread waiting for CONDITION we 1703 * need to ensure that CONDITION=1 done by the caller can not be 1704 * reordered with p->state check below. This pairs with mb() in 1705 * set_current_state() the waiting thread does. 1706 */ 1707 smp_mb__before_spinlock(); 1708 raw_spin_lock_irqsave(&p->pi_lock, flags); 1709 if (!(p->state & state)) 1710 goto out; 1711 1712 success = 1; /* we're going to change ->state */ 1713 cpu = task_cpu(p); 1714 1715 if (p->on_rq && ttwu_remote(p, wake_flags)) 1716 goto stat; 1717 1718 #ifdef CONFIG_SMP 1719 /* 1720 * If the owning (remote) cpu is still in the middle of schedule() with 1721 * this task as prev, wait until its done referencing the task. 1722 */ 1723 while (p->on_cpu) 1724 cpu_relax(); 1725 /* 1726 * Pairs with the smp_wmb() in finish_lock_switch(). 1727 */ 1728 smp_rmb(); 1729 1730 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1731 p->state = TASK_WAKING; 1732 1733 if (p->sched_class->task_waking) 1734 p->sched_class->task_waking(p); 1735 1736 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1737 if (task_cpu(p) != cpu) { 1738 wake_flags |= WF_MIGRATED; 1739 set_task_cpu(p, cpu); 1740 } 1741 #endif /* CONFIG_SMP */ 1742 1743 ttwu_queue(p, cpu); 1744 stat: 1745 ttwu_stat(p, cpu, wake_flags); 1746 out: 1747 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1748 1749 return success; 1750 } 1751 1752 /** 1753 * try_to_wake_up_local - try to wake up a local task with rq lock held 1754 * @p: the thread to be awakened 1755 * 1756 * Put @p on the run-queue if it's not already there. The caller must 1757 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1758 * the current task. 1759 */ 1760 static void try_to_wake_up_local(struct task_struct *p) 1761 { 1762 struct rq *rq = task_rq(p); 1763 1764 if (WARN_ON_ONCE(rq != this_rq()) || 1765 WARN_ON_ONCE(p == current)) 1766 return; 1767 1768 lockdep_assert_held(&rq->lock); 1769 1770 if (!raw_spin_trylock(&p->pi_lock)) { 1771 raw_spin_unlock(&rq->lock); 1772 raw_spin_lock(&p->pi_lock); 1773 raw_spin_lock(&rq->lock); 1774 } 1775 1776 if (!(p->state & TASK_NORMAL)) 1777 goto out; 1778 1779 if (!task_on_rq_queued(p)) 1780 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1781 1782 ttwu_do_wakeup(rq, p, 0); 1783 ttwu_stat(p, smp_processor_id(), 0); 1784 out: 1785 raw_spin_unlock(&p->pi_lock); 1786 } 1787 1788 /** 1789 * wake_up_process - Wake up a specific process 1790 * @p: The process to be woken up. 1791 * 1792 * Attempt to wake up the nominated process and move it to the set of runnable 1793 * processes. 1794 * 1795 * Return: 1 if the process was woken up, 0 if it was already running. 1796 * 1797 * It may be assumed that this function implies a write memory barrier before 1798 * changing the task state if and only if any tasks are woken up. 1799 */ 1800 int wake_up_process(struct task_struct *p) 1801 { 1802 WARN_ON(task_is_stopped_or_traced(p)); 1803 return try_to_wake_up(p, TASK_NORMAL, 0); 1804 } 1805 EXPORT_SYMBOL(wake_up_process); 1806 1807 int wake_up_state(struct task_struct *p, unsigned int state) 1808 { 1809 return try_to_wake_up(p, state, 0); 1810 } 1811 1812 /* 1813 * This function clears the sched_dl_entity static params. 1814 */ 1815 void __dl_clear_params(struct task_struct *p) 1816 { 1817 struct sched_dl_entity *dl_se = &p->dl; 1818 1819 dl_se->dl_runtime = 0; 1820 dl_se->dl_deadline = 0; 1821 dl_se->dl_period = 0; 1822 dl_se->flags = 0; 1823 dl_se->dl_bw = 0; 1824 1825 dl_se->dl_throttled = 0; 1826 dl_se->dl_new = 1; 1827 dl_se->dl_yielded = 0; 1828 } 1829 1830 /* 1831 * Perform scheduler related setup for a newly forked process p. 1832 * p is forked by current. 1833 * 1834 * __sched_fork() is basic setup used by init_idle() too: 1835 */ 1836 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1837 { 1838 p->on_rq = 0; 1839 1840 p->se.on_rq = 0; 1841 p->se.exec_start = 0; 1842 p->se.sum_exec_runtime = 0; 1843 p->se.prev_sum_exec_runtime = 0; 1844 p->se.nr_migrations = 0; 1845 p->se.vruntime = 0; 1846 #ifdef CONFIG_SMP 1847 p->se.avg.decay_count = 0; 1848 #endif 1849 INIT_LIST_HEAD(&p->se.group_node); 1850 1851 #ifdef CONFIG_SCHEDSTATS 1852 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1853 #endif 1854 1855 RB_CLEAR_NODE(&p->dl.rb_node); 1856 init_dl_task_timer(&p->dl); 1857 __dl_clear_params(p); 1858 1859 INIT_LIST_HEAD(&p->rt.run_list); 1860 1861 #ifdef CONFIG_PREEMPT_NOTIFIERS 1862 INIT_HLIST_HEAD(&p->preempt_notifiers); 1863 #endif 1864 1865 #ifdef CONFIG_NUMA_BALANCING 1866 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1867 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1868 p->mm->numa_scan_seq = 0; 1869 } 1870 1871 if (clone_flags & CLONE_VM) 1872 p->numa_preferred_nid = current->numa_preferred_nid; 1873 else 1874 p->numa_preferred_nid = -1; 1875 1876 p->node_stamp = 0ULL; 1877 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1878 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1879 p->numa_work.next = &p->numa_work; 1880 p->numa_faults = NULL; 1881 p->last_task_numa_placement = 0; 1882 p->last_sum_exec_runtime = 0; 1883 1884 p->numa_group = NULL; 1885 #endif /* CONFIG_NUMA_BALANCING */ 1886 } 1887 1888 #ifdef CONFIG_NUMA_BALANCING 1889 #ifdef CONFIG_SCHED_DEBUG 1890 void set_numabalancing_state(bool enabled) 1891 { 1892 if (enabled) 1893 sched_feat_set("NUMA"); 1894 else 1895 sched_feat_set("NO_NUMA"); 1896 } 1897 #else 1898 __read_mostly bool numabalancing_enabled; 1899 1900 void set_numabalancing_state(bool enabled) 1901 { 1902 numabalancing_enabled = enabled; 1903 } 1904 #endif /* CONFIG_SCHED_DEBUG */ 1905 1906 #ifdef CONFIG_PROC_SYSCTL 1907 int sysctl_numa_balancing(struct ctl_table *table, int write, 1908 void __user *buffer, size_t *lenp, loff_t *ppos) 1909 { 1910 struct ctl_table t; 1911 int err; 1912 int state = numabalancing_enabled; 1913 1914 if (write && !capable(CAP_SYS_ADMIN)) 1915 return -EPERM; 1916 1917 t = *table; 1918 t.data = &state; 1919 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1920 if (err < 0) 1921 return err; 1922 if (write) 1923 set_numabalancing_state(state); 1924 return err; 1925 } 1926 #endif 1927 #endif 1928 1929 /* 1930 * fork()/clone()-time setup: 1931 */ 1932 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1933 { 1934 unsigned long flags; 1935 int cpu = get_cpu(); 1936 1937 __sched_fork(clone_flags, p); 1938 /* 1939 * We mark the process as running here. This guarantees that 1940 * nobody will actually run it, and a signal or other external 1941 * event cannot wake it up and insert it on the runqueue either. 1942 */ 1943 p->state = TASK_RUNNING; 1944 1945 /* 1946 * Make sure we do not leak PI boosting priority to the child. 1947 */ 1948 p->prio = current->normal_prio; 1949 1950 /* 1951 * Revert to default priority/policy on fork if requested. 1952 */ 1953 if (unlikely(p->sched_reset_on_fork)) { 1954 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1955 p->policy = SCHED_NORMAL; 1956 p->static_prio = NICE_TO_PRIO(0); 1957 p->rt_priority = 0; 1958 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1959 p->static_prio = NICE_TO_PRIO(0); 1960 1961 p->prio = p->normal_prio = __normal_prio(p); 1962 set_load_weight(p); 1963 1964 /* 1965 * We don't need the reset flag anymore after the fork. It has 1966 * fulfilled its duty: 1967 */ 1968 p->sched_reset_on_fork = 0; 1969 } 1970 1971 if (dl_prio(p->prio)) { 1972 put_cpu(); 1973 return -EAGAIN; 1974 } else if (rt_prio(p->prio)) { 1975 p->sched_class = &rt_sched_class; 1976 } else { 1977 p->sched_class = &fair_sched_class; 1978 } 1979 1980 if (p->sched_class->task_fork) 1981 p->sched_class->task_fork(p); 1982 1983 /* 1984 * The child is not yet in the pid-hash so no cgroup attach races, 1985 * and the cgroup is pinned to this child due to cgroup_fork() 1986 * is ran before sched_fork(). 1987 * 1988 * Silence PROVE_RCU. 1989 */ 1990 raw_spin_lock_irqsave(&p->pi_lock, flags); 1991 set_task_cpu(p, cpu); 1992 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1993 1994 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1995 if (likely(sched_info_on())) 1996 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1997 #endif 1998 #if defined(CONFIG_SMP) 1999 p->on_cpu = 0; 2000 #endif 2001 init_task_preempt_count(p); 2002 #ifdef CONFIG_SMP 2003 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2004 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2005 #endif 2006 2007 put_cpu(); 2008 return 0; 2009 } 2010 2011 unsigned long to_ratio(u64 period, u64 runtime) 2012 { 2013 if (runtime == RUNTIME_INF) 2014 return 1ULL << 20; 2015 2016 /* 2017 * Doing this here saves a lot of checks in all 2018 * the calling paths, and returning zero seems 2019 * safe for them anyway. 2020 */ 2021 if (period == 0) 2022 return 0; 2023 2024 return div64_u64(runtime << 20, period); 2025 } 2026 2027 #ifdef CONFIG_SMP 2028 inline struct dl_bw *dl_bw_of(int i) 2029 { 2030 rcu_lockdep_assert(rcu_read_lock_sched_held(), 2031 "sched RCU must be held"); 2032 return &cpu_rq(i)->rd->dl_bw; 2033 } 2034 2035 static inline int dl_bw_cpus(int i) 2036 { 2037 struct root_domain *rd = cpu_rq(i)->rd; 2038 int cpus = 0; 2039 2040 rcu_lockdep_assert(rcu_read_lock_sched_held(), 2041 "sched RCU must be held"); 2042 for_each_cpu_and(i, rd->span, cpu_active_mask) 2043 cpus++; 2044 2045 return cpus; 2046 } 2047 #else 2048 inline struct dl_bw *dl_bw_of(int i) 2049 { 2050 return &cpu_rq(i)->dl.dl_bw; 2051 } 2052 2053 static inline int dl_bw_cpus(int i) 2054 { 2055 return 1; 2056 } 2057 #endif 2058 2059 /* 2060 * We must be sure that accepting a new task (or allowing changing the 2061 * parameters of an existing one) is consistent with the bandwidth 2062 * constraints. If yes, this function also accordingly updates the currently 2063 * allocated bandwidth to reflect the new situation. 2064 * 2065 * This function is called while holding p's rq->lock. 2066 * 2067 * XXX we should delay bw change until the task's 0-lag point, see 2068 * __setparam_dl(). 2069 */ 2070 static int dl_overflow(struct task_struct *p, int policy, 2071 const struct sched_attr *attr) 2072 { 2073 2074 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2075 u64 period = attr->sched_period ?: attr->sched_deadline; 2076 u64 runtime = attr->sched_runtime; 2077 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2078 int cpus, err = -1; 2079 2080 if (new_bw == p->dl.dl_bw) 2081 return 0; 2082 2083 /* 2084 * Either if a task, enters, leave, or stays -deadline but changes 2085 * its parameters, we may need to update accordingly the total 2086 * allocated bandwidth of the container. 2087 */ 2088 raw_spin_lock(&dl_b->lock); 2089 cpus = dl_bw_cpus(task_cpu(p)); 2090 if (dl_policy(policy) && !task_has_dl_policy(p) && 2091 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2092 __dl_add(dl_b, new_bw); 2093 err = 0; 2094 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2095 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2096 __dl_clear(dl_b, p->dl.dl_bw); 2097 __dl_add(dl_b, new_bw); 2098 err = 0; 2099 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2100 __dl_clear(dl_b, p->dl.dl_bw); 2101 err = 0; 2102 } 2103 raw_spin_unlock(&dl_b->lock); 2104 2105 return err; 2106 } 2107 2108 extern void init_dl_bw(struct dl_bw *dl_b); 2109 2110 /* 2111 * wake_up_new_task - wake up a newly created task for the first time. 2112 * 2113 * This function will do some initial scheduler statistics housekeeping 2114 * that must be done for every newly created context, then puts the task 2115 * on the runqueue and wakes it. 2116 */ 2117 void wake_up_new_task(struct task_struct *p) 2118 { 2119 unsigned long flags; 2120 struct rq *rq; 2121 2122 raw_spin_lock_irqsave(&p->pi_lock, flags); 2123 #ifdef CONFIG_SMP 2124 /* 2125 * Fork balancing, do it here and not earlier because: 2126 * - cpus_allowed can change in the fork path 2127 * - any previously selected cpu might disappear through hotplug 2128 */ 2129 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2130 #endif 2131 2132 /* Initialize new task's runnable average */ 2133 init_task_runnable_average(p); 2134 rq = __task_rq_lock(p); 2135 activate_task(rq, p, 0); 2136 p->on_rq = TASK_ON_RQ_QUEUED; 2137 trace_sched_wakeup_new(p, true); 2138 check_preempt_curr(rq, p, WF_FORK); 2139 #ifdef CONFIG_SMP 2140 if (p->sched_class->task_woken) 2141 p->sched_class->task_woken(rq, p); 2142 #endif 2143 task_rq_unlock(rq, p, &flags); 2144 } 2145 2146 #ifdef CONFIG_PREEMPT_NOTIFIERS 2147 2148 /** 2149 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2150 * @notifier: notifier struct to register 2151 */ 2152 void preempt_notifier_register(struct preempt_notifier *notifier) 2153 { 2154 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2155 } 2156 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2157 2158 /** 2159 * preempt_notifier_unregister - no longer interested in preemption notifications 2160 * @notifier: notifier struct to unregister 2161 * 2162 * This is safe to call from within a preemption notifier. 2163 */ 2164 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2165 { 2166 hlist_del(¬ifier->link); 2167 } 2168 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2169 2170 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2171 { 2172 struct preempt_notifier *notifier; 2173 2174 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2175 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2176 } 2177 2178 static void 2179 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2180 struct task_struct *next) 2181 { 2182 struct preempt_notifier *notifier; 2183 2184 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2185 notifier->ops->sched_out(notifier, next); 2186 } 2187 2188 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2189 2190 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2191 { 2192 } 2193 2194 static void 2195 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2196 struct task_struct *next) 2197 { 2198 } 2199 2200 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2201 2202 /** 2203 * prepare_task_switch - prepare to switch tasks 2204 * @rq: the runqueue preparing to switch 2205 * @prev: the current task that is being switched out 2206 * @next: the task we are going to switch to. 2207 * 2208 * This is called with the rq lock held and interrupts off. It must 2209 * be paired with a subsequent finish_task_switch after the context 2210 * switch. 2211 * 2212 * prepare_task_switch sets up locking and calls architecture specific 2213 * hooks. 2214 */ 2215 static inline void 2216 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2217 struct task_struct *next) 2218 { 2219 trace_sched_switch(prev, next); 2220 sched_info_switch(rq, prev, next); 2221 perf_event_task_sched_out(prev, next); 2222 fire_sched_out_preempt_notifiers(prev, next); 2223 prepare_lock_switch(rq, next); 2224 prepare_arch_switch(next); 2225 } 2226 2227 /** 2228 * finish_task_switch - clean up after a task-switch 2229 * @prev: the thread we just switched away from. 2230 * 2231 * finish_task_switch must be called after the context switch, paired 2232 * with a prepare_task_switch call before the context switch. 2233 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2234 * and do any other architecture-specific cleanup actions. 2235 * 2236 * Note that we may have delayed dropping an mm in context_switch(). If 2237 * so, we finish that here outside of the runqueue lock. (Doing it 2238 * with the lock held can cause deadlocks; see schedule() for 2239 * details.) 2240 * 2241 * The context switch have flipped the stack from under us and restored the 2242 * local variables which were saved when this task called schedule() in the 2243 * past. prev == current is still correct but we need to recalculate this_rq 2244 * because prev may have moved to another CPU. 2245 */ 2246 static struct rq *finish_task_switch(struct task_struct *prev) 2247 __releases(rq->lock) 2248 { 2249 struct rq *rq = this_rq(); 2250 struct mm_struct *mm = rq->prev_mm; 2251 long prev_state; 2252 2253 rq->prev_mm = NULL; 2254 2255 /* 2256 * A task struct has one reference for the use as "current". 2257 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2258 * schedule one last time. The schedule call will never return, and 2259 * the scheduled task must drop that reference. 2260 * The test for TASK_DEAD must occur while the runqueue locks are 2261 * still held, otherwise prev could be scheduled on another cpu, die 2262 * there before we look at prev->state, and then the reference would 2263 * be dropped twice. 2264 * Manfred Spraul <manfred@colorfullife.com> 2265 */ 2266 prev_state = prev->state; 2267 vtime_task_switch(prev); 2268 finish_arch_switch(prev); 2269 perf_event_task_sched_in(prev, current); 2270 finish_lock_switch(rq, prev); 2271 finish_arch_post_lock_switch(); 2272 2273 fire_sched_in_preempt_notifiers(current); 2274 if (mm) 2275 mmdrop(mm); 2276 if (unlikely(prev_state == TASK_DEAD)) { 2277 if (prev->sched_class->task_dead) 2278 prev->sched_class->task_dead(prev); 2279 2280 /* 2281 * Remove function-return probe instances associated with this 2282 * task and put them back on the free list. 2283 */ 2284 kprobe_flush_task(prev); 2285 put_task_struct(prev); 2286 } 2287 2288 tick_nohz_task_switch(current); 2289 return rq; 2290 } 2291 2292 #ifdef CONFIG_SMP 2293 2294 /* rq->lock is NOT held, but preemption is disabled */ 2295 static inline void post_schedule(struct rq *rq) 2296 { 2297 if (rq->post_schedule) { 2298 unsigned long flags; 2299 2300 raw_spin_lock_irqsave(&rq->lock, flags); 2301 if (rq->curr->sched_class->post_schedule) 2302 rq->curr->sched_class->post_schedule(rq); 2303 raw_spin_unlock_irqrestore(&rq->lock, flags); 2304 2305 rq->post_schedule = 0; 2306 } 2307 } 2308 2309 #else 2310 2311 static inline void post_schedule(struct rq *rq) 2312 { 2313 } 2314 2315 #endif 2316 2317 /** 2318 * schedule_tail - first thing a freshly forked thread must call. 2319 * @prev: the thread we just switched away from. 2320 */ 2321 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2322 __releases(rq->lock) 2323 { 2324 struct rq *rq; 2325 2326 /* finish_task_switch() drops rq->lock and enables preemtion */ 2327 preempt_disable(); 2328 rq = finish_task_switch(prev); 2329 post_schedule(rq); 2330 preempt_enable(); 2331 2332 if (current->set_child_tid) 2333 put_user(task_pid_vnr(current), current->set_child_tid); 2334 } 2335 2336 /* 2337 * context_switch - switch to the new MM and the new thread's register state. 2338 */ 2339 static inline struct rq * 2340 context_switch(struct rq *rq, struct task_struct *prev, 2341 struct task_struct *next) 2342 { 2343 struct mm_struct *mm, *oldmm; 2344 2345 prepare_task_switch(rq, prev, next); 2346 2347 mm = next->mm; 2348 oldmm = prev->active_mm; 2349 /* 2350 * For paravirt, this is coupled with an exit in switch_to to 2351 * combine the page table reload and the switch backend into 2352 * one hypercall. 2353 */ 2354 arch_start_context_switch(prev); 2355 2356 if (!mm) { 2357 next->active_mm = oldmm; 2358 atomic_inc(&oldmm->mm_count); 2359 enter_lazy_tlb(oldmm, next); 2360 } else 2361 switch_mm(oldmm, mm, next); 2362 2363 if (!prev->mm) { 2364 prev->active_mm = NULL; 2365 rq->prev_mm = oldmm; 2366 } 2367 /* 2368 * Since the runqueue lock will be released by the next 2369 * task (which is an invalid locking op but in the case 2370 * of the scheduler it's an obvious special-case), so we 2371 * do an early lockdep release here: 2372 */ 2373 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2374 2375 context_tracking_task_switch(prev, next); 2376 /* Here we just switch the register state and the stack. */ 2377 switch_to(prev, next, prev); 2378 barrier(); 2379 2380 return finish_task_switch(prev); 2381 } 2382 2383 /* 2384 * nr_running and nr_context_switches: 2385 * 2386 * externally visible scheduler statistics: current number of runnable 2387 * threads, total number of context switches performed since bootup. 2388 */ 2389 unsigned long nr_running(void) 2390 { 2391 unsigned long i, sum = 0; 2392 2393 for_each_online_cpu(i) 2394 sum += cpu_rq(i)->nr_running; 2395 2396 return sum; 2397 } 2398 2399 /* 2400 * Check if only the current task is running on the cpu. 2401 */ 2402 bool single_task_running(void) 2403 { 2404 if (cpu_rq(smp_processor_id())->nr_running == 1) 2405 return true; 2406 else 2407 return false; 2408 } 2409 EXPORT_SYMBOL(single_task_running); 2410 2411 unsigned long long nr_context_switches(void) 2412 { 2413 int i; 2414 unsigned long long sum = 0; 2415 2416 for_each_possible_cpu(i) 2417 sum += cpu_rq(i)->nr_switches; 2418 2419 return sum; 2420 } 2421 2422 unsigned long nr_iowait(void) 2423 { 2424 unsigned long i, sum = 0; 2425 2426 for_each_possible_cpu(i) 2427 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2428 2429 return sum; 2430 } 2431 2432 unsigned long nr_iowait_cpu(int cpu) 2433 { 2434 struct rq *this = cpu_rq(cpu); 2435 return atomic_read(&this->nr_iowait); 2436 } 2437 2438 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2439 { 2440 struct rq *this = this_rq(); 2441 *nr_waiters = atomic_read(&this->nr_iowait); 2442 *load = this->cpu_load[0]; 2443 } 2444 2445 #ifdef CONFIG_SMP 2446 2447 /* 2448 * sched_exec - execve() is a valuable balancing opportunity, because at 2449 * this point the task has the smallest effective memory and cache footprint. 2450 */ 2451 void sched_exec(void) 2452 { 2453 struct task_struct *p = current; 2454 unsigned long flags; 2455 int dest_cpu; 2456 2457 raw_spin_lock_irqsave(&p->pi_lock, flags); 2458 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2459 if (dest_cpu == smp_processor_id()) 2460 goto unlock; 2461 2462 if (likely(cpu_active(dest_cpu))) { 2463 struct migration_arg arg = { p, dest_cpu }; 2464 2465 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2466 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2467 return; 2468 } 2469 unlock: 2470 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2471 } 2472 2473 #endif 2474 2475 DEFINE_PER_CPU(struct kernel_stat, kstat); 2476 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2477 2478 EXPORT_PER_CPU_SYMBOL(kstat); 2479 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2480 2481 /* 2482 * Return accounted runtime for the task. 2483 * In case the task is currently running, return the runtime plus current's 2484 * pending runtime that have not been accounted yet. 2485 */ 2486 unsigned long long task_sched_runtime(struct task_struct *p) 2487 { 2488 unsigned long flags; 2489 struct rq *rq; 2490 u64 ns; 2491 2492 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2493 /* 2494 * 64-bit doesn't need locks to atomically read a 64bit value. 2495 * So we have a optimization chance when the task's delta_exec is 0. 2496 * Reading ->on_cpu is racy, but this is ok. 2497 * 2498 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2499 * If we race with it entering cpu, unaccounted time is 0. This is 2500 * indistinguishable from the read occurring a few cycles earlier. 2501 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2502 * been accounted, so we're correct here as well. 2503 */ 2504 if (!p->on_cpu || !task_on_rq_queued(p)) 2505 return p->se.sum_exec_runtime; 2506 #endif 2507 2508 rq = task_rq_lock(p, &flags); 2509 /* 2510 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2511 * project cycles that may never be accounted to this 2512 * thread, breaking clock_gettime(). 2513 */ 2514 if (task_current(rq, p) && task_on_rq_queued(p)) { 2515 update_rq_clock(rq); 2516 p->sched_class->update_curr(rq); 2517 } 2518 ns = p->se.sum_exec_runtime; 2519 task_rq_unlock(rq, p, &flags); 2520 2521 return ns; 2522 } 2523 2524 /* 2525 * This function gets called by the timer code, with HZ frequency. 2526 * We call it with interrupts disabled. 2527 */ 2528 void scheduler_tick(void) 2529 { 2530 int cpu = smp_processor_id(); 2531 struct rq *rq = cpu_rq(cpu); 2532 struct task_struct *curr = rq->curr; 2533 2534 sched_clock_tick(); 2535 2536 raw_spin_lock(&rq->lock); 2537 update_rq_clock(rq); 2538 curr->sched_class->task_tick(rq, curr, 0); 2539 update_cpu_load_active(rq); 2540 raw_spin_unlock(&rq->lock); 2541 2542 perf_event_task_tick(); 2543 2544 #ifdef CONFIG_SMP 2545 rq->idle_balance = idle_cpu(cpu); 2546 trigger_load_balance(rq); 2547 #endif 2548 rq_last_tick_reset(rq); 2549 } 2550 2551 #ifdef CONFIG_NO_HZ_FULL 2552 /** 2553 * scheduler_tick_max_deferment 2554 * 2555 * Keep at least one tick per second when a single 2556 * active task is running because the scheduler doesn't 2557 * yet completely support full dynticks environment. 2558 * 2559 * This makes sure that uptime, CFS vruntime, load 2560 * balancing, etc... continue to move forward, even 2561 * with a very low granularity. 2562 * 2563 * Return: Maximum deferment in nanoseconds. 2564 */ 2565 u64 scheduler_tick_max_deferment(void) 2566 { 2567 struct rq *rq = this_rq(); 2568 unsigned long next, now = ACCESS_ONCE(jiffies); 2569 2570 next = rq->last_sched_tick + HZ; 2571 2572 if (time_before_eq(next, now)) 2573 return 0; 2574 2575 return jiffies_to_nsecs(next - now); 2576 } 2577 #endif 2578 2579 notrace unsigned long get_parent_ip(unsigned long addr) 2580 { 2581 if (in_lock_functions(addr)) { 2582 addr = CALLER_ADDR2; 2583 if (in_lock_functions(addr)) 2584 addr = CALLER_ADDR3; 2585 } 2586 return addr; 2587 } 2588 2589 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2590 defined(CONFIG_PREEMPT_TRACER)) 2591 2592 void preempt_count_add(int val) 2593 { 2594 #ifdef CONFIG_DEBUG_PREEMPT 2595 /* 2596 * Underflow? 2597 */ 2598 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2599 return; 2600 #endif 2601 __preempt_count_add(val); 2602 #ifdef CONFIG_DEBUG_PREEMPT 2603 /* 2604 * Spinlock count overflowing soon? 2605 */ 2606 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2607 PREEMPT_MASK - 10); 2608 #endif 2609 if (preempt_count() == val) { 2610 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2611 #ifdef CONFIG_DEBUG_PREEMPT 2612 current->preempt_disable_ip = ip; 2613 #endif 2614 trace_preempt_off(CALLER_ADDR0, ip); 2615 } 2616 } 2617 EXPORT_SYMBOL(preempt_count_add); 2618 NOKPROBE_SYMBOL(preempt_count_add); 2619 2620 void preempt_count_sub(int val) 2621 { 2622 #ifdef CONFIG_DEBUG_PREEMPT 2623 /* 2624 * Underflow? 2625 */ 2626 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2627 return; 2628 /* 2629 * Is the spinlock portion underflowing? 2630 */ 2631 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2632 !(preempt_count() & PREEMPT_MASK))) 2633 return; 2634 #endif 2635 2636 if (preempt_count() == val) 2637 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2638 __preempt_count_sub(val); 2639 } 2640 EXPORT_SYMBOL(preempt_count_sub); 2641 NOKPROBE_SYMBOL(preempt_count_sub); 2642 2643 #endif 2644 2645 /* 2646 * Print scheduling while atomic bug: 2647 */ 2648 static noinline void __schedule_bug(struct task_struct *prev) 2649 { 2650 if (oops_in_progress) 2651 return; 2652 2653 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2654 prev->comm, prev->pid, preempt_count()); 2655 2656 debug_show_held_locks(prev); 2657 print_modules(); 2658 if (irqs_disabled()) 2659 print_irqtrace_events(prev); 2660 #ifdef CONFIG_DEBUG_PREEMPT 2661 if (in_atomic_preempt_off()) { 2662 pr_err("Preemption disabled at:"); 2663 print_ip_sym(current->preempt_disable_ip); 2664 pr_cont("\n"); 2665 } 2666 #endif 2667 dump_stack(); 2668 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2669 } 2670 2671 /* 2672 * Various schedule()-time debugging checks and statistics: 2673 */ 2674 static inline void schedule_debug(struct task_struct *prev) 2675 { 2676 #ifdef CONFIG_SCHED_STACK_END_CHECK 2677 BUG_ON(unlikely(task_stack_end_corrupted(prev))); 2678 #endif 2679 /* 2680 * Test if we are atomic. Since do_exit() needs to call into 2681 * schedule() atomically, we ignore that path. Otherwise whine 2682 * if we are scheduling when we should not. 2683 */ 2684 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2685 __schedule_bug(prev); 2686 rcu_sleep_check(); 2687 2688 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2689 2690 schedstat_inc(this_rq(), sched_count); 2691 } 2692 2693 /* 2694 * Pick up the highest-prio task: 2695 */ 2696 static inline struct task_struct * 2697 pick_next_task(struct rq *rq, struct task_struct *prev) 2698 { 2699 const struct sched_class *class = &fair_sched_class; 2700 struct task_struct *p; 2701 2702 /* 2703 * Optimization: we know that if all tasks are in 2704 * the fair class we can call that function directly: 2705 */ 2706 if (likely(prev->sched_class == class && 2707 rq->nr_running == rq->cfs.h_nr_running)) { 2708 p = fair_sched_class.pick_next_task(rq, prev); 2709 if (unlikely(p == RETRY_TASK)) 2710 goto again; 2711 2712 /* assumes fair_sched_class->next == idle_sched_class */ 2713 if (unlikely(!p)) 2714 p = idle_sched_class.pick_next_task(rq, prev); 2715 2716 return p; 2717 } 2718 2719 again: 2720 for_each_class(class) { 2721 p = class->pick_next_task(rq, prev); 2722 if (p) { 2723 if (unlikely(p == RETRY_TASK)) 2724 goto again; 2725 return p; 2726 } 2727 } 2728 2729 BUG(); /* the idle class will always have a runnable task */ 2730 } 2731 2732 /* 2733 * __schedule() is the main scheduler function. 2734 * 2735 * The main means of driving the scheduler and thus entering this function are: 2736 * 2737 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2738 * 2739 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2740 * paths. For example, see arch/x86/entry_64.S. 2741 * 2742 * To drive preemption between tasks, the scheduler sets the flag in timer 2743 * interrupt handler scheduler_tick(). 2744 * 2745 * 3. Wakeups don't really cause entry into schedule(). They add a 2746 * task to the run-queue and that's it. 2747 * 2748 * Now, if the new task added to the run-queue preempts the current 2749 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2750 * called on the nearest possible occasion: 2751 * 2752 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2753 * 2754 * - in syscall or exception context, at the next outmost 2755 * preempt_enable(). (this might be as soon as the wake_up()'s 2756 * spin_unlock()!) 2757 * 2758 * - in IRQ context, return from interrupt-handler to 2759 * preemptible context 2760 * 2761 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2762 * then at the next: 2763 * 2764 * - cond_resched() call 2765 * - explicit schedule() call 2766 * - return from syscall or exception to user-space 2767 * - return from interrupt-handler to user-space 2768 * 2769 * WARNING: all callers must re-check need_resched() afterward and reschedule 2770 * accordingly in case an event triggered the need for rescheduling (such as 2771 * an interrupt waking up a task) while preemption was disabled in __schedule(). 2772 */ 2773 static void __sched __schedule(void) 2774 { 2775 struct task_struct *prev, *next; 2776 unsigned long *switch_count; 2777 struct rq *rq; 2778 int cpu; 2779 2780 preempt_disable(); 2781 cpu = smp_processor_id(); 2782 rq = cpu_rq(cpu); 2783 rcu_note_context_switch(); 2784 prev = rq->curr; 2785 2786 schedule_debug(prev); 2787 2788 if (sched_feat(HRTICK)) 2789 hrtick_clear(rq); 2790 2791 /* 2792 * Make sure that signal_pending_state()->signal_pending() below 2793 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2794 * done by the caller to avoid the race with signal_wake_up(). 2795 */ 2796 smp_mb__before_spinlock(); 2797 raw_spin_lock_irq(&rq->lock); 2798 2799 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 2800 2801 switch_count = &prev->nivcsw; 2802 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2803 if (unlikely(signal_pending_state(prev->state, prev))) { 2804 prev->state = TASK_RUNNING; 2805 } else { 2806 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2807 prev->on_rq = 0; 2808 2809 /* 2810 * If a worker went to sleep, notify and ask workqueue 2811 * whether it wants to wake up a task to maintain 2812 * concurrency. 2813 */ 2814 if (prev->flags & PF_WQ_WORKER) { 2815 struct task_struct *to_wakeup; 2816 2817 to_wakeup = wq_worker_sleeping(prev, cpu); 2818 if (to_wakeup) 2819 try_to_wake_up_local(to_wakeup); 2820 } 2821 } 2822 switch_count = &prev->nvcsw; 2823 } 2824 2825 if (task_on_rq_queued(prev)) 2826 update_rq_clock(rq); 2827 2828 next = pick_next_task(rq, prev); 2829 clear_tsk_need_resched(prev); 2830 clear_preempt_need_resched(); 2831 rq->clock_skip_update = 0; 2832 2833 if (likely(prev != next)) { 2834 rq->nr_switches++; 2835 rq->curr = next; 2836 ++*switch_count; 2837 2838 rq = context_switch(rq, prev, next); /* unlocks the rq */ 2839 cpu = cpu_of(rq); 2840 } else 2841 raw_spin_unlock_irq(&rq->lock); 2842 2843 post_schedule(rq); 2844 2845 sched_preempt_enable_no_resched(); 2846 } 2847 2848 static inline void sched_submit_work(struct task_struct *tsk) 2849 { 2850 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2851 return; 2852 /* 2853 * If we are going to sleep and we have plugged IO queued, 2854 * make sure to submit it to avoid deadlocks. 2855 */ 2856 if (blk_needs_flush_plug(tsk)) 2857 blk_schedule_flush_plug(tsk); 2858 } 2859 2860 asmlinkage __visible void __sched schedule(void) 2861 { 2862 struct task_struct *tsk = current; 2863 2864 sched_submit_work(tsk); 2865 do { 2866 __schedule(); 2867 } while (need_resched()); 2868 } 2869 EXPORT_SYMBOL(schedule); 2870 2871 #ifdef CONFIG_CONTEXT_TRACKING 2872 asmlinkage __visible void __sched schedule_user(void) 2873 { 2874 /* 2875 * If we come here after a random call to set_need_resched(), 2876 * or we have been woken up remotely but the IPI has not yet arrived, 2877 * we haven't yet exited the RCU idle mode. Do it here manually until 2878 * we find a better solution. 2879 * 2880 * NB: There are buggy callers of this function. Ideally we 2881 * should warn if prev_state != IN_USER, but that will trigger 2882 * too frequently to make sense yet. 2883 */ 2884 enum ctx_state prev_state = exception_enter(); 2885 schedule(); 2886 exception_exit(prev_state); 2887 } 2888 #endif 2889 2890 /** 2891 * schedule_preempt_disabled - called with preemption disabled 2892 * 2893 * Returns with preemption disabled. Note: preempt_count must be 1 2894 */ 2895 void __sched schedule_preempt_disabled(void) 2896 { 2897 sched_preempt_enable_no_resched(); 2898 schedule(); 2899 preempt_disable(); 2900 } 2901 2902 static void preempt_schedule_common(void) 2903 { 2904 do { 2905 __preempt_count_add(PREEMPT_ACTIVE); 2906 __schedule(); 2907 __preempt_count_sub(PREEMPT_ACTIVE); 2908 2909 /* 2910 * Check again in case we missed a preemption opportunity 2911 * between schedule and now. 2912 */ 2913 barrier(); 2914 } while (need_resched()); 2915 } 2916 2917 #ifdef CONFIG_PREEMPT 2918 /* 2919 * this is the entry point to schedule() from in-kernel preemption 2920 * off of preempt_enable. Kernel preemptions off return from interrupt 2921 * occur there and call schedule directly. 2922 */ 2923 asmlinkage __visible void __sched notrace preempt_schedule(void) 2924 { 2925 /* 2926 * If there is a non-zero preempt_count or interrupts are disabled, 2927 * we do not want to preempt the current task. Just return.. 2928 */ 2929 if (likely(!preemptible())) 2930 return; 2931 2932 preempt_schedule_common(); 2933 } 2934 NOKPROBE_SYMBOL(preempt_schedule); 2935 EXPORT_SYMBOL(preempt_schedule); 2936 2937 #ifdef CONFIG_CONTEXT_TRACKING 2938 /** 2939 * preempt_schedule_context - preempt_schedule called by tracing 2940 * 2941 * The tracing infrastructure uses preempt_enable_notrace to prevent 2942 * recursion and tracing preempt enabling caused by the tracing 2943 * infrastructure itself. But as tracing can happen in areas coming 2944 * from userspace or just about to enter userspace, a preempt enable 2945 * can occur before user_exit() is called. This will cause the scheduler 2946 * to be called when the system is still in usermode. 2947 * 2948 * To prevent this, the preempt_enable_notrace will use this function 2949 * instead of preempt_schedule() to exit user context if needed before 2950 * calling the scheduler. 2951 */ 2952 asmlinkage __visible void __sched notrace preempt_schedule_context(void) 2953 { 2954 enum ctx_state prev_ctx; 2955 2956 if (likely(!preemptible())) 2957 return; 2958 2959 do { 2960 __preempt_count_add(PREEMPT_ACTIVE); 2961 /* 2962 * Needs preempt disabled in case user_exit() is traced 2963 * and the tracer calls preempt_enable_notrace() causing 2964 * an infinite recursion. 2965 */ 2966 prev_ctx = exception_enter(); 2967 __schedule(); 2968 exception_exit(prev_ctx); 2969 2970 __preempt_count_sub(PREEMPT_ACTIVE); 2971 barrier(); 2972 } while (need_resched()); 2973 } 2974 EXPORT_SYMBOL_GPL(preempt_schedule_context); 2975 #endif /* CONFIG_CONTEXT_TRACKING */ 2976 2977 #endif /* CONFIG_PREEMPT */ 2978 2979 /* 2980 * this is the entry point to schedule() from kernel preemption 2981 * off of irq context. 2982 * Note, that this is called and return with irqs disabled. This will 2983 * protect us against recursive calling from irq. 2984 */ 2985 asmlinkage __visible void __sched preempt_schedule_irq(void) 2986 { 2987 enum ctx_state prev_state; 2988 2989 /* Catch callers which need to be fixed */ 2990 BUG_ON(preempt_count() || !irqs_disabled()); 2991 2992 prev_state = exception_enter(); 2993 2994 do { 2995 __preempt_count_add(PREEMPT_ACTIVE); 2996 local_irq_enable(); 2997 __schedule(); 2998 local_irq_disable(); 2999 __preempt_count_sub(PREEMPT_ACTIVE); 3000 3001 /* 3002 * Check again in case we missed a preemption opportunity 3003 * between schedule and now. 3004 */ 3005 barrier(); 3006 } while (need_resched()); 3007 3008 exception_exit(prev_state); 3009 } 3010 3011 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3012 void *key) 3013 { 3014 return try_to_wake_up(curr->private, mode, wake_flags); 3015 } 3016 EXPORT_SYMBOL(default_wake_function); 3017 3018 #ifdef CONFIG_RT_MUTEXES 3019 3020 /* 3021 * rt_mutex_setprio - set the current priority of a task 3022 * @p: task 3023 * @prio: prio value (kernel-internal form) 3024 * 3025 * This function changes the 'effective' priority of a task. It does 3026 * not touch ->normal_prio like __setscheduler(). 3027 * 3028 * Used by the rt_mutex code to implement priority inheritance 3029 * logic. Call site only calls if the priority of the task changed. 3030 */ 3031 void rt_mutex_setprio(struct task_struct *p, int prio) 3032 { 3033 int oldprio, queued, running, enqueue_flag = 0; 3034 struct rq *rq; 3035 const struct sched_class *prev_class; 3036 3037 BUG_ON(prio > MAX_PRIO); 3038 3039 rq = __task_rq_lock(p); 3040 3041 /* 3042 * Idle task boosting is a nono in general. There is one 3043 * exception, when PREEMPT_RT and NOHZ is active: 3044 * 3045 * The idle task calls get_next_timer_interrupt() and holds 3046 * the timer wheel base->lock on the CPU and another CPU wants 3047 * to access the timer (probably to cancel it). We can safely 3048 * ignore the boosting request, as the idle CPU runs this code 3049 * with interrupts disabled and will complete the lock 3050 * protected section without being interrupted. So there is no 3051 * real need to boost. 3052 */ 3053 if (unlikely(p == rq->idle)) { 3054 WARN_ON(p != rq->curr); 3055 WARN_ON(p->pi_blocked_on); 3056 goto out_unlock; 3057 } 3058 3059 trace_sched_pi_setprio(p, prio); 3060 oldprio = p->prio; 3061 prev_class = p->sched_class; 3062 queued = task_on_rq_queued(p); 3063 running = task_current(rq, p); 3064 if (queued) 3065 dequeue_task(rq, p, 0); 3066 if (running) 3067 put_prev_task(rq, p); 3068 3069 /* 3070 * Boosting condition are: 3071 * 1. -rt task is running and holds mutex A 3072 * --> -dl task blocks on mutex A 3073 * 3074 * 2. -dl task is running and holds mutex A 3075 * --> -dl task blocks on mutex A and could preempt the 3076 * running task 3077 */ 3078 if (dl_prio(prio)) { 3079 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3080 if (!dl_prio(p->normal_prio) || 3081 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3082 p->dl.dl_boosted = 1; 3083 p->dl.dl_throttled = 0; 3084 enqueue_flag = ENQUEUE_REPLENISH; 3085 } else 3086 p->dl.dl_boosted = 0; 3087 p->sched_class = &dl_sched_class; 3088 } else if (rt_prio(prio)) { 3089 if (dl_prio(oldprio)) 3090 p->dl.dl_boosted = 0; 3091 if (oldprio < prio) 3092 enqueue_flag = ENQUEUE_HEAD; 3093 p->sched_class = &rt_sched_class; 3094 } else { 3095 if (dl_prio(oldprio)) 3096 p->dl.dl_boosted = 0; 3097 p->sched_class = &fair_sched_class; 3098 } 3099 3100 p->prio = prio; 3101 3102 if (running) 3103 p->sched_class->set_curr_task(rq); 3104 if (queued) 3105 enqueue_task(rq, p, enqueue_flag); 3106 3107 check_class_changed(rq, p, prev_class, oldprio); 3108 out_unlock: 3109 __task_rq_unlock(rq); 3110 } 3111 #endif 3112 3113 void set_user_nice(struct task_struct *p, long nice) 3114 { 3115 int old_prio, delta, queued; 3116 unsigned long flags; 3117 struct rq *rq; 3118 3119 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3120 return; 3121 /* 3122 * We have to be careful, if called from sys_setpriority(), 3123 * the task might be in the middle of scheduling on another CPU. 3124 */ 3125 rq = task_rq_lock(p, &flags); 3126 /* 3127 * The RT priorities are set via sched_setscheduler(), but we still 3128 * allow the 'normal' nice value to be set - but as expected 3129 * it wont have any effect on scheduling until the task is 3130 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3131 */ 3132 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3133 p->static_prio = NICE_TO_PRIO(nice); 3134 goto out_unlock; 3135 } 3136 queued = task_on_rq_queued(p); 3137 if (queued) 3138 dequeue_task(rq, p, 0); 3139 3140 p->static_prio = NICE_TO_PRIO(nice); 3141 set_load_weight(p); 3142 old_prio = p->prio; 3143 p->prio = effective_prio(p); 3144 delta = p->prio - old_prio; 3145 3146 if (queued) { 3147 enqueue_task(rq, p, 0); 3148 /* 3149 * If the task increased its priority or is running and 3150 * lowered its priority, then reschedule its CPU: 3151 */ 3152 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3153 resched_curr(rq); 3154 } 3155 out_unlock: 3156 task_rq_unlock(rq, p, &flags); 3157 } 3158 EXPORT_SYMBOL(set_user_nice); 3159 3160 /* 3161 * can_nice - check if a task can reduce its nice value 3162 * @p: task 3163 * @nice: nice value 3164 */ 3165 int can_nice(const struct task_struct *p, const int nice) 3166 { 3167 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3168 int nice_rlim = nice_to_rlimit(nice); 3169 3170 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3171 capable(CAP_SYS_NICE)); 3172 } 3173 3174 #ifdef __ARCH_WANT_SYS_NICE 3175 3176 /* 3177 * sys_nice - change the priority of the current process. 3178 * @increment: priority increment 3179 * 3180 * sys_setpriority is a more generic, but much slower function that 3181 * does similar things. 3182 */ 3183 SYSCALL_DEFINE1(nice, int, increment) 3184 { 3185 long nice, retval; 3186 3187 /* 3188 * Setpriority might change our priority at the same moment. 3189 * We don't have to worry. Conceptually one call occurs first 3190 * and we have a single winner. 3191 */ 3192 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3193 nice = task_nice(current) + increment; 3194 3195 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3196 if (increment < 0 && !can_nice(current, nice)) 3197 return -EPERM; 3198 3199 retval = security_task_setnice(current, nice); 3200 if (retval) 3201 return retval; 3202 3203 set_user_nice(current, nice); 3204 return 0; 3205 } 3206 3207 #endif 3208 3209 /** 3210 * task_prio - return the priority value of a given task. 3211 * @p: the task in question. 3212 * 3213 * Return: The priority value as seen by users in /proc. 3214 * RT tasks are offset by -200. Normal tasks are centered 3215 * around 0, value goes from -16 to +15. 3216 */ 3217 int task_prio(const struct task_struct *p) 3218 { 3219 return p->prio - MAX_RT_PRIO; 3220 } 3221 3222 /** 3223 * idle_cpu - is a given cpu idle currently? 3224 * @cpu: the processor in question. 3225 * 3226 * Return: 1 if the CPU is currently idle. 0 otherwise. 3227 */ 3228 int idle_cpu(int cpu) 3229 { 3230 struct rq *rq = cpu_rq(cpu); 3231 3232 if (rq->curr != rq->idle) 3233 return 0; 3234 3235 if (rq->nr_running) 3236 return 0; 3237 3238 #ifdef CONFIG_SMP 3239 if (!llist_empty(&rq->wake_list)) 3240 return 0; 3241 #endif 3242 3243 return 1; 3244 } 3245 3246 /** 3247 * idle_task - return the idle task for a given cpu. 3248 * @cpu: the processor in question. 3249 * 3250 * Return: The idle task for the cpu @cpu. 3251 */ 3252 struct task_struct *idle_task(int cpu) 3253 { 3254 return cpu_rq(cpu)->idle; 3255 } 3256 3257 /** 3258 * find_process_by_pid - find a process with a matching PID value. 3259 * @pid: the pid in question. 3260 * 3261 * The task of @pid, if found. %NULL otherwise. 3262 */ 3263 static struct task_struct *find_process_by_pid(pid_t pid) 3264 { 3265 return pid ? find_task_by_vpid(pid) : current; 3266 } 3267 3268 /* 3269 * This function initializes the sched_dl_entity of a newly becoming 3270 * SCHED_DEADLINE task. 3271 * 3272 * Only the static values are considered here, the actual runtime and the 3273 * absolute deadline will be properly calculated when the task is enqueued 3274 * for the first time with its new policy. 3275 */ 3276 static void 3277 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3278 { 3279 struct sched_dl_entity *dl_se = &p->dl; 3280 3281 dl_se->dl_runtime = attr->sched_runtime; 3282 dl_se->dl_deadline = attr->sched_deadline; 3283 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3284 dl_se->flags = attr->sched_flags; 3285 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3286 3287 /* 3288 * Changing the parameters of a task is 'tricky' and we're not doing 3289 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3290 * 3291 * What we SHOULD do is delay the bandwidth release until the 0-lag 3292 * point. This would include retaining the task_struct until that time 3293 * and change dl_overflow() to not immediately decrement the current 3294 * amount. 3295 * 3296 * Instead we retain the current runtime/deadline and let the new 3297 * parameters take effect after the current reservation period lapses. 3298 * This is safe (albeit pessimistic) because the 0-lag point is always 3299 * before the current scheduling deadline. 3300 * 3301 * We can still have temporary overloads because we do not delay the 3302 * change in bandwidth until that time; so admission control is 3303 * not on the safe side. It does however guarantee tasks will never 3304 * consume more than promised. 3305 */ 3306 } 3307 3308 /* 3309 * sched_setparam() passes in -1 for its policy, to let the functions 3310 * it calls know not to change it. 3311 */ 3312 #define SETPARAM_POLICY -1 3313 3314 static void __setscheduler_params(struct task_struct *p, 3315 const struct sched_attr *attr) 3316 { 3317 int policy = attr->sched_policy; 3318 3319 if (policy == SETPARAM_POLICY) 3320 policy = p->policy; 3321 3322 p->policy = policy; 3323 3324 if (dl_policy(policy)) 3325 __setparam_dl(p, attr); 3326 else if (fair_policy(policy)) 3327 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3328 3329 /* 3330 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3331 * !rt_policy. Always setting this ensures that things like 3332 * getparam()/getattr() don't report silly values for !rt tasks. 3333 */ 3334 p->rt_priority = attr->sched_priority; 3335 p->normal_prio = normal_prio(p); 3336 set_load_weight(p); 3337 } 3338 3339 /* Actually do priority change: must hold pi & rq lock. */ 3340 static void __setscheduler(struct rq *rq, struct task_struct *p, 3341 const struct sched_attr *attr) 3342 { 3343 __setscheduler_params(p, attr); 3344 3345 /* 3346 * If we get here, there was no pi waiters boosting the 3347 * task. It is safe to use the normal prio. 3348 */ 3349 p->prio = normal_prio(p); 3350 3351 if (dl_prio(p->prio)) 3352 p->sched_class = &dl_sched_class; 3353 else if (rt_prio(p->prio)) 3354 p->sched_class = &rt_sched_class; 3355 else 3356 p->sched_class = &fair_sched_class; 3357 } 3358 3359 static void 3360 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3361 { 3362 struct sched_dl_entity *dl_se = &p->dl; 3363 3364 attr->sched_priority = p->rt_priority; 3365 attr->sched_runtime = dl_se->dl_runtime; 3366 attr->sched_deadline = dl_se->dl_deadline; 3367 attr->sched_period = dl_se->dl_period; 3368 attr->sched_flags = dl_se->flags; 3369 } 3370 3371 /* 3372 * This function validates the new parameters of a -deadline task. 3373 * We ask for the deadline not being zero, and greater or equal 3374 * than the runtime, as well as the period of being zero or 3375 * greater than deadline. Furthermore, we have to be sure that 3376 * user parameters are above the internal resolution of 1us (we 3377 * check sched_runtime only since it is always the smaller one) and 3378 * below 2^63 ns (we have to check both sched_deadline and 3379 * sched_period, as the latter can be zero). 3380 */ 3381 static bool 3382 __checkparam_dl(const struct sched_attr *attr) 3383 { 3384 /* deadline != 0 */ 3385 if (attr->sched_deadline == 0) 3386 return false; 3387 3388 /* 3389 * Since we truncate DL_SCALE bits, make sure we're at least 3390 * that big. 3391 */ 3392 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3393 return false; 3394 3395 /* 3396 * Since we use the MSB for wrap-around and sign issues, make 3397 * sure it's not set (mind that period can be equal to zero). 3398 */ 3399 if (attr->sched_deadline & (1ULL << 63) || 3400 attr->sched_period & (1ULL << 63)) 3401 return false; 3402 3403 /* runtime <= deadline <= period (if period != 0) */ 3404 if ((attr->sched_period != 0 && 3405 attr->sched_period < attr->sched_deadline) || 3406 attr->sched_deadline < attr->sched_runtime) 3407 return false; 3408 3409 return true; 3410 } 3411 3412 /* 3413 * check the target process has a UID that matches the current process's 3414 */ 3415 static bool check_same_owner(struct task_struct *p) 3416 { 3417 const struct cred *cred = current_cred(), *pcred; 3418 bool match; 3419 3420 rcu_read_lock(); 3421 pcred = __task_cred(p); 3422 match = (uid_eq(cred->euid, pcred->euid) || 3423 uid_eq(cred->euid, pcred->uid)); 3424 rcu_read_unlock(); 3425 return match; 3426 } 3427 3428 static bool dl_param_changed(struct task_struct *p, 3429 const struct sched_attr *attr) 3430 { 3431 struct sched_dl_entity *dl_se = &p->dl; 3432 3433 if (dl_se->dl_runtime != attr->sched_runtime || 3434 dl_se->dl_deadline != attr->sched_deadline || 3435 dl_se->dl_period != attr->sched_period || 3436 dl_se->flags != attr->sched_flags) 3437 return true; 3438 3439 return false; 3440 } 3441 3442 static int __sched_setscheduler(struct task_struct *p, 3443 const struct sched_attr *attr, 3444 bool user) 3445 { 3446 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3447 MAX_RT_PRIO - 1 - attr->sched_priority; 3448 int retval, oldprio, oldpolicy = -1, queued, running; 3449 int policy = attr->sched_policy; 3450 unsigned long flags; 3451 const struct sched_class *prev_class; 3452 struct rq *rq; 3453 int reset_on_fork; 3454 3455 /* may grab non-irq protected spin_locks */ 3456 BUG_ON(in_interrupt()); 3457 recheck: 3458 /* double check policy once rq lock held */ 3459 if (policy < 0) { 3460 reset_on_fork = p->sched_reset_on_fork; 3461 policy = oldpolicy = p->policy; 3462 } else { 3463 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3464 3465 if (policy != SCHED_DEADLINE && 3466 policy != SCHED_FIFO && policy != SCHED_RR && 3467 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3468 policy != SCHED_IDLE) 3469 return -EINVAL; 3470 } 3471 3472 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3473 return -EINVAL; 3474 3475 /* 3476 * Valid priorities for SCHED_FIFO and SCHED_RR are 3477 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3478 * SCHED_BATCH and SCHED_IDLE is 0. 3479 */ 3480 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3481 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3482 return -EINVAL; 3483 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3484 (rt_policy(policy) != (attr->sched_priority != 0))) 3485 return -EINVAL; 3486 3487 /* 3488 * Allow unprivileged RT tasks to decrease priority: 3489 */ 3490 if (user && !capable(CAP_SYS_NICE)) { 3491 if (fair_policy(policy)) { 3492 if (attr->sched_nice < task_nice(p) && 3493 !can_nice(p, attr->sched_nice)) 3494 return -EPERM; 3495 } 3496 3497 if (rt_policy(policy)) { 3498 unsigned long rlim_rtprio = 3499 task_rlimit(p, RLIMIT_RTPRIO); 3500 3501 /* can't set/change the rt policy */ 3502 if (policy != p->policy && !rlim_rtprio) 3503 return -EPERM; 3504 3505 /* can't increase priority */ 3506 if (attr->sched_priority > p->rt_priority && 3507 attr->sched_priority > rlim_rtprio) 3508 return -EPERM; 3509 } 3510 3511 /* 3512 * Can't set/change SCHED_DEADLINE policy at all for now 3513 * (safest behavior); in the future we would like to allow 3514 * unprivileged DL tasks to increase their relative deadline 3515 * or reduce their runtime (both ways reducing utilization) 3516 */ 3517 if (dl_policy(policy)) 3518 return -EPERM; 3519 3520 /* 3521 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3522 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3523 */ 3524 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3525 if (!can_nice(p, task_nice(p))) 3526 return -EPERM; 3527 } 3528 3529 /* can't change other user's priorities */ 3530 if (!check_same_owner(p)) 3531 return -EPERM; 3532 3533 /* Normal users shall not reset the sched_reset_on_fork flag */ 3534 if (p->sched_reset_on_fork && !reset_on_fork) 3535 return -EPERM; 3536 } 3537 3538 if (user) { 3539 retval = security_task_setscheduler(p); 3540 if (retval) 3541 return retval; 3542 } 3543 3544 /* 3545 * make sure no PI-waiters arrive (or leave) while we are 3546 * changing the priority of the task: 3547 * 3548 * To be able to change p->policy safely, the appropriate 3549 * runqueue lock must be held. 3550 */ 3551 rq = task_rq_lock(p, &flags); 3552 3553 /* 3554 * Changing the policy of the stop threads its a very bad idea 3555 */ 3556 if (p == rq->stop) { 3557 task_rq_unlock(rq, p, &flags); 3558 return -EINVAL; 3559 } 3560 3561 /* 3562 * If not changing anything there's no need to proceed further, 3563 * but store a possible modification of reset_on_fork. 3564 */ 3565 if (unlikely(policy == p->policy)) { 3566 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3567 goto change; 3568 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3569 goto change; 3570 if (dl_policy(policy) && dl_param_changed(p, attr)) 3571 goto change; 3572 3573 p->sched_reset_on_fork = reset_on_fork; 3574 task_rq_unlock(rq, p, &flags); 3575 return 0; 3576 } 3577 change: 3578 3579 if (user) { 3580 #ifdef CONFIG_RT_GROUP_SCHED 3581 /* 3582 * Do not allow realtime tasks into groups that have no runtime 3583 * assigned. 3584 */ 3585 if (rt_bandwidth_enabled() && rt_policy(policy) && 3586 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3587 !task_group_is_autogroup(task_group(p))) { 3588 task_rq_unlock(rq, p, &flags); 3589 return -EPERM; 3590 } 3591 #endif 3592 #ifdef CONFIG_SMP 3593 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3594 cpumask_t *span = rq->rd->span; 3595 3596 /* 3597 * Don't allow tasks with an affinity mask smaller than 3598 * the entire root_domain to become SCHED_DEADLINE. We 3599 * will also fail if there's no bandwidth available. 3600 */ 3601 if (!cpumask_subset(span, &p->cpus_allowed) || 3602 rq->rd->dl_bw.bw == 0) { 3603 task_rq_unlock(rq, p, &flags); 3604 return -EPERM; 3605 } 3606 } 3607 #endif 3608 } 3609 3610 /* recheck policy now with rq lock held */ 3611 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3612 policy = oldpolicy = -1; 3613 task_rq_unlock(rq, p, &flags); 3614 goto recheck; 3615 } 3616 3617 /* 3618 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3619 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3620 * is available. 3621 */ 3622 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3623 task_rq_unlock(rq, p, &flags); 3624 return -EBUSY; 3625 } 3626 3627 p->sched_reset_on_fork = reset_on_fork; 3628 oldprio = p->prio; 3629 3630 /* 3631 * Special case for priority boosted tasks. 3632 * 3633 * If the new priority is lower or equal (user space view) 3634 * than the current (boosted) priority, we just store the new 3635 * normal parameters and do not touch the scheduler class and 3636 * the runqueue. This will be done when the task deboost 3637 * itself. 3638 */ 3639 if (rt_mutex_check_prio(p, newprio)) { 3640 __setscheduler_params(p, attr); 3641 task_rq_unlock(rq, p, &flags); 3642 return 0; 3643 } 3644 3645 queued = task_on_rq_queued(p); 3646 running = task_current(rq, p); 3647 if (queued) 3648 dequeue_task(rq, p, 0); 3649 if (running) 3650 put_prev_task(rq, p); 3651 3652 prev_class = p->sched_class; 3653 __setscheduler(rq, p, attr); 3654 3655 if (running) 3656 p->sched_class->set_curr_task(rq); 3657 if (queued) { 3658 /* 3659 * We enqueue to tail when the priority of a task is 3660 * increased (user space view). 3661 */ 3662 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3663 } 3664 3665 check_class_changed(rq, p, prev_class, oldprio); 3666 task_rq_unlock(rq, p, &flags); 3667 3668 rt_mutex_adjust_pi(p); 3669 3670 return 0; 3671 } 3672 3673 static int _sched_setscheduler(struct task_struct *p, int policy, 3674 const struct sched_param *param, bool check) 3675 { 3676 struct sched_attr attr = { 3677 .sched_policy = policy, 3678 .sched_priority = param->sched_priority, 3679 .sched_nice = PRIO_TO_NICE(p->static_prio), 3680 }; 3681 3682 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 3683 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 3684 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3685 policy &= ~SCHED_RESET_ON_FORK; 3686 attr.sched_policy = policy; 3687 } 3688 3689 return __sched_setscheduler(p, &attr, check); 3690 } 3691 /** 3692 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3693 * @p: the task in question. 3694 * @policy: new policy. 3695 * @param: structure containing the new RT priority. 3696 * 3697 * Return: 0 on success. An error code otherwise. 3698 * 3699 * NOTE that the task may be already dead. 3700 */ 3701 int sched_setscheduler(struct task_struct *p, int policy, 3702 const struct sched_param *param) 3703 { 3704 return _sched_setscheduler(p, policy, param, true); 3705 } 3706 EXPORT_SYMBOL_GPL(sched_setscheduler); 3707 3708 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3709 { 3710 return __sched_setscheduler(p, attr, true); 3711 } 3712 EXPORT_SYMBOL_GPL(sched_setattr); 3713 3714 /** 3715 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3716 * @p: the task in question. 3717 * @policy: new policy. 3718 * @param: structure containing the new RT priority. 3719 * 3720 * Just like sched_setscheduler, only don't bother checking if the 3721 * current context has permission. For example, this is needed in 3722 * stop_machine(): we create temporary high priority worker threads, 3723 * but our caller might not have that capability. 3724 * 3725 * Return: 0 on success. An error code otherwise. 3726 */ 3727 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3728 const struct sched_param *param) 3729 { 3730 return _sched_setscheduler(p, policy, param, false); 3731 } 3732 3733 static int 3734 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3735 { 3736 struct sched_param lparam; 3737 struct task_struct *p; 3738 int retval; 3739 3740 if (!param || pid < 0) 3741 return -EINVAL; 3742 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3743 return -EFAULT; 3744 3745 rcu_read_lock(); 3746 retval = -ESRCH; 3747 p = find_process_by_pid(pid); 3748 if (p != NULL) 3749 retval = sched_setscheduler(p, policy, &lparam); 3750 rcu_read_unlock(); 3751 3752 return retval; 3753 } 3754 3755 /* 3756 * Mimics kernel/events/core.c perf_copy_attr(). 3757 */ 3758 static int sched_copy_attr(struct sched_attr __user *uattr, 3759 struct sched_attr *attr) 3760 { 3761 u32 size; 3762 int ret; 3763 3764 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3765 return -EFAULT; 3766 3767 /* 3768 * zero the full structure, so that a short copy will be nice. 3769 */ 3770 memset(attr, 0, sizeof(*attr)); 3771 3772 ret = get_user(size, &uattr->size); 3773 if (ret) 3774 return ret; 3775 3776 if (size > PAGE_SIZE) /* silly large */ 3777 goto err_size; 3778 3779 if (!size) /* abi compat */ 3780 size = SCHED_ATTR_SIZE_VER0; 3781 3782 if (size < SCHED_ATTR_SIZE_VER0) 3783 goto err_size; 3784 3785 /* 3786 * If we're handed a bigger struct than we know of, 3787 * ensure all the unknown bits are 0 - i.e. new 3788 * user-space does not rely on any kernel feature 3789 * extensions we dont know about yet. 3790 */ 3791 if (size > sizeof(*attr)) { 3792 unsigned char __user *addr; 3793 unsigned char __user *end; 3794 unsigned char val; 3795 3796 addr = (void __user *)uattr + sizeof(*attr); 3797 end = (void __user *)uattr + size; 3798 3799 for (; addr < end; addr++) { 3800 ret = get_user(val, addr); 3801 if (ret) 3802 return ret; 3803 if (val) 3804 goto err_size; 3805 } 3806 size = sizeof(*attr); 3807 } 3808 3809 ret = copy_from_user(attr, uattr, size); 3810 if (ret) 3811 return -EFAULT; 3812 3813 /* 3814 * XXX: do we want to be lenient like existing syscalls; or do we want 3815 * to be strict and return an error on out-of-bounds values? 3816 */ 3817 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 3818 3819 return 0; 3820 3821 err_size: 3822 put_user(sizeof(*attr), &uattr->size); 3823 return -E2BIG; 3824 } 3825 3826 /** 3827 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3828 * @pid: the pid in question. 3829 * @policy: new policy. 3830 * @param: structure containing the new RT priority. 3831 * 3832 * Return: 0 on success. An error code otherwise. 3833 */ 3834 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3835 struct sched_param __user *, param) 3836 { 3837 /* negative values for policy are not valid */ 3838 if (policy < 0) 3839 return -EINVAL; 3840 3841 return do_sched_setscheduler(pid, policy, param); 3842 } 3843 3844 /** 3845 * sys_sched_setparam - set/change the RT priority of a thread 3846 * @pid: the pid in question. 3847 * @param: structure containing the new RT priority. 3848 * 3849 * Return: 0 on success. An error code otherwise. 3850 */ 3851 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3852 { 3853 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 3854 } 3855 3856 /** 3857 * sys_sched_setattr - same as above, but with extended sched_attr 3858 * @pid: the pid in question. 3859 * @uattr: structure containing the extended parameters. 3860 * @flags: for future extension. 3861 */ 3862 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 3863 unsigned int, flags) 3864 { 3865 struct sched_attr attr; 3866 struct task_struct *p; 3867 int retval; 3868 3869 if (!uattr || pid < 0 || flags) 3870 return -EINVAL; 3871 3872 retval = sched_copy_attr(uattr, &attr); 3873 if (retval) 3874 return retval; 3875 3876 if ((int)attr.sched_policy < 0) 3877 return -EINVAL; 3878 3879 rcu_read_lock(); 3880 retval = -ESRCH; 3881 p = find_process_by_pid(pid); 3882 if (p != NULL) 3883 retval = sched_setattr(p, &attr); 3884 rcu_read_unlock(); 3885 3886 return retval; 3887 } 3888 3889 /** 3890 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3891 * @pid: the pid in question. 3892 * 3893 * Return: On success, the policy of the thread. Otherwise, a negative error 3894 * code. 3895 */ 3896 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3897 { 3898 struct task_struct *p; 3899 int retval; 3900 3901 if (pid < 0) 3902 return -EINVAL; 3903 3904 retval = -ESRCH; 3905 rcu_read_lock(); 3906 p = find_process_by_pid(pid); 3907 if (p) { 3908 retval = security_task_getscheduler(p); 3909 if (!retval) 3910 retval = p->policy 3911 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3912 } 3913 rcu_read_unlock(); 3914 return retval; 3915 } 3916 3917 /** 3918 * sys_sched_getparam - get the RT priority of a thread 3919 * @pid: the pid in question. 3920 * @param: structure containing the RT priority. 3921 * 3922 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3923 * code. 3924 */ 3925 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3926 { 3927 struct sched_param lp = { .sched_priority = 0 }; 3928 struct task_struct *p; 3929 int retval; 3930 3931 if (!param || pid < 0) 3932 return -EINVAL; 3933 3934 rcu_read_lock(); 3935 p = find_process_by_pid(pid); 3936 retval = -ESRCH; 3937 if (!p) 3938 goto out_unlock; 3939 3940 retval = security_task_getscheduler(p); 3941 if (retval) 3942 goto out_unlock; 3943 3944 if (task_has_rt_policy(p)) 3945 lp.sched_priority = p->rt_priority; 3946 rcu_read_unlock(); 3947 3948 /* 3949 * This one might sleep, we cannot do it with a spinlock held ... 3950 */ 3951 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3952 3953 return retval; 3954 3955 out_unlock: 3956 rcu_read_unlock(); 3957 return retval; 3958 } 3959 3960 static int sched_read_attr(struct sched_attr __user *uattr, 3961 struct sched_attr *attr, 3962 unsigned int usize) 3963 { 3964 int ret; 3965 3966 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3967 return -EFAULT; 3968 3969 /* 3970 * If we're handed a smaller struct than we know of, 3971 * ensure all the unknown bits are 0 - i.e. old 3972 * user-space does not get uncomplete information. 3973 */ 3974 if (usize < sizeof(*attr)) { 3975 unsigned char *addr; 3976 unsigned char *end; 3977 3978 addr = (void *)attr + usize; 3979 end = (void *)attr + sizeof(*attr); 3980 3981 for (; addr < end; addr++) { 3982 if (*addr) 3983 return -EFBIG; 3984 } 3985 3986 attr->size = usize; 3987 } 3988 3989 ret = copy_to_user(uattr, attr, attr->size); 3990 if (ret) 3991 return -EFAULT; 3992 3993 return 0; 3994 } 3995 3996 /** 3997 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3998 * @pid: the pid in question. 3999 * @uattr: structure containing the extended parameters. 4000 * @size: sizeof(attr) for fwd/bwd comp. 4001 * @flags: for future extension. 4002 */ 4003 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4004 unsigned int, size, unsigned int, flags) 4005 { 4006 struct sched_attr attr = { 4007 .size = sizeof(struct sched_attr), 4008 }; 4009 struct task_struct *p; 4010 int retval; 4011 4012 if (!uattr || pid < 0 || size > PAGE_SIZE || 4013 size < SCHED_ATTR_SIZE_VER0 || flags) 4014 return -EINVAL; 4015 4016 rcu_read_lock(); 4017 p = find_process_by_pid(pid); 4018 retval = -ESRCH; 4019 if (!p) 4020 goto out_unlock; 4021 4022 retval = security_task_getscheduler(p); 4023 if (retval) 4024 goto out_unlock; 4025 4026 attr.sched_policy = p->policy; 4027 if (p->sched_reset_on_fork) 4028 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4029 if (task_has_dl_policy(p)) 4030 __getparam_dl(p, &attr); 4031 else if (task_has_rt_policy(p)) 4032 attr.sched_priority = p->rt_priority; 4033 else 4034 attr.sched_nice = task_nice(p); 4035 4036 rcu_read_unlock(); 4037 4038 retval = sched_read_attr(uattr, &attr, size); 4039 return retval; 4040 4041 out_unlock: 4042 rcu_read_unlock(); 4043 return retval; 4044 } 4045 4046 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4047 { 4048 cpumask_var_t cpus_allowed, new_mask; 4049 struct task_struct *p; 4050 int retval; 4051 4052 rcu_read_lock(); 4053 4054 p = find_process_by_pid(pid); 4055 if (!p) { 4056 rcu_read_unlock(); 4057 return -ESRCH; 4058 } 4059 4060 /* Prevent p going away */ 4061 get_task_struct(p); 4062 rcu_read_unlock(); 4063 4064 if (p->flags & PF_NO_SETAFFINITY) { 4065 retval = -EINVAL; 4066 goto out_put_task; 4067 } 4068 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4069 retval = -ENOMEM; 4070 goto out_put_task; 4071 } 4072 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4073 retval = -ENOMEM; 4074 goto out_free_cpus_allowed; 4075 } 4076 retval = -EPERM; 4077 if (!check_same_owner(p)) { 4078 rcu_read_lock(); 4079 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4080 rcu_read_unlock(); 4081 goto out_free_new_mask; 4082 } 4083 rcu_read_unlock(); 4084 } 4085 4086 retval = security_task_setscheduler(p); 4087 if (retval) 4088 goto out_free_new_mask; 4089 4090 4091 cpuset_cpus_allowed(p, cpus_allowed); 4092 cpumask_and(new_mask, in_mask, cpus_allowed); 4093 4094 /* 4095 * Since bandwidth control happens on root_domain basis, 4096 * if admission test is enabled, we only admit -deadline 4097 * tasks allowed to run on all the CPUs in the task's 4098 * root_domain. 4099 */ 4100 #ifdef CONFIG_SMP 4101 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4102 rcu_read_lock(); 4103 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4104 retval = -EBUSY; 4105 rcu_read_unlock(); 4106 goto out_free_new_mask; 4107 } 4108 rcu_read_unlock(); 4109 } 4110 #endif 4111 again: 4112 retval = set_cpus_allowed_ptr(p, new_mask); 4113 4114 if (!retval) { 4115 cpuset_cpus_allowed(p, cpus_allowed); 4116 if (!cpumask_subset(new_mask, cpus_allowed)) { 4117 /* 4118 * We must have raced with a concurrent cpuset 4119 * update. Just reset the cpus_allowed to the 4120 * cpuset's cpus_allowed 4121 */ 4122 cpumask_copy(new_mask, cpus_allowed); 4123 goto again; 4124 } 4125 } 4126 out_free_new_mask: 4127 free_cpumask_var(new_mask); 4128 out_free_cpus_allowed: 4129 free_cpumask_var(cpus_allowed); 4130 out_put_task: 4131 put_task_struct(p); 4132 return retval; 4133 } 4134 4135 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4136 struct cpumask *new_mask) 4137 { 4138 if (len < cpumask_size()) 4139 cpumask_clear(new_mask); 4140 else if (len > cpumask_size()) 4141 len = cpumask_size(); 4142 4143 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4144 } 4145 4146 /** 4147 * sys_sched_setaffinity - set the cpu affinity of a process 4148 * @pid: pid of the process 4149 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4150 * @user_mask_ptr: user-space pointer to the new cpu mask 4151 * 4152 * Return: 0 on success. An error code otherwise. 4153 */ 4154 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4155 unsigned long __user *, user_mask_ptr) 4156 { 4157 cpumask_var_t new_mask; 4158 int retval; 4159 4160 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4161 return -ENOMEM; 4162 4163 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4164 if (retval == 0) 4165 retval = sched_setaffinity(pid, new_mask); 4166 free_cpumask_var(new_mask); 4167 return retval; 4168 } 4169 4170 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4171 { 4172 struct task_struct *p; 4173 unsigned long flags; 4174 int retval; 4175 4176 rcu_read_lock(); 4177 4178 retval = -ESRCH; 4179 p = find_process_by_pid(pid); 4180 if (!p) 4181 goto out_unlock; 4182 4183 retval = security_task_getscheduler(p); 4184 if (retval) 4185 goto out_unlock; 4186 4187 raw_spin_lock_irqsave(&p->pi_lock, flags); 4188 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4189 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4190 4191 out_unlock: 4192 rcu_read_unlock(); 4193 4194 return retval; 4195 } 4196 4197 /** 4198 * sys_sched_getaffinity - get the cpu affinity of a process 4199 * @pid: pid of the process 4200 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4201 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4202 * 4203 * Return: 0 on success. An error code otherwise. 4204 */ 4205 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4206 unsigned long __user *, user_mask_ptr) 4207 { 4208 int ret; 4209 cpumask_var_t mask; 4210 4211 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4212 return -EINVAL; 4213 if (len & (sizeof(unsigned long)-1)) 4214 return -EINVAL; 4215 4216 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4217 return -ENOMEM; 4218 4219 ret = sched_getaffinity(pid, mask); 4220 if (ret == 0) { 4221 size_t retlen = min_t(size_t, len, cpumask_size()); 4222 4223 if (copy_to_user(user_mask_ptr, mask, retlen)) 4224 ret = -EFAULT; 4225 else 4226 ret = retlen; 4227 } 4228 free_cpumask_var(mask); 4229 4230 return ret; 4231 } 4232 4233 /** 4234 * sys_sched_yield - yield the current processor to other threads. 4235 * 4236 * This function yields the current CPU to other tasks. If there are no 4237 * other threads running on this CPU then this function will return. 4238 * 4239 * Return: 0. 4240 */ 4241 SYSCALL_DEFINE0(sched_yield) 4242 { 4243 struct rq *rq = this_rq_lock(); 4244 4245 schedstat_inc(rq, yld_count); 4246 current->sched_class->yield_task(rq); 4247 4248 /* 4249 * Since we are going to call schedule() anyway, there's 4250 * no need to preempt or enable interrupts: 4251 */ 4252 __release(rq->lock); 4253 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4254 do_raw_spin_unlock(&rq->lock); 4255 sched_preempt_enable_no_resched(); 4256 4257 schedule(); 4258 4259 return 0; 4260 } 4261 4262 int __sched _cond_resched(void) 4263 { 4264 if (should_resched()) { 4265 preempt_schedule_common(); 4266 return 1; 4267 } 4268 return 0; 4269 } 4270 EXPORT_SYMBOL(_cond_resched); 4271 4272 /* 4273 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4274 * call schedule, and on return reacquire the lock. 4275 * 4276 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4277 * operations here to prevent schedule() from being called twice (once via 4278 * spin_unlock(), once by hand). 4279 */ 4280 int __cond_resched_lock(spinlock_t *lock) 4281 { 4282 int resched = should_resched(); 4283 int ret = 0; 4284 4285 lockdep_assert_held(lock); 4286 4287 if (spin_needbreak(lock) || resched) { 4288 spin_unlock(lock); 4289 if (resched) 4290 preempt_schedule_common(); 4291 else 4292 cpu_relax(); 4293 ret = 1; 4294 spin_lock(lock); 4295 } 4296 return ret; 4297 } 4298 EXPORT_SYMBOL(__cond_resched_lock); 4299 4300 int __sched __cond_resched_softirq(void) 4301 { 4302 BUG_ON(!in_softirq()); 4303 4304 if (should_resched()) { 4305 local_bh_enable(); 4306 preempt_schedule_common(); 4307 local_bh_disable(); 4308 return 1; 4309 } 4310 return 0; 4311 } 4312 EXPORT_SYMBOL(__cond_resched_softirq); 4313 4314 /** 4315 * yield - yield the current processor to other threads. 4316 * 4317 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4318 * 4319 * The scheduler is at all times free to pick the calling task as the most 4320 * eligible task to run, if removing the yield() call from your code breaks 4321 * it, its already broken. 4322 * 4323 * Typical broken usage is: 4324 * 4325 * while (!event) 4326 * yield(); 4327 * 4328 * where one assumes that yield() will let 'the other' process run that will 4329 * make event true. If the current task is a SCHED_FIFO task that will never 4330 * happen. Never use yield() as a progress guarantee!! 4331 * 4332 * If you want to use yield() to wait for something, use wait_event(). 4333 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4334 * If you still want to use yield(), do not! 4335 */ 4336 void __sched yield(void) 4337 { 4338 set_current_state(TASK_RUNNING); 4339 sys_sched_yield(); 4340 } 4341 EXPORT_SYMBOL(yield); 4342 4343 /** 4344 * yield_to - yield the current processor to another thread in 4345 * your thread group, or accelerate that thread toward the 4346 * processor it's on. 4347 * @p: target task 4348 * @preempt: whether task preemption is allowed or not 4349 * 4350 * It's the caller's job to ensure that the target task struct 4351 * can't go away on us before we can do any checks. 4352 * 4353 * Return: 4354 * true (>0) if we indeed boosted the target task. 4355 * false (0) if we failed to boost the target. 4356 * -ESRCH if there's no task to yield to. 4357 */ 4358 int __sched yield_to(struct task_struct *p, bool preempt) 4359 { 4360 struct task_struct *curr = current; 4361 struct rq *rq, *p_rq; 4362 unsigned long flags; 4363 int yielded = 0; 4364 4365 local_irq_save(flags); 4366 rq = this_rq(); 4367 4368 again: 4369 p_rq = task_rq(p); 4370 /* 4371 * If we're the only runnable task on the rq and target rq also 4372 * has only one task, there's absolutely no point in yielding. 4373 */ 4374 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4375 yielded = -ESRCH; 4376 goto out_irq; 4377 } 4378 4379 double_rq_lock(rq, p_rq); 4380 if (task_rq(p) != p_rq) { 4381 double_rq_unlock(rq, p_rq); 4382 goto again; 4383 } 4384 4385 if (!curr->sched_class->yield_to_task) 4386 goto out_unlock; 4387 4388 if (curr->sched_class != p->sched_class) 4389 goto out_unlock; 4390 4391 if (task_running(p_rq, p) || p->state) 4392 goto out_unlock; 4393 4394 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4395 if (yielded) { 4396 schedstat_inc(rq, yld_count); 4397 /* 4398 * Make p's CPU reschedule; pick_next_entity takes care of 4399 * fairness. 4400 */ 4401 if (preempt && rq != p_rq) 4402 resched_curr(p_rq); 4403 } 4404 4405 out_unlock: 4406 double_rq_unlock(rq, p_rq); 4407 out_irq: 4408 local_irq_restore(flags); 4409 4410 if (yielded > 0) 4411 schedule(); 4412 4413 return yielded; 4414 } 4415 EXPORT_SYMBOL_GPL(yield_to); 4416 4417 /* 4418 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4419 * that process accounting knows that this is a task in IO wait state. 4420 */ 4421 void __sched io_schedule(void) 4422 { 4423 struct rq *rq = raw_rq(); 4424 4425 delayacct_blkio_start(); 4426 atomic_inc(&rq->nr_iowait); 4427 blk_flush_plug(current); 4428 current->in_iowait = 1; 4429 schedule(); 4430 current->in_iowait = 0; 4431 atomic_dec(&rq->nr_iowait); 4432 delayacct_blkio_end(); 4433 } 4434 EXPORT_SYMBOL(io_schedule); 4435 4436 long __sched io_schedule_timeout(long timeout) 4437 { 4438 struct rq *rq = raw_rq(); 4439 long ret; 4440 4441 delayacct_blkio_start(); 4442 atomic_inc(&rq->nr_iowait); 4443 blk_flush_plug(current); 4444 current->in_iowait = 1; 4445 ret = schedule_timeout(timeout); 4446 current->in_iowait = 0; 4447 atomic_dec(&rq->nr_iowait); 4448 delayacct_blkio_end(); 4449 return ret; 4450 } 4451 4452 /** 4453 * sys_sched_get_priority_max - return maximum RT priority. 4454 * @policy: scheduling class. 4455 * 4456 * Return: On success, this syscall returns the maximum 4457 * rt_priority that can be used by a given scheduling class. 4458 * On failure, a negative error code is returned. 4459 */ 4460 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4461 { 4462 int ret = -EINVAL; 4463 4464 switch (policy) { 4465 case SCHED_FIFO: 4466 case SCHED_RR: 4467 ret = MAX_USER_RT_PRIO-1; 4468 break; 4469 case SCHED_DEADLINE: 4470 case SCHED_NORMAL: 4471 case SCHED_BATCH: 4472 case SCHED_IDLE: 4473 ret = 0; 4474 break; 4475 } 4476 return ret; 4477 } 4478 4479 /** 4480 * sys_sched_get_priority_min - return minimum RT priority. 4481 * @policy: scheduling class. 4482 * 4483 * Return: On success, this syscall returns the minimum 4484 * rt_priority that can be used by a given scheduling class. 4485 * On failure, a negative error code is returned. 4486 */ 4487 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4488 { 4489 int ret = -EINVAL; 4490 4491 switch (policy) { 4492 case SCHED_FIFO: 4493 case SCHED_RR: 4494 ret = 1; 4495 break; 4496 case SCHED_DEADLINE: 4497 case SCHED_NORMAL: 4498 case SCHED_BATCH: 4499 case SCHED_IDLE: 4500 ret = 0; 4501 } 4502 return ret; 4503 } 4504 4505 /** 4506 * sys_sched_rr_get_interval - return the default timeslice of a process. 4507 * @pid: pid of the process. 4508 * @interval: userspace pointer to the timeslice value. 4509 * 4510 * this syscall writes the default timeslice value of a given process 4511 * into the user-space timespec buffer. A value of '0' means infinity. 4512 * 4513 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4514 * an error code. 4515 */ 4516 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4517 struct timespec __user *, interval) 4518 { 4519 struct task_struct *p; 4520 unsigned int time_slice; 4521 unsigned long flags; 4522 struct rq *rq; 4523 int retval; 4524 struct timespec t; 4525 4526 if (pid < 0) 4527 return -EINVAL; 4528 4529 retval = -ESRCH; 4530 rcu_read_lock(); 4531 p = find_process_by_pid(pid); 4532 if (!p) 4533 goto out_unlock; 4534 4535 retval = security_task_getscheduler(p); 4536 if (retval) 4537 goto out_unlock; 4538 4539 rq = task_rq_lock(p, &flags); 4540 time_slice = 0; 4541 if (p->sched_class->get_rr_interval) 4542 time_slice = p->sched_class->get_rr_interval(rq, p); 4543 task_rq_unlock(rq, p, &flags); 4544 4545 rcu_read_unlock(); 4546 jiffies_to_timespec(time_slice, &t); 4547 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4548 return retval; 4549 4550 out_unlock: 4551 rcu_read_unlock(); 4552 return retval; 4553 } 4554 4555 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4556 4557 void sched_show_task(struct task_struct *p) 4558 { 4559 unsigned long free = 0; 4560 int ppid; 4561 unsigned long state = p->state; 4562 4563 if (state) 4564 state = __ffs(state) + 1; 4565 printk(KERN_INFO "%-15.15s %c", p->comm, 4566 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4567 #if BITS_PER_LONG == 32 4568 if (state == TASK_RUNNING) 4569 printk(KERN_CONT " running "); 4570 else 4571 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4572 #else 4573 if (state == TASK_RUNNING) 4574 printk(KERN_CONT " running task "); 4575 else 4576 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4577 #endif 4578 #ifdef CONFIG_DEBUG_STACK_USAGE 4579 free = stack_not_used(p); 4580 #endif 4581 ppid = 0; 4582 rcu_read_lock(); 4583 if (pid_alive(p)) 4584 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4585 rcu_read_unlock(); 4586 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4587 task_pid_nr(p), ppid, 4588 (unsigned long)task_thread_info(p)->flags); 4589 4590 print_worker_info(KERN_INFO, p); 4591 show_stack(p, NULL); 4592 } 4593 4594 void show_state_filter(unsigned long state_filter) 4595 { 4596 struct task_struct *g, *p; 4597 4598 #if BITS_PER_LONG == 32 4599 printk(KERN_INFO 4600 " task PC stack pid father\n"); 4601 #else 4602 printk(KERN_INFO 4603 " task PC stack pid father\n"); 4604 #endif 4605 rcu_read_lock(); 4606 for_each_process_thread(g, p) { 4607 /* 4608 * reset the NMI-timeout, listing all files on a slow 4609 * console might take a lot of time: 4610 */ 4611 touch_nmi_watchdog(); 4612 if (!state_filter || (p->state & state_filter)) 4613 sched_show_task(p); 4614 } 4615 4616 touch_all_softlockup_watchdogs(); 4617 4618 #ifdef CONFIG_SCHED_DEBUG 4619 sysrq_sched_debug_show(); 4620 #endif 4621 rcu_read_unlock(); 4622 /* 4623 * Only show locks if all tasks are dumped: 4624 */ 4625 if (!state_filter) 4626 debug_show_all_locks(); 4627 } 4628 4629 void init_idle_bootup_task(struct task_struct *idle) 4630 { 4631 idle->sched_class = &idle_sched_class; 4632 } 4633 4634 /** 4635 * init_idle - set up an idle thread for a given CPU 4636 * @idle: task in question 4637 * @cpu: cpu the idle task belongs to 4638 * 4639 * NOTE: this function does not set the idle thread's NEED_RESCHED 4640 * flag, to make booting more robust. 4641 */ 4642 void init_idle(struct task_struct *idle, int cpu) 4643 { 4644 struct rq *rq = cpu_rq(cpu); 4645 unsigned long flags; 4646 4647 raw_spin_lock_irqsave(&rq->lock, flags); 4648 4649 __sched_fork(0, idle); 4650 idle->state = TASK_RUNNING; 4651 idle->se.exec_start = sched_clock(); 4652 4653 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4654 /* 4655 * We're having a chicken and egg problem, even though we are 4656 * holding rq->lock, the cpu isn't yet set to this cpu so the 4657 * lockdep check in task_group() will fail. 4658 * 4659 * Similar case to sched_fork(). / Alternatively we could 4660 * use task_rq_lock() here and obtain the other rq->lock. 4661 * 4662 * Silence PROVE_RCU 4663 */ 4664 rcu_read_lock(); 4665 __set_task_cpu(idle, cpu); 4666 rcu_read_unlock(); 4667 4668 rq->curr = rq->idle = idle; 4669 idle->on_rq = TASK_ON_RQ_QUEUED; 4670 #if defined(CONFIG_SMP) 4671 idle->on_cpu = 1; 4672 #endif 4673 raw_spin_unlock_irqrestore(&rq->lock, flags); 4674 4675 /* Set the preempt count _outside_ the spinlocks! */ 4676 init_idle_preempt_count(idle, cpu); 4677 4678 /* 4679 * The idle tasks have their own, simple scheduling class: 4680 */ 4681 idle->sched_class = &idle_sched_class; 4682 ftrace_graph_init_idle_task(idle, cpu); 4683 vtime_init_idle(idle, cpu); 4684 #if defined(CONFIG_SMP) 4685 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4686 #endif 4687 } 4688 4689 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 4690 const struct cpumask *trial) 4691 { 4692 int ret = 1, trial_cpus; 4693 struct dl_bw *cur_dl_b; 4694 unsigned long flags; 4695 4696 if (!cpumask_weight(cur)) 4697 return ret; 4698 4699 rcu_read_lock_sched(); 4700 cur_dl_b = dl_bw_of(cpumask_any(cur)); 4701 trial_cpus = cpumask_weight(trial); 4702 4703 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 4704 if (cur_dl_b->bw != -1 && 4705 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 4706 ret = 0; 4707 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 4708 rcu_read_unlock_sched(); 4709 4710 return ret; 4711 } 4712 4713 int task_can_attach(struct task_struct *p, 4714 const struct cpumask *cs_cpus_allowed) 4715 { 4716 int ret = 0; 4717 4718 /* 4719 * Kthreads which disallow setaffinity shouldn't be moved 4720 * to a new cpuset; we don't want to change their cpu 4721 * affinity and isolating such threads by their set of 4722 * allowed nodes is unnecessary. Thus, cpusets are not 4723 * applicable for such threads. This prevents checking for 4724 * success of set_cpus_allowed_ptr() on all attached tasks 4725 * before cpus_allowed may be changed. 4726 */ 4727 if (p->flags & PF_NO_SETAFFINITY) { 4728 ret = -EINVAL; 4729 goto out; 4730 } 4731 4732 #ifdef CONFIG_SMP 4733 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 4734 cs_cpus_allowed)) { 4735 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 4736 cs_cpus_allowed); 4737 struct dl_bw *dl_b; 4738 bool overflow; 4739 int cpus; 4740 unsigned long flags; 4741 4742 rcu_read_lock_sched(); 4743 dl_b = dl_bw_of(dest_cpu); 4744 raw_spin_lock_irqsave(&dl_b->lock, flags); 4745 cpus = dl_bw_cpus(dest_cpu); 4746 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 4747 if (overflow) 4748 ret = -EBUSY; 4749 else { 4750 /* 4751 * We reserve space for this task in the destination 4752 * root_domain, as we can't fail after this point. 4753 * We will free resources in the source root_domain 4754 * later on (see set_cpus_allowed_dl()). 4755 */ 4756 __dl_add(dl_b, p->dl.dl_bw); 4757 } 4758 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 4759 rcu_read_unlock_sched(); 4760 4761 } 4762 #endif 4763 out: 4764 return ret; 4765 } 4766 4767 #ifdef CONFIG_SMP 4768 /* 4769 * move_queued_task - move a queued task to new rq. 4770 * 4771 * Returns (locked) new rq. Old rq's lock is released. 4772 */ 4773 static struct rq *move_queued_task(struct task_struct *p, int new_cpu) 4774 { 4775 struct rq *rq = task_rq(p); 4776 4777 lockdep_assert_held(&rq->lock); 4778 4779 dequeue_task(rq, p, 0); 4780 p->on_rq = TASK_ON_RQ_MIGRATING; 4781 set_task_cpu(p, new_cpu); 4782 raw_spin_unlock(&rq->lock); 4783 4784 rq = cpu_rq(new_cpu); 4785 4786 raw_spin_lock(&rq->lock); 4787 BUG_ON(task_cpu(p) != new_cpu); 4788 p->on_rq = TASK_ON_RQ_QUEUED; 4789 enqueue_task(rq, p, 0); 4790 check_preempt_curr(rq, p, 0); 4791 4792 return rq; 4793 } 4794 4795 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4796 { 4797 if (p->sched_class->set_cpus_allowed) 4798 p->sched_class->set_cpus_allowed(p, new_mask); 4799 4800 cpumask_copy(&p->cpus_allowed, new_mask); 4801 p->nr_cpus_allowed = cpumask_weight(new_mask); 4802 } 4803 4804 /* 4805 * This is how migration works: 4806 * 4807 * 1) we invoke migration_cpu_stop() on the target CPU using 4808 * stop_one_cpu(). 4809 * 2) stopper starts to run (implicitly forcing the migrated thread 4810 * off the CPU) 4811 * 3) it checks whether the migrated task is still in the wrong runqueue. 4812 * 4) if it's in the wrong runqueue then the migration thread removes 4813 * it and puts it into the right queue. 4814 * 5) stopper completes and stop_one_cpu() returns and the migration 4815 * is done. 4816 */ 4817 4818 /* 4819 * Change a given task's CPU affinity. Migrate the thread to a 4820 * proper CPU and schedule it away if the CPU it's executing on 4821 * is removed from the allowed bitmask. 4822 * 4823 * NOTE: the caller must have a valid reference to the task, the 4824 * task must not exit() & deallocate itself prematurely. The 4825 * call is not atomic; no spinlocks may be held. 4826 */ 4827 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4828 { 4829 unsigned long flags; 4830 struct rq *rq; 4831 unsigned int dest_cpu; 4832 int ret = 0; 4833 4834 rq = task_rq_lock(p, &flags); 4835 4836 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4837 goto out; 4838 4839 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4840 ret = -EINVAL; 4841 goto out; 4842 } 4843 4844 do_set_cpus_allowed(p, new_mask); 4845 4846 /* Can the task run on the task's current CPU? If so, we're done */ 4847 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4848 goto out; 4849 4850 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4851 if (task_running(rq, p) || p->state == TASK_WAKING) { 4852 struct migration_arg arg = { p, dest_cpu }; 4853 /* Need help from migration thread: drop lock and wait. */ 4854 task_rq_unlock(rq, p, &flags); 4855 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4856 tlb_migrate_finish(p->mm); 4857 return 0; 4858 } else if (task_on_rq_queued(p)) 4859 rq = move_queued_task(p, dest_cpu); 4860 out: 4861 task_rq_unlock(rq, p, &flags); 4862 4863 return ret; 4864 } 4865 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4866 4867 /* 4868 * Move (not current) task off this cpu, onto dest cpu. We're doing 4869 * this because either it can't run here any more (set_cpus_allowed() 4870 * away from this CPU, or CPU going down), or because we're 4871 * attempting to rebalance this task on exec (sched_exec). 4872 * 4873 * So we race with normal scheduler movements, but that's OK, as long 4874 * as the task is no longer on this CPU. 4875 * 4876 * Returns non-zero if task was successfully migrated. 4877 */ 4878 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4879 { 4880 struct rq *rq; 4881 int ret = 0; 4882 4883 if (unlikely(!cpu_active(dest_cpu))) 4884 return ret; 4885 4886 rq = cpu_rq(src_cpu); 4887 4888 raw_spin_lock(&p->pi_lock); 4889 raw_spin_lock(&rq->lock); 4890 /* Already moved. */ 4891 if (task_cpu(p) != src_cpu) 4892 goto done; 4893 4894 /* Affinity changed (again). */ 4895 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4896 goto fail; 4897 4898 /* 4899 * If we're not on a rq, the next wake-up will ensure we're 4900 * placed properly. 4901 */ 4902 if (task_on_rq_queued(p)) 4903 rq = move_queued_task(p, dest_cpu); 4904 done: 4905 ret = 1; 4906 fail: 4907 raw_spin_unlock(&rq->lock); 4908 raw_spin_unlock(&p->pi_lock); 4909 return ret; 4910 } 4911 4912 #ifdef CONFIG_NUMA_BALANCING 4913 /* Migrate current task p to target_cpu */ 4914 int migrate_task_to(struct task_struct *p, int target_cpu) 4915 { 4916 struct migration_arg arg = { p, target_cpu }; 4917 int curr_cpu = task_cpu(p); 4918 4919 if (curr_cpu == target_cpu) 4920 return 0; 4921 4922 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4923 return -EINVAL; 4924 4925 /* TODO: This is not properly updating schedstats */ 4926 4927 trace_sched_move_numa(p, curr_cpu, target_cpu); 4928 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4929 } 4930 4931 /* 4932 * Requeue a task on a given node and accurately track the number of NUMA 4933 * tasks on the runqueues 4934 */ 4935 void sched_setnuma(struct task_struct *p, int nid) 4936 { 4937 struct rq *rq; 4938 unsigned long flags; 4939 bool queued, running; 4940 4941 rq = task_rq_lock(p, &flags); 4942 queued = task_on_rq_queued(p); 4943 running = task_current(rq, p); 4944 4945 if (queued) 4946 dequeue_task(rq, p, 0); 4947 if (running) 4948 put_prev_task(rq, p); 4949 4950 p->numa_preferred_nid = nid; 4951 4952 if (running) 4953 p->sched_class->set_curr_task(rq); 4954 if (queued) 4955 enqueue_task(rq, p, 0); 4956 task_rq_unlock(rq, p, &flags); 4957 } 4958 #endif 4959 4960 /* 4961 * migration_cpu_stop - this will be executed by a highprio stopper thread 4962 * and performs thread migration by bumping thread off CPU then 4963 * 'pushing' onto another runqueue. 4964 */ 4965 static int migration_cpu_stop(void *data) 4966 { 4967 struct migration_arg *arg = data; 4968 4969 /* 4970 * The original target cpu might have gone down and we might 4971 * be on another cpu but it doesn't matter. 4972 */ 4973 local_irq_disable(); 4974 /* 4975 * We need to explicitly wake pending tasks before running 4976 * __migrate_task() such that we will not miss enforcing cpus_allowed 4977 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 4978 */ 4979 sched_ttwu_pending(); 4980 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4981 local_irq_enable(); 4982 return 0; 4983 } 4984 4985 #ifdef CONFIG_HOTPLUG_CPU 4986 4987 /* 4988 * Ensures that the idle task is using init_mm right before its cpu goes 4989 * offline. 4990 */ 4991 void idle_task_exit(void) 4992 { 4993 struct mm_struct *mm = current->active_mm; 4994 4995 BUG_ON(cpu_online(smp_processor_id())); 4996 4997 if (mm != &init_mm) { 4998 switch_mm(mm, &init_mm, current); 4999 finish_arch_post_lock_switch(); 5000 } 5001 mmdrop(mm); 5002 } 5003 5004 /* 5005 * Since this CPU is going 'away' for a while, fold any nr_active delta 5006 * we might have. Assumes we're called after migrate_tasks() so that the 5007 * nr_active count is stable. 5008 * 5009 * Also see the comment "Global load-average calculations". 5010 */ 5011 static void calc_load_migrate(struct rq *rq) 5012 { 5013 long delta = calc_load_fold_active(rq); 5014 if (delta) 5015 atomic_long_add(delta, &calc_load_tasks); 5016 } 5017 5018 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5019 { 5020 } 5021 5022 static const struct sched_class fake_sched_class = { 5023 .put_prev_task = put_prev_task_fake, 5024 }; 5025 5026 static struct task_struct fake_task = { 5027 /* 5028 * Avoid pull_{rt,dl}_task() 5029 */ 5030 .prio = MAX_PRIO + 1, 5031 .sched_class = &fake_sched_class, 5032 }; 5033 5034 /* 5035 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5036 * try_to_wake_up()->select_task_rq(). 5037 * 5038 * Called with rq->lock held even though we'er in stop_machine() and 5039 * there's no concurrency possible, we hold the required locks anyway 5040 * because of lock validation efforts. 5041 */ 5042 static void migrate_tasks(unsigned int dead_cpu) 5043 { 5044 struct rq *rq = cpu_rq(dead_cpu); 5045 struct task_struct *next, *stop = rq->stop; 5046 int dest_cpu; 5047 5048 /* 5049 * Fudge the rq selection such that the below task selection loop 5050 * doesn't get stuck on the currently eligible stop task. 5051 * 5052 * We're currently inside stop_machine() and the rq is either stuck 5053 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5054 * either way we should never end up calling schedule() until we're 5055 * done here. 5056 */ 5057 rq->stop = NULL; 5058 5059 /* 5060 * put_prev_task() and pick_next_task() sched 5061 * class method both need to have an up-to-date 5062 * value of rq->clock[_task] 5063 */ 5064 update_rq_clock(rq); 5065 5066 for ( ; ; ) { 5067 /* 5068 * There's this thread running, bail when that's the only 5069 * remaining thread. 5070 */ 5071 if (rq->nr_running == 1) 5072 break; 5073 5074 next = pick_next_task(rq, &fake_task); 5075 BUG_ON(!next); 5076 next->sched_class->put_prev_task(rq, next); 5077 5078 /* Find suitable destination for @next, with force if needed. */ 5079 dest_cpu = select_fallback_rq(dead_cpu, next); 5080 raw_spin_unlock(&rq->lock); 5081 5082 __migrate_task(next, dead_cpu, dest_cpu); 5083 5084 raw_spin_lock(&rq->lock); 5085 } 5086 5087 rq->stop = stop; 5088 } 5089 5090 #endif /* CONFIG_HOTPLUG_CPU */ 5091 5092 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5093 5094 static struct ctl_table sd_ctl_dir[] = { 5095 { 5096 .procname = "sched_domain", 5097 .mode = 0555, 5098 }, 5099 {} 5100 }; 5101 5102 static struct ctl_table sd_ctl_root[] = { 5103 { 5104 .procname = "kernel", 5105 .mode = 0555, 5106 .child = sd_ctl_dir, 5107 }, 5108 {} 5109 }; 5110 5111 static struct ctl_table *sd_alloc_ctl_entry(int n) 5112 { 5113 struct ctl_table *entry = 5114 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5115 5116 return entry; 5117 } 5118 5119 static void sd_free_ctl_entry(struct ctl_table **tablep) 5120 { 5121 struct ctl_table *entry; 5122 5123 /* 5124 * In the intermediate directories, both the child directory and 5125 * procname are dynamically allocated and could fail but the mode 5126 * will always be set. In the lowest directory the names are 5127 * static strings and all have proc handlers. 5128 */ 5129 for (entry = *tablep; entry->mode; entry++) { 5130 if (entry->child) 5131 sd_free_ctl_entry(&entry->child); 5132 if (entry->proc_handler == NULL) 5133 kfree(entry->procname); 5134 } 5135 5136 kfree(*tablep); 5137 *tablep = NULL; 5138 } 5139 5140 static int min_load_idx = 0; 5141 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5142 5143 static void 5144 set_table_entry(struct ctl_table *entry, 5145 const char *procname, void *data, int maxlen, 5146 umode_t mode, proc_handler *proc_handler, 5147 bool load_idx) 5148 { 5149 entry->procname = procname; 5150 entry->data = data; 5151 entry->maxlen = maxlen; 5152 entry->mode = mode; 5153 entry->proc_handler = proc_handler; 5154 5155 if (load_idx) { 5156 entry->extra1 = &min_load_idx; 5157 entry->extra2 = &max_load_idx; 5158 } 5159 } 5160 5161 static struct ctl_table * 5162 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5163 { 5164 struct ctl_table *table = sd_alloc_ctl_entry(14); 5165 5166 if (table == NULL) 5167 return NULL; 5168 5169 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5170 sizeof(long), 0644, proc_doulongvec_minmax, false); 5171 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5172 sizeof(long), 0644, proc_doulongvec_minmax, false); 5173 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5174 sizeof(int), 0644, proc_dointvec_minmax, true); 5175 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5176 sizeof(int), 0644, proc_dointvec_minmax, true); 5177 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5178 sizeof(int), 0644, proc_dointvec_minmax, true); 5179 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5180 sizeof(int), 0644, proc_dointvec_minmax, true); 5181 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5182 sizeof(int), 0644, proc_dointvec_minmax, true); 5183 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5184 sizeof(int), 0644, proc_dointvec_minmax, false); 5185 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5186 sizeof(int), 0644, proc_dointvec_minmax, false); 5187 set_table_entry(&table[9], "cache_nice_tries", 5188 &sd->cache_nice_tries, 5189 sizeof(int), 0644, proc_dointvec_minmax, false); 5190 set_table_entry(&table[10], "flags", &sd->flags, 5191 sizeof(int), 0644, proc_dointvec_minmax, false); 5192 set_table_entry(&table[11], "max_newidle_lb_cost", 5193 &sd->max_newidle_lb_cost, 5194 sizeof(long), 0644, proc_doulongvec_minmax, false); 5195 set_table_entry(&table[12], "name", sd->name, 5196 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5197 /* &table[13] is terminator */ 5198 5199 return table; 5200 } 5201 5202 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5203 { 5204 struct ctl_table *entry, *table; 5205 struct sched_domain *sd; 5206 int domain_num = 0, i; 5207 char buf[32]; 5208 5209 for_each_domain(cpu, sd) 5210 domain_num++; 5211 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5212 if (table == NULL) 5213 return NULL; 5214 5215 i = 0; 5216 for_each_domain(cpu, sd) { 5217 snprintf(buf, 32, "domain%d", i); 5218 entry->procname = kstrdup(buf, GFP_KERNEL); 5219 entry->mode = 0555; 5220 entry->child = sd_alloc_ctl_domain_table(sd); 5221 entry++; 5222 i++; 5223 } 5224 return table; 5225 } 5226 5227 static struct ctl_table_header *sd_sysctl_header; 5228 static void register_sched_domain_sysctl(void) 5229 { 5230 int i, cpu_num = num_possible_cpus(); 5231 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5232 char buf[32]; 5233 5234 WARN_ON(sd_ctl_dir[0].child); 5235 sd_ctl_dir[0].child = entry; 5236 5237 if (entry == NULL) 5238 return; 5239 5240 for_each_possible_cpu(i) { 5241 snprintf(buf, 32, "cpu%d", i); 5242 entry->procname = kstrdup(buf, GFP_KERNEL); 5243 entry->mode = 0555; 5244 entry->child = sd_alloc_ctl_cpu_table(i); 5245 entry++; 5246 } 5247 5248 WARN_ON(sd_sysctl_header); 5249 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5250 } 5251 5252 /* may be called multiple times per register */ 5253 static void unregister_sched_domain_sysctl(void) 5254 { 5255 if (sd_sysctl_header) 5256 unregister_sysctl_table(sd_sysctl_header); 5257 sd_sysctl_header = NULL; 5258 if (sd_ctl_dir[0].child) 5259 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5260 } 5261 #else 5262 static void register_sched_domain_sysctl(void) 5263 { 5264 } 5265 static void unregister_sched_domain_sysctl(void) 5266 { 5267 } 5268 #endif 5269 5270 static void set_rq_online(struct rq *rq) 5271 { 5272 if (!rq->online) { 5273 const struct sched_class *class; 5274 5275 cpumask_set_cpu(rq->cpu, rq->rd->online); 5276 rq->online = 1; 5277 5278 for_each_class(class) { 5279 if (class->rq_online) 5280 class->rq_online(rq); 5281 } 5282 } 5283 } 5284 5285 static void set_rq_offline(struct rq *rq) 5286 { 5287 if (rq->online) { 5288 const struct sched_class *class; 5289 5290 for_each_class(class) { 5291 if (class->rq_offline) 5292 class->rq_offline(rq); 5293 } 5294 5295 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5296 rq->online = 0; 5297 } 5298 } 5299 5300 /* 5301 * migration_call - callback that gets triggered when a CPU is added. 5302 * Here we can start up the necessary migration thread for the new CPU. 5303 */ 5304 static int 5305 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5306 { 5307 int cpu = (long)hcpu; 5308 unsigned long flags; 5309 struct rq *rq = cpu_rq(cpu); 5310 5311 switch (action & ~CPU_TASKS_FROZEN) { 5312 5313 case CPU_UP_PREPARE: 5314 rq->calc_load_update = calc_load_update; 5315 break; 5316 5317 case CPU_ONLINE: 5318 /* Update our root-domain */ 5319 raw_spin_lock_irqsave(&rq->lock, flags); 5320 if (rq->rd) { 5321 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5322 5323 set_rq_online(rq); 5324 } 5325 raw_spin_unlock_irqrestore(&rq->lock, flags); 5326 break; 5327 5328 #ifdef CONFIG_HOTPLUG_CPU 5329 case CPU_DYING: 5330 sched_ttwu_pending(); 5331 /* Update our root-domain */ 5332 raw_spin_lock_irqsave(&rq->lock, flags); 5333 if (rq->rd) { 5334 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5335 set_rq_offline(rq); 5336 } 5337 migrate_tasks(cpu); 5338 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5339 raw_spin_unlock_irqrestore(&rq->lock, flags); 5340 break; 5341 5342 case CPU_DEAD: 5343 calc_load_migrate(rq); 5344 break; 5345 #endif 5346 } 5347 5348 update_max_interval(); 5349 5350 return NOTIFY_OK; 5351 } 5352 5353 /* 5354 * Register at high priority so that task migration (migrate_all_tasks) 5355 * happens before everything else. This has to be lower priority than 5356 * the notifier in the perf_event subsystem, though. 5357 */ 5358 static struct notifier_block migration_notifier = { 5359 .notifier_call = migration_call, 5360 .priority = CPU_PRI_MIGRATION, 5361 }; 5362 5363 static void __cpuinit set_cpu_rq_start_time(void) 5364 { 5365 int cpu = smp_processor_id(); 5366 struct rq *rq = cpu_rq(cpu); 5367 rq->age_stamp = sched_clock_cpu(cpu); 5368 } 5369 5370 static int sched_cpu_active(struct notifier_block *nfb, 5371 unsigned long action, void *hcpu) 5372 { 5373 switch (action & ~CPU_TASKS_FROZEN) { 5374 case CPU_STARTING: 5375 set_cpu_rq_start_time(); 5376 return NOTIFY_OK; 5377 case CPU_DOWN_FAILED: 5378 set_cpu_active((long)hcpu, true); 5379 return NOTIFY_OK; 5380 default: 5381 return NOTIFY_DONE; 5382 } 5383 } 5384 5385 static int sched_cpu_inactive(struct notifier_block *nfb, 5386 unsigned long action, void *hcpu) 5387 { 5388 unsigned long flags; 5389 long cpu = (long)hcpu; 5390 struct dl_bw *dl_b; 5391 5392 switch (action & ~CPU_TASKS_FROZEN) { 5393 case CPU_DOWN_PREPARE: 5394 set_cpu_active(cpu, false); 5395 5396 /* explicitly allow suspend */ 5397 if (!(action & CPU_TASKS_FROZEN)) { 5398 bool overflow; 5399 int cpus; 5400 5401 rcu_read_lock_sched(); 5402 dl_b = dl_bw_of(cpu); 5403 5404 raw_spin_lock_irqsave(&dl_b->lock, flags); 5405 cpus = dl_bw_cpus(cpu); 5406 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5407 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5408 5409 rcu_read_unlock_sched(); 5410 5411 if (overflow) 5412 return notifier_from_errno(-EBUSY); 5413 } 5414 return NOTIFY_OK; 5415 } 5416 5417 return NOTIFY_DONE; 5418 } 5419 5420 static int __init migration_init(void) 5421 { 5422 void *cpu = (void *)(long)smp_processor_id(); 5423 int err; 5424 5425 /* Initialize migration for the boot CPU */ 5426 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5427 BUG_ON(err == NOTIFY_BAD); 5428 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5429 register_cpu_notifier(&migration_notifier); 5430 5431 /* Register cpu active notifiers */ 5432 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5433 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5434 5435 return 0; 5436 } 5437 early_initcall(migration_init); 5438 #endif 5439 5440 #ifdef CONFIG_SMP 5441 5442 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5443 5444 #ifdef CONFIG_SCHED_DEBUG 5445 5446 static __read_mostly int sched_debug_enabled; 5447 5448 static int __init sched_debug_setup(char *str) 5449 { 5450 sched_debug_enabled = 1; 5451 5452 return 0; 5453 } 5454 early_param("sched_debug", sched_debug_setup); 5455 5456 static inline bool sched_debug(void) 5457 { 5458 return sched_debug_enabled; 5459 } 5460 5461 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5462 struct cpumask *groupmask) 5463 { 5464 struct sched_group *group = sd->groups; 5465 char str[256]; 5466 5467 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5468 cpumask_clear(groupmask); 5469 5470 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5471 5472 if (!(sd->flags & SD_LOAD_BALANCE)) { 5473 printk("does not load-balance\n"); 5474 if (sd->parent) 5475 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5476 " has parent"); 5477 return -1; 5478 } 5479 5480 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5481 5482 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5483 printk(KERN_ERR "ERROR: domain->span does not contain " 5484 "CPU%d\n", cpu); 5485 } 5486 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5487 printk(KERN_ERR "ERROR: domain->groups does not contain" 5488 " CPU%d\n", cpu); 5489 } 5490 5491 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5492 do { 5493 if (!group) { 5494 printk("\n"); 5495 printk(KERN_ERR "ERROR: group is NULL\n"); 5496 break; 5497 } 5498 5499 /* 5500 * Even though we initialize ->capacity to something semi-sane, 5501 * we leave capacity_orig unset. This allows us to detect if 5502 * domain iteration is still funny without causing /0 traps. 5503 */ 5504 if (!group->sgc->capacity_orig) { 5505 printk(KERN_CONT "\n"); 5506 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n"); 5507 break; 5508 } 5509 5510 if (!cpumask_weight(sched_group_cpus(group))) { 5511 printk(KERN_CONT "\n"); 5512 printk(KERN_ERR "ERROR: empty group\n"); 5513 break; 5514 } 5515 5516 if (!(sd->flags & SD_OVERLAP) && 5517 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5518 printk(KERN_CONT "\n"); 5519 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5520 break; 5521 } 5522 5523 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5524 5525 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5526 5527 printk(KERN_CONT " %s", str); 5528 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5529 printk(KERN_CONT " (cpu_capacity = %d)", 5530 group->sgc->capacity); 5531 } 5532 5533 group = group->next; 5534 } while (group != sd->groups); 5535 printk(KERN_CONT "\n"); 5536 5537 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5538 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5539 5540 if (sd->parent && 5541 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5542 printk(KERN_ERR "ERROR: parent span is not a superset " 5543 "of domain->span\n"); 5544 return 0; 5545 } 5546 5547 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5548 { 5549 int level = 0; 5550 5551 if (!sched_debug_enabled) 5552 return; 5553 5554 if (!sd) { 5555 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5556 return; 5557 } 5558 5559 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5560 5561 for (;;) { 5562 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5563 break; 5564 level++; 5565 sd = sd->parent; 5566 if (!sd) 5567 break; 5568 } 5569 } 5570 #else /* !CONFIG_SCHED_DEBUG */ 5571 # define sched_domain_debug(sd, cpu) do { } while (0) 5572 static inline bool sched_debug(void) 5573 { 5574 return false; 5575 } 5576 #endif /* CONFIG_SCHED_DEBUG */ 5577 5578 static int sd_degenerate(struct sched_domain *sd) 5579 { 5580 if (cpumask_weight(sched_domain_span(sd)) == 1) 5581 return 1; 5582 5583 /* Following flags need at least 2 groups */ 5584 if (sd->flags & (SD_LOAD_BALANCE | 5585 SD_BALANCE_NEWIDLE | 5586 SD_BALANCE_FORK | 5587 SD_BALANCE_EXEC | 5588 SD_SHARE_CPUCAPACITY | 5589 SD_SHARE_PKG_RESOURCES | 5590 SD_SHARE_POWERDOMAIN)) { 5591 if (sd->groups != sd->groups->next) 5592 return 0; 5593 } 5594 5595 /* Following flags don't use groups */ 5596 if (sd->flags & (SD_WAKE_AFFINE)) 5597 return 0; 5598 5599 return 1; 5600 } 5601 5602 static int 5603 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5604 { 5605 unsigned long cflags = sd->flags, pflags = parent->flags; 5606 5607 if (sd_degenerate(parent)) 5608 return 1; 5609 5610 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5611 return 0; 5612 5613 /* Flags needing groups don't count if only 1 group in parent */ 5614 if (parent->groups == parent->groups->next) { 5615 pflags &= ~(SD_LOAD_BALANCE | 5616 SD_BALANCE_NEWIDLE | 5617 SD_BALANCE_FORK | 5618 SD_BALANCE_EXEC | 5619 SD_SHARE_CPUCAPACITY | 5620 SD_SHARE_PKG_RESOURCES | 5621 SD_PREFER_SIBLING | 5622 SD_SHARE_POWERDOMAIN); 5623 if (nr_node_ids == 1) 5624 pflags &= ~SD_SERIALIZE; 5625 } 5626 if (~cflags & pflags) 5627 return 0; 5628 5629 return 1; 5630 } 5631 5632 static void free_rootdomain(struct rcu_head *rcu) 5633 { 5634 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5635 5636 cpupri_cleanup(&rd->cpupri); 5637 cpudl_cleanup(&rd->cpudl); 5638 free_cpumask_var(rd->dlo_mask); 5639 free_cpumask_var(rd->rto_mask); 5640 free_cpumask_var(rd->online); 5641 free_cpumask_var(rd->span); 5642 kfree(rd); 5643 } 5644 5645 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5646 { 5647 struct root_domain *old_rd = NULL; 5648 unsigned long flags; 5649 5650 raw_spin_lock_irqsave(&rq->lock, flags); 5651 5652 if (rq->rd) { 5653 old_rd = rq->rd; 5654 5655 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5656 set_rq_offline(rq); 5657 5658 cpumask_clear_cpu(rq->cpu, old_rd->span); 5659 5660 /* 5661 * If we dont want to free the old_rd yet then 5662 * set old_rd to NULL to skip the freeing later 5663 * in this function: 5664 */ 5665 if (!atomic_dec_and_test(&old_rd->refcount)) 5666 old_rd = NULL; 5667 } 5668 5669 atomic_inc(&rd->refcount); 5670 rq->rd = rd; 5671 5672 cpumask_set_cpu(rq->cpu, rd->span); 5673 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5674 set_rq_online(rq); 5675 5676 raw_spin_unlock_irqrestore(&rq->lock, flags); 5677 5678 if (old_rd) 5679 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5680 } 5681 5682 static int init_rootdomain(struct root_domain *rd) 5683 { 5684 memset(rd, 0, sizeof(*rd)); 5685 5686 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5687 goto out; 5688 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5689 goto free_span; 5690 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5691 goto free_online; 5692 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5693 goto free_dlo_mask; 5694 5695 init_dl_bw(&rd->dl_bw); 5696 if (cpudl_init(&rd->cpudl) != 0) 5697 goto free_dlo_mask; 5698 5699 if (cpupri_init(&rd->cpupri) != 0) 5700 goto free_rto_mask; 5701 return 0; 5702 5703 free_rto_mask: 5704 free_cpumask_var(rd->rto_mask); 5705 free_dlo_mask: 5706 free_cpumask_var(rd->dlo_mask); 5707 free_online: 5708 free_cpumask_var(rd->online); 5709 free_span: 5710 free_cpumask_var(rd->span); 5711 out: 5712 return -ENOMEM; 5713 } 5714 5715 /* 5716 * By default the system creates a single root-domain with all cpus as 5717 * members (mimicking the global state we have today). 5718 */ 5719 struct root_domain def_root_domain; 5720 5721 static void init_defrootdomain(void) 5722 { 5723 init_rootdomain(&def_root_domain); 5724 5725 atomic_set(&def_root_domain.refcount, 1); 5726 } 5727 5728 static struct root_domain *alloc_rootdomain(void) 5729 { 5730 struct root_domain *rd; 5731 5732 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5733 if (!rd) 5734 return NULL; 5735 5736 if (init_rootdomain(rd) != 0) { 5737 kfree(rd); 5738 return NULL; 5739 } 5740 5741 return rd; 5742 } 5743 5744 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5745 { 5746 struct sched_group *tmp, *first; 5747 5748 if (!sg) 5749 return; 5750 5751 first = sg; 5752 do { 5753 tmp = sg->next; 5754 5755 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5756 kfree(sg->sgc); 5757 5758 kfree(sg); 5759 sg = tmp; 5760 } while (sg != first); 5761 } 5762 5763 static void free_sched_domain(struct rcu_head *rcu) 5764 { 5765 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5766 5767 /* 5768 * If its an overlapping domain it has private groups, iterate and 5769 * nuke them all. 5770 */ 5771 if (sd->flags & SD_OVERLAP) { 5772 free_sched_groups(sd->groups, 1); 5773 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5774 kfree(sd->groups->sgc); 5775 kfree(sd->groups); 5776 } 5777 kfree(sd); 5778 } 5779 5780 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5781 { 5782 call_rcu(&sd->rcu, free_sched_domain); 5783 } 5784 5785 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5786 { 5787 for (; sd; sd = sd->parent) 5788 destroy_sched_domain(sd, cpu); 5789 } 5790 5791 /* 5792 * Keep a special pointer to the highest sched_domain that has 5793 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5794 * allows us to avoid some pointer chasing select_idle_sibling(). 5795 * 5796 * Also keep a unique ID per domain (we use the first cpu number in 5797 * the cpumask of the domain), this allows us to quickly tell if 5798 * two cpus are in the same cache domain, see cpus_share_cache(). 5799 */ 5800 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5801 DEFINE_PER_CPU(int, sd_llc_size); 5802 DEFINE_PER_CPU(int, sd_llc_id); 5803 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5804 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5805 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5806 5807 static void update_top_cache_domain(int cpu) 5808 { 5809 struct sched_domain *sd; 5810 struct sched_domain *busy_sd = NULL; 5811 int id = cpu; 5812 int size = 1; 5813 5814 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5815 if (sd) { 5816 id = cpumask_first(sched_domain_span(sd)); 5817 size = cpumask_weight(sched_domain_span(sd)); 5818 busy_sd = sd->parent; /* sd_busy */ 5819 } 5820 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5821 5822 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5823 per_cpu(sd_llc_size, cpu) = size; 5824 per_cpu(sd_llc_id, cpu) = id; 5825 5826 sd = lowest_flag_domain(cpu, SD_NUMA); 5827 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5828 5829 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5830 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5831 } 5832 5833 /* 5834 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5835 * hold the hotplug lock. 5836 */ 5837 static void 5838 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5839 { 5840 struct rq *rq = cpu_rq(cpu); 5841 struct sched_domain *tmp; 5842 5843 /* Remove the sched domains which do not contribute to scheduling. */ 5844 for (tmp = sd; tmp; ) { 5845 struct sched_domain *parent = tmp->parent; 5846 if (!parent) 5847 break; 5848 5849 if (sd_parent_degenerate(tmp, parent)) { 5850 tmp->parent = parent->parent; 5851 if (parent->parent) 5852 parent->parent->child = tmp; 5853 /* 5854 * Transfer SD_PREFER_SIBLING down in case of a 5855 * degenerate parent; the spans match for this 5856 * so the property transfers. 5857 */ 5858 if (parent->flags & SD_PREFER_SIBLING) 5859 tmp->flags |= SD_PREFER_SIBLING; 5860 destroy_sched_domain(parent, cpu); 5861 } else 5862 tmp = tmp->parent; 5863 } 5864 5865 if (sd && sd_degenerate(sd)) { 5866 tmp = sd; 5867 sd = sd->parent; 5868 destroy_sched_domain(tmp, cpu); 5869 if (sd) 5870 sd->child = NULL; 5871 } 5872 5873 sched_domain_debug(sd, cpu); 5874 5875 rq_attach_root(rq, rd); 5876 tmp = rq->sd; 5877 rcu_assign_pointer(rq->sd, sd); 5878 destroy_sched_domains(tmp, cpu); 5879 5880 update_top_cache_domain(cpu); 5881 } 5882 5883 /* cpus with isolated domains */ 5884 static cpumask_var_t cpu_isolated_map; 5885 5886 /* Setup the mask of cpus configured for isolated domains */ 5887 static int __init isolated_cpu_setup(char *str) 5888 { 5889 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5890 cpulist_parse(str, cpu_isolated_map); 5891 return 1; 5892 } 5893 5894 __setup("isolcpus=", isolated_cpu_setup); 5895 5896 struct s_data { 5897 struct sched_domain ** __percpu sd; 5898 struct root_domain *rd; 5899 }; 5900 5901 enum s_alloc { 5902 sa_rootdomain, 5903 sa_sd, 5904 sa_sd_storage, 5905 sa_none, 5906 }; 5907 5908 /* 5909 * Build an iteration mask that can exclude certain CPUs from the upwards 5910 * domain traversal. 5911 * 5912 * Asymmetric node setups can result in situations where the domain tree is of 5913 * unequal depth, make sure to skip domains that already cover the entire 5914 * range. 5915 * 5916 * In that case build_sched_domains() will have terminated the iteration early 5917 * and our sibling sd spans will be empty. Domains should always include the 5918 * cpu they're built on, so check that. 5919 * 5920 */ 5921 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5922 { 5923 const struct cpumask *span = sched_domain_span(sd); 5924 struct sd_data *sdd = sd->private; 5925 struct sched_domain *sibling; 5926 int i; 5927 5928 for_each_cpu(i, span) { 5929 sibling = *per_cpu_ptr(sdd->sd, i); 5930 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5931 continue; 5932 5933 cpumask_set_cpu(i, sched_group_mask(sg)); 5934 } 5935 } 5936 5937 /* 5938 * Return the canonical balance cpu for this group, this is the first cpu 5939 * of this group that's also in the iteration mask. 5940 */ 5941 int group_balance_cpu(struct sched_group *sg) 5942 { 5943 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5944 } 5945 5946 static int 5947 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5948 { 5949 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5950 const struct cpumask *span = sched_domain_span(sd); 5951 struct cpumask *covered = sched_domains_tmpmask; 5952 struct sd_data *sdd = sd->private; 5953 struct sched_domain *sibling; 5954 int i; 5955 5956 cpumask_clear(covered); 5957 5958 for_each_cpu(i, span) { 5959 struct cpumask *sg_span; 5960 5961 if (cpumask_test_cpu(i, covered)) 5962 continue; 5963 5964 sibling = *per_cpu_ptr(sdd->sd, i); 5965 5966 /* See the comment near build_group_mask(). */ 5967 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5968 continue; 5969 5970 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5971 GFP_KERNEL, cpu_to_node(cpu)); 5972 5973 if (!sg) 5974 goto fail; 5975 5976 sg_span = sched_group_cpus(sg); 5977 if (sibling->child) 5978 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 5979 else 5980 cpumask_set_cpu(i, sg_span); 5981 5982 cpumask_or(covered, covered, sg_span); 5983 5984 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 5985 if (atomic_inc_return(&sg->sgc->ref) == 1) 5986 build_group_mask(sd, sg); 5987 5988 /* 5989 * Initialize sgc->capacity such that even if we mess up the 5990 * domains and no possible iteration will get us here, we won't 5991 * die on a /0 trap. 5992 */ 5993 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 5994 sg->sgc->capacity_orig = sg->sgc->capacity; 5995 5996 /* 5997 * Make sure the first group of this domain contains the 5998 * canonical balance cpu. Otherwise the sched_domain iteration 5999 * breaks. See update_sg_lb_stats(). 6000 */ 6001 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6002 group_balance_cpu(sg) == cpu) 6003 groups = sg; 6004 6005 if (!first) 6006 first = sg; 6007 if (last) 6008 last->next = sg; 6009 last = sg; 6010 last->next = first; 6011 } 6012 sd->groups = groups; 6013 6014 return 0; 6015 6016 fail: 6017 free_sched_groups(first, 0); 6018 6019 return -ENOMEM; 6020 } 6021 6022 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6023 { 6024 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6025 struct sched_domain *child = sd->child; 6026 6027 if (child) 6028 cpu = cpumask_first(sched_domain_span(child)); 6029 6030 if (sg) { 6031 *sg = *per_cpu_ptr(sdd->sg, cpu); 6032 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6033 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 6034 } 6035 6036 return cpu; 6037 } 6038 6039 /* 6040 * build_sched_groups will build a circular linked list of the groups 6041 * covered by the given span, and will set each group's ->cpumask correctly, 6042 * and ->cpu_capacity to 0. 6043 * 6044 * Assumes the sched_domain tree is fully constructed 6045 */ 6046 static int 6047 build_sched_groups(struct sched_domain *sd, int cpu) 6048 { 6049 struct sched_group *first = NULL, *last = NULL; 6050 struct sd_data *sdd = sd->private; 6051 const struct cpumask *span = sched_domain_span(sd); 6052 struct cpumask *covered; 6053 int i; 6054 6055 get_group(cpu, sdd, &sd->groups); 6056 atomic_inc(&sd->groups->ref); 6057 6058 if (cpu != cpumask_first(span)) 6059 return 0; 6060 6061 lockdep_assert_held(&sched_domains_mutex); 6062 covered = sched_domains_tmpmask; 6063 6064 cpumask_clear(covered); 6065 6066 for_each_cpu(i, span) { 6067 struct sched_group *sg; 6068 int group, j; 6069 6070 if (cpumask_test_cpu(i, covered)) 6071 continue; 6072 6073 group = get_group(i, sdd, &sg); 6074 cpumask_setall(sched_group_mask(sg)); 6075 6076 for_each_cpu(j, span) { 6077 if (get_group(j, sdd, NULL) != group) 6078 continue; 6079 6080 cpumask_set_cpu(j, covered); 6081 cpumask_set_cpu(j, sched_group_cpus(sg)); 6082 } 6083 6084 if (!first) 6085 first = sg; 6086 if (last) 6087 last->next = sg; 6088 last = sg; 6089 } 6090 last->next = first; 6091 6092 return 0; 6093 } 6094 6095 /* 6096 * Initialize sched groups cpu_capacity. 6097 * 6098 * cpu_capacity indicates the capacity of sched group, which is used while 6099 * distributing the load between different sched groups in a sched domain. 6100 * Typically cpu_capacity for all the groups in a sched domain will be same 6101 * unless there are asymmetries in the topology. If there are asymmetries, 6102 * group having more cpu_capacity will pickup more load compared to the 6103 * group having less cpu_capacity. 6104 */ 6105 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6106 { 6107 struct sched_group *sg = sd->groups; 6108 6109 WARN_ON(!sg); 6110 6111 do { 6112 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6113 sg = sg->next; 6114 } while (sg != sd->groups); 6115 6116 if (cpu != group_balance_cpu(sg)) 6117 return; 6118 6119 update_group_capacity(sd, cpu); 6120 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6121 } 6122 6123 /* 6124 * Initializers for schedule domains 6125 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6126 */ 6127 6128 static int default_relax_domain_level = -1; 6129 int sched_domain_level_max; 6130 6131 static int __init setup_relax_domain_level(char *str) 6132 { 6133 if (kstrtoint(str, 0, &default_relax_domain_level)) 6134 pr_warn("Unable to set relax_domain_level\n"); 6135 6136 return 1; 6137 } 6138 __setup("relax_domain_level=", setup_relax_domain_level); 6139 6140 static void set_domain_attribute(struct sched_domain *sd, 6141 struct sched_domain_attr *attr) 6142 { 6143 int request; 6144 6145 if (!attr || attr->relax_domain_level < 0) { 6146 if (default_relax_domain_level < 0) 6147 return; 6148 else 6149 request = default_relax_domain_level; 6150 } else 6151 request = attr->relax_domain_level; 6152 if (request < sd->level) { 6153 /* turn off idle balance on this domain */ 6154 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6155 } else { 6156 /* turn on idle balance on this domain */ 6157 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6158 } 6159 } 6160 6161 static void __sdt_free(const struct cpumask *cpu_map); 6162 static int __sdt_alloc(const struct cpumask *cpu_map); 6163 6164 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6165 const struct cpumask *cpu_map) 6166 { 6167 switch (what) { 6168 case sa_rootdomain: 6169 if (!atomic_read(&d->rd->refcount)) 6170 free_rootdomain(&d->rd->rcu); /* fall through */ 6171 case sa_sd: 6172 free_percpu(d->sd); /* fall through */ 6173 case sa_sd_storage: 6174 __sdt_free(cpu_map); /* fall through */ 6175 case sa_none: 6176 break; 6177 } 6178 } 6179 6180 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6181 const struct cpumask *cpu_map) 6182 { 6183 memset(d, 0, sizeof(*d)); 6184 6185 if (__sdt_alloc(cpu_map)) 6186 return sa_sd_storage; 6187 d->sd = alloc_percpu(struct sched_domain *); 6188 if (!d->sd) 6189 return sa_sd_storage; 6190 d->rd = alloc_rootdomain(); 6191 if (!d->rd) 6192 return sa_sd; 6193 return sa_rootdomain; 6194 } 6195 6196 /* 6197 * NULL the sd_data elements we've used to build the sched_domain and 6198 * sched_group structure so that the subsequent __free_domain_allocs() 6199 * will not free the data we're using. 6200 */ 6201 static void claim_allocations(int cpu, struct sched_domain *sd) 6202 { 6203 struct sd_data *sdd = sd->private; 6204 6205 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6206 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6207 6208 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6209 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6210 6211 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6212 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6213 } 6214 6215 #ifdef CONFIG_NUMA 6216 static int sched_domains_numa_levels; 6217 enum numa_topology_type sched_numa_topology_type; 6218 static int *sched_domains_numa_distance; 6219 int sched_max_numa_distance; 6220 static struct cpumask ***sched_domains_numa_masks; 6221 static int sched_domains_curr_level; 6222 #endif 6223 6224 /* 6225 * SD_flags allowed in topology descriptions. 6226 * 6227 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6228 * SD_SHARE_PKG_RESOURCES - describes shared caches 6229 * SD_NUMA - describes NUMA topologies 6230 * SD_SHARE_POWERDOMAIN - describes shared power domain 6231 * 6232 * Odd one out: 6233 * SD_ASYM_PACKING - describes SMT quirks 6234 */ 6235 #define TOPOLOGY_SD_FLAGS \ 6236 (SD_SHARE_CPUCAPACITY | \ 6237 SD_SHARE_PKG_RESOURCES | \ 6238 SD_NUMA | \ 6239 SD_ASYM_PACKING | \ 6240 SD_SHARE_POWERDOMAIN) 6241 6242 static struct sched_domain * 6243 sd_init(struct sched_domain_topology_level *tl, int cpu) 6244 { 6245 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6246 int sd_weight, sd_flags = 0; 6247 6248 #ifdef CONFIG_NUMA 6249 /* 6250 * Ugly hack to pass state to sd_numa_mask()... 6251 */ 6252 sched_domains_curr_level = tl->numa_level; 6253 #endif 6254 6255 sd_weight = cpumask_weight(tl->mask(cpu)); 6256 6257 if (tl->sd_flags) 6258 sd_flags = (*tl->sd_flags)(); 6259 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6260 "wrong sd_flags in topology description\n")) 6261 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6262 6263 *sd = (struct sched_domain){ 6264 .min_interval = sd_weight, 6265 .max_interval = 2*sd_weight, 6266 .busy_factor = 32, 6267 .imbalance_pct = 125, 6268 6269 .cache_nice_tries = 0, 6270 .busy_idx = 0, 6271 .idle_idx = 0, 6272 .newidle_idx = 0, 6273 .wake_idx = 0, 6274 .forkexec_idx = 0, 6275 6276 .flags = 1*SD_LOAD_BALANCE 6277 | 1*SD_BALANCE_NEWIDLE 6278 | 1*SD_BALANCE_EXEC 6279 | 1*SD_BALANCE_FORK 6280 | 0*SD_BALANCE_WAKE 6281 | 1*SD_WAKE_AFFINE 6282 | 0*SD_SHARE_CPUCAPACITY 6283 | 0*SD_SHARE_PKG_RESOURCES 6284 | 0*SD_SERIALIZE 6285 | 0*SD_PREFER_SIBLING 6286 | 0*SD_NUMA 6287 | sd_flags 6288 , 6289 6290 .last_balance = jiffies, 6291 .balance_interval = sd_weight, 6292 .smt_gain = 0, 6293 .max_newidle_lb_cost = 0, 6294 .next_decay_max_lb_cost = jiffies, 6295 #ifdef CONFIG_SCHED_DEBUG 6296 .name = tl->name, 6297 #endif 6298 }; 6299 6300 /* 6301 * Convert topological properties into behaviour. 6302 */ 6303 6304 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6305 sd->imbalance_pct = 110; 6306 sd->smt_gain = 1178; /* ~15% */ 6307 6308 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6309 sd->imbalance_pct = 117; 6310 sd->cache_nice_tries = 1; 6311 sd->busy_idx = 2; 6312 6313 #ifdef CONFIG_NUMA 6314 } else if (sd->flags & SD_NUMA) { 6315 sd->cache_nice_tries = 2; 6316 sd->busy_idx = 3; 6317 sd->idle_idx = 2; 6318 6319 sd->flags |= SD_SERIALIZE; 6320 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6321 sd->flags &= ~(SD_BALANCE_EXEC | 6322 SD_BALANCE_FORK | 6323 SD_WAKE_AFFINE); 6324 } 6325 6326 #endif 6327 } else { 6328 sd->flags |= SD_PREFER_SIBLING; 6329 sd->cache_nice_tries = 1; 6330 sd->busy_idx = 2; 6331 sd->idle_idx = 1; 6332 } 6333 6334 sd->private = &tl->data; 6335 6336 return sd; 6337 } 6338 6339 /* 6340 * Topology list, bottom-up. 6341 */ 6342 static struct sched_domain_topology_level default_topology[] = { 6343 #ifdef CONFIG_SCHED_SMT 6344 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6345 #endif 6346 #ifdef CONFIG_SCHED_MC 6347 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6348 #endif 6349 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6350 { NULL, }, 6351 }; 6352 6353 struct sched_domain_topology_level *sched_domain_topology = default_topology; 6354 6355 #define for_each_sd_topology(tl) \ 6356 for (tl = sched_domain_topology; tl->mask; tl++) 6357 6358 void set_sched_topology(struct sched_domain_topology_level *tl) 6359 { 6360 sched_domain_topology = tl; 6361 } 6362 6363 #ifdef CONFIG_NUMA 6364 6365 static const struct cpumask *sd_numa_mask(int cpu) 6366 { 6367 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6368 } 6369 6370 static void sched_numa_warn(const char *str) 6371 { 6372 static int done = false; 6373 int i,j; 6374 6375 if (done) 6376 return; 6377 6378 done = true; 6379 6380 printk(KERN_WARNING "ERROR: %s\n\n", str); 6381 6382 for (i = 0; i < nr_node_ids; i++) { 6383 printk(KERN_WARNING " "); 6384 for (j = 0; j < nr_node_ids; j++) 6385 printk(KERN_CONT "%02d ", node_distance(i,j)); 6386 printk(KERN_CONT "\n"); 6387 } 6388 printk(KERN_WARNING "\n"); 6389 } 6390 6391 bool find_numa_distance(int distance) 6392 { 6393 int i; 6394 6395 if (distance == node_distance(0, 0)) 6396 return true; 6397 6398 for (i = 0; i < sched_domains_numa_levels; i++) { 6399 if (sched_domains_numa_distance[i] == distance) 6400 return true; 6401 } 6402 6403 return false; 6404 } 6405 6406 /* 6407 * A system can have three types of NUMA topology: 6408 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6409 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6410 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6411 * 6412 * The difference between a glueless mesh topology and a backplane 6413 * topology lies in whether communication between not directly 6414 * connected nodes goes through intermediary nodes (where programs 6415 * could run), or through backplane controllers. This affects 6416 * placement of programs. 6417 * 6418 * The type of topology can be discerned with the following tests: 6419 * - If the maximum distance between any nodes is 1 hop, the system 6420 * is directly connected. 6421 * - If for two nodes A and B, located N > 1 hops away from each other, 6422 * there is an intermediary node C, which is < N hops away from both 6423 * nodes A and B, the system is a glueless mesh. 6424 */ 6425 static void init_numa_topology_type(void) 6426 { 6427 int a, b, c, n; 6428 6429 n = sched_max_numa_distance; 6430 6431 if (n <= 1) 6432 sched_numa_topology_type = NUMA_DIRECT; 6433 6434 for_each_online_node(a) { 6435 for_each_online_node(b) { 6436 /* Find two nodes furthest removed from each other. */ 6437 if (node_distance(a, b) < n) 6438 continue; 6439 6440 /* Is there an intermediary node between a and b? */ 6441 for_each_online_node(c) { 6442 if (node_distance(a, c) < n && 6443 node_distance(b, c) < n) { 6444 sched_numa_topology_type = 6445 NUMA_GLUELESS_MESH; 6446 return; 6447 } 6448 } 6449 6450 sched_numa_topology_type = NUMA_BACKPLANE; 6451 return; 6452 } 6453 } 6454 } 6455 6456 static void sched_init_numa(void) 6457 { 6458 int next_distance, curr_distance = node_distance(0, 0); 6459 struct sched_domain_topology_level *tl; 6460 int level = 0; 6461 int i, j, k; 6462 6463 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6464 if (!sched_domains_numa_distance) 6465 return; 6466 6467 /* 6468 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6469 * unique distances in the node_distance() table. 6470 * 6471 * Assumes node_distance(0,j) includes all distances in 6472 * node_distance(i,j) in order to avoid cubic time. 6473 */ 6474 next_distance = curr_distance; 6475 for (i = 0; i < nr_node_ids; i++) { 6476 for (j = 0; j < nr_node_ids; j++) { 6477 for (k = 0; k < nr_node_ids; k++) { 6478 int distance = node_distance(i, k); 6479 6480 if (distance > curr_distance && 6481 (distance < next_distance || 6482 next_distance == curr_distance)) 6483 next_distance = distance; 6484 6485 /* 6486 * While not a strong assumption it would be nice to know 6487 * about cases where if node A is connected to B, B is not 6488 * equally connected to A. 6489 */ 6490 if (sched_debug() && node_distance(k, i) != distance) 6491 sched_numa_warn("Node-distance not symmetric"); 6492 6493 if (sched_debug() && i && !find_numa_distance(distance)) 6494 sched_numa_warn("Node-0 not representative"); 6495 } 6496 if (next_distance != curr_distance) { 6497 sched_domains_numa_distance[level++] = next_distance; 6498 sched_domains_numa_levels = level; 6499 curr_distance = next_distance; 6500 } else break; 6501 } 6502 6503 /* 6504 * In case of sched_debug() we verify the above assumption. 6505 */ 6506 if (!sched_debug()) 6507 break; 6508 } 6509 6510 if (!level) 6511 return; 6512 6513 /* 6514 * 'level' contains the number of unique distances, excluding the 6515 * identity distance node_distance(i,i). 6516 * 6517 * The sched_domains_numa_distance[] array includes the actual distance 6518 * numbers. 6519 */ 6520 6521 /* 6522 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6523 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6524 * the array will contain less then 'level' members. This could be 6525 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6526 * in other functions. 6527 * 6528 * We reset it to 'level' at the end of this function. 6529 */ 6530 sched_domains_numa_levels = 0; 6531 6532 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6533 if (!sched_domains_numa_masks) 6534 return; 6535 6536 /* 6537 * Now for each level, construct a mask per node which contains all 6538 * cpus of nodes that are that many hops away from us. 6539 */ 6540 for (i = 0; i < level; i++) { 6541 sched_domains_numa_masks[i] = 6542 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6543 if (!sched_domains_numa_masks[i]) 6544 return; 6545 6546 for (j = 0; j < nr_node_ids; j++) { 6547 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6548 if (!mask) 6549 return; 6550 6551 sched_domains_numa_masks[i][j] = mask; 6552 6553 for (k = 0; k < nr_node_ids; k++) { 6554 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6555 continue; 6556 6557 cpumask_or(mask, mask, cpumask_of_node(k)); 6558 } 6559 } 6560 } 6561 6562 /* Compute default topology size */ 6563 for (i = 0; sched_domain_topology[i].mask; i++); 6564 6565 tl = kzalloc((i + level + 1) * 6566 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6567 if (!tl) 6568 return; 6569 6570 /* 6571 * Copy the default topology bits.. 6572 */ 6573 for (i = 0; sched_domain_topology[i].mask; i++) 6574 tl[i] = sched_domain_topology[i]; 6575 6576 /* 6577 * .. and append 'j' levels of NUMA goodness. 6578 */ 6579 for (j = 0; j < level; i++, j++) { 6580 tl[i] = (struct sched_domain_topology_level){ 6581 .mask = sd_numa_mask, 6582 .sd_flags = cpu_numa_flags, 6583 .flags = SDTL_OVERLAP, 6584 .numa_level = j, 6585 SD_INIT_NAME(NUMA) 6586 }; 6587 } 6588 6589 sched_domain_topology = tl; 6590 6591 sched_domains_numa_levels = level; 6592 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6593 6594 init_numa_topology_type(); 6595 } 6596 6597 static void sched_domains_numa_masks_set(int cpu) 6598 { 6599 int i, j; 6600 int node = cpu_to_node(cpu); 6601 6602 for (i = 0; i < sched_domains_numa_levels; i++) { 6603 for (j = 0; j < nr_node_ids; j++) { 6604 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6605 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6606 } 6607 } 6608 } 6609 6610 static void sched_domains_numa_masks_clear(int cpu) 6611 { 6612 int i, j; 6613 for (i = 0; i < sched_domains_numa_levels; i++) { 6614 for (j = 0; j < nr_node_ids; j++) 6615 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6616 } 6617 } 6618 6619 /* 6620 * Update sched_domains_numa_masks[level][node] array when new cpus 6621 * are onlined. 6622 */ 6623 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6624 unsigned long action, 6625 void *hcpu) 6626 { 6627 int cpu = (long)hcpu; 6628 6629 switch (action & ~CPU_TASKS_FROZEN) { 6630 case CPU_ONLINE: 6631 sched_domains_numa_masks_set(cpu); 6632 break; 6633 6634 case CPU_DEAD: 6635 sched_domains_numa_masks_clear(cpu); 6636 break; 6637 6638 default: 6639 return NOTIFY_DONE; 6640 } 6641 6642 return NOTIFY_OK; 6643 } 6644 #else 6645 static inline void sched_init_numa(void) 6646 { 6647 } 6648 6649 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6650 unsigned long action, 6651 void *hcpu) 6652 { 6653 return 0; 6654 } 6655 #endif /* CONFIG_NUMA */ 6656 6657 static int __sdt_alloc(const struct cpumask *cpu_map) 6658 { 6659 struct sched_domain_topology_level *tl; 6660 int j; 6661 6662 for_each_sd_topology(tl) { 6663 struct sd_data *sdd = &tl->data; 6664 6665 sdd->sd = alloc_percpu(struct sched_domain *); 6666 if (!sdd->sd) 6667 return -ENOMEM; 6668 6669 sdd->sg = alloc_percpu(struct sched_group *); 6670 if (!sdd->sg) 6671 return -ENOMEM; 6672 6673 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6674 if (!sdd->sgc) 6675 return -ENOMEM; 6676 6677 for_each_cpu(j, cpu_map) { 6678 struct sched_domain *sd; 6679 struct sched_group *sg; 6680 struct sched_group_capacity *sgc; 6681 6682 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6683 GFP_KERNEL, cpu_to_node(j)); 6684 if (!sd) 6685 return -ENOMEM; 6686 6687 *per_cpu_ptr(sdd->sd, j) = sd; 6688 6689 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6690 GFP_KERNEL, cpu_to_node(j)); 6691 if (!sg) 6692 return -ENOMEM; 6693 6694 sg->next = sg; 6695 6696 *per_cpu_ptr(sdd->sg, j) = sg; 6697 6698 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6699 GFP_KERNEL, cpu_to_node(j)); 6700 if (!sgc) 6701 return -ENOMEM; 6702 6703 *per_cpu_ptr(sdd->sgc, j) = sgc; 6704 } 6705 } 6706 6707 return 0; 6708 } 6709 6710 static void __sdt_free(const struct cpumask *cpu_map) 6711 { 6712 struct sched_domain_topology_level *tl; 6713 int j; 6714 6715 for_each_sd_topology(tl) { 6716 struct sd_data *sdd = &tl->data; 6717 6718 for_each_cpu(j, cpu_map) { 6719 struct sched_domain *sd; 6720 6721 if (sdd->sd) { 6722 sd = *per_cpu_ptr(sdd->sd, j); 6723 if (sd && (sd->flags & SD_OVERLAP)) 6724 free_sched_groups(sd->groups, 0); 6725 kfree(*per_cpu_ptr(sdd->sd, j)); 6726 } 6727 6728 if (sdd->sg) 6729 kfree(*per_cpu_ptr(sdd->sg, j)); 6730 if (sdd->sgc) 6731 kfree(*per_cpu_ptr(sdd->sgc, j)); 6732 } 6733 free_percpu(sdd->sd); 6734 sdd->sd = NULL; 6735 free_percpu(sdd->sg); 6736 sdd->sg = NULL; 6737 free_percpu(sdd->sgc); 6738 sdd->sgc = NULL; 6739 } 6740 } 6741 6742 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6743 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6744 struct sched_domain *child, int cpu) 6745 { 6746 struct sched_domain *sd = sd_init(tl, cpu); 6747 if (!sd) 6748 return child; 6749 6750 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6751 if (child) { 6752 sd->level = child->level + 1; 6753 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6754 child->parent = sd; 6755 sd->child = child; 6756 6757 if (!cpumask_subset(sched_domain_span(child), 6758 sched_domain_span(sd))) { 6759 pr_err("BUG: arch topology borken\n"); 6760 #ifdef CONFIG_SCHED_DEBUG 6761 pr_err(" the %s domain not a subset of the %s domain\n", 6762 child->name, sd->name); 6763 #endif 6764 /* Fixup, ensure @sd has at least @child cpus. */ 6765 cpumask_or(sched_domain_span(sd), 6766 sched_domain_span(sd), 6767 sched_domain_span(child)); 6768 } 6769 6770 } 6771 set_domain_attribute(sd, attr); 6772 6773 return sd; 6774 } 6775 6776 /* 6777 * Build sched domains for a given set of cpus and attach the sched domains 6778 * to the individual cpus 6779 */ 6780 static int build_sched_domains(const struct cpumask *cpu_map, 6781 struct sched_domain_attr *attr) 6782 { 6783 enum s_alloc alloc_state; 6784 struct sched_domain *sd; 6785 struct s_data d; 6786 int i, ret = -ENOMEM; 6787 6788 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6789 if (alloc_state != sa_rootdomain) 6790 goto error; 6791 6792 /* Set up domains for cpus specified by the cpu_map. */ 6793 for_each_cpu(i, cpu_map) { 6794 struct sched_domain_topology_level *tl; 6795 6796 sd = NULL; 6797 for_each_sd_topology(tl) { 6798 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6799 if (tl == sched_domain_topology) 6800 *per_cpu_ptr(d.sd, i) = sd; 6801 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6802 sd->flags |= SD_OVERLAP; 6803 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6804 break; 6805 } 6806 } 6807 6808 /* Build the groups for the domains */ 6809 for_each_cpu(i, cpu_map) { 6810 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6811 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6812 if (sd->flags & SD_OVERLAP) { 6813 if (build_overlap_sched_groups(sd, i)) 6814 goto error; 6815 } else { 6816 if (build_sched_groups(sd, i)) 6817 goto error; 6818 } 6819 } 6820 } 6821 6822 /* Calculate CPU capacity for physical packages and nodes */ 6823 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6824 if (!cpumask_test_cpu(i, cpu_map)) 6825 continue; 6826 6827 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6828 claim_allocations(i, sd); 6829 init_sched_groups_capacity(i, sd); 6830 } 6831 } 6832 6833 /* Attach the domains */ 6834 rcu_read_lock(); 6835 for_each_cpu(i, cpu_map) { 6836 sd = *per_cpu_ptr(d.sd, i); 6837 cpu_attach_domain(sd, d.rd, i); 6838 } 6839 rcu_read_unlock(); 6840 6841 ret = 0; 6842 error: 6843 __free_domain_allocs(&d, alloc_state, cpu_map); 6844 return ret; 6845 } 6846 6847 static cpumask_var_t *doms_cur; /* current sched domains */ 6848 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6849 static struct sched_domain_attr *dattr_cur; 6850 /* attribues of custom domains in 'doms_cur' */ 6851 6852 /* 6853 * Special case: If a kmalloc of a doms_cur partition (array of 6854 * cpumask) fails, then fallback to a single sched domain, 6855 * as determined by the single cpumask fallback_doms. 6856 */ 6857 static cpumask_var_t fallback_doms; 6858 6859 /* 6860 * arch_update_cpu_topology lets virtualized architectures update the 6861 * cpu core maps. It is supposed to return 1 if the topology changed 6862 * or 0 if it stayed the same. 6863 */ 6864 int __weak arch_update_cpu_topology(void) 6865 { 6866 return 0; 6867 } 6868 6869 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6870 { 6871 int i; 6872 cpumask_var_t *doms; 6873 6874 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6875 if (!doms) 6876 return NULL; 6877 for (i = 0; i < ndoms; i++) { 6878 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6879 free_sched_domains(doms, i); 6880 return NULL; 6881 } 6882 } 6883 return doms; 6884 } 6885 6886 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6887 { 6888 unsigned int i; 6889 for (i = 0; i < ndoms; i++) 6890 free_cpumask_var(doms[i]); 6891 kfree(doms); 6892 } 6893 6894 /* 6895 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6896 * For now this just excludes isolated cpus, but could be used to 6897 * exclude other special cases in the future. 6898 */ 6899 static int init_sched_domains(const struct cpumask *cpu_map) 6900 { 6901 int err; 6902 6903 arch_update_cpu_topology(); 6904 ndoms_cur = 1; 6905 doms_cur = alloc_sched_domains(ndoms_cur); 6906 if (!doms_cur) 6907 doms_cur = &fallback_doms; 6908 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6909 err = build_sched_domains(doms_cur[0], NULL); 6910 register_sched_domain_sysctl(); 6911 6912 return err; 6913 } 6914 6915 /* 6916 * Detach sched domains from a group of cpus specified in cpu_map 6917 * These cpus will now be attached to the NULL domain 6918 */ 6919 static void detach_destroy_domains(const struct cpumask *cpu_map) 6920 { 6921 int i; 6922 6923 rcu_read_lock(); 6924 for_each_cpu(i, cpu_map) 6925 cpu_attach_domain(NULL, &def_root_domain, i); 6926 rcu_read_unlock(); 6927 } 6928 6929 /* handle null as "default" */ 6930 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6931 struct sched_domain_attr *new, int idx_new) 6932 { 6933 struct sched_domain_attr tmp; 6934 6935 /* fast path */ 6936 if (!new && !cur) 6937 return 1; 6938 6939 tmp = SD_ATTR_INIT; 6940 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6941 new ? (new + idx_new) : &tmp, 6942 sizeof(struct sched_domain_attr)); 6943 } 6944 6945 /* 6946 * Partition sched domains as specified by the 'ndoms_new' 6947 * cpumasks in the array doms_new[] of cpumasks. This compares 6948 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6949 * It destroys each deleted domain and builds each new domain. 6950 * 6951 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6952 * The masks don't intersect (don't overlap.) We should setup one 6953 * sched domain for each mask. CPUs not in any of the cpumasks will 6954 * not be load balanced. If the same cpumask appears both in the 6955 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6956 * it as it is. 6957 * 6958 * The passed in 'doms_new' should be allocated using 6959 * alloc_sched_domains. This routine takes ownership of it and will 6960 * free_sched_domains it when done with it. If the caller failed the 6961 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6962 * and partition_sched_domains() will fallback to the single partition 6963 * 'fallback_doms', it also forces the domains to be rebuilt. 6964 * 6965 * If doms_new == NULL it will be replaced with cpu_online_mask. 6966 * ndoms_new == 0 is a special case for destroying existing domains, 6967 * and it will not create the default domain. 6968 * 6969 * Call with hotplug lock held 6970 */ 6971 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6972 struct sched_domain_attr *dattr_new) 6973 { 6974 int i, j, n; 6975 int new_topology; 6976 6977 mutex_lock(&sched_domains_mutex); 6978 6979 /* always unregister in case we don't destroy any domains */ 6980 unregister_sched_domain_sysctl(); 6981 6982 /* Let architecture update cpu core mappings. */ 6983 new_topology = arch_update_cpu_topology(); 6984 6985 n = doms_new ? ndoms_new : 0; 6986 6987 /* Destroy deleted domains */ 6988 for (i = 0; i < ndoms_cur; i++) { 6989 for (j = 0; j < n && !new_topology; j++) { 6990 if (cpumask_equal(doms_cur[i], doms_new[j]) 6991 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6992 goto match1; 6993 } 6994 /* no match - a current sched domain not in new doms_new[] */ 6995 detach_destroy_domains(doms_cur[i]); 6996 match1: 6997 ; 6998 } 6999 7000 n = ndoms_cur; 7001 if (doms_new == NULL) { 7002 n = 0; 7003 doms_new = &fallback_doms; 7004 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7005 WARN_ON_ONCE(dattr_new); 7006 } 7007 7008 /* Build new domains */ 7009 for (i = 0; i < ndoms_new; i++) { 7010 for (j = 0; j < n && !new_topology; j++) { 7011 if (cpumask_equal(doms_new[i], doms_cur[j]) 7012 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7013 goto match2; 7014 } 7015 /* no match - add a new doms_new */ 7016 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7017 match2: 7018 ; 7019 } 7020 7021 /* Remember the new sched domains */ 7022 if (doms_cur != &fallback_doms) 7023 free_sched_domains(doms_cur, ndoms_cur); 7024 kfree(dattr_cur); /* kfree(NULL) is safe */ 7025 doms_cur = doms_new; 7026 dattr_cur = dattr_new; 7027 ndoms_cur = ndoms_new; 7028 7029 register_sched_domain_sysctl(); 7030 7031 mutex_unlock(&sched_domains_mutex); 7032 } 7033 7034 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7035 7036 /* 7037 * Update cpusets according to cpu_active mask. If cpusets are 7038 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7039 * around partition_sched_domains(). 7040 * 7041 * If we come here as part of a suspend/resume, don't touch cpusets because we 7042 * want to restore it back to its original state upon resume anyway. 7043 */ 7044 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 7045 void *hcpu) 7046 { 7047 switch (action) { 7048 case CPU_ONLINE_FROZEN: 7049 case CPU_DOWN_FAILED_FROZEN: 7050 7051 /* 7052 * num_cpus_frozen tracks how many CPUs are involved in suspend 7053 * resume sequence. As long as this is not the last online 7054 * operation in the resume sequence, just build a single sched 7055 * domain, ignoring cpusets. 7056 */ 7057 num_cpus_frozen--; 7058 if (likely(num_cpus_frozen)) { 7059 partition_sched_domains(1, NULL, NULL); 7060 break; 7061 } 7062 7063 /* 7064 * This is the last CPU online operation. So fall through and 7065 * restore the original sched domains by considering the 7066 * cpuset configurations. 7067 */ 7068 7069 case CPU_ONLINE: 7070 case CPU_DOWN_FAILED: 7071 cpuset_update_active_cpus(true); 7072 break; 7073 default: 7074 return NOTIFY_DONE; 7075 } 7076 return NOTIFY_OK; 7077 } 7078 7079 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 7080 void *hcpu) 7081 { 7082 switch (action) { 7083 case CPU_DOWN_PREPARE: 7084 cpuset_update_active_cpus(false); 7085 break; 7086 case CPU_DOWN_PREPARE_FROZEN: 7087 num_cpus_frozen++; 7088 partition_sched_domains(1, NULL, NULL); 7089 break; 7090 default: 7091 return NOTIFY_DONE; 7092 } 7093 return NOTIFY_OK; 7094 } 7095 7096 void __init sched_init_smp(void) 7097 { 7098 cpumask_var_t non_isolated_cpus; 7099 7100 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7101 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7102 7103 sched_init_numa(); 7104 7105 /* 7106 * There's no userspace yet to cause hotplug operations; hence all the 7107 * cpu masks are stable and all blatant races in the below code cannot 7108 * happen. 7109 */ 7110 mutex_lock(&sched_domains_mutex); 7111 init_sched_domains(cpu_active_mask); 7112 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7113 if (cpumask_empty(non_isolated_cpus)) 7114 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7115 mutex_unlock(&sched_domains_mutex); 7116 7117 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 7118 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7119 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7120 7121 init_hrtick(); 7122 7123 /* Move init over to a non-isolated CPU */ 7124 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7125 BUG(); 7126 sched_init_granularity(); 7127 free_cpumask_var(non_isolated_cpus); 7128 7129 init_sched_rt_class(); 7130 init_sched_dl_class(); 7131 } 7132 #else 7133 void __init sched_init_smp(void) 7134 { 7135 sched_init_granularity(); 7136 } 7137 #endif /* CONFIG_SMP */ 7138 7139 const_debug unsigned int sysctl_timer_migration = 1; 7140 7141 int in_sched_functions(unsigned long addr) 7142 { 7143 return in_lock_functions(addr) || 7144 (addr >= (unsigned long)__sched_text_start 7145 && addr < (unsigned long)__sched_text_end); 7146 } 7147 7148 #ifdef CONFIG_CGROUP_SCHED 7149 /* 7150 * Default task group. 7151 * Every task in system belongs to this group at bootup. 7152 */ 7153 struct task_group root_task_group; 7154 LIST_HEAD(task_groups); 7155 #endif 7156 7157 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7158 7159 void __init sched_init(void) 7160 { 7161 int i, j; 7162 unsigned long alloc_size = 0, ptr; 7163 7164 #ifdef CONFIG_FAIR_GROUP_SCHED 7165 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7166 #endif 7167 #ifdef CONFIG_RT_GROUP_SCHED 7168 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7169 #endif 7170 if (alloc_size) { 7171 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7172 7173 #ifdef CONFIG_FAIR_GROUP_SCHED 7174 root_task_group.se = (struct sched_entity **)ptr; 7175 ptr += nr_cpu_ids * sizeof(void **); 7176 7177 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7178 ptr += nr_cpu_ids * sizeof(void **); 7179 7180 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7181 #ifdef CONFIG_RT_GROUP_SCHED 7182 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7183 ptr += nr_cpu_ids * sizeof(void **); 7184 7185 root_task_group.rt_rq = (struct rt_rq **)ptr; 7186 ptr += nr_cpu_ids * sizeof(void **); 7187 7188 #endif /* CONFIG_RT_GROUP_SCHED */ 7189 } 7190 #ifdef CONFIG_CPUMASK_OFFSTACK 7191 for_each_possible_cpu(i) { 7192 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7193 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7194 } 7195 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7196 7197 init_rt_bandwidth(&def_rt_bandwidth, 7198 global_rt_period(), global_rt_runtime()); 7199 init_dl_bandwidth(&def_dl_bandwidth, 7200 global_rt_period(), global_rt_runtime()); 7201 7202 #ifdef CONFIG_SMP 7203 init_defrootdomain(); 7204 #endif 7205 7206 #ifdef CONFIG_RT_GROUP_SCHED 7207 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7208 global_rt_period(), global_rt_runtime()); 7209 #endif /* CONFIG_RT_GROUP_SCHED */ 7210 7211 #ifdef CONFIG_CGROUP_SCHED 7212 list_add(&root_task_group.list, &task_groups); 7213 INIT_LIST_HEAD(&root_task_group.children); 7214 INIT_LIST_HEAD(&root_task_group.siblings); 7215 autogroup_init(&init_task); 7216 7217 #endif /* CONFIG_CGROUP_SCHED */ 7218 7219 for_each_possible_cpu(i) { 7220 struct rq *rq; 7221 7222 rq = cpu_rq(i); 7223 raw_spin_lock_init(&rq->lock); 7224 rq->nr_running = 0; 7225 rq->calc_load_active = 0; 7226 rq->calc_load_update = jiffies + LOAD_FREQ; 7227 init_cfs_rq(&rq->cfs); 7228 init_rt_rq(&rq->rt, rq); 7229 init_dl_rq(&rq->dl, rq); 7230 #ifdef CONFIG_FAIR_GROUP_SCHED 7231 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7232 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7233 /* 7234 * How much cpu bandwidth does root_task_group get? 7235 * 7236 * In case of task-groups formed thr' the cgroup filesystem, it 7237 * gets 100% of the cpu resources in the system. This overall 7238 * system cpu resource is divided among the tasks of 7239 * root_task_group and its child task-groups in a fair manner, 7240 * based on each entity's (task or task-group's) weight 7241 * (se->load.weight). 7242 * 7243 * In other words, if root_task_group has 10 tasks of weight 7244 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7245 * then A0's share of the cpu resource is: 7246 * 7247 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7248 * 7249 * We achieve this by letting root_task_group's tasks sit 7250 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7251 */ 7252 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7253 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7254 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7255 7256 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7257 #ifdef CONFIG_RT_GROUP_SCHED 7258 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7259 #endif 7260 7261 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7262 rq->cpu_load[j] = 0; 7263 7264 rq->last_load_update_tick = jiffies; 7265 7266 #ifdef CONFIG_SMP 7267 rq->sd = NULL; 7268 rq->rd = NULL; 7269 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 7270 rq->post_schedule = 0; 7271 rq->active_balance = 0; 7272 rq->next_balance = jiffies; 7273 rq->push_cpu = 0; 7274 rq->cpu = i; 7275 rq->online = 0; 7276 rq->idle_stamp = 0; 7277 rq->avg_idle = 2*sysctl_sched_migration_cost; 7278 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7279 7280 INIT_LIST_HEAD(&rq->cfs_tasks); 7281 7282 rq_attach_root(rq, &def_root_domain); 7283 #ifdef CONFIG_NO_HZ_COMMON 7284 rq->nohz_flags = 0; 7285 #endif 7286 #ifdef CONFIG_NO_HZ_FULL 7287 rq->last_sched_tick = 0; 7288 #endif 7289 #endif 7290 init_rq_hrtick(rq); 7291 atomic_set(&rq->nr_iowait, 0); 7292 } 7293 7294 set_load_weight(&init_task); 7295 7296 #ifdef CONFIG_PREEMPT_NOTIFIERS 7297 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7298 #endif 7299 7300 /* 7301 * The boot idle thread does lazy MMU switching as well: 7302 */ 7303 atomic_inc(&init_mm.mm_count); 7304 enter_lazy_tlb(&init_mm, current); 7305 7306 /* 7307 * During early bootup we pretend to be a normal task: 7308 */ 7309 current->sched_class = &fair_sched_class; 7310 7311 /* 7312 * Make us the idle thread. Technically, schedule() should not be 7313 * called from this thread, however somewhere below it might be, 7314 * but because we are the idle thread, we just pick up running again 7315 * when this runqueue becomes "idle". 7316 */ 7317 init_idle(current, smp_processor_id()); 7318 7319 calc_load_update = jiffies + LOAD_FREQ; 7320 7321 #ifdef CONFIG_SMP 7322 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7323 /* May be allocated at isolcpus cmdline parse time */ 7324 if (cpu_isolated_map == NULL) 7325 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7326 idle_thread_set_boot_cpu(); 7327 set_cpu_rq_start_time(); 7328 #endif 7329 init_sched_fair_class(); 7330 7331 scheduler_running = 1; 7332 } 7333 7334 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7335 static inline int preempt_count_equals(int preempt_offset) 7336 { 7337 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7338 7339 return (nested == preempt_offset); 7340 } 7341 7342 void __might_sleep(const char *file, int line, int preempt_offset) 7343 { 7344 /* 7345 * Blocking primitives will set (and therefore destroy) current->state, 7346 * since we will exit with TASK_RUNNING make sure we enter with it, 7347 * otherwise we will destroy state. 7348 */ 7349 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7350 "do not call blocking ops when !TASK_RUNNING; " 7351 "state=%lx set at [<%p>] %pS\n", 7352 current->state, 7353 (void *)current->task_state_change, 7354 (void *)current->task_state_change); 7355 7356 ___might_sleep(file, line, preempt_offset); 7357 } 7358 EXPORT_SYMBOL(__might_sleep); 7359 7360 void ___might_sleep(const char *file, int line, int preempt_offset) 7361 { 7362 static unsigned long prev_jiffy; /* ratelimiting */ 7363 7364 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7365 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7366 !is_idle_task(current)) || 7367 system_state != SYSTEM_RUNNING || oops_in_progress) 7368 return; 7369 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7370 return; 7371 prev_jiffy = jiffies; 7372 7373 printk(KERN_ERR 7374 "BUG: sleeping function called from invalid context at %s:%d\n", 7375 file, line); 7376 printk(KERN_ERR 7377 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7378 in_atomic(), irqs_disabled(), 7379 current->pid, current->comm); 7380 7381 if (task_stack_end_corrupted(current)) 7382 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7383 7384 debug_show_held_locks(current); 7385 if (irqs_disabled()) 7386 print_irqtrace_events(current); 7387 #ifdef CONFIG_DEBUG_PREEMPT 7388 if (!preempt_count_equals(preempt_offset)) { 7389 pr_err("Preemption disabled at:"); 7390 print_ip_sym(current->preempt_disable_ip); 7391 pr_cont("\n"); 7392 } 7393 #endif 7394 dump_stack(); 7395 } 7396 EXPORT_SYMBOL(___might_sleep); 7397 #endif 7398 7399 #ifdef CONFIG_MAGIC_SYSRQ 7400 static void normalize_task(struct rq *rq, struct task_struct *p) 7401 { 7402 const struct sched_class *prev_class = p->sched_class; 7403 struct sched_attr attr = { 7404 .sched_policy = SCHED_NORMAL, 7405 }; 7406 int old_prio = p->prio; 7407 int queued; 7408 7409 queued = task_on_rq_queued(p); 7410 if (queued) 7411 dequeue_task(rq, p, 0); 7412 __setscheduler(rq, p, &attr); 7413 if (queued) { 7414 enqueue_task(rq, p, 0); 7415 resched_curr(rq); 7416 } 7417 7418 check_class_changed(rq, p, prev_class, old_prio); 7419 } 7420 7421 void normalize_rt_tasks(void) 7422 { 7423 struct task_struct *g, *p; 7424 unsigned long flags; 7425 struct rq *rq; 7426 7427 read_lock(&tasklist_lock); 7428 for_each_process_thread(g, p) { 7429 /* 7430 * Only normalize user tasks: 7431 */ 7432 if (p->flags & PF_KTHREAD) 7433 continue; 7434 7435 p->se.exec_start = 0; 7436 #ifdef CONFIG_SCHEDSTATS 7437 p->se.statistics.wait_start = 0; 7438 p->se.statistics.sleep_start = 0; 7439 p->se.statistics.block_start = 0; 7440 #endif 7441 7442 if (!dl_task(p) && !rt_task(p)) { 7443 /* 7444 * Renice negative nice level userspace 7445 * tasks back to 0: 7446 */ 7447 if (task_nice(p) < 0) 7448 set_user_nice(p, 0); 7449 continue; 7450 } 7451 7452 rq = task_rq_lock(p, &flags); 7453 normalize_task(rq, p); 7454 task_rq_unlock(rq, p, &flags); 7455 } 7456 read_unlock(&tasklist_lock); 7457 } 7458 7459 #endif /* CONFIG_MAGIC_SYSRQ */ 7460 7461 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7462 /* 7463 * These functions are only useful for the IA64 MCA handling, or kdb. 7464 * 7465 * They can only be called when the whole system has been 7466 * stopped - every CPU needs to be quiescent, and no scheduling 7467 * activity can take place. Using them for anything else would 7468 * be a serious bug, and as a result, they aren't even visible 7469 * under any other configuration. 7470 */ 7471 7472 /** 7473 * curr_task - return the current task for a given cpu. 7474 * @cpu: the processor in question. 7475 * 7476 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7477 * 7478 * Return: The current task for @cpu. 7479 */ 7480 struct task_struct *curr_task(int cpu) 7481 { 7482 return cpu_curr(cpu); 7483 } 7484 7485 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7486 7487 #ifdef CONFIG_IA64 7488 /** 7489 * set_curr_task - set the current task for a given cpu. 7490 * @cpu: the processor in question. 7491 * @p: the task pointer to set. 7492 * 7493 * Description: This function must only be used when non-maskable interrupts 7494 * are serviced on a separate stack. It allows the architecture to switch the 7495 * notion of the current task on a cpu in a non-blocking manner. This function 7496 * must be called with all CPU's synchronized, and interrupts disabled, the 7497 * and caller must save the original value of the current task (see 7498 * curr_task() above) and restore that value before reenabling interrupts and 7499 * re-starting the system. 7500 * 7501 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7502 */ 7503 void set_curr_task(int cpu, struct task_struct *p) 7504 { 7505 cpu_curr(cpu) = p; 7506 } 7507 7508 #endif 7509 7510 #ifdef CONFIG_CGROUP_SCHED 7511 /* task_group_lock serializes the addition/removal of task groups */ 7512 static DEFINE_SPINLOCK(task_group_lock); 7513 7514 static void free_sched_group(struct task_group *tg) 7515 { 7516 free_fair_sched_group(tg); 7517 free_rt_sched_group(tg); 7518 autogroup_free(tg); 7519 kfree(tg); 7520 } 7521 7522 /* allocate runqueue etc for a new task group */ 7523 struct task_group *sched_create_group(struct task_group *parent) 7524 { 7525 struct task_group *tg; 7526 7527 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7528 if (!tg) 7529 return ERR_PTR(-ENOMEM); 7530 7531 if (!alloc_fair_sched_group(tg, parent)) 7532 goto err; 7533 7534 if (!alloc_rt_sched_group(tg, parent)) 7535 goto err; 7536 7537 return tg; 7538 7539 err: 7540 free_sched_group(tg); 7541 return ERR_PTR(-ENOMEM); 7542 } 7543 7544 void sched_online_group(struct task_group *tg, struct task_group *parent) 7545 { 7546 unsigned long flags; 7547 7548 spin_lock_irqsave(&task_group_lock, flags); 7549 list_add_rcu(&tg->list, &task_groups); 7550 7551 WARN_ON(!parent); /* root should already exist */ 7552 7553 tg->parent = parent; 7554 INIT_LIST_HEAD(&tg->children); 7555 list_add_rcu(&tg->siblings, &parent->children); 7556 spin_unlock_irqrestore(&task_group_lock, flags); 7557 } 7558 7559 /* rcu callback to free various structures associated with a task group */ 7560 static void free_sched_group_rcu(struct rcu_head *rhp) 7561 { 7562 /* now it should be safe to free those cfs_rqs */ 7563 free_sched_group(container_of(rhp, struct task_group, rcu)); 7564 } 7565 7566 /* Destroy runqueue etc associated with a task group */ 7567 void sched_destroy_group(struct task_group *tg) 7568 { 7569 /* wait for possible concurrent references to cfs_rqs complete */ 7570 call_rcu(&tg->rcu, free_sched_group_rcu); 7571 } 7572 7573 void sched_offline_group(struct task_group *tg) 7574 { 7575 unsigned long flags; 7576 int i; 7577 7578 /* end participation in shares distribution */ 7579 for_each_possible_cpu(i) 7580 unregister_fair_sched_group(tg, i); 7581 7582 spin_lock_irqsave(&task_group_lock, flags); 7583 list_del_rcu(&tg->list); 7584 list_del_rcu(&tg->siblings); 7585 spin_unlock_irqrestore(&task_group_lock, flags); 7586 } 7587 7588 /* change task's runqueue when it moves between groups. 7589 * The caller of this function should have put the task in its new group 7590 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7591 * reflect its new group. 7592 */ 7593 void sched_move_task(struct task_struct *tsk) 7594 { 7595 struct task_group *tg; 7596 int queued, running; 7597 unsigned long flags; 7598 struct rq *rq; 7599 7600 rq = task_rq_lock(tsk, &flags); 7601 7602 running = task_current(rq, tsk); 7603 queued = task_on_rq_queued(tsk); 7604 7605 if (queued) 7606 dequeue_task(rq, tsk, 0); 7607 if (unlikely(running)) 7608 put_prev_task(rq, tsk); 7609 7610 /* 7611 * All callers are synchronized by task_rq_lock(); we do not use RCU 7612 * which is pointless here. Thus, we pass "true" to task_css_check() 7613 * to prevent lockdep warnings. 7614 */ 7615 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7616 struct task_group, css); 7617 tg = autogroup_task_group(tsk, tg); 7618 tsk->sched_task_group = tg; 7619 7620 #ifdef CONFIG_FAIR_GROUP_SCHED 7621 if (tsk->sched_class->task_move_group) 7622 tsk->sched_class->task_move_group(tsk, queued); 7623 else 7624 #endif 7625 set_task_rq(tsk, task_cpu(tsk)); 7626 7627 if (unlikely(running)) 7628 tsk->sched_class->set_curr_task(rq); 7629 if (queued) 7630 enqueue_task(rq, tsk, 0); 7631 7632 task_rq_unlock(rq, tsk, &flags); 7633 } 7634 #endif /* CONFIG_CGROUP_SCHED */ 7635 7636 #ifdef CONFIG_RT_GROUP_SCHED 7637 /* 7638 * Ensure that the real time constraints are schedulable. 7639 */ 7640 static DEFINE_MUTEX(rt_constraints_mutex); 7641 7642 /* Must be called with tasklist_lock held */ 7643 static inline int tg_has_rt_tasks(struct task_group *tg) 7644 { 7645 struct task_struct *g, *p; 7646 7647 for_each_process_thread(g, p) { 7648 if (rt_task(p) && task_group(p) == tg) 7649 return 1; 7650 } 7651 7652 return 0; 7653 } 7654 7655 struct rt_schedulable_data { 7656 struct task_group *tg; 7657 u64 rt_period; 7658 u64 rt_runtime; 7659 }; 7660 7661 static int tg_rt_schedulable(struct task_group *tg, void *data) 7662 { 7663 struct rt_schedulable_data *d = data; 7664 struct task_group *child; 7665 unsigned long total, sum = 0; 7666 u64 period, runtime; 7667 7668 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7669 runtime = tg->rt_bandwidth.rt_runtime; 7670 7671 if (tg == d->tg) { 7672 period = d->rt_period; 7673 runtime = d->rt_runtime; 7674 } 7675 7676 /* 7677 * Cannot have more runtime than the period. 7678 */ 7679 if (runtime > period && runtime != RUNTIME_INF) 7680 return -EINVAL; 7681 7682 /* 7683 * Ensure we don't starve existing RT tasks. 7684 */ 7685 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7686 return -EBUSY; 7687 7688 total = to_ratio(period, runtime); 7689 7690 /* 7691 * Nobody can have more than the global setting allows. 7692 */ 7693 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7694 return -EINVAL; 7695 7696 /* 7697 * The sum of our children's runtime should not exceed our own. 7698 */ 7699 list_for_each_entry_rcu(child, &tg->children, siblings) { 7700 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7701 runtime = child->rt_bandwidth.rt_runtime; 7702 7703 if (child == d->tg) { 7704 period = d->rt_period; 7705 runtime = d->rt_runtime; 7706 } 7707 7708 sum += to_ratio(period, runtime); 7709 } 7710 7711 if (sum > total) 7712 return -EINVAL; 7713 7714 return 0; 7715 } 7716 7717 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7718 { 7719 int ret; 7720 7721 struct rt_schedulable_data data = { 7722 .tg = tg, 7723 .rt_period = period, 7724 .rt_runtime = runtime, 7725 }; 7726 7727 rcu_read_lock(); 7728 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7729 rcu_read_unlock(); 7730 7731 return ret; 7732 } 7733 7734 static int tg_set_rt_bandwidth(struct task_group *tg, 7735 u64 rt_period, u64 rt_runtime) 7736 { 7737 int i, err = 0; 7738 7739 mutex_lock(&rt_constraints_mutex); 7740 read_lock(&tasklist_lock); 7741 err = __rt_schedulable(tg, rt_period, rt_runtime); 7742 if (err) 7743 goto unlock; 7744 7745 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7746 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7747 tg->rt_bandwidth.rt_runtime = rt_runtime; 7748 7749 for_each_possible_cpu(i) { 7750 struct rt_rq *rt_rq = tg->rt_rq[i]; 7751 7752 raw_spin_lock(&rt_rq->rt_runtime_lock); 7753 rt_rq->rt_runtime = rt_runtime; 7754 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7755 } 7756 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7757 unlock: 7758 read_unlock(&tasklist_lock); 7759 mutex_unlock(&rt_constraints_mutex); 7760 7761 return err; 7762 } 7763 7764 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7765 { 7766 u64 rt_runtime, rt_period; 7767 7768 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7769 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7770 if (rt_runtime_us < 0) 7771 rt_runtime = RUNTIME_INF; 7772 7773 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7774 } 7775 7776 static long sched_group_rt_runtime(struct task_group *tg) 7777 { 7778 u64 rt_runtime_us; 7779 7780 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7781 return -1; 7782 7783 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7784 do_div(rt_runtime_us, NSEC_PER_USEC); 7785 return rt_runtime_us; 7786 } 7787 7788 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7789 { 7790 u64 rt_runtime, rt_period; 7791 7792 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7793 rt_runtime = tg->rt_bandwidth.rt_runtime; 7794 7795 if (rt_period == 0) 7796 return -EINVAL; 7797 7798 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7799 } 7800 7801 static long sched_group_rt_period(struct task_group *tg) 7802 { 7803 u64 rt_period_us; 7804 7805 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7806 do_div(rt_period_us, NSEC_PER_USEC); 7807 return rt_period_us; 7808 } 7809 #endif /* CONFIG_RT_GROUP_SCHED */ 7810 7811 #ifdef CONFIG_RT_GROUP_SCHED 7812 static int sched_rt_global_constraints(void) 7813 { 7814 int ret = 0; 7815 7816 mutex_lock(&rt_constraints_mutex); 7817 read_lock(&tasklist_lock); 7818 ret = __rt_schedulable(NULL, 0, 0); 7819 read_unlock(&tasklist_lock); 7820 mutex_unlock(&rt_constraints_mutex); 7821 7822 return ret; 7823 } 7824 7825 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7826 { 7827 /* Don't accept realtime tasks when there is no way for them to run */ 7828 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7829 return 0; 7830 7831 return 1; 7832 } 7833 7834 #else /* !CONFIG_RT_GROUP_SCHED */ 7835 static int sched_rt_global_constraints(void) 7836 { 7837 unsigned long flags; 7838 int i, ret = 0; 7839 7840 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7841 for_each_possible_cpu(i) { 7842 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7843 7844 raw_spin_lock(&rt_rq->rt_runtime_lock); 7845 rt_rq->rt_runtime = global_rt_runtime(); 7846 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7847 } 7848 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7849 7850 return ret; 7851 } 7852 #endif /* CONFIG_RT_GROUP_SCHED */ 7853 7854 static int sched_dl_global_constraints(void) 7855 { 7856 u64 runtime = global_rt_runtime(); 7857 u64 period = global_rt_period(); 7858 u64 new_bw = to_ratio(period, runtime); 7859 struct dl_bw *dl_b; 7860 int cpu, ret = 0; 7861 unsigned long flags; 7862 7863 /* 7864 * Here we want to check the bandwidth not being set to some 7865 * value smaller than the currently allocated bandwidth in 7866 * any of the root_domains. 7867 * 7868 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7869 * cycling on root_domains... Discussion on different/better 7870 * solutions is welcome! 7871 */ 7872 for_each_possible_cpu(cpu) { 7873 rcu_read_lock_sched(); 7874 dl_b = dl_bw_of(cpu); 7875 7876 raw_spin_lock_irqsave(&dl_b->lock, flags); 7877 if (new_bw < dl_b->total_bw) 7878 ret = -EBUSY; 7879 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7880 7881 rcu_read_unlock_sched(); 7882 7883 if (ret) 7884 break; 7885 } 7886 7887 return ret; 7888 } 7889 7890 static void sched_dl_do_global(void) 7891 { 7892 u64 new_bw = -1; 7893 struct dl_bw *dl_b; 7894 int cpu; 7895 unsigned long flags; 7896 7897 def_dl_bandwidth.dl_period = global_rt_period(); 7898 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7899 7900 if (global_rt_runtime() != RUNTIME_INF) 7901 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7902 7903 /* 7904 * FIXME: As above... 7905 */ 7906 for_each_possible_cpu(cpu) { 7907 rcu_read_lock_sched(); 7908 dl_b = dl_bw_of(cpu); 7909 7910 raw_spin_lock_irqsave(&dl_b->lock, flags); 7911 dl_b->bw = new_bw; 7912 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7913 7914 rcu_read_unlock_sched(); 7915 } 7916 } 7917 7918 static int sched_rt_global_validate(void) 7919 { 7920 if (sysctl_sched_rt_period <= 0) 7921 return -EINVAL; 7922 7923 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7924 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7925 return -EINVAL; 7926 7927 return 0; 7928 } 7929 7930 static void sched_rt_do_global(void) 7931 { 7932 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7933 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7934 } 7935 7936 int sched_rt_handler(struct ctl_table *table, int write, 7937 void __user *buffer, size_t *lenp, 7938 loff_t *ppos) 7939 { 7940 int old_period, old_runtime; 7941 static DEFINE_MUTEX(mutex); 7942 int ret; 7943 7944 mutex_lock(&mutex); 7945 old_period = sysctl_sched_rt_period; 7946 old_runtime = sysctl_sched_rt_runtime; 7947 7948 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7949 7950 if (!ret && write) { 7951 ret = sched_rt_global_validate(); 7952 if (ret) 7953 goto undo; 7954 7955 ret = sched_rt_global_constraints(); 7956 if (ret) 7957 goto undo; 7958 7959 ret = sched_dl_global_constraints(); 7960 if (ret) 7961 goto undo; 7962 7963 sched_rt_do_global(); 7964 sched_dl_do_global(); 7965 } 7966 if (0) { 7967 undo: 7968 sysctl_sched_rt_period = old_period; 7969 sysctl_sched_rt_runtime = old_runtime; 7970 } 7971 mutex_unlock(&mutex); 7972 7973 return ret; 7974 } 7975 7976 int sched_rr_handler(struct ctl_table *table, int write, 7977 void __user *buffer, size_t *lenp, 7978 loff_t *ppos) 7979 { 7980 int ret; 7981 static DEFINE_MUTEX(mutex); 7982 7983 mutex_lock(&mutex); 7984 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7985 /* make sure that internally we keep jiffies */ 7986 /* also, writing zero resets timeslice to default */ 7987 if (!ret && write) { 7988 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7989 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7990 } 7991 mutex_unlock(&mutex); 7992 return ret; 7993 } 7994 7995 #ifdef CONFIG_CGROUP_SCHED 7996 7997 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7998 { 7999 return css ? container_of(css, struct task_group, css) : NULL; 8000 } 8001 8002 static struct cgroup_subsys_state * 8003 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8004 { 8005 struct task_group *parent = css_tg(parent_css); 8006 struct task_group *tg; 8007 8008 if (!parent) { 8009 /* This is early initialization for the top cgroup */ 8010 return &root_task_group.css; 8011 } 8012 8013 tg = sched_create_group(parent); 8014 if (IS_ERR(tg)) 8015 return ERR_PTR(-ENOMEM); 8016 8017 return &tg->css; 8018 } 8019 8020 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8021 { 8022 struct task_group *tg = css_tg(css); 8023 struct task_group *parent = css_tg(css->parent); 8024 8025 if (parent) 8026 sched_online_group(tg, parent); 8027 return 0; 8028 } 8029 8030 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8031 { 8032 struct task_group *tg = css_tg(css); 8033 8034 sched_destroy_group(tg); 8035 } 8036 8037 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 8038 { 8039 struct task_group *tg = css_tg(css); 8040 8041 sched_offline_group(tg); 8042 } 8043 8044 static void cpu_cgroup_fork(struct task_struct *task) 8045 { 8046 sched_move_task(task); 8047 } 8048 8049 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 8050 struct cgroup_taskset *tset) 8051 { 8052 struct task_struct *task; 8053 8054 cgroup_taskset_for_each(task, tset) { 8055 #ifdef CONFIG_RT_GROUP_SCHED 8056 if (!sched_rt_can_attach(css_tg(css), task)) 8057 return -EINVAL; 8058 #else 8059 /* We don't support RT-tasks being in separate groups */ 8060 if (task->sched_class != &fair_sched_class) 8061 return -EINVAL; 8062 #endif 8063 } 8064 return 0; 8065 } 8066 8067 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 8068 struct cgroup_taskset *tset) 8069 { 8070 struct task_struct *task; 8071 8072 cgroup_taskset_for_each(task, tset) 8073 sched_move_task(task); 8074 } 8075 8076 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 8077 struct cgroup_subsys_state *old_css, 8078 struct task_struct *task) 8079 { 8080 /* 8081 * cgroup_exit() is called in the copy_process() failure path. 8082 * Ignore this case since the task hasn't ran yet, this avoids 8083 * trying to poke a half freed task state from generic code. 8084 */ 8085 if (!(task->flags & PF_EXITING)) 8086 return; 8087 8088 sched_move_task(task); 8089 } 8090 8091 #ifdef CONFIG_FAIR_GROUP_SCHED 8092 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8093 struct cftype *cftype, u64 shareval) 8094 { 8095 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8096 } 8097 8098 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8099 struct cftype *cft) 8100 { 8101 struct task_group *tg = css_tg(css); 8102 8103 return (u64) scale_load_down(tg->shares); 8104 } 8105 8106 #ifdef CONFIG_CFS_BANDWIDTH 8107 static DEFINE_MUTEX(cfs_constraints_mutex); 8108 8109 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8110 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8111 8112 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8113 8114 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8115 { 8116 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8117 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8118 8119 if (tg == &root_task_group) 8120 return -EINVAL; 8121 8122 /* 8123 * Ensure we have at some amount of bandwidth every period. This is 8124 * to prevent reaching a state of large arrears when throttled via 8125 * entity_tick() resulting in prolonged exit starvation. 8126 */ 8127 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8128 return -EINVAL; 8129 8130 /* 8131 * Likewise, bound things on the otherside by preventing insane quota 8132 * periods. This also allows us to normalize in computing quota 8133 * feasibility. 8134 */ 8135 if (period > max_cfs_quota_period) 8136 return -EINVAL; 8137 8138 /* 8139 * Prevent race between setting of cfs_rq->runtime_enabled and 8140 * unthrottle_offline_cfs_rqs(). 8141 */ 8142 get_online_cpus(); 8143 mutex_lock(&cfs_constraints_mutex); 8144 ret = __cfs_schedulable(tg, period, quota); 8145 if (ret) 8146 goto out_unlock; 8147 8148 runtime_enabled = quota != RUNTIME_INF; 8149 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8150 /* 8151 * If we need to toggle cfs_bandwidth_used, off->on must occur 8152 * before making related changes, and on->off must occur afterwards 8153 */ 8154 if (runtime_enabled && !runtime_was_enabled) 8155 cfs_bandwidth_usage_inc(); 8156 raw_spin_lock_irq(&cfs_b->lock); 8157 cfs_b->period = ns_to_ktime(period); 8158 cfs_b->quota = quota; 8159 8160 __refill_cfs_bandwidth_runtime(cfs_b); 8161 /* restart the period timer (if active) to handle new period expiry */ 8162 if (runtime_enabled && cfs_b->timer_active) { 8163 /* force a reprogram */ 8164 __start_cfs_bandwidth(cfs_b, true); 8165 } 8166 raw_spin_unlock_irq(&cfs_b->lock); 8167 8168 for_each_online_cpu(i) { 8169 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8170 struct rq *rq = cfs_rq->rq; 8171 8172 raw_spin_lock_irq(&rq->lock); 8173 cfs_rq->runtime_enabled = runtime_enabled; 8174 cfs_rq->runtime_remaining = 0; 8175 8176 if (cfs_rq->throttled) 8177 unthrottle_cfs_rq(cfs_rq); 8178 raw_spin_unlock_irq(&rq->lock); 8179 } 8180 if (runtime_was_enabled && !runtime_enabled) 8181 cfs_bandwidth_usage_dec(); 8182 out_unlock: 8183 mutex_unlock(&cfs_constraints_mutex); 8184 put_online_cpus(); 8185 8186 return ret; 8187 } 8188 8189 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8190 { 8191 u64 quota, period; 8192 8193 period = ktime_to_ns(tg->cfs_bandwidth.period); 8194 if (cfs_quota_us < 0) 8195 quota = RUNTIME_INF; 8196 else 8197 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8198 8199 return tg_set_cfs_bandwidth(tg, period, quota); 8200 } 8201 8202 long tg_get_cfs_quota(struct task_group *tg) 8203 { 8204 u64 quota_us; 8205 8206 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8207 return -1; 8208 8209 quota_us = tg->cfs_bandwidth.quota; 8210 do_div(quota_us, NSEC_PER_USEC); 8211 8212 return quota_us; 8213 } 8214 8215 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8216 { 8217 u64 quota, period; 8218 8219 period = (u64)cfs_period_us * NSEC_PER_USEC; 8220 quota = tg->cfs_bandwidth.quota; 8221 8222 return tg_set_cfs_bandwidth(tg, period, quota); 8223 } 8224 8225 long tg_get_cfs_period(struct task_group *tg) 8226 { 8227 u64 cfs_period_us; 8228 8229 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8230 do_div(cfs_period_us, NSEC_PER_USEC); 8231 8232 return cfs_period_us; 8233 } 8234 8235 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8236 struct cftype *cft) 8237 { 8238 return tg_get_cfs_quota(css_tg(css)); 8239 } 8240 8241 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8242 struct cftype *cftype, s64 cfs_quota_us) 8243 { 8244 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8245 } 8246 8247 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8248 struct cftype *cft) 8249 { 8250 return tg_get_cfs_period(css_tg(css)); 8251 } 8252 8253 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8254 struct cftype *cftype, u64 cfs_period_us) 8255 { 8256 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8257 } 8258 8259 struct cfs_schedulable_data { 8260 struct task_group *tg; 8261 u64 period, quota; 8262 }; 8263 8264 /* 8265 * normalize group quota/period to be quota/max_period 8266 * note: units are usecs 8267 */ 8268 static u64 normalize_cfs_quota(struct task_group *tg, 8269 struct cfs_schedulable_data *d) 8270 { 8271 u64 quota, period; 8272 8273 if (tg == d->tg) { 8274 period = d->period; 8275 quota = d->quota; 8276 } else { 8277 period = tg_get_cfs_period(tg); 8278 quota = tg_get_cfs_quota(tg); 8279 } 8280 8281 /* note: these should typically be equivalent */ 8282 if (quota == RUNTIME_INF || quota == -1) 8283 return RUNTIME_INF; 8284 8285 return to_ratio(period, quota); 8286 } 8287 8288 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8289 { 8290 struct cfs_schedulable_data *d = data; 8291 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8292 s64 quota = 0, parent_quota = -1; 8293 8294 if (!tg->parent) { 8295 quota = RUNTIME_INF; 8296 } else { 8297 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8298 8299 quota = normalize_cfs_quota(tg, d); 8300 parent_quota = parent_b->hierarchical_quota; 8301 8302 /* 8303 * ensure max(child_quota) <= parent_quota, inherit when no 8304 * limit is set 8305 */ 8306 if (quota == RUNTIME_INF) 8307 quota = parent_quota; 8308 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8309 return -EINVAL; 8310 } 8311 cfs_b->hierarchical_quota = quota; 8312 8313 return 0; 8314 } 8315 8316 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8317 { 8318 int ret; 8319 struct cfs_schedulable_data data = { 8320 .tg = tg, 8321 .period = period, 8322 .quota = quota, 8323 }; 8324 8325 if (quota != RUNTIME_INF) { 8326 do_div(data.period, NSEC_PER_USEC); 8327 do_div(data.quota, NSEC_PER_USEC); 8328 } 8329 8330 rcu_read_lock(); 8331 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8332 rcu_read_unlock(); 8333 8334 return ret; 8335 } 8336 8337 static int cpu_stats_show(struct seq_file *sf, void *v) 8338 { 8339 struct task_group *tg = css_tg(seq_css(sf)); 8340 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8341 8342 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8343 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8344 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8345 8346 return 0; 8347 } 8348 #endif /* CONFIG_CFS_BANDWIDTH */ 8349 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8350 8351 #ifdef CONFIG_RT_GROUP_SCHED 8352 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8353 struct cftype *cft, s64 val) 8354 { 8355 return sched_group_set_rt_runtime(css_tg(css), val); 8356 } 8357 8358 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8359 struct cftype *cft) 8360 { 8361 return sched_group_rt_runtime(css_tg(css)); 8362 } 8363 8364 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8365 struct cftype *cftype, u64 rt_period_us) 8366 { 8367 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8368 } 8369 8370 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8371 struct cftype *cft) 8372 { 8373 return sched_group_rt_period(css_tg(css)); 8374 } 8375 #endif /* CONFIG_RT_GROUP_SCHED */ 8376 8377 static struct cftype cpu_files[] = { 8378 #ifdef CONFIG_FAIR_GROUP_SCHED 8379 { 8380 .name = "shares", 8381 .read_u64 = cpu_shares_read_u64, 8382 .write_u64 = cpu_shares_write_u64, 8383 }, 8384 #endif 8385 #ifdef CONFIG_CFS_BANDWIDTH 8386 { 8387 .name = "cfs_quota_us", 8388 .read_s64 = cpu_cfs_quota_read_s64, 8389 .write_s64 = cpu_cfs_quota_write_s64, 8390 }, 8391 { 8392 .name = "cfs_period_us", 8393 .read_u64 = cpu_cfs_period_read_u64, 8394 .write_u64 = cpu_cfs_period_write_u64, 8395 }, 8396 { 8397 .name = "stat", 8398 .seq_show = cpu_stats_show, 8399 }, 8400 #endif 8401 #ifdef CONFIG_RT_GROUP_SCHED 8402 { 8403 .name = "rt_runtime_us", 8404 .read_s64 = cpu_rt_runtime_read, 8405 .write_s64 = cpu_rt_runtime_write, 8406 }, 8407 { 8408 .name = "rt_period_us", 8409 .read_u64 = cpu_rt_period_read_uint, 8410 .write_u64 = cpu_rt_period_write_uint, 8411 }, 8412 #endif 8413 { } /* terminate */ 8414 }; 8415 8416 struct cgroup_subsys cpu_cgrp_subsys = { 8417 .css_alloc = cpu_cgroup_css_alloc, 8418 .css_free = cpu_cgroup_css_free, 8419 .css_online = cpu_cgroup_css_online, 8420 .css_offline = cpu_cgroup_css_offline, 8421 .fork = cpu_cgroup_fork, 8422 .can_attach = cpu_cgroup_can_attach, 8423 .attach = cpu_cgroup_attach, 8424 .exit = cpu_cgroup_exit, 8425 .legacy_cftypes = cpu_files, 8426 .early_init = 1, 8427 }; 8428 8429 #endif /* CONFIG_CGROUP_SCHED */ 8430 8431 void dump_cpu_task(int cpu) 8432 { 8433 pr_info("Task dump for CPU %d:\n", cpu); 8434 sched_show_task(cpu_curr(cpu)); 8435 } 8436