xref: /linux/kernel/sched/core.c (revision 03abeaa63c08a8c14af5d456697aa79d7cc3c3b2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 
70 #ifdef CONFIG_PREEMPT_DYNAMIC
71 # ifdef CONFIG_GENERIC_ENTRY
72 #  include <linux/entry-common.h>
73 # endif
74 #endif
75 
76 #include <uapi/linux/sched/types.h>
77 
78 #include <asm/irq_regs.h>
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 
82 #define CREATE_TRACE_POINTS
83 #include <linux/sched/rseq_api.h>
84 #include <trace/events/sched.h>
85 #include <trace/events/ipi.h>
86 #undef CREATE_TRACE_POINTS
87 
88 #include "sched.h"
89 #include "stats.h"
90 
91 #include "autogroup.h"
92 #include "pelt.h"
93 #include "smp.h"
94 #include "stats.h"
95 
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102 
103 /*
104  * Export tracepoints that act as a bare tracehook (ie: have no trace event
105  * associated with them) to allow external modules to probe them.
106  */
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119 
120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121 
122 #ifdef CONFIG_SCHED_DEBUG
123 /*
124  * Debugging: various feature bits
125  *
126  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
127  * sysctl_sched_features, defined in sched.h, to allow constants propagation
128  * at compile time and compiler optimization based on features default.
129  */
130 #define SCHED_FEAT(name, enabled)	\
131 	(1UL << __SCHED_FEAT_##name) * enabled |
132 const_debug unsigned int sysctl_sched_features =
133 #include "features.h"
134 	0;
135 #undef SCHED_FEAT
136 
137 /*
138  * Print a warning if need_resched is set for the given duration (if
139  * LATENCY_WARN is enabled).
140  *
141  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
142  * per boot.
143  */
144 __read_mostly int sysctl_resched_latency_warn_ms = 100;
145 __read_mostly int sysctl_resched_latency_warn_once = 1;
146 #endif /* CONFIG_SCHED_DEBUG */
147 
148 /*
149  * Number of tasks to iterate in a single balance run.
150  * Limited because this is done with IRQs disabled.
151  */
152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
153 
154 __read_mostly int scheduler_running;
155 
156 #ifdef CONFIG_SCHED_CORE
157 
158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
159 
160 /* kernel prio, less is more */
161 static inline int __task_prio(const struct task_struct *p)
162 {
163 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
164 		return -2;
165 
166 	if (p->dl_server)
167 		return -1; /* deadline */
168 
169 	if (rt_or_dl_prio(p->prio))
170 		return p->prio; /* [-1, 99] */
171 
172 	if (p->sched_class == &idle_sched_class)
173 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
174 
175 	if (task_on_scx(p))
176 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
177 
178 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
179 }
180 
181 /*
182  * l(a,b)
183  * le(a,b) := !l(b,a)
184  * g(a,b)  := l(b,a)
185  * ge(a,b) := !l(a,b)
186  */
187 
188 /* real prio, less is less */
189 static inline bool prio_less(const struct task_struct *a,
190 			     const struct task_struct *b, bool in_fi)
191 {
192 
193 	int pa = __task_prio(a), pb = __task_prio(b);
194 
195 	if (-pa < -pb)
196 		return true;
197 
198 	if (-pb < -pa)
199 		return false;
200 
201 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
202 		const struct sched_dl_entity *a_dl, *b_dl;
203 
204 		a_dl = &a->dl;
205 		/*
206 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
207 		 * __task_prio() can return -1 (for DL) even for those. In that
208 		 * case, get to the dl_server's DL entity.
209 		 */
210 		if (a->dl_server)
211 			a_dl = a->dl_server;
212 
213 		b_dl = &b->dl;
214 		if (b->dl_server)
215 			b_dl = b->dl_server;
216 
217 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
218 	}
219 
220 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
221 		return cfs_prio_less(a, b, in_fi);
222 
223 #ifdef CONFIG_SCHED_CLASS_EXT
224 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
225 		return scx_prio_less(a, b, in_fi);
226 #endif
227 
228 	return false;
229 }
230 
231 static inline bool __sched_core_less(const struct task_struct *a,
232 				     const struct task_struct *b)
233 {
234 	if (a->core_cookie < b->core_cookie)
235 		return true;
236 
237 	if (a->core_cookie > b->core_cookie)
238 		return false;
239 
240 	/* flip prio, so high prio is leftmost */
241 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
242 		return true;
243 
244 	return false;
245 }
246 
247 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
248 
249 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
250 {
251 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
252 }
253 
254 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
255 {
256 	const struct task_struct *p = __node_2_sc(node);
257 	unsigned long cookie = (unsigned long)key;
258 
259 	if (cookie < p->core_cookie)
260 		return -1;
261 
262 	if (cookie > p->core_cookie)
263 		return 1;
264 
265 	return 0;
266 }
267 
268 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
269 {
270 	if (p->se.sched_delayed)
271 		return;
272 
273 	rq->core->core_task_seq++;
274 
275 	if (!p->core_cookie)
276 		return;
277 
278 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
279 }
280 
281 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
282 {
283 	if (p->se.sched_delayed)
284 		return;
285 
286 	rq->core->core_task_seq++;
287 
288 	if (sched_core_enqueued(p)) {
289 		rb_erase(&p->core_node, &rq->core_tree);
290 		RB_CLEAR_NODE(&p->core_node);
291 	}
292 
293 	/*
294 	 * Migrating the last task off the cpu, with the cpu in forced idle
295 	 * state. Reschedule to create an accounting edge for forced idle,
296 	 * and re-examine whether the core is still in forced idle state.
297 	 */
298 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
299 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
300 		resched_curr(rq);
301 }
302 
303 static int sched_task_is_throttled(struct task_struct *p, int cpu)
304 {
305 	if (p->sched_class->task_is_throttled)
306 		return p->sched_class->task_is_throttled(p, cpu);
307 
308 	return 0;
309 }
310 
311 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
312 {
313 	struct rb_node *node = &p->core_node;
314 	int cpu = task_cpu(p);
315 
316 	do {
317 		node = rb_next(node);
318 		if (!node)
319 			return NULL;
320 
321 		p = __node_2_sc(node);
322 		if (p->core_cookie != cookie)
323 			return NULL;
324 
325 	} while (sched_task_is_throttled(p, cpu));
326 
327 	return p;
328 }
329 
330 /*
331  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
332  * If no suitable task is found, NULL will be returned.
333  */
334 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
335 {
336 	struct task_struct *p;
337 	struct rb_node *node;
338 
339 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
340 	if (!node)
341 		return NULL;
342 
343 	p = __node_2_sc(node);
344 	if (!sched_task_is_throttled(p, rq->cpu))
345 		return p;
346 
347 	return sched_core_next(p, cookie);
348 }
349 
350 /*
351  * Magic required such that:
352  *
353  *	raw_spin_rq_lock(rq);
354  *	...
355  *	raw_spin_rq_unlock(rq);
356  *
357  * ends up locking and unlocking the _same_ lock, and all CPUs
358  * always agree on what rq has what lock.
359  *
360  * XXX entirely possible to selectively enable cores, don't bother for now.
361  */
362 
363 static DEFINE_MUTEX(sched_core_mutex);
364 static atomic_t sched_core_count;
365 static struct cpumask sched_core_mask;
366 
367 static void sched_core_lock(int cpu, unsigned long *flags)
368 {
369 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
370 	int t, i = 0;
371 
372 	local_irq_save(*flags);
373 	for_each_cpu(t, smt_mask)
374 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
375 }
376 
377 static void sched_core_unlock(int cpu, unsigned long *flags)
378 {
379 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
380 	int t;
381 
382 	for_each_cpu(t, smt_mask)
383 		raw_spin_unlock(&cpu_rq(t)->__lock);
384 	local_irq_restore(*flags);
385 }
386 
387 static void __sched_core_flip(bool enabled)
388 {
389 	unsigned long flags;
390 	int cpu, t;
391 
392 	cpus_read_lock();
393 
394 	/*
395 	 * Toggle the online cores, one by one.
396 	 */
397 	cpumask_copy(&sched_core_mask, cpu_online_mask);
398 	for_each_cpu(cpu, &sched_core_mask) {
399 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
400 
401 		sched_core_lock(cpu, &flags);
402 
403 		for_each_cpu(t, smt_mask)
404 			cpu_rq(t)->core_enabled = enabled;
405 
406 		cpu_rq(cpu)->core->core_forceidle_start = 0;
407 
408 		sched_core_unlock(cpu, &flags);
409 
410 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
411 	}
412 
413 	/*
414 	 * Toggle the offline CPUs.
415 	 */
416 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
417 		cpu_rq(cpu)->core_enabled = enabled;
418 
419 	cpus_read_unlock();
420 }
421 
422 static void sched_core_assert_empty(void)
423 {
424 	int cpu;
425 
426 	for_each_possible_cpu(cpu)
427 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
428 }
429 
430 static void __sched_core_enable(void)
431 {
432 	static_branch_enable(&__sched_core_enabled);
433 	/*
434 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
435 	 * and future ones will observe !sched_core_disabled().
436 	 */
437 	synchronize_rcu();
438 	__sched_core_flip(true);
439 	sched_core_assert_empty();
440 }
441 
442 static void __sched_core_disable(void)
443 {
444 	sched_core_assert_empty();
445 	__sched_core_flip(false);
446 	static_branch_disable(&__sched_core_enabled);
447 }
448 
449 void sched_core_get(void)
450 {
451 	if (atomic_inc_not_zero(&sched_core_count))
452 		return;
453 
454 	mutex_lock(&sched_core_mutex);
455 	if (!atomic_read(&sched_core_count))
456 		__sched_core_enable();
457 
458 	smp_mb__before_atomic();
459 	atomic_inc(&sched_core_count);
460 	mutex_unlock(&sched_core_mutex);
461 }
462 
463 static void __sched_core_put(struct work_struct *work)
464 {
465 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
466 		__sched_core_disable();
467 		mutex_unlock(&sched_core_mutex);
468 	}
469 }
470 
471 void sched_core_put(void)
472 {
473 	static DECLARE_WORK(_work, __sched_core_put);
474 
475 	/*
476 	 * "There can be only one"
477 	 *
478 	 * Either this is the last one, or we don't actually need to do any
479 	 * 'work'. If it is the last *again*, we rely on
480 	 * WORK_STRUCT_PENDING_BIT.
481 	 */
482 	if (!atomic_add_unless(&sched_core_count, -1, 1))
483 		schedule_work(&_work);
484 }
485 
486 #else /* !CONFIG_SCHED_CORE */
487 
488 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
489 static inline void
490 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
491 
492 #endif /* CONFIG_SCHED_CORE */
493 
494 /* need a wrapper since we may need to trace from modules */
495 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp);
496 
497 /* Call via the helper macro trace_set_current_state. */
498 void __trace_set_current_state(int state_value)
499 {
500 	trace_sched_set_state_tp(current, state_value);
501 }
502 EXPORT_SYMBOL(__trace_set_current_state);
503 
504 /*
505  * Serialization rules:
506  *
507  * Lock order:
508  *
509  *   p->pi_lock
510  *     rq->lock
511  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
512  *
513  *  rq1->lock
514  *    rq2->lock  where: rq1 < rq2
515  *
516  * Regular state:
517  *
518  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
519  * local CPU's rq->lock, it optionally removes the task from the runqueue and
520  * always looks at the local rq data structures to find the most eligible task
521  * to run next.
522  *
523  * Task enqueue is also under rq->lock, possibly taken from another CPU.
524  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
525  * the local CPU to avoid bouncing the runqueue state around [ see
526  * ttwu_queue_wakelist() ]
527  *
528  * Task wakeup, specifically wakeups that involve migration, are horribly
529  * complicated to avoid having to take two rq->locks.
530  *
531  * Special state:
532  *
533  * System-calls and anything external will use task_rq_lock() which acquires
534  * both p->pi_lock and rq->lock. As a consequence the state they change is
535  * stable while holding either lock:
536  *
537  *  - sched_setaffinity()/
538  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
539  *  - set_user_nice():		p->se.load, p->*prio
540  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
541  *				p->se.load, p->rt_priority,
542  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
543  *  - sched_setnuma():		p->numa_preferred_nid
544  *  - sched_move_task():	p->sched_task_group
545  *  - uclamp_update_active()	p->uclamp*
546  *
547  * p->state <- TASK_*:
548  *
549  *   is changed locklessly using set_current_state(), __set_current_state() or
550  *   set_special_state(), see their respective comments, or by
551  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
552  *   concurrent self.
553  *
554  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
555  *
556  *   is set by activate_task() and cleared by deactivate_task(), under
557  *   rq->lock. Non-zero indicates the task is runnable, the special
558  *   ON_RQ_MIGRATING state is used for migration without holding both
559  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
560  *
561  *   Additionally it is possible to be ->on_rq but still be considered not
562  *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
563  *   but will be dequeued as soon as they get picked again. See the
564  *   task_is_runnable() helper.
565  *
566  * p->on_cpu <- { 0, 1 }:
567  *
568  *   is set by prepare_task() and cleared by finish_task() such that it will be
569  *   set before p is scheduled-in and cleared after p is scheduled-out, both
570  *   under rq->lock. Non-zero indicates the task is running on its CPU.
571  *
572  *   [ The astute reader will observe that it is possible for two tasks on one
573  *     CPU to have ->on_cpu = 1 at the same time. ]
574  *
575  * task_cpu(p): is changed by set_task_cpu(), the rules are:
576  *
577  *  - Don't call set_task_cpu() on a blocked task:
578  *
579  *    We don't care what CPU we're not running on, this simplifies hotplug,
580  *    the CPU assignment of blocked tasks isn't required to be valid.
581  *
582  *  - for try_to_wake_up(), called under p->pi_lock:
583  *
584  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
585  *
586  *  - for migration called under rq->lock:
587  *    [ see task_on_rq_migrating() in task_rq_lock() ]
588  *
589  *    o move_queued_task()
590  *    o detach_task()
591  *
592  *  - for migration called under double_rq_lock():
593  *
594  *    o __migrate_swap_task()
595  *    o push_rt_task() / pull_rt_task()
596  *    o push_dl_task() / pull_dl_task()
597  *    o dl_task_offline_migration()
598  *
599  */
600 
601 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
602 {
603 	raw_spinlock_t *lock;
604 
605 	/* Matches synchronize_rcu() in __sched_core_enable() */
606 	preempt_disable();
607 	if (sched_core_disabled()) {
608 		raw_spin_lock_nested(&rq->__lock, subclass);
609 		/* preempt_count *MUST* be > 1 */
610 		preempt_enable_no_resched();
611 		return;
612 	}
613 
614 	for (;;) {
615 		lock = __rq_lockp(rq);
616 		raw_spin_lock_nested(lock, subclass);
617 		if (likely(lock == __rq_lockp(rq))) {
618 			/* preempt_count *MUST* be > 1 */
619 			preempt_enable_no_resched();
620 			return;
621 		}
622 		raw_spin_unlock(lock);
623 	}
624 }
625 
626 bool raw_spin_rq_trylock(struct rq *rq)
627 {
628 	raw_spinlock_t *lock;
629 	bool ret;
630 
631 	/* Matches synchronize_rcu() in __sched_core_enable() */
632 	preempt_disable();
633 	if (sched_core_disabled()) {
634 		ret = raw_spin_trylock(&rq->__lock);
635 		preempt_enable();
636 		return ret;
637 	}
638 
639 	for (;;) {
640 		lock = __rq_lockp(rq);
641 		ret = raw_spin_trylock(lock);
642 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
643 			preempt_enable();
644 			return ret;
645 		}
646 		raw_spin_unlock(lock);
647 	}
648 }
649 
650 void raw_spin_rq_unlock(struct rq *rq)
651 {
652 	raw_spin_unlock(rq_lockp(rq));
653 }
654 
655 #ifdef CONFIG_SMP
656 /*
657  * double_rq_lock - safely lock two runqueues
658  */
659 void double_rq_lock(struct rq *rq1, struct rq *rq2)
660 {
661 	lockdep_assert_irqs_disabled();
662 
663 	if (rq_order_less(rq2, rq1))
664 		swap(rq1, rq2);
665 
666 	raw_spin_rq_lock(rq1);
667 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
668 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
669 
670 	double_rq_clock_clear_update(rq1, rq2);
671 }
672 #endif
673 
674 /*
675  * __task_rq_lock - lock the rq @p resides on.
676  */
677 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
678 	__acquires(rq->lock)
679 {
680 	struct rq *rq;
681 
682 	lockdep_assert_held(&p->pi_lock);
683 
684 	for (;;) {
685 		rq = task_rq(p);
686 		raw_spin_rq_lock(rq);
687 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
688 			rq_pin_lock(rq, rf);
689 			return rq;
690 		}
691 		raw_spin_rq_unlock(rq);
692 
693 		while (unlikely(task_on_rq_migrating(p)))
694 			cpu_relax();
695 	}
696 }
697 
698 /*
699  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
700  */
701 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
702 	__acquires(p->pi_lock)
703 	__acquires(rq->lock)
704 {
705 	struct rq *rq;
706 
707 	for (;;) {
708 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
709 		rq = task_rq(p);
710 		raw_spin_rq_lock(rq);
711 		/*
712 		 *	move_queued_task()		task_rq_lock()
713 		 *
714 		 *	ACQUIRE (rq->lock)
715 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
716 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
717 		 *	[S] ->cpu = new_cpu		[L] task_rq()
718 		 *					[L] ->on_rq
719 		 *	RELEASE (rq->lock)
720 		 *
721 		 * If we observe the old CPU in task_rq_lock(), the acquire of
722 		 * the old rq->lock will fully serialize against the stores.
723 		 *
724 		 * If we observe the new CPU in task_rq_lock(), the address
725 		 * dependency headed by '[L] rq = task_rq()' and the acquire
726 		 * will pair with the WMB to ensure we then also see migrating.
727 		 */
728 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
729 			rq_pin_lock(rq, rf);
730 			return rq;
731 		}
732 		raw_spin_rq_unlock(rq);
733 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
734 
735 		while (unlikely(task_on_rq_migrating(p)))
736 			cpu_relax();
737 	}
738 }
739 
740 /*
741  * RQ-clock updating methods:
742  */
743 
744 static void update_rq_clock_task(struct rq *rq, s64 delta)
745 {
746 /*
747  * In theory, the compile should just see 0 here, and optimize out the call
748  * to sched_rt_avg_update. But I don't trust it...
749  */
750 	s64 __maybe_unused steal = 0, irq_delta = 0;
751 
752 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
753 	if (irqtime_enabled()) {
754 		irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
755 
756 		/*
757 		 * Since irq_time is only updated on {soft,}irq_exit, we might run into
758 		 * this case when a previous update_rq_clock() happened inside a
759 		 * {soft,}IRQ region.
760 		 *
761 		 * When this happens, we stop ->clock_task and only update the
762 		 * prev_irq_time stamp to account for the part that fit, so that a next
763 		 * update will consume the rest. This ensures ->clock_task is
764 		 * monotonic.
765 		 *
766 		 * It does however cause some slight miss-attribution of {soft,}IRQ
767 		 * time, a more accurate solution would be to update the irq_time using
768 		 * the current rq->clock timestamp, except that would require using
769 		 * atomic ops.
770 		 */
771 		if (irq_delta > delta)
772 			irq_delta = delta;
773 
774 		rq->prev_irq_time += irq_delta;
775 		delta -= irq_delta;
776 		delayacct_irq(rq->curr, irq_delta);
777 	}
778 #endif
779 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
780 	if (static_key_false((&paravirt_steal_rq_enabled))) {
781 		u64 prev_steal;
782 
783 		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
784 		steal -= rq->prev_steal_time_rq;
785 
786 		if (unlikely(steal > delta))
787 			steal = delta;
788 
789 		rq->prev_steal_time_rq = prev_steal;
790 		delta -= steal;
791 	}
792 #endif
793 
794 	rq->clock_task += delta;
795 
796 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
797 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
798 		update_irq_load_avg(rq, irq_delta + steal);
799 #endif
800 	update_rq_clock_pelt(rq, delta);
801 }
802 
803 void update_rq_clock(struct rq *rq)
804 {
805 	s64 delta;
806 	u64 clock;
807 
808 	lockdep_assert_rq_held(rq);
809 
810 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
811 		return;
812 
813 #ifdef CONFIG_SCHED_DEBUG
814 	if (sched_feat(WARN_DOUBLE_CLOCK))
815 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
816 	rq->clock_update_flags |= RQCF_UPDATED;
817 #endif
818 	clock = sched_clock_cpu(cpu_of(rq));
819 	scx_rq_clock_update(rq, clock);
820 
821 	delta = clock - rq->clock;
822 	if (delta < 0)
823 		return;
824 	rq->clock += delta;
825 
826 	update_rq_clock_task(rq, delta);
827 }
828 
829 #ifdef CONFIG_SCHED_HRTICK
830 /*
831  * Use HR-timers to deliver accurate preemption points.
832  */
833 
834 static void hrtick_clear(struct rq *rq)
835 {
836 	if (hrtimer_active(&rq->hrtick_timer))
837 		hrtimer_cancel(&rq->hrtick_timer);
838 }
839 
840 /*
841  * High-resolution timer tick.
842  * Runs from hardirq context with interrupts disabled.
843  */
844 static enum hrtimer_restart hrtick(struct hrtimer *timer)
845 {
846 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
847 	struct rq_flags rf;
848 
849 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
850 
851 	rq_lock(rq, &rf);
852 	update_rq_clock(rq);
853 	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
854 	rq_unlock(rq, &rf);
855 
856 	return HRTIMER_NORESTART;
857 }
858 
859 #ifdef CONFIG_SMP
860 
861 static void __hrtick_restart(struct rq *rq)
862 {
863 	struct hrtimer *timer = &rq->hrtick_timer;
864 	ktime_t time = rq->hrtick_time;
865 
866 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
867 }
868 
869 /*
870  * called from hardirq (IPI) context
871  */
872 static void __hrtick_start(void *arg)
873 {
874 	struct rq *rq = arg;
875 	struct rq_flags rf;
876 
877 	rq_lock(rq, &rf);
878 	__hrtick_restart(rq);
879 	rq_unlock(rq, &rf);
880 }
881 
882 /*
883  * Called to set the hrtick timer state.
884  *
885  * called with rq->lock held and IRQs disabled
886  */
887 void hrtick_start(struct rq *rq, u64 delay)
888 {
889 	struct hrtimer *timer = &rq->hrtick_timer;
890 	s64 delta;
891 
892 	/*
893 	 * Don't schedule slices shorter than 10000ns, that just
894 	 * doesn't make sense and can cause timer DoS.
895 	 */
896 	delta = max_t(s64, delay, 10000LL);
897 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
898 
899 	if (rq == this_rq())
900 		__hrtick_restart(rq);
901 	else
902 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
903 }
904 
905 #else
906 /*
907  * Called to set the hrtick timer state.
908  *
909  * called with rq->lock held and IRQs disabled
910  */
911 void hrtick_start(struct rq *rq, u64 delay)
912 {
913 	/*
914 	 * Don't schedule slices shorter than 10000ns, that just
915 	 * doesn't make sense. Rely on vruntime for fairness.
916 	 */
917 	delay = max_t(u64, delay, 10000LL);
918 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
919 		      HRTIMER_MODE_REL_PINNED_HARD);
920 }
921 
922 #endif /* CONFIG_SMP */
923 
924 static void hrtick_rq_init(struct rq *rq)
925 {
926 #ifdef CONFIG_SMP
927 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
928 #endif
929 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
930 	rq->hrtick_timer.function = hrtick;
931 }
932 #else	/* CONFIG_SCHED_HRTICK */
933 static inline void hrtick_clear(struct rq *rq)
934 {
935 }
936 
937 static inline void hrtick_rq_init(struct rq *rq)
938 {
939 }
940 #endif	/* CONFIG_SCHED_HRTICK */
941 
942 /*
943  * try_cmpxchg based fetch_or() macro so it works for different integer types:
944  */
945 #define fetch_or(ptr, mask)						\
946 	({								\
947 		typeof(ptr) _ptr = (ptr);				\
948 		typeof(mask) _mask = (mask);				\
949 		typeof(*_ptr) _val = *_ptr;				\
950 									\
951 		do {							\
952 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
953 	_val;								\
954 })
955 
956 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
957 /*
958  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
959  * this avoids any races wrt polling state changes and thereby avoids
960  * spurious IPIs.
961  */
962 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
963 {
964 	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
965 }
966 
967 /*
968  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
969  *
970  * If this returns true, then the idle task promises to call
971  * sched_ttwu_pending() and reschedule soon.
972  */
973 static bool set_nr_if_polling(struct task_struct *p)
974 {
975 	struct thread_info *ti = task_thread_info(p);
976 	typeof(ti->flags) val = READ_ONCE(ti->flags);
977 
978 	do {
979 		if (!(val & _TIF_POLLING_NRFLAG))
980 			return false;
981 		if (val & _TIF_NEED_RESCHED)
982 			return true;
983 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
984 
985 	return true;
986 }
987 
988 #else
989 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
990 {
991 	set_ti_thread_flag(ti, tif);
992 	return true;
993 }
994 
995 #ifdef CONFIG_SMP
996 static inline bool set_nr_if_polling(struct task_struct *p)
997 {
998 	return false;
999 }
1000 #endif
1001 #endif
1002 
1003 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
1004 {
1005 	struct wake_q_node *node = &task->wake_q;
1006 
1007 	/*
1008 	 * Atomically grab the task, if ->wake_q is !nil already it means
1009 	 * it's already queued (either by us or someone else) and will get the
1010 	 * wakeup due to that.
1011 	 *
1012 	 * In order to ensure that a pending wakeup will observe our pending
1013 	 * state, even in the failed case, an explicit smp_mb() must be used.
1014 	 */
1015 	smp_mb__before_atomic();
1016 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1017 		return false;
1018 
1019 	/*
1020 	 * The head is context local, there can be no concurrency.
1021 	 */
1022 	*head->lastp = node;
1023 	head->lastp = &node->next;
1024 	return true;
1025 }
1026 
1027 /**
1028  * wake_q_add() - queue a wakeup for 'later' waking.
1029  * @head: the wake_q_head to add @task to
1030  * @task: the task to queue for 'later' wakeup
1031  *
1032  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1033  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1034  * instantly.
1035  *
1036  * This function must be used as-if it were wake_up_process(); IOW the task
1037  * must be ready to be woken at this location.
1038  */
1039 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1040 {
1041 	if (__wake_q_add(head, task))
1042 		get_task_struct(task);
1043 }
1044 
1045 /**
1046  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1047  * @head: the wake_q_head to add @task to
1048  * @task: the task to queue for 'later' wakeup
1049  *
1050  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1051  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1052  * instantly.
1053  *
1054  * This function must be used as-if it were wake_up_process(); IOW the task
1055  * must be ready to be woken at this location.
1056  *
1057  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1058  * that already hold reference to @task can call the 'safe' version and trust
1059  * wake_q to do the right thing depending whether or not the @task is already
1060  * queued for wakeup.
1061  */
1062 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1063 {
1064 	if (!__wake_q_add(head, task))
1065 		put_task_struct(task);
1066 }
1067 
1068 void wake_up_q(struct wake_q_head *head)
1069 {
1070 	struct wake_q_node *node = head->first;
1071 
1072 	while (node != WAKE_Q_TAIL) {
1073 		struct task_struct *task;
1074 
1075 		task = container_of(node, struct task_struct, wake_q);
1076 		node = node->next;
1077 		/* pairs with cmpxchg_relaxed() in __wake_q_add() */
1078 		WRITE_ONCE(task->wake_q.next, NULL);
1079 		/* Task can safely be re-inserted now. */
1080 
1081 		/*
1082 		 * wake_up_process() executes a full barrier, which pairs with
1083 		 * the queueing in wake_q_add() so as not to miss wakeups.
1084 		 */
1085 		wake_up_process(task);
1086 		put_task_struct(task);
1087 	}
1088 }
1089 
1090 /*
1091  * resched_curr - mark rq's current task 'to be rescheduled now'.
1092  *
1093  * On UP this means the setting of the need_resched flag, on SMP it
1094  * might also involve a cross-CPU call to trigger the scheduler on
1095  * the target CPU.
1096  */
1097 static void __resched_curr(struct rq *rq, int tif)
1098 {
1099 	struct task_struct *curr = rq->curr;
1100 	struct thread_info *cti = task_thread_info(curr);
1101 	int cpu;
1102 
1103 	lockdep_assert_rq_held(rq);
1104 
1105 	/*
1106 	 * Always immediately preempt the idle task; no point in delaying doing
1107 	 * actual work.
1108 	 */
1109 	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1110 		tif = TIF_NEED_RESCHED;
1111 
1112 	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1113 		return;
1114 
1115 	cpu = cpu_of(rq);
1116 
1117 	if (cpu == smp_processor_id()) {
1118 		set_ti_thread_flag(cti, tif);
1119 		if (tif == TIF_NEED_RESCHED)
1120 			set_preempt_need_resched();
1121 		return;
1122 	}
1123 
1124 	if (set_nr_and_not_polling(cti, tif)) {
1125 		if (tif == TIF_NEED_RESCHED)
1126 			smp_send_reschedule(cpu);
1127 	} else {
1128 		trace_sched_wake_idle_without_ipi(cpu);
1129 	}
1130 }
1131 
1132 void resched_curr(struct rq *rq)
1133 {
1134 	__resched_curr(rq, TIF_NEED_RESCHED);
1135 }
1136 
1137 #ifdef CONFIG_PREEMPT_DYNAMIC
1138 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
1139 static __always_inline bool dynamic_preempt_lazy(void)
1140 {
1141 	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1142 }
1143 #else
1144 static __always_inline bool dynamic_preempt_lazy(void)
1145 {
1146 	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1147 }
1148 #endif
1149 
1150 static __always_inline int get_lazy_tif_bit(void)
1151 {
1152 	if (dynamic_preempt_lazy())
1153 		return TIF_NEED_RESCHED_LAZY;
1154 
1155 	return TIF_NEED_RESCHED;
1156 }
1157 
1158 void resched_curr_lazy(struct rq *rq)
1159 {
1160 	__resched_curr(rq, get_lazy_tif_bit());
1161 }
1162 
1163 void resched_cpu(int cpu)
1164 {
1165 	struct rq *rq = cpu_rq(cpu);
1166 	unsigned long flags;
1167 
1168 	raw_spin_rq_lock_irqsave(rq, flags);
1169 	if (cpu_online(cpu) || cpu == smp_processor_id())
1170 		resched_curr(rq);
1171 	raw_spin_rq_unlock_irqrestore(rq, flags);
1172 }
1173 
1174 #ifdef CONFIG_SMP
1175 #ifdef CONFIG_NO_HZ_COMMON
1176 /*
1177  * In the semi idle case, use the nearest busy CPU for migrating timers
1178  * from an idle CPU.  This is good for power-savings.
1179  *
1180  * We don't do similar optimization for completely idle system, as
1181  * selecting an idle CPU will add more delays to the timers than intended
1182  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1183  */
1184 int get_nohz_timer_target(void)
1185 {
1186 	int i, cpu = smp_processor_id(), default_cpu = -1;
1187 	struct sched_domain *sd;
1188 	const struct cpumask *hk_mask;
1189 
1190 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
1191 		if (!idle_cpu(cpu))
1192 			return cpu;
1193 		default_cpu = cpu;
1194 	}
1195 
1196 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
1197 
1198 	guard(rcu)();
1199 
1200 	for_each_domain(cpu, sd) {
1201 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1202 			if (cpu == i)
1203 				continue;
1204 
1205 			if (!idle_cpu(i))
1206 				return i;
1207 		}
1208 	}
1209 
1210 	if (default_cpu == -1)
1211 		default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
1212 
1213 	return default_cpu;
1214 }
1215 
1216 /*
1217  * When add_timer_on() enqueues a timer into the timer wheel of an
1218  * idle CPU then this timer might expire before the next timer event
1219  * which is scheduled to wake up that CPU. In case of a completely
1220  * idle system the next event might even be infinite time into the
1221  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1222  * leaves the inner idle loop so the newly added timer is taken into
1223  * account when the CPU goes back to idle and evaluates the timer
1224  * wheel for the next timer event.
1225  */
1226 static void wake_up_idle_cpu(int cpu)
1227 {
1228 	struct rq *rq = cpu_rq(cpu);
1229 
1230 	if (cpu == smp_processor_id())
1231 		return;
1232 
1233 	/*
1234 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1235 	 * part of the idle loop. This forces an exit from the idle loop
1236 	 * and a round trip to schedule(). Now this could be optimized
1237 	 * because a simple new idle loop iteration is enough to
1238 	 * re-evaluate the next tick. Provided some re-ordering of tick
1239 	 * nohz functions that would need to follow TIF_NR_POLLING
1240 	 * clearing:
1241 	 *
1242 	 * - On most architectures, a simple fetch_or on ti::flags with a
1243 	 *   "0" value would be enough to know if an IPI needs to be sent.
1244 	 *
1245 	 * - x86 needs to perform a last need_resched() check between
1246 	 *   monitor and mwait which doesn't take timers into account.
1247 	 *   There a dedicated TIF_TIMER flag would be required to
1248 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1249 	 *   before mwait().
1250 	 *
1251 	 * However, remote timer enqueue is not such a frequent event
1252 	 * and testing of the above solutions didn't appear to report
1253 	 * much benefits.
1254 	 */
1255 	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1256 		smp_send_reschedule(cpu);
1257 	else
1258 		trace_sched_wake_idle_without_ipi(cpu);
1259 }
1260 
1261 static bool wake_up_full_nohz_cpu(int cpu)
1262 {
1263 	/*
1264 	 * We just need the target to call irq_exit() and re-evaluate
1265 	 * the next tick. The nohz full kick at least implies that.
1266 	 * If needed we can still optimize that later with an
1267 	 * empty IRQ.
1268 	 */
1269 	if (cpu_is_offline(cpu))
1270 		return true;  /* Don't try to wake offline CPUs. */
1271 	if (tick_nohz_full_cpu(cpu)) {
1272 		if (cpu != smp_processor_id() ||
1273 		    tick_nohz_tick_stopped())
1274 			tick_nohz_full_kick_cpu(cpu);
1275 		return true;
1276 	}
1277 
1278 	return false;
1279 }
1280 
1281 /*
1282  * Wake up the specified CPU.  If the CPU is going offline, it is the
1283  * caller's responsibility to deal with the lost wakeup, for example,
1284  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1285  */
1286 void wake_up_nohz_cpu(int cpu)
1287 {
1288 	if (!wake_up_full_nohz_cpu(cpu))
1289 		wake_up_idle_cpu(cpu);
1290 }
1291 
1292 static void nohz_csd_func(void *info)
1293 {
1294 	struct rq *rq = info;
1295 	int cpu = cpu_of(rq);
1296 	unsigned int flags;
1297 
1298 	/*
1299 	 * Release the rq::nohz_csd.
1300 	 */
1301 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1302 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1303 
1304 	rq->idle_balance = idle_cpu(cpu);
1305 	if (rq->idle_balance) {
1306 		rq->nohz_idle_balance = flags;
1307 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1308 	}
1309 }
1310 
1311 #endif /* CONFIG_NO_HZ_COMMON */
1312 
1313 #ifdef CONFIG_NO_HZ_FULL
1314 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1315 {
1316 	if (rq->nr_running != 1)
1317 		return false;
1318 
1319 	if (p->sched_class != &fair_sched_class)
1320 		return false;
1321 
1322 	if (!task_on_rq_queued(p))
1323 		return false;
1324 
1325 	return true;
1326 }
1327 
1328 bool sched_can_stop_tick(struct rq *rq)
1329 {
1330 	int fifo_nr_running;
1331 
1332 	/* Deadline tasks, even if single, need the tick */
1333 	if (rq->dl.dl_nr_running)
1334 		return false;
1335 
1336 	/*
1337 	 * If there are more than one RR tasks, we need the tick to affect the
1338 	 * actual RR behaviour.
1339 	 */
1340 	if (rq->rt.rr_nr_running) {
1341 		if (rq->rt.rr_nr_running == 1)
1342 			return true;
1343 		else
1344 			return false;
1345 	}
1346 
1347 	/*
1348 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1349 	 * forced preemption between FIFO tasks.
1350 	 */
1351 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1352 	if (fifo_nr_running)
1353 		return true;
1354 
1355 	/*
1356 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1357 	 * left. For CFS, if there's more than one we need the tick for
1358 	 * involuntary preemption. For SCX, ask.
1359 	 */
1360 	if (scx_enabled() && !scx_can_stop_tick(rq))
1361 		return false;
1362 
1363 	if (rq->cfs.h_nr_queued > 1)
1364 		return false;
1365 
1366 	/*
1367 	 * If there is one task and it has CFS runtime bandwidth constraints
1368 	 * and it's on the cpu now we don't want to stop the tick.
1369 	 * This check prevents clearing the bit if a newly enqueued task here is
1370 	 * dequeued by migrating while the constrained task continues to run.
1371 	 * E.g. going from 2->1 without going through pick_next_task().
1372 	 */
1373 	if (__need_bw_check(rq, rq->curr)) {
1374 		if (cfs_task_bw_constrained(rq->curr))
1375 			return false;
1376 	}
1377 
1378 	return true;
1379 }
1380 #endif /* CONFIG_NO_HZ_FULL */
1381 #endif /* CONFIG_SMP */
1382 
1383 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1384 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1385 /*
1386  * Iterate task_group tree rooted at *from, calling @down when first entering a
1387  * node and @up when leaving it for the final time.
1388  *
1389  * Caller must hold rcu_lock or sufficient equivalent.
1390  */
1391 int walk_tg_tree_from(struct task_group *from,
1392 			     tg_visitor down, tg_visitor up, void *data)
1393 {
1394 	struct task_group *parent, *child;
1395 	int ret;
1396 
1397 	parent = from;
1398 
1399 down:
1400 	ret = (*down)(parent, data);
1401 	if (ret)
1402 		goto out;
1403 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1404 		parent = child;
1405 		goto down;
1406 
1407 up:
1408 		continue;
1409 	}
1410 	ret = (*up)(parent, data);
1411 	if (ret || parent == from)
1412 		goto out;
1413 
1414 	child = parent;
1415 	parent = parent->parent;
1416 	if (parent)
1417 		goto up;
1418 out:
1419 	return ret;
1420 }
1421 
1422 int tg_nop(struct task_group *tg, void *data)
1423 {
1424 	return 0;
1425 }
1426 #endif
1427 
1428 void set_load_weight(struct task_struct *p, bool update_load)
1429 {
1430 	int prio = p->static_prio - MAX_RT_PRIO;
1431 	struct load_weight lw;
1432 
1433 	if (task_has_idle_policy(p)) {
1434 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1435 		lw.inv_weight = WMULT_IDLEPRIO;
1436 	} else {
1437 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1438 		lw.inv_weight = sched_prio_to_wmult[prio];
1439 	}
1440 
1441 	/*
1442 	 * SCHED_OTHER tasks have to update their load when changing their
1443 	 * weight
1444 	 */
1445 	if (update_load && p->sched_class->reweight_task)
1446 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1447 	else
1448 		p->se.load = lw;
1449 }
1450 
1451 #ifdef CONFIG_UCLAMP_TASK
1452 /*
1453  * Serializes updates of utilization clamp values
1454  *
1455  * The (slow-path) user-space triggers utilization clamp value updates which
1456  * can require updates on (fast-path) scheduler's data structures used to
1457  * support enqueue/dequeue operations.
1458  * While the per-CPU rq lock protects fast-path update operations, user-space
1459  * requests are serialized using a mutex to reduce the risk of conflicting
1460  * updates or API abuses.
1461  */
1462 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1463 
1464 /* Max allowed minimum utilization */
1465 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1466 
1467 /* Max allowed maximum utilization */
1468 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1469 
1470 /*
1471  * By default RT tasks run at the maximum performance point/capacity of the
1472  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1473  * SCHED_CAPACITY_SCALE.
1474  *
1475  * This knob allows admins to change the default behavior when uclamp is being
1476  * used. In battery powered devices, particularly, running at the maximum
1477  * capacity and frequency will increase energy consumption and shorten the
1478  * battery life.
1479  *
1480  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1481  *
1482  * This knob will not override the system default sched_util_clamp_min defined
1483  * above.
1484  */
1485 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1486 
1487 /* All clamps are required to be less or equal than these values */
1488 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1489 
1490 /*
1491  * This static key is used to reduce the uclamp overhead in the fast path. It
1492  * primarily disables the call to uclamp_rq_{inc, dec}() in
1493  * enqueue/dequeue_task().
1494  *
1495  * This allows users to continue to enable uclamp in their kernel config with
1496  * minimum uclamp overhead in the fast path.
1497  *
1498  * As soon as userspace modifies any of the uclamp knobs, the static key is
1499  * enabled, since we have an actual users that make use of uclamp
1500  * functionality.
1501  *
1502  * The knobs that would enable this static key are:
1503  *
1504  *   * A task modifying its uclamp value with sched_setattr().
1505  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1506  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1507  */
1508 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1509 
1510 static inline unsigned int
1511 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1512 		  unsigned int clamp_value)
1513 {
1514 	/*
1515 	 * Avoid blocked utilization pushing up the frequency when we go
1516 	 * idle (which drops the max-clamp) by retaining the last known
1517 	 * max-clamp.
1518 	 */
1519 	if (clamp_id == UCLAMP_MAX) {
1520 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1521 		return clamp_value;
1522 	}
1523 
1524 	return uclamp_none(UCLAMP_MIN);
1525 }
1526 
1527 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1528 				     unsigned int clamp_value)
1529 {
1530 	/* Reset max-clamp retention only on idle exit */
1531 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1532 		return;
1533 
1534 	uclamp_rq_set(rq, clamp_id, clamp_value);
1535 }
1536 
1537 static inline
1538 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1539 				   unsigned int clamp_value)
1540 {
1541 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1542 	int bucket_id = UCLAMP_BUCKETS - 1;
1543 
1544 	/*
1545 	 * Since both min and max clamps are max aggregated, find the
1546 	 * top most bucket with tasks in.
1547 	 */
1548 	for ( ; bucket_id >= 0; bucket_id--) {
1549 		if (!bucket[bucket_id].tasks)
1550 			continue;
1551 		return bucket[bucket_id].value;
1552 	}
1553 
1554 	/* No tasks -- default clamp values */
1555 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1556 }
1557 
1558 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1559 {
1560 	unsigned int default_util_min;
1561 	struct uclamp_se *uc_se;
1562 
1563 	lockdep_assert_held(&p->pi_lock);
1564 
1565 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1566 
1567 	/* Only sync if user didn't override the default */
1568 	if (uc_se->user_defined)
1569 		return;
1570 
1571 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1572 	uclamp_se_set(uc_se, default_util_min, false);
1573 }
1574 
1575 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1576 {
1577 	if (!rt_task(p))
1578 		return;
1579 
1580 	/* Protect updates to p->uclamp_* */
1581 	guard(task_rq_lock)(p);
1582 	__uclamp_update_util_min_rt_default(p);
1583 }
1584 
1585 static inline struct uclamp_se
1586 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1587 {
1588 	/* Copy by value as we could modify it */
1589 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1590 #ifdef CONFIG_UCLAMP_TASK_GROUP
1591 	unsigned int tg_min, tg_max, value;
1592 
1593 	/*
1594 	 * Tasks in autogroups or root task group will be
1595 	 * restricted by system defaults.
1596 	 */
1597 	if (task_group_is_autogroup(task_group(p)))
1598 		return uc_req;
1599 	if (task_group(p) == &root_task_group)
1600 		return uc_req;
1601 
1602 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1603 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1604 	value = uc_req.value;
1605 	value = clamp(value, tg_min, tg_max);
1606 	uclamp_se_set(&uc_req, value, false);
1607 #endif
1608 
1609 	return uc_req;
1610 }
1611 
1612 /*
1613  * The effective clamp bucket index of a task depends on, by increasing
1614  * priority:
1615  * - the task specific clamp value, when explicitly requested from userspace
1616  * - the task group effective clamp value, for tasks not either in the root
1617  *   group or in an autogroup
1618  * - the system default clamp value, defined by the sysadmin
1619  */
1620 static inline struct uclamp_se
1621 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1622 {
1623 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1624 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1625 
1626 	/* System default restrictions always apply */
1627 	if (unlikely(uc_req.value > uc_max.value))
1628 		return uc_max;
1629 
1630 	return uc_req;
1631 }
1632 
1633 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1634 {
1635 	struct uclamp_se uc_eff;
1636 
1637 	/* Task currently refcounted: use back-annotated (effective) value */
1638 	if (p->uclamp[clamp_id].active)
1639 		return (unsigned long)p->uclamp[clamp_id].value;
1640 
1641 	uc_eff = uclamp_eff_get(p, clamp_id);
1642 
1643 	return (unsigned long)uc_eff.value;
1644 }
1645 
1646 /*
1647  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1648  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1649  * updates the rq's clamp value if required.
1650  *
1651  * Tasks can have a task-specific value requested from user-space, track
1652  * within each bucket the maximum value for tasks refcounted in it.
1653  * This "local max aggregation" allows to track the exact "requested" value
1654  * for each bucket when all its RUNNABLE tasks require the same clamp.
1655  */
1656 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1657 				    enum uclamp_id clamp_id)
1658 {
1659 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1660 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1661 	struct uclamp_bucket *bucket;
1662 
1663 	lockdep_assert_rq_held(rq);
1664 
1665 	/* Update task effective clamp */
1666 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1667 
1668 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1669 	bucket->tasks++;
1670 	uc_se->active = true;
1671 
1672 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1673 
1674 	/*
1675 	 * Local max aggregation: rq buckets always track the max
1676 	 * "requested" clamp value of its RUNNABLE tasks.
1677 	 */
1678 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1679 		bucket->value = uc_se->value;
1680 
1681 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1682 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1683 }
1684 
1685 /*
1686  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1687  * is released. If this is the last task reference counting the rq's max
1688  * active clamp value, then the rq's clamp value is updated.
1689  *
1690  * Both refcounted tasks and rq's cached clamp values are expected to be
1691  * always valid. If it's detected they are not, as defensive programming,
1692  * enforce the expected state and warn.
1693  */
1694 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1695 				    enum uclamp_id clamp_id)
1696 {
1697 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1698 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1699 	struct uclamp_bucket *bucket;
1700 	unsigned int bkt_clamp;
1701 	unsigned int rq_clamp;
1702 
1703 	lockdep_assert_rq_held(rq);
1704 
1705 	/*
1706 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1707 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1708 	 *
1709 	 * In this case the uc_se->active flag should be false since no uclamp
1710 	 * accounting was performed at enqueue time and we can just return
1711 	 * here.
1712 	 *
1713 	 * Need to be careful of the following enqueue/dequeue ordering
1714 	 * problem too
1715 	 *
1716 	 *	enqueue(taskA)
1717 	 *	// sched_uclamp_used gets enabled
1718 	 *	enqueue(taskB)
1719 	 *	dequeue(taskA)
1720 	 *	// Must not decrement bucket->tasks here
1721 	 *	dequeue(taskB)
1722 	 *
1723 	 * where we could end up with stale data in uc_se and
1724 	 * bucket[uc_se->bucket_id].
1725 	 *
1726 	 * The following check here eliminates the possibility of such race.
1727 	 */
1728 	if (unlikely(!uc_se->active))
1729 		return;
1730 
1731 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1732 
1733 	SCHED_WARN_ON(!bucket->tasks);
1734 	if (likely(bucket->tasks))
1735 		bucket->tasks--;
1736 
1737 	uc_se->active = false;
1738 
1739 	/*
1740 	 * Keep "local max aggregation" simple and accept to (possibly)
1741 	 * overboost some RUNNABLE tasks in the same bucket.
1742 	 * The rq clamp bucket value is reset to its base value whenever
1743 	 * there are no more RUNNABLE tasks refcounting it.
1744 	 */
1745 	if (likely(bucket->tasks))
1746 		return;
1747 
1748 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1749 	/*
1750 	 * Defensive programming: this should never happen. If it happens,
1751 	 * e.g. due to future modification, warn and fix up the expected value.
1752 	 */
1753 	SCHED_WARN_ON(bucket->value > rq_clamp);
1754 	if (bucket->value >= rq_clamp) {
1755 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1756 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1757 	}
1758 }
1759 
1760 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1761 {
1762 	enum uclamp_id clamp_id;
1763 
1764 	/*
1765 	 * Avoid any overhead until uclamp is actually used by the userspace.
1766 	 *
1767 	 * The condition is constructed such that a NOP is generated when
1768 	 * sched_uclamp_used is disabled.
1769 	 */
1770 	if (!static_branch_unlikely(&sched_uclamp_used))
1771 		return;
1772 
1773 	if (unlikely(!p->sched_class->uclamp_enabled))
1774 		return;
1775 
1776 	if (p->se.sched_delayed)
1777 		return;
1778 
1779 	for_each_clamp_id(clamp_id)
1780 		uclamp_rq_inc_id(rq, p, clamp_id);
1781 
1782 	/* Reset clamp idle holding when there is one RUNNABLE task */
1783 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1784 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1785 }
1786 
1787 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1788 {
1789 	enum uclamp_id clamp_id;
1790 
1791 	/*
1792 	 * Avoid any overhead until uclamp is actually used by the userspace.
1793 	 *
1794 	 * The condition is constructed such that a NOP is generated when
1795 	 * sched_uclamp_used is disabled.
1796 	 */
1797 	if (!static_branch_unlikely(&sched_uclamp_used))
1798 		return;
1799 
1800 	if (unlikely(!p->sched_class->uclamp_enabled))
1801 		return;
1802 
1803 	if (p->se.sched_delayed)
1804 		return;
1805 
1806 	for_each_clamp_id(clamp_id)
1807 		uclamp_rq_dec_id(rq, p, clamp_id);
1808 }
1809 
1810 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1811 				      enum uclamp_id clamp_id)
1812 {
1813 	if (!p->uclamp[clamp_id].active)
1814 		return;
1815 
1816 	uclamp_rq_dec_id(rq, p, clamp_id);
1817 	uclamp_rq_inc_id(rq, p, clamp_id);
1818 
1819 	/*
1820 	 * Make sure to clear the idle flag if we've transiently reached 0
1821 	 * active tasks on rq.
1822 	 */
1823 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1824 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1825 }
1826 
1827 static inline void
1828 uclamp_update_active(struct task_struct *p)
1829 {
1830 	enum uclamp_id clamp_id;
1831 	struct rq_flags rf;
1832 	struct rq *rq;
1833 
1834 	/*
1835 	 * Lock the task and the rq where the task is (or was) queued.
1836 	 *
1837 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1838 	 * price to pay to safely serialize util_{min,max} updates with
1839 	 * enqueues, dequeues and migration operations.
1840 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1841 	 */
1842 	rq = task_rq_lock(p, &rf);
1843 
1844 	/*
1845 	 * Setting the clamp bucket is serialized by task_rq_lock().
1846 	 * If the task is not yet RUNNABLE and its task_struct is not
1847 	 * affecting a valid clamp bucket, the next time it's enqueued,
1848 	 * it will already see the updated clamp bucket value.
1849 	 */
1850 	for_each_clamp_id(clamp_id)
1851 		uclamp_rq_reinc_id(rq, p, clamp_id);
1852 
1853 	task_rq_unlock(rq, p, &rf);
1854 }
1855 
1856 #ifdef CONFIG_UCLAMP_TASK_GROUP
1857 static inline void
1858 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1859 {
1860 	struct css_task_iter it;
1861 	struct task_struct *p;
1862 
1863 	css_task_iter_start(css, 0, &it);
1864 	while ((p = css_task_iter_next(&it)))
1865 		uclamp_update_active(p);
1866 	css_task_iter_end(&it);
1867 }
1868 
1869 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1870 #endif
1871 
1872 #ifdef CONFIG_SYSCTL
1873 #ifdef CONFIG_UCLAMP_TASK_GROUP
1874 static void uclamp_update_root_tg(void)
1875 {
1876 	struct task_group *tg = &root_task_group;
1877 
1878 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1879 		      sysctl_sched_uclamp_util_min, false);
1880 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1881 		      sysctl_sched_uclamp_util_max, false);
1882 
1883 	guard(rcu)();
1884 	cpu_util_update_eff(&root_task_group.css);
1885 }
1886 #else
1887 static void uclamp_update_root_tg(void) { }
1888 #endif
1889 
1890 static void uclamp_sync_util_min_rt_default(void)
1891 {
1892 	struct task_struct *g, *p;
1893 
1894 	/*
1895 	 * copy_process()			sysctl_uclamp
1896 	 *					  uclamp_min_rt = X;
1897 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1898 	 *   // link thread			  smp_mb__after_spinlock()
1899 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1900 	 *   sched_post_fork()			  for_each_process_thread()
1901 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1902 	 *
1903 	 * Ensures that either sched_post_fork() will observe the new
1904 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1905 	 * task.
1906 	 */
1907 	read_lock(&tasklist_lock);
1908 	smp_mb__after_spinlock();
1909 	read_unlock(&tasklist_lock);
1910 
1911 	guard(rcu)();
1912 	for_each_process_thread(g, p)
1913 		uclamp_update_util_min_rt_default(p);
1914 }
1915 
1916 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1917 				void *buffer, size_t *lenp, loff_t *ppos)
1918 {
1919 	bool update_root_tg = false;
1920 	int old_min, old_max, old_min_rt;
1921 	int result;
1922 
1923 	guard(mutex)(&uclamp_mutex);
1924 
1925 	old_min = sysctl_sched_uclamp_util_min;
1926 	old_max = sysctl_sched_uclamp_util_max;
1927 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1928 
1929 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1930 	if (result)
1931 		goto undo;
1932 	if (!write)
1933 		return 0;
1934 
1935 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1936 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1937 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1938 
1939 		result = -EINVAL;
1940 		goto undo;
1941 	}
1942 
1943 	if (old_min != sysctl_sched_uclamp_util_min) {
1944 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1945 			      sysctl_sched_uclamp_util_min, false);
1946 		update_root_tg = true;
1947 	}
1948 	if (old_max != sysctl_sched_uclamp_util_max) {
1949 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1950 			      sysctl_sched_uclamp_util_max, false);
1951 		update_root_tg = true;
1952 	}
1953 
1954 	if (update_root_tg) {
1955 		static_branch_enable(&sched_uclamp_used);
1956 		uclamp_update_root_tg();
1957 	}
1958 
1959 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1960 		static_branch_enable(&sched_uclamp_used);
1961 		uclamp_sync_util_min_rt_default();
1962 	}
1963 
1964 	/*
1965 	 * We update all RUNNABLE tasks only when task groups are in use.
1966 	 * Otherwise, keep it simple and do just a lazy update at each next
1967 	 * task enqueue time.
1968 	 */
1969 	return 0;
1970 
1971 undo:
1972 	sysctl_sched_uclamp_util_min = old_min;
1973 	sysctl_sched_uclamp_util_max = old_max;
1974 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1975 	return result;
1976 }
1977 #endif
1978 
1979 static void uclamp_fork(struct task_struct *p)
1980 {
1981 	enum uclamp_id clamp_id;
1982 
1983 	/*
1984 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1985 	 * as the task is still at its early fork stages.
1986 	 */
1987 	for_each_clamp_id(clamp_id)
1988 		p->uclamp[clamp_id].active = false;
1989 
1990 	if (likely(!p->sched_reset_on_fork))
1991 		return;
1992 
1993 	for_each_clamp_id(clamp_id) {
1994 		uclamp_se_set(&p->uclamp_req[clamp_id],
1995 			      uclamp_none(clamp_id), false);
1996 	}
1997 }
1998 
1999 static void uclamp_post_fork(struct task_struct *p)
2000 {
2001 	uclamp_update_util_min_rt_default(p);
2002 }
2003 
2004 static void __init init_uclamp_rq(struct rq *rq)
2005 {
2006 	enum uclamp_id clamp_id;
2007 	struct uclamp_rq *uc_rq = rq->uclamp;
2008 
2009 	for_each_clamp_id(clamp_id) {
2010 		uc_rq[clamp_id] = (struct uclamp_rq) {
2011 			.value = uclamp_none(clamp_id)
2012 		};
2013 	}
2014 
2015 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2016 }
2017 
2018 static void __init init_uclamp(void)
2019 {
2020 	struct uclamp_se uc_max = {};
2021 	enum uclamp_id clamp_id;
2022 	int cpu;
2023 
2024 	for_each_possible_cpu(cpu)
2025 		init_uclamp_rq(cpu_rq(cpu));
2026 
2027 	for_each_clamp_id(clamp_id) {
2028 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2029 			      uclamp_none(clamp_id), false);
2030 	}
2031 
2032 	/* System defaults allow max clamp values for both indexes */
2033 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2034 	for_each_clamp_id(clamp_id) {
2035 		uclamp_default[clamp_id] = uc_max;
2036 #ifdef CONFIG_UCLAMP_TASK_GROUP
2037 		root_task_group.uclamp_req[clamp_id] = uc_max;
2038 		root_task_group.uclamp[clamp_id] = uc_max;
2039 #endif
2040 	}
2041 }
2042 
2043 #else /* !CONFIG_UCLAMP_TASK */
2044 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2045 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2046 static inline void uclamp_fork(struct task_struct *p) { }
2047 static inline void uclamp_post_fork(struct task_struct *p) { }
2048 static inline void init_uclamp(void) { }
2049 #endif /* CONFIG_UCLAMP_TASK */
2050 
2051 bool sched_task_on_rq(struct task_struct *p)
2052 {
2053 	return task_on_rq_queued(p);
2054 }
2055 
2056 unsigned long get_wchan(struct task_struct *p)
2057 {
2058 	unsigned long ip = 0;
2059 	unsigned int state;
2060 
2061 	if (!p || p == current)
2062 		return 0;
2063 
2064 	/* Only get wchan if task is blocked and we can keep it that way. */
2065 	raw_spin_lock_irq(&p->pi_lock);
2066 	state = READ_ONCE(p->__state);
2067 	smp_rmb(); /* see try_to_wake_up() */
2068 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2069 		ip = __get_wchan(p);
2070 	raw_spin_unlock_irq(&p->pi_lock);
2071 
2072 	return ip;
2073 }
2074 
2075 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2076 {
2077 	if (!(flags & ENQUEUE_NOCLOCK))
2078 		update_rq_clock(rq);
2079 
2080 	p->sched_class->enqueue_task(rq, p, flags);
2081 	/*
2082 	 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
2083 	 * ->sched_delayed.
2084 	 */
2085 	uclamp_rq_inc(rq, p);
2086 
2087 	psi_enqueue(p, flags);
2088 
2089 	if (!(flags & ENQUEUE_RESTORE))
2090 		sched_info_enqueue(rq, p);
2091 
2092 	if (sched_core_enabled(rq))
2093 		sched_core_enqueue(rq, p);
2094 }
2095 
2096 /*
2097  * Must only return false when DEQUEUE_SLEEP.
2098  */
2099 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2100 {
2101 	if (sched_core_enabled(rq))
2102 		sched_core_dequeue(rq, p, flags);
2103 
2104 	if (!(flags & DEQUEUE_NOCLOCK))
2105 		update_rq_clock(rq);
2106 
2107 	if (!(flags & DEQUEUE_SAVE))
2108 		sched_info_dequeue(rq, p);
2109 
2110 	psi_dequeue(p, flags);
2111 
2112 	/*
2113 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2114 	 * and mark the task ->sched_delayed.
2115 	 */
2116 	uclamp_rq_dec(rq, p);
2117 	return p->sched_class->dequeue_task(rq, p, flags);
2118 }
2119 
2120 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2121 {
2122 	if (task_on_rq_migrating(p))
2123 		flags |= ENQUEUE_MIGRATED;
2124 	if (flags & ENQUEUE_MIGRATED)
2125 		sched_mm_cid_migrate_to(rq, p);
2126 
2127 	enqueue_task(rq, p, flags);
2128 
2129 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2130 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2131 }
2132 
2133 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2134 {
2135 	SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
2136 
2137 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2138 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2139 
2140 	/*
2141 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2142 	 * dequeue_task() and cleared *after* enqueue_task().
2143 	 */
2144 
2145 	dequeue_task(rq, p, flags);
2146 }
2147 
2148 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2149 {
2150 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2151 		__block_task(rq, p);
2152 }
2153 
2154 /**
2155  * task_curr - is this task currently executing on a CPU?
2156  * @p: the task in question.
2157  *
2158  * Return: 1 if the task is currently executing. 0 otherwise.
2159  */
2160 inline int task_curr(const struct task_struct *p)
2161 {
2162 	return cpu_curr(task_cpu(p)) == p;
2163 }
2164 
2165 /*
2166  * ->switching_to() is called with the pi_lock and rq_lock held and must not
2167  * mess with locking.
2168  */
2169 void check_class_changing(struct rq *rq, struct task_struct *p,
2170 			  const struct sched_class *prev_class)
2171 {
2172 	if (prev_class != p->sched_class && p->sched_class->switching_to)
2173 		p->sched_class->switching_to(rq, p);
2174 }
2175 
2176 /*
2177  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2178  * use the balance_callback list if you want balancing.
2179  *
2180  * this means any call to check_class_changed() must be followed by a call to
2181  * balance_callback().
2182  */
2183 void check_class_changed(struct rq *rq, struct task_struct *p,
2184 			 const struct sched_class *prev_class,
2185 			 int oldprio)
2186 {
2187 	if (prev_class != p->sched_class) {
2188 		if (prev_class->switched_from)
2189 			prev_class->switched_from(rq, p);
2190 
2191 		p->sched_class->switched_to(rq, p);
2192 	} else if (oldprio != p->prio || dl_task(p))
2193 		p->sched_class->prio_changed(rq, p, oldprio);
2194 }
2195 
2196 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2197 {
2198 	struct task_struct *donor = rq->donor;
2199 
2200 	if (p->sched_class == donor->sched_class)
2201 		donor->sched_class->wakeup_preempt(rq, p, flags);
2202 	else if (sched_class_above(p->sched_class, donor->sched_class))
2203 		resched_curr(rq);
2204 
2205 	/*
2206 	 * A queue event has occurred, and we're going to schedule.  In
2207 	 * this case, we can save a useless back to back clock update.
2208 	 */
2209 	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2210 		rq_clock_skip_update(rq);
2211 }
2212 
2213 static __always_inline
2214 int __task_state_match(struct task_struct *p, unsigned int state)
2215 {
2216 	if (READ_ONCE(p->__state) & state)
2217 		return 1;
2218 
2219 	if (READ_ONCE(p->saved_state) & state)
2220 		return -1;
2221 
2222 	return 0;
2223 }
2224 
2225 static __always_inline
2226 int task_state_match(struct task_struct *p, unsigned int state)
2227 {
2228 	/*
2229 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2230 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2231 	 */
2232 	guard(raw_spinlock_irq)(&p->pi_lock);
2233 	return __task_state_match(p, state);
2234 }
2235 
2236 /*
2237  * wait_task_inactive - wait for a thread to unschedule.
2238  *
2239  * Wait for the thread to block in any of the states set in @match_state.
2240  * If it changes, i.e. @p might have woken up, then return zero.  When we
2241  * succeed in waiting for @p to be off its CPU, we return a positive number
2242  * (its total switch count).  If a second call a short while later returns the
2243  * same number, the caller can be sure that @p has remained unscheduled the
2244  * whole time.
2245  *
2246  * The caller must ensure that the task *will* unschedule sometime soon,
2247  * else this function might spin for a *long* time. This function can't
2248  * be called with interrupts off, or it may introduce deadlock with
2249  * smp_call_function() if an IPI is sent by the same process we are
2250  * waiting to become inactive.
2251  */
2252 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2253 {
2254 	int running, queued, match;
2255 	struct rq_flags rf;
2256 	unsigned long ncsw;
2257 	struct rq *rq;
2258 
2259 	for (;;) {
2260 		/*
2261 		 * We do the initial early heuristics without holding
2262 		 * any task-queue locks at all. We'll only try to get
2263 		 * the runqueue lock when things look like they will
2264 		 * work out!
2265 		 */
2266 		rq = task_rq(p);
2267 
2268 		/*
2269 		 * If the task is actively running on another CPU
2270 		 * still, just relax and busy-wait without holding
2271 		 * any locks.
2272 		 *
2273 		 * NOTE! Since we don't hold any locks, it's not
2274 		 * even sure that "rq" stays as the right runqueue!
2275 		 * But we don't care, since "task_on_cpu()" will
2276 		 * return false if the runqueue has changed and p
2277 		 * is actually now running somewhere else!
2278 		 */
2279 		while (task_on_cpu(rq, p)) {
2280 			if (!task_state_match(p, match_state))
2281 				return 0;
2282 			cpu_relax();
2283 		}
2284 
2285 		/*
2286 		 * Ok, time to look more closely! We need the rq
2287 		 * lock now, to be *sure*. If we're wrong, we'll
2288 		 * just go back and repeat.
2289 		 */
2290 		rq = task_rq_lock(p, &rf);
2291 		trace_sched_wait_task(p);
2292 		running = task_on_cpu(rq, p);
2293 		queued = task_on_rq_queued(p);
2294 		ncsw = 0;
2295 		if ((match = __task_state_match(p, match_state))) {
2296 			/*
2297 			 * When matching on p->saved_state, consider this task
2298 			 * still queued so it will wait.
2299 			 */
2300 			if (match < 0)
2301 				queued = 1;
2302 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2303 		}
2304 		task_rq_unlock(rq, p, &rf);
2305 
2306 		/*
2307 		 * If it changed from the expected state, bail out now.
2308 		 */
2309 		if (unlikely(!ncsw))
2310 			break;
2311 
2312 		/*
2313 		 * Was it really running after all now that we
2314 		 * checked with the proper locks actually held?
2315 		 *
2316 		 * Oops. Go back and try again..
2317 		 */
2318 		if (unlikely(running)) {
2319 			cpu_relax();
2320 			continue;
2321 		}
2322 
2323 		/*
2324 		 * It's not enough that it's not actively running,
2325 		 * it must be off the runqueue _entirely_, and not
2326 		 * preempted!
2327 		 *
2328 		 * So if it was still runnable (but just not actively
2329 		 * running right now), it's preempted, and we should
2330 		 * yield - it could be a while.
2331 		 */
2332 		if (unlikely(queued)) {
2333 			ktime_t to = NSEC_PER_SEC / HZ;
2334 
2335 			set_current_state(TASK_UNINTERRUPTIBLE);
2336 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2337 			continue;
2338 		}
2339 
2340 		/*
2341 		 * Ahh, all good. It wasn't running, and it wasn't
2342 		 * runnable, which means that it will never become
2343 		 * running in the future either. We're all done!
2344 		 */
2345 		break;
2346 	}
2347 
2348 	return ncsw;
2349 }
2350 
2351 #ifdef CONFIG_SMP
2352 
2353 static void
2354 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2355 
2356 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2357 {
2358 	struct affinity_context ac = {
2359 		.new_mask  = cpumask_of(rq->cpu),
2360 		.flags     = SCA_MIGRATE_DISABLE,
2361 	};
2362 
2363 	if (likely(!p->migration_disabled))
2364 		return;
2365 
2366 	if (p->cpus_ptr != &p->cpus_mask)
2367 		return;
2368 
2369 	/*
2370 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2371 	 */
2372 	__do_set_cpus_allowed(p, &ac);
2373 }
2374 
2375 void migrate_disable(void)
2376 {
2377 	struct task_struct *p = current;
2378 
2379 	if (p->migration_disabled) {
2380 #ifdef CONFIG_DEBUG_PREEMPT
2381 		/*
2382 		 *Warn about overflow half-way through the range.
2383 		 */
2384 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2385 #endif
2386 		p->migration_disabled++;
2387 		return;
2388 	}
2389 
2390 	guard(preempt)();
2391 	this_rq()->nr_pinned++;
2392 	p->migration_disabled = 1;
2393 }
2394 EXPORT_SYMBOL_GPL(migrate_disable);
2395 
2396 void migrate_enable(void)
2397 {
2398 	struct task_struct *p = current;
2399 	struct affinity_context ac = {
2400 		.new_mask  = &p->cpus_mask,
2401 		.flags     = SCA_MIGRATE_ENABLE,
2402 	};
2403 
2404 #ifdef CONFIG_DEBUG_PREEMPT
2405 	/*
2406 	 * Check both overflow from migrate_disable() and superfluous
2407 	 * migrate_enable().
2408 	 */
2409 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2410 		return;
2411 #endif
2412 
2413 	if (p->migration_disabled > 1) {
2414 		p->migration_disabled--;
2415 		return;
2416 	}
2417 
2418 	/*
2419 	 * Ensure stop_task runs either before or after this, and that
2420 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2421 	 */
2422 	guard(preempt)();
2423 	if (p->cpus_ptr != &p->cpus_mask)
2424 		__set_cpus_allowed_ptr(p, &ac);
2425 	/*
2426 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2427 	 * regular cpus_mask, otherwise things that race (eg.
2428 	 * select_fallback_rq) get confused.
2429 	 */
2430 	barrier();
2431 	p->migration_disabled = 0;
2432 	this_rq()->nr_pinned--;
2433 }
2434 EXPORT_SYMBOL_GPL(migrate_enable);
2435 
2436 static inline bool rq_has_pinned_tasks(struct rq *rq)
2437 {
2438 	return rq->nr_pinned;
2439 }
2440 
2441 /*
2442  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2443  * __set_cpus_allowed_ptr() and select_fallback_rq().
2444  */
2445 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2446 {
2447 	/* When not in the task's cpumask, no point in looking further. */
2448 	if (!task_allowed_on_cpu(p, cpu))
2449 		return false;
2450 
2451 	/* migrate_disabled() must be allowed to finish. */
2452 	if (is_migration_disabled(p))
2453 		return cpu_online(cpu);
2454 
2455 	/* Non kernel threads are not allowed during either online or offline. */
2456 	if (!(p->flags & PF_KTHREAD))
2457 		return cpu_active(cpu);
2458 
2459 	/* KTHREAD_IS_PER_CPU is always allowed. */
2460 	if (kthread_is_per_cpu(p))
2461 		return cpu_online(cpu);
2462 
2463 	/* Regular kernel threads don't get to stay during offline. */
2464 	if (cpu_dying(cpu))
2465 		return false;
2466 
2467 	/* But are allowed during online. */
2468 	return cpu_online(cpu);
2469 }
2470 
2471 /*
2472  * This is how migration works:
2473  *
2474  * 1) we invoke migration_cpu_stop() on the target CPU using
2475  *    stop_one_cpu().
2476  * 2) stopper starts to run (implicitly forcing the migrated thread
2477  *    off the CPU)
2478  * 3) it checks whether the migrated task is still in the wrong runqueue.
2479  * 4) if it's in the wrong runqueue then the migration thread removes
2480  *    it and puts it into the right queue.
2481  * 5) stopper completes and stop_one_cpu() returns and the migration
2482  *    is done.
2483  */
2484 
2485 /*
2486  * move_queued_task - move a queued task to new rq.
2487  *
2488  * Returns (locked) new rq. Old rq's lock is released.
2489  */
2490 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2491 				   struct task_struct *p, int new_cpu)
2492 {
2493 	lockdep_assert_rq_held(rq);
2494 
2495 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2496 	set_task_cpu(p, new_cpu);
2497 	rq_unlock(rq, rf);
2498 
2499 	rq = cpu_rq(new_cpu);
2500 
2501 	rq_lock(rq, rf);
2502 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2503 	activate_task(rq, p, 0);
2504 	wakeup_preempt(rq, p, 0);
2505 
2506 	return rq;
2507 }
2508 
2509 struct migration_arg {
2510 	struct task_struct		*task;
2511 	int				dest_cpu;
2512 	struct set_affinity_pending	*pending;
2513 };
2514 
2515 /*
2516  * @refs: number of wait_for_completion()
2517  * @stop_pending: is @stop_work in use
2518  */
2519 struct set_affinity_pending {
2520 	refcount_t		refs;
2521 	unsigned int		stop_pending;
2522 	struct completion	done;
2523 	struct cpu_stop_work	stop_work;
2524 	struct migration_arg	arg;
2525 };
2526 
2527 /*
2528  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2529  * this because either it can't run here any more (set_cpus_allowed()
2530  * away from this CPU, or CPU going down), or because we're
2531  * attempting to rebalance this task on exec (sched_exec).
2532  *
2533  * So we race with normal scheduler movements, but that's OK, as long
2534  * as the task is no longer on this CPU.
2535  */
2536 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2537 				 struct task_struct *p, int dest_cpu)
2538 {
2539 	/* Affinity changed (again). */
2540 	if (!is_cpu_allowed(p, dest_cpu))
2541 		return rq;
2542 
2543 	rq = move_queued_task(rq, rf, p, dest_cpu);
2544 
2545 	return rq;
2546 }
2547 
2548 /*
2549  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2550  * and performs thread migration by bumping thread off CPU then
2551  * 'pushing' onto another runqueue.
2552  */
2553 static int migration_cpu_stop(void *data)
2554 {
2555 	struct migration_arg *arg = data;
2556 	struct set_affinity_pending *pending = arg->pending;
2557 	struct task_struct *p = arg->task;
2558 	struct rq *rq = this_rq();
2559 	bool complete = false;
2560 	struct rq_flags rf;
2561 
2562 	/*
2563 	 * The original target CPU might have gone down and we might
2564 	 * be on another CPU but it doesn't matter.
2565 	 */
2566 	local_irq_save(rf.flags);
2567 	/*
2568 	 * We need to explicitly wake pending tasks before running
2569 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2570 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2571 	 */
2572 	flush_smp_call_function_queue();
2573 
2574 	raw_spin_lock(&p->pi_lock);
2575 	rq_lock(rq, &rf);
2576 
2577 	/*
2578 	 * If we were passed a pending, then ->stop_pending was set, thus
2579 	 * p->migration_pending must have remained stable.
2580 	 */
2581 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2582 
2583 	/*
2584 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2585 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2586 	 * we're holding p->pi_lock.
2587 	 */
2588 	if (task_rq(p) == rq) {
2589 		if (is_migration_disabled(p))
2590 			goto out;
2591 
2592 		if (pending) {
2593 			p->migration_pending = NULL;
2594 			complete = true;
2595 
2596 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2597 				goto out;
2598 		}
2599 
2600 		if (task_on_rq_queued(p)) {
2601 			update_rq_clock(rq);
2602 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2603 		} else {
2604 			p->wake_cpu = arg->dest_cpu;
2605 		}
2606 
2607 		/*
2608 		 * XXX __migrate_task() can fail, at which point we might end
2609 		 * up running on a dodgy CPU, AFAICT this can only happen
2610 		 * during CPU hotplug, at which point we'll get pushed out
2611 		 * anyway, so it's probably not a big deal.
2612 		 */
2613 
2614 	} else if (pending) {
2615 		/*
2616 		 * This happens when we get migrated between migrate_enable()'s
2617 		 * preempt_enable() and scheduling the stopper task. At that
2618 		 * point we're a regular task again and not current anymore.
2619 		 *
2620 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2621 		 * more likely.
2622 		 */
2623 
2624 		/*
2625 		 * The task moved before the stopper got to run. We're holding
2626 		 * ->pi_lock, so the allowed mask is stable - if it got
2627 		 * somewhere allowed, we're done.
2628 		 */
2629 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2630 			p->migration_pending = NULL;
2631 			complete = true;
2632 			goto out;
2633 		}
2634 
2635 		/*
2636 		 * When migrate_enable() hits a rq mis-match we can't reliably
2637 		 * determine is_migration_disabled() and so have to chase after
2638 		 * it.
2639 		 */
2640 		WARN_ON_ONCE(!pending->stop_pending);
2641 		preempt_disable();
2642 		task_rq_unlock(rq, p, &rf);
2643 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2644 				    &pending->arg, &pending->stop_work);
2645 		preempt_enable();
2646 		return 0;
2647 	}
2648 out:
2649 	if (pending)
2650 		pending->stop_pending = false;
2651 	task_rq_unlock(rq, p, &rf);
2652 
2653 	if (complete)
2654 		complete_all(&pending->done);
2655 
2656 	return 0;
2657 }
2658 
2659 int push_cpu_stop(void *arg)
2660 {
2661 	struct rq *lowest_rq = NULL, *rq = this_rq();
2662 	struct task_struct *p = arg;
2663 
2664 	raw_spin_lock_irq(&p->pi_lock);
2665 	raw_spin_rq_lock(rq);
2666 
2667 	if (task_rq(p) != rq)
2668 		goto out_unlock;
2669 
2670 	if (is_migration_disabled(p)) {
2671 		p->migration_flags |= MDF_PUSH;
2672 		goto out_unlock;
2673 	}
2674 
2675 	p->migration_flags &= ~MDF_PUSH;
2676 
2677 	if (p->sched_class->find_lock_rq)
2678 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2679 
2680 	if (!lowest_rq)
2681 		goto out_unlock;
2682 
2683 	// XXX validate p is still the highest prio task
2684 	if (task_rq(p) == rq) {
2685 		move_queued_task_locked(rq, lowest_rq, p);
2686 		resched_curr(lowest_rq);
2687 	}
2688 
2689 	double_unlock_balance(rq, lowest_rq);
2690 
2691 out_unlock:
2692 	rq->push_busy = false;
2693 	raw_spin_rq_unlock(rq);
2694 	raw_spin_unlock_irq(&p->pi_lock);
2695 
2696 	put_task_struct(p);
2697 	return 0;
2698 }
2699 
2700 /*
2701  * sched_class::set_cpus_allowed must do the below, but is not required to
2702  * actually call this function.
2703  */
2704 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2705 {
2706 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2707 		p->cpus_ptr = ctx->new_mask;
2708 		return;
2709 	}
2710 
2711 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2712 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2713 
2714 	/*
2715 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2716 	 */
2717 	if (ctx->flags & SCA_USER)
2718 		swap(p->user_cpus_ptr, ctx->user_mask);
2719 }
2720 
2721 static void
2722 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2723 {
2724 	struct rq *rq = task_rq(p);
2725 	bool queued, running;
2726 
2727 	/*
2728 	 * This here violates the locking rules for affinity, since we're only
2729 	 * supposed to change these variables while holding both rq->lock and
2730 	 * p->pi_lock.
2731 	 *
2732 	 * HOWEVER, it magically works, because ttwu() is the only code that
2733 	 * accesses these variables under p->pi_lock and only does so after
2734 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2735 	 * before finish_task().
2736 	 *
2737 	 * XXX do further audits, this smells like something putrid.
2738 	 */
2739 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2740 		SCHED_WARN_ON(!p->on_cpu);
2741 	else
2742 		lockdep_assert_held(&p->pi_lock);
2743 
2744 	queued = task_on_rq_queued(p);
2745 	running = task_current_donor(rq, p);
2746 
2747 	if (queued) {
2748 		/*
2749 		 * Because __kthread_bind() calls this on blocked tasks without
2750 		 * holding rq->lock.
2751 		 */
2752 		lockdep_assert_rq_held(rq);
2753 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2754 	}
2755 	if (running)
2756 		put_prev_task(rq, p);
2757 
2758 	p->sched_class->set_cpus_allowed(p, ctx);
2759 	mm_set_cpus_allowed(p->mm, ctx->new_mask);
2760 
2761 	if (queued)
2762 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2763 	if (running)
2764 		set_next_task(rq, p);
2765 }
2766 
2767 /*
2768  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2769  * affinity (if any) should be destroyed too.
2770  */
2771 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2772 {
2773 	struct affinity_context ac = {
2774 		.new_mask  = new_mask,
2775 		.user_mask = NULL,
2776 		.flags     = SCA_USER,	/* clear the user requested mask */
2777 	};
2778 	union cpumask_rcuhead {
2779 		cpumask_t cpumask;
2780 		struct rcu_head rcu;
2781 	};
2782 
2783 	__do_set_cpus_allowed(p, &ac);
2784 
2785 	/*
2786 	 * Because this is called with p->pi_lock held, it is not possible
2787 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2788 	 * kfree_rcu().
2789 	 */
2790 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2791 }
2792 
2793 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2794 		      int node)
2795 {
2796 	cpumask_t *user_mask;
2797 	unsigned long flags;
2798 
2799 	/*
2800 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2801 	 * may differ by now due to racing.
2802 	 */
2803 	dst->user_cpus_ptr = NULL;
2804 
2805 	/*
2806 	 * This check is racy and losing the race is a valid situation.
2807 	 * It is not worth the extra overhead of taking the pi_lock on
2808 	 * every fork/clone.
2809 	 */
2810 	if (data_race(!src->user_cpus_ptr))
2811 		return 0;
2812 
2813 	user_mask = alloc_user_cpus_ptr(node);
2814 	if (!user_mask)
2815 		return -ENOMEM;
2816 
2817 	/*
2818 	 * Use pi_lock to protect content of user_cpus_ptr
2819 	 *
2820 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2821 	 * do_set_cpus_allowed().
2822 	 */
2823 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2824 	if (src->user_cpus_ptr) {
2825 		swap(dst->user_cpus_ptr, user_mask);
2826 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2827 	}
2828 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2829 
2830 	if (unlikely(user_mask))
2831 		kfree(user_mask);
2832 
2833 	return 0;
2834 }
2835 
2836 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2837 {
2838 	struct cpumask *user_mask = NULL;
2839 
2840 	swap(p->user_cpus_ptr, user_mask);
2841 
2842 	return user_mask;
2843 }
2844 
2845 void release_user_cpus_ptr(struct task_struct *p)
2846 {
2847 	kfree(clear_user_cpus_ptr(p));
2848 }
2849 
2850 /*
2851  * This function is wildly self concurrent; here be dragons.
2852  *
2853  *
2854  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2855  * designated task is enqueued on an allowed CPU. If that task is currently
2856  * running, we have to kick it out using the CPU stopper.
2857  *
2858  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2859  * Consider:
2860  *
2861  *     Initial conditions: P0->cpus_mask = [0, 1]
2862  *
2863  *     P0@CPU0                  P1
2864  *
2865  *     migrate_disable();
2866  *     <preempted>
2867  *                              set_cpus_allowed_ptr(P0, [1]);
2868  *
2869  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2870  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2871  * This means we need the following scheme:
2872  *
2873  *     P0@CPU0                  P1
2874  *
2875  *     migrate_disable();
2876  *     <preempted>
2877  *                              set_cpus_allowed_ptr(P0, [1]);
2878  *                                <blocks>
2879  *     <resumes>
2880  *     migrate_enable();
2881  *       __set_cpus_allowed_ptr();
2882  *       <wakes local stopper>
2883  *                         `--> <woken on migration completion>
2884  *
2885  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2886  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2887  * task p are serialized by p->pi_lock, which we can leverage: the one that
2888  * should come into effect at the end of the Migrate-Disable region is the last
2889  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2890  * but we still need to properly signal those waiting tasks at the appropriate
2891  * moment.
2892  *
2893  * This is implemented using struct set_affinity_pending. The first
2894  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2895  * setup an instance of that struct and install it on the targeted task_struct.
2896  * Any and all further callers will reuse that instance. Those then wait for
2897  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2898  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2899  *
2900  *
2901  * (1) In the cases covered above. There is one more where the completion is
2902  * signaled within affine_move_task() itself: when a subsequent affinity request
2903  * occurs after the stopper bailed out due to the targeted task still being
2904  * Migrate-Disable. Consider:
2905  *
2906  *     Initial conditions: P0->cpus_mask = [0, 1]
2907  *
2908  *     CPU0		  P1				P2
2909  *     <P0>
2910  *       migrate_disable();
2911  *       <preempted>
2912  *                        set_cpus_allowed_ptr(P0, [1]);
2913  *                          <blocks>
2914  *     <migration/0>
2915  *       migration_cpu_stop()
2916  *         is_migration_disabled()
2917  *           <bails>
2918  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2919  *                                                         <signal completion>
2920  *                          <awakes>
2921  *
2922  * Note that the above is safe vs a concurrent migrate_enable(), as any
2923  * pending affinity completion is preceded by an uninstallation of
2924  * p->migration_pending done with p->pi_lock held.
2925  */
2926 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2927 			    int dest_cpu, unsigned int flags)
2928 	__releases(rq->lock)
2929 	__releases(p->pi_lock)
2930 {
2931 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2932 	bool stop_pending, complete = false;
2933 
2934 	/* Can the task run on the task's current CPU? If so, we're done */
2935 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2936 		struct task_struct *push_task = NULL;
2937 
2938 		if ((flags & SCA_MIGRATE_ENABLE) &&
2939 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2940 			rq->push_busy = true;
2941 			push_task = get_task_struct(p);
2942 		}
2943 
2944 		/*
2945 		 * If there are pending waiters, but no pending stop_work,
2946 		 * then complete now.
2947 		 */
2948 		pending = p->migration_pending;
2949 		if (pending && !pending->stop_pending) {
2950 			p->migration_pending = NULL;
2951 			complete = true;
2952 		}
2953 
2954 		preempt_disable();
2955 		task_rq_unlock(rq, p, rf);
2956 		if (push_task) {
2957 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2958 					    p, &rq->push_work);
2959 		}
2960 		preempt_enable();
2961 
2962 		if (complete)
2963 			complete_all(&pending->done);
2964 
2965 		return 0;
2966 	}
2967 
2968 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2969 		/* serialized by p->pi_lock */
2970 		if (!p->migration_pending) {
2971 			/* Install the request */
2972 			refcount_set(&my_pending.refs, 1);
2973 			init_completion(&my_pending.done);
2974 			my_pending.arg = (struct migration_arg) {
2975 				.task = p,
2976 				.dest_cpu = dest_cpu,
2977 				.pending = &my_pending,
2978 			};
2979 
2980 			p->migration_pending = &my_pending;
2981 		} else {
2982 			pending = p->migration_pending;
2983 			refcount_inc(&pending->refs);
2984 			/*
2985 			 * Affinity has changed, but we've already installed a
2986 			 * pending. migration_cpu_stop() *must* see this, else
2987 			 * we risk a completion of the pending despite having a
2988 			 * task on a disallowed CPU.
2989 			 *
2990 			 * Serialized by p->pi_lock, so this is safe.
2991 			 */
2992 			pending->arg.dest_cpu = dest_cpu;
2993 		}
2994 	}
2995 	pending = p->migration_pending;
2996 	/*
2997 	 * - !MIGRATE_ENABLE:
2998 	 *   we'll have installed a pending if there wasn't one already.
2999 	 *
3000 	 * - MIGRATE_ENABLE:
3001 	 *   we're here because the current CPU isn't matching anymore,
3002 	 *   the only way that can happen is because of a concurrent
3003 	 *   set_cpus_allowed_ptr() call, which should then still be
3004 	 *   pending completion.
3005 	 *
3006 	 * Either way, we really should have a @pending here.
3007 	 */
3008 	if (WARN_ON_ONCE(!pending)) {
3009 		task_rq_unlock(rq, p, rf);
3010 		return -EINVAL;
3011 	}
3012 
3013 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3014 		/*
3015 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3016 		 * anything else we cannot do is_migration_disabled(), punt
3017 		 * and have the stopper function handle it all race-free.
3018 		 */
3019 		stop_pending = pending->stop_pending;
3020 		if (!stop_pending)
3021 			pending->stop_pending = true;
3022 
3023 		if (flags & SCA_MIGRATE_ENABLE)
3024 			p->migration_flags &= ~MDF_PUSH;
3025 
3026 		preempt_disable();
3027 		task_rq_unlock(rq, p, rf);
3028 		if (!stop_pending) {
3029 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3030 					    &pending->arg, &pending->stop_work);
3031 		}
3032 		preempt_enable();
3033 
3034 		if (flags & SCA_MIGRATE_ENABLE)
3035 			return 0;
3036 	} else {
3037 
3038 		if (!is_migration_disabled(p)) {
3039 			if (task_on_rq_queued(p))
3040 				rq = move_queued_task(rq, rf, p, dest_cpu);
3041 
3042 			if (!pending->stop_pending) {
3043 				p->migration_pending = NULL;
3044 				complete = true;
3045 			}
3046 		}
3047 		task_rq_unlock(rq, p, rf);
3048 
3049 		if (complete)
3050 			complete_all(&pending->done);
3051 	}
3052 
3053 	wait_for_completion(&pending->done);
3054 
3055 	if (refcount_dec_and_test(&pending->refs))
3056 		wake_up_var(&pending->refs); /* No UaF, just an address */
3057 
3058 	/*
3059 	 * Block the original owner of &pending until all subsequent callers
3060 	 * have seen the completion and decremented the refcount
3061 	 */
3062 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3063 
3064 	/* ARGH */
3065 	WARN_ON_ONCE(my_pending.stop_pending);
3066 
3067 	return 0;
3068 }
3069 
3070 /*
3071  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3072  */
3073 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3074 					 struct affinity_context *ctx,
3075 					 struct rq *rq,
3076 					 struct rq_flags *rf)
3077 	__releases(rq->lock)
3078 	__releases(p->pi_lock)
3079 {
3080 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3081 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3082 	bool kthread = p->flags & PF_KTHREAD;
3083 	unsigned int dest_cpu;
3084 	int ret = 0;
3085 
3086 	update_rq_clock(rq);
3087 
3088 	if (kthread || is_migration_disabled(p)) {
3089 		/*
3090 		 * Kernel threads are allowed on online && !active CPUs,
3091 		 * however, during cpu-hot-unplug, even these might get pushed
3092 		 * away if not KTHREAD_IS_PER_CPU.
3093 		 *
3094 		 * Specifically, migration_disabled() tasks must not fail the
3095 		 * cpumask_any_and_distribute() pick below, esp. so on
3096 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3097 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3098 		 */
3099 		cpu_valid_mask = cpu_online_mask;
3100 	}
3101 
3102 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3103 		ret = -EINVAL;
3104 		goto out;
3105 	}
3106 
3107 	/*
3108 	 * Must re-check here, to close a race against __kthread_bind(),
3109 	 * sched_setaffinity() is not guaranteed to observe the flag.
3110 	 */
3111 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3112 		ret = -EINVAL;
3113 		goto out;
3114 	}
3115 
3116 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3117 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3118 			if (ctx->flags & SCA_USER)
3119 				swap(p->user_cpus_ptr, ctx->user_mask);
3120 			goto out;
3121 		}
3122 
3123 		if (WARN_ON_ONCE(p == current &&
3124 				 is_migration_disabled(p) &&
3125 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3126 			ret = -EBUSY;
3127 			goto out;
3128 		}
3129 	}
3130 
3131 	/*
3132 	 * Picking a ~random cpu helps in cases where we are changing affinity
3133 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3134 	 * immediately required to distribute the tasks within their new mask.
3135 	 */
3136 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3137 	if (dest_cpu >= nr_cpu_ids) {
3138 		ret = -EINVAL;
3139 		goto out;
3140 	}
3141 
3142 	__do_set_cpus_allowed(p, ctx);
3143 
3144 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3145 
3146 out:
3147 	task_rq_unlock(rq, p, rf);
3148 
3149 	return ret;
3150 }
3151 
3152 /*
3153  * Change a given task's CPU affinity. Migrate the thread to a
3154  * proper CPU and schedule it away if the CPU it's executing on
3155  * is removed from the allowed bitmask.
3156  *
3157  * NOTE: the caller must have a valid reference to the task, the
3158  * task must not exit() & deallocate itself prematurely. The
3159  * call is not atomic; no spinlocks may be held.
3160  */
3161 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3162 {
3163 	struct rq_flags rf;
3164 	struct rq *rq;
3165 
3166 	rq = task_rq_lock(p, &rf);
3167 	/*
3168 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3169 	 * flags are set.
3170 	 */
3171 	if (p->user_cpus_ptr &&
3172 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3173 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3174 		ctx->new_mask = rq->scratch_mask;
3175 
3176 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3177 }
3178 
3179 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3180 {
3181 	struct affinity_context ac = {
3182 		.new_mask  = new_mask,
3183 		.flags     = 0,
3184 	};
3185 
3186 	return __set_cpus_allowed_ptr(p, &ac);
3187 }
3188 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3189 
3190 /*
3191  * Change a given task's CPU affinity to the intersection of its current
3192  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3193  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3194  * affinity or use cpu_online_mask instead.
3195  *
3196  * If the resulting mask is empty, leave the affinity unchanged and return
3197  * -EINVAL.
3198  */
3199 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3200 				     struct cpumask *new_mask,
3201 				     const struct cpumask *subset_mask)
3202 {
3203 	struct affinity_context ac = {
3204 		.new_mask  = new_mask,
3205 		.flags     = 0,
3206 	};
3207 	struct rq_flags rf;
3208 	struct rq *rq;
3209 	int err;
3210 
3211 	rq = task_rq_lock(p, &rf);
3212 
3213 	/*
3214 	 * Forcefully restricting the affinity of a deadline task is
3215 	 * likely to cause problems, so fail and noisily override the
3216 	 * mask entirely.
3217 	 */
3218 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3219 		err = -EPERM;
3220 		goto err_unlock;
3221 	}
3222 
3223 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3224 		err = -EINVAL;
3225 		goto err_unlock;
3226 	}
3227 
3228 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3229 
3230 err_unlock:
3231 	task_rq_unlock(rq, p, &rf);
3232 	return err;
3233 }
3234 
3235 /*
3236  * Restrict the CPU affinity of task @p so that it is a subset of
3237  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3238  * old affinity mask. If the resulting mask is empty, we warn and walk
3239  * up the cpuset hierarchy until we find a suitable mask.
3240  */
3241 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3242 {
3243 	cpumask_var_t new_mask;
3244 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3245 
3246 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3247 
3248 	/*
3249 	 * __migrate_task() can fail silently in the face of concurrent
3250 	 * offlining of the chosen destination CPU, so take the hotplug
3251 	 * lock to ensure that the migration succeeds.
3252 	 */
3253 	cpus_read_lock();
3254 	if (!cpumask_available(new_mask))
3255 		goto out_set_mask;
3256 
3257 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3258 		goto out_free_mask;
3259 
3260 	/*
3261 	 * We failed to find a valid subset of the affinity mask for the
3262 	 * task, so override it based on its cpuset hierarchy.
3263 	 */
3264 	cpuset_cpus_allowed(p, new_mask);
3265 	override_mask = new_mask;
3266 
3267 out_set_mask:
3268 	if (printk_ratelimit()) {
3269 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3270 				task_pid_nr(p), p->comm,
3271 				cpumask_pr_args(override_mask));
3272 	}
3273 
3274 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3275 out_free_mask:
3276 	cpus_read_unlock();
3277 	free_cpumask_var(new_mask);
3278 }
3279 
3280 /*
3281  * Restore the affinity of a task @p which was previously restricted by a
3282  * call to force_compatible_cpus_allowed_ptr().
3283  *
3284  * It is the caller's responsibility to serialise this with any calls to
3285  * force_compatible_cpus_allowed_ptr(@p).
3286  */
3287 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3288 {
3289 	struct affinity_context ac = {
3290 		.new_mask  = task_user_cpus(p),
3291 		.flags     = 0,
3292 	};
3293 	int ret;
3294 
3295 	/*
3296 	 * Try to restore the old affinity mask with __sched_setaffinity().
3297 	 * Cpuset masking will be done there too.
3298 	 */
3299 	ret = __sched_setaffinity(p, &ac);
3300 	WARN_ON_ONCE(ret);
3301 }
3302 
3303 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3304 {
3305 #ifdef CONFIG_SCHED_DEBUG
3306 	unsigned int state = READ_ONCE(p->__state);
3307 
3308 	/*
3309 	 * We should never call set_task_cpu() on a blocked task,
3310 	 * ttwu() will sort out the placement.
3311 	 */
3312 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3313 
3314 	/*
3315 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3316 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3317 	 * time relying on p->on_rq.
3318 	 */
3319 	WARN_ON_ONCE(state == TASK_RUNNING &&
3320 		     p->sched_class == &fair_sched_class &&
3321 		     (p->on_rq && !task_on_rq_migrating(p)));
3322 
3323 #ifdef CONFIG_LOCKDEP
3324 	/*
3325 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3326 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3327 	 *
3328 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3329 	 * see task_group().
3330 	 *
3331 	 * Furthermore, all task_rq users should acquire both locks, see
3332 	 * task_rq_lock().
3333 	 */
3334 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3335 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3336 #endif
3337 	/*
3338 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3339 	 */
3340 	WARN_ON_ONCE(!cpu_online(new_cpu));
3341 
3342 	WARN_ON_ONCE(is_migration_disabled(p));
3343 #endif
3344 
3345 	trace_sched_migrate_task(p, new_cpu);
3346 
3347 	if (task_cpu(p) != new_cpu) {
3348 		if (p->sched_class->migrate_task_rq)
3349 			p->sched_class->migrate_task_rq(p, new_cpu);
3350 		p->se.nr_migrations++;
3351 		rseq_migrate(p);
3352 		sched_mm_cid_migrate_from(p);
3353 		perf_event_task_migrate(p);
3354 	}
3355 
3356 	__set_task_cpu(p, new_cpu);
3357 }
3358 
3359 #ifdef CONFIG_NUMA_BALANCING
3360 static void __migrate_swap_task(struct task_struct *p, int cpu)
3361 {
3362 	if (task_on_rq_queued(p)) {
3363 		struct rq *src_rq, *dst_rq;
3364 		struct rq_flags srf, drf;
3365 
3366 		src_rq = task_rq(p);
3367 		dst_rq = cpu_rq(cpu);
3368 
3369 		rq_pin_lock(src_rq, &srf);
3370 		rq_pin_lock(dst_rq, &drf);
3371 
3372 		move_queued_task_locked(src_rq, dst_rq, p);
3373 		wakeup_preempt(dst_rq, p, 0);
3374 
3375 		rq_unpin_lock(dst_rq, &drf);
3376 		rq_unpin_lock(src_rq, &srf);
3377 
3378 	} else {
3379 		/*
3380 		 * Task isn't running anymore; make it appear like we migrated
3381 		 * it before it went to sleep. This means on wakeup we make the
3382 		 * previous CPU our target instead of where it really is.
3383 		 */
3384 		p->wake_cpu = cpu;
3385 	}
3386 }
3387 
3388 struct migration_swap_arg {
3389 	struct task_struct *src_task, *dst_task;
3390 	int src_cpu, dst_cpu;
3391 };
3392 
3393 static int migrate_swap_stop(void *data)
3394 {
3395 	struct migration_swap_arg *arg = data;
3396 	struct rq *src_rq, *dst_rq;
3397 
3398 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3399 		return -EAGAIN;
3400 
3401 	src_rq = cpu_rq(arg->src_cpu);
3402 	dst_rq = cpu_rq(arg->dst_cpu);
3403 
3404 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3405 	guard(double_rq_lock)(src_rq, dst_rq);
3406 
3407 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3408 		return -EAGAIN;
3409 
3410 	if (task_cpu(arg->src_task) != arg->src_cpu)
3411 		return -EAGAIN;
3412 
3413 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3414 		return -EAGAIN;
3415 
3416 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3417 		return -EAGAIN;
3418 
3419 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3420 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3421 
3422 	return 0;
3423 }
3424 
3425 /*
3426  * Cross migrate two tasks
3427  */
3428 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3429 		int target_cpu, int curr_cpu)
3430 {
3431 	struct migration_swap_arg arg;
3432 	int ret = -EINVAL;
3433 
3434 	arg = (struct migration_swap_arg){
3435 		.src_task = cur,
3436 		.src_cpu = curr_cpu,
3437 		.dst_task = p,
3438 		.dst_cpu = target_cpu,
3439 	};
3440 
3441 	if (arg.src_cpu == arg.dst_cpu)
3442 		goto out;
3443 
3444 	/*
3445 	 * These three tests are all lockless; this is OK since all of them
3446 	 * will be re-checked with proper locks held further down the line.
3447 	 */
3448 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3449 		goto out;
3450 
3451 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3452 		goto out;
3453 
3454 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3455 		goto out;
3456 
3457 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3458 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3459 
3460 out:
3461 	return ret;
3462 }
3463 #endif /* CONFIG_NUMA_BALANCING */
3464 
3465 /***
3466  * kick_process - kick a running thread to enter/exit the kernel
3467  * @p: the to-be-kicked thread
3468  *
3469  * Cause a process which is running on another CPU to enter
3470  * kernel-mode, without any delay. (to get signals handled.)
3471  *
3472  * NOTE: this function doesn't have to take the runqueue lock,
3473  * because all it wants to ensure is that the remote task enters
3474  * the kernel. If the IPI races and the task has been migrated
3475  * to another CPU then no harm is done and the purpose has been
3476  * achieved as well.
3477  */
3478 void kick_process(struct task_struct *p)
3479 {
3480 	guard(preempt)();
3481 	int cpu = task_cpu(p);
3482 
3483 	if ((cpu != smp_processor_id()) && task_curr(p))
3484 		smp_send_reschedule(cpu);
3485 }
3486 EXPORT_SYMBOL_GPL(kick_process);
3487 
3488 /*
3489  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3490  *
3491  * A few notes on cpu_active vs cpu_online:
3492  *
3493  *  - cpu_active must be a subset of cpu_online
3494  *
3495  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3496  *    see __set_cpus_allowed_ptr(). At this point the newly online
3497  *    CPU isn't yet part of the sched domains, and balancing will not
3498  *    see it.
3499  *
3500  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3501  *    avoid the load balancer to place new tasks on the to be removed
3502  *    CPU. Existing tasks will remain running there and will be taken
3503  *    off.
3504  *
3505  * This means that fallback selection must not select !active CPUs.
3506  * And can assume that any active CPU must be online. Conversely
3507  * select_task_rq() below may allow selection of !active CPUs in order
3508  * to satisfy the above rules.
3509  */
3510 static int select_fallback_rq(int cpu, struct task_struct *p)
3511 {
3512 	int nid = cpu_to_node(cpu);
3513 	const struct cpumask *nodemask = NULL;
3514 	enum { cpuset, possible, fail } state = cpuset;
3515 	int dest_cpu;
3516 
3517 	/*
3518 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3519 	 * will return -1. There is no CPU on the node, and we should
3520 	 * select the CPU on the other node.
3521 	 */
3522 	if (nid != -1) {
3523 		nodemask = cpumask_of_node(nid);
3524 
3525 		/* Look for allowed, online CPU in same node. */
3526 		for_each_cpu(dest_cpu, nodemask) {
3527 			if (is_cpu_allowed(p, dest_cpu))
3528 				return dest_cpu;
3529 		}
3530 	}
3531 
3532 	for (;;) {
3533 		/* Any allowed, online CPU? */
3534 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3535 			if (!is_cpu_allowed(p, dest_cpu))
3536 				continue;
3537 
3538 			goto out;
3539 		}
3540 
3541 		/* No more Mr. Nice Guy. */
3542 		switch (state) {
3543 		case cpuset:
3544 			if (cpuset_cpus_allowed_fallback(p)) {
3545 				state = possible;
3546 				break;
3547 			}
3548 			fallthrough;
3549 		case possible:
3550 			/*
3551 			 * XXX When called from select_task_rq() we only
3552 			 * hold p->pi_lock and again violate locking order.
3553 			 *
3554 			 * More yuck to audit.
3555 			 */
3556 			do_set_cpus_allowed(p, task_cpu_fallback_mask(p));
3557 			state = fail;
3558 			break;
3559 		case fail:
3560 			BUG();
3561 			break;
3562 		}
3563 	}
3564 
3565 out:
3566 	if (state != cpuset) {
3567 		/*
3568 		 * Don't tell them about moving exiting tasks or
3569 		 * kernel threads (both mm NULL), since they never
3570 		 * leave kernel.
3571 		 */
3572 		if (p->mm && printk_ratelimit()) {
3573 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3574 					task_pid_nr(p), p->comm, cpu);
3575 		}
3576 	}
3577 
3578 	return dest_cpu;
3579 }
3580 
3581 /*
3582  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3583  */
3584 static inline
3585 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3586 {
3587 	lockdep_assert_held(&p->pi_lock);
3588 
3589 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3590 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3591 		*wake_flags |= WF_RQ_SELECTED;
3592 	} else {
3593 		cpu = cpumask_any(p->cpus_ptr);
3594 	}
3595 
3596 	/*
3597 	 * In order not to call set_task_cpu() on a blocking task we need
3598 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3599 	 * CPU.
3600 	 *
3601 	 * Since this is common to all placement strategies, this lives here.
3602 	 *
3603 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3604 	 *   not worry about this generic constraint ]
3605 	 */
3606 	if (unlikely(!is_cpu_allowed(p, cpu)))
3607 		cpu = select_fallback_rq(task_cpu(p), p);
3608 
3609 	return cpu;
3610 }
3611 
3612 void sched_set_stop_task(int cpu, struct task_struct *stop)
3613 {
3614 	static struct lock_class_key stop_pi_lock;
3615 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3616 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3617 
3618 	if (stop) {
3619 		/*
3620 		 * Make it appear like a SCHED_FIFO task, its something
3621 		 * userspace knows about and won't get confused about.
3622 		 *
3623 		 * Also, it will make PI more or less work without too
3624 		 * much confusion -- but then, stop work should not
3625 		 * rely on PI working anyway.
3626 		 */
3627 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3628 
3629 		stop->sched_class = &stop_sched_class;
3630 
3631 		/*
3632 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3633 		 * adjust the effective priority of a task. As a result,
3634 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3635 		 * which can then trigger wakeups of the stop thread to push
3636 		 * around the current task.
3637 		 *
3638 		 * The stop task itself will never be part of the PI-chain, it
3639 		 * never blocks, therefore that ->pi_lock recursion is safe.
3640 		 * Tell lockdep about this by placing the stop->pi_lock in its
3641 		 * own class.
3642 		 */
3643 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3644 	}
3645 
3646 	cpu_rq(cpu)->stop = stop;
3647 
3648 	if (old_stop) {
3649 		/*
3650 		 * Reset it back to a normal scheduling class so that
3651 		 * it can die in pieces.
3652 		 */
3653 		old_stop->sched_class = &rt_sched_class;
3654 	}
3655 }
3656 
3657 #else /* CONFIG_SMP */
3658 
3659 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3660 
3661 static inline bool rq_has_pinned_tasks(struct rq *rq)
3662 {
3663 	return false;
3664 }
3665 
3666 #endif /* !CONFIG_SMP */
3667 
3668 static void
3669 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3670 {
3671 	struct rq *rq;
3672 
3673 	if (!schedstat_enabled())
3674 		return;
3675 
3676 	rq = this_rq();
3677 
3678 #ifdef CONFIG_SMP
3679 	if (cpu == rq->cpu) {
3680 		__schedstat_inc(rq->ttwu_local);
3681 		__schedstat_inc(p->stats.nr_wakeups_local);
3682 	} else {
3683 		struct sched_domain *sd;
3684 
3685 		__schedstat_inc(p->stats.nr_wakeups_remote);
3686 
3687 		guard(rcu)();
3688 		for_each_domain(rq->cpu, sd) {
3689 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3690 				__schedstat_inc(sd->ttwu_wake_remote);
3691 				break;
3692 			}
3693 		}
3694 	}
3695 
3696 	if (wake_flags & WF_MIGRATED)
3697 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3698 #endif /* CONFIG_SMP */
3699 
3700 	__schedstat_inc(rq->ttwu_count);
3701 	__schedstat_inc(p->stats.nr_wakeups);
3702 
3703 	if (wake_flags & WF_SYNC)
3704 		__schedstat_inc(p->stats.nr_wakeups_sync);
3705 }
3706 
3707 /*
3708  * Mark the task runnable.
3709  */
3710 static inline void ttwu_do_wakeup(struct task_struct *p)
3711 {
3712 	WRITE_ONCE(p->__state, TASK_RUNNING);
3713 	trace_sched_wakeup(p);
3714 }
3715 
3716 static void
3717 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3718 		 struct rq_flags *rf)
3719 {
3720 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3721 
3722 	lockdep_assert_rq_held(rq);
3723 
3724 	if (p->sched_contributes_to_load)
3725 		rq->nr_uninterruptible--;
3726 
3727 #ifdef CONFIG_SMP
3728 	if (wake_flags & WF_RQ_SELECTED)
3729 		en_flags |= ENQUEUE_RQ_SELECTED;
3730 	if (wake_flags & WF_MIGRATED)
3731 		en_flags |= ENQUEUE_MIGRATED;
3732 	else
3733 #endif
3734 	if (p->in_iowait) {
3735 		delayacct_blkio_end(p);
3736 		atomic_dec(&task_rq(p)->nr_iowait);
3737 	}
3738 
3739 	activate_task(rq, p, en_flags);
3740 	wakeup_preempt(rq, p, wake_flags);
3741 
3742 	ttwu_do_wakeup(p);
3743 
3744 #ifdef CONFIG_SMP
3745 	if (p->sched_class->task_woken) {
3746 		/*
3747 		 * Our task @p is fully woken up and running; so it's safe to
3748 		 * drop the rq->lock, hereafter rq is only used for statistics.
3749 		 */
3750 		rq_unpin_lock(rq, rf);
3751 		p->sched_class->task_woken(rq, p);
3752 		rq_repin_lock(rq, rf);
3753 	}
3754 
3755 	if (rq->idle_stamp) {
3756 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3757 		u64 max = 2*rq->max_idle_balance_cost;
3758 
3759 		update_avg(&rq->avg_idle, delta);
3760 
3761 		if (rq->avg_idle > max)
3762 			rq->avg_idle = max;
3763 
3764 		rq->idle_stamp = 0;
3765 	}
3766 #endif
3767 }
3768 
3769 /*
3770  * Consider @p being inside a wait loop:
3771  *
3772  *   for (;;) {
3773  *      set_current_state(TASK_UNINTERRUPTIBLE);
3774  *
3775  *      if (CONDITION)
3776  *         break;
3777  *
3778  *      schedule();
3779  *   }
3780  *   __set_current_state(TASK_RUNNING);
3781  *
3782  * between set_current_state() and schedule(). In this case @p is still
3783  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3784  * an atomic manner.
3785  *
3786  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3787  * then schedule() must still happen and p->state can be changed to
3788  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3789  * need to do a full wakeup with enqueue.
3790  *
3791  * Returns: %true when the wakeup is done,
3792  *          %false otherwise.
3793  */
3794 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3795 {
3796 	struct rq_flags rf;
3797 	struct rq *rq;
3798 	int ret = 0;
3799 
3800 	rq = __task_rq_lock(p, &rf);
3801 	if (task_on_rq_queued(p)) {
3802 		update_rq_clock(rq);
3803 		if (p->se.sched_delayed)
3804 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3805 		if (!task_on_cpu(rq, p)) {
3806 			/*
3807 			 * When on_rq && !on_cpu the task is preempted, see if
3808 			 * it should preempt the task that is current now.
3809 			 */
3810 			wakeup_preempt(rq, p, wake_flags);
3811 		}
3812 		ttwu_do_wakeup(p);
3813 		ret = 1;
3814 	}
3815 	__task_rq_unlock(rq, &rf);
3816 
3817 	return ret;
3818 }
3819 
3820 #ifdef CONFIG_SMP
3821 void sched_ttwu_pending(void *arg)
3822 {
3823 	struct llist_node *llist = arg;
3824 	struct rq *rq = this_rq();
3825 	struct task_struct *p, *t;
3826 	struct rq_flags rf;
3827 
3828 	if (!llist)
3829 		return;
3830 
3831 	rq_lock_irqsave(rq, &rf);
3832 	update_rq_clock(rq);
3833 
3834 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3835 		if (WARN_ON_ONCE(p->on_cpu))
3836 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3837 
3838 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3839 			set_task_cpu(p, cpu_of(rq));
3840 
3841 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3842 	}
3843 
3844 	/*
3845 	 * Must be after enqueueing at least once task such that
3846 	 * idle_cpu() does not observe a false-negative -- if it does,
3847 	 * it is possible for select_idle_siblings() to stack a number
3848 	 * of tasks on this CPU during that window.
3849 	 *
3850 	 * It is OK to clear ttwu_pending when another task pending.
3851 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3852 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3853 	 */
3854 	WRITE_ONCE(rq->ttwu_pending, 0);
3855 	rq_unlock_irqrestore(rq, &rf);
3856 }
3857 
3858 /*
3859  * Prepare the scene for sending an IPI for a remote smp_call
3860  *
3861  * Returns true if the caller can proceed with sending the IPI.
3862  * Returns false otherwise.
3863  */
3864 bool call_function_single_prep_ipi(int cpu)
3865 {
3866 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3867 		trace_sched_wake_idle_without_ipi(cpu);
3868 		return false;
3869 	}
3870 
3871 	return true;
3872 }
3873 
3874 /*
3875  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3876  * necessary. The wakee CPU on receipt of the IPI will queue the task
3877  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3878  * of the wakeup instead of the waker.
3879  */
3880 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3881 {
3882 	struct rq *rq = cpu_rq(cpu);
3883 
3884 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3885 
3886 	WRITE_ONCE(rq->ttwu_pending, 1);
3887 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3888 }
3889 
3890 void wake_up_if_idle(int cpu)
3891 {
3892 	struct rq *rq = cpu_rq(cpu);
3893 
3894 	guard(rcu)();
3895 	if (is_idle_task(rcu_dereference(rq->curr))) {
3896 		guard(rq_lock_irqsave)(rq);
3897 		if (is_idle_task(rq->curr))
3898 			resched_curr(rq);
3899 	}
3900 }
3901 
3902 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3903 {
3904 	if (!sched_asym_cpucap_active())
3905 		return true;
3906 
3907 	if (this_cpu == that_cpu)
3908 		return true;
3909 
3910 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3911 }
3912 
3913 bool cpus_share_cache(int this_cpu, int that_cpu)
3914 {
3915 	if (this_cpu == that_cpu)
3916 		return true;
3917 
3918 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3919 }
3920 
3921 /*
3922  * Whether CPUs are share cache resources, which means LLC on non-cluster
3923  * machines and LLC tag or L2 on machines with clusters.
3924  */
3925 bool cpus_share_resources(int this_cpu, int that_cpu)
3926 {
3927 	if (this_cpu == that_cpu)
3928 		return true;
3929 
3930 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3931 }
3932 
3933 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3934 {
3935 	/*
3936 	 * The BPF scheduler may depend on select_task_rq() being invoked during
3937 	 * wakeups. In addition, @p may end up executing on a different CPU
3938 	 * regardless of what happens in the wakeup path making the ttwu_queue
3939 	 * optimization less meaningful. Skip if on SCX.
3940 	 */
3941 	if (task_on_scx(p))
3942 		return false;
3943 
3944 	/*
3945 	 * Do not complicate things with the async wake_list while the CPU is
3946 	 * in hotplug state.
3947 	 */
3948 	if (!cpu_active(cpu))
3949 		return false;
3950 
3951 	/* Ensure the task will still be allowed to run on the CPU. */
3952 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3953 		return false;
3954 
3955 	/*
3956 	 * If the CPU does not share cache, then queue the task on the
3957 	 * remote rqs wakelist to avoid accessing remote data.
3958 	 */
3959 	if (!cpus_share_cache(smp_processor_id(), cpu))
3960 		return true;
3961 
3962 	if (cpu == smp_processor_id())
3963 		return false;
3964 
3965 	/*
3966 	 * If the wakee cpu is idle, or the task is descheduling and the
3967 	 * only running task on the CPU, then use the wakelist to offload
3968 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3969 	 * the current CPU is likely busy. nr_running is checked to
3970 	 * avoid unnecessary task stacking.
3971 	 *
3972 	 * Note that we can only get here with (wakee) p->on_rq=0,
3973 	 * p->on_cpu can be whatever, we've done the dequeue, so
3974 	 * the wakee has been accounted out of ->nr_running.
3975 	 */
3976 	if (!cpu_rq(cpu)->nr_running)
3977 		return true;
3978 
3979 	return false;
3980 }
3981 
3982 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3983 {
3984 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3985 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3986 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3987 		return true;
3988 	}
3989 
3990 	return false;
3991 }
3992 
3993 #else /* !CONFIG_SMP */
3994 
3995 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3996 {
3997 	return false;
3998 }
3999 
4000 #endif /* CONFIG_SMP */
4001 
4002 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4003 {
4004 	struct rq *rq = cpu_rq(cpu);
4005 	struct rq_flags rf;
4006 
4007 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4008 		return;
4009 
4010 	rq_lock(rq, &rf);
4011 	update_rq_clock(rq);
4012 	ttwu_do_activate(rq, p, wake_flags, &rf);
4013 	rq_unlock(rq, &rf);
4014 }
4015 
4016 /*
4017  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4018  *
4019  * The caller holds p::pi_lock if p != current or has preemption
4020  * disabled when p == current.
4021  *
4022  * The rules of saved_state:
4023  *
4024  *   The related locking code always holds p::pi_lock when updating
4025  *   p::saved_state, which means the code is fully serialized in both cases.
4026  *
4027  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4028  *   No other bits set. This allows to distinguish all wakeup scenarios.
4029  *
4030  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4031  *   allows us to prevent early wakeup of tasks before they can be run on
4032  *   asymmetric ISA architectures (eg ARMv9).
4033  */
4034 static __always_inline
4035 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4036 {
4037 	int match;
4038 
4039 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4040 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4041 			     state != TASK_RTLOCK_WAIT);
4042 	}
4043 
4044 	*success = !!(match = __task_state_match(p, state));
4045 
4046 	/*
4047 	 * Saved state preserves the task state across blocking on
4048 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4049 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4050 	 * because it waits for a lock wakeup or __thaw_task(). Also
4051 	 * indicate success because from the regular waker's point of
4052 	 * view this has succeeded.
4053 	 *
4054 	 * After acquiring the lock the task will restore p::__state
4055 	 * from p::saved_state which ensures that the regular
4056 	 * wakeup is not lost. The restore will also set
4057 	 * p::saved_state to TASK_RUNNING so any further tests will
4058 	 * not result in false positives vs. @success
4059 	 */
4060 	if (match < 0)
4061 		p->saved_state = TASK_RUNNING;
4062 
4063 	return match > 0;
4064 }
4065 
4066 /*
4067  * Notes on Program-Order guarantees on SMP systems.
4068  *
4069  *  MIGRATION
4070  *
4071  * The basic program-order guarantee on SMP systems is that when a task [t]
4072  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4073  * execution on its new CPU [c1].
4074  *
4075  * For migration (of runnable tasks) this is provided by the following means:
4076  *
4077  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4078  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4079  *     rq(c1)->lock (if not at the same time, then in that order).
4080  *  C) LOCK of the rq(c1)->lock scheduling in task
4081  *
4082  * Release/acquire chaining guarantees that B happens after A and C after B.
4083  * Note: the CPU doing B need not be c0 or c1
4084  *
4085  * Example:
4086  *
4087  *   CPU0            CPU1            CPU2
4088  *
4089  *   LOCK rq(0)->lock
4090  *   sched-out X
4091  *   sched-in Y
4092  *   UNLOCK rq(0)->lock
4093  *
4094  *                                   LOCK rq(0)->lock // orders against CPU0
4095  *                                   dequeue X
4096  *                                   UNLOCK rq(0)->lock
4097  *
4098  *                                   LOCK rq(1)->lock
4099  *                                   enqueue X
4100  *                                   UNLOCK rq(1)->lock
4101  *
4102  *                   LOCK rq(1)->lock // orders against CPU2
4103  *                   sched-out Z
4104  *                   sched-in X
4105  *                   UNLOCK rq(1)->lock
4106  *
4107  *
4108  *  BLOCKING -- aka. SLEEP + WAKEUP
4109  *
4110  * For blocking we (obviously) need to provide the same guarantee as for
4111  * migration. However the means are completely different as there is no lock
4112  * chain to provide order. Instead we do:
4113  *
4114  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4115  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4116  *
4117  * Example:
4118  *
4119  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4120  *
4121  *   LOCK rq(0)->lock LOCK X->pi_lock
4122  *   dequeue X
4123  *   sched-out X
4124  *   smp_store_release(X->on_cpu, 0);
4125  *
4126  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4127  *                    X->state = WAKING
4128  *                    set_task_cpu(X,2)
4129  *
4130  *                    LOCK rq(2)->lock
4131  *                    enqueue X
4132  *                    X->state = RUNNING
4133  *                    UNLOCK rq(2)->lock
4134  *
4135  *                                          LOCK rq(2)->lock // orders against CPU1
4136  *                                          sched-out Z
4137  *                                          sched-in X
4138  *                                          UNLOCK rq(2)->lock
4139  *
4140  *                    UNLOCK X->pi_lock
4141  *   UNLOCK rq(0)->lock
4142  *
4143  *
4144  * However, for wakeups there is a second guarantee we must provide, namely we
4145  * must ensure that CONDITION=1 done by the caller can not be reordered with
4146  * accesses to the task state; see try_to_wake_up() and set_current_state().
4147  */
4148 
4149 /**
4150  * try_to_wake_up - wake up a thread
4151  * @p: the thread to be awakened
4152  * @state: the mask of task states that can be woken
4153  * @wake_flags: wake modifier flags (WF_*)
4154  *
4155  * Conceptually does:
4156  *
4157  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4158  *
4159  * If the task was not queued/runnable, also place it back on a runqueue.
4160  *
4161  * This function is atomic against schedule() which would dequeue the task.
4162  *
4163  * It issues a full memory barrier before accessing @p->state, see the comment
4164  * with set_current_state().
4165  *
4166  * Uses p->pi_lock to serialize against concurrent wake-ups.
4167  *
4168  * Relies on p->pi_lock stabilizing:
4169  *  - p->sched_class
4170  *  - p->cpus_ptr
4171  *  - p->sched_task_group
4172  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4173  *
4174  * Tries really hard to only take one task_rq(p)->lock for performance.
4175  * Takes rq->lock in:
4176  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4177  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4178  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4179  *
4180  * As a consequence we race really badly with just about everything. See the
4181  * many memory barriers and their comments for details.
4182  *
4183  * Return: %true if @p->state changes (an actual wakeup was done),
4184  *	   %false otherwise.
4185  */
4186 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4187 {
4188 	guard(preempt)();
4189 	int cpu, success = 0;
4190 
4191 	wake_flags |= WF_TTWU;
4192 
4193 	if (p == current) {
4194 		/*
4195 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4196 		 * == smp_processor_id()'. Together this means we can special
4197 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4198 		 * without taking any locks.
4199 		 *
4200 		 * Specifically, given current runs ttwu() we must be before
4201 		 * schedule()'s block_task(), as such this must not observe
4202 		 * sched_delayed.
4203 		 *
4204 		 * In particular:
4205 		 *  - we rely on Program-Order guarantees for all the ordering,
4206 		 *  - we're serialized against set_special_state() by virtue of
4207 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4208 		 */
4209 		SCHED_WARN_ON(p->se.sched_delayed);
4210 		if (!ttwu_state_match(p, state, &success))
4211 			goto out;
4212 
4213 		trace_sched_waking(p);
4214 		ttwu_do_wakeup(p);
4215 		goto out;
4216 	}
4217 
4218 	/*
4219 	 * If we are going to wake up a thread waiting for CONDITION we
4220 	 * need to ensure that CONDITION=1 done by the caller can not be
4221 	 * reordered with p->state check below. This pairs with smp_store_mb()
4222 	 * in set_current_state() that the waiting thread does.
4223 	 */
4224 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4225 		smp_mb__after_spinlock();
4226 		if (!ttwu_state_match(p, state, &success))
4227 			break;
4228 
4229 		trace_sched_waking(p);
4230 
4231 		/*
4232 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4233 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4234 		 * in smp_cond_load_acquire() below.
4235 		 *
4236 		 * sched_ttwu_pending()			try_to_wake_up()
4237 		 *   STORE p->on_rq = 1			  LOAD p->state
4238 		 *   UNLOCK rq->lock
4239 		 *
4240 		 * __schedule() (switch to task 'p')
4241 		 *   LOCK rq->lock			  smp_rmb();
4242 		 *   smp_mb__after_spinlock();
4243 		 *   UNLOCK rq->lock
4244 		 *
4245 		 * [task p]
4246 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4247 		 *
4248 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4249 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4250 		 *
4251 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4252 		 */
4253 		smp_rmb();
4254 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4255 			break;
4256 
4257 #ifdef CONFIG_SMP
4258 		/*
4259 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4260 		 * possible to, falsely, observe p->on_cpu == 0.
4261 		 *
4262 		 * One must be running (->on_cpu == 1) in order to remove oneself
4263 		 * from the runqueue.
4264 		 *
4265 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4266 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4267 		 *   UNLOCK rq->lock
4268 		 *
4269 		 * __schedule() (put 'p' to sleep)
4270 		 *   LOCK rq->lock			  smp_rmb();
4271 		 *   smp_mb__after_spinlock();
4272 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4273 		 *
4274 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4275 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4276 		 *
4277 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4278 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4279 		 * care about it's own p->state. See the comment in __schedule().
4280 		 */
4281 		smp_acquire__after_ctrl_dep();
4282 
4283 		/*
4284 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4285 		 * == 0), which means we need to do an enqueue, change p->state to
4286 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4287 		 * enqueue, such as ttwu_queue_wakelist().
4288 		 */
4289 		WRITE_ONCE(p->__state, TASK_WAKING);
4290 
4291 		/*
4292 		 * If the owning (remote) CPU is still in the middle of schedule() with
4293 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4294 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4295 		 * let the waker make forward progress. This is safe because IRQs are
4296 		 * disabled and the IPI will deliver after on_cpu is cleared.
4297 		 *
4298 		 * Ensure we load task_cpu(p) after p->on_cpu:
4299 		 *
4300 		 * set_task_cpu(p, cpu);
4301 		 *   STORE p->cpu = @cpu
4302 		 * __schedule() (switch to task 'p')
4303 		 *   LOCK rq->lock
4304 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4305 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4306 		 *
4307 		 * to ensure we observe the correct CPU on which the task is currently
4308 		 * scheduling.
4309 		 */
4310 		if (smp_load_acquire(&p->on_cpu) &&
4311 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4312 			break;
4313 
4314 		/*
4315 		 * If the owning (remote) CPU is still in the middle of schedule() with
4316 		 * this task as prev, wait until it's done referencing the task.
4317 		 *
4318 		 * Pairs with the smp_store_release() in finish_task().
4319 		 *
4320 		 * This ensures that tasks getting woken will be fully ordered against
4321 		 * their previous state and preserve Program Order.
4322 		 */
4323 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4324 
4325 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4326 		if (task_cpu(p) != cpu) {
4327 			if (p->in_iowait) {
4328 				delayacct_blkio_end(p);
4329 				atomic_dec(&task_rq(p)->nr_iowait);
4330 			}
4331 
4332 			wake_flags |= WF_MIGRATED;
4333 			psi_ttwu_dequeue(p);
4334 			set_task_cpu(p, cpu);
4335 		}
4336 #else
4337 		cpu = task_cpu(p);
4338 #endif /* CONFIG_SMP */
4339 
4340 		ttwu_queue(p, cpu, wake_flags);
4341 	}
4342 out:
4343 	if (success)
4344 		ttwu_stat(p, task_cpu(p), wake_flags);
4345 
4346 	return success;
4347 }
4348 
4349 static bool __task_needs_rq_lock(struct task_struct *p)
4350 {
4351 	unsigned int state = READ_ONCE(p->__state);
4352 
4353 	/*
4354 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4355 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4356 	 * locks at the end, see ttwu_queue_wakelist().
4357 	 */
4358 	if (state == TASK_RUNNING || state == TASK_WAKING)
4359 		return true;
4360 
4361 	/*
4362 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4363 	 * possible to, falsely, observe p->on_rq == 0.
4364 	 *
4365 	 * See try_to_wake_up() for a longer comment.
4366 	 */
4367 	smp_rmb();
4368 	if (p->on_rq)
4369 		return true;
4370 
4371 #ifdef CONFIG_SMP
4372 	/*
4373 	 * Ensure the task has finished __schedule() and will not be referenced
4374 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4375 	 */
4376 	smp_rmb();
4377 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4378 #endif
4379 
4380 	return false;
4381 }
4382 
4383 /**
4384  * task_call_func - Invoke a function on task in fixed state
4385  * @p: Process for which the function is to be invoked, can be @current.
4386  * @func: Function to invoke.
4387  * @arg: Argument to function.
4388  *
4389  * Fix the task in it's current state by avoiding wakeups and or rq operations
4390  * and call @func(@arg) on it.  This function can use task_is_runnable() and
4391  * task_curr() to work out what the state is, if required.  Given that @func
4392  * can be invoked with a runqueue lock held, it had better be quite
4393  * lightweight.
4394  *
4395  * Returns:
4396  *   Whatever @func returns
4397  */
4398 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4399 {
4400 	struct rq *rq = NULL;
4401 	struct rq_flags rf;
4402 	int ret;
4403 
4404 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4405 
4406 	if (__task_needs_rq_lock(p))
4407 		rq = __task_rq_lock(p, &rf);
4408 
4409 	/*
4410 	 * At this point the task is pinned; either:
4411 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4412 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4413 	 *  - queued, and we're holding off schedule	 (rq->lock)
4414 	 *  - running, and we're holding off de-schedule (rq->lock)
4415 	 *
4416 	 * The called function (@func) can use: task_curr(), p->on_rq and
4417 	 * p->__state to differentiate between these states.
4418 	 */
4419 	ret = func(p, arg);
4420 
4421 	if (rq)
4422 		rq_unlock(rq, &rf);
4423 
4424 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4425 	return ret;
4426 }
4427 
4428 /**
4429  * cpu_curr_snapshot - Return a snapshot of the currently running task
4430  * @cpu: The CPU on which to snapshot the task.
4431  *
4432  * Returns the task_struct pointer of the task "currently" running on
4433  * the specified CPU.
4434  *
4435  * If the specified CPU was offline, the return value is whatever it
4436  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4437  * task, but there is no guarantee.  Callers wishing a useful return
4438  * value must take some action to ensure that the specified CPU remains
4439  * online throughout.
4440  *
4441  * This function executes full memory barriers before and after fetching
4442  * the pointer, which permits the caller to confine this function's fetch
4443  * with respect to the caller's accesses to other shared variables.
4444  */
4445 struct task_struct *cpu_curr_snapshot(int cpu)
4446 {
4447 	struct rq *rq = cpu_rq(cpu);
4448 	struct task_struct *t;
4449 	struct rq_flags rf;
4450 
4451 	rq_lock_irqsave(rq, &rf);
4452 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4453 	t = rcu_dereference(cpu_curr(cpu));
4454 	rq_unlock_irqrestore(rq, &rf);
4455 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4456 
4457 	return t;
4458 }
4459 
4460 /**
4461  * wake_up_process - Wake up a specific process
4462  * @p: The process to be woken up.
4463  *
4464  * Attempt to wake up the nominated process and move it to the set of runnable
4465  * processes.
4466  *
4467  * Return: 1 if the process was woken up, 0 if it was already running.
4468  *
4469  * This function executes a full memory barrier before accessing the task state.
4470  */
4471 int wake_up_process(struct task_struct *p)
4472 {
4473 	return try_to_wake_up(p, TASK_NORMAL, 0);
4474 }
4475 EXPORT_SYMBOL(wake_up_process);
4476 
4477 int wake_up_state(struct task_struct *p, unsigned int state)
4478 {
4479 	return try_to_wake_up(p, state, 0);
4480 }
4481 
4482 /*
4483  * Perform scheduler related setup for a newly forked process p.
4484  * p is forked by current.
4485  *
4486  * __sched_fork() is basic setup which is also used by sched_init() to
4487  * initialize the boot CPU's idle task.
4488  */
4489 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4490 {
4491 	p->on_rq			= 0;
4492 
4493 	p->se.on_rq			= 0;
4494 	p->se.exec_start		= 0;
4495 	p->se.sum_exec_runtime		= 0;
4496 	p->se.prev_sum_exec_runtime	= 0;
4497 	p->se.nr_migrations		= 0;
4498 	p->se.vruntime			= 0;
4499 	p->se.vlag			= 0;
4500 	INIT_LIST_HEAD(&p->se.group_node);
4501 
4502 	/* A delayed task cannot be in clone(). */
4503 	SCHED_WARN_ON(p->se.sched_delayed);
4504 
4505 #ifdef CONFIG_FAIR_GROUP_SCHED
4506 	p->se.cfs_rq			= NULL;
4507 #endif
4508 
4509 #ifdef CONFIG_SCHEDSTATS
4510 	/* Even if schedstat is disabled, there should not be garbage */
4511 	memset(&p->stats, 0, sizeof(p->stats));
4512 #endif
4513 
4514 	init_dl_entity(&p->dl);
4515 
4516 	INIT_LIST_HEAD(&p->rt.run_list);
4517 	p->rt.timeout		= 0;
4518 	p->rt.time_slice	= sched_rr_timeslice;
4519 	p->rt.on_rq		= 0;
4520 	p->rt.on_list		= 0;
4521 
4522 #ifdef CONFIG_SCHED_CLASS_EXT
4523 	init_scx_entity(&p->scx);
4524 #endif
4525 
4526 #ifdef CONFIG_PREEMPT_NOTIFIERS
4527 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4528 #endif
4529 
4530 #ifdef CONFIG_COMPACTION
4531 	p->capture_control = NULL;
4532 #endif
4533 	init_numa_balancing(clone_flags, p);
4534 #ifdef CONFIG_SMP
4535 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4536 	p->migration_pending = NULL;
4537 #endif
4538 	init_sched_mm_cid(p);
4539 }
4540 
4541 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4542 
4543 #ifdef CONFIG_NUMA_BALANCING
4544 
4545 int sysctl_numa_balancing_mode;
4546 
4547 static void __set_numabalancing_state(bool enabled)
4548 {
4549 	if (enabled)
4550 		static_branch_enable(&sched_numa_balancing);
4551 	else
4552 		static_branch_disable(&sched_numa_balancing);
4553 }
4554 
4555 void set_numabalancing_state(bool enabled)
4556 {
4557 	if (enabled)
4558 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4559 	else
4560 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4561 	__set_numabalancing_state(enabled);
4562 }
4563 
4564 #ifdef CONFIG_PROC_SYSCTL
4565 static void reset_memory_tiering(void)
4566 {
4567 	struct pglist_data *pgdat;
4568 
4569 	for_each_online_pgdat(pgdat) {
4570 		pgdat->nbp_threshold = 0;
4571 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4572 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4573 	}
4574 }
4575 
4576 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4577 			  void *buffer, size_t *lenp, loff_t *ppos)
4578 {
4579 	struct ctl_table t;
4580 	int err;
4581 	int state = sysctl_numa_balancing_mode;
4582 
4583 	if (write && !capable(CAP_SYS_ADMIN))
4584 		return -EPERM;
4585 
4586 	t = *table;
4587 	t.data = &state;
4588 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4589 	if (err < 0)
4590 		return err;
4591 	if (write) {
4592 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4593 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4594 			reset_memory_tiering();
4595 		sysctl_numa_balancing_mode = state;
4596 		__set_numabalancing_state(state);
4597 	}
4598 	return err;
4599 }
4600 #endif
4601 #endif
4602 
4603 #ifdef CONFIG_SCHEDSTATS
4604 
4605 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4606 
4607 static void set_schedstats(bool enabled)
4608 {
4609 	if (enabled)
4610 		static_branch_enable(&sched_schedstats);
4611 	else
4612 		static_branch_disable(&sched_schedstats);
4613 }
4614 
4615 void force_schedstat_enabled(void)
4616 {
4617 	if (!schedstat_enabled()) {
4618 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4619 		static_branch_enable(&sched_schedstats);
4620 	}
4621 }
4622 
4623 static int __init setup_schedstats(char *str)
4624 {
4625 	int ret = 0;
4626 	if (!str)
4627 		goto out;
4628 
4629 	if (!strcmp(str, "enable")) {
4630 		set_schedstats(true);
4631 		ret = 1;
4632 	} else if (!strcmp(str, "disable")) {
4633 		set_schedstats(false);
4634 		ret = 1;
4635 	}
4636 out:
4637 	if (!ret)
4638 		pr_warn("Unable to parse schedstats=\n");
4639 
4640 	return ret;
4641 }
4642 __setup("schedstats=", setup_schedstats);
4643 
4644 #ifdef CONFIG_PROC_SYSCTL
4645 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4646 		size_t *lenp, loff_t *ppos)
4647 {
4648 	struct ctl_table t;
4649 	int err;
4650 	int state = static_branch_likely(&sched_schedstats);
4651 
4652 	if (write && !capable(CAP_SYS_ADMIN))
4653 		return -EPERM;
4654 
4655 	t = *table;
4656 	t.data = &state;
4657 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4658 	if (err < 0)
4659 		return err;
4660 	if (write)
4661 		set_schedstats(state);
4662 	return err;
4663 }
4664 #endif /* CONFIG_PROC_SYSCTL */
4665 #endif /* CONFIG_SCHEDSTATS */
4666 
4667 #ifdef CONFIG_SYSCTL
4668 static const struct ctl_table sched_core_sysctls[] = {
4669 #ifdef CONFIG_SCHEDSTATS
4670 	{
4671 		.procname       = "sched_schedstats",
4672 		.data           = NULL,
4673 		.maxlen         = sizeof(unsigned int),
4674 		.mode           = 0644,
4675 		.proc_handler   = sysctl_schedstats,
4676 		.extra1         = SYSCTL_ZERO,
4677 		.extra2         = SYSCTL_ONE,
4678 	},
4679 #endif /* CONFIG_SCHEDSTATS */
4680 #ifdef CONFIG_UCLAMP_TASK
4681 	{
4682 		.procname       = "sched_util_clamp_min",
4683 		.data           = &sysctl_sched_uclamp_util_min,
4684 		.maxlen         = sizeof(unsigned int),
4685 		.mode           = 0644,
4686 		.proc_handler   = sysctl_sched_uclamp_handler,
4687 	},
4688 	{
4689 		.procname       = "sched_util_clamp_max",
4690 		.data           = &sysctl_sched_uclamp_util_max,
4691 		.maxlen         = sizeof(unsigned int),
4692 		.mode           = 0644,
4693 		.proc_handler   = sysctl_sched_uclamp_handler,
4694 	},
4695 	{
4696 		.procname       = "sched_util_clamp_min_rt_default",
4697 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4698 		.maxlen         = sizeof(unsigned int),
4699 		.mode           = 0644,
4700 		.proc_handler   = sysctl_sched_uclamp_handler,
4701 	},
4702 #endif /* CONFIG_UCLAMP_TASK */
4703 #ifdef CONFIG_NUMA_BALANCING
4704 	{
4705 		.procname	= "numa_balancing",
4706 		.data		= NULL, /* filled in by handler */
4707 		.maxlen		= sizeof(unsigned int),
4708 		.mode		= 0644,
4709 		.proc_handler	= sysctl_numa_balancing,
4710 		.extra1		= SYSCTL_ZERO,
4711 		.extra2		= SYSCTL_FOUR,
4712 	},
4713 #endif /* CONFIG_NUMA_BALANCING */
4714 };
4715 static int __init sched_core_sysctl_init(void)
4716 {
4717 	register_sysctl_init("kernel", sched_core_sysctls);
4718 	return 0;
4719 }
4720 late_initcall(sched_core_sysctl_init);
4721 #endif /* CONFIG_SYSCTL */
4722 
4723 /*
4724  * fork()/clone()-time setup:
4725  */
4726 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4727 {
4728 	__sched_fork(clone_flags, p);
4729 	/*
4730 	 * We mark the process as NEW here. This guarantees that
4731 	 * nobody will actually run it, and a signal or other external
4732 	 * event cannot wake it up and insert it on the runqueue either.
4733 	 */
4734 	p->__state = TASK_NEW;
4735 
4736 	/*
4737 	 * Make sure we do not leak PI boosting priority to the child.
4738 	 */
4739 	p->prio = current->normal_prio;
4740 
4741 	uclamp_fork(p);
4742 
4743 	/*
4744 	 * Revert to default priority/policy on fork if requested.
4745 	 */
4746 	if (unlikely(p->sched_reset_on_fork)) {
4747 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4748 			p->policy = SCHED_NORMAL;
4749 			p->static_prio = NICE_TO_PRIO(0);
4750 			p->rt_priority = 0;
4751 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4752 			p->static_prio = NICE_TO_PRIO(0);
4753 
4754 		p->prio = p->normal_prio = p->static_prio;
4755 		set_load_weight(p, false);
4756 		p->se.custom_slice = 0;
4757 		p->se.slice = sysctl_sched_base_slice;
4758 
4759 		/*
4760 		 * We don't need the reset flag anymore after the fork. It has
4761 		 * fulfilled its duty:
4762 		 */
4763 		p->sched_reset_on_fork = 0;
4764 	}
4765 
4766 	if (dl_prio(p->prio))
4767 		return -EAGAIN;
4768 
4769 	scx_pre_fork(p);
4770 
4771 	if (rt_prio(p->prio)) {
4772 		p->sched_class = &rt_sched_class;
4773 #ifdef CONFIG_SCHED_CLASS_EXT
4774 	} else if (task_should_scx(p->policy)) {
4775 		p->sched_class = &ext_sched_class;
4776 #endif
4777 	} else {
4778 		p->sched_class = &fair_sched_class;
4779 	}
4780 
4781 	init_entity_runnable_average(&p->se);
4782 
4783 
4784 #ifdef CONFIG_SCHED_INFO
4785 	if (likely(sched_info_on()))
4786 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4787 #endif
4788 #if defined(CONFIG_SMP)
4789 	p->on_cpu = 0;
4790 #endif
4791 	init_task_preempt_count(p);
4792 #ifdef CONFIG_SMP
4793 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4794 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4795 #endif
4796 	return 0;
4797 }
4798 
4799 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4800 {
4801 	unsigned long flags;
4802 
4803 	/*
4804 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4805 	 * required yet, but lockdep gets upset if rules are violated.
4806 	 */
4807 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4808 #ifdef CONFIG_CGROUP_SCHED
4809 	if (1) {
4810 		struct task_group *tg;
4811 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4812 				  struct task_group, css);
4813 		tg = autogroup_task_group(p, tg);
4814 		p->sched_task_group = tg;
4815 	}
4816 #endif
4817 	rseq_migrate(p);
4818 	/*
4819 	 * We're setting the CPU for the first time, we don't migrate,
4820 	 * so use __set_task_cpu().
4821 	 */
4822 	__set_task_cpu(p, smp_processor_id());
4823 	if (p->sched_class->task_fork)
4824 		p->sched_class->task_fork(p);
4825 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4826 
4827 	return scx_fork(p);
4828 }
4829 
4830 void sched_cancel_fork(struct task_struct *p)
4831 {
4832 	scx_cancel_fork(p);
4833 }
4834 
4835 void sched_post_fork(struct task_struct *p)
4836 {
4837 	uclamp_post_fork(p);
4838 	scx_post_fork(p);
4839 }
4840 
4841 unsigned long to_ratio(u64 period, u64 runtime)
4842 {
4843 	if (runtime == RUNTIME_INF)
4844 		return BW_UNIT;
4845 
4846 	/*
4847 	 * Doing this here saves a lot of checks in all
4848 	 * the calling paths, and returning zero seems
4849 	 * safe for them anyway.
4850 	 */
4851 	if (period == 0)
4852 		return 0;
4853 
4854 	return div64_u64(runtime << BW_SHIFT, period);
4855 }
4856 
4857 /*
4858  * wake_up_new_task - wake up a newly created task for the first time.
4859  *
4860  * This function will do some initial scheduler statistics housekeeping
4861  * that must be done for every newly created context, then puts the task
4862  * on the runqueue and wakes it.
4863  */
4864 void wake_up_new_task(struct task_struct *p)
4865 {
4866 	struct rq_flags rf;
4867 	struct rq *rq;
4868 	int wake_flags = WF_FORK;
4869 
4870 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4871 	WRITE_ONCE(p->__state, TASK_RUNNING);
4872 #ifdef CONFIG_SMP
4873 	/*
4874 	 * Fork balancing, do it here and not earlier because:
4875 	 *  - cpus_ptr can change in the fork path
4876 	 *  - any previously selected CPU might disappear through hotplug
4877 	 *
4878 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4879 	 * as we're not fully set-up yet.
4880 	 */
4881 	p->recent_used_cpu = task_cpu(p);
4882 	rseq_migrate(p);
4883 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4884 #endif
4885 	rq = __task_rq_lock(p, &rf);
4886 	update_rq_clock(rq);
4887 	post_init_entity_util_avg(p);
4888 
4889 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4890 	trace_sched_wakeup_new(p);
4891 	wakeup_preempt(rq, p, wake_flags);
4892 #ifdef CONFIG_SMP
4893 	if (p->sched_class->task_woken) {
4894 		/*
4895 		 * Nothing relies on rq->lock after this, so it's fine to
4896 		 * drop it.
4897 		 */
4898 		rq_unpin_lock(rq, &rf);
4899 		p->sched_class->task_woken(rq, p);
4900 		rq_repin_lock(rq, &rf);
4901 	}
4902 #endif
4903 	task_rq_unlock(rq, p, &rf);
4904 }
4905 
4906 #ifdef CONFIG_PREEMPT_NOTIFIERS
4907 
4908 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4909 
4910 void preempt_notifier_inc(void)
4911 {
4912 	static_branch_inc(&preempt_notifier_key);
4913 }
4914 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4915 
4916 void preempt_notifier_dec(void)
4917 {
4918 	static_branch_dec(&preempt_notifier_key);
4919 }
4920 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4921 
4922 /**
4923  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4924  * @notifier: notifier struct to register
4925  */
4926 void preempt_notifier_register(struct preempt_notifier *notifier)
4927 {
4928 	if (!static_branch_unlikely(&preempt_notifier_key))
4929 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4930 
4931 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4932 }
4933 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4934 
4935 /**
4936  * preempt_notifier_unregister - no longer interested in preemption notifications
4937  * @notifier: notifier struct to unregister
4938  *
4939  * This is *not* safe to call from within a preemption notifier.
4940  */
4941 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4942 {
4943 	hlist_del(&notifier->link);
4944 }
4945 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4946 
4947 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4948 {
4949 	struct preempt_notifier *notifier;
4950 
4951 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4952 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4953 }
4954 
4955 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4956 {
4957 	if (static_branch_unlikely(&preempt_notifier_key))
4958 		__fire_sched_in_preempt_notifiers(curr);
4959 }
4960 
4961 static void
4962 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4963 				   struct task_struct *next)
4964 {
4965 	struct preempt_notifier *notifier;
4966 
4967 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4968 		notifier->ops->sched_out(notifier, next);
4969 }
4970 
4971 static __always_inline void
4972 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4973 				 struct task_struct *next)
4974 {
4975 	if (static_branch_unlikely(&preempt_notifier_key))
4976 		__fire_sched_out_preempt_notifiers(curr, next);
4977 }
4978 
4979 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4980 
4981 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4982 {
4983 }
4984 
4985 static inline void
4986 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4987 				 struct task_struct *next)
4988 {
4989 }
4990 
4991 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4992 
4993 static inline void prepare_task(struct task_struct *next)
4994 {
4995 #ifdef CONFIG_SMP
4996 	/*
4997 	 * Claim the task as running, we do this before switching to it
4998 	 * such that any running task will have this set.
4999 	 *
5000 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5001 	 * its ordering comment.
5002 	 */
5003 	WRITE_ONCE(next->on_cpu, 1);
5004 #endif
5005 }
5006 
5007 static inline void finish_task(struct task_struct *prev)
5008 {
5009 #ifdef CONFIG_SMP
5010 	/*
5011 	 * This must be the very last reference to @prev from this CPU. After
5012 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5013 	 * must ensure this doesn't happen until the switch is completely
5014 	 * finished.
5015 	 *
5016 	 * In particular, the load of prev->state in finish_task_switch() must
5017 	 * happen before this.
5018 	 *
5019 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5020 	 */
5021 	smp_store_release(&prev->on_cpu, 0);
5022 #endif
5023 }
5024 
5025 #ifdef CONFIG_SMP
5026 
5027 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5028 {
5029 	void (*func)(struct rq *rq);
5030 	struct balance_callback *next;
5031 
5032 	lockdep_assert_rq_held(rq);
5033 
5034 	while (head) {
5035 		func = (void (*)(struct rq *))head->func;
5036 		next = head->next;
5037 		head->next = NULL;
5038 		head = next;
5039 
5040 		func(rq);
5041 	}
5042 }
5043 
5044 static void balance_push(struct rq *rq);
5045 
5046 /*
5047  * balance_push_callback is a right abuse of the callback interface and plays
5048  * by significantly different rules.
5049  *
5050  * Where the normal balance_callback's purpose is to be ran in the same context
5051  * that queued it (only later, when it's safe to drop rq->lock again),
5052  * balance_push_callback is specifically targeted at __schedule().
5053  *
5054  * This abuse is tolerated because it places all the unlikely/odd cases behind
5055  * a single test, namely: rq->balance_callback == NULL.
5056  */
5057 struct balance_callback balance_push_callback = {
5058 	.next = NULL,
5059 	.func = balance_push,
5060 };
5061 
5062 static inline struct balance_callback *
5063 __splice_balance_callbacks(struct rq *rq, bool split)
5064 {
5065 	struct balance_callback *head = rq->balance_callback;
5066 
5067 	if (likely(!head))
5068 		return NULL;
5069 
5070 	lockdep_assert_rq_held(rq);
5071 	/*
5072 	 * Must not take balance_push_callback off the list when
5073 	 * splice_balance_callbacks() and balance_callbacks() are not
5074 	 * in the same rq->lock section.
5075 	 *
5076 	 * In that case it would be possible for __schedule() to interleave
5077 	 * and observe the list empty.
5078 	 */
5079 	if (split && head == &balance_push_callback)
5080 		head = NULL;
5081 	else
5082 		rq->balance_callback = NULL;
5083 
5084 	return head;
5085 }
5086 
5087 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5088 {
5089 	return __splice_balance_callbacks(rq, true);
5090 }
5091 
5092 static void __balance_callbacks(struct rq *rq)
5093 {
5094 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5095 }
5096 
5097 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5098 {
5099 	unsigned long flags;
5100 
5101 	if (unlikely(head)) {
5102 		raw_spin_rq_lock_irqsave(rq, flags);
5103 		do_balance_callbacks(rq, head);
5104 		raw_spin_rq_unlock_irqrestore(rq, flags);
5105 	}
5106 }
5107 
5108 #else
5109 
5110 static inline void __balance_callbacks(struct rq *rq)
5111 {
5112 }
5113 
5114 #endif
5115 
5116 static inline void
5117 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5118 {
5119 	/*
5120 	 * Since the runqueue lock will be released by the next
5121 	 * task (which is an invalid locking op but in the case
5122 	 * of the scheduler it's an obvious special-case), so we
5123 	 * do an early lockdep release here:
5124 	 */
5125 	rq_unpin_lock(rq, rf);
5126 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5127 #ifdef CONFIG_DEBUG_SPINLOCK
5128 	/* this is a valid case when another task releases the spinlock */
5129 	rq_lockp(rq)->owner = next;
5130 #endif
5131 }
5132 
5133 static inline void finish_lock_switch(struct rq *rq)
5134 {
5135 	/*
5136 	 * If we are tracking spinlock dependencies then we have to
5137 	 * fix up the runqueue lock - which gets 'carried over' from
5138 	 * prev into current:
5139 	 */
5140 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5141 	__balance_callbacks(rq);
5142 	raw_spin_rq_unlock_irq(rq);
5143 }
5144 
5145 /*
5146  * NOP if the arch has not defined these:
5147  */
5148 
5149 #ifndef prepare_arch_switch
5150 # define prepare_arch_switch(next)	do { } while (0)
5151 #endif
5152 
5153 #ifndef finish_arch_post_lock_switch
5154 # define finish_arch_post_lock_switch()	do { } while (0)
5155 #endif
5156 
5157 static inline void kmap_local_sched_out(void)
5158 {
5159 #ifdef CONFIG_KMAP_LOCAL
5160 	if (unlikely(current->kmap_ctrl.idx))
5161 		__kmap_local_sched_out();
5162 #endif
5163 }
5164 
5165 static inline void kmap_local_sched_in(void)
5166 {
5167 #ifdef CONFIG_KMAP_LOCAL
5168 	if (unlikely(current->kmap_ctrl.idx))
5169 		__kmap_local_sched_in();
5170 #endif
5171 }
5172 
5173 /**
5174  * prepare_task_switch - prepare to switch tasks
5175  * @rq: the runqueue preparing to switch
5176  * @prev: the current task that is being switched out
5177  * @next: the task we are going to switch to.
5178  *
5179  * This is called with the rq lock held and interrupts off. It must
5180  * be paired with a subsequent finish_task_switch after the context
5181  * switch.
5182  *
5183  * prepare_task_switch sets up locking and calls architecture specific
5184  * hooks.
5185  */
5186 static inline void
5187 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5188 		    struct task_struct *next)
5189 {
5190 	kcov_prepare_switch(prev);
5191 	sched_info_switch(rq, prev, next);
5192 	perf_event_task_sched_out(prev, next);
5193 	rseq_preempt(prev);
5194 	fire_sched_out_preempt_notifiers(prev, next);
5195 	kmap_local_sched_out();
5196 	prepare_task(next);
5197 	prepare_arch_switch(next);
5198 }
5199 
5200 /**
5201  * finish_task_switch - clean up after a task-switch
5202  * @prev: the thread we just switched away from.
5203  *
5204  * finish_task_switch must be called after the context switch, paired
5205  * with a prepare_task_switch call before the context switch.
5206  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5207  * and do any other architecture-specific cleanup actions.
5208  *
5209  * Note that we may have delayed dropping an mm in context_switch(). If
5210  * so, we finish that here outside of the runqueue lock. (Doing it
5211  * with the lock held can cause deadlocks; see schedule() for
5212  * details.)
5213  *
5214  * The context switch have flipped the stack from under us and restored the
5215  * local variables which were saved when this task called schedule() in the
5216  * past. 'prev == current' is still correct but we need to recalculate this_rq
5217  * because prev may have moved to another CPU.
5218  */
5219 static struct rq *finish_task_switch(struct task_struct *prev)
5220 	__releases(rq->lock)
5221 {
5222 	struct rq *rq = this_rq();
5223 	struct mm_struct *mm = rq->prev_mm;
5224 	unsigned int prev_state;
5225 
5226 	/*
5227 	 * The previous task will have left us with a preempt_count of 2
5228 	 * because it left us after:
5229 	 *
5230 	 *	schedule()
5231 	 *	  preempt_disable();			// 1
5232 	 *	  __schedule()
5233 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5234 	 *
5235 	 * Also, see FORK_PREEMPT_COUNT.
5236 	 */
5237 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5238 		      "corrupted preempt_count: %s/%d/0x%x\n",
5239 		      current->comm, current->pid, preempt_count()))
5240 		preempt_count_set(FORK_PREEMPT_COUNT);
5241 
5242 	rq->prev_mm = NULL;
5243 
5244 	/*
5245 	 * A task struct has one reference for the use as "current".
5246 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5247 	 * schedule one last time. The schedule call will never return, and
5248 	 * the scheduled task must drop that reference.
5249 	 *
5250 	 * We must observe prev->state before clearing prev->on_cpu (in
5251 	 * finish_task), otherwise a concurrent wakeup can get prev
5252 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5253 	 * transition, resulting in a double drop.
5254 	 */
5255 	prev_state = READ_ONCE(prev->__state);
5256 	vtime_task_switch(prev);
5257 	perf_event_task_sched_in(prev, current);
5258 	finish_task(prev);
5259 	tick_nohz_task_switch();
5260 	finish_lock_switch(rq);
5261 	finish_arch_post_lock_switch();
5262 	kcov_finish_switch(current);
5263 	/*
5264 	 * kmap_local_sched_out() is invoked with rq::lock held and
5265 	 * interrupts disabled. There is no requirement for that, but the
5266 	 * sched out code does not have an interrupt enabled section.
5267 	 * Restoring the maps on sched in does not require interrupts being
5268 	 * disabled either.
5269 	 */
5270 	kmap_local_sched_in();
5271 
5272 	fire_sched_in_preempt_notifiers(current);
5273 	/*
5274 	 * When switching through a kernel thread, the loop in
5275 	 * membarrier_{private,global}_expedited() may have observed that
5276 	 * kernel thread and not issued an IPI. It is therefore possible to
5277 	 * schedule between user->kernel->user threads without passing though
5278 	 * switch_mm(). Membarrier requires a barrier after storing to
5279 	 * rq->curr, before returning to userspace, so provide them here:
5280 	 *
5281 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5282 	 *   provided by mmdrop_lazy_tlb(),
5283 	 * - a sync_core for SYNC_CORE.
5284 	 */
5285 	if (mm) {
5286 		membarrier_mm_sync_core_before_usermode(mm);
5287 		mmdrop_lazy_tlb_sched(mm);
5288 	}
5289 
5290 	if (unlikely(prev_state == TASK_DEAD)) {
5291 		if (prev->sched_class->task_dead)
5292 			prev->sched_class->task_dead(prev);
5293 
5294 		/* Task is done with its stack. */
5295 		put_task_stack(prev);
5296 
5297 		put_task_struct_rcu_user(prev);
5298 	}
5299 
5300 	return rq;
5301 }
5302 
5303 /**
5304  * schedule_tail - first thing a freshly forked thread must call.
5305  * @prev: the thread we just switched away from.
5306  */
5307 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5308 	__releases(rq->lock)
5309 {
5310 	/*
5311 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5312 	 * finish_task_switch() for details.
5313 	 *
5314 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5315 	 * and the preempt_enable() will end up enabling preemption (on
5316 	 * PREEMPT_COUNT kernels).
5317 	 */
5318 
5319 	finish_task_switch(prev);
5320 	/*
5321 	 * This is a special case: the newly created task has just
5322 	 * switched the context for the first time. It is returning from
5323 	 * schedule for the first time in this path.
5324 	 */
5325 	trace_sched_exit_tp(true, CALLER_ADDR0);
5326 	preempt_enable();
5327 
5328 	if (current->set_child_tid)
5329 		put_user(task_pid_vnr(current), current->set_child_tid);
5330 
5331 	calculate_sigpending();
5332 }
5333 
5334 /*
5335  * context_switch - switch to the new MM and the new thread's register state.
5336  */
5337 static __always_inline struct rq *
5338 context_switch(struct rq *rq, struct task_struct *prev,
5339 	       struct task_struct *next, struct rq_flags *rf)
5340 {
5341 	prepare_task_switch(rq, prev, next);
5342 
5343 	/*
5344 	 * For paravirt, this is coupled with an exit in switch_to to
5345 	 * combine the page table reload and the switch backend into
5346 	 * one hypercall.
5347 	 */
5348 	arch_start_context_switch(prev);
5349 
5350 	/*
5351 	 * kernel -> kernel   lazy + transfer active
5352 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5353 	 *
5354 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5355 	 *   user ->   user   switch
5356 	 *
5357 	 * switch_mm_cid() needs to be updated if the barriers provided
5358 	 * by context_switch() are modified.
5359 	 */
5360 	if (!next->mm) {                                // to kernel
5361 		enter_lazy_tlb(prev->active_mm, next);
5362 
5363 		next->active_mm = prev->active_mm;
5364 		if (prev->mm)                           // from user
5365 			mmgrab_lazy_tlb(prev->active_mm);
5366 		else
5367 			prev->active_mm = NULL;
5368 	} else {                                        // to user
5369 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5370 		/*
5371 		 * sys_membarrier() requires an smp_mb() between setting
5372 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5373 		 *
5374 		 * The below provides this either through switch_mm(), or in
5375 		 * case 'prev->active_mm == next->mm' through
5376 		 * finish_task_switch()'s mmdrop().
5377 		 */
5378 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5379 		lru_gen_use_mm(next->mm);
5380 
5381 		if (!prev->mm) {                        // from kernel
5382 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5383 			rq->prev_mm = prev->active_mm;
5384 			prev->active_mm = NULL;
5385 		}
5386 	}
5387 
5388 	/* switch_mm_cid() requires the memory barriers above. */
5389 	switch_mm_cid(rq, prev, next);
5390 
5391 	prepare_lock_switch(rq, next, rf);
5392 
5393 	/* Here we just switch the register state and the stack. */
5394 	switch_to(prev, next, prev);
5395 	barrier();
5396 
5397 	return finish_task_switch(prev);
5398 }
5399 
5400 /*
5401  * nr_running and nr_context_switches:
5402  *
5403  * externally visible scheduler statistics: current number of runnable
5404  * threads, total number of context switches performed since bootup.
5405  */
5406 unsigned int nr_running(void)
5407 {
5408 	unsigned int i, sum = 0;
5409 
5410 	for_each_online_cpu(i)
5411 		sum += cpu_rq(i)->nr_running;
5412 
5413 	return sum;
5414 }
5415 
5416 /*
5417  * Check if only the current task is running on the CPU.
5418  *
5419  * Caution: this function does not check that the caller has disabled
5420  * preemption, thus the result might have a time-of-check-to-time-of-use
5421  * race.  The caller is responsible to use it correctly, for example:
5422  *
5423  * - from a non-preemptible section (of course)
5424  *
5425  * - from a thread that is bound to a single CPU
5426  *
5427  * - in a loop with very short iterations (e.g. a polling loop)
5428  */
5429 bool single_task_running(void)
5430 {
5431 	return raw_rq()->nr_running == 1;
5432 }
5433 EXPORT_SYMBOL(single_task_running);
5434 
5435 unsigned long long nr_context_switches_cpu(int cpu)
5436 {
5437 	return cpu_rq(cpu)->nr_switches;
5438 }
5439 
5440 unsigned long long nr_context_switches(void)
5441 {
5442 	int i;
5443 	unsigned long long sum = 0;
5444 
5445 	for_each_possible_cpu(i)
5446 		sum += cpu_rq(i)->nr_switches;
5447 
5448 	return sum;
5449 }
5450 
5451 /*
5452  * Consumers of these two interfaces, like for example the cpuidle menu
5453  * governor, are using nonsensical data. Preferring shallow idle state selection
5454  * for a CPU that has IO-wait which might not even end up running the task when
5455  * it does become runnable.
5456  */
5457 
5458 unsigned int nr_iowait_cpu(int cpu)
5459 {
5460 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5461 }
5462 
5463 /*
5464  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5465  *
5466  * The idea behind IO-wait account is to account the idle time that we could
5467  * have spend running if it were not for IO. That is, if we were to improve the
5468  * storage performance, we'd have a proportional reduction in IO-wait time.
5469  *
5470  * This all works nicely on UP, where, when a task blocks on IO, we account
5471  * idle time as IO-wait, because if the storage were faster, it could've been
5472  * running and we'd not be idle.
5473  *
5474  * This has been extended to SMP, by doing the same for each CPU. This however
5475  * is broken.
5476  *
5477  * Imagine for instance the case where two tasks block on one CPU, only the one
5478  * CPU will have IO-wait accounted, while the other has regular idle. Even
5479  * though, if the storage were faster, both could've ran at the same time,
5480  * utilising both CPUs.
5481  *
5482  * This means, that when looking globally, the current IO-wait accounting on
5483  * SMP is a lower bound, by reason of under accounting.
5484  *
5485  * Worse, since the numbers are provided per CPU, they are sometimes
5486  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5487  * associated with any one particular CPU, it can wake to another CPU than it
5488  * blocked on. This means the per CPU IO-wait number is meaningless.
5489  *
5490  * Task CPU affinities can make all that even more 'interesting'.
5491  */
5492 
5493 unsigned int nr_iowait(void)
5494 {
5495 	unsigned int i, sum = 0;
5496 
5497 	for_each_possible_cpu(i)
5498 		sum += nr_iowait_cpu(i);
5499 
5500 	return sum;
5501 }
5502 
5503 #ifdef CONFIG_SMP
5504 
5505 /*
5506  * sched_exec - execve() is a valuable balancing opportunity, because at
5507  * this point the task has the smallest effective memory and cache footprint.
5508  */
5509 void sched_exec(void)
5510 {
5511 	struct task_struct *p = current;
5512 	struct migration_arg arg;
5513 	int dest_cpu;
5514 
5515 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5516 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5517 		if (dest_cpu == smp_processor_id())
5518 			return;
5519 
5520 		if (unlikely(!cpu_active(dest_cpu)))
5521 			return;
5522 
5523 		arg = (struct migration_arg){ p, dest_cpu };
5524 	}
5525 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5526 }
5527 
5528 #endif
5529 
5530 DEFINE_PER_CPU(struct kernel_stat, kstat);
5531 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5532 
5533 EXPORT_PER_CPU_SYMBOL(kstat);
5534 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5535 
5536 /*
5537  * The function fair_sched_class.update_curr accesses the struct curr
5538  * and its field curr->exec_start; when called from task_sched_runtime(),
5539  * we observe a high rate of cache misses in practice.
5540  * Prefetching this data results in improved performance.
5541  */
5542 static inline void prefetch_curr_exec_start(struct task_struct *p)
5543 {
5544 #ifdef CONFIG_FAIR_GROUP_SCHED
5545 	struct sched_entity *curr = p->se.cfs_rq->curr;
5546 #else
5547 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5548 #endif
5549 	prefetch(curr);
5550 	prefetch(&curr->exec_start);
5551 }
5552 
5553 /*
5554  * Return accounted runtime for the task.
5555  * In case the task is currently running, return the runtime plus current's
5556  * pending runtime that have not been accounted yet.
5557  */
5558 unsigned long long task_sched_runtime(struct task_struct *p)
5559 {
5560 	struct rq_flags rf;
5561 	struct rq *rq;
5562 	u64 ns;
5563 
5564 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5565 	/*
5566 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5567 	 * So we have a optimization chance when the task's delta_exec is 0.
5568 	 * Reading ->on_cpu is racy, but this is OK.
5569 	 *
5570 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5571 	 * If we race with it entering CPU, unaccounted time is 0. This is
5572 	 * indistinguishable from the read occurring a few cycles earlier.
5573 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5574 	 * been accounted, so we're correct here as well.
5575 	 */
5576 	if (!p->on_cpu || !task_on_rq_queued(p))
5577 		return p->se.sum_exec_runtime;
5578 #endif
5579 
5580 	rq = task_rq_lock(p, &rf);
5581 	/*
5582 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5583 	 * project cycles that may never be accounted to this
5584 	 * thread, breaking clock_gettime().
5585 	 */
5586 	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5587 		prefetch_curr_exec_start(p);
5588 		update_rq_clock(rq);
5589 		p->sched_class->update_curr(rq);
5590 	}
5591 	ns = p->se.sum_exec_runtime;
5592 	task_rq_unlock(rq, p, &rf);
5593 
5594 	return ns;
5595 }
5596 
5597 #ifdef CONFIG_SCHED_DEBUG
5598 static u64 cpu_resched_latency(struct rq *rq)
5599 {
5600 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5601 	u64 resched_latency, now = rq_clock(rq);
5602 	static bool warned_once;
5603 
5604 	if (sysctl_resched_latency_warn_once && warned_once)
5605 		return 0;
5606 
5607 	if (!need_resched() || !latency_warn_ms)
5608 		return 0;
5609 
5610 	if (system_state == SYSTEM_BOOTING)
5611 		return 0;
5612 
5613 	if (!rq->last_seen_need_resched_ns) {
5614 		rq->last_seen_need_resched_ns = now;
5615 		rq->ticks_without_resched = 0;
5616 		return 0;
5617 	}
5618 
5619 	rq->ticks_without_resched++;
5620 	resched_latency = now - rq->last_seen_need_resched_ns;
5621 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5622 		return 0;
5623 
5624 	warned_once = true;
5625 
5626 	return resched_latency;
5627 }
5628 
5629 static int __init setup_resched_latency_warn_ms(char *str)
5630 {
5631 	long val;
5632 
5633 	if ((kstrtol(str, 0, &val))) {
5634 		pr_warn("Unable to set resched_latency_warn_ms\n");
5635 		return 1;
5636 	}
5637 
5638 	sysctl_resched_latency_warn_ms = val;
5639 	return 1;
5640 }
5641 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5642 #else
5643 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5644 #endif /* CONFIG_SCHED_DEBUG */
5645 
5646 /*
5647  * This function gets called by the timer code, with HZ frequency.
5648  * We call it with interrupts disabled.
5649  */
5650 void sched_tick(void)
5651 {
5652 	int cpu = smp_processor_id();
5653 	struct rq *rq = cpu_rq(cpu);
5654 	/* accounting goes to the donor task */
5655 	struct task_struct *donor;
5656 	struct rq_flags rf;
5657 	unsigned long hw_pressure;
5658 	u64 resched_latency;
5659 
5660 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5661 		arch_scale_freq_tick();
5662 
5663 	sched_clock_tick();
5664 
5665 	rq_lock(rq, &rf);
5666 	donor = rq->donor;
5667 
5668 	psi_account_irqtime(rq, donor, NULL);
5669 
5670 	update_rq_clock(rq);
5671 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5672 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5673 
5674 	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5675 		resched_curr(rq);
5676 
5677 	donor->sched_class->task_tick(rq, donor, 0);
5678 	if (sched_feat(LATENCY_WARN))
5679 		resched_latency = cpu_resched_latency(rq);
5680 	calc_global_load_tick(rq);
5681 	sched_core_tick(rq);
5682 	task_tick_mm_cid(rq, donor);
5683 	scx_tick(rq);
5684 
5685 	rq_unlock(rq, &rf);
5686 
5687 	if (sched_feat(LATENCY_WARN) && resched_latency)
5688 		resched_latency_warn(cpu, resched_latency);
5689 
5690 	perf_event_task_tick();
5691 
5692 	if (donor->flags & PF_WQ_WORKER)
5693 		wq_worker_tick(donor);
5694 
5695 #ifdef CONFIG_SMP
5696 	if (!scx_switched_all()) {
5697 		rq->idle_balance = idle_cpu(cpu);
5698 		sched_balance_trigger(rq);
5699 	}
5700 #endif
5701 }
5702 
5703 #ifdef CONFIG_NO_HZ_FULL
5704 
5705 struct tick_work {
5706 	int			cpu;
5707 	atomic_t		state;
5708 	struct delayed_work	work;
5709 };
5710 /* Values for ->state, see diagram below. */
5711 #define TICK_SCHED_REMOTE_OFFLINE	0
5712 #define TICK_SCHED_REMOTE_OFFLINING	1
5713 #define TICK_SCHED_REMOTE_RUNNING	2
5714 
5715 /*
5716  * State diagram for ->state:
5717  *
5718  *
5719  *          TICK_SCHED_REMOTE_OFFLINE
5720  *                    |   ^
5721  *                    |   |
5722  *                    |   | sched_tick_remote()
5723  *                    |   |
5724  *                    |   |
5725  *                    +--TICK_SCHED_REMOTE_OFFLINING
5726  *                    |   ^
5727  *                    |   |
5728  * sched_tick_start() |   | sched_tick_stop()
5729  *                    |   |
5730  *                    V   |
5731  *          TICK_SCHED_REMOTE_RUNNING
5732  *
5733  *
5734  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5735  * and sched_tick_start() are happy to leave the state in RUNNING.
5736  */
5737 
5738 static struct tick_work __percpu *tick_work_cpu;
5739 
5740 static void sched_tick_remote(struct work_struct *work)
5741 {
5742 	struct delayed_work *dwork = to_delayed_work(work);
5743 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5744 	int cpu = twork->cpu;
5745 	struct rq *rq = cpu_rq(cpu);
5746 	int os;
5747 
5748 	/*
5749 	 * Handle the tick only if it appears the remote CPU is running in full
5750 	 * dynticks mode. The check is racy by nature, but missing a tick or
5751 	 * having one too much is no big deal because the scheduler tick updates
5752 	 * statistics and checks timeslices in a time-independent way, regardless
5753 	 * of when exactly it is running.
5754 	 */
5755 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5756 		guard(rq_lock_irq)(rq);
5757 		struct task_struct *curr = rq->curr;
5758 
5759 		if (cpu_online(cpu)) {
5760 			/*
5761 			 * Since this is a remote tick for full dynticks mode,
5762 			 * we are always sure that there is no proxy (only a
5763 			 * single task is running).
5764 			 */
5765 			SCHED_WARN_ON(rq->curr != rq->donor);
5766 			update_rq_clock(rq);
5767 
5768 			if (!is_idle_task(curr)) {
5769 				/*
5770 				 * Make sure the next tick runs within a
5771 				 * reasonable amount of time.
5772 				 */
5773 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5774 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5775 			}
5776 			curr->sched_class->task_tick(rq, curr, 0);
5777 
5778 			calc_load_nohz_remote(rq);
5779 		}
5780 	}
5781 
5782 	/*
5783 	 * Run the remote tick once per second (1Hz). This arbitrary
5784 	 * frequency is large enough to avoid overload but short enough
5785 	 * to keep scheduler internal stats reasonably up to date.  But
5786 	 * first update state to reflect hotplug activity if required.
5787 	 */
5788 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5789 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5790 	if (os == TICK_SCHED_REMOTE_RUNNING)
5791 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5792 }
5793 
5794 static void sched_tick_start(int cpu)
5795 {
5796 	int os;
5797 	struct tick_work *twork;
5798 
5799 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5800 		return;
5801 
5802 	WARN_ON_ONCE(!tick_work_cpu);
5803 
5804 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5805 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5806 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5807 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5808 		twork->cpu = cpu;
5809 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5810 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5811 	}
5812 }
5813 
5814 #ifdef CONFIG_HOTPLUG_CPU
5815 static void sched_tick_stop(int cpu)
5816 {
5817 	struct tick_work *twork;
5818 	int os;
5819 
5820 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5821 		return;
5822 
5823 	WARN_ON_ONCE(!tick_work_cpu);
5824 
5825 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5826 	/* There cannot be competing actions, but don't rely on stop-machine. */
5827 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5828 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5829 	/* Don't cancel, as this would mess up the state machine. */
5830 }
5831 #endif /* CONFIG_HOTPLUG_CPU */
5832 
5833 int __init sched_tick_offload_init(void)
5834 {
5835 	tick_work_cpu = alloc_percpu(struct tick_work);
5836 	BUG_ON(!tick_work_cpu);
5837 	return 0;
5838 }
5839 
5840 #else /* !CONFIG_NO_HZ_FULL */
5841 static inline void sched_tick_start(int cpu) { }
5842 static inline void sched_tick_stop(int cpu) { }
5843 #endif
5844 
5845 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5846 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5847 /*
5848  * If the value passed in is equal to the current preempt count
5849  * then we just disabled preemption. Start timing the latency.
5850  */
5851 static inline void preempt_latency_start(int val)
5852 {
5853 	if (preempt_count() == val) {
5854 		unsigned long ip = get_lock_parent_ip();
5855 #ifdef CONFIG_DEBUG_PREEMPT
5856 		current->preempt_disable_ip = ip;
5857 #endif
5858 		trace_preempt_off(CALLER_ADDR0, ip);
5859 	}
5860 }
5861 
5862 void preempt_count_add(int val)
5863 {
5864 #ifdef CONFIG_DEBUG_PREEMPT
5865 	/*
5866 	 * Underflow?
5867 	 */
5868 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5869 		return;
5870 #endif
5871 	__preempt_count_add(val);
5872 #ifdef CONFIG_DEBUG_PREEMPT
5873 	/*
5874 	 * Spinlock count overflowing soon?
5875 	 */
5876 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5877 				PREEMPT_MASK - 10);
5878 #endif
5879 	preempt_latency_start(val);
5880 }
5881 EXPORT_SYMBOL(preempt_count_add);
5882 NOKPROBE_SYMBOL(preempt_count_add);
5883 
5884 /*
5885  * If the value passed in equals to the current preempt count
5886  * then we just enabled preemption. Stop timing the latency.
5887  */
5888 static inline void preempt_latency_stop(int val)
5889 {
5890 	if (preempt_count() == val)
5891 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5892 }
5893 
5894 void preempt_count_sub(int val)
5895 {
5896 #ifdef CONFIG_DEBUG_PREEMPT
5897 	/*
5898 	 * Underflow?
5899 	 */
5900 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5901 		return;
5902 	/*
5903 	 * Is the spinlock portion underflowing?
5904 	 */
5905 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5906 			!(preempt_count() & PREEMPT_MASK)))
5907 		return;
5908 #endif
5909 
5910 	preempt_latency_stop(val);
5911 	__preempt_count_sub(val);
5912 }
5913 EXPORT_SYMBOL(preempt_count_sub);
5914 NOKPROBE_SYMBOL(preempt_count_sub);
5915 
5916 #else
5917 static inline void preempt_latency_start(int val) { }
5918 static inline void preempt_latency_stop(int val) { }
5919 #endif
5920 
5921 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5922 {
5923 #ifdef CONFIG_DEBUG_PREEMPT
5924 	return p->preempt_disable_ip;
5925 #else
5926 	return 0;
5927 #endif
5928 }
5929 
5930 /*
5931  * Print scheduling while atomic bug:
5932  */
5933 static noinline void __schedule_bug(struct task_struct *prev)
5934 {
5935 	/* Save this before calling printk(), since that will clobber it */
5936 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5937 
5938 	if (oops_in_progress)
5939 		return;
5940 
5941 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5942 		prev->comm, prev->pid, preempt_count());
5943 
5944 	debug_show_held_locks(prev);
5945 	print_modules();
5946 	if (irqs_disabled())
5947 		print_irqtrace_events(prev);
5948 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5949 		pr_err("Preemption disabled at:");
5950 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5951 	}
5952 	check_panic_on_warn("scheduling while atomic");
5953 
5954 	dump_stack();
5955 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5956 }
5957 
5958 /*
5959  * Various schedule()-time debugging checks and statistics:
5960  */
5961 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5962 {
5963 #ifdef CONFIG_SCHED_STACK_END_CHECK
5964 	if (task_stack_end_corrupted(prev))
5965 		panic("corrupted stack end detected inside scheduler\n");
5966 
5967 	if (task_scs_end_corrupted(prev))
5968 		panic("corrupted shadow stack detected inside scheduler\n");
5969 #endif
5970 
5971 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5972 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5973 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5974 			prev->comm, prev->pid, prev->non_block_count);
5975 		dump_stack();
5976 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5977 	}
5978 #endif
5979 
5980 	if (unlikely(in_atomic_preempt_off())) {
5981 		__schedule_bug(prev);
5982 		preempt_count_set(PREEMPT_DISABLED);
5983 	}
5984 	rcu_sleep_check();
5985 	SCHED_WARN_ON(ct_state() == CT_STATE_USER);
5986 
5987 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5988 
5989 	schedstat_inc(this_rq()->sched_count);
5990 }
5991 
5992 static void prev_balance(struct rq *rq, struct task_struct *prev,
5993 			 struct rq_flags *rf)
5994 {
5995 	const struct sched_class *start_class = prev->sched_class;
5996 	const struct sched_class *class;
5997 
5998 #ifdef CONFIG_SCHED_CLASS_EXT
5999 	/*
6000 	 * SCX requires a balance() call before every pick_task() including when
6001 	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
6002 	 * SCX instead. Also, set a flag to detect missing balance() call.
6003 	 */
6004 	if (scx_enabled()) {
6005 		rq->scx.flags |= SCX_RQ_BAL_PENDING;
6006 		if (sched_class_above(&ext_sched_class, start_class))
6007 			start_class = &ext_sched_class;
6008 	}
6009 #endif
6010 
6011 	/*
6012 	 * We must do the balancing pass before put_prev_task(), such
6013 	 * that when we release the rq->lock the task is in the same
6014 	 * state as before we took rq->lock.
6015 	 *
6016 	 * We can terminate the balance pass as soon as we know there is
6017 	 * a runnable task of @class priority or higher.
6018 	 */
6019 	for_active_class_range(class, start_class, &idle_sched_class) {
6020 		if (class->balance && class->balance(rq, prev, rf))
6021 			break;
6022 	}
6023 }
6024 
6025 /*
6026  * Pick up the highest-prio task:
6027  */
6028 static inline struct task_struct *
6029 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6030 {
6031 	const struct sched_class *class;
6032 	struct task_struct *p;
6033 
6034 	rq->dl_server = NULL;
6035 
6036 	if (scx_enabled())
6037 		goto restart;
6038 
6039 	/*
6040 	 * Optimization: we know that if all tasks are in the fair class we can
6041 	 * call that function directly, but only if the @prev task wasn't of a
6042 	 * higher scheduling class, because otherwise those lose the
6043 	 * opportunity to pull in more work from other CPUs.
6044 	 */
6045 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6046 		   rq->nr_running == rq->cfs.h_nr_queued)) {
6047 
6048 		p = pick_next_task_fair(rq, prev, rf);
6049 		if (unlikely(p == RETRY_TASK))
6050 			goto restart;
6051 
6052 		/* Assume the next prioritized class is idle_sched_class */
6053 		if (!p) {
6054 			p = pick_task_idle(rq);
6055 			put_prev_set_next_task(rq, prev, p);
6056 		}
6057 
6058 		return p;
6059 	}
6060 
6061 restart:
6062 	prev_balance(rq, prev, rf);
6063 
6064 	for_each_active_class(class) {
6065 		if (class->pick_next_task) {
6066 			p = class->pick_next_task(rq, prev);
6067 			if (p)
6068 				return p;
6069 		} else {
6070 			p = class->pick_task(rq);
6071 			if (p) {
6072 				put_prev_set_next_task(rq, prev, p);
6073 				return p;
6074 			}
6075 		}
6076 	}
6077 
6078 	BUG(); /* The idle class should always have a runnable task. */
6079 }
6080 
6081 #ifdef CONFIG_SCHED_CORE
6082 static inline bool is_task_rq_idle(struct task_struct *t)
6083 {
6084 	return (task_rq(t)->idle == t);
6085 }
6086 
6087 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6088 {
6089 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6090 }
6091 
6092 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6093 {
6094 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6095 		return true;
6096 
6097 	return a->core_cookie == b->core_cookie;
6098 }
6099 
6100 static inline struct task_struct *pick_task(struct rq *rq)
6101 {
6102 	const struct sched_class *class;
6103 	struct task_struct *p;
6104 
6105 	rq->dl_server = NULL;
6106 
6107 	for_each_active_class(class) {
6108 		p = class->pick_task(rq);
6109 		if (p)
6110 			return p;
6111 	}
6112 
6113 	BUG(); /* The idle class should always have a runnable task. */
6114 }
6115 
6116 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6117 
6118 static void queue_core_balance(struct rq *rq);
6119 
6120 static struct task_struct *
6121 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6122 {
6123 	struct task_struct *next, *p, *max = NULL;
6124 	const struct cpumask *smt_mask;
6125 	bool fi_before = false;
6126 	bool core_clock_updated = (rq == rq->core);
6127 	unsigned long cookie;
6128 	int i, cpu, occ = 0;
6129 	struct rq *rq_i;
6130 	bool need_sync;
6131 
6132 	if (!sched_core_enabled(rq))
6133 		return __pick_next_task(rq, prev, rf);
6134 
6135 	cpu = cpu_of(rq);
6136 
6137 	/* Stopper task is switching into idle, no need core-wide selection. */
6138 	if (cpu_is_offline(cpu)) {
6139 		/*
6140 		 * Reset core_pick so that we don't enter the fastpath when
6141 		 * coming online. core_pick would already be migrated to
6142 		 * another cpu during offline.
6143 		 */
6144 		rq->core_pick = NULL;
6145 		rq->core_dl_server = NULL;
6146 		return __pick_next_task(rq, prev, rf);
6147 	}
6148 
6149 	/*
6150 	 * If there were no {en,de}queues since we picked (IOW, the task
6151 	 * pointers are all still valid), and we haven't scheduled the last
6152 	 * pick yet, do so now.
6153 	 *
6154 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6155 	 * it was either offline or went offline during a sibling's core-wide
6156 	 * selection. In this case, do a core-wide selection.
6157 	 */
6158 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6159 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6160 	    rq->core_pick) {
6161 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6162 
6163 		next = rq->core_pick;
6164 		rq->dl_server = rq->core_dl_server;
6165 		rq->core_pick = NULL;
6166 		rq->core_dl_server = NULL;
6167 		goto out_set_next;
6168 	}
6169 
6170 	prev_balance(rq, prev, rf);
6171 
6172 	smt_mask = cpu_smt_mask(cpu);
6173 	need_sync = !!rq->core->core_cookie;
6174 
6175 	/* reset state */
6176 	rq->core->core_cookie = 0UL;
6177 	if (rq->core->core_forceidle_count) {
6178 		if (!core_clock_updated) {
6179 			update_rq_clock(rq->core);
6180 			core_clock_updated = true;
6181 		}
6182 		sched_core_account_forceidle(rq);
6183 		/* reset after accounting force idle */
6184 		rq->core->core_forceidle_start = 0;
6185 		rq->core->core_forceidle_count = 0;
6186 		rq->core->core_forceidle_occupation = 0;
6187 		need_sync = true;
6188 		fi_before = true;
6189 	}
6190 
6191 	/*
6192 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6193 	 *
6194 	 * @task_seq guards the task state ({en,de}queues)
6195 	 * @pick_seq is the @task_seq we did a selection on
6196 	 * @sched_seq is the @pick_seq we scheduled
6197 	 *
6198 	 * However, preemptions can cause multiple picks on the same task set.
6199 	 * 'Fix' this by also increasing @task_seq for every pick.
6200 	 */
6201 	rq->core->core_task_seq++;
6202 
6203 	/*
6204 	 * Optimize for common case where this CPU has no cookies
6205 	 * and there are no cookied tasks running on siblings.
6206 	 */
6207 	if (!need_sync) {
6208 		next = pick_task(rq);
6209 		if (!next->core_cookie) {
6210 			rq->core_pick = NULL;
6211 			rq->core_dl_server = NULL;
6212 			/*
6213 			 * For robustness, update the min_vruntime_fi for
6214 			 * unconstrained picks as well.
6215 			 */
6216 			WARN_ON_ONCE(fi_before);
6217 			task_vruntime_update(rq, next, false);
6218 			goto out_set_next;
6219 		}
6220 	}
6221 
6222 	/*
6223 	 * For each thread: do the regular task pick and find the max prio task
6224 	 * amongst them.
6225 	 *
6226 	 * Tie-break prio towards the current CPU
6227 	 */
6228 	for_each_cpu_wrap(i, smt_mask, cpu) {
6229 		rq_i = cpu_rq(i);
6230 
6231 		/*
6232 		 * Current cpu always has its clock updated on entrance to
6233 		 * pick_next_task(). If the current cpu is not the core,
6234 		 * the core may also have been updated above.
6235 		 */
6236 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6237 			update_rq_clock(rq_i);
6238 
6239 		rq_i->core_pick = p = pick_task(rq_i);
6240 		rq_i->core_dl_server = rq_i->dl_server;
6241 
6242 		if (!max || prio_less(max, p, fi_before))
6243 			max = p;
6244 	}
6245 
6246 	cookie = rq->core->core_cookie = max->core_cookie;
6247 
6248 	/*
6249 	 * For each thread: try and find a runnable task that matches @max or
6250 	 * force idle.
6251 	 */
6252 	for_each_cpu(i, smt_mask) {
6253 		rq_i = cpu_rq(i);
6254 		p = rq_i->core_pick;
6255 
6256 		if (!cookie_equals(p, cookie)) {
6257 			p = NULL;
6258 			if (cookie)
6259 				p = sched_core_find(rq_i, cookie);
6260 			if (!p)
6261 				p = idle_sched_class.pick_task(rq_i);
6262 		}
6263 
6264 		rq_i->core_pick = p;
6265 		rq_i->core_dl_server = NULL;
6266 
6267 		if (p == rq_i->idle) {
6268 			if (rq_i->nr_running) {
6269 				rq->core->core_forceidle_count++;
6270 				if (!fi_before)
6271 					rq->core->core_forceidle_seq++;
6272 			}
6273 		} else {
6274 			occ++;
6275 		}
6276 	}
6277 
6278 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6279 		rq->core->core_forceidle_start = rq_clock(rq->core);
6280 		rq->core->core_forceidle_occupation = occ;
6281 	}
6282 
6283 	rq->core->core_pick_seq = rq->core->core_task_seq;
6284 	next = rq->core_pick;
6285 	rq->core_sched_seq = rq->core->core_pick_seq;
6286 
6287 	/* Something should have been selected for current CPU */
6288 	WARN_ON_ONCE(!next);
6289 
6290 	/*
6291 	 * Reschedule siblings
6292 	 *
6293 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6294 	 * sending an IPI (below) ensures the sibling will no longer be running
6295 	 * their task. This ensures there is no inter-sibling overlap between
6296 	 * non-matching user state.
6297 	 */
6298 	for_each_cpu(i, smt_mask) {
6299 		rq_i = cpu_rq(i);
6300 
6301 		/*
6302 		 * An online sibling might have gone offline before a task
6303 		 * could be picked for it, or it might be offline but later
6304 		 * happen to come online, but its too late and nothing was
6305 		 * picked for it.  That's Ok - it will pick tasks for itself,
6306 		 * so ignore it.
6307 		 */
6308 		if (!rq_i->core_pick)
6309 			continue;
6310 
6311 		/*
6312 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6313 		 * fi_before     fi      update?
6314 		 *  0            0       1
6315 		 *  0            1       1
6316 		 *  1            0       1
6317 		 *  1            1       0
6318 		 */
6319 		if (!(fi_before && rq->core->core_forceidle_count))
6320 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6321 
6322 		rq_i->core_pick->core_occupation = occ;
6323 
6324 		if (i == cpu) {
6325 			rq_i->core_pick = NULL;
6326 			rq_i->core_dl_server = NULL;
6327 			continue;
6328 		}
6329 
6330 		/* Did we break L1TF mitigation requirements? */
6331 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6332 
6333 		if (rq_i->curr == rq_i->core_pick) {
6334 			rq_i->core_pick = NULL;
6335 			rq_i->core_dl_server = NULL;
6336 			continue;
6337 		}
6338 
6339 		resched_curr(rq_i);
6340 	}
6341 
6342 out_set_next:
6343 	put_prev_set_next_task(rq, prev, next);
6344 	if (rq->core->core_forceidle_count && next == rq->idle)
6345 		queue_core_balance(rq);
6346 
6347 	return next;
6348 }
6349 
6350 static bool try_steal_cookie(int this, int that)
6351 {
6352 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6353 	struct task_struct *p;
6354 	unsigned long cookie;
6355 	bool success = false;
6356 
6357 	guard(irq)();
6358 	guard(double_rq_lock)(dst, src);
6359 
6360 	cookie = dst->core->core_cookie;
6361 	if (!cookie)
6362 		return false;
6363 
6364 	if (dst->curr != dst->idle)
6365 		return false;
6366 
6367 	p = sched_core_find(src, cookie);
6368 	if (!p)
6369 		return false;
6370 
6371 	do {
6372 		if (p == src->core_pick || p == src->curr)
6373 			goto next;
6374 
6375 		if (!is_cpu_allowed(p, this))
6376 			goto next;
6377 
6378 		if (p->core_occupation > dst->idle->core_occupation)
6379 			goto next;
6380 		/*
6381 		 * sched_core_find() and sched_core_next() will ensure
6382 		 * that task @p is not throttled now, we also need to
6383 		 * check whether the runqueue of the destination CPU is
6384 		 * being throttled.
6385 		 */
6386 		if (sched_task_is_throttled(p, this))
6387 			goto next;
6388 
6389 		move_queued_task_locked(src, dst, p);
6390 		resched_curr(dst);
6391 
6392 		success = true;
6393 		break;
6394 
6395 next:
6396 		p = sched_core_next(p, cookie);
6397 	} while (p);
6398 
6399 	return success;
6400 }
6401 
6402 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6403 {
6404 	int i;
6405 
6406 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6407 		if (i == cpu)
6408 			continue;
6409 
6410 		if (need_resched())
6411 			break;
6412 
6413 		if (try_steal_cookie(cpu, i))
6414 			return true;
6415 	}
6416 
6417 	return false;
6418 }
6419 
6420 static void sched_core_balance(struct rq *rq)
6421 {
6422 	struct sched_domain *sd;
6423 	int cpu = cpu_of(rq);
6424 
6425 	guard(preempt)();
6426 	guard(rcu)();
6427 
6428 	raw_spin_rq_unlock_irq(rq);
6429 	for_each_domain(cpu, sd) {
6430 		if (need_resched())
6431 			break;
6432 
6433 		if (steal_cookie_task(cpu, sd))
6434 			break;
6435 	}
6436 	raw_spin_rq_lock_irq(rq);
6437 }
6438 
6439 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6440 
6441 static void queue_core_balance(struct rq *rq)
6442 {
6443 	if (!sched_core_enabled(rq))
6444 		return;
6445 
6446 	if (!rq->core->core_cookie)
6447 		return;
6448 
6449 	if (!rq->nr_running) /* not forced idle */
6450 		return;
6451 
6452 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6453 }
6454 
6455 DEFINE_LOCK_GUARD_1(core_lock, int,
6456 		    sched_core_lock(*_T->lock, &_T->flags),
6457 		    sched_core_unlock(*_T->lock, &_T->flags),
6458 		    unsigned long flags)
6459 
6460 static void sched_core_cpu_starting(unsigned int cpu)
6461 {
6462 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6463 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6464 	int t;
6465 
6466 	guard(core_lock)(&cpu);
6467 
6468 	WARN_ON_ONCE(rq->core != rq);
6469 
6470 	/* if we're the first, we'll be our own leader */
6471 	if (cpumask_weight(smt_mask) == 1)
6472 		return;
6473 
6474 	/* find the leader */
6475 	for_each_cpu(t, smt_mask) {
6476 		if (t == cpu)
6477 			continue;
6478 		rq = cpu_rq(t);
6479 		if (rq->core == rq) {
6480 			core_rq = rq;
6481 			break;
6482 		}
6483 	}
6484 
6485 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6486 		return;
6487 
6488 	/* install and validate core_rq */
6489 	for_each_cpu(t, smt_mask) {
6490 		rq = cpu_rq(t);
6491 
6492 		if (t == cpu)
6493 			rq->core = core_rq;
6494 
6495 		WARN_ON_ONCE(rq->core != core_rq);
6496 	}
6497 }
6498 
6499 static void sched_core_cpu_deactivate(unsigned int cpu)
6500 {
6501 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6502 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6503 	int t;
6504 
6505 	guard(core_lock)(&cpu);
6506 
6507 	/* if we're the last man standing, nothing to do */
6508 	if (cpumask_weight(smt_mask) == 1) {
6509 		WARN_ON_ONCE(rq->core != rq);
6510 		return;
6511 	}
6512 
6513 	/* if we're not the leader, nothing to do */
6514 	if (rq->core != rq)
6515 		return;
6516 
6517 	/* find a new leader */
6518 	for_each_cpu(t, smt_mask) {
6519 		if (t == cpu)
6520 			continue;
6521 		core_rq = cpu_rq(t);
6522 		break;
6523 	}
6524 
6525 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6526 		return;
6527 
6528 	/* copy the shared state to the new leader */
6529 	core_rq->core_task_seq             = rq->core_task_seq;
6530 	core_rq->core_pick_seq             = rq->core_pick_seq;
6531 	core_rq->core_cookie               = rq->core_cookie;
6532 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6533 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6534 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6535 
6536 	/*
6537 	 * Accounting edge for forced idle is handled in pick_next_task().
6538 	 * Don't need another one here, since the hotplug thread shouldn't
6539 	 * have a cookie.
6540 	 */
6541 	core_rq->core_forceidle_start = 0;
6542 
6543 	/* install new leader */
6544 	for_each_cpu(t, smt_mask) {
6545 		rq = cpu_rq(t);
6546 		rq->core = core_rq;
6547 	}
6548 }
6549 
6550 static inline void sched_core_cpu_dying(unsigned int cpu)
6551 {
6552 	struct rq *rq = cpu_rq(cpu);
6553 
6554 	if (rq->core != rq)
6555 		rq->core = rq;
6556 }
6557 
6558 #else /* !CONFIG_SCHED_CORE */
6559 
6560 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6561 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6562 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6563 
6564 static struct task_struct *
6565 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6566 {
6567 	return __pick_next_task(rq, prev, rf);
6568 }
6569 
6570 #endif /* CONFIG_SCHED_CORE */
6571 
6572 /*
6573  * Constants for the sched_mode argument of __schedule().
6574  *
6575  * The mode argument allows RT enabled kernels to differentiate a
6576  * preemption from blocking on an 'sleeping' spin/rwlock.
6577  */
6578 #define SM_IDLE			(-1)
6579 #define SM_NONE			0
6580 #define SM_PREEMPT		1
6581 #define SM_RTLOCK_WAIT		2
6582 
6583 /*
6584  * Helper function for __schedule()
6585  *
6586  * If a task does not have signals pending, deactivate it
6587  * Otherwise marks the task's __state as RUNNING
6588  */
6589 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6590 			      unsigned long task_state)
6591 {
6592 	int flags = DEQUEUE_NOCLOCK;
6593 
6594 	if (signal_pending_state(task_state, p)) {
6595 		WRITE_ONCE(p->__state, TASK_RUNNING);
6596 		return false;
6597 	}
6598 
6599 	p->sched_contributes_to_load =
6600 		(task_state & TASK_UNINTERRUPTIBLE) &&
6601 		!(task_state & TASK_NOLOAD) &&
6602 		!(task_state & TASK_FROZEN);
6603 
6604 	if (unlikely(is_special_task_state(task_state)))
6605 		flags |= DEQUEUE_SPECIAL;
6606 
6607 	/*
6608 	 * __schedule()			ttwu()
6609 	 *   prev_state = prev->state;    if (p->on_rq && ...)
6610 	 *   if (prev_state)		    goto out;
6611 	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6612 	 *				  p->state = TASK_WAKING
6613 	 *
6614 	 * Where __schedule() and ttwu() have matching control dependencies.
6615 	 *
6616 	 * After this, schedule() must not care about p->state any more.
6617 	 */
6618 	block_task(rq, p, flags);
6619 	return true;
6620 }
6621 
6622 /*
6623  * __schedule() is the main scheduler function.
6624  *
6625  * The main means of driving the scheduler and thus entering this function are:
6626  *
6627  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6628  *
6629  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6630  *      paths. For example, see arch/x86/entry_64.S.
6631  *
6632  *      To drive preemption between tasks, the scheduler sets the flag in timer
6633  *      interrupt handler sched_tick().
6634  *
6635  *   3. Wakeups don't really cause entry into schedule(). They add a
6636  *      task to the run-queue and that's it.
6637  *
6638  *      Now, if the new task added to the run-queue preempts the current
6639  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6640  *      called on the nearest possible occasion:
6641  *
6642  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6643  *
6644  *         - in syscall or exception context, at the next outmost
6645  *           preempt_enable(). (this might be as soon as the wake_up()'s
6646  *           spin_unlock()!)
6647  *
6648  *         - in IRQ context, return from interrupt-handler to
6649  *           preemptible context
6650  *
6651  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6652  *         then at the next:
6653  *
6654  *          - cond_resched() call
6655  *          - explicit schedule() call
6656  *          - return from syscall or exception to user-space
6657  *          - return from interrupt-handler to user-space
6658  *
6659  * WARNING: must be called with preemption disabled!
6660  */
6661 static void __sched notrace __schedule(int sched_mode)
6662 {
6663 	struct task_struct *prev, *next;
6664 	/*
6665 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6666 	 * as a preemption by schedule_debug() and RCU.
6667 	 */
6668 	bool preempt = sched_mode > SM_NONE;
6669 	bool is_switch = false;
6670 	unsigned long *switch_count;
6671 	unsigned long prev_state;
6672 	struct rq_flags rf;
6673 	struct rq *rq;
6674 	int cpu;
6675 
6676 	trace_sched_entry_tp(preempt, CALLER_ADDR0);
6677 
6678 	cpu = smp_processor_id();
6679 	rq = cpu_rq(cpu);
6680 	prev = rq->curr;
6681 
6682 	schedule_debug(prev, preempt);
6683 
6684 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6685 		hrtick_clear(rq);
6686 
6687 	local_irq_disable();
6688 	rcu_note_context_switch(preempt);
6689 
6690 	/*
6691 	 * Make sure that signal_pending_state()->signal_pending() below
6692 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6693 	 * done by the caller to avoid the race with signal_wake_up():
6694 	 *
6695 	 * __set_current_state(@state)		signal_wake_up()
6696 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6697 	 *					  wake_up_state(p, state)
6698 	 *   LOCK rq->lock			    LOCK p->pi_state
6699 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6700 	 *     if (signal_pending_state())	    if (p->state & @state)
6701 	 *
6702 	 * Also, the membarrier system call requires a full memory barrier
6703 	 * after coming from user-space, before storing to rq->curr; this
6704 	 * barrier matches a full barrier in the proximity of the membarrier
6705 	 * system call exit.
6706 	 */
6707 	rq_lock(rq, &rf);
6708 	smp_mb__after_spinlock();
6709 
6710 	/* Promote REQ to ACT */
6711 	rq->clock_update_flags <<= 1;
6712 	update_rq_clock(rq);
6713 	rq->clock_update_flags = RQCF_UPDATED;
6714 
6715 	switch_count = &prev->nivcsw;
6716 
6717 	/* Task state changes only considers SM_PREEMPT as preemption */
6718 	preempt = sched_mode == SM_PREEMPT;
6719 
6720 	/*
6721 	 * We must load prev->state once (task_struct::state is volatile), such
6722 	 * that we form a control dependency vs deactivate_task() below.
6723 	 */
6724 	prev_state = READ_ONCE(prev->__state);
6725 	if (sched_mode == SM_IDLE) {
6726 		/* SCX must consult the BPF scheduler to tell if rq is empty */
6727 		if (!rq->nr_running && !scx_enabled()) {
6728 			next = prev;
6729 			goto picked;
6730 		}
6731 	} else if (!preempt && prev_state) {
6732 		try_to_block_task(rq, prev, prev_state);
6733 		switch_count = &prev->nvcsw;
6734 	}
6735 
6736 	next = pick_next_task(rq, prev, &rf);
6737 	rq_set_donor(rq, next);
6738 picked:
6739 	clear_tsk_need_resched(prev);
6740 	clear_preempt_need_resched();
6741 #ifdef CONFIG_SCHED_DEBUG
6742 	rq->last_seen_need_resched_ns = 0;
6743 #endif
6744 
6745 	is_switch = prev != next;
6746 	if (likely(is_switch)) {
6747 		rq->nr_switches++;
6748 		/*
6749 		 * RCU users of rcu_dereference(rq->curr) may not see
6750 		 * changes to task_struct made by pick_next_task().
6751 		 */
6752 		RCU_INIT_POINTER(rq->curr, next);
6753 		/*
6754 		 * The membarrier system call requires each architecture
6755 		 * to have a full memory barrier after updating
6756 		 * rq->curr, before returning to user-space.
6757 		 *
6758 		 * Here are the schemes providing that barrier on the
6759 		 * various architectures:
6760 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6761 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6762 		 *   on PowerPC and on RISC-V.
6763 		 * - finish_lock_switch() for weakly-ordered
6764 		 *   architectures where spin_unlock is a full barrier,
6765 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6766 		 *   is a RELEASE barrier),
6767 		 *
6768 		 * The barrier matches a full barrier in the proximity of
6769 		 * the membarrier system call entry.
6770 		 *
6771 		 * On RISC-V, this barrier pairing is also needed for the
6772 		 * SYNC_CORE command when switching between processes, cf.
6773 		 * the inline comments in membarrier_arch_switch_mm().
6774 		 */
6775 		++*switch_count;
6776 
6777 		migrate_disable_switch(rq, prev);
6778 		psi_account_irqtime(rq, prev, next);
6779 		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6780 					     prev->se.sched_delayed);
6781 
6782 		trace_sched_switch(preempt, prev, next, prev_state);
6783 
6784 		/* Also unlocks the rq: */
6785 		rq = context_switch(rq, prev, next, &rf);
6786 	} else {
6787 		rq_unpin_lock(rq, &rf);
6788 		__balance_callbacks(rq);
6789 		raw_spin_rq_unlock_irq(rq);
6790 	}
6791 	trace_sched_exit_tp(is_switch, CALLER_ADDR0);
6792 }
6793 
6794 void __noreturn do_task_dead(void)
6795 {
6796 	/* Causes final put_task_struct in finish_task_switch(): */
6797 	set_special_state(TASK_DEAD);
6798 
6799 	/* Tell freezer to ignore us: */
6800 	current->flags |= PF_NOFREEZE;
6801 
6802 	__schedule(SM_NONE);
6803 	BUG();
6804 
6805 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6806 	for (;;)
6807 		cpu_relax();
6808 }
6809 
6810 static inline void sched_submit_work(struct task_struct *tsk)
6811 {
6812 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6813 	unsigned int task_flags;
6814 
6815 	/*
6816 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6817 	 * will use a blocking primitive -- which would lead to recursion.
6818 	 */
6819 	lock_map_acquire_try(&sched_map);
6820 
6821 	task_flags = tsk->flags;
6822 	/*
6823 	 * If a worker goes to sleep, notify and ask workqueue whether it
6824 	 * wants to wake up a task to maintain concurrency.
6825 	 */
6826 	if (task_flags & PF_WQ_WORKER)
6827 		wq_worker_sleeping(tsk);
6828 	else if (task_flags & PF_IO_WORKER)
6829 		io_wq_worker_sleeping(tsk);
6830 
6831 	/*
6832 	 * spinlock and rwlock must not flush block requests.  This will
6833 	 * deadlock if the callback attempts to acquire a lock which is
6834 	 * already acquired.
6835 	 */
6836 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6837 
6838 	/*
6839 	 * If we are going to sleep and we have plugged IO queued,
6840 	 * make sure to submit it to avoid deadlocks.
6841 	 */
6842 	blk_flush_plug(tsk->plug, true);
6843 
6844 	lock_map_release(&sched_map);
6845 }
6846 
6847 static void sched_update_worker(struct task_struct *tsk)
6848 {
6849 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6850 		if (tsk->flags & PF_BLOCK_TS)
6851 			blk_plug_invalidate_ts(tsk);
6852 		if (tsk->flags & PF_WQ_WORKER)
6853 			wq_worker_running(tsk);
6854 		else if (tsk->flags & PF_IO_WORKER)
6855 			io_wq_worker_running(tsk);
6856 	}
6857 }
6858 
6859 static __always_inline void __schedule_loop(int sched_mode)
6860 {
6861 	do {
6862 		preempt_disable();
6863 		__schedule(sched_mode);
6864 		sched_preempt_enable_no_resched();
6865 	} while (need_resched());
6866 }
6867 
6868 asmlinkage __visible void __sched schedule(void)
6869 {
6870 	struct task_struct *tsk = current;
6871 
6872 #ifdef CONFIG_RT_MUTEXES
6873 	lockdep_assert(!tsk->sched_rt_mutex);
6874 #endif
6875 
6876 	if (!task_is_running(tsk))
6877 		sched_submit_work(tsk);
6878 	__schedule_loop(SM_NONE);
6879 	sched_update_worker(tsk);
6880 }
6881 EXPORT_SYMBOL(schedule);
6882 
6883 /*
6884  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6885  * state (have scheduled out non-voluntarily) by making sure that all
6886  * tasks have either left the run queue or have gone into user space.
6887  * As idle tasks do not do either, they must not ever be preempted
6888  * (schedule out non-voluntarily).
6889  *
6890  * schedule_idle() is similar to schedule_preempt_disable() except that it
6891  * never enables preemption because it does not call sched_submit_work().
6892  */
6893 void __sched schedule_idle(void)
6894 {
6895 	/*
6896 	 * As this skips calling sched_submit_work(), which the idle task does
6897 	 * regardless because that function is a NOP when the task is in a
6898 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6899 	 * current task can be in any other state. Note, idle is always in the
6900 	 * TASK_RUNNING state.
6901 	 */
6902 	WARN_ON_ONCE(current->__state);
6903 	do {
6904 		__schedule(SM_IDLE);
6905 	} while (need_resched());
6906 }
6907 
6908 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6909 asmlinkage __visible void __sched schedule_user(void)
6910 {
6911 	/*
6912 	 * If we come here after a random call to set_need_resched(),
6913 	 * or we have been woken up remotely but the IPI has not yet arrived,
6914 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6915 	 * we find a better solution.
6916 	 *
6917 	 * NB: There are buggy callers of this function.  Ideally we
6918 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6919 	 * too frequently to make sense yet.
6920 	 */
6921 	enum ctx_state prev_state = exception_enter();
6922 	schedule();
6923 	exception_exit(prev_state);
6924 }
6925 #endif
6926 
6927 /**
6928  * schedule_preempt_disabled - called with preemption disabled
6929  *
6930  * Returns with preemption disabled. Note: preempt_count must be 1
6931  */
6932 void __sched schedule_preempt_disabled(void)
6933 {
6934 	sched_preempt_enable_no_resched();
6935 	schedule();
6936 	preempt_disable();
6937 }
6938 
6939 #ifdef CONFIG_PREEMPT_RT
6940 void __sched notrace schedule_rtlock(void)
6941 {
6942 	__schedule_loop(SM_RTLOCK_WAIT);
6943 }
6944 NOKPROBE_SYMBOL(schedule_rtlock);
6945 #endif
6946 
6947 static void __sched notrace preempt_schedule_common(void)
6948 {
6949 	do {
6950 		/*
6951 		 * Because the function tracer can trace preempt_count_sub()
6952 		 * and it also uses preempt_enable/disable_notrace(), if
6953 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6954 		 * by the function tracer will call this function again and
6955 		 * cause infinite recursion.
6956 		 *
6957 		 * Preemption must be disabled here before the function
6958 		 * tracer can trace. Break up preempt_disable() into two
6959 		 * calls. One to disable preemption without fear of being
6960 		 * traced. The other to still record the preemption latency,
6961 		 * which can also be traced by the function tracer.
6962 		 */
6963 		preempt_disable_notrace();
6964 		preempt_latency_start(1);
6965 		__schedule(SM_PREEMPT);
6966 		preempt_latency_stop(1);
6967 		preempt_enable_no_resched_notrace();
6968 
6969 		/*
6970 		 * Check again in case we missed a preemption opportunity
6971 		 * between schedule and now.
6972 		 */
6973 	} while (need_resched());
6974 }
6975 
6976 #ifdef CONFIG_PREEMPTION
6977 /*
6978  * This is the entry point to schedule() from in-kernel preemption
6979  * off of preempt_enable.
6980  */
6981 asmlinkage __visible void __sched notrace preempt_schedule(void)
6982 {
6983 	/*
6984 	 * If there is a non-zero preempt_count or interrupts are disabled,
6985 	 * we do not want to preempt the current task. Just return..
6986 	 */
6987 	if (likely(!preemptible()))
6988 		return;
6989 	preempt_schedule_common();
6990 }
6991 NOKPROBE_SYMBOL(preempt_schedule);
6992 EXPORT_SYMBOL(preempt_schedule);
6993 
6994 #ifdef CONFIG_PREEMPT_DYNAMIC
6995 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6996 #ifndef preempt_schedule_dynamic_enabled
6997 #define preempt_schedule_dynamic_enabled	preempt_schedule
6998 #define preempt_schedule_dynamic_disabled	NULL
6999 #endif
7000 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
7001 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
7002 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7003 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
7004 void __sched notrace dynamic_preempt_schedule(void)
7005 {
7006 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
7007 		return;
7008 	preempt_schedule();
7009 }
7010 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
7011 EXPORT_SYMBOL(dynamic_preempt_schedule);
7012 #endif
7013 #endif
7014 
7015 /**
7016  * preempt_schedule_notrace - preempt_schedule called by tracing
7017  *
7018  * The tracing infrastructure uses preempt_enable_notrace to prevent
7019  * recursion and tracing preempt enabling caused by the tracing
7020  * infrastructure itself. But as tracing can happen in areas coming
7021  * from userspace or just about to enter userspace, a preempt enable
7022  * can occur before user_exit() is called. This will cause the scheduler
7023  * to be called when the system is still in usermode.
7024  *
7025  * To prevent this, the preempt_enable_notrace will use this function
7026  * instead of preempt_schedule() to exit user context if needed before
7027  * calling the scheduler.
7028  */
7029 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7030 {
7031 	enum ctx_state prev_ctx;
7032 
7033 	if (likely(!preemptible()))
7034 		return;
7035 
7036 	do {
7037 		/*
7038 		 * Because the function tracer can trace preempt_count_sub()
7039 		 * and it also uses preempt_enable/disable_notrace(), if
7040 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7041 		 * by the function tracer will call this function again and
7042 		 * cause infinite recursion.
7043 		 *
7044 		 * Preemption must be disabled here before the function
7045 		 * tracer can trace. Break up preempt_disable() into two
7046 		 * calls. One to disable preemption without fear of being
7047 		 * traced. The other to still record the preemption latency,
7048 		 * which can also be traced by the function tracer.
7049 		 */
7050 		preempt_disable_notrace();
7051 		preempt_latency_start(1);
7052 		/*
7053 		 * Needs preempt disabled in case user_exit() is traced
7054 		 * and the tracer calls preempt_enable_notrace() causing
7055 		 * an infinite recursion.
7056 		 */
7057 		prev_ctx = exception_enter();
7058 		__schedule(SM_PREEMPT);
7059 		exception_exit(prev_ctx);
7060 
7061 		preempt_latency_stop(1);
7062 		preempt_enable_no_resched_notrace();
7063 	} while (need_resched());
7064 }
7065 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7066 
7067 #ifdef CONFIG_PREEMPT_DYNAMIC
7068 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7069 #ifndef preempt_schedule_notrace_dynamic_enabled
7070 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7071 #define preempt_schedule_notrace_dynamic_disabled	NULL
7072 #endif
7073 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7074 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7075 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7076 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7077 void __sched notrace dynamic_preempt_schedule_notrace(void)
7078 {
7079 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7080 		return;
7081 	preempt_schedule_notrace();
7082 }
7083 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7084 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7085 #endif
7086 #endif
7087 
7088 #endif /* CONFIG_PREEMPTION */
7089 
7090 /*
7091  * This is the entry point to schedule() from kernel preemption
7092  * off of IRQ context.
7093  * Note, that this is called and return with IRQs disabled. This will
7094  * protect us against recursive calling from IRQ contexts.
7095  */
7096 asmlinkage __visible void __sched preempt_schedule_irq(void)
7097 {
7098 	enum ctx_state prev_state;
7099 
7100 	/* Catch callers which need to be fixed */
7101 	BUG_ON(preempt_count() || !irqs_disabled());
7102 
7103 	prev_state = exception_enter();
7104 
7105 	do {
7106 		preempt_disable();
7107 		local_irq_enable();
7108 		__schedule(SM_PREEMPT);
7109 		local_irq_disable();
7110 		sched_preempt_enable_no_resched();
7111 	} while (need_resched());
7112 
7113 	exception_exit(prev_state);
7114 }
7115 
7116 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7117 			  void *key)
7118 {
7119 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7120 	return try_to_wake_up(curr->private, mode, wake_flags);
7121 }
7122 EXPORT_SYMBOL(default_wake_function);
7123 
7124 const struct sched_class *__setscheduler_class(int policy, int prio)
7125 {
7126 	if (dl_prio(prio))
7127 		return &dl_sched_class;
7128 
7129 	if (rt_prio(prio))
7130 		return &rt_sched_class;
7131 
7132 #ifdef CONFIG_SCHED_CLASS_EXT
7133 	if (task_should_scx(policy))
7134 		return &ext_sched_class;
7135 #endif
7136 
7137 	return &fair_sched_class;
7138 }
7139 
7140 #ifdef CONFIG_RT_MUTEXES
7141 
7142 /*
7143  * Would be more useful with typeof()/auto_type but they don't mix with
7144  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7145  * name such that if someone were to implement this function we get to compare
7146  * notes.
7147  */
7148 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7149 
7150 void rt_mutex_pre_schedule(void)
7151 {
7152 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7153 	sched_submit_work(current);
7154 }
7155 
7156 void rt_mutex_schedule(void)
7157 {
7158 	lockdep_assert(current->sched_rt_mutex);
7159 	__schedule_loop(SM_NONE);
7160 }
7161 
7162 void rt_mutex_post_schedule(void)
7163 {
7164 	sched_update_worker(current);
7165 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7166 }
7167 
7168 /*
7169  * rt_mutex_setprio - set the current priority of a task
7170  * @p: task to boost
7171  * @pi_task: donor task
7172  *
7173  * This function changes the 'effective' priority of a task. It does
7174  * not touch ->normal_prio like __setscheduler().
7175  *
7176  * Used by the rt_mutex code to implement priority inheritance
7177  * logic. Call site only calls if the priority of the task changed.
7178  */
7179 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7180 {
7181 	int prio, oldprio, queued, running, queue_flag =
7182 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7183 	const struct sched_class *prev_class, *next_class;
7184 	struct rq_flags rf;
7185 	struct rq *rq;
7186 
7187 	/* XXX used to be waiter->prio, not waiter->task->prio */
7188 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7189 
7190 	/*
7191 	 * If nothing changed; bail early.
7192 	 */
7193 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7194 		return;
7195 
7196 	rq = __task_rq_lock(p, &rf);
7197 	update_rq_clock(rq);
7198 	/*
7199 	 * Set under pi_lock && rq->lock, such that the value can be used under
7200 	 * either lock.
7201 	 *
7202 	 * Note that there is loads of tricky to make this pointer cache work
7203 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7204 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7205 	 * task is allowed to run again (and can exit). This ensures the pointer
7206 	 * points to a blocked task -- which guarantees the task is present.
7207 	 */
7208 	p->pi_top_task = pi_task;
7209 
7210 	/*
7211 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7212 	 */
7213 	if (prio == p->prio && !dl_prio(prio))
7214 		goto out_unlock;
7215 
7216 	/*
7217 	 * Idle task boosting is a no-no in general. There is one
7218 	 * exception, when PREEMPT_RT and NOHZ is active:
7219 	 *
7220 	 * The idle task calls get_next_timer_interrupt() and holds
7221 	 * the timer wheel base->lock on the CPU and another CPU wants
7222 	 * to access the timer (probably to cancel it). We can safely
7223 	 * ignore the boosting request, as the idle CPU runs this code
7224 	 * with interrupts disabled and will complete the lock
7225 	 * protected section without being interrupted. So there is no
7226 	 * real need to boost.
7227 	 */
7228 	if (unlikely(p == rq->idle)) {
7229 		WARN_ON(p != rq->curr);
7230 		WARN_ON(p->pi_blocked_on);
7231 		goto out_unlock;
7232 	}
7233 
7234 	trace_sched_pi_setprio(p, pi_task);
7235 	oldprio = p->prio;
7236 
7237 	if (oldprio == prio)
7238 		queue_flag &= ~DEQUEUE_MOVE;
7239 
7240 	prev_class = p->sched_class;
7241 	next_class = __setscheduler_class(p->policy, prio);
7242 
7243 	if (prev_class != next_class && p->se.sched_delayed)
7244 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7245 
7246 	queued = task_on_rq_queued(p);
7247 	running = task_current_donor(rq, p);
7248 	if (queued)
7249 		dequeue_task(rq, p, queue_flag);
7250 	if (running)
7251 		put_prev_task(rq, p);
7252 
7253 	/*
7254 	 * Boosting condition are:
7255 	 * 1. -rt task is running and holds mutex A
7256 	 *      --> -dl task blocks on mutex A
7257 	 *
7258 	 * 2. -dl task is running and holds mutex A
7259 	 *      --> -dl task blocks on mutex A and could preempt the
7260 	 *          running task
7261 	 */
7262 	if (dl_prio(prio)) {
7263 		if (!dl_prio(p->normal_prio) ||
7264 		    (pi_task && dl_prio(pi_task->prio) &&
7265 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7266 			p->dl.pi_se = pi_task->dl.pi_se;
7267 			queue_flag |= ENQUEUE_REPLENISH;
7268 		} else {
7269 			p->dl.pi_se = &p->dl;
7270 		}
7271 	} else if (rt_prio(prio)) {
7272 		if (dl_prio(oldprio))
7273 			p->dl.pi_se = &p->dl;
7274 		if (oldprio < prio)
7275 			queue_flag |= ENQUEUE_HEAD;
7276 	} else {
7277 		if (dl_prio(oldprio))
7278 			p->dl.pi_se = &p->dl;
7279 		if (rt_prio(oldprio))
7280 			p->rt.timeout = 0;
7281 	}
7282 
7283 	p->sched_class = next_class;
7284 	p->prio = prio;
7285 
7286 	check_class_changing(rq, p, prev_class);
7287 
7288 	if (queued)
7289 		enqueue_task(rq, p, queue_flag);
7290 	if (running)
7291 		set_next_task(rq, p);
7292 
7293 	check_class_changed(rq, p, prev_class, oldprio);
7294 out_unlock:
7295 	/* Avoid rq from going away on us: */
7296 	preempt_disable();
7297 
7298 	rq_unpin_lock(rq, &rf);
7299 	__balance_callbacks(rq);
7300 	raw_spin_rq_unlock(rq);
7301 
7302 	preempt_enable();
7303 }
7304 #endif
7305 
7306 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7307 int __sched __cond_resched(void)
7308 {
7309 	if (should_resched(0)) {
7310 		preempt_schedule_common();
7311 		return 1;
7312 	}
7313 	/*
7314 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
7315 	 * whether the current CPU is in an RCU read-side critical section,
7316 	 * so the tick can report quiescent states even for CPUs looping
7317 	 * in kernel context.  In contrast, in non-preemptible kernels,
7318 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7319 	 * processes executing in kernel context might never report an
7320 	 * RCU quiescent state.  Therefore, the following code causes
7321 	 * cond_resched() to report a quiescent state, but only when RCU
7322 	 * is in urgent need of one.
7323 	 */
7324 #ifndef CONFIG_PREEMPT_RCU
7325 	rcu_all_qs();
7326 #endif
7327 	return 0;
7328 }
7329 EXPORT_SYMBOL(__cond_resched);
7330 #endif
7331 
7332 #ifdef CONFIG_PREEMPT_DYNAMIC
7333 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7334 #define cond_resched_dynamic_enabled	__cond_resched
7335 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7336 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7337 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7338 
7339 #define might_resched_dynamic_enabled	__cond_resched
7340 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7341 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7342 EXPORT_STATIC_CALL_TRAMP(might_resched);
7343 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7344 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7345 int __sched dynamic_cond_resched(void)
7346 {
7347 	klp_sched_try_switch();
7348 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7349 		return 0;
7350 	return __cond_resched();
7351 }
7352 EXPORT_SYMBOL(dynamic_cond_resched);
7353 
7354 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7355 int __sched dynamic_might_resched(void)
7356 {
7357 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7358 		return 0;
7359 	return __cond_resched();
7360 }
7361 EXPORT_SYMBOL(dynamic_might_resched);
7362 #endif
7363 #endif
7364 
7365 /*
7366  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7367  * call schedule, and on return reacquire the lock.
7368  *
7369  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7370  * operations here to prevent schedule() from being called twice (once via
7371  * spin_unlock(), once by hand).
7372  */
7373 int __cond_resched_lock(spinlock_t *lock)
7374 {
7375 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7376 	int ret = 0;
7377 
7378 	lockdep_assert_held(lock);
7379 
7380 	if (spin_needbreak(lock) || resched) {
7381 		spin_unlock(lock);
7382 		if (!_cond_resched())
7383 			cpu_relax();
7384 		ret = 1;
7385 		spin_lock(lock);
7386 	}
7387 	return ret;
7388 }
7389 EXPORT_SYMBOL(__cond_resched_lock);
7390 
7391 int __cond_resched_rwlock_read(rwlock_t *lock)
7392 {
7393 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7394 	int ret = 0;
7395 
7396 	lockdep_assert_held_read(lock);
7397 
7398 	if (rwlock_needbreak(lock) || resched) {
7399 		read_unlock(lock);
7400 		if (!_cond_resched())
7401 			cpu_relax();
7402 		ret = 1;
7403 		read_lock(lock);
7404 	}
7405 	return ret;
7406 }
7407 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7408 
7409 int __cond_resched_rwlock_write(rwlock_t *lock)
7410 {
7411 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7412 	int ret = 0;
7413 
7414 	lockdep_assert_held_write(lock);
7415 
7416 	if (rwlock_needbreak(lock) || resched) {
7417 		write_unlock(lock);
7418 		if (!_cond_resched())
7419 			cpu_relax();
7420 		ret = 1;
7421 		write_lock(lock);
7422 	}
7423 	return ret;
7424 }
7425 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7426 
7427 #ifdef CONFIG_PREEMPT_DYNAMIC
7428 
7429 #ifdef CONFIG_GENERIC_ENTRY
7430 #include <linux/entry-common.h>
7431 #endif
7432 
7433 /*
7434  * SC:cond_resched
7435  * SC:might_resched
7436  * SC:preempt_schedule
7437  * SC:preempt_schedule_notrace
7438  * SC:irqentry_exit_cond_resched
7439  *
7440  *
7441  * NONE:
7442  *   cond_resched               <- __cond_resched
7443  *   might_resched              <- RET0
7444  *   preempt_schedule           <- NOP
7445  *   preempt_schedule_notrace   <- NOP
7446  *   irqentry_exit_cond_resched <- NOP
7447  *   dynamic_preempt_lazy       <- false
7448  *
7449  * VOLUNTARY:
7450  *   cond_resched               <- __cond_resched
7451  *   might_resched              <- __cond_resched
7452  *   preempt_schedule           <- NOP
7453  *   preempt_schedule_notrace   <- NOP
7454  *   irqentry_exit_cond_resched <- NOP
7455  *   dynamic_preempt_lazy       <- false
7456  *
7457  * FULL:
7458  *   cond_resched               <- RET0
7459  *   might_resched              <- RET0
7460  *   preempt_schedule           <- preempt_schedule
7461  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7462  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7463  *   dynamic_preempt_lazy       <- false
7464  *
7465  * LAZY:
7466  *   cond_resched               <- RET0
7467  *   might_resched              <- RET0
7468  *   preempt_schedule           <- preempt_schedule
7469  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7470  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7471  *   dynamic_preempt_lazy       <- true
7472  */
7473 
7474 enum {
7475 	preempt_dynamic_undefined = -1,
7476 	preempt_dynamic_none,
7477 	preempt_dynamic_voluntary,
7478 	preempt_dynamic_full,
7479 	preempt_dynamic_lazy,
7480 };
7481 
7482 int preempt_dynamic_mode = preempt_dynamic_undefined;
7483 
7484 int sched_dynamic_mode(const char *str)
7485 {
7486 #ifndef CONFIG_PREEMPT_RT
7487 	if (!strcmp(str, "none"))
7488 		return preempt_dynamic_none;
7489 
7490 	if (!strcmp(str, "voluntary"))
7491 		return preempt_dynamic_voluntary;
7492 #endif
7493 
7494 	if (!strcmp(str, "full"))
7495 		return preempt_dynamic_full;
7496 
7497 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7498 	if (!strcmp(str, "lazy"))
7499 		return preempt_dynamic_lazy;
7500 #endif
7501 
7502 	return -EINVAL;
7503 }
7504 
7505 #define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7506 #define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7507 
7508 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7509 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7510 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7511 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7512 #define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
7513 #define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
7514 #else
7515 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7516 #endif
7517 
7518 static DEFINE_MUTEX(sched_dynamic_mutex);
7519 static bool klp_override;
7520 
7521 static void __sched_dynamic_update(int mode)
7522 {
7523 	/*
7524 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7525 	 * the ZERO state, which is invalid.
7526 	 */
7527 	if (!klp_override)
7528 		preempt_dynamic_enable(cond_resched);
7529 	preempt_dynamic_enable(might_resched);
7530 	preempt_dynamic_enable(preempt_schedule);
7531 	preempt_dynamic_enable(preempt_schedule_notrace);
7532 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7533 	preempt_dynamic_key_disable(preempt_lazy);
7534 
7535 	switch (mode) {
7536 	case preempt_dynamic_none:
7537 		if (!klp_override)
7538 			preempt_dynamic_enable(cond_resched);
7539 		preempt_dynamic_disable(might_resched);
7540 		preempt_dynamic_disable(preempt_schedule);
7541 		preempt_dynamic_disable(preempt_schedule_notrace);
7542 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7543 		preempt_dynamic_key_disable(preempt_lazy);
7544 		if (mode != preempt_dynamic_mode)
7545 			pr_info("Dynamic Preempt: none\n");
7546 		break;
7547 
7548 	case preempt_dynamic_voluntary:
7549 		if (!klp_override)
7550 			preempt_dynamic_enable(cond_resched);
7551 		preempt_dynamic_enable(might_resched);
7552 		preempt_dynamic_disable(preempt_schedule);
7553 		preempt_dynamic_disable(preempt_schedule_notrace);
7554 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7555 		preempt_dynamic_key_disable(preempt_lazy);
7556 		if (mode != preempt_dynamic_mode)
7557 			pr_info("Dynamic Preempt: voluntary\n");
7558 		break;
7559 
7560 	case preempt_dynamic_full:
7561 		if (!klp_override)
7562 			preempt_dynamic_disable(cond_resched);
7563 		preempt_dynamic_disable(might_resched);
7564 		preempt_dynamic_enable(preempt_schedule);
7565 		preempt_dynamic_enable(preempt_schedule_notrace);
7566 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7567 		preempt_dynamic_key_disable(preempt_lazy);
7568 		if (mode != preempt_dynamic_mode)
7569 			pr_info("Dynamic Preempt: full\n");
7570 		break;
7571 
7572 	case preempt_dynamic_lazy:
7573 		if (!klp_override)
7574 			preempt_dynamic_disable(cond_resched);
7575 		preempt_dynamic_disable(might_resched);
7576 		preempt_dynamic_enable(preempt_schedule);
7577 		preempt_dynamic_enable(preempt_schedule_notrace);
7578 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7579 		preempt_dynamic_key_enable(preempt_lazy);
7580 		if (mode != preempt_dynamic_mode)
7581 			pr_info("Dynamic Preempt: lazy\n");
7582 		break;
7583 	}
7584 
7585 	preempt_dynamic_mode = mode;
7586 }
7587 
7588 void sched_dynamic_update(int mode)
7589 {
7590 	mutex_lock(&sched_dynamic_mutex);
7591 	__sched_dynamic_update(mode);
7592 	mutex_unlock(&sched_dynamic_mutex);
7593 }
7594 
7595 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7596 
7597 static int klp_cond_resched(void)
7598 {
7599 	__klp_sched_try_switch();
7600 	return __cond_resched();
7601 }
7602 
7603 void sched_dynamic_klp_enable(void)
7604 {
7605 	mutex_lock(&sched_dynamic_mutex);
7606 
7607 	klp_override = true;
7608 	static_call_update(cond_resched, klp_cond_resched);
7609 
7610 	mutex_unlock(&sched_dynamic_mutex);
7611 }
7612 
7613 void sched_dynamic_klp_disable(void)
7614 {
7615 	mutex_lock(&sched_dynamic_mutex);
7616 
7617 	klp_override = false;
7618 	__sched_dynamic_update(preempt_dynamic_mode);
7619 
7620 	mutex_unlock(&sched_dynamic_mutex);
7621 }
7622 
7623 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
7624 
7625 static int __init setup_preempt_mode(char *str)
7626 {
7627 	int mode = sched_dynamic_mode(str);
7628 	if (mode < 0) {
7629 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7630 		return 0;
7631 	}
7632 
7633 	sched_dynamic_update(mode);
7634 	return 1;
7635 }
7636 __setup("preempt=", setup_preempt_mode);
7637 
7638 static void __init preempt_dynamic_init(void)
7639 {
7640 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7641 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7642 			sched_dynamic_update(preempt_dynamic_none);
7643 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7644 			sched_dynamic_update(preempt_dynamic_voluntary);
7645 		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7646 			sched_dynamic_update(preempt_dynamic_lazy);
7647 		} else {
7648 			/* Default static call setting, nothing to do */
7649 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7650 			preempt_dynamic_mode = preempt_dynamic_full;
7651 			pr_info("Dynamic Preempt: full\n");
7652 		}
7653 	}
7654 }
7655 
7656 #define PREEMPT_MODEL_ACCESSOR(mode) \
7657 	bool preempt_model_##mode(void)						 \
7658 	{									 \
7659 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7660 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7661 	}									 \
7662 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7663 
7664 PREEMPT_MODEL_ACCESSOR(none);
7665 PREEMPT_MODEL_ACCESSOR(voluntary);
7666 PREEMPT_MODEL_ACCESSOR(full);
7667 PREEMPT_MODEL_ACCESSOR(lazy);
7668 
7669 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7670 
7671 static inline void preempt_dynamic_init(void) { }
7672 
7673 #endif /* CONFIG_PREEMPT_DYNAMIC */
7674 
7675 int io_schedule_prepare(void)
7676 {
7677 	int old_iowait = current->in_iowait;
7678 
7679 	current->in_iowait = 1;
7680 	blk_flush_plug(current->plug, true);
7681 	return old_iowait;
7682 }
7683 
7684 void io_schedule_finish(int token)
7685 {
7686 	current->in_iowait = token;
7687 }
7688 
7689 /*
7690  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7691  * that process accounting knows that this is a task in IO wait state.
7692  */
7693 long __sched io_schedule_timeout(long timeout)
7694 {
7695 	int token;
7696 	long ret;
7697 
7698 	token = io_schedule_prepare();
7699 	ret = schedule_timeout(timeout);
7700 	io_schedule_finish(token);
7701 
7702 	return ret;
7703 }
7704 EXPORT_SYMBOL(io_schedule_timeout);
7705 
7706 void __sched io_schedule(void)
7707 {
7708 	int token;
7709 
7710 	token = io_schedule_prepare();
7711 	schedule();
7712 	io_schedule_finish(token);
7713 }
7714 EXPORT_SYMBOL(io_schedule);
7715 
7716 void sched_show_task(struct task_struct *p)
7717 {
7718 	unsigned long free;
7719 	int ppid;
7720 
7721 	if (!try_get_task_stack(p))
7722 		return;
7723 
7724 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7725 
7726 	if (task_is_running(p))
7727 		pr_cont("  running task    ");
7728 	free = stack_not_used(p);
7729 	ppid = 0;
7730 	rcu_read_lock();
7731 	if (pid_alive(p))
7732 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7733 	rcu_read_unlock();
7734 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
7735 		free, task_pid_nr(p), task_tgid_nr(p),
7736 		ppid, p->flags, read_task_thread_flags(p));
7737 
7738 	print_worker_info(KERN_INFO, p);
7739 	print_stop_info(KERN_INFO, p);
7740 	print_scx_info(KERN_INFO, p);
7741 	show_stack(p, NULL, KERN_INFO);
7742 	put_task_stack(p);
7743 }
7744 EXPORT_SYMBOL_GPL(sched_show_task);
7745 
7746 static inline bool
7747 state_filter_match(unsigned long state_filter, struct task_struct *p)
7748 {
7749 	unsigned int state = READ_ONCE(p->__state);
7750 
7751 	/* no filter, everything matches */
7752 	if (!state_filter)
7753 		return true;
7754 
7755 	/* filter, but doesn't match */
7756 	if (!(state & state_filter))
7757 		return false;
7758 
7759 	/*
7760 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7761 	 * TASK_KILLABLE).
7762 	 */
7763 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7764 		return false;
7765 
7766 	return true;
7767 }
7768 
7769 
7770 void show_state_filter(unsigned int state_filter)
7771 {
7772 	struct task_struct *g, *p;
7773 
7774 	rcu_read_lock();
7775 	for_each_process_thread(g, p) {
7776 		/*
7777 		 * reset the NMI-timeout, listing all files on a slow
7778 		 * console might take a lot of time:
7779 		 * Also, reset softlockup watchdogs on all CPUs, because
7780 		 * another CPU might be blocked waiting for us to process
7781 		 * an IPI.
7782 		 */
7783 		touch_nmi_watchdog();
7784 		touch_all_softlockup_watchdogs();
7785 		if (state_filter_match(state_filter, p))
7786 			sched_show_task(p);
7787 	}
7788 
7789 #ifdef CONFIG_SCHED_DEBUG
7790 	if (!state_filter)
7791 		sysrq_sched_debug_show();
7792 #endif
7793 	rcu_read_unlock();
7794 	/*
7795 	 * Only show locks if all tasks are dumped:
7796 	 */
7797 	if (!state_filter)
7798 		debug_show_all_locks();
7799 }
7800 
7801 /**
7802  * init_idle - set up an idle thread for a given CPU
7803  * @idle: task in question
7804  * @cpu: CPU the idle task belongs to
7805  *
7806  * NOTE: this function does not set the idle thread's NEED_RESCHED
7807  * flag, to make booting more robust.
7808  */
7809 void __init init_idle(struct task_struct *idle, int cpu)
7810 {
7811 #ifdef CONFIG_SMP
7812 	struct affinity_context ac = (struct affinity_context) {
7813 		.new_mask  = cpumask_of(cpu),
7814 		.flags     = 0,
7815 	};
7816 #endif
7817 	struct rq *rq = cpu_rq(cpu);
7818 	unsigned long flags;
7819 
7820 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7821 	raw_spin_rq_lock(rq);
7822 
7823 	idle->__state = TASK_RUNNING;
7824 	idle->se.exec_start = sched_clock();
7825 	/*
7826 	 * PF_KTHREAD should already be set at this point; regardless, make it
7827 	 * look like a proper per-CPU kthread.
7828 	 */
7829 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7830 	kthread_set_per_cpu(idle, cpu);
7831 
7832 #ifdef CONFIG_SMP
7833 	/*
7834 	 * No validation and serialization required at boot time and for
7835 	 * setting up the idle tasks of not yet online CPUs.
7836 	 */
7837 	set_cpus_allowed_common(idle, &ac);
7838 #endif
7839 	/*
7840 	 * We're having a chicken and egg problem, even though we are
7841 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7842 	 * lockdep check in task_group() will fail.
7843 	 *
7844 	 * Similar case to sched_fork(). / Alternatively we could
7845 	 * use task_rq_lock() here and obtain the other rq->lock.
7846 	 *
7847 	 * Silence PROVE_RCU
7848 	 */
7849 	rcu_read_lock();
7850 	__set_task_cpu(idle, cpu);
7851 	rcu_read_unlock();
7852 
7853 	rq->idle = idle;
7854 	rq_set_donor(rq, idle);
7855 	rcu_assign_pointer(rq->curr, idle);
7856 	idle->on_rq = TASK_ON_RQ_QUEUED;
7857 #ifdef CONFIG_SMP
7858 	idle->on_cpu = 1;
7859 #endif
7860 	raw_spin_rq_unlock(rq);
7861 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7862 
7863 	/* Set the preempt count _outside_ the spinlocks! */
7864 	init_idle_preempt_count(idle, cpu);
7865 
7866 	/*
7867 	 * The idle tasks have their own, simple scheduling class:
7868 	 */
7869 	idle->sched_class = &idle_sched_class;
7870 	ftrace_graph_init_idle_task(idle, cpu);
7871 	vtime_init_idle(idle, cpu);
7872 #ifdef CONFIG_SMP
7873 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7874 #endif
7875 }
7876 
7877 #ifdef CONFIG_SMP
7878 
7879 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7880 			      const struct cpumask *trial)
7881 {
7882 	int ret = 1;
7883 
7884 	if (cpumask_empty(cur))
7885 		return ret;
7886 
7887 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7888 
7889 	return ret;
7890 }
7891 
7892 int task_can_attach(struct task_struct *p)
7893 {
7894 	int ret = 0;
7895 
7896 	/*
7897 	 * Kthreads which disallow setaffinity shouldn't be moved
7898 	 * to a new cpuset; we don't want to change their CPU
7899 	 * affinity and isolating such threads by their set of
7900 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7901 	 * applicable for such threads.  This prevents checking for
7902 	 * success of set_cpus_allowed_ptr() on all attached tasks
7903 	 * before cpus_mask may be changed.
7904 	 */
7905 	if (p->flags & PF_NO_SETAFFINITY)
7906 		ret = -EINVAL;
7907 
7908 	return ret;
7909 }
7910 
7911 bool sched_smp_initialized __read_mostly;
7912 
7913 #ifdef CONFIG_NUMA_BALANCING
7914 /* Migrate current task p to target_cpu */
7915 int migrate_task_to(struct task_struct *p, int target_cpu)
7916 {
7917 	struct migration_arg arg = { p, target_cpu };
7918 	int curr_cpu = task_cpu(p);
7919 
7920 	if (curr_cpu == target_cpu)
7921 		return 0;
7922 
7923 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7924 		return -EINVAL;
7925 
7926 	/* TODO: This is not properly updating schedstats */
7927 
7928 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7929 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7930 }
7931 
7932 /*
7933  * Requeue a task on a given node and accurately track the number of NUMA
7934  * tasks on the runqueues
7935  */
7936 void sched_setnuma(struct task_struct *p, int nid)
7937 {
7938 	bool queued, running;
7939 	struct rq_flags rf;
7940 	struct rq *rq;
7941 
7942 	rq = task_rq_lock(p, &rf);
7943 	queued = task_on_rq_queued(p);
7944 	running = task_current_donor(rq, p);
7945 
7946 	if (queued)
7947 		dequeue_task(rq, p, DEQUEUE_SAVE);
7948 	if (running)
7949 		put_prev_task(rq, p);
7950 
7951 	p->numa_preferred_nid = nid;
7952 
7953 	if (queued)
7954 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7955 	if (running)
7956 		set_next_task(rq, p);
7957 	task_rq_unlock(rq, p, &rf);
7958 }
7959 #endif /* CONFIG_NUMA_BALANCING */
7960 
7961 #ifdef CONFIG_HOTPLUG_CPU
7962 /*
7963  * Invoked on the outgoing CPU in context of the CPU hotplug thread
7964  * after ensuring that there are no user space tasks left on the CPU.
7965  *
7966  * If there is a lazy mm in use on the hotplug thread, drop it and
7967  * switch to init_mm.
7968  *
7969  * The reference count on init_mm is dropped in finish_cpu().
7970  */
7971 static void sched_force_init_mm(void)
7972 {
7973 	struct mm_struct *mm = current->active_mm;
7974 
7975 	if (mm != &init_mm) {
7976 		mmgrab_lazy_tlb(&init_mm);
7977 		local_irq_disable();
7978 		current->active_mm = &init_mm;
7979 		switch_mm_irqs_off(mm, &init_mm, current);
7980 		local_irq_enable();
7981 		finish_arch_post_lock_switch();
7982 		mmdrop_lazy_tlb(mm);
7983 	}
7984 
7985 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7986 }
7987 
7988 static int __balance_push_cpu_stop(void *arg)
7989 {
7990 	struct task_struct *p = arg;
7991 	struct rq *rq = this_rq();
7992 	struct rq_flags rf;
7993 	int cpu;
7994 
7995 	raw_spin_lock_irq(&p->pi_lock);
7996 	rq_lock(rq, &rf);
7997 
7998 	update_rq_clock(rq);
7999 
8000 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8001 		cpu = select_fallback_rq(rq->cpu, p);
8002 		rq = __migrate_task(rq, &rf, p, cpu);
8003 	}
8004 
8005 	rq_unlock(rq, &rf);
8006 	raw_spin_unlock_irq(&p->pi_lock);
8007 
8008 	put_task_struct(p);
8009 
8010 	return 0;
8011 }
8012 
8013 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8014 
8015 /*
8016  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8017  *
8018  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8019  * effective when the hotplug motion is down.
8020  */
8021 static void balance_push(struct rq *rq)
8022 {
8023 	struct task_struct *push_task = rq->curr;
8024 
8025 	lockdep_assert_rq_held(rq);
8026 
8027 	/*
8028 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8029 	 */
8030 	rq->balance_callback = &balance_push_callback;
8031 
8032 	/*
8033 	 * Only active while going offline and when invoked on the outgoing
8034 	 * CPU.
8035 	 */
8036 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8037 		return;
8038 
8039 	/*
8040 	 * Both the cpu-hotplug and stop task are in this case and are
8041 	 * required to complete the hotplug process.
8042 	 */
8043 	if (kthread_is_per_cpu(push_task) ||
8044 	    is_migration_disabled(push_task)) {
8045 
8046 		/*
8047 		 * If this is the idle task on the outgoing CPU try to wake
8048 		 * up the hotplug control thread which might wait for the
8049 		 * last task to vanish. The rcuwait_active() check is
8050 		 * accurate here because the waiter is pinned on this CPU
8051 		 * and can't obviously be running in parallel.
8052 		 *
8053 		 * On RT kernels this also has to check whether there are
8054 		 * pinned and scheduled out tasks on the runqueue. They
8055 		 * need to leave the migrate disabled section first.
8056 		 */
8057 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8058 		    rcuwait_active(&rq->hotplug_wait)) {
8059 			raw_spin_rq_unlock(rq);
8060 			rcuwait_wake_up(&rq->hotplug_wait);
8061 			raw_spin_rq_lock(rq);
8062 		}
8063 		return;
8064 	}
8065 
8066 	get_task_struct(push_task);
8067 	/*
8068 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8069 	 * Both preemption and IRQs are still disabled.
8070 	 */
8071 	preempt_disable();
8072 	raw_spin_rq_unlock(rq);
8073 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8074 			    this_cpu_ptr(&push_work));
8075 	preempt_enable();
8076 	/*
8077 	 * At this point need_resched() is true and we'll take the loop in
8078 	 * schedule(). The next pick is obviously going to be the stop task
8079 	 * which kthread_is_per_cpu() and will push this task away.
8080 	 */
8081 	raw_spin_rq_lock(rq);
8082 }
8083 
8084 static void balance_push_set(int cpu, bool on)
8085 {
8086 	struct rq *rq = cpu_rq(cpu);
8087 	struct rq_flags rf;
8088 
8089 	rq_lock_irqsave(rq, &rf);
8090 	if (on) {
8091 		WARN_ON_ONCE(rq->balance_callback);
8092 		rq->balance_callback = &balance_push_callback;
8093 	} else if (rq->balance_callback == &balance_push_callback) {
8094 		rq->balance_callback = NULL;
8095 	}
8096 	rq_unlock_irqrestore(rq, &rf);
8097 }
8098 
8099 /*
8100  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8101  * inactive. All tasks which are not per CPU kernel threads are either
8102  * pushed off this CPU now via balance_push() or placed on a different CPU
8103  * during wakeup. Wait until the CPU is quiescent.
8104  */
8105 static void balance_hotplug_wait(void)
8106 {
8107 	struct rq *rq = this_rq();
8108 
8109 	rcuwait_wait_event(&rq->hotplug_wait,
8110 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8111 			   TASK_UNINTERRUPTIBLE);
8112 }
8113 
8114 #else
8115 
8116 static inline void balance_push(struct rq *rq)
8117 {
8118 }
8119 
8120 static inline void balance_push_set(int cpu, bool on)
8121 {
8122 }
8123 
8124 static inline void balance_hotplug_wait(void)
8125 {
8126 }
8127 
8128 #endif /* CONFIG_HOTPLUG_CPU */
8129 
8130 void set_rq_online(struct rq *rq)
8131 {
8132 	if (!rq->online) {
8133 		const struct sched_class *class;
8134 
8135 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8136 		rq->online = 1;
8137 
8138 		for_each_class(class) {
8139 			if (class->rq_online)
8140 				class->rq_online(rq);
8141 		}
8142 	}
8143 }
8144 
8145 void set_rq_offline(struct rq *rq)
8146 {
8147 	if (rq->online) {
8148 		const struct sched_class *class;
8149 
8150 		update_rq_clock(rq);
8151 		for_each_class(class) {
8152 			if (class->rq_offline)
8153 				class->rq_offline(rq);
8154 		}
8155 
8156 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8157 		rq->online = 0;
8158 	}
8159 }
8160 
8161 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8162 {
8163 	struct rq_flags rf;
8164 
8165 	rq_lock_irqsave(rq, &rf);
8166 	if (rq->rd) {
8167 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8168 		set_rq_online(rq);
8169 	}
8170 	rq_unlock_irqrestore(rq, &rf);
8171 }
8172 
8173 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8174 {
8175 	struct rq_flags rf;
8176 
8177 	rq_lock_irqsave(rq, &rf);
8178 	if (rq->rd) {
8179 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8180 		set_rq_offline(rq);
8181 	}
8182 	rq_unlock_irqrestore(rq, &rf);
8183 }
8184 
8185 /*
8186  * used to mark begin/end of suspend/resume:
8187  */
8188 static int num_cpus_frozen;
8189 
8190 /*
8191  * Update cpusets according to cpu_active mask.  If cpusets are
8192  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8193  * around partition_sched_domains().
8194  *
8195  * If we come here as part of a suspend/resume, don't touch cpusets because we
8196  * want to restore it back to its original state upon resume anyway.
8197  */
8198 static void cpuset_cpu_active(void)
8199 {
8200 	if (cpuhp_tasks_frozen) {
8201 		/*
8202 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8203 		 * resume sequence. As long as this is not the last online
8204 		 * operation in the resume sequence, just build a single sched
8205 		 * domain, ignoring cpusets.
8206 		 */
8207 		partition_sched_domains(1, NULL, NULL);
8208 		if (--num_cpus_frozen)
8209 			return;
8210 		/*
8211 		 * This is the last CPU online operation. So fall through and
8212 		 * restore the original sched domains by considering the
8213 		 * cpuset configurations.
8214 		 */
8215 		cpuset_force_rebuild();
8216 	}
8217 	cpuset_update_active_cpus();
8218 }
8219 
8220 static void cpuset_cpu_inactive(unsigned int cpu)
8221 {
8222 	if (!cpuhp_tasks_frozen) {
8223 		cpuset_update_active_cpus();
8224 	} else {
8225 		num_cpus_frozen++;
8226 		partition_sched_domains(1, NULL, NULL);
8227 	}
8228 }
8229 
8230 static inline void sched_smt_present_inc(int cpu)
8231 {
8232 #ifdef CONFIG_SCHED_SMT
8233 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8234 		static_branch_inc_cpuslocked(&sched_smt_present);
8235 #endif
8236 }
8237 
8238 static inline void sched_smt_present_dec(int cpu)
8239 {
8240 #ifdef CONFIG_SCHED_SMT
8241 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8242 		static_branch_dec_cpuslocked(&sched_smt_present);
8243 #endif
8244 }
8245 
8246 int sched_cpu_activate(unsigned int cpu)
8247 {
8248 	struct rq *rq = cpu_rq(cpu);
8249 
8250 	/*
8251 	 * Clear the balance_push callback and prepare to schedule
8252 	 * regular tasks.
8253 	 */
8254 	balance_push_set(cpu, false);
8255 
8256 	/*
8257 	 * When going up, increment the number of cores with SMT present.
8258 	 */
8259 	sched_smt_present_inc(cpu);
8260 	set_cpu_active(cpu, true);
8261 
8262 	if (sched_smp_initialized) {
8263 		sched_update_numa(cpu, true);
8264 		sched_domains_numa_masks_set(cpu);
8265 		cpuset_cpu_active();
8266 	}
8267 
8268 	scx_rq_activate(rq);
8269 
8270 	/*
8271 	 * Put the rq online, if not already. This happens:
8272 	 *
8273 	 * 1) In the early boot process, because we build the real domains
8274 	 *    after all CPUs have been brought up.
8275 	 *
8276 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8277 	 *    domains.
8278 	 */
8279 	sched_set_rq_online(rq, cpu);
8280 
8281 	return 0;
8282 }
8283 
8284 int sched_cpu_deactivate(unsigned int cpu)
8285 {
8286 	struct rq *rq = cpu_rq(cpu);
8287 	int ret;
8288 
8289 	ret = dl_bw_deactivate(cpu);
8290 
8291 	if (ret)
8292 		return ret;
8293 
8294 	/*
8295 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8296 	 * load balancing when not active
8297 	 */
8298 	nohz_balance_exit_idle(rq);
8299 
8300 	set_cpu_active(cpu, false);
8301 
8302 	/*
8303 	 * From this point forward, this CPU will refuse to run any task that
8304 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8305 	 * push those tasks away until this gets cleared, see
8306 	 * sched_cpu_dying().
8307 	 */
8308 	balance_push_set(cpu, true);
8309 
8310 	/*
8311 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8312 	 * preempt-disabled and RCU users of this state to go away such that
8313 	 * all new such users will observe it.
8314 	 *
8315 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8316 	 * ttwu_queue_cond() and is_cpu_allowed().
8317 	 *
8318 	 * Do sync before park smpboot threads to take care the RCU boost case.
8319 	 */
8320 	synchronize_rcu();
8321 
8322 	sched_set_rq_offline(rq, cpu);
8323 
8324 	scx_rq_deactivate(rq);
8325 
8326 	/*
8327 	 * When going down, decrement the number of cores with SMT present.
8328 	 */
8329 	sched_smt_present_dec(cpu);
8330 
8331 #ifdef CONFIG_SCHED_SMT
8332 	sched_core_cpu_deactivate(cpu);
8333 #endif
8334 
8335 	if (!sched_smp_initialized)
8336 		return 0;
8337 
8338 	sched_update_numa(cpu, false);
8339 	cpuset_cpu_inactive(cpu);
8340 	sched_domains_numa_masks_clear(cpu);
8341 	return 0;
8342 }
8343 
8344 static void sched_rq_cpu_starting(unsigned int cpu)
8345 {
8346 	struct rq *rq = cpu_rq(cpu);
8347 
8348 	rq->calc_load_update = calc_load_update;
8349 	update_max_interval();
8350 }
8351 
8352 int sched_cpu_starting(unsigned int cpu)
8353 {
8354 	sched_core_cpu_starting(cpu);
8355 	sched_rq_cpu_starting(cpu);
8356 	sched_tick_start(cpu);
8357 	return 0;
8358 }
8359 
8360 #ifdef CONFIG_HOTPLUG_CPU
8361 
8362 /*
8363  * Invoked immediately before the stopper thread is invoked to bring the
8364  * CPU down completely. At this point all per CPU kthreads except the
8365  * hotplug thread (current) and the stopper thread (inactive) have been
8366  * either parked or have been unbound from the outgoing CPU. Ensure that
8367  * any of those which might be on the way out are gone.
8368  *
8369  * If after this point a bound task is being woken on this CPU then the
8370  * responsible hotplug callback has failed to do it's job.
8371  * sched_cpu_dying() will catch it with the appropriate fireworks.
8372  */
8373 int sched_cpu_wait_empty(unsigned int cpu)
8374 {
8375 	balance_hotplug_wait();
8376 	sched_force_init_mm();
8377 	return 0;
8378 }
8379 
8380 /*
8381  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8382  * might have. Called from the CPU stopper task after ensuring that the
8383  * stopper is the last running task on the CPU, so nr_active count is
8384  * stable. We need to take the tear-down thread which is calling this into
8385  * account, so we hand in adjust = 1 to the load calculation.
8386  *
8387  * Also see the comment "Global load-average calculations".
8388  */
8389 static void calc_load_migrate(struct rq *rq)
8390 {
8391 	long delta = calc_load_fold_active(rq, 1);
8392 
8393 	if (delta)
8394 		atomic_long_add(delta, &calc_load_tasks);
8395 }
8396 
8397 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8398 {
8399 	struct task_struct *g, *p;
8400 	int cpu = cpu_of(rq);
8401 
8402 	lockdep_assert_rq_held(rq);
8403 
8404 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8405 	for_each_process_thread(g, p) {
8406 		if (task_cpu(p) != cpu)
8407 			continue;
8408 
8409 		if (!task_on_rq_queued(p))
8410 			continue;
8411 
8412 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8413 	}
8414 }
8415 
8416 int sched_cpu_dying(unsigned int cpu)
8417 {
8418 	struct rq *rq = cpu_rq(cpu);
8419 	struct rq_flags rf;
8420 
8421 	/* Handle pending wakeups and then migrate everything off */
8422 	sched_tick_stop(cpu);
8423 
8424 	rq_lock_irqsave(rq, &rf);
8425 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8426 		WARN(true, "Dying CPU not properly vacated!");
8427 		dump_rq_tasks(rq, KERN_WARNING);
8428 	}
8429 	rq_unlock_irqrestore(rq, &rf);
8430 
8431 	calc_load_migrate(rq);
8432 	update_max_interval();
8433 	hrtick_clear(rq);
8434 	sched_core_cpu_dying(cpu);
8435 	return 0;
8436 }
8437 #endif
8438 
8439 void __init sched_init_smp(void)
8440 {
8441 	sched_init_numa(NUMA_NO_NODE);
8442 
8443 	/*
8444 	 * There's no userspace yet to cause hotplug operations; hence all the
8445 	 * CPU masks are stable and all blatant races in the below code cannot
8446 	 * happen.
8447 	 */
8448 	mutex_lock(&sched_domains_mutex);
8449 	sched_init_domains(cpu_active_mask);
8450 	mutex_unlock(&sched_domains_mutex);
8451 
8452 	/* Move init over to a non-isolated CPU */
8453 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8454 		BUG();
8455 	current->flags &= ~PF_NO_SETAFFINITY;
8456 	sched_init_granularity();
8457 
8458 	init_sched_rt_class();
8459 	init_sched_dl_class();
8460 
8461 	sched_smp_initialized = true;
8462 }
8463 
8464 static int __init migration_init(void)
8465 {
8466 	sched_cpu_starting(smp_processor_id());
8467 	return 0;
8468 }
8469 early_initcall(migration_init);
8470 
8471 #else
8472 void __init sched_init_smp(void)
8473 {
8474 	sched_init_granularity();
8475 }
8476 #endif /* CONFIG_SMP */
8477 
8478 int in_sched_functions(unsigned long addr)
8479 {
8480 	return in_lock_functions(addr) ||
8481 		(addr >= (unsigned long)__sched_text_start
8482 		&& addr < (unsigned long)__sched_text_end);
8483 }
8484 
8485 #ifdef CONFIG_CGROUP_SCHED
8486 /*
8487  * Default task group.
8488  * Every task in system belongs to this group at bootup.
8489  */
8490 struct task_group root_task_group;
8491 LIST_HEAD(task_groups);
8492 
8493 /* Cacheline aligned slab cache for task_group */
8494 static struct kmem_cache *task_group_cache __ro_after_init;
8495 #endif
8496 
8497 void __init sched_init(void)
8498 {
8499 	unsigned long ptr = 0;
8500 	int i;
8501 
8502 	/* Make sure the linker didn't screw up */
8503 #ifdef CONFIG_SMP
8504 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8505 #endif
8506 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8507 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8508 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8509 #ifdef CONFIG_SCHED_CLASS_EXT
8510 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8511 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8512 #endif
8513 
8514 	wait_bit_init();
8515 
8516 #ifdef CONFIG_FAIR_GROUP_SCHED
8517 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8518 #endif
8519 #ifdef CONFIG_RT_GROUP_SCHED
8520 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8521 #endif
8522 	if (ptr) {
8523 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8524 
8525 #ifdef CONFIG_FAIR_GROUP_SCHED
8526 		root_task_group.se = (struct sched_entity **)ptr;
8527 		ptr += nr_cpu_ids * sizeof(void **);
8528 
8529 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8530 		ptr += nr_cpu_ids * sizeof(void **);
8531 
8532 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8533 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8534 #endif /* CONFIG_FAIR_GROUP_SCHED */
8535 #ifdef CONFIG_EXT_GROUP_SCHED
8536 		root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
8537 #endif /* CONFIG_EXT_GROUP_SCHED */
8538 #ifdef CONFIG_RT_GROUP_SCHED
8539 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8540 		ptr += nr_cpu_ids * sizeof(void **);
8541 
8542 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8543 		ptr += nr_cpu_ids * sizeof(void **);
8544 
8545 #endif /* CONFIG_RT_GROUP_SCHED */
8546 	}
8547 
8548 #ifdef CONFIG_SMP
8549 	init_defrootdomain();
8550 #endif
8551 
8552 #ifdef CONFIG_RT_GROUP_SCHED
8553 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8554 			global_rt_period(), global_rt_runtime());
8555 #endif /* CONFIG_RT_GROUP_SCHED */
8556 
8557 #ifdef CONFIG_CGROUP_SCHED
8558 	task_group_cache = KMEM_CACHE(task_group, 0);
8559 
8560 	list_add(&root_task_group.list, &task_groups);
8561 	INIT_LIST_HEAD(&root_task_group.children);
8562 	INIT_LIST_HEAD(&root_task_group.siblings);
8563 	autogroup_init(&init_task);
8564 #endif /* CONFIG_CGROUP_SCHED */
8565 
8566 	for_each_possible_cpu(i) {
8567 		struct rq *rq;
8568 
8569 		rq = cpu_rq(i);
8570 		raw_spin_lock_init(&rq->__lock);
8571 		rq->nr_running = 0;
8572 		rq->calc_load_active = 0;
8573 		rq->calc_load_update = jiffies + LOAD_FREQ;
8574 		init_cfs_rq(&rq->cfs);
8575 		init_rt_rq(&rq->rt);
8576 		init_dl_rq(&rq->dl);
8577 #ifdef CONFIG_FAIR_GROUP_SCHED
8578 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8579 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8580 		/*
8581 		 * How much CPU bandwidth does root_task_group get?
8582 		 *
8583 		 * In case of task-groups formed through the cgroup filesystem, it
8584 		 * gets 100% of the CPU resources in the system. This overall
8585 		 * system CPU resource is divided among the tasks of
8586 		 * root_task_group and its child task-groups in a fair manner,
8587 		 * based on each entity's (task or task-group's) weight
8588 		 * (se->load.weight).
8589 		 *
8590 		 * In other words, if root_task_group has 10 tasks of weight
8591 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8592 		 * then A0's share of the CPU resource is:
8593 		 *
8594 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8595 		 *
8596 		 * We achieve this by letting root_task_group's tasks sit
8597 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8598 		 */
8599 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8600 #endif /* CONFIG_FAIR_GROUP_SCHED */
8601 
8602 #ifdef CONFIG_RT_GROUP_SCHED
8603 		/*
8604 		 * This is required for init cpu because rt.c:__enable_runtime()
8605 		 * starts working after scheduler_running, which is not the case
8606 		 * yet.
8607 		 */
8608 		rq->rt.rt_runtime = global_rt_runtime();
8609 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8610 #endif
8611 #ifdef CONFIG_SMP
8612 		rq->sd = NULL;
8613 		rq->rd = NULL;
8614 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8615 		rq->balance_callback = &balance_push_callback;
8616 		rq->active_balance = 0;
8617 		rq->next_balance = jiffies;
8618 		rq->push_cpu = 0;
8619 		rq->cpu = i;
8620 		rq->online = 0;
8621 		rq->idle_stamp = 0;
8622 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8623 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8624 
8625 		INIT_LIST_HEAD(&rq->cfs_tasks);
8626 
8627 		rq_attach_root(rq, &def_root_domain);
8628 #ifdef CONFIG_NO_HZ_COMMON
8629 		rq->last_blocked_load_update_tick = jiffies;
8630 		atomic_set(&rq->nohz_flags, 0);
8631 
8632 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8633 #endif
8634 #ifdef CONFIG_HOTPLUG_CPU
8635 		rcuwait_init(&rq->hotplug_wait);
8636 #endif
8637 #endif /* CONFIG_SMP */
8638 		hrtick_rq_init(rq);
8639 		atomic_set(&rq->nr_iowait, 0);
8640 		fair_server_init(rq);
8641 
8642 #ifdef CONFIG_SCHED_CORE
8643 		rq->core = rq;
8644 		rq->core_pick = NULL;
8645 		rq->core_dl_server = NULL;
8646 		rq->core_enabled = 0;
8647 		rq->core_tree = RB_ROOT;
8648 		rq->core_forceidle_count = 0;
8649 		rq->core_forceidle_occupation = 0;
8650 		rq->core_forceidle_start = 0;
8651 
8652 		rq->core_cookie = 0UL;
8653 #endif
8654 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8655 	}
8656 
8657 	set_load_weight(&init_task, false);
8658 	init_task.se.slice = sysctl_sched_base_slice,
8659 
8660 	/*
8661 	 * The boot idle thread does lazy MMU switching as well:
8662 	 */
8663 	mmgrab_lazy_tlb(&init_mm);
8664 	enter_lazy_tlb(&init_mm, current);
8665 
8666 	/*
8667 	 * The idle task doesn't need the kthread struct to function, but it
8668 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8669 	 * if we want to avoid special-casing it in code that deals with per-CPU
8670 	 * kthreads.
8671 	 */
8672 	WARN_ON(!set_kthread_struct(current));
8673 
8674 	/*
8675 	 * Make us the idle thread. Technically, schedule() should not be
8676 	 * called from this thread, however somewhere below it might be,
8677 	 * but because we are the idle thread, we just pick up running again
8678 	 * when this runqueue becomes "idle".
8679 	 */
8680 	__sched_fork(0, current);
8681 	init_idle(current, smp_processor_id());
8682 
8683 	calc_load_update = jiffies + LOAD_FREQ;
8684 
8685 #ifdef CONFIG_SMP
8686 	idle_thread_set_boot_cpu();
8687 	balance_push_set(smp_processor_id(), false);
8688 #endif
8689 	init_sched_fair_class();
8690 	init_sched_ext_class();
8691 
8692 	psi_init();
8693 
8694 	init_uclamp();
8695 
8696 	preempt_dynamic_init();
8697 
8698 	scheduler_running = 1;
8699 }
8700 
8701 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8702 
8703 void __might_sleep(const char *file, int line)
8704 {
8705 	unsigned int state = get_current_state();
8706 	/*
8707 	 * Blocking primitives will set (and therefore destroy) current->state,
8708 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8709 	 * otherwise we will destroy state.
8710 	 */
8711 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8712 			"do not call blocking ops when !TASK_RUNNING; "
8713 			"state=%x set at [<%p>] %pS\n", state,
8714 			(void *)current->task_state_change,
8715 			(void *)current->task_state_change);
8716 
8717 	__might_resched(file, line, 0);
8718 }
8719 EXPORT_SYMBOL(__might_sleep);
8720 
8721 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8722 {
8723 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8724 		return;
8725 
8726 	if (preempt_count() == preempt_offset)
8727 		return;
8728 
8729 	pr_err("Preemption disabled at:");
8730 	print_ip_sym(KERN_ERR, ip);
8731 }
8732 
8733 static inline bool resched_offsets_ok(unsigned int offsets)
8734 {
8735 	unsigned int nested = preempt_count();
8736 
8737 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8738 
8739 	return nested == offsets;
8740 }
8741 
8742 void __might_resched(const char *file, int line, unsigned int offsets)
8743 {
8744 	/* Ratelimiting timestamp: */
8745 	static unsigned long prev_jiffy;
8746 
8747 	unsigned long preempt_disable_ip;
8748 
8749 	/* WARN_ON_ONCE() by default, no rate limit required: */
8750 	rcu_sleep_check();
8751 
8752 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8753 	     !is_idle_task(current) && !current->non_block_count) ||
8754 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8755 	    oops_in_progress)
8756 		return;
8757 
8758 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8759 		return;
8760 	prev_jiffy = jiffies;
8761 
8762 	/* Save this before calling printk(), since that will clobber it: */
8763 	preempt_disable_ip = get_preempt_disable_ip(current);
8764 
8765 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8766 	       file, line);
8767 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8768 	       in_atomic(), irqs_disabled(), current->non_block_count,
8769 	       current->pid, current->comm);
8770 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8771 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8772 
8773 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8774 		pr_err("RCU nest depth: %d, expected: %u\n",
8775 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8776 	}
8777 
8778 	if (task_stack_end_corrupted(current))
8779 		pr_emerg("Thread overran stack, or stack corrupted\n");
8780 
8781 	debug_show_held_locks(current);
8782 	if (irqs_disabled())
8783 		print_irqtrace_events(current);
8784 
8785 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8786 				 preempt_disable_ip);
8787 
8788 	dump_stack();
8789 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8790 }
8791 EXPORT_SYMBOL(__might_resched);
8792 
8793 void __cant_sleep(const char *file, int line, int preempt_offset)
8794 {
8795 	static unsigned long prev_jiffy;
8796 
8797 	if (irqs_disabled())
8798 		return;
8799 
8800 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8801 		return;
8802 
8803 	if (preempt_count() > preempt_offset)
8804 		return;
8805 
8806 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8807 		return;
8808 	prev_jiffy = jiffies;
8809 
8810 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8811 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8812 			in_atomic(), irqs_disabled(),
8813 			current->pid, current->comm);
8814 
8815 	debug_show_held_locks(current);
8816 	dump_stack();
8817 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8818 }
8819 EXPORT_SYMBOL_GPL(__cant_sleep);
8820 
8821 #ifdef CONFIG_SMP
8822 void __cant_migrate(const char *file, int line)
8823 {
8824 	static unsigned long prev_jiffy;
8825 
8826 	if (irqs_disabled())
8827 		return;
8828 
8829 	if (is_migration_disabled(current))
8830 		return;
8831 
8832 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8833 		return;
8834 
8835 	if (preempt_count() > 0)
8836 		return;
8837 
8838 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8839 		return;
8840 	prev_jiffy = jiffies;
8841 
8842 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8843 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8844 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8845 	       current->pid, current->comm);
8846 
8847 	debug_show_held_locks(current);
8848 	dump_stack();
8849 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8850 }
8851 EXPORT_SYMBOL_GPL(__cant_migrate);
8852 #endif
8853 #endif
8854 
8855 #ifdef CONFIG_MAGIC_SYSRQ
8856 void normalize_rt_tasks(void)
8857 {
8858 	struct task_struct *g, *p;
8859 	struct sched_attr attr = {
8860 		.sched_policy = SCHED_NORMAL,
8861 	};
8862 
8863 	read_lock(&tasklist_lock);
8864 	for_each_process_thread(g, p) {
8865 		/*
8866 		 * Only normalize user tasks:
8867 		 */
8868 		if (p->flags & PF_KTHREAD)
8869 			continue;
8870 
8871 		p->se.exec_start = 0;
8872 		schedstat_set(p->stats.wait_start,  0);
8873 		schedstat_set(p->stats.sleep_start, 0);
8874 		schedstat_set(p->stats.block_start, 0);
8875 
8876 		if (!rt_or_dl_task(p)) {
8877 			/*
8878 			 * Renice negative nice level userspace
8879 			 * tasks back to 0:
8880 			 */
8881 			if (task_nice(p) < 0)
8882 				set_user_nice(p, 0);
8883 			continue;
8884 		}
8885 
8886 		__sched_setscheduler(p, &attr, false, false);
8887 	}
8888 	read_unlock(&tasklist_lock);
8889 }
8890 
8891 #endif /* CONFIG_MAGIC_SYSRQ */
8892 
8893 #if defined(CONFIG_KGDB_KDB)
8894 /*
8895  * These functions are only useful for KDB.
8896  *
8897  * They can only be called when the whole system has been
8898  * stopped - every CPU needs to be quiescent, and no scheduling
8899  * activity can take place. Using them for anything else would
8900  * be a serious bug, and as a result, they aren't even visible
8901  * under any other configuration.
8902  */
8903 
8904 /**
8905  * curr_task - return the current task for a given CPU.
8906  * @cpu: the processor in question.
8907  *
8908  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8909  *
8910  * Return: The current task for @cpu.
8911  */
8912 struct task_struct *curr_task(int cpu)
8913 {
8914 	return cpu_curr(cpu);
8915 }
8916 
8917 #endif /* defined(CONFIG_KGDB_KDB) */
8918 
8919 #ifdef CONFIG_CGROUP_SCHED
8920 /* task_group_lock serializes the addition/removal of task groups */
8921 static DEFINE_SPINLOCK(task_group_lock);
8922 
8923 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8924 					    struct task_group *parent)
8925 {
8926 #ifdef CONFIG_UCLAMP_TASK_GROUP
8927 	enum uclamp_id clamp_id;
8928 
8929 	for_each_clamp_id(clamp_id) {
8930 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8931 			      uclamp_none(clamp_id), false);
8932 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8933 	}
8934 #endif
8935 }
8936 
8937 static void sched_free_group(struct task_group *tg)
8938 {
8939 	free_fair_sched_group(tg);
8940 	free_rt_sched_group(tg);
8941 	autogroup_free(tg);
8942 	kmem_cache_free(task_group_cache, tg);
8943 }
8944 
8945 static void sched_free_group_rcu(struct rcu_head *rcu)
8946 {
8947 	sched_free_group(container_of(rcu, struct task_group, rcu));
8948 }
8949 
8950 static void sched_unregister_group(struct task_group *tg)
8951 {
8952 	unregister_fair_sched_group(tg);
8953 	unregister_rt_sched_group(tg);
8954 	/*
8955 	 * We have to wait for yet another RCU grace period to expire, as
8956 	 * print_cfs_stats() might run concurrently.
8957 	 */
8958 	call_rcu(&tg->rcu, sched_free_group_rcu);
8959 }
8960 
8961 /* allocate runqueue etc for a new task group */
8962 struct task_group *sched_create_group(struct task_group *parent)
8963 {
8964 	struct task_group *tg;
8965 
8966 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8967 	if (!tg)
8968 		return ERR_PTR(-ENOMEM);
8969 
8970 	if (!alloc_fair_sched_group(tg, parent))
8971 		goto err;
8972 
8973 	if (!alloc_rt_sched_group(tg, parent))
8974 		goto err;
8975 
8976 	scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
8977 	alloc_uclamp_sched_group(tg, parent);
8978 
8979 	return tg;
8980 
8981 err:
8982 	sched_free_group(tg);
8983 	return ERR_PTR(-ENOMEM);
8984 }
8985 
8986 void sched_online_group(struct task_group *tg, struct task_group *parent)
8987 {
8988 	unsigned long flags;
8989 
8990 	spin_lock_irqsave(&task_group_lock, flags);
8991 	list_add_rcu(&tg->list, &task_groups);
8992 
8993 	/* Root should already exist: */
8994 	WARN_ON(!parent);
8995 
8996 	tg->parent = parent;
8997 	INIT_LIST_HEAD(&tg->children);
8998 	list_add_rcu(&tg->siblings, &parent->children);
8999 	spin_unlock_irqrestore(&task_group_lock, flags);
9000 
9001 	online_fair_sched_group(tg);
9002 }
9003 
9004 /* RCU callback to free various structures associated with a task group */
9005 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9006 {
9007 	/* Now it should be safe to free those cfs_rqs: */
9008 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
9009 }
9010 
9011 void sched_destroy_group(struct task_group *tg)
9012 {
9013 	/* Wait for possible concurrent references to cfs_rqs complete: */
9014 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
9015 }
9016 
9017 void sched_release_group(struct task_group *tg)
9018 {
9019 	unsigned long flags;
9020 
9021 	/*
9022 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9023 	 * sched_cfs_period_timer()).
9024 	 *
9025 	 * For this to be effective, we have to wait for all pending users of
9026 	 * this task group to leave their RCU critical section to ensure no new
9027 	 * user will see our dying task group any more. Specifically ensure
9028 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9029 	 *
9030 	 * We therefore defer calling unregister_fair_sched_group() to
9031 	 * sched_unregister_group() which is guarantied to get called only after the
9032 	 * current RCU grace period has expired.
9033 	 */
9034 	spin_lock_irqsave(&task_group_lock, flags);
9035 	list_del_rcu(&tg->list);
9036 	list_del_rcu(&tg->siblings);
9037 	spin_unlock_irqrestore(&task_group_lock, flags);
9038 }
9039 
9040 static struct task_group *sched_get_task_group(struct task_struct *tsk)
9041 {
9042 	struct task_group *tg;
9043 
9044 	/*
9045 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9046 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9047 	 * to prevent lockdep warnings.
9048 	 */
9049 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9050 			  struct task_group, css);
9051 	tg = autogroup_task_group(tsk, tg);
9052 
9053 	return tg;
9054 }
9055 
9056 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
9057 {
9058 	tsk->sched_task_group = group;
9059 
9060 #ifdef CONFIG_FAIR_GROUP_SCHED
9061 	if (tsk->sched_class->task_change_group)
9062 		tsk->sched_class->task_change_group(tsk);
9063 	else
9064 #endif
9065 		set_task_rq(tsk, task_cpu(tsk));
9066 }
9067 
9068 /*
9069  * Change task's runqueue when it moves between groups.
9070  *
9071  * The caller of this function should have put the task in its new group by
9072  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9073  * its new group.
9074  */
9075 void sched_move_task(struct task_struct *tsk, bool for_autogroup)
9076 {
9077 	int queued, running, queue_flags =
9078 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9079 	struct task_group *group;
9080 	struct rq *rq;
9081 
9082 	CLASS(task_rq_lock, rq_guard)(tsk);
9083 	rq = rq_guard.rq;
9084 
9085 	/*
9086 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
9087 	 * group changes.
9088 	 */
9089 	group = sched_get_task_group(tsk);
9090 	if (group == tsk->sched_task_group)
9091 		return;
9092 
9093 	update_rq_clock(rq);
9094 
9095 	running = task_current_donor(rq, tsk);
9096 	queued = task_on_rq_queued(tsk);
9097 
9098 	if (queued)
9099 		dequeue_task(rq, tsk, queue_flags);
9100 	if (running)
9101 		put_prev_task(rq, tsk);
9102 
9103 	sched_change_group(tsk, group);
9104 	if (!for_autogroup)
9105 		scx_cgroup_move_task(tsk);
9106 
9107 	if (queued)
9108 		enqueue_task(rq, tsk, queue_flags);
9109 	if (running) {
9110 		set_next_task(rq, tsk);
9111 		/*
9112 		 * After changing group, the running task may have joined a
9113 		 * throttled one but it's still the running task. Trigger a
9114 		 * resched to make sure that task can still run.
9115 		 */
9116 		resched_curr(rq);
9117 	}
9118 }
9119 
9120 static struct cgroup_subsys_state *
9121 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9122 {
9123 	struct task_group *parent = css_tg(parent_css);
9124 	struct task_group *tg;
9125 
9126 	if (!parent) {
9127 		/* This is early initialization for the top cgroup */
9128 		return &root_task_group.css;
9129 	}
9130 
9131 	tg = sched_create_group(parent);
9132 	if (IS_ERR(tg))
9133 		return ERR_PTR(-ENOMEM);
9134 
9135 	return &tg->css;
9136 }
9137 
9138 /* Expose task group only after completing cgroup initialization */
9139 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9140 {
9141 	struct task_group *tg = css_tg(css);
9142 	struct task_group *parent = css_tg(css->parent);
9143 	int ret;
9144 
9145 	ret = scx_tg_online(tg);
9146 	if (ret)
9147 		return ret;
9148 
9149 	if (parent)
9150 		sched_online_group(tg, parent);
9151 
9152 #ifdef CONFIG_UCLAMP_TASK_GROUP
9153 	/* Propagate the effective uclamp value for the new group */
9154 	guard(mutex)(&uclamp_mutex);
9155 	guard(rcu)();
9156 	cpu_util_update_eff(css);
9157 #endif
9158 
9159 	return 0;
9160 }
9161 
9162 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9163 {
9164 	struct task_group *tg = css_tg(css);
9165 
9166 	scx_tg_offline(tg);
9167 }
9168 
9169 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9170 {
9171 	struct task_group *tg = css_tg(css);
9172 
9173 	sched_release_group(tg);
9174 }
9175 
9176 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9177 {
9178 	struct task_group *tg = css_tg(css);
9179 
9180 	/*
9181 	 * Relies on the RCU grace period between css_released() and this.
9182 	 */
9183 	sched_unregister_group(tg);
9184 }
9185 
9186 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9187 {
9188 #ifdef CONFIG_RT_GROUP_SCHED
9189 	struct task_struct *task;
9190 	struct cgroup_subsys_state *css;
9191 
9192 	cgroup_taskset_for_each(task, css, tset) {
9193 		if (!sched_rt_can_attach(css_tg(css), task))
9194 			return -EINVAL;
9195 	}
9196 #endif
9197 	return scx_cgroup_can_attach(tset);
9198 }
9199 
9200 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9201 {
9202 	struct task_struct *task;
9203 	struct cgroup_subsys_state *css;
9204 
9205 	cgroup_taskset_for_each(task, css, tset)
9206 		sched_move_task(task, false);
9207 
9208 	scx_cgroup_finish_attach();
9209 }
9210 
9211 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9212 {
9213 	scx_cgroup_cancel_attach(tset);
9214 }
9215 
9216 #ifdef CONFIG_UCLAMP_TASK_GROUP
9217 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9218 {
9219 	struct cgroup_subsys_state *top_css = css;
9220 	struct uclamp_se *uc_parent = NULL;
9221 	struct uclamp_se *uc_se = NULL;
9222 	unsigned int eff[UCLAMP_CNT];
9223 	enum uclamp_id clamp_id;
9224 	unsigned int clamps;
9225 
9226 	lockdep_assert_held(&uclamp_mutex);
9227 	SCHED_WARN_ON(!rcu_read_lock_held());
9228 
9229 	css_for_each_descendant_pre(css, top_css) {
9230 		uc_parent = css_tg(css)->parent
9231 			? css_tg(css)->parent->uclamp : NULL;
9232 
9233 		for_each_clamp_id(clamp_id) {
9234 			/* Assume effective clamps matches requested clamps */
9235 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9236 			/* Cap effective clamps with parent's effective clamps */
9237 			if (uc_parent &&
9238 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9239 				eff[clamp_id] = uc_parent[clamp_id].value;
9240 			}
9241 		}
9242 		/* Ensure protection is always capped by limit */
9243 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9244 
9245 		/* Propagate most restrictive effective clamps */
9246 		clamps = 0x0;
9247 		uc_se = css_tg(css)->uclamp;
9248 		for_each_clamp_id(clamp_id) {
9249 			if (eff[clamp_id] == uc_se[clamp_id].value)
9250 				continue;
9251 			uc_se[clamp_id].value = eff[clamp_id];
9252 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9253 			clamps |= (0x1 << clamp_id);
9254 		}
9255 		if (!clamps) {
9256 			css = css_rightmost_descendant(css);
9257 			continue;
9258 		}
9259 
9260 		/* Immediately update descendants RUNNABLE tasks */
9261 		uclamp_update_active_tasks(css);
9262 	}
9263 }
9264 
9265 /*
9266  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9267  * C expression. Since there is no way to convert a macro argument (N) into a
9268  * character constant, use two levels of macros.
9269  */
9270 #define _POW10(exp) ((unsigned int)1e##exp)
9271 #define POW10(exp) _POW10(exp)
9272 
9273 struct uclamp_request {
9274 #define UCLAMP_PERCENT_SHIFT	2
9275 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9276 	s64 percent;
9277 	u64 util;
9278 	int ret;
9279 };
9280 
9281 static inline struct uclamp_request
9282 capacity_from_percent(char *buf)
9283 {
9284 	struct uclamp_request req = {
9285 		.percent = UCLAMP_PERCENT_SCALE,
9286 		.util = SCHED_CAPACITY_SCALE,
9287 		.ret = 0,
9288 	};
9289 
9290 	buf = strim(buf);
9291 	if (strcmp(buf, "max")) {
9292 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9293 					     &req.percent);
9294 		if (req.ret)
9295 			return req;
9296 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9297 			req.ret = -ERANGE;
9298 			return req;
9299 		}
9300 
9301 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9302 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9303 	}
9304 
9305 	return req;
9306 }
9307 
9308 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9309 				size_t nbytes, loff_t off,
9310 				enum uclamp_id clamp_id)
9311 {
9312 	struct uclamp_request req;
9313 	struct task_group *tg;
9314 
9315 	req = capacity_from_percent(buf);
9316 	if (req.ret)
9317 		return req.ret;
9318 
9319 	static_branch_enable(&sched_uclamp_used);
9320 
9321 	guard(mutex)(&uclamp_mutex);
9322 	guard(rcu)();
9323 
9324 	tg = css_tg(of_css(of));
9325 	if (tg->uclamp_req[clamp_id].value != req.util)
9326 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9327 
9328 	/*
9329 	 * Because of not recoverable conversion rounding we keep track of the
9330 	 * exact requested value
9331 	 */
9332 	tg->uclamp_pct[clamp_id] = req.percent;
9333 
9334 	/* Update effective clamps to track the most restrictive value */
9335 	cpu_util_update_eff(of_css(of));
9336 
9337 	return nbytes;
9338 }
9339 
9340 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9341 				    char *buf, size_t nbytes,
9342 				    loff_t off)
9343 {
9344 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9345 }
9346 
9347 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9348 				    char *buf, size_t nbytes,
9349 				    loff_t off)
9350 {
9351 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9352 }
9353 
9354 static inline void cpu_uclamp_print(struct seq_file *sf,
9355 				    enum uclamp_id clamp_id)
9356 {
9357 	struct task_group *tg;
9358 	u64 util_clamp;
9359 	u64 percent;
9360 	u32 rem;
9361 
9362 	scoped_guard (rcu) {
9363 		tg = css_tg(seq_css(sf));
9364 		util_clamp = tg->uclamp_req[clamp_id].value;
9365 	}
9366 
9367 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9368 		seq_puts(sf, "max\n");
9369 		return;
9370 	}
9371 
9372 	percent = tg->uclamp_pct[clamp_id];
9373 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9374 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9375 }
9376 
9377 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9378 {
9379 	cpu_uclamp_print(sf, UCLAMP_MIN);
9380 	return 0;
9381 }
9382 
9383 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9384 {
9385 	cpu_uclamp_print(sf, UCLAMP_MAX);
9386 	return 0;
9387 }
9388 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9389 
9390 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9391 static unsigned long tg_weight(struct task_group *tg)
9392 {
9393 #ifdef CONFIG_FAIR_GROUP_SCHED
9394 	return scale_load_down(tg->shares);
9395 #else
9396 	return sched_weight_from_cgroup(tg->scx_weight);
9397 #endif
9398 }
9399 
9400 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9401 				struct cftype *cftype, u64 shareval)
9402 {
9403 	int ret;
9404 
9405 	if (shareval > scale_load_down(ULONG_MAX))
9406 		shareval = MAX_SHARES;
9407 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9408 	if (!ret)
9409 		scx_group_set_weight(css_tg(css),
9410 				     sched_weight_to_cgroup(shareval));
9411 	return ret;
9412 }
9413 
9414 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9415 			       struct cftype *cft)
9416 {
9417 	return tg_weight(css_tg(css));
9418 }
9419 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9420 
9421 #ifdef CONFIG_CFS_BANDWIDTH
9422 static DEFINE_MUTEX(cfs_constraints_mutex);
9423 
9424 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9425 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9426 /* More than 203 days if BW_SHIFT equals 20. */
9427 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9428 
9429 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9430 
9431 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9432 				u64 burst)
9433 {
9434 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9435 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9436 
9437 	if (tg == &root_task_group)
9438 		return -EINVAL;
9439 
9440 	/*
9441 	 * Ensure we have at some amount of bandwidth every period.  This is
9442 	 * to prevent reaching a state of large arrears when throttled via
9443 	 * entity_tick() resulting in prolonged exit starvation.
9444 	 */
9445 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9446 		return -EINVAL;
9447 
9448 	/*
9449 	 * Likewise, bound things on the other side by preventing insane quota
9450 	 * periods.  This also allows us to normalize in computing quota
9451 	 * feasibility.
9452 	 */
9453 	if (period > max_cfs_quota_period)
9454 		return -EINVAL;
9455 
9456 	/*
9457 	 * Bound quota to defend quota against overflow during bandwidth shift.
9458 	 */
9459 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9460 		return -EINVAL;
9461 
9462 	if (quota != RUNTIME_INF && (burst > quota ||
9463 				     burst + quota > max_cfs_runtime))
9464 		return -EINVAL;
9465 
9466 	/*
9467 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9468 	 * unthrottle_offline_cfs_rqs().
9469 	 */
9470 	guard(cpus_read_lock)();
9471 	guard(mutex)(&cfs_constraints_mutex);
9472 
9473 	ret = __cfs_schedulable(tg, period, quota);
9474 	if (ret)
9475 		return ret;
9476 
9477 	runtime_enabled = quota != RUNTIME_INF;
9478 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9479 	/*
9480 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9481 	 * before making related changes, and on->off must occur afterwards
9482 	 */
9483 	if (runtime_enabled && !runtime_was_enabled)
9484 		cfs_bandwidth_usage_inc();
9485 
9486 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9487 		cfs_b->period = ns_to_ktime(period);
9488 		cfs_b->quota = quota;
9489 		cfs_b->burst = burst;
9490 
9491 		__refill_cfs_bandwidth_runtime(cfs_b);
9492 
9493 		/*
9494 		 * Restart the period timer (if active) to handle new
9495 		 * period expiry:
9496 		 */
9497 		if (runtime_enabled)
9498 			start_cfs_bandwidth(cfs_b);
9499 	}
9500 
9501 	for_each_online_cpu(i) {
9502 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9503 		struct rq *rq = cfs_rq->rq;
9504 
9505 		guard(rq_lock_irq)(rq);
9506 		cfs_rq->runtime_enabled = runtime_enabled;
9507 		cfs_rq->runtime_remaining = 0;
9508 
9509 		if (cfs_rq->throttled)
9510 			unthrottle_cfs_rq(cfs_rq);
9511 	}
9512 
9513 	if (runtime_was_enabled && !runtime_enabled)
9514 		cfs_bandwidth_usage_dec();
9515 
9516 	return 0;
9517 }
9518 
9519 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9520 {
9521 	u64 quota, period, burst;
9522 
9523 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9524 	burst = tg->cfs_bandwidth.burst;
9525 	if (cfs_quota_us < 0)
9526 		quota = RUNTIME_INF;
9527 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9528 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9529 	else
9530 		return -EINVAL;
9531 
9532 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9533 }
9534 
9535 static long tg_get_cfs_quota(struct task_group *tg)
9536 {
9537 	u64 quota_us;
9538 
9539 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9540 		return -1;
9541 
9542 	quota_us = tg->cfs_bandwidth.quota;
9543 	do_div(quota_us, NSEC_PER_USEC);
9544 
9545 	return quota_us;
9546 }
9547 
9548 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9549 {
9550 	u64 quota, period, burst;
9551 
9552 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9553 		return -EINVAL;
9554 
9555 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9556 	quota = tg->cfs_bandwidth.quota;
9557 	burst = tg->cfs_bandwidth.burst;
9558 
9559 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9560 }
9561 
9562 static long tg_get_cfs_period(struct task_group *tg)
9563 {
9564 	u64 cfs_period_us;
9565 
9566 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9567 	do_div(cfs_period_us, NSEC_PER_USEC);
9568 
9569 	return cfs_period_us;
9570 }
9571 
9572 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9573 {
9574 	u64 quota, period, burst;
9575 
9576 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9577 		return -EINVAL;
9578 
9579 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9580 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9581 	quota = tg->cfs_bandwidth.quota;
9582 
9583 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9584 }
9585 
9586 static long tg_get_cfs_burst(struct task_group *tg)
9587 {
9588 	u64 burst_us;
9589 
9590 	burst_us = tg->cfs_bandwidth.burst;
9591 	do_div(burst_us, NSEC_PER_USEC);
9592 
9593 	return burst_us;
9594 }
9595 
9596 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9597 				  struct cftype *cft)
9598 {
9599 	return tg_get_cfs_quota(css_tg(css));
9600 }
9601 
9602 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9603 				   struct cftype *cftype, s64 cfs_quota_us)
9604 {
9605 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9606 }
9607 
9608 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9609 				   struct cftype *cft)
9610 {
9611 	return tg_get_cfs_period(css_tg(css));
9612 }
9613 
9614 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9615 				    struct cftype *cftype, u64 cfs_period_us)
9616 {
9617 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9618 }
9619 
9620 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9621 				  struct cftype *cft)
9622 {
9623 	return tg_get_cfs_burst(css_tg(css));
9624 }
9625 
9626 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9627 				   struct cftype *cftype, u64 cfs_burst_us)
9628 {
9629 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9630 }
9631 
9632 struct cfs_schedulable_data {
9633 	struct task_group *tg;
9634 	u64 period, quota;
9635 };
9636 
9637 /*
9638  * normalize group quota/period to be quota/max_period
9639  * note: units are usecs
9640  */
9641 static u64 normalize_cfs_quota(struct task_group *tg,
9642 			       struct cfs_schedulable_data *d)
9643 {
9644 	u64 quota, period;
9645 
9646 	if (tg == d->tg) {
9647 		period = d->period;
9648 		quota = d->quota;
9649 	} else {
9650 		period = tg_get_cfs_period(tg);
9651 		quota = tg_get_cfs_quota(tg);
9652 	}
9653 
9654 	/* note: these should typically be equivalent */
9655 	if (quota == RUNTIME_INF || quota == -1)
9656 		return RUNTIME_INF;
9657 
9658 	return to_ratio(period, quota);
9659 }
9660 
9661 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9662 {
9663 	struct cfs_schedulable_data *d = data;
9664 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9665 	s64 quota = 0, parent_quota = -1;
9666 
9667 	if (!tg->parent) {
9668 		quota = RUNTIME_INF;
9669 	} else {
9670 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9671 
9672 		quota = normalize_cfs_quota(tg, d);
9673 		parent_quota = parent_b->hierarchical_quota;
9674 
9675 		/*
9676 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9677 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9678 		 * inherit when no limit is set. In both cases this is used
9679 		 * by the scheduler to determine if a given CFS task has a
9680 		 * bandwidth constraint at some higher level.
9681 		 */
9682 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9683 			if (quota == RUNTIME_INF)
9684 				quota = parent_quota;
9685 			else if (parent_quota != RUNTIME_INF)
9686 				quota = min(quota, parent_quota);
9687 		} else {
9688 			if (quota == RUNTIME_INF)
9689 				quota = parent_quota;
9690 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9691 				return -EINVAL;
9692 		}
9693 	}
9694 	cfs_b->hierarchical_quota = quota;
9695 
9696 	return 0;
9697 }
9698 
9699 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9700 {
9701 	struct cfs_schedulable_data data = {
9702 		.tg = tg,
9703 		.period = period,
9704 		.quota = quota,
9705 	};
9706 
9707 	if (quota != RUNTIME_INF) {
9708 		do_div(data.period, NSEC_PER_USEC);
9709 		do_div(data.quota, NSEC_PER_USEC);
9710 	}
9711 
9712 	guard(rcu)();
9713 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9714 }
9715 
9716 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9717 {
9718 	struct task_group *tg = css_tg(seq_css(sf));
9719 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9720 
9721 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9722 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9723 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9724 
9725 	if (schedstat_enabled() && tg != &root_task_group) {
9726 		struct sched_statistics *stats;
9727 		u64 ws = 0;
9728 		int i;
9729 
9730 		for_each_possible_cpu(i) {
9731 			stats = __schedstats_from_se(tg->se[i]);
9732 			ws += schedstat_val(stats->wait_sum);
9733 		}
9734 
9735 		seq_printf(sf, "wait_sum %llu\n", ws);
9736 	}
9737 
9738 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9739 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9740 
9741 	return 0;
9742 }
9743 
9744 static u64 throttled_time_self(struct task_group *tg)
9745 {
9746 	int i;
9747 	u64 total = 0;
9748 
9749 	for_each_possible_cpu(i) {
9750 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9751 	}
9752 
9753 	return total;
9754 }
9755 
9756 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9757 {
9758 	struct task_group *tg = css_tg(seq_css(sf));
9759 
9760 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9761 
9762 	return 0;
9763 }
9764 #endif /* CONFIG_CFS_BANDWIDTH */
9765 
9766 #ifdef CONFIG_RT_GROUP_SCHED
9767 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9768 				struct cftype *cft, s64 val)
9769 {
9770 	return sched_group_set_rt_runtime(css_tg(css), val);
9771 }
9772 
9773 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9774 			       struct cftype *cft)
9775 {
9776 	return sched_group_rt_runtime(css_tg(css));
9777 }
9778 
9779 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9780 				    struct cftype *cftype, u64 rt_period_us)
9781 {
9782 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9783 }
9784 
9785 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9786 				   struct cftype *cft)
9787 {
9788 	return sched_group_rt_period(css_tg(css));
9789 }
9790 #endif /* CONFIG_RT_GROUP_SCHED */
9791 
9792 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9793 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9794 			       struct cftype *cft)
9795 {
9796 	return css_tg(css)->idle;
9797 }
9798 
9799 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9800 				struct cftype *cft, s64 idle)
9801 {
9802 	int ret;
9803 
9804 	ret = sched_group_set_idle(css_tg(css), idle);
9805 	if (!ret)
9806 		scx_group_set_idle(css_tg(css), idle);
9807 	return ret;
9808 }
9809 #endif
9810 
9811 static struct cftype cpu_legacy_files[] = {
9812 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9813 	{
9814 		.name = "shares",
9815 		.read_u64 = cpu_shares_read_u64,
9816 		.write_u64 = cpu_shares_write_u64,
9817 	},
9818 	{
9819 		.name = "idle",
9820 		.read_s64 = cpu_idle_read_s64,
9821 		.write_s64 = cpu_idle_write_s64,
9822 	},
9823 #endif
9824 #ifdef CONFIG_CFS_BANDWIDTH
9825 	{
9826 		.name = "cfs_quota_us",
9827 		.read_s64 = cpu_cfs_quota_read_s64,
9828 		.write_s64 = cpu_cfs_quota_write_s64,
9829 	},
9830 	{
9831 		.name = "cfs_period_us",
9832 		.read_u64 = cpu_cfs_period_read_u64,
9833 		.write_u64 = cpu_cfs_period_write_u64,
9834 	},
9835 	{
9836 		.name = "cfs_burst_us",
9837 		.read_u64 = cpu_cfs_burst_read_u64,
9838 		.write_u64 = cpu_cfs_burst_write_u64,
9839 	},
9840 	{
9841 		.name = "stat",
9842 		.seq_show = cpu_cfs_stat_show,
9843 	},
9844 	{
9845 		.name = "stat.local",
9846 		.seq_show = cpu_cfs_local_stat_show,
9847 	},
9848 #endif
9849 #ifdef CONFIG_RT_GROUP_SCHED
9850 	{
9851 		.name = "rt_runtime_us",
9852 		.read_s64 = cpu_rt_runtime_read,
9853 		.write_s64 = cpu_rt_runtime_write,
9854 	},
9855 	{
9856 		.name = "rt_period_us",
9857 		.read_u64 = cpu_rt_period_read_uint,
9858 		.write_u64 = cpu_rt_period_write_uint,
9859 	},
9860 #endif
9861 #ifdef CONFIG_UCLAMP_TASK_GROUP
9862 	{
9863 		.name = "uclamp.min",
9864 		.flags = CFTYPE_NOT_ON_ROOT,
9865 		.seq_show = cpu_uclamp_min_show,
9866 		.write = cpu_uclamp_min_write,
9867 	},
9868 	{
9869 		.name = "uclamp.max",
9870 		.flags = CFTYPE_NOT_ON_ROOT,
9871 		.seq_show = cpu_uclamp_max_show,
9872 		.write = cpu_uclamp_max_write,
9873 	},
9874 #endif
9875 	{ }	/* Terminate */
9876 };
9877 
9878 static int cpu_extra_stat_show(struct seq_file *sf,
9879 			       struct cgroup_subsys_state *css)
9880 {
9881 #ifdef CONFIG_CFS_BANDWIDTH
9882 	{
9883 		struct task_group *tg = css_tg(css);
9884 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9885 		u64 throttled_usec, burst_usec;
9886 
9887 		throttled_usec = cfs_b->throttled_time;
9888 		do_div(throttled_usec, NSEC_PER_USEC);
9889 		burst_usec = cfs_b->burst_time;
9890 		do_div(burst_usec, NSEC_PER_USEC);
9891 
9892 		seq_printf(sf, "nr_periods %d\n"
9893 			   "nr_throttled %d\n"
9894 			   "throttled_usec %llu\n"
9895 			   "nr_bursts %d\n"
9896 			   "burst_usec %llu\n",
9897 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9898 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9899 	}
9900 #endif
9901 	return 0;
9902 }
9903 
9904 static int cpu_local_stat_show(struct seq_file *sf,
9905 			       struct cgroup_subsys_state *css)
9906 {
9907 #ifdef CONFIG_CFS_BANDWIDTH
9908 	{
9909 		struct task_group *tg = css_tg(css);
9910 		u64 throttled_self_usec;
9911 
9912 		throttled_self_usec = throttled_time_self(tg);
9913 		do_div(throttled_self_usec, NSEC_PER_USEC);
9914 
9915 		seq_printf(sf, "throttled_usec %llu\n",
9916 			   throttled_self_usec);
9917 	}
9918 #endif
9919 	return 0;
9920 }
9921 
9922 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9923 
9924 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9925 			       struct cftype *cft)
9926 {
9927 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9928 }
9929 
9930 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9931 				struct cftype *cft, u64 cgrp_weight)
9932 {
9933 	unsigned long weight;
9934 	int ret;
9935 
9936 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9937 		return -ERANGE;
9938 
9939 	weight = sched_weight_from_cgroup(cgrp_weight);
9940 
9941 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9942 	if (!ret)
9943 		scx_group_set_weight(css_tg(css), cgrp_weight);
9944 	return ret;
9945 }
9946 
9947 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9948 				    struct cftype *cft)
9949 {
9950 	unsigned long weight = tg_weight(css_tg(css));
9951 	int last_delta = INT_MAX;
9952 	int prio, delta;
9953 
9954 	/* find the closest nice value to the current weight */
9955 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9956 		delta = abs(sched_prio_to_weight[prio] - weight);
9957 		if (delta >= last_delta)
9958 			break;
9959 		last_delta = delta;
9960 	}
9961 
9962 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9963 }
9964 
9965 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9966 				     struct cftype *cft, s64 nice)
9967 {
9968 	unsigned long weight;
9969 	int idx, ret;
9970 
9971 	if (nice < MIN_NICE || nice > MAX_NICE)
9972 		return -ERANGE;
9973 
9974 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9975 	idx = array_index_nospec(idx, 40);
9976 	weight = sched_prio_to_weight[idx];
9977 
9978 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9979 	if (!ret)
9980 		scx_group_set_weight(css_tg(css),
9981 				     sched_weight_to_cgroup(weight));
9982 	return ret;
9983 }
9984 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9985 
9986 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9987 						  long period, long quota)
9988 {
9989 	if (quota < 0)
9990 		seq_puts(sf, "max");
9991 	else
9992 		seq_printf(sf, "%ld", quota);
9993 
9994 	seq_printf(sf, " %ld\n", period);
9995 }
9996 
9997 /* caller should put the current value in *@periodp before calling */
9998 static int __maybe_unused cpu_period_quota_parse(char *buf,
9999 						 u64 *periodp, u64 *quotap)
10000 {
10001 	char tok[21];	/* U64_MAX */
10002 
10003 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10004 		return -EINVAL;
10005 
10006 	*periodp *= NSEC_PER_USEC;
10007 
10008 	if (sscanf(tok, "%llu", quotap))
10009 		*quotap *= NSEC_PER_USEC;
10010 	else if (!strcmp(tok, "max"))
10011 		*quotap = RUNTIME_INF;
10012 	else
10013 		return -EINVAL;
10014 
10015 	return 0;
10016 }
10017 
10018 #ifdef CONFIG_CFS_BANDWIDTH
10019 static int cpu_max_show(struct seq_file *sf, void *v)
10020 {
10021 	struct task_group *tg = css_tg(seq_css(sf));
10022 
10023 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10024 	return 0;
10025 }
10026 
10027 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10028 			     char *buf, size_t nbytes, loff_t off)
10029 {
10030 	struct task_group *tg = css_tg(of_css(of));
10031 	u64 period = tg_get_cfs_period(tg);
10032 	u64 burst = tg->cfs_bandwidth.burst;
10033 	u64 quota;
10034 	int ret;
10035 
10036 	ret = cpu_period_quota_parse(buf, &period, &quota);
10037 	if (!ret)
10038 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10039 	return ret ?: nbytes;
10040 }
10041 #endif
10042 
10043 static struct cftype cpu_files[] = {
10044 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10045 	{
10046 		.name = "weight",
10047 		.flags = CFTYPE_NOT_ON_ROOT,
10048 		.read_u64 = cpu_weight_read_u64,
10049 		.write_u64 = cpu_weight_write_u64,
10050 	},
10051 	{
10052 		.name = "weight.nice",
10053 		.flags = CFTYPE_NOT_ON_ROOT,
10054 		.read_s64 = cpu_weight_nice_read_s64,
10055 		.write_s64 = cpu_weight_nice_write_s64,
10056 	},
10057 	{
10058 		.name = "idle",
10059 		.flags = CFTYPE_NOT_ON_ROOT,
10060 		.read_s64 = cpu_idle_read_s64,
10061 		.write_s64 = cpu_idle_write_s64,
10062 	},
10063 #endif
10064 #ifdef CONFIG_CFS_BANDWIDTH
10065 	{
10066 		.name = "max",
10067 		.flags = CFTYPE_NOT_ON_ROOT,
10068 		.seq_show = cpu_max_show,
10069 		.write = cpu_max_write,
10070 	},
10071 	{
10072 		.name = "max.burst",
10073 		.flags = CFTYPE_NOT_ON_ROOT,
10074 		.read_u64 = cpu_cfs_burst_read_u64,
10075 		.write_u64 = cpu_cfs_burst_write_u64,
10076 	},
10077 #endif
10078 #ifdef CONFIG_UCLAMP_TASK_GROUP
10079 	{
10080 		.name = "uclamp.min",
10081 		.flags = CFTYPE_NOT_ON_ROOT,
10082 		.seq_show = cpu_uclamp_min_show,
10083 		.write = cpu_uclamp_min_write,
10084 	},
10085 	{
10086 		.name = "uclamp.max",
10087 		.flags = CFTYPE_NOT_ON_ROOT,
10088 		.seq_show = cpu_uclamp_max_show,
10089 		.write = cpu_uclamp_max_write,
10090 	},
10091 #endif
10092 	{ }	/* terminate */
10093 };
10094 
10095 struct cgroup_subsys cpu_cgrp_subsys = {
10096 	.css_alloc	= cpu_cgroup_css_alloc,
10097 	.css_online	= cpu_cgroup_css_online,
10098 	.css_offline	= cpu_cgroup_css_offline,
10099 	.css_released	= cpu_cgroup_css_released,
10100 	.css_free	= cpu_cgroup_css_free,
10101 	.css_extra_stat_show = cpu_extra_stat_show,
10102 	.css_local_stat_show = cpu_local_stat_show,
10103 	.can_attach	= cpu_cgroup_can_attach,
10104 	.attach		= cpu_cgroup_attach,
10105 	.cancel_attach	= cpu_cgroup_cancel_attach,
10106 	.legacy_cftypes	= cpu_legacy_files,
10107 	.dfl_cftypes	= cpu_files,
10108 	.early_init	= true,
10109 	.threaded	= true,
10110 };
10111 
10112 #endif	/* CONFIG_CGROUP_SCHED */
10113 
10114 void dump_cpu_task(int cpu)
10115 {
10116 	if (in_hardirq() && cpu == smp_processor_id()) {
10117 		struct pt_regs *regs;
10118 
10119 		regs = get_irq_regs();
10120 		if (regs) {
10121 			show_regs(regs);
10122 			return;
10123 		}
10124 	}
10125 
10126 	if (trigger_single_cpu_backtrace(cpu))
10127 		return;
10128 
10129 	pr_info("Task dump for CPU %d:\n", cpu);
10130 	sched_show_task(cpu_curr(cpu));
10131 }
10132 
10133 /*
10134  * Nice levels are multiplicative, with a gentle 10% change for every
10135  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10136  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10137  * that remained on nice 0.
10138  *
10139  * The "10% effect" is relative and cumulative: from _any_ nice level,
10140  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10141  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10142  * If a task goes up by ~10% and another task goes down by ~10% then
10143  * the relative distance between them is ~25%.)
10144  */
10145 const int sched_prio_to_weight[40] = {
10146  /* -20 */     88761,     71755,     56483,     46273,     36291,
10147  /* -15 */     29154,     23254,     18705,     14949,     11916,
10148  /* -10 */      9548,      7620,      6100,      4904,      3906,
10149  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10150  /*   0 */      1024,       820,       655,       526,       423,
10151  /*   5 */       335,       272,       215,       172,       137,
10152  /*  10 */       110,        87,        70,        56,        45,
10153  /*  15 */        36,        29,        23,        18,        15,
10154 };
10155 
10156 /*
10157  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10158  *
10159  * In cases where the weight does not change often, we can use the
10160  * pre-calculated inverse to speed up arithmetics by turning divisions
10161  * into multiplications:
10162  */
10163 const u32 sched_prio_to_wmult[40] = {
10164  /* -20 */     48388,     59856,     76040,     92818,    118348,
10165  /* -15 */    147320,    184698,    229616,    287308,    360437,
10166  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10167  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10168  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10169  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10170  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10171  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10172 };
10173 
10174 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10175 {
10176         trace_sched_update_nr_running_tp(rq, count);
10177 }
10178 
10179 #ifdef CONFIG_SCHED_MM_CID
10180 
10181 /*
10182  * @cid_lock: Guarantee forward-progress of cid allocation.
10183  *
10184  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10185  * is only used when contention is detected by the lock-free allocation so
10186  * forward progress can be guaranteed.
10187  */
10188 DEFINE_RAW_SPINLOCK(cid_lock);
10189 
10190 /*
10191  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10192  *
10193  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10194  * detected, it is set to 1 to ensure that all newly coming allocations are
10195  * serialized by @cid_lock until the allocation which detected contention
10196  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10197  * of a cid allocation.
10198  */
10199 int use_cid_lock;
10200 
10201 /*
10202  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10203  * concurrently with respect to the execution of the source runqueue context
10204  * switch.
10205  *
10206  * There is one basic properties we want to guarantee here:
10207  *
10208  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10209  * used by a task. That would lead to concurrent allocation of the cid and
10210  * userspace corruption.
10211  *
10212  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10213  * that a pair of loads observe at least one of a pair of stores, which can be
10214  * shown as:
10215  *
10216  *      X = Y = 0
10217  *
10218  *      w[X]=1          w[Y]=1
10219  *      MB              MB
10220  *      r[Y]=y          r[X]=x
10221  *
10222  * Which guarantees that x==0 && y==0 is impossible. But rather than using
10223  * values 0 and 1, this algorithm cares about specific state transitions of the
10224  * runqueue current task (as updated by the scheduler context switch), and the
10225  * per-mm/cpu cid value.
10226  *
10227  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10228  * task->mm != mm for the rest of the discussion. There are two scheduler state
10229  * transitions on context switch we care about:
10230  *
10231  * (TSA) Store to rq->curr with transition from (N) to (Y)
10232  *
10233  * (TSB) Store to rq->curr with transition from (Y) to (N)
10234  *
10235  * On the remote-clear side, there is one transition we care about:
10236  *
10237  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10238  *
10239  * There is also a transition to UNSET state which can be performed from all
10240  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10241  * guarantees that only a single thread will succeed:
10242  *
10243  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10244  *
10245  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10246  * when a thread is actively using the cid (property (1)).
10247  *
10248  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10249  *
10250  * Scenario A) (TSA)+(TMA) (from next task perspective)
10251  *
10252  * CPU0                                      CPU1
10253  *
10254  * Context switch CS-1                       Remote-clear
10255  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10256  *                                             (implied barrier after cmpxchg)
10257  *   - switch_mm_cid()
10258  *     - memory barrier (see switch_mm_cid()
10259  *       comment explaining how this barrier
10260  *       is combined with other scheduler
10261  *       barriers)
10262  *     - mm_cid_get (next)
10263  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10264  *
10265  * This Dekker ensures that either task (Y) is observed by the
10266  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10267  * observed.
10268  *
10269  * If task (Y) store is observed by rcu_dereference(), it means that there is
10270  * still an active task on the cpu. Remote-clear will therefore not transition
10271  * to UNSET, which fulfills property (1).
10272  *
10273  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10274  * it will move its state to UNSET, which clears the percpu cid perhaps
10275  * uselessly (which is not an issue for correctness). Because task (Y) is not
10276  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10277  * state to UNSET is done with a cmpxchg expecting that the old state has the
10278  * LAZY flag set, only one thread will successfully UNSET.
10279  *
10280  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10281  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10282  * CPU1 will observe task (Y) and do nothing more, which is fine.
10283  *
10284  * What we are effectively preventing with this Dekker is a scenario where
10285  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10286  * because this would UNSET a cid which is actively used.
10287  */
10288 
10289 void sched_mm_cid_migrate_from(struct task_struct *t)
10290 {
10291 	t->migrate_from_cpu = task_cpu(t);
10292 }
10293 
10294 static
10295 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10296 					  struct task_struct *t,
10297 					  struct mm_cid *src_pcpu_cid)
10298 {
10299 	struct mm_struct *mm = t->mm;
10300 	struct task_struct *src_task;
10301 	int src_cid, last_mm_cid;
10302 
10303 	if (!mm)
10304 		return -1;
10305 
10306 	last_mm_cid = t->last_mm_cid;
10307 	/*
10308 	 * If the migrated task has no last cid, or if the current
10309 	 * task on src rq uses the cid, it means the source cid does not need
10310 	 * to be moved to the destination cpu.
10311 	 */
10312 	if (last_mm_cid == -1)
10313 		return -1;
10314 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10315 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10316 		return -1;
10317 
10318 	/*
10319 	 * If we observe an active task using the mm on this rq, it means we
10320 	 * are not the last task to be migrated from this cpu for this mm, so
10321 	 * there is no need to move src_cid to the destination cpu.
10322 	 */
10323 	guard(rcu)();
10324 	src_task = rcu_dereference(src_rq->curr);
10325 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10326 		t->last_mm_cid = -1;
10327 		return -1;
10328 	}
10329 
10330 	return src_cid;
10331 }
10332 
10333 static
10334 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10335 					      struct task_struct *t,
10336 					      struct mm_cid *src_pcpu_cid,
10337 					      int src_cid)
10338 {
10339 	struct task_struct *src_task;
10340 	struct mm_struct *mm = t->mm;
10341 	int lazy_cid;
10342 
10343 	if (src_cid == -1)
10344 		return -1;
10345 
10346 	/*
10347 	 * Attempt to clear the source cpu cid to move it to the destination
10348 	 * cpu.
10349 	 */
10350 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10351 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10352 		return -1;
10353 
10354 	/*
10355 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10356 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10357 	 * between store to rq->curr and load of prev and next task's
10358 	 * per-mm/cpu cid.
10359 	 *
10360 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10361 	 * rq->curr->mm_cid_active matches the barrier in
10362 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10363 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10364 	 * load of per-mm/cpu cid.
10365 	 */
10366 
10367 	/*
10368 	 * If we observe an active task using the mm on this rq after setting
10369 	 * the lazy-put flag, this task will be responsible for transitioning
10370 	 * from lazy-put flag set to MM_CID_UNSET.
10371 	 */
10372 	scoped_guard (rcu) {
10373 		src_task = rcu_dereference(src_rq->curr);
10374 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10375 			/*
10376 			 * We observed an active task for this mm, there is therefore
10377 			 * no point in moving this cid to the destination cpu.
10378 			 */
10379 			t->last_mm_cid = -1;
10380 			return -1;
10381 		}
10382 	}
10383 
10384 	/*
10385 	 * The src_cid is unused, so it can be unset.
10386 	 */
10387 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10388 		return -1;
10389 	WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10390 	return src_cid;
10391 }
10392 
10393 /*
10394  * Migration to dst cpu. Called with dst_rq lock held.
10395  * Interrupts are disabled, which keeps the window of cid ownership without the
10396  * source rq lock held small.
10397  */
10398 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10399 {
10400 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10401 	struct mm_struct *mm = t->mm;
10402 	int src_cid, src_cpu;
10403 	bool dst_cid_is_set;
10404 	struct rq *src_rq;
10405 
10406 	lockdep_assert_rq_held(dst_rq);
10407 
10408 	if (!mm)
10409 		return;
10410 	src_cpu = t->migrate_from_cpu;
10411 	if (src_cpu == -1) {
10412 		t->last_mm_cid = -1;
10413 		return;
10414 	}
10415 	/*
10416 	 * Move the src cid if the dst cid is unset. This keeps id
10417 	 * allocation closest to 0 in cases where few threads migrate around
10418 	 * many CPUs.
10419 	 *
10420 	 * If destination cid or recent cid is already set, we may have
10421 	 * to just clear the src cid to ensure compactness in frequent
10422 	 * migrations scenarios.
10423 	 *
10424 	 * It is not useful to clear the src cid when the number of threads is
10425 	 * greater or equal to the number of allowed CPUs, because user-space
10426 	 * can expect that the number of allowed cids can reach the number of
10427 	 * allowed CPUs.
10428 	 */
10429 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10430 	dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10431 			 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10432 	if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10433 		return;
10434 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10435 	src_rq = cpu_rq(src_cpu);
10436 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10437 	if (src_cid == -1)
10438 		return;
10439 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10440 							    src_cid);
10441 	if (src_cid == -1)
10442 		return;
10443 	if (dst_cid_is_set) {
10444 		__mm_cid_put(mm, src_cid);
10445 		return;
10446 	}
10447 	/* Move src_cid to dst cpu. */
10448 	mm_cid_snapshot_time(dst_rq, mm);
10449 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10450 	WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10451 }
10452 
10453 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10454 				      int cpu)
10455 {
10456 	struct rq *rq = cpu_rq(cpu);
10457 	struct task_struct *t;
10458 	int cid, lazy_cid;
10459 
10460 	cid = READ_ONCE(pcpu_cid->cid);
10461 	if (!mm_cid_is_valid(cid))
10462 		return;
10463 
10464 	/*
10465 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10466 	 * there happens to be other tasks left on the source cpu using this
10467 	 * mm, the next task using this mm will reallocate its cid on context
10468 	 * switch.
10469 	 */
10470 	lazy_cid = mm_cid_set_lazy_put(cid);
10471 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10472 		return;
10473 
10474 	/*
10475 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10476 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10477 	 * between store to rq->curr and load of prev and next task's
10478 	 * per-mm/cpu cid.
10479 	 *
10480 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10481 	 * rq->curr->mm_cid_active matches the barrier in
10482 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10483 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10484 	 * load of per-mm/cpu cid.
10485 	 */
10486 
10487 	/*
10488 	 * If we observe an active task using the mm on this rq after setting
10489 	 * the lazy-put flag, that task will be responsible for transitioning
10490 	 * from lazy-put flag set to MM_CID_UNSET.
10491 	 */
10492 	scoped_guard (rcu) {
10493 		t = rcu_dereference(rq->curr);
10494 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10495 			return;
10496 	}
10497 
10498 	/*
10499 	 * The cid is unused, so it can be unset.
10500 	 * Disable interrupts to keep the window of cid ownership without rq
10501 	 * lock small.
10502 	 */
10503 	scoped_guard (irqsave) {
10504 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10505 			__mm_cid_put(mm, cid);
10506 	}
10507 }
10508 
10509 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10510 {
10511 	struct rq *rq = cpu_rq(cpu);
10512 	struct mm_cid *pcpu_cid;
10513 	struct task_struct *curr;
10514 	u64 rq_clock;
10515 
10516 	/*
10517 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10518 	 * while is irrelevant.
10519 	 */
10520 	rq_clock = READ_ONCE(rq->clock);
10521 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10522 
10523 	/*
10524 	 * In order to take care of infrequently scheduled tasks, bump the time
10525 	 * snapshot associated with this cid if an active task using the mm is
10526 	 * observed on this rq.
10527 	 */
10528 	scoped_guard (rcu) {
10529 		curr = rcu_dereference(rq->curr);
10530 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10531 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10532 			return;
10533 		}
10534 	}
10535 
10536 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10537 		return;
10538 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10539 }
10540 
10541 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10542 					     int weight)
10543 {
10544 	struct mm_cid *pcpu_cid;
10545 	int cid;
10546 
10547 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10548 	cid = READ_ONCE(pcpu_cid->cid);
10549 	if (!mm_cid_is_valid(cid) || cid < weight)
10550 		return;
10551 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10552 }
10553 
10554 static void task_mm_cid_work(struct callback_head *work)
10555 {
10556 	unsigned long now = jiffies, old_scan, next_scan;
10557 	struct task_struct *t = current;
10558 	struct cpumask *cidmask;
10559 	struct mm_struct *mm;
10560 	int weight, cpu;
10561 
10562 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
10563 
10564 	work->next = work;	/* Prevent double-add */
10565 	if (t->flags & PF_EXITING)
10566 		return;
10567 	mm = t->mm;
10568 	if (!mm)
10569 		return;
10570 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10571 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10572 	if (!old_scan) {
10573 		unsigned long res;
10574 
10575 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10576 		if (res != old_scan)
10577 			old_scan = res;
10578 		else
10579 			old_scan = next_scan;
10580 	}
10581 	if (time_before(now, old_scan))
10582 		return;
10583 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10584 		return;
10585 	cidmask = mm_cidmask(mm);
10586 	/* Clear cids that were not recently used. */
10587 	for_each_possible_cpu(cpu)
10588 		sched_mm_cid_remote_clear_old(mm, cpu);
10589 	weight = cpumask_weight(cidmask);
10590 	/*
10591 	 * Clear cids that are greater or equal to the cidmask weight to
10592 	 * recompact it.
10593 	 */
10594 	for_each_possible_cpu(cpu)
10595 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10596 }
10597 
10598 void init_sched_mm_cid(struct task_struct *t)
10599 {
10600 	struct mm_struct *mm = t->mm;
10601 	int mm_users = 0;
10602 
10603 	if (mm) {
10604 		mm_users = atomic_read(&mm->mm_users);
10605 		if (mm_users == 1)
10606 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10607 	}
10608 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10609 	init_task_work(&t->cid_work, task_mm_cid_work);
10610 }
10611 
10612 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10613 {
10614 	struct callback_head *work = &curr->cid_work;
10615 	unsigned long now = jiffies;
10616 
10617 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10618 	    work->next != work)
10619 		return;
10620 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10621 		return;
10622 
10623 	/* No page allocation under rq lock */
10624 	task_work_add(curr, work, TWA_RESUME);
10625 }
10626 
10627 void sched_mm_cid_exit_signals(struct task_struct *t)
10628 {
10629 	struct mm_struct *mm = t->mm;
10630 	struct rq *rq;
10631 
10632 	if (!mm)
10633 		return;
10634 
10635 	preempt_disable();
10636 	rq = this_rq();
10637 	guard(rq_lock_irqsave)(rq);
10638 	preempt_enable_no_resched();	/* holding spinlock */
10639 	WRITE_ONCE(t->mm_cid_active, 0);
10640 	/*
10641 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10642 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10643 	 */
10644 	smp_mb();
10645 	mm_cid_put(mm);
10646 	t->last_mm_cid = t->mm_cid = -1;
10647 }
10648 
10649 void sched_mm_cid_before_execve(struct task_struct *t)
10650 {
10651 	struct mm_struct *mm = t->mm;
10652 	struct rq *rq;
10653 
10654 	if (!mm)
10655 		return;
10656 
10657 	preempt_disable();
10658 	rq = this_rq();
10659 	guard(rq_lock_irqsave)(rq);
10660 	preempt_enable_no_resched();	/* holding spinlock */
10661 	WRITE_ONCE(t->mm_cid_active, 0);
10662 	/*
10663 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10664 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10665 	 */
10666 	smp_mb();
10667 	mm_cid_put(mm);
10668 	t->last_mm_cid = t->mm_cid = -1;
10669 }
10670 
10671 void sched_mm_cid_after_execve(struct task_struct *t)
10672 {
10673 	struct mm_struct *mm = t->mm;
10674 	struct rq *rq;
10675 
10676 	if (!mm)
10677 		return;
10678 
10679 	preempt_disable();
10680 	rq = this_rq();
10681 	scoped_guard (rq_lock_irqsave, rq) {
10682 		preempt_enable_no_resched();	/* holding spinlock */
10683 		WRITE_ONCE(t->mm_cid_active, 1);
10684 		/*
10685 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10686 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10687 		 */
10688 		smp_mb();
10689 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10690 	}
10691 	rseq_set_notify_resume(t);
10692 }
10693 
10694 void sched_mm_cid_fork(struct task_struct *t)
10695 {
10696 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10697 	t->mm_cid_active = 1;
10698 }
10699 #endif
10700 
10701 #ifdef CONFIG_SCHED_CLASS_EXT
10702 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10703 			    struct sched_enq_and_set_ctx *ctx)
10704 {
10705 	struct rq *rq = task_rq(p);
10706 
10707 	lockdep_assert_rq_held(rq);
10708 
10709 	*ctx = (struct sched_enq_and_set_ctx){
10710 		.p = p,
10711 		.queue_flags = queue_flags,
10712 		.queued = task_on_rq_queued(p),
10713 		.running = task_current(rq, p),
10714 	};
10715 
10716 	update_rq_clock(rq);
10717 	if (ctx->queued)
10718 		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10719 	if (ctx->running)
10720 		put_prev_task(rq, p);
10721 }
10722 
10723 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10724 {
10725 	struct rq *rq = task_rq(ctx->p);
10726 
10727 	lockdep_assert_rq_held(rq);
10728 
10729 	if (ctx->queued)
10730 		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10731 	if (ctx->running)
10732 		set_next_task(rq, ctx->p);
10733 }
10734 #endif	/* CONFIG_SCHED_CLASS_EXT */
10735