1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 DEFINE_MUTEX(sched_domains_mutex); 94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 95 96 static void update_rq_clock_task(struct rq *rq, s64 delta); 97 98 void update_rq_clock(struct rq *rq) 99 { 100 s64 delta; 101 102 lockdep_assert_held(&rq->lock); 103 104 if (rq->clock_skip_update & RQCF_ACT_SKIP) 105 return; 106 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 108 if (delta < 0) 109 return; 110 rq->clock += delta; 111 update_rq_clock_task(rq, delta); 112 } 113 114 /* 115 * Debugging: various feature bits 116 */ 117 118 #define SCHED_FEAT(name, enabled) \ 119 (1UL << __SCHED_FEAT_##name) * enabled | 120 121 const_debug unsigned int sysctl_sched_features = 122 #include "features.h" 123 0; 124 125 #undef SCHED_FEAT 126 127 #ifdef CONFIG_SCHED_DEBUG 128 #define SCHED_FEAT(name, enabled) \ 129 #name , 130 131 static const char * const sched_feat_names[] = { 132 #include "features.h" 133 }; 134 135 #undef SCHED_FEAT 136 137 static int sched_feat_show(struct seq_file *m, void *v) 138 { 139 int i; 140 141 for (i = 0; i < __SCHED_FEAT_NR; i++) { 142 if (!(sysctl_sched_features & (1UL << i))) 143 seq_puts(m, "NO_"); 144 seq_printf(m, "%s ", sched_feat_names[i]); 145 } 146 seq_puts(m, "\n"); 147 148 return 0; 149 } 150 151 #ifdef HAVE_JUMP_LABEL 152 153 #define jump_label_key__true STATIC_KEY_INIT_TRUE 154 #define jump_label_key__false STATIC_KEY_INIT_FALSE 155 156 #define SCHED_FEAT(name, enabled) \ 157 jump_label_key__##enabled , 158 159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 160 #include "features.h" 161 }; 162 163 #undef SCHED_FEAT 164 165 static void sched_feat_disable(int i) 166 { 167 if (static_key_enabled(&sched_feat_keys[i])) 168 static_key_slow_dec(&sched_feat_keys[i]); 169 } 170 171 static void sched_feat_enable(int i) 172 { 173 if (!static_key_enabled(&sched_feat_keys[i])) 174 static_key_slow_inc(&sched_feat_keys[i]); 175 } 176 #else 177 static void sched_feat_disable(int i) { }; 178 static void sched_feat_enable(int i) { }; 179 #endif /* HAVE_JUMP_LABEL */ 180 181 static int sched_feat_set(char *cmp) 182 { 183 int i; 184 int neg = 0; 185 186 if (strncmp(cmp, "NO_", 3) == 0) { 187 neg = 1; 188 cmp += 3; 189 } 190 191 for (i = 0; i < __SCHED_FEAT_NR; i++) { 192 if (strcmp(cmp, sched_feat_names[i]) == 0) { 193 if (neg) { 194 sysctl_sched_features &= ~(1UL << i); 195 sched_feat_disable(i); 196 } else { 197 sysctl_sched_features |= (1UL << i); 198 sched_feat_enable(i); 199 } 200 break; 201 } 202 } 203 204 return i; 205 } 206 207 static ssize_t 208 sched_feat_write(struct file *filp, const char __user *ubuf, 209 size_t cnt, loff_t *ppos) 210 { 211 char buf[64]; 212 char *cmp; 213 int i; 214 struct inode *inode; 215 216 if (cnt > 63) 217 cnt = 63; 218 219 if (copy_from_user(&buf, ubuf, cnt)) 220 return -EFAULT; 221 222 buf[cnt] = 0; 223 cmp = strstrip(buf); 224 225 /* Ensure the static_key remains in a consistent state */ 226 inode = file_inode(filp); 227 mutex_lock(&inode->i_mutex); 228 i = sched_feat_set(cmp); 229 mutex_unlock(&inode->i_mutex); 230 if (i == __SCHED_FEAT_NR) 231 return -EINVAL; 232 233 *ppos += cnt; 234 235 return cnt; 236 } 237 238 static int sched_feat_open(struct inode *inode, struct file *filp) 239 { 240 return single_open(filp, sched_feat_show, NULL); 241 } 242 243 static const struct file_operations sched_feat_fops = { 244 .open = sched_feat_open, 245 .write = sched_feat_write, 246 .read = seq_read, 247 .llseek = seq_lseek, 248 .release = single_release, 249 }; 250 251 static __init int sched_init_debug(void) 252 { 253 debugfs_create_file("sched_features", 0644, NULL, NULL, 254 &sched_feat_fops); 255 256 return 0; 257 } 258 late_initcall(sched_init_debug); 259 #endif /* CONFIG_SCHED_DEBUG */ 260 261 /* 262 * Number of tasks to iterate in a single balance run. 263 * Limited because this is done with IRQs disabled. 264 */ 265 const_debug unsigned int sysctl_sched_nr_migrate = 32; 266 267 /* 268 * period over which we average the RT time consumption, measured 269 * in ms. 270 * 271 * default: 1s 272 */ 273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 274 275 /* 276 * period over which we measure -rt task cpu usage in us. 277 * default: 1s 278 */ 279 unsigned int sysctl_sched_rt_period = 1000000; 280 281 __read_mostly int scheduler_running; 282 283 /* 284 * part of the period that we allow rt tasks to run in us. 285 * default: 0.95s 286 */ 287 int sysctl_sched_rt_runtime = 950000; 288 289 /* cpus with isolated domains */ 290 cpumask_var_t cpu_isolated_map; 291 292 /* 293 * this_rq_lock - lock this runqueue and disable interrupts. 294 */ 295 static struct rq *this_rq_lock(void) 296 __acquires(rq->lock) 297 { 298 struct rq *rq; 299 300 local_irq_disable(); 301 rq = this_rq(); 302 raw_spin_lock(&rq->lock); 303 304 return rq; 305 } 306 307 #ifdef CONFIG_SCHED_HRTICK 308 /* 309 * Use HR-timers to deliver accurate preemption points. 310 */ 311 312 static void hrtick_clear(struct rq *rq) 313 { 314 if (hrtimer_active(&rq->hrtick_timer)) 315 hrtimer_cancel(&rq->hrtick_timer); 316 } 317 318 /* 319 * High-resolution timer tick. 320 * Runs from hardirq context with interrupts disabled. 321 */ 322 static enum hrtimer_restart hrtick(struct hrtimer *timer) 323 { 324 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 325 326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 327 328 raw_spin_lock(&rq->lock); 329 update_rq_clock(rq); 330 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 331 raw_spin_unlock(&rq->lock); 332 333 return HRTIMER_NORESTART; 334 } 335 336 #ifdef CONFIG_SMP 337 338 static void __hrtick_restart(struct rq *rq) 339 { 340 struct hrtimer *timer = &rq->hrtick_timer; 341 342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 343 } 344 345 /* 346 * called from hardirq (IPI) context 347 */ 348 static void __hrtick_start(void *arg) 349 { 350 struct rq *rq = arg; 351 352 raw_spin_lock(&rq->lock); 353 __hrtick_restart(rq); 354 rq->hrtick_csd_pending = 0; 355 raw_spin_unlock(&rq->lock); 356 } 357 358 /* 359 * Called to set the hrtick timer state. 360 * 361 * called with rq->lock held and irqs disabled 362 */ 363 void hrtick_start(struct rq *rq, u64 delay) 364 { 365 struct hrtimer *timer = &rq->hrtick_timer; 366 ktime_t time; 367 s64 delta; 368 369 /* 370 * Don't schedule slices shorter than 10000ns, that just 371 * doesn't make sense and can cause timer DoS. 372 */ 373 delta = max_t(s64, delay, 10000LL); 374 time = ktime_add_ns(timer->base->get_time(), delta); 375 376 hrtimer_set_expires(timer, time); 377 378 if (rq == this_rq()) { 379 __hrtick_restart(rq); 380 } else if (!rq->hrtick_csd_pending) { 381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 382 rq->hrtick_csd_pending = 1; 383 } 384 } 385 386 static int 387 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 388 { 389 int cpu = (int)(long)hcpu; 390 391 switch (action) { 392 case CPU_UP_CANCELED: 393 case CPU_UP_CANCELED_FROZEN: 394 case CPU_DOWN_PREPARE: 395 case CPU_DOWN_PREPARE_FROZEN: 396 case CPU_DEAD: 397 case CPU_DEAD_FROZEN: 398 hrtick_clear(cpu_rq(cpu)); 399 return NOTIFY_OK; 400 } 401 402 return NOTIFY_DONE; 403 } 404 405 static __init void init_hrtick(void) 406 { 407 hotcpu_notifier(hotplug_hrtick, 0); 408 } 409 #else 410 /* 411 * Called to set the hrtick timer state. 412 * 413 * called with rq->lock held and irqs disabled 414 */ 415 void hrtick_start(struct rq *rq, u64 delay) 416 { 417 /* 418 * Don't schedule slices shorter than 10000ns, that just 419 * doesn't make sense. Rely on vruntime for fairness. 420 */ 421 delay = max_t(u64, delay, 10000LL); 422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 423 HRTIMER_MODE_REL_PINNED); 424 } 425 426 static inline void init_hrtick(void) 427 { 428 } 429 #endif /* CONFIG_SMP */ 430 431 static void init_rq_hrtick(struct rq *rq) 432 { 433 #ifdef CONFIG_SMP 434 rq->hrtick_csd_pending = 0; 435 436 rq->hrtick_csd.flags = 0; 437 rq->hrtick_csd.func = __hrtick_start; 438 rq->hrtick_csd.info = rq; 439 #endif 440 441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 442 rq->hrtick_timer.function = hrtick; 443 } 444 #else /* CONFIG_SCHED_HRTICK */ 445 static inline void hrtick_clear(struct rq *rq) 446 { 447 } 448 449 static inline void init_rq_hrtick(struct rq *rq) 450 { 451 } 452 453 static inline void init_hrtick(void) 454 { 455 } 456 #endif /* CONFIG_SCHED_HRTICK */ 457 458 /* 459 * cmpxchg based fetch_or, macro so it works for different integer types 460 */ 461 #define fetch_or(ptr, val) \ 462 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 463 for (;;) { \ 464 __old = cmpxchg((ptr), __val, __val | (val)); \ 465 if (__old == __val) \ 466 break; \ 467 __val = __old; \ 468 } \ 469 __old; \ 470 }) 471 472 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 473 /* 474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 475 * this avoids any races wrt polling state changes and thereby avoids 476 * spurious IPIs. 477 */ 478 static bool set_nr_and_not_polling(struct task_struct *p) 479 { 480 struct thread_info *ti = task_thread_info(p); 481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 482 } 483 484 /* 485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 486 * 487 * If this returns true, then the idle task promises to call 488 * sched_ttwu_pending() and reschedule soon. 489 */ 490 static bool set_nr_if_polling(struct task_struct *p) 491 { 492 struct thread_info *ti = task_thread_info(p); 493 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 494 495 for (;;) { 496 if (!(val & _TIF_POLLING_NRFLAG)) 497 return false; 498 if (val & _TIF_NEED_RESCHED) 499 return true; 500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 501 if (old == val) 502 break; 503 val = old; 504 } 505 return true; 506 } 507 508 #else 509 static bool set_nr_and_not_polling(struct task_struct *p) 510 { 511 set_tsk_need_resched(p); 512 return true; 513 } 514 515 #ifdef CONFIG_SMP 516 static bool set_nr_if_polling(struct task_struct *p) 517 { 518 return false; 519 } 520 #endif 521 #endif 522 523 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 524 { 525 struct wake_q_node *node = &task->wake_q; 526 527 /* 528 * Atomically grab the task, if ->wake_q is !nil already it means 529 * its already queued (either by us or someone else) and will get the 530 * wakeup due to that. 531 * 532 * This cmpxchg() implies a full barrier, which pairs with the write 533 * barrier implied by the wakeup in wake_up_list(). 534 */ 535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 536 return; 537 538 get_task_struct(task); 539 540 /* 541 * The head is context local, there can be no concurrency. 542 */ 543 *head->lastp = node; 544 head->lastp = &node->next; 545 } 546 547 void wake_up_q(struct wake_q_head *head) 548 { 549 struct wake_q_node *node = head->first; 550 551 while (node != WAKE_Q_TAIL) { 552 struct task_struct *task; 553 554 task = container_of(node, struct task_struct, wake_q); 555 BUG_ON(!task); 556 /* task can safely be re-inserted now */ 557 node = node->next; 558 task->wake_q.next = NULL; 559 560 /* 561 * wake_up_process() implies a wmb() to pair with the queueing 562 * in wake_q_add() so as not to miss wakeups. 563 */ 564 wake_up_process(task); 565 put_task_struct(task); 566 } 567 } 568 569 /* 570 * resched_curr - mark rq's current task 'to be rescheduled now'. 571 * 572 * On UP this means the setting of the need_resched flag, on SMP it 573 * might also involve a cross-CPU call to trigger the scheduler on 574 * the target CPU. 575 */ 576 void resched_curr(struct rq *rq) 577 { 578 struct task_struct *curr = rq->curr; 579 int cpu; 580 581 lockdep_assert_held(&rq->lock); 582 583 if (test_tsk_need_resched(curr)) 584 return; 585 586 cpu = cpu_of(rq); 587 588 if (cpu == smp_processor_id()) { 589 set_tsk_need_resched(curr); 590 set_preempt_need_resched(); 591 return; 592 } 593 594 if (set_nr_and_not_polling(curr)) 595 smp_send_reschedule(cpu); 596 else 597 trace_sched_wake_idle_without_ipi(cpu); 598 } 599 600 void resched_cpu(int cpu) 601 { 602 struct rq *rq = cpu_rq(cpu); 603 unsigned long flags; 604 605 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 606 return; 607 resched_curr(rq); 608 raw_spin_unlock_irqrestore(&rq->lock, flags); 609 } 610 611 #ifdef CONFIG_SMP 612 #ifdef CONFIG_NO_HZ_COMMON 613 /* 614 * In the semi idle case, use the nearest busy cpu for migrating timers 615 * from an idle cpu. This is good for power-savings. 616 * 617 * We don't do similar optimization for completely idle system, as 618 * selecting an idle cpu will add more delays to the timers than intended 619 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 620 */ 621 int get_nohz_timer_target(void) 622 { 623 int i, cpu = smp_processor_id(); 624 struct sched_domain *sd; 625 626 if (!idle_cpu(cpu)) 627 return cpu; 628 629 rcu_read_lock(); 630 for_each_domain(cpu, sd) { 631 for_each_cpu(i, sched_domain_span(sd)) { 632 if (!idle_cpu(i)) { 633 cpu = i; 634 goto unlock; 635 } 636 } 637 } 638 unlock: 639 rcu_read_unlock(); 640 return cpu; 641 } 642 /* 643 * When add_timer_on() enqueues a timer into the timer wheel of an 644 * idle CPU then this timer might expire before the next timer event 645 * which is scheduled to wake up that CPU. In case of a completely 646 * idle system the next event might even be infinite time into the 647 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 648 * leaves the inner idle loop so the newly added timer is taken into 649 * account when the CPU goes back to idle and evaluates the timer 650 * wheel for the next timer event. 651 */ 652 static void wake_up_idle_cpu(int cpu) 653 { 654 struct rq *rq = cpu_rq(cpu); 655 656 if (cpu == smp_processor_id()) 657 return; 658 659 if (set_nr_and_not_polling(rq->idle)) 660 smp_send_reschedule(cpu); 661 else 662 trace_sched_wake_idle_without_ipi(cpu); 663 } 664 665 static bool wake_up_full_nohz_cpu(int cpu) 666 { 667 /* 668 * We just need the target to call irq_exit() and re-evaluate 669 * the next tick. The nohz full kick at least implies that. 670 * If needed we can still optimize that later with an 671 * empty IRQ. 672 */ 673 if (tick_nohz_full_cpu(cpu)) { 674 if (cpu != smp_processor_id() || 675 tick_nohz_tick_stopped()) 676 tick_nohz_full_kick_cpu(cpu); 677 return true; 678 } 679 680 return false; 681 } 682 683 void wake_up_nohz_cpu(int cpu) 684 { 685 if (!wake_up_full_nohz_cpu(cpu)) 686 wake_up_idle_cpu(cpu); 687 } 688 689 static inline bool got_nohz_idle_kick(void) 690 { 691 int cpu = smp_processor_id(); 692 693 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 694 return false; 695 696 if (idle_cpu(cpu) && !need_resched()) 697 return true; 698 699 /* 700 * We can't run Idle Load Balance on this CPU for this time so we 701 * cancel it and clear NOHZ_BALANCE_KICK 702 */ 703 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 704 return false; 705 } 706 707 #else /* CONFIG_NO_HZ_COMMON */ 708 709 static inline bool got_nohz_idle_kick(void) 710 { 711 return false; 712 } 713 714 #endif /* CONFIG_NO_HZ_COMMON */ 715 716 #ifdef CONFIG_NO_HZ_FULL 717 bool sched_can_stop_tick(void) 718 { 719 /* 720 * FIFO realtime policy runs the highest priority task. Other runnable 721 * tasks are of a lower priority. The scheduler tick does nothing. 722 */ 723 if (current->policy == SCHED_FIFO) 724 return true; 725 726 /* 727 * Round-robin realtime tasks time slice with other tasks at the same 728 * realtime priority. Is this task the only one at this priority? 729 */ 730 if (current->policy == SCHED_RR) { 731 struct sched_rt_entity *rt_se = ¤t->rt; 732 733 return rt_se->run_list.prev == rt_se->run_list.next; 734 } 735 736 /* 737 * More than one running task need preemption. 738 * nr_running update is assumed to be visible 739 * after IPI is sent from wakers. 740 */ 741 if (this_rq()->nr_running > 1) 742 return false; 743 744 return true; 745 } 746 #endif /* CONFIG_NO_HZ_FULL */ 747 748 void sched_avg_update(struct rq *rq) 749 { 750 s64 period = sched_avg_period(); 751 752 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 753 /* 754 * Inline assembly required to prevent the compiler 755 * optimising this loop into a divmod call. 756 * See __iter_div_u64_rem() for another example of this. 757 */ 758 asm("" : "+rm" (rq->age_stamp)); 759 rq->age_stamp += period; 760 rq->rt_avg /= 2; 761 } 762 } 763 764 #endif /* CONFIG_SMP */ 765 766 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 767 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 768 /* 769 * Iterate task_group tree rooted at *from, calling @down when first entering a 770 * node and @up when leaving it for the final time. 771 * 772 * Caller must hold rcu_lock or sufficient equivalent. 773 */ 774 int walk_tg_tree_from(struct task_group *from, 775 tg_visitor down, tg_visitor up, void *data) 776 { 777 struct task_group *parent, *child; 778 int ret; 779 780 parent = from; 781 782 down: 783 ret = (*down)(parent, data); 784 if (ret) 785 goto out; 786 list_for_each_entry_rcu(child, &parent->children, siblings) { 787 parent = child; 788 goto down; 789 790 up: 791 continue; 792 } 793 ret = (*up)(parent, data); 794 if (ret || parent == from) 795 goto out; 796 797 child = parent; 798 parent = parent->parent; 799 if (parent) 800 goto up; 801 out: 802 return ret; 803 } 804 805 int tg_nop(struct task_group *tg, void *data) 806 { 807 return 0; 808 } 809 #endif 810 811 static void set_load_weight(struct task_struct *p) 812 { 813 int prio = p->static_prio - MAX_RT_PRIO; 814 struct load_weight *load = &p->se.load; 815 816 /* 817 * SCHED_IDLE tasks get minimal weight: 818 */ 819 if (p->policy == SCHED_IDLE) { 820 load->weight = scale_load(WEIGHT_IDLEPRIO); 821 load->inv_weight = WMULT_IDLEPRIO; 822 return; 823 } 824 825 load->weight = scale_load(prio_to_weight[prio]); 826 load->inv_weight = prio_to_wmult[prio]; 827 } 828 829 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 830 { 831 update_rq_clock(rq); 832 sched_info_queued(rq, p); 833 p->sched_class->enqueue_task(rq, p, flags); 834 } 835 836 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 837 { 838 update_rq_clock(rq); 839 sched_info_dequeued(rq, p); 840 p->sched_class->dequeue_task(rq, p, flags); 841 } 842 843 void activate_task(struct rq *rq, struct task_struct *p, int flags) 844 { 845 if (task_contributes_to_load(p)) 846 rq->nr_uninterruptible--; 847 848 enqueue_task(rq, p, flags); 849 } 850 851 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 852 { 853 if (task_contributes_to_load(p)) 854 rq->nr_uninterruptible++; 855 856 dequeue_task(rq, p, flags); 857 } 858 859 static void update_rq_clock_task(struct rq *rq, s64 delta) 860 { 861 /* 862 * In theory, the compile should just see 0 here, and optimize out the call 863 * to sched_rt_avg_update. But I don't trust it... 864 */ 865 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 866 s64 steal = 0, irq_delta = 0; 867 #endif 868 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 869 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 870 871 /* 872 * Since irq_time is only updated on {soft,}irq_exit, we might run into 873 * this case when a previous update_rq_clock() happened inside a 874 * {soft,}irq region. 875 * 876 * When this happens, we stop ->clock_task and only update the 877 * prev_irq_time stamp to account for the part that fit, so that a next 878 * update will consume the rest. This ensures ->clock_task is 879 * monotonic. 880 * 881 * It does however cause some slight miss-attribution of {soft,}irq 882 * time, a more accurate solution would be to update the irq_time using 883 * the current rq->clock timestamp, except that would require using 884 * atomic ops. 885 */ 886 if (irq_delta > delta) 887 irq_delta = delta; 888 889 rq->prev_irq_time += irq_delta; 890 delta -= irq_delta; 891 #endif 892 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 893 if (static_key_false((¶virt_steal_rq_enabled))) { 894 steal = paravirt_steal_clock(cpu_of(rq)); 895 steal -= rq->prev_steal_time_rq; 896 897 if (unlikely(steal > delta)) 898 steal = delta; 899 900 rq->prev_steal_time_rq += steal; 901 delta -= steal; 902 } 903 #endif 904 905 rq->clock_task += delta; 906 907 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 908 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 909 sched_rt_avg_update(rq, irq_delta + steal); 910 #endif 911 } 912 913 void sched_set_stop_task(int cpu, struct task_struct *stop) 914 { 915 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 916 struct task_struct *old_stop = cpu_rq(cpu)->stop; 917 918 if (stop) { 919 /* 920 * Make it appear like a SCHED_FIFO task, its something 921 * userspace knows about and won't get confused about. 922 * 923 * Also, it will make PI more or less work without too 924 * much confusion -- but then, stop work should not 925 * rely on PI working anyway. 926 */ 927 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 928 929 stop->sched_class = &stop_sched_class; 930 } 931 932 cpu_rq(cpu)->stop = stop; 933 934 if (old_stop) { 935 /* 936 * Reset it back to a normal scheduling class so that 937 * it can die in pieces. 938 */ 939 old_stop->sched_class = &rt_sched_class; 940 } 941 } 942 943 /* 944 * __normal_prio - return the priority that is based on the static prio 945 */ 946 static inline int __normal_prio(struct task_struct *p) 947 { 948 return p->static_prio; 949 } 950 951 /* 952 * Calculate the expected normal priority: i.e. priority 953 * without taking RT-inheritance into account. Might be 954 * boosted by interactivity modifiers. Changes upon fork, 955 * setprio syscalls, and whenever the interactivity 956 * estimator recalculates. 957 */ 958 static inline int normal_prio(struct task_struct *p) 959 { 960 int prio; 961 962 if (task_has_dl_policy(p)) 963 prio = MAX_DL_PRIO-1; 964 else if (task_has_rt_policy(p)) 965 prio = MAX_RT_PRIO-1 - p->rt_priority; 966 else 967 prio = __normal_prio(p); 968 return prio; 969 } 970 971 /* 972 * Calculate the current priority, i.e. the priority 973 * taken into account by the scheduler. This value might 974 * be boosted by RT tasks, or might be boosted by 975 * interactivity modifiers. Will be RT if the task got 976 * RT-boosted. If not then it returns p->normal_prio. 977 */ 978 static int effective_prio(struct task_struct *p) 979 { 980 p->normal_prio = normal_prio(p); 981 /* 982 * If we are RT tasks or we were boosted to RT priority, 983 * keep the priority unchanged. Otherwise, update priority 984 * to the normal priority: 985 */ 986 if (!rt_prio(p->prio)) 987 return p->normal_prio; 988 return p->prio; 989 } 990 991 /** 992 * task_curr - is this task currently executing on a CPU? 993 * @p: the task in question. 994 * 995 * Return: 1 if the task is currently executing. 0 otherwise. 996 */ 997 inline int task_curr(const struct task_struct *p) 998 { 999 return cpu_curr(task_cpu(p)) == p; 1000 } 1001 1002 /* 1003 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1004 * use the balance_callback list if you want balancing. 1005 * 1006 * this means any call to check_class_changed() must be followed by a call to 1007 * balance_callback(). 1008 */ 1009 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1010 const struct sched_class *prev_class, 1011 int oldprio) 1012 { 1013 if (prev_class != p->sched_class) { 1014 if (prev_class->switched_from) 1015 prev_class->switched_from(rq, p); 1016 1017 p->sched_class->switched_to(rq, p); 1018 } else if (oldprio != p->prio || dl_task(p)) 1019 p->sched_class->prio_changed(rq, p, oldprio); 1020 } 1021 1022 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1023 { 1024 const struct sched_class *class; 1025 1026 if (p->sched_class == rq->curr->sched_class) { 1027 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1028 } else { 1029 for_each_class(class) { 1030 if (class == rq->curr->sched_class) 1031 break; 1032 if (class == p->sched_class) { 1033 resched_curr(rq); 1034 break; 1035 } 1036 } 1037 } 1038 1039 /* 1040 * A queue event has occurred, and we're going to schedule. In 1041 * this case, we can save a useless back to back clock update. 1042 */ 1043 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1044 rq_clock_skip_update(rq, true); 1045 } 1046 1047 #ifdef CONFIG_SMP 1048 /* 1049 * This is how migration works: 1050 * 1051 * 1) we invoke migration_cpu_stop() on the target CPU using 1052 * stop_one_cpu(). 1053 * 2) stopper starts to run (implicitly forcing the migrated thread 1054 * off the CPU) 1055 * 3) it checks whether the migrated task is still in the wrong runqueue. 1056 * 4) if it's in the wrong runqueue then the migration thread removes 1057 * it and puts it into the right queue. 1058 * 5) stopper completes and stop_one_cpu() returns and the migration 1059 * is done. 1060 */ 1061 1062 /* 1063 * move_queued_task - move a queued task to new rq. 1064 * 1065 * Returns (locked) new rq. Old rq's lock is released. 1066 */ 1067 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu) 1068 { 1069 lockdep_assert_held(&rq->lock); 1070 1071 dequeue_task(rq, p, 0); 1072 p->on_rq = TASK_ON_RQ_MIGRATING; 1073 set_task_cpu(p, new_cpu); 1074 raw_spin_unlock(&rq->lock); 1075 1076 rq = cpu_rq(new_cpu); 1077 1078 raw_spin_lock(&rq->lock); 1079 BUG_ON(task_cpu(p) != new_cpu); 1080 p->on_rq = TASK_ON_RQ_QUEUED; 1081 enqueue_task(rq, p, 0); 1082 check_preempt_curr(rq, p, 0); 1083 1084 return rq; 1085 } 1086 1087 struct migration_arg { 1088 struct task_struct *task; 1089 int dest_cpu; 1090 }; 1091 1092 /* 1093 * Move (not current) task off this cpu, onto dest cpu. We're doing 1094 * this because either it can't run here any more (set_cpus_allowed() 1095 * away from this CPU, or CPU going down), or because we're 1096 * attempting to rebalance this task on exec (sched_exec). 1097 * 1098 * So we race with normal scheduler movements, but that's OK, as long 1099 * as the task is no longer on this CPU. 1100 */ 1101 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu) 1102 { 1103 if (unlikely(!cpu_active(dest_cpu))) 1104 return rq; 1105 1106 /* Affinity changed (again). */ 1107 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1108 return rq; 1109 1110 rq = move_queued_task(rq, p, dest_cpu); 1111 1112 return rq; 1113 } 1114 1115 /* 1116 * migration_cpu_stop - this will be executed by a highprio stopper thread 1117 * and performs thread migration by bumping thread off CPU then 1118 * 'pushing' onto another runqueue. 1119 */ 1120 static int migration_cpu_stop(void *data) 1121 { 1122 struct migration_arg *arg = data; 1123 struct task_struct *p = arg->task; 1124 struct rq *rq = this_rq(); 1125 1126 /* 1127 * The original target cpu might have gone down and we might 1128 * be on another cpu but it doesn't matter. 1129 */ 1130 local_irq_disable(); 1131 /* 1132 * We need to explicitly wake pending tasks before running 1133 * __migrate_task() such that we will not miss enforcing cpus_allowed 1134 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1135 */ 1136 sched_ttwu_pending(); 1137 1138 raw_spin_lock(&p->pi_lock); 1139 raw_spin_lock(&rq->lock); 1140 /* 1141 * If task_rq(p) != rq, it cannot be migrated here, because we're 1142 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1143 * we're holding p->pi_lock. 1144 */ 1145 if (task_rq(p) == rq && task_on_rq_queued(p)) 1146 rq = __migrate_task(rq, p, arg->dest_cpu); 1147 raw_spin_unlock(&rq->lock); 1148 raw_spin_unlock(&p->pi_lock); 1149 1150 local_irq_enable(); 1151 return 0; 1152 } 1153 1154 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1155 { 1156 if (p->sched_class->set_cpus_allowed) 1157 p->sched_class->set_cpus_allowed(p, new_mask); 1158 1159 cpumask_copy(&p->cpus_allowed, new_mask); 1160 p->nr_cpus_allowed = cpumask_weight(new_mask); 1161 } 1162 1163 /* 1164 * Change a given task's CPU affinity. Migrate the thread to a 1165 * proper CPU and schedule it away if the CPU it's executing on 1166 * is removed from the allowed bitmask. 1167 * 1168 * NOTE: the caller must have a valid reference to the task, the 1169 * task must not exit() & deallocate itself prematurely. The 1170 * call is not atomic; no spinlocks may be held. 1171 */ 1172 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1173 { 1174 unsigned long flags; 1175 struct rq *rq; 1176 unsigned int dest_cpu; 1177 int ret = 0; 1178 1179 rq = task_rq_lock(p, &flags); 1180 1181 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1182 goto out; 1183 1184 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 1185 ret = -EINVAL; 1186 goto out; 1187 } 1188 1189 do_set_cpus_allowed(p, new_mask); 1190 1191 /* Can the task run on the task's current CPU? If so, we're done */ 1192 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1193 goto out; 1194 1195 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 1196 if (task_running(rq, p) || p->state == TASK_WAKING) { 1197 struct migration_arg arg = { p, dest_cpu }; 1198 /* Need help from migration thread: drop lock and wait. */ 1199 task_rq_unlock(rq, p, &flags); 1200 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1201 tlb_migrate_finish(p->mm); 1202 return 0; 1203 } else if (task_on_rq_queued(p)) { 1204 /* 1205 * OK, since we're going to drop the lock immediately 1206 * afterwards anyway. 1207 */ 1208 lockdep_unpin_lock(&rq->lock); 1209 rq = move_queued_task(rq, p, dest_cpu); 1210 lockdep_pin_lock(&rq->lock); 1211 } 1212 out: 1213 task_rq_unlock(rq, p, &flags); 1214 1215 return ret; 1216 } 1217 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1218 1219 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1220 { 1221 #ifdef CONFIG_SCHED_DEBUG 1222 /* 1223 * We should never call set_task_cpu() on a blocked task, 1224 * ttwu() will sort out the placement. 1225 */ 1226 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1227 !p->on_rq); 1228 1229 #ifdef CONFIG_LOCKDEP 1230 /* 1231 * The caller should hold either p->pi_lock or rq->lock, when changing 1232 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1233 * 1234 * sched_move_task() holds both and thus holding either pins the cgroup, 1235 * see task_group(). 1236 * 1237 * Furthermore, all task_rq users should acquire both locks, see 1238 * task_rq_lock(). 1239 */ 1240 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1241 lockdep_is_held(&task_rq(p)->lock))); 1242 #endif 1243 #endif 1244 1245 trace_sched_migrate_task(p, new_cpu); 1246 1247 if (task_cpu(p) != new_cpu) { 1248 if (p->sched_class->migrate_task_rq) 1249 p->sched_class->migrate_task_rq(p, new_cpu); 1250 p->se.nr_migrations++; 1251 perf_event_task_migrate(p); 1252 } 1253 1254 __set_task_cpu(p, new_cpu); 1255 } 1256 1257 static void __migrate_swap_task(struct task_struct *p, int cpu) 1258 { 1259 if (task_on_rq_queued(p)) { 1260 struct rq *src_rq, *dst_rq; 1261 1262 src_rq = task_rq(p); 1263 dst_rq = cpu_rq(cpu); 1264 1265 deactivate_task(src_rq, p, 0); 1266 set_task_cpu(p, cpu); 1267 activate_task(dst_rq, p, 0); 1268 check_preempt_curr(dst_rq, p, 0); 1269 } else { 1270 /* 1271 * Task isn't running anymore; make it appear like we migrated 1272 * it before it went to sleep. This means on wakeup we make the 1273 * previous cpu our targer instead of where it really is. 1274 */ 1275 p->wake_cpu = cpu; 1276 } 1277 } 1278 1279 struct migration_swap_arg { 1280 struct task_struct *src_task, *dst_task; 1281 int src_cpu, dst_cpu; 1282 }; 1283 1284 static int migrate_swap_stop(void *data) 1285 { 1286 struct migration_swap_arg *arg = data; 1287 struct rq *src_rq, *dst_rq; 1288 int ret = -EAGAIN; 1289 1290 src_rq = cpu_rq(arg->src_cpu); 1291 dst_rq = cpu_rq(arg->dst_cpu); 1292 1293 double_raw_lock(&arg->src_task->pi_lock, 1294 &arg->dst_task->pi_lock); 1295 double_rq_lock(src_rq, dst_rq); 1296 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1297 goto unlock; 1298 1299 if (task_cpu(arg->src_task) != arg->src_cpu) 1300 goto unlock; 1301 1302 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1303 goto unlock; 1304 1305 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1306 goto unlock; 1307 1308 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1309 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1310 1311 ret = 0; 1312 1313 unlock: 1314 double_rq_unlock(src_rq, dst_rq); 1315 raw_spin_unlock(&arg->dst_task->pi_lock); 1316 raw_spin_unlock(&arg->src_task->pi_lock); 1317 1318 return ret; 1319 } 1320 1321 /* 1322 * Cross migrate two tasks 1323 */ 1324 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1325 { 1326 struct migration_swap_arg arg; 1327 int ret = -EINVAL; 1328 1329 arg = (struct migration_swap_arg){ 1330 .src_task = cur, 1331 .src_cpu = task_cpu(cur), 1332 .dst_task = p, 1333 .dst_cpu = task_cpu(p), 1334 }; 1335 1336 if (arg.src_cpu == arg.dst_cpu) 1337 goto out; 1338 1339 /* 1340 * These three tests are all lockless; this is OK since all of them 1341 * will be re-checked with proper locks held further down the line. 1342 */ 1343 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1344 goto out; 1345 1346 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1347 goto out; 1348 1349 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1350 goto out; 1351 1352 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1353 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1354 1355 out: 1356 return ret; 1357 } 1358 1359 /* 1360 * wait_task_inactive - wait for a thread to unschedule. 1361 * 1362 * If @match_state is nonzero, it's the @p->state value just checked and 1363 * not expected to change. If it changes, i.e. @p might have woken up, 1364 * then return zero. When we succeed in waiting for @p to be off its CPU, 1365 * we return a positive number (its total switch count). If a second call 1366 * a short while later returns the same number, the caller can be sure that 1367 * @p has remained unscheduled the whole time. 1368 * 1369 * The caller must ensure that the task *will* unschedule sometime soon, 1370 * else this function might spin for a *long* time. This function can't 1371 * be called with interrupts off, or it may introduce deadlock with 1372 * smp_call_function() if an IPI is sent by the same process we are 1373 * waiting to become inactive. 1374 */ 1375 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1376 { 1377 unsigned long flags; 1378 int running, queued; 1379 unsigned long ncsw; 1380 struct rq *rq; 1381 1382 for (;;) { 1383 /* 1384 * We do the initial early heuristics without holding 1385 * any task-queue locks at all. We'll only try to get 1386 * the runqueue lock when things look like they will 1387 * work out! 1388 */ 1389 rq = task_rq(p); 1390 1391 /* 1392 * If the task is actively running on another CPU 1393 * still, just relax and busy-wait without holding 1394 * any locks. 1395 * 1396 * NOTE! Since we don't hold any locks, it's not 1397 * even sure that "rq" stays as the right runqueue! 1398 * But we don't care, since "task_running()" will 1399 * return false if the runqueue has changed and p 1400 * is actually now running somewhere else! 1401 */ 1402 while (task_running(rq, p)) { 1403 if (match_state && unlikely(p->state != match_state)) 1404 return 0; 1405 cpu_relax(); 1406 } 1407 1408 /* 1409 * Ok, time to look more closely! We need the rq 1410 * lock now, to be *sure*. If we're wrong, we'll 1411 * just go back and repeat. 1412 */ 1413 rq = task_rq_lock(p, &flags); 1414 trace_sched_wait_task(p); 1415 running = task_running(rq, p); 1416 queued = task_on_rq_queued(p); 1417 ncsw = 0; 1418 if (!match_state || p->state == match_state) 1419 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1420 task_rq_unlock(rq, p, &flags); 1421 1422 /* 1423 * If it changed from the expected state, bail out now. 1424 */ 1425 if (unlikely(!ncsw)) 1426 break; 1427 1428 /* 1429 * Was it really running after all now that we 1430 * checked with the proper locks actually held? 1431 * 1432 * Oops. Go back and try again.. 1433 */ 1434 if (unlikely(running)) { 1435 cpu_relax(); 1436 continue; 1437 } 1438 1439 /* 1440 * It's not enough that it's not actively running, 1441 * it must be off the runqueue _entirely_, and not 1442 * preempted! 1443 * 1444 * So if it was still runnable (but just not actively 1445 * running right now), it's preempted, and we should 1446 * yield - it could be a while. 1447 */ 1448 if (unlikely(queued)) { 1449 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1450 1451 set_current_state(TASK_UNINTERRUPTIBLE); 1452 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1453 continue; 1454 } 1455 1456 /* 1457 * Ahh, all good. It wasn't running, and it wasn't 1458 * runnable, which means that it will never become 1459 * running in the future either. We're all done! 1460 */ 1461 break; 1462 } 1463 1464 return ncsw; 1465 } 1466 1467 /*** 1468 * kick_process - kick a running thread to enter/exit the kernel 1469 * @p: the to-be-kicked thread 1470 * 1471 * Cause a process which is running on another CPU to enter 1472 * kernel-mode, without any delay. (to get signals handled.) 1473 * 1474 * NOTE: this function doesn't have to take the runqueue lock, 1475 * because all it wants to ensure is that the remote task enters 1476 * the kernel. If the IPI races and the task has been migrated 1477 * to another CPU then no harm is done and the purpose has been 1478 * achieved as well. 1479 */ 1480 void kick_process(struct task_struct *p) 1481 { 1482 int cpu; 1483 1484 preempt_disable(); 1485 cpu = task_cpu(p); 1486 if ((cpu != smp_processor_id()) && task_curr(p)) 1487 smp_send_reschedule(cpu); 1488 preempt_enable(); 1489 } 1490 EXPORT_SYMBOL_GPL(kick_process); 1491 1492 /* 1493 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1494 */ 1495 static int select_fallback_rq(int cpu, struct task_struct *p) 1496 { 1497 int nid = cpu_to_node(cpu); 1498 const struct cpumask *nodemask = NULL; 1499 enum { cpuset, possible, fail } state = cpuset; 1500 int dest_cpu; 1501 1502 /* 1503 * If the node that the cpu is on has been offlined, cpu_to_node() 1504 * will return -1. There is no cpu on the node, and we should 1505 * select the cpu on the other node. 1506 */ 1507 if (nid != -1) { 1508 nodemask = cpumask_of_node(nid); 1509 1510 /* Look for allowed, online CPU in same node. */ 1511 for_each_cpu(dest_cpu, nodemask) { 1512 if (!cpu_online(dest_cpu)) 1513 continue; 1514 if (!cpu_active(dest_cpu)) 1515 continue; 1516 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1517 return dest_cpu; 1518 } 1519 } 1520 1521 for (;;) { 1522 /* Any allowed, online CPU? */ 1523 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1524 if (!cpu_online(dest_cpu)) 1525 continue; 1526 if (!cpu_active(dest_cpu)) 1527 continue; 1528 goto out; 1529 } 1530 1531 switch (state) { 1532 case cpuset: 1533 /* No more Mr. Nice Guy. */ 1534 cpuset_cpus_allowed_fallback(p); 1535 state = possible; 1536 break; 1537 1538 case possible: 1539 do_set_cpus_allowed(p, cpu_possible_mask); 1540 state = fail; 1541 break; 1542 1543 case fail: 1544 BUG(); 1545 break; 1546 } 1547 } 1548 1549 out: 1550 if (state != cpuset) { 1551 /* 1552 * Don't tell them about moving exiting tasks or 1553 * kernel threads (both mm NULL), since they never 1554 * leave kernel. 1555 */ 1556 if (p->mm && printk_ratelimit()) { 1557 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1558 task_pid_nr(p), p->comm, cpu); 1559 } 1560 } 1561 1562 return dest_cpu; 1563 } 1564 1565 /* 1566 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1567 */ 1568 static inline 1569 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1570 { 1571 lockdep_assert_held(&p->pi_lock); 1572 1573 if (p->nr_cpus_allowed > 1) 1574 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1575 1576 /* 1577 * In order not to call set_task_cpu() on a blocking task we need 1578 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1579 * cpu. 1580 * 1581 * Since this is common to all placement strategies, this lives here. 1582 * 1583 * [ this allows ->select_task() to simply return task_cpu(p) and 1584 * not worry about this generic constraint ] 1585 */ 1586 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1587 !cpu_online(cpu))) 1588 cpu = select_fallback_rq(task_cpu(p), p); 1589 1590 return cpu; 1591 } 1592 1593 static void update_avg(u64 *avg, u64 sample) 1594 { 1595 s64 diff = sample - *avg; 1596 *avg += diff >> 3; 1597 } 1598 #endif /* CONFIG_SMP */ 1599 1600 static void 1601 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1602 { 1603 #ifdef CONFIG_SCHEDSTATS 1604 struct rq *rq = this_rq(); 1605 1606 #ifdef CONFIG_SMP 1607 int this_cpu = smp_processor_id(); 1608 1609 if (cpu == this_cpu) { 1610 schedstat_inc(rq, ttwu_local); 1611 schedstat_inc(p, se.statistics.nr_wakeups_local); 1612 } else { 1613 struct sched_domain *sd; 1614 1615 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1616 rcu_read_lock(); 1617 for_each_domain(this_cpu, sd) { 1618 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1619 schedstat_inc(sd, ttwu_wake_remote); 1620 break; 1621 } 1622 } 1623 rcu_read_unlock(); 1624 } 1625 1626 if (wake_flags & WF_MIGRATED) 1627 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1628 1629 #endif /* CONFIG_SMP */ 1630 1631 schedstat_inc(rq, ttwu_count); 1632 schedstat_inc(p, se.statistics.nr_wakeups); 1633 1634 if (wake_flags & WF_SYNC) 1635 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1636 1637 #endif /* CONFIG_SCHEDSTATS */ 1638 } 1639 1640 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1641 { 1642 activate_task(rq, p, en_flags); 1643 p->on_rq = TASK_ON_RQ_QUEUED; 1644 1645 /* if a worker is waking up, notify workqueue */ 1646 if (p->flags & PF_WQ_WORKER) 1647 wq_worker_waking_up(p, cpu_of(rq)); 1648 } 1649 1650 /* 1651 * Mark the task runnable and perform wakeup-preemption. 1652 */ 1653 static void 1654 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1655 { 1656 check_preempt_curr(rq, p, wake_flags); 1657 trace_sched_wakeup(p, true); 1658 1659 p->state = TASK_RUNNING; 1660 #ifdef CONFIG_SMP 1661 if (p->sched_class->task_woken) { 1662 /* 1663 * Our task @p is fully woken up and running; so its safe to 1664 * drop the rq->lock, hereafter rq is only used for statistics. 1665 */ 1666 lockdep_unpin_lock(&rq->lock); 1667 p->sched_class->task_woken(rq, p); 1668 lockdep_pin_lock(&rq->lock); 1669 } 1670 1671 if (rq->idle_stamp) { 1672 u64 delta = rq_clock(rq) - rq->idle_stamp; 1673 u64 max = 2*rq->max_idle_balance_cost; 1674 1675 update_avg(&rq->avg_idle, delta); 1676 1677 if (rq->avg_idle > max) 1678 rq->avg_idle = max; 1679 1680 rq->idle_stamp = 0; 1681 } 1682 #endif 1683 } 1684 1685 static void 1686 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1687 { 1688 lockdep_assert_held(&rq->lock); 1689 1690 #ifdef CONFIG_SMP 1691 if (p->sched_contributes_to_load) 1692 rq->nr_uninterruptible--; 1693 #endif 1694 1695 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1696 ttwu_do_wakeup(rq, p, wake_flags); 1697 } 1698 1699 /* 1700 * Called in case the task @p isn't fully descheduled from its runqueue, 1701 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1702 * since all we need to do is flip p->state to TASK_RUNNING, since 1703 * the task is still ->on_rq. 1704 */ 1705 static int ttwu_remote(struct task_struct *p, int wake_flags) 1706 { 1707 struct rq *rq; 1708 int ret = 0; 1709 1710 rq = __task_rq_lock(p); 1711 if (task_on_rq_queued(p)) { 1712 /* check_preempt_curr() may use rq clock */ 1713 update_rq_clock(rq); 1714 ttwu_do_wakeup(rq, p, wake_flags); 1715 ret = 1; 1716 } 1717 __task_rq_unlock(rq); 1718 1719 return ret; 1720 } 1721 1722 #ifdef CONFIG_SMP 1723 void sched_ttwu_pending(void) 1724 { 1725 struct rq *rq = this_rq(); 1726 struct llist_node *llist = llist_del_all(&rq->wake_list); 1727 struct task_struct *p; 1728 unsigned long flags; 1729 1730 if (!llist) 1731 return; 1732 1733 raw_spin_lock_irqsave(&rq->lock, flags); 1734 lockdep_pin_lock(&rq->lock); 1735 1736 while (llist) { 1737 p = llist_entry(llist, struct task_struct, wake_entry); 1738 llist = llist_next(llist); 1739 ttwu_do_activate(rq, p, 0); 1740 } 1741 1742 lockdep_unpin_lock(&rq->lock); 1743 raw_spin_unlock_irqrestore(&rq->lock, flags); 1744 } 1745 1746 void scheduler_ipi(void) 1747 { 1748 /* 1749 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1750 * TIF_NEED_RESCHED remotely (for the first time) will also send 1751 * this IPI. 1752 */ 1753 preempt_fold_need_resched(); 1754 1755 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1756 return; 1757 1758 /* 1759 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1760 * traditionally all their work was done from the interrupt return 1761 * path. Now that we actually do some work, we need to make sure 1762 * we do call them. 1763 * 1764 * Some archs already do call them, luckily irq_enter/exit nest 1765 * properly. 1766 * 1767 * Arguably we should visit all archs and update all handlers, 1768 * however a fair share of IPIs are still resched only so this would 1769 * somewhat pessimize the simple resched case. 1770 */ 1771 irq_enter(); 1772 sched_ttwu_pending(); 1773 1774 /* 1775 * Check if someone kicked us for doing the nohz idle load balance. 1776 */ 1777 if (unlikely(got_nohz_idle_kick())) { 1778 this_rq()->idle_balance = 1; 1779 raise_softirq_irqoff(SCHED_SOFTIRQ); 1780 } 1781 irq_exit(); 1782 } 1783 1784 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1785 { 1786 struct rq *rq = cpu_rq(cpu); 1787 1788 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1789 if (!set_nr_if_polling(rq->idle)) 1790 smp_send_reschedule(cpu); 1791 else 1792 trace_sched_wake_idle_without_ipi(cpu); 1793 } 1794 } 1795 1796 void wake_up_if_idle(int cpu) 1797 { 1798 struct rq *rq = cpu_rq(cpu); 1799 unsigned long flags; 1800 1801 rcu_read_lock(); 1802 1803 if (!is_idle_task(rcu_dereference(rq->curr))) 1804 goto out; 1805 1806 if (set_nr_if_polling(rq->idle)) { 1807 trace_sched_wake_idle_without_ipi(cpu); 1808 } else { 1809 raw_spin_lock_irqsave(&rq->lock, flags); 1810 if (is_idle_task(rq->curr)) 1811 smp_send_reschedule(cpu); 1812 /* Else cpu is not in idle, do nothing here */ 1813 raw_spin_unlock_irqrestore(&rq->lock, flags); 1814 } 1815 1816 out: 1817 rcu_read_unlock(); 1818 } 1819 1820 bool cpus_share_cache(int this_cpu, int that_cpu) 1821 { 1822 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1823 } 1824 #endif /* CONFIG_SMP */ 1825 1826 static void ttwu_queue(struct task_struct *p, int cpu) 1827 { 1828 struct rq *rq = cpu_rq(cpu); 1829 1830 #if defined(CONFIG_SMP) 1831 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1832 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1833 ttwu_queue_remote(p, cpu); 1834 return; 1835 } 1836 #endif 1837 1838 raw_spin_lock(&rq->lock); 1839 lockdep_pin_lock(&rq->lock); 1840 ttwu_do_activate(rq, p, 0); 1841 lockdep_unpin_lock(&rq->lock); 1842 raw_spin_unlock(&rq->lock); 1843 } 1844 1845 /** 1846 * try_to_wake_up - wake up a thread 1847 * @p: the thread to be awakened 1848 * @state: the mask of task states that can be woken 1849 * @wake_flags: wake modifier flags (WF_*) 1850 * 1851 * Put it on the run-queue if it's not already there. The "current" 1852 * thread is always on the run-queue (except when the actual 1853 * re-schedule is in progress), and as such you're allowed to do 1854 * the simpler "current->state = TASK_RUNNING" to mark yourself 1855 * runnable without the overhead of this. 1856 * 1857 * Return: %true if @p was woken up, %false if it was already running. 1858 * or @state didn't match @p's state. 1859 */ 1860 static int 1861 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1862 { 1863 unsigned long flags; 1864 int cpu, success = 0; 1865 1866 /* 1867 * If we are going to wake up a thread waiting for CONDITION we 1868 * need to ensure that CONDITION=1 done by the caller can not be 1869 * reordered with p->state check below. This pairs with mb() in 1870 * set_current_state() the waiting thread does. 1871 */ 1872 smp_mb__before_spinlock(); 1873 raw_spin_lock_irqsave(&p->pi_lock, flags); 1874 if (!(p->state & state)) 1875 goto out; 1876 1877 success = 1; /* we're going to change ->state */ 1878 cpu = task_cpu(p); 1879 1880 if (p->on_rq && ttwu_remote(p, wake_flags)) 1881 goto stat; 1882 1883 #ifdef CONFIG_SMP 1884 /* 1885 * If the owning (remote) cpu is still in the middle of schedule() with 1886 * this task as prev, wait until its done referencing the task. 1887 */ 1888 while (p->on_cpu) 1889 cpu_relax(); 1890 /* 1891 * Pairs with the smp_wmb() in finish_lock_switch(). 1892 */ 1893 smp_rmb(); 1894 1895 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1896 p->state = TASK_WAKING; 1897 1898 if (p->sched_class->task_waking) 1899 p->sched_class->task_waking(p); 1900 1901 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1902 if (task_cpu(p) != cpu) { 1903 wake_flags |= WF_MIGRATED; 1904 set_task_cpu(p, cpu); 1905 } 1906 #endif /* CONFIG_SMP */ 1907 1908 ttwu_queue(p, cpu); 1909 stat: 1910 ttwu_stat(p, cpu, wake_flags); 1911 out: 1912 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1913 1914 return success; 1915 } 1916 1917 /** 1918 * try_to_wake_up_local - try to wake up a local task with rq lock held 1919 * @p: the thread to be awakened 1920 * 1921 * Put @p on the run-queue if it's not already there. The caller must 1922 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1923 * the current task. 1924 */ 1925 static void try_to_wake_up_local(struct task_struct *p) 1926 { 1927 struct rq *rq = task_rq(p); 1928 1929 if (WARN_ON_ONCE(rq != this_rq()) || 1930 WARN_ON_ONCE(p == current)) 1931 return; 1932 1933 lockdep_assert_held(&rq->lock); 1934 1935 if (!raw_spin_trylock(&p->pi_lock)) { 1936 /* 1937 * This is OK, because current is on_cpu, which avoids it being 1938 * picked for load-balance and preemption/IRQs are still 1939 * disabled avoiding further scheduler activity on it and we've 1940 * not yet picked a replacement task. 1941 */ 1942 lockdep_unpin_lock(&rq->lock); 1943 raw_spin_unlock(&rq->lock); 1944 raw_spin_lock(&p->pi_lock); 1945 raw_spin_lock(&rq->lock); 1946 lockdep_pin_lock(&rq->lock); 1947 } 1948 1949 if (!(p->state & TASK_NORMAL)) 1950 goto out; 1951 1952 if (!task_on_rq_queued(p)) 1953 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1954 1955 ttwu_do_wakeup(rq, p, 0); 1956 ttwu_stat(p, smp_processor_id(), 0); 1957 out: 1958 raw_spin_unlock(&p->pi_lock); 1959 } 1960 1961 /** 1962 * wake_up_process - Wake up a specific process 1963 * @p: The process to be woken up. 1964 * 1965 * Attempt to wake up the nominated process and move it to the set of runnable 1966 * processes. 1967 * 1968 * Return: 1 if the process was woken up, 0 if it was already running. 1969 * 1970 * It may be assumed that this function implies a write memory barrier before 1971 * changing the task state if and only if any tasks are woken up. 1972 */ 1973 int wake_up_process(struct task_struct *p) 1974 { 1975 WARN_ON(task_is_stopped_or_traced(p)); 1976 return try_to_wake_up(p, TASK_NORMAL, 0); 1977 } 1978 EXPORT_SYMBOL(wake_up_process); 1979 1980 int wake_up_state(struct task_struct *p, unsigned int state) 1981 { 1982 return try_to_wake_up(p, state, 0); 1983 } 1984 1985 /* 1986 * This function clears the sched_dl_entity static params. 1987 */ 1988 void __dl_clear_params(struct task_struct *p) 1989 { 1990 struct sched_dl_entity *dl_se = &p->dl; 1991 1992 dl_se->dl_runtime = 0; 1993 dl_se->dl_deadline = 0; 1994 dl_se->dl_period = 0; 1995 dl_se->flags = 0; 1996 dl_se->dl_bw = 0; 1997 1998 dl_se->dl_throttled = 0; 1999 dl_se->dl_new = 1; 2000 dl_se->dl_yielded = 0; 2001 } 2002 2003 /* 2004 * Perform scheduler related setup for a newly forked process p. 2005 * p is forked by current. 2006 * 2007 * __sched_fork() is basic setup used by init_idle() too: 2008 */ 2009 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2010 { 2011 p->on_rq = 0; 2012 2013 p->se.on_rq = 0; 2014 p->se.exec_start = 0; 2015 p->se.sum_exec_runtime = 0; 2016 p->se.prev_sum_exec_runtime = 0; 2017 p->se.nr_migrations = 0; 2018 p->se.vruntime = 0; 2019 #ifdef CONFIG_SMP 2020 p->se.avg.decay_count = 0; 2021 #endif 2022 INIT_LIST_HEAD(&p->se.group_node); 2023 2024 #ifdef CONFIG_SCHEDSTATS 2025 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2026 #endif 2027 2028 RB_CLEAR_NODE(&p->dl.rb_node); 2029 init_dl_task_timer(&p->dl); 2030 __dl_clear_params(p); 2031 2032 INIT_LIST_HEAD(&p->rt.run_list); 2033 2034 #ifdef CONFIG_PREEMPT_NOTIFIERS 2035 INIT_HLIST_HEAD(&p->preempt_notifiers); 2036 #endif 2037 2038 #ifdef CONFIG_NUMA_BALANCING 2039 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2040 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2041 p->mm->numa_scan_seq = 0; 2042 } 2043 2044 if (clone_flags & CLONE_VM) 2045 p->numa_preferred_nid = current->numa_preferred_nid; 2046 else 2047 p->numa_preferred_nid = -1; 2048 2049 p->node_stamp = 0ULL; 2050 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2051 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2052 p->numa_work.next = &p->numa_work; 2053 p->numa_faults = NULL; 2054 p->last_task_numa_placement = 0; 2055 p->last_sum_exec_runtime = 0; 2056 2057 p->numa_group = NULL; 2058 #endif /* CONFIG_NUMA_BALANCING */ 2059 } 2060 2061 #ifdef CONFIG_NUMA_BALANCING 2062 #ifdef CONFIG_SCHED_DEBUG 2063 void set_numabalancing_state(bool enabled) 2064 { 2065 if (enabled) 2066 sched_feat_set("NUMA"); 2067 else 2068 sched_feat_set("NO_NUMA"); 2069 } 2070 #else 2071 __read_mostly bool numabalancing_enabled; 2072 2073 void set_numabalancing_state(bool enabled) 2074 { 2075 numabalancing_enabled = enabled; 2076 } 2077 #endif /* CONFIG_SCHED_DEBUG */ 2078 2079 #ifdef CONFIG_PROC_SYSCTL 2080 int sysctl_numa_balancing(struct ctl_table *table, int write, 2081 void __user *buffer, size_t *lenp, loff_t *ppos) 2082 { 2083 struct ctl_table t; 2084 int err; 2085 int state = numabalancing_enabled; 2086 2087 if (write && !capable(CAP_SYS_ADMIN)) 2088 return -EPERM; 2089 2090 t = *table; 2091 t.data = &state; 2092 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2093 if (err < 0) 2094 return err; 2095 if (write) 2096 set_numabalancing_state(state); 2097 return err; 2098 } 2099 #endif 2100 #endif 2101 2102 /* 2103 * fork()/clone()-time setup: 2104 */ 2105 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2106 { 2107 unsigned long flags; 2108 int cpu = get_cpu(); 2109 2110 __sched_fork(clone_flags, p); 2111 /* 2112 * We mark the process as running here. This guarantees that 2113 * nobody will actually run it, and a signal or other external 2114 * event cannot wake it up and insert it on the runqueue either. 2115 */ 2116 p->state = TASK_RUNNING; 2117 2118 /* 2119 * Make sure we do not leak PI boosting priority to the child. 2120 */ 2121 p->prio = current->normal_prio; 2122 2123 /* 2124 * Revert to default priority/policy on fork if requested. 2125 */ 2126 if (unlikely(p->sched_reset_on_fork)) { 2127 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2128 p->policy = SCHED_NORMAL; 2129 p->static_prio = NICE_TO_PRIO(0); 2130 p->rt_priority = 0; 2131 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2132 p->static_prio = NICE_TO_PRIO(0); 2133 2134 p->prio = p->normal_prio = __normal_prio(p); 2135 set_load_weight(p); 2136 2137 /* 2138 * We don't need the reset flag anymore after the fork. It has 2139 * fulfilled its duty: 2140 */ 2141 p->sched_reset_on_fork = 0; 2142 } 2143 2144 if (dl_prio(p->prio)) { 2145 put_cpu(); 2146 return -EAGAIN; 2147 } else if (rt_prio(p->prio)) { 2148 p->sched_class = &rt_sched_class; 2149 } else { 2150 p->sched_class = &fair_sched_class; 2151 } 2152 2153 if (p->sched_class->task_fork) 2154 p->sched_class->task_fork(p); 2155 2156 /* 2157 * The child is not yet in the pid-hash so no cgroup attach races, 2158 * and the cgroup is pinned to this child due to cgroup_fork() 2159 * is ran before sched_fork(). 2160 * 2161 * Silence PROVE_RCU. 2162 */ 2163 raw_spin_lock_irqsave(&p->pi_lock, flags); 2164 set_task_cpu(p, cpu); 2165 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2166 2167 #ifdef CONFIG_SCHED_INFO 2168 if (likely(sched_info_on())) 2169 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2170 #endif 2171 #if defined(CONFIG_SMP) 2172 p->on_cpu = 0; 2173 #endif 2174 init_task_preempt_count(p); 2175 #ifdef CONFIG_SMP 2176 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2177 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2178 #endif 2179 2180 put_cpu(); 2181 return 0; 2182 } 2183 2184 unsigned long to_ratio(u64 period, u64 runtime) 2185 { 2186 if (runtime == RUNTIME_INF) 2187 return 1ULL << 20; 2188 2189 /* 2190 * Doing this here saves a lot of checks in all 2191 * the calling paths, and returning zero seems 2192 * safe for them anyway. 2193 */ 2194 if (period == 0) 2195 return 0; 2196 2197 return div64_u64(runtime << 20, period); 2198 } 2199 2200 #ifdef CONFIG_SMP 2201 inline struct dl_bw *dl_bw_of(int i) 2202 { 2203 rcu_lockdep_assert(rcu_read_lock_sched_held(), 2204 "sched RCU must be held"); 2205 return &cpu_rq(i)->rd->dl_bw; 2206 } 2207 2208 static inline int dl_bw_cpus(int i) 2209 { 2210 struct root_domain *rd = cpu_rq(i)->rd; 2211 int cpus = 0; 2212 2213 rcu_lockdep_assert(rcu_read_lock_sched_held(), 2214 "sched RCU must be held"); 2215 for_each_cpu_and(i, rd->span, cpu_active_mask) 2216 cpus++; 2217 2218 return cpus; 2219 } 2220 #else 2221 inline struct dl_bw *dl_bw_of(int i) 2222 { 2223 return &cpu_rq(i)->dl.dl_bw; 2224 } 2225 2226 static inline int dl_bw_cpus(int i) 2227 { 2228 return 1; 2229 } 2230 #endif 2231 2232 /* 2233 * We must be sure that accepting a new task (or allowing changing the 2234 * parameters of an existing one) is consistent with the bandwidth 2235 * constraints. If yes, this function also accordingly updates the currently 2236 * allocated bandwidth to reflect the new situation. 2237 * 2238 * This function is called while holding p's rq->lock. 2239 * 2240 * XXX we should delay bw change until the task's 0-lag point, see 2241 * __setparam_dl(). 2242 */ 2243 static int dl_overflow(struct task_struct *p, int policy, 2244 const struct sched_attr *attr) 2245 { 2246 2247 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2248 u64 period = attr->sched_period ?: attr->sched_deadline; 2249 u64 runtime = attr->sched_runtime; 2250 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2251 int cpus, err = -1; 2252 2253 if (new_bw == p->dl.dl_bw) 2254 return 0; 2255 2256 /* 2257 * Either if a task, enters, leave, or stays -deadline but changes 2258 * its parameters, we may need to update accordingly the total 2259 * allocated bandwidth of the container. 2260 */ 2261 raw_spin_lock(&dl_b->lock); 2262 cpus = dl_bw_cpus(task_cpu(p)); 2263 if (dl_policy(policy) && !task_has_dl_policy(p) && 2264 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2265 __dl_add(dl_b, new_bw); 2266 err = 0; 2267 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2268 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2269 __dl_clear(dl_b, p->dl.dl_bw); 2270 __dl_add(dl_b, new_bw); 2271 err = 0; 2272 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2273 __dl_clear(dl_b, p->dl.dl_bw); 2274 err = 0; 2275 } 2276 raw_spin_unlock(&dl_b->lock); 2277 2278 return err; 2279 } 2280 2281 extern void init_dl_bw(struct dl_bw *dl_b); 2282 2283 /* 2284 * wake_up_new_task - wake up a newly created task for the first time. 2285 * 2286 * This function will do some initial scheduler statistics housekeeping 2287 * that must be done for every newly created context, then puts the task 2288 * on the runqueue and wakes it. 2289 */ 2290 void wake_up_new_task(struct task_struct *p) 2291 { 2292 unsigned long flags; 2293 struct rq *rq; 2294 2295 raw_spin_lock_irqsave(&p->pi_lock, flags); 2296 #ifdef CONFIG_SMP 2297 /* 2298 * Fork balancing, do it here and not earlier because: 2299 * - cpus_allowed can change in the fork path 2300 * - any previously selected cpu might disappear through hotplug 2301 */ 2302 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2303 #endif 2304 2305 /* Initialize new task's runnable average */ 2306 init_task_runnable_average(p); 2307 rq = __task_rq_lock(p); 2308 activate_task(rq, p, 0); 2309 p->on_rq = TASK_ON_RQ_QUEUED; 2310 trace_sched_wakeup_new(p, true); 2311 check_preempt_curr(rq, p, WF_FORK); 2312 #ifdef CONFIG_SMP 2313 if (p->sched_class->task_woken) 2314 p->sched_class->task_woken(rq, p); 2315 #endif 2316 task_rq_unlock(rq, p, &flags); 2317 } 2318 2319 #ifdef CONFIG_PREEMPT_NOTIFIERS 2320 2321 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; 2322 2323 void preempt_notifier_inc(void) 2324 { 2325 static_key_slow_inc(&preempt_notifier_key); 2326 } 2327 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2328 2329 void preempt_notifier_dec(void) 2330 { 2331 static_key_slow_dec(&preempt_notifier_key); 2332 } 2333 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2334 2335 /** 2336 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2337 * @notifier: notifier struct to register 2338 */ 2339 void preempt_notifier_register(struct preempt_notifier *notifier) 2340 { 2341 if (!static_key_false(&preempt_notifier_key)) 2342 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2343 2344 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2345 } 2346 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2347 2348 /** 2349 * preempt_notifier_unregister - no longer interested in preemption notifications 2350 * @notifier: notifier struct to unregister 2351 * 2352 * This is *not* safe to call from within a preemption notifier. 2353 */ 2354 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2355 { 2356 hlist_del(¬ifier->link); 2357 } 2358 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2359 2360 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2361 { 2362 struct preempt_notifier *notifier; 2363 2364 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2365 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2366 } 2367 2368 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2369 { 2370 if (static_key_false(&preempt_notifier_key)) 2371 __fire_sched_in_preempt_notifiers(curr); 2372 } 2373 2374 static void 2375 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2376 struct task_struct *next) 2377 { 2378 struct preempt_notifier *notifier; 2379 2380 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2381 notifier->ops->sched_out(notifier, next); 2382 } 2383 2384 static __always_inline void 2385 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2386 struct task_struct *next) 2387 { 2388 if (static_key_false(&preempt_notifier_key)) 2389 __fire_sched_out_preempt_notifiers(curr, next); 2390 } 2391 2392 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2393 2394 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2395 { 2396 } 2397 2398 static inline void 2399 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2400 struct task_struct *next) 2401 { 2402 } 2403 2404 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2405 2406 /** 2407 * prepare_task_switch - prepare to switch tasks 2408 * @rq: the runqueue preparing to switch 2409 * @prev: the current task that is being switched out 2410 * @next: the task we are going to switch to. 2411 * 2412 * This is called with the rq lock held and interrupts off. It must 2413 * be paired with a subsequent finish_task_switch after the context 2414 * switch. 2415 * 2416 * prepare_task_switch sets up locking and calls architecture specific 2417 * hooks. 2418 */ 2419 static inline void 2420 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2421 struct task_struct *next) 2422 { 2423 trace_sched_switch(prev, next); 2424 sched_info_switch(rq, prev, next); 2425 perf_event_task_sched_out(prev, next); 2426 fire_sched_out_preempt_notifiers(prev, next); 2427 prepare_lock_switch(rq, next); 2428 prepare_arch_switch(next); 2429 } 2430 2431 /** 2432 * finish_task_switch - clean up after a task-switch 2433 * @prev: the thread we just switched away from. 2434 * 2435 * finish_task_switch must be called after the context switch, paired 2436 * with a prepare_task_switch call before the context switch. 2437 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2438 * and do any other architecture-specific cleanup actions. 2439 * 2440 * Note that we may have delayed dropping an mm in context_switch(). If 2441 * so, we finish that here outside of the runqueue lock. (Doing it 2442 * with the lock held can cause deadlocks; see schedule() for 2443 * details.) 2444 * 2445 * The context switch have flipped the stack from under us and restored the 2446 * local variables which were saved when this task called schedule() in the 2447 * past. prev == current is still correct but we need to recalculate this_rq 2448 * because prev may have moved to another CPU. 2449 */ 2450 static struct rq *finish_task_switch(struct task_struct *prev) 2451 __releases(rq->lock) 2452 { 2453 struct rq *rq = this_rq(); 2454 struct mm_struct *mm = rq->prev_mm; 2455 long prev_state; 2456 2457 rq->prev_mm = NULL; 2458 2459 /* 2460 * A task struct has one reference for the use as "current". 2461 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2462 * schedule one last time. The schedule call will never return, and 2463 * the scheduled task must drop that reference. 2464 * The test for TASK_DEAD must occur while the runqueue locks are 2465 * still held, otherwise prev could be scheduled on another cpu, die 2466 * there before we look at prev->state, and then the reference would 2467 * be dropped twice. 2468 * Manfred Spraul <manfred@colorfullife.com> 2469 */ 2470 prev_state = prev->state; 2471 vtime_task_switch(prev); 2472 finish_arch_switch(prev); 2473 perf_event_task_sched_in(prev, current); 2474 finish_lock_switch(rq, prev); 2475 finish_arch_post_lock_switch(); 2476 2477 fire_sched_in_preempt_notifiers(current); 2478 if (mm) 2479 mmdrop(mm); 2480 if (unlikely(prev_state == TASK_DEAD)) { 2481 if (prev->sched_class->task_dead) 2482 prev->sched_class->task_dead(prev); 2483 2484 /* 2485 * Remove function-return probe instances associated with this 2486 * task and put them back on the free list. 2487 */ 2488 kprobe_flush_task(prev); 2489 put_task_struct(prev); 2490 } 2491 2492 tick_nohz_task_switch(current); 2493 return rq; 2494 } 2495 2496 #ifdef CONFIG_SMP 2497 2498 /* rq->lock is NOT held, but preemption is disabled */ 2499 static void __balance_callback(struct rq *rq) 2500 { 2501 struct callback_head *head, *next; 2502 void (*func)(struct rq *rq); 2503 unsigned long flags; 2504 2505 raw_spin_lock_irqsave(&rq->lock, flags); 2506 head = rq->balance_callback; 2507 rq->balance_callback = NULL; 2508 while (head) { 2509 func = (void (*)(struct rq *))head->func; 2510 next = head->next; 2511 head->next = NULL; 2512 head = next; 2513 2514 func(rq); 2515 } 2516 raw_spin_unlock_irqrestore(&rq->lock, flags); 2517 } 2518 2519 static inline void balance_callback(struct rq *rq) 2520 { 2521 if (unlikely(rq->balance_callback)) 2522 __balance_callback(rq); 2523 } 2524 2525 #else 2526 2527 static inline void balance_callback(struct rq *rq) 2528 { 2529 } 2530 2531 #endif 2532 2533 /** 2534 * schedule_tail - first thing a freshly forked thread must call. 2535 * @prev: the thread we just switched away from. 2536 */ 2537 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2538 __releases(rq->lock) 2539 { 2540 struct rq *rq; 2541 2542 /* finish_task_switch() drops rq->lock and enables preemtion */ 2543 preempt_disable(); 2544 rq = finish_task_switch(prev); 2545 balance_callback(rq); 2546 preempt_enable(); 2547 2548 if (current->set_child_tid) 2549 put_user(task_pid_vnr(current), current->set_child_tid); 2550 } 2551 2552 /* 2553 * context_switch - switch to the new MM and the new thread's register state. 2554 */ 2555 static inline struct rq * 2556 context_switch(struct rq *rq, struct task_struct *prev, 2557 struct task_struct *next) 2558 { 2559 struct mm_struct *mm, *oldmm; 2560 2561 prepare_task_switch(rq, prev, next); 2562 2563 mm = next->mm; 2564 oldmm = prev->active_mm; 2565 /* 2566 * For paravirt, this is coupled with an exit in switch_to to 2567 * combine the page table reload and the switch backend into 2568 * one hypercall. 2569 */ 2570 arch_start_context_switch(prev); 2571 2572 if (!mm) { 2573 next->active_mm = oldmm; 2574 atomic_inc(&oldmm->mm_count); 2575 enter_lazy_tlb(oldmm, next); 2576 } else 2577 switch_mm(oldmm, mm, next); 2578 2579 if (!prev->mm) { 2580 prev->active_mm = NULL; 2581 rq->prev_mm = oldmm; 2582 } 2583 /* 2584 * Since the runqueue lock will be released by the next 2585 * task (which is an invalid locking op but in the case 2586 * of the scheduler it's an obvious special-case), so we 2587 * do an early lockdep release here: 2588 */ 2589 lockdep_unpin_lock(&rq->lock); 2590 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2591 2592 /* Here we just switch the register state and the stack. */ 2593 switch_to(prev, next, prev); 2594 barrier(); 2595 2596 return finish_task_switch(prev); 2597 } 2598 2599 /* 2600 * nr_running and nr_context_switches: 2601 * 2602 * externally visible scheduler statistics: current number of runnable 2603 * threads, total number of context switches performed since bootup. 2604 */ 2605 unsigned long nr_running(void) 2606 { 2607 unsigned long i, sum = 0; 2608 2609 for_each_online_cpu(i) 2610 sum += cpu_rq(i)->nr_running; 2611 2612 return sum; 2613 } 2614 2615 /* 2616 * Check if only the current task is running on the cpu. 2617 */ 2618 bool single_task_running(void) 2619 { 2620 if (cpu_rq(smp_processor_id())->nr_running == 1) 2621 return true; 2622 else 2623 return false; 2624 } 2625 EXPORT_SYMBOL(single_task_running); 2626 2627 unsigned long long nr_context_switches(void) 2628 { 2629 int i; 2630 unsigned long long sum = 0; 2631 2632 for_each_possible_cpu(i) 2633 sum += cpu_rq(i)->nr_switches; 2634 2635 return sum; 2636 } 2637 2638 unsigned long nr_iowait(void) 2639 { 2640 unsigned long i, sum = 0; 2641 2642 for_each_possible_cpu(i) 2643 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2644 2645 return sum; 2646 } 2647 2648 unsigned long nr_iowait_cpu(int cpu) 2649 { 2650 struct rq *this = cpu_rq(cpu); 2651 return atomic_read(&this->nr_iowait); 2652 } 2653 2654 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2655 { 2656 struct rq *rq = this_rq(); 2657 *nr_waiters = atomic_read(&rq->nr_iowait); 2658 *load = rq->load.weight; 2659 } 2660 2661 #ifdef CONFIG_SMP 2662 2663 /* 2664 * sched_exec - execve() is a valuable balancing opportunity, because at 2665 * this point the task has the smallest effective memory and cache footprint. 2666 */ 2667 void sched_exec(void) 2668 { 2669 struct task_struct *p = current; 2670 unsigned long flags; 2671 int dest_cpu; 2672 2673 raw_spin_lock_irqsave(&p->pi_lock, flags); 2674 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2675 if (dest_cpu == smp_processor_id()) 2676 goto unlock; 2677 2678 if (likely(cpu_active(dest_cpu))) { 2679 struct migration_arg arg = { p, dest_cpu }; 2680 2681 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2682 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2683 return; 2684 } 2685 unlock: 2686 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2687 } 2688 2689 #endif 2690 2691 DEFINE_PER_CPU(struct kernel_stat, kstat); 2692 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2693 2694 EXPORT_PER_CPU_SYMBOL(kstat); 2695 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2696 2697 /* 2698 * Return accounted runtime for the task. 2699 * In case the task is currently running, return the runtime plus current's 2700 * pending runtime that have not been accounted yet. 2701 */ 2702 unsigned long long task_sched_runtime(struct task_struct *p) 2703 { 2704 unsigned long flags; 2705 struct rq *rq; 2706 u64 ns; 2707 2708 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2709 /* 2710 * 64-bit doesn't need locks to atomically read a 64bit value. 2711 * So we have a optimization chance when the task's delta_exec is 0. 2712 * Reading ->on_cpu is racy, but this is ok. 2713 * 2714 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2715 * If we race with it entering cpu, unaccounted time is 0. This is 2716 * indistinguishable from the read occurring a few cycles earlier. 2717 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2718 * been accounted, so we're correct here as well. 2719 */ 2720 if (!p->on_cpu || !task_on_rq_queued(p)) 2721 return p->se.sum_exec_runtime; 2722 #endif 2723 2724 rq = task_rq_lock(p, &flags); 2725 /* 2726 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2727 * project cycles that may never be accounted to this 2728 * thread, breaking clock_gettime(). 2729 */ 2730 if (task_current(rq, p) && task_on_rq_queued(p)) { 2731 update_rq_clock(rq); 2732 p->sched_class->update_curr(rq); 2733 } 2734 ns = p->se.sum_exec_runtime; 2735 task_rq_unlock(rq, p, &flags); 2736 2737 return ns; 2738 } 2739 2740 /* 2741 * This function gets called by the timer code, with HZ frequency. 2742 * We call it with interrupts disabled. 2743 */ 2744 void scheduler_tick(void) 2745 { 2746 int cpu = smp_processor_id(); 2747 struct rq *rq = cpu_rq(cpu); 2748 struct task_struct *curr = rq->curr; 2749 2750 sched_clock_tick(); 2751 2752 raw_spin_lock(&rq->lock); 2753 update_rq_clock(rq); 2754 curr->sched_class->task_tick(rq, curr, 0); 2755 update_cpu_load_active(rq); 2756 calc_global_load_tick(rq); 2757 raw_spin_unlock(&rq->lock); 2758 2759 perf_event_task_tick(); 2760 2761 #ifdef CONFIG_SMP 2762 rq->idle_balance = idle_cpu(cpu); 2763 trigger_load_balance(rq); 2764 #endif 2765 rq_last_tick_reset(rq); 2766 } 2767 2768 #ifdef CONFIG_NO_HZ_FULL 2769 /** 2770 * scheduler_tick_max_deferment 2771 * 2772 * Keep at least one tick per second when a single 2773 * active task is running because the scheduler doesn't 2774 * yet completely support full dynticks environment. 2775 * 2776 * This makes sure that uptime, CFS vruntime, load 2777 * balancing, etc... continue to move forward, even 2778 * with a very low granularity. 2779 * 2780 * Return: Maximum deferment in nanoseconds. 2781 */ 2782 u64 scheduler_tick_max_deferment(void) 2783 { 2784 struct rq *rq = this_rq(); 2785 unsigned long next, now = READ_ONCE(jiffies); 2786 2787 next = rq->last_sched_tick + HZ; 2788 2789 if (time_before_eq(next, now)) 2790 return 0; 2791 2792 return jiffies_to_nsecs(next - now); 2793 } 2794 #endif 2795 2796 notrace unsigned long get_parent_ip(unsigned long addr) 2797 { 2798 if (in_lock_functions(addr)) { 2799 addr = CALLER_ADDR2; 2800 if (in_lock_functions(addr)) 2801 addr = CALLER_ADDR3; 2802 } 2803 return addr; 2804 } 2805 2806 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2807 defined(CONFIG_PREEMPT_TRACER)) 2808 2809 void preempt_count_add(int val) 2810 { 2811 #ifdef CONFIG_DEBUG_PREEMPT 2812 /* 2813 * Underflow? 2814 */ 2815 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2816 return; 2817 #endif 2818 __preempt_count_add(val); 2819 #ifdef CONFIG_DEBUG_PREEMPT 2820 /* 2821 * Spinlock count overflowing soon? 2822 */ 2823 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2824 PREEMPT_MASK - 10); 2825 #endif 2826 if (preempt_count() == val) { 2827 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2828 #ifdef CONFIG_DEBUG_PREEMPT 2829 current->preempt_disable_ip = ip; 2830 #endif 2831 trace_preempt_off(CALLER_ADDR0, ip); 2832 } 2833 } 2834 EXPORT_SYMBOL(preempt_count_add); 2835 NOKPROBE_SYMBOL(preempt_count_add); 2836 2837 void preempt_count_sub(int val) 2838 { 2839 #ifdef CONFIG_DEBUG_PREEMPT 2840 /* 2841 * Underflow? 2842 */ 2843 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2844 return; 2845 /* 2846 * Is the spinlock portion underflowing? 2847 */ 2848 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2849 !(preempt_count() & PREEMPT_MASK))) 2850 return; 2851 #endif 2852 2853 if (preempt_count() == val) 2854 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2855 __preempt_count_sub(val); 2856 } 2857 EXPORT_SYMBOL(preempt_count_sub); 2858 NOKPROBE_SYMBOL(preempt_count_sub); 2859 2860 #endif 2861 2862 /* 2863 * Print scheduling while atomic bug: 2864 */ 2865 static noinline void __schedule_bug(struct task_struct *prev) 2866 { 2867 if (oops_in_progress) 2868 return; 2869 2870 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2871 prev->comm, prev->pid, preempt_count()); 2872 2873 debug_show_held_locks(prev); 2874 print_modules(); 2875 if (irqs_disabled()) 2876 print_irqtrace_events(prev); 2877 #ifdef CONFIG_DEBUG_PREEMPT 2878 if (in_atomic_preempt_off()) { 2879 pr_err("Preemption disabled at:"); 2880 print_ip_sym(current->preempt_disable_ip); 2881 pr_cont("\n"); 2882 } 2883 #endif 2884 dump_stack(); 2885 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2886 } 2887 2888 /* 2889 * Various schedule()-time debugging checks and statistics: 2890 */ 2891 static inline void schedule_debug(struct task_struct *prev) 2892 { 2893 #ifdef CONFIG_SCHED_STACK_END_CHECK 2894 BUG_ON(unlikely(task_stack_end_corrupted(prev))); 2895 #endif 2896 /* 2897 * Test if we are atomic. Since do_exit() needs to call into 2898 * schedule() atomically, we ignore that path. Otherwise whine 2899 * if we are scheduling when we should not. 2900 */ 2901 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2902 __schedule_bug(prev); 2903 rcu_sleep_check(); 2904 2905 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2906 2907 schedstat_inc(this_rq(), sched_count); 2908 } 2909 2910 /* 2911 * Pick up the highest-prio task: 2912 */ 2913 static inline struct task_struct * 2914 pick_next_task(struct rq *rq, struct task_struct *prev) 2915 { 2916 const struct sched_class *class = &fair_sched_class; 2917 struct task_struct *p; 2918 2919 /* 2920 * Optimization: we know that if all tasks are in 2921 * the fair class we can call that function directly: 2922 */ 2923 if (likely(prev->sched_class == class && 2924 rq->nr_running == rq->cfs.h_nr_running)) { 2925 p = fair_sched_class.pick_next_task(rq, prev); 2926 if (unlikely(p == RETRY_TASK)) 2927 goto again; 2928 2929 /* assumes fair_sched_class->next == idle_sched_class */ 2930 if (unlikely(!p)) 2931 p = idle_sched_class.pick_next_task(rq, prev); 2932 2933 return p; 2934 } 2935 2936 again: 2937 for_each_class(class) { 2938 p = class->pick_next_task(rq, prev); 2939 if (p) { 2940 if (unlikely(p == RETRY_TASK)) 2941 goto again; 2942 return p; 2943 } 2944 } 2945 2946 BUG(); /* the idle class will always have a runnable task */ 2947 } 2948 2949 /* 2950 * __schedule() is the main scheduler function. 2951 * 2952 * The main means of driving the scheduler and thus entering this function are: 2953 * 2954 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2955 * 2956 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2957 * paths. For example, see arch/x86/entry_64.S. 2958 * 2959 * To drive preemption between tasks, the scheduler sets the flag in timer 2960 * interrupt handler scheduler_tick(). 2961 * 2962 * 3. Wakeups don't really cause entry into schedule(). They add a 2963 * task to the run-queue and that's it. 2964 * 2965 * Now, if the new task added to the run-queue preempts the current 2966 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2967 * called on the nearest possible occasion: 2968 * 2969 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2970 * 2971 * - in syscall or exception context, at the next outmost 2972 * preempt_enable(). (this might be as soon as the wake_up()'s 2973 * spin_unlock()!) 2974 * 2975 * - in IRQ context, return from interrupt-handler to 2976 * preemptible context 2977 * 2978 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2979 * then at the next: 2980 * 2981 * - cond_resched() call 2982 * - explicit schedule() call 2983 * - return from syscall or exception to user-space 2984 * - return from interrupt-handler to user-space 2985 * 2986 * WARNING: must be called with preemption disabled! 2987 */ 2988 static void __sched __schedule(void) 2989 { 2990 struct task_struct *prev, *next; 2991 unsigned long *switch_count; 2992 struct rq *rq; 2993 int cpu; 2994 2995 cpu = smp_processor_id(); 2996 rq = cpu_rq(cpu); 2997 rcu_note_context_switch(); 2998 prev = rq->curr; 2999 3000 schedule_debug(prev); 3001 3002 if (sched_feat(HRTICK)) 3003 hrtick_clear(rq); 3004 3005 /* 3006 * Make sure that signal_pending_state()->signal_pending() below 3007 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3008 * done by the caller to avoid the race with signal_wake_up(). 3009 */ 3010 smp_mb__before_spinlock(); 3011 raw_spin_lock_irq(&rq->lock); 3012 lockdep_pin_lock(&rq->lock); 3013 3014 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 3015 3016 switch_count = &prev->nivcsw; 3017 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3018 if (unlikely(signal_pending_state(prev->state, prev))) { 3019 prev->state = TASK_RUNNING; 3020 } else { 3021 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3022 prev->on_rq = 0; 3023 3024 /* 3025 * If a worker went to sleep, notify and ask workqueue 3026 * whether it wants to wake up a task to maintain 3027 * concurrency. 3028 */ 3029 if (prev->flags & PF_WQ_WORKER) { 3030 struct task_struct *to_wakeup; 3031 3032 to_wakeup = wq_worker_sleeping(prev, cpu); 3033 if (to_wakeup) 3034 try_to_wake_up_local(to_wakeup); 3035 } 3036 } 3037 switch_count = &prev->nvcsw; 3038 } 3039 3040 if (task_on_rq_queued(prev)) 3041 update_rq_clock(rq); 3042 3043 next = pick_next_task(rq, prev); 3044 clear_tsk_need_resched(prev); 3045 clear_preempt_need_resched(); 3046 rq->clock_skip_update = 0; 3047 3048 if (likely(prev != next)) { 3049 rq->nr_switches++; 3050 rq->curr = next; 3051 ++*switch_count; 3052 3053 rq = context_switch(rq, prev, next); /* unlocks the rq */ 3054 cpu = cpu_of(rq); 3055 } else { 3056 lockdep_unpin_lock(&rq->lock); 3057 raw_spin_unlock_irq(&rq->lock); 3058 } 3059 3060 balance_callback(rq); 3061 } 3062 3063 static inline void sched_submit_work(struct task_struct *tsk) 3064 { 3065 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3066 return; 3067 /* 3068 * If we are going to sleep and we have plugged IO queued, 3069 * make sure to submit it to avoid deadlocks. 3070 */ 3071 if (blk_needs_flush_plug(tsk)) 3072 blk_schedule_flush_plug(tsk); 3073 } 3074 3075 asmlinkage __visible void __sched schedule(void) 3076 { 3077 struct task_struct *tsk = current; 3078 3079 sched_submit_work(tsk); 3080 do { 3081 preempt_disable(); 3082 __schedule(); 3083 sched_preempt_enable_no_resched(); 3084 } while (need_resched()); 3085 } 3086 EXPORT_SYMBOL(schedule); 3087 3088 #ifdef CONFIG_CONTEXT_TRACKING 3089 asmlinkage __visible void __sched schedule_user(void) 3090 { 3091 /* 3092 * If we come here after a random call to set_need_resched(), 3093 * or we have been woken up remotely but the IPI has not yet arrived, 3094 * we haven't yet exited the RCU idle mode. Do it here manually until 3095 * we find a better solution. 3096 * 3097 * NB: There are buggy callers of this function. Ideally we 3098 * should warn if prev_state != CONTEXT_USER, but that will trigger 3099 * too frequently to make sense yet. 3100 */ 3101 enum ctx_state prev_state = exception_enter(); 3102 schedule(); 3103 exception_exit(prev_state); 3104 } 3105 #endif 3106 3107 /** 3108 * schedule_preempt_disabled - called with preemption disabled 3109 * 3110 * Returns with preemption disabled. Note: preempt_count must be 1 3111 */ 3112 void __sched schedule_preempt_disabled(void) 3113 { 3114 sched_preempt_enable_no_resched(); 3115 schedule(); 3116 preempt_disable(); 3117 } 3118 3119 static void __sched notrace preempt_schedule_common(void) 3120 { 3121 do { 3122 preempt_active_enter(); 3123 __schedule(); 3124 preempt_active_exit(); 3125 3126 /* 3127 * Check again in case we missed a preemption opportunity 3128 * between schedule and now. 3129 */ 3130 } while (need_resched()); 3131 } 3132 3133 #ifdef CONFIG_PREEMPT 3134 /* 3135 * this is the entry point to schedule() from in-kernel preemption 3136 * off of preempt_enable. Kernel preemptions off return from interrupt 3137 * occur there and call schedule directly. 3138 */ 3139 asmlinkage __visible void __sched notrace preempt_schedule(void) 3140 { 3141 /* 3142 * If there is a non-zero preempt_count or interrupts are disabled, 3143 * we do not want to preempt the current task. Just return.. 3144 */ 3145 if (likely(!preemptible())) 3146 return; 3147 3148 preempt_schedule_common(); 3149 } 3150 NOKPROBE_SYMBOL(preempt_schedule); 3151 EXPORT_SYMBOL(preempt_schedule); 3152 3153 /** 3154 * preempt_schedule_notrace - preempt_schedule called by tracing 3155 * 3156 * The tracing infrastructure uses preempt_enable_notrace to prevent 3157 * recursion and tracing preempt enabling caused by the tracing 3158 * infrastructure itself. But as tracing can happen in areas coming 3159 * from userspace or just about to enter userspace, a preempt enable 3160 * can occur before user_exit() is called. This will cause the scheduler 3161 * to be called when the system is still in usermode. 3162 * 3163 * To prevent this, the preempt_enable_notrace will use this function 3164 * instead of preempt_schedule() to exit user context if needed before 3165 * calling the scheduler. 3166 */ 3167 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3168 { 3169 enum ctx_state prev_ctx; 3170 3171 if (likely(!preemptible())) 3172 return; 3173 3174 do { 3175 /* 3176 * Use raw __prempt_count() ops that don't call function. 3177 * We can't call functions before disabling preemption which 3178 * disarm preemption tracing recursions. 3179 */ 3180 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET); 3181 barrier(); 3182 /* 3183 * Needs preempt disabled in case user_exit() is traced 3184 * and the tracer calls preempt_enable_notrace() causing 3185 * an infinite recursion. 3186 */ 3187 prev_ctx = exception_enter(); 3188 __schedule(); 3189 exception_exit(prev_ctx); 3190 3191 barrier(); 3192 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET); 3193 } while (need_resched()); 3194 } 3195 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3196 3197 #endif /* CONFIG_PREEMPT */ 3198 3199 /* 3200 * this is the entry point to schedule() from kernel preemption 3201 * off of irq context. 3202 * Note, that this is called and return with irqs disabled. This will 3203 * protect us against recursive calling from irq. 3204 */ 3205 asmlinkage __visible void __sched preempt_schedule_irq(void) 3206 { 3207 enum ctx_state prev_state; 3208 3209 /* Catch callers which need to be fixed */ 3210 BUG_ON(preempt_count() || !irqs_disabled()); 3211 3212 prev_state = exception_enter(); 3213 3214 do { 3215 preempt_active_enter(); 3216 local_irq_enable(); 3217 __schedule(); 3218 local_irq_disable(); 3219 preempt_active_exit(); 3220 } while (need_resched()); 3221 3222 exception_exit(prev_state); 3223 } 3224 3225 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3226 void *key) 3227 { 3228 return try_to_wake_up(curr->private, mode, wake_flags); 3229 } 3230 EXPORT_SYMBOL(default_wake_function); 3231 3232 #ifdef CONFIG_RT_MUTEXES 3233 3234 /* 3235 * rt_mutex_setprio - set the current priority of a task 3236 * @p: task 3237 * @prio: prio value (kernel-internal form) 3238 * 3239 * This function changes the 'effective' priority of a task. It does 3240 * not touch ->normal_prio like __setscheduler(). 3241 * 3242 * Used by the rt_mutex code to implement priority inheritance 3243 * logic. Call site only calls if the priority of the task changed. 3244 */ 3245 void rt_mutex_setprio(struct task_struct *p, int prio) 3246 { 3247 int oldprio, queued, running, enqueue_flag = 0; 3248 struct rq *rq; 3249 const struct sched_class *prev_class; 3250 3251 BUG_ON(prio > MAX_PRIO); 3252 3253 rq = __task_rq_lock(p); 3254 3255 /* 3256 * Idle task boosting is a nono in general. There is one 3257 * exception, when PREEMPT_RT and NOHZ is active: 3258 * 3259 * The idle task calls get_next_timer_interrupt() and holds 3260 * the timer wheel base->lock on the CPU and another CPU wants 3261 * to access the timer (probably to cancel it). We can safely 3262 * ignore the boosting request, as the idle CPU runs this code 3263 * with interrupts disabled and will complete the lock 3264 * protected section without being interrupted. So there is no 3265 * real need to boost. 3266 */ 3267 if (unlikely(p == rq->idle)) { 3268 WARN_ON(p != rq->curr); 3269 WARN_ON(p->pi_blocked_on); 3270 goto out_unlock; 3271 } 3272 3273 trace_sched_pi_setprio(p, prio); 3274 oldprio = p->prio; 3275 prev_class = p->sched_class; 3276 queued = task_on_rq_queued(p); 3277 running = task_current(rq, p); 3278 if (queued) 3279 dequeue_task(rq, p, 0); 3280 if (running) 3281 put_prev_task(rq, p); 3282 3283 /* 3284 * Boosting condition are: 3285 * 1. -rt task is running and holds mutex A 3286 * --> -dl task blocks on mutex A 3287 * 3288 * 2. -dl task is running and holds mutex A 3289 * --> -dl task blocks on mutex A and could preempt the 3290 * running task 3291 */ 3292 if (dl_prio(prio)) { 3293 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3294 if (!dl_prio(p->normal_prio) || 3295 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3296 p->dl.dl_boosted = 1; 3297 enqueue_flag = ENQUEUE_REPLENISH; 3298 } else 3299 p->dl.dl_boosted = 0; 3300 p->sched_class = &dl_sched_class; 3301 } else if (rt_prio(prio)) { 3302 if (dl_prio(oldprio)) 3303 p->dl.dl_boosted = 0; 3304 if (oldprio < prio) 3305 enqueue_flag = ENQUEUE_HEAD; 3306 p->sched_class = &rt_sched_class; 3307 } else { 3308 if (dl_prio(oldprio)) 3309 p->dl.dl_boosted = 0; 3310 if (rt_prio(oldprio)) 3311 p->rt.timeout = 0; 3312 p->sched_class = &fair_sched_class; 3313 } 3314 3315 p->prio = prio; 3316 3317 if (running) 3318 p->sched_class->set_curr_task(rq); 3319 if (queued) 3320 enqueue_task(rq, p, enqueue_flag); 3321 3322 check_class_changed(rq, p, prev_class, oldprio); 3323 out_unlock: 3324 preempt_disable(); /* avoid rq from going away on us */ 3325 __task_rq_unlock(rq); 3326 3327 balance_callback(rq); 3328 preempt_enable(); 3329 } 3330 #endif 3331 3332 void set_user_nice(struct task_struct *p, long nice) 3333 { 3334 int old_prio, delta, queued; 3335 unsigned long flags; 3336 struct rq *rq; 3337 3338 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3339 return; 3340 /* 3341 * We have to be careful, if called from sys_setpriority(), 3342 * the task might be in the middle of scheduling on another CPU. 3343 */ 3344 rq = task_rq_lock(p, &flags); 3345 /* 3346 * The RT priorities are set via sched_setscheduler(), but we still 3347 * allow the 'normal' nice value to be set - but as expected 3348 * it wont have any effect on scheduling until the task is 3349 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3350 */ 3351 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3352 p->static_prio = NICE_TO_PRIO(nice); 3353 goto out_unlock; 3354 } 3355 queued = task_on_rq_queued(p); 3356 if (queued) 3357 dequeue_task(rq, p, 0); 3358 3359 p->static_prio = NICE_TO_PRIO(nice); 3360 set_load_weight(p); 3361 old_prio = p->prio; 3362 p->prio = effective_prio(p); 3363 delta = p->prio - old_prio; 3364 3365 if (queued) { 3366 enqueue_task(rq, p, 0); 3367 /* 3368 * If the task increased its priority or is running and 3369 * lowered its priority, then reschedule its CPU: 3370 */ 3371 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3372 resched_curr(rq); 3373 } 3374 out_unlock: 3375 task_rq_unlock(rq, p, &flags); 3376 } 3377 EXPORT_SYMBOL(set_user_nice); 3378 3379 /* 3380 * can_nice - check if a task can reduce its nice value 3381 * @p: task 3382 * @nice: nice value 3383 */ 3384 int can_nice(const struct task_struct *p, const int nice) 3385 { 3386 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3387 int nice_rlim = nice_to_rlimit(nice); 3388 3389 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3390 capable(CAP_SYS_NICE)); 3391 } 3392 3393 #ifdef __ARCH_WANT_SYS_NICE 3394 3395 /* 3396 * sys_nice - change the priority of the current process. 3397 * @increment: priority increment 3398 * 3399 * sys_setpriority is a more generic, but much slower function that 3400 * does similar things. 3401 */ 3402 SYSCALL_DEFINE1(nice, int, increment) 3403 { 3404 long nice, retval; 3405 3406 /* 3407 * Setpriority might change our priority at the same moment. 3408 * We don't have to worry. Conceptually one call occurs first 3409 * and we have a single winner. 3410 */ 3411 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3412 nice = task_nice(current) + increment; 3413 3414 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3415 if (increment < 0 && !can_nice(current, nice)) 3416 return -EPERM; 3417 3418 retval = security_task_setnice(current, nice); 3419 if (retval) 3420 return retval; 3421 3422 set_user_nice(current, nice); 3423 return 0; 3424 } 3425 3426 #endif 3427 3428 /** 3429 * task_prio - return the priority value of a given task. 3430 * @p: the task in question. 3431 * 3432 * Return: The priority value as seen by users in /proc. 3433 * RT tasks are offset by -200. Normal tasks are centered 3434 * around 0, value goes from -16 to +15. 3435 */ 3436 int task_prio(const struct task_struct *p) 3437 { 3438 return p->prio - MAX_RT_PRIO; 3439 } 3440 3441 /** 3442 * idle_cpu - is a given cpu idle currently? 3443 * @cpu: the processor in question. 3444 * 3445 * Return: 1 if the CPU is currently idle. 0 otherwise. 3446 */ 3447 int idle_cpu(int cpu) 3448 { 3449 struct rq *rq = cpu_rq(cpu); 3450 3451 if (rq->curr != rq->idle) 3452 return 0; 3453 3454 if (rq->nr_running) 3455 return 0; 3456 3457 #ifdef CONFIG_SMP 3458 if (!llist_empty(&rq->wake_list)) 3459 return 0; 3460 #endif 3461 3462 return 1; 3463 } 3464 3465 /** 3466 * idle_task - return the idle task for a given cpu. 3467 * @cpu: the processor in question. 3468 * 3469 * Return: The idle task for the cpu @cpu. 3470 */ 3471 struct task_struct *idle_task(int cpu) 3472 { 3473 return cpu_rq(cpu)->idle; 3474 } 3475 3476 /** 3477 * find_process_by_pid - find a process with a matching PID value. 3478 * @pid: the pid in question. 3479 * 3480 * The task of @pid, if found. %NULL otherwise. 3481 */ 3482 static struct task_struct *find_process_by_pid(pid_t pid) 3483 { 3484 return pid ? find_task_by_vpid(pid) : current; 3485 } 3486 3487 /* 3488 * This function initializes the sched_dl_entity of a newly becoming 3489 * SCHED_DEADLINE task. 3490 * 3491 * Only the static values are considered here, the actual runtime and the 3492 * absolute deadline will be properly calculated when the task is enqueued 3493 * for the first time with its new policy. 3494 */ 3495 static void 3496 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3497 { 3498 struct sched_dl_entity *dl_se = &p->dl; 3499 3500 dl_se->dl_runtime = attr->sched_runtime; 3501 dl_se->dl_deadline = attr->sched_deadline; 3502 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3503 dl_se->flags = attr->sched_flags; 3504 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3505 3506 /* 3507 * Changing the parameters of a task is 'tricky' and we're not doing 3508 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3509 * 3510 * What we SHOULD do is delay the bandwidth release until the 0-lag 3511 * point. This would include retaining the task_struct until that time 3512 * and change dl_overflow() to not immediately decrement the current 3513 * amount. 3514 * 3515 * Instead we retain the current runtime/deadline and let the new 3516 * parameters take effect after the current reservation period lapses. 3517 * This is safe (albeit pessimistic) because the 0-lag point is always 3518 * before the current scheduling deadline. 3519 * 3520 * We can still have temporary overloads because we do not delay the 3521 * change in bandwidth until that time; so admission control is 3522 * not on the safe side. It does however guarantee tasks will never 3523 * consume more than promised. 3524 */ 3525 } 3526 3527 /* 3528 * sched_setparam() passes in -1 for its policy, to let the functions 3529 * it calls know not to change it. 3530 */ 3531 #define SETPARAM_POLICY -1 3532 3533 static void __setscheduler_params(struct task_struct *p, 3534 const struct sched_attr *attr) 3535 { 3536 int policy = attr->sched_policy; 3537 3538 if (policy == SETPARAM_POLICY) 3539 policy = p->policy; 3540 3541 p->policy = policy; 3542 3543 if (dl_policy(policy)) 3544 __setparam_dl(p, attr); 3545 else if (fair_policy(policy)) 3546 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3547 3548 /* 3549 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3550 * !rt_policy. Always setting this ensures that things like 3551 * getparam()/getattr() don't report silly values for !rt tasks. 3552 */ 3553 p->rt_priority = attr->sched_priority; 3554 p->normal_prio = normal_prio(p); 3555 set_load_weight(p); 3556 } 3557 3558 /* Actually do priority change: must hold pi & rq lock. */ 3559 static void __setscheduler(struct rq *rq, struct task_struct *p, 3560 const struct sched_attr *attr, bool keep_boost) 3561 { 3562 __setscheduler_params(p, attr); 3563 3564 /* 3565 * Keep a potential priority boosting if called from 3566 * sched_setscheduler(). 3567 */ 3568 if (keep_boost) 3569 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 3570 else 3571 p->prio = normal_prio(p); 3572 3573 if (dl_prio(p->prio)) 3574 p->sched_class = &dl_sched_class; 3575 else if (rt_prio(p->prio)) 3576 p->sched_class = &rt_sched_class; 3577 else 3578 p->sched_class = &fair_sched_class; 3579 } 3580 3581 static void 3582 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3583 { 3584 struct sched_dl_entity *dl_se = &p->dl; 3585 3586 attr->sched_priority = p->rt_priority; 3587 attr->sched_runtime = dl_se->dl_runtime; 3588 attr->sched_deadline = dl_se->dl_deadline; 3589 attr->sched_period = dl_se->dl_period; 3590 attr->sched_flags = dl_se->flags; 3591 } 3592 3593 /* 3594 * This function validates the new parameters of a -deadline task. 3595 * We ask for the deadline not being zero, and greater or equal 3596 * than the runtime, as well as the period of being zero or 3597 * greater than deadline. Furthermore, we have to be sure that 3598 * user parameters are above the internal resolution of 1us (we 3599 * check sched_runtime only since it is always the smaller one) and 3600 * below 2^63 ns (we have to check both sched_deadline and 3601 * sched_period, as the latter can be zero). 3602 */ 3603 static bool 3604 __checkparam_dl(const struct sched_attr *attr) 3605 { 3606 /* deadline != 0 */ 3607 if (attr->sched_deadline == 0) 3608 return false; 3609 3610 /* 3611 * Since we truncate DL_SCALE bits, make sure we're at least 3612 * that big. 3613 */ 3614 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3615 return false; 3616 3617 /* 3618 * Since we use the MSB for wrap-around and sign issues, make 3619 * sure it's not set (mind that period can be equal to zero). 3620 */ 3621 if (attr->sched_deadline & (1ULL << 63) || 3622 attr->sched_period & (1ULL << 63)) 3623 return false; 3624 3625 /* runtime <= deadline <= period (if period != 0) */ 3626 if ((attr->sched_period != 0 && 3627 attr->sched_period < attr->sched_deadline) || 3628 attr->sched_deadline < attr->sched_runtime) 3629 return false; 3630 3631 return true; 3632 } 3633 3634 /* 3635 * check the target process has a UID that matches the current process's 3636 */ 3637 static bool check_same_owner(struct task_struct *p) 3638 { 3639 const struct cred *cred = current_cred(), *pcred; 3640 bool match; 3641 3642 rcu_read_lock(); 3643 pcred = __task_cred(p); 3644 match = (uid_eq(cred->euid, pcred->euid) || 3645 uid_eq(cred->euid, pcred->uid)); 3646 rcu_read_unlock(); 3647 return match; 3648 } 3649 3650 static bool dl_param_changed(struct task_struct *p, 3651 const struct sched_attr *attr) 3652 { 3653 struct sched_dl_entity *dl_se = &p->dl; 3654 3655 if (dl_se->dl_runtime != attr->sched_runtime || 3656 dl_se->dl_deadline != attr->sched_deadline || 3657 dl_se->dl_period != attr->sched_period || 3658 dl_se->flags != attr->sched_flags) 3659 return true; 3660 3661 return false; 3662 } 3663 3664 static int __sched_setscheduler(struct task_struct *p, 3665 const struct sched_attr *attr, 3666 bool user, bool pi) 3667 { 3668 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3669 MAX_RT_PRIO - 1 - attr->sched_priority; 3670 int retval, oldprio, oldpolicy = -1, queued, running; 3671 int new_effective_prio, policy = attr->sched_policy; 3672 unsigned long flags; 3673 const struct sched_class *prev_class; 3674 struct rq *rq; 3675 int reset_on_fork; 3676 3677 /* may grab non-irq protected spin_locks */ 3678 BUG_ON(in_interrupt()); 3679 recheck: 3680 /* double check policy once rq lock held */ 3681 if (policy < 0) { 3682 reset_on_fork = p->sched_reset_on_fork; 3683 policy = oldpolicy = p->policy; 3684 } else { 3685 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3686 3687 if (policy != SCHED_DEADLINE && 3688 policy != SCHED_FIFO && policy != SCHED_RR && 3689 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3690 policy != SCHED_IDLE) 3691 return -EINVAL; 3692 } 3693 3694 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3695 return -EINVAL; 3696 3697 /* 3698 * Valid priorities for SCHED_FIFO and SCHED_RR are 3699 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3700 * SCHED_BATCH and SCHED_IDLE is 0. 3701 */ 3702 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3703 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3704 return -EINVAL; 3705 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3706 (rt_policy(policy) != (attr->sched_priority != 0))) 3707 return -EINVAL; 3708 3709 /* 3710 * Allow unprivileged RT tasks to decrease priority: 3711 */ 3712 if (user && !capable(CAP_SYS_NICE)) { 3713 if (fair_policy(policy)) { 3714 if (attr->sched_nice < task_nice(p) && 3715 !can_nice(p, attr->sched_nice)) 3716 return -EPERM; 3717 } 3718 3719 if (rt_policy(policy)) { 3720 unsigned long rlim_rtprio = 3721 task_rlimit(p, RLIMIT_RTPRIO); 3722 3723 /* can't set/change the rt policy */ 3724 if (policy != p->policy && !rlim_rtprio) 3725 return -EPERM; 3726 3727 /* can't increase priority */ 3728 if (attr->sched_priority > p->rt_priority && 3729 attr->sched_priority > rlim_rtprio) 3730 return -EPERM; 3731 } 3732 3733 /* 3734 * Can't set/change SCHED_DEADLINE policy at all for now 3735 * (safest behavior); in the future we would like to allow 3736 * unprivileged DL tasks to increase their relative deadline 3737 * or reduce their runtime (both ways reducing utilization) 3738 */ 3739 if (dl_policy(policy)) 3740 return -EPERM; 3741 3742 /* 3743 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3744 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3745 */ 3746 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3747 if (!can_nice(p, task_nice(p))) 3748 return -EPERM; 3749 } 3750 3751 /* can't change other user's priorities */ 3752 if (!check_same_owner(p)) 3753 return -EPERM; 3754 3755 /* Normal users shall not reset the sched_reset_on_fork flag */ 3756 if (p->sched_reset_on_fork && !reset_on_fork) 3757 return -EPERM; 3758 } 3759 3760 if (user) { 3761 retval = security_task_setscheduler(p); 3762 if (retval) 3763 return retval; 3764 } 3765 3766 /* 3767 * make sure no PI-waiters arrive (or leave) while we are 3768 * changing the priority of the task: 3769 * 3770 * To be able to change p->policy safely, the appropriate 3771 * runqueue lock must be held. 3772 */ 3773 rq = task_rq_lock(p, &flags); 3774 3775 /* 3776 * Changing the policy of the stop threads its a very bad idea 3777 */ 3778 if (p == rq->stop) { 3779 task_rq_unlock(rq, p, &flags); 3780 return -EINVAL; 3781 } 3782 3783 /* 3784 * If not changing anything there's no need to proceed further, 3785 * but store a possible modification of reset_on_fork. 3786 */ 3787 if (unlikely(policy == p->policy)) { 3788 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3789 goto change; 3790 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3791 goto change; 3792 if (dl_policy(policy) && dl_param_changed(p, attr)) 3793 goto change; 3794 3795 p->sched_reset_on_fork = reset_on_fork; 3796 task_rq_unlock(rq, p, &flags); 3797 return 0; 3798 } 3799 change: 3800 3801 if (user) { 3802 #ifdef CONFIG_RT_GROUP_SCHED 3803 /* 3804 * Do not allow realtime tasks into groups that have no runtime 3805 * assigned. 3806 */ 3807 if (rt_bandwidth_enabled() && rt_policy(policy) && 3808 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3809 !task_group_is_autogroup(task_group(p))) { 3810 task_rq_unlock(rq, p, &flags); 3811 return -EPERM; 3812 } 3813 #endif 3814 #ifdef CONFIG_SMP 3815 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3816 cpumask_t *span = rq->rd->span; 3817 3818 /* 3819 * Don't allow tasks with an affinity mask smaller than 3820 * the entire root_domain to become SCHED_DEADLINE. We 3821 * will also fail if there's no bandwidth available. 3822 */ 3823 if (!cpumask_subset(span, &p->cpus_allowed) || 3824 rq->rd->dl_bw.bw == 0) { 3825 task_rq_unlock(rq, p, &flags); 3826 return -EPERM; 3827 } 3828 } 3829 #endif 3830 } 3831 3832 /* recheck policy now with rq lock held */ 3833 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3834 policy = oldpolicy = -1; 3835 task_rq_unlock(rq, p, &flags); 3836 goto recheck; 3837 } 3838 3839 /* 3840 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3841 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3842 * is available. 3843 */ 3844 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3845 task_rq_unlock(rq, p, &flags); 3846 return -EBUSY; 3847 } 3848 3849 p->sched_reset_on_fork = reset_on_fork; 3850 oldprio = p->prio; 3851 3852 if (pi) { 3853 /* 3854 * Take priority boosted tasks into account. If the new 3855 * effective priority is unchanged, we just store the new 3856 * normal parameters and do not touch the scheduler class and 3857 * the runqueue. This will be done when the task deboost 3858 * itself. 3859 */ 3860 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 3861 if (new_effective_prio == oldprio) { 3862 __setscheduler_params(p, attr); 3863 task_rq_unlock(rq, p, &flags); 3864 return 0; 3865 } 3866 } 3867 3868 queued = task_on_rq_queued(p); 3869 running = task_current(rq, p); 3870 if (queued) 3871 dequeue_task(rq, p, 0); 3872 if (running) 3873 put_prev_task(rq, p); 3874 3875 prev_class = p->sched_class; 3876 __setscheduler(rq, p, attr, pi); 3877 3878 if (running) 3879 p->sched_class->set_curr_task(rq); 3880 if (queued) { 3881 /* 3882 * We enqueue to tail when the priority of a task is 3883 * increased (user space view). 3884 */ 3885 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3886 } 3887 3888 check_class_changed(rq, p, prev_class, oldprio); 3889 preempt_disable(); /* avoid rq from going away on us */ 3890 task_rq_unlock(rq, p, &flags); 3891 3892 if (pi) 3893 rt_mutex_adjust_pi(p); 3894 3895 /* 3896 * Run balance callbacks after we've adjusted the PI chain. 3897 */ 3898 balance_callback(rq); 3899 preempt_enable(); 3900 3901 return 0; 3902 } 3903 3904 static int _sched_setscheduler(struct task_struct *p, int policy, 3905 const struct sched_param *param, bool check) 3906 { 3907 struct sched_attr attr = { 3908 .sched_policy = policy, 3909 .sched_priority = param->sched_priority, 3910 .sched_nice = PRIO_TO_NICE(p->static_prio), 3911 }; 3912 3913 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 3914 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 3915 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3916 policy &= ~SCHED_RESET_ON_FORK; 3917 attr.sched_policy = policy; 3918 } 3919 3920 return __sched_setscheduler(p, &attr, check, true); 3921 } 3922 /** 3923 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3924 * @p: the task in question. 3925 * @policy: new policy. 3926 * @param: structure containing the new RT priority. 3927 * 3928 * Return: 0 on success. An error code otherwise. 3929 * 3930 * NOTE that the task may be already dead. 3931 */ 3932 int sched_setscheduler(struct task_struct *p, int policy, 3933 const struct sched_param *param) 3934 { 3935 return _sched_setscheduler(p, policy, param, true); 3936 } 3937 EXPORT_SYMBOL_GPL(sched_setscheduler); 3938 3939 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3940 { 3941 return __sched_setscheduler(p, attr, true, true); 3942 } 3943 EXPORT_SYMBOL_GPL(sched_setattr); 3944 3945 /** 3946 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3947 * @p: the task in question. 3948 * @policy: new policy. 3949 * @param: structure containing the new RT priority. 3950 * 3951 * Just like sched_setscheduler, only don't bother checking if the 3952 * current context has permission. For example, this is needed in 3953 * stop_machine(): we create temporary high priority worker threads, 3954 * but our caller might not have that capability. 3955 * 3956 * Return: 0 on success. An error code otherwise. 3957 */ 3958 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3959 const struct sched_param *param) 3960 { 3961 return _sched_setscheduler(p, policy, param, false); 3962 } 3963 3964 static int 3965 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3966 { 3967 struct sched_param lparam; 3968 struct task_struct *p; 3969 int retval; 3970 3971 if (!param || pid < 0) 3972 return -EINVAL; 3973 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3974 return -EFAULT; 3975 3976 rcu_read_lock(); 3977 retval = -ESRCH; 3978 p = find_process_by_pid(pid); 3979 if (p != NULL) 3980 retval = sched_setscheduler(p, policy, &lparam); 3981 rcu_read_unlock(); 3982 3983 return retval; 3984 } 3985 3986 /* 3987 * Mimics kernel/events/core.c perf_copy_attr(). 3988 */ 3989 static int sched_copy_attr(struct sched_attr __user *uattr, 3990 struct sched_attr *attr) 3991 { 3992 u32 size; 3993 int ret; 3994 3995 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3996 return -EFAULT; 3997 3998 /* 3999 * zero the full structure, so that a short copy will be nice. 4000 */ 4001 memset(attr, 0, sizeof(*attr)); 4002 4003 ret = get_user(size, &uattr->size); 4004 if (ret) 4005 return ret; 4006 4007 if (size > PAGE_SIZE) /* silly large */ 4008 goto err_size; 4009 4010 if (!size) /* abi compat */ 4011 size = SCHED_ATTR_SIZE_VER0; 4012 4013 if (size < SCHED_ATTR_SIZE_VER0) 4014 goto err_size; 4015 4016 /* 4017 * If we're handed a bigger struct than we know of, 4018 * ensure all the unknown bits are 0 - i.e. new 4019 * user-space does not rely on any kernel feature 4020 * extensions we dont know about yet. 4021 */ 4022 if (size > sizeof(*attr)) { 4023 unsigned char __user *addr; 4024 unsigned char __user *end; 4025 unsigned char val; 4026 4027 addr = (void __user *)uattr + sizeof(*attr); 4028 end = (void __user *)uattr + size; 4029 4030 for (; addr < end; addr++) { 4031 ret = get_user(val, addr); 4032 if (ret) 4033 return ret; 4034 if (val) 4035 goto err_size; 4036 } 4037 size = sizeof(*attr); 4038 } 4039 4040 ret = copy_from_user(attr, uattr, size); 4041 if (ret) 4042 return -EFAULT; 4043 4044 /* 4045 * XXX: do we want to be lenient like existing syscalls; or do we want 4046 * to be strict and return an error on out-of-bounds values? 4047 */ 4048 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4049 4050 return 0; 4051 4052 err_size: 4053 put_user(sizeof(*attr), &uattr->size); 4054 return -E2BIG; 4055 } 4056 4057 /** 4058 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4059 * @pid: the pid in question. 4060 * @policy: new policy. 4061 * @param: structure containing the new RT priority. 4062 * 4063 * Return: 0 on success. An error code otherwise. 4064 */ 4065 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4066 struct sched_param __user *, param) 4067 { 4068 /* negative values for policy are not valid */ 4069 if (policy < 0) 4070 return -EINVAL; 4071 4072 return do_sched_setscheduler(pid, policy, param); 4073 } 4074 4075 /** 4076 * sys_sched_setparam - set/change the RT priority of a thread 4077 * @pid: the pid in question. 4078 * @param: structure containing the new RT priority. 4079 * 4080 * Return: 0 on success. An error code otherwise. 4081 */ 4082 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4083 { 4084 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4085 } 4086 4087 /** 4088 * sys_sched_setattr - same as above, but with extended sched_attr 4089 * @pid: the pid in question. 4090 * @uattr: structure containing the extended parameters. 4091 * @flags: for future extension. 4092 */ 4093 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4094 unsigned int, flags) 4095 { 4096 struct sched_attr attr; 4097 struct task_struct *p; 4098 int retval; 4099 4100 if (!uattr || pid < 0 || flags) 4101 return -EINVAL; 4102 4103 retval = sched_copy_attr(uattr, &attr); 4104 if (retval) 4105 return retval; 4106 4107 if ((int)attr.sched_policy < 0) 4108 return -EINVAL; 4109 4110 rcu_read_lock(); 4111 retval = -ESRCH; 4112 p = find_process_by_pid(pid); 4113 if (p != NULL) 4114 retval = sched_setattr(p, &attr); 4115 rcu_read_unlock(); 4116 4117 return retval; 4118 } 4119 4120 /** 4121 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4122 * @pid: the pid in question. 4123 * 4124 * Return: On success, the policy of the thread. Otherwise, a negative error 4125 * code. 4126 */ 4127 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4128 { 4129 struct task_struct *p; 4130 int retval; 4131 4132 if (pid < 0) 4133 return -EINVAL; 4134 4135 retval = -ESRCH; 4136 rcu_read_lock(); 4137 p = find_process_by_pid(pid); 4138 if (p) { 4139 retval = security_task_getscheduler(p); 4140 if (!retval) 4141 retval = p->policy 4142 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4143 } 4144 rcu_read_unlock(); 4145 return retval; 4146 } 4147 4148 /** 4149 * sys_sched_getparam - get the RT priority of a thread 4150 * @pid: the pid in question. 4151 * @param: structure containing the RT priority. 4152 * 4153 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4154 * code. 4155 */ 4156 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4157 { 4158 struct sched_param lp = { .sched_priority = 0 }; 4159 struct task_struct *p; 4160 int retval; 4161 4162 if (!param || pid < 0) 4163 return -EINVAL; 4164 4165 rcu_read_lock(); 4166 p = find_process_by_pid(pid); 4167 retval = -ESRCH; 4168 if (!p) 4169 goto out_unlock; 4170 4171 retval = security_task_getscheduler(p); 4172 if (retval) 4173 goto out_unlock; 4174 4175 if (task_has_rt_policy(p)) 4176 lp.sched_priority = p->rt_priority; 4177 rcu_read_unlock(); 4178 4179 /* 4180 * This one might sleep, we cannot do it with a spinlock held ... 4181 */ 4182 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4183 4184 return retval; 4185 4186 out_unlock: 4187 rcu_read_unlock(); 4188 return retval; 4189 } 4190 4191 static int sched_read_attr(struct sched_attr __user *uattr, 4192 struct sched_attr *attr, 4193 unsigned int usize) 4194 { 4195 int ret; 4196 4197 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4198 return -EFAULT; 4199 4200 /* 4201 * If we're handed a smaller struct than we know of, 4202 * ensure all the unknown bits are 0 - i.e. old 4203 * user-space does not get uncomplete information. 4204 */ 4205 if (usize < sizeof(*attr)) { 4206 unsigned char *addr; 4207 unsigned char *end; 4208 4209 addr = (void *)attr + usize; 4210 end = (void *)attr + sizeof(*attr); 4211 4212 for (; addr < end; addr++) { 4213 if (*addr) 4214 return -EFBIG; 4215 } 4216 4217 attr->size = usize; 4218 } 4219 4220 ret = copy_to_user(uattr, attr, attr->size); 4221 if (ret) 4222 return -EFAULT; 4223 4224 return 0; 4225 } 4226 4227 /** 4228 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4229 * @pid: the pid in question. 4230 * @uattr: structure containing the extended parameters. 4231 * @size: sizeof(attr) for fwd/bwd comp. 4232 * @flags: for future extension. 4233 */ 4234 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4235 unsigned int, size, unsigned int, flags) 4236 { 4237 struct sched_attr attr = { 4238 .size = sizeof(struct sched_attr), 4239 }; 4240 struct task_struct *p; 4241 int retval; 4242 4243 if (!uattr || pid < 0 || size > PAGE_SIZE || 4244 size < SCHED_ATTR_SIZE_VER0 || flags) 4245 return -EINVAL; 4246 4247 rcu_read_lock(); 4248 p = find_process_by_pid(pid); 4249 retval = -ESRCH; 4250 if (!p) 4251 goto out_unlock; 4252 4253 retval = security_task_getscheduler(p); 4254 if (retval) 4255 goto out_unlock; 4256 4257 attr.sched_policy = p->policy; 4258 if (p->sched_reset_on_fork) 4259 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4260 if (task_has_dl_policy(p)) 4261 __getparam_dl(p, &attr); 4262 else if (task_has_rt_policy(p)) 4263 attr.sched_priority = p->rt_priority; 4264 else 4265 attr.sched_nice = task_nice(p); 4266 4267 rcu_read_unlock(); 4268 4269 retval = sched_read_attr(uattr, &attr, size); 4270 return retval; 4271 4272 out_unlock: 4273 rcu_read_unlock(); 4274 return retval; 4275 } 4276 4277 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4278 { 4279 cpumask_var_t cpus_allowed, new_mask; 4280 struct task_struct *p; 4281 int retval; 4282 4283 rcu_read_lock(); 4284 4285 p = find_process_by_pid(pid); 4286 if (!p) { 4287 rcu_read_unlock(); 4288 return -ESRCH; 4289 } 4290 4291 /* Prevent p going away */ 4292 get_task_struct(p); 4293 rcu_read_unlock(); 4294 4295 if (p->flags & PF_NO_SETAFFINITY) { 4296 retval = -EINVAL; 4297 goto out_put_task; 4298 } 4299 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4300 retval = -ENOMEM; 4301 goto out_put_task; 4302 } 4303 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4304 retval = -ENOMEM; 4305 goto out_free_cpus_allowed; 4306 } 4307 retval = -EPERM; 4308 if (!check_same_owner(p)) { 4309 rcu_read_lock(); 4310 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4311 rcu_read_unlock(); 4312 goto out_free_new_mask; 4313 } 4314 rcu_read_unlock(); 4315 } 4316 4317 retval = security_task_setscheduler(p); 4318 if (retval) 4319 goto out_free_new_mask; 4320 4321 4322 cpuset_cpus_allowed(p, cpus_allowed); 4323 cpumask_and(new_mask, in_mask, cpus_allowed); 4324 4325 /* 4326 * Since bandwidth control happens on root_domain basis, 4327 * if admission test is enabled, we only admit -deadline 4328 * tasks allowed to run on all the CPUs in the task's 4329 * root_domain. 4330 */ 4331 #ifdef CONFIG_SMP 4332 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4333 rcu_read_lock(); 4334 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4335 retval = -EBUSY; 4336 rcu_read_unlock(); 4337 goto out_free_new_mask; 4338 } 4339 rcu_read_unlock(); 4340 } 4341 #endif 4342 again: 4343 retval = set_cpus_allowed_ptr(p, new_mask); 4344 4345 if (!retval) { 4346 cpuset_cpus_allowed(p, cpus_allowed); 4347 if (!cpumask_subset(new_mask, cpus_allowed)) { 4348 /* 4349 * We must have raced with a concurrent cpuset 4350 * update. Just reset the cpus_allowed to the 4351 * cpuset's cpus_allowed 4352 */ 4353 cpumask_copy(new_mask, cpus_allowed); 4354 goto again; 4355 } 4356 } 4357 out_free_new_mask: 4358 free_cpumask_var(new_mask); 4359 out_free_cpus_allowed: 4360 free_cpumask_var(cpus_allowed); 4361 out_put_task: 4362 put_task_struct(p); 4363 return retval; 4364 } 4365 4366 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4367 struct cpumask *new_mask) 4368 { 4369 if (len < cpumask_size()) 4370 cpumask_clear(new_mask); 4371 else if (len > cpumask_size()) 4372 len = cpumask_size(); 4373 4374 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4375 } 4376 4377 /** 4378 * sys_sched_setaffinity - set the cpu affinity of a process 4379 * @pid: pid of the process 4380 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4381 * @user_mask_ptr: user-space pointer to the new cpu mask 4382 * 4383 * Return: 0 on success. An error code otherwise. 4384 */ 4385 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4386 unsigned long __user *, user_mask_ptr) 4387 { 4388 cpumask_var_t new_mask; 4389 int retval; 4390 4391 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4392 return -ENOMEM; 4393 4394 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4395 if (retval == 0) 4396 retval = sched_setaffinity(pid, new_mask); 4397 free_cpumask_var(new_mask); 4398 return retval; 4399 } 4400 4401 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4402 { 4403 struct task_struct *p; 4404 unsigned long flags; 4405 int retval; 4406 4407 rcu_read_lock(); 4408 4409 retval = -ESRCH; 4410 p = find_process_by_pid(pid); 4411 if (!p) 4412 goto out_unlock; 4413 4414 retval = security_task_getscheduler(p); 4415 if (retval) 4416 goto out_unlock; 4417 4418 raw_spin_lock_irqsave(&p->pi_lock, flags); 4419 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4420 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4421 4422 out_unlock: 4423 rcu_read_unlock(); 4424 4425 return retval; 4426 } 4427 4428 /** 4429 * sys_sched_getaffinity - get the cpu affinity of a process 4430 * @pid: pid of the process 4431 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4432 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4433 * 4434 * Return: 0 on success. An error code otherwise. 4435 */ 4436 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4437 unsigned long __user *, user_mask_ptr) 4438 { 4439 int ret; 4440 cpumask_var_t mask; 4441 4442 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4443 return -EINVAL; 4444 if (len & (sizeof(unsigned long)-1)) 4445 return -EINVAL; 4446 4447 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4448 return -ENOMEM; 4449 4450 ret = sched_getaffinity(pid, mask); 4451 if (ret == 0) { 4452 size_t retlen = min_t(size_t, len, cpumask_size()); 4453 4454 if (copy_to_user(user_mask_ptr, mask, retlen)) 4455 ret = -EFAULT; 4456 else 4457 ret = retlen; 4458 } 4459 free_cpumask_var(mask); 4460 4461 return ret; 4462 } 4463 4464 /** 4465 * sys_sched_yield - yield the current processor to other threads. 4466 * 4467 * This function yields the current CPU to other tasks. If there are no 4468 * other threads running on this CPU then this function will return. 4469 * 4470 * Return: 0. 4471 */ 4472 SYSCALL_DEFINE0(sched_yield) 4473 { 4474 struct rq *rq = this_rq_lock(); 4475 4476 schedstat_inc(rq, yld_count); 4477 current->sched_class->yield_task(rq); 4478 4479 /* 4480 * Since we are going to call schedule() anyway, there's 4481 * no need to preempt or enable interrupts: 4482 */ 4483 __release(rq->lock); 4484 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4485 do_raw_spin_unlock(&rq->lock); 4486 sched_preempt_enable_no_resched(); 4487 4488 schedule(); 4489 4490 return 0; 4491 } 4492 4493 int __sched _cond_resched(void) 4494 { 4495 if (should_resched()) { 4496 preempt_schedule_common(); 4497 return 1; 4498 } 4499 return 0; 4500 } 4501 EXPORT_SYMBOL(_cond_resched); 4502 4503 /* 4504 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4505 * call schedule, and on return reacquire the lock. 4506 * 4507 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4508 * operations here to prevent schedule() from being called twice (once via 4509 * spin_unlock(), once by hand). 4510 */ 4511 int __cond_resched_lock(spinlock_t *lock) 4512 { 4513 int resched = should_resched(); 4514 int ret = 0; 4515 4516 lockdep_assert_held(lock); 4517 4518 if (spin_needbreak(lock) || resched) { 4519 spin_unlock(lock); 4520 if (resched) 4521 preempt_schedule_common(); 4522 else 4523 cpu_relax(); 4524 ret = 1; 4525 spin_lock(lock); 4526 } 4527 return ret; 4528 } 4529 EXPORT_SYMBOL(__cond_resched_lock); 4530 4531 int __sched __cond_resched_softirq(void) 4532 { 4533 BUG_ON(!in_softirq()); 4534 4535 if (should_resched()) { 4536 local_bh_enable(); 4537 preempt_schedule_common(); 4538 local_bh_disable(); 4539 return 1; 4540 } 4541 return 0; 4542 } 4543 EXPORT_SYMBOL(__cond_resched_softirq); 4544 4545 /** 4546 * yield - yield the current processor to other threads. 4547 * 4548 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4549 * 4550 * The scheduler is at all times free to pick the calling task as the most 4551 * eligible task to run, if removing the yield() call from your code breaks 4552 * it, its already broken. 4553 * 4554 * Typical broken usage is: 4555 * 4556 * while (!event) 4557 * yield(); 4558 * 4559 * where one assumes that yield() will let 'the other' process run that will 4560 * make event true. If the current task is a SCHED_FIFO task that will never 4561 * happen. Never use yield() as a progress guarantee!! 4562 * 4563 * If you want to use yield() to wait for something, use wait_event(). 4564 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4565 * If you still want to use yield(), do not! 4566 */ 4567 void __sched yield(void) 4568 { 4569 set_current_state(TASK_RUNNING); 4570 sys_sched_yield(); 4571 } 4572 EXPORT_SYMBOL(yield); 4573 4574 /** 4575 * yield_to - yield the current processor to another thread in 4576 * your thread group, or accelerate that thread toward the 4577 * processor it's on. 4578 * @p: target task 4579 * @preempt: whether task preemption is allowed or not 4580 * 4581 * It's the caller's job to ensure that the target task struct 4582 * can't go away on us before we can do any checks. 4583 * 4584 * Return: 4585 * true (>0) if we indeed boosted the target task. 4586 * false (0) if we failed to boost the target. 4587 * -ESRCH if there's no task to yield to. 4588 */ 4589 int __sched yield_to(struct task_struct *p, bool preempt) 4590 { 4591 struct task_struct *curr = current; 4592 struct rq *rq, *p_rq; 4593 unsigned long flags; 4594 int yielded = 0; 4595 4596 local_irq_save(flags); 4597 rq = this_rq(); 4598 4599 again: 4600 p_rq = task_rq(p); 4601 /* 4602 * If we're the only runnable task on the rq and target rq also 4603 * has only one task, there's absolutely no point in yielding. 4604 */ 4605 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4606 yielded = -ESRCH; 4607 goto out_irq; 4608 } 4609 4610 double_rq_lock(rq, p_rq); 4611 if (task_rq(p) != p_rq) { 4612 double_rq_unlock(rq, p_rq); 4613 goto again; 4614 } 4615 4616 if (!curr->sched_class->yield_to_task) 4617 goto out_unlock; 4618 4619 if (curr->sched_class != p->sched_class) 4620 goto out_unlock; 4621 4622 if (task_running(p_rq, p) || p->state) 4623 goto out_unlock; 4624 4625 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4626 if (yielded) { 4627 schedstat_inc(rq, yld_count); 4628 /* 4629 * Make p's CPU reschedule; pick_next_entity takes care of 4630 * fairness. 4631 */ 4632 if (preempt && rq != p_rq) 4633 resched_curr(p_rq); 4634 } 4635 4636 out_unlock: 4637 double_rq_unlock(rq, p_rq); 4638 out_irq: 4639 local_irq_restore(flags); 4640 4641 if (yielded > 0) 4642 schedule(); 4643 4644 return yielded; 4645 } 4646 EXPORT_SYMBOL_GPL(yield_to); 4647 4648 /* 4649 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4650 * that process accounting knows that this is a task in IO wait state. 4651 */ 4652 long __sched io_schedule_timeout(long timeout) 4653 { 4654 int old_iowait = current->in_iowait; 4655 struct rq *rq; 4656 long ret; 4657 4658 current->in_iowait = 1; 4659 blk_schedule_flush_plug(current); 4660 4661 delayacct_blkio_start(); 4662 rq = raw_rq(); 4663 atomic_inc(&rq->nr_iowait); 4664 ret = schedule_timeout(timeout); 4665 current->in_iowait = old_iowait; 4666 atomic_dec(&rq->nr_iowait); 4667 delayacct_blkio_end(); 4668 4669 return ret; 4670 } 4671 EXPORT_SYMBOL(io_schedule_timeout); 4672 4673 /** 4674 * sys_sched_get_priority_max - return maximum RT priority. 4675 * @policy: scheduling class. 4676 * 4677 * Return: On success, this syscall returns the maximum 4678 * rt_priority that can be used by a given scheduling class. 4679 * On failure, a negative error code is returned. 4680 */ 4681 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4682 { 4683 int ret = -EINVAL; 4684 4685 switch (policy) { 4686 case SCHED_FIFO: 4687 case SCHED_RR: 4688 ret = MAX_USER_RT_PRIO-1; 4689 break; 4690 case SCHED_DEADLINE: 4691 case SCHED_NORMAL: 4692 case SCHED_BATCH: 4693 case SCHED_IDLE: 4694 ret = 0; 4695 break; 4696 } 4697 return ret; 4698 } 4699 4700 /** 4701 * sys_sched_get_priority_min - return minimum RT priority. 4702 * @policy: scheduling class. 4703 * 4704 * Return: On success, this syscall returns the minimum 4705 * rt_priority that can be used by a given scheduling class. 4706 * On failure, a negative error code is returned. 4707 */ 4708 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4709 { 4710 int ret = -EINVAL; 4711 4712 switch (policy) { 4713 case SCHED_FIFO: 4714 case SCHED_RR: 4715 ret = 1; 4716 break; 4717 case SCHED_DEADLINE: 4718 case SCHED_NORMAL: 4719 case SCHED_BATCH: 4720 case SCHED_IDLE: 4721 ret = 0; 4722 } 4723 return ret; 4724 } 4725 4726 /** 4727 * sys_sched_rr_get_interval - return the default timeslice of a process. 4728 * @pid: pid of the process. 4729 * @interval: userspace pointer to the timeslice value. 4730 * 4731 * this syscall writes the default timeslice value of a given process 4732 * into the user-space timespec buffer. A value of '0' means infinity. 4733 * 4734 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4735 * an error code. 4736 */ 4737 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4738 struct timespec __user *, interval) 4739 { 4740 struct task_struct *p; 4741 unsigned int time_slice; 4742 unsigned long flags; 4743 struct rq *rq; 4744 int retval; 4745 struct timespec t; 4746 4747 if (pid < 0) 4748 return -EINVAL; 4749 4750 retval = -ESRCH; 4751 rcu_read_lock(); 4752 p = find_process_by_pid(pid); 4753 if (!p) 4754 goto out_unlock; 4755 4756 retval = security_task_getscheduler(p); 4757 if (retval) 4758 goto out_unlock; 4759 4760 rq = task_rq_lock(p, &flags); 4761 time_slice = 0; 4762 if (p->sched_class->get_rr_interval) 4763 time_slice = p->sched_class->get_rr_interval(rq, p); 4764 task_rq_unlock(rq, p, &flags); 4765 4766 rcu_read_unlock(); 4767 jiffies_to_timespec(time_slice, &t); 4768 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4769 return retval; 4770 4771 out_unlock: 4772 rcu_read_unlock(); 4773 return retval; 4774 } 4775 4776 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4777 4778 void sched_show_task(struct task_struct *p) 4779 { 4780 unsigned long free = 0; 4781 int ppid; 4782 unsigned long state = p->state; 4783 4784 if (state) 4785 state = __ffs(state) + 1; 4786 printk(KERN_INFO "%-15.15s %c", p->comm, 4787 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4788 #if BITS_PER_LONG == 32 4789 if (state == TASK_RUNNING) 4790 printk(KERN_CONT " running "); 4791 else 4792 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4793 #else 4794 if (state == TASK_RUNNING) 4795 printk(KERN_CONT " running task "); 4796 else 4797 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4798 #endif 4799 #ifdef CONFIG_DEBUG_STACK_USAGE 4800 free = stack_not_used(p); 4801 #endif 4802 ppid = 0; 4803 rcu_read_lock(); 4804 if (pid_alive(p)) 4805 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4806 rcu_read_unlock(); 4807 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4808 task_pid_nr(p), ppid, 4809 (unsigned long)task_thread_info(p)->flags); 4810 4811 print_worker_info(KERN_INFO, p); 4812 show_stack(p, NULL); 4813 } 4814 4815 void show_state_filter(unsigned long state_filter) 4816 { 4817 struct task_struct *g, *p; 4818 4819 #if BITS_PER_LONG == 32 4820 printk(KERN_INFO 4821 " task PC stack pid father\n"); 4822 #else 4823 printk(KERN_INFO 4824 " task PC stack pid father\n"); 4825 #endif 4826 rcu_read_lock(); 4827 for_each_process_thread(g, p) { 4828 /* 4829 * reset the NMI-timeout, listing all files on a slow 4830 * console might take a lot of time: 4831 */ 4832 touch_nmi_watchdog(); 4833 if (!state_filter || (p->state & state_filter)) 4834 sched_show_task(p); 4835 } 4836 4837 touch_all_softlockup_watchdogs(); 4838 4839 #ifdef CONFIG_SCHED_DEBUG 4840 sysrq_sched_debug_show(); 4841 #endif 4842 rcu_read_unlock(); 4843 /* 4844 * Only show locks if all tasks are dumped: 4845 */ 4846 if (!state_filter) 4847 debug_show_all_locks(); 4848 } 4849 4850 void init_idle_bootup_task(struct task_struct *idle) 4851 { 4852 idle->sched_class = &idle_sched_class; 4853 } 4854 4855 /** 4856 * init_idle - set up an idle thread for a given CPU 4857 * @idle: task in question 4858 * @cpu: cpu the idle task belongs to 4859 * 4860 * NOTE: this function does not set the idle thread's NEED_RESCHED 4861 * flag, to make booting more robust. 4862 */ 4863 void init_idle(struct task_struct *idle, int cpu) 4864 { 4865 struct rq *rq = cpu_rq(cpu); 4866 unsigned long flags; 4867 4868 raw_spin_lock_irqsave(&rq->lock, flags); 4869 4870 __sched_fork(0, idle); 4871 idle->state = TASK_RUNNING; 4872 idle->se.exec_start = sched_clock(); 4873 4874 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4875 /* 4876 * We're having a chicken and egg problem, even though we are 4877 * holding rq->lock, the cpu isn't yet set to this cpu so the 4878 * lockdep check in task_group() will fail. 4879 * 4880 * Similar case to sched_fork(). / Alternatively we could 4881 * use task_rq_lock() here and obtain the other rq->lock. 4882 * 4883 * Silence PROVE_RCU 4884 */ 4885 rcu_read_lock(); 4886 __set_task_cpu(idle, cpu); 4887 rcu_read_unlock(); 4888 4889 rq->curr = rq->idle = idle; 4890 idle->on_rq = TASK_ON_RQ_QUEUED; 4891 #if defined(CONFIG_SMP) 4892 idle->on_cpu = 1; 4893 #endif 4894 raw_spin_unlock_irqrestore(&rq->lock, flags); 4895 4896 /* Set the preempt count _outside_ the spinlocks! */ 4897 init_idle_preempt_count(idle, cpu); 4898 4899 /* 4900 * The idle tasks have their own, simple scheduling class: 4901 */ 4902 idle->sched_class = &idle_sched_class; 4903 ftrace_graph_init_idle_task(idle, cpu); 4904 vtime_init_idle(idle, cpu); 4905 #if defined(CONFIG_SMP) 4906 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4907 #endif 4908 } 4909 4910 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 4911 const struct cpumask *trial) 4912 { 4913 int ret = 1, trial_cpus; 4914 struct dl_bw *cur_dl_b; 4915 unsigned long flags; 4916 4917 if (!cpumask_weight(cur)) 4918 return ret; 4919 4920 rcu_read_lock_sched(); 4921 cur_dl_b = dl_bw_of(cpumask_any(cur)); 4922 trial_cpus = cpumask_weight(trial); 4923 4924 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 4925 if (cur_dl_b->bw != -1 && 4926 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 4927 ret = 0; 4928 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 4929 rcu_read_unlock_sched(); 4930 4931 return ret; 4932 } 4933 4934 int task_can_attach(struct task_struct *p, 4935 const struct cpumask *cs_cpus_allowed) 4936 { 4937 int ret = 0; 4938 4939 /* 4940 * Kthreads which disallow setaffinity shouldn't be moved 4941 * to a new cpuset; we don't want to change their cpu 4942 * affinity and isolating such threads by their set of 4943 * allowed nodes is unnecessary. Thus, cpusets are not 4944 * applicable for such threads. This prevents checking for 4945 * success of set_cpus_allowed_ptr() on all attached tasks 4946 * before cpus_allowed may be changed. 4947 */ 4948 if (p->flags & PF_NO_SETAFFINITY) { 4949 ret = -EINVAL; 4950 goto out; 4951 } 4952 4953 #ifdef CONFIG_SMP 4954 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 4955 cs_cpus_allowed)) { 4956 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 4957 cs_cpus_allowed); 4958 struct dl_bw *dl_b; 4959 bool overflow; 4960 int cpus; 4961 unsigned long flags; 4962 4963 rcu_read_lock_sched(); 4964 dl_b = dl_bw_of(dest_cpu); 4965 raw_spin_lock_irqsave(&dl_b->lock, flags); 4966 cpus = dl_bw_cpus(dest_cpu); 4967 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 4968 if (overflow) 4969 ret = -EBUSY; 4970 else { 4971 /* 4972 * We reserve space for this task in the destination 4973 * root_domain, as we can't fail after this point. 4974 * We will free resources in the source root_domain 4975 * later on (see set_cpus_allowed_dl()). 4976 */ 4977 __dl_add(dl_b, p->dl.dl_bw); 4978 } 4979 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 4980 rcu_read_unlock_sched(); 4981 4982 } 4983 #endif 4984 out: 4985 return ret; 4986 } 4987 4988 #ifdef CONFIG_SMP 4989 4990 #ifdef CONFIG_NUMA_BALANCING 4991 /* Migrate current task p to target_cpu */ 4992 int migrate_task_to(struct task_struct *p, int target_cpu) 4993 { 4994 struct migration_arg arg = { p, target_cpu }; 4995 int curr_cpu = task_cpu(p); 4996 4997 if (curr_cpu == target_cpu) 4998 return 0; 4999 5000 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 5001 return -EINVAL; 5002 5003 /* TODO: This is not properly updating schedstats */ 5004 5005 trace_sched_move_numa(p, curr_cpu, target_cpu); 5006 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5007 } 5008 5009 /* 5010 * Requeue a task on a given node and accurately track the number of NUMA 5011 * tasks on the runqueues 5012 */ 5013 void sched_setnuma(struct task_struct *p, int nid) 5014 { 5015 struct rq *rq; 5016 unsigned long flags; 5017 bool queued, running; 5018 5019 rq = task_rq_lock(p, &flags); 5020 queued = task_on_rq_queued(p); 5021 running = task_current(rq, p); 5022 5023 if (queued) 5024 dequeue_task(rq, p, 0); 5025 if (running) 5026 put_prev_task(rq, p); 5027 5028 p->numa_preferred_nid = nid; 5029 5030 if (running) 5031 p->sched_class->set_curr_task(rq); 5032 if (queued) 5033 enqueue_task(rq, p, 0); 5034 task_rq_unlock(rq, p, &flags); 5035 } 5036 #endif /* CONFIG_NUMA_BALANCING */ 5037 5038 #ifdef CONFIG_HOTPLUG_CPU 5039 /* 5040 * Ensures that the idle task is using init_mm right before its cpu goes 5041 * offline. 5042 */ 5043 void idle_task_exit(void) 5044 { 5045 struct mm_struct *mm = current->active_mm; 5046 5047 BUG_ON(cpu_online(smp_processor_id())); 5048 5049 if (mm != &init_mm) { 5050 switch_mm(mm, &init_mm, current); 5051 finish_arch_post_lock_switch(); 5052 } 5053 mmdrop(mm); 5054 } 5055 5056 /* 5057 * Since this CPU is going 'away' for a while, fold any nr_active delta 5058 * we might have. Assumes we're called after migrate_tasks() so that the 5059 * nr_active count is stable. 5060 * 5061 * Also see the comment "Global load-average calculations". 5062 */ 5063 static void calc_load_migrate(struct rq *rq) 5064 { 5065 long delta = calc_load_fold_active(rq); 5066 if (delta) 5067 atomic_long_add(delta, &calc_load_tasks); 5068 } 5069 5070 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5071 { 5072 } 5073 5074 static const struct sched_class fake_sched_class = { 5075 .put_prev_task = put_prev_task_fake, 5076 }; 5077 5078 static struct task_struct fake_task = { 5079 /* 5080 * Avoid pull_{rt,dl}_task() 5081 */ 5082 .prio = MAX_PRIO + 1, 5083 .sched_class = &fake_sched_class, 5084 }; 5085 5086 /* 5087 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5088 * try_to_wake_up()->select_task_rq(). 5089 * 5090 * Called with rq->lock held even though we'er in stop_machine() and 5091 * there's no concurrency possible, we hold the required locks anyway 5092 * because of lock validation efforts. 5093 */ 5094 static void migrate_tasks(struct rq *dead_rq) 5095 { 5096 struct rq *rq = dead_rq; 5097 struct task_struct *next, *stop = rq->stop; 5098 int dest_cpu; 5099 5100 /* 5101 * Fudge the rq selection such that the below task selection loop 5102 * doesn't get stuck on the currently eligible stop task. 5103 * 5104 * We're currently inside stop_machine() and the rq is either stuck 5105 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5106 * either way we should never end up calling schedule() until we're 5107 * done here. 5108 */ 5109 rq->stop = NULL; 5110 5111 /* 5112 * put_prev_task() and pick_next_task() sched 5113 * class method both need to have an up-to-date 5114 * value of rq->clock[_task] 5115 */ 5116 update_rq_clock(rq); 5117 5118 for (;;) { 5119 /* 5120 * There's this thread running, bail when that's the only 5121 * remaining thread. 5122 */ 5123 if (rq->nr_running == 1) 5124 break; 5125 5126 /* 5127 * Ensure rq->lock covers the entire task selection 5128 * until the migration. 5129 */ 5130 lockdep_pin_lock(&rq->lock); 5131 next = pick_next_task(rq, &fake_task); 5132 BUG_ON(!next); 5133 next->sched_class->put_prev_task(rq, next); 5134 5135 /* Find suitable destination for @next, with force if needed. */ 5136 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5137 5138 lockdep_unpin_lock(&rq->lock); 5139 rq = __migrate_task(rq, next, dest_cpu); 5140 if (rq != dead_rq) { 5141 raw_spin_unlock(&rq->lock); 5142 rq = dead_rq; 5143 raw_spin_lock(&rq->lock); 5144 } 5145 } 5146 5147 rq->stop = stop; 5148 } 5149 #endif /* CONFIG_HOTPLUG_CPU */ 5150 5151 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5152 5153 static struct ctl_table sd_ctl_dir[] = { 5154 { 5155 .procname = "sched_domain", 5156 .mode = 0555, 5157 }, 5158 {} 5159 }; 5160 5161 static struct ctl_table sd_ctl_root[] = { 5162 { 5163 .procname = "kernel", 5164 .mode = 0555, 5165 .child = sd_ctl_dir, 5166 }, 5167 {} 5168 }; 5169 5170 static struct ctl_table *sd_alloc_ctl_entry(int n) 5171 { 5172 struct ctl_table *entry = 5173 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5174 5175 return entry; 5176 } 5177 5178 static void sd_free_ctl_entry(struct ctl_table **tablep) 5179 { 5180 struct ctl_table *entry; 5181 5182 /* 5183 * In the intermediate directories, both the child directory and 5184 * procname are dynamically allocated and could fail but the mode 5185 * will always be set. In the lowest directory the names are 5186 * static strings and all have proc handlers. 5187 */ 5188 for (entry = *tablep; entry->mode; entry++) { 5189 if (entry->child) 5190 sd_free_ctl_entry(&entry->child); 5191 if (entry->proc_handler == NULL) 5192 kfree(entry->procname); 5193 } 5194 5195 kfree(*tablep); 5196 *tablep = NULL; 5197 } 5198 5199 static int min_load_idx = 0; 5200 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5201 5202 static void 5203 set_table_entry(struct ctl_table *entry, 5204 const char *procname, void *data, int maxlen, 5205 umode_t mode, proc_handler *proc_handler, 5206 bool load_idx) 5207 { 5208 entry->procname = procname; 5209 entry->data = data; 5210 entry->maxlen = maxlen; 5211 entry->mode = mode; 5212 entry->proc_handler = proc_handler; 5213 5214 if (load_idx) { 5215 entry->extra1 = &min_load_idx; 5216 entry->extra2 = &max_load_idx; 5217 } 5218 } 5219 5220 static struct ctl_table * 5221 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5222 { 5223 struct ctl_table *table = sd_alloc_ctl_entry(14); 5224 5225 if (table == NULL) 5226 return NULL; 5227 5228 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5229 sizeof(long), 0644, proc_doulongvec_minmax, false); 5230 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5231 sizeof(long), 0644, proc_doulongvec_minmax, false); 5232 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5233 sizeof(int), 0644, proc_dointvec_minmax, true); 5234 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5235 sizeof(int), 0644, proc_dointvec_minmax, true); 5236 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5237 sizeof(int), 0644, proc_dointvec_minmax, true); 5238 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5239 sizeof(int), 0644, proc_dointvec_minmax, true); 5240 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5241 sizeof(int), 0644, proc_dointvec_minmax, true); 5242 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5243 sizeof(int), 0644, proc_dointvec_minmax, false); 5244 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5245 sizeof(int), 0644, proc_dointvec_minmax, false); 5246 set_table_entry(&table[9], "cache_nice_tries", 5247 &sd->cache_nice_tries, 5248 sizeof(int), 0644, proc_dointvec_minmax, false); 5249 set_table_entry(&table[10], "flags", &sd->flags, 5250 sizeof(int), 0644, proc_dointvec_minmax, false); 5251 set_table_entry(&table[11], "max_newidle_lb_cost", 5252 &sd->max_newidle_lb_cost, 5253 sizeof(long), 0644, proc_doulongvec_minmax, false); 5254 set_table_entry(&table[12], "name", sd->name, 5255 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5256 /* &table[13] is terminator */ 5257 5258 return table; 5259 } 5260 5261 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5262 { 5263 struct ctl_table *entry, *table; 5264 struct sched_domain *sd; 5265 int domain_num = 0, i; 5266 char buf[32]; 5267 5268 for_each_domain(cpu, sd) 5269 domain_num++; 5270 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5271 if (table == NULL) 5272 return NULL; 5273 5274 i = 0; 5275 for_each_domain(cpu, sd) { 5276 snprintf(buf, 32, "domain%d", i); 5277 entry->procname = kstrdup(buf, GFP_KERNEL); 5278 entry->mode = 0555; 5279 entry->child = sd_alloc_ctl_domain_table(sd); 5280 entry++; 5281 i++; 5282 } 5283 return table; 5284 } 5285 5286 static struct ctl_table_header *sd_sysctl_header; 5287 static void register_sched_domain_sysctl(void) 5288 { 5289 int i, cpu_num = num_possible_cpus(); 5290 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5291 char buf[32]; 5292 5293 WARN_ON(sd_ctl_dir[0].child); 5294 sd_ctl_dir[0].child = entry; 5295 5296 if (entry == NULL) 5297 return; 5298 5299 for_each_possible_cpu(i) { 5300 snprintf(buf, 32, "cpu%d", i); 5301 entry->procname = kstrdup(buf, GFP_KERNEL); 5302 entry->mode = 0555; 5303 entry->child = sd_alloc_ctl_cpu_table(i); 5304 entry++; 5305 } 5306 5307 WARN_ON(sd_sysctl_header); 5308 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5309 } 5310 5311 /* may be called multiple times per register */ 5312 static void unregister_sched_domain_sysctl(void) 5313 { 5314 if (sd_sysctl_header) 5315 unregister_sysctl_table(sd_sysctl_header); 5316 sd_sysctl_header = NULL; 5317 if (sd_ctl_dir[0].child) 5318 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5319 } 5320 #else 5321 static void register_sched_domain_sysctl(void) 5322 { 5323 } 5324 static void unregister_sched_domain_sysctl(void) 5325 { 5326 } 5327 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */ 5328 5329 static void set_rq_online(struct rq *rq) 5330 { 5331 if (!rq->online) { 5332 const struct sched_class *class; 5333 5334 cpumask_set_cpu(rq->cpu, rq->rd->online); 5335 rq->online = 1; 5336 5337 for_each_class(class) { 5338 if (class->rq_online) 5339 class->rq_online(rq); 5340 } 5341 } 5342 } 5343 5344 static void set_rq_offline(struct rq *rq) 5345 { 5346 if (rq->online) { 5347 const struct sched_class *class; 5348 5349 for_each_class(class) { 5350 if (class->rq_offline) 5351 class->rq_offline(rq); 5352 } 5353 5354 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5355 rq->online = 0; 5356 } 5357 } 5358 5359 /* 5360 * migration_call - callback that gets triggered when a CPU is added. 5361 * Here we can start up the necessary migration thread for the new CPU. 5362 */ 5363 static int 5364 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5365 { 5366 int cpu = (long)hcpu; 5367 unsigned long flags; 5368 struct rq *rq = cpu_rq(cpu); 5369 5370 switch (action & ~CPU_TASKS_FROZEN) { 5371 5372 case CPU_UP_PREPARE: 5373 rq->calc_load_update = calc_load_update; 5374 break; 5375 5376 case CPU_ONLINE: 5377 /* Update our root-domain */ 5378 raw_spin_lock_irqsave(&rq->lock, flags); 5379 if (rq->rd) { 5380 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5381 5382 set_rq_online(rq); 5383 } 5384 raw_spin_unlock_irqrestore(&rq->lock, flags); 5385 break; 5386 5387 #ifdef CONFIG_HOTPLUG_CPU 5388 case CPU_DYING: 5389 sched_ttwu_pending(); 5390 /* Update our root-domain */ 5391 raw_spin_lock_irqsave(&rq->lock, flags); 5392 if (rq->rd) { 5393 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5394 set_rq_offline(rq); 5395 } 5396 migrate_tasks(rq); 5397 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5398 raw_spin_unlock_irqrestore(&rq->lock, flags); 5399 break; 5400 5401 case CPU_DEAD: 5402 calc_load_migrate(rq); 5403 break; 5404 #endif 5405 } 5406 5407 update_max_interval(); 5408 5409 return NOTIFY_OK; 5410 } 5411 5412 /* 5413 * Register at high priority so that task migration (migrate_all_tasks) 5414 * happens before everything else. This has to be lower priority than 5415 * the notifier in the perf_event subsystem, though. 5416 */ 5417 static struct notifier_block migration_notifier = { 5418 .notifier_call = migration_call, 5419 .priority = CPU_PRI_MIGRATION, 5420 }; 5421 5422 static void set_cpu_rq_start_time(void) 5423 { 5424 int cpu = smp_processor_id(); 5425 struct rq *rq = cpu_rq(cpu); 5426 rq->age_stamp = sched_clock_cpu(cpu); 5427 } 5428 5429 static int sched_cpu_active(struct notifier_block *nfb, 5430 unsigned long action, void *hcpu) 5431 { 5432 switch (action & ~CPU_TASKS_FROZEN) { 5433 case CPU_STARTING: 5434 set_cpu_rq_start_time(); 5435 return NOTIFY_OK; 5436 case CPU_DOWN_FAILED: 5437 set_cpu_active((long)hcpu, true); 5438 return NOTIFY_OK; 5439 default: 5440 return NOTIFY_DONE; 5441 } 5442 } 5443 5444 static int sched_cpu_inactive(struct notifier_block *nfb, 5445 unsigned long action, void *hcpu) 5446 { 5447 switch (action & ~CPU_TASKS_FROZEN) { 5448 case CPU_DOWN_PREPARE: 5449 set_cpu_active((long)hcpu, false); 5450 return NOTIFY_OK; 5451 default: 5452 return NOTIFY_DONE; 5453 } 5454 } 5455 5456 static int __init migration_init(void) 5457 { 5458 void *cpu = (void *)(long)smp_processor_id(); 5459 int err; 5460 5461 /* Initialize migration for the boot CPU */ 5462 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5463 BUG_ON(err == NOTIFY_BAD); 5464 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5465 register_cpu_notifier(&migration_notifier); 5466 5467 /* Register cpu active notifiers */ 5468 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5469 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5470 5471 return 0; 5472 } 5473 early_initcall(migration_init); 5474 5475 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5476 5477 #ifdef CONFIG_SCHED_DEBUG 5478 5479 static __read_mostly int sched_debug_enabled; 5480 5481 static int __init sched_debug_setup(char *str) 5482 { 5483 sched_debug_enabled = 1; 5484 5485 return 0; 5486 } 5487 early_param("sched_debug", sched_debug_setup); 5488 5489 static inline bool sched_debug(void) 5490 { 5491 return sched_debug_enabled; 5492 } 5493 5494 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5495 struct cpumask *groupmask) 5496 { 5497 struct sched_group *group = sd->groups; 5498 5499 cpumask_clear(groupmask); 5500 5501 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5502 5503 if (!(sd->flags & SD_LOAD_BALANCE)) { 5504 printk("does not load-balance\n"); 5505 if (sd->parent) 5506 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5507 " has parent"); 5508 return -1; 5509 } 5510 5511 printk(KERN_CONT "span %*pbl level %s\n", 5512 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5513 5514 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5515 printk(KERN_ERR "ERROR: domain->span does not contain " 5516 "CPU%d\n", cpu); 5517 } 5518 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5519 printk(KERN_ERR "ERROR: domain->groups does not contain" 5520 " CPU%d\n", cpu); 5521 } 5522 5523 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5524 do { 5525 if (!group) { 5526 printk("\n"); 5527 printk(KERN_ERR "ERROR: group is NULL\n"); 5528 break; 5529 } 5530 5531 if (!cpumask_weight(sched_group_cpus(group))) { 5532 printk(KERN_CONT "\n"); 5533 printk(KERN_ERR "ERROR: empty group\n"); 5534 break; 5535 } 5536 5537 if (!(sd->flags & SD_OVERLAP) && 5538 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5539 printk(KERN_CONT "\n"); 5540 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5541 break; 5542 } 5543 5544 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5545 5546 printk(KERN_CONT " %*pbl", 5547 cpumask_pr_args(sched_group_cpus(group))); 5548 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5549 printk(KERN_CONT " (cpu_capacity = %d)", 5550 group->sgc->capacity); 5551 } 5552 5553 group = group->next; 5554 } while (group != sd->groups); 5555 printk(KERN_CONT "\n"); 5556 5557 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5558 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5559 5560 if (sd->parent && 5561 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5562 printk(KERN_ERR "ERROR: parent span is not a superset " 5563 "of domain->span\n"); 5564 return 0; 5565 } 5566 5567 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5568 { 5569 int level = 0; 5570 5571 if (!sched_debug_enabled) 5572 return; 5573 5574 if (!sd) { 5575 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5576 return; 5577 } 5578 5579 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5580 5581 for (;;) { 5582 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5583 break; 5584 level++; 5585 sd = sd->parent; 5586 if (!sd) 5587 break; 5588 } 5589 } 5590 #else /* !CONFIG_SCHED_DEBUG */ 5591 # define sched_domain_debug(sd, cpu) do { } while (0) 5592 static inline bool sched_debug(void) 5593 { 5594 return false; 5595 } 5596 #endif /* CONFIG_SCHED_DEBUG */ 5597 5598 static int sd_degenerate(struct sched_domain *sd) 5599 { 5600 if (cpumask_weight(sched_domain_span(sd)) == 1) 5601 return 1; 5602 5603 /* Following flags need at least 2 groups */ 5604 if (sd->flags & (SD_LOAD_BALANCE | 5605 SD_BALANCE_NEWIDLE | 5606 SD_BALANCE_FORK | 5607 SD_BALANCE_EXEC | 5608 SD_SHARE_CPUCAPACITY | 5609 SD_SHARE_PKG_RESOURCES | 5610 SD_SHARE_POWERDOMAIN)) { 5611 if (sd->groups != sd->groups->next) 5612 return 0; 5613 } 5614 5615 /* Following flags don't use groups */ 5616 if (sd->flags & (SD_WAKE_AFFINE)) 5617 return 0; 5618 5619 return 1; 5620 } 5621 5622 static int 5623 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5624 { 5625 unsigned long cflags = sd->flags, pflags = parent->flags; 5626 5627 if (sd_degenerate(parent)) 5628 return 1; 5629 5630 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5631 return 0; 5632 5633 /* Flags needing groups don't count if only 1 group in parent */ 5634 if (parent->groups == parent->groups->next) { 5635 pflags &= ~(SD_LOAD_BALANCE | 5636 SD_BALANCE_NEWIDLE | 5637 SD_BALANCE_FORK | 5638 SD_BALANCE_EXEC | 5639 SD_SHARE_CPUCAPACITY | 5640 SD_SHARE_PKG_RESOURCES | 5641 SD_PREFER_SIBLING | 5642 SD_SHARE_POWERDOMAIN); 5643 if (nr_node_ids == 1) 5644 pflags &= ~SD_SERIALIZE; 5645 } 5646 if (~cflags & pflags) 5647 return 0; 5648 5649 return 1; 5650 } 5651 5652 static void free_rootdomain(struct rcu_head *rcu) 5653 { 5654 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5655 5656 cpupri_cleanup(&rd->cpupri); 5657 cpudl_cleanup(&rd->cpudl); 5658 free_cpumask_var(rd->dlo_mask); 5659 free_cpumask_var(rd->rto_mask); 5660 free_cpumask_var(rd->online); 5661 free_cpumask_var(rd->span); 5662 kfree(rd); 5663 } 5664 5665 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5666 { 5667 struct root_domain *old_rd = NULL; 5668 unsigned long flags; 5669 5670 raw_spin_lock_irqsave(&rq->lock, flags); 5671 5672 if (rq->rd) { 5673 old_rd = rq->rd; 5674 5675 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5676 set_rq_offline(rq); 5677 5678 cpumask_clear_cpu(rq->cpu, old_rd->span); 5679 5680 /* 5681 * If we dont want to free the old_rd yet then 5682 * set old_rd to NULL to skip the freeing later 5683 * in this function: 5684 */ 5685 if (!atomic_dec_and_test(&old_rd->refcount)) 5686 old_rd = NULL; 5687 } 5688 5689 atomic_inc(&rd->refcount); 5690 rq->rd = rd; 5691 5692 cpumask_set_cpu(rq->cpu, rd->span); 5693 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5694 set_rq_online(rq); 5695 5696 raw_spin_unlock_irqrestore(&rq->lock, flags); 5697 5698 if (old_rd) 5699 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5700 } 5701 5702 static int init_rootdomain(struct root_domain *rd) 5703 { 5704 memset(rd, 0, sizeof(*rd)); 5705 5706 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5707 goto out; 5708 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5709 goto free_span; 5710 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5711 goto free_online; 5712 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5713 goto free_dlo_mask; 5714 5715 init_dl_bw(&rd->dl_bw); 5716 if (cpudl_init(&rd->cpudl) != 0) 5717 goto free_dlo_mask; 5718 5719 if (cpupri_init(&rd->cpupri) != 0) 5720 goto free_rto_mask; 5721 return 0; 5722 5723 free_rto_mask: 5724 free_cpumask_var(rd->rto_mask); 5725 free_dlo_mask: 5726 free_cpumask_var(rd->dlo_mask); 5727 free_online: 5728 free_cpumask_var(rd->online); 5729 free_span: 5730 free_cpumask_var(rd->span); 5731 out: 5732 return -ENOMEM; 5733 } 5734 5735 /* 5736 * By default the system creates a single root-domain with all cpus as 5737 * members (mimicking the global state we have today). 5738 */ 5739 struct root_domain def_root_domain; 5740 5741 static void init_defrootdomain(void) 5742 { 5743 init_rootdomain(&def_root_domain); 5744 5745 atomic_set(&def_root_domain.refcount, 1); 5746 } 5747 5748 static struct root_domain *alloc_rootdomain(void) 5749 { 5750 struct root_domain *rd; 5751 5752 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5753 if (!rd) 5754 return NULL; 5755 5756 if (init_rootdomain(rd) != 0) { 5757 kfree(rd); 5758 return NULL; 5759 } 5760 5761 return rd; 5762 } 5763 5764 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5765 { 5766 struct sched_group *tmp, *first; 5767 5768 if (!sg) 5769 return; 5770 5771 first = sg; 5772 do { 5773 tmp = sg->next; 5774 5775 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5776 kfree(sg->sgc); 5777 5778 kfree(sg); 5779 sg = tmp; 5780 } while (sg != first); 5781 } 5782 5783 static void free_sched_domain(struct rcu_head *rcu) 5784 { 5785 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5786 5787 /* 5788 * If its an overlapping domain it has private groups, iterate and 5789 * nuke them all. 5790 */ 5791 if (sd->flags & SD_OVERLAP) { 5792 free_sched_groups(sd->groups, 1); 5793 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5794 kfree(sd->groups->sgc); 5795 kfree(sd->groups); 5796 } 5797 kfree(sd); 5798 } 5799 5800 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5801 { 5802 call_rcu(&sd->rcu, free_sched_domain); 5803 } 5804 5805 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5806 { 5807 for (; sd; sd = sd->parent) 5808 destroy_sched_domain(sd, cpu); 5809 } 5810 5811 /* 5812 * Keep a special pointer to the highest sched_domain that has 5813 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5814 * allows us to avoid some pointer chasing select_idle_sibling(). 5815 * 5816 * Also keep a unique ID per domain (we use the first cpu number in 5817 * the cpumask of the domain), this allows us to quickly tell if 5818 * two cpus are in the same cache domain, see cpus_share_cache(). 5819 */ 5820 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5821 DEFINE_PER_CPU(int, sd_llc_size); 5822 DEFINE_PER_CPU(int, sd_llc_id); 5823 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5824 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5825 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5826 5827 static void update_top_cache_domain(int cpu) 5828 { 5829 struct sched_domain *sd; 5830 struct sched_domain *busy_sd = NULL; 5831 int id = cpu; 5832 int size = 1; 5833 5834 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5835 if (sd) { 5836 id = cpumask_first(sched_domain_span(sd)); 5837 size = cpumask_weight(sched_domain_span(sd)); 5838 busy_sd = sd->parent; /* sd_busy */ 5839 } 5840 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5841 5842 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5843 per_cpu(sd_llc_size, cpu) = size; 5844 per_cpu(sd_llc_id, cpu) = id; 5845 5846 sd = lowest_flag_domain(cpu, SD_NUMA); 5847 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5848 5849 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5850 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5851 } 5852 5853 /* 5854 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5855 * hold the hotplug lock. 5856 */ 5857 static void 5858 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5859 { 5860 struct rq *rq = cpu_rq(cpu); 5861 struct sched_domain *tmp; 5862 5863 /* Remove the sched domains which do not contribute to scheduling. */ 5864 for (tmp = sd; tmp; ) { 5865 struct sched_domain *parent = tmp->parent; 5866 if (!parent) 5867 break; 5868 5869 if (sd_parent_degenerate(tmp, parent)) { 5870 tmp->parent = parent->parent; 5871 if (parent->parent) 5872 parent->parent->child = tmp; 5873 /* 5874 * Transfer SD_PREFER_SIBLING down in case of a 5875 * degenerate parent; the spans match for this 5876 * so the property transfers. 5877 */ 5878 if (parent->flags & SD_PREFER_SIBLING) 5879 tmp->flags |= SD_PREFER_SIBLING; 5880 destroy_sched_domain(parent, cpu); 5881 } else 5882 tmp = tmp->parent; 5883 } 5884 5885 if (sd && sd_degenerate(sd)) { 5886 tmp = sd; 5887 sd = sd->parent; 5888 destroy_sched_domain(tmp, cpu); 5889 if (sd) 5890 sd->child = NULL; 5891 } 5892 5893 sched_domain_debug(sd, cpu); 5894 5895 rq_attach_root(rq, rd); 5896 tmp = rq->sd; 5897 rcu_assign_pointer(rq->sd, sd); 5898 destroy_sched_domains(tmp, cpu); 5899 5900 update_top_cache_domain(cpu); 5901 } 5902 5903 /* Setup the mask of cpus configured for isolated domains */ 5904 static int __init isolated_cpu_setup(char *str) 5905 { 5906 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5907 cpulist_parse(str, cpu_isolated_map); 5908 return 1; 5909 } 5910 5911 __setup("isolcpus=", isolated_cpu_setup); 5912 5913 struct s_data { 5914 struct sched_domain ** __percpu sd; 5915 struct root_domain *rd; 5916 }; 5917 5918 enum s_alloc { 5919 sa_rootdomain, 5920 sa_sd, 5921 sa_sd_storage, 5922 sa_none, 5923 }; 5924 5925 /* 5926 * Build an iteration mask that can exclude certain CPUs from the upwards 5927 * domain traversal. 5928 * 5929 * Asymmetric node setups can result in situations where the domain tree is of 5930 * unequal depth, make sure to skip domains that already cover the entire 5931 * range. 5932 * 5933 * In that case build_sched_domains() will have terminated the iteration early 5934 * and our sibling sd spans will be empty. Domains should always include the 5935 * cpu they're built on, so check that. 5936 * 5937 */ 5938 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5939 { 5940 const struct cpumask *span = sched_domain_span(sd); 5941 struct sd_data *sdd = sd->private; 5942 struct sched_domain *sibling; 5943 int i; 5944 5945 for_each_cpu(i, span) { 5946 sibling = *per_cpu_ptr(sdd->sd, i); 5947 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5948 continue; 5949 5950 cpumask_set_cpu(i, sched_group_mask(sg)); 5951 } 5952 } 5953 5954 /* 5955 * Return the canonical balance cpu for this group, this is the first cpu 5956 * of this group that's also in the iteration mask. 5957 */ 5958 int group_balance_cpu(struct sched_group *sg) 5959 { 5960 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5961 } 5962 5963 static int 5964 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5965 { 5966 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5967 const struct cpumask *span = sched_domain_span(sd); 5968 struct cpumask *covered = sched_domains_tmpmask; 5969 struct sd_data *sdd = sd->private; 5970 struct sched_domain *sibling; 5971 int i; 5972 5973 cpumask_clear(covered); 5974 5975 for_each_cpu(i, span) { 5976 struct cpumask *sg_span; 5977 5978 if (cpumask_test_cpu(i, covered)) 5979 continue; 5980 5981 sibling = *per_cpu_ptr(sdd->sd, i); 5982 5983 /* See the comment near build_group_mask(). */ 5984 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5985 continue; 5986 5987 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5988 GFP_KERNEL, cpu_to_node(cpu)); 5989 5990 if (!sg) 5991 goto fail; 5992 5993 sg_span = sched_group_cpus(sg); 5994 if (sibling->child) 5995 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 5996 else 5997 cpumask_set_cpu(i, sg_span); 5998 5999 cpumask_or(covered, covered, sg_span); 6000 6001 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 6002 if (atomic_inc_return(&sg->sgc->ref) == 1) 6003 build_group_mask(sd, sg); 6004 6005 /* 6006 * Initialize sgc->capacity such that even if we mess up the 6007 * domains and no possible iteration will get us here, we won't 6008 * die on a /0 trap. 6009 */ 6010 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 6011 6012 /* 6013 * Make sure the first group of this domain contains the 6014 * canonical balance cpu. Otherwise the sched_domain iteration 6015 * breaks. See update_sg_lb_stats(). 6016 */ 6017 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 6018 group_balance_cpu(sg) == cpu) 6019 groups = sg; 6020 6021 if (!first) 6022 first = sg; 6023 if (last) 6024 last->next = sg; 6025 last = sg; 6026 last->next = first; 6027 } 6028 sd->groups = groups; 6029 6030 return 0; 6031 6032 fail: 6033 free_sched_groups(first, 0); 6034 6035 return -ENOMEM; 6036 } 6037 6038 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6039 { 6040 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6041 struct sched_domain *child = sd->child; 6042 6043 if (child) 6044 cpu = cpumask_first(sched_domain_span(child)); 6045 6046 if (sg) { 6047 *sg = *per_cpu_ptr(sdd->sg, cpu); 6048 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 6049 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 6050 } 6051 6052 return cpu; 6053 } 6054 6055 /* 6056 * build_sched_groups will build a circular linked list of the groups 6057 * covered by the given span, and will set each group's ->cpumask correctly, 6058 * and ->cpu_capacity to 0. 6059 * 6060 * Assumes the sched_domain tree is fully constructed 6061 */ 6062 static int 6063 build_sched_groups(struct sched_domain *sd, int cpu) 6064 { 6065 struct sched_group *first = NULL, *last = NULL; 6066 struct sd_data *sdd = sd->private; 6067 const struct cpumask *span = sched_domain_span(sd); 6068 struct cpumask *covered; 6069 int i; 6070 6071 get_group(cpu, sdd, &sd->groups); 6072 atomic_inc(&sd->groups->ref); 6073 6074 if (cpu != cpumask_first(span)) 6075 return 0; 6076 6077 lockdep_assert_held(&sched_domains_mutex); 6078 covered = sched_domains_tmpmask; 6079 6080 cpumask_clear(covered); 6081 6082 for_each_cpu(i, span) { 6083 struct sched_group *sg; 6084 int group, j; 6085 6086 if (cpumask_test_cpu(i, covered)) 6087 continue; 6088 6089 group = get_group(i, sdd, &sg); 6090 cpumask_setall(sched_group_mask(sg)); 6091 6092 for_each_cpu(j, span) { 6093 if (get_group(j, sdd, NULL) != group) 6094 continue; 6095 6096 cpumask_set_cpu(j, covered); 6097 cpumask_set_cpu(j, sched_group_cpus(sg)); 6098 } 6099 6100 if (!first) 6101 first = sg; 6102 if (last) 6103 last->next = sg; 6104 last = sg; 6105 } 6106 last->next = first; 6107 6108 return 0; 6109 } 6110 6111 /* 6112 * Initialize sched groups cpu_capacity. 6113 * 6114 * cpu_capacity indicates the capacity of sched group, which is used while 6115 * distributing the load between different sched groups in a sched domain. 6116 * Typically cpu_capacity for all the groups in a sched domain will be same 6117 * unless there are asymmetries in the topology. If there are asymmetries, 6118 * group having more cpu_capacity will pickup more load compared to the 6119 * group having less cpu_capacity. 6120 */ 6121 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6122 { 6123 struct sched_group *sg = sd->groups; 6124 6125 WARN_ON(!sg); 6126 6127 do { 6128 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6129 sg = sg->next; 6130 } while (sg != sd->groups); 6131 6132 if (cpu != group_balance_cpu(sg)) 6133 return; 6134 6135 update_group_capacity(sd, cpu); 6136 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6137 } 6138 6139 /* 6140 * Initializers for schedule domains 6141 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6142 */ 6143 6144 static int default_relax_domain_level = -1; 6145 int sched_domain_level_max; 6146 6147 static int __init setup_relax_domain_level(char *str) 6148 { 6149 if (kstrtoint(str, 0, &default_relax_domain_level)) 6150 pr_warn("Unable to set relax_domain_level\n"); 6151 6152 return 1; 6153 } 6154 __setup("relax_domain_level=", setup_relax_domain_level); 6155 6156 static void set_domain_attribute(struct sched_domain *sd, 6157 struct sched_domain_attr *attr) 6158 { 6159 int request; 6160 6161 if (!attr || attr->relax_domain_level < 0) { 6162 if (default_relax_domain_level < 0) 6163 return; 6164 else 6165 request = default_relax_domain_level; 6166 } else 6167 request = attr->relax_domain_level; 6168 if (request < sd->level) { 6169 /* turn off idle balance on this domain */ 6170 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6171 } else { 6172 /* turn on idle balance on this domain */ 6173 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6174 } 6175 } 6176 6177 static void __sdt_free(const struct cpumask *cpu_map); 6178 static int __sdt_alloc(const struct cpumask *cpu_map); 6179 6180 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6181 const struct cpumask *cpu_map) 6182 { 6183 switch (what) { 6184 case sa_rootdomain: 6185 if (!atomic_read(&d->rd->refcount)) 6186 free_rootdomain(&d->rd->rcu); /* fall through */ 6187 case sa_sd: 6188 free_percpu(d->sd); /* fall through */ 6189 case sa_sd_storage: 6190 __sdt_free(cpu_map); /* fall through */ 6191 case sa_none: 6192 break; 6193 } 6194 } 6195 6196 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6197 const struct cpumask *cpu_map) 6198 { 6199 memset(d, 0, sizeof(*d)); 6200 6201 if (__sdt_alloc(cpu_map)) 6202 return sa_sd_storage; 6203 d->sd = alloc_percpu(struct sched_domain *); 6204 if (!d->sd) 6205 return sa_sd_storage; 6206 d->rd = alloc_rootdomain(); 6207 if (!d->rd) 6208 return sa_sd; 6209 return sa_rootdomain; 6210 } 6211 6212 /* 6213 * NULL the sd_data elements we've used to build the sched_domain and 6214 * sched_group structure so that the subsequent __free_domain_allocs() 6215 * will not free the data we're using. 6216 */ 6217 static void claim_allocations(int cpu, struct sched_domain *sd) 6218 { 6219 struct sd_data *sdd = sd->private; 6220 6221 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6222 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6223 6224 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6225 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6226 6227 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6228 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6229 } 6230 6231 #ifdef CONFIG_NUMA 6232 static int sched_domains_numa_levels; 6233 enum numa_topology_type sched_numa_topology_type; 6234 static int *sched_domains_numa_distance; 6235 int sched_max_numa_distance; 6236 static struct cpumask ***sched_domains_numa_masks; 6237 static int sched_domains_curr_level; 6238 #endif 6239 6240 /* 6241 * SD_flags allowed in topology descriptions. 6242 * 6243 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6244 * SD_SHARE_PKG_RESOURCES - describes shared caches 6245 * SD_NUMA - describes NUMA topologies 6246 * SD_SHARE_POWERDOMAIN - describes shared power domain 6247 * 6248 * Odd one out: 6249 * SD_ASYM_PACKING - describes SMT quirks 6250 */ 6251 #define TOPOLOGY_SD_FLAGS \ 6252 (SD_SHARE_CPUCAPACITY | \ 6253 SD_SHARE_PKG_RESOURCES | \ 6254 SD_NUMA | \ 6255 SD_ASYM_PACKING | \ 6256 SD_SHARE_POWERDOMAIN) 6257 6258 static struct sched_domain * 6259 sd_init(struct sched_domain_topology_level *tl, int cpu) 6260 { 6261 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6262 int sd_weight, sd_flags = 0; 6263 6264 #ifdef CONFIG_NUMA 6265 /* 6266 * Ugly hack to pass state to sd_numa_mask()... 6267 */ 6268 sched_domains_curr_level = tl->numa_level; 6269 #endif 6270 6271 sd_weight = cpumask_weight(tl->mask(cpu)); 6272 6273 if (tl->sd_flags) 6274 sd_flags = (*tl->sd_flags)(); 6275 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6276 "wrong sd_flags in topology description\n")) 6277 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6278 6279 *sd = (struct sched_domain){ 6280 .min_interval = sd_weight, 6281 .max_interval = 2*sd_weight, 6282 .busy_factor = 32, 6283 .imbalance_pct = 125, 6284 6285 .cache_nice_tries = 0, 6286 .busy_idx = 0, 6287 .idle_idx = 0, 6288 .newidle_idx = 0, 6289 .wake_idx = 0, 6290 .forkexec_idx = 0, 6291 6292 .flags = 1*SD_LOAD_BALANCE 6293 | 1*SD_BALANCE_NEWIDLE 6294 | 1*SD_BALANCE_EXEC 6295 | 1*SD_BALANCE_FORK 6296 | 0*SD_BALANCE_WAKE 6297 | 1*SD_WAKE_AFFINE 6298 | 0*SD_SHARE_CPUCAPACITY 6299 | 0*SD_SHARE_PKG_RESOURCES 6300 | 0*SD_SERIALIZE 6301 | 0*SD_PREFER_SIBLING 6302 | 0*SD_NUMA 6303 | sd_flags 6304 , 6305 6306 .last_balance = jiffies, 6307 .balance_interval = sd_weight, 6308 .smt_gain = 0, 6309 .max_newidle_lb_cost = 0, 6310 .next_decay_max_lb_cost = jiffies, 6311 #ifdef CONFIG_SCHED_DEBUG 6312 .name = tl->name, 6313 #endif 6314 }; 6315 6316 /* 6317 * Convert topological properties into behaviour. 6318 */ 6319 6320 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6321 sd->flags |= SD_PREFER_SIBLING; 6322 sd->imbalance_pct = 110; 6323 sd->smt_gain = 1178; /* ~15% */ 6324 6325 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6326 sd->imbalance_pct = 117; 6327 sd->cache_nice_tries = 1; 6328 sd->busy_idx = 2; 6329 6330 #ifdef CONFIG_NUMA 6331 } else if (sd->flags & SD_NUMA) { 6332 sd->cache_nice_tries = 2; 6333 sd->busy_idx = 3; 6334 sd->idle_idx = 2; 6335 6336 sd->flags |= SD_SERIALIZE; 6337 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6338 sd->flags &= ~(SD_BALANCE_EXEC | 6339 SD_BALANCE_FORK | 6340 SD_WAKE_AFFINE); 6341 } 6342 6343 #endif 6344 } else { 6345 sd->flags |= SD_PREFER_SIBLING; 6346 sd->cache_nice_tries = 1; 6347 sd->busy_idx = 2; 6348 sd->idle_idx = 1; 6349 } 6350 6351 sd->private = &tl->data; 6352 6353 return sd; 6354 } 6355 6356 /* 6357 * Topology list, bottom-up. 6358 */ 6359 static struct sched_domain_topology_level default_topology[] = { 6360 #ifdef CONFIG_SCHED_SMT 6361 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6362 #endif 6363 #ifdef CONFIG_SCHED_MC 6364 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6365 #endif 6366 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6367 { NULL, }, 6368 }; 6369 6370 struct sched_domain_topology_level *sched_domain_topology = default_topology; 6371 6372 #define for_each_sd_topology(tl) \ 6373 for (tl = sched_domain_topology; tl->mask; tl++) 6374 6375 void set_sched_topology(struct sched_domain_topology_level *tl) 6376 { 6377 sched_domain_topology = tl; 6378 } 6379 6380 #ifdef CONFIG_NUMA 6381 6382 static const struct cpumask *sd_numa_mask(int cpu) 6383 { 6384 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6385 } 6386 6387 static void sched_numa_warn(const char *str) 6388 { 6389 static int done = false; 6390 int i,j; 6391 6392 if (done) 6393 return; 6394 6395 done = true; 6396 6397 printk(KERN_WARNING "ERROR: %s\n\n", str); 6398 6399 for (i = 0; i < nr_node_ids; i++) { 6400 printk(KERN_WARNING " "); 6401 for (j = 0; j < nr_node_ids; j++) 6402 printk(KERN_CONT "%02d ", node_distance(i,j)); 6403 printk(KERN_CONT "\n"); 6404 } 6405 printk(KERN_WARNING "\n"); 6406 } 6407 6408 bool find_numa_distance(int distance) 6409 { 6410 int i; 6411 6412 if (distance == node_distance(0, 0)) 6413 return true; 6414 6415 for (i = 0; i < sched_domains_numa_levels; i++) { 6416 if (sched_domains_numa_distance[i] == distance) 6417 return true; 6418 } 6419 6420 return false; 6421 } 6422 6423 /* 6424 * A system can have three types of NUMA topology: 6425 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6426 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6427 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6428 * 6429 * The difference between a glueless mesh topology and a backplane 6430 * topology lies in whether communication between not directly 6431 * connected nodes goes through intermediary nodes (where programs 6432 * could run), or through backplane controllers. This affects 6433 * placement of programs. 6434 * 6435 * The type of topology can be discerned with the following tests: 6436 * - If the maximum distance between any nodes is 1 hop, the system 6437 * is directly connected. 6438 * - If for two nodes A and B, located N > 1 hops away from each other, 6439 * there is an intermediary node C, which is < N hops away from both 6440 * nodes A and B, the system is a glueless mesh. 6441 */ 6442 static void init_numa_topology_type(void) 6443 { 6444 int a, b, c, n; 6445 6446 n = sched_max_numa_distance; 6447 6448 if (n <= 1) 6449 sched_numa_topology_type = NUMA_DIRECT; 6450 6451 for_each_online_node(a) { 6452 for_each_online_node(b) { 6453 /* Find two nodes furthest removed from each other. */ 6454 if (node_distance(a, b) < n) 6455 continue; 6456 6457 /* Is there an intermediary node between a and b? */ 6458 for_each_online_node(c) { 6459 if (node_distance(a, c) < n && 6460 node_distance(b, c) < n) { 6461 sched_numa_topology_type = 6462 NUMA_GLUELESS_MESH; 6463 return; 6464 } 6465 } 6466 6467 sched_numa_topology_type = NUMA_BACKPLANE; 6468 return; 6469 } 6470 } 6471 } 6472 6473 static void sched_init_numa(void) 6474 { 6475 int next_distance, curr_distance = node_distance(0, 0); 6476 struct sched_domain_topology_level *tl; 6477 int level = 0; 6478 int i, j, k; 6479 6480 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6481 if (!sched_domains_numa_distance) 6482 return; 6483 6484 /* 6485 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6486 * unique distances in the node_distance() table. 6487 * 6488 * Assumes node_distance(0,j) includes all distances in 6489 * node_distance(i,j) in order to avoid cubic time. 6490 */ 6491 next_distance = curr_distance; 6492 for (i = 0; i < nr_node_ids; i++) { 6493 for (j = 0; j < nr_node_ids; j++) { 6494 for (k = 0; k < nr_node_ids; k++) { 6495 int distance = node_distance(i, k); 6496 6497 if (distance > curr_distance && 6498 (distance < next_distance || 6499 next_distance == curr_distance)) 6500 next_distance = distance; 6501 6502 /* 6503 * While not a strong assumption it would be nice to know 6504 * about cases where if node A is connected to B, B is not 6505 * equally connected to A. 6506 */ 6507 if (sched_debug() && node_distance(k, i) != distance) 6508 sched_numa_warn("Node-distance not symmetric"); 6509 6510 if (sched_debug() && i && !find_numa_distance(distance)) 6511 sched_numa_warn("Node-0 not representative"); 6512 } 6513 if (next_distance != curr_distance) { 6514 sched_domains_numa_distance[level++] = next_distance; 6515 sched_domains_numa_levels = level; 6516 curr_distance = next_distance; 6517 } else break; 6518 } 6519 6520 /* 6521 * In case of sched_debug() we verify the above assumption. 6522 */ 6523 if (!sched_debug()) 6524 break; 6525 } 6526 6527 if (!level) 6528 return; 6529 6530 /* 6531 * 'level' contains the number of unique distances, excluding the 6532 * identity distance node_distance(i,i). 6533 * 6534 * The sched_domains_numa_distance[] array includes the actual distance 6535 * numbers. 6536 */ 6537 6538 /* 6539 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6540 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6541 * the array will contain less then 'level' members. This could be 6542 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6543 * in other functions. 6544 * 6545 * We reset it to 'level' at the end of this function. 6546 */ 6547 sched_domains_numa_levels = 0; 6548 6549 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6550 if (!sched_domains_numa_masks) 6551 return; 6552 6553 /* 6554 * Now for each level, construct a mask per node which contains all 6555 * cpus of nodes that are that many hops away from us. 6556 */ 6557 for (i = 0; i < level; i++) { 6558 sched_domains_numa_masks[i] = 6559 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6560 if (!sched_domains_numa_masks[i]) 6561 return; 6562 6563 for (j = 0; j < nr_node_ids; j++) { 6564 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6565 if (!mask) 6566 return; 6567 6568 sched_domains_numa_masks[i][j] = mask; 6569 6570 for (k = 0; k < nr_node_ids; k++) { 6571 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6572 continue; 6573 6574 cpumask_or(mask, mask, cpumask_of_node(k)); 6575 } 6576 } 6577 } 6578 6579 /* Compute default topology size */ 6580 for (i = 0; sched_domain_topology[i].mask; i++); 6581 6582 tl = kzalloc((i + level + 1) * 6583 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6584 if (!tl) 6585 return; 6586 6587 /* 6588 * Copy the default topology bits.. 6589 */ 6590 for (i = 0; sched_domain_topology[i].mask; i++) 6591 tl[i] = sched_domain_topology[i]; 6592 6593 /* 6594 * .. and append 'j' levels of NUMA goodness. 6595 */ 6596 for (j = 0; j < level; i++, j++) { 6597 tl[i] = (struct sched_domain_topology_level){ 6598 .mask = sd_numa_mask, 6599 .sd_flags = cpu_numa_flags, 6600 .flags = SDTL_OVERLAP, 6601 .numa_level = j, 6602 SD_INIT_NAME(NUMA) 6603 }; 6604 } 6605 6606 sched_domain_topology = tl; 6607 6608 sched_domains_numa_levels = level; 6609 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6610 6611 init_numa_topology_type(); 6612 } 6613 6614 static void sched_domains_numa_masks_set(int cpu) 6615 { 6616 int i, j; 6617 int node = cpu_to_node(cpu); 6618 6619 for (i = 0; i < sched_domains_numa_levels; i++) { 6620 for (j = 0; j < nr_node_ids; j++) { 6621 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6622 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6623 } 6624 } 6625 } 6626 6627 static void sched_domains_numa_masks_clear(int cpu) 6628 { 6629 int i, j; 6630 for (i = 0; i < sched_domains_numa_levels; i++) { 6631 for (j = 0; j < nr_node_ids; j++) 6632 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6633 } 6634 } 6635 6636 /* 6637 * Update sched_domains_numa_masks[level][node] array when new cpus 6638 * are onlined. 6639 */ 6640 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6641 unsigned long action, 6642 void *hcpu) 6643 { 6644 int cpu = (long)hcpu; 6645 6646 switch (action & ~CPU_TASKS_FROZEN) { 6647 case CPU_ONLINE: 6648 sched_domains_numa_masks_set(cpu); 6649 break; 6650 6651 case CPU_DEAD: 6652 sched_domains_numa_masks_clear(cpu); 6653 break; 6654 6655 default: 6656 return NOTIFY_DONE; 6657 } 6658 6659 return NOTIFY_OK; 6660 } 6661 #else 6662 static inline void sched_init_numa(void) 6663 { 6664 } 6665 6666 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6667 unsigned long action, 6668 void *hcpu) 6669 { 6670 return 0; 6671 } 6672 #endif /* CONFIG_NUMA */ 6673 6674 static int __sdt_alloc(const struct cpumask *cpu_map) 6675 { 6676 struct sched_domain_topology_level *tl; 6677 int j; 6678 6679 for_each_sd_topology(tl) { 6680 struct sd_data *sdd = &tl->data; 6681 6682 sdd->sd = alloc_percpu(struct sched_domain *); 6683 if (!sdd->sd) 6684 return -ENOMEM; 6685 6686 sdd->sg = alloc_percpu(struct sched_group *); 6687 if (!sdd->sg) 6688 return -ENOMEM; 6689 6690 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6691 if (!sdd->sgc) 6692 return -ENOMEM; 6693 6694 for_each_cpu(j, cpu_map) { 6695 struct sched_domain *sd; 6696 struct sched_group *sg; 6697 struct sched_group_capacity *sgc; 6698 6699 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6700 GFP_KERNEL, cpu_to_node(j)); 6701 if (!sd) 6702 return -ENOMEM; 6703 6704 *per_cpu_ptr(sdd->sd, j) = sd; 6705 6706 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6707 GFP_KERNEL, cpu_to_node(j)); 6708 if (!sg) 6709 return -ENOMEM; 6710 6711 sg->next = sg; 6712 6713 *per_cpu_ptr(sdd->sg, j) = sg; 6714 6715 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6716 GFP_KERNEL, cpu_to_node(j)); 6717 if (!sgc) 6718 return -ENOMEM; 6719 6720 *per_cpu_ptr(sdd->sgc, j) = sgc; 6721 } 6722 } 6723 6724 return 0; 6725 } 6726 6727 static void __sdt_free(const struct cpumask *cpu_map) 6728 { 6729 struct sched_domain_topology_level *tl; 6730 int j; 6731 6732 for_each_sd_topology(tl) { 6733 struct sd_data *sdd = &tl->data; 6734 6735 for_each_cpu(j, cpu_map) { 6736 struct sched_domain *sd; 6737 6738 if (sdd->sd) { 6739 sd = *per_cpu_ptr(sdd->sd, j); 6740 if (sd && (sd->flags & SD_OVERLAP)) 6741 free_sched_groups(sd->groups, 0); 6742 kfree(*per_cpu_ptr(sdd->sd, j)); 6743 } 6744 6745 if (sdd->sg) 6746 kfree(*per_cpu_ptr(sdd->sg, j)); 6747 if (sdd->sgc) 6748 kfree(*per_cpu_ptr(sdd->sgc, j)); 6749 } 6750 free_percpu(sdd->sd); 6751 sdd->sd = NULL; 6752 free_percpu(sdd->sg); 6753 sdd->sg = NULL; 6754 free_percpu(sdd->sgc); 6755 sdd->sgc = NULL; 6756 } 6757 } 6758 6759 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6760 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6761 struct sched_domain *child, int cpu) 6762 { 6763 struct sched_domain *sd = sd_init(tl, cpu); 6764 if (!sd) 6765 return child; 6766 6767 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6768 if (child) { 6769 sd->level = child->level + 1; 6770 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6771 child->parent = sd; 6772 sd->child = child; 6773 6774 if (!cpumask_subset(sched_domain_span(child), 6775 sched_domain_span(sd))) { 6776 pr_err("BUG: arch topology borken\n"); 6777 #ifdef CONFIG_SCHED_DEBUG 6778 pr_err(" the %s domain not a subset of the %s domain\n", 6779 child->name, sd->name); 6780 #endif 6781 /* Fixup, ensure @sd has at least @child cpus. */ 6782 cpumask_or(sched_domain_span(sd), 6783 sched_domain_span(sd), 6784 sched_domain_span(child)); 6785 } 6786 6787 } 6788 set_domain_attribute(sd, attr); 6789 6790 return sd; 6791 } 6792 6793 /* 6794 * Build sched domains for a given set of cpus and attach the sched domains 6795 * to the individual cpus 6796 */ 6797 static int build_sched_domains(const struct cpumask *cpu_map, 6798 struct sched_domain_attr *attr) 6799 { 6800 enum s_alloc alloc_state; 6801 struct sched_domain *sd; 6802 struct s_data d; 6803 int i, ret = -ENOMEM; 6804 6805 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6806 if (alloc_state != sa_rootdomain) 6807 goto error; 6808 6809 /* Set up domains for cpus specified by the cpu_map. */ 6810 for_each_cpu(i, cpu_map) { 6811 struct sched_domain_topology_level *tl; 6812 6813 sd = NULL; 6814 for_each_sd_topology(tl) { 6815 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6816 if (tl == sched_domain_topology) 6817 *per_cpu_ptr(d.sd, i) = sd; 6818 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6819 sd->flags |= SD_OVERLAP; 6820 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6821 break; 6822 } 6823 } 6824 6825 /* Build the groups for the domains */ 6826 for_each_cpu(i, cpu_map) { 6827 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6828 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6829 if (sd->flags & SD_OVERLAP) { 6830 if (build_overlap_sched_groups(sd, i)) 6831 goto error; 6832 } else { 6833 if (build_sched_groups(sd, i)) 6834 goto error; 6835 } 6836 } 6837 } 6838 6839 /* Calculate CPU capacity for physical packages and nodes */ 6840 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6841 if (!cpumask_test_cpu(i, cpu_map)) 6842 continue; 6843 6844 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6845 claim_allocations(i, sd); 6846 init_sched_groups_capacity(i, sd); 6847 } 6848 } 6849 6850 /* Attach the domains */ 6851 rcu_read_lock(); 6852 for_each_cpu(i, cpu_map) { 6853 sd = *per_cpu_ptr(d.sd, i); 6854 cpu_attach_domain(sd, d.rd, i); 6855 } 6856 rcu_read_unlock(); 6857 6858 ret = 0; 6859 error: 6860 __free_domain_allocs(&d, alloc_state, cpu_map); 6861 return ret; 6862 } 6863 6864 static cpumask_var_t *doms_cur; /* current sched domains */ 6865 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6866 static struct sched_domain_attr *dattr_cur; 6867 /* attribues of custom domains in 'doms_cur' */ 6868 6869 /* 6870 * Special case: If a kmalloc of a doms_cur partition (array of 6871 * cpumask) fails, then fallback to a single sched domain, 6872 * as determined by the single cpumask fallback_doms. 6873 */ 6874 static cpumask_var_t fallback_doms; 6875 6876 /* 6877 * arch_update_cpu_topology lets virtualized architectures update the 6878 * cpu core maps. It is supposed to return 1 if the topology changed 6879 * or 0 if it stayed the same. 6880 */ 6881 int __weak arch_update_cpu_topology(void) 6882 { 6883 return 0; 6884 } 6885 6886 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6887 { 6888 int i; 6889 cpumask_var_t *doms; 6890 6891 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6892 if (!doms) 6893 return NULL; 6894 for (i = 0; i < ndoms; i++) { 6895 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6896 free_sched_domains(doms, i); 6897 return NULL; 6898 } 6899 } 6900 return doms; 6901 } 6902 6903 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6904 { 6905 unsigned int i; 6906 for (i = 0; i < ndoms; i++) 6907 free_cpumask_var(doms[i]); 6908 kfree(doms); 6909 } 6910 6911 /* 6912 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6913 * For now this just excludes isolated cpus, but could be used to 6914 * exclude other special cases in the future. 6915 */ 6916 static int init_sched_domains(const struct cpumask *cpu_map) 6917 { 6918 int err; 6919 6920 arch_update_cpu_topology(); 6921 ndoms_cur = 1; 6922 doms_cur = alloc_sched_domains(ndoms_cur); 6923 if (!doms_cur) 6924 doms_cur = &fallback_doms; 6925 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6926 err = build_sched_domains(doms_cur[0], NULL); 6927 register_sched_domain_sysctl(); 6928 6929 return err; 6930 } 6931 6932 /* 6933 * Detach sched domains from a group of cpus specified in cpu_map 6934 * These cpus will now be attached to the NULL domain 6935 */ 6936 static void detach_destroy_domains(const struct cpumask *cpu_map) 6937 { 6938 int i; 6939 6940 rcu_read_lock(); 6941 for_each_cpu(i, cpu_map) 6942 cpu_attach_domain(NULL, &def_root_domain, i); 6943 rcu_read_unlock(); 6944 } 6945 6946 /* handle null as "default" */ 6947 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6948 struct sched_domain_attr *new, int idx_new) 6949 { 6950 struct sched_domain_attr tmp; 6951 6952 /* fast path */ 6953 if (!new && !cur) 6954 return 1; 6955 6956 tmp = SD_ATTR_INIT; 6957 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6958 new ? (new + idx_new) : &tmp, 6959 sizeof(struct sched_domain_attr)); 6960 } 6961 6962 /* 6963 * Partition sched domains as specified by the 'ndoms_new' 6964 * cpumasks in the array doms_new[] of cpumasks. This compares 6965 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6966 * It destroys each deleted domain and builds each new domain. 6967 * 6968 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6969 * The masks don't intersect (don't overlap.) We should setup one 6970 * sched domain for each mask. CPUs not in any of the cpumasks will 6971 * not be load balanced. If the same cpumask appears both in the 6972 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6973 * it as it is. 6974 * 6975 * The passed in 'doms_new' should be allocated using 6976 * alloc_sched_domains. This routine takes ownership of it and will 6977 * free_sched_domains it when done with it. If the caller failed the 6978 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6979 * and partition_sched_domains() will fallback to the single partition 6980 * 'fallback_doms', it also forces the domains to be rebuilt. 6981 * 6982 * If doms_new == NULL it will be replaced with cpu_online_mask. 6983 * ndoms_new == 0 is a special case for destroying existing domains, 6984 * and it will not create the default domain. 6985 * 6986 * Call with hotplug lock held 6987 */ 6988 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6989 struct sched_domain_attr *dattr_new) 6990 { 6991 int i, j, n; 6992 int new_topology; 6993 6994 mutex_lock(&sched_domains_mutex); 6995 6996 /* always unregister in case we don't destroy any domains */ 6997 unregister_sched_domain_sysctl(); 6998 6999 /* Let architecture update cpu core mappings. */ 7000 new_topology = arch_update_cpu_topology(); 7001 7002 n = doms_new ? ndoms_new : 0; 7003 7004 /* Destroy deleted domains */ 7005 for (i = 0; i < ndoms_cur; i++) { 7006 for (j = 0; j < n && !new_topology; j++) { 7007 if (cpumask_equal(doms_cur[i], doms_new[j]) 7008 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7009 goto match1; 7010 } 7011 /* no match - a current sched domain not in new doms_new[] */ 7012 detach_destroy_domains(doms_cur[i]); 7013 match1: 7014 ; 7015 } 7016 7017 n = ndoms_cur; 7018 if (doms_new == NULL) { 7019 n = 0; 7020 doms_new = &fallback_doms; 7021 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 7022 WARN_ON_ONCE(dattr_new); 7023 } 7024 7025 /* Build new domains */ 7026 for (i = 0; i < ndoms_new; i++) { 7027 for (j = 0; j < n && !new_topology; j++) { 7028 if (cpumask_equal(doms_new[i], doms_cur[j]) 7029 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7030 goto match2; 7031 } 7032 /* no match - add a new doms_new */ 7033 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 7034 match2: 7035 ; 7036 } 7037 7038 /* Remember the new sched domains */ 7039 if (doms_cur != &fallback_doms) 7040 free_sched_domains(doms_cur, ndoms_cur); 7041 kfree(dattr_cur); /* kfree(NULL) is safe */ 7042 doms_cur = doms_new; 7043 dattr_cur = dattr_new; 7044 ndoms_cur = ndoms_new; 7045 7046 register_sched_domain_sysctl(); 7047 7048 mutex_unlock(&sched_domains_mutex); 7049 } 7050 7051 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 7052 7053 /* 7054 * Update cpusets according to cpu_active mask. If cpusets are 7055 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7056 * around partition_sched_domains(). 7057 * 7058 * If we come here as part of a suspend/resume, don't touch cpusets because we 7059 * want to restore it back to its original state upon resume anyway. 7060 */ 7061 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 7062 void *hcpu) 7063 { 7064 switch (action) { 7065 case CPU_ONLINE_FROZEN: 7066 case CPU_DOWN_FAILED_FROZEN: 7067 7068 /* 7069 * num_cpus_frozen tracks how many CPUs are involved in suspend 7070 * resume sequence. As long as this is not the last online 7071 * operation in the resume sequence, just build a single sched 7072 * domain, ignoring cpusets. 7073 */ 7074 num_cpus_frozen--; 7075 if (likely(num_cpus_frozen)) { 7076 partition_sched_domains(1, NULL, NULL); 7077 break; 7078 } 7079 7080 /* 7081 * This is the last CPU online operation. So fall through and 7082 * restore the original sched domains by considering the 7083 * cpuset configurations. 7084 */ 7085 7086 case CPU_ONLINE: 7087 cpuset_update_active_cpus(true); 7088 break; 7089 default: 7090 return NOTIFY_DONE; 7091 } 7092 return NOTIFY_OK; 7093 } 7094 7095 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 7096 void *hcpu) 7097 { 7098 unsigned long flags; 7099 long cpu = (long)hcpu; 7100 struct dl_bw *dl_b; 7101 bool overflow; 7102 int cpus; 7103 7104 switch (action) { 7105 case CPU_DOWN_PREPARE: 7106 rcu_read_lock_sched(); 7107 dl_b = dl_bw_of(cpu); 7108 7109 raw_spin_lock_irqsave(&dl_b->lock, flags); 7110 cpus = dl_bw_cpus(cpu); 7111 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7112 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7113 7114 rcu_read_unlock_sched(); 7115 7116 if (overflow) 7117 return notifier_from_errno(-EBUSY); 7118 cpuset_update_active_cpus(false); 7119 break; 7120 case CPU_DOWN_PREPARE_FROZEN: 7121 num_cpus_frozen++; 7122 partition_sched_domains(1, NULL, NULL); 7123 break; 7124 default: 7125 return NOTIFY_DONE; 7126 } 7127 return NOTIFY_OK; 7128 } 7129 7130 void __init sched_init_smp(void) 7131 { 7132 cpumask_var_t non_isolated_cpus; 7133 7134 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7135 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7136 7137 /* nohz_full won't take effect without isolating the cpus. */ 7138 tick_nohz_full_add_cpus_to(cpu_isolated_map); 7139 7140 sched_init_numa(); 7141 7142 /* 7143 * There's no userspace yet to cause hotplug operations; hence all the 7144 * cpu masks are stable and all blatant races in the below code cannot 7145 * happen. 7146 */ 7147 mutex_lock(&sched_domains_mutex); 7148 init_sched_domains(cpu_active_mask); 7149 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7150 if (cpumask_empty(non_isolated_cpus)) 7151 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7152 mutex_unlock(&sched_domains_mutex); 7153 7154 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 7155 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7156 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7157 7158 init_hrtick(); 7159 7160 /* Move init over to a non-isolated CPU */ 7161 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7162 BUG(); 7163 sched_init_granularity(); 7164 free_cpumask_var(non_isolated_cpus); 7165 7166 init_sched_rt_class(); 7167 init_sched_dl_class(); 7168 } 7169 #else 7170 void __init sched_init_smp(void) 7171 { 7172 sched_init_granularity(); 7173 } 7174 #endif /* CONFIG_SMP */ 7175 7176 int in_sched_functions(unsigned long addr) 7177 { 7178 return in_lock_functions(addr) || 7179 (addr >= (unsigned long)__sched_text_start 7180 && addr < (unsigned long)__sched_text_end); 7181 } 7182 7183 #ifdef CONFIG_CGROUP_SCHED 7184 /* 7185 * Default task group. 7186 * Every task in system belongs to this group at bootup. 7187 */ 7188 struct task_group root_task_group; 7189 LIST_HEAD(task_groups); 7190 #endif 7191 7192 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7193 7194 void __init sched_init(void) 7195 { 7196 int i, j; 7197 unsigned long alloc_size = 0, ptr; 7198 7199 #ifdef CONFIG_FAIR_GROUP_SCHED 7200 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7201 #endif 7202 #ifdef CONFIG_RT_GROUP_SCHED 7203 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7204 #endif 7205 if (alloc_size) { 7206 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7207 7208 #ifdef CONFIG_FAIR_GROUP_SCHED 7209 root_task_group.se = (struct sched_entity **)ptr; 7210 ptr += nr_cpu_ids * sizeof(void **); 7211 7212 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7213 ptr += nr_cpu_ids * sizeof(void **); 7214 7215 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7216 #ifdef CONFIG_RT_GROUP_SCHED 7217 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7218 ptr += nr_cpu_ids * sizeof(void **); 7219 7220 root_task_group.rt_rq = (struct rt_rq **)ptr; 7221 ptr += nr_cpu_ids * sizeof(void **); 7222 7223 #endif /* CONFIG_RT_GROUP_SCHED */ 7224 } 7225 #ifdef CONFIG_CPUMASK_OFFSTACK 7226 for_each_possible_cpu(i) { 7227 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7228 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7229 } 7230 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7231 7232 init_rt_bandwidth(&def_rt_bandwidth, 7233 global_rt_period(), global_rt_runtime()); 7234 init_dl_bandwidth(&def_dl_bandwidth, 7235 global_rt_period(), global_rt_runtime()); 7236 7237 #ifdef CONFIG_SMP 7238 init_defrootdomain(); 7239 #endif 7240 7241 #ifdef CONFIG_RT_GROUP_SCHED 7242 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7243 global_rt_period(), global_rt_runtime()); 7244 #endif /* CONFIG_RT_GROUP_SCHED */ 7245 7246 #ifdef CONFIG_CGROUP_SCHED 7247 list_add(&root_task_group.list, &task_groups); 7248 INIT_LIST_HEAD(&root_task_group.children); 7249 INIT_LIST_HEAD(&root_task_group.siblings); 7250 autogroup_init(&init_task); 7251 7252 #endif /* CONFIG_CGROUP_SCHED */ 7253 7254 for_each_possible_cpu(i) { 7255 struct rq *rq; 7256 7257 rq = cpu_rq(i); 7258 raw_spin_lock_init(&rq->lock); 7259 rq->nr_running = 0; 7260 rq->calc_load_active = 0; 7261 rq->calc_load_update = jiffies + LOAD_FREQ; 7262 init_cfs_rq(&rq->cfs); 7263 init_rt_rq(&rq->rt); 7264 init_dl_rq(&rq->dl); 7265 #ifdef CONFIG_FAIR_GROUP_SCHED 7266 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7267 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7268 /* 7269 * How much cpu bandwidth does root_task_group get? 7270 * 7271 * In case of task-groups formed thr' the cgroup filesystem, it 7272 * gets 100% of the cpu resources in the system. This overall 7273 * system cpu resource is divided among the tasks of 7274 * root_task_group and its child task-groups in a fair manner, 7275 * based on each entity's (task or task-group's) weight 7276 * (se->load.weight). 7277 * 7278 * In other words, if root_task_group has 10 tasks of weight 7279 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7280 * then A0's share of the cpu resource is: 7281 * 7282 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7283 * 7284 * We achieve this by letting root_task_group's tasks sit 7285 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7286 */ 7287 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7288 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7289 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7290 7291 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7292 #ifdef CONFIG_RT_GROUP_SCHED 7293 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7294 #endif 7295 7296 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7297 rq->cpu_load[j] = 0; 7298 7299 rq->last_load_update_tick = jiffies; 7300 7301 #ifdef CONFIG_SMP 7302 rq->sd = NULL; 7303 rq->rd = NULL; 7304 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7305 rq->balance_callback = NULL; 7306 rq->active_balance = 0; 7307 rq->next_balance = jiffies; 7308 rq->push_cpu = 0; 7309 rq->cpu = i; 7310 rq->online = 0; 7311 rq->idle_stamp = 0; 7312 rq->avg_idle = 2*sysctl_sched_migration_cost; 7313 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7314 7315 INIT_LIST_HEAD(&rq->cfs_tasks); 7316 7317 rq_attach_root(rq, &def_root_domain); 7318 #ifdef CONFIG_NO_HZ_COMMON 7319 rq->nohz_flags = 0; 7320 #endif 7321 #ifdef CONFIG_NO_HZ_FULL 7322 rq->last_sched_tick = 0; 7323 #endif 7324 #endif 7325 init_rq_hrtick(rq); 7326 atomic_set(&rq->nr_iowait, 0); 7327 } 7328 7329 set_load_weight(&init_task); 7330 7331 #ifdef CONFIG_PREEMPT_NOTIFIERS 7332 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7333 #endif 7334 7335 /* 7336 * The boot idle thread does lazy MMU switching as well: 7337 */ 7338 atomic_inc(&init_mm.mm_count); 7339 enter_lazy_tlb(&init_mm, current); 7340 7341 /* 7342 * During early bootup we pretend to be a normal task: 7343 */ 7344 current->sched_class = &fair_sched_class; 7345 7346 /* 7347 * Make us the idle thread. Technically, schedule() should not be 7348 * called from this thread, however somewhere below it might be, 7349 * but because we are the idle thread, we just pick up running again 7350 * when this runqueue becomes "idle". 7351 */ 7352 init_idle(current, smp_processor_id()); 7353 7354 calc_load_update = jiffies + LOAD_FREQ; 7355 7356 #ifdef CONFIG_SMP 7357 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7358 /* May be allocated at isolcpus cmdline parse time */ 7359 if (cpu_isolated_map == NULL) 7360 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7361 idle_thread_set_boot_cpu(); 7362 set_cpu_rq_start_time(); 7363 #endif 7364 init_sched_fair_class(); 7365 7366 scheduler_running = 1; 7367 } 7368 7369 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7370 static inline int preempt_count_equals(int preempt_offset) 7371 { 7372 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7373 7374 return (nested == preempt_offset); 7375 } 7376 7377 void __might_sleep(const char *file, int line, int preempt_offset) 7378 { 7379 /* 7380 * Blocking primitives will set (and therefore destroy) current->state, 7381 * since we will exit with TASK_RUNNING make sure we enter with it, 7382 * otherwise we will destroy state. 7383 */ 7384 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7385 "do not call blocking ops when !TASK_RUNNING; " 7386 "state=%lx set at [<%p>] %pS\n", 7387 current->state, 7388 (void *)current->task_state_change, 7389 (void *)current->task_state_change); 7390 7391 ___might_sleep(file, line, preempt_offset); 7392 } 7393 EXPORT_SYMBOL(__might_sleep); 7394 7395 void ___might_sleep(const char *file, int line, int preempt_offset) 7396 { 7397 static unsigned long prev_jiffy; /* ratelimiting */ 7398 7399 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7400 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7401 !is_idle_task(current)) || 7402 system_state != SYSTEM_RUNNING || oops_in_progress) 7403 return; 7404 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7405 return; 7406 prev_jiffy = jiffies; 7407 7408 printk(KERN_ERR 7409 "BUG: sleeping function called from invalid context at %s:%d\n", 7410 file, line); 7411 printk(KERN_ERR 7412 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7413 in_atomic(), irqs_disabled(), 7414 current->pid, current->comm); 7415 7416 if (task_stack_end_corrupted(current)) 7417 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7418 7419 debug_show_held_locks(current); 7420 if (irqs_disabled()) 7421 print_irqtrace_events(current); 7422 #ifdef CONFIG_DEBUG_PREEMPT 7423 if (!preempt_count_equals(preempt_offset)) { 7424 pr_err("Preemption disabled at:"); 7425 print_ip_sym(current->preempt_disable_ip); 7426 pr_cont("\n"); 7427 } 7428 #endif 7429 dump_stack(); 7430 } 7431 EXPORT_SYMBOL(___might_sleep); 7432 #endif 7433 7434 #ifdef CONFIG_MAGIC_SYSRQ 7435 void normalize_rt_tasks(void) 7436 { 7437 struct task_struct *g, *p; 7438 struct sched_attr attr = { 7439 .sched_policy = SCHED_NORMAL, 7440 }; 7441 7442 read_lock(&tasklist_lock); 7443 for_each_process_thread(g, p) { 7444 /* 7445 * Only normalize user tasks: 7446 */ 7447 if (p->flags & PF_KTHREAD) 7448 continue; 7449 7450 p->se.exec_start = 0; 7451 #ifdef CONFIG_SCHEDSTATS 7452 p->se.statistics.wait_start = 0; 7453 p->se.statistics.sleep_start = 0; 7454 p->se.statistics.block_start = 0; 7455 #endif 7456 7457 if (!dl_task(p) && !rt_task(p)) { 7458 /* 7459 * Renice negative nice level userspace 7460 * tasks back to 0: 7461 */ 7462 if (task_nice(p) < 0) 7463 set_user_nice(p, 0); 7464 continue; 7465 } 7466 7467 __sched_setscheduler(p, &attr, false, false); 7468 } 7469 read_unlock(&tasklist_lock); 7470 } 7471 7472 #endif /* CONFIG_MAGIC_SYSRQ */ 7473 7474 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7475 /* 7476 * These functions are only useful for the IA64 MCA handling, or kdb. 7477 * 7478 * They can only be called when the whole system has been 7479 * stopped - every CPU needs to be quiescent, and no scheduling 7480 * activity can take place. Using them for anything else would 7481 * be a serious bug, and as a result, they aren't even visible 7482 * under any other configuration. 7483 */ 7484 7485 /** 7486 * curr_task - return the current task for a given cpu. 7487 * @cpu: the processor in question. 7488 * 7489 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7490 * 7491 * Return: The current task for @cpu. 7492 */ 7493 struct task_struct *curr_task(int cpu) 7494 { 7495 return cpu_curr(cpu); 7496 } 7497 7498 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7499 7500 #ifdef CONFIG_IA64 7501 /** 7502 * set_curr_task - set the current task for a given cpu. 7503 * @cpu: the processor in question. 7504 * @p: the task pointer to set. 7505 * 7506 * Description: This function must only be used when non-maskable interrupts 7507 * are serviced on a separate stack. It allows the architecture to switch the 7508 * notion of the current task on a cpu in a non-blocking manner. This function 7509 * must be called with all CPU's synchronized, and interrupts disabled, the 7510 * and caller must save the original value of the current task (see 7511 * curr_task() above) and restore that value before reenabling interrupts and 7512 * re-starting the system. 7513 * 7514 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7515 */ 7516 void set_curr_task(int cpu, struct task_struct *p) 7517 { 7518 cpu_curr(cpu) = p; 7519 } 7520 7521 #endif 7522 7523 #ifdef CONFIG_CGROUP_SCHED 7524 /* task_group_lock serializes the addition/removal of task groups */ 7525 static DEFINE_SPINLOCK(task_group_lock); 7526 7527 static void free_sched_group(struct task_group *tg) 7528 { 7529 free_fair_sched_group(tg); 7530 free_rt_sched_group(tg); 7531 autogroup_free(tg); 7532 kfree(tg); 7533 } 7534 7535 /* allocate runqueue etc for a new task group */ 7536 struct task_group *sched_create_group(struct task_group *parent) 7537 { 7538 struct task_group *tg; 7539 7540 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7541 if (!tg) 7542 return ERR_PTR(-ENOMEM); 7543 7544 if (!alloc_fair_sched_group(tg, parent)) 7545 goto err; 7546 7547 if (!alloc_rt_sched_group(tg, parent)) 7548 goto err; 7549 7550 return tg; 7551 7552 err: 7553 free_sched_group(tg); 7554 return ERR_PTR(-ENOMEM); 7555 } 7556 7557 void sched_online_group(struct task_group *tg, struct task_group *parent) 7558 { 7559 unsigned long flags; 7560 7561 spin_lock_irqsave(&task_group_lock, flags); 7562 list_add_rcu(&tg->list, &task_groups); 7563 7564 WARN_ON(!parent); /* root should already exist */ 7565 7566 tg->parent = parent; 7567 INIT_LIST_HEAD(&tg->children); 7568 list_add_rcu(&tg->siblings, &parent->children); 7569 spin_unlock_irqrestore(&task_group_lock, flags); 7570 } 7571 7572 /* rcu callback to free various structures associated with a task group */ 7573 static void free_sched_group_rcu(struct rcu_head *rhp) 7574 { 7575 /* now it should be safe to free those cfs_rqs */ 7576 free_sched_group(container_of(rhp, struct task_group, rcu)); 7577 } 7578 7579 /* Destroy runqueue etc associated with a task group */ 7580 void sched_destroy_group(struct task_group *tg) 7581 { 7582 /* wait for possible concurrent references to cfs_rqs complete */ 7583 call_rcu(&tg->rcu, free_sched_group_rcu); 7584 } 7585 7586 void sched_offline_group(struct task_group *tg) 7587 { 7588 unsigned long flags; 7589 int i; 7590 7591 /* end participation in shares distribution */ 7592 for_each_possible_cpu(i) 7593 unregister_fair_sched_group(tg, i); 7594 7595 spin_lock_irqsave(&task_group_lock, flags); 7596 list_del_rcu(&tg->list); 7597 list_del_rcu(&tg->siblings); 7598 spin_unlock_irqrestore(&task_group_lock, flags); 7599 } 7600 7601 /* change task's runqueue when it moves between groups. 7602 * The caller of this function should have put the task in its new group 7603 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7604 * reflect its new group. 7605 */ 7606 void sched_move_task(struct task_struct *tsk) 7607 { 7608 struct task_group *tg; 7609 int queued, running; 7610 unsigned long flags; 7611 struct rq *rq; 7612 7613 rq = task_rq_lock(tsk, &flags); 7614 7615 running = task_current(rq, tsk); 7616 queued = task_on_rq_queued(tsk); 7617 7618 if (queued) 7619 dequeue_task(rq, tsk, 0); 7620 if (unlikely(running)) 7621 put_prev_task(rq, tsk); 7622 7623 /* 7624 * All callers are synchronized by task_rq_lock(); we do not use RCU 7625 * which is pointless here. Thus, we pass "true" to task_css_check() 7626 * to prevent lockdep warnings. 7627 */ 7628 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7629 struct task_group, css); 7630 tg = autogroup_task_group(tsk, tg); 7631 tsk->sched_task_group = tg; 7632 7633 #ifdef CONFIG_FAIR_GROUP_SCHED 7634 if (tsk->sched_class->task_move_group) 7635 tsk->sched_class->task_move_group(tsk, queued); 7636 else 7637 #endif 7638 set_task_rq(tsk, task_cpu(tsk)); 7639 7640 if (unlikely(running)) 7641 tsk->sched_class->set_curr_task(rq); 7642 if (queued) 7643 enqueue_task(rq, tsk, 0); 7644 7645 task_rq_unlock(rq, tsk, &flags); 7646 } 7647 #endif /* CONFIG_CGROUP_SCHED */ 7648 7649 #ifdef CONFIG_RT_GROUP_SCHED 7650 /* 7651 * Ensure that the real time constraints are schedulable. 7652 */ 7653 static DEFINE_MUTEX(rt_constraints_mutex); 7654 7655 /* Must be called with tasklist_lock held */ 7656 static inline int tg_has_rt_tasks(struct task_group *tg) 7657 { 7658 struct task_struct *g, *p; 7659 7660 /* 7661 * Autogroups do not have RT tasks; see autogroup_create(). 7662 */ 7663 if (task_group_is_autogroup(tg)) 7664 return 0; 7665 7666 for_each_process_thread(g, p) { 7667 if (rt_task(p) && task_group(p) == tg) 7668 return 1; 7669 } 7670 7671 return 0; 7672 } 7673 7674 struct rt_schedulable_data { 7675 struct task_group *tg; 7676 u64 rt_period; 7677 u64 rt_runtime; 7678 }; 7679 7680 static int tg_rt_schedulable(struct task_group *tg, void *data) 7681 { 7682 struct rt_schedulable_data *d = data; 7683 struct task_group *child; 7684 unsigned long total, sum = 0; 7685 u64 period, runtime; 7686 7687 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7688 runtime = tg->rt_bandwidth.rt_runtime; 7689 7690 if (tg == d->tg) { 7691 period = d->rt_period; 7692 runtime = d->rt_runtime; 7693 } 7694 7695 /* 7696 * Cannot have more runtime than the period. 7697 */ 7698 if (runtime > period && runtime != RUNTIME_INF) 7699 return -EINVAL; 7700 7701 /* 7702 * Ensure we don't starve existing RT tasks. 7703 */ 7704 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7705 return -EBUSY; 7706 7707 total = to_ratio(period, runtime); 7708 7709 /* 7710 * Nobody can have more than the global setting allows. 7711 */ 7712 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7713 return -EINVAL; 7714 7715 /* 7716 * The sum of our children's runtime should not exceed our own. 7717 */ 7718 list_for_each_entry_rcu(child, &tg->children, siblings) { 7719 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7720 runtime = child->rt_bandwidth.rt_runtime; 7721 7722 if (child == d->tg) { 7723 period = d->rt_period; 7724 runtime = d->rt_runtime; 7725 } 7726 7727 sum += to_ratio(period, runtime); 7728 } 7729 7730 if (sum > total) 7731 return -EINVAL; 7732 7733 return 0; 7734 } 7735 7736 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7737 { 7738 int ret; 7739 7740 struct rt_schedulable_data data = { 7741 .tg = tg, 7742 .rt_period = period, 7743 .rt_runtime = runtime, 7744 }; 7745 7746 rcu_read_lock(); 7747 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7748 rcu_read_unlock(); 7749 7750 return ret; 7751 } 7752 7753 static int tg_set_rt_bandwidth(struct task_group *tg, 7754 u64 rt_period, u64 rt_runtime) 7755 { 7756 int i, err = 0; 7757 7758 /* 7759 * Disallowing the root group RT runtime is BAD, it would disallow the 7760 * kernel creating (and or operating) RT threads. 7761 */ 7762 if (tg == &root_task_group && rt_runtime == 0) 7763 return -EINVAL; 7764 7765 /* No period doesn't make any sense. */ 7766 if (rt_period == 0) 7767 return -EINVAL; 7768 7769 mutex_lock(&rt_constraints_mutex); 7770 read_lock(&tasklist_lock); 7771 err = __rt_schedulable(tg, rt_period, rt_runtime); 7772 if (err) 7773 goto unlock; 7774 7775 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7776 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7777 tg->rt_bandwidth.rt_runtime = rt_runtime; 7778 7779 for_each_possible_cpu(i) { 7780 struct rt_rq *rt_rq = tg->rt_rq[i]; 7781 7782 raw_spin_lock(&rt_rq->rt_runtime_lock); 7783 rt_rq->rt_runtime = rt_runtime; 7784 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7785 } 7786 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7787 unlock: 7788 read_unlock(&tasklist_lock); 7789 mutex_unlock(&rt_constraints_mutex); 7790 7791 return err; 7792 } 7793 7794 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7795 { 7796 u64 rt_runtime, rt_period; 7797 7798 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7799 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7800 if (rt_runtime_us < 0) 7801 rt_runtime = RUNTIME_INF; 7802 7803 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7804 } 7805 7806 static long sched_group_rt_runtime(struct task_group *tg) 7807 { 7808 u64 rt_runtime_us; 7809 7810 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7811 return -1; 7812 7813 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7814 do_div(rt_runtime_us, NSEC_PER_USEC); 7815 return rt_runtime_us; 7816 } 7817 7818 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 7819 { 7820 u64 rt_runtime, rt_period; 7821 7822 rt_period = rt_period_us * NSEC_PER_USEC; 7823 rt_runtime = tg->rt_bandwidth.rt_runtime; 7824 7825 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7826 } 7827 7828 static long sched_group_rt_period(struct task_group *tg) 7829 { 7830 u64 rt_period_us; 7831 7832 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7833 do_div(rt_period_us, NSEC_PER_USEC); 7834 return rt_period_us; 7835 } 7836 #endif /* CONFIG_RT_GROUP_SCHED */ 7837 7838 #ifdef CONFIG_RT_GROUP_SCHED 7839 static int sched_rt_global_constraints(void) 7840 { 7841 int ret = 0; 7842 7843 mutex_lock(&rt_constraints_mutex); 7844 read_lock(&tasklist_lock); 7845 ret = __rt_schedulable(NULL, 0, 0); 7846 read_unlock(&tasklist_lock); 7847 mutex_unlock(&rt_constraints_mutex); 7848 7849 return ret; 7850 } 7851 7852 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7853 { 7854 /* Don't accept realtime tasks when there is no way for them to run */ 7855 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7856 return 0; 7857 7858 return 1; 7859 } 7860 7861 #else /* !CONFIG_RT_GROUP_SCHED */ 7862 static int sched_rt_global_constraints(void) 7863 { 7864 unsigned long flags; 7865 int i, ret = 0; 7866 7867 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7868 for_each_possible_cpu(i) { 7869 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7870 7871 raw_spin_lock(&rt_rq->rt_runtime_lock); 7872 rt_rq->rt_runtime = global_rt_runtime(); 7873 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7874 } 7875 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7876 7877 return ret; 7878 } 7879 #endif /* CONFIG_RT_GROUP_SCHED */ 7880 7881 static int sched_dl_global_validate(void) 7882 { 7883 u64 runtime = global_rt_runtime(); 7884 u64 period = global_rt_period(); 7885 u64 new_bw = to_ratio(period, runtime); 7886 struct dl_bw *dl_b; 7887 int cpu, ret = 0; 7888 unsigned long flags; 7889 7890 /* 7891 * Here we want to check the bandwidth not being set to some 7892 * value smaller than the currently allocated bandwidth in 7893 * any of the root_domains. 7894 * 7895 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7896 * cycling on root_domains... Discussion on different/better 7897 * solutions is welcome! 7898 */ 7899 for_each_possible_cpu(cpu) { 7900 rcu_read_lock_sched(); 7901 dl_b = dl_bw_of(cpu); 7902 7903 raw_spin_lock_irqsave(&dl_b->lock, flags); 7904 if (new_bw < dl_b->total_bw) 7905 ret = -EBUSY; 7906 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7907 7908 rcu_read_unlock_sched(); 7909 7910 if (ret) 7911 break; 7912 } 7913 7914 return ret; 7915 } 7916 7917 static void sched_dl_do_global(void) 7918 { 7919 u64 new_bw = -1; 7920 struct dl_bw *dl_b; 7921 int cpu; 7922 unsigned long flags; 7923 7924 def_dl_bandwidth.dl_period = global_rt_period(); 7925 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7926 7927 if (global_rt_runtime() != RUNTIME_INF) 7928 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7929 7930 /* 7931 * FIXME: As above... 7932 */ 7933 for_each_possible_cpu(cpu) { 7934 rcu_read_lock_sched(); 7935 dl_b = dl_bw_of(cpu); 7936 7937 raw_spin_lock_irqsave(&dl_b->lock, flags); 7938 dl_b->bw = new_bw; 7939 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7940 7941 rcu_read_unlock_sched(); 7942 } 7943 } 7944 7945 static int sched_rt_global_validate(void) 7946 { 7947 if (sysctl_sched_rt_period <= 0) 7948 return -EINVAL; 7949 7950 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7951 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7952 return -EINVAL; 7953 7954 return 0; 7955 } 7956 7957 static void sched_rt_do_global(void) 7958 { 7959 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7960 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7961 } 7962 7963 int sched_rt_handler(struct ctl_table *table, int write, 7964 void __user *buffer, size_t *lenp, 7965 loff_t *ppos) 7966 { 7967 int old_period, old_runtime; 7968 static DEFINE_MUTEX(mutex); 7969 int ret; 7970 7971 mutex_lock(&mutex); 7972 old_period = sysctl_sched_rt_period; 7973 old_runtime = sysctl_sched_rt_runtime; 7974 7975 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7976 7977 if (!ret && write) { 7978 ret = sched_rt_global_validate(); 7979 if (ret) 7980 goto undo; 7981 7982 ret = sched_dl_global_validate(); 7983 if (ret) 7984 goto undo; 7985 7986 ret = sched_rt_global_constraints(); 7987 if (ret) 7988 goto undo; 7989 7990 sched_rt_do_global(); 7991 sched_dl_do_global(); 7992 } 7993 if (0) { 7994 undo: 7995 sysctl_sched_rt_period = old_period; 7996 sysctl_sched_rt_runtime = old_runtime; 7997 } 7998 mutex_unlock(&mutex); 7999 8000 return ret; 8001 } 8002 8003 int sched_rr_handler(struct ctl_table *table, int write, 8004 void __user *buffer, size_t *lenp, 8005 loff_t *ppos) 8006 { 8007 int ret; 8008 static DEFINE_MUTEX(mutex); 8009 8010 mutex_lock(&mutex); 8011 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8012 /* make sure that internally we keep jiffies */ 8013 /* also, writing zero resets timeslice to default */ 8014 if (!ret && write) { 8015 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 8016 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 8017 } 8018 mutex_unlock(&mutex); 8019 return ret; 8020 } 8021 8022 #ifdef CONFIG_CGROUP_SCHED 8023 8024 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8025 { 8026 return css ? container_of(css, struct task_group, css) : NULL; 8027 } 8028 8029 static struct cgroup_subsys_state * 8030 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8031 { 8032 struct task_group *parent = css_tg(parent_css); 8033 struct task_group *tg; 8034 8035 if (!parent) { 8036 /* This is early initialization for the top cgroup */ 8037 return &root_task_group.css; 8038 } 8039 8040 tg = sched_create_group(parent); 8041 if (IS_ERR(tg)) 8042 return ERR_PTR(-ENOMEM); 8043 8044 return &tg->css; 8045 } 8046 8047 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8048 { 8049 struct task_group *tg = css_tg(css); 8050 struct task_group *parent = css_tg(css->parent); 8051 8052 if (parent) 8053 sched_online_group(tg, parent); 8054 return 0; 8055 } 8056 8057 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8058 { 8059 struct task_group *tg = css_tg(css); 8060 8061 sched_destroy_group(tg); 8062 } 8063 8064 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 8065 { 8066 struct task_group *tg = css_tg(css); 8067 8068 sched_offline_group(tg); 8069 } 8070 8071 static void cpu_cgroup_fork(struct task_struct *task) 8072 { 8073 sched_move_task(task); 8074 } 8075 8076 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 8077 struct cgroup_taskset *tset) 8078 { 8079 struct task_struct *task; 8080 8081 cgroup_taskset_for_each(task, tset) { 8082 #ifdef CONFIG_RT_GROUP_SCHED 8083 if (!sched_rt_can_attach(css_tg(css), task)) 8084 return -EINVAL; 8085 #else 8086 /* We don't support RT-tasks being in separate groups */ 8087 if (task->sched_class != &fair_sched_class) 8088 return -EINVAL; 8089 #endif 8090 } 8091 return 0; 8092 } 8093 8094 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 8095 struct cgroup_taskset *tset) 8096 { 8097 struct task_struct *task; 8098 8099 cgroup_taskset_for_each(task, tset) 8100 sched_move_task(task); 8101 } 8102 8103 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 8104 struct cgroup_subsys_state *old_css, 8105 struct task_struct *task) 8106 { 8107 /* 8108 * cgroup_exit() is called in the copy_process() failure path. 8109 * Ignore this case since the task hasn't ran yet, this avoids 8110 * trying to poke a half freed task state from generic code. 8111 */ 8112 if (!(task->flags & PF_EXITING)) 8113 return; 8114 8115 sched_move_task(task); 8116 } 8117 8118 #ifdef CONFIG_FAIR_GROUP_SCHED 8119 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8120 struct cftype *cftype, u64 shareval) 8121 { 8122 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8123 } 8124 8125 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8126 struct cftype *cft) 8127 { 8128 struct task_group *tg = css_tg(css); 8129 8130 return (u64) scale_load_down(tg->shares); 8131 } 8132 8133 #ifdef CONFIG_CFS_BANDWIDTH 8134 static DEFINE_MUTEX(cfs_constraints_mutex); 8135 8136 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8137 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8138 8139 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8140 8141 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8142 { 8143 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8144 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8145 8146 if (tg == &root_task_group) 8147 return -EINVAL; 8148 8149 /* 8150 * Ensure we have at some amount of bandwidth every period. This is 8151 * to prevent reaching a state of large arrears when throttled via 8152 * entity_tick() resulting in prolonged exit starvation. 8153 */ 8154 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8155 return -EINVAL; 8156 8157 /* 8158 * Likewise, bound things on the otherside by preventing insane quota 8159 * periods. This also allows us to normalize in computing quota 8160 * feasibility. 8161 */ 8162 if (period > max_cfs_quota_period) 8163 return -EINVAL; 8164 8165 /* 8166 * Prevent race between setting of cfs_rq->runtime_enabled and 8167 * unthrottle_offline_cfs_rqs(). 8168 */ 8169 get_online_cpus(); 8170 mutex_lock(&cfs_constraints_mutex); 8171 ret = __cfs_schedulable(tg, period, quota); 8172 if (ret) 8173 goto out_unlock; 8174 8175 runtime_enabled = quota != RUNTIME_INF; 8176 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8177 /* 8178 * If we need to toggle cfs_bandwidth_used, off->on must occur 8179 * before making related changes, and on->off must occur afterwards 8180 */ 8181 if (runtime_enabled && !runtime_was_enabled) 8182 cfs_bandwidth_usage_inc(); 8183 raw_spin_lock_irq(&cfs_b->lock); 8184 cfs_b->period = ns_to_ktime(period); 8185 cfs_b->quota = quota; 8186 8187 __refill_cfs_bandwidth_runtime(cfs_b); 8188 /* restart the period timer (if active) to handle new period expiry */ 8189 if (runtime_enabled) 8190 start_cfs_bandwidth(cfs_b); 8191 raw_spin_unlock_irq(&cfs_b->lock); 8192 8193 for_each_online_cpu(i) { 8194 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8195 struct rq *rq = cfs_rq->rq; 8196 8197 raw_spin_lock_irq(&rq->lock); 8198 cfs_rq->runtime_enabled = runtime_enabled; 8199 cfs_rq->runtime_remaining = 0; 8200 8201 if (cfs_rq->throttled) 8202 unthrottle_cfs_rq(cfs_rq); 8203 raw_spin_unlock_irq(&rq->lock); 8204 } 8205 if (runtime_was_enabled && !runtime_enabled) 8206 cfs_bandwidth_usage_dec(); 8207 out_unlock: 8208 mutex_unlock(&cfs_constraints_mutex); 8209 put_online_cpus(); 8210 8211 return ret; 8212 } 8213 8214 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8215 { 8216 u64 quota, period; 8217 8218 period = ktime_to_ns(tg->cfs_bandwidth.period); 8219 if (cfs_quota_us < 0) 8220 quota = RUNTIME_INF; 8221 else 8222 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8223 8224 return tg_set_cfs_bandwidth(tg, period, quota); 8225 } 8226 8227 long tg_get_cfs_quota(struct task_group *tg) 8228 { 8229 u64 quota_us; 8230 8231 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8232 return -1; 8233 8234 quota_us = tg->cfs_bandwidth.quota; 8235 do_div(quota_us, NSEC_PER_USEC); 8236 8237 return quota_us; 8238 } 8239 8240 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8241 { 8242 u64 quota, period; 8243 8244 period = (u64)cfs_period_us * NSEC_PER_USEC; 8245 quota = tg->cfs_bandwidth.quota; 8246 8247 return tg_set_cfs_bandwidth(tg, period, quota); 8248 } 8249 8250 long tg_get_cfs_period(struct task_group *tg) 8251 { 8252 u64 cfs_period_us; 8253 8254 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8255 do_div(cfs_period_us, NSEC_PER_USEC); 8256 8257 return cfs_period_us; 8258 } 8259 8260 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8261 struct cftype *cft) 8262 { 8263 return tg_get_cfs_quota(css_tg(css)); 8264 } 8265 8266 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8267 struct cftype *cftype, s64 cfs_quota_us) 8268 { 8269 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8270 } 8271 8272 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8273 struct cftype *cft) 8274 { 8275 return tg_get_cfs_period(css_tg(css)); 8276 } 8277 8278 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8279 struct cftype *cftype, u64 cfs_period_us) 8280 { 8281 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8282 } 8283 8284 struct cfs_schedulable_data { 8285 struct task_group *tg; 8286 u64 period, quota; 8287 }; 8288 8289 /* 8290 * normalize group quota/period to be quota/max_period 8291 * note: units are usecs 8292 */ 8293 static u64 normalize_cfs_quota(struct task_group *tg, 8294 struct cfs_schedulable_data *d) 8295 { 8296 u64 quota, period; 8297 8298 if (tg == d->tg) { 8299 period = d->period; 8300 quota = d->quota; 8301 } else { 8302 period = tg_get_cfs_period(tg); 8303 quota = tg_get_cfs_quota(tg); 8304 } 8305 8306 /* note: these should typically be equivalent */ 8307 if (quota == RUNTIME_INF || quota == -1) 8308 return RUNTIME_INF; 8309 8310 return to_ratio(period, quota); 8311 } 8312 8313 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8314 { 8315 struct cfs_schedulable_data *d = data; 8316 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8317 s64 quota = 0, parent_quota = -1; 8318 8319 if (!tg->parent) { 8320 quota = RUNTIME_INF; 8321 } else { 8322 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8323 8324 quota = normalize_cfs_quota(tg, d); 8325 parent_quota = parent_b->hierarchical_quota; 8326 8327 /* 8328 * ensure max(child_quota) <= parent_quota, inherit when no 8329 * limit is set 8330 */ 8331 if (quota == RUNTIME_INF) 8332 quota = parent_quota; 8333 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8334 return -EINVAL; 8335 } 8336 cfs_b->hierarchical_quota = quota; 8337 8338 return 0; 8339 } 8340 8341 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8342 { 8343 int ret; 8344 struct cfs_schedulable_data data = { 8345 .tg = tg, 8346 .period = period, 8347 .quota = quota, 8348 }; 8349 8350 if (quota != RUNTIME_INF) { 8351 do_div(data.period, NSEC_PER_USEC); 8352 do_div(data.quota, NSEC_PER_USEC); 8353 } 8354 8355 rcu_read_lock(); 8356 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8357 rcu_read_unlock(); 8358 8359 return ret; 8360 } 8361 8362 static int cpu_stats_show(struct seq_file *sf, void *v) 8363 { 8364 struct task_group *tg = css_tg(seq_css(sf)); 8365 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8366 8367 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8368 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8369 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8370 8371 return 0; 8372 } 8373 #endif /* CONFIG_CFS_BANDWIDTH */ 8374 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8375 8376 #ifdef CONFIG_RT_GROUP_SCHED 8377 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8378 struct cftype *cft, s64 val) 8379 { 8380 return sched_group_set_rt_runtime(css_tg(css), val); 8381 } 8382 8383 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8384 struct cftype *cft) 8385 { 8386 return sched_group_rt_runtime(css_tg(css)); 8387 } 8388 8389 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8390 struct cftype *cftype, u64 rt_period_us) 8391 { 8392 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8393 } 8394 8395 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8396 struct cftype *cft) 8397 { 8398 return sched_group_rt_period(css_tg(css)); 8399 } 8400 #endif /* CONFIG_RT_GROUP_SCHED */ 8401 8402 static struct cftype cpu_files[] = { 8403 #ifdef CONFIG_FAIR_GROUP_SCHED 8404 { 8405 .name = "shares", 8406 .read_u64 = cpu_shares_read_u64, 8407 .write_u64 = cpu_shares_write_u64, 8408 }, 8409 #endif 8410 #ifdef CONFIG_CFS_BANDWIDTH 8411 { 8412 .name = "cfs_quota_us", 8413 .read_s64 = cpu_cfs_quota_read_s64, 8414 .write_s64 = cpu_cfs_quota_write_s64, 8415 }, 8416 { 8417 .name = "cfs_period_us", 8418 .read_u64 = cpu_cfs_period_read_u64, 8419 .write_u64 = cpu_cfs_period_write_u64, 8420 }, 8421 { 8422 .name = "stat", 8423 .seq_show = cpu_stats_show, 8424 }, 8425 #endif 8426 #ifdef CONFIG_RT_GROUP_SCHED 8427 { 8428 .name = "rt_runtime_us", 8429 .read_s64 = cpu_rt_runtime_read, 8430 .write_s64 = cpu_rt_runtime_write, 8431 }, 8432 { 8433 .name = "rt_period_us", 8434 .read_u64 = cpu_rt_period_read_uint, 8435 .write_u64 = cpu_rt_period_write_uint, 8436 }, 8437 #endif 8438 { } /* terminate */ 8439 }; 8440 8441 struct cgroup_subsys cpu_cgrp_subsys = { 8442 .css_alloc = cpu_cgroup_css_alloc, 8443 .css_free = cpu_cgroup_css_free, 8444 .css_online = cpu_cgroup_css_online, 8445 .css_offline = cpu_cgroup_css_offline, 8446 .fork = cpu_cgroup_fork, 8447 .can_attach = cpu_cgroup_can_attach, 8448 .attach = cpu_cgroup_attach, 8449 .exit = cpu_cgroup_exit, 8450 .legacy_cftypes = cpu_files, 8451 .early_init = 1, 8452 }; 8453 8454 #endif /* CONFIG_CGROUP_SCHED */ 8455 8456 void dump_cpu_task(int cpu) 8457 { 8458 pr_info("Task dump for CPU %d:\n", cpu); 8459 sched_show_task(cpu_curr(cpu)); 8460 } 8461