xref: /linux/kernel/sched/core.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled)	\
129 	#name ,
130 
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134 
135 #undef SCHED_FEAT
136 
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 	int i;
140 
141 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 		if (!(sysctl_sched_features & (1UL << i)))
143 			seq_puts(m, "NO_");
144 		seq_printf(m, "%s ", sched_feat_names[i]);
145 	}
146 	seq_puts(m, "\n");
147 
148 	return 0;
149 }
150 
151 #ifdef HAVE_JUMP_LABEL
152 
153 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155 
156 #define SCHED_FEAT(name, enabled)	\
157 	jump_label_key__##enabled ,
158 
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162 
163 #undef SCHED_FEAT
164 
165 static void sched_feat_disable(int i)
166 {
167 	if (static_key_enabled(&sched_feat_keys[i]))
168 		static_key_slow_dec(&sched_feat_keys[i]);
169 }
170 
171 static void sched_feat_enable(int i)
172 {
173 	if (!static_key_enabled(&sched_feat_keys[i]))
174 		static_key_slow_inc(&sched_feat_keys[i]);
175 }
176 #else
177 static void sched_feat_disable(int i) { };
178 static void sched_feat_enable(int i) { };
179 #endif /* HAVE_JUMP_LABEL */
180 
181 static int sched_feat_set(char *cmp)
182 {
183 	int i;
184 	int neg = 0;
185 
186 	if (strncmp(cmp, "NO_", 3) == 0) {
187 		neg = 1;
188 		cmp += 3;
189 	}
190 
191 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
192 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
193 			if (neg) {
194 				sysctl_sched_features &= ~(1UL << i);
195 				sched_feat_disable(i);
196 			} else {
197 				sysctl_sched_features |= (1UL << i);
198 				sched_feat_enable(i);
199 			}
200 			break;
201 		}
202 	}
203 
204 	return i;
205 }
206 
207 static ssize_t
208 sched_feat_write(struct file *filp, const char __user *ubuf,
209 		size_t cnt, loff_t *ppos)
210 {
211 	char buf[64];
212 	char *cmp;
213 	int i;
214 	struct inode *inode;
215 
216 	if (cnt > 63)
217 		cnt = 63;
218 
219 	if (copy_from_user(&buf, ubuf, cnt))
220 		return -EFAULT;
221 
222 	buf[cnt] = 0;
223 	cmp = strstrip(buf);
224 
225 	/* Ensure the static_key remains in a consistent state */
226 	inode = file_inode(filp);
227 	mutex_lock(&inode->i_mutex);
228 	i = sched_feat_set(cmp);
229 	mutex_unlock(&inode->i_mutex);
230 	if (i == __SCHED_FEAT_NR)
231 		return -EINVAL;
232 
233 	*ppos += cnt;
234 
235 	return cnt;
236 }
237 
238 static int sched_feat_open(struct inode *inode, struct file *filp)
239 {
240 	return single_open(filp, sched_feat_show, NULL);
241 }
242 
243 static const struct file_operations sched_feat_fops = {
244 	.open		= sched_feat_open,
245 	.write		= sched_feat_write,
246 	.read		= seq_read,
247 	.llseek		= seq_lseek,
248 	.release	= single_release,
249 };
250 
251 static __init int sched_init_debug(void)
252 {
253 	debugfs_create_file("sched_features", 0644, NULL, NULL,
254 			&sched_feat_fops);
255 
256 	return 0;
257 }
258 late_initcall(sched_init_debug);
259 #endif /* CONFIG_SCHED_DEBUG */
260 
261 /*
262  * Number of tasks to iterate in a single balance run.
263  * Limited because this is done with IRQs disabled.
264  */
265 const_debug unsigned int sysctl_sched_nr_migrate = 32;
266 
267 /*
268  * period over which we average the RT time consumption, measured
269  * in ms.
270  *
271  * default: 1s
272  */
273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274 
275 /*
276  * period over which we measure -rt task cpu usage in us.
277  * default: 1s
278  */
279 unsigned int sysctl_sched_rt_period = 1000000;
280 
281 __read_mostly int scheduler_running;
282 
283 /*
284  * part of the period that we allow rt tasks to run in us.
285  * default: 0.95s
286  */
287 int sysctl_sched_rt_runtime = 950000;
288 
289 /* cpus with isolated domains */
290 cpumask_var_t cpu_isolated_map;
291 
292 /*
293  * this_rq_lock - lock this runqueue and disable interrupts.
294  */
295 static struct rq *this_rq_lock(void)
296 	__acquires(rq->lock)
297 {
298 	struct rq *rq;
299 
300 	local_irq_disable();
301 	rq = this_rq();
302 	raw_spin_lock(&rq->lock);
303 
304 	return rq;
305 }
306 
307 #ifdef CONFIG_SCHED_HRTICK
308 /*
309  * Use HR-timers to deliver accurate preemption points.
310  */
311 
312 static void hrtick_clear(struct rq *rq)
313 {
314 	if (hrtimer_active(&rq->hrtick_timer))
315 		hrtimer_cancel(&rq->hrtick_timer);
316 }
317 
318 /*
319  * High-resolution timer tick.
320  * Runs from hardirq context with interrupts disabled.
321  */
322 static enum hrtimer_restart hrtick(struct hrtimer *timer)
323 {
324 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325 
326 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327 
328 	raw_spin_lock(&rq->lock);
329 	update_rq_clock(rq);
330 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
331 	raw_spin_unlock(&rq->lock);
332 
333 	return HRTIMER_NORESTART;
334 }
335 
336 #ifdef CONFIG_SMP
337 
338 static void __hrtick_restart(struct rq *rq)
339 {
340 	struct hrtimer *timer = &rq->hrtick_timer;
341 
342 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
343 }
344 
345 /*
346  * called from hardirq (IPI) context
347  */
348 static void __hrtick_start(void *arg)
349 {
350 	struct rq *rq = arg;
351 
352 	raw_spin_lock(&rq->lock);
353 	__hrtick_restart(rq);
354 	rq->hrtick_csd_pending = 0;
355 	raw_spin_unlock(&rq->lock);
356 }
357 
358 /*
359  * Called to set the hrtick timer state.
360  *
361  * called with rq->lock held and irqs disabled
362  */
363 void hrtick_start(struct rq *rq, u64 delay)
364 {
365 	struct hrtimer *timer = &rq->hrtick_timer;
366 	ktime_t time;
367 	s64 delta;
368 
369 	/*
370 	 * Don't schedule slices shorter than 10000ns, that just
371 	 * doesn't make sense and can cause timer DoS.
372 	 */
373 	delta = max_t(s64, delay, 10000LL);
374 	time = ktime_add_ns(timer->base->get_time(), delta);
375 
376 	hrtimer_set_expires(timer, time);
377 
378 	if (rq == this_rq()) {
379 		__hrtick_restart(rq);
380 	} else if (!rq->hrtick_csd_pending) {
381 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
382 		rq->hrtick_csd_pending = 1;
383 	}
384 }
385 
386 static int
387 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388 {
389 	int cpu = (int)(long)hcpu;
390 
391 	switch (action) {
392 	case CPU_UP_CANCELED:
393 	case CPU_UP_CANCELED_FROZEN:
394 	case CPU_DOWN_PREPARE:
395 	case CPU_DOWN_PREPARE_FROZEN:
396 	case CPU_DEAD:
397 	case CPU_DEAD_FROZEN:
398 		hrtick_clear(cpu_rq(cpu));
399 		return NOTIFY_OK;
400 	}
401 
402 	return NOTIFY_DONE;
403 }
404 
405 static __init void init_hrtick(void)
406 {
407 	hotcpu_notifier(hotplug_hrtick, 0);
408 }
409 #else
410 /*
411  * Called to set the hrtick timer state.
412  *
413  * called with rq->lock held and irqs disabled
414  */
415 void hrtick_start(struct rq *rq, u64 delay)
416 {
417 	/*
418 	 * Don't schedule slices shorter than 10000ns, that just
419 	 * doesn't make sense. Rely on vruntime for fairness.
420 	 */
421 	delay = max_t(u64, delay, 10000LL);
422 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 		      HRTIMER_MODE_REL_PINNED);
424 }
425 
426 static inline void init_hrtick(void)
427 {
428 }
429 #endif /* CONFIG_SMP */
430 
431 static void init_rq_hrtick(struct rq *rq)
432 {
433 #ifdef CONFIG_SMP
434 	rq->hrtick_csd_pending = 0;
435 
436 	rq->hrtick_csd.flags = 0;
437 	rq->hrtick_csd.func = __hrtick_start;
438 	rq->hrtick_csd.info = rq;
439 #endif
440 
441 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 	rq->hrtick_timer.function = hrtick;
443 }
444 #else	/* CONFIG_SCHED_HRTICK */
445 static inline void hrtick_clear(struct rq *rq)
446 {
447 }
448 
449 static inline void init_rq_hrtick(struct rq *rq)
450 {
451 }
452 
453 static inline void init_hrtick(void)
454 {
455 }
456 #endif	/* CONFIG_SCHED_HRTICK */
457 
458 /*
459  * cmpxchg based fetch_or, macro so it works for different integer types
460  */
461 #define fetch_or(ptr, val)						\
462 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
463  	for (;;) {							\
464  		__old = cmpxchg((ptr), __val, __val | (val));		\
465  		if (__old == __val)					\
466  			break;						\
467  		__val = __old;						\
468  	}								\
469  	__old;								\
470 })
471 
472 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
473 /*
474  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475  * this avoids any races wrt polling state changes and thereby avoids
476  * spurious IPIs.
477  */
478 static bool set_nr_and_not_polling(struct task_struct *p)
479 {
480 	struct thread_info *ti = task_thread_info(p);
481 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482 }
483 
484 /*
485  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486  *
487  * If this returns true, then the idle task promises to call
488  * sched_ttwu_pending() and reschedule soon.
489  */
490 static bool set_nr_if_polling(struct task_struct *p)
491 {
492 	struct thread_info *ti = task_thread_info(p);
493 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
494 
495 	for (;;) {
496 		if (!(val & _TIF_POLLING_NRFLAG))
497 			return false;
498 		if (val & _TIF_NEED_RESCHED)
499 			return true;
500 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 		if (old == val)
502 			break;
503 		val = old;
504 	}
505 	return true;
506 }
507 
508 #else
509 static bool set_nr_and_not_polling(struct task_struct *p)
510 {
511 	set_tsk_need_resched(p);
512 	return true;
513 }
514 
515 #ifdef CONFIG_SMP
516 static bool set_nr_if_polling(struct task_struct *p)
517 {
518 	return false;
519 }
520 #endif
521 #endif
522 
523 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524 {
525 	struct wake_q_node *node = &task->wake_q;
526 
527 	/*
528 	 * Atomically grab the task, if ->wake_q is !nil already it means
529 	 * its already queued (either by us or someone else) and will get the
530 	 * wakeup due to that.
531 	 *
532 	 * This cmpxchg() implies a full barrier, which pairs with the write
533 	 * barrier implied by the wakeup in wake_up_list().
534 	 */
535 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 		return;
537 
538 	get_task_struct(task);
539 
540 	/*
541 	 * The head is context local, there can be no concurrency.
542 	 */
543 	*head->lastp = node;
544 	head->lastp = &node->next;
545 }
546 
547 void wake_up_q(struct wake_q_head *head)
548 {
549 	struct wake_q_node *node = head->first;
550 
551 	while (node != WAKE_Q_TAIL) {
552 		struct task_struct *task;
553 
554 		task = container_of(node, struct task_struct, wake_q);
555 		BUG_ON(!task);
556 		/* task can safely be re-inserted now */
557 		node = node->next;
558 		task->wake_q.next = NULL;
559 
560 		/*
561 		 * wake_up_process() implies a wmb() to pair with the queueing
562 		 * in wake_q_add() so as not to miss wakeups.
563 		 */
564 		wake_up_process(task);
565 		put_task_struct(task);
566 	}
567 }
568 
569 /*
570  * resched_curr - mark rq's current task 'to be rescheduled now'.
571  *
572  * On UP this means the setting of the need_resched flag, on SMP it
573  * might also involve a cross-CPU call to trigger the scheduler on
574  * the target CPU.
575  */
576 void resched_curr(struct rq *rq)
577 {
578 	struct task_struct *curr = rq->curr;
579 	int cpu;
580 
581 	lockdep_assert_held(&rq->lock);
582 
583 	if (test_tsk_need_resched(curr))
584 		return;
585 
586 	cpu = cpu_of(rq);
587 
588 	if (cpu == smp_processor_id()) {
589 		set_tsk_need_resched(curr);
590 		set_preempt_need_resched();
591 		return;
592 	}
593 
594 	if (set_nr_and_not_polling(curr))
595 		smp_send_reschedule(cpu);
596 	else
597 		trace_sched_wake_idle_without_ipi(cpu);
598 }
599 
600 void resched_cpu(int cpu)
601 {
602 	struct rq *rq = cpu_rq(cpu);
603 	unsigned long flags;
604 
605 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
606 		return;
607 	resched_curr(rq);
608 	raw_spin_unlock_irqrestore(&rq->lock, flags);
609 }
610 
611 #ifdef CONFIG_SMP
612 #ifdef CONFIG_NO_HZ_COMMON
613 /*
614  * In the semi idle case, use the nearest busy cpu for migrating timers
615  * from an idle cpu.  This is good for power-savings.
616  *
617  * We don't do similar optimization for completely idle system, as
618  * selecting an idle cpu will add more delays to the timers than intended
619  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620  */
621 int get_nohz_timer_target(void)
622 {
623 	int i, cpu = smp_processor_id();
624 	struct sched_domain *sd;
625 
626 	if (!idle_cpu(cpu))
627 		return cpu;
628 
629 	rcu_read_lock();
630 	for_each_domain(cpu, sd) {
631 		for_each_cpu(i, sched_domain_span(sd)) {
632 			if (!idle_cpu(i)) {
633 				cpu = i;
634 				goto unlock;
635 			}
636 		}
637 	}
638 unlock:
639 	rcu_read_unlock();
640 	return cpu;
641 }
642 /*
643  * When add_timer_on() enqueues a timer into the timer wheel of an
644  * idle CPU then this timer might expire before the next timer event
645  * which is scheduled to wake up that CPU. In case of a completely
646  * idle system the next event might even be infinite time into the
647  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
648  * leaves the inner idle loop so the newly added timer is taken into
649  * account when the CPU goes back to idle and evaluates the timer
650  * wheel for the next timer event.
651  */
652 static void wake_up_idle_cpu(int cpu)
653 {
654 	struct rq *rq = cpu_rq(cpu);
655 
656 	if (cpu == smp_processor_id())
657 		return;
658 
659 	if (set_nr_and_not_polling(rq->idle))
660 		smp_send_reschedule(cpu);
661 	else
662 		trace_sched_wake_idle_without_ipi(cpu);
663 }
664 
665 static bool wake_up_full_nohz_cpu(int cpu)
666 {
667 	/*
668 	 * We just need the target to call irq_exit() and re-evaluate
669 	 * the next tick. The nohz full kick at least implies that.
670 	 * If needed we can still optimize that later with an
671 	 * empty IRQ.
672 	 */
673 	if (tick_nohz_full_cpu(cpu)) {
674 		if (cpu != smp_processor_id() ||
675 		    tick_nohz_tick_stopped())
676 			tick_nohz_full_kick_cpu(cpu);
677 		return true;
678 	}
679 
680 	return false;
681 }
682 
683 void wake_up_nohz_cpu(int cpu)
684 {
685 	if (!wake_up_full_nohz_cpu(cpu))
686 		wake_up_idle_cpu(cpu);
687 }
688 
689 static inline bool got_nohz_idle_kick(void)
690 {
691 	int cpu = smp_processor_id();
692 
693 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
694 		return false;
695 
696 	if (idle_cpu(cpu) && !need_resched())
697 		return true;
698 
699 	/*
700 	 * We can't run Idle Load Balance on this CPU for this time so we
701 	 * cancel it and clear NOHZ_BALANCE_KICK
702 	 */
703 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
704 	return false;
705 }
706 
707 #else /* CONFIG_NO_HZ_COMMON */
708 
709 static inline bool got_nohz_idle_kick(void)
710 {
711 	return false;
712 }
713 
714 #endif /* CONFIG_NO_HZ_COMMON */
715 
716 #ifdef CONFIG_NO_HZ_FULL
717 bool sched_can_stop_tick(void)
718 {
719 	/*
720 	 * FIFO realtime policy runs the highest priority task. Other runnable
721 	 * tasks are of a lower priority. The scheduler tick does nothing.
722 	 */
723 	if (current->policy == SCHED_FIFO)
724 		return true;
725 
726 	/*
727 	 * Round-robin realtime tasks time slice with other tasks at the same
728 	 * realtime priority. Is this task the only one at this priority?
729 	 */
730 	if (current->policy == SCHED_RR) {
731 		struct sched_rt_entity *rt_se = &current->rt;
732 
733 		return rt_se->run_list.prev == rt_se->run_list.next;
734 	}
735 
736 	/*
737 	 * More than one running task need preemption.
738 	 * nr_running update is assumed to be visible
739 	 * after IPI is sent from wakers.
740 	 */
741 	if (this_rq()->nr_running > 1)
742 		return false;
743 
744 	return true;
745 }
746 #endif /* CONFIG_NO_HZ_FULL */
747 
748 void sched_avg_update(struct rq *rq)
749 {
750 	s64 period = sched_avg_period();
751 
752 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
753 		/*
754 		 * Inline assembly required to prevent the compiler
755 		 * optimising this loop into a divmod call.
756 		 * See __iter_div_u64_rem() for another example of this.
757 		 */
758 		asm("" : "+rm" (rq->age_stamp));
759 		rq->age_stamp += period;
760 		rq->rt_avg /= 2;
761 	}
762 }
763 
764 #endif /* CONFIG_SMP */
765 
766 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
768 /*
769  * Iterate task_group tree rooted at *from, calling @down when first entering a
770  * node and @up when leaving it for the final time.
771  *
772  * Caller must hold rcu_lock or sufficient equivalent.
773  */
774 int walk_tg_tree_from(struct task_group *from,
775 			     tg_visitor down, tg_visitor up, void *data)
776 {
777 	struct task_group *parent, *child;
778 	int ret;
779 
780 	parent = from;
781 
782 down:
783 	ret = (*down)(parent, data);
784 	if (ret)
785 		goto out;
786 	list_for_each_entry_rcu(child, &parent->children, siblings) {
787 		parent = child;
788 		goto down;
789 
790 up:
791 		continue;
792 	}
793 	ret = (*up)(parent, data);
794 	if (ret || parent == from)
795 		goto out;
796 
797 	child = parent;
798 	parent = parent->parent;
799 	if (parent)
800 		goto up;
801 out:
802 	return ret;
803 }
804 
805 int tg_nop(struct task_group *tg, void *data)
806 {
807 	return 0;
808 }
809 #endif
810 
811 static void set_load_weight(struct task_struct *p)
812 {
813 	int prio = p->static_prio - MAX_RT_PRIO;
814 	struct load_weight *load = &p->se.load;
815 
816 	/*
817 	 * SCHED_IDLE tasks get minimal weight:
818 	 */
819 	if (p->policy == SCHED_IDLE) {
820 		load->weight = scale_load(WEIGHT_IDLEPRIO);
821 		load->inv_weight = WMULT_IDLEPRIO;
822 		return;
823 	}
824 
825 	load->weight = scale_load(prio_to_weight[prio]);
826 	load->inv_weight = prio_to_wmult[prio];
827 }
828 
829 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
830 {
831 	update_rq_clock(rq);
832 	sched_info_queued(rq, p);
833 	p->sched_class->enqueue_task(rq, p, flags);
834 }
835 
836 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
837 {
838 	update_rq_clock(rq);
839 	sched_info_dequeued(rq, p);
840 	p->sched_class->dequeue_task(rq, p, flags);
841 }
842 
843 void activate_task(struct rq *rq, struct task_struct *p, int flags)
844 {
845 	if (task_contributes_to_load(p))
846 		rq->nr_uninterruptible--;
847 
848 	enqueue_task(rq, p, flags);
849 }
850 
851 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
852 {
853 	if (task_contributes_to_load(p))
854 		rq->nr_uninterruptible++;
855 
856 	dequeue_task(rq, p, flags);
857 }
858 
859 static void update_rq_clock_task(struct rq *rq, s64 delta)
860 {
861 /*
862  * In theory, the compile should just see 0 here, and optimize out the call
863  * to sched_rt_avg_update. But I don't trust it...
864  */
865 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 	s64 steal = 0, irq_delta = 0;
867 #endif
868 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
869 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
870 
871 	/*
872 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873 	 * this case when a previous update_rq_clock() happened inside a
874 	 * {soft,}irq region.
875 	 *
876 	 * When this happens, we stop ->clock_task and only update the
877 	 * prev_irq_time stamp to account for the part that fit, so that a next
878 	 * update will consume the rest. This ensures ->clock_task is
879 	 * monotonic.
880 	 *
881 	 * It does however cause some slight miss-attribution of {soft,}irq
882 	 * time, a more accurate solution would be to update the irq_time using
883 	 * the current rq->clock timestamp, except that would require using
884 	 * atomic ops.
885 	 */
886 	if (irq_delta > delta)
887 		irq_delta = delta;
888 
889 	rq->prev_irq_time += irq_delta;
890 	delta -= irq_delta;
891 #endif
892 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893 	if (static_key_false((&paravirt_steal_rq_enabled))) {
894 		steal = paravirt_steal_clock(cpu_of(rq));
895 		steal -= rq->prev_steal_time_rq;
896 
897 		if (unlikely(steal > delta))
898 			steal = delta;
899 
900 		rq->prev_steal_time_rq += steal;
901 		delta -= steal;
902 	}
903 #endif
904 
905 	rq->clock_task += delta;
906 
907 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
909 		sched_rt_avg_update(rq, irq_delta + steal);
910 #endif
911 }
912 
913 void sched_set_stop_task(int cpu, struct task_struct *stop)
914 {
915 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
917 
918 	if (stop) {
919 		/*
920 		 * Make it appear like a SCHED_FIFO task, its something
921 		 * userspace knows about and won't get confused about.
922 		 *
923 		 * Also, it will make PI more or less work without too
924 		 * much confusion -- but then, stop work should not
925 		 * rely on PI working anyway.
926 		 */
927 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
928 
929 		stop->sched_class = &stop_sched_class;
930 	}
931 
932 	cpu_rq(cpu)->stop = stop;
933 
934 	if (old_stop) {
935 		/*
936 		 * Reset it back to a normal scheduling class so that
937 		 * it can die in pieces.
938 		 */
939 		old_stop->sched_class = &rt_sched_class;
940 	}
941 }
942 
943 /*
944  * __normal_prio - return the priority that is based on the static prio
945  */
946 static inline int __normal_prio(struct task_struct *p)
947 {
948 	return p->static_prio;
949 }
950 
951 /*
952  * Calculate the expected normal priority: i.e. priority
953  * without taking RT-inheritance into account. Might be
954  * boosted by interactivity modifiers. Changes upon fork,
955  * setprio syscalls, and whenever the interactivity
956  * estimator recalculates.
957  */
958 static inline int normal_prio(struct task_struct *p)
959 {
960 	int prio;
961 
962 	if (task_has_dl_policy(p))
963 		prio = MAX_DL_PRIO-1;
964 	else if (task_has_rt_policy(p))
965 		prio = MAX_RT_PRIO-1 - p->rt_priority;
966 	else
967 		prio = __normal_prio(p);
968 	return prio;
969 }
970 
971 /*
972  * Calculate the current priority, i.e. the priority
973  * taken into account by the scheduler. This value might
974  * be boosted by RT tasks, or might be boosted by
975  * interactivity modifiers. Will be RT if the task got
976  * RT-boosted. If not then it returns p->normal_prio.
977  */
978 static int effective_prio(struct task_struct *p)
979 {
980 	p->normal_prio = normal_prio(p);
981 	/*
982 	 * If we are RT tasks or we were boosted to RT priority,
983 	 * keep the priority unchanged. Otherwise, update priority
984 	 * to the normal priority:
985 	 */
986 	if (!rt_prio(p->prio))
987 		return p->normal_prio;
988 	return p->prio;
989 }
990 
991 /**
992  * task_curr - is this task currently executing on a CPU?
993  * @p: the task in question.
994  *
995  * Return: 1 if the task is currently executing. 0 otherwise.
996  */
997 inline int task_curr(const struct task_struct *p)
998 {
999 	return cpu_curr(task_cpu(p)) == p;
1000 }
1001 
1002 /*
1003  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1004  * use the balance_callback list if you want balancing.
1005  *
1006  * this means any call to check_class_changed() must be followed by a call to
1007  * balance_callback().
1008  */
1009 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1010 				       const struct sched_class *prev_class,
1011 				       int oldprio)
1012 {
1013 	if (prev_class != p->sched_class) {
1014 		if (prev_class->switched_from)
1015 			prev_class->switched_from(rq, p);
1016 
1017 		p->sched_class->switched_to(rq, p);
1018 	} else if (oldprio != p->prio || dl_task(p))
1019 		p->sched_class->prio_changed(rq, p, oldprio);
1020 }
1021 
1022 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1023 {
1024 	const struct sched_class *class;
1025 
1026 	if (p->sched_class == rq->curr->sched_class) {
1027 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1028 	} else {
1029 		for_each_class(class) {
1030 			if (class == rq->curr->sched_class)
1031 				break;
1032 			if (class == p->sched_class) {
1033 				resched_curr(rq);
1034 				break;
1035 			}
1036 		}
1037 	}
1038 
1039 	/*
1040 	 * A queue event has occurred, and we're going to schedule.  In
1041 	 * this case, we can save a useless back to back clock update.
1042 	 */
1043 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1044 		rq_clock_skip_update(rq, true);
1045 }
1046 
1047 #ifdef CONFIG_SMP
1048 /*
1049  * This is how migration works:
1050  *
1051  * 1) we invoke migration_cpu_stop() on the target CPU using
1052  *    stop_one_cpu().
1053  * 2) stopper starts to run (implicitly forcing the migrated thread
1054  *    off the CPU)
1055  * 3) it checks whether the migrated task is still in the wrong runqueue.
1056  * 4) if it's in the wrong runqueue then the migration thread removes
1057  *    it and puts it into the right queue.
1058  * 5) stopper completes and stop_one_cpu() returns and the migration
1059  *    is done.
1060  */
1061 
1062 /*
1063  * move_queued_task - move a queued task to new rq.
1064  *
1065  * Returns (locked) new rq. Old rq's lock is released.
1066  */
1067 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1068 {
1069 	lockdep_assert_held(&rq->lock);
1070 
1071 	dequeue_task(rq, p, 0);
1072 	p->on_rq = TASK_ON_RQ_MIGRATING;
1073 	set_task_cpu(p, new_cpu);
1074 	raw_spin_unlock(&rq->lock);
1075 
1076 	rq = cpu_rq(new_cpu);
1077 
1078 	raw_spin_lock(&rq->lock);
1079 	BUG_ON(task_cpu(p) != new_cpu);
1080 	p->on_rq = TASK_ON_RQ_QUEUED;
1081 	enqueue_task(rq, p, 0);
1082 	check_preempt_curr(rq, p, 0);
1083 
1084 	return rq;
1085 }
1086 
1087 struct migration_arg {
1088 	struct task_struct *task;
1089 	int dest_cpu;
1090 };
1091 
1092 /*
1093  * Move (not current) task off this cpu, onto dest cpu. We're doing
1094  * this because either it can't run here any more (set_cpus_allowed()
1095  * away from this CPU, or CPU going down), or because we're
1096  * attempting to rebalance this task on exec (sched_exec).
1097  *
1098  * So we race with normal scheduler movements, but that's OK, as long
1099  * as the task is no longer on this CPU.
1100  */
1101 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1102 {
1103 	if (unlikely(!cpu_active(dest_cpu)))
1104 		return rq;
1105 
1106 	/* Affinity changed (again). */
1107 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1108 		return rq;
1109 
1110 	rq = move_queued_task(rq, p, dest_cpu);
1111 
1112 	return rq;
1113 }
1114 
1115 /*
1116  * migration_cpu_stop - this will be executed by a highprio stopper thread
1117  * and performs thread migration by bumping thread off CPU then
1118  * 'pushing' onto another runqueue.
1119  */
1120 static int migration_cpu_stop(void *data)
1121 {
1122 	struct migration_arg *arg = data;
1123 	struct task_struct *p = arg->task;
1124 	struct rq *rq = this_rq();
1125 
1126 	/*
1127 	 * The original target cpu might have gone down and we might
1128 	 * be on another cpu but it doesn't matter.
1129 	 */
1130 	local_irq_disable();
1131 	/*
1132 	 * We need to explicitly wake pending tasks before running
1133 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1134 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1135 	 */
1136 	sched_ttwu_pending();
1137 
1138 	raw_spin_lock(&p->pi_lock);
1139 	raw_spin_lock(&rq->lock);
1140 	/*
1141 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1142 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1143 	 * we're holding p->pi_lock.
1144 	 */
1145 	if (task_rq(p) == rq && task_on_rq_queued(p))
1146 		rq = __migrate_task(rq, p, arg->dest_cpu);
1147 	raw_spin_unlock(&rq->lock);
1148 	raw_spin_unlock(&p->pi_lock);
1149 
1150 	local_irq_enable();
1151 	return 0;
1152 }
1153 
1154 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1155 {
1156 	if (p->sched_class->set_cpus_allowed)
1157 		p->sched_class->set_cpus_allowed(p, new_mask);
1158 
1159 	cpumask_copy(&p->cpus_allowed, new_mask);
1160 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1161 }
1162 
1163 /*
1164  * Change a given task's CPU affinity. Migrate the thread to a
1165  * proper CPU and schedule it away if the CPU it's executing on
1166  * is removed from the allowed bitmask.
1167  *
1168  * NOTE: the caller must have a valid reference to the task, the
1169  * task must not exit() & deallocate itself prematurely. The
1170  * call is not atomic; no spinlocks may be held.
1171  */
1172 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1173 {
1174 	unsigned long flags;
1175 	struct rq *rq;
1176 	unsigned int dest_cpu;
1177 	int ret = 0;
1178 
1179 	rq = task_rq_lock(p, &flags);
1180 
1181 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1182 		goto out;
1183 
1184 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1185 		ret = -EINVAL;
1186 		goto out;
1187 	}
1188 
1189 	do_set_cpus_allowed(p, new_mask);
1190 
1191 	/* Can the task run on the task's current CPU? If so, we're done */
1192 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1193 		goto out;
1194 
1195 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1196 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1197 		struct migration_arg arg = { p, dest_cpu };
1198 		/* Need help from migration thread: drop lock and wait. */
1199 		task_rq_unlock(rq, p, &flags);
1200 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1201 		tlb_migrate_finish(p->mm);
1202 		return 0;
1203 	} else if (task_on_rq_queued(p)) {
1204 		/*
1205 		 * OK, since we're going to drop the lock immediately
1206 		 * afterwards anyway.
1207 		 */
1208 		lockdep_unpin_lock(&rq->lock);
1209 		rq = move_queued_task(rq, p, dest_cpu);
1210 		lockdep_pin_lock(&rq->lock);
1211 	}
1212 out:
1213 	task_rq_unlock(rq, p, &flags);
1214 
1215 	return ret;
1216 }
1217 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1218 
1219 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1220 {
1221 #ifdef CONFIG_SCHED_DEBUG
1222 	/*
1223 	 * We should never call set_task_cpu() on a blocked task,
1224 	 * ttwu() will sort out the placement.
1225 	 */
1226 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1227 			!p->on_rq);
1228 
1229 #ifdef CONFIG_LOCKDEP
1230 	/*
1231 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1232 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1233 	 *
1234 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1235 	 * see task_group().
1236 	 *
1237 	 * Furthermore, all task_rq users should acquire both locks, see
1238 	 * task_rq_lock().
1239 	 */
1240 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1241 				      lockdep_is_held(&task_rq(p)->lock)));
1242 #endif
1243 #endif
1244 
1245 	trace_sched_migrate_task(p, new_cpu);
1246 
1247 	if (task_cpu(p) != new_cpu) {
1248 		if (p->sched_class->migrate_task_rq)
1249 			p->sched_class->migrate_task_rq(p, new_cpu);
1250 		p->se.nr_migrations++;
1251 		perf_event_task_migrate(p);
1252 	}
1253 
1254 	__set_task_cpu(p, new_cpu);
1255 }
1256 
1257 static void __migrate_swap_task(struct task_struct *p, int cpu)
1258 {
1259 	if (task_on_rq_queued(p)) {
1260 		struct rq *src_rq, *dst_rq;
1261 
1262 		src_rq = task_rq(p);
1263 		dst_rq = cpu_rq(cpu);
1264 
1265 		deactivate_task(src_rq, p, 0);
1266 		set_task_cpu(p, cpu);
1267 		activate_task(dst_rq, p, 0);
1268 		check_preempt_curr(dst_rq, p, 0);
1269 	} else {
1270 		/*
1271 		 * Task isn't running anymore; make it appear like we migrated
1272 		 * it before it went to sleep. This means on wakeup we make the
1273 		 * previous cpu our targer instead of where it really is.
1274 		 */
1275 		p->wake_cpu = cpu;
1276 	}
1277 }
1278 
1279 struct migration_swap_arg {
1280 	struct task_struct *src_task, *dst_task;
1281 	int src_cpu, dst_cpu;
1282 };
1283 
1284 static int migrate_swap_stop(void *data)
1285 {
1286 	struct migration_swap_arg *arg = data;
1287 	struct rq *src_rq, *dst_rq;
1288 	int ret = -EAGAIN;
1289 
1290 	src_rq = cpu_rq(arg->src_cpu);
1291 	dst_rq = cpu_rq(arg->dst_cpu);
1292 
1293 	double_raw_lock(&arg->src_task->pi_lock,
1294 			&arg->dst_task->pi_lock);
1295 	double_rq_lock(src_rq, dst_rq);
1296 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1297 		goto unlock;
1298 
1299 	if (task_cpu(arg->src_task) != arg->src_cpu)
1300 		goto unlock;
1301 
1302 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1303 		goto unlock;
1304 
1305 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1306 		goto unlock;
1307 
1308 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1309 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1310 
1311 	ret = 0;
1312 
1313 unlock:
1314 	double_rq_unlock(src_rq, dst_rq);
1315 	raw_spin_unlock(&arg->dst_task->pi_lock);
1316 	raw_spin_unlock(&arg->src_task->pi_lock);
1317 
1318 	return ret;
1319 }
1320 
1321 /*
1322  * Cross migrate two tasks
1323  */
1324 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1325 {
1326 	struct migration_swap_arg arg;
1327 	int ret = -EINVAL;
1328 
1329 	arg = (struct migration_swap_arg){
1330 		.src_task = cur,
1331 		.src_cpu = task_cpu(cur),
1332 		.dst_task = p,
1333 		.dst_cpu = task_cpu(p),
1334 	};
1335 
1336 	if (arg.src_cpu == arg.dst_cpu)
1337 		goto out;
1338 
1339 	/*
1340 	 * These three tests are all lockless; this is OK since all of them
1341 	 * will be re-checked with proper locks held further down the line.
1342 	 */
1343 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1344 		goto out;
1345 
1346 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1347 		goto out;
1348 
1349 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1350 		goto out;
1351 
1352 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1353 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1354 
1355 out:
1356 	return ret;
1357 }
1358 
1359 /*
1360  * wait_task_inactive - wait for a thread to unschedule.
1361  *
1362  * If @match_state is nonzero, it's the @p->state value just checked and
1363  * not expected to change.  If it changes, i.e. @p might have woken up,
1364  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1365  * we return a positive number (its total switch count).  If a second call
1366  * a short while later returns the same number, the caller can be sure that
1367  * @p has remained unscheduled the whole time.
1368  *
1369  * The caller must ensure that the task *will* unschedule sometime soon,
1370  * else this function might spin for a *long* time. This function can't
1371  * be called with interrupts off, or it may introduce deadlock with
1372  * smp_call_function() if an IPI is sent by the same process we are
1373  * waiting to become inactive.
1374  */
1375 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1376 {
1377 	unsigned long flags;
1378 	int running, queued;
1379 	unsigned long ncsw;
1380 	struct rq *rq;
1381 
1382 	for (;;) {
1383 		/*
1384 		 * We do the initial early heuristics without holding
1385 		 * any task-queue locks at all. We'll only try to get
1386 		 * the runqueue lock when things look like they will
1387 		 * work out!
1388 		 */
1389 		rq = task_rq(p);
1390 
1391 		/*
1392 		 * If the task is actively running on another CPU
1393 		 * still, just relax and busy-wait without holding
1394 		 * any locks.
1395 		 *
1396 		 * NOTE! Since we don't hold any locks, it's not
1397 		 * even sure that "rq" stays as the right runqueue!
1398 		 * But we don't care, since "task_running()" will
1399 		 * return false if the runqueue has changed and p
1400 		 * is actually now running somewhere else!
1401 		 */
1402 		while (task_running(rq, p)) {
1403 			if (match_state && unlikely(p->state != match_state))
1404 				return 0;
1405 			cpu_relax();
1406 		}
1407 
1408 		/*
1409 		 * Ok, time to look more closely! We need the rq
1410 		 * lock now, to be *sure*. If we're wrong, we'll
1411 		 * just go back and repeat.
1412 		 */
1413 		rq = task_rq_lock(p, &flags);
1414 		trace_sched_wait_task(p);
1415 		running = task_running(rq, p);
1416 		queued = task_on_rq_queued(p);
1417 		ncsw = 0;
1418 		if (!match_state || p->state == match_state)
1419 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1420 		task_rq_unlock(rq, p, &flags);
1421 
1422 		/*
1423 		 * If it changed from the expected state, bail out now.
1424 		 */
1425 		if (unlikely(!ncsw))
1426 			break;
1427 
1428 		/*
1429 		 * Was it really running after all now that we
1430 		 * checked with the proper locks actually held?
1431 		 *
1432 		 * Oops. Go back and try again..
1433 		 */
1434 		if (unlikely(running)) {
1435 			cpu_relax();
1436 			continue;
1437 		}
1438 
1439 		/*
1440 		 * It's not enough that it's not actively running,
1441 		 * it must be off the runqueue _entirely_, and not
1442 		 * preempted!
1443 		 *
1444 		 * So if it was still runnable (but just not actively
1445 		 * running right now), it's preempted, and we should
1446 		 * yield - it could be a while.
1447 		 */
1448 		if (unlikely(queued)) {
1449 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1450 
1451 			set_current_state(TASK_UNINTERRUPTIBLE);
1452 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1453 			continue;
1454 		}
1455 
1456 		/*
1457 		 * Ahh, all good. It wasn't running, and it wasn't
1458 		 * runnable, which means that it will never become
1459 		 * running in the future either. We're all done!
1460 		 */
1461 		break;
1462 	}
1463 
1464 	return ncsw;
1465 }
1466 
1467 /***
1468  * kick_process - kick a running thread to enter/exit the kernel
1469  * @p: the to-be-kicked thread
1470  *
1471  * Cause a process which is running on another CPU to enter
1472  * kernel-mode, without any delay. (to get signals handled.)
1473  *
1474  * NOTE: this function doesn't have to take the runqueue lock,
1475  * because all it wants to ensure is that the remote task enters
1476  * the kernel. If the IPI races and the task has been migrated
1477  * to another CPU then no harm is done and the purpose has been
1478  * achieved as well.
1479  */
1480 void kick_process(struct task_struct *p)
1481 {
1482 	int cpu;
1483 
1484 	preempt_disable();
1485 	cpu = task_cpu(p);
1486 	if ((cpu != smp_processor_id()) && task_curr(p))
1487 		smp_send_reschedule(cpu);
1488 	preempt_enable();
1489 }
1490 EXPORT_SYMBOL_GPL(kick_process);
1491 
1492 /*
1493  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1494  */
1495 static int select_fallback_rq(int cpu, struct task_struct *p)
1496 {
1497 	int nid = cpu_to_node(cpu);
1498 	const struct cpumask *nodemask = NULL;
1499 	enum { cpuset, possible, fail } state = cpuset;
1500 	int dest_cpu;
1501 
1502 	/*
1503 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1504 	 * will return -1. There is no cpu on the node, and we should
1505 	 * select the cpu on the other node.
1506 	 */
1507 	if (nid != -1) {
1508 		nodemask = cpumask_of_node(nid);
1509 
1510 		/* Look for allowed, online CPU in same node. */
1511 		for_each_cpu(dest_cpu, nodemask) {
1512 			if (!cpu_online(dest_cpu))
1513 				continue;
1514 			if (!cpu_active(dest_cpu))
1515 				continue;
1516 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1517 				return dest_cpu;
1518 		}
1519 	}
1520 
1521 	for (;;) {
1522 		/* Any allowed, online CPU? */
1523 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1524 			if (!cpu_online(dest_cpu))
1525 				continue;
1526 			if (!cpu_active(dest_cpu))
1527 				continue;
1528 			goto out;
1529 		}
1530 
1531 		switch (state) {
1532 		case cpuset:
1533 			/* No more Mr. Nice Guy. */
1534 			cpuset_cpus_allowed_fallback(p);
1535 			state = possible;
1536 			break;
1537 
1538 		case possible:
1539 			do_set_cpus_allowed(p, cpu_possible_mask);
1540 			state = fail;
1541 			break;
1542 
1543 		case fail:
1544 			BUG();
1545 			break;
1546 		}
1547 	}
1548 
1549 out:
1550 	if (state != cpuset) {
1551 		/*
1552 		 * Don't tell them about moving exiting tasks or
1553 		 * kernel threads (both mm NULL), since they never
1554 		 * leave kernel.
1555 		 */
1556 		if (p->mm && printk_ratelimit()) {
1557 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1558 					task_pid_nr(p), p->comm, cpu);
1559 		}
1560 	}
1561 
1562 	return dest_cpu;
1563 }
1564 
1565 /*
1566  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1567  */
1568 static inline
1569 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1570 {
1571 	lockdep_assert_held(&p->pi_lock);
1572 
1573 	if (p->nr_cpus_allowed > 1)
1574 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1575 
1576 	/*
1577 	 * In order not to call set_task_cpu() on a blocking task we need
1578 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1579 	 * cpu.
1580 	 *
1581 	 * Since this is common to all placement strategies, this lives here.
1582 	 *
1583 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1584 	 *   not worry about this generic constraint ]
1585 	 */
1586 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1587 		     !cpu_online(cpu)))
1588 		cpu = select_fallback_rq(task_cpu(p), p);
1589 
1590 	return cpu;
1591 }
1592 
1593 static void update_avg(u64 *avg, u64 sample)
1594 {
1595 	s64 diff = sample - *avg;
1596 	*avg += diff >> 3;
1597 }
1598 #endif /* CONFIG_SMP */
1599 
1600 static void
1601 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1602 {
1603 #ifdef CONFIG_SCHEDSTATS
1604 	struct rq *rq = this_rq();
1605 
1606 #ifdef CONFIG_SMP
1607 	int this_cpu = smp_processor_id();
1608 
1609 	if (cpu == this_cpu) {
1610 		schedstat_inc(rq, ttwu_local);
1611 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1612 	} else {
1613 		struct sched_domain *sd;
1614 
1615 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1616 		rcu_read_lock();
1617 		for_each_domain(this_cpu, sd) {
1618 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1619 				schedstat_inc(sd, ttwu_wake_remote);
1620 				break;
1621 			}
1622 		}
1623 		rcu_read_unlock();
1624 	}
1625 
1626 	if (wake_flags & WF_MIGRATED)
1627 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1628 
1629 #endif /* CONFIG_SMP */
1630 
1631 	schedstat_inc(rq, ttwu_count);
1632 	schedstat_inc(p, se.statistics.nr_wakeups);
1633 
1634 	if (wake_flags & WF_SYNC)
1635 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1636 
1637 #endif /* CONFIG_SCHEDSTATS */
1638 }
1639 
1640 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1641 {
1642 	activate_task(rq, p, en_flags);
1643 	p->on_rq = TASK_ON_RQ_QUEUED;
1644 
1645 	/* if a worker is waking up, notify workqueue */
1646 	if (p->flags & PF_WQ_WORKER)
1647 		wq_worker_waking_up(p, cpu_of(rq));
1648 }
1649 
1650 /*
1651  * Mark the task runnable and perform wakeup-preemption.
1652  */
1653 static void
1654 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1655 {
1656 	check_preempt_curr(rq, p, wake_flags);
1657 	trace_sched_wakeup(p, true);
1658 
1659 	p->state = TASK_RUNNING;
1660 #ifdef CONFIG_SMP
1661 	if (p->sched_class->task_woken) {
1662 		/*
1663 		 * Our task @p is fully woken up and running; so its safe to
1664 		 * drop the rq->lock, hereafter rq is only used for statistics.
1665 		 */
1666 		lockdep_unpin_lock(&rq->lock);
1667 		p->sched_class->task_woken(rq, p);
1668 		lockdep_pin_lock(&rq->lock);
1669 	}
1670 
1671 	if (rq->idle_stamp) {
1672 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1673 		u64 max = 2*rq->max_idle_balance_cost;
1674 
1675 		update_avg(&rq->avg_idle, delta);
1676 
1677 		if (rq->avg_idle > max)
1678 			rq->avg_idle = max;
1679 
1680 		rq->idle_stamp = 0;
1681 	}
1682 #endif
1683 }
1684 
1685 static void
1686 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1687 {
1688 	lockdep_assert_held(&rq->lock);
1689 
1690 #ifdef CONFIG_SMP
1691 	if (p->sched_contributes_to_load)
1692 		rq->nr_uninterruptible--;
1693 #endif
1694 
1695 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1696 	ttwu_do_wakeup(rq, p, wake_flags);
1697 }
1698 
1699 /*
1700  * Called in case the task @p isn't fully descheduled from its runqueue,
1701  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1702  * since all we need to do is flip p->state to TASK_RUNNING, since
1703  * the task is still ->on_rq.
1704  */
1705 static int ttwu_remote(struct task_struct *p, int wake_flags)
1706 {
1707 	struct rq *rq;
1708 	int ret = 0;
1709 
1710 	rq = __task_rq_lock(p);
1711 	if (task_on_rq_queued(p)) {
1712 		/* check_preempt_curr() may use rq clock */
1713 		update_rq_clock(rq);
1714 		ttwu_do_wakeup(rq, p, wake_flags);
1715 		ret = 1;
1716 	}
1717 	__task_rq_unlock(rq);
1718 
1719 	return ret;
1720 }
1721 
1722 #ifdef CONFIG_SMP
1723 void sched_ttwu_pending(void)
1724 {
1725 	struct rq *rq = this_rq();
1726 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1727 	struct task_struct *p;
1728 	unsigned long flags;
1729 
1730 	if (!llist)
1731 		return;
1732 
1733 	raw_spin_lock_irqsave(&rq->lock, flags);
1734 	lockdep_pin_lock(&rq->lock);
1735 
1736 	while (llist) {
1737 		p = llist_entry(llist, struct task_struct, wake_entry);
1738 		llist = llist_next(llist);
1739 		ttwu_do_activate(rq, p, 0);
1740 	}
1741 
1742 	lockdep_unpin_lock(&rq->lock);
1743 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1744 }
1745 
1746 void scheduler_ipi(void)
1747 {
1748 	/*
1749 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1750 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1751 	 * this IPI.
1752 	 */
1753 	preempt_fold_need_resched();
1754 
1755 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1756 		return;
1757 
1758 	/*
1759 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1760 	 * traditionally all their work was done from the interrupt return
1761 	 * path. Now that we actually do some work, we need to make sure
1762 	 * we do call them.
1763 	 *
1764 	 * Some archs already do call them, luckily irq_enter/exit nest
1765 	 * properly.
1766 	 *
1767 	 * Arguably we should visit all archs and update all handlers,
1768 	 * however a fair share of IPIs are still resched only so this would
1769 	 * somewhat pessimize the simple resched case.
1770 	 */
1771 	irq_enter();
1772 	sched_ttwu_pending();
1773 
1774 	/*
1775 	 * Check if someone kicked us for doing the nohz idle load balance.
1776 	 */
1777 	if (unlikely(got_nohz_idle_kick())) {
1778 		this_rq()->idle_balance = 1;
1779 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1780 	}
1781 	irq_exit();
1782 }
1783 
1784 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1785 {
1786 	struct rq *rq = cpu_rq(cpu);
1787 
1788 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1789 		if (!set_nr_if_polling(rq->idle))
1790 			smp_send_reschedule(cpu);
1791 		else
1792 			trace_sched_wake_idle_without_ipi(cpu);
1793 	}
1794 }
1795 
1796 void wake_up_if_idle(int cpu)
1797 {
1798 	struct rq *rq = cpu_rq(cpu);
1799 	unsigned long flags;
1800 
1801 	rcu_read_lock();
1802 
1803 	if (!is_idle_task(rcu_dereference(rq->curr)))
1804 		goto out;
1805 
1806 	if (set_nr_if_polling(rq->idle)) {
1807 		trace_sched_wake_idle_without_ipi(cpu);
1808 	} else {
1809 		raw_spin_lock_irqsave(&rq->lock, flags);
1810 		if (is_idle_task(rq->curr))
1811 			smp_send_reschedule(cpu);
1812 		/* Else cpu is not in idle, do nothing here */
1813 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1814 	}
1815 
1816 out:
1817 	rcu_read_unlock();
1818 }
1819 
1820 bool cpus_share_cache(int this_cpu, int that_cpu)
1821 {
1822 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1823 }
1824 #endif /* CONFIG_SMP */
1825 
1826 static void ttwu_queue(struct task_struct *p, int cpu)
1827 {
1828 	struct rq *rq = cpu_rq(cpu);
1829 
1830 #if defined(CONFIG_SMP)
1831 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1832 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1833 		ttwu_queue_remote(p, cpu);
1834 		return;
1835 	}
1836 #endif
1837 
1838 	raw_spin_lock(&rq->lock);
1839 	lockdep_pin_lock(&rq->lock);
1840 	ttwu_do_activate(rq, p, 0);
1841 	lockdep_unpin_lock(&rq->lock);
1842 	raw_spin_unlock(&rq->lock);
1843 }
1844 
1845 /**
1846  * try_to_wake_up - wake up a thread
1847  * @p: the thread to be awakened
1848  * @state: the mask of task states that can be woken
1849  * @wake_flags: wake modifier flags (WF_*)
1850  *
1851  * Put it on the run-queue if it's not already there. The "current"
1852  * thread is always on the run-queue (except when the actual
1853  * re-schedule is in progress), and as such you're allowed to do
1854  * the simpler "current->state = TASK_RUNNING" to mark yourself
1855  * runnable without the overhead of this.
1856  *
1857  * Return: %true if @p was woken up, %false if it was already running.
1858  * or @state didn't match @p's state.
1859  */
1860 static int
1861 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1862 {
1863 	unsigned long flags;
1864 	int cpu, success = 0;
1865 
1866 	/*
1867 	 * If we are going to wake up a thread waiting for CONDITION we
1868 	 * need to ensure that CONDITION=1 done by the caller can not be
1869 	 * reordered with p->state check below. This pairs with mb() in
1870 	 * set_current_state() the waiting thread does.
1871 	 */
1872 	smp_mb__before_spinlock();
1873 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1874 	if (!(p->state & state))
1875 		goto out;
1876 
1877 	success = 1; /* we're going to change ->state */
1878 	cpu = task_cpu(p);
1879 
1880 	if (p->on_rq && ttwu_remote(p, wake_flags))
1881 		goto stat;
1882 
1883 #ifdef CONFIG_SMP
1884 	/*
1885 	 * If the owning (remote) cpu is still in the middle of schedule() with
1886 	 * this task as prev, wait until its done referencing the task.
1887 	 */
1888 	while (p->on_cpu)
1889 		cpu_relax();
1890 	/*
1891 	 * Pairs with the smp_wmb() in finish_lock_switch().
1892 	 */
1893 	smp_rmb();
1894 
1895 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1896 	p->state = TASK_WAKING;
1897 
1898 	if (p->sched_class->task_waking)
1899 		p->sched_class->task_waking(p);
1900 
1901 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1902 	if (task_cpu(p) != cpu) {
1903 		wake_flags |= WF_MIGRATED;
1904 		set_task_cpu(p, cpu);
1905 	}
1906 #endif /* CONFIG_SMP */
1907 
1908 	ttwu_queue(p, cpu);
1909 stat:
1910 	ttwu_stat(p, cpu, wake_flags);
1911 out:
1912 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1913 
1914 	return success;
1915 }
1916 
1917 /**
1918  * try_to_wake_up_local - try to wake up a local task with rq lock held
1919  * @p: the thread to be awakened
1920  *
1921  * Put @p on the run-queue if it's not already there. The caller must
1922  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1923  * the current task.
1924  */
1925 static void try_to_wake_up_local(struct task_struct *p)
1926 {
1927 	struct rq *rq = task_rq(p);
1928 
1929 	if (WARN_ON_ONCE(rq != this_rq()) ||
1930 	    WARN_ON_ONCE(p == current))
1931 		return;
1932 
1933 	lockdep_assert_held(&rq->lock);
1934 
1935 	if (!raw_spin_trylock(&p->pi_lock)) {
1936 		/*
1937 		 * This is OK, because current is on_cpu, which avoids it being
1938 		 * picked for load-balance and preemption/IRQs are still
1939 		 * disabled avoiding further scheduler activity on it and we've
1940 		 * not yet picked a replacement task.
1941 		 */
1942 		lockdep_unpin_lock(&rq->lock);
1943 		raw_spin_unlock(&rq->lock);
1944 		raw_spin_lock(&p->pi_lock);
1945 		raw_spin_lock(&rq->lock);
1946 		lockdep_pin_lock(&rq->lock);
1947 	}
1948 
1949 	if (!(p->state & TASK_NORMAL))
1950 		goto out;
1951 
1952 	if (!task_on_rq_queued(p))
1953 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1954 
1955 	ttwu_do_wakeup(rq, p, 0);
1956 	ttwu_stat(p, smp_processor_id(), 0);
1957 out:
1958 	raw_spin_unlock(&p->pi_lock);
1959 }
1960 
1961 /**
1962  * wake_up_process - Wake up a specific process
1963  * @p: The process to be woken up.
1964  *
1965  * Attempt to wake up the nominated process and move it to the set of runnable
1966  * processes.
1967  *
1968  * Return: 1 if the process was woken up, 0 if it was already running.
1969  *
1970  * It may be assumed that this function implies a write memory barrier before
1971  * changing the task state if and only if any tasks are woken up.
1972  */
1973 int wake_up_process(struct task_struct *p)
1974 {
1975 	WARN_ON(task_is_stopped_or_traced(p));
1976 	return try_to_wake_up(p, TASK_NORMAL, 0);
1977 }
1978 EXPORT_SYMBOL(wake_up_process);
1979 
1980 int wake_up_state(struct task_struct *p, unsigned int state)
1981 {
1982 	return try_to_wake_up(p, state, 0);
1983 }
1984 
1985 /*
1986  * This function clears the sched_dl_entity static params.
1987  */
1988 void __dl_clear_params(struct task_struct *p)
1989 {
1990 	struct sched_dl_entity *dl_se = &p->dl;
1991 
1992 	dl_se->dl_runtime = 0;
1993 	dl_se->dl_deadline = 0;
1994 	dl_se->dl_period = 0;
1995 	dl_se->flags = 0;
1996 	dl_se->dl_bw = 0;
1997 
1998 	dl_se->dl_throttled = 0;
1999 	dl_se->dl_new = 1;
2000 	dl_se->dl_yielded = 0;
2001 }
2002 
2003 /*
2004  * Perform scheduler related setup for a newly forked process p.
2005  * p is forked by current.
2006  *
2007  * __sched_fork() is basic setup used by init_idle() too:
2008  */
2009 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2010 {
2011 	p->on_rq			= 0;
2012 
2013 	p->se.on_rq			= 0;
2014 	p->se.exec_start		= 0;
2015 	p->se.sum_exec_runtime		= 0;
2016 	p->se.prev_sum_exec_runtime	= 0;
2017 	p->se.nr_migrations		= 0;
2018 	p->se.vruntime			= 0;
2019 #ifdef CONFIG_SMP
2020 	p->se.avg.decay_count		= 0;
2021 #endif
2022 	INIT_LIST_HEAD(&p->se.group_node);
2023 
2024 #ifdef CONFIG_SCHEDSTATS
2025 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2026 #endif
2027 
2028 	RB_CLEAR_NODE(&p->dl.rb_node);
2029 	init_dl_task_timer(&p->dl);
2030 	__dl_clear_params(p);
2031 
2032 	INIT_LIST_HEAD(&p->rt.run_list);
2033 
2034 #ifdef CONFIG_PREEMPT_NOTIFIERS
2035 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2036 #endif
2037 
2038 #ifdef CONFIG_NUMA_BALANCING
2039 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2040 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2041 		p->mm->numa_scan_seq = 0;
2042 	}
2043 
2044 	if (clone_flags & CLONE_VM)
2045 		p->numa_preferred_nid = current->numa_preferred_nid;
2046 	else
2047 		p->numa_preferred_nid = -1;
2048 
2049 	p->node_stamp = 0ULL;
2050 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2051 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2052 	p->numa_work.next = &p->numa_work;
2053 	p->numa_faults = NULL;
2054 	p->last_task_numa_placement = 0;
2055 	p->last_sum_exec_runtime = 0;
2056 
2057 	p->numa_group = NULL;
2058 #endif /* CONFIG_NUMA_BALANCING */
2059 }
2060 
2061 #ifdef CONFIG_NUMA_BALANCING
2062 #ifdef CONFIG_SCHED_DEBUG
2063 void set_numabalancing_state(bool enabled)
2064 {
2065 	if (enabled)
2066 		sched_feat_set("NUMA");
2067 	else
2068 		sched_feat_set("NO_NUMA");
2069 }
2070 #else
2071 __read_mostly bool numabalancing_enabled;
2072 
2073 void set_numabalancing_state(bool enabled)
2074 {
2075 	numabalancing_enabled = enabled;
2076 }
2077 #endif /* CONFIG_SCHED_DEBUG */
2078 
2079 #ifdef CONFIG_PROC_SYSCTL
2080 int sysctl_numa_balancing(struct ctl_table *table, int write,
2081 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2082 {
2083 	struct ctl_table t;
2084 	int err;
2085 	int state = numabalancing_enabled;
2086 
2087 	if (write && !capable(CAP_SYS_ADMIN))
2088 		return -EPERM;
2089 
2090 	t = *table;
2091 	t.data = &state;
2092 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2093 	if (err < 0)
2094 		return err;
2095 	if (write)
2096 		set_numabalancing_state(state);
2097 	return err;
2098 }
2099 #endif
2100 #endif
2101 
2102 /*
2103  * fork()/clone()-time setup:
2104  */
2105 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2106 {
2107 	unsigned long flags;
2108 	int cpu = get_cpu();
2109 
2110 	__sched_fork(clone_flags, p);
2111 	/*
2112 	 * We mark the process as running here. This guarantees that
2113 	 * nobody will actually run it, and a signal or other external
2114 	 * event cannot wake it up and insert it on the runqueue either.
2115 	 */
2116 	p->state = TASK_RUNNING;
2117 
2118 	/*
2119 	 * Make sure we do not leak PI boosting priority to the child.
2120 	 */
2121 	p->prio = current->normal_prio;
2122 
2123 	/*
2124 	 * Revert to default priority/policy on fork if requested.
2125 	 */
2126 	if (unlikely(p->sched_reset_on_fork)) {
2127 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2128 			p->policy = SCHED_NORMAL;
2129 			p->static_prio = NICE_TO_PRIO(0);
2130 			p->rt_priority = 0;
2131 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2132 			p->static_prio = NICE_TO_PRIO(0);
2133 
2134 		p->prio = p->normal_prio = __normal_prio(p);
2135 		set_load_weight(p);
2136 
2137 		/*
2138 		 * We don't need the reset flag anymore after the fork. It has
2139 		 * fulfilled its duty:
2140 		 */
2141 		p->sched_reset_on_fork = 0;
2142 	}
2143 
2144 	if (dl_prio(p->prio)) {
2145 		put_cpu();
2146 		return -EAGAIN;
2147 	} else if (rt_prio(p->prio)) {
2148 		p->sched_class = &rt_sched_class;
2149 	} else {
2150 		p->sched_class = &fair_sched_class;
2151 	}
2152 
2153 	if (p->sched_class->task_fork)
2154 		p->sched_class->task_fork(p);
2155 
2156 	/*
2157 	 * The child is not yet in the pid-hash so no cgroup attach races,
2158 	 * and the cgroup is pinned to this child due to cgroup_fork()
2159 	 * is ran before sched_fork().
2160 	 *
2161 	 * Silence PROVE_RCU.
2162 	 */
2163 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2164 	set_task_cpu(p, cpu);
2165 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2166 
2167 #ifdef CONFIG_SCHED_INFO
2168 	if (likely(sched_info_on()))
2169 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2170 #endif
2171 #if defined(CONFIG_SMP)
2172 	p->on_cpu = 0;
2173 #endif
2174 	init_task_preempt_count(p);
2175 #ifdef CONFIG_SMP
2176 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2177 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2178 #endif
2179 
2180 	put_cpu();
2181 	return 0;
2182 }
2183 
2184 unsigned long to_ratio(u64 period, u64 runtime)
2185 {
2186 	if (runtime == RUNTIME_INF)
2187 		return 1ULL << 20;
2188 
2189 	/*
2190 	 * Doing this here saves a lot of checks in all
2191 	 * the calling paths, and returning zero seems
2192 	 * safe for them anyway.
2193 	 */
2194 	if (period == 0)
2195 		return 0;
2196 
2197 	return div64_u64(runtime << 20, period);
2198 }
2199 
2200 #ifdef CONFIG_SMP
2201 inline struct dl_bw *dl_bw_of(int i)
2202 {
2203 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2204 			   "sched RCU must be held");
2205 	return &cpu_rq(i)->rd->dl_bw;
2206 }
2207 
2208 static inline int dl_bw_cpus(int i)
2209 {
2210 	struct root_domain *rd = cpu_rq(i)->rd;
2211 	int cpus = 0;
2212 
2213 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2214 			   "sched RCU must be held");
2215 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2216 		cpus++;
2217 
2218 	return cpus;
2219 }
2220 #else
2221 inline struct dl_bw *dl_bw_of(int i)
2222 {
2223 	return &cpu_rq(i)->dl.dl_bw;
2224 }
2225 
2226 static inline int dl_bw_cpus(int i)
2227 {
2228 	return 1;
2229 }
2230 #endif
2231 
2232 /*
2233  * We must be sure that accepting a new task (or allowing changing the
2234  * parameters of an existing one) is consistent with the bandwidth
2235  * constraints. If yes, this function also accordingly updates the currently
2236  * allocated bandwidth to reflect the new situation.
2237  *
2238  * This function is called while holding p's rq->lock.
2239  *
2240  * XXX we should delay bw change until the task's 0-lag point, see
2241  * __setparam_dl().
2242  */
2243 static int dl_overflow(struct task_struct *p, int policy,
2244 		       const struct sched_attr *attr)
2245 {
2246 
2247 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2248 	u64 period = attr->sched_period ?: attr->sched_deadline;
2249 	u64 runtime = attr->sched_runtime;
2250 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2251 	int cpus, err = -1;
2252 
2253 	if (new_bw == p->dl.dl_bw)
2254 		return 0;
2255 
2256 	/*
2257 	 * Either if a task, enters, leave, or stays -deadline but changes
2258 	 * its parameters, we may need to update accordingly the total
2259 	 * allocated bandwidth of the container.
2260 	 */
2261 	raw_spin_lock(&dl_b->lock);
2262 	cpus = dl_bw_cpus(task_cpu(p));
2263 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2264 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2265 		__dl_add(dl_b, new_bw);
2266 		err = 0;
2267 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2268 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2269 		__dl_clear(dl_b, p->dl.dl_bw);
2270 		__dl_add(dl_b, new_bw);
2271 		err = 0;
2272 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2273 		__dl_clear(dl_b, p->dl.dl_bw);
2274 		err = 0;
2275 	}
2276 	raw_spin_unlock(&dl_b->lock);
2277 
2278 	return err;
2279 }
2280 
2281 extern void init_dl_bw(struct dl_bw *dl_b);
2282 
2283 /*
2284  * wake_up_new_task - wake up a newly created task for the first time.
2285  *
2286  * This function will do some initial scheduler statistics housekeeping
2287  * that must be done for every newly created context, then puts the task
2288  * on the runqueue and wakes it.
2289  */
2290 void wake_up_new_task(struct task_struct *p)
2291 {
2292 	unsigned long flags;
2293 	struct rq *rq;
2294 
2295 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2296 #ifdef CONFIG_SMP
2297 	/*
2298 	 * Fork balancing, do it here and not earlier because:
2299 	 *  - cpus_allowed can change in the fork path
2300 	 *  - any previously selected cpu might disappear through hotplug
2301 	 */
2302 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2303 #endif
2304 
2305 	/* Initialize new task's runnable average */
2306 	init_task_runnable_average(p);
2307 	rq = __task_rq_lock(p);
2308 	activate_task(rq, p, 0);
2309 	p->on_rq = TASK_ON_RQ_QUEUED;
2310 	trace_sched_wakeup_new(p, true);
2311 	check_preempt_curr(rq, p, WF_FORK);
2312 #ifdef CONFIG_SMP
2313 	if (p->sched_class->task_woken)
2314 		p->sched_class->task_woken(rq, p);
2315 #endif
2316 	task_rq_unlock(rq, p, &flags);
2317 }
2318 
2319 #ifdef CONFIG_PREEMPT_NOTIFIERS
2320 
2321 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2322 
2323 void preempt_notifier_inc(void)
2324 {
2325 	static_key_slow_inc(&preempt_notifier_key);
2326 }
2327 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2328 
2329 void preempt_notifier_dec(void)
2330 {
2331 	static_key_slow_dec(&preempt_notifier_key);
2332 }
2333 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2334 
2335 /**
2336  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2337  * @notifier: notifier struct to register
2338  */
2339 void preempt_notifier_register(struct preempt_notifier *notifier)
2340 {
2341 	if (!static_key_false(&preempt_notifier_key))
2342 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2343 
2344 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2345 }
2346 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2347 
2348 /**
2349  * preempt_notifier_unregister - no longer interested in preemption notifications
2350  * @notifier: notifier struct to unregister
2351  *
2352  * This is *not* safe to call from within a preemption notifier.
2353  */
2354 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2355 {
2356 	hlist_del(&notifier->link);
2357 }
2358 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2359 
2360 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2361 {
2362 	struct preempt_notifier *notifier;
2363 
2364 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2365 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2366 }
2367 
2368 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2369 {
2370 	if (static_key_false(&preempt_notifier_key))
2371 		__fire_sched_in_preempt_notifiers(curr);
2372 }
2373 
2374 static void
2375 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2376 				   struct task_struct *next)
2377 {
2378 	struct preempt_notifier *notifier;
2379 
2380 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2381 		notifier->ops->sched_out(notifier, next);
2382 }
2383 
2384 static __always_inline void
2385 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2386 				 struct task_struct *next)
2387 {
2388 	if (static_key_false(&preempt_notifier_key))
2389 		__fire_sched_out_preempt_notifiers(curr, next);
2390 }
2391 
2392 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2393 
2394 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2395 {
2396 }
2397 
2398 static inline void
2399 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2400 				 struct task_struct *next)
2401 {
2402 }
2403 
2404 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2405 
2406 /**
2407  * prepare_task_switch - prepare to switch tasks
2408  * @rq: the runqueue preparing to switch
2409  * @prev: the current task that is being switched out
2410  * @next: the task we are going to switch to.
2411  *
2412  * This is called with the rq lock held and interrupts off. It must
2413  * be paired with a subsequent finish_task_switch after the context
2414  * switch.
2415  *
2416  * prepare_task_switch sets up locking and calls architecture specific
2417  * hooks.
2418  */
2419 static inline void
2420 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2421 		    struct task_struct *next)
2422 {
2423 	trace_sched_switch(prev, next);
2424 	sched_info_switch(rq, prev, next);
2425 	perf_event_task_sched_out(prev, next);
2426 	fire_sched_out_preempt_notifiers(prev, next);
2427 	prepare_lock_switch(rq, next);
2428 	prepare_arch_switch(next);
2429 }
2430 
2431 /**
2432  * finish_task_switch - clean up after a task-switch
2433  * @prev: the thread we just switched away from.
2434  *
2435  * finish_task_switch must be called after the context switch, paired
2436  * with a prepare_task_switch call before the context switch.
2437  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2438  * and do any other architecture-specific cleanup actions.
2439  *
2440  * Note that we may have delayed dropping an mm in context_switch(). If
2441  * so, we finish that here outside of the runqueue lock. (Doing it
2442  * with the lock held can cause deadlocks; see schedule() for
2443  * details.)
2444  *
2445  * The context switch have flipped the stack from under us and restored the
2446  * local variables which were saved when this task called schedule() in the
2447  * past. prev == current is still correct but we need to recalculate this_rq
2448  * because prev may have moved to another CPU.
2449  */
2450 static struct rq *finish_task_switch(struct task_struct *prev)
2451 	__releases(rq->lock)
2452 {
2453 	struct rq *rq = this_rq();
2454 	struct mm_struct *mm = rq->prev_mm;
2455 	long prev_state;
2456 
2457 	rq->prev_mm = NULL;
2458 
2459 	/*
2460 	 * A task struct has one reference for the use as "current".
2461 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2462 	 * schedule one last time. The schedule call will never return, and
2463 	 * the scheduled task must drop that reference.
2464 	 * The test for TASK_DEAD must occur while the runqueue locks are
2465 	 * still held, otherwise prev could be scheduled on another cpu, die
2466 	 * there before we look at prev->state, and then the reference would
2467 	 * be dropped twice.
2468 	 *		Manfred Spraul <manfred@colorfullife.com>
2469 	 */
2470 	prev_state = prev->state;
2471 	vtime_task_switch(prev);
2472 	finish_arch_switch(prev);
2473 	perf_event_task_sched_in(prev, current);
2474 	finish_lock_switch(rq, prev);
2475 	finish_arch_post_lock_switch();
2476 
2477 	fire_sched_in_preempt_notifiers(current);
2478 	if (mm)
2479 		mmdrop(mm);
2480 	if (unlikely(prev_state == TASK_DEAD)) {
2481 		if (prev->sched_class->task_dead)
2482 			prev->sched_class->task_dead(prev);
2483 
2484 		/*
2485 		 * Remove function-return probe instances associated with this
2486 		 * task and put them back on the free list.
2487 		 */
2488 		kprobe_flush_task(prev);
2489 		put_task_struct(prev);
2490 	}
2491 
2492 	tick_nohz_task_switch(current);
2493 	return rq;
2494 }
2495 
2496 #ifdef CONFIG_SMP
2497 
2498 /* rq->lock is NOT held, but preemption is disabled */
2499 static void __balance_callback(struct rq *rq)
2500 {
2501 	struct callback_head *head, *next;
2502 	void (*func)(struct rq *rq);
2503 	unsigned long flags;
2504 
2505 	raw_spin_lock_irqsave(&rq->lock, flags);
2506 	head = rq->balance_callback;
2507 	rq->balance_callback = NULL;
2508 	while (head) {
2509 		func = (void (*)(struct rq *))head->func;
2510 		next = head->next;
2511 		head->next = NULL;
2512 		head = next;
2513 
2514 		func(rq);
2515 	}
2516 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2517 }
2518 
2519 static inline void balance_callback(struct rq *rq)
2520 {
2521 	if (unlikely(rq->balance_callback))
2522 		__balance_callback(rq);
2523 }
2524 
2525 #else
2526 
2527 static inline void balance_callback(struct rq *rq)
2528 {
2529 }
2530 
2531 #endif
2532 
2533 /**
2534  * schedule_tail - first thing a freshly forked thread must call.
2535  * @prev: the thread we just switched away from.
2536  */
2537 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2538 	__releases(rq->lock)
2539 {
2540 	struct rq *rq;
2541 
2542 	/* finish_task_switch() drops rq->lock and enables preemtion */
2543 	preempt_disable();
2544 	rq = finish_task_switch(prev);
2545 	balance_callback(rq);
2546 	preempt_enable();
2547 
2548 	if (current->set_child_tid)
2549 		put_user(task_pid_vnr(current), current->set_child_tid);
2550 }
2551 
2552 /*
2553  * context_switch - switch to the new MM and the new thread's register state.
2554  */
2555 static inline struct rq *
2556 context_switch(struct rq *rq, struct task_struct *prev,
2557 	       struct task_struct *next)
2558 {
2559 	struct mm_struct *mm, *oldmm;
2560 
2561 	prepare_task_switch(rq, prev, next);
2562 
2563 	mm = next->mm;
2564 	oldmm = prev->active_mm;
2565 	/*
2566 	 * For paravirt, this is coupled with an exit in switch_to to
2567 	 * combine the page table reload and the switch backend into
2568 	 * one hypercall.
2569 	 */
2570 	arch_start_context_switch(prev);
2571 
2572 	if (!mm) {
2573 		next->active_mm = oldmm;
2574 		atomic_inc(&oldmm->mm_count);
2575 		enter_lazy_tlb(oldmm, next);
2576 	} else
2577 		switch_mm(oldmm, mm, next);
2578 
2579 	if (!prev->mm) {
2580 		prev->active_mm = NULL;
2581 		rq->prev_mm = oldmm;
2582 	}
2583 	/*
2584 	 * Since the runqueue lock will be released by the next
2585 	 * task (which is an invalid locking op but in the case
2586 	 * of the scheduler it's an obvious special-case), so we
2587 	 * do an early lockdep release here:
2588 	 */
2589 	lockdep_unpin_lock(&rq->lock);
2590 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2591 
2592 	/* Here we just switch the register state and the stack. */
2593 	switch_to(prev, next, prev);
2594 	barrier();
2595 
2596 	return finish_task_switch(prev);
2597 }
2598 
2599 /*
2600  * nr_running and nr_context_switches:
2601  *
2602  * externally visible scheduler statistics: current number of runnable
2603  * threads, total number of context switches performed since bootup.
2604  */
2605 unsigned long nr_running(void)
2606 {
2607 	unsigned long i, sum = 0;
2608 
2609 	for_each_online_cpu(i)
2610 		sum += cpu_rq(i)->nr_running;
2611 
2612 	return sum;
2613 }
2614 
2615 /*
2616  * Check if only the current task is running on the cpu.
2617  */
2618 bool single_task_running(void)
2619 {
2620 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2621 		return true;
2622 	else
2623 		return false;
2624 }
2625 EXPORT_SYMBOL(single_task_running);
2626 
2627 unsigned long long nr_context_switches(void)
2628 {
2629 	int i;
2630 	unsigned long long sum = 0;
2631 
2632 	for_each_possible_cpu(i)
2633 		sum += cpu_rq(i)->nr_switches;
2634 
2635 	return sum;
2636 }
2637 
2638 unsigned long nr_iowait(void)
2639 {
2640 	unsigned long i, sum = 0;
2641 
2642 	for_each_possible_cpu(i)
2643 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2644 
2645 	return sum;
2646 }
2647 
2648 unsigned long nr_iowait_cpu(int cpu)
2649 {
2650 	struct rq *this = cpu_rq(cpu);
2651 	return atomic_read(&this->nr_iowait);
2652 }
2653 
2654 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2655 {
2656 	struct rq *rq = this_rq();
2657 	*nr_waiters = atomic_read(&rq->nr_iowait);
2658 	*load = rq->load.weight;
2659 }
2660 
2661 #ifdef CONFIG_SMP
2662 
2663 /*
2664  * sched_exec - execve() is a valuable balancing opportunity, because at
2665  * this point the task has the smallest effective memory and cache footprint.
2666  */
2667 void sched_exec(void)
2668 {
2669 	struct task_struct *p = current;
2670 	unsigned long flags;
2671 	int dest_cpu;
2672 
2673 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2674 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2675 	if (dest_cpu == smp_processor_id())
2676 		goto unlock;
2677 
2678 	if (likely(cpu_active(dest_cpu))) {
2679 		struct migration_arg arg = { p, dest_cpu };
2680 
2681 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2682 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2683 		return;
2684 	}
2685 unlock:
2686 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2687 }
2688 
2689 #endif
2690 
2691 DEFINE_PER_CPU(struct kernel_stat, kstat);
2692 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2693 
2694 EXPORT_PER_CPU_SYMBOL(kstat);
2695 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2696 
2697 /*
2698  * Return accounted runtime for the task.
2699  * In case the task is currently running, return the runtime plus current's
2700  * pending runtime that have not been accounted yet.
2701  */
2702 unsigned long long task_sched_runtime(struct task_struct *p)
2703 {
2704 	unsigned long flags;
2705 	struct rq *rq;
2706 	u64 ns;
2707 
2708 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2709 	/*
2710 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2711 	 * So we have a optimization chance when the task's delta_exec is 0.
2712 	 * Reading ->on_cpu is racy, but this is ok.
2713 	 *
2714 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2715 	 * If we race with it entering cpu, unaccounted time is 0. This is
2716 	 * indistinguishable from the read occurring a few cycles earlier.
2717 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2718 	 * been accounted, so we're correct here as well.
2719 	 */
2720 	if (!p->on_cpu || !task_on_rq_queued(p))
2721 		return p->se.sum_exec_runtime;
2722 #endif
2723 
2724 	rq = task_rq_lock(p, &flags);
2725 	/*
2726 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2727 	 * project cycles that may never be accounted to this
2728 	 * thread, breaking clock_gettime().
2729 	 */
2730 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2731 		update_rq_clock(rq);
2732 		p->sched_class->update_curr(rq);
2733 	}
2734 	ns = p->se.sum_exec_runtime;
2735 	task_rq_unlock(rq, p, &flags);
2736 
2737 	return ns;
2738 }
2739 
2740 /*
2741  * This function gets called by the timer code, with HZ frequency.
2742  * We call it with interrupts disabled.
2743  */
2744 void scheduler_tick(void)
2745 {
2746 	int cpu = smp_processor_id();
2747 	struct rq *rq = cpu_rq(cpu);
2748 	struct task_struct *curr = rq->curr;
2749 
2750 	sched_clock_tick();
2751 
2752 	raw_spin_lock(&rq->lock);
2753 	update_rq_clock(rq);
2754 	curr->sched_class->task_tick(rq, curr, 0);
2755 	update_cpu_load_active(rq);
2756 	calc_global_load_tick(rq);
2757 	raw_spin_unlock(&rq->lock);
2758 
2759 	perf_event_task_tick();
2760 
2761 #ifdef CONFIG_SMP
2762 	rq->idle_balance = idle_cpu(cpu);
2763 	trigger_load_balance(rq);
2764 #endif
2765 	rq_last_tick_reset(rq);
2766 }
2767 
2768 #ifdef CONFIG_NO_HZ_FULL
2769 /**
2770  * scheduler_tick_max_deferment
2771  *
2772  * Keep at least one tick per second when a single
2773  * active task is running because the scheduler doesn't
2774  * yet completely support full dynticks environment.
2775  *
2776  * This makes sure that uptime, CFS vruntime, load
2777  * balancing, etc... continue to move forward, even
2778  * with a very low granularity.
2779  *
2780  * Return: Maximum deferment in nanoseconds.
2781  */
2782 u64 scheduler_tick_max_deferment(void)
2783 {
2784 	struct rq *rq = this_rq();
2785 	unsigned long next, now = READ_ONCE(jiffies);
2786 
2787 	next = rq->last_sched_tick + HZ;
2788 
2789 	if (time_before_eq(next, now))
2790 		return 0;
2791 
2792 	return jiffies_to_nsecs(next - now);
2793 }
2794 #endif
2795 
2796 notrace unsigned long get_parent_ip(unsigned long addr)
2797 {
2798 	if (in_lock_functions(addr)) {
2799 		addr = CALLER_ADDR2;
2800 		if (in_lock_functions(addr))
2801 			addr = CALLER_ADDR3;
2802 	}
2803 	return addr;
2804 }
2805 
2806 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2807 				defined(CONFIG_PREEMPT_TRACER))
2808 
2809 void preempt_count_add(int val)
2810 {
2811 #ifdef CONFIG_DEBUG_PREEMPT
2812 	/*
2813 	 * Underflow?
2814 	 */
2815 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2816 		return;
2817 #endif
2818 	__preempt_count_add(val);
2819 #ifdef CONFIG_DEBUG_PREEMPT
2820 	/*
2821 	 * Spinlock count overflowing soon?
2822 	 */
2823 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2824 				PREEMPT_MASK - 10);
2825 #endif
2826 	if (preempt_count() == val) {
2827 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2828 #ifdef CONFIG_DEBUG_PREEMPT
2829 		current->preempt_disable_ip = ip;
2830 #endif
2831 		trace_preempt_off(CALLER_ADDR0, ip);
2832 	}
2833 }
2834 EXPORT_SYMBOL(preempt_count_add);
2835 NOKPROBE_SYMBOL(preempt_count_add);
2836 
2837 void preempt_count_sub(int val)
2838 {
2839 #ifdef CONFIG_DEBUG_PREEMPT
2840 	/*
2841 	 * Underflow?
2842 	 */
2843 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2844 		return;
2845 	/*
2846 	 * Is the spinlock portion underflowing?
2847 	 */
2848 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2849 			!(preempt_count() & PREEMPT_MASK)))
2850 		return;
2851 #endif
2852 
2853 	if (preempt_count() == val)
2854 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2855 	__preempt_count_sub(val);
2856 }
2857 EXPORT_SYMBOL(preempt_count_sub);
2858 NOKPROBE_SYMBOL(preempt_count_sub);
2859 
2860 #endif
2861 
2862 /*
2863  * Print scheduling while atomic bug:
2864  */
2865 static noinline void __schedule_bug(struct task_struct *prev)
2866 {
2867 	if (oops_in_progress)
2868 		return;
2869 
2870 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2871 		prev->comm, prev->pid, preempt_count());
2872 
2873 	debug_show_held_locks(prev);
2874 	print_modules();
2875 	if (irqs_disabled())
2876 		print_irqtrace_events(prev);
2877 #ifdef CONFIG_DEBUG_PREEMPT
2878 	if (in_atomic_preempt_off()) {
2879 		pr_err("Preemption disabled at:");
2880 		print_ip_sym(current->preempt_disable_ip);
2881 		pr_cont("\n");
2882 	}
2883 #endif
2884 	dump_stack();
2885 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2886 }
2887 
2888 /*
2889  * Various schedule()-time debugging checks and statistics:
2890  */
2891 static inline void schedule_debug(struct task_struct *prev)
2892 {
2893 #ifdef CONFIG_SCHED_STACK_END_CHECK
2894 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2895 #endif
2896 	/*
2897 	 * Test if we are atomic. Since do_exit() needs to call into
2898 	 * schedule() atomically, we ignore that path. Otherwise whine
2899 	 * if we are scheduling when we should not.
2900 	 */
2901 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2902 		__schedule_bug(prev);
2903 	rcu_sleep_check();
2904 
2905 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2906 
2907 	schedstat_inc(this_rq(), sched_count);
2908 }
2909 
2910 /*
2911  * Pick up the highest-prio task:
2912  */
2913 static inline struct task_struct *
2914 pick_next_task(struct rq *rq, struct task_struct *prev)
2915 {
2916 	const struct sched_class *class = &fair_sched_class;
2917 	struct task_struct *p;
2918 
2919 	/*
2920 	 * Optimization: we know that if all tasks are in
2921 	 * the fair class we can call that function directly:
2922 	 */
2923 	if (likely(prev->sched_class == class &&
2924 		   rq->nr_running == rq->cfs.h_nr_running)) {
2925 		p = fair_sched_class.pick_next_task(rq, prev);
2926 		if (unlikely(p == RETRY_TASK))
2927 			goto again;
2928 
2929 		/* assumes fair_sched_class->next == idle_sched_class */
2930 		if (unlikely(!p))
2931 			p = idle_sched_class.pick_next_task(rq, prev);
2932 
2933 		return p;
2934 	}
2935 
2936 again:
2937 	for_each_class(class) {
2938 		p = class->pick_next_task(rq, prev);
2939 		if (p) {
2940 			if (unlikely(p == RETRY_TASK))
2941 				goto again;
2942 			return p;
2943 		}
2944 	}
2945 
2946 	BUG(); /* the idle class will always have a runnable task */
2947 }
2948 
2949 /*
2950  * __schedule() is the main scheduler function.
2951  *
2952  * The main means of driving the scheduler and thus entering this function are:
2953  *
2954  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2955  *
2956  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2957  *      paths. For example, see arch/x86/entry_64.S.
2958  *
2959  *      To drive preemption between tasks, the scheduler sets the flag in timer
2960  *      interrupt handler scheduler_tick().
2961  *
2962  *   3. Wakeups don't really cause entry into schedule(). They add a
2963  *      task to the run-queue and that's it.
2964  *
2965  *      Now, if the new task added to the run-queue preempts the current
2966  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2967  *      called on the nearest possible occasion:
2968  *
2969  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2970  *
2971  *         - in syscall or exception context, at the next outmost
2972  *           preempt_enable(). (this might be as soon as the wake_up()'s
2973  *           spin_unlock()!)
2974  *
2975  *         - in IRQ context, return from interrupt-handler to
2976  *           preemptible context
2977  *
2978  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2979  *         then at the next:
2980  *
2981  *          - cond_resched() call
2982  *          - explicit schedule() call
2983  *          - return from syscall or exception to user-space
2984  *          - return from interrupt-handler to user-space
2985  *
2986  * WARNING: must be called with preemption disabled!
2987  */
2988 static void __sched __schedule(void)
2989 {
2990 	struct task_struct *prev, *next;
2991 	unsigned long *switch_count;
2992 	struct rq *rq;
2993 	int cpu;
2994 
2995 	cpu = smp_processor_id();
2996 	rq = cpu_rq(cpu);
2997 	rcu_note_context_switch();
2998 	prev = rq->curr;
2999 
3000 	schedule_debug(prev);
3001 
3002 	if (sched_feat(HRTICK))
3003 		hrtick_clear(rq);
3004 
3005 	/*
3006 	 * Make sure that signal_pending_state()->signal_pending() below
3007 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3008 	 * done by the caller to avoid the race with signal_wake_up().
3009 	 */
3010 	smp_mb__before_spinlock();
3011 	raw_spin_lock_irq(&rq->lock);
3012 	lockdep_pin_lock(&rq->lock);
3013 
3014 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3015 
3016 	switch_count = &prev->nivcsw;
3017 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3018 		if (unlikely(signal_pending_state(prev->state, prev))) {
3019 			prev->state = TASK_RUNNING;
3020 		} else {
3021 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3022 			prev->on_rq = 0;
3023 
3024 			/*
3025 			 * If a worker went to sleep, notify and ask workqueue
3026 			 * whether it wants to wake up a task to maintain
3027 			 * concurrency.
3028 			 */
3029 			if (prev->flags & PF_WQ_WORKER) {
3030 				struct task_struct *to_wakeup;
3031 
3032 				to_wakeup = wq_worker_sleeping(prev, cpu);
3033 				if (to_wakeup)
3034 					try_to_wake_up_local(to_wakeup);
3035 			}
3036 		}
3037 		switch_count = &prev->nvcsw;
3038 	}
3039 
3040 	if (task_on_rq_queued(prev))
3041 		update_rq_clock(rq);
3042 
3043 	next = pick_next_task(rq, prev);
3044 	clear_tsk_need_resched(prev);
3045 	clear_preempt_need_resched();
3046 	rq->clock_skip_update = 0;
3047 
3048 	if (likely(prev != next)) {
3049 		rq->nr_switches++;
3050 		rq->curr = next;
3051 		++*switch_count;
3052 
3053 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3054 		cpu = cpu_of(rq);
3055 	} else {
3056 		lockdep_unpin_lock(&rq->lock);
3057 		raw_spin_unlock_irq(&rq->lock);
3058 	}
3059 
3060 	balance_callback(rq);
3061 }
3062 
3063 static inline void sched_submit_work(struct task_struct *tsk)
3064 {
3065 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3066 		return;
3067 	/*
3068 	 * If we are going to sleep and we have plugged IO queued,
3069 	 * make sure to submit it to avoid deadlocks.
3070 	 */
3071 	if (blk_needs_flush_plug(tsk))
3072 		blk_schedule_flush_plug(tsk);
3073 }
3074 
3075 asmlinkage __visible void __sched schedule(void)
3076 {
3077 	struct task_struct *tsk = current;
3078 
3079 	sched_submit_work(tsk);
3080 	do {
3081 		preempt_disable();
3082 		__schedule();
3083 		sched_preempt_enable_no_resched();
3084 	} while (need_resched());
3085 }
3086 EXPORT_SYMBOL(schedule);
3087 
3088 #ifdef CONFIG_CONTEXT_TRACKING
3089 asmlinkage __visible void __sched schedule_user(void)
3090 {
3091 	/*
3092 	 * If we come here after a random call to set_need_resched(),
3093 	 * or we have been woken up remotely but the IPI has not yet arrived,
3094 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3095 	 * we find a better solution.
3096 	 *
3097 	 * NB: There are buggy callers of this function.  Ideally we
3098 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3099 	 * too frequently to make sense yet.
3100 	 */
3101 	enum ctx_state prev_state = exception_enter();
3102 	schedule();
3103 	exception_exit(prev_state);
3104 }
3105 #endif
3106 
3107 /**
3108  * schedule_preempt_disabled - called with preemption disabled
3109  *
3110  * Returns with preemption disabled. Note: preempt_count must be 1
3111  */
3112 void __sched schedule_preempt_disabled(void)
3113 {
3114 	sched_preempt_enable_no_resched();
3115 	schedule();
3116 	preempt_disable();
3117 }
3118 
3119 static void __sched notrace preempt_schedule_common(void)
3120 {
3121 	do {
3122 		preempt_active_enter();
3123 		__schedule();
3124 		preempt_active_exit();
3125 
3126 		/*
3127 		 * Check again in case we missed a preemption opportunity
3128 		 * between schedule and now.
3129 		 */
3130 	} while (need_resched());
3131 }
3132 
3133 #ifdef CONFIG_PREEMPT
3134 /*
3135  * this is the entry point to schedule() from in-kernel preemption
3136  * off of preempt_enable. Kernel preemptions off return from interrupt
3137  * occur there and call schedule directly.
3138  */
3139 asmlinkage __visible void __sched notrace preempt_schedule(void)
3140 {
3141 	/*
3142 	 * If there is a non-zero preempt_count or interrupts are disabled,
3143 	 * we do not want to preempt the current task. Just return..
3144 	 */
3145 	if (likely(!preemptible()))
3146 		return;
3147 
3148 	preempt_schedule_common();
3149 }
3150 NOKPROBE_SYMBOL(preempt_schedule);
3151 EXPORT_SYMBOL(preempt_schedule);
3152 
3153 /**
3154  * preempt_schedule_notrace - preempt_schedule called by tracing
3155  *
3156  * The tracing infrastructure uses preempt_enable_notrace to prevent
3157  * recursion and tracing preempt enabling caused by the tracing
3158  * infrastructure itself. But as tracing can happen in areas coming
3159  * from userspace or just about to enter userspace, a preempt enable
3160  * can occur before user_exit() is called. This will cause the scheduler
3161  * to be called when the system is still in usermode.
3162  *
3163  * To prevent this, the preempt_enable_notrace will use this function
3164  * instead of preempt_schedule() to exit user context if needed before
3165  * calling the scheduler.
3166  */
3167 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3168 {
3169 	enum ctx_state prev_ctx;
3170 
3171 	if (likely(!preemptible()))
3172 		return;
3173 
3174 	do {
3175 		/*
3176 		 * Use raw __prempt_count() ops that don't call function.
3177 		 * We can't call functions before disabling preemption which
3178 		 * disarm preemption tracing recursions.
3179 		 */
3180 		__preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3181 		barrier();
3182 		/*
3183 		 * Needs preempt disabled in case user_exit() is traced
3184 		 * and the tracer calls preempt_enable_notrace() causing
3185 		 * an infinite recursion.
3186 		 */
3187 		prev_ctx = exception_enter();
3188 		__schedule();
3189 		exception_exit(prev_ctx);
3190 
3191 		barrier();
3192 		__preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3193 	} while (need_resched());
3194 }
3195 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3196 
3197 #endif /* CONFIG_PREEMPT */
3198 
3199 /*
3200  * this is the entry point to schedule() from kernel preemption
3201  * off of irq context.
3202  * Note, that this is called and return with irqs disabled. This will
3203  * protect us against recursive calling from irq.
3204  */
3205 asmlinkage __visible void __sched preempt_schedule_irq(void)
3206 {
3207 	enum ctx_state prev_state;
3208 
3209 	/* Catch callers which need to be fixed */
3210 	BUG_ON(preempt_count() || !irqs_disabled());
3211 
3212 	prev_state = exception_enter();
3213 
3214 	do {
3215 		preempt_active_enter();
3216 		local_irq_enable();
3217 		__schedule();
3218 		local_irq_disable();
3219 		preempt_active_exit();
3220 	} while (need_resched());
3221 
3222 	exception_exit(prev_state);
3223 }
3224 
3225 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3226 			  void *key)
3227 {
3228 	return try_to_wake_up(curr->private, mode, wake_flags);
3229 }
3230 EXPORT_SYMBOL(default_wake_function);
3231 
3232 #ifdef CONFIG_RT_MUTEXES
3233 
3234 /*
3235  * rt_mutex_setprio - set the current priority of a task
3236  * @p: task
3237  * @prio: prio value (kernel-internal form)
3238  *
3239  * This function changes the 'effective' priority of a task. It does
3240  * not touch ->normal_prio like __setscheduler().
3241  *
3242  * Used by the rt_mutex code to implement priority inheritance
3243  * logic. Call site only calls if the priority of the task changed.
3244  */
3245 void rt_mutex_setprio(struct task_struct *p, int prio)
3246 {
3247 	int oldprio, queued, running, enqueue_flag = 0;
3248 	struct rq *rq;
3249 	const struct sched_class *prev_class;
3250 
3251 	BUG_ON(prio > MAX_PRIO);
3252 
3253 	rq = __task_rq_lock(p);
3254 
3255 	/*
3256 	 * Idle task boosting is a nono in general. There is one
3257 	 * exception, when PREEMPT_RT and NOHZ is active:
3258 	 *
3259 	 * The idle task calls get_next_timer_interrupt() and holds
3260 	 * the timer wheel base->lock on the CPU and another CPU wants
3261 	 * to access the timer (probably to cancel it). We can safely
3262 	 * ignore the boosting request, as the idle CPU runs this code
3263 	 * with interrupts disabled and will complete the lock
3264 	 * protected section without being interrupted. So there is no
3265 	 * real need to boost.
3266 	 */
3267 	if (unlikely(p == rq->idle)) {
3268 		WARN_ON(p != rq->curr);
3269 		WARN_ON(p->pi_blocked_on);
3270 		goto out_unlock;
3271 	}
3272 
3273 	trace_sched_pi_setprio(p, prio);
3274 	oldprio = p->prio;
3275 	prev_class = p->sched_class;
3276 	queued = task_on_rq_queued(p);
3277 	running = task_current(rq, p);
3278 	if (queued)
3279 		dequeue_task(rq, p, 0);
3280 	if (running)
3281 		put_prev_task(rq, p);
3282 
3283 	/*
3284 	 * Boosting condition are:
3285 	 * 1. -rt task is running and holds mutex A
3286 	 *      --> -dl task blocks on mutex A
3287 	 *
3288 	 * 2. -dl task is running and holds mutex A
3289 	 *      --> -dl task blocks on mutex A and could preempt the
3290 	 *          running task
3291 	 */
3292 	if (dl_prio(prio)) {
3293 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3294 		if (!dl_prio(p->normal_prio) ||
3295 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3296 			p->dl.dl_boosted = 1;
3297 			enqueue_flag = ENQUEUE_REPLENISH;
3298 		} else
3299 			p->dl.dl_boosted = 0;
3300 		p->sched_class = &dl_sched_class;
3301 	} else if (rt_prio(prio)) {
3302 		if (dl_prio(oldprio))
3303 			p->dl.dl_boosted = 0;
3304 		if (oldprio < prio)
3305 			enqueue_flag = ENQUEUE_HEAD;
3306 		p->sched_class = &rt_sched_class;
3307 	} else {
3308 		if (dl_prio(oldprio))
3309 			p->dl.dl_boosted = 0;
3310 		if (rt_prio(oldprio))
3311 			p->rt.timeout = 0;
3312 		p->sched_class = &fair_sched_class;
3313 	}
3314 
3315 	p->prio = prio;
3316 
3317 	if (running)
3318 		p->sched_class->set_curr_task(rq);
3319 	if (queued)
3320 		enqueue_task(rq, p, enqueue_flag);
3321 
3322 	check_class_changed(rq, p, prev_class, oldprio);
3323 out_unlock:
3324 	preempt_disable(); /* avoid rq from going away on us */
3325 	__task_rq_unlock(rq);
3326 
3327 	balance_callback(rq);
3328 	preempt_enable();
3329 }
3330 #endif
3331 
3332 void set_user_nice(struct task_struct *p, long nice)
3333 {
3334 	int old_prio, delta, queued;
3335 	unsigned long flags;
3336 	struct rq *rq;
3337 
3338 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3339 		return;
3340 	/*
3341 	 * We have to be careful, if called from sys_setpriority(),
3342 	 * the task might be in the middle of scheduling on another CPU.
3343 	 */
3344 	rq = task_rq_lock(p, &flags);
3345 	/*
3346 	 * The RT priorities are set via sched_setscheduler(), but we still
3347 	 * allow the 'normal' nice value to be set - but as expected
3348 	 * it wont have any effect on scheduling until the task is
3349 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3350 	 */
3351 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3352 		p->static_prio = NICE_TO_PRIO(nice);
3353 		goto out_unlock;
3354 	}
3355 	queued = task_on_rq_queued(p);
3356 	if (queued)
3357 		dequeue_task(rq, p, 0);
3358 
3359 	p->static_prio = NICE_TO_PRIO(nice);
3360 	set_load_weight(p);
3361 	old_prio = p->prio;
3362 	p->prio = effective_prio(p);
3363 	delta = p->prio - old_prio;
3364 
3365 	if (queued) {
3366 		enqueue_task(rq, p, 0);
3367 		/*
3368 		 * If the task increased its priority or is running and
3369 		 * lowered its priority, then reschedule its CPU:
3370 		 */
3371 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3372 			resched_curr(rq);
3373 	}
3374 out_unlock:
3375 	task_rq_unlock(rq, p, &flags);
3376 }
3377 EXPORT_SYMBOL(set_user_nice);
3378 
3379 /*
3380  * can_nice - check if a task can reduce its nice value
3381  * @p: task
3382  * @nice: nice value
3383  */
3384 int can_nice(const struct task_struct *p, const int nice)
3385 {
3386 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3387 	int nice_rlim = nice_to_rlimit(nice);
3388 
3389 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3390 		capable(CAP_SYS_NICE));
3391 }
3392 
3393 #ifdef __ARCH_WANT_SYS_NICE
3394 
3395 /*
3396  * sys_nice - change the priority of the current process.
3397  * @increment: priority increment
3398  *
3399  * sys_setpriority is a more generic, but much slower function that
3400  * does similar things.
3401  */
3402 SYSCALL_DEFINE1(nice, int, increment)
3403 {
3404 	long nice, retval;
3405 
3406 	/*
3407 	 * Setpriority might change our priority at the same moment.
3408 	 * We don't have to worry. Conceptually one call occurs first
3409 	 * and we have a single winner.
3410 	 */
3411 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3412 	nice = task_nice(current) + increment;
3413 
3414 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3415 	if (increment < 0 && !can_nice(current, nice))
3416 		return -EPERM;
3417 
3418 	retval = security_task_setnice(current, nice);
3419 	if (retval)
3420 		return retval;
3421 
3422 	set_user_nice(current, nice);
3423 	return 0;
3424 }
3425 
3426 #endif
3427 
3428 /**
3429  * task_prio - return the priority value of a given task.
3430  * @p: the task in question.
3431  *
3432  * Return: The priority value as seen by users in /proc.
3433  * RT tasks are offset by -200. Normal tasks are centered
3434  * around 0, value goes from -16 to +15.
3435  */
3436 int task_prio(const struct task_struct *p)
3437 {
3438 	return p->prio - MAX_RT_PRIO;
3439 }
3440 
3441 /**
3442  * idle_cpu - is a given cpu idle currently?
3443  * @cpu: the processor in question.
3444  *
3445  * Return: 1 if the CPU is currently idle. 0 otherwise.
3446  */
3447 int idle_cpu(int cpu)
3448 {
3449 	struct rq *rq = cpu_rq(cpu);
3450 
3451 	if (rq->curr != rq->idle)
3452 		return 0;
3453 
3454 	if (rq->nr_running)
3455 		return 0;
3456 
3457 #ifdef CONFIG_SMP
3458 	if (!llist_empty(&rq->wake_list))
3459 		return 0;
3460 #endif
3461 
3462 	return 1;
3463 }
3464 
3465 /**
3466  * idle_task - return the idle task for a given cpu.
3467  * @cpu: the processor in question.
3468  *
3469  * Return: The idle task for the cpu @cpu.
3470  */
3471 struct task_struct *idle_task(int cpu)
3472 {
3473 	return cpu_rq(cpu)->idle;
3474 }
3475 
3476 /**
3477  * find_process_by_pid - find a process with a matching PID value.
3478  * @pid: the pid in question.
3479  *
3480  * The task of @pid, if found. %NULL otherwise.
3481  */
3482 static struct task_struct *find_process_by_pid(pid_t pid)
3483 {
3484 	return pid ? find_task_by_vpid(pid) : current;
3485 }
3486 
3487 /*
3488  * This function initializes the sched_dl_entity of a newly becoming
3489  * SCHED_DEADLINE task.
3490  *
3491  * Only the static values are considered here, the actual runtime and the
3492  * absolute deadline will be properly calculated when the task is enqueued
3493  * for the first time with its new policy.
3494  */
3495 static void
3496 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3497 {
3498 	struct sched_dl_entity *dl_se = &p->dl;
3499 
3500 	dl_se->dl_runtime = attr->sched_runtime;
3501 	dl_se->dl_deadline = attr->sched_deadline;
3502 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3503 	dl_se->flags = attr->sched_flags;
3504 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3505 
3506 	/*
3507 	 * Changing the parameters of a task is 'tricky' and we're not doing
3508 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3509 	 *
3510 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3511 	 * point. This would include retaining the task_struct until that time
3512 	 * and change dl_overflow() to not immediately decrement the current
3513 	 * amount.
3514 	 *
3515 	 * Instead we retain the current runtime/deadline and let the new
3516 	 * parameters take effect after the current reservation period lapses.
3517 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3518 	 * before the current scheduling deadline.
3519 	 *
3520 	 * We can still have temporary overloads because we do not delay the
3521 	 * change in bandwidth until that time; so admission control is
3522 	 * not on the safe side. It does however guarantee tasks will never
3523 	 * consume more than promised.
3524 	 */
3525 }
3526 
3527 /*
3528  * sched_setparam() passes in -1 for its policy, to let the functions
3529  * it calls know not to change it.
3530  */
3531 #define SETPARAM_POLICY	-1
3532 
3533 static void __setscheduler_params(struct task_struct *p,
3534 		const struct sched_attr *attr)
3535 {
3536 	int policy = attr->sched_policy;
3537 
3538 	if (policy == SETPARAM_POLICY)
3539 		policy = p->policy;
3540 
3541 	p->policy = policy;
3542 
3543 	if (dl_policy(policy))
3544 		__setparam_dl(p, attr);
3545 	else if (fair_policy(policy))
3546 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3547 
3548 	/*
3549 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3550 	 * !rt_policy. Always setting this ensures that things like
3551 	 * getparam()/getattr() don't report silly values for !rt tasks.
3552 	 */
3553 	p->rt_priority = attr->sched_priority;
3554 	p->normal_prio = normal_prio(p);
3555 	set_load_weight(p);
3556 }
3557 
3558 /* Actually do priority change: must hold pi & rq lock. */
3559 static void __setscheduler(struct rq *rq, struct task_struct *p,
3560 			   const struct sched_attr *attr, bool keep_boost)
3561 {
3562 	__setscheduler_params(p, attr);
3563 
3564 	/*
3565 	 * Keep a potential priority boosting if called from
3566 	 * sched_setscheduler().
3567 	 */
3568 	if (keep_boost)
3569 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3570 	else
3571 		p->prio = normal_prio(p);
3572 
3573 	if (dl_prio(p->prio))
3574 		p->sched_class = &dl_sched_class;
3575 	else if (rt_prio(p->prio))
3576 		p->sched_class = &rt_sched_class;
3577 	else
3578 		p->sched_class = &fair_sched_class;
3579 }
3580 
3581 static void
3582 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3583 {
3584 	struct sched_dl_entity *dl_se = &p->dl;
3585 
3586 	attr->sched_priority = p->rt_priority;
3587 	attr->sched_runtime = dl_se->dl_runtime;
3588 	attr->sched_deadline = dl_se->dl_deadline;
3589 	attr->sched_period = dl_se->dl_period;
3590 	attr->sched_flags = dl_se->flags;
3591 }
3592 
3593 /*
3594  * This function validates the new parameters of a -deadline task.
3595  * We ask for the deadline not being zero, and greater or equal
3596  * than the runtime, as well as the period of being zero or
3597  * greater than deadline. Furthermore, we have to be sure that
3598  * user parameters are above the internal resolution of 1us (we
3599  * check sched_runtime only since it is always the smaller one) and
3600  * below 2^63 ns (we have to check both sched_deadline and
3601  * sched_period, as the latter can be zero).
3602  */
3603 static bool
3604 __checkparam_dl(const struct sched_attr *attr)
3605 {
3606 	/* deadline != 0 */
3607 	if (attr->sched_deadline == 0)
3608 		return false;
3609 
3610 	/*
3611 	 * Since we truncate DL_SCALE bits, make sure we're at least
3612 	 * that big.
3613 	 */
3614 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3615 		return false;
3616 
3617 	/*
3618 	 * Since we use the MSB for wrap-around and sign issues, make
3619 	 * sure it's not set (mind that period can be equal to zero).
3620 	 */
3621 	if (attr->sched_deadline & (1ULL << 63) ||
3622 	    attr->sched_period & (1ULL << 63))
3623 		return false;
3624 
3625 	/* runtime <= deadline <= period (if period != 0) */
3626 	if ((attr->sched_period != 0 &&
3627 	     attr->sched_period < attr->sched_deadline) ||
3628 	    attr->sched_deadline < attr->sched_runtime)
3629 		return false;
3630 
3631 	return true;
3632 }
3633 
3634 /*
3635  * check the target process has a UID that matches the current process's
3636  */
3637 static bool check_same_owner(struct task_struct *p)
3638 {
3639 	const struct cred *cred = current_cred(), *pcred;
3640 	bool match;
3641 
3642 	rcu_read_lock();
3643 	pcred = __task_cred(p);
3644 	match = (uid_eq(cred->euid, pcred->euid) ||
3645 		 uid_eq(cred->euid, pcred->uid));
3646 	rcu_read_unlock();
3647 	return match;
3648 }
3649 
3650 static bool dl_param_changed(struct task_struct *p,
3651 		const struct sched_attr *attr)
3652 {
3653 	struct sched_dl_entity *dl_se = &p->dl;
3654 
3655 	if (dl_se->dl_runtime != attr->sched_runtime ||
3656 		dl_se->dl_deadline != attr->sched_deadline ||
3657 		dl_se->dl_period != attr->sched_period ||
3658 		dl_se->flags != attr->sched_flags)
3659 		return true;
3660 
3661 	return false;
3662 }
3663 
3664 static int __sched_setscheduler(struct task_struct *p,
3665 				const struct sched_attr *attr,
3666 				bool user, bool pi)
3667 {
3668 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3669 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3670 	int retval, oldprio, oldpolicy = -1, queued, running;
3671 	int new_effective_prio, policy = attr->sched_policy;
3672 	unsigned long flags;
3673 	const struct sched_class *prev_class;
3674 	struct rq *rq;
3675 	int reset_on_fork;
3676 
3677 	/* may grab non-irq protected spin_locks */
3678 	BUG_ON(in_interrupt());
3679 recheck:
3680 	/* double check policy once rq lock held */
3681 	if (policy < 0) {
3682 		reset_on_fork = p->sched_reset_on_fork;
3683 		policy = oldpolicy = p->policy;
3684 	} else {
3685 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3686 
3687 		if (policy != SCHED_DEADLINE &&
3688 				policy != SCHED_FIFO && policy != SCHED_RR &&
3689 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3690 				policy != SCHED_IDLE)
3691 			return -EINVAL;
3692 	}
3693 
3694 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3695 		return -EINVAL;
3696 
3697 	/*
3698 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3699 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3700 	 * SCHED_BATCH and SCHED_IDLE is 0.
3701 	 */
3702 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3703 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3704 		return -EINVAL;
3705 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3706 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3707 		return -EINVAL;
3708 
3709 	/*
3710 	 * Allow unprivileged RT tasks to decrease priority:
3711 	 */
3712 	if (user && !capable(CAP_SYS_NICE)) {
3713 		if (fair_policy(policy)) {
3714 			if (attr->sched_nice < task_nice(p) &&
3715 			    !can_nice(p, attr->sched_nice))
3716 				return -EPERM;
3717 		}
3718 
3719 		if (rt_policy(policy)) {
3720 			unsigned long rlim_rtprio =
3721 					task_rlimit(p, RLIMIT_RTPRIO);
3722 
3723 			/* can't set/change the rt policy */
3724 			if (policy != p->policy && !rlim_rtprio)
3725 				return -EPERM;
3726 
3727 			/* can't increase priority */
3728 			if (attr->sched_priority > p->rt_priority &&
3729 			    attr->sched_priority > rlim_rtprio)
3730 				return -EPERM;
3731 		}
3732 
3733 		 /*
3734 		  * Can't set/change SCHED_DEADLINE policy at all for now
3735 		  * (safest behavior); in the future we would like to allow
3736 		  * unprivileged DL tasks to increase their relative deadline
3737 		  * or reduce their runtime (both ways reducing utilization)
3738 		  */
3739 		if (dl_policy(policy))
3740 			return -EPERM;
3741 
3742 		/*
3743 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3744 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3745 		 */
3746 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3747 			if (!can_nice(p, task_nice(p)))
3748 				return -EPERM;
3749 		}
3750 
3751 		/* can't change other user's priorities */
3752 		if (!check_same_owner(p))
3753 			return -EPERM;
3754 
3755 		/* Normal users shall not reset the sched_reset_on_fork flag */
3756 		if (p->sched_reset_on_fork && !reset_on_fork)
3757 			return -EPERM;
3758 	}
3759 
3760 	if (user) {
3761 		retval = security_task_setscheduler(p);
3762 		if (retval)
3763 			return retval;
3764 	}
3765 
3766 	/*
3767 	 * make sure no PI-waiters arrive (or leave) while we are
3768 	 * changing the priority of the task:
3769 	 *
3770 	 * To be able to change p->policy safely, the appropriate
3771 	 * runqueue lock must be held.
3772 	 */
3773 	rq = task_rq_lock(p, &flags);
3774 
3775 	/*
3776 	 * Changing the policy of the stop threads its a very bad idea
3777 	 */
3778 	if (p == rq->stop) {
3779 		task_rq_unlock(rq, p, &flags);
3780 		return -EINVAL;
3781 	}
3782 
3783 	/*
3784 	 * If not changing anything there's no need to proceed further,
3785 	 * but store a possible modification of reset_on_fork.
3786 	 */
3787 	if (unlikely(policy == p->policy)) {
3788 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3789 			goto change;
3790 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3791 			goto change;
3792 		if (dl_policy(policy) && dl_param_changed(p, attr))
3793 			goto change;
3794 
3795 		p->sched_reset_on_fork = reset_on_fork;
3796 		task_rq_unlock(rq, p, &flags);
3797 		return 0;
3798 	}
3799 change:
3800 
3801 	if (user) {
3802 #ifdef CONFIG_RT_GROUP_SCHED
3803 		/*
3804 		 * Do not allow realtime tasks into groups that have no runtime
3805 		 * assigned.
3806 		 */
3807 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3808 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3809 				!task_group_is_autogroup(task_group(p))) {
3810 			task_rq_unlock(rq, p, &flags);
3811 			return -EPERM;
3812 		}
3813 #endif
3814 #ifdef CONFIG_SMP
3815 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3816 			cpumask_t *span = rq->rd->span;
3817 
3818 			/*
3819 			 * Don't allow tasks with an affinity mask smaller than
3820 			 * the entire root_domain to become SCHED_DEADLINE. We
3821 			 * will also fail if there's no bandwidth available.
3822 			 */
3823 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3824 			    rq->rd->dl_bw.bw == 0) {
3825 				task_rq_unlock(rq, p, &flags);
3826 				return -EPERM;
3827 			}
3828 		}
3829 #endif
3830 	}
3831 
3832 	/* recheck policy now with rq lock held */
3833 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3834 		policy = oldpolicy = -1;
3835 		task_rq_unlock(rq, p, &flags);
3836 		goto recheck;
3837 	}
3838 
3839 	/*
3840 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3841 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3842 	 * is available.
3843 	 */
3844 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3845 		task_rq_unlock(rq, p, &flags);
3846 		return -EBUSY;
3847 	}
3848 
3849 	p->sched_reset_on_fork = reset_on_fork;
3850 	oldprio = p->prio;
3851 
3852 	if (pi) {
3853 		/*
3854 		 * Take priority boosted tasks into account. If the new
3855 		 * effective priority is unchanged, we just store the new
3856 		 * normal parameters and do not touch the scheduler class and
3857 		 * the runqueue. This will be done when the task deboost
3858 		 * itself.
3859 		 */
3860 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3861 		if (new_effective_prio == oldprio) {
3862 			__setscheduler_params(p, attr);
3863 			task_rq_unlock(rq, p, &flags);
3864 			return 0;
3865 		}
3866 	}
3867 
3868 	queued = task_on_rq_queued(p);
3869 	running = task_current(rq, p);
3870 	if (queued)
3871 		dequeue_task(rq, p, 0);
3872 	if (running)
3873 		put_prev_task(rq, p);
3874 
3875 	prev_class = p->sched_class;
3876 	__setscheduler(rq, p, attr, pi);
3877 
3878 	if (running)
3879 		p->sched_class->set_curr_task(rq);
3880 	if (queued) {
3881 		/*
3882 		 * We enqueue to tail when the priority of a task is
3883 		 * increased (user space view).
3884 		 */
3885 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3886 	}
3887 
3888 	check_class_changed(rq, p, prev_class, oldprio);
3889 	preempt_disable(); /* avoid rq from going away on us */
3890 	task_rq_unlock(rq, p, &flags);
3891 
3892 	if (pi)
3893 		rt_mutex_adjust_pi(p);
3894 
3895 	/*
3896 	 * Run balance callbacks after we've adjusted the PI chain.
3897 	 */
3898 	balance_callback(rq);
3899 	preempt_enable();
3900 
3901 	return 0;
3902 }
3903 
3904 static int _sched_setscheduler(struct task_struct *p, int policy,
3905 			       const struct sched_param *param, bool check)
3906 {
3907 	struct sched_attr attr = {
3908 		.sched_policy   = policy,
3909 		.sched_priority = param->sched_priority,
3910 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3911 	};
3912 
3913 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3914 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3915 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3916 		policy &= ~SCHED_RESET_ON_FORK;
3917 		attr.sched_policy = policy;
3918 	}
3919 
3920 	return __sched_setscheduler(p, &attr, check, true);
3921 }
3922 /**
3923  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3924  * @p: the task in question.
3925  * @policy: new policy.
3926  * @param: structure containing the new RT priority.
3927  *
3928  * Return: 0 on success. An error code otherwise.
3929  *
3930  * NOTE that the task may be already dead.
3931  */
3932 int sched_setscheduler(struct task_struct *p, int policy,
3933 		       const struct sched_param *param)
3934 {
3935 	return _sched_setscheduler(p, policy, param, true);
3936 }
3937 EXPORT_SYMBOL_GPL(sched_setscheduler);
3938 
3939 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3940 {
3941 	return __sched_setscheduler(p, attr, true, true);
3942 }
3943 EXPORT_SYMBOL_GPL(sched_setattr);
3944 
3945 /**
3946  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3947  * @p: the task in question.
3948  * @policy: new policy.
3949  * @param: structure containing the new RT priority.
3950  *
3951  * Just like sched_setscheduler, only don't bother checking if the
3952  * current context has permission.  For example, this is needed in
3953  * stop_machine(): we create temporary high priority worker threads,
3954  * but our caller might not have that capability.
3955  *
3956  * Return: 0 on success. An error code otherwise.
3957  */
3958 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3959 			       const struct sched_param *param)
3960 {
3961 	return _sched_setscheduler(p, policy, param, false);
3962 }
3963 
3964 static int
3965 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3966 {
3967 	struct sched_param lparam;
3968 	struct task_struct *p;
3969 	int retval;
3970 
3971 	if (!param || pid < 0)
3972 		return -EINVAL;
3973 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3974 		return -EFAULT;
3975 
3976 	rcu_read_lock();
3977 	retval = -ESRCH;
3978 	p = find_process_by_pid(pid);
3979 	if (p != NULL)
3980 		retval = sched_setscheduler(p, policy, &lparam);
3981 	rcu_read_unlock();
3982 
3983 	return retval;
3984 }
3985 
3986 /*
3987  * Mimics kernel/events/core.c perf_copy_attr().
3988  */
3989 static int sched_copy_attr(struct sched_attr __user *uattr,
3990 			   struct sched_attr *attr)
3991 {
3992 	u32 size;
3993 	int ret;
3994 
3995 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3996 		return -EFAULT;
3997 
3998 	/*
3999 	 * zero the full structure, so that a short copy will be nice.
4000 	 */
4001 	memset(attr, 0, sizeof(*attr));
4002 
4003 	ret = get_user(size, &uattr->size);
4004 	if (ret)
4005 		return ret;
4006 
4007 	if (size > PAGE_SIZE)	/* silly large */
4008 		goto err_size;
4009 
4010 	if (!size)		/* abi compat */
4011 		size = SCHED_ATTR_SIZE_VER0;
4012 
4013 	if (size < SCHED_ATTR_SIZE_VER0)
4014 		goto err_size;
4015 
4016 	/*
4017 	 * If we're handed a bigger struct than we know of,
4018 	 * ensure all the unknown bits are 0 - i.e. new
4019 	 * user-space does not rely on any kernel feature
4020 	 * extensions we dont know about yet.
4021 	 */
4022 	if (size > sizeof(*attr)) {
4023 		unsigned char __user *addr;
4024 		unsigned char __user *end;
4025 		unsigned char val;
4026 
4027 		addr = (void __user *)uattr + sizeof(*attr);
4028 		end  = (void __user *)uattr + size;
4029 
4030 		for (; addr < end; addr++) {
4031 			ret = get_user(val, addr);
4032 			if (ret)
4033 				return ret;
4034 			if (val)
4035 				goto err_size;
4036 		}
4037 		size = sizeof(*attr);
4038 	}
4039 
4040 	ret = copy_from_user(attr, uattr, size);
4041 	if (ret)
4042 		return -EFAULT;
4043 
4044 	/*
4045 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4046 	 * to be strict and return an error on out-of-bounds values?
4047 	 */
4048 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4049 
4050 	return 0;
4051 
4052 err_size:
4053 	put_user(sizeof(*attr), &uattr->size);
4054 	return -E2BIG;
4055 }
4056 
4057 /**
4058  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4059  * @pid: the pid in question.
4060  * @policy: new policy.
4061  * @param: structure containing the new RT priority.
4062  *
4063  * Return: 0 on success. An error code otherwise.
4064  */
4065 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4066 		struct sched_param __user *, param)
4067 {
4068 	/* negative values for policy are not valid */
4069 	if (policy < 0)
4070 		return -EINVAL;
4071 
4072 	return do_sched_setscheduler(pid, policy, param);
4073 }
4074 
4075 /**
4076  * sys_sched_setparam - set/change the RT priority of a thread
4077  * @pid: the pid in question.
4078  * @param: structure containing the new RT priority.
4079  *
4080  * Return: 0 on success. An error code otherwise.
4081  */
4082 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4083 {
4084 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4085 }
4086 
4087 /**
4088  * sys_sched_setattr - same as above, but with extended sched_attr
4089  * @pid: the pid in question.
4090  * @uattr: structure containing the extended parameters.
4091  * @flags: for future extension.
4092  */
4093 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4094 			       unsigned int, flags)
4095 {
4096 	struct sched_attr attr;
4097 	struct task_struct *p;
4098 	int retval;
4099 
4100 	if (!uattr || pid < 0 || flags)
4101 		return -EINVAL;
4102 
4103 	retval = sched_copy_attr(uattr, &attr);
4104 	if (retval)
4105 		return retval;
4106 
4107 	if ((int)attr.sched_policy < 0)
4108 		return -EINVAL;
4109 
4110 	rcu_read_lock();
4111 	retval = -ESRCH;
4112 	p = find_process_by_pid(pid);
4113 	if (p != NULL)
4114 		retval = sched_setattr(p, &attr);
4115 	rcu_read_unlock();
4116 
4117 	return retval;
4118 }
4119 
4120 /**
4121  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4122  * @pid: the pid in question.
4123  *
4124  * Return: On success, the policy of the thread. Otherwise, a negative error
4125  * code.
4126  */
4127 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4128 {
4129 	struct task_struct *p;
4130 	int retval;
4131 
4132 	if (pid < 0)
4133 		return -EINVAL;
4134 
4135 	retval = -ESRCH;
4136 	rcu_read_lock();
4137 	p = find_process_by_pid(pid);
4138 	if (p) {
4139 		retval = security_task_getscheduler(p);
4140 		if (!retval)
4141 			retval = p->policy
4142 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4143 	}
4144 	rcu_read_unlock();
4145 	return retval;
4146 }
4147 
4148 /**
4149  * sys_sched_getparam - get the RT priority of a thread
4150  * @pid: the pid in question.
4151  * @param: structure containing the RT priority.
4152  *
4153  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4154  * code.
4155  */
4156 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4157 {
4158 	struct sched_param lp = { .sched_priority = 0 };
4159 	struct task_struct *p;
4160 	int retval;
4161 
4162 	if (!param || pid < 0)
4163 		return -EINVAL;
4164 
4165 	rcu_read_lock();
4166 	p = find_process_by_pid(pid);
4167 	retval = -ESRCH;
4168 	if (!p)
4169 		goto out_unlock;
4170 
4171 	retval = security_task_getscheduler(p);
4172 	if (retval)
4173 		goto out_unlock;
4174 
4175 	if (task_has_rt_policy(p))
4176 		lp.sched_priority = p->rt_priority;
4177 	rcu_read_unlock();
4178 
4179 	/*
4180 	 * This one might sleep, we cannot do it with a spinlock held ...
4181 	 */
4182 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4183 
4184 	return retval;
4185 
4186 out_unlock:
4187 	rcu_read_unlock();
4188 	return retval;
4189 }
4190 
4191 static int sched_read_attr(struct sched_attr __user *uattr,
4192 			   struct sched_attr *attr,
4193 			   unsigned int usize)
4194 {
4195 	int ret;
4196 
4197 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4198 		return -EFAULT;
4199 
4200 	/*
4201 	 * If we're handed a smaller struct than we know of,
4202 	 * ensure all the unknown bits are 0 - i.e. old
4203 	 * user-space does not get uncomplete information.
4204 	 */
4205 	if (usize < sizeof(*attr)) {
4206 		unsigned char *addr;
4207 		unsigned char *end;
4208 
4209 		addr = (void *)attr + usize;
4210 		end  = (void *)attr + sizeof(*attr);
4211 
4212 		for (; addr < end; addr++) {
4213 			if (*addr)
4214 				return -EFBIG;
4215 		}
4216 
4217 		attr->size = usize;
4218 	}
4219 
4220 	ret = copy_to_user(uattr, attr, attr->size);
4221 	if (ret)
4222 		return -EFAULT;
4223 
4224 	return 0;
4225 }
4226 
4227 /**
4228  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4229  * @pid: the pid in question.
4230  * @uattr: structure containing the extended parameters.
4231  * @size: sizeof(attr) for fwd/bwd comp.
4232  * @flags: for future extension.
4233  */
4234 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4235 		unsigned int, size, unsigned int, flags)
4236 {
4237 	struct sched_attr attr = {
4238 		.size = sizeof(struct sched_attr),
4239 	};
4240 	struct task_struct *p;
4241 	int retval;
4242 
4243 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4244 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4245 		return -EINVAL;
4246 
4247 	rcu_read_lock();
4248 	p = find_process_by_pid(pid);
4249 	retval = -ESRCH;
4250 	if (!p)
4251 		goto out_unlock;
4252 
4253 	retval = security_task_getscheduler(p);
4254 	if (retval)
4255 		goto out_unlock;
4256 
4257 	attr.sched_policy = p->policy;
4258 	if (p->sched_reset_on_fork)
4259 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4260 	if (task_has_dl_policy(p))
4261 		__getparam_dl(p, &attr);
4262 	else if (task_has_rt_policy(p))
4263 		attr.sched_priority = p->rt_priority;
4264 	else
4265 		attr.sched_nice = task_nice(p);
4266 
4267 	rcu_read_unlock();
4268 
4269 	retval = sched_read_attr(uattr, &attr, size);
4270 	return retval;
4271 
4272 out_unlock:
4273 	rcu_read_unlock();
4274 	return retval;
4275 }
4276 
4277 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4278 {
4279 	cpumask_var_t cpus_allowed, new_mask;
4280 	struct task_struct *p;
4281 	int retval;
4282 
4283 	rcu_read_lock();
4284 
4285 	p = find_process_by_pid(pid);
4286 	if (!p) {
4287 		rcu_read_unlock();
4288 		return -ESRCH;
4289 	}
4290 
4291 	/* Prevent p going away */
4292 	get_task_struct(p);
4293 	rcu_read_unlock();
4294 
4295 	if (p->flags & PF_NO_SETAFFINITY) {
4296 		retval = -EINVAL;
4297 		goto out_put_task;
4298 	}
4299 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4300 		retval = -ENOMEM;
4301 		goto out_put_task;
4302 	}
4303 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4304 		retval = -ENOMEM;
4305 		goto out_free_cpus_allowed;
4306 	}
4307 	retval = -EPERM;
4308 	if (!check_same_owner(p)) {
4309 		rcu_read_lock();
4310 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4311 			rcu_read_unlock();
4312 			goto out_free_new_mask;
4313 		}
4314 		rcu_read_unlock();
4315 	}
4316 
4317 	retval = security_task_setscheduler(p);
4318 	if (retval)
4319 		goto out_free_new_mask;
4320 
4321 
4322 	cpuset_cpus_allowed(p, cpus_allowed);
4323 	cpumask_and(new_mask, in_mask, cpus_allowed);
4324 
4325 	/*
4326 	 * Since bandwidth control happens on root_domain basis,
4327 	 * if admission test is enabled, we only admit -deadline
4328 	 * tasks allowed to run on all the CPUs in the task's
4329 	 * root_domain.
4330 	 */
4331 #ifdef CONFIG_SMP
4332 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4333 		rcu_read_lock();
4334 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4335 			retval = -EBUSY;
4336 			rcu_read_unlock();
4337 			goto out_free_new_mask;
4338 		}
4339 		rcu_read_unlock();
4340 	}
4341 #endif
4342 again:
4343 	retval = set_cpus_allowed_ptr(p, new_mask);
4344 
4345 	if (!retval) {
4346 		cpuset_cpus_allowed(p, cpus_allowed);
4347 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4348 			/*
4349 			 * We must have raced with a concurrent cpuset
4350 			 * update. Just reset the cpus_allowed to the
4351 			 * cpuset's cpus_allowed
4352 			 */
4353 			cpumask_copy(new_mask, cpus_allowed);
4354 			goto again;
4355 		}
4356 	}
4357 out_free_new_mask:
4358 	free_cpumask_var(new_mask);
4359 out_free_cpus_allowed:
4360 	free_cpumask_var(cpus_allowed);
4361 out_put_task:
4362 	put_task_struct(p);
4363 	return retval;
4364 }
4365 
4366 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4367 			     struct cpumask *new_mask)
4368 {
4369 	if (len < cpumask_size())
4370 		cpumask_clear(new_mask);
4371 	else if (len > cpumask_size())
4372 		len = cpumask_size();
4373 
4374 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4375 }
4376 
4377 /**
4378  * sys_sched_setaffinity - set the cpu affinity of a process
4379  * @pid: pid of the process
4380  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4381  * @user_mask_ptr: user-space pointer to the new cpu mask
4382  *
4383  * Return: 0 on success. An error code otherwise.
4384  */
4385 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4386 		unsigned long __user *, user_mask_ptr)
4387 {
4388 	cpumask_var_t new_mask;
4389 	int retval;
4390 
4391 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4392 		return -ENOMEM;
4393 
4394 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4395 	if (retval == 0)
4396 		retval = sched_setaffinity(pid, new_mask);
4397 	free_cpumask_var(new_mask);
4398 	return retval;
4399 }
4400 
4401 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4402 {
4403 	struct task_struct *p;
4404 	unsigned long flags;
4405 	int retval;
4406 
4407 	rcu_read_lock();
4408 
4409 	retval = -ESRCH;
4410 	p = find_process_by_pid(pid);
4411 	if (!p)
4412 		goto out_unlock;
4413 
4414 	retval = security_task_getscheduler(p);
4415 	if (retval)
4416 		goto out_unlock;
4417 
4418 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4419 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4420 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4421 
4422 out_unlock:
4423 	rcu_read_unlock();
4424 
4425 	return retval;
4426 }
4427 
4428 /**
4429  * sys_sched_getaffinity - get the cpu affinity of a process
4430  * @pid: pid of the process
4431  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4432  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4433  *
4434  * Return: 0 on success. An error code otherwise.
4435  */
4436 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4437 		unsigned long __user *, user_mask_ptr)
4438 {
4439 	int ret;
4440 	cpumask_var_t mask;
4441 
4442 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4443 		return -EINVAL;
4444 	if (len & (sizeof(unsigned long)-1))
4445 		return -EINVAL;
4446 
4447 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4448 		return -ENOMEM;
4449 
4450 	ret = sched_getaffinity(pid, mask);
4451 	if (ret == 0) {
4452 		size_t retlen = min_t(size_t, len, cpumask_size());
4453 
4454 		if (copy_to_user(user_mask_ptr, mask, retlen))
4455 			ret = -EFAULT;
4456 		else
4457 			ret = retlen;
4458 	}
4459 	free_cpumask_var(mask);
4460 
4461 	return ret;
4462 }
4463 
4464 /**
4465  * sys_sched_yield - yield the current processor to other threads.
4466  *
4467  * This function yields the current CPU to other tasks. If there are no
4468  * other threads running on this CPU then this function will return.
4469  *
4470  * Return: 0.
4471  */
4472 SYSCALL_DEFINE0(sched_yield)
4473 {
4474 	struct rq *rq = this_rq_lock();
4475 
4476 	schedstat_inc(rq, yld_count);
4477 	current->sched_class->yield_task(rq);
4478 
4479 	/*
4480 	 * Since we are going to call schedule() anyway, there's
4481 	 * no need to preempt or enable interrupts:
4482 	 */
4483 	__release(rq->lock);
4484 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4485 	do_raw_spin_unlock(&rq->lock);
4486 	sched_preempt_enable_no_resched();
4487 
4488 	schedule();
4489 
4490 	return 0;
4491 }
4492 
4493 int __sched _cond_resched(void)
4494 {
4495 	if (should_resched()) {
4496 		preempt_schedule_common();
4497 		return 1;
4498 	}
4499 	return 0;
4500 }
4501 EXPORT_SYMBOL(_cond_resched);
4502 
4503 /*
4504  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4505  * call schedule, and on return reacquire the lock.
4506  *
4507  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4508  * operations here to prevent schedule() from being called twice (once via
4509  * spin_unlock(), once by hand).
4510  */
4511 int __cond_resched_lock(spinlock_t *lock)
4512 {
4513 	int resched = should_resched();
4514 	int ret = 0;
4515 
4516 	lockdep_assert_held(lock);
4517 
4518 	if (spin_needbreak(lock) || resched) {
4519 		spin_unlock(lock);
4520 		if (resched)
4521 			preempt_schedule_common();
4522 		else
4523 			cpu_relax();
4524 		ret = 1;
4525 		spin_lock(lock);
4526 	}
4527 	return ret;
4528 }
4529 EXPORT_SYMBOL(__cond_resched_lock);
4530 
4531 int __sched __cond_resched_softirq(void)
4532 {
4533 	BUG_ON(!in_softirq());
4534 
4535 	if (should_resched()) {
4536 		local_bh_enable();
4537 		preempt_schedule_common();
4538 		local_bh_disable();
4539 		return 1;
4540 	}
4541 	return 0;
4542 }
4543 EXPORT_SYMBOL(__cond_resched_softirq);
4544 
4545 /**
4546  * yield - yield the current processor to other threads.
4547  *
4548  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4549  *
4550  * The scheduler is at all times free to pick the calling task as the most
4551  * eligible task to run, if removing the yield() call from your code breaks
4552  * it, its already broken.
4553  *
4554  * Typical broken usage is:
4555  *
4556  * while (!event)
4557  * 	yield();
4558  *
4559  * where one assumes that yield() will let 'the other' process run that will
4560  * make event true. If the current task is a SCHED_FIFO task that will never
4561  * happen. Never use yield() as a progress guarantee!!
4562  *
4563  * If you want to use yield() to wait for something, use wait_event().
4564  * If you want to use yield() to be 'nice' for others, use cond_resched().
4565  * If you still want to use yield(), do not!
4566  */
4567 void __sched yield(void)
4568 {
4569 	set_current_state(TASK_RUNNING);
4570 	sys_sched_yield();
4571 }
4572 EXPORT_SYMBOL(yield);
4573 
4574 /**
4575  * yield_to - yield the current processor to another thread in
4576  * your thread group, or accelerate that thread toward the
4577  * processor it's on.
4578  * @p: target task
4579  * @preempt: whether task preemption is allowed or not
4580  *
4581  * It's the caller's job to ensure that the target task struct
4582  * can't go away on us before we can do any checks.
4583  *
4584  * Return:
4585  *	true (>0) if we indeed boosted the target task.
4586  *	false (0) if we failed to boost the target.
4587  *	-ESRCH if there's no task to yield to.
4588  */
4589 int __sched yield_to(struct task_struct *p, bool preempt)
4590 {
4591 	struct task_struct *curr = current;
4592 	struct rq *rq, *p_rq;
4593 	unsigned long flags;
4594 	int yielded = 0;
4595 
4596 	local_irq_save(flags);
4597 	rq = this_rq();
4598 
4599 again:
4600 	p_rq = task_rq(p);
4601 	/*
4602 	 * If we're the only runnable task on the rq and target rq also
4603 	 * has only one task, there's absolutely no point in yielding.
4604 	 */
4605 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4606 		yielded = -ESRCH;
4607 		goto out_irq;
4608 	}
4609 
4610 	double_rq_lock(rq, p_rq);
4611 	if (task_rq(p) != p_rq) {
4612 		double_rq_unlock(rq, p_rq);
4613 		goto again;
4614 	}
4615 
4616 	if (!curr->sched_class->yield_to_task)
4617 		goto out_unlock;
4618 
4619 	if (curr->sched_class != p->sched_class)
4620 		goto out_unlock;
4621 
4622 	if (task_running(p_rq, p) || p->state)
4623 		goto out_unlock;
4624 
4625 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4626 	if (yielded) {
4627 		schedstat_inc(rq, yld_count);
4628 		/*
4629 		 * Make p's CPU reschedule; pick_next_entity takes care of
4630 		 * fairness.
4631 		 */
4632 		if (preempt && rq != p_rq)
4633 			resched_curr(p_rq);
4634 	}
4635 
4636 out_unlock:
4637 	double_rq_unlock(rq, p_rq);
4638 out_irq:
4639 	local_irq_restore(flags);
4640 
4641 	if (yielded > 0)
4642 		schedule();
4643 
4644 	return yielded;
4645 }
4646 EXPORT_SYMBOL_GPL(yield_to);
4647 
4648 /*
4649  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4650  * that process accounting knows that this is a task in IO wait state.
4651  */
4652 long __sched io_schedule_timeout(long timeout)
4653 {
4654 	int old_iowait = current->in_iowait;
4655 	struct rq *rq;
4656 	long ret;
4657 
4658 	current->in_iowait = 1;
4659 	blk_schedule_flush_plug(current);
4660 
4661 	delayacct_blkio_start();
4662 	rq = raw_rq();
4663 	atomic_inc(&rq->nr_iowait);
4664 	ret = schedule_timeout(timeout);
4665 	current->in_iowait = old_iowait;
4666 	atomic_dec(&rq->nr_iowait);
4667 	delayacct_blkio_end();
4668 
4669 	return ret;
4670 }
4671 EXPORT_SYMBOL(io_schedule_timeout);
4672 
4673 /**
4674  * sys_sched_get_priority_max - return maximum RT priority.
4675  * @policy: scheduling class.
4676  *
4677  * Return: On success, this syscall returns the maximum
4678  * rt_priority that can be used by a given scheduling class.
4679  * On failure, a negative error code is returned.
4680  */
4681 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4682 {
4683 	int ret = -EINVAL;
4684 
4685 	switch (policy) {
4686 	case SCHED_FIFO:
4687 	case SCHED_RR:
4688 		ret = MAX_USER_RT_PRIO-1;
4689 		break;
4690 	case SCHED_DEADLINE:
4691 	case SCHED_NORMAL:
4692 	case SCHED_BATCH:
4693 	case SCHED_IDLE:
4694 		ret = 0;
4695 		break;
4696 	}
4697 	return ret;
4698 }
4699 
4700 /**
4701  * sys_sched_get_priority_min - return minimum RT priority.
4702  * @policy: scheduling class.
4703  *
4704  * Return: On success, this syscall returns the minimum
4705  * rt_priority that can be used by a given scheduling class.
4706  * On failure, a negative error code is returned.
4707  */
4708 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4709 {
4710 	int ret = -EINVAL;
4711 
4712 	switch (policy) {
4713 	case SCHED_FIFO:
4714 	case SCHED_RR:
4715 		ret = 1;
4716 		break;
4717 	case SCHED_DEADLINE:
4718 	case SCHED_NORMAL:
4719 	case SCHED_BATCH:
4720 	case SCHED_IDLE:
4721 		ret = 0;
4722 	}
4723 	return ret;
4724 }
4725 
4726 /**
4727  * sys_sched_rr_get_interval - return the default timeslice of a process.
4728  * @pid: pid of the process.
4729  * @interval: userspace pointer to the timeslice value.
4730  *
4731  * this syscall writes the default timeslice value of a given process
4732  * into the user-space timespec buffer. A value of '0' means infinity.
4733  *
4734  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4735  * an error code.
4736  */
4737 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4738 		struct timespec __user *, interval)
4739 {
4740 	struct task_struct *p;
4741 	unsigned int time_slice;
4742 	unsigned long flags;
4743 	struct rq *rq;
4744 	int retval;
4745 	struct timespec t;
4746 
4747 	if (pid < 0)
4748 		return -EINVAL;
4749 
4750 	retval = -ESRCH;
4751 	rcu_read_lock();
4752 	p = find_process_by_pid(pid);
4753 	if (!p)
4754 		goto out_unlock;
4755 
4756 	retval = security_task_getscheduler(p);
4757 	if (retval)
4758 		goto out_unlock;
4759 
4760 	rq = task_rq_lock(p, &flags);
4761 	time_slice = 0;
4762 	if (p->sched_class->get_rr_interval)
4763 		time_slice = p->sched_class->get_rr_interval(rq, p);
4764 	task_rq_unlock(rq, p, &flags);
4765 
4766 	rcu_read_unlock();
4767 	jiffies_to_timespec(time_slice, &t);
4768 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4769 	return retval;
4770 
4771 out_unlock:
4772 	rcu_read_unlock();
4773 	return retval;
4774 }
4775 
4776 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4777 
4778 void sched_show_task(struct task_struct *p)
4779 {
4780 	unsigned long free = 0;
4781 	int ppid;
4782 	unsigned long state = p->state;
4783 
4784 	if (state)
4785 		state = __ffs(state) + 1;
4786 	printk(KERN_INFO "%-15.15s %c", p->comm,
4787 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4788 #if BITS_PER_LONG == 32
4789 	if (state == TASK_RUNNING)
4790 		printk(KERN_CONT " running  ");
4791 	else
4792 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4793 #else
4794 	if (state == TASK_RUNNING)
4795 		printk(KERN_CONT "  running task    ");
4796 	else
4797 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4798 #endif
4799 #ifdef CONFIG_DEBUG_STACK_USAGE
4800 	free = stack_not_used(p);
4801 #endif
4802 	ppid = 0;
4803 	rcu_read_lock();
4804 	if (pid_alive(p))
4805 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4806 	rcu_read_unlock();
4807 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4808 		task_pid_nr(p), ppid,
4809 		(unsigned long)task_thread_info(p)->flags);
4810 
4811 	print_worker_info(KERN_INFO, p);
4812 	show_stack(p, NULL);
4813 }
4814 
4815 void show_state_filter(unsigned long state_filter)
4816 {
4817 	struct task_struct *g, *p;
4818 
4819 #if BITS_PER_LONG == 32
4820 	printk(KERN_INFO
4821 		"  task                PC stack   pid father\n");
4822 #else
4823 	printk(KERN_INFO
4824 		"  task                        PC stack   pid father\n");
4825 #endif
4826 	rcu_read_lock();
4827 	for_each_process_thread(g, p) {
4828 		/*
4829 		 * reset the NMI-timeout, listing all files on a slow
4830 		 * console might take a lot of time:
4831 		 */
4832 		touch_nmi_watchdog();
4833 		if (!state_filter || (p->state & state_filter))
4834 			sched_show_task(p);
4835 	}
4836 
4837 	touch_all_softlockup_watchdogs();
4838 
4839 #ifdef CONFIG_SCHED_DEBUG
4840 	sysrq_sched_debug_show();
4841 #endif
4842 	rcu_read_unlock();
4843 	/*
4844 	 * Only show locks if all tasks are dumped:
4845 	 */
4846 	if (!state_filter)
4847 		debug_show_all_locks();
4848 }
4849 
4850 void init_idle_bootup_task(struct task_struct *idle)
4851 {
4852 	idle->sched_class = &idle_sched_class;
4853 }
4854 
4855 /**
4856  * init_idle - set up an idle thread for a given CPU
4857  * @idle: task in question
4858  * @cpu: cpu the idle task belongs to
4859  *
4860  * NOTE: this function does not set the idle thread's NEED_RESCHED
4861  * flag, to make booting more robust.
4862  */
4863 void init_idle(struct task_struct *idle, int cpu)
4864 {
4865 	struct rq *rq = cpu_rq(cpu);
4866 	unsigned long flags;
4867 
4868 	raw_spin_lock_irqsave(&rq->lock, flags);
4869 
4870 	__sched_fork(0, idle);
4871 	idle->state = TASK_RUNNING;
4872 	idle->se.exec_start = sched_clock();
4873 
4874 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4875 	/*
4876 	 * We're having a chicken and egg problem, even though we are
4877 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4878 	 * lockdep check in task_group() will fail.
4879 	 *
4880 	 * Similar case to sched_fork(). / Alternatively we could
4881 	 * use task_rq_lock() here and obtain the other rq->lock.
4882 	 *
4883 	 * Silence PROVE_RCU
4884 	 */
4885 	rcu_read_lock();
4886 	__set_task_cpu(idle, cpu);
4887 	rcu_read_unlock();
4888 
4889 	rq->curr = rq->idle = idle;
4890 	idle->on_rq = TASK_ON_RQ_QUEUED;
4891 #if defined(CONFIG_SMP)
4892 	idle->on_cpu = 1;
4893 #endif
4894 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4895 
4896 	/* Set the preempt count _outside_ the spinlocks! */
4897 	init_idle_preempt_count(idle, cpu);
4898 
4899 	/*
4900 	 * The idle tasks have their own, simple scheduling class:
4901 	 */
4902 	idle->sched_class = &idle_sched_class;
4903 	ftrace_graph_init_idle_task(idle, cpu);
4904 	vtime_init_idle(idle, cpu);
4905 #if defined(CONFIG_SMP)
4906 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4907 #endif
4908 }
4909 
4910 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4911 			      const struct cpumask *trial)
4912 {
4913 	int ret = 1, trial_cpus;
4914 	struct dl_bw *cur_dl_b;
4915 	unsigned long flags;
4916 
4917 	if (!cpumask_weight(cur))
4918 		return ret;
4919 
4920 	rcu_read_lock_sched();
4921 	cur_dl_b = dl_bw_of(cpumask_any(cur));
4922 	trial_cpus = cpumask_weight(trial);
4923 
4924 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4925 	if (cur_dl_b->bw != -1 &&
4926 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4927 		ret = 0;
4928 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4929 	rcu_read_unlock_sched();
4930 
4931 	return ret;
4932 }
4933 
4934 int task_can_attach(struct task_struct *p,
4935 		    const struct cpumask *cs_cpus_allowed)
4936 {
4937 	int ret = 0;
4938 
4939 	/*
4940 	 * Kthreads which disallow setaffinity shouldn't be moved
4941 	 * to a new cpuset; we don't want to change their cpu
4942 	 * affinity and isolating such threads by their set of
4943 	 * allowed nodes is unnecessary.  Thus, cpusets are not
4944 	 * applicable for such threads.  This prevents checking for
4945 	 * success of set_cpus_allowed_ptr() on all attached tasks
4946 	 * before cpus_allowed may be changed.
4947 	 */
4948 	if (p->flags & PF_NO_SETAFFINITY) {
4949 		ret = -EINVAL;
4950 		goto out;
4951 	}
4952 
4953 #ifdef CONFIG_SMP
4954 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4955 					      cs_cpus_allowed)) {
4956 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4957 							cs_cpus_allowed);
4958 		struct dl_bw *dl_b;
4959 		bool overflow;
4960 		int cpus;
4961 		unsigned long flags;
4962 
4963 		rcu_read_lock_sched();
4964 		dl_b = dl_bw_of(dest_cpu);
4965 		raw_spin_lock_irqsave(&dl_b->lock, flags);
4966 		cpus = dl_bw_cpus(dest_cpu);
4967 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4968 		if (overflow)
4969 			ret = -EBUSY;
4970 		else {
4971 			/*
4972 			 * We reserve space for this task in the destination
4973 			 * root_domain, as we can't fail after this point.
4974 			 * We will free resources in the source root_domain
4975 			 * later on (see set_cpus_allowed_dl()).
4976 			 */
4977 			__dl_add(dl_b, p->dl.dl_bw);
4978 		}
4979 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4980 		rcu_read_unlock_sched();
4981 
4982 	}
4983 #endif
4984 out:
4985 	return ret;
4986 }
4987 
4988 #ifdef CONFIG_SMP
4989 
4990 #ifdef CONFIG_NUMA_BALANCING
4991 /* Migrate current task p to target_cpu */
4992 int migrate_task_to(struct task_struct *p, int target_cpu)
4993 {
4994 	struct migration_arg arg = { p, target_cpu };
4995 	int curr_cpu = task_cpu(p);
4996 
4997 	if (curr_cpu == target_cpu)
4998 		return 0;
4999 
5000 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5001 		return -EINVAL;
5002 
5003 	/* TODO: This is not properly updating schedstats */
5004 
5005 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5006 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5007 }
5008 
5009 /*
5010  * Requeue a task on a given node and accurately track the number of NUMA
5011  * tasks on the runqueues
5012  */
5013 void sched_setnuma(struct task_struct *p, int nid)
5014 {
5015 	struct rq *rq;
5016 	unsigned long flags;
5017 	bool queued, running;
5018 
5019 	rq = task_rq_lock(p, &flags);
5020 	queued = task_on_rq_queued(p);
5021 	running = task_current(rq, p);
5022 
5023 	if (queued)
5024 		dequeue_task(rq, p, 0);
5025 	if (running)
5026 		put_prev_task(rq, p);
5027 
5028 	p->numa_preferred_nid = nid;
5029 
5030 	if (running)
5031 		p->sched_class->set_curr_task(rq);
5032 	if (queued)
5033 		enqueue_task(rq, p, 0);
5034 	task_rq_unlock(rq, p, &flags);
5035 }
5036 #endif /* CONFIG_NUMA_BALANCING */
5037 
5038 #ifdef CONFIG_HOTPLUG_CPU
5039 /*
5040  * Ensures that the idle task is using init_mm right before its cpu goes
5041  * offline.
5042  */
5043 void idle_task_exit(void)
5044 {
5045 	struct mm_struct *mm = current->active_mm;
5046 
5047 	BUG_ON(cpu_online(smp_processor_id()));
5048 
5049 	if (mm != &init_mm) {
5050 		switch_mm(mm, &init_mm, current);
5051 		finish_arch_post_lock_switch();
5052 	}
5053 	mmdrop(mm);
5054 }
5055 
5056 /*
5057  * Since this CPU is going 'away' for a while, fold any nr_active delta
5058  * we might have. Assumes we're called after migrate_tasks() so that the
5059  * nr_active count is stable.
5060  *
5061  * Also see the comment "Global load-average calculations".
5062  */
5063 static void calc_load_migrate(struct rq *rq)
5064 {
5065 	long delta = calc_load_fold_active(rq);
5066 	if (delta)
5067 		atomic_long_add(delta, &calc_load_tasks);
5068 }
5069 
5070 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5071 {
5072 }
5073 
5074 static const struct sched_class fake_sched_class = {
5075 	.put_prev_task = put_prev_task_fake,
5076 };
5077 
5078 static struct task_struct fake_task = {
5079 	/*
5080 	 * Avoid pull_{rt,dl}_task()
5081 	 */
5082 	.prio = MAX_PRIO + 1,
5083 	.sched_class = &fake_sched_class,
5084 };
5085 
5086 /*
5087  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5088  * try_to_wake_up()->select_task_rq().
5089  *
5090  * Called with rq->lock held even though we'er in stop_machine() and
5091  * there's no concurrency possible, we hold the required locks anyway
5092  * because of lock validation efforts.
5093  */
5094 static void migrate_tasks(struct rq *dead_rq)
5095 {
5096 	struct rq *rq = dead_rq;
5097 	struct task_struct *next, *stop = rq->stop;
5098 	int dest_cpu;
5099 
5100 	/*
5101 	 * Fudge the rq selection such that the below task selection loop
5102 	 * doesn't get stuck on the currently eligible stop task.
5103 	 *
5104 	 * We're currently inside stop_machine() and the rq is either stuck
5105 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5106 	 * either way we should never end up calling schedule() until we're
5107 	 * done here.
5108 	 */
5109 	rq->stop = NULL;
5110 
5111 	/*
5112 	 * put_prev_task() and pick_next_task() sched
5113 	 * class method both need to have an up-to-date
5114 	 * value of rq->clock[_task]
5115 	 */
5116 	update_rq_clock(rq);
5117 
5118 	for (;;) {
5119 		/*
5120 		 * There's this thread running, bail when that's the only
5121 		 * remaining thread.
5122 		 */
5123 		if (rq->nr_running == 1)
5124 			break;
5125 
5126 		/*
5127 		 * Ensure rq->lock covers the entire task selection
5128 		 * until the migration.
5129 		 */
5130 		lockdep_pin_lock(&rq->lock);
5131 		next = pick_next_task(rq, &fake_task);
5132 		BUG_ON(!next);
5133 		next->sched_class->put_prev_task(rq, next);
5134 
5135 		/* Find suitable destination for @next, with force if needed. */
5136 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5137 
5138 		lockdep_unpin_lock(&rq->lock);
5139 		rq = __migrate_task(rq, next, dest_cpu);
5140 		if (rq != dead_rq) {
5141 			raw_spin_unlock(&rq->lock);
5142 			rq = dead_rq;
5143 			raw_spin_lock(&rq->lock);
5144 		}
5145 	}
5146 
5147 	rq->stop = stop;
5148 }
5149 #endif /* CONFIG_HOTPLUG_CPU */
5150 
5151 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5152 
5153 static struct ctl_table sd_ctl_dir[] = {
5154 	{
5155 		.procname	= "sched_domain",
5156 		.mode		= 0555,
5157 	},
5158 	{}
5159 };
5160 
5161 static struct ctl_table sd_ctl_root[] = {
5162 	{
5163 		.procname	= "kernel",
5164 		.mode		= 0555,
5165 		.child		= sd_ctl_dir,
5166 	},
5167 	{}
5168 };
5169 
5170 static struct ctl_table *sd_alloc_ctl_entry(int n)
5171 {
5172 	struct ctl_table *entry =
5173 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5174 
5175 	return entry;
5176 }
5177 
5178 static void sd_free_ctl_entry(struct ctl_table **tablep)
5179 {
5180 	struct ctl_table *entry;
5181 
5182 	/*
5183 	 * In the intermediate directories, both the child directory and
5184 	 * procname are dynamically allocated and could fail but the mode
5185 	 * will always be set. In the lowest directory the names are
5186 	 * static strings and all have proc handlers.
5187 	 */
5188 	for (entry = *tablep; entry->mode; entry++) {
5189 		if (entry->child)
5190 			sd_free_ctl_entry(&entry->child);
5191 		if (entry->proc_handler == NULL)
5192 			kfree(entry->procname);
5193 	}
5194 
5195 	kfree(*tablep);
5196 	*tablep = NULL;
5197 }
5198 
5199 static int min_load_idx = 0;
5200 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5201 
5202 static void
5203 set_table_entry(struct ctl_table *entry,
5204 		const char *procname, void *data, int maxlen,
5205 		umode_t mode, proc_handler *proc_handler,
5206 		bool load_idx)
5207 {
5208 	entry->procname = procname;
5209 	entry->data = data;
5210 	entry->maxlen = maxlen;
5211 	entry->mode = mode;
5212 	entry->proc_handler = proc_handler;
5213 
5214 	if (load_idx) {
5215 		entry->extra1 = &min_load_idx;
5216 		entry->extra2 = &max_load_idx;
5217 	}
5218 }
5219 
5220 static struct ctl_table *
5221 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5222 {
5223 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5224 
5225 	if (table == NULL)
5226 		return NULL;
5227 
5228 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5229 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5230 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5231 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5232 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5233 		sizeof(int), 0644, proc_dointvec_minmax, true);
5234 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5235 		sizeof(int), 0644, proc_dointvec_minmax, true);
5236 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5237 		sizeof(int), 0644, proc_dointvec_minmax, true);
5238 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5239 		sizeof(int), 0644, proc_dointvec_minmax, true);
5240 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5241 		sizeof(int), 0644, proc_dointvec_minmax, true);
5242 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5243 		sizeof(int), 0644, proc_dointvec_minmax, false);
5244 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5245 		sizeof(int), 0644, proc_dointvec_minmax, false);
5246 	set_table_entry(&table[9], "cache_nice_tries",
5247 		&sd->cache_nice_tries,
5248 		sizeof(int), 0644, proc_dointvec_minmax, false);
5249 	set_table_entry(&table[10], "flags", &sd->flags,
5250 		sizeof(int), 0644, proc_dointvec_minmax, false);
5251 	set_table_entry(&table[11], "max_newidle_lb_cost",
5252 		&sd->max_newidle_lb_cost,
5253 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5254 	set_table_entry(&table[12], "name", sd->name,
5255 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5256 	/* &table[13] is terminator */
5257 
5258 	return table;
5259 }
5260 
5261 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5262 {
5263 	struct ctl_table *entry, *table;
5264 	struct sched_domain *sd;
5265 	int domain_num = 0, i;
5266 	char buf[32];
5267 
5268 	for_each_domain(cpu, sd)
5269 		domain_num++;
5270 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5271 	if (table == NULL)
5272 		return NULL;
5273 
5274 	i = 0;
5275 	for_each_domain(cpu, sd) {
5276 		snprintf(buf, 32, "domain%d", i);
5277 		entry->procname = kstrdup(buf, GFP_KERNEL);
5278 		entry->mode = 0555;
5279 		entry->child = sd_alloc_ctl_domain_table(sd);
5280 		entry++;
5281 		i++;
5282 	}
5283 	return table;
5284 }
5285 
5286 static struct ctl_table_header *sd_sysctl_header;
5287 static void register_sched_domain_sysctl(void)
5288 {
5289 	int i, cpu_num = num_possible_cpus();
5290 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5291 	char buf[32];
5292 
5293 	WARN_ON(sd_ctl_dir[0].child);
5294 	sd_ctl_dir[0].child = entry;
5295 
5296 	if (entry == NULL)
5297 		return;
5298 
5299 	for_each_possible_cpu(i) {
5300 		snprintf(buf, 32, "cpu%d", i);
5301 		entry->procname = kstrdup(buf, GFP_KERNEL);
5302 		entry->mode = 0555;
5303 		entry->child = sd_alloc_ctl_cpu_table(i);
5304 		entry++;
5305 	}
5306 
5307 	WARN_ON(sd_sysctl_header);
5308 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5309 }
5310 
5311 /* may be called multiple times per register */
5312 static void unregister_sched_domain_sysctl(void)
5313 {
5314 	if (sd_sysctl_header)
5315 		unregister_sysctl_table(sd_sysctl_header);
5316 	sd_sysctl_header = NULL;
5317 	if (sd_ctl_dir[0].child)
5318 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5319 }
5320 #else
5321 static void register_sched_domain_sysctl(void)
5322 {
5323 }
5324 static void unregister_sched_domain_sysctl(void)
5325 {
5326 }
5327 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5328 
5329 static void set_rq_online(struct rq *rq)
5330 {
5331 	if (!rq->online) {
5332 		const struct sched_class *class;
5333 
5334 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5335 		rq->online = 1;
5336 
5337 		for_each_class(class) {
5338 			if (class->rq_online)
5339 				class->rq_online(rq);
5340 		}
5341 	}
5342 }
5343 
5344 static void set_rq_offline(struct rq *rq)
5345 {
5346 	if (rq->online) {
5347 		const struct sched_class *class;
5348 
5349 		for_each_class(class) {
5350 			if (class->rq_offline)
5351 				class->rq_offline(rq);
5352 		}
5353 
5354 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5355 		rq->online = 0;
5356 	}
5357 }
5358 
5359 /*
5360  * migration_call - callback that gets triggered when a CPU is added.
5361  * Here we can start up the necessary migration thread for the new CPU.
5362  */
5363 static int
5364 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5365 {
5366 	int cpu = (long)hcpu;
5367 	unsigned long flags;
5368 	struct rq *rq = cpu_rq(cpu);
5369 
5370 	switch (action & ~CPU_TASKS_FROZEN) {
5371 
5372 	case CPU_UP_PREPARE:
5373 		rq->calc_load_update = calc_load_update;
5374 		break;
5375 
5376 	case CPU_ONLINE:
5377 		/* Update our root-domain */
5378 		raw_spin_lock_irqsave(&rq->lock, flags);
5379 		if (rq->rd) {
5380 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5381 
5382 			set_rq_online(rq);
5383 		}
5384 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5385 		break;
5386 
5387 #ifdef CONFIG_HOTPLUG_CPU
5388 	case CPU_DYING:
5389 		sched_ttwu_pending();
5390 		/* Update our root-domain */
5391 		raw_spin_lock_irqsave(&rq->lock, flags);
5392 		if (rq->rd) {
5393 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5394 			set_rq_offline(rq);
5395 		}
5396 		migrate_tasks(rq);
5397 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5398 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5399 		break;
5400 
5401 	case CPU_DEAD:
5402 		calc_load_migrate(rq);
5403 		break;
5404 #endif
5405 	}
5406 
5407 	update_max_interval();
5408 
5409 	return NOTIFY_OK;
5410 }
5411 
5412 /*
5413  * Register at high priority so that task migration (migrate_all_tasks)
5414  * happens before everything else.  This has to be lower priority than
5415  * the notifier in the perf_event subsystem, though.
5416  */
5417 static struct notifier_block migration_notifier = {
5418 	.notifier_call = migration_call,
5419 	.priority = CPU_PRI_MIGRATION,
5420 };
5421 
5422 static void set_cpu_rq_start_time(void)
5423 {
5424 	int cpu = smp_processor_id();
5425 	struct rq *rq = cpu_rq(cpu);
5426 	rq->age_stamp = sched_clock_cpu(cpu);
5427 }
5428 
5429 static int sched_cpu_active(struct notifier_block *nfb,
5430 				      unsigned long action, void *hcpu)
5431 {
5432 	switch (action & ~CPU_TASKS_FROZEN) {
5433 	case CPU_STARTING:
5434 		set_cpu_rq_start_time();
5435 		return NOTIFY_OK;
5436 	case CPU_DOWN_FAILED:
5437 		set_cpu_active((long)hcpu, true);
5438 		return NOTIFY_OK;
5439 	default:
5440 		return NOTIFY_DONE;
5441 	}
5442 }
5443 
5444 static int sched_cpu_inactive(struct notifier_block *nfb,
5445 					unsigned long action, void *hcpu)
5446 {
5447 	switch (action & ~CPU_TASKS_FROZEN) {
5448 	case CPU_DOWN_PREPARE:
5449 		set_cpu_active((long)hcpu, false);
5450 		return NOTIFY_OK;
5451 	default:
5452 		return NOTIFY_DONE;
5453 	}
5454 }
5455 
5456 static int __init migration_init(void)
5457 {
5458 	void *cpu = (void *)(long)smp_processor_id();
5459 	int err;
5460 
5461 	/* Initialize migration for the boot CPU */
5462 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5463 	BUG_ON(err == NOTIFY_BAD);
5464 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5465 	register_cpu_notifier(&migration_notifier);
5466 
5467 	/* Register cpu active notifiers */
5468 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5469 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5470 
5471 	return 0;
5472 }
5473 early_initcall(migration_init);
5474 
5475 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5476 
5477 #ifdef CONFIG_SCHED_DEBUG
5478 
5479 static __read_mostly int sched_debug_enabled;
5480 
5481 static int __init sched_debug_setup(char *str)
5482 {
5483 	sched_debug_enabled = 1;
5484 
5485 	return 0;
5486 }
5487 early_param("sched_debug", sched_debug_setup);
5488 
5489 static inline bool sched_debug(void)
5490 {
5491 	return sched_debug_enabled;
5492 }
5493 
5494 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5495 				  struct cpumask *groupmask)
5496 {
5497 	struct sched_group *group = sd->groups;
5498 
5499 	cpumask_clear(groupmask);
5500 
5501 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5502 
5503 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5504 		printk("does not load-balance\n");
5505 		if (sd->parent)
5506 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5507 					" has parent");
5508 		return -1;
5509 	}
5510 
5511 	printk(KERN_CONT "span %*pbl level %s\n",
5512 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5513 
5514 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5515 		printk(KERN_ERR "ERROR: domain->span does not contain "
5516 				"CPU%d\n", cpu);
5517 	}
5518 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5519 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5520 				" CPU%d\n", cpu);
5521 	}
5522 
5523 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5524 	do {
5525 		if (!group) {
5526 			printk("\n");
5527 			printk(KERN_ERR "ERROR: group is NULL\n");
5528 			break;
5529 		}
5530 
5531 		if (!cpumask_weight(sched_group_cpus(group))) {
5532 			printk(KERN_CONT "\n");
5533 			printk(KERN_ERR "ERROR: empty group\n");
5534 			break;
5535 		}
5536 
5537 		if (!(sd->flags & SD_OVERLAP) &&
5538 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5539 			printk(KERN_CONT "\n");
5540 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5541 			break;
5542 		}
5543 
5544 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5545 
5546 		printk(KERN_CONT " %*pbl",
5547 		       cpumask_pr_args(sched_group_cpus(group)));
5548 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5549 			printk(KERN_CONT " (cpu_capacity = %d)",
5550 				group->sgc->capacity);
5551 		}
5552 
5553 		group = group->next;
5554 	} while (group != sd->groups);
5555 	printk(KERN_CONT "\n");
5556 
5557 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5558 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5559 
5560 	if (sd->parent &&
5561 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5562 		printk(KERN_ERR "ERROR: parent span is not a superset "
5563 			"of domain->span\n");
5564 	return 0;
5565 }
5566 
5567 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5568 {
5569 	int level = 0;
5570 
5571 	if (!sched_debug_enabled)
5572 		return;
5573 
5574 	if (!sd) {
5575 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5576 		return;
5577 	}
5578 
5579 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5580 
5581 	for (;;) {
5582 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5583 			break;
5584 		level++;
5585 		sd = sd->parent;
5586 		if (!sd)
5587 			break;
5588 	}
5589 }
5590 #else /* !CONFIG_SCHED_DEBUG */
5591 # define sched_domain_debug(sd, cpu) do { } while (0)
5592 static inline bool sched_debug(void)
5593 {
5594 	return false;
5595 }
5596 #endif /* CONFIG_SCHED_DEBUG */
5597 
5598 static int sd_degenerate(struct sched_domain *sd)
5599 {
5600 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5601 		return 1;
5602 
5603 	/* Following flags need at least 2 groups */
5604 	if (sd->flags & (SD_LOAD_BALANCE |
5605 			 SD_BALANCE_NEWIDLE |
5606 			 SD_BALANCE_FORK |
5607 			 SD_BALANCE_EXEC |
5608 			 SD_SHARE_CPUCAPACITY |
5609 			 SD_SHARE_PKG_RESOURCES |
5610 			 SD_SHARE_POWERDOMAIN)) {
5611 		if (sd->groups != sd->groups->next)
5612 			return 0;
5613 	}
5614 
5615 	/* Following flags don't use groups */
5616 	if (sd->flags & (SD_WAKE_AFFINE))
5617 		return 0;
5618 
5619 	return 1;
5620 }
5621 
5622 static int
5623 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5624 {
5625 	unsigned long cflags = sd->flags, pflags = parent->flags;
5626 
5627 	if (sd_degenerate(parent))
5628 		return 1;
5629 
5630 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5631 		return 0;
5632 
5633 	/* Flags needing groups don't count if only 1 group in parent */
5634 	if (parent->groups == parent->groups->next) {
5635 		pflags &= ~(SD_LOAD_BALANCE |
5636 				SD_BALANCE_NEWIDLE |
5637 				SD_BALANCE_FORK |
5638 				SD_BALANCE_EXEC |
5639 				SD_SHARE_CPUCAPACITY |
5640 				SD_SHARE_PKG_RESOURCES |
5641 				SD_PREFER_SIBLING |
5642 				SD_SHARE_POWERDOMAIN);
5643 		if (nr_node_ids == 1)
5644 			pflags &= ~SD_SERIALIZE;
5645 	}
5646 	if (~cflags & pflags)
5647 		return 0;
5648 
5649 	return 1;
5650 }
5651 
5652 static void free_rootdomain(struct rcu_head *rcu)
5653 {
5654 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5655 
5656 	cpupri_cleanup(&rd->cpupri);
5657 	cpudl_cleanup(&rd->cpudl);
5658 	free_cpumask_var(rd->dlo_mask);
5659 	free_cpumask_var(rd->rto_mask);
5660 	free_cpumask_var(rd->online);
5661 	free_cpumask_var(rd->span);
5662 	kfree(rd);
5663 }
5664 
5665 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5666 {
5667 	struct root_domain *old_rd = NULL;
5668 	unsigned long flags;
5669 
5670 	raw_spin_lock_irqsave(&rq->lock, flags);
5671 
5672 	if (rq->rd) {
5673 		old_rd = rq->rd;
5674 
5675 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5676 			set_rq_offline(rq);
5677 
5678 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5679 
5680 		/*
5681 		 * If we dont want to free the old_rd yet then
5682 		 * set old_rd to NULL to skip the freeing later
5683 		 * in this function:
5684 		 */
5685 		if (!atomic_dec_and_test(&old_rd->refcount))
5686 			old_rd = NULL;
5687 	}
5688 
5689 	atomic_inc(&rd->refcount);
5690 	rq->rd = rd;
5691 
5692 	cpumask_set_cpu(rq->cpu, rd->span);
5693 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5694 		set_rq_online(rq);
5695 
5696 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5697 
5698 	if (old_rd)
5699 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5700 }
5701 
5702 static int init_rootdomain(struct root_domain *rd)
5703 {
5704 	memset(rd, 0, sizeof(*rd));
5705 
5706 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5707 		goto out;
5708 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5709 		goto free_span;
5710 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5711 		goto free_online;
5712 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5713 		goto free_dlo_mask;
5714 
5715 	init_dl_bw(&rd->dl_bw);
5716 	if (cpudl_init(&rd->cpudl) != 0)
5717 		goto free_dlo_mask;
5718 
5719 	if (cpupri_init(&rd->cpupri) != 0)
5720 		goto free_rto_mask;
5721 	return 0;
5722 
5723 free_rto_mask:
5724 	free_cpumask_var(rd->rto_mask);
5725 free_dlo_mask:
5726 	free_cpumask_var(rd->dlo_mask);
5727 free_online:
5728 	free_cpumask_var(rd->online);
5729 free_span:
5730 	free_cpumask_var(rd->span);
5731 out:
5732 	return -ENOMEM;
5733 }
5734 
5735 /*
5736  * By default the system creates a single root-domain with all cpus as
5737  * members (mimicking the global state we have today).
5738  */
5739 struct root_domain def_root_domain;
5740 
5741 static void init_defrootdomain(void)
5742 {
5743 	init_rootdomain(&def_root_domain);
5744 
5745 	atomic_set(&def_root_domain.refcount, 1);
5746 }
5747 
5748 static struct root_domain *alloc_rootdomain(void)
5749 {
5750 	struct root_domain *rd;
5751 
5752 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5753 	if (!rd)
5754 		return NULL;
5755 
5756 	if (init_rootdomain(rd) != 0) {
5757 		kfree(rd);
5758 		return NULL;
5759 	}
5760 
5761 	return rd;
5762 }
5763 
5764 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5765 {
5766 	struct sched_group *tmp, *first;
5767 
5768 	if (!sg)
5769 		return;
5770 
5771 	first = sg;
5772 	do {
5773 		tmp = sg->next;
5774 
5775 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5776 			kfree(sg->sgc);
5777 
5778 		kfree(sg);
5779 		sg = tmp;
5780 	} while (sg != first);
5781 }
5782 
5783 static void free_sched_domain(struct rcu_head *rcu)
5784 {
5785 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5786 
5787 	/*
5788 	 * If its an overlapping domain it has private groups, iterate and
5789 	 * nuke them all.
5790 	 */
5791 	if (sd->flags & SD_OVERLAP) {
5792 		free_sched_groups(sd->groups, 1);
5793 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5794 		kfree(sd->groups->sgc);
5795 		kfree(sd->groups);
5796 	}
5797 	kfree(sd);
5798 }
5799 
5800 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5801 {
5802 	call_rcu(&sd->rcu, free_sched_domain);
5803 }
5804 
5805 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5806 {
5807 	for (; sd; sd = sd->parent)
5808 		destroy_sched_domain(sd, cpu);
5809 }
5810 
5811 /*
5812  * Keep a special pointer to the highest sched_domain that has
5813  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5814  * allows us to avoid some pointer chasing select_idle_sibling().
5815  *
5816  * Also keep a unique ID per domain (we use the first cpu number in
5817  * the cpumask of the domain), this allows us to quickly tell if
5818  * two cpus are in the same cache domain, see cpus_share_cache().
5819  */
5820 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5821 DEFINE_PER_CPU(int, sd_llc_size);
5822 DEFINE_PER_CPU(int, sd_llc_id);
5823 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5824 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5825 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5826 
5827 static void update_top_cache_domain(int cpu)
5828 {
5829 	struct sched_domain *sd;
5830 	struct sched_domain *busy_sd = NULL;
5831 	int id = cpu;
5832 	int size = 1;
5833 
5834 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5835 	if (sd) {
5836 		id = cpumask_first(sched_domain_span(sd));
5837 		size = cpumask_weight(sched_domain_span(sd));
5838 		busy_sd = sd->parent; /* sd_busy */
5839 	}
5840 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5841 
5842 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5843 	per_cpu(sd_llc_size, cpu) = size;
5844 	per_cpu(sd_llc_id, cpu) = id;
5845 
5846 	sd = lowest_flag_domain(cpu, SD_NUMA);
5847 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5848 
5849 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5850 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5851 }
5852 
5853 /*
5854  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5855  * hold the hotplug lock.
5856  */
5857 static void
5858 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5859 {
5860 	struct rq *rq = cpu_rq(cpu);
5861 	struct sched_domain *tmp;
5862 
5863 	/* Remove the sched domains which do not contribute to scheduling. */
5864 	for (tmp = sd; tmp; ) {
5865 		struct sched_domain *parent = tmp->parent;
5866 		if (!parent)
5867 			break;
5868 
5869 		if (sd_parent_degenerate(tmp, parent)) {
5870 			tmp->parent = parent->parent;
5871 			if (parent->parent)
5872 				parent->parent->child = tmp;
5873 			/*
5874 			 * Transfer SD_PREFER_SIBLING down in case of a
5875 			 * degenerate parent; the spans match for this
5876 			 * so the property transfers.
5877 			 */
5878 			if (parent->flags & SD_PREFER_SIBLING)
5879 				tmp->flags |= SD_PREFER_SIBLING;
5880 			destroy_sched_domain(parent, cpu);
5881 		} else
5882 			tmp = tmp->parent;
5883 	}
5884 
5885 	if (sd && sd_degenerate(sd)) {
5886 		tmp = sd;
5887 		sd = sd->parent;
5888 		destroy_sched_domain(tmp, cpu);
5889 		if (sd)
5890 			sd->child = NULL;
5891 	}
5892 
5893 	sched_domain_debug(sd, cpu);
5894 
5895 	rq_attach_root(rq, rd);
5896 	tmp = rq->sd;
5897 	rcu_assign_pointer(rq->sd, sd);
5898 	destroy_sched_domains(tmp, cpu);
5899 
5900 	update_top_cache_domain(cpu);
5901 }
5902 
5903 /* Setup the mask of cpus configured for isolated domains */
5904 static int __init isolated_cpu_setup(char *str)
5905 {
5906 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5907 	cpulist_parse(str, cpu_isolated_map);
5908 	return 1;
5909 }
5910 
5911 __setup("isolcpus=", isolated_cpu_setup);
5912 
5913 struct s_data {
5914 	struct sched_domain ** __percpu sd;
5915 	struct root_domain	*rd;
5916 };
5917 
5918 enum s_alloc {
5919 	sa_rootdomain,
5920 	sa_sd,
5921 	sa_sd_storage,
5922 	sa_none,
5923 };
5924 
5925 /*
5926  * Build an iteration mask that can exclude certain CPUs from the upwards
5927  * domain traversal.
5928  *
5929  * Asymmetric node setups can result in situations where the domain tree is of
5930  * unequal depth, make sure to skip domains that already cover the entire
5931  * range.
5932  *
5933  * In that case build_sched_domains() will have terminated the iteration early
5934  * and our sibling sd spans will be empty. Domains should always include the
5935  * cpu they're built on, so check that.
5936  *
5937  */
5938 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5939 {
5940 	const struct cpumask *span = sched_domain_span(sd);
5941 	struct sd_data *sdd = sd->private;
5942 	struct sched_domain *sibling;
5943 	int i;
5944 
5945 	for_each_cpu(i, span) {
5946 		sibling = *per_cpu_ptr(sdd->sd, i);
5947 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5948 			continue;
5949 
5950 		cpumask_set_cpu(i, sched_group_mask(sg));
5951 	}
5952 }
5953 
5954 /*
5955  * Return the canonical balance cpu for this group, this is the first cpu
5956  * of this group that's also in the iteration mask.
5957  */
5958 int group_balance_cpu(struct sched_group *sg)
5959 {
5960 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5961 }
5962 
5963 static int
5964 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5965 {
5966 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5967 	const struct cpumask *span = sched_domain_span(sd);
5968 	struct cpumask *covered = sched_domains_tmpmask;
5969 	struct sd_data *sdd = sd->private;
5970 	struct sched_domain *sibling;
5971 	int i;
5972 
5973 	cpumask_clear(covered);
5974 
5975 	for_each_cpu(i, span) {
5976 		struct cpumask *sg_span;
5977 
5978 		if (cpumask_test_cpu(i, covered))
5979 			continue;
5980 
5981 		sibling = *per_cpu_ptr(sdd->sd, i);
5982 
5983 		/* See the comment near build_group_mask(). */
5984 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5985 			continue;
5986 
5987 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5988 				GFP_KERNEL, cpu_to_node(cpu));
5989 
5990 		if (!sg)
5991 			goto fail;
5992 
5993 		sg_span = sched_group_cpus(sg);
5994 		if (sibling->child)
5995 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5996 		else
5997 			cpumask_set_cpu(i, sg_span);
5998 
5999 		cpumask_or(covered, covered, sg_span);
6000 
6001 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6002 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6003 			build_group_mask(sd, sg);
6004 
6005 		/*
6006 		 * Initialize sgc->capacity such that even if we mess up the
6007 		 * domains and no possible iteration will get us here, we won't
6008 		 * die on a /0 trap.
6009 		 */
6010 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6011 
6012 		/*
6013 		 * Make sure the first group of this domain contains the
6014 		 * canonical balance cpu. Otherwise the sched_domain iteration
6015 		 * breaks. See update_sg_lb_stats().
6016 		 */
6017 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6018 		    group_balance_cpu(sg) == cpu)
6019 			groups = sg;
6020 
6021 		if (!first)
6022 			first = sg;
6023 		if (last)
6024 			last->next = sg;
6025 		last = sg;
6026 		last->next = first;
6027 	}
6028 	sd->groups = groups;
6029 
6030 	return 0;
6031 
6032 fail:
6033 	free_sched_groups(first, 0);
6034 
6035 	return -ENOMEM;
6036 }
6037 
6038 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6039 {
6040 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6041 	struct sched_domain *child = sd->child;
6042 
6043 	if (child)
6044 		cpu = cpumask_first(sched_domain_span(child));
6045 
6046 	if (sg) {
6047 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6048 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6049 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6050 	}
6051 
6052 	return cpu;
6053 }
6054 
6055 /*
6056  * build_sched_groups will build a circular linked list of the groups
6057  * covered by the given span, and will set each group's ->cpumask correctly,
6058  * and ->cpu_capacity to 0.
6059  *
6060  * Assumes the sched_domain tree is fully constructed
6061  */
6062 static int
6063 build_sched_groups(struct sched_domain *sd, int cpu)
6064 {
6065 	struct sched_group *first = NULL, *last = NULL;
6066 	struct sd_data *sdd = sd->private;
6067 	const struct cpumask *span = sched_domain_span(sd);
6068 	struct cpumask *covered;
6069 	int i;
6070 
6071 	get_group(cpu, sdd, &sd->groups);
6072 	atomic_inc(&sd->groups->ref);
6073 
6074 	if (cpu != cpumask_first(span))
6075 		return 0;
6076 
6077 	lockdep_assert_held(&sched_domains_mutex);
6078 	covered = sched_domains_tmpmask;
6079 
6080 	cpumask_clear(covered);
6081 
6082 	for_each_cpu(i, span) {
6083 		struct sched_group *sg;
6084 		int group, j;
6085 
6086 		if (cpumask_test_cpu(i, covered))
6087 			continue;
6088 
6089 		group = get_group(i, sdd, &sg);
6090 		cpumask_setall(sched_group_mask(sg));
6091 
6092 		for_each_cpu(j, span) {
6093 			if (get_group(j, sdd, NULL) != group)
6094 				continue;
6095 
6096 			cpumask_set_cpu(j, covered);
6097 			cpumask_set_cpu(j, sched_group_cpus(sg));
6098 		}
6099 
6100 		if (!first)
6101 			first = sg;
6102 		if (last)
6103 			last->next = sg;
6104 		last = sg;
6105 	}
6106 	last->next = first;
6107 
6108 	return 0;
6109 }
6110 
6111 /*
6112  * Initialize sched groups cpu_capacity.
6113  *
6114  * cpu_capacity indicates the capacity of sched group, which is used while
6115  * distributing the load between different sched groups in a sched domain.
6116  * Typically cpu_capacity for all the groups in a sched domain will be same
6117  * unless there are asymmetries in the topology. If there are asymmetries,
6118  * group having more cpu_capacity will pickup more load compared to the
6119  * group having less cpu_capacity.
6120  */
6121 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6122 {
6123 	struct sched_group *sg = sd->groups;
6124 
6125 	WARN_ON(!sg);
6126 
6127 	do {
6128 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6129 		sg = sg->next;
6130 	} while (sg != sd->groups);
6131 
6132 	if (cpu != group_balance_cpu(sg))
6133 		return;
6134 
6135 	update_group_capacity(sd, cpu);
6136 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6137 }
6138 
6139 /*
6140  * Initializers for schedule domains
6141  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6142  */
6143 
6144 static int default_relax_domain_level = -1;
6145 int sched_domain_level_max;
6146 
6147 static int __init setup_relax_domain_level(char *str)
6148 {
6149 	if (kstrtoint(str, 0, &default_relax_domain_level))
6150 		pr_warn("Unable to set relax_domain_level\n");
6151 
6152 	return 1;
6153 }
6154 __setup("relax_domain_level=", setup_relax_domain_level);
6155 
6156 static void set_domain_attribute(struct sched_domain *sd,
6157 				 struct sched_domain_attr *attr)
6158 {
6159 	int request;
6160 
6161 	if (!attr || attr->relax_domain_level < 0) {
6162 		if (default_relax_domain_level < 0)
6163 			return;
6164 		else
6165 			request = default_relax_domain_level;
6166 	} else
6167 		request = attr->relax_domain_level;
6168 	if (request < sd->level) {
6169 		/* turn off idle balance on this domain */
6170 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6171 	} else {
6172 		/* turn on idle balance on this domain */
6173 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6174 	}
6175 }
6176 
6177 static void __sdt_free(const struct cpumask *cpu_map);
6178 static int __sdt_alloc(const struct cpumask *cpu_map);
6179 
6180 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6181 				 const struct cpumask *cpu_map)
6182 {
6183 	switch (what) {
6184 	case sa_rootdomain:
6185 		if (!atomic_read(&d->rd->refcount))
6186 			free_rootdomain(&d->rd->rcu); /* fall through */
6187 	case sa_sd:
6188 		free_percpu(d->sd); /* fall through */
6189 	case sa_sd_storage:
6190 		__sdt_free(cpu_map); /* fall through */
6191 	case sa_none:
6192 		break;
6193 	}
6194 }
6195 
6196 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6197 						   const struct cpumask *cpu_map)
6198 {
6199 	memset(d, 0, sizeof(*d));
6200 
6201 	if (__sdt_alloc(cpu_map))
6202 		return sa_sd_storage;
6203 	d->sd = alloc_percpu(struct sched_domain *);
6204 	if (!d->sd)
6205 		return sa_sd_storage;
6206 	d->rd = alloc_rootdomain();
6207 	if (!d->rd)
6208 		return sa_sd;
6209 	return sa_rootdomain;
6210 }
6211 
6212 /*
6213  * NULL the sd_data elements we've used to build the sched_domain and
6214  * sched_group structure so that the subsequent __free_domain_allocs()
6215  * will not free the data we're using.
6216  */
6217 static void claim_allocations(int cpu, struct sched_domain *sd)
6218 {
6219 	struct sd_data *sdd = sd->private;
6220 
6221 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6222 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6223 
6224 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6225 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6226 
6227 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6228 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6229 }
6230 
6231 #ifdef CONFIG_NUMA
6232 static int sched_domains_numa_levels;
6233 enum numa_topology_type sched_numa_topology_type;
6234 static int *sched_domains_numa_distance;
6235 int sched_max_numa_distance;
6236 static struct cpumask ***sched_domains_numa_masks;
6237 static int sched_domains_curr_level;
6238 #endif
6239 
6240 /*
6241  * SD_flags allowed in topology descriptions.
6242  *
6243  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6244  * SD_SHARE_PKG_RESOURCES - describes shared caches
6245  * SD_NUMA                - describes NUMA topologies
6246  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6247  *
6248  * Odd one out:
6249  * SD_ASYM_PACKING        - describes SMT quirks
6250  */
6251 #define TOPOLOGY_SD_FLAGS		\
6252 	(SD_SHARE_CPUCAPACITY |		\
6253 	 SD_SHARE_PKG_RESOURCES |	\
6254 	 SD_NUMA |			\
6255 	 SD_ASYM_PACKING |		\
6256 	 SD_SHARE_POWERDOMAIN)
6257 
6258 static struct sched_domain *
6259 sd_init(struct sched_domain_topology_level *tl, int cpu)
6260 {
6261 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6262 	int sd_weight, sd_flags = 0;
6263 
6264 #ifdef CONFIG_NUMA
6265 	/*
6266 	 * Ugly hack to pass state to sd_numa_mask()...
6267 	 */
6268 	sched_domains_curr_level = tl->numa_level;
6269 #endif
6270 
6271 	sd_weight = cpumask_weight(tl->mask(cpu));
6272 
6273 	if (tl->sd_flags)
6274 		sd_flags = (*tl->sd_flags)();
6275 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6276 			"wrong sd_flags in topology description\n"))
6277 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6278 
6279 	*sd = (struct sched_domain){
6280 		.min_interval		= sd_weight,
6281 		.max_interval		= 2*sd_weight,
6282 		.busy_factor		= 32,
6283 		.imbalance_pct		= 125,
6284 
6285 		.cache_nice_tries	= 0,
6286 		.busy_idx		= 0,
6287 		.idle_idx		= 0,
6288 		.newidle_idx		= 0,
6289 		.wake_idx		= 0,
6290 		.forkexec_idx		= 0,
6291 
6292 		.flags			= 1*SD_LOAD_BALANCE
6293 					| 1*SD_BALANCE_NEWIDLE
6294 					| 1*SD_BALANCE_EXEC
6295 					| 1*SD_BALANCE_FORK
6296 					| 0*SD_BALANCE_WAKE
6297 					| 1*SD_WAKE_AFFINE
6298 					| 0*SD_SHARE_CPUCAPACITY
6299 					| 0*SD_SHARE_PKG_RESOURCES
6300 					| 0*SD_SERIALIZE
6301 					| 0*SD_PREFER_SIBLING
6302 					| 0*SD_NUMA
6303 					| sd_flags
6304 					,
6305 
6306 		.last_balance		= jiffies,
6307 		.balance_interval	= sd_weight,
6308 		.smt_gain		= 0,
6309 		.max_newidle_lb_cost	= 0,
6310 		.next_decay_max_lb_cost	= jiffies,
6311 #ifdef CONFIG_SCHED_DEBUG
6312 		.name			= tl->name,
6313 #endif
6314 	};
6315 
6316 	/*
6317 	 * Convert topological properties into behaviour.
6318 	 */
6319 
6320 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6321 		sd->flags |= SD_PREFER_SIBLING;
6322 		sd->imbalance_pct = 110;
6323 		sd->smt_gain = 1178; /* ~15% */
6324 
6325 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6326 		sd->imbalance_pct = 117;
6327 		sd->cache_nice_tries = 1;
6328 		sd->busy_idx = 2;
6329 
6330 #ifdef CONFIG_NUMA
6331 	} else if (sd->flags & SD_NUMA) {
6332 		sd->cache_nice_tries = 2;
6333 		sd->busy_idx = 3;
6334 		sd->idle_idx = 2;
6335 
6336 		sd->flags |= SD_SERIALIZE;
6337 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6338 			sd->flags &= ~(SD_BALANCE_EXEC |
6339 				       SD_BALANCE_FORK |
6340 				       SD_WAKE_AFFINE);
6341 		}
6342 
6343 #endif
6344 	} else {
6345 		sd->flags |= SD_PREFER_SIBLING;
6346 		sd->cache_nice_tries = 1;
6347 		sd->busy_idx = 2;
6348 		sd->idle_idx = 1;
6349 	}
6350 
6351 	sd->private = &tl->data;
6352 
6353 	return sd;
6354 }
6355 
6356 /*
6357  * Topology list, bottom-up.
6358  */
6359 static struct sched_domain_topology_level default_topology[] = {
6360 #ifdef CONFIG_SCHED_SMT
6361 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6362 #endif
6363 #ifdef CONFIG_SCHED_MC
6364 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6365 #endif
6366 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6367 	{ NULL, },
6368 };
6369 
6370 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6371 
6372 #define for_each_sd_topology(tl)			\
6373 	for (tl = sched_domain_topology; tl->mask; tl++)
6374 
6375 void set_sched_topology(struct sched_domain_topology_level *tl)
6376 {
6377 	sched_domain_topology = tl;
6378 }
6379 
6380 #ifdef CONFIG_NUMA
6381 
6382 static const struct cpumask *sd_numa_mask(int cpu)
6383 {
6384 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6385 }
6386 
6387 static void sched_numa_warn(const char *str)
6388 {
6389 	static int done = false;
6390 	int i,j;
6391 
6392 	if (done)
6393 		return;
6394 
6395 	done = true;
6396 
6397 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6398 
6399 	for (i = 0; i < nr_node_ids; i++) {
6400 		printk(KERN_WARNING "  ");
6401 		for (j = 0; j < nr_node_ids; j++)
6402 			printk(KERN_CONT "%02d ", node_distance(i,j));
6403 		printk(KERN_CONT "\n");
6404 	}
6405 	printk(KERN_WARNING "\n");
6406 }
6407 
6408 bool find_numa_distance(int distance)
6409 {
6410 	int i;
6411 
6412 	if (distance == node_distance(0, 0))
6413 		return true;
6414 
6415 	for (i = 0; i < sched_domains_numa_levels; i++) {
6416 		if (sched_domains_numa_distance[i] == distance)
6417 			return true;
6418 	}
6419 
6420 	return false;
6421 }
6422 
6423 /*
6424  * A system can have three types of NUMA topology:
6425  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6426  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6427  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6428  *
6429  * The difference between a glueless mesh topology and a backplane
6430  * topology lies in whether communication between not directly
6431  * connected nodes goes through intermediary nodes (where programs
6432  * could run), or through backplane controllers. This affects
6433  * placement of programs.
6434  *
6435  * The type of topology can be discerned with the following tests:
6436  * - If the maximum distance between any nodes is 1 hop, the system
6437  *   is directly connected.
6438  * - If for two nodes A and B, located N > 1 hops away from each other,
6439  *   there is an intermediary node C, which is < N hops away from both
6440  *   nodes A and B, the system is a glueless mesh.
6441  */
6442 static void init_numa_topology_type(void)
6443 {
6444 	int a, b, c, n;
6445 
6446 	n = sched_max_numa_distance;
6447 
6448 	if (n <= 1)
6449 		sched_numa_topology_type = NUMA_DIRECT;
6450 
6451 	for_each_online_node(a) {
6452 		for_each_online_node(b) {
6453 			/* Find two nodes furthest removed from each other. */
6454 			if (node_distance(a, b) < n)
6455 				continue;
6456 
6457 			/* Is there an intermediary node between a and b? */
6458 			for_each_online_node(c) {
6459 				if (node_distance(a, c) < n &&
6460 				    node_distance(b, c) < n) {
6461 					sched_numa_topology_type =
6462 							NUMA_GLUELESS_MESH;
6463 					return;
6464 				}
6465 			}
6466 
6467 			sched_numa_topology_type = NUMA_BACKPLANE;
6468 			return;
6469 		}
6470 	}
6471 }
6472 
6473 static void sched_init_numa(void)
6474 {
6475 	int next_distance, curr_distance = node_distance(0, 0);
6476 	struct sched_domain_topology_level *tl;
6477 	int level = 0;
6478 	int i, j, k;
6479 
6480 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6481 	if (!sched_domains_numa_distance)
6482 		return;
6483 
6484 	/*
6485 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6486 	 * unique distances in the node_distance() table.
6487 	 *
6488 	 * Assumes node_distance(0,j) includes all distances in
6489 	 * node_distance(i,j) in order to avoid cubic time.
6490 	 */
6491 	next_distance = curr_distance;
6492 	for (i = 0; i < nr_node_ids; i++) {
6493 		for (j = 0; j < nr_node_ids; j++) {
6494 			for (k = 0; k < nr_node_ids; k++) {
6495 				int distance = node_distance(i, k);
6496 
6497 				if (distance > curr_distance &&
6498 				    (distance < next_distance ||
6499 				     next_distance == curr_distance))
6500 					next_distance = distance;
6501 
6502 				/*
6503 				 * While not a strong assumption it would be nice to know
6504 				 * about cases where if node A is connected to B, B is not
6505 				 * equally connected to A.
6506 				 */
6507 				if (sched_debug() && node_distance(k, i) != distance)
6508 					sched_numa_warn("Node-distance not symmetric");
6509 
6510 				if (sched_debug() && i && !find_numa_distance(distance))
6511 					sched_numa_warn("Node-0 not representative");
6512 			}
6513 			if (next_distance != curr_distance) {
6514 				sched_domains_numa_distance[level++] = next_distance;
6515 				sched_domains_numa_levels = level;
6516 				curr_distance = next_distance;
6517 			} else break;
6518 		}
6519 
6520 		/*
6521 		 * In case of sched_debug() we verify the above assumption.
6522 		 */
6523 		if (!sched_debug())
6524 			break;
6525 	}
6526 
6527 	if (!level)
6528 		return;
6529 
6530 	/*
6531 	 * 'level' contains the number of unique distances, excluding the
6532 	 * identity distance node_distance(i,i).
6533 	 *
6534 	 * The sched_domains_numa_distance[] array includes the actual distance
6535 	 * numbers.
6536 	 */
6537 
6538 	/*
6539 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6540 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6541 	 * the array will contain less then 'level' members. This could be
6542 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6543 	 * in other functions.
6544 	 *
6545 	 * We reset it to 'level' at the end of this function.
6546 	 */
6547 	sched_domains_numa_levels = 0;
6548 
6549 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6550 	if (!sched_domains_numa_masks)
6551 		return;
6552 
6553 	/*
6554 	 * Now for each level, construct a mask per node which contains all
6555 	 * cpus of nodes that are that many hops away from us.
6556 	 */
6557 	for (i = 0; i < level; i++) {
6558 		sched_domains_numa_masks[i] =
6559 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6560 		if (!sched_domains_numa_masks[i])
6561 			return;
6562 
6563 		for (j = 0; j < nr_node_ids; j++) {
6564 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6565 			if (!mask)
6566 				return;
6567 
6568 			sched_domains_numa_masks[i][j] = mask;
6569 
6570 			for (k = 0; k < nr_node_ids; k++) {
6571 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6572 					continue;
6573 
6574 				cpumask_or(mask, mask, cpumask_of_node(k));
6575 			}
6576 		}
6577 	}
6578 
6579 	/* Compute default topology size */
6580 	for (i = 0; sched_domain_topology[i].mask; i++);
6581 
6582 	tl = kzalloc((i + level + 1) *
6583 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6584 	if (!tl)
6585 		return;
6586 
6587 	/*
6588 	 * Copy the default topology bits..
6589 	 */
6590 	for (i = 0; sched_domain_topology[i].mask; i++)
6591 		tl[i] = sched_domain_topology[i];
6592 
6593 	/*
6594 	 * .. and append 'j' levels of NUMA goodness.
6595 	 */
6596 	for (j = 0; j < level; i++, j++) {
6597 		tl[i] = (struct sched_domain_topology_level){
6598 			.mask = sd_numa_mask,
6599 			.sd_flags = cpu_numa_flags,
6600 			.flags = SDTL_OVERLAP,
6601 			.numa_level = j,
6602 			SD_INIT_NAME(NUMA)
6603 		};
6604 	}
6605 
6606 	sched_domain_topology = tl;
6607 
6608 	sched_domains_numa_levels = level;
6609 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6610 
6611 	init_numa_topology_type();
6612 }
6613 
6614 static void sched_domains_numa_masks_set(int cpu)
6615 {
6616 	int i, j;
6617 	int node = cpu_to_node(cpu);
6618 
6619 	for (i = 0; i < sched_domains_numa_levels; i++) {
6620 		for (j = 0; j < nr_node_ids; j++) {
6621 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6622 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6623 		}
6624 	}
6625 }
6626 
6627 static void sched_domains_numa_masks_clear(int cpu)
6628 {
6629 	int i, j;
6630 	for (i = 0; i < sched_domains_numa_levels; i++) {
6631 		for (j = 0; j < nr_node_ids; j++)
6632 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6633 	}
6634 }
6635 
6636 /*
6637  * Update sched_domains_numa_masks[level][node] array when new cpus
6638  * are onlined.
6639  */
6640 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6641 					   unsigned long action,
6642 					   void *hcpu)
6643 {
6644 	int cpu = (long)hcpu;
6645 
6646 	switch (action & ~CPU_TASKS_FROZEN) {
6647 	case CPU_ONLINE:
6648 		sched_domains_numa_masks_set(cpu);
6649 		break;
6650 
6651 	case CPU_DEAD:
6652 		sched_domains_numa_masks_clear(cpu);
6653 		break;
6654 
6655 	default:
6656 		return NOTIFY_DONE;
6657 	}
6658 
6659 	return NOTIFY_OK;
6660 }
6661 #else
6662 static inline void sched_init_numa(void)
6663 {
6664 }
6665 
6666 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6667 					   unsigned long action,
6668 					   void *hcpu)
6669 {
6670 	return 0;
6671 }
6672 #endif /* CONFIG_NUMA */
6673 
6674 static int __sdt_alloc(const struct cpumask *cpu_map)
6675 {
6676 	struct sched_domain_topology_level *tl;
6677 	int j;
6678 
6679 	for_each_sd_topology(tl) {
6680 		struct sd_data *sdd = &tl->data;
6681 
6682 		sdd->sd = alloc_percpu(struct sched_domain *);
6683 		if (!sdd->sd)
6684 			return -ENOMEM;
6685 
6686 		sdd->sg = alloc_percpu(struct sched_group *);
6687 		if (!sdd->sg)
6688 			return -ENOMEM;
6689 
6690 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6691 		if (!sdd->sgc)
6692 			return -ENOMEM;
6693 
6694 		for_each_cpu(j, cpu_map) {
6695 			struct sched_domain *sd;
6696 			struct sched_group *sg;
6697 			struct sched_group_capacity *sgc;
6698 
6699 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6700 					GFP_KERNEL, cpu_to_node(j));
6701 			if (!sd)
6702 				return -ENOMEM;
6703 
6704 			*per_cpu_ptr(sdd->sd, j) = sd;
6705 
6706 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6707 					GFP_KERNEL, cpu_to_node(j));
6708 			if (!sg)
6709 				return -ENOMEM;
6710 
6711 			sg->next = sg;
6712 
6713 			*per_cpu_ptr(sdd->sg, j) = sg;
6714 
6715 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6716 					GFP_KERNEL, cpu_to_node(j));
6717 			if (!sgc)
6718 				return -ENOMEM;
6719 
6720 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6721 		}
6722 	}
6723 
6724 	return 0;
6725 }
6726 
6727 static void __sdt_free(const struct cpumask *cpu_map)
6728 {
6729 	struct sched_domain_topology_level *tl;
6730 	int j;
6731 
6732 	for_each_sd_topology(tl) {
6733 		struct sd_data *sdd = &tl->data;
6734 
6735 		for_each_cpu(j, cpu_map) {
6736 			struct sched_domain *sd;
6737 
6738 			if (sdd->sd) {
6739 				sd = *per_cpu_ptr(sdd->sd, j);
6740 				if (sd && (sd->flags & SD_OVERLAP))
6741 					free_sched_groups(sd->groups, 0);
6742 				kfree(*per_cpu_ptr(sdd->sd, j));
6743 			}
6744 
6745 			if (sdd->sg)
6746 				kfree(*per_cpu_ptr(sdd->sg, j));
6747 			if (sdd->sgc)
6748 				kfree(*per_cpu_ptr(sdd->sgc, j));
6749 		}
6750 		free_percpu(sdd->sd);
6751 		sdd->sd = NULL;
6752 		free_percpu(sdd->sg);
6753 		sdd->sg = NULL;
6754 		free_percpu(sdd->sgc);
6755 		sdd->sgc = NULL;
6756 	}
6757 }
6758 
6759 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6760 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6761 		struct sched_domain *child, int cpu)
6762 {
6763 	struct sched_domain *sd = sd_init(tl, cpu);
6764 	if (!sd)
6765 		return child;
6766 
6767 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6768 	if (child) {
6769 		sd->level = child->level + 1;
6770 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6771 		child->parent = sd;
6772 		sd->child = child;
6773 
6774 		if (!cpumask_subset(sched_domain_span(child),
6775 				    sched_domain_span(sd))) {
6776 			pr_err("BUG: arch topology borken\n");
6777 #ifdef CONFIG_SCHED_DEBUG
6778 			pr_err("     the %s domain not a subset of the %s domain\n",
6779 					child->name, sd->name);
6780 #endif
6781 			/* Fixup, ensure @sd has at least @child cpus. */
6782 			cpumask_or(sched_domain_span(sd),
6783 				   sched_domain_span(sd),
6784 				   sched_domain_span(child));
6785 		}
6786 
6787 	}
6788 	set_domain_attribute(sd, attr);
6789 
6790 	return sd;
6791 }
6792 
6793 /*
6794  * Build sched domains for a given set of cpus and attach the sched domains
6795  * to the individual cpus
6796  */
6797 static int build_sched_domains(const struct cpumask *cpu_map,
6798 			       struct sched_domain_attr *attr)
6799 {
6800 	enum s_alloc alloc_state;
6801 	struct sched_domain *sd;
6802 	struct s_data d;
6803 	int i, ret = -ENOMEM;
6804 
6805 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6806 	if (alloc_state != sa_rootdomain)
6807 		goto error;
6808 
6809 	/* Set up domains for cpus specified by the cpu_map. */
6810 	for_each_cpu(i, cpu_map) {
6811 		struct sched_domain_topology_level *tl;
6812 
6813 		sd = NULL;
6814 		for_each_sd_topology(tl) {
6815 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6816 			if (tl == sched_domain_topology)
6817 				*per_cpu_ptr(d.sd, i) = sd;
6818 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6819 				sd->flags |= SD_OVERLAP;
6820 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6821 				break;
6822 		}
6823 	}
6824 
6825 	/* Build the groups for the domains */
6826 	for_each_cpu(i, cpu_map) {
6827 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6828 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6829 			if (sd->flags & SD_OVERLAP) {
6830 				if (build_overlap_sched_groups(sd, i))
6831 					goto error;
6832 			} else {
6833 				if (build_sched_groups(sd, i))
6834 					goto error;
6835 			}
6836 		}
6837 	}
6838 
6839 	/* Calculate CPU capacity for physical packages and nodes */
6840 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6841 		if (!cpumask_test_cpu(i, cpu_map))
6842 			continue;
6843 
6844 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6845 			claim_allocations(i, sd);
6846 			init_sched_groups_capacity(i, sd);
6847 		}
6848 	}
6849 
6850 	/* Attach the domains */
6851 	rcu_read_lock();
6852 	for_each_cpu(i, cpu_map) {
6853 		sd = *per_cpu_ptr(d.sd, i);
6854 		cpu_attach_domain(sd, d.rd, i);
6855 	}
6856 	rcu_read_unlock();
6857 
6858 	ret = 0;
6859 error:
6860 	__free_domain_allocs(&d, alloc_state, cpu_map);
6861 	return ret;
6862 }
6863 
6864 static cpumask_var_t *doms_cur;	/* current sched domains */
6865 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6866 static struct sched_domain_attr *dattr_cur;
6867 				/* attribues of custom domains in 'doms_cur' */
6868 
6869 /*
6870  * Special case: If a kmalloc of a doms_cur partition (array of
6871  * cpumask) fails, then fallback to a single sched domain,
6872  * as determined by the single cpumask fallback_doms.
6873  */
6874 static cpumask_var_t fallback_doms;
6875 
6876 /*
6877  * arch_update_cpu_topology lets virtualized architectures update the
6878  * cpu core maps. It is supposed to return 1 if the topology changed
6879  * or 0 if it stayed the same.
6880  */
6881 int __weak arch_update_cpu_topology(void)
6882 {
6883 	return 0;
6884 }
6885 
6886 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6887 {
6888 	int i;
6889 	cpumask_var_t *doms;
6890 
6891 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6892 	if (!doms)
6893 		return NULL;
6894 	for (i = 0; i < ndoms; i++) {
6895 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6896 			free_sched_domains(doms, i);
6897 			return NULL;
6898 		}
6899 	}
6900 	return doms;
6901 }
6902 
6903 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6904 {
6905 	unsigned int i;
6906 	for (i = 0; i < ndoms; i++)
6907 		free_cpumask_var(doms[i]);
6908 	kfree(doms);
6909 }
6910 
6911 /*
6912  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6913  * For now this just excludes isolated cpus, but could be used to
6914  * exclude other special cases in the future.
6915  */
6916 static int init_sched_domains(const struct cpumask *cpu_map)
6917 {
6918 	int err;
6919 
6920 	arch_update_cpu_topology();
6921 	ndoms_cur = 1;
6922 	doms_cur = alloc_sched_domains(ndoms_cur);
6923 	if (!doms_cur)
6924 		doms_cur = &fallback_doms;
6925 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6926 	err = build_sched_domains(doms_cur[0], NULL);
6927 	register_sched_domain_sysctl();
6928 
6929 	return err;
6930 }
6931 
6932 /*
6933  * Detach sched domains from a group of cpus specified in cpu_map
6934  * These cpus will now be attached to the NULL domain
6935  */
6936 static void detach_destroy_domains(const struct cpumask *cpu_map)
6937 {
6938 	int i;
6939 
6940 	rcu_read_lock();
6941 	for_each_cpu(i, cpu_map)
6942 		cpu_attach_domain(NULL, &def_root_domain, i);
6943 	rcu_read_unlock();
6944 }
6945 
6946 /* handle null as "default" */
6947 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6948 			struct sched_domain_attr *new, int idx_new)
6949 {
6950 	struct sched_domain_attr tmp;
6951 
6952 	/* fast path */
6953 	if (!new && !cur)
6954 		return 1;
6955 
6956 	tmp = SD_ATTR_INIT;
6957 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6958 			new ? (new + idx_new) : &tmp,
6959 			sizeof(struct sched_domain_attr));
6960 }
6961 
6962 /*
6963  * Partition sched domains as specified by the 'ndoms_new'
6964  * cpumasks in the array doms_new[] of cpumasks. This compares
6965  * doms_new[] to the current sched domain partitioning, doms_cur[].
6966  * It destroys each deleted domain and builds each new domain.
6967  *
6968  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6969  * The masks don't intersect (don't overlap.) We should setup one
6970  * sched domain for each mask. CPUs not in any of the cpumasks will
6971  * not be load balanced. If the same cpumask appears both in the
6972  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6973  * it as it is.
6974  *
6975  * The passed in 'doms_new' should be allocated using
6976  * alloc_sched_domains.  This routine takes ownership of it and will
6977  * free_sched_domains it when done with it. If the caller failed the
6978  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6979  * and partition_sched_domains() will fallback to the single partition
6980  * 'fallback_doms', it also forces the domains to be rebuilt.
6981  *
6982  * If doms_new == NULL it will be replaced with cpu_online_mask.
6983  * ndoms_new == 0 is a special case for destroying existing domains,
6984  * and it will not create the default domain.
6985  *
6986  * Call with hotplug lock held
6987  */
6988 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6989 			     struct sched_domain_attr *dattr_new)
6990 {
6991 	int i, j, n;
6992 	int new_topology;
6993 
6994 	mutex_lock(&sched_domains_mutex);
6995 
6996 	/* always unregister in case we don't destroy any domains */
6997 	unregister_sched_domain_sysctl();
6998 
6999 	/* Let architecture update cpu core mappings. */
7000 	new_topology = arch_update_cpu_topology();
7001 
7002 	n = doms_new ? ndoms_new : 0;
7003 
7004 	/* Destroy deleted domains */
7005 	for (i = 0; i < ndoms_cur; i++) {
7006 		for (j = 0; j < n && !new_topology; j++) {
7007 			if (cpumask_equal(doms_cur[i], doms_new[j])
7008 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7009 				goto match1;
7010 		}
7011 		/* no match - a current sched domain not in new doms_new[] */
7012 		detach_destroy_domains(doms_cur[i]);
7013 match1:
7014 		;
7015 	}
7016 
7017 	n = ndoms_cur;
7018 	if (doms_new == NULL) {
7019 		n = 0;
7020 		doms_new = &fallback_doms;
7021 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7022 		WARN_ON_ONCE(dattr_new);
7023 	}
7024 
7025 	/* Build new domains */
7026 	for (i = 0; i < ndoms_new; i++) {
7027 		for (j = 0; j < n && !new_topology; j++) {
7028 			if (cpumask_equal(doms_new[i], doms_cur[j])
7029 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7030 				goto match2;
7031 		}
7032 		/* no match - add a new doms_new */
7033 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7034 match2:
7035 		;
7036 	}
7037 
7038 	/* Remember the new sched domains */
7039 	if (doms_cur != &fallback_doms)
7040 		free_sched_domains(doms_cur, ndoms_cur);
7041 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7042 	doms_cur = doms_new;
7043 	dattr_cur = dattr_new;
7044 	ndoms_cur = ndoms_new;
7045 
7046 	register_sched_domain_sysctl();
7047 
7048 	mutex_unlock(&sched_domains_mutex);
7049 }
7050 
7051 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7052 
7053 /*
7054  * Update cpusets according to cpu_active mask.  If cpusets are
7055  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7056  * around partition_sched_domains().
7057  *
7058  * If we come here as part of a suspend/resume, don't touch cpusets because we
7059  * want to restore it back to its original state upon resume anyway.
7060  */
7061 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7062 			     void *hcpu)
7063 {
7064 	switch (action) {
7065 	case CPU_ONLINE_FROZEN:
7066 	case CPU_DOWN_FAILED_FROZEN:
7067 
7068 		/*
7069 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7070 		 * resume sequence. As long as this is not the last online
7071 		 * operation in the resume sequence, just build a single sched
7072 		 * domain, ignoring cpusets.
7073 		 */
7074 		num_cpus_frozen--;
7075 		if (likely(num_cpus_frozen)) {
7076 			partition_sched_domains(1, NULL, NULL);
7077 			break;
7078 		}
7079 
7080 		/*
7081 		 * This is the last CPU online operation. So fall through and
7082 		 * restore the original sched domains by considering the
7083 		 * cpuset configurations.
7084 		 */
7085 
7086 	case CPU_ONLINE:
7087 		cpuset_update_active_cpus(true);
7088 		break;
7089 	default:
7090 		return NOTIFY_DONE;
7091 	}
7092 	return NOTIFY_OK;
7093 }
7094 
7095 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7096 			       void *hcpu)
7097 {
7098 	unsigned long flags;
7099 	long cpu = (long)hcpu;
7100 	struct dl_bw *dl_b;
7101 	bool overflow;
7102 	int cpus;
7103 
7104 	switch (action) {
7105 	case CPU_DOWN_PREPARE:
7106 		rcu_read_lock_sched();
7107 		dl_b = dl_bw_of(cpu);
7108 
7109 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7110 		cpus = dl_bw_cpus(cpu);
7111 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7112 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7113 
7114 		rcu_read_unlock_sched();
7115 
7116 		if (overflow)
7117 			return notifier_from_errno(-EBUSY);
7118 		cpuset_update_active_cpus(false);
7119 		break;
7120 	case CPU_DOWN_PREPARE_FROZEN:
7121 		num_cpus_frozen++;
7122 		partition_sched_domains(1, NULL, NULL);
7123 		break;
7124 	default:
7125 		return NOTIFY_DONE;
7126 	}
7127 	return NOTIFY_OK;
7128 }
7129 
7130 void __init sched_init_smp(void)
7131 {
7132 	cpumask_var_t non_isolated_cpus;
7133 
7134 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7135 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7136 
7137 	/* nohz_full won't take effect without isolating the cpus. */
7138 	tick_nohz_full_add_cpus_to(cpu_isolated_map);
7139 
7140 	sched_init_numa();
7141 
7142 	/*
7143 	 * There's no userspace yet to cause hotplug operations; hence all the
7144 	 * cpu masks are stable and all blatant races in the below code cannot
7145 	 * happen.
7146 	 */
7147 	mutex_lock(&sched_domains_mutex);
7148 	init_sched_domains(cpu_active_mask);
7149 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7150 	if (cpumask_empty(non_isolated_cpus))
7151 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7152 	mutex_unlock(&sched_domains_mutex);
7153 
7154 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7155 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7156 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7157 
7158 	init_hrtick();
7159 
7160 	/* Move init over to a non-isolated CPU */
7161 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7162 		BUG();
7163 	sched_init_granularity();
7164 	free_cpumask_var(non_isolated_cpus);
7165 
7166 	init_sched_rt_class();
7167 	init_sched_dl_class();
7168 }
7169 #else
7170 void __init sched_init_smp(void)
7171 {
7172 	sched_init_granularity();
7173 }
7174 #endif /* CONFIG_SMP */
7175 
7176 int in_sched_functions(unsigned long addr)
7177 {
7178 	return in_lock_functions(addr) ||
7179 		(addr >= (unsigned long)__sched_text_start
7180 		&& addr < (unsigned long)__sched_text_end);
7181 }
7182 
7183 #ifdef CONFIG_CGROUP_SCHED
7184 /*
7185  * Default task group.
7186  * Every task in system belongs to this group at bootup.
7187  */
7188 struct task_group root_task_group;
7189 LIST_HEAD(task_groups);
7190 #endif
7191 
7192 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7193 
7194 void __init sched_init(void)
7195 {
7196 	int i, j;
7197 	unsigned long alloc_size = 0, ptr;
7198 
7199 #ifdef CONFIG_FAIR_GROUP_SCHED
7200 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7201 #endif
7202 #ifdef CONFIG_RT_GROUP_SCHED
7203 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7204 #endif
7205 	if (alloc_size) {
7206 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7207 
7208 #ifdef CONFIG_FAIR_GROUP_SCHED
7209 		root_task_group.se = (struct sched_entity **)ptr;
7210 		ptr += nr_cpu_ids * sizeof(void **);
7211 
7212 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7213 		ptr += nr_cpu_ids * sizeof(void **);
7214 
7215 #endif /* CONFIG_FAIR_GROUP_SCHED */
7216 #ifdef CONFIG_RT_GROUP_SCHED
7217 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7218 		ptr += nr_cpu_ids * sizeof(void **);
7219 
7220 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7221 		ptr += nr_cpu_ids * sizeof(void **);
7222 
7223 #endif /* CONFIG_RT_GROUP_SCHED */
7224 	}
7225 #ifdef CONFIG_CPUMASK_OFFSTACK
7226 	for_each_possible_cpu(i) {
7227 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7228 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7229 	}
7230 #endif /* CONFIG_CPUMASK_OFFSTACK */
7231 
7232 	init_rt_bandwidth(&def_rt_bandwidth,
7233 			global_rt_period(), global_rt_runtime());
7234 	init_dl_bandwidth(&def_dl_bandwidth,
7235 			global_rt_period(), global_rt_runtime());
7236 
7237 #ifdef CONFIG_SMP
7238 	init_defrootdomain();
7239 #endif
7240 
7241 #ifdef CONFIG_RT_GROUP_SCHED
7242 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7243 			global_rt_period(), global_rt_runtime());
7244 #endif /* CONFIG_RT_GROUP_SCHED */
7245 
7246 #ifdef CONFIG_CGROUP_SCHED
7247 	list_add(&root_task_group.list, &task_groups);
7248 	INIT_LIST_HEAD(&root_task_group.children);
7249 	INIT_LIST_HEAD(&root_task_group.siblings);
7250 	autogroup_init(&init_task);
7251 
7252 #endif /* CONFIG_CGROUP_SCHED */
7253 
7254 	for_each_possible_cpu(i) {
7255 		struct rq *rq;
7256 
7257 		rq = cpu_rq(i);
7258 		raw_spin_lock_init(&rq->lock);
7259 		rq->nr_running = 0;
7260 		rq->calc_load_active = 0;
7261 		rq->calc_load_update = jiffies + LOAD_FREQ;
7262 		init_cfs_rq(&rq->cfs);
7263 		init_rt_rq(&rq->rt);
7264 		init_dl_rq(&rq->dl);
7265 #ifdef CONFIG_FAIR_GROUP_SCHED
7266 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7267 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7268 		/*
7269 		 * How much cpu bandwidth does root_task_group get?
7270 		 *
7271 		 * In case of task-groups formed thr' the cgroup filesystem, it
7272 		 * gets 100% of the cpu resources in the system. This overall
7273 		 * system cpu resource is divided among the tasks of
7274 		 * root_task_group and its child task-groups in a fair manner,
7275 		 * based on each entity's (task or task-group's) weight
7276 		 * (se->load.weight).
7277 		 *
7278 		 * In other words, if root_task_group has 10 tasks of weight
7279 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7280 		 * then A0's share of the cpu resource is:
7281 		 *
7282 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7283 		 *
7284 		 * We achieve this by letting root_task_group's tasks sit
7285 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7286 		 */
7287 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7288 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7289 #endif /* CONFIG_FAIR_GROUP_SCHED */
7290 
7291 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7292 #ifdef CONFIG_RT_GROUP_SCHED
7293 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7294 #endif
7295 
7296 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7297 			rq->cpu_load[j] = 0;
7298 
7299 		rq->last_load_update_tick = jiffies;
7300 
7301 #ifdef CONFIG_SMP
7302 		rq->sd = NULL;
7303 		rq->rd = NULL;
7304 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7305 		rq->balance_callback = NULL;
7306 		rq->active_balance = 0;
7307 		rq->next_balance = jiffies;
7308 		rq->push_cpu = 0;
7309 		rq->cpu = i;
7310 		rq->online = 0;
7311 		rq->idle_stamp = 0;
7312 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7313 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7314 
7315 		INIT_LIST_HEAD(&rq->cfs_tasks);
7316 
7317 		rq_attach_root(rq, &def_root_domain);
7318 #ifdef CONFIG_NO_HZ_COMMON
7319 		rq->nohz_flags = 0;
7320 #endif
7321 #ifdef CONFIG_NO_HZ_FULL
7322 		rq->last_sched_tick = 0;
7323 #endif
7324 #endif
7325 		init_rq_hrtick(rq);
7326 		atomic_set(&rq->nr_iowait, 0);
7327 	}
7328 
7329 	set_load_weight(&init_task);
7330 
7331 #ifdef CONFIG_PREEMPT_NOTIFIERS
7332 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7333 #endif
7334 
7335 	/*
7336 	 * The boot idle thread does lazy MMU switching as well:
7337 	 */
7338 	atomic_inc(&init_mm.mm_count);
7339 	enter_lazy_tlb(&init_mm, current);
7340 
7341 	/*
7342 	 * During early bootup we pretend to be a normal task:
7343 	 */
7344 	current->sched_class = &fair_sched_class;
7345 
7346 	/*
7347 	 * Make us the idle thread. Technically, schedule() should not be
7348 	 * called from this thread, however somewhere below it might be,
7349 	 * but because we are the idle thread, we just pick up running again
7350 	 * when this runqueue becomes "idle".
7351 	 */
7352 	init_idle(current, smp_processor_id());
7353 
7354 	calc_load_update = jiffies + LOAD_FREQ;
7355 
7356 #ifdef CONFIG_SMP
7357 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7358 	/* May be allocated at isolcpus cmdline parse time */
7359 	if (cpu_isolated_map == NULL)
7360 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7361 	idle_thread_set_boot_cpu();
7362 	set_cpu_rq_start_time();
7363 #endif
7364 	init_sched_fair_class();
7365 
7366 	scheduler_running = 1;
7367 }
7368 
7369 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7370 static inline int preempt_count_equals(int preempt_offset)
7371 {
7372 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7373 
7374 	return (nested == preempt_offset);
7375 }
7376 
7377 void __might_sleep(const char *file, int line, int preempt_offset)
7378 {
7379 	/*
7380 	 * Blocking primitives will set (and therefore destroy) current->state,
7381 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7382 	 * otherwise we will destroy state.
7383 	 */
7384 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7385 			"do not call blocking ops when !TASK_RUNNING; "
7386 			"state=%lx set at [<%p>] %pS\n",
7387 			current->state,
7388 			(void *)current->task_state_change,
7389 			(void *)current->task_state_change);
7390 
7391 	___might_sleep(file, line, preempt_offset);
7392 }
7393 EXPORT_SYMBOL(__might_sleep);
7394 
7395 void ___might_sleep(const char *file, int line, int preempt_offset)
7396 {
7397 	static unsigned long prev_jiffy;	/* ratelimiting */
7398 
7399 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7400 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7401 	     !is_idle_task(current)) ||
7402 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7403 		return;
7404 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7405 		return;
7406 	prev_jiffy = jiffies;
7407 
7408 	printk(KERN_ERR
7409 		"BUG: sleeping function called from invalid context at %s:%d\n",
7410 			file, line);
7411 	printk(KERN_ERR
7412 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7413 			in_atomic(), irqs_disabled(),
7414 			current->pid, current->comm);
7415 
7416 	if (task_stack_end_corrupted(current))
7417 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7418 
7419 	debug_show_held_locks(current);
7420 	if (irqs_disabled())
7421 		print_irqtrace_events(current);
7422 #ifdef CONFIG_DEBUG_PREEMPT
7423 	if (!preempt_count_equals(preempt_offset)) {
7424 		pr_err("Preemption disabled at:");
7425 		print_ip_sym(current->preempt_disable_ip);
7426 		pr_cont("\n");
7427 	}
7428 #endif
7429 	dump_stack();
7430 }
7431 EXPORT_SYMBOL(___might_sleep);
7432 #endif
7433 
7434 #ifdef CONFIG_MAGIC_SYSRQ
7435 void normalize_rt_tasks(void)
7436 {
7437 	struct task_struct *g, *p;
7438 	struct sched_attr attr = {
7439 		.sched_policy = SCHED_NORMAL,
7440 	};
7441 
7442 	read_lock(&tasklist_lock);
7443 	for_each_process_thread(g, p) {
7444 		/*
7445 		 * Only normalize user tasks:
7446 		 */
7447 		if (p->flags & PF_KTHREAD)
7448 			continue;
7449 
7450 		p->se.exec_start		= 0;
7451 #ifdef CONFIG_SCHEDSTATS
7452 		p->se.statistics.wait_start	= 0;
7453 		p->se.statistics.sleep_start	= 0;
7454 		p->se.statistics.block_start	= 0;
7455 #endif
7456 
7457 		if (!dl_task(p) && !rt_task(p)) {
7458 			/*
7459 			 * Renice negative nice level userspace
7460 			 * tasks back to 0:
7461 			 */
7462 			if (task_nice(p) < 0)
7463 				set_user_nice(p, 0);
7464 			continue;
7465 		}
7466 
7467 		__sched_setscheduler(p, &attr, false, false);
7468 	}
7469 	read_unlock(&tasklist_lock);
7470 }
7471 
7472 #endif /* CONFIG_MAGIC_SYSRQ */
7473 
7474 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7475 /*
7476  * These functions are only useful for the IA64 MCA handling, or kdb.
7477  *
7478  * They can only be called when the whole system has been
7479  * stopped - every CPU needs to be quiescent, and no scheduling
7480  * activity can take place. Using them for anything else would
7481  * be a serious bug, and as a result, they aren't even visible
7482  * under any other configuration.
7483  */
7484 
7485 /**
7486  * curr_task - return the current task for a given cpu.
7487  * @cpu: the processor in question.
7488  *
7489  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7490  *
7491  * Return: The current task for @cpu.
7492  */
7493 struct task_struct *curr_task(int cpu)
7494 {
7495 	return cpu_curr(cpu);
7496 }
7497 
7498 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7499 
7500 #ifdef CONFIG_IA64
7501 /**
7502  * set_curr_task - set the current task for a given cpu.
7503  * @cpu: the processor in question.
7504  * @p: the task pointer to set.
7505  *
7506  * Description: This function must only be used when non-maskable interrupts
7507  * are serviced on a separate stack. It allows the architecture to switch the
7508  * notion of the current task on a cpu in a non-blocking manner. This function
7509  * must be called with all CPU's synchronized, and interrupts disabled, the
7510  * and caller must save the original value of the current task (see
7511  * curr_task() above) and restore that value before reenabling interrupts and
7512  * re-starting the system.
7513  *
7514  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7515  */
7516 void set_curr_task(int cpu, struct task_struct *p)
7517 {
7518 	cpu_curr(cpu) = p;
7519 }
7520 
7521 #endif
7522 
7523 #ifdef CONFIG_CGROUP_SCHED
7524 /* task_group_lock serializes the addition/removal of task groups */
7525 static DEFINE_SPINLOCK(task_group_lock);
7526 
7527 static void free_sched_group(struct task_group *tg)
7528 {
7529 	free_fair_sched_group(tg);
7530 	free_rt_sched_group(tg);
7531 	autogroup_free(tg);
7532 	kfree(tg);
7533 }
7534 
7535 /* allocate runqueue etc for a new task group */
7536 struct task_group *sched_create_group(struct task_group *parent)
7537 {
7538 	struct task_group *tg;
7539 
7540 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7541 	if (!tg)
7542 		return ERR_PTR(-ENOMEM);
7543 
7544 	if (!alloc_fair_sched_group(tg, parent))
7545 		goto err;
7546 
7547 	if (!alloc_rt_sched_group(tg, parent))
7548 		goto err;
7549 
7550 	return tg;
7551 
7552 err:
7553 	free_sched_group(tg);
7554 	return ERR_PTR(-ENOMEM);
7555 }
7556 
7557 void sched_online_group(struct task_group *tg, struct task_group *parent)
7558 {
7559 	unsigned long flags;
7560 
7561 	spin_lock_irqsave(&task_group_lock, flags);
7562 	list_add_rcu(&tg->list, &task_groups);
7563 
7564 	WARN_ON(!parent); /* root should already exist */
7565 
7566 	tg->parent = parent;
7567 	INIT_LIST_HEAD(&tg->children);
7568 	list_add_rcu(&tg->siblings, &parent->children);
7569 	spin_unlock_irqrestore(&task_group_lock, flags);
7570 }
7571 
7572 /* rcu callback to free various structures associated with a task group */
7573 static void free_sched_group_rcu(struct rcu_head *rhp)
7574 {
7575 	/* now it should be safe to free those cfs_rqs */
7576 	free_sched_group(container_of(rhp, struct task_group, rcu));
7577 }
7578 
7579 /* Destroy runqueue etc associated with a task group */
7580 void sched_destroy_group(struct task_group *tg)
7581 {
7582 	/* wait for possible concurrent references to cfs_rqs complete */
7583 	call_rcu(&tg->rcu, free_sched_group_rcu);
7584 }
7585 
7586 void sched_offline_group(struct task_group *tg)
7587 {
7588 	unsigned long flags;
7589 	int i;
7590 
7591 	/* end participation in shares distribution */
7592 	for_each_possible_cpu(i)
7593 		unregister_fair_sched_group(tg, i);
7594 
7595 	spin_lock_irqsave(&task_group_lock, flags);
7596 	list_del_rcu(&tg->list);
7597 	list_del_rcu(&tg->siblings);
7598 	spin_unlock_irqrestore(&task_group_lock, flags);
7599 }
7600 
7601 /* change task's runqueue when it moves between groups.
7602  *	The caller of this function should have put the task in its new group
7603  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7604  *	reflect its new group.
7605  */
7606 void sched_move_task(struct task_struct *tsk)
7607 {
7608 	struct task_group *tg;
7609 	int queued, running;
7610 	unsigned long flags;
7611 	struct rq *rq;
7612 
7613 	rq = task_rq_lock(tsk, &flags);
7614 
7615 	running = task_current(rq, tsk);
7616 	queued = task_on_rq_queued(tsk);
7617 
7618 	if (queued)
7619 		dequeue_task(rq, tsk, 0);
7620 	if (unlikely(running))
7621 		put_prev_task(rq, tsk);
7622 
7623 	/*
7624 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7625 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7626 	 * to prevent lockdep warnings.
7627 	 */
7628 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7629 			  struct task_group, css);
7630 	tg = autogroup_task_group(tsk, tg);
7631 	tsk->sched_task_group = tg;
7632 
7633 #ifdef CONFIG_FAIR_GROUP_SCHED
7634 	if (tsk->sched_class->task_move_group)
7635 		tsk->sched_class->task_move_group(tsk, queued);
7636 	else
7637 #endif
7638 		set_task_rq(tsk, task_cpu(tsk));
7639 
7640 	if (unlikely(running))
7641 		tsk->sched_class->set_curr_task(rq);
7642 	if (queued)
7643 		enqueue_task(rq, tsk, 0);
7644 
7645 	task_rq_unlock(rq, tsk, &flags);
7646 }
7647 #endif /* CONFIG_CGROUP_SCHED */
7648 
7649 #ifdef CONFIG_RT_GROUP_SCHED
7650 /*
7651  * Ensure that the real time constraints are schedulable.
7652  */
7653 static DEFINE_MUTEX(rt_constraints_mutex);
7654 
7655 /* Must be called with tasklist_lock held */
7656 static inline int tg_has_rt_tasks(struct task_group *tg)
7657 {
7658 	struct task_struct *g, *p;
7659 
7660 	/*
7661 	 * Autogroups do not have RT tasks; see autogroup_create().
7662 	 */
7663 	if (task_group_is_autogroup(tg))
7664 		return 0;
7665 
7666 	for_each_process_thread(g, p) {
7667 		if (rt_task(p) && task_group(p) == tg)
7668 			return 1;
7669 	}
7670 
7671 	return 0;
7672 }
7673 
7674 struct rt_schedulable_data {
7675 	struct task_group *tg;
7676 	u64 rt_period;
7677 	u64 rt_runtime;
7678 };
7679 
7680 static int tg_rt_schedulable(struct task_group *tg, void *data)
7681 {
7682 	struct rt_schedulable_data *d = data;
7683 	struct task_group *child;
7684 	unsigned long total, sum = 0;
7685 	u64 period, runtime;
7686 
7687 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7688 	runtime = tg->rt_bandwidth.rt_runtime;
7689 
7690 	if (tg == d->tg) {
7691 		period = d->rt_period;
7692 		runtime = d->rt_runtime;
7693 	}
7694 
7695 	/*
7696 	 * Cannot have more runtime than the period.
7697 	 */
7698 	if (runtime > period && runtime != RUNTIME_INF)
7699 		return -EINVAL;
7700 
7701 	/*
7702 	 * Ensure we don't starve existing RT tasks.
7703 	 */
7704 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7705 		return -EBUSY;
7706 
7707 	total = to_ratio(period, runtime);
7708 
7709 	/*
7710 	 * Nobody can have more than the global setting allows.
7711 	 */
7712 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7713 		return -EINVAL;
7714 
7715 	/*
7716 	 * The sum of our children's runtime should not exceed our own.
7717 	 */
7718 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7719 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7720 		runtime = child->rt_bandwidth.rt_runtime;
7721 
7722 		if (child == d->tg) {
7723 			period = d->rt_period;
7724 			runtime = d->rt_runtime;
7725 		}
7726 
7727 		sum += to_ratio(period, runtime);
7728 	}
7729 
7730 	if (sum > total)
7731 		return -EINVAL;
7732 
7733 	return 0;
7734 }
7735 
7736 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7737 {
7738 	int ret;
7739 
7740 	struct rt_schedulable_data data = {
7741 		.tg = tg,
7742 		.rt_period = period,
7743 		.rt_runtime = runtime,
7744 	};
7745 
7746 	rcu_read_lock();
7747 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7748 	rcu_read_unlock();
7749 
7750 	return ret;
7751 }
7752 
7753 static int tg_set_rt_bandwidth(struct task_group *tg,
7754 		u64 rt_period, u64 rt_runtime)
7755 {
7756 	int i, err = 0;
7757 
7758 	/*
7759 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7760 	 * kernel creating (and or operating) RT threads.
7761 	 */
7762 	if (tg == &root_task_group && rt_runtime == 0)
7763 		return -EINVAL;
7764 
7765 	/* No period doesn't make any sense. */
7766 	if (rt_period == 0)
7767 		return -EINVAL;
7768 
7769 	mutex_lock(&rt_constraints_mutex);
7770 	read_lock(&tasklist_lock);
7771 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7772 	if (err)
7773 		goto unlock;
7774 
7775 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7776 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7777 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7778 
7779 	for_each_possible_cpu(i) {
7780 		struct rt_rq *rt_rq = tg->rt_rq[i];
7781 
7782 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7783 		rt_rq->rt_runtime = rt_runtime;
7784 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7785 	}
7786 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7787 unlock:
7788 	read_unlock(&tasklist_lock);
7789 	mutex_unlock(&rt_constraints_mutex);
7790 
7791 	return err;
7792 }
7793 
7794 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7795 {
7796 	u64 rt_runtime, rt_period;
7797 
7798 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7799 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7800 	if (rt_runtime_us < 0)
7801 		rt_runtime = RUNTIME_INF;
7802 
7803 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7804 }
7805 
7806 static long sched_group_rt_runtime(struct task_group *tg)
7807 {
7808 	u64 rt_runtime_us;
7809 
7810 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7811 		return -1;
7812 
7813 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7814 	do_div(rt_runtime_us, NSEC_PER_USEC);
7815 	return rt_runtime_us;
7816 }
7817 
7818 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7819 {
7820 	u64 rt_runtime, rt_period;
7821 
7822 	rt_period = rt_period_us * NSEC_PER_USEC;
7823 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7824 
7825 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7826 }
7827 
7828 static long sched_group_rt_period(struct task_group *tg)
7829 {
7830 	u64 rt_period_us;
7831 
7832 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7833 	do_div(rt_period_us, NSEC_PER_USEC);
7834 	return rt_period_us;
7835 }
7836 #endif /* CONFIG_RT_GROUP_SCHED */
7837 
7838 #ifdef CONFIG_RT_GROUP_SCHED
7839 static int sched_rt_global_constraints(void)
7840 {
7841 	int ret = 0;
7842 
7843 	mutex_lock(&rt_constraints_mutex);
7844 	read_lock(&tasklist_lock);
7845 	ret = __rt_schedulable(NULL, 0, 0);
7846 	read_unlock(&tasklist_lock);
7847 	mutex_unlock(&rt_constraints_mutex);
7848 
7849 	return ret;
7850 }
7851 
7852 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7853 {
7854 	/* Don't accept realtime tasks when there is no way for them to run */
7855 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7856 		return 0;
7857 
7858 	return 1;
7859 }
7860 
7861 #else /* !CONFIG_RT_GROUP_SCHED */
7862 static int sched_rt_global_constraints(void)
7863 {
7864 	unsigned long flags;
7865 	int i, ret = 0;
7866 
7867 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7868 	for_each_possible_cpu(i) {
7869 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7870 
7871 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7872 		rt_rq->rt_runtime = global_rt_runtime();
7873 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7874 	}
7875 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7876 
7877 	return ret;
7878 }
7879 #endif /* CONFIG_RT_GROUP_SCHED */
7880 
7881 static int sched_dl_global_validate(void)
7882 {
7883 	u64 runtime = global_rt_runtime();
7884 	u64 period = global_rt_period();
7885 	u64 new_bw = to_ratio(period, runtime);
7886 	struct dl_bw *dl_b;
7887 	int cpu, ret = 0;
7888 	unsigned long flags;
7889 
7890 	/*
7891 	 * Here we want to check the bandwidth not being set to some
7892 	 * value smaller than the currently allocated bandwidth in
7893 	 * any of the root_domains.
7894 	 *
7895 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7896 	 * cycling on root_domains... Discussion on different/better
7897 	 * solutions is welcome!
7898 	 */
7899 	for_each_possible_cpu(cpu) {
7900 		rcu_read_lock_sched();
7901 		dl_b = dl_bw_of(cpu);
7902 
7903 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7904 		if (new_bw < dl_b->total_bw)
7905 			ret = -EBUSY;
7906 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7907 
7908 		rcu_read_unlock_sched();
7909 
7910 		if (ret)
7911 			break;
7912 	}
7913 
7914 	return ret;
7915 }
7916 
7917 static void sched_dl_do_global(void)
7918 {
7919 	u64 new_bw = -1;
7920 	struct dl_bw *dl_b;
7921 	int cpu;
7922 	unsigned long flags;
7923 
7924 	def_dl_bandwidth.dl_period = global_rt_period();
7925 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7926 
7927 	if (global_rt_runtime() != RUNTIME_INF)
7928 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7929 
7930 	/*
7931 	 * FIXME: As above...
7932 	 */
7933 	for_each_possible_cpu(cpu) {
7934 		rcu_read_lock_sched();
7935 		dl_b = dl_bw_of(cpu);
7936 
7937 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7938 		dl_b->bw = new_bw;
7939 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7940 
7941 		rcu_read_unlock_sched();
7942 	}
7943 }
7944 
7945 static int sched_rt_global_validate(void)
7946 {
7947 	if (sysctl_sched_rt_period <= 0)
7948 		return -EINVAL;
7949 
7950 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7951 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7952 		return -EINVAL;
7953 
7954 	return 0;
7955 }
7956 
7957 static void sched_rt_do_global(void)
7958 {
7959 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7960 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7961 }
7962 
7963 int sched_rt_handler(struct ctl_table *table, int write,
7964 		void __user *buffer, size_t *lenp,
7965 		loff_t *ppos)
7966 {
7967 	int old_period, old_runtime;
7968 	static DEFINE_MUTEX(mutex);
7969 	int ret;
7970 
7971 	mutex_lock(&mutex);
7972 	old_period = sysctl_sched_rt_period;
7973 	old_runtime = sysctl_sched_rt_runtime;
7974 
7975 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7976 
7977 	if (!ret && write) {
7978 		ret = sched_rt_global_validate();
7979 		if (ret)
7980 			goto undo;
7981 
7982 		ret = sched_dl_global_validate();
7983 		if (ret)
7984 			goto undo;
7985 
7986 		ret = sched_rt_global_constraints();
7987 		if (ret)
7988 			goto undo;
7989 
7990 		sched_rt_do_global();
7991 		sched_dl_do_global();
7992 	}
7993 	if (0) {
7994 undo:
7995 		sysctl_sched_rt_period = old_period;
7996 		sysctl_sched_rt_runtime = old_runtime;
7997 	}
7998 	mutex_unlock(&mutex);
7999 
8000 	return ret;
8001 }
8002 
8003 int sched_rr_handler(struct ctl_table *table, int write,
8004 		void __user *buffer, size_t *lenp,
8005 		loff_t *ppos)
8006 {
8007 	int ret;
8008 	static DEFINE_MUTEX(mutex);
8009 
8010 	mutex_lock(&mutex);
8011 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8012 	/* make sure that internally we keep jiffies */
8013 	/* also, writing zero resets timeslice to default */
8014 	if (!ret && write) {
8015 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8016 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8017 	}
8018 	mutex_unlock(&mutex);
8019 	return ret;
8020 }
8021 
8022 #ifdef CONFIG_CGROUP_SCHED
8023 
8024 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8025 {
8026 	return css ? container_of(css, struct task_group, css) : NULL;
8027 }
8028 
8029 static struct cgroup_subsys_state *
8030 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8031 {
8032 	struct task_group *parent = css_tg(parent_css);
8033 	struct task_group *tg;
8034 
8035 	if (!parent) {
8036 		/* This is early initialization for the top cgroup */
8037 		return &root_task_group.css;
8038 	}
8039 
8040 	tg = sched_create_group(parent);
8041 	if (IS_ERR(tg))
8042 		return ERR_PTR(-ENOMEM);
8043 
8044 	return &tg->css;
8045 }
8046 
8047 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8048 {
8049 	struct task_group *tg = css_tg(css);
8050 	struct task_group *parent = css_tg(css->parent);
8051 
8052 	if (parent)
8053 		sched_online_group(tg, parent);
8054 	return 0;
8055 }
8056 
8057 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8058 {
8059 	struct task_group *tg = css_tg(css);
8060 
8061 	sched_destroy_group(tg);
8062 }
8063 
8064 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8065 {
8066 	struct task_group *tg = css_tg(css);
8067 
8068 	sched_offline_group(tg);
8069 }
8070 
8071 static void cpu_cgroup_fork(struct task_struct *task)
8072 {
8073 	sched_move_task(task);
8074 }
8075 
8076 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8077 				 struct cgroup_taskset *tset)
8078 {
8079 	struct task_struct *task;
8080 
8081 	cgroup_taskset_for_each(task, tset) {
8082 #ifdef CONFIG_RT_GROUP_SCHED
8083 		if (!sched_rt_can_attach(css_tg(css), task))
8084 			return -EINVAL;
8085 #else
8086 		/* We don't support RT-tasks being in separate groups */
8087 		if (task->sched_class != &fair_sched_class)
8088 			return -EINVAL;
8089 #endif
8090 	}
8091 	return 0;
8092 }
8093 
8094 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8095 			      struct cgroup_taskset *tset)
8096 {
8097 	struct task_struct *task;
8098 
8099 	cgroup_taskset_for_each(task, tset)
8100 		sched_move_task(task);
8101 }
8102 
8103 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8104 			    struct cgroup_subsys_state *old_css,
8105 			    struct task_struct *task)
8106 {
8107 	/*
8108 	 * cgroup_exit() is called in the copy_process() failure path.
8109 	 * Ignore this case since the task hasn't ran yet, this avoids
8110 	 * trying to poke a half freed task state from generic code.
8111 	 */
8112 	if (!(task->flags & PF_EXITING))
8113 		return;
8114 
8115 	sched_move_task(task);
8116 }
8117 
8118 #ifdef CONFIG_FAIR_GROUP_SCHED
8119 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8120 				struct cftype *cftype, u64 shareval)
8121 {
8122 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8123 }
8124 
8125 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8126 			       struct cftype *cft)
8127 {
8128 	struct task_group *tg = css_tg(css);
8129 
8130 	return (u64) scale_load_down(tg->shares);
8131 }
8132 
8133 #ifdef CONFIG_CFS_BANDWIDTH
8134 static DEFINE_MUTEX(cfs_constraints_mutex);
8135 
8136 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8137 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8138 
8139 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8140 
8141 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8142 {
8143 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8144 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8145 
8146 	if (tg == &root_task_group)
8147 		return -EINVAL;
8148 
8149 	/*
8150 	 * Ensure we have at some amount of bandwidth every period.  This is
8151 	 * to prevent reaching a state of large arrears when throttled via
8152 	 * entity_tick() resulting in prolonged exit starvation.
8153 	 */
8154 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8155 		return -EINVAL;
8156 
8157 	/*
8158 	 * Likewise, bound things on the otherside by preventing insane quota
8159 	 * periods.  This also allows us to normalize in computing quota
8160 	 * feasibility.
8161 	 */
8162 	if (period > max_cfs_quota_period)
8163 		return -EINVAL;
8164 
8165 	/*
8166 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8167 	 * unthrottle_offline_cfs_rqs().
8168 	 */
8169 	get_online_cpus();
8170 	mutex_lock(&cfs_constraints_mutex);
8171 	ret = __cfs_schedulable(tg, period, quota);
8172 	if (ret)
8173 		goto out_unlock;
8174 
8175 	runtime_enabled = quota != RUNTIME_INF;
8176 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8177 	/*
8178 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8179 	 * before making related changes, and on->off must occur afterwards
8180 	 */
8181 	if (runtime_enabled && !runtime_was_enabled)
8182 		cfs_bandwidth_usage_inc();
8183 	raw_spin_lock_irq(&cfs_b->lock);
8184 	cfs_b->period = ns_to_ktime(period);
8185 	cfs_b->quota = quota;
8186 
8187 	__refill_cfs_bandwidth_runtime(cfs_b);
8188 	/* restart the period timer (if active) to handle new period expiry */
8189 	if (runtime_enabled)
8190 		start_cfs_bandwidth(cfs_b);
8191 	raw_spin_unlock_irq(&cfs_b->lock);
8192 
8193 	for_each_online_cpu(i) {
8194 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8195 		struct rq *rq = cfs_rq->rq;
8196 
8197 		raw_spin_lock_irq(&rq->lock);
8198 		cfs_rq->runtime_enabled = runtime_enabled;
8199 		cfs_rq->runtime_remaining = 0;
8200 
8201 		if (cfs_rq->throttled)
8202 			unthrottle_cfs_rq(cfs_rq);
8203 		raw_spin_unlock_irq(&rq->lock);
8204 	}
8205 	if (runtime_was_enabled && !runtime_enabled)
8206 		cfs_bandwidth_usage_dec();
8207 out_unlock:
8208 	mutex_unlock(&cfs_constraints_mutex);
8209 	put_online_cpus();
8210 
8211 	return ret;
8212 }
8213 
8214 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8215 {
8216 	u64 quota, period;
8217 
8218 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8219 	if (cfs_quota_us < 0)
8220 		quota = RUNTIME_INF;
8221 	else
8222 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8223 
8224 	return tg_set_cfs_bandwidth(tg, period, quota);
8225 }
8226 
8227 long tg_get_cfs_quota(struct task_group *tg)
8228 {
8229 	u64 quota_us;
8230 
8231 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8232 		return -1;
8233 
8234 	quota_us = tg->cfs_bandwidth.quota;
8235 	do_div(quota_us, NSEC_PER_USEC);
8236 
8237 	return quota_us;
8238 }
8239 
8240 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8241 {
8242 	u64 quota, period;
8243 
8244 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8245 	quota = tg->cfs_bandwidth.quota;
8246 
8247 	return tg_set_cfs_bandwidth(tg, period, quota);
8248 }
8249 
8250 long tg_get_cfs_period(struct task_group *tg)
8251 {
8252 	u64 cfs_period_us;
8253 
8254 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8255 	do_div(cfs_period_us, NSEC_PER_USEC);
8256 
8257 	return cfs_period_us;
8258 }
8259 
8260 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8261 				  struct cftype *cft)
8262 {
8263 	return tg_get_cfs_quota(css_tg(css));
8264 }
8265 
8266 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8267 				   struct cftype *cftype, s64 cfs_quota_us)
8268 {
8269 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8270 }
8271 
8272 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8273 				   struct cftype *cft)
8274 {
8275 	return tg_get_cfs_period(css_tg(css));
8276 }
8277 
8278 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8279 				    struct cftype *cftype, u64 cfs_period_us)
8280 {
8281 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8282 }
8283 
8284 struct cfs_schedulable_data {
8285 	struct task_group *tg;
8286 	u64 period, quota;
8287 };
8288 
8289 /*
8290  * normalize group quota/period to be quota/max_period
8291  * note: units are usecs
8292  */
8293 static u64 normalize_cfs_quota(struct task_group *tg,
8294 			       struct cfs_schedulable_data *d)
8295 {
8296 	u64 quota, period;
8297 
8298 	if (tg == d->tg) {
8299 		period = d->period;
8300 		quota = d->quota;
8301 	} else {
8302 		period = tg_get_cfs_period(tg);
8303 		quota = tg_get_cfs_quota(tg);
8304 	}
8305 
8306 	/* note: these should typically be equivalent */
8307 	if (quota == RUNTIME_INF || quota == -1)
8308 		return RUNTIME_INF;
8309 
8310 	return to_ratio(period, quota);
8311 }
8312 
8313 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8314 {
8315 	struct cfs_schedulable_data *d = data;
8316 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8317 	s64 quota = 0, parent_quota = -1;
8318 
8319 	if (!tg->parent) {
8320 		quota = RUNTIME_INF;
8321 	} else {
8322 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8323 
8324 		quota = normalize_cfs_quota(tg, d);
8325 		parent_quota = parent_b->hierarchical_quota;
8326 
8327 		/*
8328 		 * ensure max(child_quota) <= parent_quota, inherit when no
8329 		 * limit is set
8330 		 */
8331 		if (quota == RUNTIME_INF)
8332 			quota = parent_quota;
8333 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8334 			return -EINVAL;
8335 	}
8336 	cfs_b->hierarchical_quota = quota;
8337 
8338 	return 0;
8339 }
8340 
8341 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8342 {
8343 	int ret;
8344 	struct cfs_schedulable_data data = {
8345 		.tg = tg,
8346 		.period = period,
8347 		.quota = quota,
8348 	};
8349 
8350 	if (quota != RUNTIME_INF) {
8351 		do_div(data.period, NSEC_PER_USEC);
8352 		do_div(data.quota, NSEC_PER_USEC);
8353 	}
8354 
8355 	rcu_read_lock();
8356 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8357 	rcu_read_unlock();
8358 
8359 	return ret;
8360 }
8361 
8362 static int cpu_stats_show(struct seq_file *sf, void *v)
8363 {
8364 	struct task_group *tg = css_tg(seq_css(sf));
8365 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8366 
8367 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8368 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8369 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8370 
8371 	return 0;
8372 }
8373 #endif /* CONFIG_CFS_BANDWIDTH */
8374 #endif /* CONFIG_FAIR_GROUP_SCHED */
8375 
8376 #ifdef CONFIG_RT_GROUP_SCHED
8377 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8378 				struct cftype *cft, s64 val)
8379 {
8380 	return sched_group_set_rt_runtime(css_tg(css), val);
8381 }
8382 
8383 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8384 			       struct cftype *cft)
8385 {
8386 	return sched_group_rt_runtime(css_tg(css));
8387 }
8388 
8389 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8390 				    struct cftype *cftype, u64 rt_period_us)
8391 {
8392 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8393 }
8394 
8395 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8396 				   struct cftype *cft)
8397 {
8398 	return sched_group_rt_period(css_tg(css));
8399 }
8400 #endif /* CONFIG_RT_GROUP_SCHED */
8401 
8402 static struct cftype cpu_files[] = {
8403 #ifdef CONFIG_FAIR_GROUP_SCHED
8404 	{
8405 		.name = "shares",
8406 		.read_u64 = cpu_shares_read_u64,
8407 		.write_u64 = cpu_shares_write_u64,
8408 	},
8409 #endif
8410 #ifdef CONFIG_CFS_BANDWIDTH
8411 	{
8412 		.name = "cfs_quota_us",
8413 		.read_s64 = cpu_cfs_quota_read_s64,
8414 		.write_s64 = cpu_cfs_quota_write_s64,
8415 	},
8416 	{
8417 		.name = "cfs_period_us",
8418 		.read_u64 = cpu_cfs_period_read_u64,
8419 		.write_u64 = cpu_cfs_period_write_u64,
8420 	},
8421 	{
8422 		.name = "stat",
8423 		.seq_show = cpu_stats_show,
8424 	},
8425 #endif
8426 #ifdef CONFIG_RT_GROUP_SCHED
8427 	{
8428 		.name = "rt_runtime_us",
8429 		.read_s64 = cpu_rt_runtime_read,
8430 		.write_s64 = cpu_rt_runtime_write,
8431 	},
8432 	{
8433 		.name = "rt_period_us",
8434 		.read_u64 = cpu_rt_period_read_uint,
8435 		.write_u64 = cpu_rt_period_write_uint,
8436 	},
8437 #endif
8438 	{ }	/* terminate */
8439 };
8440 
8441 struct cgroup_subsys cpu_cgrp_subsys = {
8442 	.css_alloc	= cpu_cgroup_css_alloc,
8443 	.css_free	= cpu_cgroup_css_free,
8444 	.css_online	= cpu_cgroup_css_online,
8445 	.css_offline	= cpu_cgroup_css_offline,
8446 	.fork		= cpu_cgroup_fork,
8447 	.can_attach	= cpu_cgroup_can_attach,
8448 	.attach		= cpu_cgroup_attach,
8449 	.exit		= cpu_cgroup_exit,
8450 	.legacy_cftypes	= cpu_files,
8451 	.early_init	= 1,
8452 };
8453 
8454 #endif	/* CONFIG_CGROUP_SCHED */
8455 
8456 void dump_cpu_task(int cpu)
8457 {
8458 	pr_info("Task dump for CPU %d:\n", cpu);
8459 	sched_show_task(cpu_curr(cpu));
8460 }
8461