xref: /linux/kernel/sched/clock.c (revision a3a4a816b4b194c45d0217e8b9e08b2639802cda)
1 /*
2  * sched_clock for unstable cpu clocks
3  *
4  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
5  *
6  *  Updates and enhancements:
7  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8  *
9  * Based on code by:
10  *   Ingo Molnar <mingo@redhat.com>
11  *   Guillaume Chazarain <guichaz@gmail.com>
12  *
13  *
14  * What:
15  *
16  * cpu_clock(i) provides a fast (execution time) high resolution
17  * clock with bounded drift between CPUs. The value of cpu_clock(i)
18  * is monotonic for constant i. The timestamp returned is in nanoseconds.
19  *
20  * ######################### BIG FAT WARNING ##########################
21  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22  * # go backwards !!                                                  #
23  * ####################################################################
24  *
25  * There is no strict promise about the base, although it tends to start
26  * at 0 on boot (but people really shouldn't rely on that).
27  *
28  * cpu_clock(i)       -- can be used from any context, including NMI.
29  * local_clock()      -- is cpu_clock() on the current cpu.
30  *
31  * sched_clock_cpu(i)
32  *
33  * How:
34  *
35  * The implementation either uses sched_clock() when
36  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37  * sched_clock() is assumed to provide these properties (mostly it means
38  * the architecture provides a globally synchronized highres time source).
39  *
40  * Otherwise it tries to create a semi stable clock from a mixture of other
41  * clocks, including:
42  *
43  *  - GTOD (clock monotomic)
44  *  - sched_clock()
45  *  - explicit idle events
46  *
47  * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48  * deltas are filtered to provide monotonicity and keeping it within an
49  * expected window.
50  *
51  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52  * that is otherwise invisible (TSC gets stopped).
53  *
54  */
55 #include <linux/spinlock.h>
56 #include <linux/hardirq.h>
57 #include <linux/export.h>
58 #include <linux/percpu.h>
59 #include <linux/ktime.h>
60 #include <linux/sched.h>
61 #include <linux/nmi.h>
62 #include <linux/sched/clock.h>
63 #include <linux/static_key.h>
64 #include <linux/workqueue.h>
65 #include <linux/compiler.h>
66 #include <linux/tick.h>
67 
68 /*
69  * Scheduler clock - returns current time in nanosec units.
70  * This is default implementation.
71  * Architectures and sub-architectures can override this.
72  */
73 unsigned long long __weak sched_clock(void)
74 {
75 	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
76 					* (NSEC_PER_SEC / HZ);
77 }
78 EXPORT_SYMBOL_GPL(sched_clock);
79 
80 __read_mostly int sched_clock_running;
81 
82 void sched_clock_init(void)
83 {
84 	sched_clock_running = 1;
85 }
86 
87 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
88 /*
89  * We must start with !__sched_clock_stable because the unstable -> stable
90  * transition is accurate, while the stable -> unstable transition is not.
91  *
92  * Similarly we start with __sched_clock_stable_early, thereby assuming we
93  * will become stable, such that there's only a single 1 -> 0 transition.
94  */
95 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
96 static int __sched_clock_stable_early = 1;
97 
98 /*
99  * We want: ktime_get_ns() + gtod_offset == sched_clock() + raw_offset
100  */
101 static __read_mostly u64 raw_offset;
102 static __read_mostly u64 gtod_offset;
103 
104 struct sched_clock_data {
105 	u64			tick_raw;
106 	u64			tick_gtod;
107 	u64			clock;
108 };
109 
110 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
111 
112 static inline struct sched_clock_data *this_scd(void)
113 {
114 	return this_cpu_ptr(&sched_clock_data);
115 }
116 
117 static inline struct sched_clock_data *cpu_sdc(int cpu)
118 {
119 	return &per_cpu(sched_clock_data, cpu);
120 }
121 
122 int sched_clock_stable(void)
123 {
124 	return static_branch_likely(&__sched_clock_stable);
125 }
126 
127 static void __set_sched_clock_stable(void)
128 {
129 	struct sched_clock_data *scd = this_scd();
130 
131 	/*
132 	 * Attempt to make the (initial) unstable->stable transition continuous.
133 	 */
134 	raw_offset = (scd->tick_gtod + gtod_offset) - (scd->tick_raw);
135 
136 	printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
137 			scd->tick_gtod, gtod_offset,
138 			scd->tick_raw,  raw_offset);
139 
140 	static_branch_enable(&__sched_clock_stable);
141 	tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
142 }
143 
144 static void __clear_sched_clock_stable(struct work_struct *work)
145 {
146 	struct sched_clock_data *scd = this_scd();
147 
148 	/*
149 	 * Attempt to make the stable->unstable transition continuous.
150 	 *
151 	 * Trouble is, this is typically called from the TSC watchdog
152 	 * timer, which is late per definition. This means the tick
153 	 * values can already be screwy.
154 	 *
155 	 * Still do what we can.
156 	 */
157 	gtod_offset = (scd->tick_raw + raw_offset) - (scd->tick_gtod);
158 
159 	printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
160 			scd->tick_gtod, gtod_offset,
161 			scd->tick_raw,  raw_offset);
162 
163 	static_branch_disable(&__sched_clock_stable);
164 	tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
165 }
166 
167 static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
168 
169 void clear_sched_clock_stable(void)
170 {
171 	__sched_clock_stable_early = 0;
172 
173 	smp_mb(); /* matches sched_clock_init_late() */
174 
175 	if (sched_clock_running == 2)
176 		schedule_work(&sched_clock_work);
177 }
178 
179 void sched_clock_init_late(void)
180 {
181 	sched_clock_running = 2;
182 	/*
183 	 * Ensure that it is impossible to not do a static_key update.
184 	 *
185 	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
186 	 * and do the update, or we must see their __sched_clock_stable_early
187 	 * and do the update, or both.
188 	 */
189 	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
190 
191 	if (__sched_clock_stable_early)
192 		__set_sched_clock_stable();
193 }
194 
195 /*
196  * min, max except they take wrapping into account
197  */
198 
199 static inline u64 wrap_min(u64 x, u64 y)
200 {
201 	return (s64)(x - y) < 0 ? x : y;
202 }
203 
204 static inline u64 wrap_max(u64 x, u64 y)
205 {
206 	return (s64)(x - y) > 0 ? x : y;
207 }
208 
209 /*
210  * update the percpu scd from the raw @now value
211  *
212  *  - filter out backward motion
213  *  - use the GTOD tick value to create a window to filter crazy TSC values
214  */
215 static u64 sched_clock_local(struct sched_clock_data *scd)
216 {
217 	u64 now, clock, old_clock, min_clock, max_clock;
218 	s64 delta;
219 
220 again:
221 	now = sched_clock();
222 	delta = now - scd->tick_raw;
223 	if (unlikely(delta < 0))
224 		delta = 0;
225 
226 	old_clock = scd->clock;
227 
228 	/*
229 	 * scd->clock = clamp(scd->tick_gtod + delta,
230 	 *		      max(scd->tick_gtod, scd->clock),
231 	 *		      scd->tick_gtod + TICK_NSEC);
232 	 */
233 
234 	clock = scd->tick_gtod + gtod_offset + delta;
235 	min_clock = wrap_max(scd->tick_gtod, old_clock);
236 	max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
237 
238 	clock = wrap_max(clock, min_clock);
239 	clock = wrap_min(clock, max_clock);
240 
241 	if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
242 		goto again;
243 
244 	return clock;
245 }
246 
247 static u64 sched_clock_remote(struct sched_clock_data *scd)
248 {
249 	struct sched_clock_data *my_scd = this_scd();
250 	u64 this_clock, remote_clock;
251 	u64 *ptr, old_val, val;
252 
253 #if BITS_PER_LONG != 64
254 again:
255 	/*
256 	 * Careful here: The local and the remote clock values need to
257 	 * be read out atomic as we need to compare the values and
258 	 * then update either the local or the remote side. So the
259 	 * cmpxchg64 below only protects one readout.
260 	 *
261 	 * We must reread via sched_clock_local() in the retry case on
262 	 * 32bit as an NMI could use sched_clock_local() via the
263 	 * tracer and hit between the readout of
264 	 * the low32bit and the high 32bit portion.
265 	 */
266 	this_clock = sched_clock_local(my_scd);
267 	/*
268 	 * We must enforce atomic readout on 32bit, otherwise the
269 	 * update on the remote cpu can hit inbetween the readout of
270 	 * the low32bit and the high 32bit portion.
271 	 */
272 	remote_clock = cmpxchg64(&scd->clock, 0, 0);
273 #else
274 	/*
275 	 * On 64bit the read of [my]scd->clock is atomic versus the
276 	 * update, so we can avoid the above 32bit dance.
277 	 */
278 	sched_clock_local(my_scd);
279 again:
280 	this_clock = my_scd->clock;
281 	remote_clock = scd->clock;
282 #endif
283 
284 	/*
285 	 * Use the opportunity that we have both locks
286 	 * taken to couple the two clocks: we take the
287 	 * larger time as the latest time for both
288 	 * runqueues. (this creates monotonic movement)
289 	 */
290 	if (likely((s64)(remote_clock - this_clock) < 0)) {
291 		ptr = &scd->clock;
292 		old_val = remote_clock;
293 		val = this_clock;
294 	} else {
295 		/*
296 		 * Should be rare, but possible:
297 		 */
298 		ptr = &my_scd->clock;
299 		old_val = this_clock;
300 		val = remote_clock;
301 	}
302 
303 	if (cmpxchg64(ptr, old_val, val) != old_val)
304 		goto again;
305 
306 	return val;
307 }
308 
309 /*
310  * Similar to cpu_clock(), but requires local IRQs to be disabled.
311  *
312  * See cpu_clock().
313  */
314 u64 sched_clock_cpu(int cpu)
315 {
316 	struct sched_clock_data *scd;
317 	u64 clock;
318 
319 	if (sched_clock_stable())
320 		return sched_clock() + raw_offset;
321 
322 	if (unlikely(!sched_clock_running))
323 		return 0ull;
324 
325 	preempt_disable_notrace();
326 	scd = cpu_sdc(cpu);
327 
328 	if (cpu != smp_processor_id())
329 		clock = sched_clock_remote(scd);
330 	else
331 		clock = sched_clock_local(scd);
332 	preempt_enable_notrace();
333 
334 	return clock;
335 }
336 EXPORT_SYMBOL_GPL(sched_clock_cpu);
337 
338 void sched_clock_tick(void)
339 {
340 	struct sched_clock_data *scd;
341 
342 	WARN_ON_ONCE(!irqs_disabled());
343 
344 	/*
345 	 * Update these values even if sched_clock_stable(), because it can
346 	 * become unstable at any point in time at which point we need some
347 	 * values to fall back on.
348 	 *
349 	 * XXX arguably we can skip this if we expose tsc_clocksource_reliable
350 	 */
351 	scd = this_scd();
352 	scd->tick_raw  = sched_clock();
353 	scd->tick_gtod = ktime_get_ns();
354 
355 	if (!sched_clock_stable() && likely(sched_clock_running))
356 		sched_clock_local(scd);
357 }
358 
359 /*
360  * We are going deep-idle (irqs are disabled):
361  */
362 void sched_clock_idle_sleep_event(void)
363 {
364 	sched_clock_cpu(smp_processor_id());
365 }
366 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
367 
368 /*
369  * We just idled delta nanoseconds (called with irqs disabled):
370  */
371 void sched_clock_idle_wakeup_event(u64 delta_ns)
372 {
373 	if (timekeeping_suspended)
374 		return;
375 
376 	sched_clock_tick();
377 	touch_softlockup_watchdog_sched();
378 }
379 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
380 
381 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
382 
383 u64 sched_clock_cpu(int cpu)
384 {
385 	if (unlikely(!sched_clock_running))
386 		return 0;
387 
388 	return sched_clock();
389 }
390 
391 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
392 
393 /*
394  * Running clock - returns the time that has elapsed while a guest has been
395  * running.
396  * On a guest this value should be local_clock minus the time the guest was
397  * suspended by the hypervisor (for any reason).
398  * On bare metal this function should return the same as local_clock.
399  * Architectures and sub-architectures can override this.
400  */
401 u64 __weak running_clock(void)
402 {
403 	return local_clock();
404 }
405