1 /* 2 * sched_clock for unstable cpu clocks 3 * 4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra 5 * 6 * Updates and enhancements: 7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> 8 * 9 * Based on code by: 10 * Ingo Molnar <mingo@redhat.com> 11 * Guillaume Chazarain <guichaz@gmail.com> 12 * 13 * 14 * What: 15 * 16 * cpu_clock(i) provides a fast (execution time) high resolution 17 * clock with bounded drift between CPUs. The value of cpu_clock(i) 18 * is monotonic for constant i. The timestamp returned is in nanoseconds. 19 * 20 * ######################### BIG FAT WARNING ########################## 21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 22 * # go backwards !! # 23 * #################################################################### 24 * 25 * There is no strict promise about the base, although it tends to start 26 * at 0 on boot (but people really shouldn't rely on that). 27 * 28 * cpu_clock(i) -- can be used from any context, including NMI. 29 * local_clock() -- is cpu_clock() on the current cpu. 30 * 31 * sched_clock_cpu(i) 32 * 33 * How: 34 * 35 * The implementation either uses sched_clock() when 36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the 37 * sched_clock() is assumed to provide these properties (mostly it means 38 * the architecture provides a globally synchronized highres time source). 39 * 40 * Otherwise it tries to create a semi stable clock from a mixture of other 41 * clocks, including: 42 * 43 * - GTOD (clock monotomic) 44 * - sched_clock() 45 * - explicit idle events 46 * 47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The 48 * deltas are filtered to provide monotonicity and keeping it within an 49 * expected window. 50 * 51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time 52 * that is otherwise invisible (TSC gets stopped). 53 * 54 */ 55 #include <linux/spinlock.h> 56 #include <linux/hardirq.h> 57 #include <linux/export.h> 58 #include <linux/percpu.h> 59 #include <linux/ktime.h> 60 #include <linux/sched.h> 61 #include <linux/nmi.h> 62 #include <linux/sched/clock.h> 63 #include <linux/static_key.h> 64 #include <linux/workqueue.h> 65 #include <linux/compiler.h> 66 #include <linux/tick.h> 67 68 /* 69 * Scheduler clock - returns current time in nanosec units. 70 * This is default implementation. 71 * Architectures and sub-architectures can override this. 72 */ 73 unsigned long long __weak sched_clock(void) 74 { 75 return (unsigned long long)(jiffies - INITIAL_JIFFIES) 76 * (NSEC_PER_SEC / HZ); 77 } 78 EXPORT_SYMBOL_GPL(sched_clock); 79 80 __read_mostly int sched_clock_running; 81 82 void sched_clock_init(void) 83 { 84 sched_clock_running = 1; 85 } 86 87 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 88 /* 89 * We must start with !__sched_clock_stable because the unstable -> stable 90 * transition is accurate, while the stable -> unstable transition is not. 91 * 92 * Similarly we start with __sched_clock_stable_early, thereby assuming we 93 * will become stable, such that there's only a single 1 -> 0 transition. 94 */ 95 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable); 96 static int __sched_clock_stable_early = 1; 97 98 /* 99 * We want: ktime_get_ns() + gtod_offset == sched_clock() + raw_offset 100 */ 101 static __read_mostly u64 raw_offset; 102 static __read_mostly u64 gtod_offset; 103 104 struct sched_clock_data { 105 u64 tick_raw; 106 u64 tick_gtod; 107 u64 clock; 108 }; 109 110 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); 111 112 static inline struct sched_clock_data *this_scd(void) 113 { 114 return this_cpu_ptr(&sched_clock_data); 115 } 116 117 static inline struct sched_clock_data *cpu_sdc(int cpu) 118 { 119 return &per_cpu(sched_clock_data, cpu); 120 } 121 122 int sched_clock_stable(void) 123 { 124 return static_branch_likely(&__sched_clock_stable); 125 } 126 127 static void __set_sched_clock_stable(void) 128 { 129 struct sched_clock_data *scd = this_scd(); 130 131 /* 132 * Attempt to make the (initial) unstable->stable transition continuous. 133 */ 134 raw_offset = (scd->tick_gtod + gtod_offset) - (scd->tick_raw); 135 136 printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n", 137 scd->tick_gtod, gtod_offset, 138 scd->tick_raw, raw_offset); 139 140 static_branch_enable(&__sched_clock_stable); 141 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE); 142 } 143 144 static void __clear_sched_clock_stable(struct work_struct *work) 145 { 146 struct sched_clock_data *scd = this_scd(); 147 148 /* 149 * Attempt to make the stable->unstable transition continuous. 150 * 151 * Trouble is, this is typically called from the TSC watchdog 152 * timer, which is late per definition. This means the tick 153 * values can already be screwy. 154 * 155 * Still do what we can. 156 */ 157 gtod_offset = (scd->tick_raw + raw_offset) - (scd->tick_gtod); 158 159 printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n", 160 scd->tick_gtod, gtod_offset, 161 scd->tick_raw, raw_offset); 162 163 static_branch_disable(&__sched_clock_stable); 164 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE); 165 } 166 167 static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable); 168 169 void clear_sched_clock_stable(void) 170 { 171 __sched_clock_stable_early = 0; 172 173 smp_mb(); /* matches sched_clock_init_late() */ 174 175 if (sched_clock_running == 2) 176 schedule_work(&sched_clock_work); 177 } 178 179 void sched_clock_init_late(void) 180 { 181 sched_clock_running = 2; 182 /* 183 * Ensure that it is impossible to not do a static_key update. 184 * 185 * Either {set,clear}_sched_clock_stable() must see sched_clock_running 186 * and do the update, or we must see their __sched_clock_stable_early 187 * and do the update, or both. 188 */ 189 smp_mb(); /* matches {set,clear}_sched_clock_stable() */ 190 191 if (__sched_clock_stable_early) 192 __set_sched_clock_stable(); 193 } 194 195 /* 196 * min, max except they take wrapping into account 197 */ 198 199 static inline u64 wrap_min(u64 x, u64 y) 200 { 201 return (s64)(x - y) < 0 ? x : y; 202 } 203 204 static inline u64 wrap_max(u64 x, u64 y) 205 { 206 return (s64)(x - y) > 0 ? x : y; 207 } 208 209 /* 210 * update the percpu scd from the raw @now value 211 * 212 * - filter out backward motion 213 * - use the GTOD tick value to create a window to filter crazy TSC values 214 */ 215 static u64 sched_clock_local(struct sched_clock_data *scd) 216 { 217 u64 now, clock, old_clock, min_clock, max_clock; 218 s64 delta; 219 220 again: 221 now = sched_clock(); 222 delta = now - scd->tick_raw; 223 if (unlikely(delta < 0)) 224 delta = 0; 225 226 old_clock = scd->clock; 227 228 /* 229 * scd->clock = clamp(scd->tick_gtod + delta, 230 * max(scd->tick_gtod, scd->clock), 231 * scd->tick_gtod + TICK_NSEC); 232 */ 233 234 clock = scd->tick_gtod + gtod_offset + delta; 235 min_clock = wrap_max(scd->tick_gtod, old_clock); 236 max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC); 237 238 clock = wrap_max(clock, min_clock); 239 clock = wrap_min(clock, max_clock); 240 241 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock) 242 goto again; 243 244 return clock; 245 } 246 247 static u64 sched_clock_remote(struct sched_clock_data *scd) 248 { 249 struct sched_clock_data *my_scd = this_scd(); 250 u64 this_clock, remote_clock; 251 u64 *ptr, old_val, val; 252 253 #if BITS_PER_LONG != 64 254 again: 255 /* 256 * Careful here: The local and the remote clock values need to 257 * be read out atomic as we need to compare the values and 258 * then update either the local or the remote side. So the 259 * cmpxchg64 below only protects one readout. 260 * 261 * We must reread via sched_clock_local() in the retry case on 262 * 32bit as an NMI could use sched_clock_local() via the 263 * tracer and hit between the readout of 264 * the low32bit and the high 32bit portion. 265 */ 266 this_clock = sched_clock_local(my_scd); 267 /* 268 * We must enforce atomic readout on 32bit, otherwise the 269 * update on the remote cpu can hit inbetween the readout of 270 * the low32bit and the high 32bit portion. 271 */ 272 remote_clock = cmpxchg64(&scd->clock, 0, 0); 273 #else 274 /* 275 * On 64bit the read of [my]scd->clock is atomic versus the 276 * update, so we can avoid the above 32bit dance. 277 */ 278 sched_clock_local(my_scd); 279 again: 280 this_clock = my_scd->clock; 281 remote_clock = scd->clock; 282 #endif 283 284 /* 285 * Use the opportunity that we have both locks 286 * taken to couple the two clocks: we take the 287 * larger time as the latest time for both 288 * runqueues. (this creates monotonic movement) 289 */ 290 if (likely((s64)(remote_clock - this_clock) < 0)) { 291 ptr = &scd->clock; 292 old_val = remote_clock; 293 val = this_clock; 294 } else { 295 /* 296 * Should be rare, but possible: 297 */ 298 ptr = &my_scd->clock; 299 old_val = this_clock; 300 val = remote_clock; 301 } 302 303 if (cmpxchg64(ptr, old_val, val) != old_val) 304 goto again; 305 306 return val; 307 } 308 309 /* 310 * Similar to cpu_clock(), but requires local IRQs to be disabled. 311 * 312 * See cpu_clock(). 313 */ 314 u64 sched_clock_cpu(int cpu) 315 { 316 struct sched_clock_data *scd; 317 u64 clock; 318 319 if (sched_clock_stable()) 320 return sched_clock() + raw_offset; 321 322 if (unlikely(!sched_clock_running)) 323 return 0ull; 324 325 preempt_disable_notrace(); 326 scd = cpu_sdc(cpu); 327 328 if (cpu != smp_processor_id()) 329 clock = sched_clock_remote(scd); 330 else 331 clock = sched_clock_local(scd); 332 preempt_enable_notrace(); 333 334 return clock; 335 } 336 EXPORT_SYMBOL_GPL(sched_clock_cpu); 337 338 void sched_clock_tick(void) 339 { 340 struct sched_clock_data *scd; 341 342 WARN_ON_ONCE(!irqs_disabled()); 343 344 /* 345 * Update these values even if sched_clock_stable(), because it can 346 * become unstable at any point in time at which point we need some 347 * values to fall back on. 348 * 349 * XXX arguably we can skip this if we expose tsc_clocksource_reliable 350 */ 351 scd = this_scd(); 352 scd->tick_raw = sched_clock(); 353 scd->tick_gtod = ktime_get_ns(); 354 355 if (!sched_clock_stable() && likely(sched_clock_running)) 356 sched_clock_local(scd); 357 } 358 359 /* 360 * We are going deep-idle (irqs are disabled): 361 */ 362 void sched_clock_idle_sleep_event(void) 363 { 364 sched_clock_cpu(smp_processor_id()); 365 } 366 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); 367 368 /* 369 * We just idled delta nanoseconds (called with irqs disabled): 370 */ 371 void sched_clock_idle_wakeup_event(u64 delta_ns) 372 { 373 if (timekeeping_suspended) 374 return; 375 376 sched_clock_tick(); 377 touch_softlockup_watchdog_sched(); 378 } 379 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); 380 381 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 382 383 u64 sched_clock_cpu(int cpu) 384 { 385 if (unlikely(!sched_clock_running)) 386 return 0; 387 388 return sched_clock(); 389 } 390 391 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 392 393 /* 394 * Running clock - returns the time that has elapsed while a guest has been 395 * running. 396 * On a guest this value should be local_clock minus the time the guest was 397 * suspended by the hypervisor (for any reason). 398 * On bare metal this function should return the same as local_clock. 399 * Architectures and sub-architectures can override this. 400 */ 401 u64 __weak running_clock(void) 402 { 403 return local_clock(); 404 } 405