1 /* 2 * sched_clock for unstable cpu clocks 3 * 4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra 5 * 6 * Updates and enhancements: 7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> 8 * 9 * Based on code by: 10 * Ingo Molnar <mingo@redhat.com> 11 * Guillaume Chazarain <guichaz@gmail.com> 12 * 13 * 14 * What: 15 * 16 * cpu_clock(i) provides a fast (execution time) high resolution 17 * clock with bounded drift between CPUs. The value of cpu_clock(i) 18 * is monotonic for constant i. The timestamp returned is in nanoseconds. 19 * 20 * ######################### BIG FAT WARNING ########################## 21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 22 * # go backwards !! # 23 * #################################################################### 24 * 25 * There is no strict promise about the base, although it tends to start 26 * at 0 on boot (but people really shouldn't rely on that). 27 * 28 * cpu_clock(i) -- can be used from any context, including NMI. 29 * local_clock() -- is cpu_clock() on the current cpu. 30 * 31 * sched_clock_cpu(i) 32 * 33 * How: 34 * 35 * The implementation either uses sched_clock() when 36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the 37 * sched_clock() is assumed to provide these properties (mostly it means 38 * the architecture provides a globally synchronized highres time source). 39 * 40 * Otherwise it tries to create a semi stable clock from a mixture of other 41 * clocks, including: 42 * 43 * - GTOD (clock monotomic) 44 * - sched_clock() 45 * - explicit idle events 46 * 47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The 48 * deltas are filtered to provide monotonicity and keeping it within an 49 * expected window. 50 * 51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time 52 * that is otherwise invisible (TSC gets stopped). 53 * 54 */ 55 #include <linux/spinlock.h> 56 #include <linux/hardirq.h> 57 #include <linux/export.h> 58 #include <linux/percpu.h> 59 #include <linux/ktime.h> 60 #include <linux/sched.h> 61 #include <linux/nmi.h> 62 #include <linux/sched/clock.h> 63 #include <linux/static_key.h> 64 #include <linux/workqueue.h> 65 #include <linux/compiler.h> 66 #include <linux/tick.h> 67 #include <linux/init.h> 68 69 /* 70 * Scheduler clock - returns current time in nanosec units. 71 * This is default implementation. 72 * Architectures and sub-architectures can override this. 73 */ 74 unsigned long long __weak sched_clock(void) 75 { 76 return (unsigned long long)(jiffies - INITIAL_JIFFIES) 77 * (NSEC_PER_SEC / HZ); 78 } 79 EXPORT_SYMBOL_GPL(sched_clock); 80 81 __read_mostly int sched_clock_running; 82 83 void sched_clock_init(void) 84 { 85 sched_clock_running = 1; 86 } 87 88 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 89 /* 90 * We must start with !__sched_clock_stable because the unstable -> stable 91 * transition is accurate, while the stable -> unstable transition is not. 92 * 93 * Similarly we start with __sched_clock_stable_early, thereby assuming we 94 * will become stable, such that there's only a single 1 -> 0 transition. 95 */ 96 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable); 97 static int __sched_clock_stable_early = 1; 98 99 /* 100 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset 101 */ 102 __read_mostly u64 __sched_clock_offset; 103 static __read_mostly u64 __gtod_offset; 104 105 struct sched_clock_data { 106 u64 tick_raw; 107 u64 tick_gtod; 108 u64 clock; 109 }; 110 111 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); 112 113 static inline struct sched_clock_data *this_scd(void) 114 { 115 return this_cpu_ptr(&sched_clock_data); 116 } 117 118 static inline struct sched_clock_data *cpu_sdc(int cpu) 119 { 120 return &per_cpu(sched_clock_data, cpu); 121 } 122 123 int sched_clock_stable(void) 124 { 125 return static_branch_likely(&__sched_clock_stable); 126 } 127 128 static void __scd_stamp(struct sched_clock_data *scd) 129 { 130 scd->tick_gtod = ktime_get_ns(); 131 scd->tick_raw = sched_clock(); 132 } 133 134 static void __set_sched_clock_stable(void) 135 { 136 struct sched_clock_data *scd; 137 138 /* 139 * Since we're still unstable and the tick is already running, we have 140 * to disable IRQs in order to get a consistent scd->tick* reading. 141 */ 142 local_irq_disable(); 143 scd = this_scd(); 144 /* 145 * Attempt to make the (initial) unstable->stable transition continuous. 146 */ 147 __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw); 148 local_irq_enable(); 149 150 printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n", 151 scd->tick_gtod, __gtod_offset, 152 scd->tick_raw, __sched_clock_offset); 153 154 static_branch_enable(&__sched_clock_stable); 155 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE); 156 } 157 158 /* 159 * If we ever get here, we're screwed, because we found out -- typically after 160 * the fact -- that TSC wasn't good. This means all our clocksources (including 161 * ktime) could have reported wrong values. 162 * 163 * What we do here is an attempt to fix up and continue sort of where we left 164 * off in a coherent manner. 165 * 166 * The only way to fully avoid random clock jumps is to boot with: 167 * "tsc=unstable". 168 */ 169 static void __sched_clock_work(struct work_struct *work) 170 { 171 struct sched_clock_data *scd; 172 int cpu; 173 174 /* take a current timestamp and set 'now' */ 175 preempt_disable(); 176 scd = this_scd(); 177 __scd_stamp(scd); 178 scd->clock = scd->tick_gtod + __gtod_offset; 179 preempt_enable(); 180 181 /* clone to all CPUs */ 182 for_each_possible_cpu(cpu) 183 per_cpu(sched_clock_data, cpu) = *scd; 184 185 printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n"); 186 printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n", 187 scd->tick_gtod, __gtod_offset, 188 scd->tick_raw, __sched_clock_offset); 189 190 static_branch_disable(&__sched_clock_stable); 191 } 192 193 static DECLARE_WORK(sched_clock_work, __sched_clock_work); 194 195 static void __clear_sched_clock_stable(void) 196 { 197 if (!sched_clock_stable()) 198 return; 199 200 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE); 201 schedule_work(&sched_clock_work); 202 } 203 204 void clear_sched_clock_stable(void) 205 { 206 __sched_clock_stable_early = 0; 207 208 smp_mb(); /* matches sched_clock_init_late() */ 209 210 if (sched_clock_running == 2) 211 __clear_sched_clock_stable(); 212 } 213 214 /* 215 * We run this as late_initcall() such that it runs after all built-in drivers, 216 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable. 217 */ 218 static int __init sched_clock_init_late(void) 219 { 220 sched_clock_running = 2; 221 /* 222 * Ensure that it is impossible to not do a static_key update. 223 * 224 * Either {set,clear}_sched_clock_stable() must see sched_clock_running 225 * and do the update, or we must see their __sched_clock_stable_early 226 * and do the update, or both. 227 */ 228 smp_mb(); /* matches {set,clear}_sched_clock_stable() */ 229 230 if (__sched_clock_stable_early) 231 __set_sched_clock_stable(); 232 233 return 0; 234 } 235 late_initcall(sched_clock_init_late); 236 237 /* 238 * min, max except they take wrapping into account 239 */ 240 241 static inline u64 wrap_min(u64 x, u64 y) 242 { 243 return (s64)(x - y) < 0 ? x : y; 244 } 245 246 static inline u64 wrap_max(u64 x, u64 y) 247 { 248 return (s64)(x - y) > 0 ? x : y; 249 } 250 251 /* 252 * update the percpu scd from the raw @now value 253 * 254 * - filter out backward motion 255 * - use the GTOD tick value to create a window to filter crazy TSC values 256 */ 257 static u64 sched_clock_local(struct sched_clock_data *scd) 258 { 259 u64 now, clock, old_clock, min_clock, max_clock, gtod; 260 s64 delta; 261 262 again: 263 now = sched_clock(); 264 delta = now - scd->tick_raw; 265 if (unlikely(delta < 0)) 266 delta = 0; 267 268 old_clock = scd->clock; 269 270 /* 271 * scd->clock = clamp(scd->tick_gtod + delta, 272 * max(scd->tick_gtod, scd->clock), 273 * scd->tick_gtod + TICK_NSEC); 274 */ 275 276 gtod = scd->tick_gtod + __gtod_offset; 277 clock = gtod + delta; 278 min_clock = wrap_max(gtod, old_clock); 279 max_clock = wrap_max(old_clock, gtod + TICK_NSEC); 280 281 clock = wrap_max(clock, min_clock); 282 clock = wrap_min(clock, max_clock); 283 284 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock) 285 goto again; 286 287 return clock; 288 } 289 290 static u64 sched_clock_remote(struct sched_clock_data *scd) 291 { 292 struct sched_clock_data *my_scd = this_scd(); 293 u64 this_clock, remote_clock; 294 u64 *ptr, old_val, val; 295 296 #if BITS_PER_LONG != 64 297 again: 298 /* 299 * Careful here: The local and the remote clock values need to 300 * be read out atomic as we need to compare the values and 301 * then update either the local or the remote side. So the 302 * cmpxchg64 below only protects one readout. 303 * 304 * We must reread via sched_clock_local() in the retry case on 305 * 32bit as an NMI could use sched_clock_local() via the 306 * tracer and hit between the readout of 307 * the low32bit and the high 32bit portion. 308 */ 309 this_clock = sched_clock_local(my_scd); 310 /* 311 * We must enforce atomic readout on 32bit, otherwise the 312 * update on the remote cpu can hit inbetween the readout of 313 * the low32bit and the high 32bit portion. 314 */ 315 remote_clock = cmpxchg64(&scd->clock, 0, 0); 316 #else 317 /* 318 * On 64bit the read of [my]scd->clock is atomic versus the 319 * update, so we can avoid the above 32bit dance. 320 */ 321 sched_clock_local(my_scd); 322 again: 323 this_clock = my_scd->clock; 324 remote_clock = scd->clock; 325 #endif 326 327 /* 328 * Use the opportunity that we have both locks 329 * taken to couple the two clocks: we take the 330 * larger time as the latest time for both 331 * runqueues. (this creates monotonic movement) 332 */ 333 if (likely((s64)(remote_clock - this_clock) < 0)) { 334 ptr = &scd->clock; 335 old_val = remote_clock; 336 val = this_clock; 337 } else { 338 /* 339 * Should be rare, but possible: 340 */ 341 ptr = &my_scd->clock; 342 old_val = this_clock; 343 val = remote_clock; 344 } 345 346 if (cmpxchg64(ptr, old_val, val) != old_val) 347 goto again; 348 349 return val; 350 } 351 352 /* 353 * Similar to cpu_clock(), but requires local IRQs to be disabled. 354 * 355 * See cpu_clock(). 356 */ 357 u64 sched_clock_cpu(int cpu) 358 { 359 struct sched_clock_data *scd; 360 u64 clock; 361 362 if (sched_clock_stable()) 363 return sched_clock() + __sched_clock_offset; 364 365 if (unlikely(!sched_clock_running)) 366 return 0ull; 367 368 preempt_disable_notrace(); 369 scd = cpu_sdc(cpu); 370 371 if (cpu != smp_processor_id()) 372 clock = sched_clock_remote(scd); 373 else 374 clock = sched_clock_local(scd); 375 preempt_enable_notrace(); 376 377 return clock; 378 } 379 EXPORT_SYMBOL_GPL(sched_clock_cpu); 380 381 void sched_clock_tick(void) 382 { 383 struct sched_clock_data *scd; 384 385 if (sched_clock_stable()) 386 return; 387 388 if (unlikely(!sched_clock_running)) 389 return; 390 391 lockdep_assert_irqs_disabled(); 392 393 scd = this_scd(); 394 __scd_stamp(scd); 395 sched_clock_local(scd); 396 } 397 398 void sched_clock_tick_stable(void) 399 { 400 u64 gtod, clock; 401 402 if (!sched_clock_stable()) 403 return; 404 405 /* 406 * Called under watchdog_lock. 407 * 408 * The watchdog just found this TSC to (still) be stable, so now is a 409 * good moment to update our __gtod_offset. Because once we find the 410 * TSC to be unstable, any computation will be computing crap. 411 */ 412 local_irq_disable(); 413 gtod = ktime_get_ns(); 414 clock = sched_clock(); 415 __gtod_offset = (clock + __sched_clock_offset) - gtod; 416 local_irq_enable(); 417 } 418 419 /* 420 * We are going deep-idle (irqs are disabled): 421 */ 422 void sched_clock_idle_sleep_event(void) 423 { 424 sched_clock_cpu(smp_processor_id()); 425 } 426 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); 427 428 /* 429 * We just idled; resync with ktime. 430 */ 431 void sched_clock_idle_wakeup_event(void) 432 { 433 unsigned long flags; 434 435 if (sched_clock_stable()) 436 return; 437 438 if (unlikely(timekeeping_suspended)) 439 return; 440 441 local_irq_save(flags); 442 sched_clock_tick(); 443 local_irq_restore(flags); 444 } 445 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); 446 447 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 448 449 u64 sched_clock_cpu(int cpu) 450 { 451 if (unlikely(!sched_clock_running)) 452 return 0; 453 454 return sched_clock(); 455 } 456 457 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 458 459 /* 460 * Running clock - returns the time that has elapsed while a guest has been 461 * running. 462 * On a guest this value should be local_clock minus the time the guest was 463 * suspended by the hypervisor (for any reason). 464 * On bare metal this function should return the same as local_clock. 465 * Architectures and sub-architectures can override this. 466 */ 467 u64 __weak running_clock(void) 468 { 469 return local_clock(); 470 } 471