xref: /linux/kernel/sched/clock.c (revision 37cb8e1f8e10c6e9bd2a1b95cdda0620a21b0551)
1 /*
2  * sched_clock for unstable cpu clocks
3  *
4  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
5  *
6  *  Updates and enhancements:
7  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8  *
9  * Based on code by:
10  *   Ingo Molnar <mingo@redhat.com>
11  *   Guillaume Chazarain <guichaz@gmail.com>
12  *
13  *
14  * What:
15  *
16  * cpu_clock(i) provides a fast (execution time) high resolution
17  * clock with bounded drift between CPUs. The value of cpu_clock(i)
18  * is monotonic for constant i. The timestamp returned is in nanoseconds.
19  *
20  * ######################### BIG FAT WARNING ##########################
21  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22  * # go backwards !!                                                  #
23  * ####################################################################
24  *
25  * There is no strict promise about the base, although it tends to start
26  * at 0 on boot (but people really shouldn't rely on that).
27  *
28  * cpu_clock(i)       -- can be used from any context, including NMI.
29  * local_clock()      -- is cpu_clock() on the current cpu.
30  *
31  * sched_clock_cpu(i)
32  *
33  * How:
34  *
35  * The implementation either uses sched_clock() when
36  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37  * sched_clock() is assumed to provide these properties (mostly it means
38  * the architecture provides a globally synchronized highres time source).
39  *
40  * Otherwise it tries to create a semi stable clock from a mixture of other
41  * clocks, including:
42  *
43  *  - GTOD (clock monotomic)
44  *  - sched_clock()
45  *  - explicit idle events
46  *
47  * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48  * deltas are filtered to provide monotonicity and keeping it within an
49  * expected window.
50  *
51  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52  * that is otherwise invisible (TSC gets stopped).
53  *
54  */
55 #include <linux/spinlock.h>
56 #include <linux/hardirq.h>
57 #include <linux/export.h>
58 #include <linux/percpu.h>
59 #include <linux/ktime.h>
60 #include <linux/sched.h>
61 #include <linux/nmi.h>
62 #include <linux/sched/clock.h>
63 #include <linux/static_key.h>
64 #include <linux/workqueue.h>
65 #include <linux/compiler.h>
66 #include <linux/tick.h>
67 #include <linux/init.h>
68 
69 /*
70  * Scheduler clock - returns current time in nanosec units.
71  * This is default implementation.
72  * Architectures and sub-architectures can override this.
73  */
74 unsigned long long __weak sched_clock(void)
75 {
76 	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
77 					* (NSEC_PER_SEC / HZ);
78 }
79 EXPORT_SYMBOL_GPL(sched_clock);
80 
81 __read_mostly int sched_clock_running;
82 
83 void sched_clock_init(void)
84 {
85 	sched_clock_running = 1;
86 }
87 
88 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
89 /*
90  * We must start with !__sched_clock_stable because the unstable -> stable
91  * transition is accurate, while the stable -> unstable transition is not.
92  *
93  * Similarly we start with __sched_clock_stable_early, thereby assuming we
94  * will become stable, such that there's only a single 1 -> 0 transition.
95  */
96 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
97 static int __sched_clock_stable_early = 1;
98 
99 /*
100  * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
101  */
102 __read_mostly u64 __sched_clock_offset;
103 static __read_mostly u64 __gtod_offset;
104 
105 struct sched_clock_data {
106 	u64			tick_raw;
107 	u64			tick_gtod;
108 	u64			clock;
109 };
110 
111 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
112 
113 static inline struct sched_clock_data *this_scd(void)
114 {
115 	return this_cpu_ptr(&sched_clock_data);
116 }
117 
118 static inline struct sched_clock_data *cpu_sdc(int cpu)
119 {
120 	return &per_cpu(sched_clock_data, cpu);
121 }
122 
123 int sched_clock_stable(void)
124 {
125 	return static_branch_likely(&__sched_clock_stable);
126 }
127 
128 static void __scd_stamp(struct sched_clock_data *scd)
129 {
130 	scd->tick_gtod = ktime_get_ns();
131 	scd->tick_raw = sched_clock();
132 }
133 
134 static void __set_sched_clock_stable(void)
135 {
136 	struct sched_clock_data *scd;
137 
138 	/*
139 	 * Since we're still unstable and the tick is already running, we have
140 	 * to disable IRQs in order to get a consistent scd->tick* reading.
141 	 */
142 	local_irq_disable();
143 	scd = this_scd();
144 	/*
145 	 * Attempt to make the (initial) unstable->stable transition continuous.
146 	 */
147 	__sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
148 	local_irq_enable();
149 
150 	printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
151 			scd->tick_gtod, __gtod_offset,
152 			scd->tick_raw,  __sched_clock_offset);
153 
154 	static_branch_enable(&__sched_clock_stable);
155 	tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
156 }
157 
158 /*
159  * If we ever get here, we're screwed, because we found out -- typically after
160  * the fact -- that TSC wasn't good. This means all our clocksources (including
161  * ktime) could have reported wrong values.
162  *
163  * What we do here is an attempt to fix up and continue sort of where we left
164  * off in a coherent manner.
165  *
166  * The only way to fully avoid random clock jumps is to boot with:
167  * "tsc=unstable".
168  */
169 static void __sched_clock_work(struct work_struct *work)
170 {
171 	struct sched_clock_data *scd;
172 	int cpu;
173 
174 	/* take a current timestamp and set 'now' */
175 	preempt_disable();
176 	scd = this_scd();
177 	__scd_stamp(scd);
178 	scd->clock = scd->tick_gtod + __gtod_offset;
179 	preempt_enable();
180 
181 	/* clone to all CPUs */
182 	for_each_possible_cpu(cpu)
183 		per_cpu(sched_clock_data, cpu) = *scd;
184 
185 	printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
186 	printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
187 			scd->tick_gtod, __gtod_offset,
188 			scd->tick_raw,  __sched_clock_offset);
189 
190 	static_branch_disable(&__sched_clock_stable);
191 }
192 
193 static DECLARE_WORK(sched_clock_work, __sched_clock_work);
194 
195 static void __clear_sched_clock_stable(void)
196 {
197 	if (!sched_clock_stable())
198 		return;
199 
200 	tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
201 	schedule_work(&sched_clock_work);
202 }
203 
204 void clear_sched_clock_stable(void)
205 {
206 	__sched_clock_stable_early = 0;
207 
208 	smp_mb(); /* matches sched_clock_init_late() */
209 
210 	if (sched_clock_running == 2)
211 		__clear_sched_clock_stable();
212 }
213 
214 /*
215  * We run this as late_initcall() such that it runs after all built-in drivers,
216  * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
217  */
218 static int __init sched_clock_init_late(void)
219 {
220 	sched_clock_running = 2;
221 	/*
222 	 * Ensure that it is impossible to not do a static_key update.
223 	 *
224 	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
225 	 * and do the update, or we must see their __sched_clock_stable_early
226 	 * and do the update, or both.
227 	 */
228 	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
229 
230 	if (__sched_clock_stable_early)
231 		__set_sched_clock_stable();
232 
233 	return 0;
234 }
235 late_initcall(sched_clock_init_late);
236 
237 /*
238  * min, max except they take wrapping into account
239  */
240 
241 static inline u64 wrap_min(u64 x, u64 y)
242 {
243 	return (s64)(x - y) < 0 ? x : y;
244 }
245 
246 static inline u64 wrap_max(u64 x, u64 y)
247 {
248 	return (s64)(x - y) > 0 ? x : y;
249 }
250 
251 /*
252  * update the percpu scd from the raw @now value
253  *
254  *  - filter out backward motion
255  *  - use the GTOD tick value to create a window to filter crazy TSC values
256  */
257 static u64 sched_clock_local(struct sched_clock_data *scd)
258 {
259 	u64 now, clock, old_clock, min_clock, max_clock, gtod;
260 	s64 delta;
261 
262 again:
263 	now = sched_clock();
264 	delta = now - scd->tick_raw;
265 	if (unlikely(delta < 0))
266 		delta = 0;
267 
268 	old_clock = scd->clock;
269 
270 	/*
271 	 * scd->clock = clamp(scd->tick_gtod + delta,
272 	 *		      max(scd->tick_gtod, scd->clock),
273 	 *		      scd->tick_gtod + TICK_NSEC);
274 	 */
275 
276 	gtod = scd->tick_gtod + __gtod_offset;
277 	clock = gtod + delta;
278 	min_clock = wrap_max(gtod, old_clock);
279 	max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
280 
281 	clock = wrap_max(clock, min_clock);
282 	clock = wrap_min(clock, max_clock);
283 
284 	if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
285 		goto again;
286 
287 	return clock;
288 }
289 
290 static u64 sched_clock_remote(struct sched_clock_data *scd)
291 {
292 	struct sched_clock_data *my_scd = this_scd();
293 	u64 this_clock, remote_clock;
294 	u64 *ptr, old_val, val;
295 
296 #if BITS_PER_LONG != 64
297 again:
298 	/*
299 	 * Careful here: The local and the remote clock values need to
300 	 * be read out atomic as we need to compare the values and
301 	 * then update either the local or the remote side. So the
302 	 * cmpxchg64 below only protects one readout.
303 	 *
304 	 * We must reread via sched_clock_local() in the retry case on
305 	 * 32bit as an NMI could use sched_clock_local() via the
306 	 * tracer and hit between the readout of
307 	 * the low32bit and the high 32bit portion.
308 	 */
309 	this_clock = sched_clock_local(my_scd);
310 	/*
311 	 * We must enforce atomic readout on 32bit, otherwise the
312 	 * update on the remote cpu can hit inbetween the readout of
313 	 * the low32bit and the high 32bit portion.
314 	 */
315 	remote_clock = cmpxchg64(&scd->clock, 0, 0);
316 #else
317 	/*
318 	 * On 64bit the read of [my]scd->clock is atomic versus the
319 	 * update, so we can avoid the above 32bit dance.
320 	 */
321 	sched_clock_local(my_scd);
322 again:
323 	this_clock = my_scd->clock;
324 	remote_clock = scd->clock;
325 #endif
326 
327 	/*
328 	 * Use the opportunity that we have both locks
329 	 * taken to couple the two clocks: we take the
330 	 * larger time as the latest time for both
331 	 * runqueues. (this creates monotonic movement)
332 	 */
333 	if (likely((s64)(remote_clock - this_clock) < 0)) {
334 		ptr = &scd->clock;
335 		old_val = remote_clock;
336 		val = this_clock;
337 	} else {
338 		/*
339 		 * Should be rare, but possible:
340 		 */
341 		ptr = &my_scd->clock;
342 		old_val = this_clock;
343 		val = remote_clock;
344 	}
345 
346 	if (cmpxchg64(ptr, old_val, val) != old_val)
347 		goto again;
348 
349 	return val;
350 }
351 
352 /*
353  * Similar to cpu_clock(), but requires local IRQs to be disabled.
354  *
355  * See cpu_clock().
356  */
357 u64 sched_clock_cpu(int cpu)
358 {
359 	struct sched_clock_data *scd;
360 	u64 clock;
361 
362 	if (sched_clock_stable())
363 		return sched_clock() + __sched_clock_offset;
364 
365 	if (unlikely(!sched_clock_running))
366 		return 0ull;
367 
368 	preempt_disable_notrace();
369 	scd = cpu_sdc(cpu);
370 
371 	if (cpu != smp_processor_id())
372 		clock = sched_clock_remote(scd);
373 	else
374 		clock = sched_clock_local(scd);
375 	preempt_enable_notrace();
376 
377 	return clock;
378 }
379 EXPORT_SYMBOL_GPL(sched_clock_cpu);
380 
381 void sched_clock_tick(void)
382 {
383 	struct sched_clock_data *scd;
384 
385 	if (sched_clock_stable())
386 		return;
387 
388 	if (unlikely(!sched_clock_running))
389 		return;
390 
391 	lockdep_assert_irqs_disabled();
392 
393 	scd = this_scd();
394 	__scd_stamp(scd);
395 	sched_clock_local(scd);
396 }
397 
398 void sched_clock_tick_stable(void)
399 {
400 	u64 gtod, clock;
401 
402 	if (!sched_clock_stable())
403 		return;
404 
405 	/*
406 	 * Called under watchdog_lock.
407 	 *
408 	 * The watchdog just found this TSC to (still) be stable, so now is a
409 	 * good moment to update our __gtod_offset. Because once we find the
410 	 * TSC to be unstable, any computation will be computing crap.
411 	 */
412 	local_irq_disable();
413 	gtod = ktime_get_ns();
414 	clock = sched_clock();
415 	__gtod_offset = (clock + __sched_clock_offset) - gtod;
416 	local_irq_enable();
417 }
418 
419 /*
420  * We are going deep-idle (irqs are disabled):
421  */
422 void sched_clock_idle_sleep_event(void)
423 {
424 	sched_clock_cpu(smp_processor_id());
425 }
426 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
427 
428 /*
429  * We just idled; resync with ktime.
430  */
431 void sched_clock_idle_wakeup_event(void)
432 {
433 	unsigned long flags;
434 
435 	if (sched_clock_stable())
436 		return;
437 
438 	if (unlikely(timekeeping_suspended))
439 		return;
440 
441 	local_irq_save(flags);
442 	sched_clock_tick();
443 	local_irq_restore(flags);
444 }
445 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
446 
447 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
448 
449 u64 sched_clock_cpu(int cpu)
450 {
451 	if (unlikely(!sched_clock_running))
452 		return 0;
453 
454 	return sched_clock();
455 }
456 
457 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
458 
459 /*
460  * Running clock - returns the time that has elapsed while a guest has been
461  * running.
462  * On a guest this value should be local_clock minus the time the guest was
463  * suspended by the hypervisor (for any reason).
464  * On bare metal this function should return the same as local_clock.
465  * Architectures and sub-architectures can override this.
466  */
467 u64 __weak running_clock(void)
468 {
469 	return local_clock();
470 }
471