1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sched_clock() for unstable CPU clocks 4 * 5 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra 6 * 7 * Updates and enhancements: 8 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> 9 * 10 * Based on code by: 11 * Ingo Molnar <mingo@redhat.com> 12 * Guillaume Chazarain <guichaz@gmail.com> 13 * 14 * 15 * What this file implements: 16 * 17 * cpu_clock(i) provides a fast (execution time) high resolution 18 * clock with bounded drift between CPUs. The value of cpu_clock(i) 19 * is monotonic for constant i. The timestamp returned is in nanoseconds. 20 * 21 * ######################### BIG FAT WARNING ########################## 22 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 23 * # go backwards !! # 24 * #################################################################### 25 * 26 * There is no strict promise about the base, although it tends to start 27 * at 0 on boot (but people really shouldn't rely on that). 28 * 29 * cpu_clock(i) -- can be used from any context, including NMI. 30 * local_clock() -- is cpu_clock() on the current CPU. 31 * 32 * sched_clock_cpu(i) 33 * 34 * How it is implemented: 35 * 36 * The implementation either uses sched_clock() when 37 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the 38 * sched_clock() is assumed to provide these properties (mostly it means 39 * the architecture provides a globally synchronized highres time source). 40 * 41 * Otherwise it tries to create a semi stable clock from a mixture of other 42 * clocks, including: 43 * 44 * - GTOD (clock monotonic) 45 * - sched_clock() 46 * - explicit idle events 47 * 48 * We use GTOD as base and use sched_clock() deltas to improve resolution. The 49 * deltas are filtered to provide monotonicity and keeping it within an 50 * expected window. 51 * 52 * Furthermore, explicit sleep and wakeup hooks allow us to account for time 53 * that is otherwise invisible (TSC gets stopped). 54 * 55 */ 56 57 #include <linux/sched/clock.h> 58 #include "sched.h" 59 60 /* 61 * Scheduler clock - returns current time in nanosec units. 62 * This is default implementation. 63 * Architectures and sub-architectures can override this. 64 */ 65 notrace unsigned long long __weak sched_clock(void) 66 { 67 return (unsigned long long)(jiffies - INITIAL_JIFFIES) 68 * (NSEC_PER_SEC / HZ); 69 } 70 EXPORT_SYMBOL_GPL(sched_clock); 71 72 static DEFINE_STATIC_KEY_FALSE(sched_clock_running); 73 74 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 75 /* 76 * We must start with !__sched_clock_stable because the unstable -> stable 77 * transition is accurate, while the stable -> unstable transition is not. 78 * 79 * Similarly we start with __sched_clock_stable_early, thereby assuming we 80 * will become stable, such that there's only a single 1 -> 0 transition. 81 */ 82 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable); 83 static int __sched_clock_stable_early = 1; 84 85 /* 86 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset 87 */ 88 __read_mostly u64 __sched_clock_offset; 89 static __read_mostly u64 __gtod_offset; 90 91 struct sched_clock_data { 92 u64 tick_raw; 93 u64 tick_gtod; 94 u64 clock; 95 }; 96 97 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); 98 99 static __always_inline struct sched_clock_data *this_scd(void) 100 { 101 return this_cpu_ptr(&sched_clock_data); 102 } 103 104 notrace static inline struct sched_clock_data *cpu_sdc(int cpu) 105 { 106 return &per_cpu(sched_clock_data, cpu); 107 } 108 109 notrace int sched_clock_stable(void) 110 { 111 return static_branch_likely(&__sched_clock_stable); 112 } 113 114 notrace static void __scd_stamp(struct sched_clock_data *scd) 115 { 116 scd->tick_gtod = ktime_get_ns(); 117 scd->tick_raw = sched_clock(); 118 } 119 120 notrace static void __set_sched_clock_stable(void) 121 { 122 struct sched_clock_data *scd; 123 124 /* 125 * Since we're still unstable and the tick is already running, we have 126 * to disable IRQs in order to get a consistent scd->tick* reading. 127 */ 128 local_irq_disable(); 129 scd = this_scd(); 130 /* 131 * Attempt to make the (initial) unstable->stable transition continuous. 132 */ 133 __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw); 134 local_irq_enable(); 135 136 printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n", 137 scd->tick_gtod, __gtod_offset, 138 scd->tick_raw, __sched_clock_offset); 139 140 static_branch_enable(&__sched_clock_stable); 141 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE); 142 } 143 144 /* 145 * If we ever get here, we're screwed, because we found out -- typically after 146 * the fact -- that TSC wasn't good. This means all our clocksources (including 147 * ktime) could have reported wrong values. 148 * 149 * What we do here is an attempt to fix up and continue sort of where we left 150 * off in a coherent manner. 151 * 152 * The only way to fully avoid random clock jumps is to boot with: 153 * "tsc=unstable". 154 */ 155 notrace static void __sched_clock_work(struct work_struct *work) 156 { 157 struct sched_clock_data *scd; 158 int cpu; 159 160 /* take a current timestamp and set 'now' */ 161 preempt_disable(); 162 scd = this_scd(); 163 __scd_stamp(scd); 164 scd->clock = scd->tick_gtod + __gtod_offset; 165 preempt_enable(); 166 167 /* clone to all CPUs */ 168 for_each_possible_cpu(cpu) 169 per_cpu(sched_clock_data, cpu) = *scd; 170 171 printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n"); 172 printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n", 173 scd->tick_gtod, __gtod_offset, 174 scd->tick_raw, __sched_clock_offset); 175 176 static_branch_disable(&__sched_clock_stable); 177 } 178 179 static DECLARE_WORK(sched_clock_work, __sched_clock_work); 180 181 notrace static void __clear_sched_clock_stable(void) 182 { 183 if (!sched_clock_stable()) 184 return; 185 186 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE); 187 schedule_work(&sched_clock_work); 188 } 189 190 notrace void clear_sched_clock_stable(void) 191 { 192 __sched_clock_stable_early = 0; 193 194 smp_mb(); /* matches sched_clock_init_late() */ 195 196 if (static_key_count(&sched_clock_running.key) == 2) 197 __clear_sched_clock_stable(); 198 } 199 200 notrace static void __sched_clock_gtod_offset(void) 201 { 202 struct sched_clock_data *scd = this_scd(); 203 204 __scd_stamp(scd); 205 __gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod; 206 } 207 208 void __init sched_clock_init(void) 209 { 210 /* 211 * Set __gtod_offset such that once we mark sched_clock_running, 212 * sched_clock_tick() continues where sched_clock() left off. 213 * 214 * Even if TSC is buggered, we're still UP at this point so it 215 * can't really be out of sync. 216 */ 217 local_irq_disable(); 218 __sched_clock_gtod_offset(); 219 local_irq_enable(); 220 221 static_branch_inc(&sched_clock_running); 222 } 223 /* 224 * We run this as late_initcall() such that it runs after all built-in drivers, 225 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable. 226 */ 227 static int __init sched_clock_init_late(void) 228 { 229 static_branch_inc(&sched_clock_running); 230 /* 231 * Ensure that it is impossible to not do a static_key update. 232 * 233 * Either {set,clear}_sched_clock_stable() must see sched_clock_running 234 * and do the update, or we must see their __sched_clock_stable_early 235 * and do the update, or both. 236 */ 237 smp_mb(); /* matches {set,clear}_sched_clock_stable() */ 238 239 if (__sched_clock_stable_early) 240 __set_sched_clock_stable(); 241 242 return 0; 243 } 244 late_initcall(sched_clock_init_late); 245 246 /* 247 * min, max except they take wrapping into account 248 */ 249 250 static __always_inline u64 wrap_min(u64 x, u64 y) 251 { 252 return (s64)(x - y) < 0 ? x : y; 253 } 254 255 static __always_inline u64 wrap_max(u64 x, u64 y) 256 { 257 return (s64)(x - y) > 0 ? x : y; 258 } 259 260 /* 261 * update the percpu scd from the raw @now value 262 * 263 * - filter out backward motion 264 * - use the GTOD tick value to create a window to filter crazy TSC values 265 */ 266 static __always_inline u64 sched_clock_local(struct sched_clock_data *scd) 267 { 268 u64 now, clock, old_clock, min_clock, max_clock, gtod; 269 s64 delta; 270 271 again: 272 now = sched_clock_noinstr(); 273 delta = now - scd->tick_raw; 274 if (unlikely(delta < 0)) 275 delta = 0; 276 277 old_clock = scd->clock; 278 279 /* 280 * scd->clock = clamp(scd->tick_gtod + delta, 281 * max(scd->tick_gtod, scd->clock), 282 * scd->tick_gtod + TICK_NSEC); 283 */ 284 285 gtod = scd->tick_gtod + __gtod_offset; 286 clock = gtod + delta; 287 min_clock = wrap_max(gtod, old_clock); 288 max_clock = wrap_max(old_clock, gtod + TICK_NSEC); 289 290 clock = wrap_max(clock, min_clock); 291 clock = wrap_min(clock, max_clock); 292 293 if (!raw_try_cmpxchg64(&scd->clock, &old_clock, clock)) 294 goto again; 295 296 return clock; 297 } 298 299 noinstr u64 local_clock_noinstr(void) 300 { 301 u64 clock; 302 303 if (static_branch_likely(&__sched_clock_stable)) 304 return sched_clock_noinstr() + __sched_clock_offset; 305 306 if (!static_branch_likely(&sched_clock_running)) 307 return sched_clock_noinstr(); 308 309 clock = sched_clock_local(this_scd()); 310 311 return clock; 312 } 313 314 u64 local_clock(void) 315 { 316 u64 now; 317 preempt_disable_notrace(); 318 now = local_clock_noinstr(); 319 preempt_enable_notrace(); 320 return now; 321 } 322 EXPORT_SYMBOL_GPL(local_clock); 323 324 static notrace u64 sched_clock_remote(struct sched_clock_data *scd) 325 { 326 struct sched_clock_data *my_scd = this_scd(); 327 u64 this_clock, remote_clock; 328 u64 *ptr, old_val, val; 329 330 #if BITS_PER_LONG != 64 331 again: 332 /* 333 * Careful here: The local and the remote clock values need to 334 * be read out atomic as we need to compare the values and 335 * then update either the local or the remote side. So the 336 * cmpxchg64 below only protects one readout. 337 * 338 * We must reread via sched_clock_local() in the retry case on 339 * 32-bit kernels as an NMI could use sched_clock_local() via the 340 * tracer and hit between the readout of 341 * the low 32-bit and the high 32-bit portion. 342 */ 343 this_clock = sched_clock_local(my_scd); 344 /* 345 * We must enforce atomic readout on 32-bit, otherwise the 346 * update on the remote CPU can hit in between the readout of 347 * the low 32-bit and the high 32-bit portion. 348 */ 349 remote_clock = cmpxchg64(&scd->clock, 0, 0); 350 #else 351 /* 352 * On 64-bit kernels the read of [my]scd->clock is atomic versus the 353 * update, so we can avoid the above 32-bit dance. 354 */ 355 sched_clock_local(my_scd); 356 again: 357 this_clock = my_scd->clock; 358 remote_clock = scd->clock; 359 #endif 360 361 /* 362 * Use the opportunity that we have both locks 363 * taken to couple the two clocks: we take the 364 * larger time as the latest time for both 365 * runqueues. (this creates monotonic movement) 366 */ 367 if (likely((s64)(remote_clock - this_clock) < 0)) { 368 ptr = &scd->clock; 369 old_val = remote_clock; 370 val = this_clock; 371 } else { 372 /* 373 * Should be rare, but possible: 374 */ 375 ptr = &my_scd->clock; 376 old_val = this_clock; 377 val = remote_clock; 378 } 379 380 if (!try_cmpxchg64(ptr, &old_val, val)) 381 goto again; 382 383 return val; 384 } 385 386 /* 387 * Similar to cpu_clock(), but requires local IRQs to be disabled. 388 * 389 * See cpu_clock(). 390 */ 391 notrace u64 sched_clock_cpu(int cpu) 392 { 393 struct sched_clock_data *scd; 394 u64 clock; 395 396 if (sched_clock_stable()) 397 return sched_clock() + __sched_clock_offset; 398 399 if (!static_branch_likely(&sched_clock_running)) 400 return sched_clock(); 401 402 preempt_disable_notrace(); 403 scd = cpu_sdc(cpu); 404 405 if (cpu != smp_processor_id()) 406 clock = sched_clock_remote(scd); 407 else 408 clock = sched_clock_local(scd); 409 preempt_enable_notrace(); 410 411 return clock; 412 } 413 EXPORT_SYMBOL_GPL(sched_clock_cpu); 414 415 notrace void sched_clock_tick(void) 416 { 417 struct sched_clock_data *scd; 418 419 if (sched_clock_stable()) 420 return; 421 422 if (!static_branch_likely(&sched_clock_running)) 423 return; 424 425 lockdep_assert_irqs_disabled(); 426 427 scd = this_scd(); 428 __scd_stamp(scd); 429 sched_clock_local(scd); 430 } 431 432 notrace void sched_clock_tick_stable(void) 433 { 434 if (!sched_clock_stable()) 435 return; 436 437 /* 438 * Called under watchdog_lock. 439 * 440 * The watchdog just found this TSC to (still) be stable, so now is a 441 * good moment to update our __gtod_offset. Because once we find the 442 * TSC to be unstable, any computation will be computing crap. 443 */ 444 local_irq_disable(); 445 __sched_clock_gtod_offset(); 446 local_irq_enable(); 447 } 448 449 /* 450 * We are going deep-idle (IRQs are disabled): 451 */ 452 notrace void sched_clock_idle_sleep_event(void) 453 { 454 sched_clock_cpu(smp_processor_id()); 455 } 456 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); 457 458 /* 459 * We just idled; resync with ktime. 460 */ 461 notrace void sched_clock_idle_wakeup_event(void) 462 { 463 unsigned long flags; 464 465 if (sched_clock_stable()) 466 return; 467 468 if (unlikely(timekeeping_suspended)) 469 return; 470 471 local_irq_save(flags); 472 sched_clock_tick(); 473 local_irq_restore(flags); 474 } 475 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); 476 477 #else /* !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK: */ 478 479 void __init sched_clock_init(void) 480 { 481 static_branch_inc(&sched_clock_running); 482 local_irq_disable(); 483 generic_sched_clock_init(); 484 local_irq_enable(); 485 } 486 487 notrace u64 sched_clock_cpu(int cpu) 488 { 489 if (!static_branch_likely(&sched_clock_running)) 490 return 0; 491 492 return sched_clock(); 493 } 494 495 #endif /* !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 496 497 /* 498 * Running clock - returns the time that has elapsed while a guest has been 499 * running. 500 * On a guest this value should be local_clock minus the time the guest was 501 * suspended by the hypervisor (for any reason). 502 * On bare metal this function should return the same as local_clock. 503 * Architectures and sub-architectures can override this. 504 */ 505 notrace u64 __weak running_clock(void) 506 { 507 return local_clock(); 508 } 509