xref: /linux/kernel/sched/clock.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * sched_clock for unstable cpu clocks
3  *
4  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
5  *
6  *  Updates and enhancements:
7  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8  *
9  * Based on code by:
10  *   Ingo Molnar <mingo@redhat.com>
11  *   Guillaume Chazarain <guichaz@gmail.com>
12  *
13  *
14  * What:
15  *
16  * cpu_clock(i) provides a fast (execution time) high resolution
17  * clock with bounded drift between CPUs. The value of cpu_clock(i)
18  * is monotonic for constant i. The timestamp returned is in nanoseconds.
19  *
20  * ######################### BIG FAT WARNING ##########################
21  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22  * # go backwards !!                                                  #
23  * ####################################################################
24  *
25  * There is no strict promise about the base, although it tends to start
26  * at 0 on boot (but people really shouldn't rely on that).
27  *
28  * cpu_clock(i)       -- can be used from any context, including NMI.
29  * local_clock()      -- is cpu_clock() on the current cpu.
30  *
31  * sched_clock_cpu(i)
32  *
33  * How:
34  *
35  * The implementation either uses sched_clock() when
36  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37  * sched_clock() is assumed to provide these properties (mostly it means
38  * the architecture provides a globally synchronized highres time source).
39  *
40  * Otherwise it tries to create a semi stable clock from a mixture of other
41  * clocks, including:
42  *
43  *  - GTOD (clock monotomic)
44  *  - sched_clock()
45  *  - explicit idle events
46  *
47  * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48  * deltas are filtered to provide monotonicity and keeping it within an
49  * expected window.
50  *
51  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52  * that is otherwise invisible (TSC gets stopped).
53  *
54  */
55 #include <linux/spinlock.h>
56 #include <linux/hardirq.h>
57 #include <linux/export.h>
58 #include <linux/percpu.h>
59 #include <linux/ktime.h>
60 #include <linux/sched.h>
61 #include <linux/static_key.h>
62 #include <linux/workqueue.h>
63 #include <linux/compiler.h>
64 #include <linux/tick.h>
65 
66 /*
67  * Scheduler clock - returns current time in nanosec units.
68  * This is default implementation.
69  * Architectures and sub-architectures can override this.
70  */
71 unsigned long long __weak sched_clock(void)
72 {
73 	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
74 					* (NSEC_PER_SEC / HZ);
75 }
76 EXPORT_SYMBOL_GPL(sched_clock);
77 
78 __read_mostly int sched_clock_running;
79 
80 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
81 static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
82 static int __sched_clock_stable_early;
83 
84 int sched_clock_stable(void)
85 {
86 	return static_key_false(&__sched_clock_stable);
87 }
88 
89 static void __set_sched_clock_stable(void)
90 {
91 	if (!sched_clock_stable())
92 		static_key_slow_inc(&__sched_clock_stable);
93 
94 	tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
95 }
96 
97 void set_sched_clock_stable(void)
98 {
99 	__sched_clock_stable_early = 1;
100 
101 	smp_mb(); /* matches sched_clock_init() */
102 
103 	if (!sched_clock_running)
104 		return;
105 
106 	__set_sched_clock_stable();
107 }
108 
109 static void __clear_sched_clock_stable(struct work_struct *work)
110 {
111 	/* XXX worry about clock continuity */
112 	if (sched_clock_stable())
113 		static_key_slow_dec(&__sched_clock_stable);
114 
115 	tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
116 }
117 
118 static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
119 
120 void clear_sched_clock_stable(void)
121 {
122 	__sched_clock_stable_early = 0;
123 
124 	smp_mb(); /* matches sched_clock_init() */
125 
126 	if (!sched_clock_running)
127 		return;
128 
129 	schedule_work(&sched_clock_work);
130 }
131 
132 struct sched_clock_data {
133 	u64			tick_raw;
134 	u64			tick_gtod;
135 	u64			clock;
136 };
137 
138 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
139 
140 static inline struct sched_clock_data *this_scd(void)
141 {
142 	return this_cpu_ptr(&sched_clock_data);
143 }
144 
145 static inline struct sched_clock_data *cpu_sdc(int cpu)
146 {
147 	return &per_cpu(sched_clock_data, cpu);
148 }
149 
150 void sched_clock_init(void)
151 {
152 	u64 ktime_now = ktime_to_ns(ktime_get());
153 	int cpu;
154 
155 	for_each_possible_cpu(cpu) {
156 		struct sched_clock_data *scd = cpu_sdc(cpu);
157 
158 		scd->tick_raw = 0;
159 		scd->tick_gtod = ktime_now;
160 		scd->clock = ktime_now;
161 	}
162 
163 	sched_clock_running = 1;
164 
165 	/*
166 	 * Ensure that it is impossible to not do a static_key update.
167 	 *
168 	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
169 	 * and do the update, or we must see their __sched_clock_stable_early
170 	 * and do the update, or both.
171 	 */
172 	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
173 
174 	if (__sched_clock_stable_early)
175 		__set_sched_clock_stable();
176 	else
177 		__clear_sched_clock_stable(NULL);
178 }
179 
180 /*
181  * min, max except they take wrapping into account
182  */
183 
184 static inline u64 wrap_min(u64 x, u64 y)
185 {
186 	return (s64)(x - y) < 0 ? x : y;
187 }
188 
189 static inline u64 wrap_max(u64 x, u64 y)
190 {
191 	return (s64)(x - y) > 0 ? x : y;
192 }
193 
194 /*
195  * update the percpu scd from the raw @now value
196  *
197  *  - filter out backward motion
198  *  - use the GTOD tick value to create a window to filter crazy TSC values
199  */
200 static u64 sched_clock_local(struct sched_clock_data *scd)
201 {
202 	u64 now, clock, old_clock, min_clock, max_clock;
203 	s64 delta;
204 
205 again:
206 	now = sched_clock();
207 	delta = now - scd->tick_raw;
208 	if (unlikely(delta < 0))
209 		delta = 0;
210 
211 	old_clock = scd->clock;
212 
213 	/*
214 	 * scd->clock = clamp(scd->tick_gtod + delta,
215 	 *		      max(scd->tick_gtod, scd->clock),
216 	 *		      scd->tick_gtod + TICK_NSEC);
217 	 */
218 
219 	clock = scd->tick_gtod + delta;
220 	min_clock = wrap_max(scd->tick_gtod, old_clock);
221 	max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
222 
223 	clock = wrap_max(clock, min_clock);
224 	clock = wrap_min(clock, max_clock);
225 
226 	if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
227 		goto again;
228 
229 	return clock;
230 }
231 
232 static u64 sched_clock_remote(struct sched_clock_data *scd)
233 {
234 	struct sched_clock_data *my_scd = this_scd();
235 	u64 this_clock, remote_clock;
236 	u64 *ptr, old_val, val;
237 
238 #if BITS_PER_LONG != 64
239 again:
240 	/*
241 	 * Careful here: The local and the remote clock values need to
242 	 * be read out atomic as we need to compare the values and
243 	 * then update either the local or the remote side. So the
244 	 * cmpxchg64 below only protects one readout.
245 	 *
246 	 * We must reread via sched_clock_local() in the retry case on
247 	 * 32bit as an NMI could use sched_clock_local() via the
248 	 * tracer and hit between the readout of
249 	 * the low32bit and the high 32bit portion.
250 	 */
251 	this_clock = sched_clock_local(my_scd);
252 	/*
253 	 * We must enforce atomic readout on 32bit, otherwise the
254 	 * update on the remote cpu can hit inbetween the readout of
255 	 * the low32bit and the high 32bit portion.
256 	 */
257 	remote_clock = cmpxchg64(&scd->clock, 0, 0);
258 #else
259 	/*
260 	 * On 64bit the read of [my]scd->clock is atomic versus the
261 	 * update, so we can avoid the above 32bit dance.
262 	 */
263 	sched_clock_local(my_scd);
264 again:
265 	this_clock = my_scd->clock;
266 	remote_clock = scd->clock;
267 #endif
268 
269 	/*
270 	 * Use the opportunity that we have both locks
271 	 * taken to couple the two clocks: we take the
272 	 * larger time as the latest time for both
273 	 * runqueues. (this creates monotonic movement)
274 	 */
275 	if (likely((s64)(remote_clock - this_clock) < 0)) {
276 		ptr = &scd->clock;
277 		old_val = remote_clock;
278 		val = this_clock;
279 	} else {
280 		/*
281 		 * Should be rare, but possible:
282 		 */
283 		ptr = &my_scd->clock;
284 		old_val = this_clock;
285 		val = remote_clock;
286 	}
287 
288 	if (cmpxchg64(ptr, old_val, val) != old_val)
289 		goto again;
290 
291 	return val;
292 }
293 
294 /*
295  * Similar to cpu_clock(), but requires local IRQs to be disabled.
296  *
297  * See cpu_clock().
298  */
299 u64 sched_clock_cpu(int cpu)
300 {
301 	struct sched_clock_data *scd;
302 	u64 clock;
303 
304 	if (sched_clock_stable())
305 		return sched_clock();
306 
307 	if (unlikely(!sched_clock_running))
308 		return 0ull;
309 
310 	preempt_disable_notrace();
311 	scd = cpu_sdc(cpu);
312 
313 	if (cpu != smp_processor_id())
314 		clock = sched_clock_remote(scd);
315 	else
316 		clock = sched_clock_local(scd);
317 	preempt_enable_notrace();
318 
319 	return clock;
320 }
321 EXPORT_SYMBOL_GPL(sched_clock_cpu);
322 
323 void sched_clock_tick(void)
324 {
325 	struct sched_clock_data *scd;
326 	u64 now, now_gtod;
327 
328 	if (sched_clock_stable())
329 		return;
330 
331 	if (unlikely(!sched_clock_running))
332 		return;
333 
334 	WARN_ON_ONCE(!irqs_disabled());
335 
336 	scd = this_scd();
337 	now_gtod = ktime_to_ns(ktime_get());
338 	now = sched_clock();
339 
340 	scd->tick_raw = now;
341 	scd->tick_gtod = now_gtod;
342 	sched_clock_local(scd);
343 }
344 
345 /*
346  * We are going deep-idle (irqs are disabled):
347  */
348 void sched_clock_idle_sleep_event(void)
349 {
350 	sched_clock_cpu(smp_processor_id());
351 }
352 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
353 
354 /*
355  * We just idled delta nanoseconds (called with irqs disabled):
356  */
357 void sched_clock_idle_wakeup_event(u64 delta_ns)
358 {
359 	if (timekeeping_suspended)
360 		return;
361 
362 	sched_clock_tick();
363 	touch_softlockup_watchdog_sched();
364 }
365 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
366 
367 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
368 
369 void sched_clock_init(void)
370 {
371 	sched_clock_running = 1;
372 }
373 
374 u64 sched_clock_cpu(int cpu)
375 {
376 	if (unlikely(!sched_clock_running))
377 		return 0;
378 
379 	return sched_clock();
380 }
381 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
382 
383 /*
384  * Running clock - returns the time that has elapsed while a guest has been
385  * running.
386  * On a guest this value should be local_clock minus the time the guest was
387  * suspended by the hypervisor (for any reason).
388  * On bare metal this function should return the same as local_clock.
389  * Architectures and sub-architectures can override this.
390  */
391 u64 __weak running_clock(void)
392 {
393 	return local_clock();
394 }
395