xref: /linux/kernel/rseq.c (revision 0b8061c340b643e01da431dd60c75a41bb1d31ec)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Restartable sequences system call
4  *
5  * Copyright (C) 2015, Google, Inc.,
6  * Paul Turner <pjt@google.com> and Andrew Hunter <ahh@google.com>
7  * Copyright (C) 2015-2018, EfficiOS Inc.,
8  * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/uaccess.h>
13 #include <linux/syscalls.h>
14 #include <linux/rseq.h>
15 #include <linux/types.h>
16 #include <asm/ptrace.h>
17 
18 #define CREATE_TRACE_POINTS
19 #include <trace/events/rseq.h>
20 
21 #define RSEQ_CS_PREEMPT_MIGRATE_FLAGS (RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE | \
22 				       RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT)
23 
24 /*
25  *
26  * Restartable sequences are a lightweight interface that allows
27  * user-level code to be executed atomically relative to scheduler
28  * preemption and signal delivery. Typically used for implementing
29  * per-cpu operations.
30  *
31  * It allows user-space to perform update operations on per-cpu data
32  * without requiring heavy-weight atomic operations.
33  *
34  * Detailed algorithm of rseq user-space assembly sequences:
35  *
36  *                     init(rseq_cs)
37  *                     cpu = TLS->rseq::cpu_id_start
38  *   [1]               TLS->rseq::rseq_cs = rseq_cs
39  *   [start_ip]        ----------------------------
40  *   [2]               if (cpu != TLS->rseq::cpu_id)
41  *                             goto abort_ip;
42  *   [3]               <last_instruction_in_cs>
43  *   [post_commit_ip]  ----------------------------
44  *
45  *   The address of jump target abort_ip must be outside the critical
46  *   region, i.e.:
47  *
48  *     [abort_ip] < [start_ip]  || [abort_ip] >= [post_commit_ip]
49  *
50  *   Steps [2]-[3] (inclusive) need to be a sequence of instructions in
51  *   userspace that can handle being interrupted between any of those
52  *   instructions, and then resumed to the abort_ip.
53  *
54  *   1.  Userspace stores the address of the struct rseq_cs assembly
55  *       block descriptor into the rseq_cs field of the registered
56  *       struct rseq TLS area. This update is performed through a single
57  *       store within the inline assembly instruction sequence.
58  *       [start_ip]
59  *
60  *   2.  Userspace tests to check whether the current cpu_id field match
61  *       the cpu number loaded before start_ip, branching to abort_ip
62  *       in case of a mismatch.
63  *
64  *       If the sequence is preempted or interrupted by a signal
65  *       at or after start_ip and before post_commit_ip, then the kernel
66  *       clears TLS->__rseq_abi::rseq_cs, and sets the user-space return
67  *       ip to abort_ip before returning to user-space, so the preempted
68  *       execution resumes at abort_ip.
69  *
70  *   3.  Userspace critical section final instruction before
71  *       post_commit_ip is the commit. The critical section is
72  *       self-terminating.
73  *       [post_commit_ip]
74  *
75  *   4.  <success>
76  *
77  *   On failure at [2], or if interrupted by preempt or signal delivery
78  *   between [1] and [3]:
79  *
80  *       [abort_ip]
81  *   F1. <failure>
82  */
83 
84 static int rseq_update_cpu_id(struct task_struct *t)
85 {
86 	u32 cpu_id = raw_smp_processor_id();
87 
88 	if (put_user(cpu_id, &t->rseq->cpu_id_start))
89 		return -EFAULT;
90 	if (put_user(cpu_id, &t->rseq->cpu_id))
91 		return -EFAULT;
92 	trace_rseq_update(t);
93 	return 0;
94 }
95 
96 static int rseq_reset_rseq_cpu_id(struct task_struct *t)
97 {
98 	u32 cpu_id_start = 0, cpu_id = RSEQ_CPU_ID_UNINITIALIZED;
99 
100 	/*
101 	 * Reset cpu_id_start to its initial state (0).
102 	 */
103 	if (put_user(cpu_id_start, &t->rseq->cpu_id_start))
104 		return -EFAULT;
105 	/*
106 	 * Reset cpu_id to RSEQ_CPU_ID_UNINITIALIZED, so any user coming
107 	 * in after unregistration can figure out that rseq needs to be
108 	 * registered again.
109 	 */
110 	if (put_user(cpu_id, &t->rseq->cpu_id))
111 		return -EFAULT;
112 	return 0;
113 }
114 
115 static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs)
116 {
117 	struct rseq_cs __user *urseq_cs;
118 	u64 ptr;
119 	u32 __user *usig;
120 	u32 sig;
121 	int ret;
122 
123 	if (copy_from_user(&ptr, &t->rseq->rseq_cs.ptr64, sizeof(ptr)))
124 		return -EFAULT;
125 	if (!ptr) {
126 		memset(rseq_cs, 0, sizeof(*rseq_cs));
127 		return 0;
128 	}
129 	if (ptr >= TASK_SIZE)
130 		return -EINVAL;
131 	urseq_cs = (struct rseq_cs __user *)(unsigned long)ptr;
132 	if (copy_from_user(rseq_cs, urseq_cs, sizeof(*rseq_cs)))
133 		return -EFAULT;
134 
135 	if (rseq_cs->start_ip >= TASK_SIZE ||
136 	    rseq_cs->start_ip + rseq_cs->post_commit_offset >= TASK_SIZE ||
137 	    rseq_cs->abort_ip >= TASK_SIZE ||
138 	    rseq_cs->version > 0)
139 		return -EINVAL;
140 	/* Check for overflow. */
141 	if (rseq_cs->start_ip + rseq_cs->post_commit_offset < rseq_cs->start_ip)
142 		return -EINVAL;
143 	/* Ensure that abort_ip is not in the critical section. */
144 	if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset)
145 		return -EINVAL;
146 
147 	usig = (u32 __user *)(unsigned long)(rseq_cs->abort_ip - sizeof(u32));
148 	ret = get_user(sig, usig);
149 	if (ret)
150 		return ret;
151 
152 	if (current->rseq_sig != sig) {
153 		printk_ratelimited(KERN_WARNING
154 			"Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n",
155 			sig, current->rseq_sig, current->pid, usig);
156 		return -EINVAL;
157 	}
158 	return 0;
159 }
160 
161 static int rseq_need_restart(struct task_struct *t, u32 cs_flags)
162 {
163 	u32 flags, event_mask;
164 	int ret;
165 
166 	/* Get thread flags. */
167 	ret = get_user(flags, &t->rseq->flags);
168 	if (ret)
169 		return ret;
170 
171 	/* Take critical section flags into account. */
172 	flags |= cs_flags;
173 
174 	/*
175 	 * Restart on signal can only be inhibited when restart on
176 	 * preempt and restart on migrate are inhibited too. Otherwise,
177 	 * a preempted signal handler could fail to restart the prior
178 	 * execution context on sigreturn.
179 	 */
180 	if (unlikely((flags & RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL) &&
181 		     (flags & RSEQ_CS_PREEMPT_MIGRATE_FLAGS) !=
182 		     RSEQ_CS_PREEMPT_MIGRATE_FLAGS))
183 		return -EINVAL;
184 
185 	/*
186 	 * Load and clear event mask atomically with respect to
187 	 * scheduler preemption.
188 	 */
189 	preempt_disable();
190 	event_mask = t->rseq_event_mask;
191 	t->rseq_event_mask = 0;
192 	preempt_enable();
193 
194 	return !!(event_mask & ~flags);
195 }
196 
197 static int clear_rseq_cs(struct task_struct *t)
198 {
199 	/*
200 	 * The rseq_cs field is set to NULL on preemption or signal
201 	 * delivery on top of rseq assembly block, as well as on top
202 	 * of code outside of the rseq assembly block. This performs
203 	 * a lazy clear of the rseq_cs field.
204 	 *
205 	 * Set rseq_cs to NULL.
206 	 */
207 	if (clear_user(&t->rseq->rseq_cs.ptr64, sizeof(t->rseq->rseq_cs.ptr64)))
208 		return -EFAULT;
209 	return 0;
210 }
211 
212 /*
213  * Unsigned comparison will be true when ip >= start_ip, and when
214  * ip < start_ip + post_commit_offset.
215  */
216 static bool in_rseq_cs(unsigned long ip, struct rseq_cs *rseq_cs)
217 {
218 	return ip - rseq_cs->start_ip < rseq_cs->post_commit_offset;
219 }
220 
221 static int rseq_ip_fixup(struct pt_regs *regs)
222 {
223 	unsigned long ip = instruction_pointer(regs);
224 	struct task_struct *t = current;
225 	struct rseq_cs rseq_cs;
226 	int ret;
227 
228 	ret = rseq_get_rseq_cs(t, &rseq_cs);
229 	if (ret)
230 		return ret;
231 
232 	/*
233 	 * Handle potentially not being within a critical section.
234 	 * If not nested over a rseq critical section, restart is useless.
235 	 * Clear the rseq_cs pointer and return.
236 	 */
237 	if (!in_rseq_cs(ip, &rseq_cs))
238 		return clear_rseq_cs(t);
239 	ret = rseq_need_restart(t, rseq_cs.flags);
240 	if (ret <= 0)
241 		return ret;
242 	ret = clear_rseq_cs(t);
243 	if (ret)
244 		return ret;
245 	trace_rseq_ip_fixup(ip, rseq_cs.start_ip, rseq_cs.post_commit_offset,
246 			    rseq_cs.abort_ip);
247 	instruction_pointer_set(regs, (unsigned long)rseq_cs.abort_ip);
248 	return 0;
249 }
250 
251 /*
252  * This resume handler must always be executed between any of:
253  * - preemption,
254  * - signal delivery,
255  * and return to user-space.
256  *
257  * This is how we can ensure that the entire rseq critical section
258  * will issue the commit instruction only if executed atomically with
259  * respect to other threads scheduled on the same CPU, and with respect
260  * to signal handlers.
261  */
262 void __rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs)
263 {
264 	struct task_struct *t = current;
265 	int ret, sig;
266 
267 	if (unlikely(t->flags & PF_EXITING))
268 		return;
269 	if (unlikely(!access_ok(t->rseq, sizeof(*t->rseq))))
270 		goto error;
271 	ret = rseq_ip_fixup(regs);
272 	if (unlikely(ret < 0))
273 		goto error;
274 	if (unlikely(rseq_update_cpu_id(t)))
275 		goto error;
276 	return;
277 
278 error:
279 	sig = ksig ? ksig->sig : 0;
280 	force_sigsegv(sig);
281 }
282 
283 #ifdef CONFIG_DEBUG_RSEQ
284 
285 /*
286  * Terminate the process if a syscall is issued within a restartable
287  * sequence.
288  */
289 void rseq_syscall(struct pt_regs *regs)
290 {
291 	unsigned long ip = instruction_pointer(regs);
292 	struct task_struct *t = current;
293 	struct rseq_cs rseq_cs;
294 
295 	if (!t->rseq)
296 		return;
297 	if (!access_ok(t->rseq, sizeof(*t->rseq)) ||
298 	    rseq_get_rseq_cs(t, &rseq_cs) || in_rseq_cs(ip, &rseq_cs))
299 		force_sig(SIGSEGV);
300 }
301 
302 #endif
303 
304 /*
305  * sys_rseq - setup restartable sequences for caller thread.
306  */
307 SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len,
308 		int, flags, u32, sig)
309 {
310 	int ret;
311 
312 	if (flags & RSEQ_FLAG_UNREGISTER) {
313 		if (flags & ~RSEQ_FLAG_UNREGISTER)
314 			return -EINVAL;
315 		/* Unregister rseq for current thread. */
316 		if (current->rseq != rseq || !current->rseq)
317 			return -EINVAL;
318 		if (rseq_len != sizeof(*rseq))
319 			return -EINVAL;
320 		if (current->rseq_sig != sig)
321 			return -EPERM;
322 		ret = rseq_reset_rseq_cpu_id(current);
323 		if (ret)
324 			return ret;
325 		current->rseq = NULL;
326 		current->rseq_sig = 0;
327 		return 0;
328 	}
329 
330 	if (unlikely(flags))
331 		return -EINVAL;
332 
333 	if (current->rseq) {
334 		/*
335 		 * If rseq is already registered, check whether
336 		 * the provided address differs from the prior
337 		 * one.
338 		 */
339 		if (current->rseq != rseq || rseq_len != sizeof(*rseq))
340 			return -EINVAL;
341 		if (current->rseq_sig != sig)
342 			return -EPERM;
343 		/* Already registered. */
344 		return -EBUSY;
345 	}
346 
347 	/*
348 	 * If there was no rseq previously registered,
349 	 * ensure the provided rseq is properly aligned and valid.
350 	 */
351 	if (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) ||
352 	    rseq_len != sizeof(*rseq))
353 		return -EINVAL;
354 	if (!access_ok(rseq, rseq_len))
355 		return -EFAULT;
356 	current->rseq = rseq;
357 	current->rseq_sig = sig;
358 	/*
359 	 * If rseq was previously inactive, and has just been
360 	 * registered, ensure the cpu_id_start and cpu_id fields
361 	 * are updated before returning to user-space.
362 	 */
363 	rseq_set_notify_resume(current);
364 
365 	return 0;
366 }
367