xref: /linux/kernel/resource.c (revision f3c11cf5cae044668f888a50abb37b29600ca197)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <linux/string.h>
31 #include <linux/vmalloc.h>
32 #include <asm/io.h>
33 
34 
35 struct resource ioport_resource = {
36 	.name	= "PCI IO",
37 	.start	= 0,
38 	.end	= IO_SPACE_LIMIT,
39 	.flags	= IORESOURCE_IO,
40 };
41 EXPORT_SYMBOL(ioport_resource);
42 
43 struct resource iomem_resource = {
44 	.name	= "PCI mem",
45 	.start	= 0,
46 	.end	= -1,
47 	.flags	= IORESOURCE_MEM,
48 };
49 EXPORT_SYMBOL(iomem_resource);
50 
51 static DEFINE_RWLOCK(resource_lock);
52 
53 static struct resource *next_resource(struct resource *p, bool skip_children)
54 {
55 	if (!skip_children && p->child)
56 		return p->child;
57 	while (!p->sibling && p->parent)
58 		p = p->parent;
59 	return p->sibling;
60 }
61 
62 #define for_each_resource(_root, _p, _skip_children) \
63 	for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children))
64 
65 #ifdef CONFIG_PROC_FS
66 
67 enum { MAX_IORES_LEVEL = 5 };
68 
69 static void *r_start(struct seq_file *m, loff_t *pos)
70 	__acquires(resource_lock)
71 {
72 	struct resource *root = pde_data(file_inode(m->file));
73 	struct resource *p;
74 	loff_t l = *pos;
75 
76 	read_lock(&resource_lock);
77 	for_each_resource(root, p, false) {
78 		if (l-- == 0)
79 			break;
80 	}
81 
82 	return p;
83 }
84 
85 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
86 {
87 	struct resource *p = v;
88 
89 	(*pos)++;
90 
91 	return (void *)next_resource(p, false);
92 }
93 
94 static void r_stop(struct seq_file *m, void *v)
95 	__releases(resource_lock)
96 {
97 	read_unlock(&resource_lock);
98 }
99 
100 static int r_show(struct seq_file *m, void *v)
101 {
102 	struct resource *root = pde_data(file_inode(m->file));
103 	struct resource *r = v, *p;
104 	unsigned long long start, end;
105 	int width = root->end < 0x10000 ? 4 : 8;
106 	int depth;
107 
108 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
109 		if (p->parent == root)
110 			break;
111 
112 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
113 		start = r->start;
114 		end = r->end;
115 	} else {
116 		start = end = 0;
117 	}
118 
119 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
120 			depth * 2, "",
121 			width, start,
122 			width, end,
123 			r->name ? r->name : "<BAD>");
124 	return 0;
125 }
126 
127 static const struct seq_operations resource_op = {
128 	.start	= r_start,
129 	.next	= r_next,
130 	.stop	= r_stop,
131 	.show	= r_show,
132 };
133 
134 static int __init ioresources_init(void)
135 {
136 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
137 			&ioport_resource);
138 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
139 	return 0;
140 }
141 __initcall(ioresources_init);
142 
143 #endif /* CONFIG_PROC_FS */
144 
145 static void free_resource(struct resource *res)
146 {
147 	/**
148 	 * If the resource was allocated using memblock early during boot
149 	 * we'll leak it here: we can only return full pages back to the
150 	 * buddy and trying to be smart and reusing them eventually in
151 	 * alloc_resource() overcomplicates resource handling.
152 	 */
153 	if (res && PageSlab(virt_to_head_page(res)))
154 		kfree(res);
155 }
156 
157 static struct resource *alloc_resource(gfp_t flags)
158 {
159 	return kzalloc(sizeof(struct resource), flags);
160 }
161 
162 /* Return the conflict entry if you can't request it */
163 static struct resource * __request_resource(struct resource *root, struct resource *new)
164 {
165 	resource_size_t start = new->start;
166 	resource_size_t end = new->end;
167 	struct resource *tmp, **p;
168 
169 	if (end < start)
170 		return root;
171 	if (start < root->start)
172 		return root;
173 	if (end > root->end)
174 		return root;
175 	p = &root->child;
176 	for (;;) {
177 		tmp = *p;
178 		if (!tmp || tmp->start > end) {
179 			new->sibling = tmp;
180 			*p = new;
181 			new->parent = root;
182 			return NULL;
183 		}
184 		p = &tmp->sibling;
185 		if (tmp->end < start)
186 			continue;
187 		return tmp;
188 	}
189 }
190 
191 static int __release_resource(struct resource *old, bool release_child)
192 {
193 	struct resource *tmp, **p, *chd;
194 
195 	p = &old->parent->child;
196 	for (;;) {
197 		tmp = *p;
198 		if (!tmp)
199 			break;
200 		if (tmp == old) {
201 			if (release_child || !(tmp->child)) {
202 				*p = tmp->sibling;
203 			} else {
204 				for (chd = tmp->child;; chd = chd->sibling) {
205 					chd->parent = tmp->parent;
206 					if (!(chd->sibling))
207 						break;
208 				}
209 				*p = tmp->child;
210 				chd->sibling = tmp->sibling;
211 			}
212 			old->parent = NULL;
213 			return 0;
214 		}
215 		p = &tmp->sibling;
216 	}
217 	return -EINVAL;
218 }
219 
220 static void __release_child_resources(struct resource *r)
221 {
222 	struct resource *tmp, *p;
223 	resource_size_t size;
224 
225 	p = r->child;
226 	r->child = NULL;
227 	while (p) {
228 		tmp = p;
229 		p = p->sibling;
230 
231 		tmp->parent = NULL;
232 		tmp->sibling = NULL;
233 		__release_child_resources(tmp);
234 
235 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
236 		/* need to restore size, and keep flags */
237 		size = resource_size(tmp);
238 		tmp->start = 0;
239 		tmp->end = size - 1;
240 	}
241 }
242 
243 void release_child_resources(struct resource *r)
244 {
245 	write_lock(&resource_lock);
246 	__release_child_resources(r);
247 	write_unlock(&resource_lock);
248 }
249 
250 /**
251  * request_resource_conflict - request and reserve an I/O or memory resource
252  * @root: root resource descriptor
253  * @new: resource descriptor desired by caller
254  *
255  * Returns 0 for success, conflict resource on error.
256  */
257 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
258 {
259 	struct resource *conflict;
260 
261 	write_lock(&resource_lock);
262 	conflict = __request_resource(root, new);
263 	write_unlock(&resource_lock);
264 	return conflict;
265 }
266 
267 /**
268  * request_resource - request and reserve an I/O or memory resource
269  * @root: root resource descriptor
270  * @new: resource descriptor desired by caller
271  *
272  * Returns 0 for success, negative error code on error.
273  */
274 int request_resource(struct resource *root, struct resource *new)
275 {
276 	struct resource *conflict;
277 
278 	conflict = request_resource_conflict(root, new);
279 	return conflict ? -EBUSY : 0;
280 }
281 
282 EXPORT_SYMBOL(request_resource);
283 
284 /**
285  * release_resource - release a previously reserved resource
286  * @old: resource pointer
287  */
288 int release_resource(struct resource *old)
289 {
290 	int retval;
291 
292 	write_lock(&resource_lock);
293 	retval = __release_resource(old, true);
294 	write_unlock(&resource_lock);
295 	return retval;
296 }
297 
298 EXPORT_SYMBOL(release_resource);
299 
300 /**
301  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
302  *			 [@start..@end].
303  *
304  * If a resource is found, returns 0 and @*res is overwritten with the part
305  * of the resource that's within [@start..@end]; if none is found, returns
306  * -ENODEV.  Returns -EINVAL for invalid parameters.
307  *
308  * @start:	start address of the resource searched for
309  * @end:	end address of same resource
310  * @flags:	flags which the resource must have
311  * @desc:	descriptor the resource must have
312  * @res:	return ptr, if resource found
313  *
314  * The caller must specify @start, @end, @flags, and @desc
315  * (which may be IORES_DESC_NONE).
316  */
317 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
318 			       unsigned long flags, unsigned long desc,
319 			       struct resource *res)
320 {
321 	struct resource *p;
322 
323 	if (!res)
324 		return -EINVAL;
325 
326 	if (start >= end)
327 		return -EINVAL;
328 
329 	read_lock(&resource_lock);
330 
331 	for_each_resource(&iomem_resource, p, false) {
332 		/* If we passed the resource we are looking for, stop */
333 		if (p->start > end) {
334 			p = NULL;
335 			break;
336 		}
337 
338 		/* Skip until we find a range that matches what we look for */
339 		if (p->end < start)
340 			continue;
341 
342 		if ((p->flags & flags) != flags)
343 			continue;
344 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
345 			continue;
346 
347 		/* Found a match, break */
348 		break;
349 	}
350 
351 	if (p) {
352 		/* copy data */
353 		*res = (struct resource) {
354 			.start = max(start, p->start),
355 			.end = min(end, p->end),
356 			.flags = p->flags,
357 			.desc = p->desc,
358 			.parent = p->parent,
359 		};
360 	}
361 
362 	read_unlock(&resource_lock);
363 	return p ? 0 : -ENODEV;
364 }
365 
366 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
367 				 unsigned long flags, unsigned long desc,
368 				 void *arg,
369 				 int (*func)(struct resource *, void *))
370 {
371 	struct resource res;
372 	int ret = -EINVAL;
373 
374 	while (start < end &&
375 	       !find_next_iomem_res(start, end, flags, desc, &res)) {
376 		ret = (*func)(&res, arg);
377 		if (ret)
378 			break;
379 
380 		start = res.end + 1;
381 	}
382 
383 	return ret;
384 }
385 
386 /**
387  * walk_iomem_res_desc - Walks through iomem resources and calls func()
388  *			 with matching resource ranges.
389  * *
390  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
391  * @flags: I/O resource flags
392  * @start: start addr
393  * @end: end addr
394  * @arg: function argument for the callback @func
395  * @func: callback function that is called for each qualifying resource area
396  *
397  * All the memory ranges which overlap start,end and also match flags and
398  * desc are valid candidates.
399  *
400  * NOTE: For a new descriptor search, define a new IORES_DESC in
401  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
402  */
403 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
404 		u64 end, void *arg, int (*func)(struct resource *, void *))
405 {
406 	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
407 }
408 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
409 
410 /*
411  * This function calls the @func callback against all memory ranges of type
412  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
413  * Now, this function is only for System RAM, it deals with full ranges and
414  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
415  * ranges.
416  */
417 int walk_system_ram_res(u64 start, u64 end, void *arg,
418 			int (*func)(struct resource *, void *))
419 {
420 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
421 
422 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
423 				     func);
424 }
425 
426 /*
427  * This function, being a variant of walk_system_ram_res(), calls the @func
428  * callback against all memory ranges of type System RAM which are marked as
429  * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
430  * higher to lower.
431  */
432 int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
433 				int (*func)(struct resource *, void *))
434 {
435 	struct resource res, *rams;
436 	int rams_size = 16, i;
437 	unsigned long flags;
438 	int ret = -1;
439 
440 	/* create a list */
441 	rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
442 	if (!rams)
443 		return ret;
444 
445 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
446 	i = 0;
447 	while ((start < end) &&
448 		(!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
449 		if (i >= rams_size) {
450 			/* re-alloc */
451 			struct resource *rams_new;
452 
453 			rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource),
454 					     GFP_KERNEL);
455 			if (!rams_new)
456 				goto out;
457 
458 			rams = rams_new;
459 			rams_size += 16;
460 		}
461 
462 		rams[i].start = res.start;
463 		rams[i++].end = res.end;
464 
465 		start = res.end + 1;
466 	}
467 
468 	/* go reverse */
469 	for (i--; i >= 0; i--) {
470 		ret = (*func)(&rams[i], arg);
471 		if (ret)
472 			break;
473 	}
474 
475 out:
476 	kvfree(rams);
477 	return ret;
478 }
479 
480 /*
481  * This function calls the @func callback against all memory ranges, which
482  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
483  */
484 int walk_mem_res(u64 start, u64 end, void *arg,
485 		 int (*func)(struct resource *, void *))
486 {
487 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
488 
489 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
490 				     func);
491 }
492 
493 /*
494  * This function calls the @func callback against all memory ranges of type
495  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
496  * It is to be used only for System RAM.
497  */
498 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
499 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
500 {
501 	resource_size_t start, end;
502 	unsigned long flags;
503 	struct resource res;
504 	unsigned long pfn, end_pfn;
505 	int ret = -EINVAL;
506 
507 	start = (u64) start_pfn << PAGE_SHIFT;
508 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
509 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
510 	while (start < end &&
511 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
512 		pfn = PFN_UP(res.start);
513 		end_pfn = PFN_DOWN(res.end + 1);
514 		if (end_pfn > pfn)
515 			ret = (*func)(pfn, end_pfn - pfn, arg);
516 		if (ret)
517 			break;
518 		start = res.end + 1;
519 	}
520 	return ret;
521 }
522 
523 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
524 {
525 	return 1;
526 }
527 
528 /*
529  * This generic page_is_ram() returns true if specified address is
530  * registered as System RAM in iomem_resource list.
531  */
532 int __weak page_is_ram(unsigned long pfn)
533 {
534 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
535 }
536 EXPORT_SYMBOL_GPL(page_is_ram);
537 
538 static int __region_intersects(struct resource *parent, resource_size_t start,
539 			       size_t size, unsigned long flags,
540 			       unsigned long desc)
541 {
542 	struct resource res;
543 	int type = 0; int other = 0;
544 	struct resource *p;
545 
546 	res.start = start;
547 	res.end = start + size - 1;
548 
549 	for (p = parent->child; p ; p = p->sibling) {
550 		bool is_type = (((p->flags & flags) == flags) &&
551 				((desc == IORES_DESC_NONE) ||
552 				 (desc == p->desc)));
553 
554 		if (resource_overlaps(p, &res))
555 			is_type ? type++ : other++;
556 	}
557 
558 	if (type == 0)
559 		return REGION_DISJOINT;
560 
561 	if (other == 0)
562 		return REGION_INTERSECTS;
563 
564 	return REGION_MIXED;
565 }
566 
567 /**
568  * region_intersects() - determine intersection of region with known resources
569  * @start: region start address
570  * @size: size of region
571  * @flags: flags of resource (in iomem_resource)
572  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
573  *
574  * Check if the specified region partially overlaps or fully eclipses a
575  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
576  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
577  * return REGION_MIXED if the region overlaps @flags/@desc and another
578  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
579  * and no other defined resource. Note that REGION_INTERSECTS is also
580  * returned in the case when the specified region overlaps RAM and undefined
581  * memory holes.
582  *
583  * region_intersect() is used by memory remapping functions to ensure
584  * the user is not remapping RAM and is a vast speed up over walking
585  * through the resource table page by page.
586  */
587 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
588 		      unsigned long desc)
589 {
590 	int ret;
591 
592 	read_lock(&resource_lock);
593 	ret = __region_intersects(&iomem_resource, start, size, flags, desc);
594 	read_unlock(&resource_lock);
595 
596 	return ret;
597 }
598 EXPORT_SYMBOL_GPL(region_intersects);
599 
600 void __weak arch_remove_reservations(struct resource *avail)
601 {
602 }
603 
604 static void resource_clip(struct resource *res, resource_size_t min,
605 			  resource_size_t max)
606 {
607 	if (res->start < min)
608 		res->start = min;
609 	if (res->end > max)
610 		res->end = max;
611 }
612 
613 /*
614  * Find empty space in the resource tree with the given range and
615  * alignment constraints
616  */
617 static int __find_resource_space(struct resource *root, struct resource *old,
618 				 struct resource *new, resource_size_t size,
619 				 struct resource_constraint *constraint)
620 {
621 	struct resource *this = root->child;
622 	struct resource tmp = *new, avail, alloc;
623 	resource_alignf alignf = constraint->alignf;
624 
625 	tmp.start = root->start;
626 	/*
627 	 * Skip past an allocated resource that starts at 0, since the assignment
628 	 * of this->start - 1 to tmp->end below would cause an underflow.
629 	 */
630 	if (this && this->start == root->start) {
631 		tmp.start = (this == old) ? old->start : this->end + 1;
632 		this = this->sibling;
633 	}
634 	for(;;) {
635 		if (this)
636 			tmp.end = (this == old) ?  this->end : this->start - 1;
637 		else
638 			tmp.end = root->end;
639 
640 		if (tmp.end < tmp.start)
641 			goto next;
642 
643 		resource_clip(&tmp, constraint->min, constraint->max);
644 		arch_remove_reservations(&tmp);
645 
646 		/* Check for overflow after ALIGN() */
647 		avail.start = ALIGN(tmp.start, constraint->align);
648 		avail.end = tmp.end;
649 		avail.flags = new->flags & ~IORESOURCE_UNSET;
650 		if (avail.start >= tmp.start) {
651 			alloc.flags = avail.flags;
652 			if (alignf) {
653 				alloc.start = alignf(constraint->alignf_data,
654 						     &avail, size, constraint->align);
655 			} else {
656 				alloc.start = avail.start;
657 			}
658 			alloc.end = alloc.start + size - 1;
659 			if (alloc.start <= alloc.end &&
660 			    resource_contains(&avail, &alloc)) {
661 				new->start = alloc.start;
662 				new->end = alloc.end;
663 				return 0;
664 			}
665 		}
666 
667 next:		if (!this || this->end == root->end)
668 			break;
669 
670 		if (this != old)
671 			tmp.start = this->end + 1;
672 		this = this->sibling;
673 	}
674 	return -EBUSY;
675 }
676 
677 /**
678  * find_resource_space - Find empty space in the resource tree
679  * @root:	Root resource descriptor
680  * @new:	Resource descriptor awaiting an empty resource space
681  * @size:	The minimum size of the empty space
682  * @constraint:	The range and alignment constraints to be met
683  *
684  * Finds an empty space under @root in the resource tree satisfying range and
685  * alignment @constraints.
686  *
687  * Return:
688  * * %0		- if successful, @new members start, end, and flags are altered.
689  * * %-EBUSY	- if no empty space was found.
690  */
691 int find_resource_space(struct resource *root, struct resource *new,
692 			resource_size_t size,
693 			struct resource_constraint *constraint)
694 {
695 	return  __find_resource_space(root, NULL, new, size, constraint);
696 }
697 EXPORT_SYMBOL_GPL(find_resource_space);
698 
699 /**
700  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
701  *	The resource will be relocated if the new size cannot be reallocated in the
702  *	current location.
703  *
704  * @root: root resource descriptor
705  * @old:  resource descriptor desired by caller
706  * @newsize: new size of the resource descriptor
707  * @constraint: the size and alignment constraints to be met.
708  */
709 static int reallocate_resource(struct resource *root, struct resource *old,
710 			       resource_size_t newsize,
711 			       struct resource_constraint *constraint)
712 {
713 	int err=0;
714 	struct resource new = *old;
715 	struct resource *conflict;
716 
717 	write_lock(&resource_lock);
718 
719 	if ((err = __find_resource_space(root, old, &new, newsize, constraint)))
720 		goto out;
721 
722 	if (resource_contains(&new, old)) {
723 		old->start = new.start;
724 		old->end = new.end;
725 		goto out;
726 	}
727 
728 	if (old->child) {
729 		err = -EBUSY;
730 		goto out;
731 	}
732 
733 	if (resource_contains(old, &new)) {
734 		old->start = new.start;
735 		old->end = new.end;
736 	} else {
737 		__release_resource(old, true);
738 		*old = new;
739 		conflict = __request_resource(root, old);
740 		BUG_ON(conflict);
741 	}
742 out:
743 	write_unlock(&resource_lock);
744 	return err;
745 }
746 
747 
748 /**
749  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
750  * 	The resource will be reallocated with a new size if it was already allocated
751  * @root: root resource descriptor
752  * @new: resource descriptor desired by caller
753  * @size: requested resource region size
754  * @min: minimum boundary to allocate
755  * @max: maximum boundary to allocate
756  * @align: alignment requested, in bytes
757  * @alignf: alignment function, optional, called if not NULL
758  * @alignf_data: arbitrary data to pass to the @alignf function
759  */
760 int allocate_resource(struct resource *root, struct resource *new,
761 		      resource_size_t size, resource_size_t min,
762 		      resource_size_t max, resource_size_t align,
763 		      resource_alignf alignf,
764 		      void *alignf_data)
765 {
766 	int err;
767 	struct resource_constraint constraint;
768 
769 	constraint.min = min;
770 	constraint.max = max;
771 	constraint.align = align;
772 	constraint.alignf = alignf;
773 	constraint.alignf_data = alignf_data;
774 
775 	if ( new->parent ) {
776 		/* resource is already allocated, try reallocating with
777 		   the new constraints */
778 		return reallocate_resource(root, new, size, &constraint);
779 	}
780 
781 	write_lock(&resource_lock);
782 	err = find_resource_space(root, new, size, &constraint);
783 	if (err >= 0 && __request_resource(root, new))
784 		err = -EBUSY;
785 	write_unlock(&resource_lock);
786 	return err;
787 }
788 
789 EXPORT_SYMBOL(allocate_resource);
790 
791 /**
792  * lookup_resource - find an existing resource by a resource start address
793  * @root: root resource descriptor
794  * @start: resource start address
795  *
796  * Returns a pointer to the resource if found, NULL otherwise
797  */
798 struct resource *lookup_resource(struct resource *root, resource_size_t start)
799 {
800 	struct resource *res;
801 
802 	read_lock(&resource_lock);
803 	for (res = root->child; res; res = res->sibling) {
804 		if (res->start == start)
805 			break;
806 	}
807 	read_unlock(&resource_lock);
808 
809 	return res;
810 }
811 
812 /*
813  * Insert a resource into the resource tree. If successful, return NULL,
814  * otherwise return the conflicting resource (compare to __request_resource())
815  */
816 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
817 {
818 	struct resource *first, *next;
819 
820 	for (;; parent = first) {
821 		first = __request_resource(parent, new);
822 		if (!first)
823 			return first;
824 
825 		if (first == parent)
826 			return first;
827 		if (WARN_ON(first == new))	/* duplicated insertion */
828 			return first;
829 
830 		if ((first->start > new->start) || (first->end < new->end))
831 			break;
832 		if ((first->start == new->start) && (first->end == new->end))
833 			break;
834 	}
835 
836 	for (next = first; ; next = next->sibling) {
837 		/* Partial overlap? Bad, and unfixable */
838 		if (next->start < new->start || next->end > new->end)
839 			return next;
840 		if (!next->sibling)
841 			break;
842 		if (next->sibling->start > new->end)
843 			break;
844 	}
845 
846 	new->parent = parent;
847 	new->sibling = next->sibling;
848 	new->child = first;
849 
850 	next->sibling = NULL;
851 	for (next = first; next; next = next->sibling)
852 		next->parent = new;
853 
854 	if (parent->child == first) {
855 		parent->child = new;
856 	} else {
857 		next = parent->child;
858 		while (next->sibling != first)
859 			next = next->sibling;
860 		next->sibling = new;
861 	}
862 	return NULL;
863 }
864 
865 /**
866  * insert_resource_conflict - Inserts resource in the resource tree
867  * @parent: parent of the new resource
868  * @new: new resource to insert
869  *
870  * Returns 0 on success, conflict resource if the resource can't be inserted.
871  *
872  * This function is equivalent to request_resource_conflict when no conflict
873  * happens. If a conflict happens, and the conflicting resources
874  * entirely fit within the range of the new resource, then the new
875  * resource is inserted and the conflicting resources become children of
876  * the new resource.
877  *
878  * This function is intended for producers of resources, such as FW modules
879  * and bus drivers.
880  */
881 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
882 {
883 	struct resource *conflict;
884 
885 	write_lock(&resource_lock);
886 	conflict = __insert_resource(parent, new);
887 	write_unlock(&resource_lock);
888 	return conflict;
889 }
890 
891 /**
892  * insert_resource - Inserts a resource in the resource tree
893  * @parent: parent of the new resource
894  * @new: new resource to insert
895  *
896  * Returns 0 on success, -EBUSY if the resource can't be inserted.
897  *
898  * This function is intended for producers of resources, such as FW modules
899  * and bus drivers.
900  */
901 int insert_resource(struct resource *parent, struct resource *new)
902 {
903 	struct resource *conflict;
904 
905 	conflict = insert_resource_conflict(parent, new);
906 	return conflict ? -EBUSY : 0;
907 }
908 EXPORT_SYMBOL_GPL(insert_resource);
909 
910 /**
911  * insert_resource_expand_to_fit - Insert a resource into the resource tree
912  * @root: root resource descriptor
913  * @new: new resource to insert
914  *
915  * Insert a resource into the resource tree, possibly expanding it in order
916  * to make it encompass any conflicting resources.
917  */
918 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
919 {
920 	if (new->parent)
921 		return;
922 
923 	write_lock(&resource_lock);
924 	for (;;) {
925 		struct resource *conflict;
926 
927 		conflict = __insert_resource(root, new);
928 		if (!conflict)
929 			break;
930 		if (conflict == root)
931 			break;
932 
933 		/* Ok, expand resource to cover the conflict, then try again .. */
934 		if (conflict->start < new->start)
935 			new->start = conflict->start;
936 		if (conflict->end > new->end)
937 			new->end = conflict->end;
938 
939 		pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
940 	}
941 	write_unlock(&resource_lock);
942 }
943 /*
944  * Not for general consumption, only early boot memory map parsing, PCI
945  * resource discovery, and late discovery of CXL resources are expected
946  * to use this interface. The former are built-in and only the latter,
947  * CXL, is a module.
948  */
949 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
950 
951 /**
952  * remove_resource - Remove a resource in the resource tree
953  * @old: resource to remove
954  *
955  * Returns 0 on success, -EINVAL if the resource is not valid.
956  *
957  * This function removes a resource previously inserted by insert_resource()
958  * or insert_resource_conflict(), and moves the children (if any) up to
959  * where they were before.  insert_resource() and insert_resource_conflict()
960  * insert a new resource, and move any conflicting resources down to the
961  * children of the new resource.
962  *
963  * insert_resource(), insert_resource_conflict() and remove_resource() are
964  * intended for producers of resources, such as FW modules and bus drivers.
965  */
966 int remove_resource(struct resource *old)
967 {
968 	int retval;
969 
970 	write_lock(&resource_lock);
971 	retval = __release_resource(old, false);
972 	write_unlock(&resource_lock);
973 	return retval;
974 }
975 EXPORT_SYMBOL_GPL(remove_resource);
976 
977 static int __adjust_resource(struct resource *res, resource_size_t start,
978 				resource_size_t size)
979 {
980 	struct resource *tmp, *parent = res->parent;
981 	resource_size_t end = start + size - 1;
982 	int result = -EBUSY;
983 
984 	if (!parent)
985 		goto skip;
986 
987 	if ((start < parent->start) || (end > parent->end))
988 		goto out;
989 
990 	if (res->sibling && (res->sibling->start <= end))
991 		goto out;
992 
993 	tmp = parent->child;
994 	if (tmp != res) {
995 		while (tmp->sibling != res)
996 			tmp = tmp->sibling;
997 		if (start <= tmp->end)
998 			goto out;
999 	}
1000 
1001 skip:
1002 	for (tmp = res->child; tmp; tmp = tmp->sibling)
1003 		if ((tmp->start < start) || (tmp->end > end))
1004 			goto out;
1005 
1006 	res->start = start;
1007 	res->end = end;
1008 	result = 0;
1009 
1010  out:
1011 	return result;
1012 }
1013 
1014 /**
1015  * adjust_resource - modify a resource's start and size
1016  * @res: resource to modify
1017  * @start: new start value
1018  * @size: new size
1019  *
1020  * Given an existing resource, change its start and size to match the
1021  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1022  * Existing children of the resource are assumed to be immutable.
1023  */
1024 int adjust_resource(struct resource *res, resource_size_t start,
1025 		    resource_size_t size)
1026 {
1027 	int result;
1028 
1029 	write_lock(&resource_lock);
1030 	result = __adjust_resource(res, start, size);
1031 	write_unlock(&resource_lock);
1032 	return result;
1033 }
1034 EXPORT_SYMBOL(adjust_resource);
1035 
1036 static void __init
1037 __reserve_region_with_split(struct resource *root, resource_size_t start,
1038 			    resource_size_t end, const char *name)
1039 {
1040 	struct resource *parent = root;
1041 	struct resource *conflict;
1042 	struct resource *res = alloc_resource(GFP_ATOMIC);
1043 	struct resource *next_res = NULL;
1044 	int type = resource_type(root);
1045 
1046 	if (!res)
1047 		return;
1048 
1049 	res->name = name;
1050 	res->start = start;
1051 	res->end = end;
1052 	res->flags = type | IORESOURCE_BUSY;
1053 	res->desc = IORES_DESC_NONE;
1054 
1055 	while (1) {
1056 
1057 		conflict = __request_resource(parent, res);
1058 		if (!conflict) {
1059 			if (!next_res)
1060 				break;
1061 			res = next_res;
1062 			next_res = NULL;
1063 			continue;
1064 		}
1065 
1066 		/* conflict covered whole area */
1067 		if (conflict->start <= res->start &&
1068 				conflict->end >= res->end) {
1069 			free_resource(res);
1070 			WARN_ON(next_res);
1071 			break;
1072 		}
1073 
1074 		/* failed, split and try again */
1075 		if (conflict->start > res->start) {
1076 			end = res->end;
1077 			res->end = conflict->start - 1;
1078 			if (conflict->end < end) {
1079 				next_res = alloc_resource(GFP_ATOMIC);
1080 				if (!next_res) {
1081 					free_resource(res);
1082 					break;
1083 				}
1084 				next_res->name = name;
1085 				next_res->start = conflict->end + 1;
1086 				next_res->end = end;
1087 				next_res->flags = type | IORESOURCE_BUSY;
1088 				next_res->desc = IORES_DESC_NONE;
1089 			}
1090 		} else {
1091 			res->start = conflict->end + 1;
1092 		}
1093 	}
1094 
1095 }
1096 
1097 void __init
1098 reserve_region_with_split(struct resource *root, resource_size_t start,
1099 			  resource_size_t end, const char *name)
1100 {
1101 	int abort = 0;
1102 
1103 	write_lock(&resource_lock);
1104 	if (root->start > start || root->end < end) {
1105 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1106 		       (unsigned long long)start, (unsigned long long)end,
1107 		       root);
1108 		if (start > root->end || end < root->start)
1109 			abort = 1;
1110 		else {
1111 			if (end > root->end)
1112 				end = root->end;
1113 			if (start < root->start)
1114 				start = root->start;
1115 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1116 			       (unsigned long long)start,
1117 			       (unsigned long long)end);
1118 		}
1119 		dump_stack();
1120 	}
1121 	if (!abort)
1122 		__reserve_region_with_split(root, start, end, name);
1123 	write_unlock(&resource_lock);
1124 }
1125 
1126 /**
1127  * resource_alignment - calculate resource's alignment
1128  * @res: resource pointer
1129  *
1130  * Returns alignment on success, 0 (invalid alignment) on failure.
1131  */
1132 resource_size_t resource_alignment(struct resource *res)
1133 {
1134 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1135 	case IORESOURCE_SIZEALIGN:
1136 		return resource_size(res);
1137 	case IORESOURCE_STARTALIGN:
1138 		return res->start;
1139 	default:
1140 		return 0;
1141 	}
1142 }
1143 
1144 /*
1145  * This is compatibility stuff for IO resources.
1146  *
1147  * Note how this, unlike the above, knows about
1148  * the IO flag meanings (busy etc).
1149  *
1150  * request_region creates a new busy region.
1151  *
1152  * release_region releases a matching busy region.
1153  */
1154 
1155 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1156 
1157 static struct inode *iomem_inode;
1158 
1159 #ifdef CONFIG_IO_STRICT_DEVMEM
1160 static void revoke_iomem(struct resource *res)
1161 {
1162 	/* pairs with smp_store_release() in iomem_init_inode() */
1163 	struct inode *inode = smp_load_acquire(&iomem_inode);
1164 
1165 	/*
1166 	 * Check that the initialization has completed. Losing the race
1167 	 * is ok because it means drivers are claiming resources before
1168 	 * the fs_initcall level of init and prevent iomem_get_mapping users
1169 	 * from establishing mappings.
1170 	 */
1171 	if (!inode)
1172 		return;
1173 
1174 	/*
1175 	 * The expectation is that the driver has successfully marked
1176 	 * the resource busy by this point, so devmem_is_allowed()
1177 	 * should start returning false, however for performance this
1178 	 * does not iterate the entire resource range.
1179 	 */
1180 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1181 	    devmem_is_allowed(PHYS_PFN(res->end))) {
1182 		/*
1183 		 * *cringe* iomem=relaxed says "go ahead, what's the
1184 		 * worst that can happen?"
1185 		 */
1186 		return;
1187 	}
1188 
1189 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1190 }
1191 #else
1192 static void revoke_iomem(struct resource *res) {}
1193 #endif
1194 
1195 struct address_space *iomem_get_mapping(void)
1196 {
1197 	/*
1198 	 * This function is only called from file open paths, hence guaranteed
1199 	 * that fs_initcalls have completed and no need to check for NULL. But
1200 	 * since revoke_iomem can be called before the initcall we still need
1201 	 * the barrier to appease checkers.
1202 	 */
1203 	return smp_load_acquire(&iomem_inode)->i_mapping;
1204 }
1205 
1206 static int __request_region_locked(struct resource *res, struct resource *parent,
1207 				   resource_size_t start, resource_size_t n,
1208 				   const char *name, int flags)
1209 {
1210 	DECLARE_WAITQUEUE(wait, current);
1211 
1212 	res->name = name;
1213 	res->start = start;
1214 	res->end = start + n - 1;
1215 
1216 	for (;;) {
1217 		struct resource *conflict;
1218 
1219 		res->flags = resource_type(parent) | resource_ext_type(parent);
1220 		res->flags |= IORESOURCE_BUSY | flags;
1221 		res->desc = parent->desc;
1222 
1223 		conflict = __request_resource(parent, res);
1224 		if (!conflict)
1225 			break;
1226 		/*
1227 		 * mm/hmm.c reserves physical addresses which then
1228 		 * become unavailable to other users.  Conflicts are
1229 		 * not expected.  Warn to aid debugging if encountered.
1230 		 */
1231 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1232 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1233 				conflict->name, conflict, res);
1234 		}
1235 		if (conflict != parent) {
1236 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1237 				parent = conflict;
1238 				continue;
1239 			}
1240 		}
1241 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1242 			add_wait_queue(&muxed_resource_wait, &wait);
1243 			write_unlock(&resource_lock);
1244 			set_current_state(TASK_UNINTERRUPTIBLE);
1245 			schedule();
1246 			remove_wait_queue(&muxed_resource_wait, &wait);
1247 			write_lock(&resource_lock);
1248 			continue;
1249 		}
1250 		/* Uhhuh, that didn't work out.. */
1251 		return -EBUSY;
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 /**
1258  * __request_region - create a new busy resource region
1259  * @parent: parent resource descriptor
1260  * @start: resource start address
1261  * @n: resource region size
1262  * @name: reserving caller's ID string
1263  * @flags: IO resource flags
1264  */
1265 struct resource *__request_region(struct resource *parent,
1266 				  resource_size_t start, resource_size_t n,
1267 				  const char *name, int flags)
1268 {
1269 	struct resource *res = alloc_resource(GFP_KERNEL);
1270 	int ret;
1271 
1272 	if (!res)
1273 		return NULL;
1274 
1275 	write_lock(&resource_lock);
1276 	ret = __request_region_locked(res, parent, start, n, name, flags);
1277 	write_unlock(&resource_lock);
1278 
1279 	if (ret) {
1280 		free_resource(res);
1281 		return NULL;
1282 	}
1283 
1284 	if (parent == &iomem_resource)
1285 		revoke_iomem(res);
1286 
1287 	return res;
1288 }
1289 EXPORT_SYMBOL(__request_region);
1290 
1291 /**
1292  * __release_region - release a previously reserved resource region
1293  * @parent: parent resource descriptor
1294  * @start: resource start address
1295  * @n: resource region size
1296  *
1297  * The described resource region must match a currently busy region.
1298  */
1299 void __release_region(struct resource *parent, resource_size_t start,
1300 		      resource_size_t n)
1301 {
1302 	struct resource **p;
1303 	resource_size_t end;
1304 
1305 	p = &parent->child;
1306 	end = start + n - 1;
1307 
1308 	write_lock(&resource_lock);
1309 
1310 	for (;;) {
1311 		struct resource *res = *p;
1312 
1313 		if (!res)
1314 			break;
1315 		if (res->start <= start && res->end >= end) {
1316 			if (!(res->flags & IORESOURCE_BUSY)) {
1317 				p = &res->child;
1318 				continue;
1319 			}
1320 			if (res->start != start || res->end != end)
1321 				break;
1322 			*p = res->sibling;
1323 			write_unlock(&resource_lock);
1324 			if (res->flags & IORESOURCE_MUXED)
1325 				wake_up(&muxed_resource_wait);
1326 			free_resource(res);
1327 			return;
1328 		}
1329 		p = &res->sibling;
1330 	}
1331 
1332 	write_unlock(&resource_lock);
1333 
1334 	pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1335 }
1336 EXPORT_SYMBOL(__release_region);
1337 
1338 #ifdef CONFIG_MEMORY_HOTREMOVE
1339 /**
1340  * release_mem_region_adjustable - release a previously reserved memory region
1341  * @start: resource start address
1342  * @size: resource region size
1343  *
1344  * This interface is intended for memory hot-delete.  The requested region
1345  * is released from a currently busy memory resource.  The requested region
1346  * must either match exactly or fit into a single busy resource entry.  In
1347  * the latter case, the remaining resource is adjusted accordingly.
1348  * Existing children of the busy memory resource must be immutable in the
1349  * request.
1350  *
1351  * Note:
1352  * - Additional release conditions, such as overlapping region, can be
1353  *   supported after they are confirmed as valid cases.
1354  * - When a busy memory resource gets split into two entries, the code
1355  *   assumes that all children remain in the lower address entry for
1356  *   simplicity.  Enhance this logic when necessary.
1357  */
1358 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1359 {
1360 	struct resource *parent = &iomem_resource;
1361 	struct resource *new_res = NULL;
1362 	bool alloc_nofail = false;
1363 	struct resource **p;
1364 	struct resource *res;
1365 	resource_size_t end;
1366 
1367 	end = start + size - 1;
1368 	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1369 		return;
1370 
1371 	/*
1372 	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1373 	 * just before releasing the region. This is highly unlikely to
1374 	 * fail - let's play save and make it never fail as the caller cannot
1375 	 * perform any error handling (e.g., trying to re-add memory will fail
1376 	 * similarly).
1377 	 */
1378 retry:
1379 	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1380 
1381 	p = &parent->child;
1382 	write_lock(&resource_lock);
1383 
1384 	while ((res = *p)) {
1385 		if (res->start >= end)
1386 			break;
1387 
1388 		/* look for the next resource if it does not fit into */
1389 		if (res->start > start || res->end < end) {
1390 			p = &res->sibling;
1391 			continue;
1392 		}
1393 
1394 		if (!(res->flags & IORESOURCE_MEM))
1395 			break;
1396 
1397 		if (!(res->flags & IORESOURCE_BUSY)) {
1398 			p = &res->child;
1399 			continue;
1400 		}
1401 
1402 		/* found the target resource; let's adjust accordingly */
1403 		if (res->start == start && res->end == end) {
1404 			/* free the whole entry */
1405 			*p = res->sibling;
1406 			free_resource(res);
1407 		} else if (res->start == start && res->end != end) {
1408 			/* adjust the start */
1409 			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1410 						       res->end - end));
1411 		} else if (res->start != start && res->end == end) {
1412 			/* adjust the end */
1413 			WARN_ON_ONCE(__adjust_resource(res, res->start,
1414 						       start - res->start));
1415 		} else {
1416 			/* split into two entries - we need a new resource */
1417 			if (!new_res) {
1418 				new_res = alloc_resource(GFP_ATOMIC);
1419 				if (!new_res) {
1420 					alloc_nofail = true;
1421 					write_unlock(&resource_lock);
1422 					goto retry;
1423 				}
1424 			}
1425 			new_res->name = res->name;
1426 			new_res->start = end + 1;
1427 			new_res->end = res->end;
1428 			new_res->flags = res->flags;
1429 			new_res->desc = res->desc;
1430 			new_res->parent = res->parent;
1431 			new_res->sibling = res->sibling;
1432 			new_res->child = NULL;
1433 
1434 			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1435 							   start - res->start)))
1436 				break;
1437 			res->sibling = new_res;
1438 			new_res = NULL;
1439 		}
1440 
1441 		break;
1442 	}
1443 
1444 	write_unlock(&resource_lock);
1445 	free_resource(new_res);
1446 }
1447 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1448 
1449 #ifdef CONFIG_MEMORY_HOTPLUG
1450 static bool system_ram_resources_mergeable(struct resource *r1,
1451 					   struct resource *r2)
1452 {
1453 	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1454 	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1455 	       r1->name == r2->name && r1->desc == r2->desc &&
1456 	       !r1->child && !r2->child;
1457 }
1458 
1459 /**
1460  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1461  *	merge it with adjacent, mergeable resources
1462  * @res: resource descriptor
1463  *
1464  * This interface is intended for memory hotplug, whereby lots of contiguous
1465  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1466  * the actual resource boundaries are not of interest (e.g., it might be
1467  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1468  * same parent, and that don't have any children are considered. All mergeable
1469  * resources must be immutable during the request.
1470  *
1471  * Note:
1472  * - The caller has to make sure that no pointers to resources that are
1473  *   marked mergeable are used anymore after this call - the resource might
1474  *   be freed and the pointer might be stale!
1475  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1476  */
1477 void merge_system_ram_resource(struct resource *res)
1478 {
1479 	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1480 	struct resource *cur;
1481 
1482 	if (WARN_ON_ONCE((res->flags & flags) != flags))
1483 		return;
1484 
1485 	write_lock(&resource_lock);
1486 	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1487 
1488 	/* Try to merge with next item in the list. */
1489 	cur = res->sibling;
1490 	if (cur && system_ram_resources_mergeable(res, cur)) {
1491 		res->end = cur->end;
1492 		res->sibling = cur->sibling;
1493 		free_resource(cur);
1494 	}
1495 
1496 	/* Try to merge with previous item in the list. */
1497 	cur = res->parent->child;
1498 	while (cur && cur->sibling != res)
1499 		cur = cur->sibling;
1500 	if (cur && system_ram_resources_mergeable(cur, res)) {
1501 		cur->end = res->end;
1502 		cur->sibling = res->sibling;
1503 		free_resource(res);
1504 	}
1505 	write_unlock(&resource_lock);
1506 }
1507 #endif	/* CONFIG_MEMORY_HOTPLUG */
1508 
1509 /*
1510  * Managed region resource
1511  */
1512 static void devm_resource_release(struct device *dev, void *ptr)
1513 {
1514 	struct resource **r = ptr;
1515 
1516 	release_resource(*r);
1517 }
1518 
1519 /**
1520  * devm_request_resource() - request and reserve an I/O or memory resource
1521  * @dev: device for which to request the resource
1522  * @root: root of the resource tree from which to request the resource
1523  * @new: descriptor of the resource to request
1524  *
1525  * This is a device-managed version of request_resource(). There is usually
1526  * no need to release resources requested by this function explicitly since
1527  * that will be taken care of when the device is unbound from its driver.
1528  * If for some reason the resource needs to be released explicitly, because
1529  * of ordering issues for example, drivers must call devm_release_resource()
1530  * rather than the regular release_resource().
1531  *
1532  * When a conflict is detected between any existing resources and the newly
1533  * requested resource, an error message will be printed.
1534  *
1535  * Returns 0 on success or a negative error code on failure.
1536  */
1537 int devm_request_resource(struct device *dev, struct resource *root,
1538 			  struct resource *new)
1539 {
1540 	struct resource *conflict, **ptr;
1541 
1542 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1543 	if (!ptr)
1544 		return -ENOMEM;
1545 
1546 	*ptr = new;
1547 
1548 	conflict = request_resource_conflict(root, new);
1549 	if (conflict) {
1550 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1551 			new, conflict->name, conflict);
1552 		devres_free(ptr);
1553 		return -EBUSY;
1554 	}
1555 
1556 	devres_add(dev, ptr);
1557 	return 0;
1558 }
1559 EXPORT_SYMBOL(devm_request_resource);
1560 
1561 static int devm_resource_match(struct device *dev, void *res, void *data)
1562 {
1563 	struct resource **ptr = res;
1564 
1565 	return *ptr == data;
1566 }
1567 
1568 /**
1569  * devm_release_resource() - release a previously requested resource
1570  * @dev: device for which to release the resource
1571  * @new: descriptor of the resource to release
1572  *
1573  * Releases a resource previously requested using devm_request_resource().
1574  */
1575 void devm_release_resource(struct device *dev, struct resource *new)
1576 {
1577 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1578 			       new));
1579 }
1580 EXPORT_SYMBOL(devm_release_resource);
1581 
1582 struct region_devres {
1583 	struct resource *parent;
1584 	resource_size_t start;
1585 	resource_size_t n;
1586 };
1587 
1588 static void devm_region_release(struct device *dev, void *res)
1589 {
1590 	struct region_devres *this = res;
1591 
1592 	__release_region(this->parent, this->start, this->n);
1593 }
1594 
1595 static int devm_region_match(struct device *dev, void *res, void *match_data)
1596 {
1597 	struct region_devres *this = res, *match = match_data;
1598 
1599 	return this->parent == match->parent &&
1600 		this->start == match->start && this->n == match->n;
1601 }
1602 
1603 struct resource *
1604 __devm_request_region(struct device *dev, struct resource *parent,
1605 		      resource_size_t start, resource_size_t n, const char *name)
1606 {
1607 	struct region_devres *dr = NULL;
1608 	struct resource *res;
1609 
1610 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1611 			  GFP_KERNEL);
1612 	if (!dr)
1613 		return NULL;
1614 
1615 	dr->parent = parent;
1616 	dr->start = start;
1617 	dr->n = n;
1618 
1619 	res = __request_region(parent, start, n, name, 0);
1620 	if (res)
1621 		devres_add(dev, dr);
1622 	else
1623 		devres_free(dr);
1624 
1625 	return res;
1626 }
1627 EXPORT_SYMBOL(__devm_request_region);
1628 
1629 void __devm_release_region(struct device *dev, struct resource *parent,
1630 			   resource_size_t start, resource_size_t n)
1631 {
1632 	struct region_devres match_data = { parent, start, n };
1633 
1634 	__release_region(parent, start, n);
1635 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1636 			       &match_data));
1637 }
1638 EXPORT_SYMBOL(__devm_release_region);
1639 
1640 /*
1641  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1642  */
1643 #define MAXRESERVE 4
1644 static int __init reserve_setup(char *str)
1645 {
1646 	static int reserved;
1647 	static struct resource reserve[MAXRESERVE];
1648 
1649 	for (;;) {
1650 		unsigned int io_start, io_num;
1651 		int x = reserved;
1652 		struct resource *parent;
1653 
1654 		if (get_option(&str, &io_start) != 2)
1655 			break;
1656 		if (get_option(&str, &io_num) == 0)
1657 			break;
1658 		if (x < MAXRESERVE) {
1659 			struct resource *res = reserve + x;
1660 
1661 			/*
1662 			 * If the region starts below 0x10000, we assume it's
1663 			 * I/O port space; otherwise assume it's memory.
1664 			 */
1665 			if (io_start < 0x10000) {
1666 				res->flags = IORESOURCE_IO;
1667 				parent = &ioport_resource;
1668 			} else {
1669 				res->flags = IORESOURCE_MEM;
1670 				parent = &iomem_resource;
1671 			}
1672 			res->name = "reserved";
1673 			res->start = io_start;
1674 			res->end = io_start + io_num - 1;
1675 			res->flags |= IORESOURCE_BUSY;
1676 			res->desc = IORES_DESC_NONE;
1677 			res->child = NULL;
1678 			if (request_resource(parent, res) == 0)
1679 				reserved = x+1;
1680 		}
1681 	}
1682 	return 1;
1683 }
1684 __setup("reserve=", reserve_setup);
1685 
1686 /*
1687  * Check if the requested addr and size spans more than any slot in the
1688  * iomem resource tree.
1689  */
1690 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1691 {
1692 	resource_size_t end = addr + size - 1;
1693 	struct resource *p;
1694 	int err = 0;
1695 
1696 	read_lock(&resource_lock);
1697 	for_each_resource(&iomem_resource, p, false) {
1698 		/*
1699 		 * We can probably skip the resources without
1700 		 * IORESOURCE_IO attribute?
1701 		 */
1702 		if (p->start > end)
1703 			continue;
1704 		if (p->end < addr)
1705 			continue;
1706 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1707 		    PFN_DOWN(p->end) >= PFN_DOWN(end))
1708 			continue;
1709 		/*
1710 		 * if a resource is "BUSY", it's not a hardware resource
1711 		 * but a driver mapping of such a resource; we don't want
1712 		 * to warn for those; some drivers legitimately map only
1713 		 * partial hardware resources. (example: vesafb)
1714 		 */
1715 		if (p->flags & IORESOURCE_BUSY)
1716 			continue;
1717 
1718 		pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1719 			&addr, &end, p->name, p);
1720 		err = -1;
1721 		break;
1722 	}
1723 	read_unlock(&resource_lock);
1724 
1725 	return err;
1726 }
1727 
1728 #ifdef CONFIG_STRICT_DEVMEM
1729 static int strict_iomem_checks = 1;
1730 #else
1731 static int strict_iomem_checks;
1732 #endif
1733 
1734 /*
1735  * Check if an address is exclusive to the kernel and must not be mapped to
1736  * user space, for example, via /dev/mem.
1737  *
1738  * Returns true if exclusive to the kernel, otherwise returns false.
1739  */
1740 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1741 {
1742 	const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1743 						  IORESOURCE_EXCLUSIVE;
1744 	bool skip_children = false, err = false;
1745 	struct resource *p;
1746 
1747 	read_lock(&resource_lock);
1748 	for_each_resource(root, p, skip_children) {
1749 		if (p->start >= addr + size)
1750 			break;
1751 		if (p->end < addr) {
1752 			skip_children = true;
1753 			continue;
1754 		}
1755 		skip_children = false;
1756 
1757 		/*
1758 		 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1759 		 * IORESOURCE_EXCLUSIVE is set, even if they
1760 		 * are not busy and even if "iomem=relaxed" is set. The
1761 		 * responsible driver dynamically adds/removes system RAM within
1762 		 * such an area and uncontrolled access is dangerous.
1763 		 */
1764 		if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1765 			err = true;
1766 			break;
1767 		}
1768 
1769 		/*
1770 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1771 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1772 		 * resource is busy.
1773 		 */
1774 		if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1775 			continue;
1776 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1777 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1778 			err = true;
1779 			break;
1780 		}
1781 	}
1782 	read_unlock(&resource_lock);
1783 
1784 	return err;
1785 }
1786 
1787 bool iomem_is_exclusive(u64 addr)
1788 {
1789 	return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1790 				     PAGE_SIZE);
1791 }
1792 
1793 struct resource_entry *resource_list_create_entry(struct resource *res,
1794 						  size_t extra_size)
1795 {
1796 	struct resource_entry *entry;
1797 
1798 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1799 	if (entry) {
1800 		INIT_LIST_HEAD(&entry->node);
1801 		entry->res = res ? res : &entry->__res;
1802 	}
1803 
1804 	return entry;
1805 }
1806 EXPORT_SYMBOL(resource_list_create_entry);
1807 
1808 void resource_list_free(struct list_head *head)
1809 {
1810 	struct resource_entry *entry, *tmp;
1811 
1812 	list_for_each_entry_safe(entry, tmp, head, node)
1813 		resource_list_destroy_entry(entry);
1814 }
1815 EXPORT_SYMBOL(resource_list_free);
1816 
1817 #ifdef CONFIG_GET_FREE_REGION
1818 #define GFR_DESCENDING		(1UL << 0)
1819 #define GFR_REQUEST_REGION	(1UL << 1)
1820 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
1821 
1822 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1823 				 resource_size_t align, unsigned long flags)
1824 {
1825 	if (flags & GFR_DESCENDING) {
1826 		resource_size_t end;
1827 
1828 		end = min_t(resource_size_t, base->end,
1829 			    (1ULL << MAX_PHYSMEM_BITS) - 1);
1830 		return end - size + 1;
1831 	}
1832 
1833 	return ALIGN(base->start, align);
1834 }
1835 
1836 static bool gfr_continue(struct resource *base, resource_size_t addr,
1837 			 resource_size_t size, unsigned long flags)
1838 {
1839 	if (flags & GFR_DESCENDING)
1840 		return addr > size && addr >= base->start;
1841 	/*
1842 	 * In the ascend case be careful that the last increment by
1843 	 * @size did not wrap 0.
1844 	 */
1845 	return addr > addr - size &&
1846 	       addr <= min_t(resource_size_t, base->end,
1847 			     (1ULL << MAX_PHYSMEM_BITS) - 1);
1848 }
1849 
1850 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1851 				unsigned long flags)
1852 {
1853 	if (flags & GFR_DESCENDING)
1854 		return addr - size;
1855 	return addr + size;
1856 }
1857 
1858 static void remove_free_mem_region(void *_res)
1859 {
1860 	struct resource *res = _res;
1861 
1862 	if (res->parent)
1863 		remove_resource(res);
1864 	free_resource(res);
1865 }
1866 
1867 static struct resource *
1868 get_free_mem_region(struct device *dev, struct resource *base,
1869 		    resource_size_t size, const unsigned long align,
1870 		    const char *name, const unsigned long desc,
1871 		    const unsigned long flags)
1872 {
1873 	resource_size_t addr;
1874 	struct resource *res;
1875 	struct region_devres *dr = NULL;
1876 
1877 	size = ALIGN(size, align);
1878 
1879 	res = alloc_resource(GFP_KERNEL);
1880 	if (!res)
1881 		return ERR_PTR(-ENOMEM);
1882 
1883 	if (dev && (flags & GFR_REQUEST_REGION)) {
1884 		dr = devres_alloc(devm_region_release,
1885 				sizeof(struct region_devres), GFP_KERNEL);
1886 		if (!dr) {
1887 			free_resource(res);
1888 			return ERR_PTR(-ENOMEM);
1889 		}
1890 	} else if (dev) {
1891 		if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1892 			return ERR_PTR(-ENOMEM);
1893 	}
1894 
1895 	write_lock(&resource_lock);
1896 	for (addr = gfr_start(base, size, align, flags);
1897 	     gfr_continue(base, addr, align, flags);
1898 	     addr = gfr_next(addr, align, flags)) {
1899 		if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1900 		    REGION_DISJOINT)
1901 			continue;
1902 
1903 		if (flags & GFR_REQUEST_REGION) {
1904 			if (__request_region_locked(res, &iomem_resource, addr,
1905 						    size, name, 0))
1906 				break;
1907 
1908 			if (dev) {
1909 				dr->parent = &iomem_resource;
1910 				dr->start = addr;
1911 				dr->n = size;
1912 				devres_add(dev, dr);
1913 			}
1914 
1915 			res->desc = desc;
1916 			write_unlock(&resource_lock);
1917 
1918 
1919 			/*
1920 			 * A driver is claiming this region so revoke any
1921 			 * mappings.
1922 			 */
1923 			revoke_iomem(res);
1924 		} else {
1925 			res->start = addr;
1926 			res->end = addr + size - 1;
1927 			res->name = name;
1928 			res->desc = desc;
1929 			res->flags = IORESOURCE_MEM;
1930 
1931 			/*
1932 			 * Only succeed if the resource hosts an exclusive
1933 			 * range after the insert
1934 			 */
1935 			if (__insert_resource(base, res) || res->child)
1936 				break;
1937 
1938 			write_unlock(&resource_lock);
1939 		}
1940 
1941 		return res;
1942 	}
1943 	write_unlock(&resource_lock);
1944 
1945 	if (flags & GFR_REQUEST_REGION) {
1946 		free_resource(res);
1947 		devres_free(dr);
1948 	} else if (dev)
1949 		devm_release_action(dev, remove_free_mem_region, res);
1950 
1951 	return ERR_PTR(-ERANGE);
1952 }
1953 
1954 /**
1955  * devm_request_free_mem_region - find free region for device private memory
1956  *
1957  * @dev: device struct to bind the resource to
1958  * @size: size in bytes of the device memory to add
1959  * @base: resource tree to look in
1960  *
1961  * This function tries to find an empty range of physical address big enough to
1962  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1963  * memory, which in turn allocates struct pages.
1964  */
1965 struct resource *devm_request_free_mem_region(struct device *dev,
1966 		struct resource *base, unsigned long size)
1967 {
1968 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1969 
1970 	return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
1971 				   dev_name(dev),
1972 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1973 }
1974 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1975 
1976 struct resource *request_free_mem_region(struct resource *base,
1977 		unsigned long size, const char *name)
1978 {
1979 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1980 
1981 	return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
1982 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1983 }
1984 EXPORT_SYMBOL_GPL(request_free_mem_region);
1985 
1986 /**
1987  * alloc_free_mem_region - find a free region relative to @base
1988  * @base: resource that will parent the new resource
1989  * @size: size in bytes of memory to allocate from @base
1990  * @align: alignment requirements for the allocation
1991  * @name: resource name
1992  *
1993  * Buses like CXL, that can dynamically instantiate new memory regions,
1994  * need a method to allocate physical address space for those regions.
1995  * Allocate and insert a new resource to cover a free, unclaimed by a
1996  * descendant of @base, range in the span of @base.
1997  */
1998 struct resource *alloc_free_mem_region(struct resource *base,
1999 				       unsigned long size, unsigned long align,
2000 				       const char *name)
2001 {
2002 	/* Default of ascending direction and insert resource */
2003 	unsigned long flags = 0;
2004 
2005 	return get_free_mem_region(NULL, base, size, align, name,
2006 				   IORES_DESC_NONE, flags);
2007 }
2008 EXPORT_SYMBOL_NS_GPL(alloc_free_mem_region, CXL);
2009 #endif /* CONFIG_GET_FREE_REGION */
2010 
2011 static int __init strict_iomem(char *str)
2012 {
2013 	if (strstr(str, "relaxed"))
2014 		strict_iomem_checks = 0;
2015 	if (strstr(str, "strict"))
2016 		strict_iomem_checks = 1;
2017 	return 1;
2018 }
2019 
2020 static int iomem_fs_init_fs_context(struct fs_context *fc)
2021 {
2022 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2023 }
2024 
2025 static struct file_system_type iomem_fs_type = {
2026 	.name		= "iomem",
2027 	.owner		= THIS_MODULE,
2028 	.init_fs_context = iomem_fs_init_fs_context,
2029 	.kill_sb	= kill_anon_super,
2030 };
2031 
2032 static int __init iomem_init_inode(void)
2033 {
2034 	static struct vfsmount *iomem_vfs_mount;
2035 	static int iomem_fs_cnt;
2036 	struct inode *inode;
2037 	int rc;
2038 
2039 	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2040 	if (rc < 0) {
2041 		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2042 		return rc;
2043 	}
2044 
2045 	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2046 	if (IS_ERR(inode)) {
2047 		rc = PTR_ERR(inode);
2048 		pr_err("Cannot allocate inode for iomem: %d\n", rc);
2049 		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2050 		return rc;
2051 	}
2052 
2053 	/*
2054 	 * Publish iomem revocation inode initialized.
2055 	 * Pairs with smp_load_acquire() in revoke_iomem().
2056 	 */
2057 	smp_store_release(&iomem_inode, inode);
2058 
2059 	return 0;
2060 }
2061 
2062 fs_initcall(iomem_init_inode);
2063 
2064 __setup("iomem=", strict_iomem);
2065