1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/resource.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 7 * 8 * Arbitrary resource management. 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/export.h> 14 #include <linux/errno.h> 15 #include <linux/ioport.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/proc_fs.h> 21 #include <linux/pseudo_fs.h> 22 #include <linux/sched.h> 23 #include <linux/seq_file.h> 24 #include <linux/device.h> 25 #include <linux/pfn.h> 26 #include <linux/mm.h> 27 #include <linux/mount.h> 28 #include <linux/resource_ext.h> 29 #include <uapi/linux/magic.h> 30 #include <linux/string.h> 31 #include <linux/vmalloc.h> 32 #include <asm/io.h> 33 34 35 struct resource ioport_resource = { 36 .name = "PCI IO", 37 .start = 0, 38 .end = IO_SPACE_LIMIT, 39 .flags = IORESOURCE_IO, 40 }; 41 EXPORT_SYMBOL(ioport_resource); 42 43 struct resource iomem_resource = { 44 .name = "PCI mem", 45 .start = 0, 46 .end = -1, 47 .flags = IORESOURCE_MEM, 48 }; 49 EXPORT_SYMBOL(iomem_resource); 50 51 static DEFINE_RWLOCK(resource_lock); 52 53 static struct resource *next_resource(struct resource *p, bool skip_children) 54 { 55 if (!skip_children && p->child) 56 return p->child; 57 while (!p->sibling && p->parent) 58 p = p->parent; 59 return p->sibling; 60 } 61 62 #define for_each_resource(_root, _p, _skip_children) \ 63 for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children)) 64 65 #ifdef CONFIG_PROC_FS 66 67 enum { MAX_IORES_LEVEL = 5 }; 68 69 static void *r_start(struct seq_file *m, loff_t *pos) 70 __acquires(resource_lock) 71 { 72 struct resource *root = pde_data(file_inode(m->file)); 73 struct resource *p; 74 loff_t l = *pos; 75 76 read_lock(&resource_lock); 77 for_each_resource(root, p, false) { 78 if (l-- == 0) 79 break; 80 } 81 82 return p; 83 } 84 85 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 86 { 87 struct resource *p = v; 88 89 (*pos)++; 90 91 return (void *)next_resource(p, false); 92 } 93 94 static void r_stop(struct seq_file *m, void *v) 95 __releases(resource_lock) 96 { 97 read_unlock(&resource_lock); 98 } 99 100 static int r_show(struct seq_file *m, void *v) 101 { 102 struct resource *root = pde_data(file_inode(m->file)); 103 struct resource *r = v, *p; 104 unsigned long long start, end; 105 int width = root->end < 0x10000 ? 4 : 8; 106 int depth; 107 108 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 109 if (p->parent == root) 110 break; 111 112 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 113 start = r->start; 114 end = r->end; 115 } else { 116 start = end = 0; 117 } 118 119 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 120 depth * 2, "", 121 width, start, 122 width, end, 123 r->name ? r->name : "<BAD>"); 124 return 0; 125 } 126 127 static const struct seq_operations resource_op = { 128 .start = r_start, 129 .next = r_next, 130 .stop = r_stop, 131 .show = r_show, 132 }; 133 134 static int __init ioresources_init(void) 135 { 136 proc_create_seq_data("ioports", 0, NULL, &resource_op, 137 &ioport_resource); 138 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 139 return 0; 140 } 141 __initcall(ioresources_init); 142 143 #endif /* CONFIG_PROC_FS */ 144 145 static void free_resource(struct resource *res) 146 { 147 /** 148 * If the resource was allocated using memblock early during boot 149 * we'll leak it here: we can only return full pages back to the 150 * buddy and trying to be smart and reusing them eventually in 151 * alloc_resource() overcomplicates resource handling. 152 */ 153 if (res && PageSlab(virt_to_head_page(res))) 154 kfree(res); 155 } 156 157 static struct resource *alloc_resource(gfp_t flags) 158 { 159 return kzalloc(sizeof(struct resource), flags); 160 } 161 162 /* Return the conflict entry if you can't request it */ 163 static struct resource * __request_resource(struct resource *root, struct resource *new) 164 { 165 resource_size_t start = new->start; 166 resource_size_t end = new->end; 167 struct resource *tmp, **p; 168 169 if (end < start) 170 return root; 171 if (start < root->start) 172 return root; 173 if (end > root->end) 174 return root; 175 p = &root->child; 176 for (;;) { 177 tmp = *p; 178 if (!tmp || tmp->start > end) { 179 new->sibling = tmp; 180 *p = new; 181 new->parent = root; 182 return NULL; 183 } 184 p = &tmp->sibling; 185 if (tmp->end < start) 186 continue; 187 return tmp; 188 } 189 } 190 191 static int __release_resource(struct resource *old, bool release_child) 192 { 193 struct resource *tmp, **p, *chd; 194 195 p = &old->parent->child; 196 for (;;) { 197 tmp = *p; 198 if (!tmp) 199 break; 200 if (tmp == old) { 201 if (release_child || !(tmp->child)) { 202 *p = tmp->sibling; 203 } else { 204 for (chd = tmp->child;; chd = chd->sibling) { 205 chd->parent = tmp->parent; 206 if (!(chd->sibling)) 207 break; 208 } 209 *p = tmp->child; 210 chd->sibling = tmp->sibling; 211 } 212 old->parent = NULL; 213 return 0; 214 } 215 p = &tmp->sibling; 216 } 217 return -EINVAL; 218 } 219 220 static void __release_child_resources(struct resource *r) 221 { 222 struct resource *tmp, *p; 223 resource_size_t size; 224 225 p = r->child; 226 r->child = NULL; 227 while (p) { 228 tmp = p; 229 p = p->sibling; 230 231 tmp->parent = NULL; 232 tmp->sibling = NULL; 233 __release_child_resources(tmp); 234 235 printk(KERN_DEBUG "release child resource %pR\n", tmp); 236 /* need to restore size, and keep flags */ 237 size = resource_size(tmp); 238 tmp->start = 0; 239 tmp->end = size - 1; 240 } 241 } 242 243 void release_child_resources(struct resource *r) 244 { 245 write_lock(&resource_lock); 246 __release_child_resources(r); 247 write_unlock(&resource_lock); 248 } 249 250 /** 251 * request_resource_conflict - request and reserve an I/O or memory resource 252 * @root: root resource descriptor 253 * @new: resource descriptor desired by caller 254 * 255 * Returns 0 for success, conflict resource on error. 256 */ 257 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 258 { 259 struct resource *conflict; 260 261 write_lock(&resource_lock); 262 conflict = __request_resource(root, new); 263 write_unlock(&resource_lock); 264 return conflict; 265 } 266 267 /** 268 * request_resource - request and reserve an I/O or memory resource 269 * @root: root resource descriptor 270 * @new: resource descriptor desired by caller 271 * 272 * Returns 0 for success, negative error code on error. 273 */ 274 int request_resource(struct resource *root, struct resource *new) 275 { 276 struct resource *conflict; 277 278 conflict = request_resource_conflict(root, new); 279 return conflict ? -EBUSY : 0; 280 } 281 282 EXPORT_SYMBOL(request_resource); 283 284 /** 285 * release_resource - release a previously reserved resource 286 * @old: resource pointer 287 */ 288 int release_resource(struct resource *old) 289 { 290 int retval; 291 292 write_lock(&resource_lock); 293 retval = __release_resource(old, true); 294 write_unlock(&resource_lock); 295 return retval; 296 } 297 298 EXPORT_SYMBOL(release_resource); 299 300 /** 301 * find_next_iomem_res - Finds the lowest iomem resource that covers part of 302 * [@start..@end]. 303 * 304 * If a resource is found, returns 0 and @*res is overwritten with the part 305 * of the resource that's within [@start..@end]; if none is found, returns 306 * -ENODEV. Returns -EINVAL for invalid parameters. 307 * 308 * @start: start address of the resource searched for 309 * @end: end address of same resource 310 * @flags: flags which the resource must have 311 * @desc: descriptor the resource must have 312 * @res: return ptr, if resource found 313 * 314 * The caller must specify @start, @end, @flags, and @desc 315 * (which may be IORES_DESC_NONE). 316 */ 317 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 318 unsigned long flags, unsigned long desc, 319 struct resource *res) 320 { 321 struct resource *p; 322 323 if (!res) 324 return -EINVAL; 325 326 if (start >= end) 327 return -EINVAL; 328 329 read_lock(&resource_lock); 330 331 for_each_resource(&iomem_resource, p, false) { 332 /* If we passed the resource we are looking for, stop */ 333 if (p->start > end) { 334 p = NULL; 335 break; 336 } 337 338 /* Skip until we find a range that matches what we look for */ 339 if (p->end < start) 340 continue; 341 342 if ((p->flags & flags) != flags) 343 continue; 344 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 345 continue; 346 347 /* Found a match, break */ 348 break; 349 } 350 351 if (p) { 352 /* copy data */ 353 *res = (struct resource) { 354 .start = max(start, p->start), 355 .end = min(end, p->end), 356 .flags = p->flags, 357 .desc = p->desc, 358 .parent = p->parent, 359 }; 360 } 361 362 read_unlock(&resource_lock); 363 return p ? 0 : -ENODEV; 364 } 365 366 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 367 unsigned long flags, unsigned long desc, 368 void *arg, 369 int (*func)(struct resource *, void *)) 370 { 371 struct resource res; 372 int ret = -EINVAL; 373 374 while (start < end && 375 !find_next_iomem_res(start, end, flags, desc, &res)) { 376 ret = (*func)(&res, arg); 377 if (ret) 378 break; 379 380 start = res.end + 1; 381 } 382 383 return ret; 384 } 385 386 /** 387 * walk_iomem_res_desc - Walks through iomem resources and calls func() 388 * with matching resource ranges. 389 * * 390 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 391 * @flags: I/O resource flags 392 * @start: start addr 393 * @end: end addr 394 * @arg: function argument for the callback @func 395 * @func: callback function that is called for each qualifying resource area 396 * 397 * All the memory ranges which overlap start,end and also match flags and 398 * desc are valid candidates. 399 * 400 * NOTE: For a new descriptor search, define a new IORES_DESC in 401 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 402 */ 403 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 404 u64 end, void *arg, int (*func)(struct resource *, void *)) 405 { 406 return __walk_iomem_res_desc(start, end, flags, desc, arg, func); 407 } 408 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 409 410 /* 411 * This function calls the @func callback against all memory ranges of type 412 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 413 * Now, this function is only for System RAM, it deals with full ranges and 414 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 415 * ranges. 416 */ 417 int walk_system_ram_res(u64 start, u64 end, void *arg, 418 int (*func)(struct resource *, void *)) 419 { 420 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 421 422 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 423 func); 424 } 425 426 /* 427 * This function, being a variant of walk_system_ram_res(), calls the @func 428 * callback against all memory ranges of type System RAM which are marked as 429 * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from 430 * higher to lower. 431 */ 432 int walk_system_ram_res_rev(u64 start, u64 end, void *arg, 433 int (*func)(struct resource *, void *)) 434 { 435 struct resource res, *rams; 436 int rams_size = 16, i; 437 unsigned long flags; 438 int ret = -1; 439 440 /* create a list */ 441 rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL); 442 if (!rams) 443 return ret; 444 445 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 446 i = 0; 447 while ((start < end) && 448 (!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) { 449 if (i >= rams_size) { 450 /* re-alloc */ 451 struct resource *rams_new; 452 453 rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource), 454 GFP_KERNEL); 455 if (!rams_new) 456 goto out; 457 458 rams = rams_new; 459 rams_size += 16; 460 } 461 462 rams[i].start = res.start; 463 rams[i++].end = res.end; 464 465 start = res.end + 1; 466 } 467 468 /* go reverse */ 469 for (i--; i >= 0; i--) { 470 ret = (*func)(&rams[i], arg); 471 if (ret) 472 break; 473 } 474 475 out: 476 kvfree(rams); 477 return ret; 478 } 479 480 /* 481 * This function calls the @func callback against all memory ranges, which 482 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 483 */ 484 int walk_mem_res(u64 start, u64 end, void *arg, 485 int (*func)(struct resource *, void *)) 486 { 487 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 488 489 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 490 func); 491 } 492 493 /* 494 * This function calls the @func callback against all memory ranges of type 495 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 496 * It is to be used only for System RAM. 497 */ 498 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 499 void *arg, int (*func)(unsigned long, unsigned long, void *)) 500 { 501 resource_size_t start, end; 502 unsigned long flags; 503 struct resource res; 504 unsigned long pfn, end_pfn; 505 int ret = -EINVAL; 506 507 start = (u64) start_pfn << PAGE_SHIFT; 508 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 509 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 510 while (start < end && 511 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) { 512 pfn = PFN_UP(res.start); 513 end_pfn = PFN_DOWN(res.end + 1); 514 if (end_pfn > pfn) 515 ret = (*func)(pfn, end_pfn - pfn, arg); 516 if (ret) 517 break; 518 start = res.end + 1; 519 } 520 return ret; 521 } 522 523 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 524 { 525 return 1; 526 } 527 528 /* 529 * This generic page_is_ram() returns true if specified address is 530 * registered as System RAM in iomem_resource list. 531 */ 532 int __weak page_is_ram(unsigned long pfn) 533 { 534 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 535 } 536 EXPORT_SYMBOL_GPL(page_is_ram); 537 538 static int __region_intersects(struct resource *parent, resource_size_t start, 539 size_t size, unsigned long flags, 540 unsigned long desc) 541 { 542 struct resource res; 543 int type = 0; int other = 0; 544 struct resource *p; 545 546 res.start = start; 547 res.end = start + size - 1; 548 549 for (p = parent->child; p ; p = p->sibling) { 550 bool is_type = (((p->flags & flags) == flags) && 551 ((desc == IORES_DESC_NONE) || 552 (desc == p->desc))); 553 554 if (resource_overlaps(p, &res)) 555 is_type ? type++ : other++; 556 } 557 558 if (type == 0) 559 return REGION_DISJOINT; 560 561 if (other == 0) 562 return REGION_INTERSECTS; 563 564 return REGION_MIXED; 565 } 566 567 /** 568 * region_intersects() - determine intersection of region with known resources 569 * @start: region start address 570 * @size: size of region 571 * @flags: flags of resource (in iomem_resource) 572 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 573 * 574 * Check if the specified region partially overlaps or fully eclipses a 575 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 576 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 577 * return REGION_MIXED if the region overlaps @flags/@desc and another 578 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 579 * and no other defined resource. Note that REGION_INTERSECTS is also 580 * returned in the case when the specified region overlaps RAM and undefined 581 * memory holes. 582 * 583 * region_intersect() is used by memory remapping functions to ensure 584 * the user is not remapping RAM and is a vast speed up over walking 585 * through the resource table page by page. 586 */ 587 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 588 unsigned long desc) 589 { 590 int ret; 591 592 read_lock(&resource_lock); 593 ret = __region_intersects(&iomem_resource, start, size, flags, desc); 594 read_unlock(&resource_lock); 595 596 return ret; 597 } 598 EXPORT_SYMBOL_GPL(region_intersects); 599 600 void __weak arch_remove_reservations(struct resource *avail) 601 { 602 } 603 604 static void resource_clip(struct resource *res, resource_size_t min, 605 resource_size_t max) 606 { 607 if (res->start < min) 608 res->start = min; 609 if (res->end > max) 610 res->end = max; 611 } 612 613 /* 614 * Find empty space in the resource tree with the given range and 615 * alignment constraints 616 */ 617 static int __find_resource_space(struct resource *root, struct resource *old, 618 struct resource *new, resource_size_t size, 619 struct resource_constraint *constraint) 620 { 621 struct resource *this = root->child; 622 struct resource tmp = *new, avail, alloc; 623 resource_alignf alignf = constraint->alignf; 624 625 tmp.start = root->start; 626 /* 627 * Skip past an allocated resource that starts at 0, since the assignment 628 * of this->start - 1 to tmp->end below would cause an underflow. 629 */ 630 if (this && this->start == root->start) { 631 tmp.start = (this == old) ? old->start : this->end + 1; 632 this = this->sibling; 633 } 634 for(;;) { 635 if (this) 636 tmp.end = (this == old) ? this->end : this->start - 1; 637 else 638 tmp.end = root->end; 639 640 if (tmp.end < tmp.start) 641 goto next; 642 643 resource_clip(&tmp, constraint->min, constraint->max); 644 arch_remove_reservations(&tmp); 645 646 /* Check for overflow after ALIGN() */ 647 avail.start = ALIGN(tmp.start, constraint->align); 648 avail.end = tmp.end; 649 avail.flags = new->flags & ~IORESOURCE_UNSET; 650 if (avail.start >= tmp.start) { 651 alloc.flags = avail.flags; 652 if (alignf) { 653 alloc.start = alignf(constraint->alignf_data, 654 &avail, size, constraint->align); 655 } else { 656 alloc.start = avail.start; 657 } 658 alloc.end = alloc.start + size - 1; 659 if (alloc.start <= alloc.end && 660 resource_contains(&avail, &alloc)) { 661 new->start = alloc.start; 662 new->end = alloc.end; 663 return 0; 664 } 665 } 666 667 next: if (!this || this->end == root->end) 668 break; 669 670 if (this != old) 671 tmp.start = this->end + 1; 672 this = this->sibling; 673 } 674 return -EBUSY; 675 } 676 677 /** 678 * find_resource_space - Find empty space in the resource tree 679 * @root: Root resource descriptor 680 * @new: Resource descriptor awaiting an empty resource space 681 * @size: The minimum size of the empty space 682 * @constraint: The range and alignment constraints to be met 683 * 684 * Finds an empty space under @root in the resource tree satisfying range and 685 * alignment @constraints. 686 * 687 * Return: 688 * * %0 - if successful, @new members start, end, and flags are altered. 689 * * %-EBUSY - if no empty space was found. 690 */ 691 int find_resource_space(struct resource *root, struct resource *new, 692 resource_size_t size, 693 struct resource_constraint *constraint) 694 { 695 return __find_resource_space(root, NULL, new, size, constraint); 696 } 697 EXPORT_SYMBOL_GPL(find_resource_space); 698 699 /** 700 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 701 * The resource will be relocated if the new size cannot be reallocated in the 702 * current location. 703 * 704 * @root: root resource descriptor 705 * @old: resource descriptor desired by caller 706 * @newsize: new size of the resource descriptor 707 * @constraint: the size and alignment constraints to be met. 708 */ 709 static int reallocate_resource(struct resource *root, struct resource *old, 710 resource_size_t newsize, 711 struct resource_constraint *constraint) 712 { 713 int err=0; 714 struct resource new = *old; 715 struct resource *conflict; 716 717 write_lock(&resource_lock); 718 719 if ((err = __find_resource_space(root, old, &new, newsize, constraint))) 720 goto out; 721 722 if (resource_contains(&new, old)) { 723 old->start = new.start; 724 old->end = new.end; 725 goto out; 726 } 727 728 if (old->child) { 729 err = -EBUSY; 730 goto out; 731 } 732 733 if (resource_contains(old, &new)) { 734 old->start = new.start; 735 old->end = new.end; 736 } else { 737 __release_resource(old, true); 738 *old = new; 739 conflict = __request_resource(root, old); 740 BUG_ON(conflict); 741 } 742 out: 743 write_unlock(&resource_lock); 744 return err; 745 } 746 747 748 /** 749 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 750 * The resource will be reallocated with a new size if it was already allocated 751 * @root: root resource descriptor 752 * @new: resource descriptor desired by caller 753 * @size: requested resource region size 754 * @min: minimum boundary to allocate 755 * @max: maximum boundary to allocate 756 * @align: alignment requested, in bytes 757 * @alignf: alignment function, optional, called if not NULL 758 * @alignf_data: arbitrary data to pass to the @alignf function 759 */ 760 int allocate_resource(struct resource *root, struct resource *new, 761 resource_size_t size, resource_size_t min, 762 resource_size_t max, resource_size_t align, 763 resource_alignf alignf, 764 void *alignf_data) 765 { 766 int err; 767 struct resource_constraint constraint; 768 769 constraint.min = min; 770 constraint.max = max; 771 constraint.align = align; 772 constraint.alignf = alignf; 773 constraint.alignf_data = alignf_data; 774 775 if ( new->parent ) { 776 /* resource is already allocated, try reallocating with 777 the new constraints */ 778 return reallocate_resource(root, new, size, &constraint); 779 } 780 781 write_lock(&resource_lock); 782 err = find_resource_space(root, new, size, &constraint); 783 if (err >= 0 && __request_resource(root, new)) 784 err = -EBUSY; 785 write_unlock(&resource_lock); 786 return err; 787 } 788 789 EXPORT_SYMBOL(allocate_resource); 790 791 /** 792 * lookup_resource - find an existing resource by a resource start address 793 * @root: root resource descriptor 794 * @start: resource start address 795 * 796 * Returns a pointer to the resource if found, NULL otherwise 797 */ 798 struct resource *lookup_resource(struct resource *root, resource_size_t start) 799 { 800 struct resource *res; 801 802 read_lock(&resource_lock); 803 for (res = root->child; res; res = res->sibling) { 804 if (res->start == start) 805 break; 806 } 807 read_unlock(&resource_lock); 808 809 return res; 810 } 811 812 /* 813 * Insert a resource into the resource tree. If successful, return NULL, 814 * otherwise return the conflicting resource (compare to __request_resource()) 815 */ 816 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 817 { 818 struct resource *first, *next; 819 820 for (;; parent = first) { 821 first = __request_resource(parent, new); 822 if (!first) 823 return first; 824 825 if (first == parent) 826 return first; 827 if (WARN_ON(first == new)) /* duplicated insertion */ 828 return first; 829 830 if ((first->start > new->start) || (first->end < new->end)) 831 break; 832 if ((first->start == new->start) && (first->end == new->end)) 833 break; 834 } 835 836 for (next = first; ; next = next->sibling) { 837 /* Partial overlap? Bad, and unfixable */ 838 if (next->start < new->start || next->end > new->end) 839 return next; 840 if (!next->sibling) 841 break; 842 if (next->sibling->start > new->end) 843 break; 844 } 845 846 new->parent = parent; 847 new->sibling = next->sibling; 848 new->child = first; 849 850 next->sibling = NULL; 851 for (next = first; next; next = next->sibling) 852 next->parent = new; 853 854 if (parent->child == first) { 855 parent->child = new; 856 } else { 857 next = parent->child; 858 while (next->sibling != first) 859 next = next->sibling; 860 next->sibling = new; 861 } 862 return NULL; 863 } 864 865 /** 866 * insert_resource_conflict - Inserts resource in the resource tree 867 * @parent: parent of the new resource 868 * @new: new resource to insert 869 * 870 * Returns 0 on success, conflict resource if the resource can't be inserted. 871 * 872 * This function is equivalent to request_resource_conflict when no conflict 873 * happens. If a conflict happens, and the conflicting resources 874 * entirely fit within the range of the new resource, then the new 875 * resource is inserted and the conflicting resources become children of 876 * the new resource. 877 * 878 * This function is intended for producers of resources, such as FW modules 879 * and bus drivers. 880 */ 881 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 882 { 883 struct resource *conflict; 884 885 write_lock(&resource_lock); 886 conflict = __insert_resource(parent, new); 887 write_unlock(&resource_lock); 888 return conflict; 889 } 890 891 /** 892 * insert_resource - Inserts a resource in the resource tree 893 * @parent: parent of the new resource 894 * @new: new resource to insert 895 * 896 * Returns 0 on success, -EBUSY if the resource can't be inserted. 897 * 898 * This function is intended for producers of resources, such as FW modules 899 * and bus drivers. 900 */ 901 int insert_resource(struct resource *parent, struct resource *new) 902 { 903 struct resource *conflict; 904 905 conflict = insert_resource_conflict(parent, new); 906 return conflict ? -EBUSY : 0; 907 } 908 EXPORT_SYMBOL_GPL(insert_resource); 909 910 /** 911 * insert_resource_expand_to_fit - Insert a resource into the resource tree 912 * @root: root resource descriptor 913 * @new: new resource to insert 914 * 915 * Insert a resource into the resource tree, possibly expanding it in order 916 * to make it encompass any conflicting resources. 917 */ 918 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 919 { 920 if (new->parent) 921 return; 922 923 write_lock(&resource_lock); 924 for (;;) { 925 struct resource *conflict; 926 927 conflict = __insert_resource(root, new); 928 if (!conflict) 929 break; 930 if (conflict == root) 931 break; 932 933 /* Ok, expand resource to cover the conflict, then try again .. */ 934 if (conflict->start < new->start) 935 new->start = conflict->start; 936 if (conflict->end > new->end) 937 new->end = conflict->end; 938 939 pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 940 } 941 write_unlock(&resource_lock); 942 } 943 /* 944 * Not for general consumption, only early boot memory map parsing, PCI 945 * resource discovery, and late discovery of CXL resources are expected 946 * to use this interface. The former are built-in and only the latter, 947 * CXL, is a module. 948 */ 949 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL); 950 951 /** 952 * remove_resource - Remove a resource in the resource tree 953 * @old: resource to remove 954 * 955 * Returns 0 on success, -EINVAL if the resource is not valid. 956 * 957 * This function removes a resource previously inserted by insert_resource() 958 * or insert_resource_conflict(), and moves the children (if any) up to 959 * where they were before. insert_resource() and insert_resource_conflict() 960 * insert a new resource, and move any conflicting resources down to the 961 * children of the new resource. 962 * 963 * insert_resource(), insert_resource_conflict() and remove_resource() are 964 * intended for producers of resources, such as FW modules and bus drivers. 965 */ 966 int remove_resource(struct resource *old) 967 { 968 int retval; 969 970 write_lock(&resource_lock); 971 retval = __release_resource(old, false); 972 write_unlock(&resource_lock); 973 return retval; 974 } 975 EXPORT_SYMBOL_GPL(remove_resource); 976 977 static int __adjust_resource(struct resource *res, resource_size_t start, 978 resource_size_t size) 979 { 980 struct resource *tmp, *parent = res->parent; 981 resource_size_t end = start + size - 1; 982 int result = -EBUSY; 983 984 if (!parent) 985 goto skip; 986 987 if ((start < parent->start) || (end > parent->end)) 988 goto out; 989 990 if (res->sibling && (res->sibling->start <= end)) 991 goto out; 992 993 tmp = parent->child; 994 if (tmp != res) { 995 while (tmp->sibling != res) 996 tmp = tmp->sibling; 997 if (start <= tmp->end) 998 goto out; 999 } 1000 1001 skip: 1002 for (tmp = res->child; tmp; tmp = tmp->sibling) 1003 if ((tmp->start < start) || (tmp->end > end)) 1004 goto out; 1005 1006 res->start = start; 1007 res->end = end; 1008 result = 0; 1009 1010 out: 1011 return result; 1012 } 1013 1014 /** 1015 * adjust_resource - modify a resource's start and size 1016 * @res: resource to modify 1017 * @start: new start value 1018 * @size: new size 1019 * 1020 * Given an existing resource, change its start and size to match the 1021 * arguments. Returns 0 on success, -EBUSY if it can't fit. 1022 * Existing children of the resource are assumed to be immutable. 1023 */ 1024 int adjust_resource(struct resource *res, resource_size_t start, 1025 resource_size_t size) 1026 { 1027 int result; 1028 1029 write_lock(&resource_lock); 1030 result = __adjust_resource(res, start, size); 1031 write_unlock(&resource_lock); 1032 return result; 1033 } 1034 EXPORT_SYMBOL(adjust_resource); 1035 1036 static void __init 1037 __reserve_region_with_split(struct resource *root, resource_size_t start, 1038 resource_size_t end, const char *name) 1039 { 1040 struct resource *parent = root; 1041 struct resource *conflict; 1042 struct resource *res = alloc_resource(GFP_ATOMIC); 1043 struct resource *next_res = NULL; 1044 int type = resource_type(root); 1045 1046 if (!res) 1047 return; 1048 1049 res->name = name; 1050 res->start = start; 1051 res->end = end; 1052 res->flags = type | IORESOURCE_BUSY; 1053 res->desc = IORES_DESC_NONE; 1054 1055 while (1) { 1056 1057 conflict = __request_resource(parent, res); 1058 if (!conflict) { 1059 if (!next_res) 1060 break; 1061 res = next_res; 1062 next_res = NULL; 1063 continue; 1064 } 1065 1066 /* conflict covered whole area */ 1067 if (conflict->start <= res->start && 1068 conflict->end >= res->end) { 1069 free_resource(res); 1070 WARN_ON(next_res); 1071 break; 1072 } 1073 1074 /* failed, split and try again */ 1075 if (conflict->start > res->start) { 1076 end = res->end; 1077 res->end = conflict->start - 1; 1078 if (conflict->end < end) { 1079 next_res = alloc_resource(GFP_ATOMIC); 1080 if (!next_res) { 1081 free_resource(res); 1082 break; 1083 } 1084 next_res->name = name; 1085 next_res->start = conflict->end + 1; 1086 next_res->end = end; 1087 next_res->flags = type | IORESOURCE_BUSY; 1088 next_res->desc = IORES_DESC_NONE; 1089 } 1090 } else { 1091 res->start = conflict->end + 1; 1092 } 1093 } 1094 1095 } 1096 1097 void __init 1098 reserve_region_with_split(struct resource *root, resource_size_t start, 1099 resource_size_t end, const char *name) 1100 { 1101 int abort = 0; 1102 1103 write_lock(&resource_lock); 1104 if (root->start > start || root->end < end) { 1105 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1106 (unsigned long long)start, (unsigned long long)end, 1107 root); 1108 if (start > root->end || end < root->start) 1109 abort = 1; 1110 else { 1111 if (end > root->end) 1112 end = root->end; 1113 if (start < root->start) 1114 start = root->start; 1115 pr_err("fixing request to [0x%llx-0x%llx]\n", 1116 (unsigned long long)start, 1117 (unsigned long long)end); 1118 } 1119 dump_stack(); 1120 } 1121 if (!abort) 1122 __reserve_region_with_split(root, start, end, name); 1123 write_unlock(&resource_lock); 1124 } 1125 1126 /** 1127 * resource_alignment - calculate resource's alignment 1128 * @res: resource pointer 1129 * 1130 * Returns alignment on success, 0 (invalid alignment) on failure. 1131 */ 1132 resource_size_t resource_alignment(struct resource *res) 1133 { 1134 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1135 case IORESOURCE_SIZEALIGN: 1136 return resource_size(res); 1137 case IORESOURCE_STARTALIGN: 1138 return res->start; 1139 default: 1140 return 0; 1141 } 1142 } 1143 1144 /* 1145 * This is compatibility stuff for IO resources. 1146 * 1147 * Note how this, unlike the above, knows about 1148 * the IO flag meanings (busy etc). 1149 * 1150 * request_region creates a new busy region. 1151 * 1152 * release_region releases a matching busy region. 1153 */ 1154 1155 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1156 1157 static struct inode *iomem_inode; 1158 1159 #ifdef CONFIG_IO_STRICT_DEVMEM 1160 static void revoke_iomem(struct resource *res) 1161 { 1162 /* pairs with smp_store_release() in iomem_init_inode() */ 1163 struct inode *inode = smp_load_acquire(&iomem_inode); 1164 1165 /* 1166 * Check that the initialization has completed. Losing the race 1167 * is ok because it means drivers are claiming resources before 1168 * the fs_initcall level of init and prevent iomem_get_mapping users 1169 * from establishing mappings. 1170 */ 1171 if (!inode) 1172 return; 1173 1174 /* 1175 * The expectation is that the driver has successfully marked 1176 * the resource busy by this point, so devmem_is_allowed() 1177 * should start returning false, however for performance this 1178 * does not iterate the entire resource range. 1179 */ 1180 if (devmem_is_allowed(PHYS_PFN(res->start)) && 1181 devmem_is_allowed(PHYS_PFN(res->end))) { 1182 /* 1183 * *cringe* iomem=relaxed says "go ahead, what's the 1184 * worst that can happen?" 1185 */ 1186 return; 1187 } 1188 1189 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1); 1190 } 1191 #else 1192 static void revoke_iomem(struct resource *res) {} 1193 #endif 1194 1195 struct address_space *iomem_get_mapping(void) 1196 { 1197 /* 1198 * This function is only called from file open paths, hence guaranteed 1199 * that fs_initcalls have completed and no need to check for NULL. But 1200 * since revoke_iomem can be called before the initcall we still need 1201 * the barrier to appease checkers. 1202 */ 1203 return smp_load_acquire(&iomem_inode)->i_mapping; 1204 } 1205 1206 static int __request_region_locked(struct resource *res, struct resource *parent, 1207 resource_size_t start, resource_size_t n, 1208 const char *name, int flags) 1209 { 1210 DECLARE_WAITQUEUE(wait, current); 1211 1212 res->name = name; 1213 res->start = start; 1214 res->end = start + n - 1; 1215 1216 for (;;) { 1217 struct resource *conflict; 1218 1219 res->flags = resource_type(parent) | resource_ext_type(parent); 1220 res->flags |= IORESOURCE_BUSY | flags; 1221 res->desc = parent->desc; 1222 1223 conflict = __request_resource(parent, res); 1224 if (!conflict) 1225 break; 1226 /* 1227 * mm/hmm.c reserves physical addresses which then 1228 * become unavailable to other users. Conflicts are 1229 * not expected. Warn to aid debugging if encountered. 1230 */ 1231 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 1232 pr_warn("Unaddressable device %s %pR conflicts with %pR", 1233 conflict->name, conflict, res); 1234 } 1235 if (conflict != parent) { 1236 if (!(conflict->flags & IORESOURCE_BUSY)) { 1237 parent = conflict; 1238 continue; 1239 } 1240 } 1241 if (conflict->flags & flags & IORESOURCE_MUXED) { 1242 add_wait_queue(&muxed_resource_wait, &wait); 1243 write_unlock(&resource_lock); 1244 set_current_state(TASK_UNINTERRUPTIBLE); 1245 schedule(); 1246 remove_wait_queue(&muxed_resource_wait, &wait); 1247 write_lock(&resource_lock); 1248 continue; 1249 } 1250 /* Uhhuh, that didn't work out.. */ 1251 return -EBUSY; 1252 } 1253 1254 return 0; 1255 } 1256 1257 /** 1258 * __request_region - create a new busy resource region 1259 * @parent: parent resource descriptor 1260 * @start: resource start address 1261 * @n: resource region size 1262 * @name: reserving caller's ID string 1263 * @flags: IO resource flags 1264 */ 1265 struct resource *__request_region(struct resource *parent, 1266 resource_size_t start, resource_size_t n, 1267 const char *name, int flags) 1268 { 1269 struct resource *res = alloc_resource(GFP_KERNEL); 1270 int ret; 1271 1272 if (!res) 1273 return NULL; 1274 1275 write_lock(&resource_lock); 1276 ret = __request_region_locked(res, parent, start, n, name, flags); 1277 write_unlock(&resource_lock); 1278 1279 if (ret) { 1280 free_resource(res); 1281 return NULL; 1282 } 1283 1284 if (parent == &iomem_resource) 1285 revoke_iomem(res); 1286 1287 return res; 1288 } 1289 EXPORT_SYMBOL(__request_region); 1290 1291 /** 1292 * __release_region - release a previously reserved resource region 1293 * @parent: parent resource descriptor 1294 * @start: resource start address 1295 * @n: resource region size 1296 * 1297 * The described resource region must match a currently busy region. 1298 */ 1299 void __release_region(struct resource *parent, resource_size_t start, 1300 resource_size_t n) 1301 { 1302 struct resource **p; 1303 resource_size_t end; 1304 1305 p = &parent->child; 1306 end = start + n - 1; 1307 1308 write_lock(&resource_lock); 1309 1310 for (;;) { 1311 struct resource *res = *p; 1312 1313 if (!res) 1314 break; 1315 if (res->start <= start && res->end >= end) { 1316 if (!(res->flags & IORESOURCE_BUSY)) { 1317 p = &res->child; 1318 continue; 1319 } 1320 if (res->start != start || res->end != end) 1321 break; 1322 *p = res->sibling; 1323 write_unlock(&resource_lock); 1324 if (res->flags & IORESOURCE_MUXED) 1325 wake_up(&muxed_resource_wait); 1326 free_resource(res); 1327 return; 1328 } 1329 p = &res->sibling; 1330 } 1331 1332 write_unlock(&resource_lock); 1333 1334 pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end); 1335 } 1336 EXPORT_SYMBOL(__release_region); 1337 1338 #ifdef CONFIG_MEMORY_HOTREMOVE 1339 /** 1340 * release_mem_region_adjustable - release a previously reserved memory region 1341 * @start: resource start address 1342 * @size: resource region size 1343 * 1344 * This interface is intended for memory hot-delete. The requested region 1345 * is released from a currently busy memory resource. The requested region 1346 * must either match exactly or fit into a single busy resource entry. In 1347 * the latter case, the remaining resource is adjusted accordingly. 1348 * Existing children of the busy memory resource must be immutable in the 1349 * request. 1350 * 1351 * Note: 1352 * - Additional release conditions, such as overlapping region, can be 1353 * supported after they are confirmed as valid cases. 1354 * - When a busy memory resource gets split into two entries, the code 1355 * assumes that all children remain in the lower address entry for 1356 * simplicity. Enhance this logic when necessary. 1357 */ 1358 void release_mem_region_adjustable(resource_size_t start, resource_size_t size) 1359 { 1360 struct resource *parent = &iomem_resource; 1361 struct resource *new_res = NULL; 1362 bool alloc_nofail = false; 1363 struct resource **p; 1364 struct resource *res; 1365 resource_size_t end; 1366 1367 end = start + size - 1; 1368 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end))) 1369 return; 1370 1371 /* 1372 * We free up quite a lot of memory on memory hotunplug (esp., memap), 1373 * just before releasing the region. This is highly unlikely to 1374 * fail - let's play save and make it never fail as the caller cannot 1375 * perform any error handling (e.g., trying to re-add memory will fail 1376 * similarly). 1377 */ 1378 retry: 1379 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0)); 1380 1381 p = &parent->child; 1382 write_lock(&resource_lock); 1383 1384 while ((res = *p)) { 1385 if (res->start >= end) 1386 break; 1387 1388 /* look for the next resource if it does not fit into */ 1389 if (res->start > start || res->end < end) { 1390 p = &res->sibling; 1391 continue; 1392 } 1393 1394 if (!(res->flags & IORESOURCE_MEM)) 1395 break; 1396 1397 if (!(res->flags & IORESOURCE_BUSY)) { 1398 p = &res->child; 1399 continue; 1400 } 1401 1402 /* found the target resource; let's adjust accordingly */ 1403 if (res->start == start && res->end == end) { 1404 /* free the whole entry */ 1405 *p = res->sibling; 1406 free_resource(res); 1407 } else if (res->start == start && res->end != end) { 1408 /* adjust the start */ 1409 WARN_ON_ONCE(__adjust_resource(res, end + 1, 1410 res->end - end)); 1411 } else if (res->start != start && res->end == end) { 1412 /* adjust the end */ 1413 WARN_ON_ONCE(__adjust_resource(res, res->start, 1414 start - res->start)); 1415 } else { 1416 /* split into two entries - we need a new resource */ 1417 if (!new_res) { 1418 new_res = alloc_resource(GFP_ATOMIC); 1419 if (!new_res) { 1420 alloc_nofail = true; 1421 write_unlock(&resource_lock); 1422 goto retry; 1423 } 1424 } 1425 new_res->name = res->name; 1426 new_res->start = end + 1; 1427 new_res->end = res->end; 1428 new_res->flags = res->flags; 1429 new_res->desc = res->desc; 1430 new_res->parent = res->parent; 1431 new_res->sibling = res->sibling; 1432 new_res->child = NULL; 1433 1434 if (WARN_ON_ONCE(__adjust_resource(res, res->start, 1435 start - res->start))) 1436 break; 1437 res->sibling = new_res; 1438 new_res = NULL; 1439 } 1440 1441 break; 1442 } 1443 1444 write_unlock(&resource_lock); 1445 free_resource(new_res); 1446 } 1447 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1448 1449 #ifdef CONFIG_MEMORY_HOTPLUG 1450 static bool system_ram_resources_mergeable(struct resource *r1, 1451 struct resource *r2) 1452 { 1453 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */ 1454 return r1->flags == r2->flags && r1->end + 1 == r2->start && 1455 r1->name == r2->name && r1->desc == r2->desc && 1456 !r1->child && !r2->child; 1457 } 1458 1459 /** 1460 * merge_system_ram_resource - mark the System RAM resource mergeable and try to 1461 * merge it with adjacent, mergeable resources 1462 * @res: resource descriptor 1463 * 1464 * This interface is intended for memory hotplug, whereby lots of contiguous 1465 * system ram resources are added (e.g., via add_memory*()) by a driver, and 1466 * the actual resource boundaries are not of interest (e.g., it might be 1467 * relevant for DIMMs). Only resources that are marked mergeable, that have the 1468 * same parent, and that don't have any children are considered. All mergeable 1469 * resources must be immutable during the request. 1470 * 1471 * Note: 1472 * - The caller has to make sure that no pointers to resources that are 1473 * marked mergeable are used anymore after this call - the resource might 1474 * be freed and the pointer might be stale! 1475 * - release_mem_region_adjustable() will split on demand on memory hotunplug 1476 */ 1477 void merge_system_ram_resource(struct resource *res) 1478 { 1479 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 1480 struct resource *cur; 1481 1482 if (WARN_ON_ONCE((res->flags & flags) != flags)) 1483 return; 1484 1485 write_lock(&resource_lock); 1486 res->flags |= IORESOURCE_SYSRAM_MERGEABLE; 1487 1488 /* Try to merge with next item in the list. */ 1489 cur = res->sibling; 1490 if (cur && system_ram_resources_mergeable(res, cur)) { 1491 res->end = cur->end; 1492 res->sibling = cur->sibling; 1493 free_resource(cur); 1494 } 1495 1496 /* Try to merge with previous item in the list. */ 1497 cur = res->parent->child; 1498 while (cur && cur->sibling != res) 1499 cur = cur->sibling; 1500 if (cur && system_ram_resources_mergeable(cur, res)) { 1501 cur->end = res->end; 1502 cur->sibling = res->sibling; 1503 free_resource(res); 1504 } 1505 write_unlock(&resource_lock); 1506 } 1507 #endif /* CONFIG_MEMORY_HOTPLUG */ 1508 1509 /* 1510 * Managed region resource 1511 */ 1512 static void devm_resource_release(struct device *dev, void *ptr) 1513 { 1514 struct resource **r = ptr; 1515 1516 release_resource(*r); 1517 } 1518 1519 /** 1520 * devm_request_resource() - request and reserve an I/O or memory resource 1521 * @dev: device for which to request the resource 1522 * @root: root of the resource tree from which to request the resource 1523 * @new: descriptor of the resource to request 1524 * 1525 * This is a device-managed version of request_resource(). There is usually 1526 * no need to release resources requested by this function explicitly since 1527 * that will be taken care of when the device is unbound from its driver. 1528 * If for some reason the resource needs to be released explicitly, because 1529 * of ordering issues for example, drivers must call devm_release_resource() 1530 * rather than the regular release_resource(). 1531 * 1532 * When a conflict is detected between any existing resources and the newly 1533 * requested resource, an error message will be printed. 1534 * 1535 * Returns 0 on success or a negative error code on failure. 1536 */ 1537 int devm_request_resource(struct device *dev, struct resource *root, 1538 struct resource *new) 1539 { 1540 struct resource *conflict, **ptr; 1541 1542 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1543 if (!ptr) 1544 return -ENOMEM; 1545 1546 *ptr = new; 1547 1548 conflict = request_resource_conflict(root, new); 1549 if (conflict) { 1550 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1551 new, conflict->name, conflict); 1552 devres_free(ptr); 1553 return -EBUSY; 1554 } 1555 1556 devres_add(dev, ptr); 1557 return 0; 1558 } 1559 EXPORT_SYMBOL(devm_request_resource); 1560 1561 static int devm_resource_match(struct device *dev, void *res, void *data) 1562 { 1563 struct resource **ptr = res; 1564 1565 return *ptr == data; 1566 } 1567 1568 /** 1569 * devm_release_resource() - release a previously requested resource 1570 * @dev: device for which to release the resource 1571 * @new: descriptor of the resource to release 1572 * 1573 * Releases a resource previously requested using devm_request_resource(). 1574 */ 1575 void devm_release_resource(struct device *dev, struct resource *new) 1576 { 1577 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1578 new)); 1579 } 1580 EXPORT_SYMBOL(devm_release_resource); 1581 1582 struct region_devres { 1583 struct resource *parent; 1584 resource_size_t start; 1585 resource_size_t n; 1586 }; 1587 1588 static void devm_region_release(struct device *dev, void *res) 1589 { 1590 struct region_devres *this = res; 1591 1592 __release_region(this->parent, this->start, this->n); 1593 } 1594 1595 static int devm_region_match(struct device *dev, void *res, void *match_data) 1596 { 1597 struct region_devres *this = res, *match = match_data; 1598 1599 return this->parent == match->parent && 1600 this->start == match->start && this->n == match->n; 1601 } 1602 1603 struct resource * 1604 __devm_request_region(struct device *dev, struct resource *parent, 1605 resource_size_t start, resource_size_t n, const char *name) 1606 { 1607 struct region_devres *dr = NULL; 1608 struct resource *res; 1609 1610 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1611 GFP_KERNEL); 1612 if (!dr) 1613 return NULL; 1614 1615 dr->parent = parent; 1616 dr->start = start; 1617 dr->n = n; 1618 1619 res = __request_region(parent, start, n, name, 0); 1620 if (res) 1621 devres_add(dev, dr); 1622 else 1623 devres_free(dr); 1624 1625 return res; 1626 } 1627 EXPORT_SYMBOL(__devm_request_region); 1628 1629 void __devm_release_region(struct device *dev, struct resource *parent, 1630 resource_size_t start, resource_size_t n) 1631 { 1632 struct region_devres match_data = { parent, start, n }; 1633 1634 __release_region(parent, start, n); 1635 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1636 &match_data)); 1637 } 1638 EXPORT_SYMBOL(__devm_release_region); 1639 1640 /* 1641 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1642 */ 1643 #define MAXRESERVE 4 1644 static int __init reserve_setup(char *str) 1645 { 1646 static int reserved; 1647 static struct resource reserve[MAXRESERVE]; 1648 1649 for (;;) { 1650 unsigned int io_start, io_num; 1651 int x = reserved; 1652 struct resource *parent; 1653 1654 if (get_option(&str, &io_start) != 2) 1655 break; 1656 if (get_option(&str, &io_num) == 0) 1657 break; 1658 if (x < MAXRESERVE) { 1659 struct resource *res = reserve + x; 1660 1661 /* 1662 * If the region starts below 0x10000, we assume it's 1663 * I/O port space; otherwise assume it's memory. 1664 */ 1665 if (io_start < 0x10000) { 1666 res->flags = IORESOURCE_IO; 1667 parent = &ioport_resource; 1668 } else { 1669 res->flags = IORESOURCE_MEM; 1670 parent = &iomem_resource; 1671 } 1672 res->name = "reserved"; 1673 res->start = io_start; 1674 res->end = io_start + io_num - 1; 1675 res->flags |= IORESOURCE_BUSY; 1676 res->desc = IORES_DESC_NONE; 1677 res->child = NULL; 1678 if (request_resource(parent, res) == 0) 1679 reserved = x+1; 1680 } 1681 } 1682 return 1; 1683 } 1684 __setup("reserve=", reserve_setup); 1685 1686 /* 1687 * Check if the requested addr and size spans more than any slot in the 1688 * iomem resource tree. 1689 */ 1690 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1691 { 1692 resource_size_t end = addr + size - 1; 1693 struct resource *p; 1694 int err = 0; 1695 1696 read_lock(&resource_lock); 1697 for_each_resource(&iomem_resource, p, false) { 1698 /* 1699 * We can probably skip the resources without 1700 * IORESOURCE_IO attribute? 1701 */ 1702 if (p->start > end) 1703 continue; 1704 if (p->end < addr) 1705 continue; 1706 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1707 PFN_DOWN(p->end) >= PFN_DOWN(end)) 1708 continue; 1709 /* 1710 * if a resource is "BUSY", it's not a hardware resource 1711 * but a driver mapping of such a resource; we don't want 1712 * to warn for those; some drivers legitimately map only 1713 * partial hardware resources. (example: vesafb) 1714 */ 1715 if (p->flags & IORESOURCE_BUSY) 1716 continue; 1717 1718 pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n", 1719 &addr, &end, p->name, p); 1720 err = -1; 1721 break; 1722 } 1723 read_unlock(&resource_lock); 1724 1725 return err; 1726 } 1727 1728 #ifdef CONFIG_STRICT_DEVMEM 1729 static int strict_iomem_checks = 1; 1730 #else 1731 static int strict_iomem_checks; 1732 #endif 1733 1734 /* 1735 * Check if an address is exclusive to the kernel and must not be mapped to 1736 * user space, for example, via /dev/mem. 1737 * 1738 * Returns true if exclusive to the kernel, otherwise returns false. 1739 */ 1740 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size) 1741 { 1742 const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM | 1743 IORESOURCE_EXCLUSIVE; 1744 bool skip_children = false, err = false; 1745 struct resource *p; 1746 1747 read_lock(&resource_lock); 1748 for_each_resource(root, p, skip_children) { 1749 if (p->start >= addr + size) 1750 break; 1751 if (p->end < addr) { 1752 skip_children = true; 1753 continue; 1754 } 1755 skip_children = false; 1756 1757 /* 1758 * IORESOURCE_SYSTEM_RAM resources are exclusive if 1759 * IORESOURCE_EXCLUSIVE is set, even if they 1760 * are not busy and even if "iomem=relaxed" is set. The 1761 * responsible driver dynamically adds/removes system RAM within 1762 * such an area and uncontrolled access is dangerous. 1763 */ 1764 if ((p->flags & exclusive_system_ram) == exclusive_system_ram) { 1765 err = true; 1766 break; 1767 } 1768 1769 /* 1770 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1771 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1772 * resource is busy. 1773 */ 1774 if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY)) 1775 continue; 1776 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1777 || p->flags & IORESOURCE_EXCLUSIVE) { 1778 err = true; 1779 break; 1780 } 1781 } 1782 read_unlock(&resource_lock); 1783 1784 return err; 1785 } 1786 1787 bool iomem_is_exclusive(u64 addr) 1788 { 1789 return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK, 1790 PAGE_SIZE); 1791 } 1792 1793 struct resource_entry *resource_list_create_entry(struct resource *res, 1794 size_t extra_size) 1795 { 1796 struct resource_entry *entry; 1797 1798 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1799 if (entry) { 1800 INIT_LIST_HEAD(&entry->node); 1801 entry->res = res ? res : &entry->__res; 1802 } 1803 1804 return entry; 1805 } 1806 EXPORT_SYMBOL(resource_list_create_entry); 1807 1808 void resource_list_free(struct list_head *head) 1809 { 1810 struct resource_entry *entry, *tmp; 1811 1812 list_for_each_entry_safe(entry, tmp, head, node) 1813 resource_list_destroy_entry(entry); 1814 } 1815 EXPORT_SYMBOL(resource_list_free); 1816 1817 #ifdef CONFIG_GET_FREE_REGION 1818 #define GFR_DESCENDING (1UL << 0) 1819 #define GFR_REQUEST_REGION (1UL << 1) 1820 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT) 1821 1822 static resource_size_t gfr_start(struct resource *base, resource_size_t size, 1823 resource_size_t align, unsigned long flags) 1824 { 1825 if (flags & GFR_DESCENDING) { 1826 resource_size_t end; 1827 1828 end = min_t(resource_size_t, base->end, 1829 (1ULL << MAX_PHYSMEM_BITS) - 1); 1830 return end - size + 1; 1831 } 1832 1833 return ALIGN(base->start, align); 1834 } 1835 1836 static bool gfr_continue(struct resource *base, resource_size_t addr, 1837 resource_size_t size, unsigned long flags) 1838 { 1839 if (flags & GFR_DESCENDING) 1840 return addr > size && addr >= base->start; 1841 /* 1842 * In the ascend case be careful that the last increment by 1843 * @size did not wrap 0. 1844 */ 1845 return addr > addr - size && 1846 addr <= min_t(resource_size_t, base->end, 1847 (1ULL << MAX_PHYSMEM_BITS) - 1); 1848 } 1849 1850 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size, 1851 unsigned long flags) 1852 { 1853 if (flags & GFR_DESCENDING) 1854 return addr - size; 1855 return addr + size; 1856 } 1857 1858 static void remove_free_mem_region(void *_res) 1859 { 1860 struct resource *res = _res; 1861 1862 if (res->parent) 1863 remove_resource(res); 1864 free_resource(res); 1865 } 1866 1867 static struct resource * 1868 get_free_mem_region(struct device *dev, struct resource *base, 1869 resource_size_t size, const unsigned long align, 1870 const char *name, const unsigned long desc, 1871 const unsigned long flags) 1872 { 1873 resource_size_t addr; 1874 struct resource *res; 1875 struct region_devres *dr = NULL; 1876 1877 size = ALIGN(size, align); 1878 1879 res = alloc_resource(GFP_KERNEL); 1880 if (!res) 1881 return ERR_PTR(-ENOMEM); 1882 1883 if (dev && (flags & GFR_REQUEST_REGION)) { 1884 dr = devres_alloc(devm_region_release, 1885 sizeof(struct region_devres), GFP_KERNEL); 1886 if (!dr) { 1887 free_resource(res); 1888 return ERR_PTR(-ENOMEM); 1889 } 1890 } else if (dev) { 1891 if (devm_add_action_or_reset(dev, remove_free_mem_region, res)) 1892 return ERR_PTR(-ENOMEM); 1893 } 1894 1895 write_lock(&resource_lock); 1896 for (addr = gfr_start(base, size, align, flags); 1897 gfr_continue(base, addr, align, flags); 1898 addr = gfr_next(addr, align, flags)) { 1899 if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) != 1900 REGION_DISJOINT) 1901 continue; 1902 1903 if (flags & GFR_REQUEST_REGION) { 1904 if (__request_region_locked(res, &iomem_resource, addr, 1905 size, name, 0)) 1906 break; 1907 1908 if (dev) { 1909 dr->parent = &iomem_resource; 1910 dr->start = addr; 1911 dr->n = size; 1912 devres_add(dev, dr); 1913 } 1914 1915 res->desc = desc; 1916 write_unlock(&resource_lock); 1917 1918 1919 /* 1920 * A driver is claiming this region so revoke any 1921 * mappings. 1922 */ 1923 revoke_iomem(res); 1924 } else { 1925 res->start = addr; 1926 res->end = addr + size - 1; 1927 res->name = name; 1928 res->desc = desc; 1929 res->flags = IORESOURCE_MEM; 1930 1931 /* 1932 * Only succeed if the resource hosts an exclusive 1933 * range after the insert 1934 */ 1935 if (__insert_resource(base, res) || res->child) 1936 break; 1937 1938 write_unlock(&resource_lock); 1939 } 1940 1941 return res; 1942 } 1943 write_unlock(&resource_lock); 1944 1945 if (flags & GFR_REQUEST_REGION) { 1946 free_resource(res); 1947 devres_free(dr); 1948 } else if (dev) 1949 devm_release_action(dev, remove_free_mem_region, res); 1950 1951 return ERR_PTR(-ERANGE); 1952 } 1953 1954 /** 1955 * devm_request_free_mem_region - find free region for device private memory 1956 * 1957 * @dev: device struct to bind the resource to 1958 * @size: size in bytes of the device memory to add 1959 * @base: resource tree to look in 1960 * 1961 * This function tries to find an empty range of physical address big enough to 1962 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE 1963 * memory, which in turn allocates struct pages. 1964 */ 1965 struct resource *devm_request_free_mem_region(struct device *dev, 1966 struct resource *base, unsigned long size) 1967 { 1968 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; 1969 1970 return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN, 1971 dev_name(dev), 1972 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); 1973 } 1974 EXPORT_SYMBOL_GPL(devm_request_free_mem_region); 1975 1976 struct resource *request_free_mem_region(struct resource *base, 1977 unsigned long size, const char *name) 1978 { 1979 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; 1980 1981 return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name, 1982 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); 1983 } 1984 EXPORT_SYMBOL_GPL(request_free_mem_region); 1985 1986 /** 1987 * alloc_free_mem_region - find a free region relative to @base 1988 * @base: resource that will parent the new resource 1989 * @size: size in bytes of memory to allocate from @base 1990 * @align: alignment requirements for the allocation 1991 * @name: resource name 1992 * 1993 * Buses like CXL, that can dynamically instantiate new memory regions, 1994 * need a method to allocate physical address space for those regions. 1995 * Allocate and insert a new resource to cover a free, unclaimed by a 1996 * descendant of @base, range in the span of @base. 1997 */ 1998 struct resource *alloc_free_mem_region(struct resource *base, 1999 unsigned long size, unsigned long align, 2000 const char *name) 2001 { 2002 /* Default of ascending direction and insert resource */ 2003 unsigned long flags = 0; 2004 2005 return get_free_mem_region(NULL, base, size, align, name, 2006 IORES_DESC_NONE, flags); 2007 } 2008 EXPORT_SYMBOL_NS_GPL(alloc_free_mem_region, CXL); 2009 #endif /* CONFIG_GET_FREE_REGION */ 2010 2011 static int __init strict_iomem(char *str) 2012 { 2013 if (strstr(str, "relaxed")) 2014 strict_iomem_checks = 0; 2015 if (strstr(str, "strict")) 2016 strict_iomem_checks = 1; 2017 return 1; 2018 } 2019 2020 static int iomem_fs_init_fs_context(struct fs_context *fc) 2021 { 2022 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM; 2023 } 2024 2025 static struct file_system_type iomem_fs_type = { 2026 .name = "iomem", 2027 .owner = THIS_MODULE, 2028 .init_fs_context = iomem_fs_init_fs_context, 2029 .kill_sb = kill_anon_super, 2030 }; 2031 2032 static int __init iomem_init_inode(void) 2033 { 2034 static struct vfsmount *iomem_vfs_mount; 2035 static int iomem_fs_cnt; 2036 struct inode *inode; 2037 int rc; 2038 2039 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt); 2040 if (rc < 0) { 2041 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc); 2042 return rc; 2043 } 2044 2045 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb); 2046 if (IS_ERR(inode)) { 2047 rc = PTR_ERR(inode); 2048 pr_err("Cannot allocate inode for iomem: %d\n", rc); 2049 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt); 2050 return rc; 2051 } 2052 2053 /* 2054 * Publish iomem revocation inode initialized. 2055 * Pairs with smp_load_acquire() in revoke_iomem(). 2056 */ 2057 smp_store_release(&iomem_inode, inode); 2058 2059 return 0; 2060 } 2061 2062 fs_initcall(iomem_init_inode); 2063 2064 __setup("iomem=", strict_iomem); 2065