1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/resource.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 7 * 8 * Arbitrary resource management. 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/export.h> 14 #include <linux/errno.h> 15 #include <linux/ioport.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/proc_fs.h> 21 #include <linux/pseudo_fs.h> 22 #include <linux/sched.h> 23 #include <linux/seq_file.h> 24 #include <linux/device.h> 25 #include <linux/pfn.h> 26 #include <linux/mm.h> 27 #include <linux/mount.h> 28 #include <linux/resource_ext.h> 29 #include <uapi/linux/magic.h> 30 #include <asm/io.h> 31 32 33 struct resource ioport_resource = { 34 .name = "PCI IO", 35 .start = 0, 36 .end = IO_SPACE_LIMIT, 37 .flags = IORESOURCE_IO, 38 }; 39 EXPORT_SYMBOL(ioport_resource); 40 41 struct resource iomem_resource = { 42 .name = "PCI mem", 43 .start = 0, 44 .end = -1, 45 .flags = IORESOURCE_MEM, 46 }; 47 EXPORT_SYMBOL(iomem_resource); 48 49 /* constraints to be met while allocating resources */ 50 struct resource_constraint { 51 resource_size_t min, max, align; 52 resource_size_t (*alignf)(void *, const struct resource *, 53 resource_size_t, resource_size_t); 54 void *alignf_data; 55 }; 56 57 static DEFINE_RWLOCK(resource_lock); 58 59 static struct resource *next_resource(struct resource *p) 60 { 61 if (p->child) 62 return p->child; 63 while (!p->sibling && p->parent) 64 p = p->parent; 65 return p->sibling; 66 } 67 68 static struct resource *next_resource_skip_children(struct resource *p) 69 { 70 while (!p->sibling && p->parent) 71 p = p->parent; 72 return p->sibling; 73 } 74 75 #define for_each_resource(_root, _p, _skip_children) \ 76 for ((_p) = (_root)->child; (_p); \ 77 (_p) = (_skip_children) ? next_resource_skip_children(_p) : \ 78 next_resource(_p)) 79 80 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 81 { 82 struct resource *p = v; 83 (*pos)++; 84 return (void *)next_resource(p); 85 } 86 87 #ifdef CONFIG_PROC_FS 88 89 enum { MAX_IORES_LEVEL = 5 }; 90 91 static void *r_start(struct seq_file *m, loff_t *pos) 92 __acquires(resource_lock) 93 { 94 struct resource *p = pde_data(file_inode(m->file)); 95 loff_t l = 0; 96 read_lock(&resource_lock); 97 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 98 ; 99 return p; 100 } 101 102 static void r_stop(struct seq_file *m, void *v) 103 __releases(resource_lock) 104 { 105 read_unlock(&resource_lock); 106 } 107 108 static int r_show(struct seq_file *m, void *v) 109 { 110 struct resource *root = pde_data(file_inode(m->file)); 111 struct resource *r = v, *p; 112 unsigned long long start, end; 113 int width = root->end < 0x10000 ? 4 : 8; 114 int depth; 115 116 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 117 if (p->parent == root) 118 break; 119 120 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 121 start = r->start; 122 end = r->end; 123 } else { 124 start = end = 0; 125 } 126 127 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 128 depth * 2, "", 129 width, start, 130 width, end, 131 r->name ? r->name : "<BAD>"); 132 return 0; 133 } 134 135 static const struct seq_operations resource_op = { 136 .start = r_start, 137 .next = r_next, 138 .stop = r_stop, 139 .show = r_show, 140 }; 141 142 static int __init ioresources_init(void) 143 { 144 proc_create_seq_data("ioports", 0, NULL, &resource_op, 145 &ioport_resource); 146 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 147 return 0; 148 } 149 __initcall(ioresources_init); 150 151 #endif /* CONFIG_PROC_FS */ 152 153 static void free_resource(struct resource *res) 154 { 155 /** 156 * If the resource was allocated using memblock early during boot 157 * we'll leak it here: we can only return full pages back to the 158 * buddy and trying to be smart and reusing them eventually in 159 * alloc_resource() overcomplicates resource handling. 160 */ 161 if (res && PageSlab(virt_to_head_page(res))) 162 kfree(res); 163 } 164 165 static struct resource *alloc_resource(gfp_t flags) 166 { 167 return kzalloc(sizeof(struct resource), flags); 168 } 169 170 /* Return the conflict entry if you can't request it */ 171 static struct resource * __request_resource(struct resource *root, struct resource *new) 172 { 173 resource_size_t start = new->start; 174 resource_size_t end = new->end; 175 struct resource *tmp, **p; 176 177 if (end < start) 178 return root; 179 if (start < root->start) 180 return root; 181 if (end > root->end) 182 return root; 183 p = &root->child; 184 for (;;) { 185 tmp = *p; 186 if (!tmp || tmp->start > end) { 187 new->sibling = tmp; 188 *p = new; 189 new->parent = root; 190 return NULL; 191 } 192 p = &tmp->sibling; 193 if (tmp->end < start) 194 continue; 195 return tmp; 196 } 197 } 198 199 static int __release_resource(struct resource *old, bool release_child) 200 { 201 struct resource *tmp, **p, *chd; 202 203 p = &old->parent->child; 204 for (;;) { 205 tmp = *p; 206 if (!tmp) 207 break; 208 if (tmp == old) { 209 if (release_child || !(tmp->child)) { 210 *p = tmp->sibling; 211 } else { 212 for (chd = tmp->child;; chd = chd->sibling) { 213 chd->parent = tmp->parent; 214 if (!(chd->sibling)) 215 break; 216 } 217 *p = tmp->child; 218 chd->sibling = tmp->sibling; 219 } 220 old->parent = NULL; 221 return 0; 222 } 223 p = &tmp->sibling; 224 } 225 return -EINVAL; 226 } 227 228 static void __release_child_resources(struct resource *r) 229 { 230 struct resource *tmp, *p; 231 resource_size_t size; 232 233 p = r->child; 234 r->child = NULL; 235 while (p) { 236 tmp = p; 237 p = p->sibling; 238 239 tmp->parent = NULL; 240 tmp->sibling = NULL; 241 __release_child_resources(tmp); 242 243 printk(KERN_DEBUG "release child resource %pR\n", tmp); 244 /* need to restore size, and keep flags */ 245 size = resource_size(tmp); 246 tmp->start = 0; 247 tmp->end = size - 1; 248 } 249 } 250 251 void release_child_resources(struct resource *r) 252 { 253 write_lock(&resource_lock); 254 __release_child_resources(r); 255 write_unlock(&resource_lock); 256 } 257 258 /** 259 * request_resource_conflict - request and reserve an I/O or memory resource 260 * @root: root resource descriptor 261 * @new: resource descriptor desired by caller 262 * 263 * Returns 0 for success, conflict resource on error. 264 */ 265 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 266 { 267 struct resource *conflict; 268 269 write_lock(&resource_lock); 270 conflict = __request_resource(root, new); 271 write_unlock(&resource_lock); 272 return conflict; 273 } 274 275 /** 276 * request_resource - request and reserve an I/O or memory resource 277 * @root: root resource descriptor 278 * @new: resource descriptor desired by caller 279 * 280 * Returns 0 for success, negative error code on error. 281 */ 282 int request_resource(struct resource *root, struct resource *new) 283 { 284 struct resource *conflict; 285 286 conflict = request_resource_conflict(root, new); 287 return conflict ? -EBUSY : 0; 288 } 289 290 EXPORT_SYMBOL(request_resource); 291 292 /** 293 * release_resource - release a previously reserved resource 294 * @old: resource pointer 295 */ 296 int release_resource(struct resource *old) 297 { 298 int retval; 299 300 write_lock(&resource_lock); 301 retval = __release_resource(old, true); 302 write_unlock(&resource_lock); 303 return retval; 304 } 305 306 EXPORT_SYMBOL(release_resource); 307 308 /** 309 * find_next_iomem_res - Finds the lowest iomem resource that covers part of 310 * [@start..@end]. 311 * 312 * If a resource is found, returns 0 and @*res is overwritten with the part 313 * of the resource that's within [@start..@end]; if none is found, returns 314 * -ENODEV. Returns -EINVAL for invalid parameters. 315 * 316 * @start: start address of the resource searched for 317 * @end: end address of same resource 318 * @flags: flags which the resource must have 319 * @desc: descriptor the resource must have 320 * @res: return ptr, if resource found 321 * 322 * The caller must specify @start, @end, @flags, and @desc 323 * (which may be IORES_DESC_NONE). 324 */ 325 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 326 unsigned long flags, unsigned long desc, 327 struct resource *res) 328 { 329 struct resource *p; 330 331 if (!res) 332 return -EINVAL; 333 334 if (start >= end) 335 return -EINVAL; 336 337 read_lock(&resource_lock); 338 339 for (p = iomem_resource.child; p; p = next_resource(p)) { 340 /* If we passed the resource we are looking for, stop */ 341 if (p->start > end) { 342 p = NULL; 343 break; 344 } 345 346 /* Skip until we find a range that matches what we look for */ 347 if (p->end < start) 348 continue; 349 350 if ((p->flags & flags) != flags) 351 continue; 352 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 353 continue; 354 355 /* Found a match, break */ 356 break; 357 } 358 359 if (p) { 360 /* copy data */ 361 *res = (struct resource) { 362 .start = max(start, p->start), 363 .end = min(end, p->end), 364 .flags = p->flags, 365 .desc = p->desc, 366 .parent = p->parent, 367 }; 368 } 369 370 read_unlock(&resource_lock); 371 return p ? 0 : -ENODEV; 372 } 373 374 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 375 unsigned long flags, unsigned long desc, 376 void *arg, 377 int (*func)(struct resource *, void *)) 378 { 379 struct resource res; 380 int ret = -EINVAL; 381 382 while (start < end && 383 !find_next_iomem_res(start, end, flags, desc, &res)) { 384 ret = (*func)(&res, arg); 385 if (ret) 386 break; 387 388 start = res.end + 1; 389 } 390 391 return ret; 392 } 393 394 /** 395 * walk_iomem_res_desc - Walks through iomem resources and calls func() 396 * with matching resource ranges. 397 * * 398 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 399 * @flags: I/O resource flags 400 * @start: start addr 401 * @end: end addr 402 * @arg: function argument for the callback @func 403 * @func: callback function that is called for each qualifying resource area 404 * 405 * All the memory ranges which overlap start,end and also match flags and 406 * desc are valid candidates. 407 * 408 * NOTE: For a new descriptor search, define a new IORES_DESC in 409 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 410 */ 411 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 412 u64 end, void *arg, int (*func)(struct resource *, void *)) 413 { 414 return __walk_iomem_res_desc(start, end, flags, desc, arg, func); 415 } 416 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 417 418 /* 419 * This function calls the @func callback against all memory ranges of type 420 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 421 * Now, this function is only for System RAM, it deals with full ranges and 422 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 423 * ranges. 424 */ 425 int walk_system_ram_res(u64 start, u64 end, void *arg, 426 int (*func)(struct resource *, void *)) 427 { 428 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 429 430 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 431 func); 432 } 433 434 /* 435 * This function calls the @func callback against all memory ranges, which 436 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 437 */ 438 int walk_mem_res(u64 start, u64 end, void *arg, 439 int (*func)(struct resource *, void *)) 440 { 441 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 442 443 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 444 func); 445 } 446 447 /* 448 * This function calls the @func callback against all memory ranges of type 449 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 450 * It is to be used only for System RAM. 451 */ 452 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 453 void *arg, int (*func)(unsigned long, unsigned long, void *)) 454 { 455 resource_size_t start, end; 456 unsigned long flags; 457 struct resource res; 458 unsigned long pfn, end_pfn; 459 int ret = -EINVAL; 460 461 start = (u64) start_pfn << PAGE_SHIFT; 462 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 463 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 464 while (start < end && 465 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) { 466 pfn = PFN_UP(res.start); 467 end_pfn = PFN_DOWN(res.end + 1); 468 if (end_pfn > pfn) 469 ret = (*func)(pfn, end_pfn - pfn, arg); 470 if (ret) 471 break; 472 start = res.end + 1; 473 } 474 return ret; 475 } 476 477 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 478 { 479 return 1; 480 } 481 482 /* 483 * This generic page_is_ram() returns true if specified address is 484 * registered as System RAM in iomem_resource list. 485 */ 486 int __weak page_is_ram(unsigned long pfn) 487 { 488 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 489 } 490 EXPORT_SYMBOL_GPL(page_is_ram); 491 492 static int __region_intersects(struct resource *parent, resource_size_t start, 493 size_t size, unsigned long flags, 494 unsigned long desc) 495 { 496 struct resource res; 497 int type = 0; int other = 0; 498 struct resource *p; 499 500 res.start = start; 501 res.end = start + size - 1; 502 503 for (p = parent->child; p ; p = p->sibling) { 504 bool is_type = (((p->flags & flags) == flags) && 505 ((desc == IORES_DESC_NONE) || 506 (desc == p->desc))); 507 508 if (resource_overlaps(p, &res)) 509 is_type ? type++ : other++; 510 } 511 512 if (type == 0) 513 return REGION_DISJOINT; 514 515 if (other == 0) 516 return REGION_INTERSECTS; 517 518 return REGION_MIXED; 519 } 520 521 /** 522 * region_intersects() - determine intersection of region with known resources 523 * @start: region start address 524 * @size: size of region 525 * @flags: flags of resource (in iomem_resource) 526 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 527 * 528 * Check if the specified region partially overlaps or fully eclipses a 529 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 530 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 531 * return REGION_MIXED if the region overlaps @flags/@desc and another 532 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 533 * and no other defined resource. Note that REGION_INTERSECTS is also 534 * returned in the case when the specified region overlaps RAM and undefined 535 * memory holes. 536 * 537 * region_intersect() is used by memory remapping functions to ensure 538 * the user is not remapping RAM and is a vast speed up over walking 539 * through the resource table page by page. 540 */ 541 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 542 unsigned long desc) 543 { 544 int ret; 545 546 read_lock(&resource_lock); 547 ret = __region_intersects(&iomem_resource, start, size, flags, desc); 548 read_unlock(&resource_lock); 549 550 return ret; 551 } 552 EXPORT_SYMBOL_GPL(region_intersects); 553 554 void __weak arch_remove_reservations(struct resource *avail) 555 { 556 } 557 558 static resource_size_t simple_align_resource(void *data, 559 const struct resource *avail, 560 resource_size_t size, 561 resource_size_t align) 562 { 563 return avail->start; 564 } 565 566 static void resource_clip(struct resource *res, resource_size_t min, 567 resource_size_t max) 568 { 569 if (res->start < min) 570 res->start = min; 571 if (res->end > max) 572 res->end = max; 573 } 574 575 /* 576 * Find empty slot in the resource tree with the given range and 577 * alignment constraints 578 */ 579 static int __find_resource(struct resource *root, struct resource *old, 580 struct resource *new, 581 resource_size_t size, 582 struct resource_constraint *constraint) 583 { 584 struct resource *this = root->child; 585 struct resource tmp = *new, avail, alloc; 586 587 tmp.start = root->start; 588 /* 589 * Skip past an allocated resource that starts at 0, since the assignment 590 * of this->start - 1 to tmp->end below would cause an underflow. 591 */ 592 if (this && this->start == root->start) { 593 tmp.start = (this == old) ? old->start : this->end + 1; 594 this = this->sibling; 595 } 596 for(;;) { 597 if (this) 598 tmp.end = (this == old) ? this->end : this->start - 1; 599 else 600 tmp.end = root->end; 601 602 if (tmp.end < tmp.start) 603 goto next; 604 605 resource_clip(&tmp, constraint->min, constraint->max); 606 arch_remove_reservations(&tmp); 607 608 /* Check for overflow after ALIGN() */ 609 avail.start = ALIGN(tmp.start, constraint->align); 610 avail.end = tmp.end; 611 avail.flags = new->flags & ~IORESOURCE_UNSET; 612 if (avail.start >= tmp.start) { 613 alloc.flags = avail.flags; 614 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 615 size, constraint->align); 616 alloc.end = alloc.start + size - 1; 617 if (alloc.start <= alloc.end && 618 resource_contains(&avail, &alloc)) { 619 new->start = alloc.start; 620 new->end = alloc.end; 621 return 0; 622 } 623 } 624 625 next: if (!this || this->end == root->end) 626 break; 627 628 if (this != old) 629 tmp.start = this->end + 1; 630 this = this->sibling; 631 } 632 return -EBUSY; 633 } 634 635 /* 636 * Find empty slot in the resource tree given range and alignment. 637 */ 638 static int find_resource(struct resource *root, struct resource *new, 639 resource_size_t size, 640 struct resource_constraint *constraint) 641 { 642 return __find_resource(root, NULL, new, size, constraint); 643 } 644 645 /** 646 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 647 * The resource will be relocated if the new size cannot be reallocated in the 648 * current location. 649 * 650 * @root: root resource descriptor 651 * @old: resource descriptor desired by caller 652 * @newsize: new size of the resource descriptor 653 * @constraint: the size and alignment constraints to be met. 654 */ 655 static int reallocate_resource(struct resource *root, struct resource *old, 656 resource_size_t newsize, 657 struct resource_constraint *constraint) 658 { 659 int err=0; 660 struct resource new = *old; 661 struct resource *conflict; 662 663 write_lock(&resource_lock); 664 665 if ((err = __find_resource(root, old, &new, newsize, constraint))) 666 goto out; 667 668 if (resource_contains(&new, old)) { 669 old->start = new.start; 670 old->end = new.end; 671 goto out; 672 } 673 674 if (old->child) { 675 err = -EBUSY; 676 goto out; 677 } 678 679 if (resource_contains(old, &new)) { 680 old->start = new.start; 681 old->end = new.end; 682 } else { 683 __release_resource(old, true); 684 *old = new; 685 conflict = __request_resource(root, old); 686 BUG_ON(conflict); 687 } 688 out: 689 write_unlock(&resource_lock); 690 return err; 691 } 692 693 694 /** 695 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 696 * The resource will be reallocated with a new size if it was already allocated 697 * @root: root resource descriptor 698 * @new: resource descriptor desired by caller 699 * @size: requested resource region size 700 * @min: minimum boundary to allocate 701 * @max: maximum boundary to allocate 702 * @align: alignment requested, in bytes 703 * @alignf: alignment function, optional, called if not NULL 704 * @alignf_data: arbitrary data to pass to the @alignf function 705 */ 706 int allocate_resource(struct resource *root, struct resource *new, 707 resource_size_t size, resource_size_t min, 708 resource_size_t max, resource_size_t align, 709 resource_size_t (*alignf)(void *, 710 const struct resource *, 711 resource_size_t, 712 resource_size_t), 713 void *alignf_data) 714 { 715 int err; 716 struct resource_constraint constraint; 717 718 if (!alignf) 719 alignf = simple_align_resource; 720 721 constraint.min = min; 722 constraint.max = max; 723 constraint.align = align; 724 constraint.alignf = alignf; 725 constraint.alignf_data = alignf_data; 726 727 if ( new->parent ) { 728 /* resource is already allocated, try reallocating with 729 the new constraints */ 730 return reallocate_resource(root, new, size, &constraint); 731 } 732 733 write_lock(&resource_lock); 734 err = find_resource(root, new, size, &constraint); 735 if (err >= 0 && __request_resource(root, new)) 736 err = -EBUSY; 737 write_unlock(&resource_lock); 738 return err; 739 } 740 741 EXPORT_SYMBOL(allocate_resource); 742 743 /** 744 * lookup_resource - find an existing resource by a resource start address 745 * @root: root resource descriptor 746 * @start: resource start address 747 * 748 * Returns a pointer to the resource if found, NULL otherwise 749 */ 750 struct resource *lookup_resource(struct resource *root, resource_size_t start) 751 { 752 struct resource *res; 753 754 read_lock(&resource_lock); 755 for (res = root->child; res; res = res->sibling) { 756 if (res->start == start) 757 break; 758 } 759 read_unlock(&resource_lock); 760 761 return res; 762 } 763 764 /* 765 * Insert a resource into the resource tree. If successful, return NULL, 766 * otherwise return the conflicting resource (compare to __request_resource()) 767 */ 768 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 769 { 770 struct resource *first, *next; 771 772 for (;; parent = first) { 773 first = __request_resource(parent, new); 774 if (!first) 775 return first; 776 777 if (first == parent) 778 return first; 779 if (WARN_ON(first == new)) /* duplicated insertion */ 780 return first; 781 782 if ((first->start > new->start) || (first->end < new->end)) 783 break; 784 if ((first->start == new->start) && (first->end == new->end)) 785 break; 786 } 787 788 for (next = first; ; next = next->sibling) { 789 /* Partial overlap? Bad, and unfixable */ 790 if (next->start < new->start || next->end > new->end) 791 return next; 792 if (!next->sibling) 793 break; 794 if (next->sibling->start > new->end) 795 break; 796 } 797 798 new->parent = parent; 799 new->sibling = next->sibling; 800 new->child = first; 801 802 next->sibling = NULL; 803 for (next = first; next; next = next->sibling) 804 next->parent = new; 805 806 if (parent->child == first) { 807 parent->child = new; 808 } else { 809 next = parent->child; 810 while (next->sibling != first) 811 next = next->sibling; 812 next->sibling = new; 813 } 814 return NULL; 815 } 816 817 /** 818 * insert_resource_conflict - Inserts resource in the resource tree 819 * @parent: parent of the new resource 820 * @new: new resource to insert 821 * 822 * Returns 0 on success, conflict resource if the resource can't be inserted. 823 * 824 * This function is equivalent to request_resource_conflict when no conflict 825 * happens. If a conflict happens, and the conflicting resources 826 * entirely fit within the range of the new resource, then the new 827 * resource is inserted and the conflicting resources become children of 828 * the new resource. 829 * 830 * This function is intended for producers of resources, such as FW modules 831 * and bus drivers. 832 */ 833 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 834 { 835 struct resource *conflict; 836 837 write_lock(&resource_lock); 838 conflict = __insert_resource(parent, new); 839 write_unlock(&resource_lock); 840 return conflict; 841 } 842 843 /** 844 * insert_resource - Inserts a resource in the resource tree 845 * @parent: parent of the new resource 846 * @new: new resource to insert 847 * 848 * Returns 0 on success, -EBUSY if the resource can't be inserted. 849 * 850 * This function is intended for producers of resources, such as FW modules 851 * and bus drivers. 852 */ 853 int insert_resource(struct resource *parent, struct resource *new) 854 { 855 struct resource *conflict; 856 857 conflict = insert_resource_conflict(parent, new); 858 return conflict ? -EBUSY : 0; 859 } 860 EXPORT_SYMBOL_GPL(insert_resource); 861 862 /** 863 * insert_resource_expand_to_fit - Insert a resource into the resource tree 864 * @root: root resource descriptor 865 * @new: new resource to insert 866 * 867 * Insert a resource into the resource tree, possibly expanding it in order 868 * to make it encompass any conflicting resources. 869 */ 870 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 871 { 872 if (new->parent) 873 return; 874 875 write_lock(&resource_lock); 876 for (;;) { 877 struct resource *conflict; 878 879 conflict = __insert_resource(root, new); 880 if (!conflict) 881 break; 882 if (conflict == root) 883 break; 884 885 /* Ok, expand resource to cover the conflict, then try again .. */ 886 if (conflict->start < new->start) 887 new->start = conflict->start; 888 if (conflict->end > new->end) 889 new->end = conflict->end; 890 891 pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 892 } 893 write_unlock(&resource_lock); 894 } 895 /* 896 * Not for general consumption, only early boot memory map parsing, PCI 897 * resource discovery, and late discovery of CXL resources are expected 898 * to use this interface. The former are built-in and only the latter, 899 * CXL, is a module. 900 */ 901 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL); 902 903 /** 904 * remove_resource - Remove a resource in the resource tree 905 * @old: resource to remove 906 * 907 * Returns 0 on success, -EINVAL if the resource is not valid. 908 * 909 * This function removes a resource previously inserted by insert_resource() 910 * or insert_resource_conflict(), and moves the children (if any) up to 911 * where they were before. insert_resource() and insert_resource_conflict() 912 * insert a new resource, and move any conflicting resources down to the 913 * children of the new resource. 914 * 915 * insert_resource(), insert_resource_conflict() and remove_resource() are 916 * intended for producers of resources, such as FW modules and bus drivers. 917 */ 918 int remove_resource(struct resource *old) 919 { 920 int retval; 921 922 write_lock(&resource_lock); 923 retval = __release_resource(old, false); 924 write_unlock(&resource_lock); 925 return retval; 926 } 927 EXPORT_SYMBOL_GPL(remove_resource); 928 929 static int __adjust_resource(struct resource *res, resource_size_t start, 930 resource_size_t size) 931 { 932 struct resource *tmp, *parent = res->parent; 933 resource_size_t end = start + size - 1; 934 int result = -EBUSY; 935 936 if (!parent) 937 goto skip; 938 939 if ((start < parent->start) || (end > parent->end)) 940 goto out; 941 942 if (res->sibling && (res->sibling->start <= end)) 943 goto out; 944 945 tmp = parent->child; 946 if (tmp != res) { 947 while (tmp->sibling != res) 948 tmp = tmp->sibling; 949 if (start <= tmp->end) 950 goto out; 951 } 952 953 skip: 954 for (tmp = res->child; tmp; tmp = tmp->sibling) 955 if ((tmp->start < start) || (tmp->end > end)) 956 goto out; 957 958 res->start = start; 959 res->end = end; 960 result = 0; 961 962 out: 963 return result; 964 } 965 966 /** 967 * adjust_resource - modify a resource's start and size 968 * @res: resource to modify 969 * @start: new start value 970 * @size: new size 971 * 972 * Given an existing resource, change its start and size to match the 973 * arguments. Returns 0 on success, -EBUSY if it can't fit. 974 * Existing children of the resource are assumed to be immutable. 975 */ 976 int adjust_resource(struct resource *res, resource_size_t start, 977 resource_size_t size) 978 { 979 int result; 980 981 write_lock(&resource_lock); 982 result = __adjust_resource(res, start, size); 983 write_unlock(&resource_lock); 984 return result; 985 } 986 EXPORT_SYMBOL(adjust_resource); 987 988 static void __init 989 __reserve_region_with_split(struct resource *root, resource_size_t start, 990 resource_size_t end, const char *name) 991 { 992 struct resource *parent = root; 993 struct resource *conflict; 994 struct resource *res = alloc_resource(GFP_ATOMIC); 995 struct resource *next_res = NULL; 996 int type = resource_type(root); 997 998 if (!res) 999 return; 1000 1001 res->name = name; 1002 res->start = start; 1003 res->end = end; 1004 res->flags = type | IORESOURCE_BUSY; 1005 res->desc = IORES_DESC_NONE; 1006 1007 while (1) { 1008 1009 conflict = __request_resource(parent, res); 1010 if (!conflict) { 1011 if (!next_res) 1012 break; 1013 res = next_res; 1014 next_res = NULL; 1015 continue; 1016 } 1017 1018 /* conflict covered whole area */ 1019 if (conflict->start <= res->start && 1020 conflict->end >= res->end) { 1021 free_resource(res); 1022 WARN_ON(next_res); 1023 break; 1024 } 1025 1026 /* failed, split and try again */ 1027 if (conflict->start > res->start) { 1028 end = res->end; 1029 res->end = conflict->start - 1; 1030 if (conflict->end < end) { 1031 next_res = alloc_resource(GFP_ATOMIC); 1032 if (!next_res) { 1033 free_resource(res); 1034 break; 1035 } 1036 next_res->name = name; 1037 next_res->start = conflict->end + 1; 1038 next_res->end = end; 1039 next_res->flags = type | IORESOURCE_BUSY; 1040 next_res->desc = IORES_DESC_NONE; 1041 } 1042 } else { 1043 res->start = conflict->end + 1; 1044 } 1045 } 1046 1047 } 1048 1049 void __init 1050 reserve_region_with_split(struct resource *root, resource_size_t start, 1051 resource_size_t end, const char *name) 1052 { 1053 int abort = 0; 1054 1055 write_lock(&resource_lock); 1056 if (root->start > start || root->end < end) { 1057 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1058 (unsigned long long)start, (unsigned long long)end, 1059 root); 1060 if (start > root->end || end < root->start) 1061 abort = 1; 1062 else { 1063 if (end > root->end) 1064 end = root->end; 1065 if (start < root->start) 1066 start = root->start; 1067 pr_err("fixing request to [0x%llx-0x%llx]\n", 1068 (unsigned long long)start, 1069 (unsigned long long)end); 1070 } 1071 dump_stack(); 1072 } 1073 if (!abort) 1074 __reserve_region_with_split(root, start, end, name); 1075 write_unlock(&resource_lock); 1076 } 1077 1078 /** 1079 * resource_alignment - calculate resource's alignment 1080 * @res: resource pointer 1081 * 1082 * Returns alignment on success, 0 (invalid alignment) on failure. 1083 */ 1084 resource_size_t resource_alignment(struct resource *res) 1085 { 1086 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1087 case IORESOURCE_SIZEALIGN: 1088 return resource_size(res); 1089 case IORESOURCE_STARTALIGN: 1090 return res->start; 1091 default: 1092 return 0; 1093 } 1094 } 1095 1096 /* 1097 * This is compatibility stuff for IO resources. 1098 * 1099 * Note how this, unlike the above, knows about 1100 * the IO flag meanings (busy etc). 1101 * 1102 * request_region creates a new busy region. 1103 * 1104 * release_region releases a matching busy region. 1105 */ 1106 1107 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1108 1109 static struct inode *iomem_inode; 1110 1111 #ifdef CONFIG_IO_STRICT_DEVMEM 1112 static void revoke_iomem(struct resource *res) 1113 { 1114 /* pairs with smp_store_release() in iomem_init_inode() */ 1115 struct inode *inode = smp_load_acquire(&iomem_inode); 1116 1117 /* 1118 * Check that the initialization has completed. Losing the race 1119 * is ok because it means drivers are claiming resources before 1120 * the fs_initcall level of init and prevent iomem_get_mapping users 1121 * from establishing mappings. 1122 */ 1123 if (!inode) 1124 return; 1125 1126 /* 1127 * The expectation is that the driver has successfully marked 1128 * the resource busy by this point, so devmem_is_allowed() 1129 * should start returning false, however for performance this 1130 * does not iterate the entire resource range. 1131 */ 1132 if (devmem_is_allowed(PHYS_PFN(res->start)) && 1133 devmem_is_allowed(PHYS_PFN(res->end))) { 1134 /* 1135 * *cringe* iomem=relaxed says "go ahead, what's the 1136 * worst that can happen?" 1137 */ 1138 return; 1139 } 1140 1141 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1); 1142 } 1143 #else 1144 static void revoke_iomem(struct resource *res) {} 1145 #endif 1146 1147 struct address_space *iomem_get_mapping(void) 1148 { 1149 /* 1150 * This function is only called from file open paths, hence guaranteed 1151 * that fs_initcalls have completed and no need to check for NULL. But 1152 * since revoke_iomem can be called before the initcall we still need 1153 * the barrier to appease checkers. 1154 */ 1155 return smp_load_acquire(&iomem_inode)->i_mapping; 1156 } 1157 1158 static int __request_region_locked(struct resource *res, struct resource *parent, 1159 resource_size_t start, resource_size_t n, 1160 const char *name, int flags) 1161 { 1162 DECLARE_WAITQUEUE(wait, current); 1163 1164 res->name = name; 1165 res->start = start; 1166 res->end = start + n - 1; 1167 1168 for (;;) { 1169 struct resource *conflict; 1170 1171 res->flags = resource_type(parent) | resource_ext_type(parent); 1172 res->flags |= IORESOURCE_BUSY | flags; 1173 res->desc = parent->desc; 1174 1175 conflict = __request_resource(parent, res); 1176 if (!conflict) 1177 break; 1178 /* 1179 * mm/hmm.c reserves physical addresses which then 1180 * become unavailable to other users. Conflicts are 1181 * not expected. Warn to aid debugging if encountered. 1182 */ 1183 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 1184 pr_warn("Unaddressable device %s %pR conflicts with %pR", 1185 conflict->name, conflict, res); 1186 } 1187 if (conflict != parent) { 1188 if (!(conflict->flags & IORESOURCE_BUSY)) { 1189 parent = conflict; 1190 continue; 1191 } 1192 } 1193 if (conflict->flags & flags & IORESOURCE_MUXED) { 1194 add_wait_queue(&muxed_resource_wait, &wait); 1195 write_unlock(&resource_lock); 1196 set_current_state(TASK_UNINTERRUPTIBLE); 1197 schedule(); 1198 remove_wait_queue(&muxed_resource_wait, &wait); 1199 write_lock(&resource_lock); 1200 continue; 1201 } 1202 /* Uhhuh, that didn't work out.. */ 1203 return -EBUSY; 1204 } 1205 1206 return 0; 1207 } 1208 1209 /** 1210 * __request_region - create a new busy resource region 1211 * @parent: parent resource descriptor 1212 * @start: resource start address 1213 * @n: resource region size 1214 * @name: reserving caller's ID string 1215 * @flags: IO resource flags 1216 */ 1217 struct resource *__request_region(struct resource *parent, 1218 resource_size_t start, resource_size_t n, 1219 const char *name, int flags) 1220 { 1221 struct resource *res = alloc_resource(GFP_KERNEL); 1222 int ret; 1223 1224 if (!res) 1225 return NULL; 1226 1227 write_lock(&resource_lock); 1228 ret = __request_region_locked(res, parent, start, n, name, flags); 1229 write_unlock(&resource_lock); 1230 1231 if (ret) { 1232 free_resource(res); 1233 return NULL; 1234 } 1235 1236 if (parent == &iomem_resource) 1237 revoke_iomem(res); 1238 1239 return res; 1240 } 1241 EXPORT_SYMBOL(__request_region); 1242 1243 /** 1244 * __release_region - release a previously reserved resource region 1245 * @parent: parent resource descriptor 1246 * @start: resource start address 1247 * @n: resource region size 1248 * 1249 * The described resource region must match a currently busy region. 1250 */ 1251 void __release_region(struct resource *parent, resource_size_t start, 1252 resource_size_t n) 1253 { 1254 struct resource **p; 1255 resource_size_t end; 1256 1257 p = &parent->child; 1258 end = start + n - 1; 1259 1260 write_lock(&resource_lock); 1261 1262 for (;;) { 1263 struct resource *res = *p; 1264 1265 if (!res) 1266 break; 1267 if (res->start <= start && res->end >= end) { 1268 if (!(res->flags & IORESOURCE_BUSY)) { 1269 p = &res->child; 1270 continue; 1271 } 1272 if (res->start != start || res->end != end) 1273 break; 1274 *p = res->sibling; 1275 write_unlock(&resource_lock); 1276 if (res->flags & IORESOURCE_MUXED) 1277 wake_up(&muxed_resource_wait); 1278 free_resource(res); 1279 return; 1280 } 1281 p = &res->sibling; 1282 } 1283 1284 write_unlock(&resource_lock); 1285 1286 pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end); 1287 } 1288 EXPORT_SYMBOL(__release_region); 1289 1290 #ifdef CONFIG_MEMORY_HOTREMOVE 1291 /** 1292 * release_mem_region_adjustable - release a previously reserved memory region 1293 * @start: resource start address 1294 * @size: resource region size 1295 * 1296 * This interface is intended for memory hot-delete. The requested region 1297 * is released from a currently busy memory resource. The requested region 1298 * must either match exactly or fit into a single busy resource entry. In 1299 * the latter case, the remaining resource is adjusted accordingly. 1300 * Existing children of the busy memory resource must be immutable in the 1301 * request. 1302 * 1303 * Note: 1304 * - Additional release conditions, such as overlapping region, can be 1305 * supported after they are confirmed as valid cases. 1306 * - When a busy memory resource gets split into two entries, the code 1307 * assumes that all children remain in the lower address entry for 1308 * simplicity. Enhance this logic when necessary. 1309 */ 1310 void release_mem_region_adjustable(resource_size_t start, resource_size_t size) 1311 { 1312 struct resource *parent = &iomem_resource; 1313 struct resource *new_res = NULL; 1314 bool alloc_nofail = false; 1315 struct resource **p; 1316 struct resource *res; 1317 resource_size_t end; 1318 1319 end = start + size - 1; 1320 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end))) 1321 return; 1322 1323 /* 1324 * We free up quite a lot of memory on memory hotunplug (esp., memap), 1325 * just before releasing the region. This is highly unlikely to 1326 * fail - let's play save and make it never fail as the caller cannot 1327 * perform any error handling (e.g., trying to re-add memory will fail 1328 * similarly). 1329 */ 1330 retry: 1331 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0)); 1332 1333 p = &parent->child; 1334 write_lock(&resource_lock); 1335 1336 while ((res = *p)) { 1337 if (res->start >= end) 1338 break; 1339 1340 /* look for the next resource if it does not fit into */ 1341 if (res->start > start || res->end < end) { 1342 p = &res->sibling; 1343 continue; 1344 } 1345 1346 if (!(res->flags & IORESOURCE_MEM)) 1347 break; 1348 1349 if (!(res->flags & IORESOURCE_BUSY)) { 1350 p = &res->child; 1351 continue; 1352 } 1353 1354 /* found the target resource; let's adjust accordingly */ 1355 if (res->start == start && res->end == end) { 1356 /* free the whole entry */ 1357 *p = res->sibling; 1358 free_resource(res); 1359 } else if (res->start == start && res->end != end) { 1360 /* adjust the start */ 1361 WARN_ON_ONCE(__adjust_resource(res, end + 1, 1362 res->end - end)); 1363 } else if (res->start != start && res->end == end) { 1364 /* adjust the end */ 1365 WARN_ON_ONCE(__adjust_resource(res, res->start, 1366 start - res->start)); 1367 } else { 1368 /* split into two entries - we need a new resource */ 1369 if (!new_res) { 1370 new_res = alloc_resource(GFP_ATOMIC); 1371 if (!new_res) { 1372 alloc_nofail = true; 1373 write_unlock(&resource_lock); 1374 goto retry; 1375 } 1376 } 1377 new_res->name = res->name; 1378 new_res->start = end + 1; 1379 new_res->end = res->end; 1380 new_res->flags = res->flags; 1381 new_res->desc = res->desc; 1382 new_res->parent = res->parent; 1383 new_res->sibling = res->sibling; 1384 new_res->child = NULL; 1385 1386 if (WARN_ON_ONCE(__adjust_resource(res, res->start, 1387 start - res->start))) 1388 break; 1389 res->sibling = new_res; 1390 new_res = NULL; 1391 } 1392 1393 break; 1394 } 1395 1396 write_unlock(&resource_lock); 1397 free_resource(new_res); 1398 } 1399 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1400 1401 #ifdef CONFIG_MEMORY_HOTPLUG 1402 static bool system_ram_resources_mergeable(struct resource *r1, 1403 struct resource *r2) 1404 { 1405 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */ 1406 return r1->flags == r2->flags && r1->end + 1 == r2->start && 1407 r1->name == r2->name && r1->desc == r2->desc && 1408 !r1->child && !r2->child; 1409 } 1410 1411 /** 1412 * merge_system_ram_resource - mark the System RAM resource mergeable and try to 1413 * merge it with adjacent, mergeable resources 1414 * @res: resource descriptor 1415 * 1416 * This interface is intended for memory hotplug, whereby lots of contiguous 1417 * system ram resources are added (e.g., via add_memory*()) by a driver, and 1418 * the actual resource boundaries are not of interest (e.g., it might be 1419 * relevant for DIMMs). Only resources that are marked mergeable, that have the 1420 * same parent, and that don't have any children are considered. All mergeable 1421 * resources must be immutable during the request. 1422 * 1423 * Note: 1424 * - The caller has to make sure that no pointers to resources that are 1425 * marked mergeable are used anymore after this call - the resource might 1426 * be freed and the pointer might be stale! 1427 * - release_mem_region_adjustable() will split on demand on memory hotunplug 1428 */ 1429 void merge_system_ram_resource(struct resource *res) 1430 { 1431 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 1432 struct resource *cur; 1433 1434 if (WARN_ON_ONCE((res->flags & flags) != flags)) 1435 return; 1436 1437 write_lock(&resource_lock); 1438 res->flags |= IORESOURCE_SYSRAM_MERGEABLE; 1439 1440 /* Try to merge with next item in the list. */ 1441 cur = res->sibling; 1442 if (cur && system_ram_resources_mergeable(res, cur)) { 1443 res->end = cur->end; 1444 res->sibling = cur->sibling; 1445 free_resource(cur); 1446 } 1447 1448 /* Try to merge with previous item in the list. */ 1449 cur = res->parent->child; 1450 while (cur && cur->sibling != res) 1451 cur = cur->sibling; 1452 if (cur && system_ram_resources_mergeable(cur, res)) { 1453 cur->end = res->end; 1454 cur->sibling = res->sibling; 1455 free_resource(res); 1456 } 1457 write_unlock(&resource_lock); 1458 } 1459 #endif /* CONFIG_MEMORY_HOTPLUG */ 1460 1461 /* 1462 * Managed region resource 1463 */ 1464 static void devm_resource_release(struct device *dev, void *ptr) 1465 { 1466 struct resource **r = ptr; 1467 1468 release_resource(*r); 1469 } 1470 1471 /** 1472 * devm_request_resource() - request and reserve an I/O or memory resource 1473 * @dev: device for which to request the resource 1474 * @root: root of the resource tree from which to request the resource 1475 * @new: descriptor of the resource to request 1476 * 1477 * This is a device-managed version of request_resource(). There is usually 1478 * no need to release resources requested by this function explicitly since 1479 * that will be taken care of when the device is unbound from its driver. 1480 * If for some reason the resource needs to be released explicitly, because 1481 * of ordering issues for example, drivers must call devm_release_resource() 1482 * rather than the regular release_resource(). 1483 * 1484 * When a conflict is detected between any existing resources and the newly 1485 * requested resource, an error message will be printed. 1486 * 1487 * Returns 0 on success or a negative error code on failure. 1488 */ 1489 int devm_request_resource(struct device *dev, struct resource *root, 1490 struct resource *new) 1491 { 1492 struct resource *conflict, **ptr; 1493 1494 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1495 if (!ptr) 1496 return -ENOMEM; 1497 1498 *ptr = new; 1499 1500 conflict = request_resource_conflict(root, new); 1501 if (conflict) { 1502 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1503 new, conflict->name, conflict); 1504 devres_free(ptr); 1505 return -EBUSY; 1506 } 1507 1508 devres_add(dev, ptr); 1509 return 0; 1510 } 1511 EXPORT_SYMBOL(devm_request_resource); 1512 1513 static int devm_resource_match(struct device *dev, void *res, void *data) 1514 { 1515 struct resource **ptr = res; 1516 1517 return *ptr == data; 1518 } 1519 1520 /** 1521 * devm_release_resource() - release a previously requested resource 1522 * @dev: device for which to release the resource 1523 * @new: descriptor of the resource to release 1524 * 1525 * Releases a resource previously requested using devm_request_resource(). 1526 */ 1527 void devm_release_resource(struct device *dev, struct resource *new) 1528 { 1529 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1530 new)); 1531 } 1532 EXPORT_SYMBOL(devm_release_resource); 1533 1534 struct region_devres { 1535 struct resource *parent; 1536 resource_size_t start; 1537 resource_size_t n; 1538 }; 1539 1540 static void devm_region_release(struct device *dev, void *res) 1541 { 1542 struct region_devres *this = res; 1543 1544 __release_region(this->parent, this->start, this->n); 1545 } 1546 1547 static int devm_region_match(struct device *dev, void *res, void *match_data) 1548 { 1549 struct region_devres *this = res, *match = match_data; 1550 1551 return this->parent == match->parent && 1552 this->start == match->start && this->n == match->n; 1553 } 1554 1555 struct resource * 1556 __devm_request_region(struct device *dev, struct resource *parent, 1557 resource_size_t start, resource_size_t n, const char *name) 1558 { 1559 struct region_devres *dr = NULL; 1560 struct resource *res; 1561 1562 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1563 GFP_KERNEL); 1564 if (!dr) 1565 return NULL; 1566 1567 dr->parent = parent; 1568 dr->start = start; 1569 dr->n = n; 1570 1571 res = __request_region(parent, start, n, name, 0); 1572 if (res) 1573 devres_add(dev, dr); 1574 else 1575 devres_free(dr); 1576 1577 return res; 1578 } 1579 EXPORT_SYMBOL(__devm_request_region); 1580 1581 void __devm_release_region(struct device *dev, struct resource *parent, 1582 resource_size_t start, resource_size_t n) 1583 { 1584 struct region_devres match_data = { parent, start, n }; 1585 1586 __release_region(parent, start, n); 1587 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1588 &match_data)); 1589 } 1590 EXPORT_SYMBOL(__devm_release_region); 1591 1592 /* 1593 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1594 */ 1595 #define MAXRESERVE 4 1596 static int __init reserve_setup(char *str) 1597 { 1598 static int reserved; 1599 static struct resource reserve[MAXRESERVE]; 1600 1601 for (;;) { 1602 unsigned int io_start, io_num; 1603 int x = reserved; 1604 struct resource *parent; 1605 1606 if (get_option(&str, &io_start) != 2) 1607 break; 1608 if (get_option(&str, &io_num) == 0) 1609 break; 1610 if (x < MAXRESERVE) { 1611 struct resource *res = reserve + x; 1612 1613 /* 1614 * If the region starts below 0x10000, we assume it's 1615 * I/O port space; otherwise assume it's memory. 1616 */ 1617 if (io_start < 0x10000) { 1618 res->flags = IORESOURCE_IO; 1619 parent = &ioport_resource; 1620 } else { 1621 res->flags = IORESOURCE_MEM; 1622 parent = &iomem_resource; 1623 } 1624 res->name = "reserved"; 1625 res->start = io_start; 1626 res->end = io_start + io_num - 1; 1627 res->flags |= IORESOURCE_BUSY; 1628 res->desc = IORES_DESC_NONE; 1629 res->child = NULL; 1630 if (request_resource(parent, res) == 0) 1631 reserved = x+1; 1632 } 1633 } 1634 return 1; 1635 } 1636 __setup("reserve=", reserve_setup); 1637 1638 /* 1639 * Check if the requested addr and size spans more than any slot in the 1640 * iomem resource tree. 1641 */ 1642 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1643 { 1644 struct resource *p = &iomem_resource; 1645 resource_size_t end = addr + size - 1; 1646 int err = 0; 1647 loff_t l; 1648 1649 read_lock(&resource_lock); 1650 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1651 /* 1652 * We can probably skip the resources without 1653 * IORESOURCE_IO attribute? 1654 */ 1655 if (p->start > end) 1656 continue; 1657 if (p->end < addr) 1658 continue; 1659 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1660 PFN_DOWN(p->end) >= PFN_DOWN(end)) 1661 continue; 1662 /* 1663 * if a resource is "BUSY", it's not a hardware resource 1664 * but a driver mapping of such a resource; we don't want 1665 * to warn for those; some drivers legitimately map only 1666 * partial hardware resources. (example: vesafb) 1667 */ 1668 if (p->flags & IORESOURCE_BUSY) 1669 continue; 1670 1671 pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n", 1672 &addr, &end, p->name, p); 1673 err = -1; 1674 break; 1675 } 1676 read_unlock(&resource_lock); 1677 1678 return err; 1679 } 1680 1681 #ifdef CONFIG_STRICT_DEVMEM 1682 static int strict_iomem_checks = 1; 1683 #else 1684 static int strict_iomem_checks; 1685 #endif 1686 1687 /* 1688 * Check if an address is exclusive to the kernel and must not be mapped to 1689 * user space, for example, via /dev/mem. 1690 * 1691 * Returns true if exclusive to the kernel, otherwise returns false. 1692 */ 1693 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size) 1694 { 1695 const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM | 1696 IORESOURCE_EXCLUSIVE; 1697 bool skip_children = false, err = false; 1698 struct resource *p; 1699 1700 read_lock(&resource_lock); 1701 for_each_resource(root, p, skip_children) { 1702 if (p->start >= addr + size) 1703 break; 1704 if (p->end < addr) { 1705 skip_children = true; 1706 continue; 1707 } 1708 skip_children = false; 1709 1710 /* 1711 * IORESOURCE_SYSTEM_RAM resources are exclusive if 1712 * IORESOURCE_EXCLUSIVE is set, even if they 1713 * are not busy and even if "iomem=relaxed" is set. The 1714 * responsible driver dynamically adds/removes system RAM within 1715 * such an area and uncontrolled access is dangerous. 1716 */ 1717 if ((p->flags & exclusive_system_ram) == exclusive_system_ram) { 1718 err = true; 1719 break; 1720 } 1721 1722 /* 1723 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1724 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1725 * resource is busy. 1726 */ 1727 if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY)) 1728 continue; 1729 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1730 || p->flags & IORESOURCE_EXCLUSIVE) { 1731 err = true; 1732 break; 1733 } 1734 } 1735 read_unlock(&resource_lock); 1736 1737 return err; 1738 } 1739 1740 bool iomem_is_exclusive(u64 addr) 1741 { 1742 return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK, 1743 PAGE_SIZE); 1744 } 1745 1746 struct resource_entry *resource_list_create_entry(struct resource *res, 1747 size_t extra_size) 1748 { 1749 struct resource_entry *entry; 1750 1751 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1752 if (entry) { 1753 INIT_LIST_HEAD(&entry->node); 1754 entry->res = res ? res : &entry->__res; 1755 } 1756 1757 return entry; 1758 } 1759 EXPORT_SYMBOL(resource_list_create_entry); 1760 1761 void resource_list_free(struct list_head *head) 1762 { 1763 struct resource_entry *entry, *tmp; 1764 1765 list_for_each_entry_safe(entry, tmp, head, node) 1766 resource_list_destroy_entry(entry); 1767 } 1768 EXPORT_SYMBOL(resource_list_free); 1769 1770 #ifdef CONFIG_GET_FREE_REGION 1771 #define GFR_DESCENDING (1UL << 0) 1772 #define GFR_REQUEST_REGION (1UL << 1) 1773 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT) 1774 1775 static resource_size_t gfr_start(struct resource *base, resource_size_t size, 1776 resource_size_t align, unsigned long flags) 1777 { 1778 if (flags & GFR_DESCENDING) { 1779 resource_size_t end; 1780 1781 end = min_t(resource_size_t, base->end, 1782 (1ULL << MAX_PHYSMEM_BITS) - 1); 1783 return end - size + 1; 1784 } 1785 1786 return ALIGN(base->start, align); 1787 } 1788 1789 static bool gfr_continue(struct resource *base, resource_size_t addr, 1790 resource_size_t size, unsigned long flags) 1791 { 1792 if (flags & GFR_DESCENDING) 1793 return addr > size && addr >= base->start; 1794 /* 1795 * In the ascend case be careful that the last increment by 1796 * @size did not wrap 0. 1797 */ 1798 return addr > addr - size && 1799 addr <= min_t(resource_size_t, base->end, 1800 (1ULL << MAX_PHYSMEM_BITS) - 1); 1801 } 1802 1803 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size, 1804 unsigned long flags) 1805 { 1806 if (flags & GFR_DESCENDING) 1807 return addr - size; 1808 return addr + size; 1809 } 1810 1811 static void remove_free_mem_region(void *_res) 1812 { 1813 struct resource *res = _res; 1814 1815 if (res->parent) 1816 remove_resource(res); 1817 free_resource(res); 1818 } 1819 1820 static struct resource * 1821 get_free_mem_region(struct device *dev, struct resource *base, 1822 resource_size_t size, const unsigned long align, 1823 const char *name, const unsigned long desc, 1824 const unsigned long flags) 1825 { 1826 resource_size_t addr; 1827 struct resource *res; 1828 struct region_devres *dr = NULL; 1829 1830 size = ALIGN(size, align); 1831 1832 res = alloc_resource(GFP_KERNEL); 1833 if (!res) 1834 return ERR_PTR(-ENOMEM); 1835 1836 if (dev && (flags & GFR_REQUEST_REGION)) { 1837 dr = devres_alloc(devm_region_release, 1838 sizeof(struct region_devres), GFP_KERNEL); 1839 if (!dr) { 1840 free_resource(res); 1841 return ERR_PTR(-ENOMEM); 1842 } 1843 } else if (dev) { 1844 if (devm_add_action_or_reset(dev, remove_free_mem_region, res)) 1845 return ERR_PTR(-ENOMEM); 1846 } 1847 1848 write_lock(&resource_lock); 1849 for (addr = gfr_start(base, size, align, flags); 1850 gfr_continue(base, addr, size, flags); 1851 addr = gfr_next(addr, size, flags)) { 1852 if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) != 1853 REGION_DISJOINT) 1854 continue; 1855 1856 if (flags & GFR_REQUEST_REGION) { 1857 if (__request_region_locked(res, &iomem_resource, addr, 1858 size, name, 0)) 1859 break; 1860 1861 if (dev) { 1862 dr->parent = &iomem_resource; 1863 dr->start = addr; 1864 dr->n = size; 1865 devres_add(dev, dr); 1866 } 1867 1868 res->desc = desc; 1869 write_unlock(&resource_lock); 1870 1871 1872 /* 1873 * A driver is claiming this region so revoke any 1874 * mappings. 1875 */ 1876 revoke_iomem(res); 1877 } else { 1878 res->start = addr; 1879 res->end = addr + size - 1; 1880 res->name = name; 1881 res->desc = desc; 1882 res->flags = IORESOURCE_MEM; 1883 1884 /* 1885 * Only succeed if the resource hosts an exclusive 1886 * range after the insert 1887 */ 1888 if (__insert_resource(base, res) || res->child) 1889 break; 1890 1891 write_unlock(&resource_lock); 1892 } 1893 1894 return res; 1895 } 1896 write_unlock(&resource_lock); 1897 1898 if (flags & GFR_REQUEST_REGION) { 1899 free_resource(res); 1900 devres_free(dr); 1901 } else if (dev) 1902 devm_release_action(dev, remove_free_mem_region, res); 1903 1904 return ERR_PTR(-ERANGE); 1905 } 1906 1907 /** 1908 * devm_request_free_mem_region - find free region for device private memory 1909 * 1910 * @dev: device struct to bind the resource to 1911 * @size: size in bytes of the device memory to add 1912 * @base: resource tree to look in 1913 * 1914 * This function tries to find an empty range of physical address big enough to 1915 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE 1916 * memory, which in turn allocates struct pages. 1917 */ 1918 struct resource *devm_request_free_mem_region(struct device *dev, 1919 struct resource *base, unsigned long size) 1920 { 1921 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; 1922 1923 return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN, 1924 dev_name(dev), 1925 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); 1926 } 1927 EXPORT_SYMBOL_GPL(devm_request_free_mem_region); 1928 1929 struct resource *request_free_mem_region(struct resource *base, 1930 unsigned long size, const char *name) 1931 { 1932 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; 1933 1934 return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name, 1935 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); 1936 } 1937 EXPORT_SYMBOL_GPL(request_free_mem_region); 1938 1939 /** 1940 * alloc_free_mem_region - find a free region relative to @base 1941 * @base: resource that will parent the new resource 1942 * @size: size in bytes of memory to allocate from @base 1943 * @align: alignment requirements for the allocation 1944 * @name: resource name 1945 * 1946 * Buses like CXL, that can dynamically instantiate new memory regions, 1947 * need a method to allocate physical address space for those regions. 1948 * Allocate and insert a new resource to cover a free, unclaimed by a 1949 * descendant of @base, range in the span of @base. 1950 */ 1951 struct resource *alloc_free_mem_region(struct resource *base, 1952 unsigned long size, unsigned long align, 1953 const char *name) 1954 { 1955 /* Default of ascending direction and insert resource */ 1956 unsigned long flags = 0; 1957 1958 return get_free_mem_region(NULL, base, size, align, name, 1959 IORES_DESC_NONE, flags); 1960 } 1961 EXPORT_SYMBOL_NS_GPL(alloc_free_mem_region, CXL); 1962 #endif /* CONFIG_GET_FREE_REGION */ 1963 1964 static int __init strict_iomem(char *str) 1965 { 1966 if (strstr(str, "relaxed")) 1967 strict_iomem_checks = 0; 1968 if (strstr(str, "strict")) 1969 strict_iomem_checks = 1; 1970 return 1; 1971 } 1972 1973 static int iomem_fs_init_fs_context(struct fs_context *fc) 1974 { 1975 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM; 1976 } 1977 1978 static struct file_system_type iomem_fs_type = { 1979 .name = "iomem", 1980 .owner = THIS_MODULE, 1981 .init_fs_context = iomem_fs_init_fs_context, 1982 .kill_sb = kill_anon_super, 1983 }; 1984 1985 static int __init iomem_init_inode(void) 1986 { 1987 static struct vfsmount *iomem_vfs_mount; 1988 static int iomem_fs_cnt; 1989 struct inode *inode; 1990 int rc; 1991 1992 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt); 1993 if (rc < 0) { 1994 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc); 1995 return rc; 1996 } 1997 1998 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb); 1999 if (IS_ERR(inode)) { 2000 rc = PTR_ERR(inode); 2001 pr_err("Cannot allocate inode for iomem: %d\n", rc); 2002 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt); 2003 return rc; 2004 } 2005 2006 /* 2007 * Publish iomem revocation inode initialized. 2008 * Pairs with smp_load_acquire() in revoke_iomem(). 2009 */ 2010 smp_store_release(&iomem_inode, inode); 2011 2012 return 0; 2013 } 2014 2015 fs_initcall(iomem_init_inode); 2016 2017 __setup("iomem=", strict_iomem); 2018