xref: /linux/kernel/resource.c (revision e77a8005748547fb1f10645097f13ccdd804d7e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <linux/string.h>
31 #include <linux/vmalloc.h>
32 #include <asm/io.h>
33 
34 
35 struct resource ioport_resource = {
36 	.name	= "PCI IO",
37 	.start	= 0,
38 	.end	= IO_SPACE_LIMIT,
39 	.flags	= IORESOURCE_IO,
40 };
41 EXPORT_SYMBOL(ioport_resource);
42 
43 struct resource iomem_resource = {
44 	.name	= "PCI mem",
45 	.start	= 0,
46 	.end	= -1,
47 	.flags	= IORESOURCE_MEM,
48 };
49 EXPORT_SYMBOL(iomem_resource);
50 
51 static DEFINE_RWLOCK(resource_lock);
52 
53 static struct resource *next_resource(struct resource *p, bool skip_children)
54 {
55 	if (!skip_children && p->child)
56 		return p->child;
57 	while (!p->sibling && p->parent)
58 		p = p->parent;
59 	return p->sibling;
60 }
61 
62 #define for_each_resource(_root, _p, _skip_children) \
63 	for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children))
64 
65 #ifdef CONFIG_PROC_FS
66 
67 enum { MAX_IORES_LEVEL = 5 };
68 
69 static void *r_start(struct seq_file *m, loff_t *pos)
70 	__acquires(resource_lock)
71 {
72 	struct resource *root = pde_data(file_inode(m->file));
73 	struct resource *p;
74 	loff_t l = *pos;
75 
76 	read_lock(&resource_lock);
77 	for_each_resource(root, p, false) {
78 		if (l-- == 0)
79 			break;
80 	}
81 
82 	return p;
83 }
84 
85 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
86 {
87 	struct resource *p = v;
88 
89 	(*pos)++;
90 
91 	return (void *)next_resource(p, false);
92 }
93 
94 static void r_stop(struct seq_file *m, void *v)
95 	__releases(resource_lock)
96 {
97 	read_unlock(&resource_lock);
98 }
99 
100 static int r_show(struct seq_file *m, void *v)
101 {
102 	struct resource *root = pde_data(file_inode(m->file));
103 	struct resource *r = v, *p;
104 	unsigned long long start, end;
105 	int width = root->end < 0x10000 ? 4 : 8;
106 	int depth;
107 
108 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
109 		if (p->parent == root)
110 			break;
111 
112 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
113 		start = r->start;
114 		end = r->end;
115 	} else {
116 		start = end = 0;
117 	}
118 
119 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
120 			depth * 2, "",
121 			width, start,
122 			width, end,
123 			r->name ? r->name : "<BAD>");
124 	return 0;
125 }
126 
127 static const struct seq_operations resource_op = {
128 	.start	= r_start,
129 	.next	= r_next,
130 	.stop	= r_stop,
131 	.show	= r_show,
132 };
133 
134 static int __init ioresources_init(void)
135 {
136 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
137 			&ioport_resource);
138 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
139 	return 0;
140 }
141 __initcall(ioresources_init);
142 
143 #endif /* CONFIG_PROC_FS */
144 
145 static void free_resource(struct resource *res)
146 {
147 	/**
148 	 * If the resource was allocated using memblock early during boot
149 	 * we'll leak it here: we can only return full pages back to the
150 	 * buddy and trying to be smart and reusing them eventually in
151 	 * alloc_resource() overcomplicates resource handling.
152 	 */
153 	if (res && PageSlab(virt_to_head_page(res)))
154 		kfree(res);
155 }
156 
157 static struct resource *alloc_resource(gfp_t flags)
158 {
159 	return kzalloc(sizeof(struct resource), flags);
160 }
161 
162 /* Return the conflict entry if you can't request it */
163 static struct resource * __request_resource(struct resource *root, struct resource *new)
164 {
165 	resource_size_t start = new->start;
166 	resource_size_t end = new->end;
167 	struct resource *tmp, **p;
168 
169 	if (end < start)
170 		return root;
171 	if (start < root->start)
172 		return root;
173 	if (end > root->end)
174 		return root;
175 	p = &root->child;
176 	for (;;) {
177 		tmp = *p;
178 		if (!tmp || tmp->start > end) {
179 			new->sibling = tmp;
180 			*p = new;
181 			new->parent = root;
182 			return NULL;
183 		}
184 		p = &tmp->sibling;
185 		if (tmp->end < start)
186 			continue;
187 		return tmp;
188 	}
189 }
190 
191 static int __release_resource(struct resource *old, bool release_child)
192 {
193 	struct resource *tmp, **p, *chd;
194 
195 	p = &old->parent->child;
196 	for (;;) {
197 		tmp = *p;
198 		if (!tmp)
199 			break;
200 		if (tmp == old) {
201 			if (release_child || !(tmp->child)) {
202 				*p = tmp->sibling;
203 			} else {
204 				for (chd = tmp->child;; chd = chd->sibling) {
205 					chd->parent = tmp->parent;
206 					if (!(chd->sibling))
207 						break;
208 				}
209 				*p = tmp->child;
210 				chd->sibling = tmp->sibling;
211 			}
212 			old->parent = NULL;
213 			return 0;
214 		}
215 		p = &tmp->sibling;
216 	}
217 	return -EINVAL;
218 }
219 
220 static void __release_child_resources(struct resource *r)
221 {
222 	struct resource *tmp, *p;
223 	resource_size_t size;
224 
225 	p = r->child;
226 	r->child = NULL;
227 	while (p) {
228 		tmp = p;
229 		p = p->sibling;
230 
231 		tmp->parent = NULL;
232 		tmp->sibling = NULL;
233 		__release_child_resources(tmp);
234 
235 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
236 		/* need to restore size, and keep flags */
237 		size = resource_size(tmp);
238 		tmp->start = 0;
239 		tmp->end = size - 1;
240 	}
241 }
242 
243 void release_child_resources(struct resource *r)
244 {
245 	write_lock(&resource_lock);
246 	__release_child_resources(r);
247 	write_unlock(&resource_lock);
248 }
249 
250 /**
251  * request_resource_conflict - request and reserve an I/O or memory resource
252  * @root: root resource descriptor
253  * @new: resource descriptor desired by caller
254  *
255  * Returns 0 for success, conflict resource on error.
256  */
257 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
258 {
259 	struct resource *conflict;
260 
261 	write_lock(&resource_lock);
262 	conflict = __request_resource(root, new);
263 	write_unlock(&resource_lock);
264 	return conflict;
265 }
266 
267 /**
268  * request_resource - request and reserve an I/O or memory resource
269  * @root: root resource descriptor
270  * @new: resource descriptor desired by caller
271  *
272  * Returns 0 for success, negative error code on error.
273  */
274 int request_resource(struct resource *root, struct resource *new)
275 {
276 	struct resource *conflict;
277 
278 	conflict = request_resource_conflict(root, new);
279 	return conflict ? -EBUSY : 0;
280 }
281 
282 EXPORT_SYMBOL(request_resource);
283 
284 /**
285  * release_resource - release a previously reserved resource
286  * @old: resource pointer
287  */
288 int release_resource(struct resource *old)
289 {
290 	int retval;
291 
292 	write_lock(&resource_lock);
293 	retval = __release_resource(old, true);
294 	write_unlock(&resource_lock);
295 	return retval;
296 }
297 
298 EXPORT_SYMBOL(release_resource);
299 
300 /**
301  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
302  *			 [@start..@end].
303  *
304  * If a resource is found, returns 0 and @*res is overwritten with the part
305  * of the resource that's within [@start..@end]; if none is found, returns
306  * -ENODEV.  Returns -EINVAL for invalid parameters.
307  *
308  * @start:	start address of the resource searched for
309  * @end:	end address of same resource
310  * @flags:	flags which the resource must have
311  * @desc:	descriptor the resource must have
312  * @res:	return ptr, if resource found
313  *
314  * The caller must specify @start, @end, @flags, and @desc
315  * (which may be IORES_DESC_NONE).
316  */
317 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
318 			       unsigned long flags, unsigned long desc,
319 			       struct resource *res)
320 {
321 	struct resource *p;
322 
323 	if (!res)
324 		return -EINVAL;
325 
326 	if (start >= end)
327 		return -EINVAL;
328 
329 	read_lock(&resource_lock);
330 
331 	for_each_resource(&iomem_resource, p, false) {
332 		/* If we passed the resource we are looking for, stop */
333 		if (p->start > end) {
334 			p = NULL;
335 			break;
336 		}
337 
338 		/* Skip until we find a range that matches what we look for */
339 		if (p->end < start)
340 			continue;
341 
342 		if ((p->flags & flags) != flags)
343 			continue;
344 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
345 			continue;
346 
347 		/* Found a match, break */
348 		break;
349 	}
350 
351 	if (p) {
352 		/* copy data */
353 		*res = (struct resource) {
354 			.start = max(start, p->start),
355 			.end = min(end, p->end),
356 			.flags = p->flags,
357 			.desc = p->desc,
358 			.parent = p->parent,
359 		};
360 	}
361 
362 	read_unlock(&resource_lock);
363 	return p ? 0 : -ENODEV;
364 }
365 
366 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
367 				 unsigned long flags, unsigned long desc,
368 				 void *arg,
369 				 int (*func)(struct resource *, void *))
370 {
371 	struct resource res;
372 	int ret = -EINVAL;
373 
374 	while (start < end &&
375 	       !find_next_iomem_res(start, end, flags, desc, &res)) {
376 		ret = (*func)(&res, arg);
377 		if (ret)
378 			break;
379 
380 		start = res.end + 1;
381 	}
382 
383 	return ret;
384 }
385 
386 /**
387  * walk_iomem_res_desc - Walks through iomem resources and calls func()
388  *			 with matching resource ranges.
389  * *
390  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
391  * @flags: I/O resource flags
392  * @start: start addr
393  * @end: end addr
394  * @arg: function argument for the callback @func
395  * @func: callback function that is called for each qualifying resource area
396  *
397  * All the memory ranges which overlap start,end and also match flags and
398  * desc are valid candidates.
399  *
400  * NOTE: For a new descriptor search, define a new IORES_DESC in
401  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
402  */
403 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
404 		u64 end, void *arg, int (*func)(struct resource *, void *))
405 {
406 	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
407 }
408 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
409 
410 /*
411  * This function calls the @func callback against all memory ranges of type
412  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
413  * Now, this function is only for System RAM, it deals with full ranges and
414  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
415  * ranges.
416  */
417 int walk_system_ram_res(u64 start, u64 end, void *arg,
418 			int (*func)(struct resource *, void *))
419 {
420 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
421 
422 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
423 				     func);
424 }
425 
426 /*
427  * This function, being a variant of walk_system_ram_res(), calls the @func
428  * callback against all memory ranges of type System RAM which are marked as
429  * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
430  * higher to lower.
431  */
432 int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
433 				int (*func)(struct resource *, void *))
434 {
435 	struct resource res, *rams;
436 	int rams_size = 16, i;
437 	unsigned long flags;
438 	int ret = -1;
439 
440 	/* create a list */
441 	rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
442 	if (!rams)
443 		return ret;
444 
445 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
446 	i = 0;
447 	while ((start < end) &&
448 		(!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
449 		if (i >= rams_size) {
450 			/* re-alloc */
451 			struct resource *rams_new;
452 
453 			rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource),
454 					     GFP_KERNEL);
455 			if (!rams_new)
456 				goto out;
457 
458 			rams = rams_new;
459 			rams_size += 16;
460 		}
461 
462 		rams[i++] = res;
463 		start = res.end + 1;
464 	}
465 
466 	/* go reverse */
467 	for (i--; i >= 0; i--) {
468 		ret = (*func)(&rams[i], arg);
469 		if (ret)
470 			break;
471 	}
472 
473 out:
474 	kvfree(rams);
475 	return ret;
476 }
477 
478 /*
479  * This function calls the @func callback against all memory ranges, which
480  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
481  */
482 int walk_mem_res(u64 start, u64 end, void *arg,
483 		 int (*func)(struct resource *, void *))
484 {
485 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
486 
487 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
488 				     func);
489 }
490 
491 /*
492  * This function calls the @func callback against all memory ranges of type
493  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
494  * It is to be used only for System RAM.
495  */
496 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
497 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
498 {
499 	resource_size_t start, end;
500 	unsigned long flags;
501 	struct resource res;
502 	unsigned long pfn, end_pfn;
503 	int ret = -EINVAL;
504 
505 	start = (u64) start_pfn << PAGE_SHIFT;
506 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
507 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
508 	while (start < end &&
509 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
510 		pfn = PFN_UP(res.start);
511 		end_pfn = PFN_DOWN(res.end + 1);
512 		if (end_pfn > pfn)
513 			ret = (*func)(pfn, end_pfn - pfn, arg);
514 		if (ret)
515 			break;
516 		start = res.end + 1;
517 	}
518 	return ret;
519 }
520 
521 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
522 {
523 	return 1;
524 }
525 
526 /*
527  * This generic page_is_ram() returns true if specified address is
528  * registered as System RAM in iomem_resource list.
529  */
530 int __weak page_is_ram(unsigned long pfn)
531 {
532 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
533 }
534 EXPORT_SYMBOL_GPL(page_is_ram);
535 
536 static int __region_intersects(struct resource *parent, resource_size_t start,
537 			       size_t size, unsigned long flags,
538 			       unsigned long desc)
539 {
540 	resource_size_t ostart, oend;
541 	int type = 0; int other = 0;
542 	struct resource *p, *dp;
543 	bool is_type, covered;
544 	struct resource res;
545 
546 	res.start = start;
547 	res.end = start + size - 1;
548 
549 	for (p = parent->child; p ; p = p->sibling) {
550 		if (!resource_overlaps(p, &res))
551 			continue;
552 		is_type = (p->flags & flags) == flags &&
553 			(desc == IORES_DESC_NONE || desc == p->desc);
554 		if (is_type) {
555 			type++;
556 			continue;
557 		}
558 		/*
559 		 * Continue to search in descendant resources as if the
560 		 * matched descendant resources cover some ranges of 'p'.
561 		 *
562 		 * |------------- "CXL Window 0" ------------|
563 		 * |-- "System RAM" --|
564 		 *
565 		 * will behave similar as the following fake resource
566 		 * tree when searching "System RAM".
567 		 *
568 		 * |-- "System RAM" --||-- "CXL Window 0a" --|
569 		 */
570 		covered = false;
571 		ostart = max(res.start, p->start);
572 		oend = min(res.end, p->end);
573 		for_each_resource(p, dp, false) {
574 			if (!resource_overlaps(dp, &res))
575 				continue;
576 			is_type = (dp->flags & flags) == flags &&
577 				(desc == IORES_DESC_NONE || desc == dp->desc);
578 			if (is_type) {
579 				type++;
580 				/*
581 				 * Range from 'ostart' to 'dp->start'
582 				 * isn't covered by matched resource.
583 				 */
584 				if (dp->start > ostart)
585 					break;
586 				if (dp->end >= oend) {
587 					covered = true;
588 					break;
589 				}
590 				/* Remove covered range */
591 				ostart = max(ostart, dp->end + 1);
592 			}
593 		}
594 		if (!covered)
595 			other++;
596 	}
597 
598 	if (type == 0)
599 		return REGION_DISJOINT;
600 
601 	if (other == 0)
602 		return REGION_INTERSECTS;
603 
604 	return REGION_MIXED;
605 }
606 
607 /**
608  * region_intersects() - determine intersection of region with known resources
609  * @start: region start address
610  * @size: size of region
611  * @flags: flags of resource (in iomem_resource)
612  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
613  *
614  * Check if the specified region partially overlaps or fully eclipses a
615  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
616  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
617  * return REGION_MIXED if the region overlaps @flags/@desc and another
618  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
619  * and no other defined resource. Note that REGION_INTERSECTS is also
620  * returned in the case when the specified region overlaps RAM and undefined
621  * memory holes.
622  *
623  * region_intersect() is used by memory remapping functions to ensure
624  * the user is not remapping RAM and is a vast speed up over walking
625  * through the resource table page by page.
626  */
627 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
628 		      unsigned long desc)
629 {
630 	int ret;
631 
632 	read_lock(&resource_lock);
633 	ret = __region_intersects(&iomem_resource, start, size, flags, desc);
634 	read_unlock(&resource_lock);
635 
636 	return ret;
637 }
638 EXPORT_SYMBOL_GPL(region_intersects);
639 
640 void __weak arch_remove_reservations(struct resource *avail)
641 {
642 }
643 
644 static void resource_clip(struct resource *res, resource_size_t min,
645 			  resource_size_t max)
646 {
647 	if (res->start < min)
648 		res->start = min;
649 	if (res->end > max)
650 		res->end = max;
651 }
652 
653 /*
654  * Find empty space in the resource tree with the given range and
655  * alignment constraints
656  */
657 static int __find_resource_space(struct resource *root, struct resource *old,
658 				 struct resource *new, resource_size_t size,
659 				 struct resource_constraint *constraint)
660 {
661 	struct resource *this = root->child;
662 	struct resource tmp = *new, avail, alloc;
663 	resource_alignf alignf = constraint->alignf;
664 
665 	tmp.start = root->start;
666 	/*
667 	 * Skip past an allocated resource that starts at 0, since the assignment
668 	 * of this->start - 1 to tmp->end below would cause an underflow.
669 	 */
670 	if (this && this->start == root->start) {
671 		tmp.start = (this == old) ? old->start : this->end + 1;
672 		this = this->sibling;
673 	}
674 	for(;;) {
675 		if (this)
676 			tmp.end = (this == old) ?  this->end : this->start - 1;
677 		else
678 			tmp.end = root->end;
679 
680 		if (tmp.end < tmp.start)
681 			goto next;
682 
683 		resource_clip(&tmp, constraint->min, constraint->max);
684 		arch_remove_reservations(&tmp);
685 
686 		/* Check for overflow after ALIGN() */
687 		avail.start = ALIGN(tmp.start, constraint->align);
688 		avail.end = tmp.end;
689 		avail.flags = new->flags & ~IORESOURCE_UNSET;
690 		if (avail.start >= tmp.start) {
691 			alloc.flags = avail.flags;
692 			if (alignf) {
693 				alloc.start = alignf(constraint->alignf_data,
694 						     &avail, size, constraint->align);
695 			} else {
696 				alloc.start = avail.start;
697 			}
698 			alloc.end = alloc.start + size - 1;
699 			if (alloc.start <= alloc.end &&
700 			    resource_contains(&avail, &alloc)) {
701 				new->start = alloc.start;
702 				new->end = alloc.end;
703 				return 0;
704 			}
705 		}
706 
707 next:		if (!this || this->end == root->end)
708 			break;
709 
710 		if (this != old)
711 			tmp.start = this->end + 1;
712 		this = this->sibling;
713 	}
714 	return -EBUSY;
715 }
716 
717 /**
718  * find_resource_space - Find empty space in the resource tree
719  * @root:	Root resource descriptor
720  * @new:	Resource descriptor awaiting an empty resource space
721  * @size:	The minimum size of the empty space
722  * @constraint:	The range and alignment constraints to be met
723  *
724  * Finds an empty space under @root in the resource tree satisfying range and
725  * alignment @constraints.
726  *
727  * Return:
728  * * %0		- if successful, @new members start, end, and flags are altered.
729  * * %-EBUSY	- if no empty space was found.
730  */
731 int find_resource_space(struct resource *root, struct resource *new,
732 			resource_size_t size,
733 			struct resource_constraint *constraint)
734 {
735 	return  __find_resource_space(root, NULL, new, size, constraint);
736 }
737 EXPORT_SYMBOL_GPL(find_resource_space);
738 
739 /**
740  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
741  *	The resource will be relocated if the new size cannot be reallocated in the
742  *	current location.
743  *
744  * @root: root resource descriptor
745  * @old:  resource descriptor desired by caller
746  * @newsize: new size of the resource descriptor
747  * @constraint: the size and alignment constraints to be met.
748  */
749 static int reallocate_resource(struct resource *root, struct resource *old,
750 			       resource_size_t newsize,
751 			       struct resource_constraint *constraint)
752 {
753 	int err=0;
754 	struct resource new = *old;
755 	struct resource *conflict;
756 
757 	write_lock(&resource_lock);
758 
759 	if ((err = __find_resource_space(root, old, &new, newsize, constraint)))
760 		goto out;
761 
762 	if (resource_contains(&new, old)) {
763 		old->start = new.start;
764 		old->end = new.end;
765 		goto out;
766 	}
767 
768 	if (old->child) {
769 		err = -EBUSY;
770 		goto out;
771 	}
772 
773 	if (resource_contains(old, &new)) {
774 		old->start = new.start;
775 		old->end = new.end;
776 	} else {
777 		__release_resource(old, true);
778 		*old = new;
779 		conflict = __request_resource(root, old);
780 		BUG_ON(conflict);
781 	}
782 out:
783 	write_unlock(&resource_lock);
784 	return err;
785 }
786 
787 
788 /**
789  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
790  * 	The resource will be reallocated with a new size if it was already allocated
791  * @root: root resource descriptor
792  * @new: resource descriptor desired by caller
793  * @size: requested resource region size
794  * @min: minimum boundary to allocate
795  * @max: maximum boundary to allocate
796  * @align: alignment requested, in bytes
797  * @alignf: alignment function, optional, called if not NULL
798  * @alignf_data: arbitrary data to pass to the @alignf function
799  */
800 int allocate_resource(struct resource *root, struct resource *new,
801 		      resource_size_t size, resource_size_t min,
802 		      resource_size_t max, resource_size_t align,
803 		      resource_alignf alignf,
804 		      void *alignf_data)
805 {
806 	int err;
807 	struct resource_constraint constraint;
808 
809 	constraint.min = min;
810 	constraint.max = max;
811 	constraint.align = align;
812 	constraint.alignf = alignf;
813 	constraint.alignf_data = alignf_data;
814 
815 	if ( new->parent ) {
816 		/* resource is already allocated, try reallocating with
817 		   the new constraints */
818 		return reallocate_resource(root, new, size, &constraint);
819 	}
820 
821 	write_lock(&resource_lock);
822 	err = find_resource_space(root, new, size, &constraint);
823 	if (err >= 0 && __request_resource(root, new))
824 		err = -EBUSY;
825 	write_unlock(&resource_lock);
826 	return err;
827 }
828 
829 EXPORT_SYMBOL(allocate_resource);
830 
831 /**
832  * lookup_resource - find an existing resource by a resource start address
833  * @root: root resource descriptor
834  * @start: resource start address
835  *
836  * Returns a pointer to the resource if found, NULL otherwise
837  */
838 struct resource *lookup_resource(struct resource *root, resource_size_t start)
839 {
840 	struct resource *res;
841 
842 	read_lock(&resource_lock);
843 	for (res = root->child; res; res = res->sibling) {
844 		if (res->start == start)
845 			break;
846 	}
847 	read_unlock(&resource_lock);
848 
849 	return res;
850 }
851 
852 /*
853  * Insert a resource into the resource tree. If successful, return NULL,
854  * otherwise return the conflicting resource (compare to __request_resource())
855  */
856 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
857 {
858 	struct resource *first, *next;
859 
860 	for (;; parent = first) {
861 		first = __request_resource(parent, new);
862 		if (!first)
863 			return first;
864 
865 		if (first == parent)
866 			return first;
867 		if (WARN_ON(first == new))	/* duplicated insertion */
868 			return first;
869 
870 		if ((first->start > new->start) || (first->end < new->end))
871 			break;
872 		if ((first->start == new->start) && (first->end == new->end))
873 			break;
874 	}
875 
876 	for (next = first; ; next = next->sibling) {
877 		/* Partial overlap? Bad, and unfixable */
878 		if (next->start < new->start || next->end > new->end)
879 			return next;
880 		if (!next->sibling)
881 			break;
882 		if (next->sibling->start > new->end)
883 			break;
884 	}
885 
886 	new->parent = parent;
887 	new->sibling = next->sibling;
888 	new->child = first;
889 
890 	next->sibling = NULL;
891 	for (next = first; next; next = next->sibling)
892 		next->parent = new;
893 
894 	if (parent->child == first) {
895 		parent->child = new;
896 	} else {
897 		next = parent->child;
898 		while (next->sibling != first)
899 			next = next->sibling;
900 		next->sibling = new;
901 	}
902 	return NULL;
903 }
904 
905 /**
906  * insert_resource_conflict - Inserts resource in the resource tree
907  * @parent: parent of the new resource
908  * @new: new resource to insert
909  *
910  * Returns 0 on success, conflict resource if the resource can't be inserted.
911  *
912  * This function is equivalent to request_resource_conflict when no conflict
913  * happens. If a conflict happens, and the conflicting resources
914  * entirely fit within the range of the new resource, then the new
915  * resource is inserted and the conflicting resources become children of
916  * the new resource.
917  *
918  * This function is intended for producers of resources, such as FW modules
919  * and bus drivers.
920  */
921 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
922 {
923 	struct resource *conflict;
924 
925 	write_lock(&resource_lock);
926 	conflict = __insert_resource(parent, new);
927 	write_unlock(&resource_lock);
928 	return conflict;
929 }
930 
931 /**
932  * insert_resource - Inserts a resource in the resource tree
933  * @parent: parent of the new resource
934  * @new: new resource to insert
935  *
936  * Returns 0 on success, -EBUSY if the resource can't be inserted.
937  *
938  * This function is intended for producers of resources, such as FW modules
939  * and bus drivers.
940  */
941 int insert_resource(struct resource *parent, struct resource *new)
942 {
943 	struct resource *conflict;
944 
945 	conflict = insert_resource_conflict(parent, new);
946 	return conflict ? -EBUSY : 0;
947 }
948 EXPORT_SYMBOL_GPL(insert_resource);
949 
950 /**
951  * insert_resource_expand_to_fit - Insert a resource into the resource tree
952  * @root: root resource descriptor
953  * @new: new resource to insert
954  *
955  * Insert a resource into the resource tree, possibly expanding it in order
956  * to make it encompass any conflicting resources.
957  */
958 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
959 {
960 	if (new->parent)
961 		return;
962 
963 	write_lock(&resource_lock);
964 	for (;;) {
965 		struct resource *conflict;
966 
967 		conflict = __insert_resource(root, new);
968 		if (!conflict)
969 			break;
970 		if (conflict == root)
971 			break;
972 
973 		/* Ok, expand resource to cover the conflict, then try again .. */
974 		if (conflict->start < new->start)
975 			new->start = conflict->start;
976 		if (conflict->end > new->end)
977 			new->end = conflict->end;
978 
979 		pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
980 	}
981 	write_unlock(&resource_lock);
982 }
983 /*
984  * Not for general consumption, only early boot memory map parsing, PCI
985  * resource discovery, and late discovery of CXL resources are expected
986  * to use this interface. The former are built-in and only the latter,
987  * CXL, is a module.
988  */
989 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
990 
991 /**
992  * remove_resource - Remove a resource in the resource tree
993  * @old: resource to remove
994  *
995  * Returns 0 on success, -EINVAL if the resource is not valid.
996  *
997  * This function removes a resource previously inserted by insert_resource()
998  * or insert_resource_conflict(), and moves the children (if any) up to
999  * where they were before.  insert_resource() and insert_resource_conflict()
1000  * insert a new resource, and move any conflicting resources down to the
1001  * children of the new resource.
1002  *
1003  * insert_resource(), insert_resource_conflict() and remove_resource() are
1004  * intended for producers of resources, such as FW modules and bus drivers.
1005  */
1006 int remove_resource(struct resource *old)
1007 {
1008 	int retval;
1009 
1010 	write_lock(&resource_lock);
1011 	retval = __release_resource(old, false);
1012 	write_unlock(&resource_lock);
1013 	return retval;
1014 }
1015 EXPORT_SYMBOL_GPL(remove_resource);
1016 
1017 static int __adjust_resource(struct resource *res, resource_size_t start,
1018 				resource_size_t size)
1019 {
1020 	struct resource *tmp, *parent = res->parent;
1021 	resource_size_t end = start + size - 1;
1022 	int result = -EBUSY;
1023 
1024 	if (!parent)
1025 		goto skip;
1026 
1027 	if ((start < parent->start) || (end > parent->end))
1028 		goto out;
1029 
1030 	if (res->sibling && (res->sibling->start <= end))
1031 		goto out;
1032 
1033 	tmp = parent->child;
1034 	if (tmp != res) {
1035 		while (tmp->sibling != res)
1036 			tmp = tmp->sibling;
1037 		if (start <= tmp->end)
1038 			goto out;
1039 	}
1040 
1041 skip:
1042 	for (tmp = res->child; tmp; tmp = tmp->sibling)
1043 		if ((tmp->start < start) || (tmp->end > end))
1044 			goto out;
1045 
1046 	res->start = start;
1047 	res->end = end;
1048 	result = 0;
1049 
1050  out:
1051 	return result;
1052 }
1053 
1054 /**
1055  * adjust_resource - modify a resource's start and size
1056  * @res: resource to modify
1057  * @start: new start value
1058  * @size: new size
1059  *
1060  * Given an existing resource, change its start and size to match the
1061  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1062  * Existing children of the resource are assumed to be immutable.
1063  */
1064 int adjust_resource(struct resource *res, resource_size_t start,
1065 		    resource_size_t size)
1066 {
1067 	int result;
1068 
1069 	write_lock(&resource_lock);
1070 	result = __adjust_resource(res, start, size);
1071 	write_unlock(&resource_lock);
1072 	return result;
1073 }
1074 EXPORT_SYMBOL(adjust_resource);
1075 
1076 static void __init
1077 __reserve_region_with_split(struct resource *root, resource_size_t start,
1078 			    resource_size_t end, const char *name)
1079 {
1080 	struct resource *parent = root;
1081 	struct resource *conflict;
1082 	struct resource *res = alloc_resource(GFP_ATOMIC);
1083 	struct resource *next_res = NULL;
1084 	int type = resource_type(root);
1085 
1086 	if (!res)
1087 		return;
1088 
1089 	res->name = name;
1090 	res->start = start;
1091 	res->end = end;
1092 	res->flags = type | IORESOURCE_BUSY;
1093 	res->desc = IORES_DESC_NONE;
1094 
1095 	while (1) {
1096 
1097 		conflict = __request_resource(parent, res);
1098 		if (!conflict) {
1099 			if (!next_res)
1100 				break;
1101 			res = next_res;
1102 			next_res = NULL;
1103 			continue;
1104 		}
1105 
1106 		/* conflict covered whole area */
1107 		if (conflict->start <= res->start &&
1108 				conflict->end >= res->end) {
1109 			free_resource(res);
1110 			WARN_ON(next_res);
1111 			break;
1112 		}
1113 
1114 		/* failed, split and try again */
1115 		if (conflict->start > res->start) {
1116 			end = res->end;
1117 			res->end = conflict->start - 1;
1118 			if (conflict->end < end) {
1119 				next_res = alloc_resource(GFP_ATOMIC);
1120 				if (!next_res) {
1121 					free_resource(res);
1122 					break;
1123 				}
1124 				next_res->name = name;
1125 				next_res->start = conflict->end + 1;
1126 				next_res->end = end;
1127 				next_res->flags = type | IORESOURCE_BUSY;
1128 				next_res->desc = IORES_DESC_NONE;
1129 			}
1130 		} else {
1131 			res->start = conflict->end + 1;
1132 		}
1133 	}
1134 
1135 }
1136 
1137 void __init
1138 reserve_region_with_split(struct resource *root, resource_size_t start,
1139 			  resource_size_t end, const char *name)
1140 {
1141 	int abort = 0;
1142 
1143 	write_lock(&resource_lock);
1144 	if (root->start > start || root->end < end) {
1145 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1146 		       (unsigned long long)start, (unsigned long long)end,
1147 		       root);
1148 		if (start > root->end || end < root->start)
1149 			abort = 1;
1150 		else {
1151 			if (end > root->end)
1152 				end = root->end;
1153 			if (start < root->start)
1154 				start = root->start;
1155 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1156 			       (unsigned long long)start,
1157 			       (unsigned long long)end);
1158 		}
1159 		dump_stack();
1160 	}
1161 	if (!abort)
1162 		__reserve_region_with_split(root, start, end, name);
1163 	write_unlock(&resource_lock);
1164 }
1165 
1166 /**
1167  * resource_alignment - calculate resource's alignment
1168  * @res: resource pointer
1169  *
1170  * Returns alignment on success, 0 (invalid alignment) on failure.
1171  */
1172 resource_size_t resource_alignment(struct resource *res)
1173 {
1174 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1175 	case IORESOURCE_SIZEALIGN:
1176 		return resource_size(res);
1177 	case IORESOURCE_STARTALIGN:
1178 		return res->start;
1179 	default:
1180 		return 0;
1181 	}
1182 }
1183 
1184 /*
1185  * This is compatibility stuff for IO resources.
1186  *
1187  * Note how this, unlike the above, knows about
1188  * the IO flag meanings (busy etc).
1189  *
1190  * request_region creates a new busy region.
1191  *
1192  * release_region releases a matching busy region.
1193  */
1194 
1195 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1196 
1197 static struct inode *iomem_inode;
1198 
1199 #ifdef CONFIG_IO_STRICT_DEVMEM
1200 static void revoke_iomem(struct resource *res)
1201 {
1202 	/* pairs with smp_store_release() in iomem_init_inode() */
1203 	struct inode *inode = smp_load_acquire(&iomem_inode);
1204 
1205 	/*
1206 	 * Check that the initialization has completed. Losing the race
1207 	 * is ok because it means drivers are claiming resources before
1208 	 * the fs_initcall level of init and prevent iomem_get_mapping users
1209 	 * from establishing mappings.
1210 	 */
1211 	if (!inode)
1212 		return;
1213 
1214 	/*
1215 	 * The expectation is that the driver has successfully marked
1216 	 * the resource busy by this point, so devmem_is_allowed()
1217 	 * should start returning false, however for performance this
1218 	 * does not iterate the entire resource range.
1219 	 */
1220 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1221 	    devmem_is_allowed(PHYS_PFN(res->end))) {
1222 		/*
1223 		 * *cringe* iomem=relaxed says "go ahead, what's the
1224 		 * worst that can happen?"
1225 		 */
1226 		return;
1227 	}
1228 
1229 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1230 }
1231 #else
1232 static void revoke_iomem(struct resource *res) {}
1233 #endif
1234 
1235 struct address_space *iomem_get_mapping(void)
1236 {
1237 	/*
1238 	 * This function is only called from file open paths, hence guaranteed
1239 	 * that fs_initcalls have completed and no need to check for NULL. But
1240 	 * since revoke_iomem can be called before the initcall we still need
1241 	 * the barrier to appease checkers.
1242 	 */
1243 	return smp_load_acquire(&iomem_inode)->i_mapping;
1244 }
1245 
1246 static int __request_region_locked(struct resource *res, struct resource *parent,
1247 				   resource_size_t start, resource_size_t n,
1248 				   const char *name, int flags)
1249 {
1250 	DECLARE_WAITQUEUE(wait, current);
1251 
1252 	res->name = name;
1253 	res->start = start;
1254 	res->end = start + n - 1;
1255 
1256 	for (;;) {
1257 		struct resource *conflict;
1258 
1259 		res->flags = resource_type(parent) | resource_ext_type(parent);
1260 		res->flags |= IORESOURCE_BUSY | flags;
1261 		res->desc = parent->desc;
1262 
1263 		conflict = __request_resource(parent, res);
1264 		if (!conflict)
1265 			break;
1266 		/*
1267 		 * mm/hmm.c reserves physical addresses which then
1268 		 * become unavailable to other users.  Conflicts are
1269 		 * not expected.  Warn to aid debugging if encountered.
1270 		 */
1271 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1272 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1273 				conflict->name, conflict, res);
1274 		}
1275 		if (conflict != parent) {
1276 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1277 				parent = conflict;
1278 				continue;
1279 			}
1280 		}
1281 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1282 			add_wait_queue(&muxed_resource_wait, &wait);
1283 			write_unlock(&resource_lock);
1284 			set_current_state(TASK_UNINTERRUPTIBLE);
1285 			schedule();
1286 			remove_wait_queue(&muxed_resource_wait, &wait);
1287 			write_lock(&resource_lock);
1288 			continue;
1289 		}
1290 		/* Uhhuh, that didn't work out.. */
1291 		return -EBUSY;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 /**
1298  * __request_region - create a new busy resource region
1299  * @parent: parent resource descriptor
1300  * @start: resource start address
1301  * @n: resource region size
1302  * @name: reserving caller's ID string
1303  * @flags: IO resource flags
1304  */
1305 struct resource *__request_region(struct resource *parent,
1306 				  resource_size_t start, resource_size_t n,
1307 				  const char *name, int flags)
1308 {
1309 	struct resource *res = alloc_resource(GFP_KERNEL);
1310 	int ret;
1311 
1312 	if (!res)
1313 		return NULL;
1314 
1315 	write_lock(&resource_lock);
1316 	ret = __request_region_locked(res, parent, start, n, name, flags);
1317 	write_unlock(&resource_lock);
1318 
1319 	if (ret) {
1320 		free_resource(res);
1321 		return NULL;
1322 	}
1323 
1324 	if (parent == &iomem_resource)
1325 		revoke_iomem(res);
1326 
1327 	return res;
1328 }
1329 EXPORT_SYMBOL(__request_region);
1330 
1331 /**
1332  * __release_region - release a previously reserved resource region
1333  * @parent: parent resource descriptor
1334  * @start: resource start address
1335  * @n: resource region size
1336  *
1337  * The described resource region must match a currently busy region.
1338  */
1339 void __release_region(struct resource *parent, resource_size_t start,
1340 		      resource_size_t n)
1341 {
1342 	struct resource **p;
1343 	resource_size_t end;
1344 
1345 	p = &parent->child;
1346 	end = start + n - 1;
1347 
1348 	write_lock(&resource_lock);
1349 
1350 	for (;;) {
1351 		struct resource *res = *p;
1352 
1353 		if (!res)
1354 			break;
1355 		if (res->start <= start && res->end >= end) {
1356 			if (!(res->flags & IORESOURCE_BUSY)) {
1357 				p = &res->child;
1358 				continue;
1359 			}
1360 			if (res->start != start || res->end != end)
1361 				break;
1362 			*p = res->sibling;
1363 			write_unlock(&resource_lock);
1364 			if (res->flags & IORESOURCE_MUXED)
1365 				wake_up(&muxed_resource_wait);
1366 			free_resource(res);
1367 			return;
1368 		}
1369 		p = &res->sibling;
1370 	}
1371 
1372 	write_unlock(&resource_lock);
1373 
1374 	pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1375 }
1376 EXPORT_SYMBOL(__release_region);
1377 
1378 #ifdef CONFIG_MEMORY_HOTREMOVE
1379 /**
1380  * release_mem_region_adjustable - release a previously reserved memory region
1381  * @start: resource start address
1382  * @size: resource region size
1383  *
1384  * This interface is intended for memory hot-delete.  The requested region
1385  * is released from a currently busy memory resource.  The requested region
1386  * must either match exactly or fit into a single busy resource entry.  In
1387  * the latter case, the remaining resource is adjusted accordingly.
1388  * Existing children of the busy memory resource must be immutable in the
1389  * request.
1390  *
1391  * Note:
1392  * - Additional release conditions, such as overlapping region, can be
1393  *   supported after they are confirmed as valid cases.
1394  * - When a busy memory resource gets split into two entries, the code
1395  *   assumes that all children remain in the lower address entry for
1396  *   simplicity.  Enhance this logic when necessary.
1397  */
1398 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1399 {
1400 	struct resource *parent = &iomem_resource;
1401 	struct resource *new_res = NULL;
1402 	bool alloc_nofail = false;
1403 	struct resource **p;
1404 	struct resource *res;
1405 	resource_size_t end;
1406 
1407 	end = start + size - 1;
1408 	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1409 		return;
1410 
1411 	/*
1412 	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1413 	 * just before releasing the region. This is highly unlikely to
1414 	 * fail - let's play save and make it never fail as the caller cannot
1415 	 * perform any error handling (e.g., trying to re-add memory will fail
1416 	 * similarly).
1417 	 */
1418 retry:
1419 	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1420 
1421 	p = &parent->child;
1422 	write_lock(&resource_lock);
1423 
1424 	while ((res = *p)) {
1425 		if (res->start >= end)
1426 			break;
1427 
1428 		/* look for the next resource if it does not fit into */
1429 		if (res->start > start || res->end < end) {
1430 			p = &res->sibling;
1431 			continue;
1432 		}
1433 
1434 		if (!(res->flags & IORESOURCE_MEM))
1435 			break;
1436 
1437 		if (!(res->flags & IORESOURCE_BUSY)) {
1438 			p = &res->child;
1439 			continue;
1440 		}
1441 
1442 		/* found the target resource; let's adjust accordingly */
1443 		if (res->start == start && res->end == end) {
1444 			/* free the whole entry */
1445 			*p = res->sibling;
1446 			free_resource(res);
1447 		} else if (res->start == start && res->end != end) {
1448 			/* adjust the start */
1449 			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1450 						       res->end - end));
1451 		} else if (res->start != start && res->end == end) {
1452 			/* adjust the end */
1453 			WARN_ON_ONCE(__adjust_resource(res, res->start,
1454 						       start - res->start));
1455 		} else {
1456 			/* split into two entries - we need a new resource */
1457 			if (!new_res) {
1458 				new_res = alloc_resource(GFP_ATOMIC);
1459 				if (!new_res) {
1460 					alloc_nofail = true;
1461 					write_unlock(&resource_lock);
1462 					goto retry;
1463 				}
1464 			}
1465 			new_res->name = res->name;
1466 			new_res->start = end + 1;
1467 			new_res->end = res->end;
1468 			new_res->flags = res->flags;
1469 			new_res->desc = res->desc;
1470 			new_res->parent = res->parent;
1471 			new_res->sibling = res->sibling;
1472 			new_res->child = NULL;
1473 
1474 			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1475 							   start - res->start)))
1476 				break;
1477 			res->sibling = new_res;
1478 			new_res = NULL;
1479 		}
1480 
1481 		break;
1482 	}
1483 
1484 	write_unlock(&resource_lock);
1485 	free_resource(new_res);
1486 }
1487 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1488 
1489 #ifdef CONFIG_MEMORY_HOTPLUG
1490 static bool system_ram_resources_mergeable(struct resource *r1,
1491 					   struct resource *r2)
1492 {
1493 	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1494 	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1495 	       r1->name == r2->name && r1->desc == r2->desc &&
1496 	       !r1->child && !r2->child;
1497 }
1498 
1499 /**
1500  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1501  *	merge it with adjacent, mergeable resources
1502  * @res: resource descriptor
1503  *
1504  * This interface is intended for memory hotplug, whereby lots of contiguous
1505  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1506  * the actual resource boundaries are not of interest (e.g., it might be
1507  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1508  * same parent, and that don't have any children are considered. All mergeable
1509  * resources must be immutable during the request.
1510  *
1511  * Note:
1512  * - The caller has to make sure that no pointers to resources that are
1513  *   marked mergeable are used anymore after this call - the resource might
1514  *   be freed and the pointer might be stale!
1515  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1516  */
1517 void merge_system_ram_resource(struct resource *res)
1518 {
1519 	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1520 	struct resource *cur;
1521 
1522 	if (WARN_ON_ONCE((res->flags & flags) != flags))
1523 		return;
1524 
1525 	write_lock(&resource_lock);
1526 	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1527 
1528 	/* Try to merge with next item in the list. */
1529 	cur = res->sibling;
1530 	if (cur && system_ram_resources_mergeable(res, cur)) {
1531 		res->end = cur->end;
1532 		res->sibling = cur->sibling;
1533 		free_resource(cur);
1534 	}
1535 
1536 	/* Try to merge with previous item in the list. */
1537 	cur = res->parent->child;
1538 	while (cur && cur->sibling != res)
1539 		cur = cur->sibling;
1540 	if (cur && system_ram_resources_mergeable(cur, res)) {
1541 		cur->end = res->end;
1542 		cur->sibling = res->sibling;
1543 		free_resource(res);
1544 	}
1545 	write_unlock(&resource_lock);
1546 }
1547 #endif	/* CONFIG_MEMORY_HOTPLUG */
1548 
1549 /*
1550  * Managed region resource
1551  */
1552 static void devm_resource_release(struct device *dev, void *ptr)
1553 {
1554 	struct resource **r = ptr;
1555 
1556 	release_resource(*r);
1557 }
1558 
1559 /**
1560  * devm_request_resource() - request and reserve an I/O or memory resource
1561  * @dev: device for which to request the resource
1562  * @root: root of the resource tree from which to request the resource
1563  * @new: descriptor of the resource to request
1564  *
1565  * This is a device-managed version of request_resource(). There is usually
1566  * no need to release resources requested by this function explicitly since
1567  * that will be taken care of when the device is unbound from its driver.
1568  * If for some reason the resource needs to be released explicitly, because
1569  * of ordering issues for example, drivers must call devm_release_resource()
1570  * rather than the regular release_resource().
1571  *
1572  * When a conflict is detected between any existing resources and the newly
1573  * requested resource, an error message will be printed.
1574  *
1575  * Returns 0 on success or a negative error code on failure.
1576  */
1577 int devm_request_resource(struct device *dev, struct resource *root,
1578 			  struct resource *new)
1579 {
1580 	struct resource *conflict, **ptr;
1581 
1582 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1583 	if (!ptr)
1584 		return -ENOMEM;
1585 
1586 	*ptr = new;
1587 
1588 	conflict = request_resource_conflict(root, new);
1589 	if (conflict) {
1590 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1591 			new, conflict->name, conflict);
1592 		devres_free(ptr);
1593 		return -EBUSY;
1594 	}
1595 
1596 	devres_add(dev, ptr);
1597 	return 0;
1598 }
1599 EXPORT_SYMBOL(devm_request_resource);
1600 
1601 static int devm_resource_match(struct device *dev, void *res, void *data)
1602 {
1603 	struct resource **ptr = res;
1604 
1605 	return *ptr == data;
1606 }
1607 
1608 /**
1609  * devm_release_resource() - release a previously requested resource
1610  * @dev: device for which to release the resource
1611  * @new: descriptor of the resource to release
1612  *
1613  * Releases a resource previously requested using devm_request_resource().
1614  */
1615 void devm_release_resource(struct device *dev, struct resource *new)
1616 {
1617 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1618 			       new));
1619 }
1620 EXPORT_SYMBOL(devm_release_resource);
1621 
1622 struct region_devres {
1623 	struct resource *parent;
1624 	resource_size_t start;
1625 	resource_size_t n;
1626 };
1627 
1628 static void devm_region_release(struct device *dev, void *res)
1629 {
1630 	struct region_devres *this = res;
1631 
1632 	__release_region(this->parent, this->start, this->n);
1633 }
1634 
1635 static int devm_region_match(struct device *dev, void *res, void *match_data)
1636 {
1637 	struct region_devres *this = res, *match = match_data;
1638 
1639 	return this->parent == match->parent &&
1640 		this->start == match->start && this->n == match->n;
1641 }
1642 
1643 struct resource *
1644 __devm_request_region(struct device *dev, struct resource *parent,
1645 		      resource_size_t start, resource_size_t n, const char *name)
1646 {
1647 	struct region_devres *dr = NULL;
1648 	struct resource *res;
1649 
1650 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1651 			  GFP_KERNEL);
1652 	if (!dr)
1653 		return NULL;
1654 
1655 	dr->parent = parent;
1656 	dr->start = start;
1657 	dr->n = n;
1658 
1659 	res = __request_region(parent, start, n, name, 0);
1660 	if (res)
1661 		devres_add(dev, dr);
1662 	else
1663 		devres_free(dr);
1664 
1665 	return res;
1666 }
1667 EXPORT_SYMBOL(__devm_request_region);
1668 
1669 void __devm_release_region(struct device *dev, struct resource *parent,
1670 			   resource_size_t start, resource_size_t n)
1671 {
1672 	struct region_devres match_data = { parent, start, n };
1673 
1674 	__release_region(parent, start, n);
1675 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1676 			       &match_data));
1677 }
1678 EXPORT_SYMBOL(__devm_release_region);
1679 
1680 /*
1681  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1682  */
1683 #define MAXRESERVE 4
1684 static int __init reserve_setup(char *str)
1685 {
1686 	static int reserved;
1687 	static struct resource reserve[MAXRESERVE];
1688 
1689 	for (;;) {
1690 		unsigned int io_start, io_num;
1691 		int x = reserved;
1692 		struct resource *parent;
1693 
1694 		if (get_option(&str, &io_start) != 2)
1695 			break;
1696 		if (get_option(&str, &io_num) == 0)
1697 			break;
1698 		if (x < MAXRESERVE) {
1699 			struct resource *res = reserve + x;
1700 
1701 			/*
1702 			 * If the region starts below 0x10000, we assume it's
1703 			 * I/O port space; otherwise assume it's memory.
1704 			 */
1705 			if (io_start < 0x10000) {
1706 				res->flags = IORESOURCE_IO;
1707 				parent = &ioport_resource;
1708 			} else {
1709 				res->flags = IORESOURCE_MEM;
1710 				parent = &iomem_resource;
1711 			}
1712 			res->name = "reserved";
1713 			res->start = io_start;
1714 			res->end = io_start + io_num - 1;
1715 			res->flags |= IORESOURCE_BUSY;
1716 			res->desc = IORES_DESC_NONE;
1717 			res->child = NULL;
1718 			if (request_resource(parent, res) == 0)
1719 				reserved = x+1;
1720 		}
1721 	}
1722 	return 1;
1723 }
1724 __setup("reserve=", reserve_setup);
1725 
1726 /*
1727  * Check if the requested addr and size spans more than any slot in the
1728  * iomem resource tree.
1729  */
1730 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1731 {
1732 	resource_size_t end = addr + size - 1;
1733 	struct resource *p;
1734 	int err = 0;
1735 
1736 	read_lock(&resource_lock);
1737 	for_each_resource(&iomem_resource, p, false) {
1738 		/*
1739 		 * We can probably skip the resources without
1740 		 * IORESOURCE_IO attribute?
1741 		 */
1742 		if (p->start > end)
1743 			continue;
1744 		if (p->end < addr)
1745 			continue;
1746 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1747 		    PFN_DOWN(p->end) >= PFN_DOWN(end))
1748 			continue;
1749 		/*
1750 		 * if a resource is "BUSY", it's not a hardware resource
1751 		 * but a driver mapping of such a resource; we don't want
1752 		 * to warn for those; some drivers legitimately map only
1753 		 * partial hardware resources. (example: vesafb)
1754 		 */
1755 		if (p->flags & IORESOURCE_BUSY)
1756 			continue;
1757 
1758 		pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1759 			&addr, &end, p->name, p);
1760 		err = -1;
1761 		break;
1762 	}
1763 	read_unlock(&resource_lock);
1764 
1765 	return err;
1766 }
1767 
1768 #ifdef CONFIG_STRICT_DEVMEM
1769 static int strict_iomem_checks = 1;
1770 #else
1771 static int strict_iomem_checks;
1772 #endif
1773 
1774 /*
1775  * Check if an address is exclusive to the kernel and must not be mapped to
1776  * user space, for example, via /dev/mem.
1777  *
1778  * Returns true if exclusive to the kernel, otherwise returns false.
1779  */
1780 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1781 {
1782 	const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1783 						  IORESOURCE_EXCLUSIVE;
1784 	bool skip_children = false, err = false;
1785 	struct resource *p;
1786 
1787 	read_lock(&resource_lock);
1788 	for_each_resource(root, p, skip_children) {
1789 		if (p->start >= addr + size)
1790 			break;
1791 		if (p->end < addr) {
1792 			skip_children = true;
1793 			continue;
1794 		}
1795 		skip_children = false;
1796 
1797 		/*
1798 		 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1799 		 * IORESOURCE_EXCLUSIVE is set, even if they
1800 		 * are not busy and even if "iomem=relaxed" is set. The
1801 		 * responsible driver dynamically adds/removes system RAM within
1802 		 * such an area and uncontrolled access is dangerous.
1803 		 */
1804 		if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1805 			err = true;
1806 			break;
1807 		}
1808 
1809 		/*
1810 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1811 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1812 		 * resource is busy.
1813 		 */
1814 		if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1815 			continue;
1816 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1817 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1818 			err = true;
1819 			break;
1820 		}
1821 	}
1822 	read_unlock(&resource_lock);
1823 
1824 	return err;
1825 }
1826 
1827 bool iomem_is_exclusive(u64 addr)
1828 {
1829 	return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1830 				     PAGE_SIZE);
1831 }
1832 
1833 struct resource_entry *resource_list_create_entry(struct resource *res,
1834 						  size_t extra_size)
1835 {
1836 	struct resource_entry *entry;
1837 
1838 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1839 	if (entry) {
1840 		INIT_LIST_HEAD(&entry->node);
1841 		entry->res = res ? res : &entry->__res;
1842 	}
1843 
1844 	return entry;
1845 }
1846 EXPORT_SYMBOL(resource_list_create_entry);
1847 
1848 void resource_list_free(struct list_head *head)
1849 {
1850 	struct resource_entry *entry, *tmp;
1851 
1852 	list_for_each_entry_safe(entry, tmp, head, node)
1853 		resource_list_destroy_entry(entry);
1854 }
1855 EXPORT_SYMBOL(resource_list_free);
1856 
1857 #ifdef CONFIG_GET_FREE_REGION
1858 #define GFR_DESCENDING		(1UL << 0)
1859 #define GFR_REQUEST_REGION	(1UL << 1)
1860 #ifdef PA_SECTION_SHIFT
1861 #define GFR_DEFAULT_ALIGN	(1UL << PA_SECTION_SHIFT)
1862 #else
1863 #define GFR_DEFAULT_ALIGN	PAGE_SIZE
1864 #endif
1865 
1866 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1867 				 resource_size_t align, unsigned long flags)
1868 {
1869 	if (flags & GFR_DESCENDING) {
1870 		resource_size_t end;
1871 
1872 		end = min_t(resource_size_t, base->end, PHYSMEM_END);
1873 		return end - size + 1;
1874 	}
1875 
1876 	return ALIGN(max(base->start, align), align);
1877 }
1878 
1879 static bool gfr_continue(struct resource *base, resource_size_t addr,
1880 			 resource_size_t size, unsigned long flags)
1881 {
1882 	if (flags & GFR_DESCENDING)
1883 		return addr > size && addr >= base->start;
1884 	/*
1885 	 * In the ascend case be careful that the last increment by
1886 	 * @size did not wrap 0.
1887 	 */
1888 	return addr > addr - size &&
1889 	       addr <= min_t(resource_size_t, base->end, PHYSMEM_END);
1890 }
1891 
1892 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1893 				unsigned long flags)
1894 {
1895 	if (flags & GFR_DESCENDING)
1896 		return addr - size;
1897 	return addr + size;
1898 }
1899 
1900 static void remove_free_mem_region(void *_res)
1901 {
1902 	struct resource *res = _res;
1903 
1904 	if (res->parent)
1905 		remove_resource(res);
1906 	free_resource(res);
1907 }
1908 
1909 static struct resource *
1910 get_free_mem_region(struct device *dev, struct resource *base,
1911 		    resource_size_t size, const unsigned long align,
1912 		    const char *name, const unsigned long desc,
1913 		    const unsigned long flags)
1914 {
1915 	resource_size_t addr;
1916 	struct resource *res;
1917 	struct region_devres *dr = NULL;
1918 
1919 	size = ALIGN(size, align);
1920 
1921 	res = alloc_resource(GFP_KERNEL);
1922 	if (!res)
1923 		return ERR_PTR(-ENOMEM);
1924 
1925 	if (dev && (flags & GFR_REQUEST_REGION)) {
1926 		dr = devres_alloc(devm_region_release,
1927 				sizeof(struct region_devres), GFP_KERNEL);
1928 		if (!dr) {
1929 			free_resource(res);
1930 			return ERR_PTR(-ENOMEM);
1931 		}
1932 	} else if (dev) {
1933 		if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1934 			return ERR_PTR(-ENOMEM);
1935 	}
1936 
1937 	write_lock(&resource_lock);
1938 	for (addr = gfr_start(base, size, align, flags);
1939 	     gfr_continue(base, addr, align, flags);
1940 	     addr = gfr_next(addr, align, flags)) {
1941 		if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1942 		    REGION_DISJOINT)
1943 			continue;
1944 
1945 		if (flags & GFR_REQUEST_REGION) {
1946 			if (__request_region_locked(res, &iomem_resource, addr,
1947 						    size, name, 0))
1948 				break;
1949 
1950 			if (dev) {
1951 				dr->parent = &iomem_resource;
1952 				dr->start = addr;
1953 				dr->n = size;
1954 				devres_add(dev, dr);
1955 			}
1956 
1957 			res->desc = desc;
1958 			write_unlock(&resource_lock);
1959 
1960 
1961 			/*
1962 			 * A driver is claiming this region so revoke any
1963 			 * mappings.
1964 			 */
1965 			revoke_iomem(res);
1966 		} else {
1967 			res->start = addr;
1968 			res->end = addr + size - 1;
1969 			res->name = name;
1970 			res->desc = desc;
1971 			res->flags = IORESOURCE_MEM;
1972 
1973 			/*
1974 			 * Only succeed if the resource hosts an exclusive
1975 			 * range after the insert
1976 			 */
1977 			if (__insert_resource(base, res) || res->child)
1978 				break;
1979 
1980 			write_unlock(&resource_lock);
1981 		}
1982 
1983 		return res;
1984 	}
1985 	write_unlock(&resource_lock);
1986 
1987 	if (flags & GFR_REQUEST_REGION) {
1988 		free_resource(res);
1989 		devres_free(dr);
1990 	} else if (dev)
1991 		devm_release_action(dev, remove_free_mem_region, res);
1992 
1993 	return ERR_PTR(-ERANGE);
1994 }
1995 
1996 /**
1997  * devm_request_free_mem_region - find free region for device private memory
1998  *
1999  * @dev: device struct to bind the resource to
2000  * @size: size in bytes of the device memory to add
2001  * @base: resource tree to look in
2002  *
2003  * This function tries to find an empty range of physical address big enough to
2004  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
2005  * memory, which in turn allocates struct pages.
2006  */
2007 struct resource *devm_request_free_mem_region(struct device *dev,
2008 		struct resource *base, unsigned long size)
2009 {
2010 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2011 
2012 	return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
2013 				   dev_name(dev),
2014 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2015 }
2016 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
2017 
2018 struct resource *request_free_mem_region(struct resource *base,
2019 		unsigned long size, const char *name)
2020 {
2021 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2022 
2023 	return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
2024 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2025 }
2026 EXPORT_SYMBOL_GPL(request_free_mem_region);
2027 
2028 /**
2029  * alloc_free_mem_region - find a free region relative to @base
2030  * @base: resource that will parent the new resource
2031  * @size: size in bytes of memory to allocate from @base
2032  * @align: alignment requirements for the allocation
2033  * @name: resource name
2034  *
2035  * Buses like CXL, that can dynamically instantiate new memory regions,
2036  * need a method to allocate physical address space for those regions.
2037  * Allocate and insert a new resource to cover a free, unclaimed by a
2038  * descendant of @base, range in the span of @base.
2039  */
2040 struct resource *alloc_free_mem_region(struct resource *base,
2041 				       unsigned long size, unsigned long align,
2042 				       const char *name)
2043 {
2044 	/* Default of ascending direction and insert resource */
2045 	unsigned long flags = 0;
2046 
2047 	return get_free_mem_region(NULL, base, size, align, name,
2048 				   IORES_DESC_NONE, flags);
2049 }
2050 EXPORT_SYMBOL_GPL(alloc_free_mem_region);
2051 #endif /* CONFIG_GET_FREE_REGION */
2052 
2053 static int __init strict_iomem(char *str)
2054 {
2055 	if (strstr(str, "relaxed"))
2056 		strict_iomem_checks = 0;
2057 	if (strstr(str, "strict"))
2058 		strict_iomem_checks = 1;
2059 	return 1;
2060 }
2061 
2062 static int iomem_fs_init_fs_context(struct fs_context *fc)
2063 {
2064 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2065 }
2066 
2067 static struct file_system_type iomem_fs_type = {
2068 	.name		= "iomem",
2069 	.owner		= THIS_MODULE,
2070 	.init_fs_context = iomem_fs_init_fs_context,
2071 	.kill_sb	= kill_anon_super,
2072 };
2073 
2074 static int __init iomem_init_inode(void)
2075 {
2076 	static struct vfsmount *iomem_vfs_mount;
2077 	static int iomem_fs_cnt;
2078 	struct inode *inode;
2079 	int rc;
2080 
2081 	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2082 	if (rc < 0) {
2083 		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2084 		return rc;
2085 	}
2086 
2087 	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2088 	if (IS_ERR(inode)) {
2089 		rc = PTR_ERR(inode);
2090 		pr_err("Cannot allocate inode for iomem: %d\n", rc);
2091 		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2092 		return rc;
2093 	}
2094 
2095 	/*
2096 	 * Publish iomem revocation inode initialized.
2097 	 * Pairs with smp_load_acquire() in revoke_iomem().
2098 	 */
2099 	smp_store_release(&iomem_inode, inode);
2100 
2101 	return 0;
2102 }
2103 
2104 fs_initcall(iomem_init_inode);
2105 
2106 __setup("iomem=", strict_iomem);
2107