xref: /linux/kernel/resource.c (revision e7602bb4f3a1234df8b75728ac3260bcb8242612)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <linux/string.h>
31 #include <linux/vmalloc.h>
32 #include <asm/io.h>
33 
34 
35 struct resource ioport_resource = {
36 	.name	= "PCI IO",
37 	.start	= 0,
38 	.end	= IO_SPACE_LIMIT,
39 	.flags	= IORESOURCE_IO,
40 };
41 EXPORT_SYMBOL(ioport_resource);
42 
43 struct resource iomem_resource = {
44 	.name	= "PCI mem",
45 	.start	= 0,
46 	.end	= -1,
47 	.flags	= IORESOURCE_MEM,
48 };
49 EXPORT_SYMBOL(iomem_resource);
50 
51 static DEFINE_RWLOCK(resource_lock);
52 
53 /*
54  * Return the next node of @p in pre-order tree traversal.  If
55  * @skip_children is true, skip the descendant nodes of @p in
56  * traversal.  If @p is a descendant of @subtree_root, only traverse
57  * the subtree under @subtree_root.
58  */
59 static struct resource *next_resource(struct resource *p, bool skip_children,
60 				      struct resource *subtree_root)
61 {
62 	if (!skip_children && p->child)
63 		return p->child;
64 	while (!p->sibling && p->parent) {
65 		p = p->parent;
66 		if (p == subtree_root)
67 			return NULL;
68 	}
69 	return p->sibling;
70 }
71 
72 /*
73  * Traverse the resource subtree under @_root in pre-order, excluding
74  * @_root itself.
75  *
76  * NOTE: '__p' is introduced to avoid shadowing '_p' outside of loop.
77  * And it is referenced to avoid unused variable warning.
78  */
79 #define for_each_resource(_root, _p, _skip_children) \
80 	for (typeof(_root) __root = (_root), __p = _p = __root->child;	\
81 	     __p && _p; _p = next_resource(_p, _skip_children, __root))
82 
83 #ifdef CONFIG_PROC_FS
84 
85 enum { MAX_IORES_LEVEL = 5 };
86 
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 	__acquires(resource_lock)
89 {
90 	struct resource *root = pde_data(file_inode(m->file));
91 	struct resource *p;
92 	loff_t l = *pos;
93 
94 	read_lock(&resource_lock);
95 	for_each_resource(root, p, false) {
96 		if (l-- == 0)
97 			break;
98 	}
99 
100 	return p;
101 }
102 
103 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
104 {
105 	struct resource *p = v;
106 
107 	(*pos)++;
108 
109 	return (void *)next_resource(p, false, NULL);
110 }
111 
112 static void r_stop(struct seq_file *m, void *v)
113 	__releases(resource_lock)
114 {
115 	read_unlock(&resource_lock);
116 }
117 
118 static int r_show(struct seq_file *m, void *v)
119 {
120 	struct resource *root = pde_data(file_inode(m->file));
121 	struct resource *r = v, *p;
122 	unsigned long long start, end;
123 	int width = root->end < 0x10000 ? 4 : 8;
124 	int depth;
125 
126 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
127 		if (p->parent == root)
128 			break;
129 
130 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
131 		start = r->start;
132 		end = r->end;
133 	} else {
134 		start = end = 0;
135 	}
136 
137 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
138 			depth * 2, "",
139 			width, start,
140 			width, end,
141 			r->name ? r->name : "<BAD>");
142 	return 0;
143 }
144 
145 static const struct seq_operations resource_op = {
146 	.start	= r_start,
147 	.next	= r_next,
148 	.stop	= r_stop,
149 	.show	= r_show,
150 };
151 
152 static int __init ioresources_init(void)
153 {
154 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
155 			&ioport_resource);
156 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
157 	return 0;
158 }
159 __initcall(ioresources_init);
160 
161 #endif /* CONFIG_PROC_FS */
162 
163 static void free_resource(struct resource *res)
164 {
165 	/**
166 	 * If the resource was allocated using memblock early during boot
167 	 * we'll leak it here: we can only return full pages back to the
168 	 * buddy and trying to be smart and reusing them eventually in
169 	 * alloc_resource() overcomplicates resource handling.
170 	 */
171 	if (res && PageSlab(virt_to_head_page(res)))
172 		kfree(res);
173 }
174 
175 static struct resource *alloc_resource(gfp_t flags)
176 {
177 	return kzalloc(sizeof(struct resource), flags);
178 }
179 
180 /* Return the conflict entry if you can't request it */
181 static struct resource * __request_resource(struct resource *root, struct resource *new)
182 {
183 	resource_size_t start = new->start;
184 	resource_size_t end = new->end;
185 	struct resource *tmp, **p;
186 
187 	if (end < start)
188 		return root;
189 	if (start < root->start)
190 		return root;
191 	if (end > root->end)
192 		return root;
193 	p = &root->child;
194 	for (;;) {
195 		tmp = *p;
196 		if (!tmp || tmp->start > end) {
197 			new->sibling = tmp;
198 			*p = new;
199 			new->parent = root;
200 			return NULL;
201 		}
202 		p = &tmp->sibling;
203 		if (tmp->end < start)
204 			continue;
205 		return tmp;
206 	}
207 }
208 
209 static int __release_resource(struct resource *old, bool release_child)
210 {
211 	struct resource *tmp, **p, *chd;
212 
213 	p = &old->parent->child;
214 	for (;;) {
215 		tmp = *p;
216 		if (!tmp)
217 			break;
218 		if (tmp == old) {
219 			if (release_child || !(tmp->child)) {
220 				*p = tmp->sibling;
221 			} else {
222 				for (chd = tmp->child;; chd = chd->sibling) {
223 					chd->parent = tmp->parent;
224 					if (!(chd->sibling))
225 						break;
226 				}
227 				*p = tmp->child;
228 				chd->sibling = tmp->sibling;
229 			}
230 			old->parent = NULL;
231 			return 0;
232 		}
233 		p = &tmp->sibling;
234 	}
235 	return -EINVAL;
236 }
237 
238 static void __release_child_resources(struct resource *r)
239 {
240 	struct resource *tmp, *p;
241 	resource_size_t size;
242 
243 	p = r->child;
244 	r->child = NULL;
245 	while (p) {
246 		tmp = p;
247 		p = p->sibling;
248 
249 		tmp->parent = NULL;
250 		tmp->sibling = NULL;
251 		__release_child_resources(tmp);
252 
253 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
254 		/* need to restore size, and keep flags */
255 		size = resource_size(tmp);
256 		tmp->start = 0;
257 		tmp->end = size - 1;
258 	}
259 }
260 
261 void release_child_resources(struct resource *r)
262 {
263 	write_lock(&resource_lock);
264 	__release_child_resources(r);
265 	write_unlock(&resource_lock);
266 }
267 
268 /**
269  * request_resource_conflict - request and reserve an I/O or memory resource
270  * @root: root resource descriptor
271  * @new: resource descriptor desired by caller
272  *
273  * Returns 0 for success, conflict resource on error.
274  */
275 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
276 {
277 	struct resource *conflict;
278 
279 	write_lock(&resource_lock);
280 	conflict = __request_resource(root, new);
281 	write_unlock(&resource_lock);
282 	return conflict;
283 }
284 
285 /**
286  * request_resource - request and reserve an I/O or memory resource
287  * @root: root resource descriptor
288  * @new: resource descriptor desired by caller
289  *
290  * Returns 0 for success, negative error code on error.
291  */
292 int request_resource(struct resource *root, struct resource *new)
293 {
294 	struct resource *conflict;
295 
296 	conflict = request_resource_conflict(root, new);
297 	return conflict ? -EBUSY : 0;
298 }
299 
300 EXPORT_SYMBOL(request_resource);
301 
302 /**
303  * release_resource - release a previously reserved resource
304  * @old: resource pointer
305  */
306 int release_resource(struct resource *old)
307 {
308 	int retval;
309 
310 	write_lock(&resource_lock);
311 	retval = __release_resource(old, true);
312 	write_unlock(&resource_lock);
313 	return retval;
314 }
315 
316 EXPORT_SYMBOL(release_resource);
317 
318 static bool is_type_match(struct resource *p, unsigned long flags, unsigned long desc)
319 {
320 	return (p->flags & flags) == flags && (desc == IORES_DESC_NONE || desc == p->desc);
321 }
322 
323 /**
324  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
325  *			 [@start..@end].
326  *
327  * If a resource is found, returns 0 and @*res is overwritten with the part
328  * of the resource that's within [@start..@end]; if none is found, returns
329  * -ENODEV.  Returns -EINVAL for invalid parameters.
330  *
331  * @start:	start address of the resource searched for
332  * @end:	end address of same resource
333  * @flags:	flags which the resource must have
334  * @desc:	descriptor the resource must have
335  * @res:	return ptr, if resource found
336  *
337  * The caller must specify @start, @end, @flags, and @desc
338  * (which may be IORES_DESC_NONE).
339  */
340 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
341 			       unsigned long flags, unsigned long desc,
342 			       struct resource *res)
343 {
344 	struct resource *p;
345 
346 	if (!res)
347 		return -EINVAL;
348 
349 	if (start >= end)
350 		return -EINVAL;
351 
352 	read_lock(&resource_lock);
353 
354 	for_each_resource(&iomem_resource, p, false) {
355 		/* If we passed the resource we are looking for, stop */
356 		if (p->start > end) {
357 			p = NULL;
358 			break;
359 		}
360 
361 		/* Skip until we find a range that matches what we look for */
362 		if (p->end < start)
363 			continue;
364 
365 		/* Found a match, break */
366 		if (is_type_match(p, flags, desc))
367 			break;
368 	}
369 
370 	if (p) {
371 		/* copy data */
372 		*res = (struct resource) {
373 			.start = max(start, p->start),
374 			.end = min(end, p->end),
375 			.flags = p->flags,
376 			.desc = p->desc,
377 			.parent = p->parent,
378 		};
379 	}
380 
381 	read_unlock(&resource_lock);
382 	return p ? 0 : -ENODEV;
383 }
384 
385 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
386 				 unsigned long flags, unsigned long desc,
387 				 void *arg,
388 				 int (*func)(struct resource *, void *))
389 {
390 	struct resource res;
391 	int ret = -EINVAL;
392 
393 	while (start < end &&
394 	       !find_next_iomem_res(start, end, flags, desc, &res)) {
395 		ret = (*func)(&res, arg);
396 		if (ret)
397 			break;
398 
399 		start = res.end + 1;
400 	}
401 
402 	return ret;
403 }
404 
405 /**
406  * walk_iomem_res_desc - Walks through iomem resources and calls func()
407  *			 with matching resource ranges.
408  * *
409  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
410  * @flags: I/O resource flags
411  * @start: start addr
412  * @end: end addr
413  * @arg: function argument for the callback @func
414  * @func: callback function that is called for each qualifying resource area
415  *
416  * All the memory ranges which overlap start,end and also match flags and
417  * desc are valid candidates.
418  *
419  * NOTE: For a new descriptor search, define a new IORES_DESC in
420  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
421  */
422 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
423 		u64 end, void *arg, int (*func)(struct resource *, void *))
424 {
425 	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
426 }
427 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
428 
429 /*
430  * This function calls the @func callback against all memory ranges of type
431  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
432  * Now, this function is only for System RAM, it deals with full ranges and
433  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
434  * ranges.
435  */
436 int walk_system_ram_res(u64 start, u64 end, void *arg,
437 			int (*func)(struct resource *, void *))
438 {
439 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
440 
441 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
442 				     func);
443 }
444 
445 /*
446  * This function, being a variant of walk_system_ram_res(), calls the @func
447  * callback against all memory ranges of type System RAM which are marked as
448  * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
449  * higher to lower.
450  */
451 int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
452 				int (*func)(struct resource *, void *))
453 {
454 	struct resource res, *rams;
455 	int rams_size = 16, i;
456 	unsigned long flags;
457 	int ret = -1;
458 
459 	/* create a list */
460 	rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
461 	if (!rams)
462 		return ret;
463 
464 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
465 	i = 0;
466 	while ((start < end) &&
467 		(!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
468 		if (i >= rams_size) {
469 			/* re-alloc */
470 			struct resource *rams_new;
471 
472 			rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource),
473 					     GFP_KERNEL);
474 			if (!rams_new)
475 				goto out;
476 
477 			rams = rams_new;
478 			rams_size += 16;
479 		}
480 
481 		rams[i++] = res;
482 		start = res.end + 1;
483 	}
484 
485 	/* go reverse */
486 	for (i--; i >= 0; i--) {
487 		ret = (*func)(&rams[i], arg);
488 		if (ret)
489 			break;
490 	}
491 
492 out:
493 	kvfree(rams);
494 	return ret;
495 }
496 
497 /*
498  * This function calls the @func callback against all memory ranges, which
499  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
500  */
501 int walk_mem_res(u64 start, u64 end, void *arg,
502 		 int (*func)(struct resource *, void *))
503 {
504 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
505 
506 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
507 				     func);
508 }
509 
510 /*
511  * This function calls the @func callback against all memory ranges of type
512  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
513  * It is to be used only for System RAM.
514  */
515 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
516 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
517 {
518 	resource_size_t start, end;
519 	unsigned long flags;
520 	struct resource res;
521 	unsigned long pfn, end_pfn;
522 	int ret = -EINVAL;
523 
524 	start = (u64) start_pfn << PAGE_SHIFT;
525 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
526 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
527 	while (start < end &&
528 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
529 		pfn = PFN_UP(res.start);
530 		end_pfn = PFN_DOWN(res.end + 1);
531 		if (end_pfn > pfn)
532 			ret = (*func)(pfn, end_pfn - pfn, arg);
533 		if (ret)
534 			break;
535 		start = res.end + 1;
536 	}
537 	return ret;
538 }
539 
540 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
541 {
542 	return 1;
543 }
544 
545 /*
546  * This generic page_is_ram() returns true if specified address is
547  * registered as System RAM in iomem_resource list.
548  */
549 int __weak page_is_ram(unsigned long pfn)
550 {
551 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
552 }
553 EXPORT_SYMBOL_GPL(page_is_ram);
554 
555 static int __region_intersects(struct resource *parent, resource_size_t start,
556 			       size_t size, unsigned long flags,
557 			       unsigned long desc)
558 {
559 	int type = 0; int other = 0;
560 	struct resource *p, *dp;
561 	struct resource res, o;
562 	bool covered;
563 
564 	res.start = start;
565 	res.end = start + size - 1;
566 
567 	for (p = parent->child; p ; p = p->sibling) {
568 		if (!resource_intersection(p, &res, &o))
569 			continue;
570 		if (is_type_match(p, flags, desc)) {
571 			type++;
572 			continue;
573 		}
574 		/*
575 		 * Continue to search in descendant resources as if the
576 		 * matched descendant resources cover some ranges of 'p'.
577 		 *
578 		 * |------------- "CXL Window 0" ------------|
579 		 * |-- "System RAM" --|
580 		 *
581 		 * will behave similar as the following fake resource
582 		 * tree when searching "System RAM".
583 		 *
584 		 * |-- "System RAM" --||-- "CXL Window 0a" --|
585 		 */
586 		covered = false;
587 		for_each_resource(p, dp, false) {
588 			if (!resource_overlaps(dp, &res))
589 				continue;
590 			if (is_type_match(dp, flags, desc)) {
591 				type++;
592 				/*
593 				 * Range from 'o.start' to 'dp->start'
594 				 * isn't covered by matched resource.
595 				 */
596 				if (dp->start > o.start)
597 					break;
598 				if (dp->end >= o.end) {
599 					covered = true;
600 					break;
601 				}
602 				/* Remove covered range */
603 				o.start = max(o.start, dp->end + 1);
604 			}
605 		}
606 		if (!covered)
607 			other++;
608 	}
609 
610 	if (type == 0)
611 		return REGION_DISJOINT;
612 
613 	if (other == 0)
614 		return REGION_INTERSECTS;
615 
616 	return REGION_MIXED;
617 }
618 
619 /**
620  * region_intersects() - determine intersection of region with known resources
621  * @start: region start address
622  * @size: size of region
623  * @flags: flags of resource (in iomem_resource)
624  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
625  *
626  * Check if the specified region partially overlaps or fully eclipses a
627  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
628  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
629  * return REGION_MIXED if the region overlaps @flags/@desc and another
630  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
631  * and no other defined resource. Note that REGION_INTERSECTS is also
632  * returned in the case when the specified region overlaps RAM and undefined
633  * memory holes.
634  *
635  * region_intersect() is used by memory remapping functions to ensure
636  * the user is not remapping RAM and is a vast speed up over walking
637  * through the resource table page by page.
638  */
639 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
640 		      unsigned long desc)
641 {
642 	int ret;
643 
644 	read_lock(&resource_lock);
645 	ret = __region_intersects(&iomem_resource, start, size, flags, desc);
646 	read_unlock(&resource_lock);
647 
648 	return ret;
649 }
650 EXPORT_SYMBOL_GPL(region_intersects);
651 
652 void __weak arch_remove_reservations(struct resource *avail)
653 {
654 }
655 
656 static void resource_clip(struct resource *res, resource_size_t min,
657 			  resource_size_t max)
658 {
659 	if (res->start < min)
660 		res->start = min;
661 	if (res->end > max)
662 		res->end = max;
663 }
664 
665 /*
666  * Find empty space in the resource tree with the given range and
667  * alignment constraints
668  */
669 static int __find_resource_space(struct resource *root, struct resource *old,
670 				 struct resource *new, resource_size_t size,
671 				 struct resource_constraint *constraint)
672 {
673 	struct resource *this = root->child;
674 	struct resource tmp = *new, avail, alloc;
675 	resource_alignf alignf = constraint->alignf;
676 
677 	tmp.start = root->start;
678 	/*
679 	 * Skip past an allocated resource that starts at 0, since the assignment
680 	 * of this->start - 1 to tmp->end below would cause an underflow.
681 	 */
682 	if (this && this->start == root->start) {
683 		tmp.start = (this == old) ? old->start : this->end + 1;
684 		this = this->sibling;
685 	}
686 	for(;;) {
687 		if (this)
688 			tmp.end = (this == old) ?  this->end : this->start - 1;
689 		else
690 			tmp.end = root->end;
691 
692 		if (tmp.end < tmp.start)
693 			goto next;
694 
695 		resource_clip(&tmp, constraint->min, constraint->max);
696 		arch_remove_reservations(&tmp);
697 
698 		/* Check for overflow after ALIGN() */
699 		avail.start = ALIGN(tmp.start, constraint->align);
700 		avail.end = tmp.end;
701 		avail.flags = new->flags & ~IORESOURCE_UNSET;
702 		if (avail.start >= tmp.start) {
703 			alloc.flags = avail.flags;
704 			if (alignf) {
705 				alloc.start = alignf(constraint->alignf_data,
706 						     &avail, size, constraint->align);
707 			} else {
708 				alloc.start = avail.start;
709 			}
710 			alloc.end = alloc.start + size - 1;
711 			if (alloc.start <= alloc.end &&
712 			    resource_contains(&avail, &alloc)) {
713 				new->start = alloc.start;
714 				new->end = alloc.end;
715 				return 0;
716 			}
717 		}
718 
719 next:		if (!this || this->end == root->end)
720 			break;
721 
722 		if (this != old)
723 			tmp.start = this->end + 1;
724 		this = this->sibling;
725 	}
726 	return -EBUSY;
727 }
728 
729 /**
730  * find_resource_space - Find empty space in the resource tree
731  * @root:	Root resource descriptor
732  * @new:	Resource descriptor awaiting an empty resource space
733  * @size:	The minimum size of the empty space
734  * @constraint:	The range and alignment constraints to be met
735  *
736  * Finds an empty space under @root in the resource tree satisfying range and
737  * alignment @constraints.
738  *
739  * Return:
740  * * %0		- if successful, @new members start, end, and flags are altered.
741  * * %-EBUSY	- if no empty space was found.
742  */
743 int find_resource_space(struct resource *root, struct resource *new,
744 			resource_size_t size,
745 			struct resource_constraint *constraint)
746 {
747 	return  __find_resource_space(root, NULL, new, size, constraint);
748 }
749 EXPORT_SYMBOL_GPL(find_resource_space);
750 
751 /**
752  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
753  *	The resource will be relocated if the new size cannot be reallocated in the
754  *	current location.
755  *
756  * @root: root resource descriptor
757  * @old:  resource descriptor desired by caller
758  * @newsize: new size of the resource descriptor
759  * @constraint: the memory range and alignment constraints to be met.
760  */
761 static int reallocate_resource(struct resource *root, struct resource *old,
762 			       resource_size_t newsize,
763 			       struct resource_constraint *constraint)
764 {
765 	int err=0;
766 	struct resource new = *old;
767 	struct resource *conflict;
768 
769 	write_lock(&resource_lock);
770 
771 	if ((err = __find_resource_space(root, old, &new, newsize, constraint)))
772 		goto out;
773 
774 	if (resource_contains(&new, old)) {
775 		old->start = new.start;
776 		old->end = new.end;
777 		goto out;
778 	}
779 
780 	if (old->child) {
781 		err = -EBUSY;
782 		goto out;
783 	}
784 
785 	if (resource_contains(old, &new)) {
786 		old->start = new.start;
787 		old->end = new.end;
788 	} else {
789 		__release_resource(old, true);
790 		*old = new;
791 		conflict = __request_resource(root, old);
792 		BUG_ON(conflict);
793 	}
794 out:
795 	write_unlock(&resource_lock);
796 	return err;
797 }
798 
799 
800 /**
801  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
802  * 	The resource will be reallocated with a new size if it was already allocated
803  * @root: root resource descriptor
804  * @new: resource descriptor desired by caller
805  * @size: requested resource region size
806  * @min: minimum boundary to allocate
807  * @max: maximum boundary to allocate
808  * @align: alignment requested, in bytes
809  * @alignf: alignment function, optional, called if not NULL
810  * @alignf_data: arbitrary data to pass to the @alignf function
811  */
812 int allocate_resource(struct resource *root, struct resource *new,
813 		      resource_size_t size, resource_size_t min,
814 		      resource_size_t max, resource_size_t align,
815 		      resource_alignf alignf,
816 		      void *alignf_data)
817 {
818 	int err;
819 	struct resource_constraint constraint;
820 
821 	constraint.min = min;
822 	constraint.max = max;
823 	constraint.align = align;
824 	constraint.alignf = alignf;
825 	constraint.alignf_data = alignf_data;
826 
827 	if ( new->parent ) {
828 		/* resource is already allocated, try reallocating with
829 		   the new constraints */
830 		return reallocate_resource(root, new, size, &constraint);
831 	}
832 
833 	write_lock(&resource_lock);
834 	err = find_resource_space(root, new, size, &constraint);
835 	if (err >= 0 && __request_resource(root, new))
836 		err = -EBUSY;
837 	write_unlock(&resource_lock);
838 	return err;
839 }
840 
841 EXPORT_SYMBOL(allocate_resource);
842 
843 /**
844  * lookup_resource - find an existing resource by a resource start address
845  * @root: root resource descriptor
846  * @start: resource start address
847  *
848  * Returns a pointer to the resource if found, NULL otherwise
849  */
850 struct resource *lookup_resource(struct resource *root, resource_size_t start)
851 {
852 	struct resource *res;
853 
854 	read_lock(&resource_lock);
855 	for (res = root->child; res; res = res->sibling) {
856 		if (res->start == start)
857 			break;
858 	}
859 	read_unlock(&resource_lock);
860 
861 	return res;
862 }
863 
864 /*
865  * Insert a resource into the resource tree. If successful, return NULL,
866  * otherwise return the conflicting resource (compare to __request_resource())
867  */
868 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
869 {
870 	struct resource *first, *next;
871 
872 	for (;; parent = first) {
873 		first = __request_resource(parent, new);
874 		if (!first)
875 			return first;
876 
877 		if (first == parent)
878 			return first;
879 		if (WARN_ON(first == new))	/* duplicated insertion */
880 			return first;
881 
882 		if ((first->start > new->start) || (first->end < new->end))
883 			break;
884 		if ((first->start == new->start) && (first->end == new->end))
885 			break;
886 	}
887 
888 	for (next = first; ; next = next->sibling) {
889 		/* Partial overlap? Bad, and unfixable */
890 		if (next->start < new->start || next->end > new->end)
891 			return next;
892 		if (!next->sibling)
893 			break;
894 		if (next->sibling->start > new->end)
895 			break;
896 	}
897 
898 	new->parent = parent;
899 	new->sibling = next->sibling;
900 	new->child = first;
901 
902 	next->sibling = NULL;
903 	for (next = first; next; next = next->sibling)
904 		next->parent = new;
905 
906 	if (parent->child == first) {
907 		parent->child = new;
908 	} else {
909 		next = parent->child;
910 		while (next->sibling != first)
911 			next = next->sibling;
912 		next->sibling = new;
913 	}
914 	return NULL;
915 }
916 
917 /**
918  * insert_resource_conflict - Inserts resource in the resource tree
919  * @parent: parent of the new resource
920  * @new: new resource to insert
921  *
922  * Returns 0 on success, conflict resource if the resource can't be inserted.
923  *
924  * This function is equivalent to request_resource_conflict when no conflict
925  * happens. If a conflict happens, and the conflicting resources
926  * entirely fit within the range of the new resource, then the new
927  * resource is inserted and the conflicting resources become children of
928  * the new resource.
929  *
930  * This function is intended for producers of resources, such as FW modules
931  * and bus drivers.
932  */
933 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
934 {
935 	struct resource *conflict;
936 
937 	write_lock(&resource_lock);
938 	conflict = __insert_resource(parent, new);
939 	write_unlock(&resource_lock);
940 	return conflict;
941 }
942 
943 /**
944  * insert_resource - Inserts a resource in the resource tree
945  * @parent: parent of the new resource
946  * @new: new resource to insert
947  *
948  * Returns 0 on success, -EBUSY if the resource can't be inserted.
949  *
950  * This function is intended for producers of resources, such as FW modules
951  * and bus drivers.
952  */
953 int insert_resource(struct resource *parent, struct resource *new)
954 {
955 	struct resource *conflict;
956 
957 	conflict = insert_resource_conflict(parent, new);
958 	return conflict ? -EBUSY : 0;
959 }
960 EXPORT_SYMBOL_GPL(insert_resource);
961 
962 /**
963  * insert_resource_expand_to_fit - Insert a resource into the resource tree
964  * @root: root resource descriptor
965  * @new: new resource to insert
966  *
967  * Insert a resource into the resource tree, possibly expanding it in order
968  * to make it encompass any conflicting resources.
969  */
970 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
971 {
972 	if (new->parent)
973 		return;
974 
975 	write_lock(&resource_lock);
976 	for (;;) {
977 		struct resource *conflict;
978 
979 		conflict = __insert_resource(root, new);
980 		if (!conflict)
981 			break;
982 		if (conflict == root)
983 			break;
984 
985 		/* Ok, expand resource to cover the conflict, then try again .. */
986 		if (conflict->start < new->start)
987 			new->start = conflict->start;
988 		if (conflict->end > new->end)
989 			new->end = conflict->end;
990 
991 		pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
992 	}
993 	write_unlock(&resource_lock);
994 }
995 /*
996  * Not for general consumption, only early boot memory map parsing, PCI
997  * resource discovery, and late discovery of CXL resources are expected
998  * to use this interface. The former are built-in and only the latter,
999  * CXL, is a module.
1000  */
1001 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, "CXL");
1002 
1003 /**
1004  * remove_resource - Remove a resource in the resource tree
1005  * @old: resource to remove
1006  *
1007  * Returns 0 on success, -EINVAL if the resource is not valid.
1008  *
1009  * This function removes a resource previously inserted by insert_resource()
1010  * or insert_resource_conflict(), and moves the children (if any) up to
1011  * where they were before.  insert_resource() and insert_resource_conflict()
1012  * insert a new resource, and move any conflicting resources down to the
1013  * children of the new resource.
1014  *
1015  * insert_resource(), insert_resource_conflict() and remove_resource() are
1016  * intended for producers of resources, such as FW modules and bus drivers.
1017  */
1018 int remove_resource(struct resource *old)
1019 {
1020 	int retval;
1021 
1022 	write_lock(&resource_lock);
1023 	retval = __release_resource(old, false);
1024 	write_unlock(&resource_lock);
1025 	return retval;
1026 }
1027 EXPORT_SYMBOL_GPL(remove_resource);
1028 
1029 static int __adjust_resource(struct resource *res, resource_size_t start,
1030 				resource_size_t size)
1031 {
1032 	struct resource *tmp, *parent = res->parent;
1033 	resource_size_t end = start + size - 1;
1034 	int result = -EBUSY;
1035 
1036 	if (!parent)
1037 		goto skip;
1038 
1039 	if ((start < parent->start) || (end > parent->end))
1040 		goto out;
1041 
1042 	if (res->sibling && (res->sibling->start <= end))
1043 		goto out;
1044 
1045 	tmp = parent->child;
1046 	if (tmp != res) {
1047 		while (tmp->sibling != res)
1048 			tmp = tmp->sibling;
1049 		if (start <= tmp->end)
1050 			goto out;
1051 	}
1052 
1053 skip:
1054 	for (tmp = res->child; tmp; tmp = tmp->sibling)
1055 		if ((tmp->start < start) || (tmp->end > end))
1056 			goto out;
1057 
1058 	res->start = start;
1059 	res->end = end;
1060 	result = 0;
1061 
1062  out:
1063 	return result;
1064 }
1065 
1066 /**
1067  * adjust_resource - modify a resource's start and size
1068  * @res: resource to modify
1069  * @start: new start value
1070  * @size: new size
1071  *
1072  * Given an existing resource, change its start and size to match the
1073  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1074  * Existing children of the resource are assumed to be immutable.
1075  */
1076 int adjust_resource(struct resource *res, resource_size_t start,
1077 		    resource_size_t size)
1078 {
1079 	int result;
1080 
1081 	write_lock(&resource_lock);
1082 	result = __adjust_resource(res, start, size);
1083 	write_unlock(&resource_lock);
1084 	return result;
1085 }
1086 EXPORT_SYMBOL(adjust_resource);
1087 
1088 static void __init
1089 __reserve_region_with_split(struct resource *root, resource_size_t start,
1090 			    resource_size_t end, const char *name)
1091 {
1092 	struct resource *parent = root;
1093 	struct resource *conflict;
1094 	struct resource *res = alloc_resource(GFP_ATOMIC);
1095 	struct resource *next_res = NULL;
1096 	int type = resource_type(root);
1097 
1098 	if (!res)
1099 		return;
1100 
1101 	res->name = name;
1102 	res->start = start;
1103 	res->end = end;
1104 	res->flags = type | IORESOURCE_BUSY;
1105 	res->desc = IORES_DESC_NONE;
1106 
1107 	while (1) {
1108 
1109 		conflict = __request_resource(parent, res);
1110 		if (!conflict) {
1111 			if (!next_res)
1112 				break;
1113 			res = next_res;
1114 			next_res = NULL;
1115 			continue;
1116 		}
1117 
1118 		/* conflict covered whole area */
1119 		if (conflict->start <= res->start &&
1120 				conflict->end >= res->end) {
1121 			free_resource(res);
1122 			WARN_ON(next_res);
1123 			break;
1124 		}
1125 
1126 		/* failed, split and try again */
1127 		if (conflict->start > res->start) {
1128 			end = res->end;
1129 			res->end = conflict->start - 1;
1130 			if (conflict->end < end) {
1131 				next_res = alloc_resource(GFP_ATOMIC);
1132 				if (!next_res) {
1133 					free_resource(res);
1134 					break;
1135 				}
1136 				next_res->name = name;
1137 				next_res->start = conflict->end + 1;
1138 				next_res->end = end;
1139 				next_res->flags = type | IORESOURCE_BUSY;
1140 				next_res->desc = IORES_DESC_NONE;
1141 			}
1142 		} else {
1143 			res->start = conflict->end + 1;
1144 		}
1145 	}
1146 
1147 }
1148 
1149 void __init
1150 reserve_region_with_split(struct resource *root, resource_size_t start,
1151 			  resource_size_t end, const char *name)
1152 {
1153 	int abort = 0;
1154 
1155 	write_lock(&resource_lock);
1156 	if (root->start > start || root->end < end) {
1157 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1158 		       (unsigned long long)start, (unsigned long long)end,
1159 		       root);
1160 		if (start > root->end || end < root->start)
1161 			abort = 1;
1162 		else {
1163 			if (end > root->end)
1164 				end = root->end;
1165 			if (start < root->start)
1166 				start = root->start;
1167 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1168 			       (unsigned long long)start,
1169 			       (unsigned long long)end);
1170 		}
1171 		dump_stack();
1172 	}
1173 	if (!abort)
1174 		__reserve_region_with_split(root, start, end, name);
1175 	write_unlock(&resource_lock);
1176 }
1177 
1178 /**
1179  * resource_alignment - calculate resource's alignment
1180  * @res: resource pointer
1181  *
1182  * Returns alignment on success, 0 (invalid alignment) on failure.
1183  */
1184 resource_size_t resource_alignment(struct resource *res)
1185 {
1186 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1187 	case IORESOURCE_SIZEALIGN:
1188 		return resource_size(res);
1189 	case IORESOURCE_STARTALIGN:
1190 		return res->start;
1191 	default:
1192 		return 0;
1193 	}
1194 }
1195 
1196 /*
1197  * This is compatibility stuff for IO resources.
1198  *
1199  * Note how this, unlike the above, knows about
1200  * the IO flag meanings (busy etc).
1201  *
1202  * request_region creates a new busy region.
1203  *
1204  * release_region releases a matching busy region.
1205  */
1206 
1207 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1208 
1209 static struct inode *iomem_inode;
1210 
1211 #ifdef CONFIG_IO_STRICT_DEVMEM
1212 static void revoke_iomem(struct resource *res)
1213 {
1214 	/* pairs with smp_store_release() in iomem_init_inode() */
1215 	struct inode *inode = smp_load_acquire(&iomem_inode);
1216 
1217 	/*
1218 	 * Check that the initialization has completed. Losing the race
1219 	 * is ok because it means drivers are claiming resources before
1220 	 * the fs_initcall level of init and prevent iomem_get_mapping users
1221 	 * from establishing mappings.
1222 	 */
1223 	if (!inode)
1224 		return;
1225 
1226 	/*
1227 	 * The expectation is that the driver has successfully marked
1228 	 * the resource busy by this point, so devmem_is_allowed()
1229 	 * should start returning false, however for performance this
1230 	 * does not iterate the entire resource range.
1231 	 */
1232 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1233 	    devmem_is_allowed(PHYS_PFN(res->end))) {
1234 		/*
1235 		 * *cringe* iomem=relaxed says "go ahead, what's the
1236 		 * worst that can happen?"
1237 		 */
1238 		return;
1239 	}
1240 
1241 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1242 }
1243 #else
1244 static void revoke_iomem(struct resource *res) {}
1245 #endif
1246 
1247 struct address_space *iomem_get_mapping(void)
1248 {
1249 	/*
1250 	 * This function is only called from file open paths, hence guaranteed
1251 	 * that fs_initcalls have completed and no need to check for NULL. But
1252 	 * since revoke_iomem can be called before the initcall we still need
1253 	 * the barrier to appease checkers.
1254 	 */
1255 	return smp_load_acquire(&iomem_inode)->i_mapping;
1256 }
1257 
1258 static int __request_region_locked(struct resource *res, struct resource *parent,
1259 				   resource_size_t start, resource_size_t n,
1260 				   const char *name, int flags)
1261 {
1262 	DECLARE_WAITQUEUE(wait, current);
1263 
1264 	res->name = name;
1265 	res->start = start;
1266 	res->end = start + n - 1;
1267 
1268 	for (;;) {
1269 		struct resource *conflict;
1270 
1271 		res->flags = resource_type(parent) | resource_ext_type(parent);
1272 		res->flags |= IORESOURCE_BUSY | flags;
1273 		res->desc = parent->desc;
1274 
1275 		conflict = __request_resource(parent, res);
1276 		if (!conflict)
1277 			break;
1278 		/*
1279 		 * mm/hmm.c reserves physical addresses which then
1280 		 * become unavailable to other users.  Conflicts are
1281 		 * not expected.  Warn to aid debugging if encountered.
1282 		 */
1283 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1284 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1285 				conflict->name, conflict, res);
1286 		}
1287 		if (conflict != parent) {
1288 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1289 				parent = conflict;
1290 				continue;
1291 			}
1292 		}
1293 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1294 			add_wait_queue(&muxed_resource_wait, &wait);
1295 			write_unlock(&resource_lock);
1296 			set_current_state(TASK_UNINTERRUPTIBLE);
1297 			schedule();
1298 			remove_wait_queue(&muxed_resource_wait, &wait);
1299 			write_lock(&resource_lock);
1300 			continue;
1301 		}
1302 		/* Uhhuh, that didn't work out.. */
1303 		return -EBUSY;
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 /**
1310  * __request_region - create a new busy resource region
1311  * @parent: parent resource descriptor
1312  * @start: resource start address
1313  * @n: resource region size
1314  * @name: reserving caller's ID string
1315  * @flags: IO resource flags
1316  */
1317 struct resource *__request_region(struct resource *parent,
1318 				  resource_size_t start, resource_size_t n,
1319 				  const char *name, int flags)
1320 {
1321 	struct resource *res = alloc_resource(GFP_KERNEL);
1322 	int ret;
1323 
1324 	if (!res)
1325 		return NULL;
1326 
1327 	write_lock(&resource_lock);
1328 	ret = __request_region_locked(res, parent, start, n, name, flags);
1329 	write_unlock(&resource_lock);
1330 
1331 	if (ret) {
1332 		free_resource(res);
1333 		return NULL;
1334 	}
1335 
1336 	if (parent == &iomem_resource)
1337 		revoke_iomem(res);
1338 
1339 	return res;
1340 }
1341 EXPORT_SYMBOL(__request_region);
1342 
1343 /**
1344  * __release_region - release a previously reserved resource region
1345  * @parent: parent resource descriptor
1346  * @start: resource start address
1347  * @n: resource region size
1348  *
1349  * The described resource region must match a currently busy region.
1350  */
1351 void __release_region(struct resource *parent, resource_size_t start,
1352 		      resource_size_t n)
1353 {
1354 	struct resource **p;
1355 	resource_size_t end;
1356 
1357 	p = &parent->child;
1358 	end = start + n - 1;
1359 
1360 	write_lock(&resource_lock);
1361 
1362 	for (;;) {
1363 		struct resource *res = *p;
1364 
1365 		if (!res)
1366 			break;
1367 		if (res->start <= start && res->end >= end) {
1368 			if (!(res->flags & IORESOURCE_BUSY)) {
1369 				p = &res->child;
1370 				continue;
1371 			}
1372 			if (res->start != start || res->end != end)
1373 				break;
1374 			*p = res->sibling;
1375 			write_unlock(&resource_lock);
1376 			if (res->flags & IORESOURCE_MUXED)
1377 				wake_up(&muxed_resource_wait);
1378 			free_resource(res);
1379 			return;
1380 		}
1381 		p = &res->sibling;
1382 	}
1383 
1384 	write_unlock(&resource_lock);
1385 
1386 	pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1387 }
1388 EXPORT_SYMBOL(__release_region);
1389 
1390 #ifdef CONFIG_MEMORY_HOTREMOVE
1391 /**
1392  * release_mem_region_adjustable - release a previously reserved memory region
1393  * @start: resource start address
1394  * @size: resource region size
1395  *
1396  * This interface is intended for memory hot-delete.  The requested region
1397  * is released from a currently busy memory resource.  The requested region
1398  * must either match exactly or fit into a single busy resource entry.  In
1399  * the latter case, the remaining resource is adjusted accordingly.
1400  * Existing children of the busy memory resource must be immutable in the
1401  * request.
1402  *
1403  * Note:
1404  * - Additional release conditions, such as overlapping region, can be
1405  *   supported after they are confirmed as valid cases.
1406  * - When a busy memory resource gets split into two entries, the code
1407  *   assumes that all children remain in the lower address entry for
1408  *   simplicity.  Enhance this logic when necessary.
1409  */
1410 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1411 {
1412 	struct resource *parent = &iomem_resource;
1413 	struct resource *new_res = NULL;
1414 	bool alloc_nofail = false;
1415 	struct resource **p;
1416 	struct resource *res;
1417 	resource_size_t end;
1418 
1419 	end = start + size - 1;
1420 	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1421 		return;
1422 
1423 	/*
1424 	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1425 	 * just before releasing the region. This is highly unlikely to
1426 	 * fail - let's play save and make it never fail as the caller cannot
1427 	 * perform any error handling (e.g., trying to re-add memory will fail
1428 	 * similarly).
1429 	 */
1430 retry:
1431 	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1432 
1433 	p = &parent->child;
1434 	write_lock(&resource_lock);
1435 
1436 	while ((res = *p)) {
1437 		if (res->start >= end)
1438 			break;
1439 
1440 		/* look for the next resource if it does not fit into */
1441 		if (res->start > start || res->end < end) {
1442 			p = &res->sibling;
1443 			continue;
1444 		}
1445 
1446 		if (!(res->flags & IORESOURCE_MEM))
1447 			break;
1448 
1449 		if (!(res->flags & IORESOURCE_BUSY)) {
1450 			p = &res->child;
1451 			continue;
1452 		}
1453 
1454 		/* found the target resource; let's adjust accordingly */
1455 		if (res->start == start && res->end == end) {
1456 			/* free the whole entry */
1457 			*p = res->sibling;
1458 			free_resource(res);
1459 		} else if (res->start == start && res->end != end) {
1460 			/* adjust the start */
1461 			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1462 						       res->end - end));
1463 		} else if (res->start != start && res->end == end) {
1464 			/* adjust the end */
1465 			WARN_ON_ONCE(__adjust_resource(res, res->start,
1466 						       start - res->start));
1467 		} else {
1468 			/* split into two entries - we need a new resource */
1469 			if (!new_res) {
1470 				new_res = alloc_resource(GFP_ATOMIC);
1471 				if (!new_res) {
1472 					alloc_nofail = true;
1473 					write_unlock(&resource_lock);
1474 					goto retry;
1475 				}
1476 			}
1477 			new_res->name = res->name;
1478 			new_res->start = end + 1;
1479 			new_res->end = res->end;
1480 			new_res->flags = res->flags;
1481 			new_res->desc = res->desc;
1482 			new_res->parent = res->parent;
1483 			new_res->sibling = res->sibling;
1484 			new_res->child = NULL;
1485 
1486 			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1487 							   start - res->start)))
1488 				break;
1489 			res->sibling = new_res;
1490 			new_res = NULL;
1491 		}
1492 
1493 		break;
1494 	}
1495 
1496 	write_unlock(&resource_lock);
1497 	free_resource(new_res);
1498 }
1499 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1500 
1501 #ifdef CONFIG_MEMORY_HOTPLUG
1502 static bool system_ram_resources_mergeable(struct resource *r1,
1503 					   struct resource *r2)
1504 {
1505 	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1506 	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1507 	       r1->name == r2->name && r1->desc == r2->desc &&
1508 	       !r1->child && !r2->child;
1509 }
1510 
1511 /**
1512  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1513  *	merge it with adjacent, mergeable resources
1514  * @res: resource descriptor
1515  *
1516  * This interface is intended for memory hotplug, whereby lots of contiguous
1517  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1518  * the actual resource boundaries are not of interest (e.g., it might be
1519  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1520  * same parent, and that don't have any children are considered. All mergeable
1521  * resources must be immutable during the request.
1522  *
1523  * Note:
1524  * - The caller has to make sure that no pointers to resources that are
1525  *   marked mergeable are used anymore after this call - the resource might
1526  *   be freed and the pointer might be stale!
1527  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1528  */
1529 void merge_system_ram_resource(struct resource *res)
1530 {
1531 	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1532 	struct resource *cur;
1533 
1534 	if (WARN_ON_ONCE((res->flags & flags) != flags))
1535 		return;
1536 
1537 	write_lock(&resource_lock);
1538 	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1539 
1540 	/* Try to merge with next item in the list. */
1541 	cur = res->sibling;
1542 	if (cur && system_ram_resources_mergeable(res, cur)) {
1543 		res->end = cur->end;
1544 		res->sibling = cur->sibling;
1545 		free_resource(cur);
1546 	}
1547 
1548 	/* Try to merge with previous item in the list. */
1549 	cur = res->parent->child;
1550 	while (cur && cur->sibling != res)
1551 		cur = cur->sibling;
1552 	if (cur && system_ram_resources_mergeable(cur, res)) {
1553 		cur->end = res->end;
1554 		cur->sibling = res->sibling;
1555 		free_resource(res);
1556 	}
1557 	write_unlock(&resource_lock);
1558 }
1559 #endif	/* CONFIG_MEMORY_HOTPLUG */
1560 
1561 /*
1562  * Managed region resource
1563  */
1564 static void devm_resource_release(struct device *dev, void *ptr)
1565 {
1566 	struct resource **r = ptr;
1567 
1568 	release_resource(*r);
1569 }
1570 
1571 /**
1572  * devm_request_resource() - request and reserve an I/O or memory resource
1573  * @dev: device for which to request the resource
1574  * @root: root of the resource tree from which to request the resource
1575  * @new: descriptor of the resource to request
1576  *
1577  * This is a device-managed version of request_resource(). There is usually
1578  * no need to release resources requested by this function explicitly since
1579  * that will be taken care of when the device is unbound from its driver.
1580  * If for some reason the resource needs to be released explicitly, because
1581  * of ordering issues for example, drivers must call devm_release_resource()
1582  * rather than the regular release_resource().
1583  *
1584  * When a conflict is detected between any existing resources and the newly
1585  * requested resource, an error message will be printed.
1586  *
1587  * Returns 0 on success or a negative error code on failure.
1588  */
1589 int devm_request_resource(struct device *dev, struct resource *root,
1590 			  struct resource *new)
1591 {
1592 	struct resource *conflict, **ptr;
1593 
1594 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1595 	if (!ptr)
1596 		return -ENOMEM;
1597 
1598 	*ptr = new;
1599 
1600 	conflict = request_resource_conflict(root, new);
1601 	if (conflict) {
1602 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1603 			new, conflict->name, conflict);
1604 		devres_free(ptr);
1605 		return -EBUSY;
1606 	}
1607 
1608 	devres_add(dev, ptr);
1609 	return 0;
1610 }
1611 EXPORT_SYMBOL(devm_request_resource);
1612 
1613 static int devm_resource_match(struct device *dev, void *res, void *data)
1614 {
1615 	struct resource **ptr = res;
1616 
1617 	return *ptr == data;
1618 }
1619 
1620 /**
1621  * devm_release_resource() - release a previously requested resource
1622  * @dev: device for which to release the resource
1623  * @new: descriptor of the resource to release
1624  *
1625  * Releases a resource previously requested using devm_request_resource().
1626  */
1627 void devm_release_resource(struct device *dev, struct resource *new)
1628 {
1629 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1630 			       new));
1631 }
1632 EXPORT_SYMBOL(devm_release_resource);
1633 
1634 struct region_devres {
1635 	struct resource *parent;
1636 	resource_size_t start;
1637 	resource_size_t n;
1638 };
1639 
1640 static void devm_region_release(struct device *dev, void *res)
1641 {
1642 	struct region_devres *this = res;
1643 
1644 	__release_region(this->parent, this->start, this->n);
1645 }
1646 
1647 static int devm_region_match(struct device *dev, void *res, void *match_data)
1648 {
1649 	struct region_devres *this = res, *match = match_data;
1650 
1651 	return this->parent == match->parent &&
1652 		this->start == match->start && this->n == match->n;
1653 }
1654 
1655 struct resource *
1656 __devm_request_region(struct device *dev, struct resource *parent,
1657 		      resource_size_t start, resource_size_t n, const char *name)
1658 {
1659 	struct region_devres *dr = NULL;
1660 	struct resource *res;
1661 
1662 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1663 			  GFP_KERNEL);
1664 	if (!dr)
1665 		return NULL;
1666 
1667 	dr->parent = parent;
1668 	dr->start = start;
1669 	dr->n = n;
1670 
1671 	res = __request_region(parent, start, n, name, 0);
1672 	if (res)
1673 		devres_add(dev, dr);
1674 	else
1675 		devres_free(dr);
1676 
1677 	return res;
1678 }
1679 EXPORT_SYMBOL(__devm_request_region);
1680 
1681 void __devm_release_region(struct device *dev, struct resource *parent,
1682 			   resource_size_t start, resource_size_t n)
1683 {
1684 	struct region_devres match_data = { parent, start, n };
1685 
1686 	__release_region(parent, start, n);
1687 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1688 			       &match_data));
1689 }
1690 EXPORT_SYMBOL(__devm_release_region);
1691 
1692 /*
1693  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1694  */
1695 #define MAXRESERVE 4
1696 static int __init reserve_setup(char *str)
1697 {
1698 	static int reserved;
1699 	static struct resource reserve[MAXRESERVE];
1700 
1701 	for (;;) {
1702 		unsigned int io_start, io_num;
1703 		int x = reserved;
1704 		struct resource *parent;
1705 
1706 		if (get_option(&str, &io_start) != 2)
1707 			break;
1708 		if (get_option(&str, &io_num) == 0)
1709 			break;
1710 		if (x < MAXRESERVE) {
1711 			struct resource *res = reserve + x;
1712 
1713 			/*
1714 			 * If the region starts below 0x10000, we assume it's
1715 			 * I/O port space; otherwise assume it's memory.
1716 			 */
1717 			if (io_start < 0x10000) {
1718 				res->flags = IORESOURCE_IO;
1719 				parent = &ioport_resource;
1720 			} else {
1721 				res->flags = IORESOURCE_MEM;
1722 				parent = &iomem_resource;
1723 			}
1724 			res->name = "reserved";
1725 			res->start = io_start;
1726 			res->end = io_start + io_num - 1;
1727 			res->flags |= IORESOURCE_BUSY;
1728 			res->desc = IORES_DESC_NONE;
1729 			res->child = NULL;
1730 			if (request_resource(parent, res) == 0)
1731 				reserved = x+1;
1732 		}
1733 	}
1734 	return 1;
1735 }
1736 __setup("reserve=", reserve_setup);
1737 
1738 /*
1739  * Check if the requested addr and size spans more than any slot in the
1740  * iomem resource tree.
1741  */
1742 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1743 {
1744 	resource_size_t end = addr + size - 1;
1745 	struct resource *p;
1746 	int err = 0;
1747 
1748 	read_lock(&resource_lock);
1749 	for_each_resource(&iomem_resource, p, false) {
1750 		/*
1751 		 * We can probably skip the resources without
1752 		 * IORESOURCE_IO attribute?
1753 		 */
1754 		if (p->start > end)
1755 			continue;
1756 		if (p->end < addr)
1757 			continue;
1758 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1759 		    PFN_DOWN(p->end) >= PFN_DOWN(end))
1760 			continue;
1761 		/*
1762 		 * if a resource is "BUSY", it's not a hardware resource
1763 		 * but a driver mapping of such a resource; we don't want
1764 		 * to warn for those; some drivers legitimately map only
1765 		 * partial hardware resources. (example: vesafb)
1766 		 */
1767 		if (p->flags & IORESOURCE_BUSY)
1768 			continue;
1769 
1770 		pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1771 			&addr, &end, p->name, p);
1772 		err = -1;
1773 		break;
1774 	}
1775 	read_unlock(&resource_lock);
1776 
1777 	return err;
1778 }
1779 
1780 #ifdef CONFIG_STRICT_DEVMEM
1781 static int strict_iomem_checks = 1;
1782 #else
1783 static int strict_iomem_checks;
1784 #endif
1785 
1786 /*
1787  * Check if an address is exclusive to the kernel and must not be mapped to
1788  * user space, for example, via /dev/mem.
1789  *
1790  * Returns true if exclusive to the kernel, otherwise returns false.
1791  */
1792 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1793 {
1794 	const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1795 						  IORESOURCE_EXCLUSIVE;
1796 	bool skip_children = false, err = false;
1797 	struct resource *p;
1798 
1799 	read_lock(&resource_lock);
1800 	for_each_resource(root, p, skip_children) {
1801 		if (p->start >= addr + size)
1802 			break;
1803 		if (p->end < addr) {
1804 			skip_children = true;
1805 			continue;
1806 		}
1807 		skip_children = false;
1808 
1809 		/*
1810 		 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1811 		 * IORESOURCE_EXCLUSIVE is set, even if they
1812 		 * are not busy and even if "iomem=relaxed" is set. The
1813 		 * responsible driver dynamically adds/removes system RAM within
1814 		 * such an area and uncontrolled access is dangerous.
1815 		 */
1816 		if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1817 			err = true;
1818 			break;
1819 		}
1820 
1821 		/*
1822 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1823 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1824 		 * resource is busy.
1825 		 */
1826 		if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1827 			continue;
1828 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1829 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1830 			err = true;
1831 			break;
1832 		}
1833 	}
1834 	read_unlock(&resource_lock);
1835 
1836 	return err;
1837 }
1838 
1839 bool iomem_is_exclusive(u64 addr)
1840 {
1841 	return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1842 				     PAGE_SIZE);
1843 }
1844 
1845 struct resource_entry *resource_list_create_entry(struct resource *res,
1846 						  size_t extra_size)
1847 {
1848 	struct resource_entry *entry;
1849 
1850 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1851 	if (entry) {
1852 		INIT_LIST_HEAD(&entry->node);
1853 		entry->res = res ? res : &entry->__res;
1854 	}
1855 
1856 	return entry;
1857 }
1858 EXPORT_SYMBOL(resource_list_create_entry);
1859 
1860 void resource_list_free(struct list_head *head)
1861 {
1862 	struct resource_entry *entry, *tmp;
1863 
1864 	list_for_each_entry_safe(entry, tmp, head, node)
1865 		resource_list_destroy_entry(entry);
1866 }
1867 EXPORT_SYMBOL(resource_list_free);
1868 
1869 #ifdef CONFIG_GET_FREE_REGION
1870 #define GFR_DESCENDING		(1UL << 0)
1871 #define GFR_REQUEST_REGION	(1UL << 1)
1872 #ifdef PA_SECTION_SHIFT
1873 #define GFR_DEFAULT_ALIGN	(1UL << PA_SECTION_SHIFT)
1874 #else
1875 #define GFR_DEFAULT_ALIGN	PAGE_SIZE
1876 #endif
1877 
1878 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1879 				 resource_size_t align, unsigned long flags)
1880 {
1881 	if (flags & GFR_DESCENDING) {
1882 		resource_size_t end;
1883 
1884 		end = min_t(resource_size_t, base->end, DIRECT_MAP_PHYSMEM_END);
1885 		return end - size + 1;
1886 	}
1887 
1888 	return ALIGN(max(base->start, align), align);
1889 }
1890 
1891 static bool gfr_continue(struct resource *base, resource_size_t addr,
1892 			 resource_size_t size, unsigned long flags)
1893 {
1894 	if (flags & GFR_DESCENDING)
1895 		return addr > size && addr >= base->start;
1896 	/*
1897 	 * In the ascend case be careful that the last increment by
1898 	 * @size did not wrap 0.
1899 	 */
1900 	return addr > addr - size &&
1901 	       addr <= min_t(resource_size_t, base->end, DIRECT_MAP_PHYSMEM_END);
1902 }
1903 
1904 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1905 				unsigned long flags)
1906 {
1907 	if (flags & GFR_DESCENDING)
1908 		return addr - size;
1909 	return addr + size;
1910 }
1911 
1912 static void remove_free_mem_region(void *_res)
1913 {
1914 	struct resource *res = _res;
1915 
1916 	if (res->parent)
1917 		remove_resource(res);
1918 	free_resource(res);
1919 }
1920 
1921 static struct resource *
1922 get_free_mem_region(struct device *dev, struct resource *base,
1923 		    resource_size_t size, const unsigned long align,
1924 		    const char *name, const unsigned long desc,
1925 		    const unsigned long flags)
1926 {
1927 	resource_size_t addr;
1928 	struct resource *res;
1929 	struct region_devres *dr = NULL;
1930 
1931 	size = ALIGN(size, align);
1932 
1933 	res = alloc_resource(GFP_KERNEL);
1934 	if (!res)
1935 		return ERR_PTR(-ENOMEM);
1936 
1937 	if (dev && (flags & GFR_REQUEST_REGION)) {
1938 		dr = devres_alloc(devm_region_release,
1939 				sizeof(struct region_devres), GFP_KERNEL);
1940 		if (!dr) {
1941 			free_resource(res);
1942 			return ERR_PTR(-ENOMEM);
1943 		}
1944 	} else if (dev) {
1945 		if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1946 			return ERR_PTR(-ENOMEM);
1947 	}
1948 
1949 	write_lock(&resource_lock);
1950 	for (addr = gfr_start(base, size, align, flags);
1951 	     gfr_continue(base, addr, align, flags);
1952 	     addr = gfr_next(addr, align, flags)) {
1953 		if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1954 		    REGION_DISJOINT)
1955 			continue;
1956 
1957 		if (flags & GFR_REQUEST_REGION) {
1958 			if (__request_region_locked(res, &iomem_resource, addr,
1959 						    size, name, 0))
1960 				break;
1961 
1962 			if (dev) {
1963 				dr->parent = &iomem_resource;
1964 				dr->start = addr;
1965 				dr->n = size;
1966 				devres_add(dev, dr);
1967 			}
1968 
1969 			res->desc = desc;
1970 			write_unlock(&resource_lock);
1971 
1972 
1973 			/*
1974 			 * A driver is claiming this region so revoke any
1975 			 * mappings.
1976 			 */
1977 			revoke_iomem(res);
1978 		} else {
1979 			res->start = addr;
1980 			res->end = addr + size - 1;
1981 			res->name = name;
1982 			res->desc = desc;
1983 			res->flags = IORESOURCE_MEM;
1984 
1985 			/*
1986 			 * Only succeed if the resource hosts an exclusive
1987 			 * range after the insert
1988 			 */
1989 			if (__insert_resource(base, res) || res->child)
1990 				break;
1991 
1992 			write_unlock(&resource_lock);
1993 		}
1994 
1995 		return res;
1996 	}
1997 	write_unlock(&resource_lock);
1998 
1999 	if (flags & GFR_REQUEST_REGION) {
2000 		free_resource(res);
2001 		devres_free(dr);
2002 	} else if (dev)
2003 		devm_release_action(dev, remove_free_mem_region, res);
2004 
2005 	return ERR_PTR(-ERANGE);
2006 }
2007 
2008 /**
2009  * devm_request_free_mem_region - find free region for device private memory
2010  *
2011  * @dev: device struct to bind the resource to
2012  * @size: size in bytes of the device memory to add
2013  * @base: resource tree to look in
2014  *
2015  * This function tries to find an empty range of physical address big enough to
2016  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
2017  * memory, which in turn allocates struct pages.
2018  */
2019 struct resource *devm_request_free_mem_region(struct device *dev,
2020 		struct resource *base, unsigned long size)
2021 {
2022 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2023 
2024 	return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
2025 				   dev_name(dev),
2026 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2027 }
2028 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
2029 
2030 struct resource *request_free_mem_region(struct resource *base,
2031 		unsigned long size, const char *name)
2032 {
2033 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2034 
2035 	return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
2036 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2037 }
2038 EXPORT_SYMBOL_GPL(request_free_mem_region);
2039 
2040 /**
2041  * alloc_free_mem_region - find a free region relative to @base
2042  * @base: resource that will parent the new resource
2043  * @size: size in bytes of memory to allocate from @base
2044  * @align: alignment requirements for the allocation
2045  * @name: resource name
2046  *
2047  * Buses like CXL, that can dynamically instantiate new memory regions,
2048  * need a method to allocate physical address space for those regions.
2049  * Allocate and insert a new resource to cover a free, unclaimed by a
2050  * descendant of @base, range in the span of @base.
2051  */
2052 struct resource *alloc_free_mem_region(struct resource *base,
2053 				       unsigned long size, unsigned long align,
2054 				       const char *name)
2055 {
2056 	/* Default of ascending direction and insert resource */
2057 	unsigned long flags = 0;
2058 
2059 	return get_free_mem_region(NULL, base, size, align, name,
2060 				   IORES_DESC_NONE, flags);
2061 }
2062 EXPORT_SYMBOL_GPL(alloc_free_mem_region);
2063 #endif /* CONFIG_GET_FREE_REGION */
2064 
2065 static int __init strict_iomem(char *str)
2066 {
2067 	if (strstr(str, "relaxed"))
2068 		strict_iomem_checks = 0;
2069 	if (strstr(str, "strict"))
2070 		strict_iomem_checks = 1;
2071 	return 1;
2072 }
2073 
2074 static int iomem_fs_init_fs_context(struct fs_context *fc)
2075 {
2076 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2077 }
2078 
2079 static struct file_system_type iomem_fs_type = {
2080 	.name		= "iomem",
2081 	.owner		= THIS_MODULE,
2082 	.init_fs_context = iomem_fs_init_fs_context,
2083 	.kill_sb	= kill_anon_super,
2084 };
2085 
2086 static int __init iomem_init_inode(void)
2087 {
2088 	static struct vfsmount *iomem_vfs_mount;
2089 	static int iomem_fs_cnt;
2090 	struct inode *inode;
2091 	int rc;
2092 
2093 	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2094 	if (rc < 0) {
2095 		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2096 		return rc;
2097 	}
2098 
2099 	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2100 	if (IS_ERR(inode)) {
2101 		rc = PTR_ERR(inode);
2102 		pr_err("Cannot allocate inode for iomem: %d\n", rc);
2103 		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2104 		return rc;
2105 	}
2106 
2107 	/*
2108 	 * Publish iomem revocation inode initialized.
2109 	 * Pairs with smp_load_acquire() in revoke_iomem().
2110 	 */
2111 	smp_store_release(&iomem_inode, inode);
2112 
2113 	return 0;
2114 }
2115 
2116 fs_initcall(iomem_init_inode);
2117 
2118 __setup("iomem=", strict_iomem);
2119