xref: /linux/kernel/resource.c (revision df9b455633aee0bad3e5c3dc9fc1c860b13c96d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <linux/string.h>
31 #include <linux/vmalloc.h>
32 #include <asm/io.h>
33 
34 
35 struct resource ioport_resource = {
36 	.name	= "PCI IO",
37 	.start	= 0,
38 	.end	= IO_SPACE_LIMIT,
39 	.flags	= IORESOURCE_IO,
40 };
41 EXPORT_SYMBOL(ioport_resource);
42 
43 struct resource iomem_resource = {
44 	.name	= "PCI mem",
45 	.start	= 0,
46 	.end	= -1,
47 	.flags	= IORESOURCE_MEM,
48 };
49 EXPORT_SYMBOL(iomem_resource);
50 
51 static DEFINE_RWLOCK(resource_lock);
52 
53 static struct resource *next_resource(struct resource *p, bool skip_children)
54 {
55 	if (!skip_children && p->child)
56 		return p->child;
57 	while (!p->sibling && p->parent)
58 		p = p->parent;
59 	return p->sibling;
60 }
61 
62 #define for_each_resource(_root, _p, _skip_children) \
63 	for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children))
64 
65 #ifdef CONFIG_PROC_FS
66 
67 enum { MAX_IORES_LEVEL = 5 };
68 
69 static void *r_start(struct seq_file *m, loff_t *pos)
70 	__acquires(resource_lock)
71 {
72 	struct resource *root = pde_data(file_inode(m->file));
73 	struct resource *p;
74 	loff_t l = *pos;
75 
76 	read_lock(&resource_lock);
77 	for_each_resource(root, p, false) {
78 		if (l-- == 0)
79 			break;
80 	}
81 
82 	return p;
83 }
84 
85 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
86 {
87 	struct resource *p = v;
88 
89 	(*pos)++;
90 
91 	return (void *)next_resource(p, false);
92 }
93 
94 static void r_stop(struct seq_file *m, void *v)
95 	__releases(resource_lock)
96 {
97 	read_unlock(&resource_lock);
98 }
99 
100 static int r_show(struct seq_file *m, void *v)
101 {
102 	struct resource *root = pde_data(file_inode(m->file));
103 	struct resource *r = v, *p;
104 	unsigned long long start, end;
105 	int width = root->end < 0x10000 ? 4 : 8;
106 	int depth;
107 
108 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
109 		if (p->parent == root)
110 			break;
111 
112 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
113 		start = r->start;
114 		end = r->end;
115 	} else {
116 		start = end = 0;
117 	}
118 
119 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
120 			depth * 2, "",
121 			width, start,
122 			width, end,
123 			r->name ? r->name : "<BAD>");
124 	return 0;
125 }
126 
127 static const struct seq_operations resource_op = {
128 	.start	= r_start,
129 	.next	= r_next,
130 	.stop	= r_stop,
131 	.show	= r_show,
132 };
133 
134 static int __init ioresources_init(void)
135 {
136 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
137 			&ioport_resource);
138 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
139 	return 0;
140 }
141 __initcall(ioresources_init);
142 
143 #endif /* CONFIG_PROC_FS */
144 
145 static void free_resource(struct resource *res)
146 {
147 	/**
148 	 * If the resource was allocated using memblock early during boot
149 	 * we'll leak it here: we can only return full pages back to the
150 	 * buddy and trying to be smart and reusing them eventually in
151 	 * alloc_resource() overcomplicates resource handling.
152 	 */
153 	if (res && PageSlab(virt_to_head_page(res)))
154 		kfree(res);
155 }
156 
157 static struct resource *alloc_resource(gfp_t flags)
158 {
159 	return kzalloc(sizeof(struct resource), flags);
160 }
161 
162 /* Return the conflict entry if you can't request it */
163 static struct resource * __request_resource(struct resource *root, struct resource *new)
164 {
165 	resource_size_t start = new->start;
166 	resource_size_t end = new->end;
167 	struct resource *tmp, **p;
168 
169 	if (end < start)
170 		return root;
171 	if (start < root->start)
172 		return root;
173 	if (end > root->end)
174 		return root;
175 	p = &root->child;
176 	for (;;) {
177 		tmp = *p;
178 		if (!tmp || tmp->start > end) {
179 			new->sibling = tmp;
180 			*p = new;
181 			new->parent = root;
182 			return NULL;
183 		}
184 		p = &tmp->sibling;
185 		if (tmp->end < start)
186 			continue;
187 		return tmp;
188 	}
189 }
190 
191 static int __release_resource(struct resource *old, bool release_child)
192 {
193 	struct resource *tmp, **p, *chd;
194 
195 	p = &old->parent->child;
196 	for (;;) {
197 		tmp = *p;
198 		if (!tmp)
199 			break;
200 		if (tmp == old) {
201 			if (release_child || !(tmp->child)) {
202 				*p = tmp->sibling;
203 			} else {
204 				for (chd = tmp->child;; chd = chd->sibling) {
205 					chd->parent = tmp->parent;
206 					if (!(chd->sibling))
207 						break;
208 				}
209 				*p = tmp->child;
210 				chd->sibling = tmp->sibling;
211 			}
212 			old->parent = NULL;
213 			return 0;
214 		}
215 		p = &tmp->sibling;
216 	}
217 	return -EINVAL;
218 }
219 
220 static void __release_child_resources(struct resource *r)
221 {
222 	struct resource *tmp, *p;
223 	resource_size_t size;
224 
225 	p = r->child;
226 	r->child = NULL;
227 	while (p) {
228 		tmp = p;
229 		p = p->sibling;
230 
231 		tmp->parent = NULL;
232 		tmp->sibling = NULL;
233 		__release_child_resources(tmp);
234 
235 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
236 		/* need to restore size, and keep flags */
237 		size = resource_size(tmp);
238 		tmp->start = 0;
239 		tmp->end = size - 1;
240 	}
241 }
242 
243 void release_child_resources(struct resource *r)
244 {
245 	write_lock(&resource_lock);
246 	__release_child_resources(r);
247 	write_unlock(&resource_lock);
248 }
249 
250 /**
251  * request_resource_conflict - request and reserve an I/O or memory resource
252  * @root: root resource descriptor
253  * @new: resource descriptor desired by caller
254  *
255  * Returns 0 for success, conflict resource on error.
256  */
257 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
258 {
259 	struct resource *conflict;
260 
261 	write_lock(&resource_lock);
262 	conflict = __request_resource(root, new);
263 	write_unlock(&resource_lock);
264 	return conflict;
265 }
266 
267 /**
268  * request_resource - request and reserve an I/O or memory resource
269  * @root: root resource descriptor
270  * @new: resource descriptor desired by caller
271  *
272  * Returns 0 for success, negative error code on error.
273  */
274 int request_resource(struct resource *root, struct resource *new)
275 {
276 	struct resource *conflict;
277 
278 	conflict = request_resource_conflict(root, new);
279 	return conflict ? -EBUSY : 0;
280 }
281 
282 EXPORT_SYMBOL(request_resource);
283 
284 /**
285  * release_resource - release a previously reserved resource
286  * @old: resource pointer
287  */
288 int release_resource(struct resource *old)
289 {
290 	int retval;
291 
292 	write_lock(&resource_lock);
293 	retval = __release_resource(old, true);
294 	write_unlock(&resource_lock);
295 	return retval;
296 }
297 
298 EXPORT_SYMBOL(release_resource);
299 
300 /**
301  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
302  *			 [@start..@end].
303  *
304  * If a resource is found, returns 0 and @*res is overwritten with the part
305  * of the resource that's within [@start..@end]; if none is found, returns
306  * -ENODEV.  Returns -EINVAL for invalid parameters.
307  *
308  * @start:	start address of the resource searched for
309  * @end:	end address of same resource
310  * @flags:	flags which the resource must have
311  * @desc:	descriptor the resource must have
312  * @res:	return ptr, if resource found
313  *
314  * The caller must specify @start, @end, @flags, and @desc
315  * (which may be IORES_DESC_NONE).
316  */
317 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
318 			       unsigned long flags, unsigned long desc,
319 			       struct resource *res)
320 {
321 	struct resource *p;
322 
323 	if (!res)
324 		return -EINVAL;
325 
326 	if (start >= end)
327 		return -EINVAL;
328 
329 	read_lock(&resource_lock);
330 
331 	for_each_resource(&iomem_resource, p, false) {
332 		/* If we passed the resource we are looking for, stop */
333 		if (p->start > end) {
334 			p = NULL;
335 			break;
336 		}
337 
338 		/* Skip until we find a range that matches what we look for */
339 		if (p->end < start)
340 			continue;
341 
342 		if ((p->flags & flags) != flags)
343 			continue;
344 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
345 			continue;
346 
347 		/* Found a match, break */
348 		break;
349 	}
350 
351 	if (p) {
352 		/* copy data */
353 		*res = (struct resource) {
354 			.start = max(start, p->start),
355 			.end = min(end, p->end),
356 			.flags = p->flags,
357 			.desc = p->desc,
358 			.parent = p->parent,
359 		};
360 	}
361 
362 	read_unlock(&resource_lock);
363 	return p ? 0 : -ENODEV;
364 }
365 
366 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
367 				 unsigned long flags, unsigned long desc,
368 				 void *arg,
369 				 int (*func)(struct resource *, void *))
370 {
371 	struct resource res;
372 	int ret = -EINVAL;
373 
374 	while (start < end &&
375 	       !find_next_iomem_res(start, end, flags, desc, &res)) {
376 		ret = (*func)(&res, arg);
377 		if (ret)
378 			break;
379 
380 		start = res.end + 1;
381 	}
382 
383 	return ret;
384 }
385 
386 /**
387  * walk_iomem_res_desc - Walks through iomem resources and calls func()
388  *			 with matching resource ranges.
389  * *
390  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
391  * @flags: I/O resource flags
392  * @start: start addr
393  * @end: end addr
394  * @arg: function argument for the callback @func
395  * @func: callback function that is called for each qualifying resource area
396  *
397  * All the memory ranges which overlap start,end and also match flags and
398  * desc are valid candidates.
399  *
400  * NOTE: For a new descriptor search, define a new IORES_DESC in
401  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
402  */
403 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
404 		u64 end, void *arg, int (*func)(struct resource *, void *))
405 {
406 	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
407 }
408 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
409 
410 /*
411  * This function calls the @func callback against all memory ranges of type
412  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
413  * Now, this function is only for System RAM, it deals with full ranges and
414  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
415  * ranges.
416  */
417 int walk_system_ram_res(u64 start, u64 end, void *arg,
418 			int (*func)(struct resource *, void *))
419 {
420 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
421 
422 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
423 				     func);
424 }
425 
426 /*
427  * This function, being a variant of walk_system_ram_res(), calls the @func
428  * callback against all memory ranges of type System RAM which are marked as
429  * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
430  * higher to lower.
431  */
432 int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
433 				int (*func)(struct resource *, void *))
434 {
435 	struct resource res, *rams;
436 	int rams_size = 16, i;
437 	unsigned long flags;
438 	int ret = -1;
439 
440 	/* create a list */
441 	rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
442 	if (!rams)
443 		return ret;
444 
445 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
446 	i = 0;
447 	while ((start < end) &&
448 		(!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
449 		if (i >= rams_size) {
450 			/* re-alloc */
451 			struct resource *rams_new;
452 
453 			rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource),
454 					     GFP_KERNEL);
455 			if (!rams_new)
456 				goto out;
457 
458 			rams = rams_new;
459 			rams_size += 16;
460 		}
461 
462 		rams[i].start = res.start;
463 		rams[i++].end = res.end;
464 
465 		start = res.end + 1;
466 	}
467 
468 	/* go reverse */
469 	for (i--; i >= 0; i--) {
470 		ret = (*func)(&rams[i], arg);
471 		if (ret)
472 			break;
473 	}
474 
475 out:
476 	kvfree(rams);
477 	return ret;
478 }
479 
480 /*
481  * This function calls the @func callback against all memory ranges, which
482  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
483  */
484 int walk_mem_res(u64 start, u64 end, void *arg,
485 		 int (*func)(struct resource *, void *))
486 {
487 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
488 
489 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
490 				     func);
491 }
492 
493 /*
494  * This function calls the @func callback against all memory ranges of type
495  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
496  * It is to be used only for System RAM.
497  */
498 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
499 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
500 {
501 	resource_size_t start, end;
502 	unsigned long flags;
503 	struct resource res;
504 	unsigned long pfn, end_pfn;
505 	int ret = -EINVAL;
506 
507 	start = (u64) start_pfn << PAGE_SHIFT;
508 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
509 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
510 	while (start < end &&
511 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
512 		pfn = PFN_UP(res.start);
513 		end_pfn = PFN_DOWN(res.end + 1);
514 		if (end_pfn > pfn)
515 			ret = (*func)(pfn, end_pfn - pfn, arg);
516 		if (ret)
517 			break;
518 		start = res.end + 1;
519 	}
520 	return ret;
521 }
522 
523 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
524 {
525 	return 1;
526 }
527 
528 /*
529  * This generic page_is_ram() returns true if specified address is
530  * registered as System RAM in iomem_resource list.
531  */
532 int __weak page_is_ram(unsigned long pfn)
533 {
534 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
535 }
536 EXPORT_SYMBOL_GPL(page_is_ram);
537 
538 static int __region_intersects(struct resource *parent, resource_size_t start,
539 			       size_t size, unsigned long flags,
540 			       unsigned long desc)
541 {
542 	resource_size_t ostart, oend;
543 	int type = 0; int other = 0;
544 	struct resource *p, *dp;
545 	bool is_type, covered;
546 	struct resource res;
547 
548 	res.start = start;
549 	res.end = start + size - 1;
550 
551 	for (p = parent->child; p ; p = p->sibling) {
552 		if (!resource_overlaps(p, &res))
553 			continue;
554 		is_type = (p->flags & flags) == flags &&
555 			(desc == IORES_DESC_NONE || desc == p->desc);
556 		if (is_type) {
557 			type++;
558 			continue;
559 		}
560 		/*
561 		 * Continue to search in descendant resources as if the
562 		 * matched descendant resources cover some ranges of 'p'.
563 		 *
564 		 * |------------- "CXL Window 0" ------------|
565 		 * |-- "System RAM" --|
566 		 *
567 		 * will behave similar as the following fake resource
568 		 * tree when searching "System RAM".
569 		 *
570 		 * |-- "System RAM" --||-- "CXL Window 0a" --|
571 		 */
572 		covered = false;
573 		ostart = max(res.start, p->start);
574 		oend = min(res.end, p->end);
575 		for_each_resource(p, dp, false) {
576 			if (!resource_overlaps(dp, &res))
577 				continue;
578 			is_type = (dp->flags & flags) == flags &&
579 				(desc == IORES_DESC_NONE || desc == dp->desc);
580 			if (is_type) {
581 				type++;
582 				/*
583 				 * Range from 'ostart' to 'dp->start'
584 				 * isn't covered by matched resource.
585 				 */
586 				if (dp->start > ostart)
587 					break;
588 				if (dp->end >= oend) {
589 					covered = true;
590 					break;
591 				}
592 				/* Remove covered range */
593 				ostart = max(ostart, dp->end + 1);
594 			}
595 		}
596 		if (!covered)
597 			other++;
598 	}
599 
600 	if (type == 0)
601 		return REGION_DISJOINT;
602 
603 	if (other == 0)
604 		return REGION_INTERSECTS;
605 
606 	return REGION_MIXED;
607 }
608 
609 /**
610  * region_intersects() - determine intersection of region with known resources
611  * @start: region start address
612  * @size: size of region
613  * @flags: flags of resource (in iomem_resource)
614  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
615  *
616  * Check if the specified region partially overlaps or fully eclipses a
617  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
618  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
619  * return REGION_MIXED if the region overlaps @flags/@desc and another
620  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
621  * and no other defined resource. Note that REGION_INTERSECTS is also
622  * returned in the case when the specified region overlaps RAM and undefined
623  * memory holes.
624  *
625  * region_intersect() is used by memory remapping functions to ensure
626  * the user is not remapping RAM and is a vast speed up over walking
627  * through the resource table page by page.
628  */
629 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
630 		      unsigned long desc)
631 {
632 	int ret;
633 
634 	read_lock(&resource_lock);
635 	ret = __region_intersects(&iomem_resource, start, size, flags, desc);
636 	read_unlock(&resource_lock);
637 
638 	return ret;
639 }
640 EXPORT_SYMBOL_GPL(region_intersects);
641 
642 void __weak arch_remove_reservations(struct resource *avail)
643 {
644 }
645 
646 static void resource_clip(struct resource *res, resource_size_t min,
647 			  resource_size_t max)
648 {
649 	if (res->start < min)
650 		res->start = min;
651 	if (res->end > max)
652 		res->end = max;
653 }
654 
655 /*
656  * Find empty space in the resource tree with the given range and
657  * alignment constraints
658  */
659 static int __find_resource_space(struct resource *root, struct resource *old,
660 				 struct resource *new, resource_size_t size,
661 				 struct resource_constraint *constraint)
662 {
663 	struct resource *this = root->child;
664 	struct resource tmp = *new, avail, alloc;
665 	resource_alignf alignf = constraint->alignf;
666 
667 	tmp.start = root->start;
668 	/*
669 	 * Skip past an allocated resource that starts at 0, since the assignment
670 	 * of this->start - 1 to tmp->end below would cause an underflow.
671 	 */
672 	if (this && this->start == root->start) {
673 		tmp.start = (this == old) ? old->start : this->end + 1;
674 		this = this->sibling;
675 	}
676 	for(;;) {
677 		if (this)
678 			tmp.end = (this == old) ?  this->end : this->start - 1;
679 		else
680 			tmp.end = root->end;
681 
682 		if (tmp.end < tmp.start)
683 			goto next;
684 
685 		resource_clip(&tmp, constraint->min, constraint->max);
686 		arch_remove_reservations(&tmp);
687 
688 		/* Check for overflow after ALIGN() */
689 		avail.start = ALIGN(tmp.start, constraint->align);
690 		avail.end = tmp.end;
691 		avail.flags = new->flags & ~IORESOURCE_UNSET;
692 		if (avail.start >= tmp.start) {
693 			alloc.flags = avail.flags;
694 			if (alignf) {
695 				alloc.start = alignf(constraint->alignf_data,
696 						     &avail, size, constraint->align);
697 			} else {
698 				alloc.start = avail.start;
699 			}
700 			alloc.end = alloc.start + size - 1;
701 			if (alloc.start <= alloc.end &&
702 			    resource_contains(&avail, &alloc)) {
703 				new->start = alloc.start;
704 				new->end = alloc.end;
705 				return 0;
706 			}
707 		}
708 
709 next:		if (!this || this->end == root->end)
710 			break;
711 
712 		if (this != old)
713 			tmp.start = this->end + 1;
714 		this = this->sibling;
715 	}
716 	return -EBUSY;
717 }
718 
719 /**
720  * find_resource_space - Find empty space in the resource tree
721  * @root:	Root resource descriptor
722  * @new:	Resource descriptor awaiting an empty resource space
723  * @size:	The minimum size of the empty space
724  * @constraint:	The range and alignment constraints to be met
725  *
726  * Finds an empty space under @root in the resource tree satisfying range and
727  * alignment @constraints.
728  *
729  * Return:
730  * * %0		- if successful, @new members start, end, and flags are altered.
731  * * %-EBUSY	- if no empty space was found.
732  */
733 int find_resource_space(struct resource *root, struct resource *new,
734 			resource_size_t size,
735 			struct resource_constraint *constraint)
736 {
737 	return  __find_resource_space(root, NULL, new, size, constraint);
738 }
739 EXPORT_SYMBOL_GPL(find_resource_space);
740 
741 /**
742  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
743  *	The resource will be relocated if the new size cannot be reallocated in the
744  *	current location.
745  *
746  * @root: root resource descriptor
747  * @old:  resource descriptor desired by caller
748  * @newsize: new size of the resource descriptor
749  * @constraint: the size and alignment constraints to be met.
750  */
751 static int reallocate_resource(struct resource *root, struct resource *old,
752 			       resource_size_t newsize,
753 			       struct resource_constraint *constraint)
754 {
755 	int err=0;
756 	struct resource new = *old;
757 	struct resource *conflict;
758 
759 	write_lock(&resource_lock);
760 
761 	if ((err = __find_resource_space(root, old, &new, newsize, constraint)))
762 		goto out;
763 
764 	if (resource_contains(&new, old)) {
765 		old->start = new.start;
766 		old->end = new.end;
767 		goto out;
768 	}
769 
770 	if (old->child) {
771 		err = -EBUSY;
772 		goto out;
773 	}
774 
775 	if (resource_contains(old, &new)) {
776 		old->start = new.start;
777 		old->end = new.end;
778 	} else {
779 		__release_resource(old, true);
780 		*old = new;
781 		conflict = __request_resource(root, old);
782 		BUG_ON(conflict);
783 	}
784 out:
785 	write_unlock(&resource_lock);
786 	return err;
787 }
788 
789 
790 /**
791  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
792  * 	The resource will be reallocated with a new size if it was already allocated
793  * @root: root resource descriptor
794  * @new: resource descriptor desired by caller
795  * @size: requested resource region size
796  * @min: minimum boundary to allocate
797  * @max: maximum boundary to allocate
798  * @align: alignment requested, in bytes
799  * @alignf: alignment function, optional, called if not NULL
800  * @alignf_data: arbitrary data to pass to the @alignf function
801  */
802 int allocate_resource(struct resource *root, struct resource *new,
803 		      resource_size_t size, resource_size_t min,
804 		      resource_size_t max, resource_size_t align,
805 		      resource_alignf alignf,
806 		      void *alignf_data)
807 {
808 	int err;
809 	struct resource_constraint constraint;
810 
811 	constraint.min = min;
812 	constraint.max = max;
813 	constraint.align = align;
814 	constraint.alignf = alignf;
815 	constraint.alignf_data = alignf_data;
816 
817 	if ( new->parent ) {
818 		/* resource is already allocated, try reallocating with
819 		   the new constraints */
820 		return reallocate_resource(root, new, size, &constraint);
821 	}
822 
823 	write_lock(&resource_lock);
824 	err = find_resource_space(root, new, size, &constraint);
825 	if (err >= 0 && __request_resource(root, new))
826 		err = -EBUSY;
827 	write_unlock(&resource_lock);
828 	return err;
829 }
830 
831 EXPORT_SYMBOL(allocate_resource);
832 
833 /**
834  * lookup_resource - find an existing resource by a resource start address
835  * @root: root resource descriptor
836  * @start: resource start address
837  *
838  * Returns a pointer to the resource if found, NULL otherwise
839  */
840 struct resource *lookup_resource(struct resource *root, resource_size_t start)
841 {
842 	struct resource *res;
843 
844 	read_lock(&resource_lock);
845 	for (res = root->child; res; res = res->sibling) {
846 		if (res->start == start)
847 			break;
848 	}
849 	read_unlock(&resource_lock);
850 
851 	return res;
852 }
853 
854 /*
855  * Insert a resource into the resource tree. If successful, return NULL,
856  * otherwise return the conflicting resource (compare to __request_resource())
857  */
858 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
859 {
860 	struct resource *first, *next;
861 
862 	for (;; parent = first) {
863 		first = __request_resource(parent, new);
864 		if (!first)
865 			return first;
866 
867 		if (first == parent)
868 			return first;
869 		if (WARN_ON(first == new))	/* duplicated insertion */
870 			return first;
871 
872 		if ((first->start > new->start) || (first->end < new->end))
873 			break;
874 		if ((first->start == new->start) && (first->end == new->end))
875 			break;
876 	}
877 
878 	for (next = first; ; next = next->sibling) {
879 		/* Partial overlap? Bad, and unfixable */
880 		if (next->start < new->start || next->end > new->end)
881 			return next;
882 		if (!next->sibling)
883 			break;
884 		if (next->sibling->start > new->end)
885 			break;
886 	}
887 
888 	new->parent = parent;
889 	new->sibling = next->sibling;
890 	new->child = first;
891 
892 	next->sibling = NULL;
893 	for (next = first; next; next = next->sibling)
894 		next->parent = new;
895 
896 	if (parent->child == first) {
897 		parent->child = new;
898 	} else {
899 		next = parent->child;
900 		while (next->sibling != first)
901 			next = next->sibling;
902 		next->sibling = new;
903 	}
904 	return NULL;
905 }
906 
907 /**
908  * insert_resource_conflict - Inserts resource in the resource tree
909  * @parent: parent of the new resource
910  * @new: new resource to insert
911  *
912  * Returns 0 on success, conflict resource if the resource can't be inserted.
913  *
914  * This function is equivalent to request_resource_conflict when no conflict
915  * happens. If a conflict happens, and the conflicting resources
916  * entirely fit within the range of the new resource, then the new
917  * resource is inserted and the conflicting resources become children of
918  * the new resource.
919  *
920  * This function is intended for producers of resources, such as FW modules
921  * and bus drivers.
922  */
923 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
924 {
925 	struct resource *conflict;
926 
927 	write_lock(&resource_lock);
928 	conflict = __insert_resource(parent, new);
929 	write_unlock(&resource_lock);
930 	return conflict;
931 }
932 
933 /**
934  * insert_resource - Inserts a resource in the resource tree
935  * @parent: parent of the new resource
936  * @new: new resource to insert
937  *
938  * Returns 0 on success, -EBUSY if the resource can't be inserted.
939  *
940  * This function is intended for producers of resources, such as FW modules
941  * and bus drivers.
942  */
943 int insert_resource(struct resource *parent, struct resource *new)
944 {
945 	struct resource *conflict;
946 
947 	conflict = insert_resource_conflict(parent, new);
948 	return conflict ? -EBUSY : 0;
949 }
950 EXPORT_SYMBOL_GPL(insert_resource);
951 
952 /**
953  * insert_resource_expand_to_fit - Insert a resource into the resource tree
954  * @root: root resource descriptor
955  * @new: new resource to insert
956  *
957  * Insert a resource into the resource tree, possibly expanding it in order
958  * to make it encompass any conflicting resources.
959  */
960 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
961 {
962 	if (new->parent)
963 		return;
964 
965 	write_lock(&resource_lock);
966 	for (;;) {
967 		struct resource *conflict;
968 
969 		conflict = __insert_resource(root, new);
970 		if (!conflict)
971 			break;
972 		if (conflict == root)
973 			break;
974 
975 		/* Ok, expand resource to cover the conflict, then try again .. */
976 		if (conflict->start < new->start)
977 			new->start = conflict->start;
978 		if (conflict->end > new->end)
979 			new->end = conflict->end;
980 
981 		pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
982 	}
983 	write_unlock(&resource_lock);
984 }
985 /*
986  * Not for general consumption, only early boot memory map parsing, PCI
987  * resource discovery, and late discovery of CXL resources are expected
988  * to use this interface. The former are built-in and only the latter,
989  * CXL, is a module.
990  */
991 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
992 
993 /**
994  * remove_resource - Remove a resource in the resource tree
995  * @old: resource to remove
996  *
997  * Returns 0 on success, -EINVAL if the resource is not valid.
998  *
999  * This function removes a resource previously inserted by insert_resource()
1000  * or insert_resource_conflict(), and moves the children (if any) up to
1001  * where they were before.  insert_resource() and insert_resource_conflict()
1002  * insert a new resource, and move any conflicting resources down to the
1003  * children of the new resource.
1004  *
1005  * insert_resource(), insert_resource_conflict() and remove_resource() are
1006  * intended for producers of resources, such as FW modules and bus drivers.
1007  */
1008 int remove_resource(struct resource *old)
1009 {
1010 	int retval;
1011 
1012 	write_lock(&resource_lock);
1013 	retval = __release_resource(old, false);
1014 	write_unlock(&resource_lock);
1015 	return retval;
1016 }
1017 EXPORT_SYMBOL_GPL(remove_resource);
1018 
1019 static int __adjust_resource(struct resource *res, resource_size_t start,
1020 				resource_size_t size)
1021 {
1022 	struct resource *tmp, *parent = res->parent;
1023 	resource_size_t end = start + size - 1;
1024 	int result = -EBUSY;
1025 
1026 	if (!parent)
1027 		goto skip;
1028 
1029 	if ((start < parent->start) || (end > parent->end))
1030 		goto out;
1031 
1032 	if (res->sibling && (res->sibling->start <= end))
1033 		goto out;
1034 
1035 	tmp = parent->child;
1036 	if (tmp != res) {
1037 		while (tmp->sibling != res)
1038 			tmp = tmp->sibling;
1039 		if (start <= tmp->end)
1040 			goto out;
1041 	}
1042 
1043 skip:
1044 	for (tmp = res->child; tmp; tmp = tmp->sibling)
1045 		if ((tmp->start < start) || (tmp->end > end))
1046 			goto out;
1047 
1048 	res->start = start;
1049 	res->end = end;
1050 	result = 0;
1051 
1052  out:
1053 	return result;
1054 }
1055 
1056 /**
1057  * adjust_resource - modify a resource's start and size
1058  * @res: resource to modify
1059  * @start: new start value
1060  * @size: new size
1061  *
1062  * Given an existing resource, change its start and size to match the
1063  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1064  * Existing children of the resource are assumed to be immutable.
1065  */
1066 int adjust_resource(struct resource *res, resource_size_t start,
1067 		    resource_size_t size)
1068 {
1069 	int result;
1070 
1071 	write_lock(&resource_lock);
1072 	result = __adjust_resource(res, start, size);
1073 	write_unlock(&resource_lock);
1074 	return result;
1075 }
1076 EXPORT_SYMBOL(adjust_resource);
1077 
1078 static void __init
1079 __reserve_region_with_split(struct resource *root, resource_size_t start,
1080 			    resource_size_t end, const char *name)
1081 {
1082 	struct resource *parent = root;
1083 	struct resource *conflict;
1084 	struct resource *res = alloc_resource(GFP_ATOMIC);
1085 	struct resource *next_res = NULL;
1086 	int type = resource_type(root);
1087 
1088 	if (!res)
1089 		return;
1090 
1091 	res->name = name;
1092 	res->start = start;
1093 	res->end = end;
1094 	res->flags = type | IORESOURCE_BUSY;
1095 	res->desc = IORES_DESC_NONE;
1096 
1097 	while (1) {
1098 
1099 		conflict = __request_resource(parent, res);
1100 		if (!conflict) {
1101 			if (!next_res)
1102 				break;
1103 			res = next_res;
1104 			next_res = NULL;
1105 			continue;
1106 		}
1107 
1108 		/* conflict covered whole area */
1109 		if (conflict->start <= res->start &&
1110 				conflict->end >= res->end) {
1111 			free_resource(res);
1112 			WARN_ON(next_res);
1113 			break;
1114 		}
1115 
1116 		/* failed, split and try again */
1117 		if (conflict->start > res->start) {
1118 			end = res->end;
1119 			res->end = conflict->start - 1;
1120 			if (conflict->end < end) {
1121 				next_res = alloc_resource(GFP_ATOMIC);
1122 				if (!next_res) {
1123 					free_resource(res);
1124 					break;
1125 				}
1126 				next_res->name = name;
1127 				next_res->start = conflict->end + 1;
1128 				next_res->end = end;
1129 				next_res->flags = type | IORESOURCE_BUSY;
1130 				next_res->desc = IORES_DESC_NONE;
1131 			}
1132 		} else {
1133 			res->start = conflict->end + 1;
1134 		}
1135 	}
1136 
1137 }
1138 
1139 void __init
1140 reserve_region_with_split(struct resource *root, resource_size_t start,
1141 			  resource_size_t end, const char *name)
1142 {
1143 	int abort = 0;
1144 
1145 	write_lock(&resource_lock);
1146 	if (root->start > start || root->end < end) {
1147 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1148 		       (unsigned long long)start, (unsigned long long)end,
1149 		       root);
1150 		if (start > root->end || end < root->start)
1151 			abort = 1;
1152 		else {
1153 			if (end > root->end)
1154 				end = root->end;
1155 			if (start < root->start)
1156 				start = root->start;
1157 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1158 			       (unsigned long long)start,
1159 			       (unsigned long long)end);
1160 		}
1161 		dump_stack();
1162 	}
1163 	if (!abort)
1164 		__reserve_region_with_split(root, start, end, name);
1165 	write_unlock(&resource_lock);
1166 }
1167 
1168 /**
1169  * resource_alignment - calculate resource's alignment
1170  * @res: resource pointer
1171  *
1172  * Returns alignment on success, 0 (invalid alignment) on failure.
1173  */
1174 resource_size_t resource_alignment(struct resource *res)
1175 {
1176 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1177 	case IORESOURCE_SIZEALIGN:
1178 		return resource_size(res);
1179 	case IORESOURCE_STARTALIGN:
1180 		return res->start;
1181 	default:
1182 		return 0;
1183 	}
1184 }
1185 
1186 /*
1187  * This is compatibility stuff for IO resources.
1188  *
1189  * Note how this, unlike the above, knows about
1190  * the IO flag meanings (busy etc).
1191  *
1192  * request_region creates a new busy region.
1193  *
1194  * release_region releases a matching busy region.
1195  */
1196 
1197 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1198 
1199 static struct inode *iomem_inode;
1200 
1201 #ifdef CONFIG_IO_STRICT_DEVMEM
1202 static void revoke_iomem(struct resource *res)
1203 {
1204 	/* pairs with smp_store_release() in iomem_init_inode() */
1205 	struct inode *inode = smp_load_acquire(&iomem_inode);
1206 
1207 	/*
1208 	 * Check that the initialization has completed. Losing the race
1209 	 * is ok because it means drivers are claiming resources before
1210 	 * the fs_initcall level of init and prevent iomem_get_mapping users
1211 	 * from establishing mappings.
1212 	 */
1213 	if (!inode)
1214 		return;
1215 
1216 	/*
1217 	 * The expectation is that the driver has successfully marked
1218 	 * the resource busy by this point, so devmem_is_allowed()
1219 	 * should start returning false, however for performance this
1220 	 * does not iterate the entire resource range.
1221 	 */
1222 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1223 	    devmem_is_allowed(PHYS_PFN(res->end))) {
1224 		/*
1225 		 * *cringe* iomem=relaxed says "go ahead, what's the
1226 		 * worst that can happen?"
1227 		 */
1228 		return;
1229 	}
1230 
1231 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1232 }
1233 #else
1234 static void revoke_iomem(struct resource *res) {}
1235 #endif
1236 
1237 struct address_space *iomem_get_mapping(void)
1238 {
1239 	/*
1240 	 * This function is only called from file open paths, hence guaranteed
1241 	 * that fs_initcalls have completed and no need to check for NULL. But
1242 	 * since revoke_iomem can be called before the initcall we still need
1243 	 * the barrier to appease checkers.
1244 	 */
1245 	return smp_load_acquire(&iomem_inode)->i_mapping;
1246 }
1247 
1248 static int __request_region_locked(struct resource *res, struct resource *parent,
1249 				   resource_size_t start, resource_size_t n,
1250 				   const char *name, int flags)
1251 {
1252 	DECLARE_WAITQUEUE(wait, current);
1253 
1254 	res->name = name;
1255 	res->start = start;
1256 	res->end = start + n - 1;
1257 
1258 	for (;;) {
1259 		struct resource *conflict;
1260 
1261 		res->flags = resource_type(parent) | resource_ext_type(parent);
1262 		res->flags |= IORESOURCE_BUSY | flags;
1263 		res->desc = parent->desc;
1264 
1265 		conflict = __request_resource(parent, res);
1266 		if (!conflict)
1267 			break;
1268 		/*
1269 		 * mm/hmm.c reserves physical addresses which then
1270 		 * become unavailable to other users.  Conflicts are
1271 		 * not expected.  Warn to aid debugging if encountered.
1272 		 */
1273 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1274 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1275 				conflict->name, conflict, res);
1276 		}
1277 		if (conflict != parent) {
1278 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1279 				parent = conflict;
1280 				continue;
1281 			}
1282 		}
1283 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1284 			add_wait_queue(&muxed_resource_wait, &wait);
1285 			write_unlock(&resource_lock);
1286 			set_current_state(TASK_UNINTERRUPTIBLE);
1287 			schedule();
1288 			remove_wait_queue(&muxed_resource_wait, &wait);
1289 			write_lock(&resource_lock);
1290 			continue;
1291 		}
1292 		/* Uhhuh, that didn't work out.. */
1293 		return -EBUSY;
1294 	}
1295 
1296 	return 0;
1297 }
1298 
1299 /**
1300  * __request_region - create a new busy resource region
1301  * @parent: parent resource descriptor
1302  * @start: resource start address
1303  * @n: resource region size
1304  * @name: reserving caller's ID string
1305  * @flags: IO resource flags
1306  */
1307 struct resource *__request_region(struct resource *parent,
1308 				  resource_size_t start, resource_size_t n,
1309 				  const char *name, int flags)
1310 {
1311 	struct resource *res = alloc_resource(GFP_KERNEL);
1312 	int ret;
1313 
1314 	if (!res)
1315 		return NULL;
1316 
1317 	write_lock(&resource_lock);
1318 	ret = __request_region_locked(res, parent, start, n, name, flags);
1319 	write_unlock(&resource_lock);
1320 
1321 	if (ret) {
1322 		free_resource(res);
1323 		return NULL;
1324 	}
1325 
1326 	if (parent == &iomem_resource)
1327 		revoke_iomem(res);
1328 
1329 	return res;
1330 }
1331 EXPORT_SYMBOL(__request_region);
1332 
1333 /**
1334  * __release_region - release a previously reserved resource region
1335  * @parent: parent resource descriptor
1336  * @start: resource start address
1337  * @n: resource region size
1338  *
1339  * The described resource region must match a currently busy region.
1340  */
1341 void __release_region(struct resource *parent, resource_size_t start,
1342 		      resource_size_t n)
1343 {
1344 	struct resource **p;
1345 	resource_size_t end;
1346 
1347 	p = &parent->child;
1348 	end = start + n - 1;
1349 
1350 	write_lock(&resource_lock);
1351 
1352 	for (;;) {
1353 		struct resource *res = *p;
1354 
1355 		if (!res)
1356 			break;
1357 		if (res->start <= start && res->end >= end) {
1358 			if (!(res->flags & IORESOURCE_BUSY)) {
1359 				p = &res->child;
1360 				continue;
1361 			}
1362 			if (res->start != start || res->end != end)
1363 				break;
1364 			*p = res->sibling;
1365 			write_unlock(&resource_lock);
1366 			if (res->flags & IORESOURCE_MUXED)
1367 				wake_up(&muxed_resource_wait);
1368 			free_resource(res);
1369 			return;
1370 		}
1371 		p = &res->sibling;
1372 	}
1373 
1374 	write_unlock(&resource_lock);
1375 
1376 	pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1377 }
1378 EXPORT_SYMBOL(__release_region);
1379 
1380 #ifdef CONFIG_MEMORY_HOTREMOVE
1381 /**
1382  * release_mem_region_adjustable - release a previously reserved memory region
1383  * @start: resource start address
1384  * @size: resource region size
1385  *
1386  * This interface is intended for memory hot-delete.  The requested region
1387  * is released from a currently busy memory resource.  The requested region
1388  * must either match exactly or fit into a single busy resource entry.  In
1389  * the latter case, the remaining resource is adjusted accordingly.
1390  * Existing children of the busy memory resource must be immutable in the
1391  * request.
1392  *
1393  * Note:
1394  * - Additional release conditions, such as overlapping region, can be
1395  *   supported after they are confirmed as valid cases.
1396  * - When a busy memory resource gets split into two entries, the code
1397  *   assumes that all children remain in the lower address entry for
1398  *   simplicity.  Enhance this logic when necessary.
1399  */
1400 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1401 {
1402 	struct resource *parent = &iomem_resource;
1403 	struct resource *new_res = NULL;
1404 	bool alloc_nofail = false;
1405 	struct resource **p;
1406 	struct resource *res;
1407 	resource_size_t end;
1408 
1409 	end = start + size - 1;
1410 	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1411 		return;
1412 
1413 	/*
1414 	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1415 	 * just before releasing the region. This is highly unlikely to
1416 	 * fail - let's play save and make it never fail as the caller cannot
1417 	 * perform any error handling (e.g., trying to re-add memory will fail
1418 	 * similarly).
1419 	 */
1420 retry:
1421 	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1422 
1423 	p = &parent->child;
1424 	write_lock(&resource_lock);
1425 
1426 	while ((res = *p)) {
1427 		if (res->start >= end)
1428 			break;
1429 
1430 		/* look for the next resource if it does not fit into */
1431 		if (res->start > start || res->end < end) {
1432 			p = &res->sibling;
1433 			continue;
1434 		}
1435 
1436 		if (!(res->flags & IORESOURCE_MEM))
1437 			break;
1438 
1439 		if (!(res->flags & IORESOURCE_BUSY)) {
1440 			p = &res->child;
1441 			continue;
1442 		}
1443 
1444 		/* found the target resource; let's adjust accordingly */
1445 		if (res->start == start && res->end == end) {
1446 			/* free the whole entry */
1447 			*p = res->sibling;
1448 			free_resource(res);
1449 		} else if (res->start == start && res->end != end) {
1450 			/* adjust the start */
1451 			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1452 						       res->end - end));
1453 		} else if (res->start != start && res->end == end) {
1454 			/* adjust the end */
1455 			WARN_ON_ONCE(__adjust_resource(res, res->start,
1456 						       start - res->start));
1457 		} else {
1458 			/* split into two entries - we need a new resource */
1459 			if (!new_res) {
1460 				new_res = alloc_resource(GFP_ATOMIC);
1461 				if (!new_res) {
1462 					alloc_nofail = true;
1463 					write_unlock(&resource_lock);
1464 					goto retry;
1465 				}
1466 			}
1467 			new_res->name = res->name;
1468 			new_res->start = end + 1;
1469 			new_res->end = res->end;
1470 			new_res->flags = res->flags;
1471 			new_res->desc = res->desc;
1472 			new_res->parent = res->parent;
1473 			new_res->sibling = res->sibling;
1474 			new_res->child = NULL;
1475 
1476 			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1477 							   start - res->start)))
1478 				break;
1479 			res->sibling = new_res;
1480 			new_res = NULL;
1481 		}
1482 
1483 		break;
1484 	}
1485 
1486 	write_unlock(&resource_lock);
1487 	free_resource(new_res);
1488 }
1489 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1490 
1491 #ifdef CONFIG_MEMORY_HOTPLUG
1492 static bool system_ram_resources_mergeable(struct resource *r1,
1493 					   struct resource *r2)
1494 {
1495 	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1496 	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1497 	       r1->name == r2->name && r1->desc == r2->desc &&
1498 	       !r1->child && !r2->child;
1499 }
1500 
1501 /**
1502  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1503  *	merge it with adjacent, mergeable resources
1504  * @res: resource descriptor
1505  *
1506  * This interface is intended for memory hotplug, whereby lots of contiguous
1507  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1508  * the actual resource boundaries are not of interest (e.g., it might be
1509  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1510  * same parent, and that don't have any children are considered. All mergeable
1511  * resources must be immutable during the request.
1512  *
1513  * Note:
1514  * - The caller has to make sure that no pointers to resources that are
1515  *   marked mergeable are used anymore after this call - the resource might
1516  *   be freed and the pointer might be stale!
1517  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1518  */
1519 void merge_system_ram_resource(struct resource *res)
1520 {
1521 	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1522 	struct resource *cur;
1523 
1524 	if (WARN_ON_ONCE((res->flags & flags) != flags))
1525 		return;
1526 
1527 	write_lock(&resource_lock);
1528 	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1529 
1530 	/* Try to merge with next item in the list. */
1531 	cur = res->sibling;
1532 	if (cur && system_ram_resources_mergeable(res, cur)) {
1533 		res->end = cur->end;
1534 		res->sibling = cur->sibling;
1535 		free_resource(cur);
1536 	}
1537 
1538 	/* Try to merge with previous item in the list. */
1539 	cur = res->parent->child;
1540 	while (cur && cur->sibling != res)
1541 		cur = cur->sibling;
1542 	if (cur && system_ram_resources_mergeable(cur, res)) {
1543 		cur->end = res->end;
1544 		cur->sibling = res->sibling;
1545 		free_resource(res);
1546 	}
1547 	write_unlock(&resource_lock);
1548 }
1549 #endif	/* CONFIG_MEMORY_HOTPLUG */
1550 
1551 /*
1552  * Managed region resource
1553  */
1554 static void devm_resource_release(struct device *dev, void *ptr)
1555 {
1556 	struct resource **r = ptr;
1557 
1558 	release_resource(*r);
1559 }
1560 
1561 /**
1562  * devm_request_resource() - request and reserve an I/O or memory resource
1563  * @dev: device for which to request the resource
1564  * @root: root of the resource tree from which to request the resource
1565  * @new: descriptor of the resource to request
1566  *
1567  * This is a device-managed version of request_resource(). There is usually
1568  * no need to release resources requested by this function explicitly since
1569  * that will be taken care of when the device is unbound from its driver.
1570  * If for some reason the resource needs to be released explicitly, because
1571  * of ordering issues for example, drivers must call devm_release_resource()
1572  * rather than the regular release_resource().
1573  *
1574  * When a conflict is detected between any existing resources and the newly
1575  * requested resource, an error message will be printed.
1576  *
1577  * Returns 0 on success or a negative error code on failure.
1578  */
1579 int devm_request_resource(struct device *dev, struct resource *root,
1580 			  struct resource *new)
1581 {
1582 	struct resource *conflict, **ptr;
1583 
1584 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1585 	if (!ptr)
1586 		return -ENOMEM;
1587 
1588 	*ptr = new;
1589 
1590 	conflict = request_resource_conflict(root, new);
1591 	if (conflict) {
1592 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1593 			new, conflict->name, conflict);
1594 		devres_free(ptr);
1595 		return -EBUSY;
1596 	}
1597 
1598 	devres_add(dev, ptr);
1599 	return 0;
1600 }
1601 EXPORT_SYMBOL(devm_request_resource);
1602 
1603 static int devm_resource_match(struct device *dev, void *res, void *data)
1604 {
1605 	struct resource **ptr = res;
1606 
1607 	return *ptr == data;
1608 }
1609 
1610 /**
1611  * devm_release_resource() - release a previously requested resource
1612  * @dev: device for which to release the resource
1613  * @new: descriptor of the resource to release
1614  *
1615  * Releases a resource previously requested using devm_request_resource().
1616  */
1617 void devm_release_resource(struct device *dev, struct resource *new)
1618 {
1619 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1620 			       new));
1621 }
1622 EXPORT_SYMBOL(devm_release_resource);
1623 
1624 struct region_devres {
1625 	struct resource *parent;
1626 	resource_size_t start;
1627 	resource_size_t n;
1628 };
1629 
1630 static void devm_region_release(struct device *dev, void *res)
1631 {
1632 	struct region_devres *this = res;
1633 
1634 	__release_region(this->parent, this->start, this->n);
1635 }
1636 
1637 static int devm_region_match(struct device *dev, void *res, void *match_data)
1638 {
1639 	struct region_devres *this = res, *match = match_data;
1640 
1641 	return this->parent == match->parent &&
1642 		this->start == match->start && this->n == match->n;
1643 }
1644 
1645 struct resource *
1646 __devm_request_region(struct device *dev, struct resource *parent,
1647 		      resource_size_t start, resource_size_t n, const char *name)
1648 {
1649 	struct region_devres *dr = NULL;
1650 	struct resource *res;
1651 
1652 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1653 			  GFP_KERNEL);
1654 	if (!dr)
1655 		return NULL;
1656 
1657 	dr->parent = parent;
1658 	dr->start = start;
1659 	dr->n = n;
1660 
1661 	res = __request_region(parent, start, n, name, 0);
1662 	if (res)
1663 		devres_add(dev, dr);
1664 	else
1665 		devres_free(dr);
1666 
1667 	return res;
1668 }
1669 EXPORT_SYMBOL(__devm_request_region);
1670 
1671 void __devm_release_region(struct device *dev, struct resource *parent,
1672 			   resource_size_t start, resource_size_t n)
1673 {
1674 	struct region_devres match_data = { parent, start, n };
1675 
1676 	__release_region(parent, start, n);
1677 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1678 			       &match_data));
1679 }
1680 EXPORT_SYMBOL(__devm_release_region);
1681 
1682 /*
1683  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1684  */
1685 #define MAXRESERVE 4
1686 static int __init reserve_setup(char *str)
1687 {
1688 	static int reserved;
1689 	static struct resource reserve[MAXRESERVE];
1690 
1691 	for (;;) {
1692 		unsigned int io_start, io_num;
1693 		int x = reserved;
1694 		struct resource *parent;
1695 
1696 		if (get_option(&str, &io_start) != 2)
1697 			break;
1698 		if (get_option(&str, &io_num) == 0)
1699 			break;
1700 		if (x < MAXRESERVE) {
1701 			struct resource *res = reserve + x;
1702 
1703 			/*
1704 			 * If the region starts below 0x10000, we assume it's
1705 			 * I/O port space; otherwise assume it's memory.
1706 			 */
1707 			if (io_start < 0x10000) {
1708 				res->flags = IORESOURCE_IO;
1709 				parent = &ioport_resource;
1710 			} else {
1711 				res->flags = IORESOURCE_MEM;
1712 				parent = &iomem_resource;
1713 			}
1714 			res->name = "reserved";
1715 			res->start = io_start;
1716 			res->end = io_start + io_num - 1;
1717 			res->flags |= IORESOURCE_BUSY;
1718 			res->desc = IORES_DESC_NONE;
1719 			res->child = NULL;
1720 			if (request_resource(parent, res) == 0)
1721 				reserved = x+1;
1722 		}
1723 	}
1724 	return 1;
1725 }
1726 __setup("reserve=", reserve_setup);
1727 
1728 /*
1729  * Check if the requested addr and size spans more than any slot in the
1730  * iomem resource tree.
1731  */
1732 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1733 {
1734 	resource_size_t end = addr + size - 1;
1735 	struct resource *p;
1736 	int err = 0;
1737 
1738 	read_lock(&resource_lock);
1739 	for_each_resource(&iomem_resource, p, false) {
1740 		/*
1741 		 * We can probably skip the resources without
1742 		 * IORESOURCE_IO attribute?
1743 		 */
1744 		if (p->start > end)
1745 			continue;
1746 		if (p->end < addr)
1747 			continue;
1748 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1749 		    PFN_DOWN(p->end) >= PFN_DOWN(end))
1750 			continue;
1751 		/*
1752 		 * if a resource is "BUSY", it's not a hardware resource
1753 		 * but a driver mapping of such a resource; we don't want
1754 		 * to warn for those; some drivers legitimately map only
1755 		 * partial hardware resources. (example: vesafb)
1756 		 */
1757 		if (p->flags & IORESOURCE_BUSY)
1758 			continue;
1759 
1760 		pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1761 			&addr, &end, p->name, p);
1762 		err = -1;
1763 		break;
1764 	}
1765 	read_unlock(&resource_lock);
1766 
1767 	return err;
1768 }
1769 
1770 #ifdef CONFIG_STRICT_DEVMEM
1771 static int strict_iomem_checks = 1;
1772 #else
1773 static int strict_iomem_checks;
1774 #endif
1775 
1776 /*
1777  * Check if an address is exclusive to the kernel and must not be mapped to
1778  * user space, for example, via /dev/mem.
1779  *
1780  * Returns true if exclusive to the kernel, otherwise returns false.
1781  */
1782 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1783 {
1784 	const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1785 						  IORESOURCE_EXCLUSIVE;
1786 	bool skip_children = false, err = false;
1787 	struct resource *p;
1788 
1789 	read_lock(&resource_lock);
1790 	for_each_resource(root, p, skip_children) {
1791 		if (p->start >= addr + size)
1792 			break;
1793 		if (p->end < addr) {
1794 			skip_children = true;
1795 			continue;
1796 		}
1797 		skip_children = false;
1798 
1799 		/*
1800 		 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1801 		 * IORESOURCE_EXCLUSIVE is set, even if they
1802 		 * are not busy and even if "iomem=relaxed" is set. The
1803 		 * responsible driver dynamically adds/removes system RAM within
1804 		 * such an area and uncontrolled access is dangerous.
1805 		 */
1806 		if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1807 			err = true;
1808 			break;
1809 		}
1810 
1811 		/*
1812 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1813 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1814 		 * resource is busy.
1815 		 */
1816 		if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1817 			continue;
1818 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1819 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1820 			err = true;
1821 			break;
1822 		}
1823 	}
1824 	read_unlock(&resource_lock);
1825 
1826 	return err;
1827 }
1828 
1829 bool iomem_is_exclusive(u64 addr)
1830 {
1831 	return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1832 				     PAGE_SIZE);
1833 }
1834 
1835 struct resource_entry *resource_list_create_entry(struct resource *res,
1836 						  size_t extra_size)
1837 {
1838 	struct resource_entry *entry;
1839 
1840 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1841 	if (entry) {
1842 		INIT_LIST_HEAD(&entry->node);
1843 		entry->res = res ? res : &entry->__res;
1844 	}
1845 
1846 	return entry;
1847 }
1848 EXPORT_SYMBOL(resource_list_create_entry);
1849 
1850 void resource_list_free(struct list_head *head)
1851 {
1852 	struct resource_entry *entry, *tmp;
1853 
1854 	list_for_each_entry_safe(entry, tmp, head, node)
1855 		resource_list_destroy_entry(entry);
1856 }
1857 EXPORT_SYMBOL(resource_list_free);
1858 
1859 #ifdef CONFIG_GET_FREE_REGION
1860 #define GFR_DESCENDING		(1UL << 0)
1861 #define GFR_REQUEST_REGION	(1UL << 1)
1862 #ifdef PA_SECTION_SHIFT
1863 #define GFR_DEFAULT_ALIGN	(1UL << PA_SECTION_SHIFT)
1864 #else
1865 #define GFR_DEFAULT_ALIGN	PAGE_SIZE
1866 #endif
1867 
1868 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1869 				 resource_size_t align, unsigned long flags)
1870 {
1871 	if (flags & GFR_DESCENDING) {
1872 		resource_size_t end;
1873 
1874 		end = min_t(resource_size_t, base->end, PHYSMEM_END);
1875 		return end - size + 1;
1876 	}
1877 
1878 	return ALIGN(max(base->start, align), align);
1879 }
1880 
1881 static bool gfr_continue(struct resource *base, resource_size_t addr,
1882 			 resource_size_t size, unsigned long flags)
1883 {
1884 	if (flags & GFR_DESCENDING)
1885 		return addr > size && addr >= base->start;
1886 	/*
1887 	 * In the ascend case be careful that the last increment by
1888 	 * @size did not wrap 0.
1889 	 */
1890 	return addr > addr - size &&
1891 	       addr <= min_t(resource_size_t, base->end, PHYSMEM_END);
1892 }
1893 
1894 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1895 				unsigned long flags)
1896 {
1897 	if (flags & GFR_DESCENDING)
1898 		return addr - size;
1899 	return addr + size;
1900 }
1901 
1902 static void remove_free_mem_region(void *_res)
1903 {
1904 	struct resource *res = _res;
1905 
1906 	if (res->parent)
1907 		remove_resource(res);
1908 	free_resource(res);
1909 }
1910 
1911 static struct resource *
1912 get_free_mem_region(struct device *dev, struct resource *base,
1913 		    resource_size_t size, const unsigned long align,
1914 		    const char *name, const unsigned long desc,
1915 		    const unsigned long flags)
1916 {
1917 	resource_size_t addr;
1918 	struct resource *res;
1919 	struct region_devres *dr = NULL;
1920 
1921 	size = ALIGN(size, align);
1922 
1923 	res = alloc_resource(GFP_KERNEL);
1924 	if (!res)
1925 		return ERR_PTR(-ENOMEM);
1926 
1927 	if (dev && (flags & GFR_REQUEST_REGION)) {
1928 		dr = devres_alloc(devm_region_release,
1929 				sizeof(struct region_devres), GFP_KERNEL);
1930 		if (!dr) {
1931 			free_resource(res);
1932 			return ERR_PTR(-ENOMEM);
1933 		}
1934 	} else if (dev) {
1935 		if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1936 			return ERR_PTR(-ENOMEM);
1937 	}
1938 
1939 	write_lock(&resource_lock);
1940 	for (addr = gfr_start(base, size, align, flags);
1941 	     gfr_continue(base, addr, align, flags);
1942 	     addr = gfr_next(addr, align, flags)) {
1943 		if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1944 		    REGION_DISJOINT)
1945 			continue;
1946 
1947 		if (flags & GFR_REQUEST_REGION) {
1948 			if (__request_region_locked(res, &iomem_resource, addr,
1949 						    size, name, 0))
1950 				break;
1951 
1952 			if (dev) {
1953 				dr->parent = &iomem_resource;
1954 				dr->start = addr;
1955 				dr->n = size;
1956 				devres_add(dev, dr);
1957 			}
1958 
1959 			res->desc = desc;
1960 			write_unlock(&resource_lock);
1961 
1962 
1963 			/*
1964 			 * A driver is claiming this region so revoke any
1965 			 * mappings.
1966 			 */
1967 			revoke_iomem(res);
1968 		} else {
1969 			res->start = addr;
1970 			res->end = addr + size - 1;
1971 			res->name = name;
1972 			res->desc = desc;
1973 			res->flags = IORESOURCE_MEM;
1974 
1975 			/*
1976 			 * Only succeed if the resource hosts an exclusive
1977 			 * range after the insert
1978 			 */
1979 			if (__insert_resource(base, res) || res->child)
1980 				break;
1981 
1982 			write_unlock(&resource_lock);
1983 		}
1984 
1985 		return res;
1986 	}
1987 	write_unlock(&resource_lock);
1988 
1989 	if (flags & GFR_REQUEST_REGION) {
1990 		free_resource(res);
1991 		devres_free(dr);
1992 	} else if (dev)
1993 		devm_release_action(dev, remove_free_mem_region, res);
1994 
1995 	return ERR_PTR(-ERANGE);
1996 }
1997 
1998 /**
1999  * devm_request_free_mem_region - find free region for device private memory
2000  *
2001  * @dev: device struct to bind the resource to
2002  * @size: size in bytes of the device memory to add
2003  * @base: resource tree to look in
2004  *
2005  * This function tries to find an empty range of physical address big enough to
2006  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
2007  * memory, which in turn allocates struct pages.
2008  */
2009 struct resource *devm_request_free_mem_region(struct device *dev,
2010 		struct resource *base, unsigned long size)
2011 {
2012 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2013 
2014 	return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
2015 				   dev_name(dev),
2016 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2017 }
2018 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
2019 
2020 struct resource *request_free_mem_region(struct resource *base,
2021 		unsigned long size, const char *name)
2022 {
2023 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2024 
2025 	return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
2026 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2027 }
2028 EXPORT_SYMBOL_GPL(request_free_mem_region);
2029 
2030 /**
2031  * alloc_free_mem_region - find a free region relative to @base
2032  * @base: resource that will parent the new resource
2033  * @size: size in bytes of memory to allocate from @base
2034  * @align: alignment requirements for the allocation
2035  * @name: resource name
2036  *
2037  * Buses like CXL, that can dynamically instantiate new memory regions,
2038  * need a method to allocate physical address space for those regions.
2039  * Allocate and insert a new resource to cover a free, unclaimed by a
2040  * descendant of @base, range in the span of @base.
2041  */
2042 struct resource *alloc_free_mem_region(struct resource *base,
2043 				       unsigned long size, unsigned long align,
2044 				       const char *name)
2045 {
2046 	/* Default of ascending direction and insert resource */
2047 	unsigned long flags = 0;
2048 
2049 	return get_free_mem_region(NULL, base, size, align, name,
2050 				   IORES_DESC_NONE, flags);
2051 }
2052 EXPORT_SYMBOL_GPL(alloc_free_mem_region);
2053 #endif /* CONFIG_GET_FREE_REGION */
2054 
2055 static int __init strict_iomem(char *str)
2056 {
2057 	if (strstr(str, "relaxed"))
2058 		strict_iomem_checks = 0;
2059 	if (strstr(str, "strict"))
2060 		strict_iomem_checks = 1;
2061 	return 1;
2062 }
2063 
2064 static int iomem_fs_init_fs_context(struct fs_context *fc)
2065 {
2066 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2067 }
2068 
2069 static struct file_system_type iomem_fs_type = {
2070 	.name		= "iomem",
2071 	.owner		= THIS_MODULE,
2072 	.init_fs_context = iomem_fs_init_fs_context,
2073 	.kill_sb	= kill_anon_super,
2074 };
2075 
2076 static int __init iomem_init_inode(void)
2077 {
2078 	static struct vfsmount *iomem_vfs_mount;
2079 	static int iomem_fs_cnt;
2080 	struct inode *inode;
2081 	int rc;
2082 
2083 	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2084 	if (rc < 0) {
2085 		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2086 		return rc;
2087 	}
2088 
2089 	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2090 	if (IS_ERR(inode)) {
2091 		rc = PTR_ERR(inode);
2092 		pr_err("Cannot allocate inode for iomem: %d\n", rc);
2093 		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2094 		return rc;
2095 	}
2096 
2097 	/*
2098 	 * Publish iomem revocation inode initialized.
2099 	 * Pairs with smp_load_acquire() in revoke_iomem().
2100 	 */
2101 	smp_store_release(&iomem_inode, inode);
2102 
2103 	return 0;
2104 }
2105 
2106 fs_initcall(iomem_init_inode);
2107 
2108 __setup("iomem=", strict_iomem);
2109