1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/resource.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 7 * 8 * Arbitrary resource management. 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/export.h> 14 #include <linux/errno.h> 15 #include <linux/ioport.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/proc_fs.h> 21 #include <linux/sched.h> 22 #include <linux/seq_file.h> 23 #include <linux/device.h> 24 #include <linux/pfn.h> 25 #include <linux/mm.h> 26 #include <linux/resource_ext.h> 27 #include <asm/io.h> 28 29 30 struct resource ioport_resource = { 31 .name = "PCI IO", 32 .start = 0, 33 .end = IO_SPACE_LIMIT, 34 .flags = IORESOURCE_IO, 35 }; 36 EXPORT_SYMBOL(ioport_resource); 37 38 struct resource iomem_resource = { 39 .name = "PCI mem", 40 .start = 0, 41 .end = -1, 42 .flags = IORESOURCE_MEM, 43 }; 44 EXPORT_SYMBOL(iomem_resource); 45 46 /* constraints to be met while allocating resources */ 47 struct resource_constraint { 48 resource_size_t min, max, align; 49 resource_size_t (*alignf)(void *, const struct resource *, 50 resource_size_t, resource_size_t); 51 void *alignf_data; 52 }; 53 54 static DEFINE_RWLOCK(resource_lock); 55 56 /* 57 * For memory hotplug, there is no way to free resource entries allocated 58 * by boot mem after the system is up. So for reusing the resource entry 59 * we need to remember the resource. 60 */ 61 static struct resource *bootmem_resource_free; 62 static DEFINE_SPINLOCK(bootmem_resource_lock); 63 64 static struct resource *next_resource(struct resource *p, bool sibling_only) 65 { 66 /* Caller wants to traverse through siblings only */ 67 if (sibling_only) 68 return p->sibling; 69 70 if (p->child) 71 return p->child; 72 while (!p->sibling && p->parent) 73 p = p->parent; 74 return p->sibling; 75 } 76 77 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 78 { 79 struct resource *p = v; 80 (*pos)++; 81 return (void *)next_resource(p, false); 82 } 83 84 #ifdef CONFIG_PROC_FS 85 86 enum { MAX_IORES_LEVEL = 5 }; 87 88 static void *r_start(struct seq_file *m, loff_t *pos) 89 __acquires(resource_lock) 90 { 91 struct resource *p = PDE_DATA(file_inode(m->file)); 92 loff_t l = 0; 93 read_lock(&resource_lock); 94 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 95 ; 96 return p; 97 } 98 99 static void r_stop(struct seq_file *m, void *v) 100 __releases(resource_lock) 101 { 102 read_unlock(&resource_lock); 103 } 104 105 static int r_show(struct seq_file *m, void *v) 106 { 107 struct resource *root = PDE_DATA(file_inode(m->file)); 108 struct resource *r = v, *p; 109 unsigned long long start, end; 110 int width = root->end < 0x10000 ? 4 : 8; 111 int depth; 112 113 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 114 if (p->parent == root) 115 break; 116 117 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 118 start = r->start; 119 end = r->end; 120 } else { 121 start = end = 0; 122 } 123 124 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 125 depth * 2, "", 126 width, start, 127 width, end, 128 r->name ? r->name : "<BAD>"); 129 return 0; 130 } 131 132 static const struct seq_operations resource_op = { 133 .start = r_start, 134 .next = r_next, 135 .stop = r_stop, 136 .show = r_show, 137 }; 138 139 static int __init ioresources_init(void) 140 { 141 proc_create_seq_data("ioports", 0, NULL, &resource_op, 142 &ioport_resource); 143 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 144 return 0; 145 } 146 __initcall(ioresources_init); 147 148 #endif /* CONFIG_PROC_FS */ 149 150 static void free_resource(struct resource *res) 151 { 152 if (!res) 153 return; 154 155 if (!PageSlab(virt_to_head_page(res))) { 156 spin_lock(&bootmem_resource_lock); 157 res->sibling = bootmem_resource_free; 158 bootmem_resource_free = res; 159 spin_unlock(&bootmem_resource_lock); 160 } else { 161 kfree(res); 162 } 163 } 164 165 static struct resource *alloc_resource(gfp_t flags) 166 { 167 struct resource *res = NULL; 168 169 spin_lock(&bootmem_resource_lock); 170 if (bootmem_resource_free) { 171 res = bootmem_resource_free; 172 bootmem_resource_free = res->sibling; 173 } 174 spin_unlock(&bootmem_resource_lock); 175 176 if (res) 177 memset(res, 0, sizeof(struct resource)); 178 else 179 res = kzalloc(sizeof(struct resource), flags); 180 181 return res; 182 } 183 184 /* Return the conflict entry if you can't request it */ 185 static struct resource * __request_resource(struct resource *root, struct resource *new) 186 { 187 resource_size_t start = new->start; 188 resource_size_t end = new->end; 189 struct resource *tmp, **p; 190 191 if (end < start) 192 return root; 193 if (start < root->start) 194 return root; 195 if (end > root->end) 196 return root; 197 p = &root->child; 198 for (;;) { 199 tmp = *p; 200 if (!tmp || tmp->start > end) { 201 new->sibling = tmp; 202 *p = new; 203 new->parent = root; 204 return NULL; 205 } 206 p = &tmp->sibling; 207 if (tmp->end < start) 208 continue; 209 return tmp; 210 } 211 } 212 213 static int __release_resource(struct resource *old, bool release_child) 214 { 215 struct resource *tmp, **p, *chd; 216 217 p = &old->parent->child; 218 for (;;) { 219 tmp = *p; 220 if (!tmp) 221 break; 222 if (tmp == old) { 223 if (release_child || !(tmp->child)) { 224 *p = tmp->sibling; 225 } else { 226 for (chd = tmp->child;; chd = chd->sibling) { 227 chd->parent = tmp->parent; 228 if (!(chd->sibling)) 229 break; 230 } 231 *p = tmp->child; 232 chd->sibling = tmp->sibling; 233 } 234 old->parent = NULL; 235 return 0; 236 } 237 p = &tmp->sibling; 238 } 239 return -EINVAL; 240 } 241 242 static void __release_child_resources(struct resource *r) 243 { 244 struct resource *tmp, *p; 245 resource_size_t size; 246 247 p = r->child; 248 r->child = NULL; 249 while (p) { 250 tmp = p; 251 p = p->sibling; 252 253 tmp->parent = NULL; 254 tmp->sibling = NULL; 255 __release_child_resources(tmp); 256 257 printk(KERN_DEBUG "release child resource %pR\n", tmp); 258 /* need to restore size, and keep flags */ 259 size = resource_size(tmp); 260 tmp->start = 0; 261 tmp->end = size - 1; 262 } 263 } 264 265 void release_child_resources(struct resource *r) 266 { 267 write_lock(&resource_lock); 268 __release_child_resources(r); 269 write_unlock(&resource_lock); 270 } 271 272 /** 273 * request_resource_conflict - request and reserve an I/O or memory resource 274 * @root: root resource descriptor 275 * @new: resource descriptor desired by caller 276 * 277 * Returns 0 for success, conflict resource on error. 278 */ 279 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 280 { 281 struct resource *conflict; 282 283 write_lock(&resource_lock); 284 conflict = __request_resource(root, new); 285 write_unlock(&resource_lock); 286 return conflict; 287 } 288 289 /** 290 * request_resource - request and reserve an I/O or memory resource 291 * @root: root resource descriptor 292 * @new: resource descriptor desired by caller 293 * 294 * Returns 0 for success, negative error code on error. 295 */ 296 int request_resource(struct resource *root, struct resource *new) 297 { 298 struct resource *conflict; 299 300 conflict = request_resource_conflict(root, new); 301 return conflict ? -EBUSY : 0; 302 } 303 304 EXPORT_SYMBOL(request_resource); 305 306 /** 307 * release_resource - release a previously reserved resource 308 * @old: resource pointer 309 */ 310 int release_resource(struct resource *old) 311 { 312 int retval; 313 314 write_lock(&resource_lock); 315 retval = __release_resource(old, true); 316 write_unlock(&resource_lock); 317 return retval; 318 } 319 320 EXPORT_SYMBOL(release_resource); 321 322 /** 323 * Finds the lowest iomem resource that covers part of [@start..@end]. The 324 * caller must specify @start, @end, @flags, and @desc (which may be 325 * IORES_DESC_NONE). 326 * 327 * If a resource is found, returns 0 and @*res is overwritten with the part 328 * of the resource that's within [@start..@end]; if none is found, returns 329 * -ENODEV. Returns -EINVAL for invalid parameters. 330 * 331 * This function walks the whole tree and not just first level children 332 * unless @first_lvl is true. 333 * 334 * @start: start address of the resource searched for 335 * @end: end address of same resource 336 * @flags: flags which the resource must have 337 * @desc: descriptor the resource must have 338 * @first_lvl: walk only the first level children, if set 339 * @res: return ptr, if resource found 340 */ 341 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 342 unsigned long flags, unsigned long desc, 343 bool first_lvl, struct resource *res) 344 { 345 bool siblings_only = true; 346 struct resource *p; 347 348 if (!res) 349 return -EINVAL; 350 351 if (start >= end) 352 return -EINVAL; 353 354 read_lock(&resource_lock); 355 356 for (p = iomem_resource.child; p; p = next_resource(p, siblings_only)) { 357 /* If we passed the resource we are looking for, stop */ 358 if (p->start > end) { 359 p = NULL; 360 break; 361 } 362 363 /* Skip until we find a range that matches what we look for */ 364 if (p->end < start) 365 continue; 366 367 /* 368 * Now that we found a range that matches what we look for, 369 * check the flags and the descriptor. If we were not asked to 370 * use only the first level, start looking at children as well. 371 */ 372 siblings_only = first_lvl; 373 374 if ((p->flags & flags) != flags) 375 continue; 376 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 377 continue; 378 379 /* Found a match, break */ 380 break; 381 } 382 383 if (p) { 384 /* copy data */ 385 res->start = max(start, p->start); 386 res->end = min(end, p->end); 387 res->flags = p->flags; 388 res->desc = p->desc; 389 } 390 391 read_unlock(&resource_lock); 392 return p ? 0 : -ENODEV; 393 } 394 395 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 396 unsigned long flags, unsigned long desc, 397 bool first_lvl, void *arg, 398 int (*func)(struct resource *, void *)) 399 { 400 struct resource res; 401 int ret = -EINVAL; 402 403 while (start < end && 404 !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) { 405 ret = (*func)(&res, arg); 406 if (ret) 407 break; 408 409 start = res.end + 1; 410 } 411 412 return ret; 413 } 414 415 /** 416 * Walks through iomem resources and calls func() with matching resource 417 * ranges. This walks through whole tree and not just first level children. 418 * All the memory ranges which overlap start,end and also match flags and 419 * desc are valid candidates. 420 * 421 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 422 * @flags: I/O resource flags 423 * @start: start addr 424 * @end: end addr 425 * @arg: function argument for the callback @func 426 * @func: callback function that is called for each qualifying resource area 427 * 428 * NOTE: For a new descriptor search, define a new IORES_DESC in 429 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 430 */ 431 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 432 u64 end, void *arg, int (*func)(struct resource *, void *)) 433 { 434 return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func); 435 } 436 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 437 438 /* 439 * This function calls the @func callback against all memory ranges of type 440 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 441 * Now, this function is only for System RAM, it deals with full ranges and 442 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 443 * ranges. 444 */ 445 int walk_system_ram_res(u64 start, u64 end, void *arg, 446 int (*func)(struct resource *, void *)) 447 { 448 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 449 450 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true, 451 arg, func); 452 } 453 454 /* 455 * This function calls the @func callback against all memory ranges, which 456 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 457 */ 458 int walk_mem_res(u64 start, u64 end, void *arg, 459 int (*func)(struct resource *, void *)) 460 { 461 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 462 463 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true, 464 arg, func); 465 } 466 467 /* 468 * This function calls the @func callback against all memory ranges of type 469 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 470 * It is to be used only for System RAM. 471 * 472 * This will find System RAM ranges that are children of top-level resources 473 * in addition to top-level System RAM resources. 474 */ 475 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 476 void *arg, int (*func)(unsigned long, unsigned long, void *)) 477 { 478 resource_size_t start, end; 479 unsigned long flags; 480 struct resource res; 481 unsigned long pfn, end_pfn; 482 int ret = -EINVAL; 483 484 start = (u64) start_pfn << PAGE_SHIFT; 485 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 486 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 487 while (start < end && 488 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, 489 false, &res)) { 490 pfn = PFN_UP(res.start); 491 end_pfn = PFN_DOWN(res.end + 1); 492 if (end_pfn > pfn) 493 ret = (*func)(pfn, end_pfn - pfn, arg); 494 if (ret) 495 break; 496 start = res.end + 1; 497 } 498 return ret; 499 } 500 501 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 502 { 503 return 1; 504 } 505 506 /* 507 * This generic page_is_ram() returns true if specified address is 508 * registered as System RAM in iomem_resource list. 509 */ 510 int __weak page_is_ram(unsigned long pfn) 511 { 512 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 513 } 514 EXPORT_SYMBOL_GPL(page_is_ram); 515 516 /** 517 * region_intersects() - determine intersection of region with known resources 518 * @start: region start address 519 * @size: size of region 520 * @flags: flags of resource (in iomem_resource) 521 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 522 * 523 * Check if the specified region partially overlaps or fully eclipses a 524 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 525 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 526 * return REGION_MIXED if the region overlaps @flags/@desc and another 527 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 528 * and no other defined resource. Note that REGION_INTERSECTS is also 529 * returned in the case when the specified region overlaps RAM and undefined 530 * memory holes. 531 * 532 * region_intersect() is used by memory remapping functions to ensure 533 * the user is not remapping RAM and is a vast speed up over walking 534 * through the resource table page by page. 535 */ 536 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 537 unsigned long desc) 538 { 539 struct resource res; 540 int type = 0; int other = 0; 541 struct resource *p; 542 543 res.start = start; 544 res.end = start + size - 1; 545 546 read_lock(&resource_lock); 547 for (p = iomem_resource.child; p ; p = p->sibling) { 548 bool is_type = (((p->flags & flags) == flags) && 549 ((desc == IORES_DESC_NONE) || 550 (desc == p->desc))); 551 552 if (resource_overlaps(p, &res)) 553 is_type ? type++ : other++; 554 } 555 read_unlock(&resource_lock); 556 557 if (other == 0) 558 return type ? REGION_INTERSECTS : REGION_DISJOINT; 559 560 if (type) 561 return REGION_MIXED; 562 563 return REGION_DISJOINT; 564 } 565 EXPORT_SYMBOL_GPL(region_intersects); 566 567 void __weak arch_remove_reservations(struct resource *avail) 568 { 569 } 570 571 static resource_size_t simple_align_resource(void *data, 572 const struct resource *avail, 573 resource_size_t size, 574 resource_size_t align) 575 { 576 return avail->start; 577 } 578 579 static void resource_clip(struct resource *res, resource_size_t min, 580 resource_size_t max) 581 { 582 if (res->start < min) 583 res->start = min; 584 if (res->end > max) 585 res->end = max; 586 } 587 588 /* 589 * Find empty slot in the resource tree with the given range and 590 * alignment constraints 591 */ 592 static int __find_resource(struct resource *root, struct resource *old, 593 struct resource *new, 594 resource_size_t size, 595 struct resource_constraint *constraint) 596 { 597 struct resource *this = root->child; 598 struct resource tmp = *new, avail, alloc; 599 600 tmp.start = root->start; 601 /* 602 * Skip past an allocated resource that starts at 0, since the assignment 603 * of this->start - 1 to tmp->end below would cause an underflow. 604 */ 605 if (this && this->start == root->start) { 606 tmp.start = (this == old) ? old->start : this->end + 1; 607 this = this->sibling; 608 } 609 for(;;) { 610 if (this) 611 tmp.end = (this == old) ? this->end : this->start - 1; 612 else 613 tmp.end = root->end; 614 615 if (tmp.end < tmp.start) 616 goto next; 617 618 resource_clip(&tmp, constraint->min, constraint->max); 619 arch_remove_reservations(&tmp); 620 621 /* Check for overflow after ALIGN() */ 622 avail.start = ALIGN(tmp.start, constraint->align); 623 avail.end = tmp.end; 624 avail.flags = new->flags & ~IORESOURCE_UNSET; 625 if (avail.start >= tmp.start) { 626 alloc.flags = avail.flags; 627 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 628 size, constraint->align); 629 alloc.end = alloc.start + size - 1; 630 if (alloc.start <= alloc.end && 631 resource_contains(&avail, &alloc)) { 632 new->start = alloc.start; 633 new->end = alloc.end; 634 return 0; 635 } 636 } 637 638 next: if (!this || this->end == root->end) 639 break; 640 641 if (this != old) 642 tmp.start = this->end + 1; 643 this = this->sibling; 644 } 645 return -EBUSY; 646 } 647 648 /* 649 * Find empty slot in the resource tree given range and alignment. 650 */ 651 static int find_resource(struct resource *root, struct resource *new, 652 resource_size_t size, 653 struct resource_constraint *constraint) 654 { 655 return __find_resource(root, NULL, new, size, constraint); 656 } 657 658 /** 659 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 660 * The resource will be relocated if the new size cannot be reallocated in the 661 * current location. 662 * 663 * @root: root resource descriptor 664 * @old: resource descriptor desired by caller 665 * @newsize: new size of the resource descriptor 666 * @constraint: the size and alignment constraints to be met. 667 */ 668 static int reallocate_resource(struct resource *root, struct resource *old, 669 resource_size_t newsize, 670 struct resource_constraint *constraint) 671 { 672 int err=0; 673 struct resource new = *old; 674 struct resource *conflict; 675 676 write_lock(&resource_lock); 677 678 if ((err = __find_resource(root, old, &new, newsize, constraint))) 679 goto out; 680 681 if (resource_contains(&new, old)) { 682 old->start = new.start; 683 old->end = new.end; 684 goto out; 685 } 686 687 if (old->child) { 688 err = -EBUSY; 689 goto out; 690 } 691 692 if (resource_contains(old, &new)) { 693 old->start = new.start; 694 old->end = new.end; 695 } else { 696 __release_resource(old, true); 697 *old = new; 698 conflict = __request_resource(root, old); 699 BUG_ON(conflict); 700 } 701 out: 702 write_unlock(&resource_lock); 703 return err; 704 } 705 706 707 /** 708 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 709 * The resource will be reallocated with a new size if it was already allocated 710 * @root: root resource descriptor 711 * @new: resource descriptor desired by caller 712 * @size: requested resource region size 713 * @min: minimum boundary to allocate 714 * @max: maximum boundary to allocate 715 * @align: alignment requested, in bytes 716 * @alignf: alignment function, optional, called if not NULL 717 * @alignf_data: arbitrary data to pass to the @alignf function 718 */ 719 int allocate_resource(struct resource *root, struct resource *new, 720 resource_size_t size, resource_size_t min, 721 resource_size_t max, resource_size_t align, 722 resource_size_t (*alignf)(void *, 723 const struct resource *, 724 resource_size_t, 725 resource_size_t), 726 void *alignf_data) 727 { 728 int err; 729 struct resource_constraint constraint; 730 731 if (!alignf) 732 alignf = simple_align_resource; 733 734 constraint.min = min; 735 constraint.max = max; 736 constraint.align = align; 737 constraint.alignf = alignf; 738 constraint.alignf_data = alignf_data; 739 740 if ( new->parent ) { 741 /* resource is already allocated, try reallocating with 742 the new constraints */ 743 return reallocate_resource(root, new, size, &constraint); 744 } 745 746 write_lock(&resource_lock); 747 err = find_resource(root, new, size, &constraint); 748 if (err >= 0 && __request_resource(root, new)) 749 err = -EBUSY; 750 write_unlock(&resource_lock); 751 return err; 752 } 753 754 EXPORT_SYMBOL(allocate_resource); 755 756 /** 757 * lookup_resource - find an existing resource by a resource start address 758 * @root: root resource descriptor 759 * @start: resource start address 760 * 761 * Returns a pointer to the resource if found, NULL otherwise 762 */ 763 struct resource *lookup_resource(struct resource *root, resource_size_t start) 764 { 765 struct resource *res; 766 767 read_lock(&resource_lock); 768 for (res = root->child; res; res = res->sibling) { 769 if (res->start == start) 770 break; 771 } 772 read_unlock(&resource_lock); 773 774 return res; 775 } 776 777 /* 778 * Insert a resource into the resource tree. If successful, return NULL, 779 * otherwise return the conflicting resource (compare to __request_resource()) 780 */ 781 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 782 { 783 struct resource *first, *next; 784 785 for (;; parent = first) { 786 first = __request_resource(parent, new); 787 if (!first) 788 return first; 789 790 if (first == parent) 791 return first; 792 if (WARN_ON(first == new)) /* duplicated insertion */ 793 return first; 794 795 if ((first->start > new->start) || (first->end < new->end)) 796 break; 797 if ((first->start == new->start) && (first->end == new->end)) 798 break; 799 } 800 801 for (next = first; ; next = next->sibling) { 802 /* Partial overlap? Bad, and unfixable */ 803 if (next->start < new->start || next->end > new->end) 804 return next; 805 if (!next->sibling) 806 break; 807 if (next->sibling->start > new->end) 808 break; 809 } 810 811 new->parent = parent; 812 new->sibling = next->sibling; 813 new->child = first; 814 815 next->sibling = NULL; 816 for (next = first; next; next = next->sibling) 817 next->parent = new; 818 819 if (parent->child == first) { 820 parent->child = new; 821 } else { 822 next = parent->child; 823 while (next->sibling != first) 824 next = next->sibling; 825 next->sibling = new; 826 } 827 return NULL; 828 } 829 830 /** 831 * insert_resource_conflict - Inserts resource in the resource tree 832 * @parent: parent of the new resource 833 * @new: new resource to insert 834 * 835 * Returns 0 on success, conflict resource if the resource can't be inserted. 836 * 837 * This function is equivalent to request_resource_conflict when no conflict 838 * happens. If a conflict happens, and the conflicting resources 839 * entirely fit within the range of the new resource, then the new 840 * resource is inserted and the conflicting resources become children of 841 * the new resource. 842 * 843 * This function is intended for producers of resources, such as FW modules 844 * and bus drivers. 845 */ 846 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 847 { 848 struct resource *conflict; 849 850 write_lock(&resource_lock); 851 conflict = __insert_resource(parent, new); 852 write_unlock(&resource_lock); 853 return conflict; 854 } 855 856 /** 857 * insert_resource - Inserts a resource in the resource tree 858 * @parent: parent of the new resource 859 * @new: new resource to insert 860 * 861 * Returns 0 on success, -EBUSY if the resource can't be inserted. 862 * 863 * This function is intended for producers of resources, such as FW modules 864 * and bus drivers. 865 */ 866 int insert_resource(struct resource *parent, struct resource *new) 867 { 868 struct resource *conflict; 869 870 conflict = insert_resource_conflict(parent, new); 871 return conflict ? -EBUSY : 0; 872 } 873 EXPORT_SYMBOL_GPL(insert_resource); 874 875 /** 876 * insert_resource_expand_to_fit - Insert a resource into the resource tree 877 * @root: root resource descriptor 878 * @new: new resource to insert 879 * 880 * Insert a resource into the resource tree, possibly expanding it in order 881 * to make it encompass any conflicting resources. 882 */ 883 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 884 { 885 if (new->parent) 886 return; 887 888 write_lock(&resource_lock); 889 for (;;) { 890 struct resource *conflict; 891 892 conflict = __insert_resource(root, new); 893 if (!conflict) 894 break; 895 if (conflict == root) 896 break; 897 898 /* Ok, expand resource to cover the conflict, then try again .. */ 899 if (conflict->start < new->start) 900 new->start = conflict->start; 901 if (conflict->end > new->end) 902 new->end = conflict->end; 903 904 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 905 } 906 write_unlock(&resource_lock); 907 } 908 909 /** 910 * remove_resource - Remove a resource in the resource tree 911 * @old: resource to remove 912 * 913 * Returns 0 on success, -EINVAL if the resource is not valid. 914 * 915 * This function removes a resource previously inserted by insert_resource() 916 * or insert_resource_conflict(), and moves the children (if any) up to 917 * where they were before. insert_resource() and insert_resource_conflict() 918 * insert a new resource, and move any conflicting resources down to the 919 * children of the new resource. 920 * 921 * insert_resource(), insert_resource_conflict() and remove_resource() are 922 * intended for producers of resources, such as FW modules and bus drivers. 923 */ 924 int remove_resource(struct resource *old) 925 { 926 int retval; 927 928 write_lock(&resource_lock); 929 retval = __release_resource(old, false); 930 write_unlock(&resource_lock); 931 return retval; 932 } 933 EXPORT_SYMBOL_GPL(remove_resource); 934 935 static int __adjust_resource(struct resource *res, resource_size_t start, 936 resource_size_t size) 937 { 938 struct resource *tmp, *parent = res->parent; 939 resource_size_t end = start + size - 1; 940 int result = -EBUSY; 941 942 if (!parent) 943 goto skip; 944 945 if ((start < parent->start) || (end > parent->end)) 946 goto out; 947 948 if (res->sibling && (res->sibling->start <= end)) 949 goto out; 950 951 tmp = parent->child; 952 if (tmp != res) { 953 while (tmp->sibling != res) 954 tmp = tmp->sibling; 955 if (start <= tmp->end) 956 goto out; 957 } 958 959 skip: 960 for (tmp = res->child; tmp; tmp = tmp->sibling) 961 if ((tmp->start < start) || (tmp->end > end)) 962 goto out; 963 964 res->start = start; 965 res->end = end; 966 result = 0; 967 968 out: 969 return result; 970 } 971 972 /** 973 * adjust_resource - modify a resource's start and size 974 * @res: resource to modify 975 * @start: new start value 976 * @size: new size 977 * 978 * Given an existing resource, change its start and size to match the 979 * arguments. Returns 0 on success, -EBUSY if it can't fit. 980 * Existing children of the resource are assumed to be immutable. 981 */ 982 int adjust_resource(struct resource *res, resource_size_t start, 983 resource_size_t size) 984 { 985 int result; 986 987 write_lock(&resource_lock); 988 result = __adjust_resource(res, start, size); 989 write_unlock(&resource_lock); 990 return result; 991 } 992 EXPORT_SYMBOL(adjust_resource); 993 994 static void __init 995 __reserve_region_with_split(struct resource *root, resource_size_t start, 996 resource_size_t end, const char *name) 997 { 998 struct resource *parent = root; 999 struct resource *conflict; 1000 struct resource *res = alloc_resource(GFP_ATOMIC); 1001 struct resource *next_res = NULL; 1002 int type = resource_type(root); 1003 1004 if (!res) 1005 return; 1006 1007 res->name = name; 1008 res->start = start; 1009 res->end = end; 1010 res->flags = type | IORESOURCE_BUSY; 1011 res->desc = IORES_DESC_NONE; 1012 1013 while (1) { 1014 1015 conflict = __request_resource(parent, res); 1016 if (!conflict) { 1017 if (!next_res) 1018 break; 1019 res = next_res; 1020 next_res = NULL; 1021 continue; 1022 } 1023 1024 /* conflict covered whole area */ 1025 if (conflict->start <= res->start && 1026 conflict->end >= res->end) { 1027 free_resource(res); 1028 WARN_ON(next_res); 1029 break; 1030 } 1031 1032 /* failed, split and try again */ 1033 if (conflict->start > res->start) { 1034 end = res->end; 1035 res->end = conflict->start - 1; 1036 if (conflict->end < end) { 1037 next_res = alloc_resource(GFP_ATOMIC); 1038 if (!next_res) { 1039 free_resource(res); 1040 break; 1041 } 1042 next_res->name = name; 1043 next_res->start = conflict->end + 1; 1044 next_res->end = end; 1045 next_res->flags = type | IORESOURCE_BUSY; 1046 next_res->desc = IORES_DESC_NONE; 1047 } 1048 } else { 1049 res->start = conflict->end + 1; 1050 } 1051 } 1052 1053 } 1054 1055 void __init 1056 reserve_region_with_split(struct resource *root, resource_size_t start, 1057 resource_size_t end, const char *name) 1058 { 1059 int abort = 0; 1060 1061 write_lock(&resource_lock); 1062 if (root->start > start || root->end < end) { 1063 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1064 (unsigned long long)start, (unsigned long long)end, 1065 root); 1066 if (start > root->end || end < root->start) 1067 abort = 1; 1068 else { 1069 if (end > root->end) 1070 end = root->end; 1071 if (start < root->start) 1072 start = root->start; 1073 pr_err("fixing request to [0x%llx-0x%llx]\n", 1074 (unsigned long long)start, 1075 (unsigned long long)end); 1076 } 1077 dump_stack(); 1078 } 1079 if (!abort) 1080 __reserve_region_with_split(root, start, end, name); 1081 write_unlock(&resource_lock); 1082 } 1083 1084 /** 1085 * resource_alignment - calculate resource's alignment 1086 * @res: resource pointer 1087 * 1088 * Returns alignment on success, 0 (invalid alignment) on failure. 1089 */ 1090 resource_size_t resource_alignment(struct resource *res) 1091 { 1092 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1093 case IORESOURCE_SIZEALIGN: 1094 return resource_size(res); 1095 case IORESOURCE_STARTALIGN: 1096 return res->start; 1097 default: 1098 return 0; 1099 } 1100 } 1101 1102 /* 1103 * This is compatibility stuff for IO resources. 1104 * 1105 * Note how this, unlike the above, knows about 1106 * the IO flag meanings (busy etc). 1107 * 1108 * request_region creates a new busy region. 1109 * 1110 * release_region releases a matching busy region. 1111 */ 1112 1113 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1114 1115 /** 1116 * __request_region - create a new busy resource region 1117 * @parent: parent resource descriptor 1118 * @start: resource start address 1119 * @n: resource region size 1120 * @name: reserving caller's ID string 1121 * @flags: IO resource flags 1122 */ 1123 struct resource * __request_region(struct resource *parent, 1124 resource_size_t start, resource_size_t n, 1125 const char *name, int flags) 1126 { 1127 DECLARE_WAITQUEUE(wait, current); 1128 struct resource *res = alloc_resource(GFP_KERNEL); 1129 struct resource *orig_parent = parent; 1130 1131 if (!res) 1132 return NULL; 1133 1134 res->name = name; 1135 res->start = start; 1136 res->end = start + n - 1; 1137 1138 write_lock(&resource_lock); 1139 1140 for (;;) { 1141 struct resource *conflict; 1142 1143 res->flags = resource_type(parent) | resource_ext_type(parent); 1144 res->flags |= IORESOURCE_BUSY | flags; 1145 res->desc = parent->desc; 1146 1147 conflict = __request_resource(parent, res); 1148 if (!conflict) 1149 break; 1150 /* 1151 * mm/hmm.c reserves physical addresses which then 1152 * become unavailable to other users. Conflicts are 1153 * not expected. Warn to aid debugging if encountered. 1154 */ 1155 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 1156 pr_warn("Unaddressable device %s %pR conflicts with %pR", 1157 conflict->name, conflict, res); 1158 } 1159 if (conflict != parent) { 1160 if (!(conflict->flags & IORESOURCE_BUSY)) { 1161 parent = conflict; 1162 continue; 1163 } 1164 } 1165 if (conflict->flags & flags & IORESOURCE_MUXED) { 1166 add_wait_queue(&muxed_resource_wait, &wait); 1167 write_unlock(&resource_lock); 1168 set_current_state(TASK_UNINTERRUPTIBLE); 1169 schedule(); 1170 remove_wait_queue(&muxed_resource_wait, &wait); 1171 write_lock(&resource_lock); 1172 continue; 1173 } 1174 /* Uhhuh, that didn't work out.. */ 1175 free_resource(res); 1176 res = NULL; 1177 break; 1178 } 1179 write_unlock(&resource_lock); 1180 1181 if (res && orig_parent == &iomem_resource) 1182 revoke_devmem(res); 1183 1184 return res; 1185 } 1186 EXPORT_SYMBOL(__request_region); 1187 1188 /** 1189 * __release_region - release a previously reserved resource region 1190 * @parent: parent resource descriptor 1191 * @start: resource start address 1192 * @n: resource region size 1193 * 1194 * The described resource region must match a currently busy region. 1195 */ 1196 void __release_region(struct resource *parent, resource_size_t start, 1197 resource_size_t n) 1198 { 1199 struct resource **p; 1200 resource_size_t end; 1201 1202 p = &parent->child; 1203 end = start + n - 1; 1204 1205 write_lock(&resource_lock); 1206 1207 for (;;) { 1208 struct resource *res = *p; 1209 1210 if (!res) 1211 break; 1212 if (res->start <= start && res->end >= end) { 1213 if (!(res->flags & IORESOURCE_BUSY)) { 1214 p = &res->child; 1215 continue; 1216 } 1217 if (res->start != start || res->end != end) 1218 break; 1219 *p = res->sibling; 1220 write_unlock(&resource_lock); 1221 if (res->flags & IORESOURCE_MUXED) 1222 wake_up(&muxed_resource_wait); 1223 free_resource(res); 1224 return; 1225 } 1226 p = &res->sibling; 1227 } 1228 1229 write_unlock(&resource_lock); 1230 1231 printk(KERN_WARNING "Trying to free nonexistent resource " 1232 "<%016llx-%016llx>\n", (unsigned long long)start, 1233 (unsigned long long)end); 1234 } 1235 EXPORT_SYMBOL(__release_region); 1236 1237 #ifdef CONFIG_MEMORY_HOTREMOVE 1238 /** 1239 * release_mem_region_adjustable - release a previously reserved memory region 1240 * @parent: parent resource descriptor 1241 * @start: resource start address 1242 * @size: resource region size 1243 * 1244 * This interface is intended for memory hot-delete. The requested region 1245 * is released from a currently busy memory resource. The requested region 1246 * must either match exactly or fit into a single busy resource entry. In 1247 * the latter case, the remaining resource is adjusted accordingly. 1248 * Existing children of the busy memory resource must be immutable in the 1249 * request. 1250 * 1251 * Note: 1252 * - Additional release conditions, such as overlapping region, can be 1253 * supported after they are confirmed as valid cases. 1254 * - When a busy memory resource gets split into two entries, the code 1255 * assumes that all children remain in the lower address entry for 1256 * simplicity. Enhance this logic when necessary. 1257 */ 1258 int release_mem_region_adjustable(struct resource *parent, 1259 resource_size_t start, resource_size_t size) 1260 { 1261 struct resource **p; 1262 struct resource *res; 1263 struct resource *new_res; 1264 resource_size_t end; 1265 int ret = -EINVAL; 1266 1267 end = start + size - 1; 1268 if ((start < parent->start) || (end > parent->end)) 1269 return ret; 1270 1271 /* The alloc_resource() result gets checked later */ 1272 new_res = alloc_resource(GFP_KERNEL); 1273 1274 p = &parent->child; 1275 write_lock(&resource_lock); 1276 1277 while ((res = *p)) { 1278 if (res->start >= end) 1279 break; 1280 1281 /* look for the next resource if it does not fit into */ 1282 if (res->start > start || res->end < end) { 1283 p = &res->sibling; 1284 continue; 1285 } 1286 1287 /* 1288 * All memory regions added from memory-hotplug path have the 1289 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have 1290 * this flag, we know that we are dealing with a resource coming 1291 * from HMM/devm. HMM/devm use another mechanism to add/release 1292 * a resource. This goes via devm_request_mem_region and 1293 * devm_release_mem_region. 1294 * HMM/devm take care to release their resources when they want, 1295 * so if we are dealing with them, let us just back off here. 1296 */ 1297 if (!(res->flags & IORESOURCE_SYSRAM)) { 1298 ret = 0; 1299 break; 1300 } 1301 1302 if (!(res->flags & IORESOURCE_MEM)) 1303 break; 1304 1305 if (!(res->flags & IORESOURCE_BUSY)) { 1306 p = &res->child; 1307 continue; 1308 } 1309 1310 /* found the target resource; let's adjust accordingly */ 1311 if (res->start == start && res->end == end) { 1312 /* free the whole entry */ 1313 *p = res->sibling; 1314 free_resource(res); 1315 ret = 0; 1316 } else if (res->start == start && res->end != end) { 1317 /* adjust the start */ 1318 ret = __adjust_resource(res, end + 1, 1319 res->end - end); 1320 } else if (res->start != start && res->end == end) { 1321 /* adjust the end */ 1322 ret = __adjust_resource(res, res->start, 1323 start - res->start); 1324 } else { 1325 /* split into two entries */ 1326 if (!new_res) { 1327 ret = -ENOMEM; 1328 break; 1329 } 1330 new_res->name = res->name; 1331 new_res->start = end + 1; 1332 new_res->end = res->end; 1333 new_res->flags = res->flags; 1334 new_res->desc = res->desc; 1335 new_res->parent = res->parent; 1336 new_res->sibling = res->sibling; 1337 new_res->child = NULL; 1338 1339 ret = __adjust_resource(res, res->start, 1340 start - res->start); 1341 if (ret) 1342 break; 1343 res->sibling = new_res; 1344 new_res = NULL; 1345 } 1346 1347 break; 1348 } 1349 1350 write_unlock(&resource_lock); 1351 free_resource(new_res); 1352 return ret; 1353 } 1354 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1355 1356 /* 1357 * Managed region resource 1358 */ 1359 static void devm_resource_release(struct device *dev, void *ptr) 1360 { 1361 struct resource **r = ptr; 1362 1363 release_resource(*r); 1364 } 1365 1366 /** 1367 * devm_request_resource() - request and reserve an I/O or memory resource 1368 * @dev: device for which to request the resource 1369 * @root: root of the resource tree from which to request the resource 1370 * @new: descriptor of the resource to request 1371 * 1372 * This is a device-managed version of request_resource(). There is usually 1373 * no need to release resources requested by this function explicitly since 1374 * that will be taken care of when the device is unbound from its driver. 1375 * If for some reason the resource needs to be released explicitly, because 1376 * of ordering issues for example, drivers must call devm_release_resource() 1377 * rather than the regular release_resource(). 1378 * 1379 * When a conflict is detected between any existing resources and the newly 1380 * requested resource, an error message will be printed. 1381 * 1382 * Returns 0 on success or a negative error code on failure. 1383 */ 1384 int devm_request_resource(struct device *dev, struct resource *root, 1385 struct resource *new) 1386 { 1387 struct resource *conflict, **ptr; 1388 1389 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1390 if (!ptr) 1391 return -ENOMEM; 1392 1393 *ptr = new; 1394 1395 conflict = request_resource_conflict(root, new); 1396 if (conflict) { 1397 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1398 new, conflict->name, conflict); 1399 devres_free(ptr); 1400 return -EBUSY; 1401 } 1402 1403 devres_add(dev, ptr); 1404 return 0; 1405 } 1406 EXPORT_SYMBOL(devm_request_resource); 1407 1408 static int devm_resource_match(struct device *dev, void *res, void *data) 1409 { 1410 struct resource **ptr = res; 1411 1412 return *ptr == data; 1413 } 1414 1415 /** 1416 * devm_release_resource() - release a previously requested resource 1417 * @dev: device for which to release the resource 1418 * @new: descriptor of the resource to release 1419 * 1420 * Releases a resource previously requested using devm_request_resource(). 1421 */ 1422 void devm_release_resource(struct device *dev, struct resource *new) 1423 { 1424 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1425 new)); 1426 } 1427 EXPORT_SYMBOL(devm_release_resource); 1428 1429 struct region_devres { 1430 struct resource *parent; 1431 resource_size_t start; 1432 resource_size_t n; 1433 }; 1434 1435 static void devm_region_release(struct device *dev, void *res) 1436 { 1437 struct region_devres *this = res; 1438 1439 __release_region(this->parent, this->start, this->n); 1440 } 1441 1442 static int devm_region_match(struct device *dev, void *res, void *match_data) 1443 { 1444 struct region_devres *this = res, *match = match_data; 1445 1446 return this->parent == match->parent && 1447 this->start == match->start && this->n == match->n; 1448 } 1449 1450 struct resource * 1451 __devm_request_region(struct device *dev, struct resource *parent, 1452 resource_size_t start, resource_size_t n, const char *name) 1453 { 1454 struct region_devres *dr = NULL; 1455 struct resource *res; 1456 1457 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1458 GFP_KERNEL); 1459 if (!dr) 1460 return NULL; 1461 1462 dr->parent = parent; 1463 dr->start = start; 1464 dr->n = n; 1465 1466 res = __request_region(parent, start, n, name, 0); 1467 if (res) 1468 devres_add(dev, dr); 1469 else 1470 devres_free(dr); 1471 1472 return res; 1473 } 1474 EXPORT_SYMBOL(__devm_request_region); 1475 1476 void __devm_release_region(struct device *dev, struct resource *parent, 1477 resource_size_t start, resource_size_t n) 1478 { 1479 struct region_devres match_data = { parent, start, n }; 1480 1481 __release_region(parent, start, n); 1482 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1483 &match_data)); 1484 } 1485 EXPORT_SYMBOL(__devm_release_region); 1486 1487 /* 1488 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1489 */ 1490 #define MAXRESERVE 4 1491 static int __init reserve_setup(char *str) 1492 { 1493 static int reserved; 1494 static struct resource reserve[MAXRESERVE]; 1495 1496 for (;;) { 1497 unsigned int io_start, io_num; 1498 int x = reserved; 1499 struct resource *parent; 1500 1501 if (get_option(&str, &io_start) != 2) 1502 break; 1503 if (get_option(&str, &io_num) == 0) 1504 break; 1505 if (x < MAXRESERVE) { 1506 struct resource *res = reserve + x; 1507 1508 /* 1509 * If the region starts below 0x10000, we assume it's 1510 * I/O port space; otherwise assume it's memory. 1511 */ 1512 if (io_start < 0x10000) { 1513 res->flags = IORESOURCE_IO; 1514 parent = &ioport_resource; 1515 } else { 1516 res->flags = IORESOURCE_MEM; 1517 parent = &iomem_resource; 1518 } 1519 res->name = "reserved"; 1520 res->start = io_start; 1521 res->end = io_start + io_num - 1; 1522 res->flags |= IORESOURCE_BUSY; 1523 res->desc = IORES_DESC_NONE; 1524 res->child = NULL; 1525 if (request_resource(parent, res) == 0) 1526 reserved = x+1; 1527 } 1528 } 1529 return 1; 1530 } 1531 __setup("reserve=", reserve_setup); 1532 1533 /* 1534 * Check if the requested addr and size spans more than any slot in the 1535 * iomem resource tree. 1536 */ 1537 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1538 { 1539 struct resource *p = &iomem_resource; 1540 int err = 0; 1541 loff_t l; 1542 1543 read_lock(&resource_lock); 1544 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1545 /* 1546 * We can probably skip the resources without 1547 * IORESOURCE_IO attribute? 1548 */ 1549 if (p->start >= addr + size) 1550 continue; 1551 if (p->end < addr) 1552 continue; 1553 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1554 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1555 continue; 1556 /* 1557 * if a resource is "BUSY", it's not a hardware resource 1558 * but a driver mapping of such a resource; we don't want 1559 * to warn for those; some drivers legitimately map only 1560 * partial hardware resources. (example: vesafb) 1561 */ 1562 if (p->flags & IORESOURCE_BUSY) 1563 continue; 1564 1565 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n", 1566 (unsigned long long)addr, 1567 (unsigned long long)(addr + size - 1), 1568 p->name, p); 1569 err = -1; 1570 break; 1571 } 1572 read_unlock(&resource_lock); 1573 1574 return err; 1575 } 1576 1577 #ifdef CONFIG_STRICT_DEVMEM 1578 static int strict_iomem_checks = 1; 1579 #else 1580 static int strict_iomem_checks; 1581 #endif 1582 1583 /* 1584 * check if an address is reserved in the iomem resource tree 1585 * returns true if reserved, false if not reserved. 1586 */ 1587 bool iomem_is_exclusive(u64 addr) 1588 { 1589 struct resource *p = &iomem_resource; 1590 bool err = false; 1591 loff_t l; 1592 int size = PAGE_SIZE; 1593 1594 if (!strict_iomem_checks) 1595 return false; 1596 1597 addr = addr & PAGE_MASK; 1598 1599 read_lock(&resource_lock); 1600 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1601 /* 1602 * We can probably skip the resources without 1603 * IORESOURCE_IO attribute? 1604 */ 1605 if (p->start >= addr + size) 1606 break; 1607 if (p->end < addr) 1608 continue; 1609 /* 1610 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1611 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1612 * resource is busy. 1613 */ 1614 if ((p->flags & IORESOURCE_BUSY) == 0) 1615 continue; 1616 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1617 || p->flags & IORESOURCE_EXCLUSIVE) { 1618 err = true; 1619 break; 1620 } 1621 } 1622 read_unlock(&resource_lock); 1623 1624 return err; 1625 } 1626 1627 struct resource_entry *resource_list_create_entry(struct resource *res, 1628 size_t extra_size) 1629 { 1630 struct resource_entry *entry; 1631 1632 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1633 if (entry) { 1634 INIT_LIST_HEAD(&entry->node); 1635 entry->res = res ? res : &entry->__res; 1636 } 1637 1638 return entry; 1639 } 1640 EXPORT_SYMBOL(resource_list_create_entry); 1641 1642 void resource_list_free(struct list_head *head) 1643 { 1644 struct resource_entry *entry, *tmp; 1645 1646 list_for_each_entry_safe(entry, tmp, head, node) 1647 resource_list_destroy_entry(entry); 1648 } 1649 EXPORT_SYMBOL(resource_list_free); 1650 1651 #ifdef CONFIG_DEVICE_PRIVATE 1652 static struct resource *__request_free_mem_region(struct device *dev, 1653 struct resource *base, unsigned long size, const char *name) 1654 { 1655 resource_size_t end, addr; 1656 struct resource *res; 1657 1658 size = ALIGN(size, 1UL << PA_SECTION_SHIFT); 1659 end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1); 1660 addr = end - size + 1UL; 1661 1662 for (; addr > size && addr >= base->start; addr -= size) { 1663 if (region_intersects(addr, size, 0, IORES_DESC_NONE) != 1664 REGION_DISJOINT) 1665 continue; 1666 1667 if (dev) 1668 res = devm_request_mem_region(dev, addr, size, name); 1669 else 1670 res = request_mem_region(addr, size, name); 1671 if (!res) 1672 return ERR_PTR(-ENOMEM); 1673 res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY; 1674 return res; 1675 } 1676 1677 return ERR_PTR(-ERANGE); 1678 } 1679 1680 /** 1681 * devm_request_free_mem_region - find free region for device private memory 1682 * 1683 * @dev: device struct to bind the resource to 1684 * @size: size in bytes of the device memory to add 1685 * @base: resource tree to look in 1686 * 1687 * This function tries to find an empty range of physical address big enough to 1688 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE 1689 * memory, which in turn allocates struct pages. 1690 */ 1691 struct resource *devm_request_free_mem_region(struct device *dev, 1692 struct resource *base, unsigned long size) 1693 { 1694 return __request_free_mem_region(dev, base, size, dev_name(dev)); 1695 } 1696 EXPORT_SYMBOL_GPL(devm_request_free_mem_region); 1697 1698 struct resource *request_free_mem_region(struct resource *base, 1699 unsigned long size, const char *name) 1700 { 1701 return __request_free_mem_region(NULL, base, size, name); 1702 } 1703 EXPORT_SYMBOL_GPL(request_free_mem_region); 1704 1705 #endif /* CONFIG_DEVICE_PRIVATE */ 1706 1707 static int __init strict_iomem(char *str) 1708 { 1709 if (strstr(str, "relaxed")) 1710 strict_iomem_checks = 0; 1711 if (strstr(str, "strict")) 1712 strict_iomem_checks = 1; 1713 return 1; 1714 } 1715 1716 __setup("iomem=", strict_iomem); 1717