1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/resource.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 7 * 8 * Arbitrary resource management. 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/export.h> 14 #include <linux/errno.h> 15 #include <linux/ioport.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/proc_fs.h> 21 #include <linux/pseudo_fs.h> 22 #include <linux/sched.h> 23 #include <linux/seq_file.h> 24 #include <linux/device.h> 25 #include <linux/pfn.h> 26 #include <linux/mm.h> 27 #include <linux/mount.h> 28 #include <linux/resource_ext.h> 29 #include <uapi/linux/magic.h> 30 #include <linux/string.h> 31 #include <linux/vmalloc.h> 32 #include <asm/io.h> 33 34 35 struct resource ioport_resource = { 36 .name = "PCI IO", 37 .start = 0, 38 .end = IO_SPACE_LIMIT, 39 .flags = IORESOURCE_IO, 40 }; 41 EXPORT_SYMBOL(ioport_resource); 42 43 struct resource iomem_resource = { 44 .name = "PCI mem", 45 .start = 0, 46 .end = -1, 47 .flags = IORESOURCE_MEM, 48 }; 49 EXPORT_SYMBOL(iomem_resource); 50 51 static DEFINE_RWLOCK(resource_lock); 52 53 static struct resource *next_resource(struct resource *p, bool skip_children) 54 { 55 if (!skip_children && p->child) 56 return p->child; 57 while (!p->sibling && p->parent) 58 p = p->parent; 59 return p->sibling; 60 } 61 62 #define for_each_resource(_root, _p, _skip_children) \ 63 for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children)) 64 65 #ifdef CONFIG_PROC_FS 66 67 enum { MAX_IORES_LEVEL = 5 }; 68 69 static void *r_start(struct seq_file *m, loff_t *pos) 70 __acquires(resource_lock) 71 { 72 struct resource *root = pde_data(file_inode(m->file)); 73 struct resource *p; 74 loff_t l = *pos; 75 76 read_lock(&resource_lock); 77 for_each_resource(root, p, false) { 78 if (l-- == 0) 79 break; 80 } 81 82 return p; 83 } 84 85 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 86 { 87 struct resource *p = v; 88 89 (*pos)++; 90 91 return (void *)next_resource(p, false); 92 } 93 94 static void r_stop(struct seq_file *m, void *v) 95 __releases(resource_lock) 96 { 97 read_unlock(&resource_lock); 98 } 99 100 static int r_show(struct seq_file *m, void *v) 101 { 102 struct resource *root = pde_data(file_inode(m->file)); 103 struct resource *r = v, *p; 104 unsigned long long start, end; 105 int width = root->end < 0x10000 ? 4 : 8; 106 int depth; 107 108 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 109 if (p->parent == root) 110 break; 111 112 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 113 start = r->start; 114 end = r->end; 115 } else { 116 start = end = 0; 117 } 118 119 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 120 depth * 2, "", 121 width, start, 122 width, end, 123 r->name ? r->name : "<BAD>"); 124 return 0; 125 } 126 127 static const struct seq_operations resource_op = { 128 .start = r_start, 129 .next = r_next, 130 .stop = r_stop, 131 .show = r_show, 132 }; 133 134 static int __init ioresources_init(void) 135 { 136 proc_create_seq_data("ioports", 0, NULL, &resource_op, 137 &ioport_resource); 138 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 139 return 0; 140 } 141 __initcall(ioresources_init); 142 143 #endif /* CONFIG_PROC_FS */ 144 145 static void free_resource(struct resource *res) 146 { 147 /** 148 * If the resource was allocated using memblock early during boot 149 * we'll leak it here: we can only return full pages back to the 150 * buddy and trying to be smart and reusing them eventually in 151 * alloc_resource() overcomplicates resource handling. 152 */ 153 if (res && PageSlab(virt_to_head_page(res))) 154 kfree(res); 155 } 156 157 static struct resource *alloc_resource(gfp_t flags) 158 { 159 return kzalloc(sizeof(struct resource), flags); 160 } 161 162 /* Return the conflict entry if you can't request it */ 163 static struct resource * __request_resource(struct resource *root, struct resource *new) 164 { 165 resource_size_t start = new->start; 166 resource_size_t end = new->end; 167 struct resource *tmp, **p; 168 169 if (end < start) 170 return root; 171 if (start < root->start) 172 return root; 173 if (end > root->end) 174 return root; 175 p = &root->child; 176 for (;;) { 177 tmp = *p; 178 if (!tmp || tmp->start > end) { 179 new->sibling = tmp; 180 *p = new; 181 new->parent = root; 182 return NULL; 183 } 184 p = &tmp->sibling; 185 if (tmp->end < start) 186 continue; 187 return tmp; 188 } 189 } 190 191 static int __release_resource(struct resource *old, bool release_child) 192 { 193 struct resource *tmp, **p, *chd; 194 195 p = &old->parent->child; 196 for (;;) { 197 tmp = *p; 198 if (!tmp) 199 break; 200 if (tmp == old) { 201 if (release_child || !(tmp->child)) { 202 *p = tmp->sibling; 203 } else { 204 for (chd = tmp->child;; chd = chd->sibling) { 205 chd->parent = tmp->parent; 206 if (!(chd->sibling)) 207 break; 208 } 209 *p = tmp->child; 210 chd->sibling = tmp->sibling; 211 } 212 old->parent = NULL; 213 return 0; 214 } 215 p = &tmp->sibling; 216 } 217 return -EINVAL; 218 } 219 220 static void __release_child_resources(struct resource *r) 221 { 222 struct resource *tmp, *p; 223 resource_size_t size; 224 225 p = r->child; 226 r->child = NULL; 227 while (p) { 228 tmp = p; 229 p = p->sibling; 230 231 tmp->parent = NULL; 232 tmp->sibling = NULL; 233 __release_child_resources(tmp); 234 235 printk(KERN_DEBUG "release child resource %pR\n", tmp); 236 /* need to restore size, and keep flags */ 237 size = resource_size(tmp); 238 tmp->start = 0; 239 tmp->end = size - 1; 240 } 241 } 242 243 void release_child_resources(struct resource *r) 244 { 245 write_lock(&resource_lock); 246 __release_child_resources(r); 247 write_unlock(&resource_lock); 248 } 249 250 /** 251 * request_resource_conflict - request and reserve an I/O or memory resource 252 * @root: root resource descriptor 253 * @new: resource descriptor desired by caller 254 * 255 * Returns 0 for success, conflict resource on error. 256 */ 257 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 258 { 259 struct resource *conflict; 260 261 write_lock(&resource_lock); 262 conflict = __request_resource(root, new); 263 write_unlock(&resource_lock); 264 return conflict; 265 } 266 267 /** 268 * request_resource - request and reserve an I/O or memory resource 269 * @root: root resource descriptor 270 * @new: resource descriptor desired by caller 271 * 272 * Returns 0 for success, negative error code on error. 273 */ 274 int request_resource(struct resource *root, struct resource *new) 275 { 276 struct resource *conflict; 277 278 conflict = request_resource_conflict(root, new); 279 return conflict ? -EBUSY : 0; 280 } 281 282 EXPORT_SYMBOL(request_resource); 283 284 /** 285 * release_resource - release a previously reserved resource 286 * @old: resource pointer 287 */ 288 int release_resource(struct resource *old) 289 { 290 int retval; 291 292 write_lock(&resource_lock); 293 retval = __release_resource(old, true); 294 write_unlock(&resource_lock); 295 return retval; 296 } 297 298 EXPORT_SYMBOL(release_resource); 299 300 /** 301 * find_next_iomem_res - Finds the lowest iomem resource that covers part of 302 * [@start..@end]. 303 * 304 * If a resource is found, returns 0 and @*res is overwritten with the part 305 * of the resource that's within [@start..@end]; if none is found, returns 306 * -ENODEV. Returns -EINVAL for invalid parameters. 307 * 308 * @start: start address of the resource searched for 309 * @end: end address of same resource 310 * @flags: flags which the resource must have 311 * @desc: descriptor the resource must have 312 * @res: return ptr, if resource found 313 * 314 * The caller must specify @start, @end, @flags, and @desc 315 * (which may be IORES_DESC_NONE). 316 */ 317 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 318 unsigned long flags, unsigned long desc, 319 struct resource *res) 320 { 321 struct resource *p; 322 323 if (!res) 324 return -EINVAL; 325 326 if (start >= end) 327 return -EINVAL; 328 329 read_lock(&resource_lock); 330 331 for_each_resource(&iomem_resource, p, false) { 332 /* If we passed the resource we are looking for, stop */ 333 if (p->start > end) { 334 p = NULL; 335 break; 336 } 337 338 /* Skip until we find a range that matches what we look for */ 339 if (p->end < start) 340 continue; 341 342 if ((p->flags & flags) != flags) 343 continue; 344 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 345 continue; 346 347 /* Found a match, break */ 348 break; 349 } 350 351 if (p) { 352 /* copy data */ 353 *res = (struct resource) { 354 .start = max(start, p->start), 355 .end = min(end, p->end), 356 .flags = p->flags, 357 .desc = p->desc, 358 .parent = p->parent, 359 }; 360 } 361 362 read_unlock(&resource_lock); 363 return p ? 0 : -ENODEV; 364 } 365 366 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 367 unsigned long flags, unsigned long desc, 368 void *arg, 369 int (*func)(struct resource *, void *)) 370 { 371 struct resource res; 372 int ret = -EINVAL; 373 374 while (start < end && 375 !find_next_iomem_res(start, end, flags, desc, &res)) { 376 ret = (*func)(&res, arg); 377 if (ret) 378 break; 379 380 start = res.end + 1; 381 } 382 383 return ret; 384 } 385 386 /** 387 * walk_iomem_res_desc - Walks through iomem resources and calls func() 388 * with matching resource ranges. 389 * * 390 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 391 * @flags: I/O resource flags 392 * @start: start addr 393 * @end: end addr 394 * @arg: function argument for the callback @func 395 * @func: callback function that is called for each qualifying resource area 396 * 397 * All the memory ranges which overlap start,end and also match flags and 398 * desc are valid candidates. 399 * 400 * NOTE: For a new descriptor search, define a new IORES_DESC in 401 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 402 */ 403 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 404 u64 end, void *arg, int (*func)(struct resource *, void *)) 405 { 406 return __walk_iomem_res_desc(start, end, flags, desc, arg, func); 407 } 408 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 409 410 /* 411 * This function calls the @func callback against all memory ranges of type 412 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 413 * Now, this function is only for System RAM, it deals with full ranges and 414 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 415 * ranges. 416 */ 417 int walk_system_ram_res(u64 start, u64 end, void *arg, 418 int (*func)(struct resource *, void *)) 419 { 420 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 421 422 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 423 func); 424 } 425 426 /* 427 * This function, being a variant of walk_system_ram_res(), calls the @func 428 * callback against all memory ranges of type System RAM which are marked as 429 * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from 430 * higher to lower. 431 */ 432 int walk_system_ram_res_rev(u64 start, u64 end, void *arg, 433 int (*func)(struct resource *, void *)) 434 { 435 struct resource res, *rams; 436 int rams_size = 16, i; 437 unsigned long flags; 438 int ret = -1; 439 440 /* create a list */ 441 rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL); 442 if (!rams) 443 return ret; 444 445 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 446 i = 0; 447 while ((start < end) && 448 (!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) { 449 if (i >= rams_size) { 450 /* re-alloc */ 451 struct resource *rams_new; 452 453 rams_new = kvrealloc(rams, rams_size * sizeof(struct resource), 454 (rams_size + 16) * sizeof(struct resource), 455 GFP_KERNEL); 456 if (!rams_new) 457 goto out; 458 459 rams = rams_new; 460 rams_size += 16; 461 } 462 463 rams[i].start = res.start; 464 rams[i++].end = res.end; 465 466 start = res.end + 1; 467 } 468 469 /* go reverse */ 470 for (i--; i >= 0; i--) { 471 ret = (*func)(&rams[i], arg); 472 if (ret) 473 break; 474 } 475 476 out: 477 kvfree(rams); 478 return ret; 479 } 480 481 /* 482 * This function calls the @func callback against all memory ranges, which 483 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 484 */ 485 int walk_mem_res(u64 start, u64 end, void *arg, 486 int (*func)(struct resource *, void *)) 487 { 488 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 489 490 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 491 func); 492 } 493 494 /* 495 * This function calls the @func callback against all memory ranges of type 496 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 497 * It is to be used only for System RAM. 498 */ 499 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 500 void *arg, int (*func)(unsigned long, unsigned long, void *)) 501 { 502 resource_size_t start, end; 503 unsigned long flags; 504 struct resource res; 505 unsigned long pfn, end_pfn; 506 int ret = -EINVAL; 507 508 start = (u64) start_pfn << PAGE_SHIFT; 509 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 510 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 511 while (start < end && 512 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) { 513 pfn = PFN_UP(res.start); 514 end_pfn = PFN_DOWN(res.end + 1); 515 if (end_pfn > pfn) 516 ret = (*func)(pfn, end_pfn - pfn, arg); 517 if (ret) 518 break; 519 start = res.end + 1; 520 } 521 return ret; 522 } 523 524 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 525 { 526 return 1; 527 } 528 529 /* 530 * This generic page_is_ram() returns true if specified address is 531 * registered as System RAM in iomem_resource list. 532 */ 533 int __weak page_is_ram(unsigned long pfn) 534 { 535 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 536 } 537 EXPORT_SYMBOL_GPL(page_is_ram); 538 539 static int __region_intersects(struct resource *parent, resource_size_t start, 540 size_t size, unsigned long flags, 541 unsigned long desc) 542 { 543 struct resource res; 544 int type = 0; int other = 0; 545 struct resource *p; 546 547 res.start = start; 548 res.end = start + size - 1; 549 550 for (p = parent->child; p ; p = p->sibling) { 551 bool is_type = (((p->flags & flags) == flags) && 552 ((desc == IORES_DESC_NONE) || 553 (desc == p->desc))); 554 555 if (resource_overlaps(p, &res)) 556 is_type ? type++ : other++; 557 } 558 559 if (type == 0) 560 return REGION_DISJOINT; 561 562 if (other == 0) 563 return REGION_INTERSECTS; 564 565 return REGION_MIXED; 566 } 567 568 /** 569 * region_intersects() - determine intersection of region with known resources 570 * @start: region start address 571 * @size: size of region 572 * @flags: flags of resource (in iomem_resource) 573 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 574 * 575 * Check if the specified region partially overlaps or fully eclipses a 576 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 577 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 578 * return REGION_MIXED if the region overlaps @flags/@desc and another 579 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 580 * and no other defined resource. Note that REGION_INTERSECTS is also 581 * returned in the case when the specified region overlaps RAM and undefined 582 * memory holes. 583 * 584 * region_intersect() is used by memory remapping functions to ensure 585 * the user is not remapping RAM and is a vast speed up over walking 586 * through the resource table page by page. 587 */ 588 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 589 unsigned long desc) 590 { 591 int ret; 592 593 read_lock(&resource_lock); 594 ret = __region_intersects(&iomem_resource, start, size, flags, desc); 595 read_unlock(&resource_lock); 596 597 return ret; 598 } 599 EXPORT_SYMBOL_GPL(region_intersects); 600 601 void __weak arch_remove_reservations(struct resource *avail) 602 { 603 } 604 605 static void resource_clip(struct resource *res, resource_size_t min, 606 resource_size_t max) 607 { 608 if (res->start < min) 609 res->start = min; 610 if (res->end > max) 611 res->end = max; 612 } 613 614 /* 615 * Find empty space in the resource tree with the given range and 616 * alignment constraints 617 */ 618 static int __find_resource_space(struct resource *root, struct resource *old, 619 struct resource *new, resource_size_t size, 620 struct resource_constraint *constraint) 621 { 622 struct resource *this = root->child; 623 struct resource tmp = *new, avail, alloc; 624 resource_alignf alignf = constraint->alignf; 625 626 tmp.start = root->start; 627 /* 628 * Skip past an allocated resource that starts at 0, since the assignment 629 * of this->start - 1 to tmp->end below would cause an underflow. 630 */ 631 if (this && this->start == root->start) { 632 tmp.start = (this == old) ? old->start : this->end + 1; 633 this = this->sibling; 634 } 635 for(;;) { 636 if (this) 637 tmp.end = (this == old) ? this->end : this->start - 1; 638 else 639 tmp.end = root->end; 640 641 if (tmp.end < tmp.start) 642 goto next; 643 644 resource_clip(&tmp, constraint->min, constraint->max); 645 arch_remove_reservations(&tmp); 646 647 /* Check for overflow after ALIGN() */ 648 avail.start = ALIGN(tmp.start, constraint->align); 649 avail.end = tmp.end; 650 avail.flags = new->flags & ~IORESOURCE_UNSET; 651 if (avail.start >= tmp.start) { 652 alloc.flags = avail.flags; 653 if (alignf) { 654 alloc.start = alignf(constraint->alignf_data, 655 &avail, size, constraint->align); 656 } else { 657 alloc.start = avail.start; 658 } 659 alloc.end = alloc.start + size - 1; 660 if (alloc.start <= alloc.end && 661 resource_contains(&avail, &alloc)) { 662 new->start = alloc.start; 663 new->end = alloc.end; 664 return 0; 665 } 666 } 667 668 next: if (!this || this->end == root->end) 669 break; 670 671 if (this != old) 672 tmp.start = this->end + 1; 673 this = this->sibling; 674 } 675 return -EBUSY; 676 } 677 678 /** 679 * find_resource_space - Find empty space in the resource tree 680 * @root: Root resource descriptor 681 * @new: Resource descriptor awaiting an empty resource space 682 * @size: The minimum size of the empty space 683 * @constraint: The range and alignment constraints to be met 684 * 685 * Finds an empty space under @root in the resource tree satisfying range and 686 * alignment @constraints. 687 * 688 * Return: 689 * * %0 - if successful, @new members start, end, and flags are altered. 690 * * %-EBUSY - if no empty space was found. 691 */ 692 int find_resource_space(struct resource *root, struct resource *new, 693 resource_size_t size, 694 struct resource_constraint *constraint) 695 { 696 return __find_resource_space(root, NULL, new, size, constraint); 697 } 698 EXPORT_SYMBOL_GPL(find_resource_space); 699 700 /** 701 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 702 * The resource will be relocated if the new size cannot be reallocated in the 703 * current location. 704 * 705 * @root: root resource descriptor 706 * @old: resource descriptor desired by caller 707 * @newsize: new size of the resource descriptor 708 * @constraint: the size and alignment constraints to be met. 709 */ 710 static int reallocate_resource(struct resource *root, struct resource *old, 711 resource_size_t newsize, 712 struct resource_constraint *constraint) 713 { 714 int err=0; 715 struct resource new = *old; 716 struct resource *conflict; 717 718 write_lock(&resource_lock); 719 720 if ((err = __find_resource_space(root, old, &new, newsize, constraint))) 721 goto out; 722 723 if (resource_contains(&new, old)) { 724 old->start = new.start; 725 old->end = new.end; 726 goto out; 727 } 728 729 if (old->child) { 730 err = -EBUSY; 731 goto out; 732 } 733 734 if (resource_contains(old, &new)) { 735 old->start = new.start; 736 old->end = new.end; 737 } else { 738 __release_resource(old, true); 739 *old = new; 740 conflict = __request_resource(root, old); 741 BUG_ON(conflict); 742 } 743 out: 744 write_unlock(&resource_lock); 745 return err; 746 } 747 748 749 /** 750 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 751 * The resource will be reallocated with a new size if it was already allocated 752 * @root: root resource descriptor 753 * @new: resource descriptor desired by caller 754 * @size: requested resource region size 755 * @min: minimum boundary to allocate 756 * @max: maximum boundary to allocate 757 * @align: alignment requested, in bytes 758 * @alignf: alignment function, optional, called if not NULL 759 * @alignf_data: arbitrary data to pass to the @alignf function 760 */ 761 int allocate_resource(struct resource *root, struct resource *new, 762 resource_size_t size, resource_size_t min, 763 resource_size_t max, resource_size_t align, 764 resource_alignf alignf, 765 void *alignf_data) 766 { 767 int err; 768 struct resource_constraint constraint; 769 770 constraint.min = min; 771 constraint.max = max; 772 constraint.align = align; 773 constraint.alignf = alignf; 774 constraint.alignf_data = alignf_data; 775 776 if ( new->parent ) { 777 /* resource is already allocated, try reallocating with 778 the new constraints */ 779 return reallocate_resource(root, new, size, &constraint); 780 } 781 782 write_lock(&resource_lock); 783 err = find_resource_space(root, new, size, &constraint); 784 if (err >= 0 && __request_resource(root, new)) 785 err = -EBUSY; 786 write_unlock(&resource_lock); 787 return err; 788 } 789 790 EXPORT_SYMBOL(allocate_resource); 791 792 /** 793 * lookup_resource - find an existing resource by a resource start address 794 * @root: root resource descriptor 795 * @start: resource start address 796 * 797 * Returns a pointer to the resource if found, NULL otherwise 798 */ 799 struct resource *lookup_resource(struct resource *root, resource_size_t start) 800 { 801 struct resource *res; 802 803 read_lock(&resource_lock); 804 for (res = root->child; res; res = res->sibling) { 805 if (res->start == start) 806 break; 807 } 808 read_unlock(&resource_lock); 809 810 return res; 811 } 812 813 /* 814 * Insert a resource into the resource tree. If successful, return NULL, 815 * otherwise return the conflicting resource (compare to __request_resource()) 816 */ 817 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 818 { 819 struct resource *first, *next; 820 821 for (;; parent = first) { 822 first = __request_resource(parent, new); 823 if (!first) 824 return first; 825 826 if (first == parent) 827 return first; 828 if (WARN_ON(first == new)) /* duplicated insertion */ 829 return first; 830 831 if ((first->start > new->start) || (first->end < new->end)) 832 break; 833 if ((first->start == new->start) && (first->end == new->end)) 834 break; 835 } 836 837 for (next = first; ; next = next->sibling) { 838 /* Partial overlap? Bad, and unfixable */ 839 if (next->start < new->start || next->end > new->end) 840 return next; 841 if (!next->sibling) 842 break; 843 if (next->sibling->start > new->end) 844 break; 845 } 846 847 new->parent = parent; 848 new->sibling = next->sibling; 849 new->child = first; 850 851 next->sibling = NULL; 852 for (next = first; next; next = next->sibling) 853 next->parent = new; 854 855 if (parent->child == first) { 856 parent->child = new; 857 } else { 858 next = parent->child; 859 while (next->sibling != first) 860 next = next->sibling; 861 next->sibling = new; 862 } 863 return NULL; 864 } 865 866 /** 867 * insert_resource_conflict - Inserts resource in the resource tree 868 * @parent: parent of the new resource 869 * @new: new resource to insert 870 * 871 * Returns 0 on success, conflict resource if the resource can't be inserted. 872 * 873 * This function is equivalent to request_resource_conflict when no conflict 874 * happens. If a conflict happens, and the conflicting resources 875 * entirely fit within the range of the new resource, then the new 876 * resource is inserted and the conflicting resources become children of 877 * the new resource. 878 * 879 * This function is intended for producers of resources, such as FW modules 880 * and bus drivers. 881 */ 882 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 883 { 884 struct resource *conflict; 885 886 write_lock(&resource_lock); 887 conflict = __insert_resource(parent, new); 888 write_unlock(&resource_lock); 889 return conflict; 890 } 891 892 /** 893 * insert_resource - Inserts a resource in the resource tree 894 * @parent: parent of the new resource 895 * @new: new resource to insert 896 * 897 * Returns 0 on success, -EBUSY if the resource can't be inserted. 898 * 899 * This function is intended for producers of resources, such as FW modules 900 * and bus drivers. 901 */ 902 int insert_resource(struct resource *parent, struct resource *new) 903 { 904 struct resource *conflict; 905 906 conflict = insert_resource_conflict(parent, new); 907 return conflict ? -EBUSY : 0; 908 } 909 EXPORT_SYMBOL_GPL(insert_resource); 910 911 /** 912 * insert_resource_expand_to_fit - Insert a resource into the resource tree 913 * @root: root resource descriptor 914 * @new: new resource to insert 915 * 916 * Insert a resource into the resource tree, possibly expanding it in order 917 * to make it encompass any conflicting resources. 918 */ 919 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 920 { 921 if (new->parent) 922 return; 923 924 write_lock(&resource_lock); 925 for (;;) { 926 struct resource *conflict; 927 928 conflict = __insert_resource(root, new); 929 if (!conflict) 930 break; 931 if (conflict == root) 932 break; 933 934 /* Ok, expand resource to cover the conflict, then try again .. */ 935 if (conflict->start < new->start) 936 new->start = conflict->start; 937 if (conflict->end > new->end) 938 new->end = conflict->end; 939 940 pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 941 } 942 write_unlock(&resource_lock); 943 } 944 /* 945 * Not for general consumption, only early boot memory map parsing, PCI 946 * resource discovery, and late discovery of CXL resources are expected 947 * to use this interface. The former are built-in and only the latter, 948 * CXL, is a module. 949 */ 950 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL); 951 952 /** 953 * remove_resource - Remove a resource in the resource tree 954 * @old: resource to remove 955 * 956 * Returns 0 on success, -EINVAL if the resource is not valid. 957 * 958 * This function removes a resource previously inserted by insert_resource() 959 * or insert_resource_conflict(), and moves the children (if any) up to 960 * where they were before. insert_resource() and insert_resource_conflict() 961 * insert a new resource, and move any conflicting resources down to the 962 * children of the new resource. 963 * 964 * insert_resource(), insert_resource_conflict() and remove_resource() are 965 * intended for producers of resources, such as FW modules and bus drivers. 966 */ 967 int remove_resource(struct resource *old) 968 { 969 int retval; 970 971 write_lock(&resource_lock); 972 retval = __release_resource(old, false); 973 write_unlock(&resource_lock); 974 return retval; 975 } 976 EXPORT_SYMBOL_GPL(remove_resource); 977 978 static int __adjust_resource(struct resource *res, resource_size_t start, 979 resource_size_t size) 980 { 981 struct resource *tmp, *parent = res->parent; 982 resource_size_t end = start + size - 1; 983 int result = -EBUSY; 984 985 if (!parent) 986 goto skip; 987 988 if ((start < parent->start) || (end > parent->end)) 989 goto out; 990 991 if (res->sibling && (res->sibling->start <= end)) 992 goto out; 993 994 tmp = parent->child; 995 if (tmp != res) { 996 while (tmp->sibling != res) 997 tmp = tmp->sibling; 998 if (start <= tmp->end) 999 goto out; 1000 } 1001 1002 skip: 1003 for (tmp = res->child; tmp; tmp = tmp->sibling) 1004 if ((tmp->start < start) || (tmp->end > end)) 1005 goto out; 1006 1007 res->start = start; 1008 res->end = end; 1009 result = 0; 1010 1011 out: 1012 return result; 1013 } 1014 1015 /** 1016 * adjust_resource - modify a resource's start and size 1017 * @res: resource to modify 1018 * @start: new start value 1019 * @size: new size 1020 * 1021 * Given an existing resource, change its start and size to match the 1022 * arguments. Returns 0 on success, -EBUSY if it can't fit. 1023 * Existing children of the resource are assumed to be immutable. 1024 */ 1025 int adjust_resource(struct resource *res, resource_size_t start, 1026 resource_size_t size) 1027 { 1028 int result; 1029 1030 write_lock(&resource_lock); 1031 result = __adjust_resource(res, start, size); 1032 write_unlock(&resource_lock); 1033 return result; 1034 } 1035 EXPORT_SYMBOL(adjust_resource); 1036 1037 static void __init 1038 __reserve_region_with_split(struct resource *root, resource_size_t start, 1039 resource_size_t end, const char *name) 1040 { 1041 struct resource *parent = root; 1042 struct resource *conflict; 1043 struct resource *res = alloc_resource(GFP_ATOMIC); 1044 struct resource *next_res = NULL; 1045 int type = resource_type(root); 1046 1047 if (!res) 1048 return; 1049 1050 res->name = name; 1051 res->start = start; 1052 res->end = end; 1053 res->flags = type | IORESOURCE_BUSY; 1054 res->desc = IORES_DESC_NONE; 1055 1056 while (1) { 1057 1058 conflict = __request_resource(parent, res); 1059 if (!conflict) { 1060 if (!next_res) 1061 break; 1062 res = next_res; 1063 next_res = NULL; 1064 continue; 1065 } 1066 1067 /* conflict covered whole area */ 1068 if (conflict->start <= res->start && 1069 conflict->end >= res->end) { 1070 free_resource(res); 1071 WARN_ON(next_res); 1072 break; 1073 } 1074 1075 /* failed, split and try again */ 1076 if (conflict->start > res->start) { 1077 end = res->end; 1078 res->end = conflict->start - 1; 1079 if (conflict->end < end) { 1080 next_res = alloc_resource(GFP_ATOMIC); 1081 if (!next_res) { 1082 free_resource(res); 1083 break; 1084 } 1085 next_res->name = name; 1086 next_res->start = conflict->end + 1; 1087 next_res->end = end; 1088 next_res->flags = type | IORESOURCE_BUSY; 1089 next_res->desc = IORES_DESC_NONE; 1090 } 1091 } else { 1092 res->start = conflict->end + 1; 1093 } 1094 } 1095 1096 } 1097 1098 void __init 1099 reserve_region_with_split(struct resource *root, resource_size_t start, 1100 resource_size_t end, const char *name) 1101 { 1102 int abort = 0; 1103 1104 write_lock(&resource_lock); 1105 if (root->start > start || root->end < end) { 1106 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1107 (unsigned long long)start, (unsigned long long)end, 1108 root); 1109 if (start > root->end || end < root->start) 1110 abort = 1; 1111 else { 1112 if (end > root->end) 1113 end = root->end; 1114 if (start < root->start) 1115 start = root->start; 1116 pr_err("fixing request to [0x%llx-0x%llx]\n", 1117 (unsigned long long)start, 1118 (unsigned long long)end); 1119 } 1120 dump_stack(); 1121 } 1122 if (!abort) 1123 __reserve_region_with_split(root, start, end, name); 1124 write_unlock(&resource_lock); 1125 } 1126 1127 /** 1128 * resource_alignment - calculate resource's alignment 1129 * @res: resource pointer 1130 * 1131 * Returns alignment on success, 0 (invalid alignment) on failure. 1132 */ 1133 resource_size_t resource_alignment(struct resource *res) 1134 { 1135 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1136 case IORESOURCE_SIZEALIGN: 1137 return resource_size(res); 1138 case IORESOURCE_STARTALIGN: 1139 return res->start; 1140 default: 1141 return 0; 1142 } 1143 } 1144 1145 /* 1146 * This is compatibility stuff for IO resources. 1147 * 1148 * Note how this, unlike the above, knows about 1149 * the IO flag meanings (busy etc). 1150 * 1151 * request_region creates a new busy region. 1152 * 1153 * release_region releases a matching busy region. 1154 */ 1155 1156 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1157 1158 static struct inode *iomem_inode; 1159 1160 #ifdef CONFIG_IO_STRICT_DEVMEM 1161 static void revoke_iomem(struct resource *res) 1162 { 1163 /* pairs with smp_store_release() in iomem_init_inode() */ 1164 struct inode *inode = smp_load_acquire(&iomem_inode); 1165 1166 /* 1167 * Check that the initialization has completed. Losing the race 1168 * is ok because it means drivers are claiming resources before 1169 * the fs_initcall level of init and prevent iomem_get_mapping users 1170 * from establishing mappings. 1171 */ 1172 if (!inode) 1173 return; 1174 1175 /* 1176 * The expectation is that the driver has successfully marked 1177 * the resource busy by this point, so devmem_is_allowed() 1178 * should start returning false, however for performance this 1179 * does not iterate the entire resource range. 1180 */ 1181 if (devmem_is_allowed(PHYS_PFN(res->start)) && 1182 devmem_is_allowed(PHYS_PFN(res->end))) { 1183 /* 1184 * *cringe* iomem=relaxed says "go ahead, what's the 1185 * worst that can happen?" 1186 */ 1187 return; 1188 } 1189 1190 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1); 1191 } 1192 #else 1193 static void revoke_iomem(struct resource *res) {} 1194 #endif 1195 1196 struct address_space *iomem_get_mapping(void) 1197 { 1198 /* 1199 * This function is only called from file open paths, hence guaranteed 1200 * that fs_initcalls have completed and no need to check for NULL. But 1201 * since revoke_iomem can be called before the initcall we still need 1202 * the barrier to appease checkers. 1203 */ 1204 return smp_load_acquire(&iomem_inode)->i_mapping; 1205 } 1206 1207 static int __request_region_locked(struct resource *res, struct resource *parent, 1208 resource_size_t start, resource_size_t n, 1209 const char *name, int flags) 1210 { 1211 DECLARE_WAITQUEUE(wait, current); 1212 1213 res->name = name; 1214 res->start = start; 1215 res->end = start + n - 1; 1216 1217 for (;;) { 1218 struct resource *conflict; 1219 1220 res->flags = resource_type(parent) | resource_ext_type(parent); 1221 res->flags |= IORESOURCE_BUSY | flags; 1222 res->desc = parent->desc; 1223 1224 conflict = __request_resource(parent, res); 1225 if (!conflict) 1226 break; 1227 /* 1228 * mm/hmm.c reserves physical addresses which then 1229 * become unavailable to other users. Conflicts are 1230 * not expected. Warn to aid debugging if encountered. 1231 */ 1232 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 1233 pr_warn("Unaddressable device %s %pR conflicts with %pR", 1234 conflict->name, conflict, res); 1235 } 1236 if (conflict != parent) { 1237 if (!(conflict->flags & IORESOURCE_BUSY)) { 1238 parent = conflict; 1239 continue; 1240 } 1241 } 1242 if (conflict->flags & flags & IORESOURCE_MUXED) { 1243 add_wait_queue(&muxed_resource_wait, &wait); 1244 write_unlock(&resource_lock); 1245 set_current_state(TASK_UNINTERRUPTIBLE); 1246 schedule(); 1247 remove_wait_queue(&muxed_resource_wait, &wait); 1248 write_lock(&resource_lock); 1249 continue; 1250 } 1251 /* Uhhuh, that didn't work out.. */ 1252 return -EBUSY; 1253 } 1254 1255 return 0; 1256 } 1257 1258 /** 1259 * __request_region - create a new busy resource region 1260 * @parent: parent resource descriptor 1261 * @start: resource start address 1262 * @n: resource region size 1263 * @name: reserving caller's ID string 1264 * @flags: IO resource flags 1265 */ 1266 struct resource *__request_region(struct resource *parent, 1267 resource_size_t start, resource_size_t n, 1268 const char *name, int flags) 1269 { 1270 struct resource *res = alloc_resource(GFP_KERNEL); 1271 int ret; 1272 1273 if (!res) 1274 return NULL; 1275 1276 write_lock(&resource_lock); 1277 ret = __request_region_locked(res, parent, start, n, name, flags); 1278 write_unlock(&resource_lock); 1279 1280 if (ret) { 1281 free_resource(res); 1282 return NULL; 1283 } 1284 1285 if (parent == &iomem_resource) 1286 revoke_iomem(res); 1287 1288 return res; 1289 } 1290 EXPORT_SYMBOL(__request_region); 1291 1292 /** 1293 * __release_region - release a previously reserved resource region 1294 * @parent: parent resource descriptor 1295 * @start: resource start address 1296 * @n: resource region size 1297 * 1298 * The described resource region must match a currently busy region. 1299 */ 1300 void __release_region(struct resource *parent, resource_size_t start, 1301 resource_size_t n) 1302 { 1303 struct resource **p; 1304 resource_size_t end; 1305 1306 p = &parent->child; 1307 end = start + n - 1; 1308 1309 write_lock(&resource_lock); 1310 1311 for (;;) { 1312 struct resource *res = *p; 1313 1314 if (!res) 1315 break; 1316 if (res->start <= start && res->end >= end) { 1317 if (!(res->flags & IORESOURCE_BUSY)) { 1318 p = &res->child; 1319 continue; 1320 } 1321 if (res->start != start || res->end != end) 1322 break; 1323 *p = res->sibling; 1324 write_unlock(&resource_lock); 1325 if (res->flags & IORESOURCE_MUXED) 1326 wake_up(&muxed_resource_wait); 1327 free_resource(res); 1328 return; 1329 } 1330 p = &res->sibling; 1331 } 1332 1333 write_unlock(&resource_lock); 1334 1335 pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end); 1336 } 1337 EXPORT_SYMBOL(__release_region); 1338 1339 #ifdef CONFIG_MEMORY_HOTREMOVE 1340 /** 1341 * release_mem_region_adjustable - release a previously reserved memory region 1342 * @start: resource start address 1343 * @size: resource region size 1344 * 1345 * This interface is intended for memory hot-delete. The requested region 1346 * is released from a currently busy memory resource. The requested region 1347 * must either match exactly or fit into a single busy resource entry. In 1348 * the latter case, the remaining resource is adjusted accordingly. 1349 * Existing children of the busy memory resource must be immutable in the 1350 * request. 1351 * 1352 * Note: 1353 * - Additional release conditions, such as overlapping region, can be 1354 * supported after they are confirmed as valid cases. 1355 * - When a busy memory resource gets split into two entries, the code 1356 * assumes that all children remain in the lower address entry for 1357 * simplicity. Enhance this logic when necessary. 1358 */ 1359 void release_mem_region_adjustable(resource_size_t start, resource_size_t size) 1360 { 1361 struct resource *parent = &iomem_resource; 1362 struct resource *new_res = NULL; 1363 bool alloc_nofail = false; 1364 struct resource **p; 1365 struct resource *res; 1366 resource_size_t end; 1367 1368 end = start + size - 1; 1369 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end))) 1370 return; 1371 1372 /* 1373 * We free up quite a lot of memory on memory hotunplug (esp., memap), 1374 * just before releasing the region. This is highly unlikely to 1375 * fail - let's play save and make it never fail as the caller cannot 1376 * perform any error handling (e.g., trying to re-add memory will fail 1377 * similarly). 1378 */ 1379 retry: 1380 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0)); 1381 1382 p = &parent->child; 1383 write_lock(&resource_lock); 1384 1385 while ((res = *p)) { 1386 if (res->start >= end) 1387 break; 1388 1389 /* look for the next resource if it does not fit into */ 1390 if (res->start > start || res->end < end) { 1391 p = &res->sibling; 1392 continue; 1393 } 1394 1395 if (!(res->flags & IORESOURCE_MEM)) 1396 break; 1397 1398 if (!(res->flags & IORESOURCE_BUSY)) { 1399 p = &res->child; 1400 continue; 1401 } 1402 1403 /* found the target resource; let's adjust accordingly */ 1404 if (res->start == start && res->end == end) { 1405 /* free the whole entry */ 1406 *p = res->sibling; 1407 free_resource(res); 1408 } else if (res->start == start && res->end != end) { 1409 /* adjust the start */ 1410 WARN_ON_ONCE(__adjust_resource(res, end + 1, 1411 res->end - end)); 1412 } else if (res->start != start && res->end == end) { 1413 /* adjust the end */ 1414 WARN_ON_ONCE(__adjust_resource(res, res->start, 1415 start - res->start)); 1416 } else { 1417 /* split into two entries - we need a new resource */ 1418 if (!new_res) { 1419 new_res = alloc_resource(GFP_ATOMIC); 1420 if (!new_res) { 1421 alloc_nofail = true; 1422 write_unlock(&resource_lock); 1423 goto retry; 1424 } 1425 } 1426 new_res->name = res->name; 1427 new_res->start = end + 1; 1428 new_res->end = res->end; 1429 new_res->flags = res->flags; 1430 new_res->desc = res->desc; 1431 new_res->parent = res->parent; 1432 new_res->sibling = res->sibling; 1433 new_res->child = NULL; 1434 1435 if (WARN_ON_ONCE(__adjust_resource(res, res->start, 1436 start - res->start))) 1437 break; 1438 res->sibling = new_res; 1439 new_res = NULL; 1440 } 1441 1442 break; 1443 } 1444 1445 write_unlock(&resource_lock); 1446 free_resource(new_res); 1447 } 1448 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1449 1450 #ifdef CONFIG_MEMORY_HOTPLUG 1451 static bool system_ram_resources_mergeable(struct resource *r1, 1452 struct resource *r2) 1453 { 1454 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */ 1455 return r1->flags == r2->flags && r1->end + 1 == r2->start && 1456 r1->name == r2->name && r1->desc == r2->desc && 1457 !r1->child && !r2->child; 1458 } 1459 1460 /** 1461 * merge_system_ram_resource - mark the System RAM resource mergeable and try to 1462 * merge it with adjacent, mergeable resources 1463 * @res: resource descriptor 1464 * 1465 * This interface is intended for memory hotplug, whereby lots of contiguous 1466 * system ram resources are added (e.g., via add_memory*()) by a driver, and 1467 * the actual resource boundaries are not of interest (e.g., it might be 1468 * relevant for DIMMs). Only resources that are marked mergeable, that have the 1469 * same parent, and that don't have any children are considered. All mergeable 1470 * resources must be immutable during the request. 1471 * 1472 * Note: 1473 * - The caller has to make sure that no pointers to resources that are 1474 * marked mergeable are used anymore after this call - the resource might 1475 * be freed and the pointer might be stale! 1476 * - release_mem_region_adjustable() will split on demand on memory hotunplug 1477 */ 1478 void merge_system_ram_resource(struct resource *res) 1479 { 1480 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 1481 struct resource *cur; 1482 1483 if (WARN_ON_ONCE((res->flags & flags) != flags)) 1484 return; 1485 1486 write_lock(&resource_lock); 1487 res->flags |= IORESOURCE_SYSRAM_MERGEABLE; 1488 1489 /* Try to merge with next item in the list. */ 1490 cur = res->sibling; 1491 if (cur && system_ram_resources_mergeable(res, cur)) { 1492 res->end = cur->end; 1493 res->sibling = cur->sibling; 1494 free_resource(cur); 1495 } 1496 1497 /* Try to merge with previous item in the list. */ 1498 cur = res->parent->child; 1499 while (cur && cur->sibling != res) 1500 cur = cur->sibling; 1501 if (cur && system_ram_resources_mergeable(cur, res)) { 1502 cur->end = res->end; 1503 cur->sibling = res->sibling; 1504 free_resource(res); 1505 } 1506 write_unlock(&resource_lock); 1507 } 1508 #endif /* CONFIG_MEMORY_HOTPLUG */ 1509 1510 /* 1511 * Managed region resource 1512 */ 1513 static void devm_resource_release(struct device *dev, void *ptr) 1514 { 1515 struct resource **r = ptr; 1516 1517 release_resource(*r); 1518 } 1519 1520 /** 1521 * devm_request_resource() - request and reserve an I/O or memory resource 1522 * @dev: device for which to request the resource 1523 * @root: root of the resource tree from which to request the resource 1524 * @new: descriptor of the resource to request 1525 * 1526 * This is a device-managed version of request_resource(). There is usually 1527 * no need to release resources requested by this function explicitly since 1528 * that will be taken care of when the device is unbound from its driver. 1529 * If for some reason the resource needs to be released explicitly, because 1530 * of ordering issues for example, drivers must call devm_release_resource() 1531 * rather than the regular release_resource(). 1532 * 1533 * When a conflict is detected between any existing resources and the newly 1534 * requested resource, an error message will be printed. 1535 * 1536 * Returns 0 on success or a negative error code on failure. 1537 */ 1538 int devm_request_resource(struct device *dev, struct resource *root, 1539 struct resource *new) 1540 { 1541 struct resource *conflict, **ptr; 1542 1543 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1544 if (!ptr) 1545 return -ENOMEM; 1546 1547 *ptr = new; 1548 1549 conflict = request_resource_conflict(root, new); 1550 if (conflict) { 1551 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1552 new, conflict->name, conflict); 1553 devres_free(ptr); 1554 return -EBUSY; 1555 } 1556 1557 devres_add(dev, ptr); 1558 return 0; 1559 } 1560 EXPORT_SYMBOL(devm_request_resource); 1561 1562 static int devm_resource_match(struct device *dev, void *res, void *data) 1563 { 1564 struct resource **ptr = res; 1565 1566 return *ptr == data; 1567 } 1568 1569 /** 1570 * devm_release_resource() - release a previously requested resource 1571 * @dev: device for which to release the resource 1572 * @new: descriptor of the resource to release 1573 * 1574 * Releases a resource previously requested using devm_request_resource(). 1575 */ 1576 void devm_release_resource(struct device *dev, struct resource *new) 1577 { 1578 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1579 new)); 1580 } 1581 EXPORT_SYMBOL(devm_release_resource); 1582 1583 struct region_devres { 1584 struct resource *parent; 1585 resource_size_t start; 1586 resource_size_t n; 1587 }; 1588 1589 static void devm_region_release(struct device *dev, void *res) 1590 { 1591 struct region_devres *this = res; 1592 1593 __release_region(this->parent, this->start, this->n); 1594 } 1595 1596 static int devm_region_match(struct device *dev, void *res, void *match_data) 1597 { 1598 struct region_devres *this = res, *match = match_data; 1599 1600 return this->parent == match->parent && 1601 this->start == match->start && this->n == match->n; 1602 } 1603 1604 struct resource * 1605 __devm_request_region(struct device *dev, struct resource *parent, 1606 resource_size_t start, resource_size_t n, const char *name) 1607 { 1608 struct region_devres *dr = NULL; 1609 struct resource *res; 1610 1611 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1612 GFP_KERNEL); 1613 if (!dr) 1614 return NULL; 1615 1616 dr->parent = parent; 1617 dr->start = start; 1618 dr->n = n; 1619 1620 res = __request_region(parent, start, n, name, 0); 1621 if (res) 1622 devres_add(dev, dr); 1623 else 1624 devres_free(dr); 1625 1626 return res; 1627 } 1628 EXPORT_SYMBOL(__devm_request_region); 1629 1630 void __devm_release_region(struct device *dev, struct resource *parent, 1631 resource_size_t start, resource_size_t n) 1632 { 1633 struct region_devres match_data = { parent, start, n }; 1634 1635 __release_region(parent, start, n); 1636 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1637 &match_data)); 1638 } 1639 EXPORT_SYMBOL(__devm_release_region); 1640 1641 /* 1642 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1643 */ 1644 #define MAXRESERVE 4 1645 static int __init reserve_setup(char *str) 1646 { 1647 static int reserved; 1648 static struct resource reserve[MAXRESERVE]; 1649 1650 for (;;) { 1651 unsigned int io_start, io_num; 1652 int x = reserved; 1653 struct resource *parent; 1654 1655 if (get_option(&str, &io_start) != 2) 1656 break; 1657 if (get_option(&str, &io_num) == 0) 1658 break; 1659 if (x < MAXRESERVE) { 1660 struct resource *res = reserve + x; 1661 1662 /* 1663 * If the region starts below 0x10000, we assume it's 1664 * I/O port space; otherwise assume it's memory. 1665 */ 1666 if (io_start < 0x10000) { 1667 res->flags = IORESOURCE_IO; 1668 parent = &ioport_resource; 1669 } else { 1670 res->flags = IORESOURCE_MEM; 1671 parent = &iomem_resource; 1672 } 1673 res->name = "reserved"; 1674 res->start = io_start; 1675 res->end = io_start + io_num - 1; 1676 res->flags |= IORESOURCE_BUSY; 1677 res->desc = IORES_DESC_NONE; 1678 res->child = NULL; 1679 if (request_resource(parent, res) == 0) 1680 reserved = x+1; 1681 } 1682 } 1683 return 1; 1684 } 1685 __setup("reserve=", reserve_setup); 1686 1687 /* 1688 * Check if the requested addr and size spans more than any slot in the 1689 * iomem resource tree. 1690 */ 1691 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1692 { 1693 resource_size_t end = addr + size - 1; 1694 struct resource *p; 1695 int err = 0; 1696 1697 read_lock(&resource_lock); 1698 for_each_resource(&iomem_resource, p, false) { 1699 /* 1700 * We can probably skip the resources without 1701 * IORESOURCE_IO attribute? 1702 */ 1703 if (p->start > end) 1704 continue; 1705 if (p->end < addr) 1706 continue; 1707 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1708 PFN_DOWN(p->end) >= PFN_DOWN(end)) 1709 continue; 1710 /* 1711 * if a resource is "BUSY", it's not a hardware resource 1712 * but a driver mapping of such a resource; we don't want 1713 * to warn for those; some drivers legitimately map only 1714 * partial hardware resources. (example: vesafb) 1715 */ 1716 if (p->flags & IORESOURCE_BUSY) 1717 continue; 1718 1719 pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n", 1720 &addr, &end, p->name, p); 1721 err = -1; 1722 break; 1723 } 1724 read_unlock(&resource_lock); 1725 1726 return err; 1727 } 1728 1729 #ifdef CONFIG_STRICT_DEVMEM 1730 static int strict_iomem_checks = 1; 1731 #else 1732 static int strict_iomem_checks; 1733 #endif 1734 1735 /* 1736 * Check if an address is exclusive to the kernel and must not be mapped to 1737 * user space, for example, via /dev/mem. 1738 * 1739 * Returns true if exclusive to the kernel, otherwise returns false. 1740 */ 1741 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size) 1742 { 1743 const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM | 1744 IORESOURCE_EXCLUSIVE; 1745 bool skip_children = false, err = false; 1746 struct resource *p; 1747 1748 read_lock(&resource_lock); 1749 for_each_resource(root, p, skip_children) { 1750 if (p->start >= addr + size) 1751 break; 1752 if (p->end < addr) { 1753 skip_children = true; 1754 continue; 1755 } 1756 skip_children = false; 1757 1758 /* 1759 * IORESOURCE_SYSTEM_RAM resources are exclusive if 1760 * IORESOURCE_EXCLUSIVE is set, even if they 1761 * are not busy and even if "iomem=relaxed" is set. The 1762 * responsible driver dynamically adds/removes system RAM within 1763 * such an area and uncontrolled access is dangerous. 1764 */ 1765 if ((p->flags & exclusive_system_ram) == exclusive_system_ram) { 1766 err = true; 1767 break; 1768 } 1769 1770 /* 1771 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1772 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1773 * resource is busy. 1774 */ 1775 if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY)) 1776 continue; 1777 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1778 || p->flags & IORESOURCE_EXCLUSIVE) { 1779 err = true; 1780 break; 1781 } 1782 } 1783 read_unlock(&resource_lock); 1784 1785 return err; 1786 } 1787 1788 bool iomem_is_exclusive(u64 addr) 1789 { 1790 return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK, 1791 PAGE_SIZE); 1792 } 1793 1794 struct resource_entry *resource_list_create_entry(struct resource *res, 1795 size_t extra_size) 1796 { 1797 struct resource_entry *entry; 1798 1799 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1800 if (entry) { 1801 INIT_LIST_HEAD(&entry->node); 1802 entry->res = res ? res : &entry->__res; 1803 } 1804 1805 return entry; 1806 } 1807 EXPORT_SYMBOL(resource_list_create_entry); 1808 1809 void resource_list_free(struct list_head *head) 1810 { 1811 struct resource_entry *entry, *tmp; 1812 1813 list_for_each_entry_safe(entry, tmp, head, node) 1814 resource_list_destroy_entry(entry); 1815 } 1816 EXPORT_SYMBOL(resource_list_free); 1817 1818 #ifdef CONFIG_GET_FREE_REGION 1819 #define GFR_DESCENDING (1UL << 0) 1820 #define GFR_REQUEST_REGION (1UL << 1) 1821 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT) 1822 1823 static resource_size_t gfr_start(struct resource *base, resource_size_t size, 1824 resource_size_t align, unsigned long flags) 1825 { 1826 if (flags & GFR_DESCENDING) { 1827 resource_size_t end; 1828 1829 end = min_t(resource_size_t, base->end, 1830 (1ULL << MAX_PHYSMEM_BITS) - 1); 1831 return end - size + 1; 1832 } 1833 1834 return ALIGN(base->start, align); 1835 } 1836 1837 static bool gfr_continue(struct resource *base, resource_size_t addr, 1838 resource_size_t size, unsigned long flags) 1839 { 1840 if (flags & GFR_DESCENDING) 1841 return addr > size && addr >= base->start; 1842 /* 1843 * In the ascend case be careful that the last increment by 1844 * @size did not wrap 0. 1845 */ 1846 return addr > addr - size && 1847 addr <= min_t(resource_size_t, base->end, 1848 (1ULL << MAX_PHYSMEM_BITS) - 1); 1849 } 1850 1851 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size, 1852 unsigned long flags) 1853 { 1854 if (flags & GFR_DESCENDING) 1855 return addr - size; 1856 return addr + size; 1857 } 1858 1859 static void remove_free_mem_region(void *_res) 1860 { 1861 struct resource *res = _res; 1862 1863 if (res->parent) 1864 remove_resource(res); 1865 free_resource(res); 1866 } 1867 1868 static struct resource * 1869 get_free_mem_region(struct device *dev, struct resource *base, 1870 resource_size_t size, const unsigned long align, 1871 const char *name, const unsigned long desc, 1872 const unsigned long flags) 1873 { 1874 resource_size_t addr; 1875 struct resource *res; 1876 struct region_devres *dr = NULL; 1877 1878 size = ALIGN(size, align); 1879 1880 res = alloc_resource(GFP_KERNEL); 1881 if (!res) 1882 return ERR_PTR(-ENOMEM); 1883 1884 if (dev && (flags & GFR_REQUEST_REGION)) { 1885 dr = devres_alloc(devm_region_release, 1886 sizeof(struct region_devres), GFP_KERNEL); 1887 if (!dr) { 1888 free_resource(res); 1889 return ERR_PTR(-ENOMEM); 1890 } 1891 } else if (dev) { 1892 if (devm_add_action_or_reset(dev, remove_free_mem_region, res)) 1893 return ERR_PTR(-ENOMEM); 1894 } 1895 1896 write_lock(&resource_lock); 1897 for (addr = gfr_start(base, size, align, flags); 1898 gfr_continue(base, addr, align, flags); 1899 addr = gfr_next(addr, align, flags)) { 1900 if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) != 1901 REGION_DISJOINT) 1902 continue; 1903 1904 if (flags & GFR_REQUEST_REGION) { 1905 if (__request_region_locked(res, &iomem_resource, addr, 1906 size, name, 0)) 1907 break; 1908 1909 if (dev) { 1910 dr->parent = &iomem_resource; 1911 dr->start = addr; 1912 dr->n = size; 1913 devres_add(dev, dr); 1914 } 1915 1916 res->desc = desc; 1917 write_unlock(&resource_lock); 1918 1919 1920 /* 1921 * A driver is claiming this region so revoke any 1922 * mappings. 1923 */ 1924 revoke_iomem(res); 1925 } else { 1926 res->start = addr; 1927 res->end = addr + size - 1; 1928 res->name = name; 1929 res->desc = desc; 1930 res->flags = IORESOURCE_MEM; 1931 1932 /* 1933 * Only succeed if the resource hosts an exclusive 1934 * range after the insert 1935 */ 1936 if (__insert_resource(base, res) || res->child) 1937 break; 1938 1939 write_unlock(&resource_lock); 1940 } 1941 1942 return res; 1943 } 1944 write_unlock(&resource_lock); 1945 1946 if (flags & GFR_REQUEST_REGION) { 1947 free_resource(res); 1948 devres_free(dr); 1949 } else if (dev) 1950 devm_release_action(dev, remove_free_mem_region, res); 1951 1952 return ERR_PTR(-ERANGE); 1953 } 1954 1955 /** 1956 * devm_request_free_mem_region - find free region for device private memory 1957 * 1958 * @dev: device struct to bind the resource to 1959 * @size: size in bytes of the device memory to add 1960 * @base: resource tree to look in 1961 * 1962 * This function tries to find an empty range of physical address big enough to 1963 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE 1964 * memory, which in turn allocates struct pages. 1965 */ 1966 struct resource *devm_request_free_mem_region(struct device *dev, 1967 struct resource *base, unsigned long size) 1968 { 1969 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; 1970 1971 return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN, 1972 dev_name(dev), 1973 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); 1974 } 1975 EXPORT_SYMBOL_GPL(devm_request_free_mem_region); 1976 1977 struct resource *request_free_mem_region(struct resource *base, 1978 unsigned long size, const char *name) 1979 { 1980 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; 1981 1982 return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name, 1983 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); 1984 } 1985 EXPORT_SYMBOL_GPL(request_free_mem_region); 1986 1987 /** 1988 * alloc_free_mem_region - find a free region relative to @base 1989 * @base: resource that will parent the new resource 1990 * @size: size in bytes of memory to allocate from @base 1991 * @align: alignment requirements for the allocation 1992 * @name: resource name 1993 * 1994 * Buses like CXL, that can dynamically instantiate new memory regions, 1995 * need a method to allocate physical address space for those regions. 1996 * Allocate and insert a new resource to cover a free, unclaimed by a 1997 * descendant of @base, range in the span of @base. 1998 */ 1999 struct resource *alloc_free_mem_region(struct resource *base, 2000 unsigned long size, unsigned long align, 2001 const char *name) 2002 { 2003 /* Default of ascending direction and insert resource */ 2004 unsigned long flags = 0; 2005 2006 return get_free_mem_region(NULL, base, size, align, name, 2007 IORES_DESC_NONE, flags); 2008 } 2009 EXPORT_SYMBOL_NS_GPL(alloc_free_mem_region, CXL); 2010 #endif /* CONFIG_GET_FREE_REGION */ 2011 2012 static int __init strict_iomem(char *str) 2013 { 2014 if (strstr(str, "relaxed")) 2015 strict_iomem_checks = 0; 2016 if (strstr(str, "strict")) 2017 strict_iomem_checks = 1; 2018 return 1; 2019 } 2020 2021 static int iomem_fs_init_fs_context(struct fs_context *fc) 2022 { 2023 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM; 2024 } 2025 2026 static struct file_system_type iomem_fs_type = { 2027 .name = "iomem", 2028 .owner = THIS_MODULE, 2029 .init_fs_context = iomem_fs_init_fs_context, 2030 .kill_sb = kill_anon_super, 2031 }; 2032 2033 static int __init iomem_init_inode(void) 2034 { 2035 static struct vfsmount *iomem_vfs_mount; 2036 static int iomem_fs_cnt; 2037 struct inode *inode; 2038 int rc; 2039 2040 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt); 2041 if (rc < 0) { 2042 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc); 2043 return rc; 2044 } 2045 2046 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb); 2047 if (IS_ERR(inode)) { 2048 rc = PTR_ERR(inode); 2049 pr_err("Cannot allocate inode for iomem: %d\n", rc); 2050 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt); 2051 return rc; 2052 } 2053 2054 /* 2055 * Publish iomem revocation inode initialized. 2056 * Pairs with smp_load_acquire() in revoke_iomem(). 2057 */ 2058 smp_store_release(&iomem_inode, inode); 2059 2060 return 0; 2061 } 2062 2063 fs_initcall(iomem_init_inode); 2064 2065 __setup("iomem=", strict_iomem); 2066