xref: /linux/kernel/resource.c (revision c6df6213a95fa9674cc48d77042141942dd0809b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <linux/string.h>
31 #include <linux/vmalloc.h>
32 #include <asm/io.h>
33 
34 
35 struct resource ioport_resource = {
36 	.name	= "PCI IO",
37 	.start	= 0,
38 	.end	= IO_SPACE_LIMIT,
39 	.flags	= IORESOURCE_IO,
40 };
41 EXPORT_SYMBOL(ioport_resource);
42 
43 struct resource iomem_resource = {
44 	.name	= "PCI mem",
45 	.start	= 0,
46 	.end	= -1,
47 	.flags	= IORESOURCE_MEM,
48 };
49 EXPORT_SYMBOL(iomem_resource);
50 
51 static DEFINE_RWLOCK(resource_lock);
52 
53 static struct resource *next_resource(struct resource *p, bool skip_children)
54 {
55 	if (!skip_children && p->child)
56 		return p->child;
57 	while (!p->sibling && p->parent)
58 		p = p->parent;
59 	return p->sibling;
60 }
61 
62 #define for_each_resource(_root, _p, _skip_children) \
63 	for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children))
64 
65 #ifdef CONFIG_PROC_FS
66 
67 enum { MAX_IORES_LEVEL = 5 };
68 
69 static void *r_start(struct seq_file *m, loff_t *pos)
70 	__acquires(resource_lock)
71 {
72 	struct resource *root = pde_data(file_inode(m->file));
73 	struct resource *p;
74 	loff_t l = *pos;
75 
76 	read_lock(&resource_lock);
77 	for_each_resource(root, p, false) {
78 		if (l-- == 0)
79 			break;
80 	}
81 
82 	return p;
83 }
84 
85 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
86 {
87 	struct resource *p = v;
88 
89 	(*pos)++;
90 
91 	return (void *)next_resource(p, false);
92 }
93 
94 static void r_stop(struct seq_file *m, void *v)
95 	__releases(resource_lock)
96 {
97 	read_unlock(&resource_lock);
98 }
99 
100 static int r_show(struct seq_file *m, void *v)
101 {
102 	struct resource *root = pde_data(file_inode(m->file));
103 	struct resource *r = v, *p;
104 	unsigned long long start, end;
105 	int width = root->end < 0x10000 ? 4 : 8;
106 	int depth;
107 
108 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
109 		if (p->parent == root)
110 			break;
111 
112 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
113 		start = r->start;
114 		end = r->end;
115 	} else {
116 		start = end = 0;
117 	}
118 
119 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
120 			depth * 2, "",
121 			width, start,
122 			width, end,
123 			r->name ? r->name : "<BAD>");
124 	return 0;
125 }
126 
127 static const struct seq_operations resource_op = {
128 	.start	= r_start,
129 	.next	= r_next,
130 	.stop	= r_stop,
131 	.show	= r_show,
132 };
133 
134 static int __init ioresources_init(void)
135 {
136 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
137 			&ioport_resource);
138 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
139 	return 0;
140 }
141 __initcall(ioresources_init);
142 
143 #endif /* CONFIG_PROC_FS */
144 
145 static void free_resource(struct resource *res)
146 {
147 	/**
148 	 * If the resource was allocated using memblock early during boot
149 	 * we'll leak it here: we can only return full pages back to the
150 	 * buddy and trying to be smart and reusing them eventually in
151 	 * alloc_resource() overcomplicates resource handling.
152 	 */
153 	if (res && PageSlab(virt_to_head_page(res)))
154 		kfree(res);
155 }
156 
157 static struct resource *alloc_resource(gfp_t flags)
158 {
159 	return kzalloc(sizeof(struct resource), flags);
160 }
161 
162 /* Return the conflict entry if you can't request it */
163 static struct resource * __request_resource(struct resource *root, struct resource *new)
164 {
165 	resource_size_t start = new->start;
166 	resource_size_t end = new->end;
167 	struct resource *tmp, **p;
168 
169 	if (end < start)
170 		return root;
171 	if (start < root->start)
172 		return root;
173 	if (end > root->end)
174 		return root;
175 	p = &root->child;
176 	for (;;) {
177 		tmp = *p;
178 		if (!tmp || tmp->start > end) {
179 			new->sibling = tmp;
180 			*p = new;
181 			new->parent = root;
182 			return NULL;
183 		}
184 		p = &tmp->sibling;
185 		if (tmp->end < start)
186 			continue;
187 		return tmp;
188 	}
189 }
190 
191 static int __release_resource(struct resource *old, bool release_child)
192 {
193 	struct resource *tmp, **p, *chd;
194 
195 	p = &old->parent->child;
196 	for (;;) {
197 		tmp = *p;
198 		if (!tmp)
199 			break;
200 		if (tmp == old) {
201 			if (release_child || !(tmp->child)) {
202 				*p = tmp->sibling;
203 			} else {
204 				for (chd = tmp->child;; chd = chd->sibling) {
205 					chd->parent = tmp->parent;
206 					if (!(chd->sibling))
207 						break;
208 				}
209 				*p = tmp->child;
210 				chd->sibling = tmp->sibling;
211 			}
212 			old->parent = NULL;
213 			return 0;
214 		}
215 		p = &tmp->sibling;
216 	}
217 	return -EINVAL;
218 }
219 
220 static void __release_child_resources(struct resource *r)
221 {
222 	struct resource *tmp, *p;
223 	resource_size_t size;
224 
225 	p = r->child;
226 	r->child = NULL;
227 	while (p) {
228 		tmp = p;
229 		p = p->sibling;
230 
231 		tmp->parent = NULL;
232 		tmp->sibling = NULL;
233 		__release_child_resources(tmp);
234 
235 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
236 		/* need to restore size, and keep flags */
237 		size = resource_size(tmp);
238 		tmp->start = 0;
239 		tmp->end = size - 1;
240 	}
241 }
242 
243 void release_child_resources(struct resource *r)
244 {
245 	write_lock(&resource_lock);
246 	__release_child_resources(r);
247 	write_unlock(&resource_lock);
248 }
249 
250 /**
251  * request_resource_conflict - request and reserve an I/O or memory resource
252  * @root: root resource descriptor
253  * @new: resource descriptor desired by caller
254  *
255  * Returns 0 for success, conflict resource on error.
256  */
257 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
258 {
259 	struct resource *conflict;
260 
261 	write_lock(&resource_lock);
262 	conflict = __request_resource(root, new);
263 	write_unlock(&resource_lock);
264 	return conflict;
265 }
266 
267 /**
268  * request_resource - request and reserve an I/O or memory resource
269  * @root: root resource descriptor
270  * @new: resource descriptor desired by caller
271  *
272  * Returns 0 for success, negative error code on error.
273  */
274 int request_resource(struct resource *root, struct resource *new)
275 {
276 	struct resource *conflict;
277 
278 	conflict = request_resource_conflict(root, new);
279 	return conflict ? -EBUSY : 0;
280 }
281 
282 EXPORT_SYMBOL(request_resource);
283 
284 /**
285  * release_resource - release a previously reserved resource
286  * @old: resource pointer
287  */
288 int release_resource(struct resource *old)
289 {
290 	int retval;
291 
292 	write_lock(&resource_lock);
293 	retval = __release_resource(old, true);
294 	write_unlock(&resource_lock);
295 	return retval;
296 }
297 
298 EXPORT_SYMBOL(release_resource);
299 
300 /**
301  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
302  *			 [@start..@end].
303  *
304  * If a resource is found, returns 0 and @*res is overwritten with the part
305  * of the resource that's within [@start..@end]; if none is found, returns
306  * -ENODEV.  Returns -EINVAL for invalid parameters.
307  *
308  * @start:	start address of the resource searched for
309  * @end:	end address of same resource
310  * @flags:	flags which the resource must have
311  * @desc:	descriptor the resource must have
312  * @res:	return ptr, if resource found
313  *
314  * The caller must specify @start, @end, @flags, and @desc
315  * (which may be IORES_DESC_NONE).
316  */
317 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
318 			       unsigned long flags, unsigned long desc,
319 			       struct resource *res)
320 {
321 	struct resource *p;
322 
323 	if (!res)
324 		return -EINVAL;
325 
326 	if (start >= end)
327 		return -EINVAL;
328 
329 	read_lock(&resource_lock);
330 
331 	for_each_resource(&iomem_resource, p, false) {
332 		/* If we passed the resource we are looking for, stop */
333 		if (p->start > end) {
334 			p = NULL;
335 			break;
336 		}
337 
338 		/* Skip until we find a range that matches what we look for */
339 		if (p->end < start)
340 			continue;
341 
342 		if ((p->flags & flags) != flags)
343 			continue;
344 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
345 			continue;
346 
347 		/* Found a match, break */
348 		break;
349 	}
350 
351 	if (p) {
352 		/* copy data */
353 		*res = (struct resource) {
354 			.start = max(start, p->start),
355 			.end = min(end, p->end),
356 			.flags = p->flags,
357 			.desc = p->desc,
358 			.parent = p->parent,
359 		};
360 	}
361 
362 	read_unlock(&resource_lock);
363 	return p ? 0 : -ENODEV;
364 }
365 
366 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
367 				 unsigned long flags, unsigned long desc,
368 				 void *arg,
369 				 int (*func)(struct resource *, void *))
370 {
371 	struct resource res;
372 	int ret = -EINVAL;
373 
374 	while (start < end &&
375 	       !find_next_iomem_res(start, end, flags, desc, &res)) {
376 		ret = (*func)(&res, arg);
377 		if (ret)
378 			break;
379 
380 		start = res.end + 1;
381 	}
382 
383 	return ret;
384 }
385 
386 /**
387  * walk_iomem_res_desc - Walks through iomem resources and calls func()
388  *			 with matching resource ranges.
389  * *
390  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
391  * @flags: I/O resource flags
392  * @start: start addr
393  * @end: end addr
394  * @arg: function argument for the callback @func
395  * @func: callback function that is called for each qualifying resource area
396  *
397  * All the memory ranges which overlap start,end and also match flags and
398  * desc are valid candidates.
399  *
400  * NOTE: For a new descriptor search, define a new IORES_DESC in
401  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
402  */
403 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
404 		u64 end, void *arg, int (*func)(struct resource *, void *))
405 {
406 	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
407 }
408 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
409 
410 /*
411  * This function calls the @func callback against all memory ranges of type
412  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
413  * Now, this function is only for System RAM, it deals with full ranges and
414  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
415  * ranges.
416  */
417 int walk_system_ram_res(u64 start, u64 end, void *arg,
418 			int (*func)(struct resource *, void *))
419 {
420 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
421 
422 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
423 				     func);
424 }
425 
426 /*
427  * This function, being a variant of walk_system_ram_res(), calls the @func
428  * callback against all memory ranges of type System RAM which are marked as
429  * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
430  * higher to lower.
431  */
432 int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
433 				int (*func)(struct resource *, void *))
434 {
435 	struct resource res, *rams;
436 	int rams_size = 16, i;
437 	unsigned long flags;
438 	int ret = -1;
439 
440 	/* create a list */
441 	rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
442 	if (!rams)
443 		return ret;
444 
445 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
446 	i = 0;
447 	while ((start < end) &&
448 		(!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
449 		if (i >= rams_size) {
450 			/* re-alloc */
451 			struct resource *rams_new;
452 
453 			rams_new = kvrealloc(rams, rams_size * sizeof(struct resource),
454 					     (rams_size + 16) * sizeof(struct resource),
455 					     GFP_KERNEL);
456 			if (!rams_new)
457 				goto out;
458 
459 			rams = rams_new;
460 			rams_size += 16;
461 		}
462 
463 		rams[i].start = res.start;
464 		rams[i++].end = res.end;
465 
466 		start = res.end + 1;
467 	}
468 
469 	/* go reverse */
470 	for (i--; i >= 0; i--) {
471 		ret = (*func)(&rams[i], arg);
472 		if (ret)
473 			break;
474 	}
475 
476 out:
477 	kvfree(rams);
478 	return ret;
479 }
480 
481 /*
482  * This function calls the @func callback against all memory ranges, which
483  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
484  */
485 int walk_mem_res(u64 start, u64 end, void *arg,
486 		 int (*func)(struct resource *, void *))
487 {
488 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
489 
490 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
491 				     func);
492 }
493 
494 /*
495  * This function calls the @func callback against all memory ranges of type
496  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
497  * It is to be used only for System RAM.
498  */
499 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
500 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
501 {
502 	resource_size_t start, end;
503 	unsigned long flags;
504 	struct resource res;
505 	unsigned long pfn, end_pfn;
506 	int ret = -EINVAL;
507 
508 	start = (u64) start_pfn << PAGE_SHIFT;
509 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
510 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
511 	while (start < end &&
512 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
513 		pfn = PFN_UP(res.start);
514 		end_pfn = PFN_DOWN(res.end + 1);
515 		if (end_pfn > pfn)
516 			ret = (*func)(pfn, end_pfn - pfn, arg);
517 		if (ret)
518 			break;
519 		start = res.end + 1;
520 	}
521 	return ret;
522 }
523 
524 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
525 {
526 	return 1;
527 }
528 
529 /*
530  * This generic page_is_ram() returns true if specified address is
531  * registered as System RAM in iomem_resource list.
532  */
533 int __weak page_is_ram(unsigned long pfn)
534 {
535 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
536 }
537 EXPORT_SYMBOL_GPL(page_is_ram);
538 
539 static int __region_intersects(struct resource *parent, resource_size_t start,
540 			       size_t size, unsigned long flags,
541 			       unsigned long desc)
542 {
543 	struct resource res;
544 	int type = 0; int other = 0;
545 	struct resource *p;
546 
547 	res.start = start;
548 	res.end = start + size - 1;
549 
550 	for (p = parent->child; p ; p = p->sibling) {
551 		bool is_type = (((p->flags & flags) == flags) &&
552 				((desc == IORES_DESC_NONE) ||
553 				 (desc == p->desc)));
554 
555 		if (resource_overlaps(p, &res))
556 			is_type ? type++ : other++;
557 	}
558 
559 	if (type == 0)
560 		return REGION_DISJOINT;
561 
562 	if (other == 0)
563 		return REGION_INTERSECTS;
564 
565 	return REGION_MIXED;
566 }
567 
568 /**
569  * region_intersects() - determine intersection of region with known resources
570  * @start: region start address
571  * @size: size of region
572  * @flags: flags of resource (in iomem_resource)
573  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
574  *
575  * Check if the specified region partially overlaps or fully eclipses a
576  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
577  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
578  * return REGION_MIXED if the region overlaps @flags/@desc and another
579  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
580  * and no other defined resource. Note that REGION_INTERSECTS is also
581  * returned in the case when the specified region overlaps RAM and undefined
582  * memory holes.
583  *
584  * region_intersect() is used by memory remapping functions to ensure
585  * the user is not remapping RAM and is a vast speed up over walking
586  * through the resource table page by page.
587  */
588 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
589 		      unsigned long desc)
590 {
591 	int ret;
592 
593 	read_lock(&resource_lock);
594 	ret = __region_intersects(&iomem_resource, start, size, flags, desc);
595 	read_unlock(&resource_lock);
596 
597 	return ret;
598 }
599 EXPORT_SYMBOL_GPL(region_intersects);
600 
601 void __weak arch_remove_reservations(struct resource *avail)
602 {
603 }
604 
605 static void resource_clip(struct resource *res, resource_size_t min,
606 			  resource_size_t max)
607 {
608 	if (res->start < min)
609 		res->start = min;
610 	if (res->end > max)
611 		res->end = max;
612 }
613 
614 /*
615  * Find empty space in the resource tree with the given range and
616  * alignment constraints
617  */
618 static int __find_resource_space(struct resource *root, struct resource *old,
619 				 struct resource *new, resource_size_t size,
620 				 struct resource_constraint *constraint)
621 {
622 	struct resource *this = root->child;
623 	struct resource tmp = *new, avail, alloc;
624 	resource_alignf alignf = constraint->alignf;
625 
626 	tmp.start = root->start;
627 	/*
628 	 * Skip past an allocated resource that starts at 0, since the assignment
629 	 * of this->start - 1 to tmp->end below would cause an underflow.
630 	 */
631 	if (this && this->start == root->start) {
632 		tmp.start = (this == old) ? old->start : this->end + 1;
633 		this = this->sibling;
634 	}
635 	for(;;) {
636 		if (this)
637 			tmp.end = (this == old) ?  this->end : this->start - 1;
638 		else
639 			tmp.end = root->end;
640 
641 		if (tmp.end < tmp.start)
642 			goto next;
643 
644 		resource_clip(&tmp, constraint->min, constraint->max);
645 		arch_remove_reservations(&tmp);
646 
647 		/* Check for overflow after ALIGN() */
648 		avail.start = ALIGN(tmp.start, constraint->align);
649 		avail.end = tmp.end;
650 		avail.flags = new->flags & ~IORESOURCE_UNSET;
651 		if (avail.start >= tmp.start) {
652 			alloc.flags = avail.flags;
653 			if (alignf) {
654 				alloc.start = alignf(constraint->alignf_data,
655 						     &avail, size, constraint->align);
656 			} else {
657 				alloc.start = avail.start;
658 			}
659 			alloc.end = alloc.start + size - 1;
660 			if (alloc.start <= alloc.end &&
661 			    resource_contains(&avail, &alloc)) {
662 				new->start = alloc.start;
663 				new->end = alloc.end;
664 				return 0;
665 			}
666 		}
667 
668 next:		if (!this || this->end == root->end)
669 			break;
670 
671 		if (this != old)
672 			tmp.start = this->end + 1;
673 		this = this->sibling;
674 	}
675 	return -EBUSY;
676 }
677 
678 /**
679  * find_resource_space - Find empty space in the resource tree
680  * @root:	Root resource descriptor
681  * @new:	Resource descriptor awaiting an empty resource space
682  * @size:	The minimum size of the empty space
683  * @constraint:	The range and alignment constraints to be met
684  *
685  * Finds an empty space under @root in the resource tree satisfying range and
686  * alignment @constraints.
687  *
688  * Return:
689  * * %0		- if successful, @new members start, end, and flags are altered.
690  * * %-EBUSY	- if no empty space was found.
691  */
692 int find_resource_space(struct resource *root, struct resource *new,
693 			resource_size_t size,
694 			struct resource_constraint *constraint)
695 {
696 	return  __find_resource_space(root, NULL, new, size, constraint);
697 }
698 EXPORT_SYMBOL_GPL(find_resource_space);
699 
700 /**
701  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
702  *	The resource will be relocated if the new size cannot be reallocated in the
703  *	current location.
704  *
705  * @root: root resource descriptor
706  * @old:  resource descriptor desired by caller
707  * @newsize: new size of the resource descriptor
708  * @constraint: the size and alignment constraints to be met.
709  */
710 static int reallocate_resource(struct resource *root, struct resource *old,
711 			       resource_size_t newsize,
712 			       struct resource_constraint *constraint)
713 {
714 	int err=0;
715 	struct resource new = *old;
716 	struct resource *conflict;
717 
718 	write_lock(&resource_lock);
719 
720 	if ((err = __find_resource_space(root, old, &new, newsize, constraint)))
721 		goto out;
722 
723 	if (resource_contains(&new, old)) {
724 		old->start = new.start;
725 		old->end = new.end;
726 		goto out;
727 	}
728 
729 	if (old->child) {
730 		err = -EBUSY;
731 		goto out;
732 	}
733 
734 	if (resource_contains(old, &new)) {
735 		old->start = new.start;
736 		old->end = new.end;
737 	} else {
738 		__release_resource(old, true);
739 		*old = new;
740 		conflict = __request_resource(root, old);
741 		BUG_ON(conflict);
742 	}
743 out:
744 	write_unlock(&resource_lock);
745 	return err;
746 }
747 
748 
749 /**
750  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
751  * 	The resource will be reallocated with a new size if it was already allocated
752  * @root: root resource descriptor
753  * @new: resource descriptor desired by caller
754  * @size: requested resource region size
755  * @min: minimum boundary to allocate
756  * @max: maximum boundary to allocate
757  * @align: alignment requested, in bytes
758  * @alignf: alignment function, optional, called if not NULL
759  * @alignf_data: arbitrary data to pass to the @alignf function
760  */
761 int allocate_resource(struct resource *root, struct resource *new,
762 		      resource_size_t size, resource_size_t min,
763 		      resource_size_t max, resource_size_t align,
764 		      resource_alignf alignf,
765 		      void *alignf_data)
766 {
767 	int err;
768 	struct resource_constraint constraint;
769 
770 	constraint.min = min;
771 	constraint.max = max;
772 	constraint.align = align;
773 	constraint.alignf = alignf;
774 	constraint.alignf_data = alignf_data;
775 
776 	if ( new->parent ) {
777 		/* resource is already allocated, try reallocating with
778 		   the new constraints */
779 		return reallocate_resource(root, new, size, &constraint);
780 	}
781 
782 	write_lock(&resource_lock);
783 	err = find_resource_space(root, new, size, &constraint);
784 	if (err >= 0 && __request_resource(root, new))
785 		err = -EBUSY;
786 	write_unlock(&resource_lock);
787 	return err;
788 }
789 
790 EXPORT_SYMBOL(allocate_resource);
791 
792 /**
793  * lookup_resource - find an existing resource by a resource start address
794  * @root: root resource descriptor
795  * @start: resource start address
796  *
797  * Returns a pointer to the resource if found, NULL otherwise
798  */
799 struct resource *lookup_resource(struct resource *root, resource_size_t start)
800 {
801 	struct resource *res;
802 
803 	read_lock(&resource_lock);
804 	for (res = root->child; res; res = res->sibling) {
805 		if (res->start == start)
806 			break;
807 	}
808 	read_unlock(&resource_lock);
809 
810 	return res;
811 }
812 
813 /*
814  * Insert a resource into the resource tree. If successful, return NULL,
815  * otherwise return the conflicting resource (compare to __request_resource())
816  */
817 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
818 {
819 	struct resource *first, *next;
820 
821 	for (;; parent = first) {
822 		first = __request_resource(parent, new);
823 		if (!first)
824 			return first;
825 
826 		if (first == parent)
827 			return first;
828 		if (WARN_ON(first == new))	/* duplicated insertion */
829 			return first;
830 
831 		if ((first->start > new->start) || (first->end < new->end))
832 			break;
833 		if ((first->start == new->start) && (first->end == new->end))
834 			break;
835 	}
836 
837 	for (next = first; ; next = next->sibling) {
838 		/* Partial overlap? Bad, and unfixable */
839 		if (next->start < new->start || next->end > new->end)
840 			return next;
841 		if (!next->sibling)
842 			break;
843 		if (next->sibling->start > new->end)
844 			break;
845 	}
846 
847 	new->parent = parent;
848 	new->sibling = next->sibling;
849 	new->child = first;
850 
851 	next->sibling = NULL;
852 	for (next = first; next; next = next->sibling)
853 		next->parent = new;
854 
855 	if (parent->child == first) {
856 		parent->child = new;
857 	} else {
858 		next = parent->child;
859 		while (next->sibling != first)
860 			next = next->sibling;
861 		next->sibling = new;
862 	}
863 	return NULL;
864 }
865 
866 /**
867  * insert_resource_conflict - Inserts resource in the resource tree
868  * @parent: parent of the new resource
869  * @new: new resource to insert
870  *
871  * Returns 0 on success, conflict resource if the resource can't be inserted.
872  *
873  * This function is equivalent to request_resource_conflict when no conflict
874  * happens. If a conflict happens, and the conflicting resources
875  * entirely fit within the range of the new resource, then the new
876  * resource is inserted and the conflicting resources become children of
877  * the new resource.
878  *
879  * This function is intended for producers of resources, such as FW modules
880  * and bus drivers.
881  */
882 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
883 {
884 	struct resource *conflict;
885 
886 	write_lock(&resource_lock);
887 	conflict = __insert_resource(parent, new);
888 	write_unlock(&resource_lock);
889 	return conflict;
890 }
891 
892 /**
893  * insert_resource - Inserts a resource in the resource tree
894  * @parent: parent of the new resource
895  * @new: new resource to insert
896  *
897  * Returns 0 on success, -EBUSY if the resource can't be inserted.
898  *
899  * This function is intended for producers of resources, such as FW modules
900  * and bus drivers.
901  */
902 int insert_resource(struct resource *parent, struct resource *new)
903 {
904 	struct resource *conflict;
905 
906 	conflict = insert_resource_conflict(parent, new);
907 	return conflict ? -EBUSY : 0;
908 }
909 EXPORT_SYMBOL_GPL(insert_resource);
910 
911 /**
912  * insert_resource_expand_to_fit - Insert a resource into the resource tree
913  * @root: root resource descriptor
914  * @new: new resource to insert
915  *
916  * Insert a resource into the resource tree, possibly expanding it in order
917  * to make it encompass any conflicting resources.
918  */
919 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
920 {
921 	if (new->parent)
922 		return;
923 
924 	write_lock(&resource_lock);
925 	for (;;) {
926 		struct resource *conflict;
927 
928 		conflict = __insert_resource(root, new);
929 		if (!conflict)
930 			break;
931 		if (conflict == root)
932 			break;
933 
934 		/* Ok, expand resource to cover the conflict, then try again .. */
935 		if (conflict->start < new->start)
936 			new->start = conflict->start;
937 		if (conflict->end > new->end)
938 			new->end = conflict->end;
939 
940 		pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
941 	}
942 	write_unlock(&resource_lock);
943 }
944 /*
945  * Not for general consumption, only early boot memory map parsing, PCI
946  * resource discovery, and late discovery of CXL resources are expected
947  * to use this interface. The former are built-in and only the latter,
948  * CXL, is a module.
949  */
950 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
951 
952 /**
953  * remove_resource - Remove a resource in the resource tree
954  * @old: resource to remove
955  *
956  * Returns 0 on success, -EINVAL if the resource is not valid.
957  *
958  * This function removes a resource previously inserted by insert_resource()
959  * or insert_resource_conflict(), and moves the children (if any) up to
960  * where they were before.  insert_resource() and insert_resource_conflict()
961  * insert a new resource, and move any conflicting resources down to the
962  * children of the new resource.
963  *
964  * insert_resource(), insert_resource_conflict() and remove_resource() are
965  * intended for producers of resources, such as FW modules and bus drivers.
966  */
967 int remove_resource(struct resource *old)
968 {
969 	int retval;
970 
971 	write_lock(&resource_lock);
972 	retval = __release_resource(old, false);
973 	write_unlock(&resource_lock);
974 	return retval;
975 }
976 EXPORT_SYMBOL_GPL(remove_resource);
977 
978 static int __adjust_resource(struct resource *res, resource_size_t start,
979 				resource_size_t size)
980 {
981 	struct resource *tmp, *parent = res->parent;
982 	resource_size_t end = start + size - 1;
983 	int result = -EBUSY;
984 
985 	if (!parent)
986 		goto skip;
987 
988 	if ((start < parent->start) || (end > parent->end))
989 		goto out;
990 
991 	if (res->sibling && (res->sibling->start <= end))
992 		goto out;
993 
994 	tmp = parent->child;
995 	if (tmp != res) {
996 		while (tmp->sibling != res)
997 			tmp = tmp->sibling;
998 		if (start <= tmp->end)
999 			goto out;
1000 	}
1001 
1002 skip:
1003 	for (tmp = res->child; tmp; tmp = tmp->sibling)
1004 		if ((tmp->start < start) || (tmp->end > end))
1005 			goto out;
1006 
1007 	res->start = start;
1008 	res->end = end;
1009 	result = 0;
1010 
1011  out:
1012 	return result;
1013 }
1014 
1015 /**
1016  * adjust_resource - modify a resource's start and size
1017  * @res: resource to modify
1018  * @start: new start value
1019  * @size: new size
1020  *
1021  * Given an existing resource, change its start and size to match the
1022  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1023  * Existing children of the resource are assumed to be immutable.
1024  */
1025 int adjust_resource(struct resource *res, resource_size_t start,
1026 		    resource_size_t size)
1027 {
1028 	int result;
1029 
1030 	write_lock(&resource_lock);
1031 	result = __adjust_resource(res, start, size);
1032 	write_unlock(&resource_lock);
1033 	return result;
1034 }
1035 EXPORT_SYMBOL(adjust_resource);
1036 
1037 static void __init
1038 __reserve_region_with_split(struct resource *root, resource_size_t start,
1039 			    resource_size_t end, const char *name)
1040 {
1041 	struct resource *parent = root;
1042 	struct resource *conflict;
1043 	struct resource *res = alloc_resource(GFP_ATOMIC);
1044 	struct resource *next_res = NULL;
1045 	int type = resource_type(root);
1046 
1047 	if (!res)
1048 		return;
1049 
1050 	res->name = name;
1051 	res->start = start;
1052 	res->end = end;
1053 	res->flags = type | IORESOURCE_BUSY;
1054 	res->desc = IORES_DESC_NONE;
1055 
1056 	while (1) {
1057 
1058 		conflict = __request_resource(parent, res);
1059 		if (!conflict) {
1060 			if (!next_res)
1061 				break;
1062 			res = next_res;
1063 			next_res = NULL;
1064 			continue;
1065 		}
1066 
1067 		/* conflict covered whole area */
1068 		if (conflict->start <= res->start &&
1069 				conflict->end >= res->end) {
1070 			free_resource(res);
1071 			WARN_ON(next_res);
1072 			break;
1073 		}
1074 
1075 		/* failed, split and try again */
1076 		if (conflict->start > res->start) {
1077 			end = res->end;
1078 			res->end = conflict->start - 1;
1079 			if (conflict->end < end) {
1080 				next_res = alloc_resource(GFP_ATOMIC);
1081 				if (!next_res) {
1082 					free_resource(res);
1083 					break;
1084 				}
1085 				next_res->name = name;
1086 				next_res->start = conflict->end + 1;
1087 				next_res->end = end;
1088 				next_res->flags = type | IORESOURCE_BUSY;
1089 				next_res->desc = IORES_DESC_NONE;
1090 			}
1091 		} else {
1092 			res->start = conflict->end + 1;
1093 		}
1094 	}
1095 
1096 }
1097 
1098 void __init
1099 reserve_region_with_split(struct resource *root, resource_size_t start,
1100 			  resource_size_t end, const char *name)
1101 {
1102 	int abort = 0;
1103 
1104 	write_lock(&resource_lock);
1105 	if (root->start > start || root->end < end) {
1106 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1107 		       (unsigned long long)start, (unsigned long long)end,
1108 		       root);
1109 		if (start > root->end || end < root->start)
1110 			abort = 1;
1111 		else {
1112 			if (end > root->end)
1113 				end = root->end;
1114 			if (start < root->start)
1115 				start = root->start;
1116 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1117 			       (unsigned long long)start,
1118 			       (unsigned long long)end);
1119 		}
1120 		dump_stack();
1121 	}
1122 	if (!abort)
1123 		__reserve_region_with_split(root, start, end, name);
1124 	write_unlock(&resource_lock);
1125 }
1126 
1127 /**
1128  * resource_alignment - calculate resource's alignment
1129  * @res: resource pointer
1130  *
1131  * Returns alignment on success, 0 (invalid alignment) on failure.
1132  */
1133 resource_size_t resource_alignment(struct resource *res)
1134 {
1135 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1136 	case IORESOURCE_SIZEALIGN:
1137 		return resource_size(res);
1138 	case IORESOURCE_STARTALIGN:
1139 		return res->start;
1140 	default:
1141 		return 0;
1142 	}
1143 }
1144 
1145 /*
1146  * This is compatibility stuff for IO resources.
1147  *
1148  * Note how this, unlike the above, knows about
1149  * the IO flag meanings (busy etc).
1150  *
1151  * request_region creates a new busy region.
1152  *
1153  * release_region releases a matching busy region.
1154  */
1155 
1156 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1157 
1158 static struct inode *iomem_inode;
1159 
1160 #ifdef CONFIG_IO_STRICT_DEVMEM
1161 static void revoke_iomem(struct resource *res)
1162 {
1163 	/* pairs with smp_store_release() in iomem_init_inode() */
1164 	struct inode *inode = smp_load_acquire(&iomem_inode);
1165 
1166 	/*
1167 	 * Check that the initialization has completed. Losing the race
1168 	 * is ok because it means drivers are claiming resources before
1169 	 * the fs_initcall level of init and prevent iomem_get_mapping users
1170 	 * from establishing mappings.
1171 	 */
1172 	if (!inode)
1173 		return;
1174 
1175 	/*
1176 	 * The expectation is that the driver has successfully marked
1177 	 * the resource busy by this point, so devmem_is_allowed()
1178 	 * should start returning false, however for performance this
1179 	 * does not iterate the entire resource range.
1180 	 */
1181 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1182 	    devmem_is_allowed(PHYS_PFN(res->end))) {
1183 		/*
1184 		 * *cringe* iomem=relaxed says "go ahead, what's the
1185 		 * worst that can happen?"
1186 		 */
1187 		return;
1188 	}
1189 
1190 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1191 }
1192 #else
1193 static void revoke_iomem(struct resource *res) {}
1194 #endif
1195 
1196 struct address_space *iomem_get_mapping(void)
1197 {
1198 	/*
1199 	 * This function is only called from file open paths, hence guaranteed
1200 	 * that fs_initcalls have completed and no need to check for NULL. But
1201 	 * since revoke_iomem can be called before the initcall we still need
1202 	 * the barrier to appease checkers.
1203 	 */
1204 	return smp_load_acquire(&iomem_inode)->i_mapping;
1205 }
1206 
1207 static int __request_region_locked(struct resource *res, struct resource *parent,
1208 				   resource_size_t start, resource_size_t n,
1209 				   const char *name, int flags)
1210 {
1211 	DECLARE_WAITQUEUE(wait, current);
1212 
1213 	res->name = name;
1214 	res->start = start;
1215 	res->end = start + n - 1;
1216 
1217 	for (;;) {
1218 		struct resource *conflict;
1219 
1220 		res->flags = resource_type(parent) | resource_ext_type(parent);
1221 		res->flags |= IORESOURCE_BUSY | flags;
1222 		res->desc = parent->desc;
1223 
1224 		conflict = __request_resource(parent, res);
1225 		if (!conflict)
1226 			break;
1227 		/*
1228 		 * mm/hmm.c reserves physical addresses which then
1229 		 * become unavailable to other users.  Conflicts are
1230 		 * not expected.  Warn to aid debugging if encountered.
1231 		 */
1232 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1233 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1234 				conflict->name, conflict, res);
1235 		}
1236 		if (conflict != parent) {
1237 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1238 				parent = conflict;
1239 				continue;
1240 			}
1241 		}
1242 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1243 			add_wait_queue(&muxed_resource_wait, &wait);
1244 			write_unlock(&resource_lock);
1245 			set_current_state(TASK_UNINTERRUPTIBLE);
1246 			schedule();
1247 			remove_wait_queue(&muxed_resource_wait, &wait);
1248 			write_lock(&resource_lock);
1249 			continue;
1250 		}
1251 		/* Uhhuh, that didn't work out.. */
1252 		return -EBUSY;
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 /**
1259  * __request_region - create a new busy resource region
1260  * @parent: parent resource descriptor
1261  * @start: resource start address
1262  * @n: resource region size
1263  * @name: reserving caller's ID string
1264  * @flags: IO resource flags
1265  */
1266 struct resource *__request_region(struct resource *parent,
1267 				  resource_size_t start, resource_size_t n,
1268 				  const char *name, int flags)
1269 {
1270 	struct resource *res = alloc_resource(GFP_KERNEL);
1271 	int ret;
1272 
1273 	if (!res)
1274 		return NULL;
1275 
1276 	write_lock(&resource_lock);
1277 	ret = __request_region_locked(res, parent, start, n, name, flags);
1278 	write_unlock(&resource_lock);
1279 
1280 	if (ret) {
1281 		free_resource(res);
1282 		return NULL;
1283 	}
1284 
1285 	if (parent == &iomem_resource)
1286 		revoke_iomem(res);
1287 
1288 	return res;
1289 }
1290 EXPORT_SYMBOL(__request_region);
1291 
1292 /**
1293  * __release_region - release a previously reserved resource region
1294  * @parent: parent resource descriptor
1295  * @start: resource start address
1296  * @n: resource region size
1297  *
1298  * The described resource region must match a currently busy region.
1299  */
1300 void __release_region(struct resource *parent, resource_size_t start,
1301 		      resource_size_t n)
1302 {
1303 	struct resource **p;
1304 	resource_size_t end;
1305 
1306 	p = &parent->child;
1307 	end = start + n - 1;
1308 
1309 	write_lock(&resource_lock);
1310 
1311 	for (;;) {
1312 		struct resource *res = *p;
1313 
1314 		if (!res)
1315 			break;
1316 		if (res->start <= start && res->end >= end) {
1317 			if (!(res->flags & IORESOURCE_BUSY)) {
1318 				p = &res->child;
1319 				continue;
1320 			}
1321 			if (res->start != start || res->end != end)
1322 				break;
1323 			*p = res->sibling;
1324 			write_unlock(&resource_lock);
1325 			if (res->flags & IORESOURCE_MUXED)
1326 				wake_up(&muxed_resource_wait);
1327 			free_resource(res);
1328 			return;
1329 		}
1330 		p = &res->sibling;
1331 	}
1332 
1333 	write_unlock(&resource_lock);
1334 
1335 	pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1336 }
1337 EXPORT_SYMBOL(__release_region);
1338 
1339 #ifdef CONFIG_MEMORY_HOTREMOVE
1340 /**
1341  * release_mem_region_adjustable - release a previously reserved memory region
1342  * @start: resource start address
1343  * @size: resource region size
1344  *
1345  * This interface is intended for memory hot-delete.  The requested region
1346  * is released from a currently busy memory resource.  The requested region
1347  * must either match exactly or fit into a single busy resource entry.  In
1348  * the latter case, the remaining resource is adjusted accordingly.
1349  * Existing children of the busy memory resource must be immutable in the
1350  * request.
1351  *
1352  * Note:
1353  * - Additional release conditions, such as overlapping region, can be
1354  *   supported after they are confirmed as valid cases.
1355  * - When a busy memory resource gets split into two entries, the code
1356  *   assumes that all children remain in the lower address entry for
1357  *   simplicity.  Enhance this logic when necessary.
1358  */
1359 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1360 {
1361 	struct resource *parent = &iomem_resource;
1362 	struct resource *new_res = NULL;
1363 	bool alloc_nofail = false;
1364 	struct resource **p;
1365 	struct resource *res;
1366 	resource_size_t end;
1367 
1368 	end = start + size - 1;
1369 	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1370 		return;
1371 
1372 	/*
1373 	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1374 	 * just before releasing the region. This is highly unlikely to
1375 	 * fail - let's play save and make it never fail as the caller cannot
1376 	 * perform any error handling (e.g., trying to re-add memory will fail
1377 	 * similarly).
1378 	 */
1379 retry:
1380 	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1381 
1382 	p = &parent->child;
1383 	write_lock(&resource_lock);
1384 
1385 	while ((res = *p)) {
1386 		if (res->start >= end)
1387 			break;
1388 
1389 		/* look for the next resource if it does not fit into */
1390 		if (res->start > start || res->end < end) {
1391 			p = &res->sibling;
1392 			continue;
1393 		}
1394 
1395 		if (!(res->flags & IORESOURCE_MEM))
1396 			break;
1397 
1398 		if (!(res->flags & IORESOURCE_BUSY)) {
1399 			p = &res->child;
1400 			continue;
1401 		}
1402 
1403 		/* found the target resource; let's adjust accordingly */
1404 		if (res->start == start && res->end == end) {
1405 			/* free the whole entry */
1406 			*p = res->sibling;
1407 			free_resource(res);
1408 		} else if (res->start == start && res->end != end) {
1409 			/* adjust the start */
1410 			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1411 						       res->end - end));
1412 		} else if (res->start != start && res->end == end) {
1413 			/* adjust the end */
1414 			WARN_ON_ONCE(__adjust_resource(res, res->start,
1415 						       start - res->start));
1416 		} else {
1417 			/* split into two entries - we need a new resource */
1418 			if (!new_res) {
1419 				new_res = alloc_resource(GFP_ATOMIC);
1420 				if (!new_res) {
1421 					alloc_nofail = true;
1422 					write_unlock(&resource_lock);
1423 					goto retry;
1424 				}
1425 			}
1426 			new_res->name = res->name;
1427 			new_res->start = end + 1;
1428 			new_res->end = res->end;
1429 			new_res->flags = res->flags;
1430 			new_res->desc = res->desc;
1431 			new_res->parent = res->parent;
1432 			new_res->sibling = res->sibling;
1433 			new_res->child = NULL;
1434 
1435 			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1436 							   start - res->start)))
1437 				break;
1438 			res->sibling = new_res;
1439 			new_res = NULL;
1440 		}
1441 
1442 		break;
1443 	}
1444 
1445 	write_unlock(&resource_lock);
1446 	free_resource(new_res);
1447 }
1448 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1449 
1450 #ifdef CONFIG_MEMORY_HOTPLUG
1451 static bool system_ram_resources_mergeable(struct resource *r1,
1452 					   struct resource *r2)
1453 {
1454 	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1455 	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1456 	       r1->name == r2->name && r1->desc == r2->desc &&
1457 	       !r1->child && !r2->child;
1458 }
1459 
1460 /**
1461  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1462  *	merge it with adjacent, mergeable resources
1463  * @res: resource descriptor
1464  *
1465  * This interface is intended for memory hotplug, whereby lots of contiguous
1466  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1467  * the actual resource boundaries are not of interest (e.g., it might be
1468  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1469  * same parent, and that don't have any children are considered. All mergeable
1470  * resources must be immutable during the request.
1471  *
1472  * Note:
1473  * - The caller has to make sure that no pointers to resources that are
1474  *   marked mergeable are used anymore after this call - the resource might
1475  *   be freed and the pointer might be stale!
1476  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1477  */
1478 void merge_system_ram_resource(struct resource *res)
1479 {
1480 	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1481 	struct resource *cur;
1482 
1483 	if (WARN_ON_ONCE((res->flags & flags) != flags))
1484 		return;
1485 
1486 	write_lock(&resource_lock);
1487 	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1488 
1489 	/* Try to merge with next item in the list. */
1490 	cur = res->sibling;
1491 	if (cur && system_ram_resources_mergeable(res, cur)) {
1492 		res->end = cur->end;
1493 		res->sibling = cur->sibling;
1494 		free_resource(cur);
1495 	}
1496 
1497 	/* Try to merge with previous item in the list. */
1498 	cur = res->parent->child;
1499 	while (cur && cur->sibling != res)
1500 		cur = cur->sibling;
1501 	if (cur && system_ram_resources_mergeable(cur, res)) {
1502 		cur->end = res->end;
1503 		cur->sibling = res->sibling;
1504 		free_resource(res);
1505 	}
1506 	write_unlock(&resource_lock);
1507 }
1508 #endif	/* CONFIG_MEMORY_HOTPLUG */
1509 
1510 /*
1511  * Managed region resource
1512  */
1513 static void devm_resource_release(struct device *dev, void *ptr)
1514 {
1515 	struct resource **r = ptr;
1516 
1517 	release_resource(*r);
1518 }
1519 
1520 /**
1521  * devm_request_resource() - request and reserve an I/O or memory resource
1522  * @dev: device for which to request the resource
1523  * @root: root of the resource tree from which to request the resource
1524  * @new: descriptor of the resource to request
1525  *
1526  * This is a device-managed version of request_resource(). There is usually
1527  * no need to release resources requested by this function explicitly since
1528  * that will be taken care of when the device is unbound from its driver.
1529  * If for some reason the resource needs to be released explicitly, because
1530  * of ordering issues for example, drivers must call devm_release_resource()
1531  * rather than the regular release_resource().
1532  *
1533  * When a conflict is detected between any existing resources and the newly
1534  * requested resource, an error message will be printed.
1535  *
1536  * Returns 0 on success or a negative error code on failure.
1537  */
1538 int devm_request_resource(struct device *dev, struct resource *root,
1539 			  struct resource *new)
1540 {
1541 	struct resource *conflict, **ptr;
1542 
1543 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1544 	if (!ptr)
1545 		return -ENOMEM;
1546 
1547 	*ptr = new;
1548 
1549 	conflict = request_resource_conflict(root, new);
1550 	if (conflict) {
1551 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1552 			new, conflict->name, conflict);
1553 		devres_free(ptr);
1554 		return -EBUSY;
1555 	}
1556 
1557 	devres_add(dev, ptr);
1558 	return 0;
1559 }
1560 EXPORT_SYMBOL(devm_request_resource);
1561 
1562 static int devm_resource_match(struct device *dev, void *res, void *data)
1563 {
1564 	struct resource **ptr = res;
1565 
1566 	return *ptr == data;
1567 }
1568 
1569 /**
1570  * devm_release_resource() - release a previously requested resource
1571  * @dev: device for which to release the resource
1572  * @new: descriptor of the resource to release
1573  *
1574  * Releases a resource previously requested using devm_request_resource().
1575  */
1576 void devm_release_resource(struct device *dev, struct resource *new)
1577 {
1578 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1579 			       new));
1580 }
1581 EXPORT_SYMBOL(devm_release_resource);
1582 
1583 struct region_devres {
1584 	struct resource *parent;
1585 	resource_size_t start;
1586 	resource_size_t n;
1587 };
1588 
1589 static void devm_region_release(struct device *dev, void *res)
1590 {
1591 	struct region_devres *this = res;
1592 
1593 	__release_region(this->parent, this->start, this->n);
1594 }
1595 
1596 static int devm_region_match(struct device *dev, void *res, void *match_data)
1597 {
1598 	struct region_devres *this = res, *match = match_data;
1599 
1600 	return this->parent == match->parent &&
1601 		this->start == match->start && this->n == match->n;
1602 }
1603 
1604 struct resource *
1605 __devm_request_region(struct device *dev, struct resource *parent,
1606 		      resource_size_t start, resource_size_t n, const char *name)
1607 {
1608 	struct region_devres *dr = NULL;
1609 	struct resource *res;
1610 
1611 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1612 			  GFP_KERNEL);
1613 	if (!dr)
1614 		return NULL;
1615 
1616 	dr->parent = parent;
1617 	dr->start = start;
1618 	dr->n = n;
1619 
1620 	res = __request_region(parent, start, n, name, 0);
1621 	if (res)
1622 		devres_add(dev, dr);
1623 	else
1624 		devres_free(dr);
1625 
1626 	return res;
1627 }
1628 EXPORT_SYMBOL(__devm_request_region);
1629 
1630 void __devm_release_region(struct device *dev, struct resource *parent,
1631 			   resource_size_t start, resource_size_t n)
1632 {
1633 	struct region_devres match_data = { parent, start, n };
1634 
1635 	__release_region(parent, start, n);
1636 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1637 			       &match_data));
1638 }
1639 EXPORT_SYMBOL(__devm_release_region);
1640 
1641 /*
1642  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1643  */
1644 #define MAXRESERVE 4
1645 static int __init reserve_setup(char *str)
1646 {
1647 	static int reserved;
1648 	static struct resource reserve[MAXRESERVE];
1649 
1650 	for (;;) {
1651 		unsigned int io_start, io_num;
1652 		int x = reserved;
1653 		struct resource *parent;
1654 
1655 		if (get_option(&str, &io_start) != 2)
1656 			break;
1657 		if (get_option(&str, &io_num) == 0)
1658 			break;
1659 		if (x < MAXRESERVE) {
1660 			struct resource *res = reserve + x;
1661 
1662 			/*
1663 			 * If the region starts below 0x10000, we assume it's
1664 			 * I/O port space; otherwise assume it's memory.
1665 			 */
1666 			if (io_start < 0x10000) {
1667 				res->flags = IORESOURCE_IO;
1668 				parent = &ioport_resource;
1669 			} else {
1670 				res->flags = IORESOURCE_MEM;
1671 				parent = &iomem_resource;
1672 			}
1673 			res->name = "reserved";
1674 			res->start = io_start;
1675 			res->end = io_start + io_num - 1;
1676 			res->flags |= IORESOURCE_BUSY;
1677 			res->desc = IORES_DESC_NONE;
1678 			res->child = NULL;
1679 			if (request_resource(parent, res) == 0)
1680 				reserved = x+1;
1681 		}
1682 	}
1683 	return 1;
1684 }
1685 __setup("reserve=", reserve_setup);
1686 
1687 /*
1688  * Check if the requested addr and size spans more than any slot in the
1689  * iomem resource tree.
1690  */
1691 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1692 {
1693 	resource_size_t end = addr + size - 1;
1694 	struct resource *p;
1695 	int err = 0;
1696 
1697 	read_lock(&resource_lock);
1698 	for_each_resource(&iomem_resource, p, false) {
1699 		/*
1700 		 * We can probably skip the resources without
1701 		 * IORESOURCE_IO attribute?
1702 		 */
1703 		if (p->start > end)
1704 			continue;
1705 		if (p->end < addr)
1706 			continue;
1707 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1708 		    PFN_DOWN(p->end) >= PFN_DOWN(end))
1709 			continue;
1710 		/*
1711 		 * if a resource is "BUSY", it's not a hardware resource
1712 		 * but a driver mapping of such a resource; we don't want
1713 		 * to warn for those; some drivers legitimately map only
1714 		 * partial hardware resources. (example: vesafb)
1715 		 */
1716 		if (p->flags & IORESOURCE_BUSY)
1717 			continue;
1718 
1719 		pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1720 			&addr, &end, p->name, p);
1721 		err = -1;
1722 		break;
1723 	}
1724 	read_unlock(&resource_lock);
1725 
1726 	return err;
1727 }
1728 
1729 #ifdef CONFIG_STRICT_DEVMEM
1730 static int strict_iomem_checks = 1;
1731 #else
1732 static int strict_iomem_checks;
1733 #endif
1734 
1735 /*
1736  * Check if an address is exclusive to the kernel and must not be mapped to
1737  * user space, for example, via /dev/mem.
1738  *
1739  * Returns true if exclusive to the kernel, otherwise returns false.
1740  */
1741 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1742 {
1743 	const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1744 						  IORESOURCE_EXCLUSIVE;
1745 	bool skip_children = false, err = false;
1746 	struct resource *p;
1747 
1748 	read_lock(&resource_lock);
1749 	for_each_resource(root, p, skip_children) {
1750 		if (p->start >= addr + size)
1751 			break;
1752 		if (p->end < addr) {
1753 			skip_children = true;
1754 			continue;
1755 		}
1756 		skip_children = false;
1757 
1758 		/*
1759 		 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1760 		 * IORESOURCE_EXCLUSIVE is set, even if they
1761 		 * are not busy and even if "iomem=relaxed" is set. The
1762 		 * responsible driver dynamically adds/removes system RAM within
1763 		 * such an area and uncontrolled access is dangerous.
1764 		 */
1765 		if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1766 			err = true;
1767 			break;
1768 		}
1769 
1770 		/*
1771 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1772 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1773 		 * resource is busy.
1774 		 */
1775 		if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1776 			continue;
1777 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1778 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1779 			err = true;
1780 			break;
1781 		}
1782 	}
1783 	read_unlock(&resource_lock);
1784 
1785 	return err;
1786 }
1787 
1788 bool iomem_is_exclusive(u64 addr)
1789 {
1790 	return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1791 				     PAGE_SIZE);
1792 }
1793 
1794 struct resource_entry *resource_list_create_entry(struct resource *res,
1795 						  size_t extra_size)
1796 {
1797 	struct resource_entry *entry;
1798 
1799 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1800 	if (entry) {
1801 		INIT_LIST_HEAD(&entry->node);
1802 		entry->res = res ? res : &entry->__res;
1803 	}
1804 
1805 	return entry;
1806 }
1807 EXPORT_SYMBOL(resource_list_create_entry);
1808 
1809 void resource_list_free(struct list_head *head)
1810 {
1811 	struct resource_entry *entry, *tmp;
1812 
1813 	list_for_each_entry_safe(entry, tmp, head, node)
1814 		resource_list_destroy_entry(entry);
1815 }
1816 EXPORT_SYMBOL(resource_list_free);
1817 
1818 #ifdef CONFIG_GET_FREE_REGION
1819 #define GFR_DESCENDING		(1UL << 0)
1820 #define GFR_REQUEST_REGION	(1UL << 1)
1821 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
1822 
1823 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1824 				 resource_size_t align, unsigned long flags)
1825 {
1826 	if (flags & GFR_DESCENDING) {
1827 		resource_size_t end;
1828 
1829 		end = min_t(resource_size_t, base->end, PHYSMEM_END);
1830 		return end - size + 1;
1831 	}
1832 
1833 	return ALIGN(base->start, align);
1834 }
1835 
1836 static bool gfr_continue(struct resource *base, resource_size_t addr,
1837 			 resource_size_t size, unsigned long flags)
1838 {
1839 	if (flags & GFR_DESCENDING)
1840 		return addr > size && addr >= base->start;
1841 	/*
1842 	 * In the ascend case be careful that the last increment by
1843 	 * @size did not wrap 0.
1844 	 */
1845 	return addr > addr - size &&
1846 	       addr <= min_t(resource_size_t, base->end, PHYSMEM_END);
1847 }
1848 
1849 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1850 				unsigned long flags)
1851 {
1852 	if (flags & GFR_DESCENDING)
1853 		return addr - size;
1854 	return addr + size;
1855 }
1856 
1857 static void remove_free_mem_region(void *_res)
1858 {
1859 	struct resource *res = _res;
1860 
1861 	if (res->parent)
1862 		remove_resource(res);
1863 	free_resource(res);
1864 }
1865 
1866 static struct resource *
1867 get_free_mem_region(struct device *dev, struct resource *base,
1868 		    resource_size_t size, const unsigned long align,
1869 		    const char *name, const unsigned long desc,
1870 		    const unsigned long flags)
1871 {
1872 	resource_size_t addr;
1873 	struct resource *res;
1874 	struct region_devres *dr = NULL;
1875 
1876 	size = ALIGN(size, align);
1877 
1878 	res = alloc_resource(GFP_KERNEL);
1879 	if (!res)
1880 		return ERR_PTR(-ENOMEM);
1881 
1882 	if (dev && (flags & GFR_REQUEST_REGION)) {
1883 		dr = devres_alloc(devm_region_release,
1884 				sizeof(struct region_devres), GFP_KERNEL);
1885 		if (!dr) {
1886 			free_resource(res);
1887 			return ERR_PTR(-ENOMEM);
1888 		}
1889 	} else if (dev) {
1890 		if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1891 			return ERR_PTR(-ENOMEM);
1892 	}
1893 
1894 	write_lock(&resource_lock);
1895 	for (addr = gfr_start(base, size, align, flags);
1896 	     gfr_continue(base, addr, align, flags);
1897 	     addr = gfr_next(addr, align, flags)) {
1898 		if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1899 		    REGION_DISJOINT)
1900 			continue;
1901 
1902 		if (flags & GFR_REQUEST_REGION) {
1903 			if (__request_region_locked(res, &iomem_resource, addr,
1904 						    size, name, 0))
1905 				break;
1906 
1907 			if (dev) {
1908 				dr->parent = &iomem_resource;
1909 				dr->start = addr;
1910 				dr->n = size;
1911 				devres_add(dev, dr);
1912 			}
1913 
1914 			res->desc = desc;
1915 			write_unlock(&resource_lock);
1916 
1917 
1918 			/*
1919 			 * A driver is claiming this region so revoke any
1920 			 * mappings.
1921 			 */
1922 			revoke_iomem(res);
1923 		} else {
1924 			res->start = addr;
1925 			res->end = addr + size - 1;
1926 			res->name = name;
1927 			res->desc = desc;
1928 			res->flags = IORESOURCE_MEM;
1929 
1930 			/*
1931 			 * Only succeed if the resource hosts an exclusive
1932 			 * range after the insert
1933 			 */
1934 			if (__insert_resource(base, res) || res->child)
1935 				break;
1936 
1937 			write_unlock(&resource_lock);
1938 		}
1939 
1940 		return res;
1941 	}
1942 	write_unlock(&resource_lock);
1943 
1944 	if (flags & GFR_REQUEST_REGION) {
1945 		free_resource(res);
1946 		devres_free(dr);
1947 	} else if (dev)
1948 		devm_release_action(dev, remove_free_mem_region, res);
1949 
1950 	return ERR_PTR(-ERANGE);
1951 }
1952 
1953 /**
1954  * devm_request_free_mem_region - find free region for device private memory
1955  *
1956  * @dev: device struct to bind the resource to
1957  * @size: size in bytes of the device memory to add
1958  * @base: resource tree to look in
1959  *
1960  * This function tries to find an empty range of physical address big enough to
1961  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1962  * memory, which in turn allocates struct pages.
1963  */
1964 struct resource *devm_request_free_mem_region(struct device *dev,
1965 		struct resource *base, unsigned long size)
1966 {
1967 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1968 
1969 	return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
1970 				   dev_name(dev),
1971 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1972 }
1973 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1974 
1975 struct resource *request_free_mem_region(struct resource *base,
1976 		unsigned long size, const char *name)
1977 {
1978 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1979 
1980 	return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
1981 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1982 }
1983 EXPORT_SYMBOL_GPL(request_free_mem_region);
1984 
1985 /**
1986  * alloc_free_mem_region - find a free region relative to @base
1987  * @base: resource that will parent the new resource
1988  * @size: size in bytes of memory to allocate from @base
1989  * @align: alignment requirements for the allocation
1990  * @name: resource name
1991  *
1992  * Buses like CXL, that can dynamically instantiate new memory regions,
1993  * need a method to allocate physical address space for those regions.
1994  * Allocate and insert a new resource to cover a free, unclaimed by a
1995  * descendant of @base, range in the span of @base.
1996  */
1997 struct resource *alloc_free_mem_region(struct resource *base,
1998 				       unsigned long size, unsigned long align,
1999 				       const char *name)
2000 {
2001 	/* Default of ascending direction and insert resource */
2002 	unsigned long flags = 0;
2003 
2004 	return get_free_mem_region(NULL, base, size, align, name,
2005 				   IORES_DESC_NONE, flags);
2006 }
2007 EXPORT_SYMBOL_NS_GPL(alloc_free_mem_region, CXL);
2008 #endif /* CONFIG_GET_FREE_REGION */
2009 
2010 static int __init strict_iomem(char *str)
2011 {
2012 	if (strstr(str, "relaxed"))
2013 		strict_iomem_checks = 0;
2014 	if (strstr(str, "strict"))
2015 		strict_iomem_checks = 1;
2016 	return 1;
2017 }
2018 
2019 static int iomem_fs_init_fs_context(struct fs_context *fc)
2020 {
2021 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2022 }
2023 
2024 static struct file_system_type iomem_fs_type = {
2025 	.name		= "iomem",
2026 	.owner		= THIS_MODULE,
2027 	.init_fs_context = iomem_fs_init_fs_context,
2028 	.kill_sb	= kill_anon_super,
2029 };
2030 
2031 static int __init iomem_init_inode(void)
2032 {
2033 	static struct vfsmount *iomem_vfs_mount;
2034 	static int iomem_fs_cnt;
2035 	struct inode *inode;
2036 	int rc;
2037 
2038 	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2039 	if (rc < 0) {
2040 		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2041 		return rc;
2042 	}
2043 
2044 	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2045 	if (IS_ERR(inode)) {
2046 		rc = PTR_ERR(inode);
2047 		pr_err("Cannot allocate inode for iomem: %d\n", rc);
2048 		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2049 		return rc;
2050 	}
2051 
2052 	/*
2053 	 * Publish iomem revocation inode initialized.
2054 	 * Pairs with smp_load_acquire() in revoke_iomem().
2055 	 */
2056 	smp_store_release(&iomem_inode, inode);
2057 
2058 	return 0;
2059 }
2060 
2061 fs_initcall(iomem_init_inode);
2062 
2063 __setup("iomem=", strict_iomem);
2064