xref: /linux/kernel/resource.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  *	linux/kernel/resource.c
3  *
4  * Copyright (C) 1999	Linus Torvalds
5  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6  *
7  * Arbitrary resource management.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <asm/io.h>
26 
27 
28 struct resource ioport_resource = {
29 	.name	= "PCI IO",
30 	.start	= 0,
31 	.end	= IO_SPACE_LIMIT,
32 	.flags	= IORESOURCE_IO,
33 };
34 EXPORT_SYMBOL(ioport_resource);
35 
36 struct resource iomem_resource = {
37 	.name	= "PCI mem",
38 	.start	= 0,
39 	.end	= -1,
40 	.flags	= IORESOURCE_MEM,
41 };
42 EXPORT_SYMBOL(iomem_resource);
43 
44 /* constraints to be met while allocating resources */
45 struct resource_constraint {
46 	resource_size_t min, max, align;
47 	resource_size_t (*alignf)(void *, const struct resource *,
48 			resource_size_t, resource_size_t);
49 	void *alignf_data;
50 };
51 
52 static DEFINE_RWLOCK(resource_lock);
53 
54 /*
55  * For memory hotplug, there is no way to free resource entries allocated
56  * by boot mem after the system is up. So for reusing the resource entry
57  * we need to remember the resource.
58  */
59 static struct resource *bootmem_resource_free;
60 static DEFINE_SPINLOCK(bootmem_resource_lock);
61 
62 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
63 {
64 	struct resource *p = v;
65 	(*pos)++;
66 	if (p->child)
67 		return p->child;
68 	while (!p->sibling && p->parent)
69 		p = p->parent;
70 	return p->sibling;
71 }
72 
73 #ifdef CONFIG_PROC_FS
74 
75 enum { MAX_IORES_LEVEL = 5 };
76 
77 static void *r_start(struct seq_file *m, loff_t *pos)
78 	__acquires(resource_lock)
79 {
80 	struct resource *p = m->private;
81 	loff_t l = 0;
82 	read_lock(&resource_lock);
83 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
84 		;
85 	return p;
86 }
87 
88 static void r_stop(struct seq_file *m, void *v)
89 	__releases(resource_lock)
90 {
91 	read_unlock(&resource_lock);
92 }
93 
94 static int r_show(struct seq_file *m, void *v)
95 {
96 	struct resource *root = m->private;
97 	struct resource *r = v, *p;
98 	int width = root->end < 0x10000 ? 4 : 8;
99 	int depth;
100 
101 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
102 		if (p->parent == root)
103 			break;
104 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
105 			depth * 2, "",
106 			width, (unsigned long long) r->start,
107 			width, (unsigned long long) r->end,
108 			r->name ? r->name : "<BAD>");
109 	return 0;
110 }
111 
112 static const struct seq_operations resource_op = {
113 	.start	= r_start,
114 	.next	= r_next,
115 	.stop	= r_stop,
116 	.show	= r_show,
117 };
118 
119 static int ioports_open(struct inode *inode, struct file *file)
120 {
121 	int res = seq_open(file, &resource_op);
122 	if (!res) {
123 		struct seq_file *m = file->private_data;
124 		m->private = &ioport_resource;
125 	}
126 	return res;
127 }
128 
129 static int iomem_open(struct inode *inode, struct file *file)
130 {
131 	int res = seq_open(file, &resource_op);
132 	if (!res) {
133 		struct seq_file *m = file->private_data;
134 		m->private = &iomem_resource;
135 	}
136 	return res;
137 }
138 
139 static const struct file_operations proc_ioports_operations = {
140 	.open		= ioports_open,
141 	.read		= seq_read,
142 	.llseek		= seq_lseek,
143 	.release	= seq_release,
144 };
145 
146 static const struct file_operations proc_iomem_operations = {
147 	.open		= iomem_open,
148 	.read		= seq_read,
149 	.llseek		= seq_lseek,
150 	.release	= seq_release,
151 };
152 
153 static int __init ioresources_init(void)
154 {
155 	proc_create("ioports", 0, NULL, &proc_ioports_operations);
156 	proc_create("iomem", 0, NULL, &proc_iomem_operations);
157 	return 0;
158 }
159 __initcall(ioresources_init);
160 
161 #endif /* CONFIG_PROC_FS */
162 
163 static void free_resource(struct resource *res)
164 {
165 	if (!res)
166 		return;
167 
168 	if (!PageSlab(virt_to_head_page(res))) {
169 		spin_lock(&bootmem_resource_lock);
170 		res->sibling = bootmem_resource_free;
171 		bootmem_resource_free = res;
172 		spin_unlock(&bootmem_resource_lock);
173 	} else {
174 		kfree(res);
175 	}
176 }
177 
178 static struct resource *alloc_resource(gfp_t flags)
179 {
180 	struct resource *res = NULL;
181 
182 	spin_lock(&bootmem_resource_lock);
183 	if (bootmem_resource_free) {
184 		res = bootmem_resource_free;
185 		bootmem_resource_free = res->sibling;
186 	}
187 	spin_unlock(&bootmem_resource_lock);
188 
189 	if (res)
190 		memset(res, 0, sizeof(struct resource));
191 	else
192 		res = kzalloc(sizeof(struct resource), flags);
193 
194 	return res;
195 }
196 
197 /* Return the conflict entry if you can't request it */
198 static struct resource * __request_resource(struct resource *root, struct resource *new)
199 {
200 	resource_size_t start = new->start;
201 	resource_size_t end = new->end;
202 	struct resource *tmp, **p;
203 
204 	if (end < start)
205 		return root;
206 	if (start < root->start)
207 		return root;
208 	if (end > root->end)
209 		return root;
210 	p = &root->child;
211 	for (;;) {
212 		tmp = *p;
213 		if (!tmp || tmp->start > end) {
214 			new->sibling = tmp;
215 			*p = new;
216 			new->parent = root;
217 			return NULL;
218 		}
219 		p = &tmp->sibling;
220 		if (tmp->end < start)
221 			continue;
222 		return tmp;
223 	}
224 }
225 
226 static int __release_resource(struct resource *old)
227 {
228 	struct resource *tmp, **p;
229 
230 	p = &old->parent->child;
231 	for (;;) {
232 		tmp = *p;
233 		if (!tmp)
234 			break;
235 		if (tmp == old) {
236 			*p = tmp->sibling;
237 			old->parent = NULL;
238 			return 0;
239 		}
240 		p = &tmp->sibling;
241 	}
242 	return -EINVAL;
243 }
244 
245 static void __release_child_resources(struct resource *r)
246 {
247 	struct resource *tmp, *p;
248 	resource_size_t size;
249 
250 	p = r->child;
251 	r->child = NULL;
252 	while (p) {
253 		tmp = p;
254 		p = p->sibling;
255 
256 		tmp->parent = NULL;
257 		tmp->sibling = NULL;
258 		__release_child_resources(tmp);
259 
260 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
261 		/* need to restore size, and keep flags */
262 		size = resource_size(tmp);
263 		tmp->start = 0;
264 		tmp->end = size - 1;
265 	}
266 }
267 
268 void release_child_resources(struct resource *r)
269 {
270 	write_lock(&resource_lock);
271 	__release_child_resources(r);
272 	write_unlock(&resource_lock);
273 }
274 
275 /**
276  * request_resource_conflict - request and reserve an I/O or memory resource
277  * @root: root resource descriptor
278  * @new: resource descriptor desired by caller
279  *
280  * Returns 0 for success, conflict resource on error.
281  */
282 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
283 {
284 	struct resource *conflict;
285 
286 	write_lock(&resource_lock);
287 	conflict = __request_resource(root, new);
288 	write_unlock(&resource_lock);
289 	return conflict;
290 }
291 
292 /**
293  * request_resource - request and reserve an I/O or memory resource
294  * @root: root resource descriptor
295  * @new: resource descriptor desired by caller
296  *
297  * Returns 0 for success, negative error code on error.
298  */
299 int request_resource(struct resource *root, struct resource *new)
300 {
301 	struct resource *conflict;
302 
303 	conflict = request_resource_conflict(root, new);
304 	return conflict ? -EBUSY : 0;
305 }
306 
307 EXPORT_SYMBOL(request_resource);
308 
309 /**
310  * release_resource - release a previously reserved resource
311  * @old: resource pointer
312  */
313 int release_resource(struct resource *old)
314 {
315 	int retval;
316 
317 	write_lock(&resource_lock);
318 	retval = __release_resource(old);
319 	write_unlock(&resource_lock);
320 	return retval;
321 }
322 
323 EXPORT_SYMBOL(release_resource);
324 
325 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
326 /*
327  * Finds the lowest memory reosurce exists within [res->start.res->end)
328  * the caller must specify res->start, res->end, res->flags and "name".
329  * If found, returns 0, res is overwritten, if not found, returns -1.
330  */
331 static int find_next_system_ram(struct resource *res, char *name)
332 {
333 	resource_size_t start, end;
334 	struct resource *p;
335 
336 	BUG_ON(!res);
337 
338 	start = res->start;
339 	end = res->end;
340 	BUG_ON(start >= end);
341 
342 	read_lock(&resource_lock);
343 	for (p = iomem_resource.child; p ; p = p->sibling) {
344 		/* system ram is just marked as IORESOURCE_MEM */
345 		if (p->flags != res->flags)
346 			continue;
347 		if (name && strcmp(p->name, name))
348 			continue;
349 		if (p->start > end) {
350 			p = NULL;
351 			break;
352 		}
353 		if ((p->end >= start) && (p->start < end))
354 			break;
355 	}
356 	read_unlock(&resource_lock);
357 	if (!p)
358 		return -1;
359 	/* copy data */
360 	if (res->start < p->start)
361 		res->start = p->start;
362 	if (res->end > p->end)
363 		res->end = p->end;
364 	return 0;
365 }
366 
367 /*
368  * This function calls callback against all memory range of "System RAM"
369  * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
370  * Now, this function is only for "System RAM".
371  */
372 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
373 		void *arg, int (*func)(unsigned long, unsigned long, void *))
374 {
375 	struct resource res;
376 	unsigned long pfn, end_pfn;
377 	u64 orig_end;
378 	int ret = -1;
379 
380 	res.start = (u64) start_pfn << PAGE_SHIFT;
381 	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
382 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
383 	orig_end = res.end;
384 	while ((res.start < res.end) &&
385 		(find_next_system_ram(&res, "System RAM") >= 0)) {
386 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
387 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
388 		if (end_pfn > pfn)
389 			ret = (*func)(pfn, end_pfn - pfn, arg);
390 		if (ret)
391 			break;
392 		res.start = res.end + 1;
393 		res.end = orig_end;
394 	}
395 	return ret;
396 }
397 
398 #endif
399 
400 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
401 {
402 	return 1;
403 }
404 /*
405  * This generic page_is_ram() returns true if specified address is
406  * registered as "System RAM" in iomem_resource list.
407  */
408 int __weak page_is_ram(unsigned long pfn)
409 {
410 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
411 }
412 EXPORT_SYMBOL_GPL(page_is_ram);
413 
414 void __weak arch_remove_reservations(struct resource *avail)
415 {
416 }
417 
418 static resource_size_t simple_align_resource(void *data,
419 					     const struct resource *avail,
420 					     resource_size_t size,
421 					     resource_size_t align)
422 {
423 	return avail->start;
424 }
425 
426 static void resource_clip(struct resource *res, resource_size_t min,
427 			  resource_size_t max)
428 {
429 	if (res->start < min)
430 		res->start = min;
431 	if (res->end > max)
432 		res->end = max;
433 }
434 
435 static bool resource_contains(struct resource *res1, struct resource *res2)
436 {
437 	return res1->start <= res2->start && res1->end >= res2->end;
438 }
439 
440 /*
441  * Find empty slot in the resource tree with the given range and
442  * alignment constraints
443  */
444 static int __find_resource(struct resource *root, struct resource *old,
445 			 struct resource *new,
446 			 resource_size_t  size,
447 			 struct resource_constraint *constraint)
448 {
449 	struct resource *this = root->child;
450 	struct resource tmp = *new, avail, alloc;
451 
452 	tmp.start = root->start;
453 	/*
454 	 * Skip past an allocated resource that starts at 0, since the assignment
455 	 * of this->start - 1 to tmp->end below would cause an underflow.
456 	 */
457 	if (this && this->start == root->start) {
458 		tmp.start = (this == old) ? old->start : this->end + 1;
459 		this = this->sibling;
460 	}
461 	for(;;) {
462 		if (this)
463 			tmp.end = (this == old) ?  this->end : this->start - 1;
464 		else
465 			tmp.end = root->end;
466 
467 		if (tmp.end < tmp.start)
468 			goto next;
469 
470 		resource_clip(&tmp, constraint->min, constraint->max);
471 		arch_remove_reservations(&tmp);
472 
473 		/* Check for overflow after ALIGN() */
474 		avail = *new;
475 		avail.start = ALIGN(tmp.start, constraint->align);
476 		avail.end = tmp.end;
477 		if (avail.start >= tmp.start) {
478 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
479 					size, constraint->align);
480 			alloc.end = alloc.start + size - 1;
481 			if (resource_contains(&avail, &alloc)) {
482 				new->start = alloc.start;
483 				new->end = alloc.end;
484 				return 0;
485 			}
486 		}
487 
488 next:		if (!this || this->end == root->end)
489 			break;
490 
491 		if (this != old)
492 			tmp.start = this->end + 1;
493 		this = this->sibling;
494 	}
495 	return -EBUSY;
496 }
497 
498 /*
499  * Find empty slot in the resource tree given range and alignment.
500  */
501 static int find_resource(struct resource *root, struct resource *new,
502 			resource_size_t size,
503 			struct resource_constraint  *constraint)
504 {
505 	return  __find_resource(root, NULL, new, size, constraint);
506 }
507 
508 /**
509  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
510  *	The resource will be relocated if the new size cannot be reallocated in the
511  *	current location.
512  *
513  * @root: root resource descriptor
514  * @old:  resource descriptor desired by caller
515  * @newsize: new size of the resource descriptor
516  * @constraint: the size and alignment constraints to be met.
517  */
518 int reallocate_resource(struct resource *root, struct resource *old,
519 			resource_size_t newsize,
520 			struct resource_constraint  *constraint)
521 {
522 	int err=0;
523 	struct resource new = *old;
524 	struct resource *conflict;
525 
526 	write_lock(&resource_lock);
527 
528 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
529 		goto out;
530 
531 	if (resource_contains(&new, old)) {
532 		old->start = new.start;
533 		old->end = new.end;
534 		goto out;
535 	}
536 
537 	if (old->child) {
538 		err = -EBUSY;
539 		goto out;
540 	}
541 
542 	if (resource_contains(old, &new)) {
543 		old->start = new.start;
544 		old->end = new.end;
545 	} else {
546 		__release_resource(old);
547 		*old = new;
548 		conflict = __request_resource(root, old);
549 		BUG_ON(conflict);
550 	}
551 out:
552 	write_unlock(&resource_lock);
553 	return err;
554 }
555 
556 
557 /**
558  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
559  * 	The resource will be reallocated with a new size if it was already allocated
560  * @root: root resource descriptor
561  * @new: resource descriptor desired by caller
562  * @size: requested resource region size
563  * @min: minimum boundary to allocate
564  * @max: maximum boundary to allocate
565  * @align: alignment requested, in bytes
566  * @alignf: alignment function, optional, called if not NULL
567  * @alignf_data: arbitrary data to pass to the @alignf function
568  */
569 int allocate_resource(struct resource *root, struct resource *new,
570 		      resource_size_t size, resource_size_t min,
571 		      resource_size_t max, resource_size_t align,
572 		      resource_size_t (*alignf)(void *,
573 						const struct resource *,
574 						resource_size_t,
575 						resource_size_t),
576 		      void *alignf_data)
577 {
578 	int err;
579 	struct resource_constraint constraint;
580 
581 	if (!alignf)
582 		alignf = simple_align_resource;
583 
584 	constraint.min = min;
585 	constraint.max = max;
586 	constraint.align = align;
587 	constraint.alignf = alignf;
588 	constraint.alignf_data = alignf_data;
589 
590 	if ( new->parent ) {
591 		/* resource is already allocated, try reallocating with
592 		   the new constraints */
593 		return reallocate_resource(root, new, size, &constraint);
594 	}
595 
596 	write_lock(&resource_lock);
597 	err = find_resource(root, new, size, &constraint);
598 	if (err >= 0 && __request_resource(root, new))
599 		err = -EBUSY;
600 	write_unlock(&resource_lock);
601 	return err;
602 }
603 
604 EXPORT_SYMBOL(allocate_resource);
605 
606 /**
607  * lookup_resource - find an existing resource by a resource start address
608  * @root: root resource descriptor
609  * @start: resource start address
610  *
611  * Returns a pointer to the resource if found, NULL otherwise
612  */
613 struct resource *lookup_resource(struct resource *root, resource_size_t start)
614 {
615 	struct resource *res;
616 
617 	read_lock(&resource_lock);
618 	for (res = root->child; res; res = res->sibling) {
619 		if (res->start == start)
620 			break;
621 	}
622 	read_unlock(&resource_lock);
623 
624 	return res;
625 }
626 
627 /*
628  * Insert a resource into the resource tree. If successful, return NULL,
629  * otherwise return the conflicting resource (compare to __request_resource())
630  */
631 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
632 {
633 	struct resource *first, *next;
634 
635 	for (;; parent = first) {
636 		first = __request_resource(parent, new);
637 		if (!first)
638 			return first;
639 
640 		if (first == parent)
641 			return first;
642 		if (WARN_ON(first == new))	/* duplicated insertion */
643 			return first;
644 
645 		if ((first->start > new->start) || (first->end < new->end))
646 			break;
647 		if ((first->start == new->start) && (first->end == new->end))
648 			break;
649 	}
650 
651 	for (next = first; ; next = next->sibling) {
652 		/* Partial overlap? Bad, and unfixable */
653 		if (next->start < new->start || next->end > new->end)
654 			return next;
655 		if (!next->sibling)
656 			break;
657 		if (next->sibling->start > new->end)
658 			break;
659 	}
660 
661 	new->parent = parent;
662 	new->sibling = next->sibling;
663 	new->child = first;
664 
665 	next->sibling = NULL;
666 	for (next = first; next; next = next->sibling)
667 		next->parent = new;
668 
669 	if (parent->child == first) {
670 		parent->child = new;
671 	} else {
672 		next = parent->child;
673 		while (next->sibling != first)
674 			next = next->sibling;
675 		next->sibling = new;
676 	}
677 	return NULL;
678 }
679 
680 /**
681  * insert_resource_conflict - Inserts resource in the resource tree
682  * @parent: parent of the new resource
683  * @new: new resource to insert
684  *
685  * Returns 0 on success, conflict resource if the resource can't be inserted.
686  *
687  * This function is equivalent to request_resource_conflict when no conflict
688  * happens. If a conflict happens, and the conflicting resources
689  * entirely fit within the range of the new resource, then the new
690  * resource is inserted and the conflicting resources become children of
691  * the new resource.
692  */
693 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
694 {
695 	struct resource *conflict;
696 
697 	write_lock(&resource_lock);
698 	conflict = __insert_resource(parent, new);
699 	write_unlock(&resource_lock);
700 	return conflict;
701 }
702 
703 /**
704  * insert_resource - Inserts a resource in the resource tree
705  * @parent: parent of the new resource
706  * @new: new resource to insert
707  *
708  * Returns 0 on success, -EBUSY if the resource can't be inserted.
709  */
710 int insert_resource(struct resource *parent, struct resource *new)
711 {
712 	struct resource *conflict;
713 
714 	conflict = insert_resource_conflict(parent, new);
715 	return conflict ? -EBUSY : 0;
716 }
717 
718 /**
719  * insert_resource_expand_to_fit - Insert a resource into the resource tree
720  * @root: root resource descriptor
721  * @new: new resource to insert
722  *
723  * Insert a resource into the resource tree, possibly expanding it in order
724  * to make it encompass any conflicting resources.
725  */
726 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
727 {
728 	if (new->parent)
729 		return;
730 
731 	write_lock(&resource_lock);
732 	for (;;) {
733 		struct resource *conflict;
734 
735 		conflict = __insert_resource(root, new);
736 		if (!conflict)
737 			break;
738 		if (conflict == root)
739 			break;
740 
741 		/* Ok, expand resource to cover the conflict, then try again .. */
742 		if (conflict->start < new->start)
743 			new->start = conflict->start;
744 		if (conflict->end > new->end)
745 			new->end = conflict->end;
746 
747 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
748 	}
749 	write_unlock(&resource_lock);
750 }
751 
752 static int __adjust_resource(struct resource *res, resource_size_t start,
753 				resource_size_t size)
754 {
755 	struct resource *tmp, *parent = res->parent;
756 	resource_size_t end = start + size - 1;
757 	int result = -EBUSY;
758 
759 	if (!parent)
760 		goto skip;
761 
762 	if ((start < parent->start) || (end > parent->end))
763 		goto out;
764 
765 	if (res->sibling && (res->sibling->start <= end))
766 		goto out;
767 
768 	tmp = parent->child;
769 	if (tmp != res) {
770 		while (tmp->sibling != res)
771 			tmp = tmp->sibling;
772 		if (start <= tmp->end)
773 			goto out;
774 	}
775 
776 skip:
777 	for (tmp = res->child; tmp; tmp = tmp->sibling)
778 		if ((tmp->start < start) || (tmp->end > end))
779 			goto out;
780 
781 	res->start = start;
782 	res->end = end;
783 	result = 0;
784 
785  out:
786 	return result;
787 }
788 
789 /**
790  * adjust_resource - modify a resource's start and size
791  * @res: resource to modify
792  * @start: new start value
793  * @size: new size
794  *
795  * Given an existing resource, change its start and size to match the
796  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
797  * Existing children of the resource are assumed to be immutable.
798  */
799 int adjust_resource(struct resource *res, resource_size_t start,
800 			resource_size_t size)
801 {
802 	int result;
803 
804 	write_lock(&resource_lock);
805 	result = __adjust_resource(res, start, size);
806 	write_unlock(&resource_lock);
807 	return result;
808 }
809 EXPORT_SYMBOL(adjust_resource);
810 
811 static void __init __reserve_region_with_split(struct resource *root,
812 		resource_size_t start, resource_size_t end,
813 		const char *name)
814 {
815 	struct resource *parent = root;
816 	struct resource *conflict;
817 	struct resource *res = alloc_resource(GFP_ATOMIC);
818 	struct resource *next_res = NULL;
819 
820 	if (!res)
821 		return;
822 
823 	res->name = name;
824 	res->start = start;
825 	res->end = end;
826 	res->flags = IORESOURCE_BUSY;
827 
828 	while (1) {
829 
830 		conflict = __request_resource(parent, res);
831 		if (!conflict) {
832 			if (!next_res)
833 				break;
834 			res = next_res;
835 			next_res = NULL;
836 			continue;
837 		}
838 
839 		/* conflict covered whole area */
840 		if (conflict->start <= res->start &&
841 				conflict->end >= res->end) {
842 			free_resource(res);
843 			WARN_ON(next_res);
844 			break;
845 		}
846 
847 		/* failed, split and try again */
848 		if (conflict->start > res->start) {
849 			end = res->end;
850 			res->end = conflict->start - 1;
851 			if (conflict->end < end) {
852 				next_res = alloc_resource(GFP_ATOMIC);
853 				if (!next_res) {
854 					free_resource(res);
855 					break;
856 				}
857 				next_res->name = name;
858 				next_res->start = conflict->end + 1;
859 				next_res->end = end;
860 				next_res->flags = IORESOURCE_BUSY;
861 			}
862 		} else {
863 			res->start = conflict->end + 1;
864 		}
865 	}
866 
867 }
868 
869 void __init reserve_region_with_split(struct resource *root,
870 		resource_size_t start, resource_size_t end,
871 		const char *name)
872 {
873 	int abort = 0;
874 
875 	write_lock(&resource_lock);
876 	if (root->start > start || root->end < end) {
877 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
878 		       (unsigned long long)start, (unsigned long long)end,
879 		       root);
880 		if (start > root->end || end < root->start)
881 			abort = 1;
882 		else {
883 			if (end > root->end)
884 				end = root->end;
885 			if (start < root->start)
886 				start = root->start;
887 			pr_err("fixing request to [0x%llx-0x%llx]\n",
888 			       (unsigned long long)start,
889 			       (unsigned long long)end);
890 		}
891 		dump_stack();
892 	}
893 	if (!abort)
894 		__reserve_region_with_split(root, start, end, name);
895 	write_unlock(&resource_lock);
896 }
897 
898 /**
899  * resource_alignment - calculate resource's alignment
900  * @res: resource pointer
901  *
902  * Returns alignment on success, 0 (invalid alignment) on failure.
903  */
904 resource_size_t resource_alignment(struct resource *res)
905 {
906 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
907 	case IORESOURCE_SIZEALIGN:
908 		return resource_size(res);
909 	case IORESOURCE_STARTALIGN:
910 		return res->start;
911 	default:
912 		return 0;
913 	}
914 }
915 
916 /*
917  * This is compatibility stuff for IO resources.
918  *
919  * Note how this, unlike the above, knows about
920  * the IO flag meanings (busy etc).
921  *
922  * request_region creates a new busy region.
923  *
924  * check_region returns non-zero if the area is already busy.
925  *
926  * release_region releases a matching busy region.
927  */
928 
929 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
930 
931 /**
932  * __request_region - create a new busy resource region
933  * @parent: parent resource descriptor
934  * @start: resource start address
935  * @n: resource region size
936  * @name: reserving caller's ID string
937  * @flags: IO resource flags
938  */
939 struct resource * __request_region(struct resource *parent,
940 				   resource_size_t start, resource_size_t n,
941 				   const char *name, int flags)
942 {
943 	DECLARE_WAITQUEUE(wait, current);
944 	struct resource *res = alloc_resource(GFP_KERNEL);
945 
946 	if (!res)
947 		return NULL;
948 
949 	res->name = name;
950 	res->start = start;
951 	res->end = start + n - 1;
952 	res->flags = IORESOURCE_BUSY;
953 	res->flags |= flags;
954 
955 	write_lock(&resource_lock);
956 
957 	for (;;) {
958 		struct resource *conflict;
959 
960 		conflict = __request_resource(parent, res);
961 		if (!conflict)
962 			break;
963 		if (conflict != parent) {
964 			parent = conflict;
965 			if (!(conflict->flags & IORESOURCE_BUSY))
966 				continue;
967 		}
968 		if (conflict->flags & flags & IORESOURCE_MUXED) {
969 			add_wait_queue(&muxed_resource_wait, &wait);
970 			write_unlock(&resource_lock);
971 			set_current_state(TASK_UNINTERRUPTIBLE);
972 			schedule();
973 			remove_wait_queue(&muxed_resource_wait, &wait);
974 			write_lock(&resource_lock);
975 			continue;
976 		}
977 		/* Uhhuh, that didn't work out.. */
978 		free_resource(res);
979 		res = NULL;
980 		break;
981 	}
982 	write_unlock(&resource_lock);
983 	return res;
984 }
985 EXPORT_SYMBOL(__request_region);
986 
987 /**
988  * __check_region - check if a resource region is busy or free
989  * @parent: parent resource descriptor
990  * @start: resource start address
991  * @n: resource region size
992  *
993  * Returns 0 if the region is free at the moment it is checked,
994  * returns %-EBUSY if the region is busy.
995  *
996  * NOTE:
997  * This function is deprecated because its use is racy.
998  * Even if it returns 0, a subsequent call to request_region()
999  * may fail because another driver etc. just allocated the region.
1000  * Do NOT use it.  It will be removed from the kernel.
1001  */
1002 int __check_region(struct resource *parent, resource_size_t start,
1003 			resource_size_t n)
1004 {
1005 	struct resource * res;
1006 
1007 	res = __request_region(parent, start, n, "check-region", 0);
1008 	if (!res)
1009 		return -EBUSY;
1010 
1011 	release_resource(res);
1012 	free_resource(res);
1013 	return 0;
1014 }
1015 EXPORT_SYMBOL(__check_region);
1016 
1017 /**
1018  * __release_region - release a previously reserved resource region
1019  * @parent: parent resource descriptor
1020  * @start: resource start address
1021  * @n: resource region size
1022  *
1023  * The described resource region must match a currently busy region.
1024  */
1025 void __release_region(struct resource *parent, resource_size_t start,
1026 			resource_size_t n)
1027 {
1028 	struct resource **p;
1029 	resource_size_t end;
1030 
1031 	p = &parent->child;
1032 	end = start + n - 1;
1033 
1034 	write_lock(&resource_lock);
1035 
1036 	for (;;) {
1037 		struct resource *res = *p;
1038 
1039 		if (!res)
1040 			break;
1041 		if (res->start <= start && res->end >= end) {
1042 			if (!(res->flags & IORESOURCE_BUSY)) {
1043 				p = &res->child;
1044 				continue;
1045 			}
1046 			if (res->start != start || res->end != end)
1047 				break;
1048 			*p = res->sibling;
1049 			write_unlock(&resource_lock);
1050 			if (res->flags & IORESOURCE_MUXED)
1051 				wake_up(&muxed_resource_wait);
1052 			free_resource(res);
1053 			return;
1054 		}
1055 		p = &res->sibling;
1056 	}
1057 
1058 	write_unlock(&resource_lock);
1059 
1060 	printk(KERN_WARNING "Trying to free nonexistent resource "
1061 		"<%016llx-%016llx>\n", (unsigned long long)start,
1062 		(unsigned long long)end);
1063 }
1064 EXPORT_SYMBOL(__release_region);
1065 
1066 #ifdef CONFIG_MEMORY_HOTREMOVE
1067 /**
1068  * release_mem_region_adjustable - release a previously reserved memory region
1069  * @parent: parent resource descriptor
1070  * @start: resource start address
1071  * @size: resource region size
1072  *
1073  * This interface is intended for memory hot-delete.  The requested region
1074  * is released from a currently busy memory resource.  The requested region
1075  * must either match exactly or fit into a single busy resource entry.  In
1076  * the latter case, the remaining resource is adjusted accordingly.
1077  * Existing children of the busy memory resource must be immutable in the
1078  * request.
1079  *
1080  * Note:
1081  * - Additional release conditions, such as overlapping region, can be
1082  *   supported after they are confirmed as valid cases.
1083  * - When a busy memory resource gets split into two entries, the code
1084  *   assumes that all children remain in the lower address entry for
1085  *   simplicity.  Enhance this logic when necessary.
1086  */
1087 int release_mem_region_adjustable(struct resource *parent,
1088 			resource_size_t start, resource_size_t size)
1089 {
1090 	struct resource **p;
1091 	struct resource *res;
1092 	struct resource *new_res;
1093 	resource_size_t end;
1094 	int ret = -EINVAL;
1095 
1096 	end = start + size - 1;
1097 	if ((start < parent->start) || (end > parent->end))
1098 		return ret;
1099 
1100 	/* The alloc_resource() result gets checked later */
1101 	new_res = alloc_resource(GFP_KERNEL);
1102 
1103 	p = &parent->child;
1104 	write_lock(&resource_lock);
1105 
1106 	while ((res = *p)) {
1107 		if (res->start >= end)
1108 			break;
1109 
1110 		/* look for the next resource if it does not fit into */
1111 		if (res->start > start || res->end < end) {
1112 			p = &res->sibling;
1113 			continue;
1114 		}
1115 
1116 		if (!(res->flags & IORESOURCE_MEM))
1117 			break;
1118 
1119 		if (!(res->flags & IORESOURCE_BUSY)) {
1120 			p = &res->child;
1121 			continue;
1122 		}
1123 
1124 		/* found the target resource; let's adjust accordingly */
1125 		if (res->start == start && res->end == end) {
1126 			/* free the whole entry */
1127 			*p = res->sibling;
1128 			free_resource(res);
1129 			ret = 0;
1130 		} else if (res->start == start && res->end != end) {
1131 			/* adjust the start */
1132 			ret = __adjust_resource(res, end + 1,
1133 						res->end - end);
1134 		} else if (res->start != start && res->end == end) {
1135 			/* adjust the end */
1136 			ret = __adjust_resource(res, res->start,
1137 						start - res->start);
1138 		} else {
1139 			/* split into two entries */
1140 			if (!new_res) {
1141 				ret = -ENOMEM;
1142 				break;
1143 			}
1144 			new_res->name = res->name;
1145 			new_res->start = end + 1;
1146 			new_res->end = res->end;
1147 			new_res->flags = res->flags;
1148 			new_res->parent = res->parent;
1149 			new_res->sibling = res->sibling;
1150 			new_res->child = NULL;
1151 
1152 			ret = __adjust_resource(res, res->start,
1153 						start - res->start);
1154 			if (ret)
1155 				break;
1156 			res->sibling = new_res;
1157 			new_res = NULL;
1158 		}
1159 
1160 		break;
1161 	}
1162 
1163 	write_unlock(&resource_lock);
1164 	free_resource(new_res);
1165 	return ret;
1166 }
1167 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1168 
1169 /*
1170  * Managed region resource
1171  */
1172 struct region_devres {
1173 	struct resource *parent;
1174 	resource_size_t start;
1175 	resource_size_t n;
1176 };
1177 
1178 static void devm_region_release(struct device *dev, void *res)
1179 {
1180 	struct region_devres *this = res;
1181 
1182 	__release_region(this->parent, this->start, this->n);
1183 }
1184 
1185 static int devm_region_match(struct device *dev, void *res, void *match_data)
1186 {
1187 	struct region_devres *this = res, *match = match_data;
1188 
1189 	return this->parent == match->parent &&
1190 		this->start == match->start && this->n == match->n;
1191 }
1192 
1193 struct resource * __devm_request_region(struct device *dev,
1194 				struct resource *parent, resource_size_t start,
1195 				resource_size_t n, const char *name)
1196 {
1197 	struct region_devres *dr = NULL;
1198 	struct resource *res;
1199 
1200 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1201 			  GFP_KERNEL);
1202 	if (!dr)
1203 		return NULL;
1204 
1205 	dr->parent = parent;
1206 	dr->start = start;
1207 	dr->n = n;
1208 
1209 	res = __request_region(parent, start, n, name, 0);
1210 	if (res)
1211 		devres_add(dev, dr);
1212 	else
1213 		devres_free(dr);
1214 
1215 	return res;
1216 }
1217 EXPORT_SYMBOL(__devm_request_region);
1218 
1219 void __devm_release_region(struct device *dev, struct resource *parent,
1220 			   resource_size_t start, resource_size_t n)
1221 {
1222 	struct region_devres match_data = { parent, start, n };
1223 
1224 	__release_region(parent, start, n);
1225 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1226 			       &match_data));
1227 }
1228 EXPORT_SYMBOL(__devm_release_region);
1229 
1230 /*
1231  * Called from init/main.c to reserve IO ports.
1232  */
1233 #define MAXRESERVE 4
1234 static int __init reserve_setup(char *str)
1235 {
1236 	static int reserved;
1237 	static struct resource reserve[MAXRESERVE];
1238 
1239 	for (;;) {
1240 		unsigned int io_start, io_num;
1241 		int x = reserved;
1242 
1243 		if (get_option (&str, &io_start) != 2)
1244 			break;
1245 		if (get_option (&str, &io_num)   == 0)
1246 			break;
1247 		if (x < MAXRESERVE) {
1248 			struct resource *res = reserve + x;
1249 			res->name = "reserved";
1250 			res->start = io_start;
1251 			res->end = io_start + io_num - 1;
1252 			res->flags = IORESOURCE_BUSY;
1253 			res->child = NULL;
1254 			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1255 				reserved = x+1;
1256 		}
1257 	}
1258 	return 1;
1259 }
1260 
1261 __setup("reserve=", reserve_setup);
1262 
1263 /*
1264  * Check if the requested addr and size spans more than any slot in the
1265  * iomem resource tree.
1266  */
1267 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1268 {
1269 	struct resource *p = &iomem_resource;
1270 	int err = 0;
1271 	loff_t l;
1272 
1273 	read_lock(&resource_lock);
1274 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1275 		/*
1276 		 * We can probably skip the resources without
1277 		 * IORESOURCE_IO attribute?
1278 		 */
1279 		if (p->start >= addr + size)
1280 			continue;
1281 		if (p->end < addr)
1282 			continue;
1283 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1284 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1285 			continue;
1286 		/*
1287 		 * if a resource is "BUSY", it's not a hardware resource
1288 		 * but a driver mapping of such a resource; we don't want
1289 		 * to warn for those; some drivers legitimately map only
1290 		 * partial hardware resources. (example: vesafb)
1291 		 */
1292 		if (p->flags & IORESOURCE_BUSY)
1293 			continue;
1294 
1295 		printk(KERN_WARNING "resource map sanity check conflict: "
1296 		       "0x%llx 0x%llx 0x%llx 0x%llx %s\n",
1297 		       (unsigned long long)addr,
1298 		       (unsigned long long)(addr + size - 1),
1299 		       (unsigned long long)p->start,
1300 		       (unsigned long long)p->end,
1301 		       p->name);
1302 		err = -1;
1303 		break;
1304 	}
1305 	read_unlock(&resource_lock);
1306 
1307 	return err;
1308 }
1309 
1310 #ifdef CONFIG_STRICT_DEVMEM
1311 static int strict_iomem_checks = 1;
1312 #else
1313 static int strict_iomem_checks;
1314 #endif
1315 
1316 /*
1317  * check if an address is reserved in the iomem resource tree
1318  * returns 1 if reserved, 0 if not reserved.
1319  */
1320 int iomem_is_exclusive(u64 addr)
1321 {
1322 	struct resource *p = &iomem_resource;
1323 	int err = 0;
1324 	loff_t l;
1325 	int size = PAGE_SIZE;
1326 
1327 	if (!strict_iomem_checks)
1328 		return 0;
1329 
1330 	addr = addr & PAGE_MASK;
1331 
1332 	read_lock(&resource_lock);
1333 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1334 		/*
1335 		 * We can probably skip the resources without
1336 		 * IORESOURCE_IO attribute?
1337 		 */
1338 		if (p->start >= addr + size)
1339 			break;
1340 		if (p->end < addr)
1341 			continue;
1342 		if (p->flags & IORESOURCE_BUSY &&
1343 		     p->flags & IORESOURCE_EXCLUSIVE) {
1344 			err = 1;
1345 			break;
1346 		}
1347 	}
1348 	read_unlock(&resource_lock);
1349 
1350 	return err;
1351 }
1352 
1353 static int __init strict_iomem(char *str)
1354 {
1355 	if (strstr(str, "relaxed"))
1356 		strict_iomem_checks = 0;
1357 	if (strstr(str, "strict"))
1358 		strict_iomem_checks = 1;
1359 	return 1;
1360 }
1361 
1362 __setup("iomem=", strict_iomem);
1363