xref: /linux/kernel/resource.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <linux/string.h>
31 #include <linux/vmalloc.h>
32 #include <asm/io.h>
33 
34 
35 struct resource ioport_resource = {
36 	.name	= "PCI IO",
37 	.start	= 0,
38 	.end	= IO_SPACE_LIMIT,
39 	.flags	= IORESOURCE_IO,
40 };
41 EXPORT_SYMBOL(ioport_resource);
42 
43 struct resource iomem_resource = {
44 	.name	= "PCI mem",
45 	.start	= 0,
46 	.end	= -1,
47 	.flags	= IORESOURCE_MEM,
48 };
49 EXPORT_SYMBOL(iomem_resource);
50 
51 /* constraints to be met while allocating resources */
52 struct resource_constraint {
53 	resource_size_t min, max, align;
54 	resource_size_t (*alignf)(void *, const struct resource *,
55 			resource_size_t, resource_size_t);
56 	void *alignf_data;
57 };
58 
59 static DEFINE_RWLOCK(resource_lock);
60 
61 static struct resource *next_resource(struct resource *p, bool skip_children)
62 {
63 	if (!skip_children && p->child)
64 		return p->child;
65 	while (!p->sibling && p->parent)
66 		p = p->parent;
67 	return p->sibling;
68 }
69 
70 #define for_each_resource(_root, _p, _skip_children) \
71 	for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children))
72 
73 #ifdef CONFIG_PROC_FS
74 
75 enum { MAX_IORES_LEVEL = 5 };
76 
77 static void *r_start(struct seq_file *m, loff_t *pos)
78 	__acquires(resource_lock)
79 {
80 	struct resource *root = pde_data(file_inode(m->file));
81 	struct resource *p;
82 	loff_t l = *pos;
83 
84 	read_lock(&resource_lock);
85 	for_each_resource(root, p, false) {
86 		if (l-- == 0)
87 			break;
88 	}
89 
90 	return p;
91 }
92 
93 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
94 {
95 	struct resource *p = v;
96 
97 	(*pos)++;
98 
99 	return (void *)next_resource(p, false);
100 }
101 
102 static void r_stop(struct seq_file *m, void *v)
103 	__releases(resource_lock)
104 {
105 	read_unlock(&resource_lock);
106 }
107 
108 static int r_show(struct seq_file *m, void *v)
109 {
110 	struct resource *root = pde_data(file_inode(m->file));
111 	struct resource *r = v, *p;
112 	unsigned long long start, end;
113 	int width = root->end < 0x10000 ? 4 : 8;
114 	int depth;
115 
116 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
117 		if (p->parent == root)
118 			break;
119 
120 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
121 		start = r->start;
122 		end = r->end;
123 	} else {
124 		start = end = 0;
125 	}
126 
127 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
128 			depth * 2, "",
129 			width, start,
130 			width, end,
131 			r->name ? r->name : "<BAD>");
132 	return 0;
133 }
134 
135 static const struct seq_operations resource_op = {
136 	.start	= r_start,
137 	.next	= r_next,
138 	.stop	= r_stop,
139 	.show	= r_show,
140 };
141 
142 static int __init ioresources_init(void)
143 {
144 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
145 			&ioport_resource);
146 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
147 	return 0;
148 }
149 __initcall(ioresources_init);
150 
151 #endif /* CONFIG_PROC_FS */
152 
153 static void free_resource(struct resource *res)
154 {
155 	/**
156 	 * If the resource was allocated using memblock early during boot
157 	 * we'll leak it here: we can only return full pages back to the
158 	 * buddy and trying to be smart and reusing them eventually in
159 	 * alloc_resource() overcomplicates resource handling.
160 	 */
161 	if (res && PageSlab(virt_to_head_page(res)))
162 		kfree(res);
163 }
164 
165 static struct resource *alloc_resource(gfp_t flags)
166 {
167 	return kzalloc(sizeof(struct resource), flags);
168 }
169 
170 /* Return the conflict entry if you can't request it */
171 static struct resource * __request_resource(struct resource *root, struct resource *new)
172 {
173 	resource_size_t start = new->start;
174 	resource_size_t end = new->end;
175 	struct resource *tmp, **p;
176 
177 	if (end < start)
178 		return root;
179 	if (start < root->start)
180 		return root;
181 	if (end > root->end)
182 		return root;
183 	p = &root->child;
184 	for (;;) {
185 		tmp = *p;
186 		if (!tmp || tmp->start > end) {
187 			new->sibling = tmp;
188 			*p = new;
189 			new->parent = root;
190 			return NULL;
191 		}
192 		p = &tmp->sibling;
193 		if (tmp->end < start)
194 			continue;
195 		return tmp;
196 	}
197 }
198 
199 static int __release_resource(struct resource *old, bool release_child)
200 {
201 	struct resource *tmp, **p, *chd;
202 
203 	p = &old->parent->child;
204 	for (;;) {
205 		tmp = *p;
206 		if (!tmp)
207 			break;
208 		if (tmp == old) {
209 			if (release_child || !(tmp->child)) {
210 				*p = tmp->sibling;
211 			} else {
212 				for (chd = tmp->child;; chd = chd->sibling) {
213 					chd->parent = tmp->parent;
214 					if (!(chd->sibling))
215 						break;
216 				}
217 				*p = tmp->child;
218 				chd->sibling = tmp->sibling;
219 			}
220 			old->parent = NULL;
221 			return 0;
222 		}
223 		p = &tmp->sibling;
224 	}
225 	return -EINVAL;
226 }
227 
228 static void __release_child_resources(struct resource *r)
229 {
230 	struct resource *tmp, *p;
231 	resource_size_t size;
232 
233 	p = r->child;
234 	r->child = NULL;
235 	while (p) {
236 		tmp = p;
237 		p = p->sibling;
238 
239 		tmp->parent = NULL;
240 		tmp->sibling = NULL;
241 		__release_child_resources(tmp);
242 
243 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
244 		/* need to restore size, and keep flags */
245 		size = resource_size(tmp);
246 		tmp->start = 0;
247 		tmp->end = size - 1;
248 	}
249 }
250 
251 void release_child_resources(struct resource *r)
252 {
253 	write_lock(&resource_lock);
254 	__release_child_resources(r);
255 	write_unlock(&resource_lock);
256 }
257 
258 /**
259  * request_resource_conflict - request and reserve an I/O or memory resource
260  * @root: root resource descriptor
261  * @new: resource descriptor desired by caller
262  *
263  * Returns 0 for success, conflict resource on error.
264  */
265 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
266 {
267 	struct resource *conflict;
268 
269 	write_lock(&resource_lock);
270 	conflict = __request_resource(root, new);
271 	write_unlock(&resource_lock);
272 	return conflict;
273 }
274 
275 /**
276  * request_resource - request and reserve an I/O or memory resource
277  * @root: root resource descriptor
278  * @new: resource descriptor desired by caller
279  *
280  * Returns 0 for success, negative error code on error.
281  */
282 int request_resource(struct resource *root, struct resource *new)
283 {
284 	struct resource *conflict;
285 
286 	conflict = request_resource_conflict(root, new);
287 	return conflict ? -EBUSY : 0;
288 }
289 
290 EXPORT_SYMBOL(request_resource);
291 
292 /**
293  * release_resource - release a previously reserved resource
294  * @old: resource pointer
295  */
296 int release_resource(struct resource *old)
297 {
298 	int retval;
299 
300 	write_lock(&resource_lock);
301 	retval = __release_resource(old, true);
302 	write_unlock(&resource_lock);
303 	return retval;
304 }
305 
306 EXPORT_SYMBOL(release_resource);
307 
308 /**
309  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
310  *			 [@start..@end].
311  *
312  * If a resource is found, returns 0 and @*res is overwritten with the part
313  * of the resource that's within [@start..@end]; if none is found, returns
314  * -ENODEV.  Returns -EINVAL for invalid parameters.
315  *
316  * @start:	start address of the resource searched for
317  * @end:	end address of same resource
318  * @flags:	flags which the resource must have
319  * @desc:	descriptor the resource must have
320  * @res:	return ptr, if resource found
321  *
322  * The caller must specify @start, @end, @flags, and @desc
323  * (which may be IORES_DESC_NONE).
324  */
325 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
326 			       unsigned long flags, unsigned long desc,
327 			       struct resource *res)
328 {
329 	struct resource *p;
330 
331 	if (!res)
332 		return -EINVAL;
333 
334 	if (start >= end)
335 		return -EINVAL;
336 
337 	read_lock(&resource_lock);
338 
339 	for_each_resource(&iomem_resource, p, false) {
340 		/* If we passed the resource we are looking for, stop */
341 		if (p->start > end) {
342 			p = NULL;
343 			break;
344 		}
345 
346 		/* Skip until we find a range that matches what we look for */
347 		if (p->end < start)
348 			continue;
349 
350 		if ((p->flags & flags) != flags)
351 			continue;
352 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
353 			continue;
354 
355 		/* Found a match, break */
356 		break;
357 	}
358 
359 	if (p) {
360 		/* copy data */
361 		*res = (struct resource) {
362 			.start = max(start, p->start),
363 			.end = min(end, p->end),
364 			.flags = p->flags,
365 			.desc = p->desc,
366 			.parent = p->parent,
367 		};
368 	}
369 
370 	read_unlock(&resource_lock);
371 	return p ? 0 : -ENODEV;
372 }
373 
374 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
375 				 unsigned long flags, unsigned long desc,
376 				 void *arg,
377 				 int (*func)(struct resource *, void *))
378 {
379 	struct resource res;
380 	int ret = -EINVAL;
381 
382 	while (start < end &&
383 	       !find_next_iomem_res(start, end, flags, desc, &res)) {
384 		ret = (*func)(&res, arg);
385 		if (ret)
386 			break;
387 
388 		start = res.end + 1;
389 	}
390 
391 	return ret;
392 }
393 
394 /**
395  * walk_iomem_res_desc - Walks through iomem resources and calls func()
396  *			 with matching resource ranges.
397  * *
398  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
399  * @flags: I/O resource flags
400  * @start: start addr
401  * @end: end addr
402  * @arg: function argument for the callback @func
403  * @func: callback function that is called for each qualifying resource area
404  *
405  * All the memory ranges which overlap start,end and also match flags and
406  * desc are valid candidates.
407  *
408  * NOTE: For a new descriptor search, define a new IORES_DESC in
409  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
410  */
411 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
412 		u64 end, void *arg, int (*func)(struct resource *, void *))
413 {
414 	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
415 }
416 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
417 
418 /*
419  * This function calls the @func callback against all memory ranges of type
420  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
421  * Now, this function is only for System RAM, it deals with full ranges and
422  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
423  * ranges.
424  */
425 int walk_system_ram_res(u64 start, u64 end, void *arg,
426 			int (*func)(struct resource *, void *))
427 {
428 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
429 
430 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
431 				     func);
432 }
433 
434 /*
435  * This function, being a variant of walk_system_ram_res(), calls the @func
436  * callback against all memory ranges of type System RAM which are marked as
437  * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
438  * higher to lower.
439  */
440 int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
441 				int (*func)(struct resource *, void *))
442 {
443 	struct resource res, *rams;
444 	int rams_size = 16, i;
445 	unsigned long flags;
446 	int ret = -1;
447 
448 	/* create a list */
449 	rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
450 	if (!rams)
451 		return ret;
452 
453 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
454 	i = 0;
455 	while ((start < end) &&
456 		(!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
457 		if (i >= rams_size) {
458 			/* re-alloc */
459 			struct resource *rams_new;
460 
461 			rams_new = kvrealloc(rams, rams_size * sizeof(struct resource),
462 					     (rams_size + 16) * sizeof(struct resource),
463 					     GFP_KERNEL);
464 			if (!rams_new)
465 				goto out;
466 
467 			rams = rams_new;
468 			rams_size += 16;
469 		}
470 
471 		rams[i].start = res.start;
472 		rams[i++].end = res.end;
473 
474 		start = res.end + 1;
475 	}
476 
477 	/* go reverse */
478 	for (i--; i >= 0; i--) {
479 		ret = (*func)(&rams[i], arg);
480 		if (ret)
481 			break;
482 	}
483 
484 out:
485 	kvfree(rams);
486 	return ret;
487 }
488 
489 /*
490  * This function calls the @func callback against all memory ranges, which
491  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
492  */
493 int walk_mem_res(u64 start, u64 end, void *arg,
494 		 int (*func)(struct resource *, void *))
495 {
496 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
497 
498 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
499 				     func);
500 }
501 
502 /*
503  * This function calls the @func callback against all memory ranges of type
504  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
505  * It is to be used only for System RAM.
506  */
507 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
508 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
509 {
510 	resource_size_t start, end;
511 	unsigned long flags;
512 	struct resource res;
513 	unsigned long pfn, end_pfn;
514 	int ret = -EINVAL;
515 
516 	start = (u64) start_pfn << PAGE_SHIFT;
517 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
518 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
519 	while (start < end &&
520 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
521 		pfn = PFN_UP(res.start);
522 		end_pfn = PFN_DOWN(res.end + 1);
523 		if (end_pfn > pfn)
524 			ret = (*func)(pfn, end_pfn - pfn, arg);
525 		if (ret)
526 			break;
527 		start = res.end + 1;
528 	}
529 	return ret;
530 }
531 
532 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
533 {
534 	return 1;
535 }
536 
537 /*
538  * This generic page_is_ram() returns true if specified address is
539  * registered as System RAM in iomem_resource list.
540  */
541 int __weak page_is_ram(unsigned long pfn)
542 {
543 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
544 }
545 EXPORT_SYMBOL_GPL(page_is_ram);
546 
547 static int __region_intersects(struct resource *parent, resource_size_t start,
548 			       size_t size, unsigned long flags,
549 			       unsigned long desc)
550 {
551 	struct resource res;
552 	int type = 0; int other = 0;
553 	struct resource *p;
554 
555 	res.start = start;
556 	res.end = start + size - 1;
557 
558 	for (p = parent->child; p ; p = p->sibling) {
559 		bool is_type = (((p->flags & flags) == flags) &&
560 				((desc == IORES_DESC_NONE) ||
561 				 (desc == p->desc)));
562 
563 		if (resource_overlaps(p, &res))
564 			is_type ? type++ : other++;
565 	}
566 
567 	if (type == 0)
568 		return REGION_DISJOINT;
569 
570 	if (other == 0)
571 		return REGION_INTERSECTS;
572 
573 	return REGION_MIXED;
574 }
575 
576 /**
577  * region_intersects() - determine intersection of region with known resources
578  * @start: region start address
579  * @size: size of region
580  * @flags: flags of resource (in iomem_resource)
581  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
582  *
583  * Check if the specified region partially overlaps or fully eclipses a
584  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
585  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
586  * return REGION_MIXED if the region overlaps @flags/@desc and another
587  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
588  * and no other defined resource. Note that REGION_INTERSECTS is also
589  * returned in the case when the specified region overlaps RAM and undefined
590  * memory holes.
591  *
592  * region_intersect() is used by memory remapping functions to ensure
593  * the user is not remapping RAM and is a vast speed up over walking
594  * through the resource table page by page.
595  */
596 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
597 		      unsigned long desc)
598 {
599 	int ret;
600 
601 	read_lock(&resource_lock);
602 	ret = __region_intersects(&iomem_resource, start, size, flags, desc);
603 	read_unlock(&resource_lock);
604 
605 	return ret;
606 }
607 EXPORT_SYMBOL_GPL(region_intersects);
608 
609 void __weak arch_remove_reservations(struct resource *avail)
610 {
611 }
612 
613 static resource_size_t simple_align_resource(void *data,
614 					     const struct resource *avail,
615 					     resource_size_t size,
616 					     resource_size_t align)
617 {
618 	return avail->start;
619 }
620 
621 static void resource_clip(struct resource *res, resource_size_t min,
622 			  resource_size_t max)
623 {
624 	if (res->start < min)
625 		res->start = min;
626 	if (res->end > max)
627 		res->end = max;
628 }
629 
630 /*
631  * Find empty slot in the resource tree with the given range and
632  * alignment constraints
633  */
634 static int __find_resource(struct resource *root, struct resource *old,
635 			 struct resource *new,
636 			 resource_size_t  size,
637 			 struct resource_constraint *constraint)
638 {
639 	struct resource *this = root->child;
640 	struct resource tmp = *new, avail, alloc;
641 
642 	tmp.start = root->start;
643 	/*
644 	 * Skip past an allocated resource that starts at 0, since the assignment
645 	 * of this->start - 1 to tmp->end below would cause an underflow.
646 	 */
647 	if (this && this->start == root->start) {
648 		tmp.start = (this == old) ? old->start : this->end + 1;
649 		this = this->sibling;
650 	}
651 	for(;;) {
652 		if (this)
653 			tmp.end = (this == old) ?  this->end : this->start - 1;
654 		else
655 			tmp.end = root->end;
656 
657 		if (tmp.end < tmp.start)
658 			goto next;
659 
660 		resource_clip(&tmp, constraint->min, constraint->max);
661 		arch_remove_reservations(&tmp);
662 
663 		/* Check for overflow after ALIGN() */
664 		avail.start = ALIGN(tmp.start, constraint->align);
665 		avail.end = tmp.end;
666 		avail.flags = new->flags & ~IORESOURCE_UNSET;
667 		if (avail.start >= tmp.start) {
668 			alloc.flags = avail.flags;
669 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
670 					size, constraint->align);
671 			alloc.end = alloc.start + size - 1;
672 			if (alloc.start <= alloc.end &&
673 			    resource_contains(&avail, &alloc)) {
674 				new->start = alloc.start;
675 				new->end = alloc.end;
676 				return 0;
677 			}
678 		}
679 
680 next:		if (!this || this->end == root->end)
681 			break;
682 
683 		if (this != old)
684 			tmp.start = this->end + 1;
685 		this = this->sibling;
686 	}
687 	return -EBUSY;
688 }
689 
690 /*
691  * Find empty slot in the resource tree given range and alignment.
692  */
693 static int find_resource(struct resource *root, struct resource *new,
694 			resource_size_t size,
695 			struct resource_constraint  *constraint)
696 {
697 	return  __find_resource(root, NULL, new, size, constraint);
698 }
699 
700 /**
701  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
702  *	The resource will be relocated if the new size cannot be reallocated in the
703  *	current location.
704  *
705  * @root: root resource descriptor
706  * @old:  resource descriptor desired by caller
707  * @newsize: new size of the resource descriptor
708  * @constraint: the size and alignment constraints to be met.
709  */
710 static int reallocate_resource(struct resource *root, struct resource *old,
711 			       resource_size_t newsize,
712 			       struct resource_constraint *constraint)
713 {
714 	int err=0;
715 	struct resource new = *old;
716 	struct resource *conflict;
717 
718 	write_lock(&resource_lock);
719 
720 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
721 		goto out;
722 
723 	if (resource_contains(&new, old)) {
724 		old->start = new.start;
725 		old->end = new.end;
726 		goto out;
727 	}
728 
729 	if (old->child) {
730 		err = -EBUSY;
731 		goto out;
732 	}
733 
734 	if (resource_contains(old, &new)) {
735 		old->start = new.start;
736 		old->end = new.end;
737 	} else {
738 		__release_resource(old, true);
739 		*old = new;
740 		conflict = __request_resource(root, old);
741 		BUG_ON(conflict);
742 	}
743 out:
744 	write_unlock(&resource_lock);
745 	return err;
746 }
747 
748 
749 /**
750  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
751  * 	The resource will be reallocated with a new size if it was already allocated
752  * @root: root resource descriptor
753  * @new: resource descriptor desired by caller
754  * @size: requested resource region size
755  * @min: minimum boundary to allocate
756  * @max: maximum boundary to allocate
757  * @align: alignment requested, in bytes
758  * @alignf: alignment function, optional, called if not NULL
759  * @alignf_data: arbitrary data to pass to the @alignf function
760  */
761 int allocate_resource(struct resource *root, struct resource *new,
762 		      resource_size_t size, resource_size_t min,
763 		      resource_size_t max, resource_size_t align,
764 		      resource_size_t (*alignf)(void *,
765 						const struct resource *,
766 						resource_size_t,
767 						resource_size_t),
768 		      void *alignf_data)
769 {
770 	int err;
771 	struct resource_constraint constraint;
772 
773 	if (!alignf)
774 		alignf = simple_align_resource;
775 
776 	constraint.min = min;
777 	constraint.max = max;
778 	constraint.align = align;
779 	constraint.alignf = alignf;
780 	constraint.alignf_data = alignf_data;
781 
782 	if ( new->parent ) {
783 		/* resource is already allocated, try reallocating with
784 		   the new constraints */
785 		return reallocate_resource(root, new, size, &constraint);
786 	}
787 
788 	write_lock(&resource_lock);
789 	err = find_resource(root, new, size, &constraint);
790 	if (err >= 0 && __request_resource(root, new))
791 		err = -EBUSY;
792 	write_unlock(&resource_lock);
793 	return err;
794 }
795 
796 EXPORT_SYMBOL(allocate_resource);
797 
798 /**
799  * lookup_resource - find an existing resource by a resource start address
800  * @root: root resource descriptor
801  * @start: resource start address
802  *
803  * Returns a pointer to the resource if found, NULL otherwise
804  */
805 struct resource *lookup_resource(struct resource *root, resource_size_t start)
806 {
807 	struct resource *res;
808 
809 	read_lock(&resource_lock);
810 	for (res = root->child; res; res = res->sibling) {
811 		if (res->start == start)
812 			break;
813 	}
814 	read_unlock(&resource_lock);
815 
816 	return res;
817 }
818 
819 /*
820  * Insert a resource into the resource tree. If successful, return NULL,
821  * otherwise return the conflicting resource (compare to __request_resource())
822  */
823 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
824 {
825 	struct resource *first, *next;
826 
827 	for (;; parent = first) {
828 		first = __request_resource(parent, new);
829 		if (!first)
830 			return first;
831 
832 		if (first == parent)
833 			return first;
834 		if (WARN_ON(first == new))	/* duplicated insertion */
835 			return first;
836 
837 		if ((first->start > new->start) || (first->end < new->end))
838 			break;
839 		if ((first->start == new->start) && (first->end == new->end))
840 			break;
841 	}
842 
843 	for (next = first; ; next = next->sibling) {
844 		/* Partial overlap? Bad, and unfixable */
845 		if (next->start < new->start || next->end > new->end)
846 			return next;
847 		if (!next->sibling)
848 			break;
849 		if (next->sibling->start > new->end)
850 			break;
851 	}
852 
853 	new->parent = parent;
854 	new->sibling = next->sibling;
855 	new->child = first;
856 
857 	next->sibling = NULL;
858 	for (next = first; next; next = next->sibling)
859 		next->parent = new;
860 
861 	if (parent->child == first) {
862 		parent->child = new;
863 	} else {
864 		next = parent->child;
865 		while (next->sibling != first)
866 			next = next->sibling;
867 		next->sibling = new;
868 	}
869 	return NULL;
870 }
871 
872 /**
873  * insert_resource_conflict - Inserts resource in the resource tree
874  * @parent: parent of the new resource
875  * @new: new resource to insert
876  *
877  * Returns 0 on success, conflict resource if the resource can't be inserted.
878  *
879  * This function is equivalent to request_resource_conflict when no conflict
880  * happens. If a conflict happens, and the conflicting resources
881  * entirely fit within the range of the new resource, then the new
882  * resource is inserted and the conflicting resources become children of
883  * the new resource.
884  *
885  * This function is intended for producers of resources, such as FW modules
886  * and bus drivers.
887  */
888 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
889 {
890 	struct resource *conflict;
891 
892 	write_lock(&resource_lock);
893 	conflict = __insert_resource(parent, new);
894 	write_unlock(&resource_lock);
895 	return conflict;
896 }
897 
898 /**
899  * insert_resource - Inserts a resource in the resource tree
900  * @parent: parent of the new resource
901  * @new: new resource to insert
902  *
903  * Returns 0 on success, -EBUSY if the resource can't be inserted.
904  *
905  * This function is intended for producers of resources, such as FW modules
906  * and bus drivers.
907  */
908 int insert_resource(struct resource *parent, struct resource *new)
909 {
910 	struct resource *conflict;
911 
912 	conflict = insert_resource_conflict(parent, new);
913 	return conflict ? -EBUSY : 0;
914 }
915 EXPORT_SYMBOL_GPL(insert_resource);
916 
917 /**
918  * insert_resource_expand_to_fit - Insert a resource into the resource tree
919  * @root: root resource descriptor
920  * @new: new resource to insert
921  *
922  * Insert a resource into the resource tree, possibly expanding it in order
923  * to make it encompass any conflicting resources.
924  */
925 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
926 {
927 	if (new->parent)
928 		return;
929 
930 	write_lock(&resource_lock);
931 	for (;;) {
932 		struct resource *conflict;
933 
934 		conflict = __insert_resource(root, new);
935 		if (!conflict)
936 			break;
937 		if (conflict == root)
938 			break;
939 
940 		/* Ok, expand resource to cover the conflict, then try again .. */
941 		if (conflict->start < new->start)
942 			new->start = conflict->start;
943 		if (conflict->end > new->end)
944 			new->end = conflict->end;
945 
946 		pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
947 	}
948 	write_unlock(&resource_lock);
949 }
950 /*
951  * Not for general consumption, only early boot memory map parsing, PCI
952  * resource discovery, and late discovery of CXL resources are expected
953  * to use this interface. The former are built-in and only the latter,
954  * CXL, is a module.
955  */
956 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
957 
958 /**
959  * remove_resource - Remove a resource in the resource tree
960  * @old: resource to remove
961  *
962  * Returns 0 on success, -EINVAL if the resource is not valid.
963  *
964  * This function removes a resource previously inserted by insert_resource()
965  * or insert_resource_conflict(), and moves the children (if any) up to
966  * where they were before.  insert_resource() and insert_resource_conflict()
967  * insert a new resource, and move any conflicting resources down to the
968  * children of the new resource.
969  *
970  * insert_resource(), insert_resource_conflict() and remove_resource() are
971  * intended for producers of resources, such as FW modules and bus drivers.
972  */
973 int remove_resource(struct resource *old)
974 {
975 	int retval;
976 
977 	write_lock(&resource_lock);
978 	retval = __release_resource(old, false);
979 	write_unlock(&resource_lock);
980 	return retval;
981 }
982 EXPORT_SYMBOL_GPL(remove_resource);
983 
984 static int __adjust_resource(struct resource *res, resource_size_t start,
985 				resource_size_t size)
986 {
987 	struct resource *tmp, *parent = res->parent;
988 	resource_size_t end = start + size - 1;
989 	int result = -EBUSY;
990 
991 	if (!parent)
992 		goto skip;
993 
994 	if ((start < parent->start) || (end > parent->end))
995 		goto out;
996 
997 	if (res->sibling && (res->sibling->start <= end))
998 		goto out;
999 
1000 	tmp = parent->child;
1001 	if (tmp != res) {
1002 		while (tmp->sibling != res)
1003 			tmp = tmp->sibling;
1004 		if (start <= tmp->end)
1005 			goto out;
1006 	}
1007 
1008 skip:
1009 	for (tmp = res->child; tmp; tmp = tmp->sibling)
1010 		if ((tmp->start < start) || (tmp->end > end))
1011 			goto out;
1012 
1013 	res->start = start;
1014 	res->end = end;
1015 	result = 0;
1016 
1017  out:
1018 	return result;
1019 }
1020 
1021 /**
1022  * adjust_resource - modify a resource's start and size
1023  * @res: resource to modify
1024  * @start: new start value
1025  * @size: new size
1026  *
1027  * Given an existing resource, change its start and size to match the
1028  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1029  * Existing children of the resource are assumed to be immutable.
1030  */
1031 int adjust_resource(struct resource *res, resource_size_t start,
1032 		    resource_size_t size)
1033 {
1034 	int result;
1035 
1036 	write_lock(&resource_lock);
1037 	result = __adjust_resource(res, start, size);
1038 	write_unlock(&resource_lock);
1039 	return result;
1040 }
1041 EXPORT_SYMBOL(adjust_resource);
1042 
1043 static void __init
1044 __reserve_region_with_split(struct resource *root, resource_size_t start,
1045 			    resource_size_t end, const char *name)
1046 {
1047 	struct resource *parent = root;
1048 	struct resource *conflict;
1049 	struct resource *res = alloc_resource(GFP_ATOMIC);
1050 	struct resource *next_res = NULL;
1051 	int type = resource_type(root);
1052 
1053 	if (!res)
1054 		return;
1055 
1056 	res->name = name;
1057 	res->start = start;
1058 	res->end = end;
1059 	res->flags = type | IORESOURCE_BUSY;
1060 	res->desc = IORES_DESC_NONE;
1061 
1062 	while (1) {
1063 
1064 		conflict = __request_resource(parent, res);
1065 		if (!conflict) {
1066 			if (!next_res)
1067 				break;
1068 			res = next_res;
1069 			next_res = NULL;
1070 			continue;
1071 		}
1072 
1073 		/* conflict covered whole area */
1074 		if (conflict->start <= res->start &&
1075 				conflict->end >= res->end) {
1076 			free_resource(res);
1077 			WARN_ON(next_res);
1078 			break;
1079 		}
1080 
1081 		/* failed, split and try again */
1082 		if (conflict->start > res->start) {
1083 			end = res->end;
1084 			res->end = conflict->start - 1;
1085 			if (conflict->end < end) {
1086 				next_res = alloc_resource(GFP_ATOMIC);
1087 				if (!next_res) {
1088 					free_resource(res);
1089 					break;
1090 				}
1091 				next_res->name = name;
1092 				next_res->start = conflict->end + 1;
1093 				next_res->end = end;
1094 				next_res->flags = type | IORESOURCE_BUSY;
1095 				next_res->desc = IORES_DESC_NONE;
1096 			}
1097 		} else {
1098 			res->start = conflict->end + 1;
1099 		}
1100 	}
1101 
1102 }
1103 
1104 void __init
1105 reserve_region_with_split(struct resource *root, resource_size_t start,
1106 			  resource_size_t end, const char *name)
1107 {
1108 	int abort = 0;
1109 
1110 	write_lock(&resource_lock);
1111 	if (root->start > start || root->end < end) {
1112 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1113 		       (unsigned long long)start, (unsigned long long)end,
1114 		       root);
1115 		if (start > root->end || end < root->start)
1116 			abort = 1;
1117 		else {
1118 			if (end > root->end)
1119 				end = root->end;
1120 			if (start < root->start)
1121 				start = root->start;
1122 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1123 			       (unsigned long long)start,
1124 			       (unsigned long long)end);
1125 		}
1126 		dump_stack();
1127 	}
1128 	if (!abort)
1129 		__reserve_region_with_split(root, start, end, name);
1130 	write_unlock(&resource_lock);
1131 }
1132 
1133 /**
1134  * resource_alignment - calculate resource's alignment
1135  * @res: resource pointer
1136  *
1137  * Returns alignment on success, 0 (invalid alignment) on failure.
1138  */
1139 resource_size_t resource_alignment(struct resource *res)
1140 {
1141 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1142 	case IORESOURCE_SIZEALIGN:
1143 		return resource_size(res);
1144 	case IORESOURCE_STARTALIGN:
1145 		return res->start;
1146 	default:
1147 		return 0;
1148 	}
1149 }
1150 
1151 /*
1152  * This is compatibility stuff for IO resources.
1153  *
1154  * Note how this, unlike the above, knows about
1155  * the IO flag meanings (busy etc).
1156  *
1157  * request_region creates a new busy region.
1158  *
1159  * release_region releases a matching busy region.
1160  */
1161 
1162 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1163 
1164 static struct inode *iomem_inode;
1165 
1166 #ifdef CONFIG_IO_STRICT_DEVMEM
1167 static void revoke_iomem(struct resource *res)
1168 {
1169 	/* pairs with smp_store_release() in iomem_init_inode() */
1170 	struct inode *inode = smp_load_acquire(&iomem_inode);
1171 
1172 	/*
1173 	 * Check that the initialization has completed. Losing the race
1174 	 * is ok because it means drivers are claiming resources before
1175 	 * the fs_initcall level of init and prevent iomem_get_mapping users
1176 	 * from establishing mappings.
1177 	 */
1178 	if (!inode)
1179 		return;
1180 
1181 	/*
1182 	 * The expectation is that the driver has successfully marked
1183 	 * the resource busy by this point, so devmem_is_allowed()
1184 	 * should start returning false, however for performance this
1185 	 * does not iterate the entire resource range.
1186 	 */
1187 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1188 	    devmem_is_allowed(PHYS_PFN(res->end))) {
1189 		/*
1190 		 * *cringe* iomem=relaxed says "go ahead, what's the
1191 		 * worst that can happen?"
1192 		 */
1193 		return;
1194 	}
1195 
1196 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1197 }
1198 #else
1199 static void revoke_iomem(struct resource *res) {}
1200 #endif
1201 
1202 struct address_space *iomem_get_mapping(void)
1203 {
1204 	/*
1205 	 * This function is only called from file open paths, hence guaranteed
1206 	 * that fs_initcalls have completed and no need to check for NULL. But
1207 	 * since revoke_iomem can be called before the initcall we still need
1208 	 * the barrier to appease checkers.
1209 	 */
1210 	return smp_load_acquire(&iomem_inode)->i_mapping;
1211 }
1212 
1213 static int __request_region_locked(struct resource *res, struct resource *parent,
1214 				   resource_size_t start, resource_size_t n,
1215 				   const char *name, int flags)
1216 {
1217 	DECLARE_WAITQUEUE(wait, current);
1218 
1219 	res->name = name;
1220 	res->start = start;
1221 	res->end = start + n - 1;
1222 
1223 	for (;;) {
1224 		struct resource *conflict;
1225 
1226 		res->flags = resource_type(parent) | resource_ext_type(parent);
1227 		res->flags |= IORESOURCE_BUSY | flags;
1228 		res->desc = parent->desc;
1229 
1230 		conflict = __request_resource(parent, res);
1231 		if (!conflict)
1232 			break;
1233 		/*
1234 		 * mm/hmm.c reserves physical addresses which then
1235 		 * become unavailable to other users.  Conflicts are
1236 		 * not expected.  Warn to aid debugging if encountered.
1237 		 */
1238 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1239 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1240 				conflict->name, conflict, res);
1241 		}
1242 		if (conflict != parent) {
1243 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1244 				parent = conflict;
1245 				continue;
1246 			}
1247 		}
1248 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1249 			add_wait_queue(&muxed_resource_wait, &wait);
1250 			write_unlock(&resource_lock);
1251 			set_current_state(TASK_UNINTERRUPTIBLE);
1252 			schedule();
1253 			remove_wait_queue(&muxed_resource_wait, &wait);
1254 			write_lock(&resource_lock);
1255 			continue;
1256 		}
1257 		/* Uhhuh, that didn't work out.. */
1258 		return -EBUSY;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 /**
1265  * __request_region - create a new busy resource region
1266  * @parent: parent resource descriptor
1267  * @start: resource start address
1268  * @n: resource region size
1269  * @name: reserving caller's ID string
1270  * @flags: IO resource flags
1271  */
1272 struct resource *__request_region(struct resource *parent,
1273 				  resource_size_t start, resource_size_t n,
1274 				  const char *name, int flags)
1275 {
1276 	struct resource *res = alloc_resource(GFP_KERNEL);
1277 	int ret;
1278 
1279 	if (!res)
1280 		return NULL;
1281 
1282 	write_lock(&resource_lock);
1283 	ret = __request_region_locked(res, parent, start, n, name, flags);
1284 	write_unlock(&resource_lock);
1285 
1286 	if (ret) {
1287 		free_resource(res);
1288 		return NULL;
1289 	}
1290 
1291 	if (parent == &iomem_resource)
1292 		revoke_iomem(res);
1293 
1294 	return res;
1295 }
1296 EXPORT_SYMBOL(__request_region);
1297 
1298 /**
1299  * __release_region - release a previously reserved resource region
1300  * @parent: parent resource descriptor
1301  * @start: resource start address
1302  * @n: resource region size
1303  *
1304  * The described resource region must match a currently busy region.
1305  */
1306 void __release_region(struct resource *parent, resource_size_t start,
1307 		      resource_size_t n)
1308 {
1309 	struct resource **p;
1310 	resource_size_t end;
1311 
1312 	p = &parent->child;
1313 	end = start + n - 1;
1314 
1315 	write_lock(&resource_lock);
1316 
1317 	for (;;) {
1318 		struct resource *res = *p;
1319 
1320 		if (!res)
1321 			break;
1322 		if (res->start <= start && res->end >= end) {
1323 			if (!(res->flags & IORESOURCE_BUSY)) {
1324 				p = &res->child;
1325 				continue;
1326 			}
1327 			if (res->start != start || res->end != end)
1328 				break;
1329 			*p = res->sibling;
1330 			write_unlock(&resource_lock);
1331 			if (res->flags & IORESOURCE_MUXED)
1332 				wake_up(&muxed_resource_wait);
1333 			free_resource(res);
1334 			return;
1335 		}
1336 		p = &res->sibling;
1337 	}
1338 
1339 	write_unlock(&resource_lock);
1340 
1341 	pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1342 }
1343 EXPORT_SYMBOL(__release_region);
1344 
1345 #ifdef CONFIG_MEMORY_HOTREMOVE
1346 /**
1347  * release_mem_region_adjustable - release a previously reserved memory region
1348  * @start: resource start address
1349  * @size: resource region size
1350  *
1351  * This interface is intended for memory hot-delete.  The requested region
1352  * is released from a currently busy memory resource.  The requested region
1353  * must either match exactly or fit into a single busy resource entry.  In
1354  * the latter case, the remaining resource is adjusted accordingly.
1355  * Existing children of the busy memory resource must be immutable in the
1356  * request.
1357  *
1358  * Note:
1359  * - Additional release conditions, such as overlapping region, can be
1360  *   supported after they are confirmed as valid cases.
1361  * - When a busy memory resource gets split into two entries, the code
1362  *   assumes that all children remain in the lower address entry for
1363  *   simplicity.  Enhance this logic when necessary.
1364  */
1365 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1366 {
1367 	struct resource *parent = &iomem_resource;
1368 	struct resource *new_res = NULL;
1369 	bool alloc_nofail = false;
1370 	struct resource **p;
1371 	struct resource *res;
1372 	resource_size_t end;
1373 
1374 	end = start + size - 1;
1375 	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1376 		return;
1377 
1378 	/*
1379 	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1380 	 * just before releasing the region. This is highly unlikely to
1381 	 * fail - let's play save and make it never fail as the caller cannot
1382 	 * perform any error handling (e.g., trying to re-add memory will fail
1383 	 * similarly).
1384 	 */
1385 retry:
1386 	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1387 
1388 	p = &parent->child;
1389 	write_lock(&resource_lock);
1390 
1391 	while ((res = *p)) {
1392 		if (res->start >= end)
1393 			break;
1394 
1395 		/* look for the next resource if it does not fit into */
1396 		if (res->start > start || res->end < end) {
1397 			p = &res->sibling;
1398 			continue;
1399 		}
1400 
1401 		if (!(res->flags & IORESOURCE_MEM))
1402 			break;
1403 
1404 		if (!(res->flags & IORESOURCE_BUSY)) {
1405 			p = &res->child;
1406 			continue;
1407 		}
1408 
1409 		/* found the target resource; let's adjust accordingly */
1410 		if (res->start == start && res->end == end) {
1411 			/* free the whole entry */
1412 			*p = res->sibling;
1413 			free_resource(res);
1414 		} else if (res->start == start && res->end != end) {
1415 			/* adjust the start */
1416 			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1417 						       res->end - end));
1418 		} else if (res->start != start && res->end == end) {
1419 			/* adjust the end */
1420 			WARN_ON_ONCE(__adjust_resource(res, res->start,
1421 						       start - res->start));
1422 		} else {
1423 			/* split into two entries - we need a new resource */
1424 			if (!new_res) {
1425 				new_res = alloc_resource(GFP_ATOMIC);
1426 				if (!new_res) {
1427 					alloc_nofail = true;
1428 					write_unlock(&resource_lock);
1429 					goto retry;
1430 				}
1431 			}
1432 			new_res->name = res->name;
1433 			new_res->start = end + 1;
1434 			new_res->end = res->end;
1435 			new_res->flags = res->flags;
1436 			new_res->desc = res->desc;
1437 			new_res->parent = res->parent;
1438 			new_res->sibling = res->sibling;
1439 			new_res->child = NULL;
1440 
1441 			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1442 							   start - res->start)))
1443 				break;
1444 			res->sibling = new_res;
1445 			new_res = NULL;
1446 		}
1447 
1448 		break;
1449 	}
1450 
1451 	write_unlock(&resource_lock);
1452 	free_resource(new_res);
1453 }
1454 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1455 
1456 #ifdef CONFIG_MEMORY_HOTPLUG
1457 static bool system_ram_resources_mergeable(struct resource *r1,
1458 					   struct resource *r2)
1459 {
1460 	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1461 	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1462 	       r1->name == r2->name && r1->desc == r2->desc &&
1463 	       !r1->child && !r2->child;
1464 }
1465 
1466 /**
1467  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1468  *	merge it with adjacent, mergeable resources
1469  * @res: resource descriptor
1470  *
1471  * This interface is intended for memory hotplug, whereby lots of contiguous
1472  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1473  * the actual resource boundaries are not of interest (e.g., it might be
1474  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1475  * same parent, and that don't have any children are considered. All mergeable
1476  * resources must be immutable during the request.
1477  *
1478  * Note:
1479  * - The caller has to make sure that no pointers to resources that are
1480  *   marked mergeable are used anymore after this call - the resource might
1481  *   be freed and the pointer might be stale!
1482  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1483  */
1484 void merge_system_ram_resource(struct resource *res)
1485 {
1486 	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1487 	struct resource *cur;
1488 
1489 	if (WARN_ON_ONCE((res->flags & flags) != flags))
1490 		return;
1491 
1492 	write_lock(&resource_lock);
1493 	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1494 
1495 	/* Try to merge with next item in the list. */
1496 	cur = res->sibling;
1497 	if (cur && system_ram_resources_mergeable(res, cur)) {
1498 		res->end = cur->end;
1499 		res->sibling = cur->sibling;
1500 		free_resource(cur);
1501 	}
1502 
1503 	/* Try to merge with previous item in the list. */
1504 	cur = res->parent->child;
1505 	while (cur && cur->sibling != res)
1506 		cur = cur->sibling;
1507 	if (cur && system_ram_resources_mergeable(cur, res)) {
1508 		cur->end = res->end;
1509 		cur->sibling = res->sibling;
1510 		free_resource(res);
1511 	}
1512 	write_unlock(&resource_lock);
1513 }
1514 #endif	/* CONFIG_MEMORY_HOTPLUG */
1515 
1516 /*
1517  * Managed region resource
1518  */
1519 static void devm_resource_release(struct device *dev, void *ptr)
1520 {
1521 	struct resource **r = ptr;
1522 
1523 	release_resource(*r);
1524 }
1525 
1526 /**
1527  * devm_request_resource() - request and reserve an I/O or memory resource
1528  * @dev: device for which to request the resource
1529  * @root: root of the resource tree from which to request the resource
1530  * @new: descriptor of the resource to request
1531  *
1532  * This is a device-managed version of request_resource(). There is usually
1533  * no need to release resources requested by this function explicitly since
1534  * that will be taken care of when the device is unbound from its driver.
1535  * If for some reason the resource needs to be released explicitly, because
1536  * of ordering issues for example, drivers must call devm_release_resource()
1537  * rather than the regular release_resource().
1538  *
1539  * When a conflict is detected between any existing resources and the newly
1540  * requested resource, an error message will be printed.
1541  *
1542  * Returns 0 on success or a negative error code on failure.
1543  */
1544 int devm_request_resource(struct device *dev, struct resource *root,
1545 			  struct resource *new)
1546 {
1547 	struct resource *conflict, **ptr;
1548 
1549 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1550 	if (!ptr)
1551 		return -ENOMEM;
1552 
1553 	*ptr = new;
1554 
1555 	conflict = request_resource_conflict(root, new);
1556 	if (conflict) {
1557 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1558 			new, conflict->name, conflict);
1559 		devres_free(ptr);
1560 		return -EBUSY;
1561 	}
1562 
1563 	devres_add(dev, ptr);
1564 	return 0;
1565 }
1566 EXPORT_SYMBOL(devm_request_resource);
1567 
1568 static int devm_resource_match(struct device *dev, void *res, void *data)
1569 {
1570 	struct resource **ptr = res;
1571 
1572 	return *ptr == data;
1573 }
1574 
1575 /**
1576  * devm_release_resource() - release a previously requested resource
1577  * @dev: device for which to release the resource
1578  * @new: descriptor of the resource to release
1579  *
1580  * Releases a resource previously requested using devm_request_resource().
1581  */
1582 void devm_release_resource(struct device *dev, struct resource *new)
1583 {
1584 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1585 			       new));
1586 }
1587 EXPORT_SYMBOL(devm_release_resource);
1588 
1589 struct region_devres {
1590 	struct resource *parent;
1591 	resource_size_t start;
1592 	resource_size_t n;
1593 };
1594 
1595 static void devm_region_release(struct device *dev, void *res)
1596 {
1597 	struct region_devres *this = res;
1598 
1599 	__release_region(this->parent, this->start, this->n);
1600 }
1601 
1602 static int devm_region_match(struct device *dev, void *res, void *match_data)
1603 {
1604 	struct region_devres *this = res, *match = match_data;
1605 
1606 	return this->parent == match->parent &&
1607 		this->start == match->start && this->n == match->n;
1608 }
1609 
1610 struct resource *
1611 __devm_request_region(struct device *dev, struct resource *parent,
1612 		      resource_size_t start, resource_size_t n, const char *name)
1613 {
1614 	struct region_devres *dr = NULL;
1615 	struct resource *res;
1616 
1617 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1618 			  GFP_KERNEL);
1619 	if (!dr)
1620 		return NULL;
1621 
1622 	dr->parent = parent;
1623 	dr->start = start;
1624 	dr->n = n;
1625 
1626 	res = __request_region(parent, start, n, name, 0);
1627 	if (res)
1628 		devres_add(dev, dr);
1629 	else
1630 		devres_free(dr);
1631 
1632 	return res;
1633 }
1634 EXPORT_SYMBOL(__devm_request_region);
1635 
1636 void __devm_release_region(struct device *dev, struct resource *parent,
1637 			   resource_size_t start, resource_size_t n)
1638 {
1639 	struct region_devres match_data = { parent, start, n };
1640 
1641 	__release_region(parent, start, n);
1642 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1643 			       &match_data));
1644 }
1645 EXPORT_SYMBOL(__devm_release_region);
1646 
1647 /*
1648  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1649  */
1650 #define MAXRESERVE 4
1651 static int __init reserve_setup(char *str)
1652 {
1653 	static int reserved;
1654 	static struct resource reserve[MAXRESERVE];
1655 
1656 	for (;;) {
1657 		unsigned int io_start, io_num;
1658 		int x = reserved;
1659 		struct resource *parent;
1660 
1661 		if (get_option(&str, &io_start) != 2)
1662 			break;
1663 		if (get_option(&str, &io_num) == 0)
1664 			break;
1665 		if (x < MAXRESERVE) {
1666 			struct resource *res = reserve + x;
1667 
1668 			/*
1669 			 * If the region starts below 0x10000, we assume it's
1670 			 * I/O port space; otherwise assume it's memory.
1671 			 */
1672 			if (io_start < 0x10000) {
1673 				res->flags = IORESOURCE_IO;
1674 				parent = &ioport_resource;
1675 			} else {
1676 				res->flags = IORESOURCE_MEM;
1677 				parent = &iomem_resource;
1678 			}
1679 			res->name = "reserved";
1680 			res->start = io_start;
1681 			res->end = io_start + io_num - 1;
1682 			res->flags |= IORESOURCE_BUSY;
1683 			res->desc = IORES_DESC_NONE;
1684 			res->child = NULL;
1685 			if (request_resource(parent, res) == 0)
1686 				reserved = x+1;
1687 		}
1688 	}
1689 	return 1;
1690 }
1691 __setup("reserve=", reserve_setup);
1692 
1693 /*
1694  * Check if the requested addr and size spans more than any slot in the
1695  * iomem resource tree.
1696  */
1697 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1698 {
1699 	resource_size_t end = addr + size - 1;
1700 	struct resource *p;
1701 	int err = 0;
1702 
1703 	read_lock(&resource_lock);
1704 	for_each_resource(&iomem_resource, p, false) {
1705 		/*
1706 		 * We can probably skip the resources without
1707 		 * IORESOURCE_IO attribute?
1708 		 */
1709 		if (p->start > end)
1710 			continue;
1711 		if (p->end < addr)
1712 			continue;
1713 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1714 		    PFN_DOWN(p->end) >= PFN_DOWN(end))
1715 			continue;
1716 		/*
1717 		 * if a resource is "BUSY", it's not a hardware resource
1718 		 * but a driver mapping of such a resource; we don't want
1719 		 * to warn for those; some drivers legitimately map only
1720 		 * partial hardware resources. (example: vesafb)
1721 		 */
1722 		if (p->flags & IORESOURCE_BUSY)
1723 			continue;
1724 
1725 		pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1726 			&addr, &end, p->name, p);
1727 		err = -1;
1728 		break;
1729 	}
1730 	read_unlock(&resource_lock);
1731 
1732 	return err;
1733 }
1734 
1735 #ifdef CONFIG_STRICT_DEVMEM
1736 static int strict_iomem_checks = 1;
1737 #else
1738 static int strict_iomem_checks;
1739 #endif
1740 
1741 /*
1742  * Check if an address is exclusive to the kernel and must not be mapped to
1743  * user space, for example, via /dev/mem.
1744  *
1745  * Returns true if exclusive to the kernel, otherwise returns false.
1746  */
1747 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1748 {
1749 	const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1750 						  IORESOURCE_EXCLUSIVE;
1751 	bool skip_children = false, err = false;
1752 	struct resource *p;
1753 
1754 	read_lock(&resource_lock);
1755 	for_each_resource(root, p, skip_children) {
1756 		if (p->start >= addr + size)
1757 			break;
1758 		if (p->end < addr) {
1759 			skip_children = true;
1760 			continue;
1761 		}
1762 		skip_children = false;
1763 
1764 		/*
1765 		 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1766 		 * IORESOURCE_EXCLUSIVE is set, even if they
1767 		 * are not busy and even if "iomem=relaxed" is set. The
1768 		 * responsible driver dynamically adds/removes system RAM within
1769 		 * such an area and uncontrolled access is dangerous.
1770 		 */
1771 		if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1772 			err = true;
1773 			break;
1774 		}
1775 
1776 		/*
1777 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1778 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1779 		 * resource is busy.
1780 		 */
1781 		if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1782 			continue;
1783 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1784 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1785 			err = true;
1786 			break;
1787 		}
1788 	}
1789 	read_unlock(&resource_lock);
1790 
1791 	return err;
1792 }
1793 
1794 bool iomem_is_exclusive(u64 addr)
1795 {
1796 	return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1797 				     PAGE_SIZE);
1798 }
1799 
1800 struct resource_entry *resource_list_create_entry(struct resource *res,
1801 						  size_t extra_size)
1802 {
1803 	struct resource_entry *entry;
1804 
1805 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1806 	if (entry) {
1807 		INIT_LIST_HEAD(&entry->node);
1808 		entry->res = res ? res : &entry->__res;
1809 	}
1810 
1811 	return entry;
1812 }
1813 EXPORT_SYMBOL(resource_list_create_entry);
1814 
1815 void resource_list_free(struct list_head *head)
1816 {
1817 	struct resource_entry *entry, *tmp;
1818 
1819 	list_for_each_entry_safe(entry, tmp, head, node)
1820 		resource_list_destroy_entry(entry);
1821 }
1822 EXPORT_SYMBOL(resource_list_free);
1823 
1824 #ifdef CONFIG_GET_FREE_REGION
1825 #define GFR_DESCENDING		(1UL << 0)
1826 #define GFR_REQUEST_REGION	(1UL << 1)
1827 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
1828 
1829 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1830 				 resource_size_t align, unsigned long flags)
1831 {
1832 	if (flags & GFR_DESCENDING) {
1833 		resource_size_t end;
1834 
1835 		end = min_t(resource_size_t, base->end,
1836 			    (1ULL << MAX_PHYSMEM_BITS) - 1);
1837 		return end - size + 1;
1838 	}
1839 
1840 	return ALIGN(base->start, align);
1841 }
1842 
1843 static bool gfr_continue(struct resource *base, resource_size_t addr,
1844 			 resource_size_t size, unsigned long flags)
1845 {
1846 	if (flags & GFR_DESCENDING)
1847 		return addr > size && addr >= base->start;
1848 	/*
1849 	 * In the ascend case be careful that the last increment by
1850 	 * @size did not wrap 0.
1851 	 */
1852 	return addr > addr - size &&
1853 	       addr <= min_t(resource_size_t, base->end,
1854 			     (1ULL << MAX_PHYSMEM_BITS) - 1);
1855 }
1856 
1857 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1858 				unsigned long flags)
1859 {
1860 	if (flags & GFR_DESCENDING)
1861 		return addr - size;
1862 	return addr + size;
1863 }
1864 
1865 static void remove_free_mem_region(void *_res)
1866 {
1867 	struct resource *res = _res;
1868 
1869 	if (res->parent)
1870 		remove_resource(res);
1871 	free_resource(res);
1872 }
1873 
1874 static struct resource *
1875 get_free_mem_region(struct device *dev, struct resource *base,
1876 		    resource_size_t size, const unsigned long align,
1877 		    const char *name, const unsigned long desc,
1878 		    const unsigned long flags)
1879 {
1880 	resource_size_t addr;
1881 	struct resource *res;
1882 	struct region_devres *dr = NULL;
1883 
1884 	size = ALIGN(size, align);
1885 
1886 	res = alloc_resource(GFP_KERNEL);
1887 	if (!res)
1888 		return ERR_PTR(-ENOMEM);
1889 
1890 	if (dev && (flags & GFR_REQUEST_REGION)) {
1891 		dr = devres_alloc(devm_region_release,
1892 				sizeof(struct region_devres), GFP_KERNEL);
1893 		if (!dr) {
1894 			free_resource(res);
1895 			return ERR_PTR(-ENOMEM);
1896 		}
1897 	} else if (dev) {
1898 		if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1899 			return ERR_PTR(-ENOMEM);
1900 	}
1901 
1902 	write_lock(&resource_lock);
1903 	for (addr = gfr_start(base, size, align, flags);
1904 	     gfr_continue(base, addr, align, flags);
1905 	     addr = gfr_next(addr, align, flags)) {
1906 		if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1907 		    REGION_DISJOINT)
1908 			continue;
1909 
1910 		if (flags & GFR_REQUEST_REGION) {
1911 			if (__request_region_locked(res, &iomem_resource, addr,
1912 						    size, name, 0))
1913 				break;
1914 
1915 			if (dev) {
1916 				dr->parent = &iomem_resource;
1917 				dr->start = addr;
1918 				dr->n = size;
1919 				devres_add(dev, dr);
1920 			}
1921 
1922 			res->desc = desc;
1923 			write_unlock(&resource_lock);
1924 
1925 
1926 			/*
1927 			 * A driver is claiming this region so revoke any
1928 			 * mappings.
1929 			 */
1930 			revoke_iomem(res);
1931 		} else {
1932 			res->start = addr;
1933 			res->end = addr + size - 1;
1934 			res->name = name;
1935 			res->desc = desc;
1936 			res->flags = IORESOURCE_MEM;
1937 
1938 			/*
1939 			 * Only succeed if the resource hosts an exclusive
1940 			 * range after the insert
1941 			 */
1942 			if (__insert_resource(base, res) || res->child)
1943 				break;
1944 
1945 			write_unlock(&resource_lock);
1946 		}
1947 
1948 		return res;
1949 	}
1950 	write_unlock(&resource_lock);
1951 
1952 	if (flags & GFR_REQUEST_REGION) {
1953 		free_resource(res);
1954 		devres_free(dr);
1955 	} else if (dev)
1956 		devm_release_action(dev, remove_free_mem_region, res);
1957 
1958 	return ERR_PTR(-ERANGE);
1959 }
1960 
1961 /**
1962  * devm_request_free_mem_region - find free region for device private memory
1963  *
1964  * @dev: device struct to bind the resource to
1965  * @size: size in bytes of the device memory to add
1966  * @base: resource tree to look in
1967  *
1968  * This function tries to find an empty range of physical address big enough to
1969  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1970  * memory, which in turn allocates struct pages.
1971  */
1972 struct resource *devm_request_free_mem_region(struct device *dev,
1973 		struct resource *base, unsigned long size)
1974 {
1975 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1976 
1977 	return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
1978 				   dev_name(dev),
1979 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1980 }
1981 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1982 
1983 struct resource *request_free_mem_region(struct resource *base,
1984 		unsigned long size, const char *name)
1985 {
1986 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1987 
1988 	return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
1989 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1990 }
1991 EXPORT_SYMBOL_GPL(request_free_mem_region);
1992 
1993 /**
1994  * alloc_free_mem_region - find a free region relative to @base
1995  * @base: resource that will parent the new resource
1996  * @size: size in bytes of memory to allocate from @base
1997  * @align: alignment requirements for the allocation
1998  * @name: resource name
1999  *
2000  * Buses like CXL, that can dynamically instantiate new memory regions,
2001  * need a method to allocate physical address space for those regions.
2002  * Allocate and insert a new resource to cover a free, unclaimed by a
2003  * descendant of @base, range in the span of @base.
2004  */
2005 struct resource *alloc_free_mem_region(struct resource *base,
2006 				       unsigned long size, unsigned long align,
2007 				       const char *name)
2008 {
2009 	/* Default of ascending direction and insert resource */
2010 	unsigned long flags = 0;
2011 
2012 	return get_free_mem_region(NULL, base, size, align, name,
2013 				   IORES_DESC_NONE, flags);
2014 }
2015 EXPORT_SYMBOL_NS_GPL(alloc_free_mem_region, CXL);
2016 #endif /* CONFIG_GET_FREE_REGION */
2017 
2018 static int __init strict_iomem(char *str)
2019 {
2020 	if (strstr(str, "relaxed"))
2021 		strict_iomem_checks = 0;
2022 	if (strstr(str, "strict"))
2023 		strict_iomem_checks = 1;
2024 	return 1;
2025 }
2026 
2027 static int iomem_fs_init_fs_context(struct fs_context *fc)
2028 {
2029 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2030 }
2031 
2032 static struct file_system_type iomem_fs_type = {
2033 	.name		= "iomem",
2034 	.owner		= THIS_MODULE,
2035 	.init_fs_context = iomem_fs_init_fs_context,
2036 	.kill_sb	= kill_anon_super,
2037 };
2038 
2039 static int __init iomem_init_inode(void)
2040 {
2041 	static struct vfsmount *iomem_vfs_mount;
2042 	static int iomem_fs_cnt;
2043 	struct inode *inode;
2044 	int rc;
2045 
2046 	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2047 	if (rc < 0) {
2048 		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2049 		return rc;
2050 	}
2051 
2052 	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2053 	if (IS_ERR(inode)) {
2054 		rc = PTR_ERR(inode);
2055 		pr_err("Cannot allocate inode for iomem: %d\n", rc);
2056 		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2057 		return rc;
2058 	}
2059 
2060 	/*
2061 	 * Publish iomem revocation inode initialized.
2062 	 * Pairs with smp_load_acquire() in revoke_iomem().
2063 	 */
2064 	smp_store_release(&iomem_inode, inode);
2065 
2066 	return 0;
2067 }
2068 
2069 fs_initcall(iomem_init_inode);
2070 
2071 __setup("iomem=", strict_iomem);
2072