xref: /linux/kernel/resource.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  *	linux/kernel/resource.c
3  *
4  * Copyright (C) 1999	Linus Torvalds
5  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6  *
7  * Arbitrary resource management.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <linux/resource_ext.h>
26 #include <asm/io.h>
27 
28 
29 struct resource ioport_resource = {
30 	.name	= "PCI IO",
31 	.start	= 0,
32 	.end	= IO_SPACE_LIMIT,
33 	.flags	= IORESOURCE_IO,
34 };
35 EXPORT_SYMBOL(ioport_resource);
36 
37 struct resource iomem_resource = {
38 	.name	= "PCI mem",
39 	.start	= 0,
40 	.end	= -1,
41 	.flags	= IORESOURCE_MEM,
42 };
43 EXPORT_SYMBOL(iomem_resource);
44 
45 /* constraints to be met while allocating resources */
46 struct resource_constraint {
47 	resource_size_t min, max, align;
48 	resource_size_t (*alignf)(void *, const struct resource *,
49 			resource_size_t, resource_size_t);
50 	void *alignf_data;
51 };
52 
53 static DEFINE_RWLOCK(resource_lock);
54 
55 /*
56  * For memory hotplug, there is no way to free resource entries allocated
57  * by boot mem after the system is up. So for reusing the resource entry
58  * we need to remember the resource.
59  */
60 static struct resource *bootmem_resource_free;
61 static DEFINE_SPINLOCK(bootmem_resource_lock);
62 
63 static struct resource *next_resource(struct resource *p, bool sibling_only)
64 {
65 	/* Caller wants to traverse through siblings only */
66 	if (sibling_only)
67 		return p->sibling;
68 
69 	if (p->child)
70 		return p->child;
71 	while (!p->sibling && p->parent)
72 		p = p->parent;
73 	return p->sibling;
74 }
75 
76 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77 {
78 	struct resource *p = v;
79 	(*pos)++;
80 	return (void *)next_resource(p, false);
81 }
82 
83 #ifdef CONFIG_PROC_FS
84 
85 enum { MAX_IORES_LEVEL = 5 };
86 
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 	__acquires(resource_lock)
89 {
90 	struct resource *p = m->private;
91 	loff_t l = 0;
92 	read_lock(&resource_lock);
93 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94 		;
95 	return p;
96 }
97 
98 static void r_stop(struct seq_file *m, void *v)
99 	__releases(resource_lock)
100 {
101 	read_unlock(&resource_lock);
102 }
103 
104 static int r_show(struct seq_file *m, void *v)
105 {
106 	struct resource *root = m->private;
107 	struct resource *r = v, *p;
108 	int width = root->end < 0x10000 ? 4 : 8;
109 	int depth;
110 
111 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
112 		if (p->parent == root)
113 			break;
114 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
115 			depth * 2, "",
116 			width, (unsigned long long) r->start,
117 			width, (unsigned long long) r->end,
118 			r->name ? r->name : "<BAD>");
119 	return 0;
120 }
121 
122 static const struct seq_operations resource_op = {
123 	.start	= r_start,
124 	.next	= r_next,
125 	.stop	= r_stop,
126 	.show	= r_show,
127 };
128 
129 static int ioports_open(struct inode *inode, struct file *file)
130 {
131 	int res = seq_open(file, &resource_op);
132 	if (!res) {
133 		struct seq_file *m = file->private_data;
134 		m->private = &ioport_resource;
135 	}
136 	return res;
137 }
138 
139 static int iomem_open(struct inode *inode, struct file *file)
140 {
141 	int res = seq_open(file, &resource_op);
142 	if (!res) {
143 		struct seq_file *m = file->private_data;
144 		m->private = &iomem_resource;
145 	}
146 	return res;
147 }
148 
149 static const struct file_operations proc_ioports_operations = {
150 	.open		= ioports_open,
151 	.read		= seq_read,
152 	.llseek		= seq_lseek,
153 	.release	= seq_release,
154 };
155 
156 static const struct file_operations proc_iomem_operations = {
157 	.open		= iomem_open,
158 	.read		= seq_read,
159 	.llseek		= seq_lseek,
160 	.release	= seq_release,
161 };
162 
163 static int __init ioresources_init(void)
164 {
165 	proc_create("ioports", 0, NULL, &proc_ioports_operations);
166 	proc_create("iomem", 0, NULL, &proc_iomem_operations);
167 	return 0;
168 }
169 __initcall(ioresources_init);
170 
171 #endif /* CONFIG_PROC_FS */
172 
173 static void free_resource(struct resource *res)
174 {
175 	if (!res)
176 		return;
177 
178 	if (!PageSlab(virt_to_head_page(res))) {
179 		spin_lock(&bootmem_resource_lock);
180 		res->sibling = bootmem_resource_free;
181 		bootmem_resource_free = res;
182 		spin_unlock(&bootmem_resource_lock);
183 	} else {
184 		kfree(res);
185 	}
186 }
187 
188 static struct resource *alloc_resource(gfp_t flags)
189 {
190 	struct resource *res = NULL;
191 
192 	spin_lock(&bootmem_resource_lock);
193 	if (bootmem_resource_free) {
194 		res = bootmem_resource_free;
195 		bootmem_resource_free = res->sibling;
196 	}
197 	spin_unlock(&bootmem_resource_lock);
198 
199 	if (res)
200 		memset(res, 0, sizeof(struct resource));
201 	else
202 		res = kzalloc(sizeof(struct resource), flags);
203 
204 	return res;
205 }
206 
207 /* Return the conflict entry if you can't request it */
208 static struct resource * __request_resource(struct resource *root, struct resource *new)
209 {
210 	resource_size_t start = new->start;
211 	resource_size_t end = new->end;
212 	struct resource *tmp, **p;
213 
214 	if (end < start)
215 		return root;
216 	if (start < root->start)
217 		return root;
218 	if (end > root->end)
219 		return root;
220 	p = &root->child;
221 	for (;;) {
222 		tmp = *p;
223 		if (!tmp || tmp->start > end) {
224 			new->sibling = tmp;
225 			*p = new;
226 			new->parent = root;
227 			return NULL;
228 		}
229 		p = &tmp->sibling;
230 		if (tmp->end < start)
231 			continue;
232 		return tmp;
233 	}
234 }
235 
236 static int __release_resource(struct resource *old)
237 {
238 	struct resource *tmp, **p;
239 
240 	p = &old->parent->child;
241 	for (;;) {
242 		tmp = *p;
243 		if (!tmp)
244 			break;
245 		if (tmp == old) {
246 			*p = tmp->sibling;
247 			old->parent = NULL;
248 			return 0;
249 		}
250 		p = &tmp->sibling;
251 	}
252 	return -EINVAL;
253 }
254 
255 static void __release_child_resources(struct resource *r)
256 {
257 	struct resource *tmp, *p;
258 	resource_size_t size;
259 
260 	p = r->child;
261 	r->child = NULL;
262 	while (p) {
263 		tmp = p;
264 		p = p->sibling;
265 
266 		tmp->parent = NULL;
267 		tmp->sibling = NULL;
268 		__release_child_resources(tmp);
269 
270 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
271 		/* need to restore size, and keep flags */
272 		size = resource_size(tmp);
273 		tmp->start = 0;
274 		tmp->end = size - 1;
275 	}
276 }
277 
278 void release_child_resources(struct resource *r)
279 {
280 	write_lock(&resource_lock);
281 	__release_child_resources(r);
282 	write_unlock(&resource_lock);
283 }
284 
285 /**
286  * request_resource_conflict - request and reserve an I/O or memory resource
287  * @root: root resource descriptor
288  * @new: resource descriptor desired by caller
289  *
290  * Returns 0 for success, conflict resource on error.
291  */
292 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
293 {
294 	struct resource *conflict;
295 
296 	write_lock(&resource_lock);
297 	conflict = __request_resource(root, new);
298 	write_unlock(&resource_lock);
299 	return conflict;
300 }
301 
302 /**
303  * request_resource - request and reserve an I/O or memory resource
304  * @root: root resource descriptor
305  * @new: resource descriptor desired by caller
306  *
307  * Returns 0 for success, negative error code on error.
308  */
309 int request_resource(struct resource *root, struct resource *new)
310 {
311 	struct resource *conflict;
312 
313 	conflict = request_resource_conflict(root, new);
314 	return conflict ? -EBUSY : 0;
315 }
316 
317 EXPORT_SYMBOL(request_resource);
318 
319 /**
320  * release_resource - release a previously reserved resource
321  * @old: resource pointer
322  */
323 int release_resource(struct resource *old)
324 {
325 	int retval;
326 
327 	write_lock(&resource_lock);
328 	retval = __release_resource(old);
329 	write_unlock(&resource_lock);
330 	return retval;
331 }
332 
333 EXPORT_SYMBOL(release_resource);
334 
335 /*
336  * Finds the lowest iomem reosurce exists with-in [res->start.res->end)
337  * the caller must specify res->start, res->end, res->flags and "name".
338  * If found, returns 0, res is overwritten, if not found, returns -1.
339  * This walks through whole tree and not just first level children
340  * until and unless first_level_children_only is true.
341  */
342 static int find_next_iomem_res(struct resource *res, char *name,
343 			       bool first_level_children_only)
344 {
345 	resource_size_t start, end;
346 	struct resource *p;
347 	bool sibling_only = false;
348 
349 	BUG_ON(!res);
350 
351 	start = res->start;
352 	end = res->end;
353 	BUG_ON(start >= end);
354 
355 	if (first_level_children_only)
356 		sibling_only = true;
357 
358 	read_lock(&resource_lock);
359 
360 	for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
361 		if (p->flags != res->flags)
362 			continue;
363 		if (name && strcmp(p->name, name))
364 			continue;
365 		if (p->start > end) {
366 			p = NULL;
367 			break;
368 		}
369 		if ((p->end >= start) && (p->start < end))
370 			break;
371 	}
372 
373 	read_unlock(&resource_lock);
374 	if (!p)
375 		return -1;
376 	/* copy data */
377 	if (res->start < p->start)
378 		res->start = p->start;
379 	if (res->end > p->end)
380 		res->end = p->end;
381 	return 0;
382 }
383 
384 /*
385  * Walks through iomem resources and calls func() with matching resource
386  * ranges. This walks through whole tree and not just first level children.
387  * All the memory ranges which overlap start,end and also match flags and
388  * name are valid candidates.
389  *
390  * @name: name of resource
391  * @flags: resource flags
392  * @start: start addr
393  * @end: end addr
394  */
395 int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end,
396 		void *arg, int (*func)(u64, u64, void *))
397 {
398 	struct resource res;
399 	u64 orig_end;
400 	int ret = -1;
401 
402 	res.start = start;
403 	res.end = end;
404 	res.flags = flags;
405 	orig_end = res.end;
406 	while ((res.start < res.end) &&
407 		(!find_next_iomem_res(&res, name, false))) {
408 		ret = (*func)(res.start, res.end, arg);
409 		if (ret)
410 			break;
411 		res.start = res.end + 1;
412 		res.end = orig_end;
413 	}
414 	return ret;
415 }
416 
417 /*
418  * This function calls callback against all memory range of "System RAM"
419  * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
420  * Now, this function is only for "System RAM". This function deals with
421  * full ranges and not pfn. If resources are not pfn aligned, dealing
422  * with pfn can truncate ranges.
423  */
424 int walk_system_ram_res(u64 start, u64 end, void *arg,
425 				int (*func)(u64, u64, void *))
426 {
427 	struct resource res;
428 	u64 orig_end;
429 	int ret = -1;
430 
431 	res.start = start;
432 	res.end = end;
433 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
434 	orig_end = res.end;
435 	while ((res.start < res.end) &&
436 		(!find_next_iomem_res(&res, "System RAM", true))) {
437 		ret = (*func)(res.start, res.end, arg);
438 		if (ret)
439 			break;
440 		res.start = res.end + 1;
441 		res.end = orig_end;
442 	}
443 	return ret;
444 }
445 
446 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
447 
448 /*
449  * This function calls callback against all memory range of "System RAM"
450  * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
451  * Now, this function is only for "System RAM".
452  */
453 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
454 		void *arg, int (*func)(unsigned long, unsigned long, void *))
455 {
456 	struct resource res;
457 	unsigned long pfn, end_pfn;
458 	u64 orig_end;
459 	int ret = -1;
460 
461 	res.start = (u64) start_pfn << PAGE_SHIFT;
462 	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
463 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
464 	orig_end = res.end;
465 	while ((res.start < res.end) &&
466 		(find_next_iomem_res(&res, "System RAM", true) >= 0)) {
467 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
468 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
469 		if (end_pfn > pfn)
470 			ret = (*func)(pfn, end_pfn - pfn, arg);
471 		if (ret)
472 			break;
473 		res.start = res.end + 1;
474 		res.end = orig_end;
475 	}
476 	return ret;
477 }
478 
479 #endif
480 
481 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
482 {
483 	return 1;
484 }
485 /*
486  * This generic page_is_ram() returns true if specified address is
487  * registered as "System RAM" in iomem_resource list.
488  */
489 int __weak page_is_ram(unsigned long pfn)
490 {
491 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
492 }
493 EXPORT_SYMBOL_GPL(page_is_ram);
494 
495 /**
496  * region_intersects() - determine intersection of region with known resources
497  * @start: region start address
498  * @size: size of region
499  * @name: name of resource (in iomem_resource)
500  *
501  * Check if the specified region partially overlaps or fully eclipses a
502  * resource identified by @name.  Return REGION_DISJOINT if the region
503  * does not overlap @name, return REGION_MIXED if the region overlaps
504  * @type and another resource, and return REGION_INTERSECTS if the
505  * region overlaps @type and no other defined resource. Note, that
506  * REGION_INTERSECTS is also returned in the case when the specified
507  * region overlaps RAM and undefined memory holes.
508  *
509  * region_intersect() is used by memory remapping functions to ensure
510  * the user is not remapping RAM and is a vast speed up over walking
511  * through the resource table page by page.
512  */
513 int region_intersects(resource_size_t start, size_t size, const char *name)
514 {
515 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
516 	resource_size_t end = start + size - 1;
517 	int type = 0; int other = 0;
518 	struct resource *p;
519 
520 	read_lock(&resource_lock);
521 	for (p = iomem_resource.child; p ; p = p->sibling) {
522 		bool is_type = strcmp(p->name, name) == 0 && p->flags == flags;
523 
524 		if (start >= p->start && start <= p->end)
525 			is_type ? type++ : other++;
526 		if (end >= p->start && end <= p->end)
527 			is_type ? type++ : other++;
528 		if (p->start >= start && p->end <= end)
529 			is_type ? type++ : other++;
530 	}
531 	read_unlock(&resource_lock);
532 
533 	if (other == 0)
534 		return type ? REGION_INTERSECTS : REGION_DISJOINT;
535 
536 	if (type)
537 		return REGION_MIXED;
538 
539 	return REGION_DISJOINT;
540 }
541 
542 void __weak arch_remove_reservations(struct resource *avail)
543 {
544 }
545 
546 static resource_size_t simple_align_resource(void *data,
547 					     const struct resource *avail,
548 					     resource_size_t size,
549 					     resource_size_t align)
550 {
551 	return avail->start;
552 }
553 
554 static void resource_clip(struct resource *res, resource_size_t min,
555 			  resource_size_t max)
556 {
557 	if (res->start < min)
558 		res->start = min;
559 	if (res->end > max)
560 		res->end = max;
561 }
562 
563 /*
564  * Find empty slot in the resource tree with the given range and
565  * alignment constraints
566  */
567 static int __find_resource(struct resource *root, struct resource *old,
568 			 struct resource *new,
569 			 resource_size_t  size,
570 			 struct resource_constraint *constraint)
571 {
572 	struct resource *this = root->child;
573 	struct resource tmp = *new, avail, alloc;
574 
575 	tmp.start = root->start;
576 	/*
577 	 * Skip past an allocated resource that starts at 0, since the assignment
578 	 * of this->start - 1 to tmp->end below would cause an underflow.
579 	 */
580 	if (this && this->start == root->start) {
581 		tmp.start = (this == old) ? old->start : this->end + 1;
582 		this = this->sibling;
583 	}
584 	for(;;) {
585 		if (this)
586 			tmp.end = (this == old) ?  this->end : this->start - 1;
587 		else
588 			tmp.end = root->end;
589 
590 		if (tmp.end < tmp.start)
591 			goto next;
592 
593 		resource_clip(&tmp, constraint->min, constraint->max);
594 		arch_remove_reservations(&tmp);
595 
596 		/* Check for overflow after ALIGN() */
597 		avail.start = ALIGN(tmp.start, constraint->align);
598 		avail.end = tmp.end;
599 		avail.flags = new->flags & ~IORESOURCE_UNSET;
600 		if (avail.start >= tmp.start) {
601 			alloc.flags = avail.flags;
602 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
603 					size, constraint->align);
604 			alloc.end = alloc.start + size - 1;
605 			if (resource_contains(&avail, &alloc)) {
606 				new->start = alloc.start;
607 				new->end = alloc.end;
608 				return 0;
609 			}
610 		}
611 
612 next:		if (!this || this->end == root->end)
613 			break;
614 
615 		if (this != old)
616 			tmp.start = this->end + 1;
617 		this = this->sibling;
618 	}
619 	return -EBUSY;
620 }
621 
622 /*
623  * Find empty slot in the resource tree given range and alignment.
624  */
625 static int find_resource(struct resource *root, struct resource *new,
626 			resource_size_t size,
627 			struct resource_constraint  *constraint)
628 {
629 	return  __find_resource(root, NULL, new, size, constraint);
630 }
631 
632 /**
633  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
634  *	The resource will be relocated if the new size cannot be reallocated in the
635  *	current location.
636  *
637  * @root: root resource descriptor
638  * @old:  resource descriptor desired by caller
639  * @newsize: new size of the resource descriptor
640  * @constraint: the size and alignment constraints to be met.
641  */
642 static int reallocate_resource(struct resource *root, struct resource *old,
643 			resource_size_t newsize,
644 			struct resource_constraint  *constraint)
645 {
646 	int err=0;
647 	struct resource new = *old;
648 	struct resource *conflict;
649 
650 	write_lock(&resource_lock);
651 
652 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
653 		goto out;
654 
655 	if (resource_contains(&new, old)) {
656 		old->start = new.start;
657 		old->end = new.end;
658 		goto out;
659 	}
660 
661 	if (old->child) {
662 		err = -EBUSY;
663 		goto out;
664 	}
665 
666 	if (resource_contains(old, &new)) {
667 		old->start = new.start;
668 		old->end = new.end;
669 	} else {
670 		__release_resource(old);
671 		*old = new;
672 		conflict = __request_resource(root, old);
673 		BUG_ON(conflict);
674 	}
675 out:
676 	write_unlock(&resource_lock);
677 	return err;
678 }
679 
680 
681 /**
682  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
683  * 	The resource will be reallocated with a new size if it was already allocated
684  * @root: root resource descriptor
685  * @new: resource descriptor desired by caller
686  * @size: requested resource region size
687  * @min: minimum boundary to allocate
688  * @max: maximum boundary to allocate
689  * @align: alignment requested, in bytes
690  * @alignf: alignment function, optional, called if not NULL
691  * @alignf_data: arbitrary data to pass to the @alignf function
692  */
693 int allocate_resource(struct resource *root, struct resource *new,
694 		      resource_size_t size, resource_size_t min,
695 		      resource_size_t max, resource_size_t align,
696 		      resource_size_t (*alignf)(void *,
697 						const struct resource *,
698 						resource_size_t,
699 						resource_size_t),
700 		      void *alignf_data)
701 {
702 	int err;
703 	struct resource_constraint constraint;
704 
705 	if (!alignf)
706 		alignf = simple_align_resource;
707 
708 	constraint.min = min;
709 	constraint.max = max;
710 	constraint.align = align;
711 	constraint.alignf = alignf;
712 	constraint.alignf_data = alignf_data;
713 
714 	if ( new->parent ) {
715 		/* resource is already allocated, try reallocating with
716 		   the new constraints */
717 		return reallocate_resource(root, new, size, &constraint);
718 	}
719 
720 	write_lock(&resource_lock);
721 	err = find_resource(root, new, size, &constraint);
722 	if (err >= 0 && __request_resource(root, new))
723 		err = -EBUSY;
724 	write_unlock(&resource_lock);
725 	return err;
726 }
727 
728 EXPORT_SYMBOL(allocate_resource);
729 
730 /**
731  * lookup_resource - find an existing resource by a resource start address
732  * @root: root resource descriptor
733  * @start: resource start address
734  *
735  * Returns a pointer to the resource if found, NULL otherwise
736  */
737 struct resource *lookup_resource(struct resource *root, resource_size_t start)
738 {
739 	struct resource *res;
740 
741 	read_lock(&resource_lock);
742 	for (res = root->child; res; res = res->sibling) {
743 		if (res->start == start)
744 			break;
745 	}
746 	read_unlock(&resource_lock);
747 
748 	return res;
749 }
750 
751 /*
752  * Insert a resource into the resource tree. If successful, return NULL,
753  * otherwise return the conflicting resource (compare to __request_resource())
754  */
755 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
756 {
757 	struct resource *first, *next;
758 
759 	for (;; parent = first) {
760 		first = __request_resource(parent, new);
761 		if (!first)
762 			return first;
763 
764 		if (first == parent)
765 			return first;
766 		if (WARN_ON(first == new))	/* duplicated insertion */
767 			return first;
768 
769 		if ((first->start > new->start) || (first->end < new->end))
770 			break;
771 		if ((first->start == new->start) && (first->end == new->end))
772 			break;
773 	}
774 
775 	for (next = first; ; next = next->sibling) {
776 		/* Partial overlap? Bad, and unfixable */
777 		if (next->start < new->start || next->end > new->end)
778 			return next;
779 		if (!next->sibling)
780 			break;
781 		if (next->sibling->start > new->end)
782 			break;
783 	}
784 
785 	new->parent = parent;
786 	new->sibling = next->sibling;
787 	new->child = first;
788 
789 	next->sibling = NULL;
790 	for (next = first; next; next = next->sibling)
791 		next->parent = new;
792 
793 	if (parent->child == first) {
794 		parent->child = new;
795 	} else {
796 		next = parent->child;
797 		while (next->sibling != first)
798 			next = next->sibling;
799 		next->sibling = new;
800 	}
801 	return NULL;
802 }
803 
804 /**
805  * insert_resource_conflict - Inserts resource in the resource tree
806  * @parent: parent of the new resource
807  * @new: new resource to insert
808  *
809  * Returns 0 on success, conflict resource if the resource can't be inserted.
810  *
811  * This function is equivalent to request_resource_conflict when no conflict
812  * happens. If a conflict happens, and the conflicting resources
813  * entirely fit within the range of the new resource, then the new
814  * resource is inserted and the conflicting resources become children of
815  * the new resource.
816  */
817 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
818 {
819 	struct resource *conflict;
820 
821 	write_lock(&resource_lock);
822 	conflict = __insert_resource(parent, new);
823 	write_unlock(&resource_lock);
824 	return conflict;
825 }
826 
827 /**
828  * insert_resource - Inserts a resource in the resource tree
829  * @parent: parent of the new resource
830  * @new: new resource to insert
831  *
832  * Returns 0 on success, -EBUSY if the resource can't be inserted.
833  */
834 int insert_resource(struct resource *parent, struct resource *new)
835 {
836 	struct resource *conflict;
837 
838 	conflict = insert_resource_conflict(parent, new);
839 	return conflict ? -EBUSY : 0;
840 }
841 
842 /**
843  * insert_resource_expand_to_fit - Insert a resource into the resource tree
844  * @root: root resource descriptor
845  * @new: new resource to insert
846  *
847  * Insert a resource into the resource tree, possibly expanding it in order
848  * to make it encompass any conflicting resources.
849  */
850 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
851 {
852 	if (new->parent)
853 		return;
854 
855 	write_lock(&resource_lock);
856 	for (;;) {
857 		struct resource *conflict;
858 
859 		conflict = __insert_resource(root, new);
860 		if (!conflict)
861 			break;
862 		if (conflict == root)
863 			break;
864 
865 		/* Ok, expand resource to cover the conflict, then try again .. */
866 		if (conflict->start < new->start)
867 			new->start = conflict->start;
868 		if (conflict->end > new->end)
869 			new->end = conflict->end;
870 
871 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
872 	}
873 	write_unlock(&resource_lock);
874 }
875 
876 static int __adjust_resource(struct resource *res, resource_size_t start,
877 				resource_size_t size)
878 {
879 	struct resource *tmp, *parent = res->parent;
880 	resource_size_t end = start + size - 1;
881 	int result = -EBUSY;
882 
883 	if (!parent)
884 		goto skip;
885 
886 	if ((start < parent->start) || (end > parent->end))
887 		goto out;
888 
889 	if (res->sibling && (res->sibling->start <= end))
890 		goto out;
891 
892 	tmp = parent->child;
893 	if (tmp != res) {
894 		while (tmp->sibling != res)
895 			tmp = tmp->sibling;
896 		if (start <= tmp->end)
897 			goto out;
898 	}
899 
900 skip:
901 	for (tmp = res->child; tmp; tmp = tmp->sibling)
902 		if ((tmp->start < start) || (tmp->end > end))
903 			goto out;
904 
905 	res->start = start;
906 	res->end = end;
907 	result = 0;
908 
909  out:
910 	return result;
911 }
912 
913 /**
914  * adjust_resource - modify a resource's start and size
915  * @res: resource to modify
916  * @start: new start value
917  * @size: new size
918  *
919  * Given an existing resource, change its start and size to match the
920  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
921  * Existing children of the resource are assumed to be immutable.
922  */
923 int adjust_resource(struct resource *res, resource_size_t start,
924 			resource_size_t size)
925 {
926 	int result;
927 
928 	write_lock(&resource_lock);
929 	result = __adjust_resource(res, start, size);
930 	write_unlock(&resource_lock);
931 	return result;
932 }
933 EXPORT_SYMBOL(adjust_resource);
934 
935 static void __init __reserve_region_with_split(struct resource *root,
936 		resource_size_t start, resource_size_t end,
937 		const char *name)
938 {
939 	struct resource *parent = root;
940 	struct resource *conflict;
941 	struct resource *res = alloc_resource(GFP_ATOMIC);
942 	struct resource *next_res = NULL;
943 
944 	if (!res)
945 		return;
946 
947 	res->name = name;
948 	res->start = start;
949 	res->end = end;
950 	res->flags = IORESOURCE_BUSY;
951 
952 	while (1) {
953 
954 		conflict = __request_resource(parent, res);
955 		if (!conflict) {
956 			if (!next_res)
957 				break;
958 			res = next_res;
959 			next_res = NULL;
960 			continue;
961 		}
962 
963 		/* conflict covered whole area */
964 		if (conflict->start <= res->start &&
965 				conflict->end >= res->end) {
966 			free_resource(res);
967 			WARN_ON(next_res);
968 			break;
969 		}
970 
971 		/* failed, split and try again */
972 		if (conflict->start > res->start) {
973 			end = res->end;
974 			res->end = conflict->start - 1;
975 			if (conflict->end < end) {
976 				next_res = alloc_resource(GFP_ATOMIC);
977 				if (!next_res) {
978 					free_resource(res);
979 					break;
980 				}
981 				next_res->name = name;
982 				next_res->start = conflict->end + 1;
983 				next_res->end = end;
984 				next_res->flags = IORESOURCE_BUSY;
985 			}
986 		} else {
987 			res->start = conflict->end + 1;
988 		}
989 	}
990 
991 }
992 
993 void __init reserve_region_with_split(struct resource *root,
994 		resource_size_t start, resource_size_t end,
995 		const char *name)
996 {
997 	int abort = 0;
998 
999 	write_lock(&resource_lock);
1000 	if (root->start > start || root->end < end) {
1001 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1002 		       (unsigned long long)start, (unsigned long long)end,
1003 		       root);
1004 		if (start > root->end || end < root->start)
1005 			abort = 1;
1006 		else {
1007 			if (end > root->end)
1008 				end = root->end;
1009 			if (start < root->start)
1010 				start = root->start;
1011 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1012 			       (unsigned long long)start,
1013 			       (unsigned long long)end);
1014 		}
1015 		dump_stack();
1016 	}
1017 	if (!abort)
1018 		__reserve_region_with_split(root, start, end, name);
1019 	write_unlock(&resource_lock);
1020 }
1021 
1022 /**
1023  * resource_alignment - calculate resource's alignment
1024  * @res: resource pointer
1025  *
1026  * Returns alignment on success, 0 (invalid alignment) on failure.
1027  */
1028 resource_size_t resource_alignment(struct resource *res)
1029 {
1030 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1031 	case IORESOURCE_SIZEALIGN:
1032 		return resource_size(res);
1033 	case IORESOURCE_STARTALIGN:
1034 		return res->start;
1035 	default:
1036 		return 0;
1037 	}
1038 }
1039 
1040 /*
1041  * This is compatibility stuff for IO resources.
1042  *
1043  * Note how this, unlike the above, knows about
1044  * the IO flag meanings (busy etc).
1045  *
1046  * request_region creates a new busy region.
1047  *
1048  * release_region releases a matching busy region.
1049  */
1050 
1051 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1052 
1053 /**
1054  * __request_region - create a new busy resource region
1055  * @parent: parent resource descriptor
1056  * @start: resource start address
1057  * @n: resource region size
1058  * @name: reserving caller's ID string
1059  * @flags: IO resource flags
1060  */
1061 struct resource * __request_region(struct resource *parent,
1062 				   resource_size_t start, resource_size_t n,
1063 				   const char *name, int flags)
1064 {
1065 	DECLARE_WAITQUEUE(wait, current);
1066 	struct resource *res = alloc_resource(GFP_KERNEL);
1067 
1068 	if (!res)
1069 		return NULL;
1070 
1071 	res->name = name;
1072 	res->start = start;
1073 	res->end = start + n - 1;
1074 	res->flags = resource_type(parent);
1075 	res->flags |= IORESOURCE_BUSY | flags;
1076 
1077 	write_lock(&resource_lock);
1078 
1079 	for (;;) {
1080 		struct resource *conflict;
1081 
1082 		conflict = __request_resource(parent, res);
1083 		if (!conflict)
1084 			break;
1085 		if (conflict != parent) {
1086 			parent = conflict;
1087 			if (!(conflict->flags & IORESOURCE_BUSY))
1088 				continue;
1089 		}
1090 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1091 			add_wait_queue(&muxed_resource_wait, &wait);
1092 			write_unlock(&resource_lock);
1093 			set_current_state(TASK_UNINTERRUPTIBLE);
1094 			schedule();
1095 			remove_wait_queue(&muxed_resource_wait, &wait);
1096 			write_lock(&resource_lock);
1097 			continue;
1098 		}
1099 		/* Uhhuh, that didn't work out.. */
1100 		free_resource(res);
1101 		res = NULL;
1102 		break;
1103 	}
1104 	write_unlock(&resource_lock);
1105 	return res;
1106 }
1107 EXPORT_SYMBOL(__request_region);
1108 
1109 /**
1110  * __release_region - release a previously reserved resource region
1111  * @parent: parent resource descriptor
1112  * @start: resource start address
1113  * @n: resource region size
1114  *
1115  * The described resource region must match a currently busy region.
1116  */
1117 void __release_region(struct resource *parent, resource_size_t start,
1118 			resource_size_t n)
1119 {
1120 	struct resource **p;
1121 	resource_size_t end;
1122 
1123 	p = &parent->child;
1124 	end = start + n - 1;
1125 
1126 	write_lock(&resource_lock);
1127 
1128 	for (;;) {
1129 		struct resource *res = *p;
1130 
1131 		if (!res)
1132 			break;
1133 		if (res->start <= start && res->end >= end) {
1134 			if (!(res->flags & IORESOURCE_BUSY)) {
1135 				p = &res->child;
1136 				continue;
1137 			}
1138 			if (res->start != start || res->end != end)
1139 				break;
1140 			*p = res->sibling;
1141 			write_unlock(&resource_lock);
1142 			if (res->flags & IORESOURCE_MUXED)
1143 				wake_up(&muxed_resource_wait);
1144 			free_resource(res);
1145 			return;
1146 		}
1147 		p = &res->sibling;
1148 	}
1149 
1150 	write_unlock(&resource_lock);
1151 
1152 	printk(KERN_WARNING "Trying to free nonexistent resource "
1153 		"<%016llx-%016llx>\n", (unsigned long long)start,
1154 		(unsigned long long)end);
1155 }
1156 EXPORT_SYMBOL(__release_region);
1157 
1158 #ifdef CONFIG_MEMORY_HOTREMOVE
1159 /**
1160  * release_mem_region_adjustable - release a previously reserved memory region
1161  * @parent: parent resource descriptor
1162  * @start: resource start address
1163  * @size: resource region size
1164  *
1165  * This interface is intended for memory hot-delete.  The requested region
1166  * is released from a currently busy memory resource.  The requested region
1167  * must either match exactly or fit into a single busy resource entry.  In
1168  * the latter case, the remaining resource is adjusted accordingly.
1169  * Existing children of the busy memory resource must be immutable in the
1170  * request.
1171  *
1172  * Note:
1173  * - Additional release conditions, such as overlapping region, can be
1174  *   supported after they are confirmed as valid cases.
1175  * - When a busy memory resource gets split into two entries, the code
1176  *   assumes that all children remain in the lower address entry for
1177  *   simplicity.  Enhance this logic when necessary.
1178  */
1179 int release_mem_region_adjustable(struct resource *parent,
1180 			resource_size_t start, resource_size_t size)
1181 {
1182 	struct resource **p;
1183 	struct resource *res;
1184 	struct resource *new_res;
1185 	resource_size_t end;
1186 	int ret = -EINVAL;
1187 
1188 	end = start + size - 1;
1189 	if ((start < parent->start) || (end > parent->end))
1190 		return ret;
1191 
1192 	/* The alloc_resource() result gets checked later */
1193 	new_res = alloc_resource(GFP_KERNEL);
1194 
1195 	p = &parent->child;
1196 	write_lock(&resource_lock);
1197 
1198 	while ((res = *p)) {
1199 		if (res->start >= end)
1200 			break;
1201 
1202 		/* look for the next resource if it does not fit into */
1203 		if (res->start > start || res->end < end) {
1204 			p = &res->sibling;
1205 			continue;
1206 		}
1207 
1208 		if (!(res->flags & IORESOURCE_MEM))
1209 			break;
1210 
1211 		if (!(res->flags & IORESOURCE_BUSY)) {
1212 			p = &res->child;
1213 			continue;
1214 		}
1215 
1216 		/* found the target resource; let's adjust accordingly */
1217 		if (res->start == start && res->end == end) {
1218 			/* free the whole entry */
1219 			*p = res->sibling;
1220 			free_resource(res);
1221 			ret = 0;
1222 		} else if (res->start == start && res->end != end) {
1223 			/* adjust the start */
1224 			ret = __adjust_resource(res, end + 1,
1225 						res->end - end);
1226 		} else if (res->start != start && res->end == end) {
1227 			/* adjust the end */
1228 			ret = __adjust_resource(res, res->start,
1229 						start - res->start);
1230 		} else {
1231 			/* split into two entries */
1232 			if (!new_res) {
1233 				ret = -ENOMEM;
1234 				break;
1235 			}
1236 			new_res->name = res->name;
1237 			new_res->start = end + 1;
1238 			new_res->end = res->end;
1239 			new_res->flags = res->flags;
1240 			new_res->parent = res->parent;
1241 			new_res->sibling = res->sibling;
1242 			new_res->child = NULL;
1243 
1244 			ret = __adjust_resource(res, res->start,
1245 						start - res->start);
1246 			if (ret)
1247 				break;
1248 			res->sibling = new_res;
1249 			new_res = NULL;
1250 		}
1251 
1252 		break;
1253 	}
1254 
1255 	write_unlock(&resource_lock);
1256 	free_resource(new_res);
1257 	return ret;
1258 }
1259 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1260 
1261 /*
1262  * Managed region resource
1263  */
1264 static void devm_resource_release(struct device *dev, void *ptr)
1265 {
1266 	struct resource **r = ptr;
1267 
1268 	release_resource(*r);
1269 }
1270 
1271 /**
1272  * devm_request_resource() - request and reserve an I/O or memory resource
1273  * @dev: device for which to request the resource
1274  * @root: root of the resource tree from which to request the resource
1275  * @new: descriptor of the resource to request
1276  *
1277  * This is a device-managed version of request_resource(). There is usually
1278  * no need to release resources requested by this function explicitly since
1279  * that will be taken care of when the device is unbound from its driver.
1280  * If for some reason the resource needs to be released explicitly, because
1281  * of ordering issues for example, drivers must call devm_release_resource()
1282  * rather than the regular release_resource().
1283  *
1284  * When a conflict is detected between any existing resources and the newly
1285  * requested resource, an error message will be printed.
1286  *
1287  * Returns 0 on success or a negative error code on failure.
1288  */
1289 int devm_request_resource(struct device *dev, struct resource *root,
1290 			  struct resource *new)
1291 {
1292 	struct resource *conflict, **ptr;
1293 
1294 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1295 	if (!ptr)
1296 		return -ENOMEM;
1297 
1298 	*ptr = new;
1299 
1300 	conflict = request_resource_conflict(root, new);
1301 	if (conflict) {
1302 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1303 			new, conflict->name, conflict);
1304 		devres_free(ptr);
1305 		return -EBUSY;
1306 	}
1307 
1308 	devres_add(dev, ptr);
1309 	return 0;
1310 }
1311 EXPORT_SYMBOL(devm_request_resource);
1312 
1313 static int devm_resource_match(struct device *dev, void *res, void *data)
1314 {
1315 	struct resource **ptr = res;
1316 
1317 	return *ptr == data;
1318 }
1319 
1320 /**
1321  * devm_release_resource() - release a previously requested resource
1322  * @dev: device for which to release the resource
1323  * @new: descriptor of the resource to release
1324  *
1325  * Releases a resource previously requested using devm_request_resource().
1326  */
1327 void devm_release_resource(struct device *dev, struct resource *new)
1328 {
1329 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1330 			       new));
1331 }
1332 EXPORT_SYMBOL(devm_release_resource);
1333 
1334 struct region_devres {
1335 	struct resource *parent;
1336 	resource_size_t start;
1337 	resource_size_t n;
1338 };
1339 
1340 static void devm_region_release(struct device *dev, void *res)
1341 {
1342 	struct region_devres *this = res;
1343 
1344 	__release_region(this->parent, this->start, this->n);
1345 }
1346 
1347 static int devm_region_match(struct device *dev, void *res, void *match_data)
1348 {
1349 	struct region_devres *this = res, *match = match_data;
1350 
1351 	return this->parent == match->parent &&
1352 		this->start == match->start && this->n == match->n;
1353 }
1354 
1355 struct resource * __devm_request_region(struct device *dev,
1356 				struct resource *parent, resource_size_t start,
1357 				resource_size_t n, const char *name)
1358 {
1359 	struct region_devres *dr = NULL;
1360 	struct resource *res;
1361 
1362 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1363 			  GFP_KERNEL);
1364 	if (!dr)
1365 		return NULL;
1366 
1367 	dr->parent = parent;
1368 	dr->start = start;
1369 	dr->n = n;
1370 
1371 	res = __request_region(parent, start, n, name, 0);
1372 	if (res)
1373 		devres_add(dev, dr);
1374 	else
1375 		devres_free(dr);
1376 
1377 	return res;
1378 }
1379 EXPORT_SYMBOL(__devm_request_region);
1380 
1381 void __devm_release_region(struct device *dev, struct resource *parent,
1382 			   resource_size_t start, resource_size_t n)
1383 {
1384 	struct region_devres match_data = { parent, start, n };
1385 
1386 	__release_region(parent, start, n);
1387 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1388 			       &match_data));
1389 }
1390 EXPORT_SYMBOL(__devm_release_region);
1391 
1392 /*
1393  * Called from init/main.c to reserve IO ports.
1394  */
1395 #define MAXRESERVE 4
1396 static int __init reserve_setup(char *str)
1397 {
1398 	static int reserved;
1399 	static struct resource reserve[MAXRESERVE];
1400 
1401 	for (;;) {
1402 		unsigned int io_start, io_num;
1403 		int x = reserved;
1404 
1405 		if (get_option (&str, &io_start) != 2)
1406 			break;
1407 		if (get_option (&str, &io_num)   == 0)
1408 			break;
1409 		if (x < MAXRESERVE) {
1410 			struct resource *res = reserve + x;
1411 			res->name = "reserved";
1412 			res->start = io_start;
1413 			res->end = io_start + io_num - 1;
1414 			res->flags = IORESOURCE_BUSY;
1415 			res->child = NULL;
1416 			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1417 				reserved = x+1;
1418 		}
1419 	}
1420 	return 1;
1421 }
1422 
1423 __setup("reserve=", reserve_setup);
1424 
1425 /*
1426  * Check if the requested addr and size spans more than any slot in the
1427  * iomem resource tree.
1428  */
1429 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1430 {
1431 	struct resource *p = &iomem_resource;
1432 	int err = 0;
1433 	loff_t l;
1434 
1435 	read_lock(&resource_lock);
1436 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1437 		/*
1438 		 * We can probably skip the resources without
1439 		 * IORESOURCE_IO attribute?
1440 		 */
1441 		if (p->start >= addr + size)
1442 			continue;
1443 		if (p->end < addr)
1444 			continue;
1445 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1446 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1447 			continue;
1448 		/*
1449 		 * if a resource is "BUSY", it's not a hardware resource
1450 		 * but a driver mapping of such a resource; we don't want
1451 		 * to warn for those; some drivers legitimately map only
1452 		 * partial hardware resources. (example: vesafb)
1453 		 */
1454 		if (p->flags & IORESOURCE_BUSY)
1455 			continue;
1456 
1457 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1458 		       (unsigned long long)addr,
1459 		       (unsigned long long)(addr + size - 1),
1460 		       p->name, p);
1461 		err = -1;
1462 		break;
1463 	}
1464 	read_unlock(&resource_lock);
1465 
1466 	return err;
1467 }
1468 
1469 #ifdef CONFIG_STRICT_DEVMEM
1470 static int strict_iomem_checks = 1;
1471 #else
1472 static int strict_iomem_checks;
1473 #endif
1474 
1475 /*
1476  * check if an address is reserved in the iomem resource tree
1477  * returns 1 if reserved, 0 if not reserved.
1478  */
1479 int iomem_is_exclusive(u64 addr)
1480 {
1481 	struct resource *p = &iomem_resource;
1482 	int err = 0;
1483 	loff_t l;
1484 	int size = PAGE_SIZE;
1485 
1486 	if (!strict_iomem_checks)
1487 		return 0;
1488 
1489 	addr = addr & PAGE_MASK;
1490 
1491 	read_lock(&resource_lock);
1492 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1493 		/*
1494 		 * We can probably skip the resources without
1495 		 * IORESOURCE_IO attribute?
1496 		 */
1497 		if (p->start >= addr + size)
1498 			break;
1499 		if (p->end < addr)
1500 			continue;
1501 		/*
1502 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1503 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1504 		 * resource is busy.
1505 		 */
1506 		if ((p->flags & IORESOURCE_BUSY) == 0)
1507 			continue;
1508 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1509 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1510 			err = 1;
1511 			break;
1512 		}
1513 	}
1514 	read_unlock(&resource_lock);
1515 
1516 	return err;
1517 }
1518 
1519 struct resource_entry *resource_list_create_entry(struct resource *res,
1520 						  size_t extra_size)
1521 {
1522 	struct resource_entry *entry;
1523 
1524 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1525 	if (entry) {
1526 		INIT_LIST_HEAD(&entry->node);
1527 		entry->res = res ? res : &entry->__res;
1528 	}
1529 
1530 	return entry;
1531 }
1532 EXPORT_SYMBOL(resource_list_create_entry);
1533 
1534 void resource_list_free(struct list_head *head)
1535 {
1536 	struct resource_entry *entry, *tmp;
1537 
1538 	list_for_each_entry_safe(entry, tmp, head, node)
1539 		resource_list_destroy_entry(entry);
1540 }
1541 EXPORT_SYMBOL(resource_list_free);
1542 
1543 static int __init strict_iomem(char *str)
1544 {
1545 	if (strstr(str, "relaxed"))
1546 		strict_iomem_checks = 0;
1547 	if (strstr(str, "strict"))
1548 		strict_iomem_checks = 1;
1549 	return 1;
1550 }
1551 
1552 __setup("iomem=", strict_iomem);
1553