1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/resource.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 7 * 8 * Arbitrary resource management. 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/export.h> 14 #include <linux/errno.h> 15 #include <linux/ioport.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/proc_fs.h> 21 #include <linux/pseudo_fs.h> 22 #include <linux/sched.h> 23 #include <linux/seq_file.h> 24 #include <linux/device.h> 25 #include <linux/pfn.h> 26 #include <linux/mm.h> 27 #include <linux/mount.h> 28 #include <linux/resource_ext.h> 29 #include <uapi/linux/magic.h> 30 #include <asm/io.h> 31 32 33 struct resource ioport_resource = { 34 .name = "PCI IO", 35 .start = 0, 36 .end = IO_SPACE_LIMIT, 37 .flags = IORESOURCE_IO, 38 }; 39 EXPORT_SYMBOL(ioport_resource); 40 41 struct resource iomem_resource = { 42 .name = "PCI mem", 43 .start = 0, 44 .end = -1, 45 .flags = IORESOURCE_MEM, 46 }; 47 EXPORT_SYMBOL(iomem_resource); 48 49 /* constraints to be met while allocating resources */ 50 struct resource_constraint { 51 resource_size_t min, max, align; 52 resource_size_t (*alignf)(void *, const struct resource *, 53 resource_size_t, resource_size_t); 54 void *alignf_data; 55 }; 56 57 static DEFINE_RWLOCK(resource_lock); 58 59 static struct resource *next_resource(struct resource *p, bool skip_children) 60 { 61 if (!skip_children && p->child) 62 return p->child; 63 while (!p->sibling && p->parent) 64 p = p->parent; 65 return p->sibling; 66 } 67 68 #define for_each_resource(_root, _p, _skip_children) \ 69 for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children)) 70 71 #ifdef CONFIG_PROC_FS 72 73 enum { MAX_IORES_LEVEL = 5 }; 74 75 static void *r_start(struct seq_file *m, loff_t *pos) 76 __acquires(resource_lock) 77 { 78 struct resource *root = pde_data(file_inode(m->file)); 79 struct resource *p; 80 loff_t l = *pos; 81 82 read_lock(&resource_lock); 83 for_each_resource(root, p, false) { 84 if (l-- == 0) 85 break; 86 } 87 88 return p; 89 } 90 91 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 92 { 93 struct resource *p = v; 94 95 (*pos)++; 96 97 return (void *)next_resource(p, false); 98 } 99 100 static void r_stop(struct seq_file *m, void *v) 101 __releases(resource_lock) 102 { 103 read_unlock(&resource_lock); 104 } 105 106 static int r_show(struct seq_file *m, void *v) 107 { 108 struct resource *root = pde_data(file_inode(m->file)); 109 struct resource *r = v, *p; 110 unsigned long long start, end; 111 int width = root->end < 0x10000 ? 4 : 8; 112 int depth; 113 114 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 115 if (p->parent == root) 116 break; 117 118 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 119 start = r->start; 120 end = r->end; 121 } else { 122 start = end = 0; 123 } 124 125 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 126 depth * 2, "", 127 width, start, 128 width, end, 129 r->name ? r->name : "<BAD>"); 130 return 0; 131 } 132 133 static const struct seq_operations resource_op = { 134 .start = r_start, 135 .next = r_next, 136 .stop = r_stop, 137 .show = r_show, 138 }; 139 140 static int __init ioresources_init(void) 141 { 142 proc_create_seq_data("ioports", 0, NULL, &resource_op, 143 &ioport_resource); 144 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 145 return 0; 146 } 147 __initcall(ioresources_init); 148 149 #endif /* CONFIG_PROC_FS */ 150 151 static void free_resource(struct resource *res) 152 { 153 /** 154 * If the resource was allocated using memblock early during boot 155 * we'll leak it here: we can only return full pages back to the 156 * buddy and trying to be smart and reusing them eventually in 157 * alloc_resource() overcomplicates resource handling. 158 */ 159 if (res && PageSlab(virt_to_head_page(res))) 160 kfree(res); 161 } 162 163 static struct resource *alloc_resource(gfp_t flags) 164 { 165 return kzalloc(sizeof(struct resource), flags); 166 } 167 168 /* Return the conflict entry if you can't request it */ 169 static struct resource * __request_resource(struct resource *root, struct resource *new) 170 { 171 resource_size_t start = new->start; 172 resource_size_t end = new->end; 173 struct resource *tmp, **p; 174 175 if (end < start) 176 return root; 177 if (start < root->start) 178 return root; 179 if (end > root->end) 180 return root; 181 p = &root->child; 182 for (;;) { 183 tmp = *p; 184 if (!tmp || tmp->start > end) { 185 new->sibling = tmp; 186 *p = new; 187 new->parent = root; 188 return NULL; 189 } 190 p = &tmp->sibling; 191 if (tmp->end < start) 192 continue; 193 return tmp; 194 } 195 } 196 197 static int __release_resource(struct resource *old, bool release_child) 198 { 199 struct resource *tmp, **p, *chd; 200 201 p = &old->parent->child; 202 for (;;) { 203 tmp = *p; 204 if (!tmp) 205 break; 206 if (tmp == old) { 207 if (release_child || !(tmp->child)) { 208 *p = tmp->sibling; 209 } else { 210 for (chd = tmp->child;; chd = chd->sibling) { 211 chd->parent = tmp->parent; 212 if (!(chd->sibling)) 213 break; 214 } 215 *p = tmp->child; 216 chd->sibling = tmp->sibling; 217 } 218 old->parent = NULL; 219 return 0; 220 } 221 p = &tmp->sibling; 222 } 223 return -EINVAL; 224 } 225 226 static void __release_child_resources(struct resource *r) 227 { 228 struct resource *tmp, *p; 229 resource_size_t size; 230 231 p = r->child; 232 r->child = NULL; 233 while (p) { 234 tmp = p; 235 p = p->sibling; 236 237 tmp->parent = NULL; 238 tmp->sibling = NULL; 239 __release_child_resources(tmp); 240 241 printk(KERN_DEBUG "release child resource %pR\n", tmp); 242 /* need to restore size, and keep flags */ 243 size = resource_size(tmp); 244 tmp->start = 0; 245 tmp->end = size - 1; 246 } 247 } 248 249 void release_child_resources(struct resource *r) 250 { 251 write_lock(&resource_lock); 252 __release_child_resources(r); 253 write_unlock(&resource_lock); 254 } 255 256 /** 257 * request_resource_conflict - request and reserve an I/O or memory resource 258 * @root: root resource descriptor 259 * @new: resource descriptor desired by caller 260 * 261 * Returns 0 for success, conflict resource on error. 262 */ 263 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 264 { 265 struct resource *conflict; 266 267 write_lock(&resource_lock); 268 conflict = __request_resource(root, new); 269 write_unlock(&resource_lock); 270 return conflict; 271 } 272 273 /** 274 * request_resource - request and reserve an I/O or memory resource 275 * @root: root resource descriptor 276 * @new: resource descriptor desired by caller 277 * 278 * Returns 0 for success, negative error code on error. 279 */ 280 int request_resource(struct resource *root, struct resource *new) 281 { 282 struct resource *conflict; 283 284 conflict = request_resource_conflict(root, new); 285 return conflict ? -EBUSY : 0; 286 } 287 288 EXPORT_SYMBOL(request_resource); 289 290 /** 291 * release_resource - release a previously reserved resource 292 * @old: resource pointer 293 */ 294 int release_resource(struct resource *old) 295 { 296 int retval; 297 298 write_lock(&resource_lock); 299 retval = __release_resource(old, true); 300 write_unlock(&resource_lock); 301 return retval; 302 } 303 304 EXPORT_SYMBOL(release_resource); 305 306 /** 307 * find_next_iomem_res - Finds the lowest iomem resource that covers part of 308 * [@start..@end]. 309 * 310 * If a resource is found, returns 0 and @*res is overwritten with the part 311 * of the resource that's within [@start..@end]; if none is found, returns 312 * -ENODEV. Returns -EINVAL for invalid parameters. 313 * 314 * @start: start address of the resource searched for 315 * @end: end address of same resource 316 * @flags: flags which the resource must have 317 * @desc: descriptor the resource must have 318 * @res: return ptr, if resource found 319 * 320 * The caller must specify @start, @end, @flags, and @desc 321 * (which may be IORES_DESC_NONE). 322 */ 323 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 324 unsigned long flags, unsigned long desc, 325 struct resource *res) 326 { 327 struct resource *p; 328 329 if (!res) 330 return -EINVAL; 331 332 if (start >= end) 333 return -EINVAL; 334 335 read_lock(&resource_lock); 336 337 for_each_resource(&iomem_resource, p, false) { 338 /* If we passed the resource we are looking for, stop */ 339 if (p->start > end) { 340 p = NULL; 341 break; 342 } 343 344 /* Skip until we find a range that matches what we look for */ 345 if (p->end < start) 346 continue; 347 348 if ((p->flags & flags) != flags) 349 continue; 350 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 351 continue; 352 353 /* Found a match, break */ 354 break; 355 } 356 357 if (p) { 358 /* copy data */ 359 *res = (struct resource) { 360 .start = max(start, p->start), 361 .end = min(end, p->end), 362 .flags = p->flags, 363 .desc = p->desc, 364 .parent = p->parent, 365 }; 366 } 367 368 read_unlock(&resource_lock); 369 return p ? 0 : -ENODEV; 370 } 371 372 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 373 unsigned long flags, unsigned long desc, 374 void *arg, 375 int (*func)(struct resource *, void *)) 376 { 377 struct resource res; 378 int ret = -EINVAL; 379 380 while (start < end && 381 !find_next_iomem_res(start, end, flags, desc, &res)) { 382 ret = (*func)(&res, arg); 383 if (ret) 384 break; 385 386 start = res.end + 1; 387 } 388 389 return ret; 390 } 391 392 /** 393 * walk_iomem_res_desc - Walks through iomem resources and calls func() 394 * with matching resource ranges. 395 * * 396 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 397 * @flags: I/O resource flags 398 * @start: start addr 399 * @end: end addr 400 * @arg: function argument for the callback @func 401 * @func: callback function that is called for each qualifying resource area 402 * 403 * All the memory ranges which overlap start,end and also match flags and 404 * desc are valid candidates. 405 * 406 * NOTE: For a new descriptor search, define a new IORES_DESC in 407 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 408 */ 409 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 410 u64 end, void *arg, int (*func)(struct resource *, void *)) 411 { 412 return __walk_iomem_res_desc(start, end, flags, desc, arg, func); 413 } 414 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 415 416 /* 417 * This function calls the @func callback against all memory ranges of type 418 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 419 * Now, this function is only for System RAM, it deals with full ranges and 420 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 421 * ranges. 422 */ 423 int walk_system_ram_res(u64 start, u64 end, void *arg, 424 int (*func)(struct resource *, void *)) 425 { 426 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 427 428 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 429 func); 430 } 431 432 /* 433 * This function calls the @func callback against all memory ranges, which 434 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 435 */ 436 int walk_mem_res(u64 start, u64 end, void *arg, 437 int (*func)(struct resource *, void *)) 438 { 439 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 440 441 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 442 func); 443 } 444 445 /* 446 * This function calls the @func callback against all memory ranges of type 447 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 448 * It is to be used only for System RAM. 449 */ 450 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 451 void *arg, int (*func)(unsigned long, unsigned long, void *)) 452 { 453 resource_size_t start, end; 454 unsigned long flags; 455 struct resource res; 456 unsigned long pfn, end_pfn; 457 int ret = -EINVAL; 458 459 start = (u64) start_pfn << PAGE_SHIFT; 460 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 461 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 462 while (start < end && 463 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) { 464 pfn = PFN_UP(res.start); 465 end_pfn = PFN_DOWN(res.end + 1); 466 if (end_pfn > pfn) 467 ret = (*func)(pfn, end_pfn - pfn, arg); 468 if (ret) 469 break; 470 start = res.end + 1; 471 } 472 return ret; 473 } 474 475 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 476 { 477 return 1; 478 } 479 480 /* 481 * This generic page_is_ram() returns true if specified address is 482 * registered as System RAM in iomem_resource list. 483 */ 484 int __weak page_is_ram(unsigned long pfn) 485 { 486 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 487 } 488 EXPORT_SYMBOL_GPL(page_is_ram); 489 490 static int __region_intersects(struct resource *parent, resource_size_t start, 491 size_t size, unsigned long flags, 492 unsigned long desc) 493 { 494 struct resource res; 495 int type = 0; int other = 0; 496 struct resource *p; 497 498 res.start = start; 499 res.end = start + size - 1; 500 501 for (p = parent->child; p ; p = p->sibling) { 502 bool is_type = (((p->flags & flags) == flags) && 503 ((desc == IORES_DESC_NONE) || 504 (desc == p->desc))); 505 506 if (resource_overlaps(p, &res)) 507 is_type ? type++ : other++; 508 } 509 510 if (type == 0) 511 return REGION_DISJOINT; 512 513 if (other == 0) 514 return REGION_INTERSECTS; 515 516 return REGION_MIXED; 517 } 518 519 /** 520 * region_intersects() - determine intersection of region with known resources 521 * @start: region start address 522 * @size: size of region 523 * @flags: flags of resource (in iomem_resource) 524 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 525 * 526 * Check if the specified region partially overlaps or fully eclipses a 527 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 528 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 529 * return REGION_MIXED if the region overlaps @flags/@desc and another 530 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 531 * and no other defined resource. Note that REGION_INTERSECTS is also 532 * returned in the case when the specified region overlaps RAM and undefined 533 * memory holes. 534 * 535 * region_intersect() is used by memory remapping functions to ensure 536 * the user is not remapping RAM and is a vast speed up over walking 537 * through the resource table page by page. 538 */ 539 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 540 unsigned long desc) 541 { 542 int ret; 543 544 read_lock(&resource_lock); 545 ret = __region_intersects(&iomem_resource, start, size, flags, desc); 546 read_unlock(&resource_lock); 547 548 return ret; 549 } 550 EXPORT_SYMBOL_GPL(region_intersects); 551 552 void __weak arch_remove_reservations(struct resource *avail) 553 { 554 } 555 556 static resource_size_t simple_align_resource(void *data, 557 const struct resource *avail, 558 resource_size_t size, 559 resource_size_t align) 560 { 561 return avail->start; 562 } 563 564 static void resource_clip(struct resource *res, resource_size_t min, 565 resource_size_t max) 566 { 567 if (res->start < min) 568 res->start = min; 569 if (res->end > max) 570 res->end = max; 571 } 572 573 /* 574 * Find empty slot in the resource tree with the given range and 575 * alignment constraints 576 */ 577 static int __find_resource(struct resource *root, struct resource *old, 578 struct resource *new, 579 resource_size_t size, 580 struct resource_constraint *constraint) 581 { 582 struct resource *this = root->child; 583 struct resource tmp = *new, avail, alloc; 584 585 tmp.start = root->start; 586 /* 587 * Skip past an allocated resource that starts at 0, since the assignment 588 * of this->start - 1 to tmp->end below would cause an underflow. 589 */ 590 if (this && this->start == root->start) { 591 tmp.start = (this == old) ? old->start : this->end + 1; 592 this = this->sibling; 593 } 594 for(;;) { 595 if (this) 596 tmp.end = (this == old) ? this->end : this->start - 1; 597 else 598 tmp.end = root->end; 599 600 if (tmp.end < tmp.start) 601 goto next; 602 603 resource_clip(&tmp, constraint->min, constraint->max); 604 arch_remove_reservations(&tmp); 605 606 /* Check for overflow after ALIGN() */ 607 avail.start = ALIGN(tmp.start, constraint->align); 608 avail.end = tmp.end; 609 avail.flags = new->flags & ~IORESOURCE_UNSET; 610 if (avail.start >= tmp.start) { 611 alloc.flags = avail.flags; 612 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 613 size, constraint->align); 614 alloc.end = alloc.start + size - 1; 615 if (alloc.start <= alloc.end && 616 resource_contains(&avail, &alloc)) { 617 new->start = alloc.start; 618 new->end = alloc.end; 619 return 0; 620 } 621 } 622 623 next: if (!this || this->end == root->end) 624 break; 625 626 if (this != old) 627 tmp.start = this->end + 1; 628 this = this->sibling; 629 } 630 return -EBUSY; 631 } 632 633 /* 634 * Find empty slot in the resource tree given range and alignment. 635 */ 636 static int find_resource(struct resource *root, struct resource *new, 637 resource_size_t size, 638 struct resource_constraint *constraint) 639 { 640 return __find_resource(root, NULL, new, size, constraint); 641 } 642 643 /** 644 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 645 * The resource will be relocated if the new size cannot be reallocated in the 646 * current location. 647 * 648 * @root: root resource descriptor 649 * @old: resource descriptor desired by caller 650 * @newsize: new size of the resource descriptor 651 * @constraint: the size and alignment constraints to be met. 652 */ 653 static int reallocate_resource(struct resource *root, struct resource *old, 654 resource_size_t newsize, 655 struct resource_constraint *constraint) 656 { 657 int err=0; 658 struct resource new = *old; 659 struct resource *conflict; 660 661 write_lock(&resource_lock); 662 663 if ((err = __find_resource(root, old, &new, newsize, constraint))) 664 goto out; 665 666 if (resource_contains(&new, old)) { 667 old->start = new.start; 668 old->end = new.end; 669 goto out; 670 } 671 672 if (old->child) { 673 err = -EBUSY; 674 goto out; 675 } 676 677 if (resource_contains(old, &new)) { 678 old->start = new.start; 679 old->end = new.end; 680 } else { 681 __release_resource(old, true); 682 *old = new; 683 conflict = __request_resource(root, old); 684 BUG_ON(conflict); 685 } 686 out: 687 write_unlock(&resource_lock); 688 return err; 689 } 690 691 692 /** 693 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 694 * The resource will be reallocated with a new size if it was already allocated 695 * @root: root resource descriptor 696 * @new: resource descriptor desired by caller 697 * @size: requested resource region size 698 * @min: minimum boundary to allocate 699 * @max: maximum boundary to allocate 700 * @align: alignment requested, in bytes 701 * @alignf: alignment function, optional, called if not NULL 702 * @alignf_data: arbitrary data to pass to the @alignf function 703 */ 704 int allocate_resource(struct resource *root, struct resource *new, 705 resource_size_t size, resource_size_t min, 706 resource_size_t max, resource_size_t align, 707 resource_size_t (*alignf)(void *, 708 const struct resource *, 709 resource_size_t, 710 resource_size_t), 711 void *alignf_data) 712 { 713 int err; 714 struct resource_constraint constraint; 715 716 if (!alignf) 717 alignf = simple_align_resource; 718 719 constraint.min = min; 720 constraint.max = max; 721 constraint.align = align; 722 constraint.alignf = alignf; 723 constraint.alignf_data = alignf_data; 724 725 if ( new->parent ) { 726 /* resource is already allocated, try reallocating with 727 the new constraints */ 728 return reallocate_resource(root, new, size, &constraint); 729 } 730 731 write_lock(&resource_lock); 732 err = find_resource(root, new, size, &constraint); 733 if (err >= 0 && __request_resource(root, new)) 734 err = -EBUSY; 735 write_unlock(&resource_lock); 736 return err; 737 } 738 739 EXPORT_SYMBOL(allocate_resource); 740 741 /** 742 * lookup_resource - find an existing resource by a resource start address 743 * @root: root resource descriptor 744 * @start: resource start address 745 * 746 * Returns a pointer to the resource if found, NULL otherwise 747 */ 748 struct resource *lookup_resource(struct resource *root, resource_size_t start) 749 { 750 struct resource *res; 751 752 read_lock(&resource_lock); 753 for (res = root->child; res; res = res->sibling) { 754 if (res->start == start) 755 break; 756 } 757 read_unlock(&resource_lock); 758 759 return res; 760 } 761 762 /* 763 * Insert a resource into the resource tree. If successful, return NULL, 764 * otherwise return the conflicting resource (compare to __request_resource()) 765 */ 766 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 767 { 768 struct resource *first, *next; 769 770 for (;; parent = first) { 771 first = __request_resource(parent, new); 772 if (!first) 773 return first; 774 775 if (first == parent) 776 return first; 777 if (WARN_ON(first == new)) /* duplicated insertion */ 778 return first; 779 780 if ((first->start > new->start) || (first->end < new->end)) 781 break; 782 if ((first->start == new->start) && (first->end == new->end)) 783 break; 784 } 785 786 for (next = first; ; next = next->sibling) { 787 /* Partial overlap? Bad, and unfixable */ 788 if (next->start < new->start || next->end > new->end) 789 return next; 790 if (!next->sibling) 791 break; 792 if (next->sibling->start > new->end) 793 break; 794 } 795 796 new->parent = parent; 797 new->sibling = next->sibling; 798 new->child = first; 799 800 next->sibling = NULL; 801 for (next = first; next; next = next->sibling) 802 next->parent = new; 803 804 if (parent->child == first) { 805 parent->child = new; 806 } else { 807 next = parent->child; 808 while (next->sibling != first) 809 next = next->sibling; 810 next->sibling = new; 811 } 812 return NULL; 813 } 814 815 /** 816 * insert_resource_conflict - Inserts resource in the resource tree 817 * @parent: parent of the new resource 818 * @new: new resource to insert 819 * 820 * Returns 0 on success, conflict resource if the resource can't be inserted. 821 * 822 * This function is equivalent to request_resource_conflict when no conflict 823 * happens. If a conflict happens, and the conflicting resources 824 * entirely fit within the range of the new resource, then the new 825 * resource is inserted and the conflicting resources become children of 826 * the new resource. 827 * 828 * This function is intended for producers of resources, such as FW modules 829 * and bus drivers. 830 */ 831 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 832 { 833 struct resource *conflict; 834 835 write_lock(&resource_lock); 836 conflict = __insert_resource(parent, new); 837 write_unlock(&resource_lock); 838 return conflict; 839 } 840 841 /** 842 * insert_resource - Inserts a resource in the resource tree 843 * @parent: parent of the new resource 844 * @new: new resource to insert 845 * 846 * Returns 0 on success, -EBUSY if the resource can't be inserted. 847 * 848 * This function is intended for producers of resources, such as FW modules 849 * and bus drivers. 850 */ 851 int insert_resource(struct resource *parent, struct resource *new) 852 { 853 struct resource *conflict; 854 855 conflict = insert_resource_conflict(parent, new); 856 return conflict ? -EBUSY : 0; 857 } 858 EXPORT_SYMBOL_GPL(insert_resource); 859 860 /** 861 * insert_resource_expand_to_fit - Insert a resource into the resource tree 862 * @root: root resource descriptor 863 * @new: new resource to insert 864 * 865 * Insert a resource into the resource tree, possibly expanding it in order 866 * to make it encompass any conflicting resources. 867 */ 868 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 869 { 870 if (new->parent) 871 return; 872 873 write_lock(&resource_lock); 874 for (;;) { 875 struct resource *conflict; 876 877 conflict = __insert_resource(root, new); 878 if (!conflict) 879 break; 880 if (conflict == root) 881 break; 882 883 /* Ok, expand resource to cover the conflict, then try again .. */ 884 if (conflict->start < new->start) 885 new->start = conflict->start; 886 if (conflict->end > new->end) 887 new->end = conflict->end; 888 889 pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 890 } 891 write_unlock(&resource_lock); 892 } 893 /* 894 * Not for general consumption, only early boot memory map parsing, PCI 895 * resource discovery, and late discovery of CXL resources are expected 896 * to use this interface. The former are built-in and only the latter, 897 * CXL, is a module. 898 */ 899 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL); 900 901 /** 902 * remove_resource - Remove a resource in the resource tree 903 * @old: resource to remove 904 * 905 * Returns 0 on success, -EINVAL if the resource is not valid. 906 * 907 * This function removes a resource previously inserted by insert_resource() 908 * or insert_resource_conflict(), and moves the children (if any) up to 909 * where they were before. insert_resource() and insert_resource_conflict() 910 * insert a new resource, and move any conflicting resources down to the 911 * children of the new resource. 912 * 913 * insert_resource(), insert_resource_conflict() and remove_resource() are 914 * intended for producers of resources, such as FW modules and bus drivers. 915 */ 916 int remove_resource(struct resource *old) 917 { 918 int retval; 919 920 write_lock(&resource_lock); 921 retval = __release_resource(old, false); 922 write_unlock(&resource_lock); 923 return retval; 924 } 925 EXPORT_SYMBOL_GPL(remove_resource); 926 927 static int __adjust_resource(struct resource *res, resource_size_t start, 928 resource_size_t size) 929 { 930 struct resource *tmp, *parent = res->parent; 931 resource_size_t end = start + size - 1; 932 int result = -EBUSY; 933 934 if (!parent) 935 goto skip; 936 937 if ((start < parent->start) || (end > parent->end)) 938 goto out; 939 940 if (res->sibling && (res->sibling->start <= end)) 941 goto out; 942 943 tmp = parent->child; 944 if (tmp != res) { 945 while (tmp->sibling != res) 946 tmp = tmp->sibling; 947 if (start <= tmp->end) 948 goto out; 949 } 950 951 skip: 952 for (tmp = res->child; tmp; tmp = tmp->sibling) 953 if ((tmp->start < start) || (tmp->end > end)) 954 goto out; 955 956 res->start = start; 957 res->end = end; 958 result = 0; 959 960 out: 961 return result; 962 } 963 964 /** 965 * adjust_resource - modify a resource's start and size 966 * @res: resource to modify 967 * @start: new start value 968 * @size: new size 969 * 970 * Given an existing resource, change its start and size to match the 971 * arguments. Returns 0 on success, -EBUSY if it can't fit. 972 * Existing children of the resource are assumed to be immutable. 973 */ 974 int adjust_resource(struct resource *res, resource_size_t start, 975 resource_size_t size) 976 { 977 int result; 978 979 write_lock(&resource_lock); 980 result = __adjust_resource(res, start, size); 981 write_unlock(&resource_lock); 982 return result; 983 } 984 EXPORT_SYMBOL(adjust_resource); 985 986 static void __init 987 __reserve_region_with_split(struct resource *root, resource_size_t start, 988 resource_size_t end, const char *name) 989 { 990 struct resource *parent = root; 991 struct resource *conflict; 992 struct resource *res = alloc_resource(GFP_ATOMIC); 993 struct resource *next_res = NULL; 994 int type = resource_type(root); 995 996 if (!res) 997 return; 998 999 res->name = name; 1000 res->start = start; 1001 res->end = end; 1002 res->flags = type | IORESOURCE_BUSY; 1003 res->desc = IORES_DESC_NONE; 1004 1005 while (1) { 1006 1007 conflict = __request_resource(parent, res); 1008 if (!conflict) { 1009 if (!next_res) 1010 break; 1011 res = next_res; 1012 next_res = NULL; 1013 continue; 1014 } 1015 1016 /* conflict covered whole area */ 1017 if (conflict->start <= res->start && 1018 conflict->end >= res->end) { 1019 free_resource(res); 1020 WARN_ON(next_res); 1021 break; 1022 } 1023 1024 /* failed, split and try again */ 1025 if (conflict->start > res->start) { 1026 end = res->end; 1027 res->end = conflict->start - 1; 1028 if (conflict->end < end) { 1029 next_res = alloc_resource(GFP_ATOMIC); 1030 if (!next_res) { 1031 free_resource(res); 1032 break; 1033 } 1034 next_res->name = name; 1035 next_res->start = conflict->end + 1; 1036 next_res->end = end; 1037 next_res->flags = type | IORESOURCE_BUSY; 1038 next_res->desc = IORES_DESC_NONE; 1039 } 1040 } else { 1041 res->start = conflict->end + 1; 1042 } 1043 } 1044 1045 } 1046 1047 void __init 1048 reserve_region_with_split(struct resource *root, resource_size_t start, 1049 resource_size_t end, const char *name) 1050 { 1051 int abort = 0; 1052 1053 write_lock(&resource_lock); 1054 if (root->start > start || root->end < end) { 1055 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1056 (unsigned long long)start, (unsigned long long)end, 1057 root); 1058 if (start > root->end || end < root->start) 1059 abort = 1; 1060 else { 1061 if (end > root->end) 1062 end = root->end; 1063 if (start < root->start) 1064 start = root->start; 1065 pr_err("fixing request to [0x%llx-0x%llx]\n", 1066 (unsigned long long)start, 1067 (unsigned long long)end); 1068 } 1069 dump_stack(); 1070 } 1071 if (!abort) 1072 __reserve_region_with_split(root, start, end, name); 1073 write_unlock(&resource_lock); 1074 } 1075 1076 /** 1077 * resource_alignment - calculate resource's alignment 1078 * @res: resource pointer 1079 * 1080 * Returns alignment on success, 0 (invalid alignment) on failure. 1081 */ 1082 resource_size_t resource_alignment(struct resource *res) 1083 { 1084 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1085 case IORESOURCE_SIZEALIGN: 1086 return resource_size(res); 1087 case IORESOURCE_STARTALIGN: 1088 return res->start; 1089 default: 1090 return 0; 1091 } 1092 } 1093 1094 /* 1095 * This is compatibility stuff for IO resources. 1096 * 1097 * Note how this, unlike the above, knows about 1098 * the IO flag meanings (busy etc). 1099 * 1100 * request_region creates a new busy region. 1101 * 1102 * release_region releases a matching busy region. 1103 */ 1104 1105 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1106 1107 static struct inode *iomem_inode; 1108 1109 #ifdef CONFIG_IO_STRICT_DEVMEM 1110 static void revoke_iomem(struct resource *res) 1111 { 1112 /* pairs with smp_store_release() in iomem_init_inode() */ 1113 struct inode *inode = smp_load_acquire(&iomem_inode); 1114 1115 /* 1116 * Check that the initialization has completed. Losing the race 1117 * is ok because it means drivers are claiming resources before 1118 * the fs_initcall level of init and prevent iomem_get_mapping users 1119 * from establishing mappings. 1120 */ 1121 if (!inode) 1122 return; 1123 1124 /* 1125 * The expectation is that the driver has successfully marked 1126 * the resource busy by this point, so devmem_is_allowed() 1127 * should start returning false, however for performance this 1128 * does not iterate the entire resource range. 1129 */ 1130 if (devmem_is_allowed(PHYS_PFN(res->start)) && 1131 devmem_is_allowed(PHYS_PFN(res->end))) { 1132 /* 1133 * *cringe* iomem=relaxed says "go ahead, what's the 1134 * worst that can happen?" 1135 */ 1136 return; 1137 } 1138 1139 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1); 1140 } 1141 #else 1142 static void revoke_iomem(struct resource *res) {} 1143 #endif 1144 1145 struct address_space *iomem_get_mapping(void) 1146 { 1147 /* 1148 * This function is only called from file open paths, hence guaranteed 1149 * that fs_initcalls have completed and no need to check for NULL. But 1150 * since revoke_iomem can be called before the initcall we still need 1151 * the barrier to appease checkers. 1152 */ 1153 return smp_load_acquire(&iomem_inode)->i_mapping; 1154 } 1155 1156 static int __request_region_locked(struct resource *res, struct resource *parent, 1157 resource_size_t start, resource_size_t n, 1158 const char *name, int flags) 1159 { 1160 DECLARE_WAITQUEUE(wait, current); 1161 1162 res->name = name; 1163 res->start = start; 1164 res->end = start + n - 1; 1165 1166 for (;;) { 1167 struct resource *conflict; 1168 1169 res->flags = resource_type(parent) | resource_ext_type(parent); 1170 res->flags |= IORESOURCE_BUSY | flags; 1171 res->desc = parent->desc; 1172 1173 conflict = __request_resource(parent, res); 1174 if (!conflict) 1175 break; 1176 /* 1177 * mm/hmm.c reserves physical addresses which then 1178 * become unavailable to other users. Conflicts are 1179 * not expected. Warn to aid debugging if encountered. 1180 */ 1181 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 1182 pr_warn("Unaddressable device %s %pR conflicts with %pR", 1183 conflict->name, conflict, res); 1184 } 1185 if (conflict != parent) { 1186 if (!(conflict->flags & IORESOURCE_BUSY)) { 1187 parent = conflict; 1188 continue; 1189 } 1190 } 1191 if (conflict->flags & flags & IORESOURCE_MUXED) { 1192 add_wait_queue(&muxed_resource_wait, &wait); 1193 write_unlock(&resource_lock); 1194 set_current_state(TASK_UNINTERRUPTIBLE); 1195 schedule(); 1196 remove_wait_queue(&muxed_resource_wait, &wait); 1197 write_lock(&resource_lock); 1198 continue; 1199 } 1200 /* Uhhuh, that didn't work out.. */ 1201 return -EBUSY; 1202 } 1203 1204 return 0; 1205 } 1206 1207 /** 1208 * __request_region - create a new busy resource region 1209 * @parent: parent resource descriptor 1210 * @start: resource start address 1211 * @n: resource region size 1212 * @name: reserving caller's ID string 1213 * @flags: IO resource flags 1214 */ 1215 struct resource *__request_region(struct resource *parent, 1216 resource_size_t start, resource_size_t n, 1217 const char *name, int flags) 1218 { 1219 struct resource *res = alloc_resource(GFP_KERNEL); 1220 int ret; 1221 1222 if (!res) 1223 return NULL; 1224 1225 write_lock(&resource_lock); 1226 ret = __request_region_locked(res, parent, start, n, name, flags); 1227 write_unlock(&resource_lock); 1228 1229 if (ret) { 1230 free_resource(res); 1231 return NULL; 1232 } 1233 1234 if (parent == &iomem_resource) 1235 revoke_iomem(res); 1236 1237 return res; 1238 } 1239 EXPORT_SYMBOL(__request_region); 1240 1241 /** 1242 * __release_region - release a previously reserved resource region 1243 * @parent: parent resource descriptor 1244 * @start: resource start address 1245 * @n: resource region size 1246 * 1247 * The described resource region must match a currently busy region. 1248 */ 1249 void __release_region(struct resource *parent, resource_size_t start, 1250 resource_size_t n) 1251 { 1252 struct resource **p; 1253 resource_size_t end; 1254 1255 p = &parent->child; 1256 end = start + n - 1; 1257 1258 write_lock(&resource_lock); 1259 1260 for (;;) { 1261 struct resource *res = *p; 1262 1263 if (!res) 1264 break; 1265 if (res->start <= start && res->end >= end) { 1266 if (!(res->flags & IORESOURCE_BUSY)) { 1267 p = &res->child; 1268 continue; 1269 } 1270 if (res->start != start || res->end != end) 1271 break; 1272 *p = res->sibling; 1273 write_unlock(&resource_lock); 1274 if (res->flags & IORESOURCE_MUXED) 1275 wake_up(&muxed_resource_wait); 1276 free_resource(res); 1277 return; 1278 } 1279 p = &res->sibling; 1280 } 1281 1282 write_unlock(&resource_lock); 1283 1284 pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end); 1285 } 1286 EXPORT_SYMBOL(__release_region); 1287 1288 #ifdef CONFIG_MEMORY_HOTREMOVE 1289 /** 1290 * release_mem_region_adjustable - release a previously reserved memory region 1291 * @start: resource start address 1292 * @size: resource region size 1293 * 1294 * This interface is intended for memory hot-delete. The requested region 1295 * is released from a currently busy memory resource. The requested region 1296 * must either match exactly or fit into a single busy resource entry. In 1297 * the latter case, the remaining resource is adjusted accordingly. 1298 * Existing children of the busy memory resource must be immutable in the 1299 * request. 1300 * 1301 * Note: 1302 * - Additional release conditions, such as overlapping region, can be 1303 * supported after they are confirmed as valid cases. 1304 * - When a busy memory resource gets split into two entries, the code 1305 * assumes that all children remain in the lower address entry for 1306 * simplicity. Enhance this logic when necessary. 1307 */ 1308 void release_mem_region_adjustable(resource_size_t start, resource_size_t size) 1309 { 1310 struct resource *parent = &iomem_resource; 1311 struct resource *new_res = NULL; 1312 bool alloc_nofail = false; 1313 struct resource **p; 1314 struct resource *res; 1315 resource_size_t end; 1316 1317 end = start + size - 1; 1318 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end))) 1319 return; 1320 1321 /* 1322 * We free up quite a lot of memory on memory hotunplug (esp., memap), 1323 * just before releasing the region. This is highly unlikely to 1324 * fail - let's play save and make it never fail as the caller cannot 1325 * perform any error handling (e.g., trying to re-add memory will fail 1326 * similarly). 1327 */ 1328 retry: 1329 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0)); 1330 1331 p = &parent->child; 1332 write_lock(&resource_lock); 1333 1334 while ((res = *p)) { 1335 if (res->start >= end) 1336 break; 1337 1338 /* look for the next resource if it does not fit into */ 1339 if (res->start > start || res->end < end) { 1340 p = &res->sibling; 1341 continue; 1342 } 1343 1344 if (!(res->flags & IORESOURCE_MEM)) 1345 break; 1346 1347 if (!(res->flags & IORESOURCE_BUSY)) { 1348 p = &res->child; 1349 continue; 1350 } 1351 1352 /* found the target resource; let's adjust accordingly */ 1353 if (res->start == start && res->end == end) { 1354 /* free the whole entry */ 1355 *p = res->sibling; 1356 free_resource(res); 1357 } else if (res->start == start && res->end != end) { 1358 /* adjust the start */ 1359 WARN_ON_ONCE(__adjust_resource(res, end + 1, 1360 res->end - end)); 1361 } else if (res->start != start && res->end == end) { 1362 /* adjust the end */ 1363 WARN_ON_ONCE(__adjust_resource(res, res->start, 1364 start - res->start)); 1365 } else { 1366 /* split into two entries - we need a new resource */ 1367 if (!new_res) { 1368 new_res = alloc_resource(GFP_ATOMIC); 1369 if (!new_res) { 1370 alloc_nofail = true; 1371 write_unlock(&resource_lock); 1372 goto retry; 1373 } 1374 } 1375 new_res->name = res->name; 1376 new_res->start = end + 1; 1377 new_res->end = res->end; 1378 new_res->flags = res->flags; 1379 new_res->desc = res->desc; 1380 new_res->parent = res->parent; 1381 new_res->sibling = res->sibling; 1382 new_res->child = NULL; 1383 1384 if (WARN_ON_ONCE(__adjust_resource(res, res->start, 1385 start - res->start))) 1386 break; 1387 res->sibling = new_res; 1388 new_res = NULL; 1389 } 1390 1391 break; 1392 } 1393 1394 write_unlock(&resource_lock); 1395 free_resource(new_res); 1396 } 1397 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1398 1399 #ifdef CONFIG_MEMORY_HOTPLUG 1400 static bool system_ram_resources_mergeable(struct resource *r1, 1401 struct resource *r2) 1402 { 1403 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */ 1404 return r1->flags == r2->flags && r1->end + 1 == r2->start && 1405 r1->name == r2->name && r1->desc == r2->desc && 1406 !r1->child && !r2->child; 1407 } 1408 1409 /** 1410 * merge_system_ram_resource - mark the System RAM resource mergeable and try to 1411 * merge it with adjacent, mergeable resources 1412 * @res: resource descriptor 1413 * 1414 * This interface is intended for memory hotplug, whereby lots of contiguous 1415 * system ram resources are added (e.g., via add_memory*()) by a driver, and 1416 * the actual resource boundaries are not of interest (e.g., it might be 1417 * relevant for DIMMs). Only resources that are marked mergeable, that have the 1418 * same parent, and that don't have any children are considered. All mergeable 1419 * resources must be immutable during the request. 1420 * 1421 * Note: 1422 * - The caller has to make sure that no pointers to resources that are 1423 * marked mergeable are used anymore after this call - the resource might 1424 * be freed and the pointer might be stale! 1425 * - release_mem_region_adjustable() will split on demand on memory hotunplug 1426 */ 1427 void merge_system_ram_resource(struct resource *res) 1428 { 1429 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 1430 struct resource *cur; 1431 1432 if (WARN_ON_ONCE((res->flags & flags) != flags)) 1433 return; 1434 1435 write_lock(&resource_lock); 1436 res->flags |= IORESOURCE_SYSRAM_MERGEABLE; 1437 1438 /* Try to merge with next item in the list. */ 1439 cur = res->sibling; 1440 if (cur && system_ram_resources_mergeable(res, cur)) { 1441 res->end = cur->end; 1442 res->sibling = cur->sibling; 1443 free_resource(cur); 1444 } 1445 1446 /* Try to merge with previous item in the list. */ 1447 cur = res->parent->child; 1448 while (cur && cur->sibling != res) 1449 cur = cur->sibling; 1450 if (cur && system_ram_resources_mergeable(cur, res)) { 1451 cur->end = res->end; 1452 cur->sibling = res->sibling; 1453 free_resource(res); 1454 } 1455 write_unlock(&resource_lock); 1456 } 1457 #endif /* CONFIG_MEMORY_HOTPLUG */ 1458 1459 /* 1460 * Managed region resource 1461 */ 1462 static void devm_resource_release(struct device *dev, void *ptr) 1463 { 1464 struct resource **r = ptr; 1465 1466 release_resource(*r); 1467 } 1468 1469 /** 1470 * devm_request_resource() - request and reserve an I/O or memory resource 1471 * @dev: device for which to request the resource 1472 * @root: root of the resource tree from which to request the resource 1473 * @new: descriptor of the resource to request 1474 * 1475 * This is a device-managed version of request_resource(). There is usually 1476 * no need to release resources requested by this function explicitly since 1477 * that will be taken care of when the device is unbound from its driver. 1478 * If for some reason the resource needs to be released explicitly, because 1479 * of ordering issues for example, drivers must call devm_release_resource() 1480 * rather than the regular release_resource(). 1481 * 1482 * When a conflict is detected between any existing resources and the newly 1483 * requested resource, an error message will be printed. 1484 * 1485 * Returns 0 on success or a negative error code on failure. 1486 */ 1487 int devm_request_resource(struct device *dev, struct resource *root, 1488 struct resource *new) 1489 { 1490 struct resource *conflict, **ptr; 1491 1492 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1493 if (!ptr) 1494 return -ENOMEM; 1495 1496 *ptr = new; 1497 1498 conflict = request_resource_conflict(root, new); 1499 if (conflict) { 1500 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1501 new, conflict->name, conflict); 1502 devres_free(ptr); 1503 return -EBUSY; 1504 } 1505 1506 devres_add(dev, ptr); 1507 return 0; 1508 } 1509 EXPORT_SYMBOL(devm_request_resource); 1510 1511 static int devm_resource_match(struct device *dev, void *res, void *data) 1512 { 1513 struct resource **ptr = res; 1514 1515 return *ptr == data; 1516 } 1517 1518 /** 1519 * devm_release_resource() - release a previously requested resource 1520 * @dev: device for which to release the resource 1521 * @new: descriptor of the resource to release 1522 * 1523 * Releases a resource previously requested using devm_request_resource(). 1524 */ 1525 void devm_release_resource(struct device *dev, struct resource *new) 1526 { 1527 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1528 new)); 1529 } 1530 EXPORT_SYMBOL(devm_release_resource); 1531 1532 struct region_devres { 1533 struct resource *parent; 1534 resource_size_t start; 1535 resource_size_t n; 1536 }; 1537 1538 static void devm_region_release(struct device *dev, void *res) 1539 { 1540 struct region_devres *this = res; 1541 1542 __release_region(this->parent, this->start, this->n); 1543 } 1544 1545 static int devm_region_match(struct device *dev, void *res, void *match_data) 1546 { 1547 struct region_devres *this = res, *match = match_data; 1548 1549 return this->parent == match->parent && 1550 this->start == match->start && this->n == match->n; 1551 } 1552 1553 struct resource * 1554 __devm_request_region(struct device *dev, struct resource *parent, 1555 resource_size_t start, resource_size_t n, const char *name) 1556 { 1557 struct region_devres *dr = NULL; 1558 struct resource *res; 1559 1560 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1561 GFP_KERNEL); 1562 if (!dr) 1563 return NULL; 1564 1565 dr->parent = parent; 1566 dr->start = start; 1567 dr->n = n; 1568 1569 res = __request_region(parent, start, n, name, 0); 1570 if (res) 1571 devres_add(dev, dr); 1572 else 1573 devres_free(dr); 1574 1575 return res; 1576 } 1577 EXPORT_SYMBOL(__devm_request_region); 1578 1579 void __devm_release_region(struct device *dev, struct resource *parent, 1580 resource_size_t start, resource_size_t n) 1581 { 1582 struct region_devres match_data = { parent, start, n }; 1583 1584 __release_region(parent, start, n); 1585 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1586 &match_data)); 1587 } 1588 EXPORT_SYMBOL(__devm_release_region); 1589 1590 /* 1591 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1592 */ 1593 #define MAXRESERVE 4 1594 static int __init reserve_setup(char *str) 1595 { 1596 static int reserved; 1597 static struct resource reserve[MAXRESERVE]; 1598 1599 for (;;) { 1600 unsigned int io_start, io_num; 1601 int x = reserved; 1602 struct resource *parent; 1603 1604 if (get_option(&str, &io_start) != 2) 1605 break; 1606 if (get_option(&str, &io_num) == 0) 1607 break; 1608 if (x < MAXRESERVE) { 1609 struct resource *res = reserve + x; 1610 1611 /* 1612 * If the region starts below 0x10000, we assume it's 1613 * I/O port space; otherwise assume it's memory. 1614 */ 1615 if (io_start < 0x10000) { 1616 res->flags = IORESOURCE_IO; 1617 parent = &ioport_resource; 1618 } else { 1619 res->flags = IORESOURCE_MEM; 1620 parent = &iomem_resource; 1621 } 1622 res->name = "reserved"; 1623 res->start = io_start; 1624 res->end = io_start + io_num - 1; 1625 res->flags |= IORESOURCE_BUSY; 1626 res->desc = IORES_DESC_NONE; 1627 res->child = NULL; 1628 if (request_resource(parent, res) == 0) 1629 reserved = x+1; 1630 } 1631 } 1632 return 1; 1633 } 1634 __setup("reserve=", reserve_setup); 1635 1636 /* 1637 * Check if the requested addr and size spans more than any slot in the 1638 * iomem resource tree. 1639 */ 1640 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1641 { 1642 resource_size_t end = addr + size - 1; 1643 struct resource *p; 1644 int err = 0; 1645 1646 read_lock(&resource_lock); 1647 for_each_resource(&iomem_resource, p, false) { 1648 /* 1649 * We can probably skip the resources without 1650 * IORESOURCE_IO attribute? 1651 */ 1652 if (p->start > end) 1653 continue; 1654 if (p->end < addr) 1655 continue; 1656 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1657 PFN_DOWN(p->end) >= PFN_DOWN(end)) 1658 continue; 1659 /* 1660 * if a resource is "BUSY", it's not a hardware resource 1661 * but a driver mapping of such a resource; we don't want 1662 * to warn for those; some drivers legitimately map only 1663 * partial hardware resources. (example: vesafb) 1664 */ 1665 if (p->flags & IORESOURCE_BUSY) 1666 continue; 1667 1668 pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n", 1669 &addr, &end, p->name, p); 1670 err = -1; 1671 break; 1672 } 1673 read_unlock(&resource_lock); 1674 1675 return err; 1676 } 1677 1678 #ifdef CONFIG_STRICT_DEVMEM 1679 static int strict_iomem_checks = 1; 1680 #else 1681 static int strict_iomem_checks; 1682 #endif 1683 1684 /* 1685 * Check if an address is exclusive to the kernel and must not be mapped to 1686 * user space, for example, via /dev/mem. 1687 * 1688 * Returns true if exclusive to the kernel, otherwise returns false. 1689 */ 1690 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size) 1691 { 1692 const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM | 1693 IORESOURCE_EXCLUSIVE; 1694 bool skip_children = false, err = false; 1695 struct resource *p; 1696 1697 read_lock(&resource_lock); 1698 for_each_resource(root, p, skip_children) { 1699 if (p->start >= addr + size) 1700 break; 1701 if (p->end < addr) { 1702 skip_children = true; 1703 continue; 1704 } 1705 skip_children = false; 1706 1707 /* 1708 * IORESOURCE_SYSTEM_RAM resources are exclusive if 1709 * IORESOURCE_EXCLUSIVE is set, even if they 1710 * are not busy and even if "iomem=relaxed" is set. The 1711 * responsible driver dynamically adds/removes system RAM within 1712 * such an area and uncontrolled access is dangerous. 1713 */ 1714 if ((p->flags & exclusive_system_ram) == exclusive_system_ram) { 1715 err = true; 1716 break; 1717 } 1718 1719 /* 1720 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1721 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1722 * resource is busy. 1723 */ 1724 if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY)) 1725 continue; 1726 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1727 || p->flags & IORESOURCE_EXCLUSIVE) { 1728 err = true; 1729 break; 1730 } 1731 } 1732 read_unlock(&resource_lock); 1733 1734 return err; 1735 } 1736 1737 bool iomem_is_exclusive(u64 addr) 1738 { 1739 return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK, 1740 PAGE_SIZE); 1741 } 1742 1743 struct resource_entry *resource_list_create_entry(struct resource *res, 1744 size_t extra_size) 1745 { 1746 struct resource_entry *entry; 1747 1748 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1749 if (entry) { 1750 INIT_LIST_HEAD(&entry->node); 1751 entry->res = res ? res : &entry->__res; 1752 } 1753 1754 return entry; 1755 } 1756 EXPORT_SYMBOL(resource_list_create_entry); 1757 1758 void resource_list_free(struct list_head *head) 1759 { 1760 struct resource_entry *entry, *tmp; 1761 1762 list_for_each_entry_safe(entry, tmp, head, node) 1763 resource_list_destroy_entry(entry); 1764 } 1765 EXPORT_SYMBOL(resource_list_free); 1766 1767 #ifdef CONFIG_GET_FREE_REGION 1768 #define GFR_DESCENDING (1UL << 0) 1769 #define GFR_REQUEST_REGION (1UL << 1) 1770 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT) 1771 1772 static resource_size_t gfr_start(struct resource *base, resource_size_t size, 1773 resource_size_t align, unsigned long flags) 1774 { 1775 if (flags & GFR_DESCENDING) { 1776 resource_size_t end; 1777 1778 end = min_t(resource_size_t, base->end, 1779 (1ULL << MAX_PHYSMEM_BITS) - 1); 1780 return end - size + 1; 1781 } 1782 1783 return ALIGN(base->start, align); 1784 } 1785 1786 static bool gfr_continue(struct resource *base, resource_size_t addr, 1787 resource_size_t size, unsigned long flags) 1788 { 1789 if (flags & GFR_DESCENDING) 1790 return addr > size && addr >= base->start; 1791 /* 1792 * In the ascend case be careful that the last increment by 1793 * @size did not wrap 0. 1794 */ 1795 return addr > addr - size && 1796 addr <= min_t(resource_size_t, base->end, 1797 (1ULL << MAX_PHYSMEM_BITS) - 1); 1798 } 1799 1800 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size, 1801 unsigned long flags) 1802 { 1803 if (flags & GFR_DESCENDING) 1804 return addr - size; 1805 return addr + size; 1806 } 1807 1808 static void remove_free_mem_region(void *_res) 1809 { 1810 struct resource *res = _res; 1811 1812 if (res->parent) 1813 remove_resource(res); 1814 free_resource(res); 1815 } 1816 1817 static struct resource * 1818 get_free_mem_region(struct device *dev, struct resource *base, 1819 resource_size_t size, const unsigned long align, 1820 const char *name, const unsigned long desc, 1821 const unsigned long flags) 1822 { 1823 resource_size_t addr; 1824 struct resource *res; 1825 struct region_devres *dr = NULL; 1826 1827 size = ALIGN(size, align); 1828 1829 res = alloc_resource(GFP_KERNEL); 1830 if (!res) 1831 return ERR_PTR(-ENOMEM); 1832 1833 if (dev && (flags & GFR_REQUEST_REGION)) { 1834 dr = devres_alloc(devm_region_release, 1835 sizeof(struct region_devres), GFP_KERNEL); 1836 if (!dr) { 1837 free_resource(res); 1838 return ERR_PTR(-ENOMEM); 1839 } 1840 } else if (dev) { 1841 if (devm_add_action_or_reset(dev, remove_free_mem_region, res)) 1842 return ERR_PTR(-ENOMEM); 1843 } 1844 1845 write_lock(&resource_lock); 1846 for (addr = gfr_start(base, size, align, flags); 1847 gfr_continue(base, addr, size, flags); 1848 addr = gfr_next(addr, size, flags)) { 1849 if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) != 1850 REGION_DISJOINT) 1851 continue; 1852 1853 if (flags & GFR_REQUEST_REGION) { 1854 if (__request_region_locked(res, &iomem_resource, addr, 1855 size, name, 0)) 1856 break; 1857 1858 if (dev) { 1859 dr->parent = &iomem_resource; 1860 dr->start = addr; 1861 dr->n = size; 1862 devres_add(dev, dr); 1863 } 1864 1865 res->desc = desc; 1866 write_unlock(&resource_lock); 1867 1868 1869 /* 1870 * A driver is claiming this region so revoke any 1871 * mappings. 1872 */ 1873 revoke_iomem(res); 1874 } else { 1875 res->start = addr; 1876 res->end = addr + size - 1; 1877 res->name = name; 1878 res->desc = desc; 1879 res->flags = IORESOURCE_MEM; 1880 1881 /* 1882 * Only succeed if the resource hosts an exclusive 1883 * range after the insert 1884 */ 1885 if (__insert_resource(base, res) || res->child) 1886 break; 1887 1888 write_unlock(&resource_lock); 1889 } 1890 1891 return res; 1892 } 1893 write_unlock(&resource_lock); 1894 1895 if (flags & GFR_REQUEST_REGION) { 1896 free_resource(res); 1897 devres_free(dr); 1898 } else if (dev) 1899 devm_release_action(dev, remove_free_mem_region, res); 1900 1901 return ERR_PTR(-ERANGE); 1902 } 1903 1904 /** 1905 * devm_request_free_mem_region - find free region for device private memory 1906 * 1907 * @dev: device struct to bind the resource to 1908 * @size: size in bytes of the device memory to add 1909 * @base: resource tree to look in 1910 * 1911 * This function tries to find an empty range of physical address big enough to 1912 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE 1913 * memory, which in turn allocates struct pages. 1914 */ 1915 struct resource *devm_request_free_mem_region(struct device *dev, 1916 struct resource *base, unsigned long size) 1917 { 1918 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; 1919 1920 return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN, 1921 dev_name(dev), 1922 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); 1923 } 1924 EXPORT_SYMBOL_GPL(devm_request_free_mem_region); 1925 1926 struct resource *request_free_mem_region(struct resource *base, 1927 unsigned long size, const char *name) 1928 { 1929 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; 1930 1931 return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name, 1932 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); 1933 } 1934 EXPORT_SYMBOL_GPL(request_free_mem_region); 1935 1936 /** 1937 * alloc_free_mem_region - find a free region relative to @base 1938 * @base: resource that will parent the new resource 1939 * @size: size in bytes of memory to allocate from @base 1940 * @align: alignment requirements for the allocation 1941 * @name: resource name 1942 * 1943 * Buses like CXL, that can dynamically instantiate new memory regions, 1944 * need a method to allocate physical address space for those regions. 1945 * Allocate and insert a new resource to cover a free, unclaimed by a 1946 * descendant of @base, range in the span of @base. 1947 */ 1948 struct resource *alloc_free_mem_region(struct resource *base, 1949 unsigned long size, unsigned long align, 1950 const char *name) 1951 { 1952 /* Default of ascending direction and insert resource */ 1953 unsigned long flags = 0; 1954 1955 return get_free_mem_region(NULL, base, size, align, name, 1956 IORES_DESC_NONE, flags); 1957 } 1958 EXPORT_SYMBOL_NS_GPL(alloc_free_mem_region, CXL); 1959 #endif /* CONFIG_GET_FREE_REGION */ 1960 1961 static int __init strict_iomem(char *str) 1962 { 1963 if (strstr(str, "relaxed")) 1964 strict_iomem_checks = 0; 1965 if (strstr(str, "strict")) 1966 strict_iomem_checks = 1; 1967 return 1; 1968 } 1969 1970 static int iomem_fs_init_fs_context(struct fs_context *fc) 1971 { 1972 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM; 1973 } 1974 1975 static struct file_system_type iomem_fs_type = { 1976 .name = "iomem", 1977 .owner = THIS_MODULE, 1978 .init_fs_context = iomem_fs_init_fs_context, 1979 .kill_sb = kill_anon_super, 1980 }; 1981 1982 static int __init iomem_init_inode(void) 1983 { 1984 static struct vfsmount *iomem_vfs_mount; 1985 static int iomem_fs_cnt; 1986 struct inode *inode; 1987 int rc; 1988 1989 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt); 1990 if (rc < 0) { 1991 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc); 1992 return rc; 1993 } 1994 1995 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb); 1996 if (IS_ERR(inode)) { 1997 rc = PTR_ERR(inode); 1998 pr_err("Cannot allocate inode for iomem: %d\n", rc); 1999 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt); 2000 return rc; 2001 } 2002 2003 /* 2004 * Publish iomem revocation inode initialized. 2005 * Pairs with smp_load_acquire() in revoke_iomem(). 2006 */ 2007 smp_store_release(&iomem_inode, inode); 2008 2009 return 0; 2010 } 2011 2012 fs_initcall(iomem_init_inode); 2013 2014 __setup("iomem=", strict_iomem); 2015