1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/resource.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 7 * 8 * Arbitrary resource management. 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/export.h> 14 #include <linux/errno.h> 15 #include <linux/ioport.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/proc_fs.h> 21 #include <linux/pseudo_fs.h> 22 #include <linux/sched.h> 23 #include <linux/seq_file.h> 24 #include <linux/device.h> 25 #include <linux/pfn.h> 26 #include <linux/mm.h> 27 #include <linux/mount.h> 28 #include <linux/resource_ext.h> 29 #include <uapi/linux/magic.h> 30 #include <asm/io.h> 31 32 33 struct resource ioport_resource = { 34 .name = "PCI IO", 35 .start = 0, 36 .end = IO_SPACE_LIMIT, 37 .flags = IORESOURCE_IO, 38 }; 39 EXPORT_SYMBOL(ioport_resource); 40 41 struct resource iomem_resource = { 42 .name = "PCI mem", 43 .start = 0, 44 .end = -1, 45 .flags = IORESOURCE_MEM, 46 }; 47 EXPORT_SYMBOL(iomem_resource); 48 49 /* constraints to be met while allocating resources */ 50 struct resource_constraint { 51 resource_size_t min, max, align; 52 resource_size_t (*alignf)(void *, const struct resource *, 53 resource_size_t, resource_size_t); 54 void *alignf_data; 55 }; 56 57 static DEFINE_RWLOCK(resource_lock); 58 59 /* 60 * For memory hotplug, there is no way to free resource entries allocated 61 * by boot mem after the system is up. So for reusing the resource entry 62 * we need to remember the resource. 63 */ 64 static struct resource *bootmem_resource_free; 65 static DEFINE_SPINLOCK(bootmem_resource_lock); 66 67 static struct resource *next_resource(struct resource *p) 68 { 69 if (p->child) 70 return p->child; 71 while (!p->sibling && p->parent) 72 p = p->parent; 73 return p->sibling; 74 } 75 76 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 77 { 78 struct resource *p = v; 79 (*pos)++; 80 return (void *)next_resource(p); 81 } 82 83 #ifdef CONFIG_PROC_FS 84 85 enum { MAX_IORES_LEVEL = 5 }; 86 87 static void *r_start(struct seq_file *m, loff_t *pos) 88 __acquires(resource_lock) 89 { 90 struct resource *p = PDE_DATA(file_inode(m->file)); 91 loff_t l = 0; 92 read_lock(&resource_lock); 93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 94 ; 95 return p; 96 } 97 98 static void r_stop(struct seq_file *m, void *v) 99 __releases(resource_lock) 100 { 101 read_unlock(&resource_lock); 102 } 103 104 static int r_show(struct seq_file *m, void *v) 105 { 106 struct resource *root = PDE_DATA(file_inode(m->file)); 107 struct resource *r = v, *p; 108 unsigned long long start, end; 109 int width = root->end < 0x10000 ? 4 : 8; 110 int depth; 111 112 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 113 if (p->parent == root) 114 break; 115 116 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 117 start = r->start; 118 end = r->end; 119 } else { 120 start = end = 0; 121 } 122 123 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 124 depth * 2, "", 125 width, start, 126 width, end, 127 r->name ? r->name : "<BAD>"); 128 return 0; 129 } 130 131 static const struct seq_operations resource_op = { 132 .start = r_start, 133 .next = r_next, 134 .stop = r_stop, 135 .show = r_show, 136 }; 137 138 static int __init ioresources_init(void) 139 { 140 proc_create_seq_data("ioports", 0, NULL, &resource_op, 141 &ioport_resource); 142 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 143 return 0; 144 } 145 __initcall(ioresources_init); 146 147 #endif /* CONFIG_PROC_FS */ 148 149 static void free_resource(struct resource *res) 150 { 151 if (!res) 152 return; 153 154 if (!PageSlab(virt_to_head_page(res))) { 155 spin_lock(&bootmem_resource_lock); 156 res->sibling = bootmem_resource_free; 157 bootmem_resource_free = res; 158 spin_unlock(&bootmem_resource_lock); 159 } else { 160 kfree(res); 161 } 162 } 163 164 static struct resource *alloc_resource(gfp_t flags) 165 { 166 struct resource *res = NULL; 167 168 spin_lock(&bootmem_resource_lock); 169 if (bootmem_resource_free) { 170 res = bootmem_resource_free; 171 bootmem_resource_free = res->sibling; 172 } 173 spin_unlock(&bootmem_resource_lock); 174 175 if (res) 176 memset(res, 0, sizeof(struct resource)); 177 else 178 res = kzalloc(sizeof(struct resource), flags); 179 180 return res; 181 } 182 183 /* Return the conflict entry if you can't request it */ 184 static struct resource * __request_resource(struct resource *root, struct resource *new) 185 { 186 resource_size_t start = new->start; 187 resource_size_t end = new->end; 188 struct resource *tmp, **p; 189 190 if (end < start) 191 return root; 192 if (start < root->start) 193 return root; 194 if (end > root->end) 195 return root; 196 p = &root->child; 197 for (;;) { 198 tmp = *p; 199 if (!tmp || tmp->start > end) { 200 new->sibling = tmp; 201 *p = new; 202 new->parent = root; 203 return NULL; 204 } 205 p = &tmp->sibling; 206 if (tmp->end < start) 207 continue; 208 return tmp; 209 } 210 } 211 212 static int __release_resource(struct resource *old, bool release_child) 213 { 214 struct resource *tmp, **p, *chd; 215 216 p = &old->parent->child; 217 for (;;) { 218 tmp = *p; 219 if (!tmp) 220 break; 221 if (tmp == old) { 222 if (release_child || !(tmp->child)) { 223 *p = tmp->sibling; 224 } else { 225 for (chd = tmp->child;; chd = chd->sibling) { 226 chd->parent = tmp->parent; 227 if (!(chd->sibling)) 228 break; 229 } 230 *p = tmp->child; 231 chd->sibling = tmp->sibling; 232 } 233 old->parent = NULL; 234 return 0; 235 } 236 p = &tmp->sibling; 237 } 238 return -EINVAL; 239 } 240 241 static void __release_child_resources(struct resource *r) 242 { 243 struct resource *tmp, *p; 244 resource_size_t size; 245 246 p = r->child; 247 r->child = NULL; 248 while (p) { 249 tmp = p; 250 p = p->sibling; 251 252 tmp->parent = NULL; 253 tmp->sibling = NULL; 254 __release_child_resources(tmp); 255 256 printk(KERN_DEBUG "release child resource %pR\n", tmp); 257 /* need to restore size, and keep flags */ 258 size = resource_size(tmp); 259 tmp->start = 0; 260 tmp->end = size - 1; 261 } 262 } 263 264 void release_child_resources(struct resource *r) 265 { 266 write_lock(&resource_lock); 267 __release_child_resources(r); 268 write_unlock(&resource_lock); 269 } 270 271 /** 272 * request_resource_conflict - request and reserve an I/O or memory resource 273 * @root: root resource descriptor 274 * @new: resource descriptor desired by caller 275 * 276 * Returns 0 for success, conflict resource on error. 277 */ 278 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 279 { 280 struct resource *conflict; 281 282 write_lock(&resource_lock); 283 conflict = __request_resource(root, new); 284 write_unlock(&resource_lock); 285 return conflict; 286 } 287 288 /** 289 * request_resource - request and reserve an I/O or memory resource 290 * @root: root resource descriptor 291 * @new: resource descriptor desired by caller 292 * 293 * Returns 0 for success, negative error code on error. 294 */ 295 int request_resource(struct resource *root, struct resource *new) 296 { 297 struct resource *conflict; 298 299 conflict = request_resource_conflict(root, new); 300 return conflict ? -EBUSY : 0; 301 } 302 303 EXPORT_SYMBOL(request_resource); 304 305 /** 306 * release_resource - release a previously reserved resource 307 * @old: resource pointer 308 */ 309 int release_resource(struct resource *old) 310 { 311 int retval; 312 313 write_lock(&resource_lock); 314 retval = __release_resource(old, true); 315 write_unlock(&resource_lock); 316 return retval; 317 } 318 319 EXPORT_SYMBOL(release_resource); 320 321 /** 322 * find_next_iomem_res - Finds the lowest iomem resource that covers part of 323 * [@start..@end]. 324 * 325 * If a resource is found, returns 0 and @*res is overwritten with the part 326 * of the resource that's within [@start..@end]; if none is found, returns 327 * -ENODEV. Returns -EINVAL for invalid parameters. 328 * 329 * @start: start address of the resource searched for 330 * @end: end address of same resource 331 * @flags: flags which the resource must have 332 * @desc: descriptor the resource must have 333 * @res: return ptr, if resource found 334 * 335 * The caller must specify @start, @end, @flags, and @desc 336 * (which may be IORES_DESC_NONE). 337 */ 338 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 339 unsigned long flags, unsigned long desc, 340 struct resource *res) 341 { 342 struct resource *p; 343 344 if (!res) 345 return -EINVAL; 346 347 if (start >= end) 348 return -EINVAL; 349 350 read_lock(&resource_lock); 351 352 for (p = iomem_resource.child; p; p = next_resource(p)) { 353 /* If we passed the resource we are looking for, stop */ 354 if (p->start > end) { 355 p = NULL; 356 break; 357 } 358 359 /* Skip until we find a range that matches what we look for */ 360 if (p->end < start) 361 continue; 362 363 if ((p->flags & flags) != flags) 364 continue; 365 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 366 continue; 367 368 /* Found a match, break */ 369 break; 370 } 371 372 if (p) { 373 /* copy data */ 374 *res = (struct resource) { 375 .start = max(start, p->start), 376 .end = min(end, p->end), 377 .flags = p->flags, 378 .desc = p->desc, 379 .parent = p->parent, 380 }; 381 } 382 383 read_unlock(&resource_lock); 384 return p ? 0 : -ENODEV; 385 } 386 387 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 388 unsigned long flags, unsigned long desc, 389 void *arg, 390 int (*func)(struct resource *, void *)) 391 { 392 struct resource res; 393 int ret = -EINVAL; 394 395 while (start < end && 396 !find_next_iomem_res(start, end, flags, desc, &res)) { 397 ret = (*func)(&res, arg); 398 if (ret) 399 break; 400 401 start = res.end + 1; 402 } 403 404 return ret; 405 } 406 407 /** 408 * walk_iomem_res_desc - Walks through iomem resources and calls func() 409 * with matching resource ranges. 410 * * 411 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 412 * @flags: I/O resource flags 413 * @start: start addr 414 * @end: end addr 415 * @arg: function argument for the callback @func 416 * @func: callback function that is called for each qualifying resource area 417 * 418 * All the memory ranges which overlap start,end and also match flags and 419 * desc are valid candidates. 420 * 421 * NOTE: For a new descriptor search, define a new IORES_DESC in 422 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 423 */ 424 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 425 u64 end, void *arg, int (*func)(struct resource *, void *)) 426 { 427 return __walk_iomem_res_desc(start, end, flags, desc, arg, func); 428 } 429 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 430 431 /* 432 * This function calls the @func callback against all memory ranges of type 433 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 434 * Now, this function is only for System RAM, it deals with full ranges and 435 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 436 * ranges. 437 */ 438 int walk_system_ram_res(u64 start, u64 end, void *arg, 439 int (*func)(struct resource *, void *)) 440 { 441 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 442 443 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 444 func); 445 } 446 447 /* 448 * This function calls the @func callback against all memory ranges, which 449 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 450 */ 451 int walk_mem_res(u64 start, u64 end, void *arg, 452 int (*func)(struct resource *, void *)) 453 { 454 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 455 456 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 457 func); 458 } 459 460 /* 461 * This function calls the @func callback against all memory ranges of type 462 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 463 * It is to be used only for System RAM. 464 */ 465 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 466 void *arg, int (*func)(unsigned long, unsigned long, void *)) 467 { 468 resource_size_t start, end; 469 unsigned long flags; 470 struct resource res; 471 unsigned long pfn, end_pfn; 472 int ret = -EINVAL; 473 474 start = (u64) start_pfn << PAGE_SHIFT; 475 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 476 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 477 while (start < end && 478 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) { 479 pfn = PFN_UP(res.start); 480 end_pfn = PFN_DOWN(res.end + 1); 481 if (end_pfn > pfn) 482 ret = (*func)(pfn, end_pfn - pfn, arg); 483 if (ret) 484 break; 485 start = res.end + 1; 486 } 487 return ret; 488 } 489 490 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 491 { 492 return 1; 493 } 494 495 /* 496 * This generic page_is_ram() returns true if specified address is 497 * registered as System RAM in iomem_resource list. 498 */ 499 int __weak page_is_ram(unsigned long pfn) 500 { 501 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 502 } 503 EXPORT_SYMBOL_GPL(page_is_ram); 504 505 static int __region_intersects(resource_size_t start, size_t size, 506 unsigned long flags, unsigned long desc) 507 { 508 struct resource res; 509 int type = 0; int other = 0; 510 struct resource *p; 511 512 res.start = start; 513 res.end = start + size - 1; 514 515 for (p = iomem_resource.child; p ; p = p->sibling) { 516 bool is_type = (((p->flags & flags) == flags) && 517 ((desc == IORES_DESC_NONE) || 518 (desc == p->desc))); 519 520 if (resource_overlaps(p, &res)) 521 is_type ? type++ : other++; 522 } 523 524 if (type == 0) 525 return REGION_DISJOINT; 526 527 if (other == 0) 528 return REGION_INTERSECTS; 529 530 return REGION_MIXED; 531 } 532 533 /** 534 * region_intersects() - determine intersection of region with known resources 535 * @start: region start address 536 * @size: size of region 537 * @flags: flags of resource (in iomem_resource) 538 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 539 * 540 * Check if the specified region partially overlaps or fully eclipses a 541 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 542 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 543 * return REGION_MIXED if the region overlaps @flags/@desc and another 544 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 545 * and no other defined resource. Note that REGION_INTERSECTS is also 546 * returned in the case when the specified region overlaps RAM and undefined 547 * memory holes. 548 * 549 * region_intersect() is used by memory remapping functions to ensure 550 * the user is not remapping RAM and is a vast speed up over walking 551 * through the resource table page by page. 552 */ 553 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 554 unsigned long desc) 555 { 556 int ret; 557 558 read_lock(&resource_lock); 559 ret = __region_intersects(start, size, flags, desc); 560 read_unlock(&resource_lock); 561 562 return ret; 563 } 564 EXPORT_SYMBOL_GPL(region_intersects); 565 566 void __weak arch_remove_reservations(struct resource *avail) 567 { 568 } 569 570 static resource_size_t simple_align_resource(void *data, 571 const struct resource *avail, 572 resource_size_t size, 573 resource_size_t align) 574 { 575 return avail->start; 576 } 577 578 static void resource_clip(struct resource *res, resource_size_t min, 579 resource_size_t max) 580 { 581 if (res->start < min) 582 res->start = min; 583 if (res->end > max) 584 res->end = max; 585 } 586 587 /* 588 * Find empty slot in the resource tree with the given range and 589 * alignment constraints 590 */ 591 static int __find_resource(struct resource *root, struct resource *old, 592 struct resource *new, 593 resource_size_t size, 594 struct resource_constraint *constraint) 595 { 596 struct resource *this = root->child; 597 struct resource tmp = *new, avail, alloc; 598 599 tmp.start = root->start; 600 /* 601 * Skip past an allocated resource that starts at 0, since the assignment 602 * of this->start - 1 to tmp->end below would cause an underflow. 603 */ 604 if (this && this->start == root->start) { 605 tmp.start = (this == old) ? old->start : this->end + 1; 606 this = this->sibling; 607 } 608 for(;;) { 609 if (this) 610 tmp.end = (this == old) ? this->end : this->start - 1; 611 else 612 tmp.end = root->end; 613 614 if (tmp.end < tmp.start) 615 goto next; 616 617 resource_clip(&tmp, constraint->min, constraint->max); 618 arch_remove_reservations(&tmp); 619 620 /* Check for overflow after ALIGN() */ 621 avail.start = ALIGN(tmp.start, constraint->align); 622 avail.end = tmp.end; 623 avail.flags = new->flags & ~IORESOURCE_UNSET; 624 if (avail.start >= tmp.start) { 625 alloc.flags = avail.flags; 626 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 627 size, constraint->align); 628 alloc.end = alloc.start + size - 1; 629 if (alloc.start <= alloc.end && 630 resource_contains(&avail, &alloc)) { 631 new->start = alloc.start; 632 new->end = alloc.end; 633 return 0; 634 } 635 } 636 637 next: if (!this || this->end == root->end) 638 break; 639 640 if (this != old) 641 tmp.start = this->end + 1; 642 this = this->sibling; 643 } 644 return -EBUSY; 645 } 646 647 /* 648 * Find empty slot in the resource tree given range and alignment. 649 */ 650 static int find_resource(struct resource *root, struct resource *new, 651 resource_size_t size, 652 struct resource_constraint *constraint) 653 { 654 return __find_resource(root, NULL, new, size, constraint); 655 } 656 657 /** 658 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 659 * The resource will be relocated if the new size cannot be reallocated in the 660 * current location. 661 * 662 * @root: root resource descriptor 663 * @old: resource descriptor desired by caller 664 * @newsize: new size of the resource descriptor 665 * @constraint: the size and alignment constraints to be met. 666 */ 667 static int reallocate_resource(struct resource *root, struct resource *old, 668 resource_size_t newsize, 669 struct resource_constraint *constraint) 670 { 671 int err=0; 672 struct resource new = *old; 673 struct resource *conflict; 674 675 write_lock(&resource_lock); 676 677 if ((err = __find_resource(root, old, &new, newsize, constraint))) 678 goto out; 679 680 if (resource_contains(&new, old)) { 681 old->start = new.start; 682 old->end = new.end; 683 goto out; 684 } 685 686 if (old->child) { 687 err = -EBUSY; 688 goto out; 689 } 690 691 if (resource_contains(old, &new)) { 692 old->start = new.start; 693 old->end = new.end; 694 } else { 695 __release_resource(old, true); 696 *old = new; 697 conflict = __request_resource(root, old); 698 BUG_ON(conflict); 699 } 700 out: 701 write_unlock(&resource_lock); 702 return err; 703 } 704 705 706 /** 707 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 708 * The resource will be reallocated with a new size if it was already allocated 709 * @root: root resource descriptor 710 * @new: resource descriptor desired by caller 711 * @size: requested resource region size 712 * @min: minimum boundary to allocate 713 * @max: maximum boundary to allocate 714 * @align: alignment requested, in bytes 715 * @alignf: alignment function, optional, called if not NULL 716 * @alignf_data: arbitrary data to pass to the @alignf function 717 */ 718 int allocate_resource(struct resource *root, struct resource *new, 719 resource_size_t size, resource_size_t min, 720 resource_size_t max, resource_size_t align, 721 resource_size_t (*alignf)(void *, 722 const struct resource *, 723 resource_size_t, 724 resource_size_t), 725 void *alignf_data) 726 { 727 int err; 728 struct resource_constraint constraint; 729 730 if (!alignf) 731 alignf = simple_align_resource; 732 733 constraint.min = min; 734 constraint.max = max; 735 constraint.align = align; 736 constraint.alignf = alignf; 737 constraint.alignf_data = alignf_data; 738 739 if ( new->parent ) { 740 /* resource is already allocated, try reallocating with 741 the new constraints */ 742 return reallocate_resource(root, new, size, &constraint); 743 } 744 745 write_lock(&resource_lock); 746 err = find_resource(root, new, size, &constraint); 747 if (err >= 0 && __request_resource(root, new)) 748 err = -EBUSY; 749 write_unlock(&resource_lock); 750 return err; 751 } 752 753 EXPORT_SYMBOL(allocate_resource); 754 755 /** 756 * lookup_resource - find an existing resource by a resource start address 757 * @root: root resource descriptor 758 * @start: resource start address 759 * 760 * Returns a pointer to the resource if found, NULL otherwise 761 */ 762 struct resource *lookup_resource(struct resource *root, resource_size_t start) 763 { 764 struct resource *res; 765 766 read_lock(&resource_lock); 767 for (res = root->child; res; res = res->sibling) { 768 if (res->start == start) 769 break; 770 } 771 read_unlock(&resource_lock); 772 773 return res; 774 } 775 776 /* 777 * Insert a resource into the resource tree. If successful, return NULL, 778 * otherwise return the conflicting resource (compare to __request_resource()) 779 */ 780 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 781 { 782 struct resource *first, *next; 783 784 for (;; parent = first) { 785 first = __request_resource(parent, new); 786 if (!first) 787 return first; 788 789 if (first == parent) 790 return first; 791 if (WARN_ON(first == new)) /* duplicated insertion */ 792 return first; 793 794 if ((first->start > new->start) || (first->end < new->end)) 795 break; 796 if ((first->start == new->start) && (first->end == new->end)) 797 break; 798 } 799 800 for (next = first; ; next = next->sibling) { 801 /* Partial overlap? Bad, and unfixable */ 802 if (next->start < new->start || next->end > new->end) 803 return next; 804 if (!next->sibling) 805 break; 806 if (next->sibling->start > new->end) 807 break; 808 } 809 810 new->parent = parent; 811 new->sibling = next->sibling; 812 new->child = first; 813 814 next->sibling = NULL; 815 for (next = first; next; next = next->sibling) 816 next->parent = new; 817 818 if (parent->child == first) { 819 parent->child = new; 820 } else { 821 next = parent->child; 822 while (next->sibling != first) 823 next = next->sibling; 824 next->sibling = new; 825 } 826 return NULL; 827 } 828 829 /** 830 * insert_resource_conflict - Inserts resource in the resource tree 831 * @parent: parent of the new resource 832 * @new: new resource to insert 833 * 834 * Returns 0 on success, conflict resource if the resource can't be inserted. 835 * 836 * This function is equivalent to request_resource_conflict when no conflict 837 * happens. If a conflict happens, and the conflicting resources 838 * entirely fit within the range of the new resource, then the new 839 * resource is inserted and the conflicting resources become children of 840 * the new resource. 841 * 842 * This function is intended for producers of resources, such as FW modules 843 * and bus drivers. 844 */ 845 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 846 { 847 struct resource *conflict; 848 849 write_lock(&resource_lock); 850 conflict = __insert_resource(parent, new); 851 write_unlock(&resource_lock); 852 return conflict; 853 } 854 855 /** 856 * insert_resource - Inserts a resource in the resource tree 857 * @parent: parent of the new resource 858 * @new: new resource to insert 859 * 860 * Returns 0 on success, -EBUSY if the resource can't be inserted. 861 * 862 * This function is intended for producers of resources, such as FW modules 863 * and bus drivers. 864 */ 865 int insert_resource(struct resource *parent, struct resource *new) 866 { 867 struct resource *conflict; 868 869 conflict = insert_resource_conflict(parent, new); 870 return conflict ? -EBUSY : 0; 871 } 872 EXPORT_SYMBOL_GPL(insert_resource); 873 874 /** 875 * insert_resource_expand_to_fit - Insert a resource into the resource tree 876 * @root: root resource descriptor 877 * @new: new resource to insert 878 * 879 * Insert a resource into the resource tree, possibly expanding it in order 880 * to make it encompass any conflicting resources. 881 */ 882 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 883 { 884 if (new->parent) 885 return; 886 887 write_lock(&resource_lock); 888 for (;;) { 889 struct resource *conflict; 890 891 conflict = __insert_resource(root, new); 892 if (!conflict) 893 break; 894 if (conflict == root) 895 break; 896 897 /* Ok, expand resource to cover the conflict, then try again .. */ 898 if (conflict->start < new->start) 899 new->start = conflict->start; 900 if (conflict->end > new->end) 901 new->end = conflict->end; 902 903 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 904 } 905 write_unlock(&resource_lock); 906 } 907 908 /** 909 * remove_resource - Remove a resource in the resource tree 910 * @old: resource to remove 911 * 912 * Returns 0 on success, -EINVAL if the resource is not valid. 913 * 914 * This function removes a resource previously inserted by insert_resource() 915 * or insert_resource_conflict(), and moves the children (if any) up to 916 * where they were before. insert_resource() and insert_resource_conflict() 917 * insert a new resource, and move any conflicting resources down to the 918 * children of the new resource. 919 * 920 * insert_resource(), insert_resource_conflict() and remove_resource() are 921 * intended for producers of resources, such as FW modules and bus drivers. 922 */ 923 int remove_resource(struct resource *old) 924 { 925 int retval; 926 927 write_lock(&resource_lock); 928 retval = __release_resource(old, false); 929 write_unlock(&resource_lock); 930 return retval; 931 } 932 EXPORT_SYMBOL_GPL(remove_resource); 933 934 static int __adjust_resource(struct resource *res, resource_size_t start, 935 resource_size_t size) 936 { 937 struct resource *tmp, *parent = res->parent; 938 resource_size_t end = start + size - 1; 939 int result = -EBUSY; 940 941 if (!parent) 942 goto skip; 943 944 if ((start < parent->start) || (end > parent->end)) 945 goto out; 946 947 if (res->sibling && (res->sibling->start <= end)) 948 goto out; 949 950 tmp = parent->child; 951 if (tmp != res) { 952 while (tmp->sibling != res) 953 tmp = tmp->sibling; 954 if (start <= tmp->end) 955 goto out; 956 } 957 958 skip: 959 for (tmp = res->child; tmp; tmp = tmp->sibling) 960 if ((tmp->start < start) || (tmp->end > end)) 961 goto out; 962 963 res->start = start; 964 res->end = end; 965 result = 0; 966 967 out: 968 return result; 969 } 970 971 /** 972 * adjust_resource - modify a resource's start and size 973 * @res: resource to modify 974 * @start: new start value 975 * @size: new size 976 * 977 * Given an existing resource, change its start and size to match the 978 * arguments. Returns 0 on success, -EBUSY if it can't fit. 979 * Existing children of the resource are assumed to be immutable. 980 */ 981 int adjust_resource(struct resource *res, resource_size_t start, 982 resource_size_t size) 983 { 984 int result; 985 986 write_lock(&resource_lock); 987 result = __adjust_resource(res, start, size); 988 write_unlock(&resource_lock); 989 return result; 990 } 991 EXPORT_SYMBOL(adjust_resource); 992 993 static void __init 994 __reserve_region_with_split(struct resource *root, resource_size_t start, 995 resource_size_t end, const char *name) 996 { 997 struct resource *parent = root; 998 struct resource *conflict; 999 struct resource *res = alloc_resource(GFP_ATOMIC); 1000 struct resource *next_res = NULL; 1001 int type = resource_type(root); 1002 1003 if (!res) 1004 return; 1005 1006 res->name = name; 1007 res->start = start; 1008 res->end = end; 1009 res->flags = type | IORESOURCE_BUSY; 1010 res->desc = IORES_DESC_NONE; 1011 1012 while (1) { 1013 1014 conflict = __request_resource(parent, res); 1015 if (!conflict) { 1016 if (!next_res) 1017 break; 1018 res = next_res; 1019 next_res = NULL; 1020 continue; 1021 } 1022 1023 /* conflict covered whole area */ 1024 if (conflict->start <= res->start && 1025 conflict->end >= res->end) { 1026 free_resource(res); 1027 WARN_ON(next_res); 1028 break; 1029 } 1030 1031 /* failed, split and try again */ 1032 if (conflict->start > res->start) { 1033 end = res->end; 1034 res->end = conflict->start - 1; 1035 if (conflict->end < end) { 1036 next_res = alloc_resource(GFP_ATOMIC); 1037 if (!next_res) { 1038 free_resource(res); 1039 break; 1040 } 1041 next_res->name = name; 1042 next_res->start = conflict->end + 1; 1043 next_res->end = end; 1044 next_res->flags = type | IORESOURCE_BUSY; 1045 next_res->desc = IORES_DESC_NONE; 1046 } 1047 } else { 1048 res->start = conflict->end + 1; 1049 } 1050 } 1051 1052 } 1053 1054 void __init 1055 reserve_region_with_split(struct resource *root, resource_size_t start, 1056 resource_size_t end, const char *name) 1057 { 1058 int abort = 0; 1059 1060 write_lock(&resource_lock); 1061 if (root->start > start || root->end < end) { 1062 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1063 (unsigned long long)start, (unsigned long long)end, 1064 root); 1065 if (start > root->end || end < root->start) 1066 abort = 1; 1067 else { 1068 if (end > root->end) 1069 end = root->end; 1070 if (start < root->start) 1071 start = root->start; 1072 pr_err("fixing request to [0x%llx-0x%llx]\n", 1073 (unsigned long long)start, 1074 (unsigned long long)end); 1075 } 1076 dump_stack(); 1077 } 1078 if (!abort) 1079 __reserve_region_with_split(root, start, end, name); 1080 write_unlock(&resource_lock); 1081 } 1082 1083 /** 1084 * resource_alignment - calculate resource's alignment 1085 * @res: resource pointer 1086 * 1087 * Returns alignment on success, 0 (invalid alignment) on failure. 1088 */ 1089 resource_size_t resource_alignment(struct resource *res) 1090 { 1091 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1092 case IORESOURCE_SIZEALIGN: 1093 return resource_size(res); 1094 case IORESOURCE_STARTALIGN: 1095 return res->start; 1096 default: 1097 return 0; 1098 } 1099 } 1100 1101 /* 1102 * This is compatibility stuff for IO resources. 1103 * 1104 * Note how this, unlike the above, knows about 1105 * the IO flag meanings (busy etc). 1106 * 1107 * request_region creates a new busy region. 1108 * 1109 * release_region releases a matching busy region. 1110 */ 1111 1112 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1113 1114 static struct inode *iomem_inode; 1115 1116 #ifdef CONFIG_IO_STRICT_DEVMEM 1117 static void revoke_iomem(struct resource *res) 1118 { 1119 /* pairs with smp_store_release() in iomem_init_inode() */ 1120 struct inode *inode = smp_load_acquire(&iomem_inode); 1121 1122 /* 1123 * Check that the initialization has completed. Losing the race 1124 * is ok because it means drivers are claiming resources before 1125 * the fs_initcall level of init and prevent iomem_get_mapping users 1126 * from establishing mappings. 1127 */ 1128 if (!inode) 1129 return; 1130 1131 /* 1132 * The expectation is that the driver has successfully marked 1133 * the resource busy by this point, so devmem_is_allowed() 1134 * should start returning false, however for performance this 1135 * does not iterate the entire resource range. 1136 */ 1137 if (devmem_is_allowed(PHYS_PFN(res->start)) && 1138 devmem_is_allowed(PHYS_PFN(res->end))) { 1139 /* 1140 * *cringe* iomem=relaxed says "go ahead, what's the 1141 * worst that can happen?" 1142 */ 1143 return; 1144 } 1145 1146 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1); 1147 } 1148 #else 1149 static void revoke_iomem(struct resource *res) {} 1150 #endif 1151 1152 struct address_space *iomem_get_mapping(void) 1153 { 1154 /* 1155 * This function is only called from file open paths, hence guaranteed 1156 * that fs_initcalls have completed and no need to check for NULL. But 1157 * since revoke_iomem can be called before the initcall we still need 1158 * the barrier to appease checkers. 1159 */ 1160 return smp_load_acquire(&iomem_inode)->i_mapping; 1161 } 1162 1163 static int __request_region_locked(struct resource *res, struct resource *parent, 1164 resource_size_t start, resource_size_t n, 1165 const char *name, int flags) 1166 { 1167 DECLARE_WAITQUEUE(wait, current); 1168 1169 res->name = name; 1170 res->start = start; 1171 res->end = start + n - 1; 1172 1173 for (;;) { 1174 struct resource *conflict; 1175 1176 res->flags = resource_type(parent) | resource_ext_type(parent); 1177 res->flags |= IORESOURCE_BUSY | flags; 1178 res->desc = parent->desc; 1179 1180 conflict = __request_resource(parent, res); 1181 if (!conflict) 1182 break; 1183 /* 1184 * mm/hmm.c reserves physical addresses which then 1185 * become unavailable to other users. Conflicts are 1186 * not expected. Warn to aid debugging if encountered. 1187 */ 1188 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 1189 pr_warn("Unaddressable device %s %pR conflicts with %pR", 1190 conflict->name, conflict, res); 1191 } 1192 if (conflict != parent) { 1193 if (!(conflict->flags & IORESOURCE_BUSY)) { 1194 parent = conflict; 1195 continue; 1196 } 1197 } 1198 if (conflict->flags & flags & IORESOURCE_MUXED) { 1199 add_wait_queue(&muxed_resource_wait, &wait); 1200 write_unlock(&resource_lock); 1201 set_current_state(TASK_UNINTERRUPTIBLE); 1202 schedule(); 1203 remove_wait_queue(&muxed_resource_wait, &wait); 1204 write_lock(&resource_lock); 1205 continue; 1206 } 1207 /* Uhhuh, that didn't work out.. */ 1208 return -EBUSY; 1209 } 1210 1211 return 0; 1212 } 1213 1214 /** 1215 * __request_region - create a new busy resource region 1216 * @parent: parent resource descriptor 1217 * @start: resource start address 1218 * @n: resource region size 1219 * @name: reserving caller's ID string 1220 * @flags: IO resource flags 1221 */ 1222 struct resource *__request_region(struct resource *parent, 1223 resource_size_t start, resource_size_t n, 1224 const char *name, int flags) 1225 { 1226 struct resource *res = alloc_resource(GFP_KERNEL); 1227 int ret; 1228 1229 if (!res) 1230 return NULL; 1231 1232 write_lock(&resource_lock); 1233 ret = __request_region_locked(res, parent, start, n, name, flags); 1234 write_unlock(&resource_lock); 1235 1236 if (ret) { 1237 free_resource(res); 1238 return NULL; 1239 } 1240 1241 if (parent == &iomem_resource) 1242 revoke_iomem(res); 1243 1244 return res; 1245 } 1246 EXPORT_SYMBOL(__request_region); 1247 1248 /** 1249 * __release_region - release a previously reserved resource region 1250 * @parent: parent resource descriptor 1251 * @start: resource start address 1252 * @n: resource region size 1253 * 1254 * The described resource region must match a currently busy region. 1255 */ 1256 void __release_region(struct resource *parent, resource_size_t start, 1257 resource_size_t n) 1258 { 1259 struct resource **p; 1260 resource_size_t end; 1261 1262 p = &parent->child; 1263 end = start + n - 1; 1264 1265 write_lock(&resource_lock); 1266 1267 for (;;) { 1268 struct resource *res = *p; 1269 1270 if (!res) 1271 break; 1272 if (res->start <= start && res->end >= end) { 1273 if (!(res->flags & IORESOURCE_BUSY)) { 1274 p = &res->child; 1275 continue; 1276 } 1277 if (res->start != start || res->end != end) 1278 break; 1279 *p = res->sibling; 1280 write_unlock(&resource_lock); 1281 if (res->flags & IORESOURCE_MUXED) 1282 wake_up(&muxed_resource_wait); 1283 free_resource(res); 1284 return; 1285 } 1286 p = &res->sibling; 1287 } 1288 1289 write_unlock(&resource_lock); 1290 1291 printk(KERN_WARNING "Trying to free nonexistent resource " 1292 "<%016llx-%016llx>\n", (unsigned long long)start, 1293 (unsigned long long)end); 1294 } 1295 EXPORT_SYMBOL(__release_region); 1296 1297 #ifdef CONFIG_MEMORY_HOTREMOVE 1298 /** 1299 * release_mem_region_adjustable - release a previously reserved memory region 1300 * @start: resource start address 1301 * @size: resource region size 1302 * 1303 * This interface is intended for memory hot-delete. The requested region 1304 * is released from a currently busy memory resource. The requested region 1305 * must either match exactly or fit into a single busy resource entry. In 1306 * the latter case, the remaining resource is adjusted accordingly. 1307 * Existing children of the busy memory resource must be immutable in the 1308 * request. 1309 * 1310 * Note: 1311 * - Additional release conditions, such as overlapping region, can be 1312 * supported after they are confirmed as valid cases. 1313 * - When a busy memory resource gets split into two entries, the code 1314 * assumes that all children remain in the lower address entry for 1315 * simplicity. Enhance this logic when necessary. 1316 */ 1317 void release_mem_region_adjustable(resource_size_t start, resource_size_t size) 1318 { 1319 struct resource *parent = &iomem_resource; 1320 struct resource *new_res = NULL; 1321 bool alloc_nofail = false; 1322 struct resource **p; 1323 struct resource *res; 1324 resource_size_t end; 1325 1326 end = start + size - 1; 1327 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end))) 1328 return; 1329 1330 /* 1331 * We free up quite a lot of memory on memory hotunplug (esp., memap), 1332 * just before releasing the region. This is highly unlikely to 1333 * fail - let's play save and make it never fail as the caller cannot 1334 * perform any error handling (e.g., trying to re-add memory will fail 1335 * similarly). 1336 */ 1337 retry: 1338 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0)); 1339 1340 p = &parent->child; 1341 write_lock(&resource_lock); 1342 1343 while ((res = *p)) { 1344 if (res->start >= end) 1345 break; 1346 1347 /* look for the next resource if it does not fit into */ 1348 if (res->start > start || res->end < end) { 1349 p = &res->sibling; 1350 continue; 1351 } 1352 1353 /* 1354 * All memory regions added from memory-hotplug path have the 1355 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have 1356 * this flag, we know that we are dealing with a resource coming 1357 * from HMM/devm. HMM/devm use another mechanism to add/release 1358 * a resource. This goes via devm_request_mem_region and 1359 * devm_release_mem_region. 1360 * HMM/devm take care to release their resources when they want, 1361 * so if we are dealing with them, let us just back off here. 1362 */ 1363 if (!(res->flags & IORESOURCE_SYSRAM)) { 1364 break; 1365 } 1366 1367 if (!(res->flags & IORESOURCE_MEM)) 1368 break; 1369 1370 if (!(res->flags & IORESOURCE_BUSY)) { 1371 p = &res->child; 1372 continue; 1373 } 1374 1375 /* found the target resource; let's adjust accordingly */ 1376 if (res->start == start && res->end == end) { 1377 /* free the whole entry */ 1378 *p = res->sibling; 1379 free_resource(res); 1380 } else if (res->start == start && res->end != end) { 1381 /* adjust the start */ 1382 WARN_ON_ONCE(__adjust_resource(res, end + 1, 1383 res->end - end)); 1384 } else if (res->start != start && res->end == end) { 1385 /* adjust the end */ 1386 WARN_ON_ONCE(__adjust_resource(res, res->start, 1387 start - res->start)); 1388 } else { 1389 /* split into two entries - we need a new resource */ 1390 if (!new_res) { 1391 new_res = alloc_resource(GFP_ATOMIC); 1392 if (!new_res) { 1393 alloc_nofail = true; 1394 write_unlock(&resource_lock); 1395 goto retry; 1396 } 1397 } 1398 new_res->name = res->name; 1399 new_res->start = end + 1; 1400 new_res->end = res->end; 1401 new_res->flags = res->flags; 1402 new_res->desc = res->desc; 1403 new_res->parent = res->parent; 1404 new_res->sibling = res->sibling; 1405 new_res->child = NULL; 1406 1407 if (WARN_ON_ONCE(__adjust_resource(res, res->start, 1408 start - res->start))) 1409 break; 1410 res->sibling = new_res; 1411 new_res = NULL; 1412 } 1413 1414 break; 1415 } 1416 1417 write_unlock(&resource_lock); 1418 free_resource(new_res); 1419 } 1420 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1421 1422 #ifdef CONFIG_MEMORY_HOTPLUG 1423 static bool system_ram_resources_mergeable(struct resource *r1, 1424 struct resource *r2) 1425 { 1426 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */ 1427 return r1->flags == r2->flags && r1->end + 1 == r2->start && 1428 r1->name == r2->name && r1->desc == r2->desc && 1429 !r1->child && !r2->child; 1430 } 1431 1432 /** 1433 * merge_system_ram_resource - mark the System RAM resource mergeable and try to 1434 * merge it with adjacent, mergeable resources 1435 * @res: resource descriptor 1436 * 1437 * This interface is intended for memory hotplug, whereby lots of contiguous 1438 * system ram resources are added (e.g., via add_memory*()) by a driver, and 1439 * the actual resource boundaries are not of interest (e.g., it might be 1440 * relevant for DIMMs). Only resources that are marked mergeable, that have the 1441 * same parent, and that don't have any children are considered. All mergeable 1442 * resources must be immutable during the request. 1443 * 1444 * Note: 1445 * - The caller has to make sure that no pointers to resources that are 1446 * marked mergeable are used anymore after this call - the resource might 1447 * be freed and the pointer might be stale! 1448 * - release_mem_region_adjustable() will split on demand on memory hotunplug 1449 */ 1450 void merge_system_ram_resource(struct resource *res) 1451 { 1452 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 1453 struct resource *cur; 1454 1455 if (WARN_ON_ONCE((res->flags & flags) != flags)) 1456 return; 1457 1458 write_lock(&resource_lock); 1459 res->flags |= IORESOURCE_SYSRAM_MERGEABLE; 1460 1461 /* Try to merge with next item in the list. */ 1462 cur = res->sibling; 1463 if (cur && system_ram_resources_mergeable(res, cur)) { 1464 res->end = cur->end; 1465 res->sibling = cur->sibling; 1466 free_resource(cur); 1467 } 1468 1469 /* Try to merge with previous item in the list. */ 1470 cur = res->parent->child; 1471 while (cur && cur->sibling != res) 1472 cur = cur->sibling; 1473 if (cur && system_ram_resources_mergeable(cur, res)) { 1474 cur->end = res->end; 1475 cur->sibling = res->sibling; 1476 free_resource(res); 1477 } 1478 write_unlock(&resource_lock); 1479 } 1480 #endif /* CONFIG_MEMORY_HOTPLUG */ 1481 1482 /* 1483 * Managed region resource 1484 */ 1485 static void devm_resource_release(struct device *dev, void *ptr) 1486 { 1487 struct resource **r = ptr; 1488 1489 release_resource(*r); 1490 } 1491 1492 /** 1493 * devm_request_resource() - request and reserve an I/O or memory resource 1494 * @dev: device for which to request the resource 1495 * @root: root of the resource tree from which to request the resource 1496 * @new: descriptor of the resource to request 1497 * 1498 * This is a device-managed version of request_resource(). There is usually 1499 * no need to release resources requested by this function explicitly since 1500 * that will be taken care of when the device is unbound from its driver. 1501 * If for some reason the resource needs to be released explicitly, because 1502 * of ordering issues for example, drivers must call devm_release_resource() 1503 * rather than the regular release_resource(). 1504 * 1505 * When a conflict is detected between any existing resources and the newly 1506 * requested resource, an error message will be printed. 1507 * 1508 * Returns 0 on success or a negative error code on failure. 1509 */ 1510 int devm_request_resource(struct device *dev, struct resource *root, 1511 struct resource *new) 1512 { 1513 struct resource *conflict, **ptr; 1514 1515 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1516 if (!ptr) 1517 return -ENOMEM; 1518 1519 *ptr = new; 1520 1521 conflict = request_resource_conflict(root, new); 1522 if (conflict) { 1523 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1524 new, conflict->name, conflict); 1525 devres_free(ptr); 1526 return -EBUSY; 1527 } 1528 1529 devres_add(dev, ptr); 1530 return 0; 1531 } 1532 EXPORT_SYMBOL(devm_request_resource); 1533 1534 static int devm_resource_match(struct device *dev, void *res, void *data) 1535 { 1536 struct resource **ptr = res; 1537 1538 return *ptr == data; 1539 } 1540 1541 /** 1542 * devm_release_resource() - release a previously requested resource 1543 * @dev: device for which to release the resource 1544 * @new: descriptor of the resource to release 1545 * 1546 * Releases a resource previously requested using devm_request_resource(). 1547 */ 1548 void devm_release_resource(struct device *dev, struct resource *new) 1549 { 1550 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1551 new)); 1552 } 1553 EXPORT_SYMBOL(devm_release_resource); 1554 1555 struct region_devres { 1556 struct resource *parent; 1557 resource_size_t start; 1558 resource_size_t n; 1559 }; 1560 1561 static void devm_region_release(struct device *dev, void *res) 1562 { 1563 struct region_devres *this = res; 1564 1565 __release_region(this->parent, this->start, this->n); 1566 } 1567 1568 static int devm_region_match(struct device *dev, void *res, void *match_data) 1569 { 1570 struct region_devres *this = res, *match = match_data; 1571 1572 return this->parent == match->parent && 1573 this->start == match->start && this->n == match->n; 1574 } 1575 1576 struct resource * 1577 __devm_request_region(struct device *dev, struct resource *parent, 1578 resource_size_t start, resource_size_t n, const char *name) 1579 { 1580 struct region_devres *dr = NULL; 1581 struct resource *res; 1582 1583 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1584 GFP_KERNEL); 1585 if (!dr) 1586 return NULL; 1587 1588 dr->parent = parent; 1589 dr->start = start; 1590 dr->n = n; 1591 1592 res = __request_region(parent, start, n, name, 0); 1593 if (res) 1594 devres_add(dev, dr); 1595 else 1596 devres_free(dr); 1597 1598 return res; 1599 } 1600 EXPORT_SYMBOL(__devm_request_region); 1601 1602 void __devm_release_region(struct device *dev, struct resource *parent, 1603 resource_size_t start, resource_size_t n) 1604 { 1605 struct region_devres match_data = { parent, start, n }; 1606 1607 __release_region(parent, start, n); 1608 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1609 &match_data)); 1610 } 1611 EXPORT_SYMBOL(__devm_release_region); 1612 1613 /* 1614 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1615 */ 1616 #define MAXRESERVE 4 1617 static int __init reserve_setup(char *str) 1618 { 1619 static int reserved; 1620 static struct resource reserve[MAXRESERVE]; 1621 1622 for (;;) { 1623 unsigned int io_start, io_num; 1624 int x = reserved; 1625 struct resource *parent; 1626 1627 if (get_option(&str, &io_start) != 2) 1628 break; 1629 if (get_option(&str, &io_num) == 0) 1630 break; 1631 if (x < MAXRESERVE) { 1632 struct resource *res = reserve + x; 1633 1634 /* 1635 * If the region starts below 0x10000, we assume it's 1636 * I/O port space; otherwise assume it's memory. 1637 */ 1638 if (io_start < 0x10000) { 1639 res->flags = IORESOURCE_IO; 1640 parent = &ioport_resource; 1641 } else { 1642 res->flags = IORESOURCE_MEM; 1643 parent = &iomem_resource; 1644 } 1645 res->name = "reserved"; 1646 res->start = io_start; 1647 res->end = io_start + io_num - 1; 1648 res->flags |= IORESOURCE_BUSY; 1649 res->desc = IORES_DESC_NONE; 1650 res->child = NULL; 1651 if (request_resource(parent, res) == 0) 1652 reserved = x+1; 1653 } 1654 } 1655 return 1; 1656 } 1657 __setup("reserve=", reserve_setup); 1658 1659 /* 1660 * Check if the requested addr and size spans more than any slot in the 1661 * iomem resource tree. 1662 */ 1663 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1664 { 1665 struct resource *p = &iomem_resource; 1666 int err = 0; 1667 loff_t l; 1668 1669 read_lock(&resource_lock); 1670 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1671 /* 1672 * We can probably skip the resources without 1673 * IORESOURCE_IO attribute? 1674 */ 1675 if (p->start >= addr + size) 1676 continue; 1677 if (p->end < addr) 1678 continue; 1679 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1680 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1681 continue; 1682 /* 1683 * if a resource is "BUSY", it's not a hardware resource 1684 * but a driver mapping of such a resource; we don't want 1685 * to warn for those; some drivers legitimately map only 1686 * partial hardware resources. (example: vesafb) 1687 */ 1688 if (p->flags & IORESOURCE_BUSY) 1689 continue; 1690 1691 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n", 1692 (unsigned long long)addr, 1693 (unsigned long long)(addr + size - 1), 1694 p->name, p); 1695 err = -1; 1696 break; 1697 } 1698 read_unlock(&resource_lock); 1699 1700 return err; 1701 } 1702 1703 #ifdef CONFIG_STRICT_DEVMEM 1704 static int strict_iomem_checks = 1; 1705 #else 1706 static int strict_iomem_checks; 1707 #endif 1708 1709 /* 1710 * check if an address is reserved in the iomem resource tree 1711 * returns true if reserved, false if not reserved. 1712 */ 1713 bool iomem_is_exclusive(u64 addr) 1714 { 1715 struct resource *p = &iomem_resource; 1716 bool err = false; 1717 loff_t l; 1718 int size = PAGE_SIZE; 1719 1720 if (!strict_iomem_checks) 1721 return false; 1722 1723 addr = addr & PAGE_MASK; 1724 1725 read_lock(&resource_lock); 1726 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1727 /* 1728 * We can probably skip the resources without 1729 * IORESOURCE_IO attribute? 1730 */ 1731 if (p->start >= addr + size) 1732 break; 1733 if (p->end < addr) 1734 continue; 1735 /* 1736 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1737 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1738 * resource is busy. 1739 */ 1740 if ((p->flags & IORESOURCE_BUSY) == 0) 1741 continue; 1742 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1743 || p->flags & IORESOURCE_EXCLUSIVE) { 1744 err = true; 1745 break; 1746 } 1747 } 1748 read_unlock(&resource_lock); 1749 1750 return err; 1751 } 1752 1753 struct resource_entry *resource_list_create_entry(struct resource *res, 1754 size_t extra_size) 1755 { 1756 struct resource_entry *entry; 1757 1758 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1759 if (entry) { 1760 INIT_LIST_HEAD(&entry->node); 1761 entry->res = res ? res : &entry->__res; 1762 } 1763 1764 return entry; 1765 } 1766 EXPORT_SYMBOL(resource_list_create_entry); 1767 1768 void resource_list_free(struct list_head *head) 1769 { 1770 struct resource_entry *entry, *tmp; 1771 1772 list_for_each_entry_safe(entry, tmp, head, node) 1773 resource_list_destroy_entry(entry); 1774 } 1775 EXPORT_SYMBOL(resource_list_free); 1776 1777 #ifdef CONFIG_DEVICE_PRIVATE 1778 static struct resource *__request_free_mem_region(struct device *dev, 1779 struct resource *base, unsigned long size, const char *name) 1780 { 1781 resource_size_t end, addr; 1782 struct resource *res; 1783 struct region_devres *dr = NULL; 1784 1785 size = ALIGN(size, 1UL << PA_SECTION_SHIFT); 1786 end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1); 1787 addr = end - size + 1UL; 1788 1789 res = alloc_resource(GFP_KERNEL); 1790 if (!res) 1791 return ERR_PTR(-ENOMEM); 1792 1793 if (dev) { 1794 dr = devres_alloc(devm_region_release, 1795 sizeof(struct region_devres), GFP_KERNEL); 1796 if (!dr) { 1797 free_resource(res); 1798 return ERR_PTR(-ENOMEM); 1799 } 1800 } 1801 1802 write_lock(&resource_lock); 1803 for (; addr > size && addr >= base->start; addr -= size) { 1804 if (__region_intersects(addr, size, 0, IORES_DESC_NONE) != 1805 REGION_DISJOINT) 1806 continue; 1807 1808 if (__request_region_locked(res, &iomem_resource, addr, size, 1809 name, 0)) 1810 break; 1811 1812 if (dev) { 1813 dr->parent = &iomem_resource; 1814 dr->start = addr; 1815 dr->n = size; 1816 devres_add(dev, dr); 1817 } 1818 1819 res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY; 1820 write_unlock(&resource_lock); 1821 1822 /* 1823 * A driver is claiming this region so revoke any mappings. 1824 */ 1825 revoke_iomem(res); 1826 return res; 1827 } 1828 write_unlock(&resource_lock); 1829 1830 free_resource(res); 1831 if (dr) 1832 devres_free(dr); 1833 1834 return ERR_PTR(-ERANGE); 1835 } 1836 1837 /** 1838 * devm_request_free_mem_region - find free region for device private memory 1839 * 1840 * @dev: device struct to bind the resource to 1841 * @size: size in bytes of the device memory to add 1842 * @base: resource tree to look in 1843 * 1844 * This function tries to find an empty range of physical address big enough to 1845 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE 1846 * memory, which in turn allocates struct pages. 1847 */ 1848 struct resource *devm_request_free_mem_region(struct device *dev, 1849 struct resource *base, unsigned long size) 1850 { 1851 return __request_free_mem_region(dev, base, size, dev_name(dev)); 1852 } 1853 EXPORT_SYMBOL_GPL(devm_request_free_mem_region); 1854 1855 struct resource *request_free_mem_region(struct resource *base, 1856 unsigned long size, const char *name) 1857 { 1858 return __request_free_mem_region(NULL, base, size, name); 1859 } 1860 EXPORT_SYMBOL_GPL(request_free_mem_region); 1861 1862 #endif /* CONFIG_DEVICE_PRIVATE */ 1863 1864 static int __init strict_iomem(char *str) 1865 { 1866 if (strstr(str, "relaxed")) 1867 strict_iomem_checks = 0; 1868 if (strstr(str, "strict")) 1869 strict_iomem_checks = 1; 1870 return 1; 1871 } 1872 1873 static int iomem_fs_init_fs_context(struct fs_context *fc) 1874 { 1875 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM; 1876 } 1877 1878 static struct file_system_type iomem_fs_type = { 1879 .name = "iomem", 1880 .owner = THIS_MODULE, 1881 .init_fs_context = iomem_fs_init_fs_context, 1882 .kill_sb = kill_anon_super, 1883 }; 1884 1885 static int __init iomem_init_inode(void) 1886 { 1887 static struct vfsmount *iomem_vfs_mount; 1888 static int iomem_fs_cnt; 1889 struct inode *inode; 1890 int rc; 1891 1892 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt); 1893 if (rc < 0) { 1894 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc); 1895 return rc; 1896 } 1897 1898 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb); 1899 if (IS_ERR(inode)) { 1900 rc = PTR_ERR(inode); 1901 pr_err("Cannot allocate inode for iomem: %d\n", rc); 1902 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt); 1903 return rc; 1904 } 1905 1906 /* 1907 * Publish iomem revocation inode initialized. 1908 * Pairs with smp_load_acquire() in revoke_iomem(). 1909 */ 1910 smp_store_release(&iomem_inode, inode); 1911 1912 return 0; 1913 } 1914 1915 fs_initcall(iomem_init_inode); 1916 1917 __setup("iomem=", strict_iomem); 1918