xref: /linux/kernel/resource.c (revision 8b83369ddcb3fb9cab5c1088987ce477565bb630)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <asm/io.h>
31 
32 
33 struct resource ioport_resource = {
34 	.name	= "PCI IO",
35 	.start	= 0,
36 	.end	= IO_SPACE_LIMIT,
37 	.flags	= IORESOURCE_IO,
38 };
39 EXPORT_SYMBOL(ioport_resource);
40 
41 struct resource iomem_resource = {
42 	.name	= "PCI mem",
43 	.start	= 0,
44 	.end	= -1,
45 	.flags	= IORESOURCE_MEM,
46 };
47 EXPORT_SYMBOL(iomem_resource);
48 
49 /* constraints to be met while allocating resources */
50 struct resource_constraint {
51 	resource_size_t min, max, align;
52 	resource_size_t (*alignf)(void *, const struct resource *,
53 			resource_size_t, resource_size_t);
54 	void *alignf_data;
55 };
56 
57 static DEFINE_RWLOCK(resource_lock);
58 
59 /*
60  * For memory hotplug, there is no way to free resource entries allocated
61  * by boot mem after the system is up. So for reusing the resource entry
62  * we need to remember the resource.
63  */
64 static struct resource *bootmem_resource_free;
65 static DEFINE_SPINLOCK(bootmem_resource_lock);
66 
67 static struct resource *next_resource(struct resource *p, bool sibling_only)
68 {
69 	/* Caller wants to traverse through siblings only */
70 	if (sibling_only)
71 		return p->sibling;
72 
73 	if (p->child)
74 		return p->child;
75 	while (!p->sibling && p->parent)
76 		p = p->parent;
77 	return p->sibling;
78 }
79 
80 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
81 {
82 	struct resource *p = v;
83 	(*pos)++;
84 	return (void *)next_resource(p, false);
85 }
86 
87 #ifdef CONFIG_PROC_FS
88 
89 enum { MAX_IORES_LEVEL = 5 };
90 
91 static void *r_start(struct seq_file *m, loff_t *pos)
92 	__acquires(resource_lock)
93 {
94 	struct resource *p = PDE_DATA(file_inode(m->file));
95 	loff_t l = 0;
96 	read_lock(&resource_lock);
97 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
98 		;
99 	return p;
100 }
101 
102 static void r_stop(struct seq_file *m, void *v)
103 	__releases(resource_lock)
104 {
105 	read_unlock(&resource_lock);
106 }
107 
108 static int r_show(struct seq_file *m, void *v)
109 {
110 	struct resource *root = PDE_DATA(file_inode(m->file));
111 	struct resource *r = v, *p;
112 	unsigned long long start, end;
113 	int width = root->end < 0x10000 ? 4 : 8;
114 	int depth;
115 
116 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
117 		if (p->parent == root)
118 			break;
119 
120 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
121 		start = r->start;
122 		end = r->end;
123 	} else {
124 		start = end = 0;
125 	}
126 
127 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
128 			depth * 2, "",
129 			width, start,
130 			width, end,
131 			r->name ? r->name : "<BAD>");
132 	return 0;
133 }
134 
135 static const struct seq_operations resource_op = {
136 	.start	= r_start,
137 	.next	= r_next,
138 	.stop	= r_stop,
139 	.show	= r_show,
140 };
141 
142 static int __init ioresources_init(void)
143 {
144 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
145 			&ioport_resource);
146 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
147 	return 0;
148 }
149 __initcall(ioresources_init);
150 
151 #endif /* CONFIG_PROC_FS */
152 
153 static void free_resource(struct resource *res)
154 {
155 	if (!res)
156 		return;
157 
158 	if (!PageSlab(virt_to_head_page(res))) {
159 		spin_lock(&bootmem_resource_lock);
160 		res->sibling = bootmem_resource_free;
161 		bootmem_resource_free = res;
162 		spin_unlock(&bootmem_resource_lock);
163 	} else {
164 		kfree(res);
165 	}
166 }
167 
168 static struct resource *alloc_resource(gfp_t flags)
169 {
170 	struct resource *res = NULL;
171 
172 	spin_lock(&bootmem_resource_lock);
173 	if (bootmem_resource_free) {
174 		res = bootmem_resource_free;
175 		bootmem_resource_free = res->sibling;
176 	}
177 	spin_unlock(&bootmem_resource_lock);
178 
179 	if (res)
180 		memset(res, 0, sizeof(struct resource));
181 	else
182 		res = kzalloc(sizeof(struct resource), flags);
183 
184 	return res;
185 }
186 
187 /* Return the conflict entry if you can't request it */
188 static struct resource * __request_resource(struct resource *root, struct resource *new)
189 {
190 	resource_size_t start = new->start;
191 	resource_size_t end = new->end;
192 	struct resource *tmp, **p;
193 
194 	if (end < start)
195 		return root;
196 	if (start < root->start)
197 		return root;
198 	if (end > root->end)
199 		return root;
200 	p = &root->child;
201 	for (;;) {
202 		tmp = *p;
203 		if (!tmp || tmp->start > end) {
204 			new->sibling = tmp;
205 			*p = new;
206 			new->parent = root;
207 			return NULL;
208 		}
209 		p = &tmp->sibling;
210 		if (tmp->end < start)
211 			continue;
212 		return tmp;
213 	}
214 }
215 
216 static int __release_resource(struct resource *old, bool release_child)
217 {
218 	struct resource *tmp, **p, *chd;
219 
220 	p = &old->parent->child;
221 	for (;;) {
222 		tmp = *p;
223 		if (!tmp)
224 			break;
225 		if (tmp == old) {
226 			if (release_child || !(tmp->child)) {
227 				*p = tmp->sibling;
228 			} else {
229 				for (chd = tmp->child;; chd = chd->sibling) {
230 					chd->parent = tmp->parent;
231 					if (!(chd->sibling))
232 						break;
233 				}
234 				*p = tmp->child;
235 				chd->sibling = tmp->sibling;
236 			}
237 			old->parent = NULL;
238 			return 0;
239 		}
240 		p = &tmp->sibling;
241 	}
242 	return -EINVAL;
243 }
244 
245 static void __release_child_resources(struct resource *r)
246 {
247 	struct resource *tmp, *p;
248 	resource_size_t size;
249 
250 	p = r->child;
251 	r->child = NULL;
252 	while (p) {
253 		tmp = p;
254 		p = p->sibling;
255 
256 		tmp->parent = NULL;
257 		tmp->sibling = NULL;
258 		__release_child_resources(tmp);
259 
260 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
261 		/* need to restore size, and keep flags */
262 		size = resource_size(tmp);
263 		tmp->start = 0;
264 		tmp->end = size - 1;
265 	}
266 }
267 
268 void release_child_resources(struct resource *r)
269 {
270 	write_lock(&resource_lock);
271 	__release_child_resources(r);
272 	write_unlock(&resource_lock);
273 }
274 
275 /**
276  * request_resource_conflict - request and reserve an I/O or memory resource
277  * @root: root resource descriptor
278  * @new: resource descriptor desired by caller
279  *
280  * Returns 0 for success, conflict resource on error.
281  */
282 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
283 {
284 	struct resource *conflict;
285 
286 	write_lock(&resource_lock);
287 	conflict = __request_resource(root, new);
288 	write_unlock(&resource_lock);
289 	return conflict;
290 }
291 
292 /**
293  * request_resource - request and reserve an I/O or memory resource
294  * @root: root resource descriptor
295  * @new: resource descriptor desired by caller
296  *
297  * Returns 0 for success, negative error code on error.
298  */
299 int request_resource(struct resource *root, struct resource *new)
300 {
301 	struct resource *conflict;
302 
303 	conflict = request_resource_conflict(root, new);
304 	return conflict ? -EBUSY : 0;
305 }
306 
307 EXPORT_SYMBOL(request_resource);
308 
309 /**
310  * release_resource - release a previously reserved resource
311  * @old: resource pointer
312  */
313 int release_resource(struct resource *old)
314 {
315 	int retval;
316 
317 	write_lock(&resource_lock);
318 	retval = __release_resource(old, true);
319 	write_unlock(&resource_lock);
320 	return retval;
321 }
322 
323 EXPORT_SYMBOL(release_resource);
324 
325 /**
326  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
327  *			 [@start..@end].
328  *
329  * If a resource is found, returns 0 and @*res is overwritten with the part
330  * of the resource that's within [@start..@end]; if none is found, returns
331  * -ENODEV.  Returns -EINVAL for invalid parameters.
332  *
333  * This function walks the whole tree and not just first level children
334  * unless @first_lvl is true.
335  *
336  * @start:	start address of the resource searched for
337  * @end:	end address of same resource
338  * @flags:	flags which the resource must have
339  * @desc:	descriptor the resource must have
340  * @first_lvl:	walk only the first level children, if set
341  * @res:	return ptr, if resource found
342  *
343  * The caller must specify @start, @end, @flags, and @desc
344  * (which may be IORES_DESC_NONE).
345  */
346 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
347 			       unsigned long flags, unsigned long desc,
348 			       bool first_lvl, struct resource *res)
349 {
350 	bool siblings_only = true;
351 	struct resource *p;
352 
353 	if (!res)
354 		return -EINVAL;
355 
356 	if (start >= end)
357 		return -EINVAL;
358 
359 	read_lock(&resource_lock);
360 
361 	for (p = iomem_resource.child; p; p = next_resource(p, siblings_only)) {
362 		/* If we passed the resource we are looking for, stop */
363 		if (p->start > end) {
364 			p = NULL;
365 			break;
366 		}
367 
368 		/* Skip until we find a range that matches what we look for */
369 		if (p->end < start)
370 			continue;
371 
372 		/*
373 		 * Now that we found a range that matches what we look for,
374 		 * check the flags and the descriptor. If we were not asked to
375 		 * use only the first level, start looking at children as well.
376 		 */
377 		siblings_only = first_lvl;
378 
379 		if ((p->flags & flags) != flags)
380 			continue;
381 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
382 			continue;
383 
384 		/* Found a match, break */
385 		break;
386 	}
387 
388 	if (p) {
389 		/* copy data */
390 		*res = (struct resource) {
391 			.start = max(start, p->start),
392 			.end = min(end, p->end),
393 			.flags = p->flags,
394 			.desc = p->desc,
395 			.parent = p->parent,
396 		};
397 	}
398 
399 	read_unlock(&resource_lock);
400 	return p ? 0 : -ENODEV;
401 }
402 
403 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
404 				 unsigned long flags, unsigned long desc,
405 				 bool first_lvl, void *arg,
406 				 int (*func)(struct resource *, void *))
407 {
408 	struct resource res;
409 	int ret = -EINVAL;
410 
411 	while (start < end &&
412 	       !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) {
413 		ret = (*func)(&res, arg);
414 		if (ret)
415 			break;
416 
417 		start = res.end + 1;
418 	}
419 
420 	return ret;
421 }
422 
423 /**
424  * walk_iomem_res_desc - Walks through iomem resources and calls func()
425  *			 with matching resource ranges.
426  * *
427  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
428  * @flags: I/O resource flags
429  * @start: start addr
430  * @end: end addr
431  * @arg: function argument for the callback @func
432  * @func: callback function that is called for each qualifying resource area
433  *
434  * This walks through whole tree and not just first level children.
435  * All the memory ranges which overlap start,end and also match flags and
436  * desc are valid candidates.
437  *
438  * NOTE: For a new descriptor search, define a new IORES_DESC in
439  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
440  */
441 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
442 		u64 end, void *arg, int (*func)(struct resource *, void *))
443 {
444 	return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func);
445 }
446 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
447 
448 /*
449  * This function calls the @func callback against all memory ranges of type
450  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
451  * Now, this function is only for System RAM, it deals with full ranges and
452  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
453  * ranges.
454  */
455 int walk_system_ram_res(u64 start, u64 end, void *arg,
456 			int (*func)(struct resource *, void *))
457 {
458 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
459 
460 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
461 				     arg, func);
462 }
463 
464 /*
465  * This function calls the @func callback against all memory ranges, which
466  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
467  */
468 int walk_mem_res(u64 start, u64 end, void *arg,
469 		 int (*func)(struct resource *, void *))
470 {
471 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
472 
473 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
474 				     arg, func);
475 }
476 
477 /*
478  * This function calls the @func callback against all memory ranges of type
479  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
480  * It is to be used only for System RAM.
481  *
482  * This will find System RAM ranges that are children of top-level resources
483  * in addition to top-level System RAM resources.
484  */
485 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
486 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
487 {
488 	resource_size_t start, end;
489 	unsigned long flags;
490 	struct resource res;
491 	unsigned long pfn, end_pfn;
492 	int ret = -EINVAL;
493 
494 	start = (u64) start_pfn << PAGE_SHIFT;
495 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
496 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
497 	while (start < end &&
498 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE,
499 				    false, &res)) {
500 		pfn = PFN_UP(res.start);
501 		end_pfn = PFN_DOWN(res.end + 1);
502 		if (end_pfn > pfn)
503 			ret = (*func)(pfn, end_pfn - pfn, arg);
504 		if (ret)
505 			break;
506 		start = res.end + 1;
507 	}
508 	return ret;
509 }
510 
511 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
512 {
513 	return 1;
514 }
515 
516 /*
517  * This generic page_is_ram() returns true if specified address is
518  * registered as System RAM in iomem_resource list.
519  */
520 int __weak page_is_ram(unsigned long pfn)
521 {
522 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
523 }
524 EXPORT_SYMBOL_GPL(page_is_ram);
525 
526 /**
527  * region_intersects() - determine intersection of region with known resources
528  * @start: region start address
529  * @size: size of region
530  * @flags: flags of resource (in iomem_resource)
531  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
532  *
533  * Check if the specified region partially overlaps or fully eclipses a
534  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
535  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
536  * return REGION_MIXED if the region overlaps @flags/@desc and another
537  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
538  * and no other defined resource. Note that REGION_INTERSECTS is also
539  * returned in the case when the specified region overlaps RAM and undefined
540  * memory holes.
541  *
542  * region_intersect() is used by memory remapping functions to ensure
543  * the user is not remapping RAM and is a vast speed up over walking
544  * through the resource table page by page.
545  */
546 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
547 		      unsigned long desc)
548 {
549 	struct resource res;
550 	int type = 0; int other = 0;
551 	struct resource *p;
552 
553 	res.start = start;
554 	res.end = start + size - 1;
555 
556 	read_lock(&resource_lock);
557 	for (p = iomem_resource.child; p ; p = p->sibling) {
558 		bool is_type = (((p->flags & flags) == flags) &&
559 				((desc == IORES_DESC_NONE) ||
560 				 (desc == p->desc)));
561 
562 		if (resource_overlaps(p, &res))
563 			is_type ? type++ : other++;
564 	}
565 	read_unlock(&resource_lock);
566 
567 	if (type == 0)
568 		return REGION_DISJOINT;
569 
570 	if (other == 0)
571 		return REGION_INTERSECTS;
572 
573 	return REGION_MIXED;
574 }
575 EXPORT_SYMBOL_GPL(region_intersects);
576 
577 void __weak arch_remove_reservations(struct resource *avail)
578 {
579 }
580 
581 static resource_size_t simple_align_resource(void *data,
582 					     const struct resource *avail,
583 					     resource_size_t size,
584 					     resource_size_t align)
585 {
586 	return avail->start;
587 }
588 
589 static void resource_clip(struct resource *res, resource_size_t min,
590 			  resource_size_t max)
591 {
592 	if (res->start < min)
593 		res->start = min;
594 	if (res->end > max)
595 		res->end = max;
596 }
597 
598 /*
599  * Find empty slot in the resource tree with the given range and
600  * alignment constraints
601  */
602 static int __find_resource(struct resource *root, struct resource *old,
603 			 struct resource *new,
604 			 resource_size_t  size,
605 			 struct resource_constraint *constraint)
606 {
607 	struct resource *this = root->child;
608 	struct resource tmp = *new, avail, alloc;
609 
610 	tmp.start = root->start;
611 	/*
612 	 * Skip past an allocated resource that starts at 0, since the assignment
613 	 * of this->start - 1 to tmp->end below would cause an underflow.
614 	 */
615 	if (this && this->start == root->start) {
616 		tmp.start = (this == old) ? old->start : this->end + 1;
617 		this = this->sibling;
618 	}
619 	for(;;) {
620 		if (this)
621 			tmp.end = (this == old) ?  this->end : this->start - 1;
622 		else
623 			tmp.end = root->end;
624 
625 		if (tmp.end < tmp.start)
626 			goto next;
627 
628 		resource_clip(&tmp, constraint->min, constraint->max);
629 		arch_remove_reservations(&tmp);
630 
631 		/* Check for overflow after ALIGN() */
632 		avail.start = ALIGN(tmp.start, constraint->align);
633 		avail.end = tmp.end;
634 		avail.flags = new->flags & ~IORESOURCE_UNSET;
635 		if (avail.start >= tmp.start) {
636 			alloc.flags = avail.flags;
637 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
638 					size, constraint->align);
639 			alloc.end = alloc.start + size - 1;
640 			if (alloc.start <= alloc.end &&
641 			    resource_contains(&avail, &alloc)) {
642 				new->start = alloc.start;
643 				new->end = alloc.end;
644 				return 0;
645 			}
646 		}
647 
648 next:		if (!this || this->end == root->end)
649 			break;
650 
651 		if (this != old)
652 			tmp.start = this->end + 1;
653 		this = this->sibling;
654 	}
655 	return -EBUSY;
656 }
657 
658 /*
659  * Find empty slot in the resource tree given range and alignment.
660  */
661 static int find_resource(struct resource *root, struct resource *new,
662 			resource_size_t size,
663 			struct resource_constraint  *constraint)
664 {
665 	return  __find_resource(root, NULL, new, size, constraint);
666 }
667 
668 /**
669  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
670  *	The resource will be relocated if the new size cannot be reallocated in the
671  *	current location.
672  *
673  * @root: root resource descriptor
674  * @old:  resource descriptor desired by caller
675  * @newsize: new size of the resource descriptor
676  * @constraint: the size and alignment constraints to be met.
677  */
678 static int reallocate_resource(struct resource *root, struct resource *old,
679 			       resource_size_t newsize,
680 			       struct resource_constraint *constraint)
681 {
682 	int err=0;
683 	struct resource new = *old;
684 	struct resource *conflict;
685 
686 	write_lock(&resource_lock);
687 
688 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
689 		goto out;
690 
691 	if (resource_contains(&new, old)) {
692 		old->start = new.start;
693 		old->end = new.end;
694 		goto out;
695 	}
696 
697 	if (old->child) {
698 		err = -EBUSY;
699 		goto out;
700 	}
701 
702 	if (resource_contains(old, &new)) {
703 		old->start = new.start;
704 		old->end = new.end;
705 	} else {
706 		__release_resource(old, true);
707 		*old = new;
708 		conflict = __request_resource(root, old);
709 		BUG_ON(conflict);
710 	}
711 out:
712 	write_unlock(&resource_lock);
713 	return err;
714 }
715 
716 
717 /**
718  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
719  * 	The resource will be reallocated with a new size if it was already allocated
720  * @root: root resource descriptor
721  * @new: resource descriptor desired by caller
722  * @size: requested resource region size
723  * @min: minimum boundary to allocate
724  * @max: maximum boundary to allocate
725  * @align: alignment requested, in bytes
726  * @alignf: alignment function, optional, called if not NULL
727  * @alignf_data: arbitrary data to pass to the @alignf function
728  */
729 int allocate_resource(struct resource *root, struct resource *new,
730 		      resource_size_t size, resource_size_t min,
731 		      resource_size_t max, resource_size_t align,
732 		      resource_size_t (*alignf)(void *,
733 						const struct resource *,
734 						resource_size_t,
735 						resource_size_t),
736 		      void *alignf_data)
737 {
738 	int err;
739 	struct resource_constraint constraint;
740 
741 	if (!alignf)
742 		alignf = simple_align_resource;
743 
744 	constraint.min = min;
745 	constraint.max = max;
746 	constraint.align = align;
747 	constraint.alignf = alignf;
748 	constraint.alignf_data = alignf_data;
749 
750 	if ( new->parent ) {
751 		/* resource is already allocated, try reallocating with
752 		   the new constraints */
753 		return reallocate_resource(root, new, size, &constraint);
754 	}
755 
756 	write_lock(&resource_lock);
757 	err = find_resource(root, new, size, &constraint);
758 	if (err >= 0 && __request_resource(root, new))
759 		err = -EBUSY;
760 	write_unlock(&resource_lock);
761 	return err;
762 }
763 
764 EXPORT_SYMBOL(allocate_resource);
765 
766 /**
767  * lookup_resource - find an existing resource by a resource start address
768  * @root: root resource descriptor
769  * @start: resource start address
770  *
771  * Returns a pointer to the resource if found, NULL otherwise
772  */
773 struct resource *lookup_resource(struct resource *root, resource_size_t start)
774 {
775 	struct resource *res;
776 
777 	read_lock(&resource_lock);
778 	for (res = root->child; res; res = res->sibling) {
779 		if (res->start == start)
780 			break;
781 	}
782 	read_unlock(&resource_lock);
783 
784 	return res;
785 }
786 
787 /*
788  * Insert a resource into the resource tree. If successful, return NULL,
789  * otherwise return the conflicting resource (compare to __request_resource())
790  */
791 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
792 {
793 	struct resource *first, *next;
794 
795 	for (;; parent = first) {
796 		first = __request_resource(parent, new);
797 		if (!first)
798 			return first;
799 
800 		if (first == parent)
801 			return first;
802 		if (WARN_ON(first == new))	/* duplicated insertion */
803 			return first;
804 
805 		if ((first->start > new->start) || (first->end < new->end))
806 			break;
807 		if ((first->start == new->start) && (first->end == new->end))
808 			break;
809 	}
810 
811 	for (next = first; ; next = next->sibling) {
812 		/* Partial overlap? Bad, and unfixable */
813 		if (next->start < new->start || next->end > new->end)
814 			return next;
815 		if (!next->sibling)
816 			break;
817 		if (next->sibling->start > new->end)
818 			break;
819 	}
820 
821 	new->parent = parent;
822 	new->sibling = next->sibling;
823 	new->child = first;
824 
825 	next->sibling = NULL;
826 	for (next = first; next; next = next->sibling)
827 		next->parent = new;
828 
829 	if (parent->child == first) {
830 		parent->child = new;
831 	} else {
832 		next = parent->child;
833 		while (next->sibling != first)
834 			next = next->sibling;
835 		next->sibling = new;
836 	}
837 	return NULL;
838 }
839 
840 /**
841  * insert_resource_conflict - Inserts resource in the resource tree
842  * @parent: parent of the new resource
843  * @new: new resource to insert
844  *
845  * Returns 0 on success, conflict resource if the resource can't be inserted.
846  *
847  * This function is equivalent to request_resource_conflict when no conflict
848  * happens. If a conflict happens, and the conflicting resources
849  * entirely fit within the range of the new resource, then the new
850  * resource is inserted and the conflicting resources become children of
851  * the new resource.
852  *
853  * This function is intended for producers of resources, such as FW modules
854  * and bus drivers.
855  */
856 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
857 {
858 	struct resource *conflict;
859 
860 	write_lock(&resource_lock);
861 	conflict = __insert_resource(parent, new);
862 	write_unlock(&resource_lock);
863 	return conflict;
864 }
865 
866 /**
867  * insert_resource - Inserts a resource in the resource tree
868  * @parent: parent of the new resource
869  * @new: new resource to insert
870  *
871  * Returns 0 on success, -EBUSY if the resource can't be inserted.
872  *
873  * This function is intended for producers of resources, such as FW modules
874  * and bus drivers.
875  */
876 int insert_resource(struct resource *parent, struct resource *new)
877 {
878 	struct resource *conflict;
879 
880 	conflict = insert_resource_conflict(parent, new);
881 	return conflict ? -EBUSY : 0;
882 }
883 EXPORT_SYMBOL_GPL(insert_resource);
884 
885 /**
886  * insert_resource_expand_to_fit - Insert a resource into the resource tree
887  * @root: root resource descriptor
888  * @new: new resource to insert
889  *
890  * Insert a resource into the resource tree, possibly expanding it in order
891  * to make it encompass any conflicting resources.
892  */
893 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
894 {
895 	if (new->parent)
896 		return;
897 
898 	write_lock(&resource_lock);
899 	for (;;) {
900 		struct resource *conflict;
901 
902 		conflict = __insert_resource(root, new);
903 		if (!conflict)
904 			break;
905 		if (conflict == root)
906 			break;
907 
908 		/* Ok, expand resource to cover the conflict, then try again .. */
909 		if (conflict->start < new->start)
910 			new->start = conflict->start;
911 		if (conflict->end > new->end)
912 			new->end = conflict->end;
913 
914 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
915 	}
916 	write_unlock(&resource_lock);
917 }
918 
919 /**
920  * remove_resource - Remove a resource in the resource tree
921  * @old: resource to remove
922  *
923  * Returns 0 on success, -EINVAL if the resource is not valid.
924  *
925  * This function removes a resource previously inserted by insert_resource()
926  * or insert_resource_conflict(), and moves the children (if any) up to
927  * where they were before.  insert_resource() and insert_resource_conflict()
928  * insert a new resource, and move any conflicting resources down to the
929  * children of the new resource.
930  *
931  * insert_resource(), insert_resource_conflict() and remove_resource() are
932  * intended for producers of resources, such as FW modules and bus drivers.
933  */
934 int remove_resource(struct resource *old)
935 {
936 	int retval;
937 
938 	write_lock(&resource_lock);
939 	retval = __release_resource(old, false);
940 	write_unlock(&resource_lock);
941 	return retval;
942 }
943 EXPORT_SYMBOL_GPL(remove_resource);
944 
945 static int __adjust_resource(struct resource *res, resource_size_t start,
946 				resource_size_t size)
947 {
948 	struct resource *tmp, *parent = res->parent;
949 	resource_size_t end = start + size - 1;
950 	int result = -EBUSY;
951 
952 	if (!parent)
953 		goto skip;
954 
955 	if ((start < parent->start) || (end > parent->end))
956 		goto out;
957 
958 	if (res->sibling && (res->sibling->start <= end))
959 		goto out;
960 
961 	tmp = parent->child;
962 	if (tmp != res) {
963 		while (tmp->sibling != res)
964 			tmp = tmp->sibling;
965 		if (start <= tmp->end)
966 			goto out;
967 	}
968 
969 skip:
970 	for (tmp = res->child; tmp; tmp = tmp->sibling)
971 		if ((tmp->start < start) || (tmp->end > end))
972 			goto out;
973 
974 	res->start = start;
975 	res->end = end;
976 	result = 0;
977 
978  out:
979 	return result;
980 }
981 
982 /**
983  * adjust_resource - modify a resource's start and size
984  * @res: resource to modify
985  * @start: new start value
986  * @size: new size
987  *
988  * Given an existing resource, change its start and size to match the
989  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
990  * Existing children of the resource are assumed to be immutable.
991  */
992 int adjust_resource(struct resource *res, resource_size_t start,
993 		    resource_size_t size)
994 {
995 	int result;
996 
997 	write_lock(&resource_lock);
998 	result = __adjust_resource(res, start, size);
999 	write_unlock(&resource_lock);
1000 	return result;
1001 }
1002 EXPORT_SYMBOL(adjust_resource);
1003 
1004 static void __init
1005 __reserve_region_with_split(struct resource *root, resource_size_t start,
1006 			    resource_size_t end, const char *name)
1007 {
1008 	struct resource *parent = root;
1009 	struct resource *conflict;
1010 	struct resource *res = alloc_resource(GFP_ATOMIC);
1011 	struct resource *next_res = NULL;
1012 	int type = resource_type(root);
1013 
1014 	if (!res)
1015 		return;
1016 
1017 	res->name = name;
1018 	res->start = start;
1019 	res->end = end;
1020 	res->flags = type | IORESOURCE_BUSY;
1021 	res->desc = IORES_DESC_NONE;
1022 
1023 	while (1) {
1024 
1025 		conflict = __request_resource(parent, res);
1026 		if (!conflict) {
1027 			if (!next_res)
1028 				break;
1029 			res = next_res;
1030 			next_res = NULL;
1031 			continue;
1032 		}
1033 
1034 		/* conflict covered whole area */
1035 		if (conflict->start <= res->start &&
1036 				conflict->end >= res->end) {
1037 			free_resource(res);
1038 			WARN_ON(next_res);
1039 			break;
1040 		}
1041 
1042 		/* failed, split and try again */
1043 		if (conflict->start > res->start) {
1044 			end = res->end;
1045 			res->end = conflict->start - 1;
1046 			if (conflict->end < end) {
1047 				next_res = alloc_resource(GFP_ATOMIC);
1048 				if (!next_res) {
1049 					free_resource(res);
1050 					break;
1051 				}
1052 				next_res->name = name;
1053 				next_res->start = conflict->end + 1;
1054 				next_res->end = end;
1055 				next_res->flags = type | IORESOURCE_BUSY;
1056 				next_res->desc = IORES_DESC_NONE;
1057 			}
1058 		} else {
1059 			res->start = conflict->end + 1;
1060 		}
1061 	}
1062 
1063 }
1064 
1065 void __init
1066 reserve_region_with_split(struct resource *root, resource_size_t start,
1067 			  resource_size_t end, const char *name)
1068 {
1069 	int abort = 0;
1070 
1071 	write_lock(&resource_lock);
1072 	if (root->start > start || root->end < end) {
1073 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1074 		       (unsigned long long)start, (unsigned long long)end,
1075 		       root);
1076 		if (start > root->end || end < root->start)
1077 			abort = 1;
1078 		else {
1079 			if (end > root->end)
1080 				end = root->end;
1081 			if (start < root->start)
1082 				start = root->start;
1083 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1084 			       (unsigned long long)start,
1085 			       (unsigned long long)end);
1086 		}
1087 		dump_stack();
1088 	}
1089 	if (!abort)
1090 		__reserve_region_with_split(root, start, end, name);
1091 	write_unlock(&resource_lock);
1092 }
1093 
1094 /**
1095  * resource_alignment - calculate resource's alignment
1096  * @res: resource pointer
1097  *
1098  * Returns alignment on success, 0 (invalid alignment) on failure.
1099  */
1100 resource_size_t resource_alignment(struct resource *res)
1101 {
1102 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1103 	case IORESOURCE_SIZEALIGN:
1104 		return resource_size(res);
1105 	case IORESOURCE_STARTALIGN:
1106 		return res->start;
1107 	default:
1108 		return 0;
1109 	}
1110 }
1111 
1112 /*
1113  * This is compatibility stuff for IO resources.
1114  *
1115  * Note how this, unlike the above, knows about
1116  * the IO flag meanings (busy etc).
1117  *
1118  * request_region creates a new busy region.
1119  *
1120  * release_region releases a matching busy region.
1121  */
1122 
1123 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1124 
1125 static struct inode *iomem_inode;
1126 
1127 #ifdef CONFIG_IO_STRICT_DEVMEM
1128 static void revoke_iomem(struct resource *res)
1129 {
1130 	/* pairs with smp_store_release() in iomem_init_inode() */
1131 	struct inode *inode = smp_load_acquire(&iomem_inode);
1132 
1133 	/*
1134 	 * Check that the initialization has completed. Losing the race
1135 	 * is ok because it means drivers are claiming resources before
1136 	 * the fs_initcall level of init and prevent iomem_get_mapping users
1137 	 * from establishing mappings.
1138 	 */
1139 	if (!inode)
1140 		return;
1141 
1142 	/*
1143 	 * The expectation is that the driver has successfully marked
1144 	 * the resource busy by this point, so devmem_is_allowed()
1145 	 * should start returning false, however for performance this
1146 	 * does not iterate the entire resource range.
1147 	 */
1148 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1149 	    devmem_is_allowed(PHYS_PFN(res->end))) {
1150 		/*
1151 		 * *cringe* iomem=relaxed says "go ahead, what's the
1152 		 * worst that can happen?"
1153 		 */
1154 		return;
1155 	}
1156 
1157 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1158 }
1159 #else
1160 static void revoke_iomem(struct resource *res) {}
1161 #endif
1162 
1163 struct address_space *iomem_get_mapping(void)
1164 {
1165 	/*
1166 	 * This function is only called from file open paths, hence guaranteed
1167 	 * that fs_initcalls have completed and no need to check for NULL. But
1168 	 * since revoke_iomem can be called before the initcall we still need
1169 	 * the barrier to appease checkers.
1170 	 */
1171 	return smp_load_acquire(&iomem_inode)->i_mapping;
1172 }
1173 
1174 /**
1175  * __request_region - create a new busy resource region
1176  * @parent: parent resource descriptor
1177  * @start: resource start address
1178  * @n: resource region size
1179  * @name: reserving caller's ID string
1180  * @flags: IO resource flags
1181  */
1182 struct resource * __request_region(struct resource *parent,
1183 				   resource_size_t start, resource_size_t n,
1184 				   const char *name, int flags)
1185 {
1186 	DECLARE_WAITQUEUE(wait, current);
1187 	struct resource *res = alloc_resource(GFP_KERNEL);
1188 	struct resource *orig_parent = parent;
1189 
1190 	if (!res)
1191 		return NULL;
1192 
1193 	res->name = name;
1194 	res->start = start;
1195 	res->end = start + n - 1;
1196 
1197 	write_lock(&resource_lock);
1198 
1199 	for (;;) {
1200 		struct resource *conflict;
1201 
1202 		res->flags = resource_type(parent) | resource_ext_type(parent);
1203 		res->flags |= IORESOURCE_BUSY | flags;
1204 		res->desc = parent->desc;
1205 
1206 		conflict = __request_resource(parent, res);
1207 		if (!conflict)
1208 			break;
1209 		/*
1210 		 * mm/hmm.c reserves physical addresses which then
1211 		 * become unavailable to other users.  Conflicts are
1212 		 * not expected.  Warn to aid debugging if encountered.
1213 		 */
1214 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1215 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1216 				conflict->name, conflict, res);
1217 		}
1218 		if (conflict != parent) {
1219 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1220 				parent = conflict;
1221 				continue;
1222 			}
1223 		}
1224 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1225 			add_wait_queue(&muxed_resource_wait, &wait);
1226 			write_unlock(&resource_lock);
1227 			set_current_state(TASK_UNINTERRUPTIBLE);
1228 			schedule();
1229 			remove_wait_queue(&muxed_resource_wait, &wait);
1230 			write_lock(&resource_lock);
1231 			continue;
1232 		}
1233 		/* Uhhuh, that didn't work out.. */
1234 		free_resource(res);
1235 		res = NULL;
1236 		break;
1237 	}
1238 	write_unlock(&resource_lock);
1239 
1240 	if (res && orig_parent == &iomem_resource)
1241 		revoke_iomem(res);
1242 
1243 	return res;
1244 }
1245 EXPORT_SYMBOL(__request_region);
1246 
1247 /**
1248  * __release_region - release a previously reserved resource region
1249  * @parent: parent resource descriptor
1250  * @start: resource start address
1251  * @n: resource region size
1252  *
1253  * The described resource region must match a currently busy region.
1254  */
1255 void __release_region(struct resource *parent, resource_size_t start,
1256 		      resource_size_t n)
1257 {
1258 	struct resource **p;
1259 	resource_size_t end;
1260 
1261 	p = &parent->child;
1262 	end = start + n - 1;
1263 
1264 	write_lock(&resource_lock);
1265 
1266 	for (;;) {
1267 		struct resource *res = *p;
1268 
1269 		if (!res)
1270 			break;
1271 		if (res->start <= start && res->end >= end) {
1272 			if (!(res->flags & IORESOURCE_BUSY)) {
1273 				p = &res->child;
1274 				continue;
1275 			}
1276 			if (res->start != start || res->end != end)
1277 				break;
1278 			*p = res->sibling;
1279 			write_unlock(&resource_lock);
1280 			if (res->flags & IORESOURCE_MUXED)
1281 				wake_up(&muxed_resource_wait);
1282 			free_resource(res);
1283 			return;
1284 		}
1285 		p = &res->sibling;
1286 	}
1287 
1288 	write_unlock(&resource_lock);
1289 
1290 	printk(KERN_WARNING "Trying to free nonexistent resource "
1291 		"<%016llx-%016llx>\n", (unsigned long long)start,
1292 		(unsigned long long)end);
1293 }
1294 EXPORT_SYMBOL(__release_region);
1295 
1296 #ifdef CONFIG_MEMORY_HOTREMOVE
1297 /**
1298  * release_mem_region_adjustable - release a previously reserved memory region
1299  * @start: resource start address
1300  * @size: resource region size
1301  *
1302  * This interface is intended for memory hot-delete.  The requested region
1303  * is released from a currently busy memory resource.  The requested region
1304  * must either match exactly or fit into a single busy resource entry.  In
1305  * the latter case, the remaining resource is adjusted accordingly.
1306  * Existing children of the busy memory resource must be immutable in the
1307  * request.
1308  *
1309  * Note:
1310  * - Additional release conditions, such as overlapping region, can be
1311  *   supported after they are confirmed as valid cases.
1312  * - When a busy memory resource gets split into two entries, the code
1313  *   assumes that all children remain in the lower address entry for
1314  *   simplicity.  Enhance this logic when necessary.
1315  */
1316 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1317 {
1318 	struct resource *parent = &iomem_resource;
1319 	struct resource *new_res = NULL;
1320 	bool alloc_nofail = false;
1321 	struct resource **p;
1322 	struct resource *res;
1323 	resource_size_t end;
1324 
1325 	end = start + size - 1;
1326 	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1327 		return;
1328 
1329 	/*
1330 	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1331 	 * just before releasing the region. This is highly unlikely to
1332 	 * fail - let's play save and make it never fail as the caller cannot
1333 	 * perform any error handling (e.g., trying to re-add memory will fail
1334 	 * similarly).
1335 	 */
1336 retry:
1337 	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1338 
1339 	p = &parent->child;
1340 	write_lock(&resource_lock);
1341 
1342 	while ((res = *p)) {
1343 		if (res->start >= end)
1344 			break;
1345 
1346 		/* look for the next resource if it does not fit into */
1347 		if (res->start > start || res->end < end) {
1348 			p = &res->sibling;
1349 			continue;
1350 		}
1351 
1352 		/*
1353 		 * All memory regions added from memory-hotplug path have the
1354 		 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1355 		 * this flag, we know that we are dealing with a resource coming
1356 		 * from HMM/devm. HMM/devm use another mechanism to add/release
1357 		 * a resource. This goes via devm_request_mem_region and
1358 		 * devm_release_mem_region.
1359 		 * HMM/devm take care to release their resources when they want,
1360 		 * so if we are dealing with them, let us just back off here.
1361 		 */
1362 		if (!(res->flags & IORESOURCE_SYSRAM)) {
1363 			break;
1364 		}
1365 
1366 		if (!(res->flags & IORESOURCE_MEM))
1367 			break;
1368 
1369 		if (!(res->flags & IORESOURCE_BUSY)) {
1370 			p = &res->child;
1371 			continue;
1372 		}
1373 
1374 		/* found the target resource; let's adjust accordingly */
1375 		if (res->start == start && res->end == end) {
1376 			/* free the whole entry */
1377 			*p = res->sibling;
1378 			free_resource(res);
1379 		} else if (res->start == start && res->end != end) {
1380 			/* adjust the start */
1381 			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1382 						       res->end - end));
1383 		} else if (res->start != start && res->end == end) {
1384 			/* adjust the end */
1385 			WARN_ON_ONCE(__adjust_resource(res, res->start,
1386 						       start - res->start));
1387 		} else {
1388 			/* split into two entries - we need a new resource */
1389 			if (!new_res) {
1390 				new_res = alloc_resource(GFP_ATOMIC);
1391 				if (!new_res) {
1392 					alloc_nofail = true;
1393 					write_unlock(&resource_lock);
1394 					goto retry;
1395 				}
1396 			}
1397 			new_res->name = res->name;
1398 			new_res->start = end + 1;
1399 			new_res->end = res->end;
1400 			new_res->flags = res->flags;
1401 			new_res->desc = res->desc;
1402 			new_res->parent = res->parent;
1403 			new_res->sibling = res->sibling;
1404 			new_res->child = NULL;
1405 
1406 			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1407 							   start - res->start)))
1408 				break;
1409 			res->sibling = new_res;
1410 			new_res = NULL;
1411 		}
1412 
1413 		break;
1414 	}
1415 
1416 	write_unlock(&resource_lock);
1417 	free_resource(new_res);
1418 }
1419 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1420 
1421 #ifdef CONFIG_MEMORY_HOTPLUG
1422 static bool system_ram_resources_mergeable(struct resource *r1,
1423 					   struct resource *r2)
1424 {
1425 	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1426 	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1427 	       r1->name == r2->name && r1->desc == r2->desc &&
1428 	       !r1->child && !r2->child;
1429 }
1430 
1431 /**
1432  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1433  *	merge it with adjacent, mergeable resources
1434  * @res: resource descriptor
1435  *
1436  * This interface is intended for memory hotplug, whereby lots of contiguous
1437  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1438  * the actual resource boundaries are not of interest (e.g., it might be
1439  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1440  * same parent, and that don't have any children are considered. All mergeable
1441  * resources must be immutable during the request.
1442  *
1443  * Note:
1444  * - The caller has to make sure that no pointers to resources that are
1445  *   marked mergeable are used anymore after this call - the resource might
1446  *   be freed and the pointer might be stale!
1447  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1448  */
1449 void merge_system_ram_resource(struct resource *res)
1450 {
1451 	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1452 	struct resource *cur;
1453 
1454 	if (WARN_ON_ONCE((res->flags & flags) != flags))
1455 		return;
1456 
1457 	write_lock(&resource_lock);
1458 	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1459 
1460 	/* Try to merge with next item in the list. */
1461 	cur = res->sibling;
1462 	if (cur && system_ram_resources_mergeable(res, cur)) {
1463 		res->end = cur->end;
1464 		res->sibling = cur->sibling;
1465 		free_resource(cur);
1466 	}
1467 
1468 	/* Try to merge with previous item in the list. */
1469 	cur = res->parent->child;
1470 	while (cur && cur->sibling != res)
1471 		cur = cur->sibling;
1472 	if (cur && system_ram_resources_mergeable(cur, res)) {
1473 		cur->end = res->end;
1474 		cur->sibling = res->sibling;
1475 		free_resource(res);
1476 	}
1477 	write_unlock(&resource_lock);
1478 }
1479 #endif	/* CONFIG_MEMORY_HOTPLUG */
1480 
1481 /*
1482  * Managed region resource
1483  */
1484 static void devm_resource_release(struct device *dev, void *ptr)
1485 {
1486 	struct resource **r = ptr;
1487 
1488 	release_resource(*r);
1489 }
1490 
1491 /**
1492  * devm_request_resource() - request and reserve an I/O or memory resource
1493  * @dev: device for which to request the resource
1494  * @root: root of the resource tree from which to request the resource
1495  * @new: descriptor of the resource to request
1496  *
1497  * This is a device-managed version of request_resource(). There is usually
1498  * no need to release resources requested by this function explicitly since
1499  * that will be taken care of when the device is unbound from its driver.
1500  * If for some reason the resource needs to be released explicitly, because
1501  * of ordering issues for example, drivers must call devm_release_resource()
1502  * rather than the regular release_resource().
1503  *
1504  * When a conflict is detected between any existing resources and the newly
1505  * requested resource, an error message will be printed.
1506  *
1507  * Returns 0 on success or a negative error code on failure.
1508  */
1509 int devm_request_resource(struct device *dev, struct resource *root,
1510 			  struct resource *new)
1511 {
1512 	struct resource *conflict, **ptr;
1513 
1514 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1515 	if (!ptr)
1516 		return -ENOMEM;
1517 
1518 	*ptr = new;
1519 
1520 	conflict = request_resource_conflict(root, new);
1521 	if (conflict) {
1522 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1523 			new, conflict->name, conflict);
1524 		devres_free(ptr);
1525 		return -EBUSY;
1526 	}
1527 
1528 	devres_add(dev, ptr);
1529 	return 0;
1530 }
1531 EXPORT_SYMBOL(devm_request_resource);
1532 
1533 static int devm_resource_match(struct device *dev, void *res, void *data)
1534 {
1535 	struct resource **ptr = res;
1536 
1537 	return *ptr == data;
1538 }
1539 
1540 /**
1541  * devm_release_resource() - release a previously requested resource
1542  * @dev: device for which to release the resource
1543  * @new: descriptor of the resource to release
1544  *
1545  * Releases a resource previously requested using devm_request_resource().
1546  */
1547 void devm_release_resource(struct device *dev, struct resource *new)
1548 {
1549 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1550 			       new));
1551 }
1552 EXPORT_SYMBOL(devm_release_resource);
1553 
1554 struct region_devres {
1555 	struct resource *parent;
1556 	resource_size_t start;
1557 	resource_size_t n;
1558 };
1559 
1560 static void devm_region_release(struct device *dev, void *res)
1561 {
1562 	struct region_devres *this = res;
1563 
1564 	__release_region(this->parent, this->start, this->n);
1565 }
1566 
1567 static int devm_region_match(struct device *dev, void *res, void *match_data)
1568 {
1569 	struct region_devres *this = res, *match = match_data;
1570 
1571 	return this->parent == match->parent &&
1572 		this->start == match->start && this->n == match->n;
1573 }
1574 
1575 struct resource *
1576 __devm_request_region(struct device *dev, struct resource *parent,
1577 		      resource_size_t start, resource_size_t n, const char *name)
1578 {
1579 	struct region_devres *dr = NULL;
1580 	struct resource *res;
1581 
1582 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1583 			  GFP_KERNEL);
1584 	if (!dr)
1585 		return NULL;
1586 
1587 	dr->parent = parent;
1588 	dr->start = start;
1589 	dr->n = n;
1590 
1591 	res = __request_region(parent, start, n, name, 0);
1592 	if (res)
1593 		devres_add(dev, dr);
1594 	else
1595 		devres_free(dr);
1596 
1597 	return res;
1598 }
1599 EXPORT_SYMBOL(__devm_request_region);
1600 
1601 void __devm_release_region(struct device *dev, struct resource *parent,
1602 			   resource_size_t start, resource_size_t n)
1603 {
1604 	struct region_devres match_data = { parent, start, n };
1605 
1606 	__release_region(parent, start, n);
1607 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1608 			       &match_data));
1609 }
1610 EXPORT_SYMBOL(__devm_release_region);
1611 
1612 /*
1613  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1614  */
1615 #define MAXRESERVE 4
1616 static int __init reserve_setup(char *str)
1617 {
1618 	static int reserved;
1619 	static struct resource reserve[MAXRESERVE];
1620 
1621 	for (;;) {
1622 		unsigned int io_start, io_num;
1623 		int x = reserved;
1624 		struct resource *parent;
1625 
1626 		if (get_option(&str, &io_start) != 2)
1627 			break;
1628 		if (get_option(&str, &io_num) == 0)
1629 			break;
1630 		if (x < MAXRESERVE) {
1631 			struct resource *res = reserve + x;
1632 
1633 			/*
1634 			 * If the region starts below 0x10000, we assume it's
1635 			 * I/O port space; otherwise assume it's memory.
1636 			 */
1637 			if (io_start < 0x10000) {
1638 				res->flags = IORESOURCE_IO;
1639 				parent = &ioport_resource;
1640 			} else {
1641 				res->flags = IORESOURCE_MEM;
1642 				parent = &iomem_resource;
1643 			}
1644 			res->name = "reserved";
1645 			res->start = io_start;
1646 			res->end = io_start + io_num - 1;
1647 			res->flags |= IORESOURCE_BUSY;
1648 			res->desc = IORES_DESC_NONE;
1649 			res->child = NULL;
1650 			if (request_resource(parent, res) == 0)
1651 				reserved = x+1;
1652 		}
1653 	}
1654 	return 1;
1655 }
1656 __setup("reserve=", reserve_setup);
1657 
1658 /*
1659  * Check if the requested addr and size spans more than any slot in the
1660  * iomem resource tree.
1661  */
1662 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1663 {
1664 	struct resource *p = &iomem_resource;
1665 	int err = 0;
1666 	loff_t l;
1667 
1668 	read_lock(&resource_lock);
1669 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1670 		/*
1671 		 * We can probably skip the resources without
1672 		 * IORESOURCE_IO attribute?
1673 		 */
1674 		if (p->start >= addr + size)
1675 			continue;
1676 		if (p->end < addr)
1677 			continue;
1678 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1679 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1680 			continue;
1681 		/*
1682 		 * if a resource is "BUSY", it's not a hardware resource
1683 		 * but a driver mapping of such a resource; we don't want
1684 		 * to warn for those; some drivers legitimately map only
1685 		 * partial hardware resources. (example: vesafb)
1686 		 */
1687 		if (p->flags & IORESOURCE_BUSY)
1688 			continue;
1689 
1690 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1691 		       (unsigned long long)addr,
1692 		       (unsigned long long)(addr + size - 1),
1693 		       p->name, p);
1694 		err = -1;
1695 		break;
1696 	}
1697 	read_unlock(&resource_lock);
1698 
1699 	return err;
1700 }
1701 
1702 #ifdef CONFIG_STRICT_DEVMEM
1703 static int strict_iomem_checks = 1;
1704 #else
1705 static int strict_iomem_checks;
1706 #endif
1707 
1708 /*
1709  * check if an address is reserved in the iomem resource tree
1710  * returns true if reserved, false if not reserved.
1711  */
1712 bool iomem_is_exclusive(u64 addr)
1713 {
1714 	struct resource *p = &iomem_resource;
1715 	bool err = false;
1716 	loff_t l;
1717 	int size = PAGE_SIZE;
1718 
1719 	if (!strict_iomem_checks)
1720 		return false;
1721 
1722 	addr = addr & PAGE_MASK;
1723 
1724 	read_lock(&resource_lock);
1725 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1726 		/*
1727 		 * We can probably skip the resources without
1728 		 * IORESOURCE_IO attribute?
1729 		 */
1730 		if (p->start >= addr + size)
1731 			break;
1732 		if (p->end < addr)
1733 			continue;
1734 		/*
1735 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1736 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1737 		 * resource is busy.
1738 		 */
1739 		if ((p->flags & IORESOURCE_BUSY) == 0)
1740 			continue;
1741 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1742 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1743 			err = true;
1744 			break;
1745 		}
1746 	}
1747 	read_unlock(&resource_lock);
1748 
1749 	return err;
1750 }
1751 
1752 struct resource_entry *resource_list_create_entry(struct resource *res,
1753 						  size_t extra_size)
1754 {
1755 	struct resource_entry *entry;
1756 
1757 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1758 	if (entry) {
1759 		INIT_LIST_HEAD(&entry->node);
1760 		entry->res = res ? res : &entry->__res;
1761 	}
1762 
1763 	return entry;
1764 }
1765 EXPORT_SYMBOL(resource_list_create_entry);
1766 
1767 void resource_list_free(struct list_head *head)
1768 {
1769 	struct resource_entry *entry, *tmp;
1770 
1771 	list_for_each_entry_safe(entry, tmp, head, node)
1772 		resource_list_destroy_entry(entry);
1773 }
1774 EXPORT_SYMBOL(resource_list_free);
1775 
1776 #ifdef CONFIG_DEVICE_PRIVATE
1777 static struct resource *__request_free_mem_region(struct device *dev,
1778 		struct resource *base, unsigned long size, const char *name)
1779 {
1780 	resource_size_t end, addr;
1781 	struct resource *res;
1782 
1783 	size = ALIGN(size, 1UL << PA_SECTION_SHIFT);
1784 	end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1);
1785 	addr = end - size + 1UL;
1786 
1787 	for (; addr > size && addr >= base->start; addr -= size) {
1788 		if (region_intersects(addr, size, 0, IORES_DESC_NONE) !=
1789 				REGION_DISJOINT)
1790 			continue;
1791 
1792 		if (dev)
1793 			res = devm_request_mem_region(dev, addr, size, name);
1794 		else
1795 			res = request_mem_region(addr, size, name);
1796 		if (!res)
1797 			return ERR_PTR(-ENOMEM);
1798 		res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1799 		return res;
1800 	}
1801 
1802 	return ERR_PTR(-ERANGE);
1803 }
1804 
1805 /**
1806  * devm_request_free_mem_region - find free region for device private memory
1807  *
1808  * @dev: device struct to bind the resource to
1809  * @size: size in bytes of the device memory to add
1810  * @base: resource tree to look in
1811  *
1812  * This function tries to find an empty range of physical address big enough to
1813  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1814  * memory, which in turn allocates struct pages.
1815  */
1816 struct resource *devm_request_free_mem_region(struct device *dev,
1817 		struct resource *base, unsigned long size)
1818 {
1819 	return __request_free_mem_region(dev, base, size, dev_name(dev));
1820 }
1821 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1822 
1823 struct resource *request_free_mem_region(struct resource *base,
1824 		unsigned long size, const char *name)
1825 {
1826 	return __request_free_mem_region(NULL, base, size, name);
1827 }
1828 EXPORT_SYMBOL_GPL(request_free_mem_region);
1829 
1830 #endif /* CONFIG_DEVICE_PRIVATE */
1831 
1832 static int __init strict_iomem(char *str)
1833 {
1834 	if (strstr(str, "relaxed"))
1835 		strict_iomem_checks = 0;
1836 	if (strstr(str, "strict"))
1837 		strict_iomem_checks = 1;
1838 	return 1;
1839 }
1840 
1841 static int iomem_fs_init_fs_context(struct fs_context *fc)
1842 {
1843 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
1844 }
1845 
1846 static struct file_system_type iomem_fs_type = {
1847 	.name		= "iomem",
1848 	.owner		= THIS_MODULE,
1849 	.init_fs_context = iomem_fs_init_fs_context,
1850 	.kill_sb	= kill_anon_super,
1851 };
1852 
1853 static int __init iomem_init_inode(void)
1854 {
1855 	static struct vfsmount *iomem_vfs_mount;
1856 	static int iomem_fs_cnt;
1857 	struct inode *inode;
1858 	int rc;
1859 
1860 	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
1861 	if (rc < 0) {
1862 		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
1863 		return rc;
1864 	}
1865 
1866 	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
1867 	if (IS_ERR(inode)) {
1868 		rc = PTR_ERR(inode);
1869 		pr_err("Cannot allocate inode for iomem: %d\n", rc);
1870 		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
1871 		return rc;
1872 	}
1873 
1874 	/*
1875 	 * Publish iomem revocation inode initialized.
1876 	 * Pairs with smp_load_acquire() in revoke_iomem().
1877 	 */
1878 	smp_store_release(&iomem_inode, inode);
1879 
1880 	return 0;
1881 }
1882 
1883 fs_initcall(iomem_init_inode);
1884 
1885 __setup("iomem=", strict_iomem);
1886