1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/resource.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 7 * 8 * Arbitrary resource management. 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/export.h> 14 #include <linux/errno.h> 15 #include <linux/ioport.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/proc_fs.h> 21 #include <linux/pseudo_fs.h> 22 #include <linux/sched.h> 23 #include <linux/seq_file.h> 24 #include <linux/device.h> 25 #include <linux/pfn.h> 26 #include <linux/mm.h> 27 #include <linux/mount.h> 28 #include <linux/resource_ext.h> 29 #include <uapi/linux/magic.h> 30 #include <linux/string.h> 31 #include <linux/vmalloc.h> 32 #include <asm/io.h> 33 34 35 struct resource ioport_resource = { 36 .name = "PCI IO", 37 .start = 0, 38 .end = IO_SPACE_LIMIT, 39 .flags = IORESOURCE_IO, 40 }; 41 EXPORT_SYMBOL(ioport_resource); 42 43 struct resource iomem_resource = { 44 .name = "PCI mem", 45 .start = 0, 46 .end = -1, 47 .flags = IORESOURCE_MEM, 48 }; 49 EXPORT_SYMBOL(iomem_resource); 50 51 static DEFINE_RWLOCK(resource_lock); 52 53 static struct resource *next_resource(struct resource *p, bool skip_children) 54 { 55 if (!skip_children && p->child) 56 return p->child; 57 while (!p->sibling && p->parent) 58 p = p->parent; 59 return p->sibling; 60 } 61 62 #define for_each_resource(_root, _p, _skip_children) \ 63 for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children)) 64 65 #ifdef CONFIG_PROC_FS 66 67 enum { MAX_IORES_LEVEL = 5 }; 68 69 static void *r_start(struct seq_file *m, loff_t *pos) 70 __acquires(resource_lock) 71 { 72 struct resource *root = pde_data(file_inode(m->file)); 73 struct resource *p; 74 loff_t l = *pos; 75 76 read_lock(&resource_lock); 77 for_each_resource(root, p, false) { 78 if (l-- == 0) 79 break; 80 } 81 82 return p; 83 } 84 85 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 86 { 87 struct resource *p = v; 88 89 (*pos)++; 90 91 return (void *)next_resource(p, false); 92 } 93 94 static void r_stop(struct seq_file *m, void *v) 95 __releases(resource_lock) 96 { 97 read_unlock(&resource_lock); 98 } 99 100 static int r_show(struct seq_file *m, void *v) 101 { 102 struct resource *root = pde_data(file_inode(m->file)); 103 struct resource *r = v, *p; 104 unsigned long long start, end; 105 int width = root->end < 0x10000 ? 4 : 8; 106 int depth; 107 108 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 109 if (p->parent == root) 110 break; 111 112 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 113 start = r->start; 114 end = r->end; 115 } else { 116 start = end = 0; 117 } 118 119 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 120 depth * 2, "", 121 width, start, 122 width, end, 123 r->name ? r->name : "<BAD>"); 124 return 0; 125 } 126 127 static const struct seq_operations resource_op = { 128 .start = r_start, 129 .next = r_next, 130 .stop = r_stop, 131 .show = r_show, 132 }; 133 134 static int __init ioresources_init(void) 135 { 136 proc_create_seq_data("ioports", 0, NULL, &resource_op, 137 &ioport_resource); 138 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 139 return 0; 140 } 141 __initcall(ioresources_init); 142 143 #endif /* CONFIG_PROC_FS */ 144 145 static void free_resource(struct resource *res) 146 { 147 /** 148 * If the resource was allocated using memblock early during boot 149 * we'll leak it here: we can only return full pages back to the 150 * buddy and trying to be smart and reusing them eventually in 151 * alloc_resource() overcomplicates resource handling. 152 */ 153 if (res && PageSlab(virt_to_head_page(res))) 154 kfree(res); 155 } 156 157 static struct resource *alloc_resource(gfp_t flags) 158 { 159 return kzalloc(sizeof(struct resource), flags); 160 } 161 162 /* Return the conflict entry if you can't request it */ 163 static struct resource * __request_resource(struct resource *root, struct resource *new) 164 { 165 resource_size_t start = new->start; 166 resource_size_t end = new->end; 167 struct resource *tmp, **p; 168 169 if (end < start) 170 return root; 171 if (start < root->start) 172 return root; 173 if (end > root->end) 174 return root; 175 p = &root->child; 176 for (;;) { 177 tmp = *p; 178 if (!tmp || tmp->start > end) { 179 new->sibling = tmp; 180 *p = new; 181 new->parent = root; 182 return NULL; 183 } 184 p = &tmp->sibling; 185 if (tmp->end < start) 186 continue; 187 return tmp; 188 } 189 } 190 191 static int __release_resource(struct resource *old, bool release_child) 192 { 193 struct resource *tmp, **p, *chd; 194 195 p = &old->parent->child; 196 for (;;) { 197 tmp = *p; 198 if (!tmp) 199 break; 200 if (tmp == old) { 201 if (release_child || !(tmp->child)) { 202 *p = tmp->sibling; 203 } else { 204 for (chd = tmp->child;; chd = chd->sibling) { 205 chd->parent = tmp->parent; 206 if (!(chd->sibling)) 207 break; 208 } 209 *p = tmp->child; 210 chd->sibling = tmp->sibling; 211 } 212 old->parent = NULL; 213 return 0; 214 } 215 p = &tmp->sibling; 216 } 217 return -EINVAL; 218 } 219 220 static void __release_child_resources(struct resource *r) 221 { 222 struct resource *tmp, *p; 223 resource_size_t size; 224 225 p = r->child; 226 r->child = NULL; 227 while (p) { 228 tmp = p; 229 p = p->sibling; 230 231 tmp->parent = NULL; 232 tmp->sibling = NULL; 233 __release_child_resources(tmp); 234 235 printk(KERN_DEBUG "release child resource %pR\n", tmp); 236 /* need to restore size, and keep flags */ 237 size = resource_size(tmp); 238 tmp->start = 0; 239 tmp->end = size - 1; 240 } 241 } 242 243 void release_child_resources(struct resource *r) 244 { 245 write_lock(&resource_lock); 246 __release_child_resources(r); 247 write_unlock(&resource_lock); 248 } 249 250 /** 251 * request_resource_conflict - request and reserve an I/O or memory resource 252 * @root: root resource descriptor 253 * @new: resource descriptor desired by caller 254 * 255 * Returns 0 for success, conflict resource on error. 256 */ 257 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 258 { 259 struct resource *conflict; 260 261 write_lock(&resource_lock); 262 conflict = __request_resource(root, new); 263 write_unlock(&resource_lock); 264 return conflict; 265 } 266 267 /** 268 * request_resource - request and reserve an I/O or memory resource 269 * @root: root resource descriptor 270 * @new: resource descriptor desired by caller 271 * 272 * Returns 0 for success, negative error code on error. 273 */ 274 int request_resource(struct resource *root, struct resource *new) 275 { 276 struct resource *conflict; 277 278 conflict = request_resource_conflict(root, new); 279 return conflict ? -EBUSY : 0; 280 } 281 282 EXPORT_SYMBOL(request_resource); 283 284 /** 285 * release_resource - release a previously reserved resource 286 * @old: resource pointer 287 */ 288 int release_resource(struct resource *old) 289 { 290 int retval; 291 292 write_lock(&resource_lock); 293 retval = __release_resource(old, true); 294 write_unlock(&resource_lock); 295 return retval; 296 } 297 298 EXPORT_SYMBOL(release_resource); 299 300 /** 301 * find_next_iomem_res - Finds the lowest iomem resource that covers part of 302 * [@start..@end]. 303 * 304 * If a resource is found, returns 0 and @*res is overwritten with the part 305 * of the resource that's within [@start..@end]; if none is found, returns 306 * -ENODEV. Returns -EINVAL for invalid parameters. 307 * 308 * @start: start address of the resource searched for 309 * @end: end address of same resource 310 * @flags: flags which the resource must have 311 * @desc: descriptor the resource must have 312 * @res: return ptr, if resource found 313 * 314 * The caller must specify @start, @end, @flags, and @desc 315 * (which may be IORES_DESC_NONE). 316 */ 317 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 318 unsigned long flags, unsigned long desc, 319 struct resource *res) 320 { 321 struct resource *p; 322 323 if (!res) 324 return -EINVAL; 325 326 if (start >= end) 327 return -EINVAL; 328 329 read_lock(&resource_lock); 330 331 for_each_resource(&iomem_resource, p, false) { 332 /* If we passed the resource we are looking for, stop */ 333 if (p->start > end) { 334 p = NULL; 335 break; 336 } 337 338 /* Skip until we find a range that matches what we look for */ 339 if (p->end < start) 340 continue; 341 342 if ((p->flags & flags) != flags) 343 continue; 344 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 345 continue; 346 347 /* Found a match, break */ 348 break; 349 } 350 351 if (p) { 352 /* copy data */ 353 *res = (struct resource) { 354 .start = max(start, p->start), 355 .end = min(end, p->end), 356 .flags = p->flags, 357 .desc = p->desc, 358 .parent = p->parent, 359 }; 360 } 361 362 read_unlock(&resource_lock); 363 return p ? 0 : -ENODEV; 364 } 365 366 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 367 unsigned long flags, unsigned long desc, 368 void *arg, 369 int (*func)(struct resource *, void *)) 370 { 371 struct resource res; 372 int ret = -EINVAL; 373 374 while (start < end && 375 !find_next_iomem_res(start, end, flags, desc, &res)) { 376 ret = (*func)(&res, arg); 377 if (ret) 378 break; 379 380 start = res.end + 1; 381 } 382 383 return ret; 384 } 385 386 /** 387 * walk_iomem_res_desc - Walks through iomem resources and calls func() 388 * with matching resource ranges. 389 * * 390 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 391 * @flags: I/O resource flags 392 * @start: start addr 393 * @end: end addr 394 * @arg: function argument for the callback @func 395 * @func: callback function that is called for each qualifying resource area 396 * 397 * All the memory ranges which overlap start,end and also match flags and 398 * desc are valid candidates. 399 * 400 * NOTE: For a new descriptor search, define a new IORES_DESC in 401 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 402 */ 403 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 404 u64 end, void *arg, int (*func)(struct resource *, void *)) 405 { 406 return __walk_iomem_res_desc(start, end, flags, desc, arg, func); 407 } 408 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 409 410 /* 411 * This function calls the @func callback against all memory ranges of type 412 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 413 * Now, this function is only for System RAM, it deals with full ranges and 414 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 415 * ranges. 416 */ 417 int walk_system_ram_res(u64 start, u64 end, void *arg, 418 int (*func)(struct resource *, void *)) 419 { 420 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 421 422 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 423 func); 424 } 425 426 /* 427 * This function, being a variant of walk_system_ram_res(), calls the @func 428 * callback against all memory ranges of type System RAM which are marked as 429 * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from 430 * higher to lower. 431 */ 432 int walk_system_ram_res_rev(u64 start, u64 end, void *arg, 433 int (*func)(struct resource *, void *)) 434 { 435 struct resource res, *rams; 436 int rams_size = 16, i; 437 unsigned long flags; 438 int ret = -1; 439 440 /* create a list */ 441 rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL); 442 if (!rams) 443 return ret; 444 445 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 446 i = 0; 447 while ((start < end) && 448 (!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) { 449 if (i >= rams_size) { 450 /* re-alloc */ 451 struct resource *rams_new; 452 453 rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource), 454 GFP_KERNEL); 455 if (!rams_new) 456 goto out; 457 458 rams = rams_new; 459 rams_size += 16; 460 } 461 462 rams[i++] = res; 463 start = res.end + 1; 464 } 465 466 /* go reverse */ 467 for (i--; i >= 0; i--) { 468 ret = (*func)(&rams[i], arg); 469 if (ret) 470 break; 471 } 472 473 out: 474 kvfree(rams); 475 return ret; 476 } 477 478 /* 479 * This function calls the @func callback against all memory ranges, which 480 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 481 */ 482 int walk_mem_res(u64 start, u64 end, void *arg, 483 int (*func)(struct resource *, void *)) 484 { 485 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 486 487 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 488 func); 489 } 490 491 /* 492 * This function calls the @func callback against all memory ranges of type 493 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 494 * It is to be used only for System RAM. 495 */ 496 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 497 void *arg, int (*func)(unsigned long, unsigned long, void *)) 498 { 499 resource_size_t start, end; 500 unsigned long flags; 501 struct resource res; 502 unsigned long pfn, end_pfn; 503 int ret = -EINVAL; 504 505 start = (u64) start_pfn << PAGE_SHIFT; 506 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 507 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 508 while (start < end && 509 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) { 510 pfn = PFN_UP(res.start); 511 end_pfn = PFN_DOWN(res.end + 1); 512 if (end_pfn > pfn) 513 ret = (*func)(pfn, end_pfn - pfn, arg); 514 if (ret) 515 break; 516 start = res.end + 1; 517 } 518 return ret; 519 } 520 521 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 522 { 523 return 1; 524 } 525 526 /* 527 * This generic page_is_ram() returns true if specified address is 528 * registered as System RAM in iomem_resource list. 529 */ 530 int __weak page_is_ram(unsigned long pfn) 531 { 532 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 533 } 534 EXPORT_SYMBOL_GPL(page_is_ram); 535 536 static int __region_intersects(struct resource *parent, resource_size_t start, 537 size_t size, unsigned long flags, 538 unsigned long desc) 539 { 540 resource_size_t ostart, oend; 541 int type = 0; int other = 0; 542 struct resource *p, *dp; 543 bool is_type, covered; 544 struct resource res; 545 546 res.start = start; 547 res.end = start + size - 1; 548 549 for (p = parent->child; p ; p = p->sibling) { 550 if (!resource_overlaps(p, &res)) 551 continue; 552 is_type = (p->flags & flags) == flags && 553 (desc == IORES_DESC_NONE || desc == p->desc); 554 if (is_type) { 555 type++; 556 continue; 557 } 558 /* 559 * Continue to search in descendant resources as if the 560 * matched descendant resources cover some ranges of 'p'. 561 * 562 * |------------- "CXL Window 0" ------------| 563 * |-- "System RAM" --| 564 * 565 * will behave similar as the following fake resource 566 * tree when searching "System RAM". 567 * 568 * |-- "System RAM" --||-- "CXL Window 0a" --| 569 */ 570 covered = false; 571 ostart = max(res.start, p->start); 572 oend = min(res.end, p->end); 573 for_each_resource(p, dp, false) { 574 if (!resource_overlaps(dp, &res)) 575 continue; 576 is_type = (dp->flags & flags) == flags && 577 (desc == IORES_DESC_NONE || desc == dp->desc); 578 if (is_type) { 579 type++; 580 /* 581 * Range from 'ostart' to 'dp->start' 582 * isn't covered by matched resource. 583 */ 584 if (dp->start > ostart) 585 break; 586 if (dp->end >= oend) { 587 covered = true; 588 break; 589 } 590 /* Remove covered range */ 591 ostart = max(ostart, dp->end + 1); 592 } 593 } 594 if (!covered) 595 other++; 596 } 597 598 if (type == 0) 599 return REGION_DISJOINT; 600 601 if (other == 0) 602 return REGION_INTERSECTS; 603 604 return REGION_MIXED; 605 } 606 607 /** 608 * region_intersects() - determine intersection of region with known resources 609 * @start: region start address 610 * @size: size of region 611 * @flags: flags of resource (in iomem_resource) 612 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 613 * 614 * Check if the specified region partially overlaps or fully eclipses a 615 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 616 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 617 * return REGION_MIXED if the region overlaps @flags/@desc and another 618 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 619 * and no other defined resource. Note that REGION_INTERSECTS is also 620 * returned in the case when the specified region overlaps RAM and undefined 621 * memory holes. 622 * 623 * region_intersect() is used by memory remapping functions to ensure 624 * the user is not remapping RAM and is a vast speed up over walking 625 * through the resource table page by page. 626 */ 627 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 628 unsigned long desc) 629 { 630 int ret; 631 632 read_lock(&resource_lock); 633 ret = __region_intersects(&iomem_resource, start, size, flags, desc); 634 read_unlock(&resource_lock); 635 636 return ret; 637 } 638 EXPORT_SYMBOL_GPL(region_intersects); 639 640 void __weak arch_remove_reservations(struct resource *avail) 641 { 642 } 643 644 static void resource_clip(struct resource *res, resource_size_t min, 645 resource_size_t max) 646 { 647 if (res->start < min) 648 res->start = min; 649 if (res->end > max) 650 res->end = max; 651 } 652 653 /* 654 * Find empty space in the resource tree with the given range and 655 * alignment constraints 656 */ 657 static int __find_resource_space(struct resource *root, struct resource *old, 658 struct resource *new, resource_size_t size, 659 struct resource_constraint *constraint) 660 { 661 struct resource *this = root->child; 662 struct resource tmp = *new, avail, alloc; 663 resource_alignf alignf = constraint->alignf; 664 665 tmp.start = root->start; 666 /* 667 * Skip past an allocated resource that starts at 0, since the assignment 668 * of this->start - 1 to tmp->end below would cause an underflow. 669 */ 670 if (this && this->start == root->start) { 671 tmp.start = (this == old) ? old->start : this->end + 1; 672 this = this->sibling; 673 } 674 for(;;) { 675 if (this) 676 tmp.end = (this == old) ? this->end : this->start - 1; 677 else 678 tmp.end = root->end; 679 680 if (tmp.end < tmp.start) 681 goto next; 682 683 resource_clip(&tmp, constraint->min, constraint->max); 684 arch_remove_reservations(&tmp); 685 686 /* Check for overflow after ALIGN() */ 687 avail.start = ALIGN(tmp.start, constraint->align); 688 avail.end = tmp.end; 689 avail.flags = new->flags & ~IORESOURCE_UNSET; 690 if (avail.start >= tmp.start) { 691 alloc.flags = avail.flags; 692 if (alignf) { 693 alloc.start = alignf(constraint->alignf_data, 694 &avail, size, constraint->align); 695 } else { 696 alloc.start = avail.start; 697 } 698 alloc.end = alloc.start + size - 1; 699 if (alloc.start <= alloc.end && 700 resource_contains(&avail, &alloc)) { 701 new->start = alloc.start; 702 new->end = alloc.end; 703 return 0; 704 } 705 } 706 707 next: if (!this || this->end == root->end) 708 break; 709 710 if (this != old) 711 tmp.start = this->end + 1; 712 this = this->sibling; 713 } 714 return -EBUSY; 715 } 716 717 /** 718 * find_resource_space - Find empty space in the resource tree 719 * @root: Root resource descriptor 720 * @new: Resource descriptor awaiting an empty resource space 721 * @size: The minimum size of the empty space 722 * @constraint: The range and alignment constraints to be met 723 * 724 * Finds an empty space under @root in the resource tree satisfying range and 725 * alignment @constraints. 726 * 727 * Return: 728 * * %0 - if successful, @new members start, end, and flags are altered. 729 * * %-EBUSY - if no empty space was found. 730 */ 731 int find_resource_space(struct resource *root, struct resource *new, 732 resource_size_t size, 733 struct resource_constraint *constraint) 734 { 735 return __find_resource_space(root, NULL, new, size, constraint); 736 } 737 EXPORT_SYMBOL_GPL(find_resource_space); 738 739 /** 740 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 741 * The resource will be relocated if the new size cannot be reallocated in the 742 * current location. 743 * 744 * @root: root resource descriptor 745 * @old: resource descriptor desired by caller 746 * @newsize: new size of the resource descriptor 747 * @constraint: the size and alignment constraints to be met. 748 */ 749 static int reallocate_resource(struct resource *root, struct resource *old, 750 resource_size_t newsize, 751 struct resource_constraint *constraint) 752 { 753 int err=0; 754 struct resource new = *old; 755 struct resource *conflict; 756 757 write_lock(&resource_lock); 758 759 if ((err = __find_resource_space(root, old, &new, newsize, constraint))) 760 goto out; 761 762 if (resource_contains(&new, old)) { 763 old->start = new.start; 764 old->end = new.end; 765 goto out; 766 } 767 768 if (old->child) { 769 err = -EBUSY; 770 goto out; 771 } 772 773 if (resource_contains(old, &new)) { 774 old->start = new.start; 775 old->end = new.end; 776 } else { 777 __release_resource(old, true); 778 *old = new; 779 conflict = __request_resource(root, old); 780 BUG_ON(conflict); 781 } 782 out: 783 write_unlock(&resource_lock); 784 return err; 785 } 786 787 788 /** 789 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 790 * The resource will be reallocated with a new size if it was already allocated 791 * @root: root resource descriptor 792 * @new: resource descriptor desired by caller 793 * @size: requested resource region size 794 * @min: minimum boundary to allocate 795 * @max: maximum boundary to allocate 796 * @align: alignment requested, in bytes 797 * @alignf: alignment function, optional, called if not NULL 798 * @alignf_data: arbitrary data to pass to the @alignf function 799 */ 800 int allocate_resource(struct resource *root, struct resource *new, 801 resource_size_t size, resource_size_t min, 802 resource_size_t max, resource_size_t align, 803 resource_alignf alignf, 804 void *alignf_data) 805 { 806 int err; 807 struct resource_constraint constraint; 808 809 constraint.min = min; 810 constraint.max = max; 811 constraint.align = align; 812 constraint.alignf = alignf; 813 constraint.alignf_data = alignf_data; 814 815 if ( new->parent ) { 816 /* resource is already allocated, try reallocating with 817 the new constraints */ 818 return reallocate_resource(root, new, size, &constraint); 819 } 820 821 write_lock(&resource_lock); 822 err = find_resource_space(root, new, size, &constraint); 823 if (err >= 0 && __request_resource(root, new)) 824 err = -EBUSY; 825 write_unlock(&resource_lock); 826 return err; 827 } 828 829 EXPORT_SYMBOL(allocate_resource); 830 831 /** 832 * lookup_resource - find an existing resource by a resource start address 833 * @root: root resource descriptor 834 * @start: resource start address 835 * 836 * Returns a pointer to the resource if found, NULL otherwise 837 */ 838 struct resource *lookup_resource(struct resource *root, resource_size_t start) 839 { 840 struct resource *res; 841 842 read_lock(&resource_lock); 843 for (res = root->child; res; res = res->sibling) { 844 if (res->start == start) 845 break; 846 } 847 read_unlock(&resource_lock); 848 849 return res; 850 } 851 852 /* 853 * Insert a resource into the resource tree. If successful, return NULL, 854 * otherwise return the conflicting resource (compare to __request_resource()) 855 */ 856 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 857 { 858 struct resource *first, *next; 859 860 for (;; parent = first) { 861 first = __request_resource(parent, new); 862 if (!first) 863 return first; 864 865 if (first == parent) 866 return first; 867 if (WARN_ON(first == new)) /* duplicated insertion */ 868 return first; 869 870 if ((first->start > new->start) || (first->end < new->end)) 871 break; 872 if ((first->start == new->start) && (first->end == new->end)) 873 break; 874 } 875 876 for (next = first; ; next = next->sibling) { 877 /* Partial overlap? Bad, and unfixable */ 878 if (next->start < new->start || next->end > new->end) 879 return next; 880 if (!next->sibling) 881 break; 882 if (next->sibling->start > new->end) 883 break; 884 } 885 886 new->parent = parent; 887 new->sibling = next->sibling; 888 new->child = first; 889 890 next->sibling = NULL; 891 for (next = first; next; next = next->sibling) 892 next->parent = new; 893 894 if (parent->child == first) { 895 parent->child = new; 896 } else { 897 next = parent->child; 898 while (next->sibling != first) 899 next = next->sibling; 900 next->sibling = new; 901 } 902 return NULL; 903 } 904 905 /** 906 * insert_resource_conflict - Inserts resource in the resource tree 907 * @parent: parent of the new resource 908 * @new: new resource to insert 909 * 910 * Returns 0 on success, conflict resource if the resource can't be inserted. 911 * 912 * This function is equivalent to request_resource_conflict when no conflict 913 * happens. If a conflict happens, and the conflicting resources 914 * entirely fit within the range of the new resource, then the new 915 * resource is inserted and the conflicting resources become children of 916 * the new resource. 917 * 918 * This function is intended for producers of resources, such as FW modules 919 * and bus drivers. 920 */ 921 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 922 { 923 struct resource *conflict; 924 925 write_lock(&resource_lock); 926 conflict = __insert_resource(parent, new); 927 write_unlock(&resource_lock); 928 return conflict; 929 } 930 931 /** 932 * insert_resource - Inserts a resource in the resource tree 933 * @parent: parent of the new resource 934 * @new: new resource to insert 935 * 936 * Returns 0 on success, -EBUSY if the resource can't be inserted. 937 * 938 * This function is intended for producers of resources, such as FW modules 939 * and bus drivers. 940 */ 941 int insert_resource(struct resource *parent, struct resource *new) 942 { 943 struct resource *conflict; 944 945 conflict = insert_resource_conflict(parent, new); 946 return conflict ? -EBUSY : 0; 947 } 948 EXPORT_SYMBOL_GPL(insert_resource); 949 950 /** 951 * insert_resource_expand_to_fit - Insert a resource into the resource tree 952 * @root: root resource descriptor 953 * @new: new resource to insert 954 * 955 * Insert a resource into the resource tree, possibly expanding it in order 956 * to make it encompass any conflicting resources. 957 */ 958 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 959 { 960 if (new->parent) 961 return; 962 963 write_lock(&resource_lock); 964 for (;;) { 965 struct resource *conflict; 966 967 conflict = __insert_resource(root, new); 968 if (!conflict) 969 break; 970 if (conflict == root) 971 break; 972 973 /* Ok, expand resource to cover the conflict, then try again .. */ 974 if (conflict->start < new->start) 975 new->start = conflict->start; 976 if (conflict->end > new->end) 977 new->end = conflict->end; 978 979 pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 980 } 981 write_unlock(&resource_lock); 982 } 983 /* 984 * Not for general consumption, only early boot memory map parsing, PCI 985 * resource discovery, and late discovery of CXL resources are expected 986 * to use this interface. The former are built-in and only the latter, 987 * CXL, is a module. 988 */ 989 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL); 990 991 /** 992 * remove_resource - Remove a resource in the resource tree 993 * @old: resource to remove 994 * 995 * Returns 0 on success, -EINVAL if the resource is not valid. 996 * 997 * This function removes a resource previously inserted by insert_resource() 998 * or insert_resource_conflict(), and moves the children (if any) up to 999 * where they were before. insert_resource() and insert_resource_conflict() 1000 * insert a new resource, and move any conflicting resources down to the 1001 * children of the new resource. 1002 * 1003 * insert_resource(), insert_resource_conflict() and remove_resource() are 1004 * intended for producers of resources, such as FW modules and bus drivers. 1005 */ 1006 int remove_resource(struct resource *old) 1007 { 1008 int retval; 1009 1010 write_lock(&resource_lock); 1011 retval = __release_resource(old, false); 1012 write_unlock(&resource_lock); 1013 return retval; 1014 } 1015 EXPORT_SYMBOL_GPL(remove_resource); 1016 1017 static int __adjust_resource(struct resource *res, resource_size_t start, 1018 resource_size_t size) 1019 { 1020 struct resource *tmp, *parent = res->parent; 1021 resource_size_t end = start + size - 1; 1022 int result = -EBUSY; 1023 1024 if (!parent) 1025 goto skip; 1026 1027 if ((start < parent->start) || (end > parent->end)) 1028 goto out; 1029 1030 if (res->sibling && (res->sibling->start <= end)) 1031 goto out; 1032 1033 tmp = parent->child; 1034 if (tmp != res) { 1035 while (tmp->sibling != res) 1036 tmp = tmp->sibling; 1037 if (start <= tmp->end) 1038 goto out; 1039 } 1040 1041 skip: 1042 for (tmp = res->child; tmp; tmp = tmp->sibling) 1043 if ((tmp->start < start) || (tmp->end > end)) 1044 goto out; 1045 1046 res->start = start; 1047 res->end = end; 1048 result = 0; 1049 1050 out: 1051 return result; 1052 } 1053 1054 /** 1055 * adjust_resource - modify a resource's start and size 1056 * @res: resource to modify 1057 * @start: new start value 1058 * @size: new size 1059 * 1060 * Given an existing resource, change its start and size to match the 1061 * arguments. Returns 0 on success, -EBUSY if it can't fit. 1062 * Existing children of the resource are assumed to be immutable. 1063 */ 1064 int adjust_resource(struct resource *res, resource_size_t start, 1065 resource_size_t size) 1066 { 1067 int result; 1068 1069 write_lock(&resource_lock); 1070 result = __adjust_resource(res, start, size); 1071 write_unlock(&resource_lock); 1072 return result; 1073 } 1074 EXPORT_SYMBOL(adjust_resource); 1075 1076 static void __init 1077 __reserve_region_with_split(struct resource *root, resource_size_t start, 1078 resource_size_t end, const char *name) 1079 { 1080 struct resource *parent = root; 1081 struct resource *conflict; 1082 struct resource *res = alloc_resource(GFP_ATOMIC); 1083 struct resource *next_res = NULL; 1084 int type = resource_type(root); 1085 1086 if (!res) 1087 return; 1088 1089 res->name = name; 1090 res->start = start; 1091 res->end = end; 1092 res->flags = type | IORESOURCE_BUSY; 1093 res->desc = IORES_DESC_NONE; 1094 1095 while (1) { 1096 1097 conflict = __request_resource(parent, res); 1098 if (!conflict) { 1099 if (!next_res) 1100 break; 1101 res = next_res; 1102 next_res = NULL; 1103 continue; 1104 } 1105 1106 /* conflict covered whole area */ 1107 if (conflict->start <= res->start && 1108 conflict->end >= res->end) { 1109 free_resource(res); 1110 WARN_ON(next_res); 1111 break; 1112 } 1113 1114 /* failed, split and try again */ 1115 if (conflict->start > res->start) { 1116 end = res->end; 1117 res->end = conflict->start - 1; 1118 if (conflict->end < end) { 1119 next_res = alloc_resource(GFP_ATOMIC); 1120 if (!next_res) { 1121 free_resource(res); 1122 break; 1123 } 1124 next_res->name = name; 1125 next_res->start = conflict->end + 1; 1126 next_res->end = end; 1127 next_res->flags = type | IORESOURCE_BUSY; 1128 next_res->desc = IORES_DESC_NONE; 1129 } 1130 } else { 1131 res->start = conflict->end + 1; 1132 } 1133 } 1134 1135 } 1136 1137 void __init 1138 reserve_region_with_split(struct resource *root, resource_size_t start, 1139 resource_size_t end, const char *name) 1140 { 1141 int abort = 0; 1142 1143 write_lock(&resource_lock); 1144 if (root->start > start || root->end < end) { 1145 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1146 (unsigned long long)start, (unsigned long long)end, 1147 root); 1148 if (start > root->end || end < root->start) 1149 abort = 1; 1150 else { 1151 if (end > root->end) 1152 end = root->end; 1153 if (start < root->start) 1154 start = root->start; 1155 pr_err("fixing request to [0x%llx-0x%llx]\n", 1156 (unsigned long long)start, 1157 (unsigned long long)end); 1158 } 1159 dump_stack(); 1160 } 1161 if (!abort) 1162 __reserve_region_with_split(root, start, end, name); 1163 write_unlock(&resource_lock); 1164 } 1165 1166 /** 1167 * resource_alignment - calculate resource's alignment 1168 * @res: resource pointer 1169 * 1170 * Returns alignment on success, 0 (invalid alignment) on failure. 1171 */ 1172 resource_size_t resource_alignment(struct resource *res) 1173 { 1174 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1175 case IORESOURCE_SIZEALIGN: 1176 return resource_size(res); 1177 case IORESOURCE_STARTALIGN: 1178 return res->start; 1179 default: 1180 return 0; 1181 } 1182 } 1183 1184 /* 1185 * This is compatibility stuff for IO resources. 1186 * 1187 * Note how this, unlike the above, knows about 1188 * the IO flag meanings (busy etc). 1189 * 1190 * request_region creates a new busy region. 1191 * 1192 * release_region releases a matching busy region. 1193 */ 1194 1195 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1196 1197 static struct inode *iomem_inode; 1198 1199 #ifdef CONFIG_IO_STRICT_DEVMEM 1200 static void revoke_iomem(struct resource *res) 1201 { 1202 /* pairs with smp_store_release() in iomem_init_inode() */ 1203 struct inode *inode = smp_load_acquire(&iomem_inode); 1204 1205 /* 1206 * Check that the initialization has completed. Losing the race 1207 * is ok because it means drivers are claiming resources before 1208 * the fs_initcall level of init and prevent iomem_get_mapping users 1209 * from establishing mappings. 1210 */ 1211 if (!inode) 1212 return; 1213 1214 /* 1215 * The expectation is that the driver has successfully marked 1216 * the resource busy by this point, so devmem_is_allowed() 1217 * should start returning false, however for performance this 1218 * does not iterate the entire resource range. 1219 */ 1220 if (devmem_is_allowed(PHYS_PFN(res->start)) && 1221 devmem_is_allowed(PHYS_PFN(res->end))) { 1222 /* 1223 * *cringe* iomem=relaxed says "go ahead, what's the 1224 * worst that can happen?" 1225 */ 1226 return; 1227 } 1228 1229 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1); 1230 } 1231 #else 1232 static void revoke_iomem(struct resource *res) {} 1233 #endif 1234 1235 struct address_space *iomem_get_mapping(void) 1236 { 1237 /* 1238 * This function is only called from file open paths, hence guaranteed 1239 * that fs_initcalls have completed and no need to check for NULL. But 1240 * since revoke_iomem can be called before the initcall we still need 1241 * the barrier to appease checkers. 1242 */ 1243 return smp_load_acquire(&iomem_inode)->i_mapping; 1244 } 1245 1246 static int __request_region_locked(struct resource *res, struct resource *parent, 1247 resource_size_t start, resource_size_t n, 1248 const char *name, int flags) 1249 { 1250 DECLARE_WAITQUEUE(wait, current); 1251 1252 res->name = name; 1253 res->start = start; 1254 res->end = start + n - 1; 1255 1256 for (;;) { 1257 struct resource *conflict; 1258 1259 res->flags = resource_type(parent) | resource_ext_type(parent); 1260 res->flags |= IORESOURCE_BUSY | flags; 1261 res->desc = parent->desc; 1262 1263 conflict = __request_resource(parent, res); 1264 if (!conflict) 1265 break; 1266 /* 1267 * mm/hmm.c reserves physical addresses which then 1268 * become unavailable to other users. Conflicts are 1269 * not expected. Warn to aid debugging if encountered. 1270 */ 1271 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 1272 pr_warn("Unaddressable device %s %pR conflicts with %pR", 1273 conflict->name, conflict, res); 1274 } 1275 if (conflict != parent) { 1276 if (!(conflict->flags & IORESOURCE_BUSY)) { 1277 parent = conflict; 1278 continue; 1279 } 1280 } 1281 if (conflict->flags & flags & IORESOURCE_MUXED) { 1282 add_wait_queue(&muxed_resource_wait, &wait); 1283 write_unlock(&resource_lock); 1284 set_current_state(TASK_UNINTERRUPTIBLE); 1285 schedule(); 1286 remove_wait_queue(&muxed_resource_wait, &wait); 1287 write_lock(&resource_lock); 1288 continue; 1289 } 1290 /* Uhhuh, that didn't work out.. */ 1291 return -EBUSY; 1292 } 1293 1294 return 0; 1295 } 1296 1297 /** 1298 * __request_region - create a new busy resource region 1299 * @parent: parent resource descriptor 1300 * @start: resource start address 1301 * @n: resource region size 1302 * @name: reserving caller's ID string 1303 * @flags: IO resource flags 1304 */ 1305 struct resource *__request_region(struct resource *parent, 1306 resource_size_t start, resource_size_t n, 1307 const char *name, int flags) 1308 { 1309 struct resource *res = alloc_resource(GFP_KERNEL); 1310 int ret; 1311 1312 if (!res) 1313 return NULL; 1314 1315 write_lock(&resource_lock); 1316 ret = __request_region_locked(res, parent, start, n, name, flags); 1317 write_unlock(&resource_lock); 1318 1319 if (ret) { 1320 free_resource(res); 1321 return NULL; 1322 } 1323 1324 if (parent == &iomem_resource) 1325 revoke_iomem(res); 1326 1327 return res; 1328 } 1329 EXPORT_SYMBOL(__request_region); 1330 1331 /** 1332 * __release_region - release a previously reserved resource region 1333 * @parent: parent resource descriptor 1334 * @start: resource start address 1335 * @n: resource region size 1336 * 1337 * The described resource region must match a currently busy region. 1338 */ 1339 void __release_region(struct resource *parent, resource_size_t start, 1340 resource_size_t n) 1341 { 1342 struct resource **p; 1343 resource_size_t end; 1344 1345 p = &parent->child; 1346 end = start + n - 1; 1347 1348 write_lock(&resource_lock); 1349 1350 for (;;) { 1351 struct resource *res = *p; 1352 1353 if (!res) 1354 break; 1355 if (res->start <= start && res->end >= end) { 1356 if (!(res->flags & IORESOURCE_BUSY)) { 1357 p = &res->child; 1358 continue; 1359 } 1360 if (res->start != start || res->end != end) 1361 break; 1362 *p = res->sibling; 1363 write_unlock(&resource_lock); 1364 if (res->flags & IORESOURCE_MUXED) 1365 wake_up(&muxed_resource_wait); 1366 free_resource(res); 1367 return; 1368 } 1369 p = &res->sibling; 1370 } 1371 1372 write_unlock(&resource_lock); 1373 1374 pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end); 1375 } 1376 EXPORT_SYMBOL(__release_region); 1377 1378 #ifdef CONFIG_MEMORY_HOTREMOVE 1379 /** 1380 * release_mem_region_adjustable - release a previously reserved memory region 1381 * @start: resource start address 1382 * @size: resource region size 1383 * 1384 * This interface is intended for memory hot-delete. The requested region 1385 * is released from a currently busy memory resource. The requested region 1386 * must either match exactly or fit into a single busy resource entry. In 1387 * the latter case, the remaining resource is adjusted accordingly. 1388 * Existing children of the busy memory resource must be immutable in the 1389 * request. 1390 * 1391 * Note: 1392 * - Additional release conditions, such as overlapping region, can be 1393 * supported after they are confirmed as valid cases. 1394 * - When a busy memory resource gets split into two entries, the code 1395 * assumes that all children remain in the lower address entry for 1396 * simplicity. Enhance this logic when necessary. 1397 */ 1398 void release_mem_region_adjustable(resource_size_t start, resource_size_t size) 1399 { 1400 struct resource *parent = &iomem_resource; 1401 struct resource *new_res = NULL; 1402 bool alloc_nofail = false; 1403 struct resource **p; 1404 struct resource *res; 1405 resource_size_t end; 1406 1407 end = start + size - 1; 1408 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end))) 1409 return; 1410 1411 /* 1412 * We free up quite a lot of memory on memory hotunplug (esp., memap), 1413 * just before releasing the region. This is highly unlikely to 1414 * fail - let's play save and make it never fail as the caller cannot 1415 * perform any error handling (e.g., trying to re-add memory will fail 1416 * similarly). 1417 */ 1418 retry: 1419 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0)); 1420 1421 p = &parent->child; 1422 write_lock(&resource_lock); 1423 1424 while ((res = *p)) { 1425 if (res->start >= end) 1426 break; 1427 1428 /* look for the next resource if it does not fit into */ 1429 if (res->start > start || res->end < end) { 1430 p = &res->sibling; 1431 continue; 1432 } 1433 1434 if (!(res->flags & IORESOURCE_MEM)) 1435 break; 1436 1437 if (!(res->flags & IORESOURCE_BUSY)) { 1438 p = &res->child; 1439 continue; 1440 } 1441 1442 /* found the target resource; let's adjust accordingly */ 1443 if (res->start == start && res->end == end) { 1444 /* free the whole entry */ 1445 *p = res->sibling; 1446 free_resource(res); 1447 } else if (res->start == start && res->end != end) { 1448 /* adjust the start */ 1449 WARN_ON_ONCE(__adjust_resource(res, end + 1, 1450 res->end - end)); 1451 } else if (res->start != start && res->end == end) { 1452 /* adjust the end */ 1453 WARN_ON_ONCE(__adjust_resource(res, res->start, 1454 start - res->start)); 1455 } else { 1456 /* split into two entries - we need a new resource */ 1457 if (!new_res) { 1458 new_res = alloc_resource(GFP_ATOMIC); 1459 if (!new_res) { 1460 alloc_nofail = true; 1461 write_unlock(&resource_lock); 1462 goto retry; 1463 } 1464 } 1465 new_res->name = res->name; 1466 new_res->start = end + 1; 1467 new_res->end = res->end; 1468 new_res->flags = res->flags; 1469 new_res->desc = res->desc; 1470 new_res->parent = res->parent; 1471 new_res->sibling = res->sibling; 1472 new_res->child = NULL; 1473 1474 if (WARN_ON_ONCE(__adjust_resource(res, res->start, 1475 start - res->start))) 1476 break; 1477 res->sibling = new_res; 1478 new_res = NULL; 1479 } 1480 1481 break; 1482 } 1483 1484 write_unlock(&resource_lock); 1485 free_resource(new_res); 1486 } 1487 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1488 1489 #ifdef CONFIG_MEMORY_HOTPLUG 1490 static bool system_ram_resources_mergeable(struct resource *r1, 1491 struct resource *r2) 1492 { 1493 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */ 1494 return r1->flags == r2->flags && r1->end + 1 == r2->start && 1495 r1->name == r2->name && r1->desc == r2->desc && 1496 !r1->child && !r2->child; 1497 } 1498 1499 /** 1500 * merge_system_ram_resource - mark the System RAM resource mergeable and try to 1501 * merge it with adjacent, mergeable resources 1502 * @res: resource descriptor 1503 * 1504 * This interface is intended for memory hotplug, whereby lots of contiguous 1505 * system ram resources are added (e.g., via add_memory*()) by a driver, and 1506 * the actual resource boundaries are not of interest (e.g., it might be 1507 * relevant for DIMMs). Only resources that are marked mergeable, that have the 1508 * same parent, and that don't have any children are considered. All mergeable 1509 * resources must be immutable during the request. 1510 * 1511 * Note: 1512 * - The caller has to make sure that no pointers to resources that are 1513 * marked mergeable are used anymore after this call - the resource might 1514 * be freed and the pointer might be stale! 1515 * - release_mem_region_adjustable() will split on demand on memory hotunplug 1516 */ 1517 void merge_system_ram_resource(struct resource *res) 1518 { 1519 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 1520 struct resource *cur; 1521 1522 if (WARN_ON_ONCE((res->flags & flags) != flags)) 1523 return; 1524 1525 write_lock(&resource_lock); 1526 res->flags |= IORESOURCE_SYSRAM_MERGEABLE; 1527 1528 /* Try to merge with next item in the list. */ 1529 cur = res->sibling; 1530 if (cur && system_ram_resources_mergeable(res, cur)) { 1531 res->end = cur->end; 1532 res->sibling = cur->sibling; 1533 free_resource(cur); 1534 } 1535 1536 /* Try to merge with previous item in the list. */ 1537 cur = res->parent->child; 1538 while (cur && cur->sibling != res) 1539 cur = cur->sibling; 1540 if (cur && system_ram_resources_mergeable(cur, res)) { 1541 cur->end = res->end; 1542 cur->sibling = res->sibling; 1543 free_resource(res); 1544 } 1545 write_unlock(&resource_lock); 1546 } 1547 #endif /* CONFIG_MEMORY_HOTPLUG */ 1548 1549 /* 1550 * Managed region resource 1551 */ 1552 static void devm_resource_release(struct device *dev, void *ptr) 1553 { 1554 struct resource **r = ptr; 1555 1556 release_resource(*r); 1557 } 1558 1559 /** 1560 * devm_request_resource() - request and reserve an I/O or memory resource 1561 * @dev: device for which to request the resource 1562 * @root: root of the resource tree from which to request the resource 1563 * @new: descriptor of the resource to request 1564 * 1565 * This is a device-managed version of request_resource(). There is usually 1566 * no need to release resources requested by this function explicitly since 1567 * that will be taken care of when the device is unbound from its driver. 1568 * If for some reason the resource needs to be released explicitly, because 1569 * of ordering issues for example, drivers must call devm_release_resource() 1570 * rather than the regular release_resource(). 1571 * 1572 * When a conflict is detected between any existing resources and the newly 1573 * requested resource, an error message will be printed. 1574 * 1575 * Returns 0 on success or a negative error code on failure. 1576 */ 1577 int devm_request_resource(struct device *dev, struct resource *root, 1578 struct resource *new) 1579 { 1580 struct resource *conflict, **ptr; 1581 1582 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1583 if (!ptr) 1584 return -ENOMEM; 1585 1586 *ptr = new; 1587 1588 conflict = request_resource_conflict(root, new); 1589 if (conflict) { 1590 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1591 new, conflict->name, conflict); 1592 devres_free(ptr); 1593 return -EBUSY; 1594 } 1595 1596 devres_add(dev, ptr); 1597 return 0; 1598 } 1599 EXPORT_SYMBOL(devm_request_resource); 1600 1601 static int devm_resource_match(struct device *dev, void *res, void *data) 1602 { 1603 struct resource **ptr = res; 1604 1605 return *ptr == data; 1606 } 1607 1608 /** 1609 * devm_release_resource() - release a previously requested resource 1610 * @dev: device for which to release the resource 1611 * @new: descriptor of the resource to release 1612 * 1613 * Releases a resource previously requested using devm_request_resource(). 1614 */ 1615 void devm_release_resource(struct device *dev, struct resource *new) 1616 { 1617 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1618 new)); 1619 } 1620 EXPORT_SYMBOL(devm_release_resource); 1621 1622 struct region_devres { 1623 struct resource *parent; 1624 resource_size_t start; 1625 resource_size_t n; 1626 }; 1627 1628 static void devm_region_release(struct device *dev, void *res) 1629 { 1630 struct region_devres *this = res; 1631 1632 __release_region(this->parent, this->start, this->n); 1633 } 1634 1635 static int devm_region_match(struct device *dev, void *res, void *match_data) 1636 { 1637 struct region_devres *this = res, *match = match_data; 1638 1639 return this->parent == match->parent && 1640 this->start == match->start && this->n == match->n; 1641 } 1642 1643 struct resource * 1644 __devm_request_region(struct device *dev, struct resource *parent, 1645 resource_size_t start, resource_size_t n, const char *name) 1646 { 1647 struct region_devres *dr = NULL; 1648 struct resource *res; 1649 1650 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1651 GFP_KERNEL); 1652 if (!dr) 1653 return NULL; 1654 1655 dr->parent = parent; 1656 dr->start = start; 1657 dr->n = n; 1658 1659 res = __request_region(parent, start, n, name, 0); 1660 if (res) 1661 devres_add(dev, dr); 1662 else 1663 devres_free(dr); 1664 1665 return res; 1666 } 1667 EXPORT_SYMBOL(__devm_request_region); 1668 1669 void __devm_release_region(struct device *dev, struct resource *parent, 1670 resource_size_t start, resource_size_t n) 1671 { 1672 struct region_devres match_data = { parent, start, n }; 1673 1674 __release_region(parent, start, n); 1675 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1676 &match_data)); 1677 } 1678 EXPORT_SYMBOL(__devm_release_region); 1679 1680 /* 1681 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1682 */ 1683 #define MAXRESERVE 4 1684 static int __init reserve_setup(char *str) 1685 { 1686 static int reserved; 1687 static struct resource reserve[MAXRESERVE]; 1688 1689 for (;;) { 1690 unsigned int io_start, io_num; 1691 int x = reserved; 1692 struct resource *parent; 1693 1694 if (get_option(&str, &io_start) != 2) 1695 break; 1696 if (get_option(&str, &io_num) == 0) 1697 break; 1698 if (x < MAXRESERVE) { 1699 struct resource *res = reserve + x; 1700 1701 /* 1702 * If the region starts below 0x10000, we assume it's 1703 * I/O port space; otherwise assume it's memory. 1704 */ 1705 if (io_start < 0x10000) { 1706 res->flags = IORESOURCE_IO; 1707 parent = &ioport_resource; 1708 } else { 1709 res->flags = IORESOURCE_MEM; 1710 parent = &iomem_resource; 1711 } 1712 res->name = "reserved"; 1713 res->start = io_start; 1714 res->end = io_start + io_num - 1; 1715 res->flags |= IORESOURCE_BUSY; 1716 res->desc = IORES_DESC_NONE; 1717 res->child = NULL; 1718 if (request_resource(parent, res) == 0) 1719 reserved = x+1; 1720 } 1721 } 1722 return 1; 1723 } 1724 __setup("reserve=", reserve_setup); 1725 1726 /* 1727 * Check if the requested addr and size spans more than any slot in the 1728 * iomem resource tree. 1729 */ 1730 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1731 { 1732 resource_size_t end = addr + size - 1; 1733 struct resource *p; 1734 int err = 0; 1735 1736 read_lock(&resource_lock); 1737 for_each_resource(&iomem_resource, p, false) { 1738 /* 1739 * We can probably skip the resources without 1740 * IORESOURCE_IO attribute? 1741 */ 1742 if (p->start > end) 1743 continue; 1744 if (p->end < addr) 1745 continue; 1746 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1747 PFN_DOWN(p->end) >= PFN_DOWN(end)) 1748 continue; 1749 /* 1750 * if a resource is "BUSY", it's not a hardware resource 1751 * but a driver mapping of such a resource; we don't want 1752 * to warn for those; some drivers legitimately map only 1753 * partial hardware resources. (example: vesafb) 1754 */ 1755 if (p->flags & IORESOURCE_BUSY) 1756 continue; 1757 1758 pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n", 1759 &addr, &end, p->name, p); 1760 err = -1; 1761 break; 1762 } 1763 read_unlock(&resource_lock); 1764 1765 return err; 1766 } 1767 1768 #ifdef CONFIG_STRICT_DEVMEM 1769 static int strict_iomem_checks = 1; 1770 #else 1771 static int strict_iomem_checks; 1772 #endif 1773 1774 /* 1775 * Check if an address is exclusive to the kernel and must not be mapped to 1776 * user space, for example, via /dev/mem. 1777 * 1778 * Returns true if exclusive to the kernel, otherwise returns false. 1779 */ 1780 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size) 1781 { 1782 const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM | 1783 IORESOURCE_EXCLUSIVE; 1784 bool skip_children = false, err = false; 1785 struct resource *p; 1786 1787 read_lock(&resource_lock); 1788 for_each_resource(root, p, skip_children) { 1789 if (p->start >= addr + size) 1790 break; 1791 if (p->end < addr) { 1792 skip_children = true; 1793 continue; 1794 } 1795 skip_children = false; 1796 1797 /* 1798 * IORESOURCE_SYSTEM_RAM resources are exclusive if 1799 * IORESOURCE_EXCLUSIVE is set, even if they 1800 * are not busy and even if "iomem=relaxed" is set. The 1801 * responsible driver dynamically adds/removes system RAM within 1802 * such an area and uncontrolled access is dangerous. 1803 */ 1804 if ((p->flags & exclusive_system_ram) == exclusive_system_ram) { 1805 err = true; 1806 break; 1807 } 1808 1809 /* 1810 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1811 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1812 * resource is busy. 1813 */ 1814 if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY)) 1815 continue; 1816 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1817 || p->flags & IORESOURCE_EXCLUSIVE) { 1818 err = true; 1819 break; 1820 } 1821 } 1822 read_unlock(&resource_lock); 1823 1824 return err; 1825 } 1826 1827 bool iomem_is_exclusive(u64 addr) 1828 { 1829 return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK, 1830 PAGE_SIZE); 1831 } 1832 1833 struct resource_entry *resource_list_create_entry(struct resource *res, 1834 size_t extra_size) 1835 { 1836 struct resource_entry *entry; 1837 1838 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1839 if (entry) { 1840 INIT_LIST_HEAD(&entry->node); 1841 entry->res = res ? res : &entry->__res; 1842 } 1843 1844 return entry; 1845 } 1846 EXPORT_SYMBOL(resource_list_create_entry); 1847 1848 void resource_list_free(struct list_head *head) 1849 { 1850 struct resource_entry *entry, *tmp; 1851 1852 list_for_each_entry_safe(entry, tmp, head, node) 1853 resource_list_destroy_entry(entry); 1854 } 1855 EXPORT_SYMBOL(resource_list_free); 1856 1857 #ifdef CONFIG_GET_FREE_REGION 1858 #define GFR_DESCENDING (1UL << 0) 1859 #define GFR_REQUEST_REGION (1UL << 1) 1860 #ifdef PA_SECTION_SHIFT 1861 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT) 1862 #else 1863 #define GFR_DEFAULT_ALIGN PAGE_SIZE 1864 #endif 1865 1866 static resource_size_t gfr_start(struct resource *base, resource_size_t size, 1867 resource_size_t align, unsigned long flags) 1868 { 1869 if (flags & GFR_DESCENDING) { 1870 resource_size_t end; 1871 1872 end = min_t(resource_size_t, base->end, PHYSMEM_END); 1873 return end - size + 1; 1874 } 1875 1876 return ALIGN(max(base->start, align), align); 1877 } 1878 1879 static bool gfr_continue(struct resource *base, resource_size_t addr, 1880 resource_size_t size, unsigned long flags) 1881 { 1882 if (flags & GFR_DESCENDING) 1883 return addr > size && addr >= base->start; 1884 /* 1885 * In the ascend case be careful that the last increment by 1886 * @size did not wrap 0. 1887 */ 1888 return addr > addr - size && 1889 addr <= min_t(resource_size_t, base->end, PHYSMEM_END); 1890 } 1891 1892 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size, 1893 unsigned long flags) 1894 { 1895 if (flags & GFR_DESCENDING) 1896 return addr - size; 1897 return addr + size; 1898 } 1899 1900 static void remove_free_mem_region(void *_res) 1901 { 1902 struct resource *res = _res; 1903 1904 if (res->parent) 1905 remove_resource(res); 1906 free_resource(res); 1907 } 1908 1909 static struct resource * 1910 get_free_mem_region(struct device *dev, struct resource *base, 1911 resource_size_t size, const unsigned long align, 1912 const char *name, const unsigned long desc, 1913 const unsigned long flags) 1914 { 1915 resource_size_t addr; 1916 struct resource *res; 1917 struct region_devres *dr = NULL; 1918 1919 size = ALIGN(size, align); 1920 1921 res = alloc_resource(GFP_KERNEL); 1922 if (!res) 1923 return ERR_PTR(-ENOMEM); 1924 1925 if (dev && (flags & GFR_REQUEST_REGION)) { 1926 dr = devres_alloc(devm_region_release, 1927 sizeof(struct region_devres), GFP_KERNEL); 1928 if (!dr) { 1929 free_resource(res); 1930 return ERR_PTR(-ENOMEM); 1931 } 1932 } else if (dev) { 1933 if (devm_add_action_or_reset(dev, remove_free_mem_region, res)) 1934 return ERR_PTR(-ENOMEM); 1935 } 1936 1937 write_lock(&resource_lock); 1938 for (addr = gfr_start(base, size, align, flags); 1939 gfr_continue(base, addr, align, flags); 1940 addr = gfr_next(addr, align, flags)) { 1941 if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) != 1942 REGION_DISJOINT) 1943 continue; 1944 1945 if (flags & GFR_REQUEST_REGION) { 1946 if (__request_region_locked(res, &iomem_resource, addr, 1947 size, name, 0)) 1948 break; 1949 1950 if (dev) { 1951 dr->parent = &iomem_resource; 1952 dr->start = addr; 1953 dr->n = size; 1954 devres_add(dev, dr); 1955 } 1956 1957 res->desc = desc; 1958 write_unlock(&resource_lock); 1959 1960 1961 /* 1962 * A driver is claiming this region so revoke any 1963 * mappings. 1964 */ 1965 revoke_iomem(res); 1966 } else { 1967 res->start = addr; 1968 res->end = addr + size - 1; 1969 res->name = name; 1970 res->desc = desc; 1971 res->flags = IORESOURCE_MEM; 1972 1973 /* 1974 * Only succeed if the resource hosts an exclusive 1975 * range after the insert 1976 */ 1977 if (__insert_resource(base, res) || res->child) 1978 break; 1979 1980 write_unlock(&resource_lock); 1981 } 1982 1983 return res; 1984 } 1985 write_unlock(&resource_lock); 1986 1987 if (flags & GFR_REQUEST_REGION) { 1988 free_resource(res); 1989 devres_free(dr); 1990 } else if (dev) 1991 devm_release_action(dev, remove_free_mem_region, res); 1992 1993 return ERR_PTR(-ERANGE); 1994 } 1995 1996 /** 1997 * devm_request_free_mem_region - find free region for device private memory 1998 * 1999 * @dev: device struct to bind the resource to 2000 * @size: size in bytes of the device memory to add 2001 * @base: resource tree to look in 2002 * 2003 * This function tries to find an empty range of physical address big enough to 2004 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE 2005 * memory, which in turn allocates struct pages. 2006 */ 2007 struct resource *devm_request_free_mem_region(struct device *dev, 2008 struct resource *base, unsigned long size) 2009 { 2010 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; 2011 2012 return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN, 2013 dev_name(dev), 2014 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); 2015 } 2016 EXPORT_SYMBOL_GPL(devm_request_free_mem_region); 2017 2018 struct resource *request_free_mem_region(struct resource *base, 2019 unsigned long size, const char *name) 2020 { 2021 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; 2022 2023 return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name, 2024 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); 2025 } 2026 EXPORT_SYMBOL_GPL(request_free_mem_region); 2027 2028 /** 2029 * alloc_free_mem_region - find a free region relative to @base 2030 * @base: resource that will parent the new resource 2031 * @size: size in bytes of memory to allocate from @base 2032 * @align: alignment requirements for the allocation 2033 * @name: resource name 2034 * 2035 * Buses like CXL, that can dynamically instantiate new memory regions, 2036 * need a method to allocate physical address space for those regions. 2037 * Allocate and insert a new resource to cover a free, unclaimed by a 2038 * descendant of @base, range in the span of @base. 2039 */ 2040 struct resource *alloc_free_mem_region(struct resource *base, 2041 unsigned long size, unsigned long align, 2042 const char *name) 2043 { 2044 /* Default of ascending direction and insert resource */ 2045 unsigned long flags = 0; 2046 2047 return get_free_mem_region(NULL, base, size, align, name, 2048 IORES_DESC_NONE, flags); 2049 } 2050 EXPORT_SYMBOL_GPL(alloc_free_mem_region); 2051 #endif /* CONFIG_GET_FREE_REGION */ 2052 2053 static int __init strict_iomem(char *str) 2054 { 2055 if (strstr(str, "relaxed")) 2056 strict_iomem_checks = 0; 2057 if (strstr(str, "strict")) 2058 strict_iomem_checks = 1; 2059 return 1; 2060 } 2061 2062 static int iomem_fs_init_fs_context(struct fs_context *fc) 2063 { 2064 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM; 2065 } 2066 2067 static struct file_system_type iomem_fs_type = { 2068 .name = "iomem", 2069 .owner = THIS_MODULE, 2070 .init_fs_context = iomem_fs_init_fs_context, 2071 .kill_sb = kill_anon_super, 2072 }; 2073 2074 static int __init iomem_init_inode(void) 2075 { 2076 static struct vfsmount *iomem_vfs_mount; 2077 static int iomem_fs_cnt; 2078 struct inode *inode; 2079 int rc; 2080 2081 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt); 2082 if (rc < 0) { 2083 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc); 2084 return rc; 2085 } 2086 2087 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb); 2088 if (IS_ERR(inode)) { 2089 rc = PTR_ERR(inode); 2090 pr_err("Cannot allocate inode for iomem: %d\n", rc); 2091 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt); 2092 return rc; 2093 } 2094 2095 /* 2096 * Publish iomem revocation inode initialized. 2097 * Pairs with smp_load_acquire() in revoke_iomem(). 2098 */ 2099 smp_store_release(&iomem_inode, inode); 2100 2101 return 0; 2102 } 2103 2104 fs_initcall(iomem_init_inode); 2105 2106 __setup("iomem=", strict_iomem); 2107