1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/resource.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 7 * 8 * Arbitrary resource management. 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/export.h> 14 #include <linux/errno.h> 15 #include <linux/ioport.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/proc_fs.h> 21 #include <linux/pseudo_fs.h> 22 #include <linux/sched.h> 23 #include <linux/seq_file.h> 24 #include <linux/device.h> 25 #include <linux/pfn.h> 26 #include <linux/mm.h> 27 #include <linux/mount.h> 28 #include <linux/resource_ext.h> 29 #include <uapi/linux/magic.h> 30 #include <linux/string.h> 31 #include <linux/vmalloc.h> 32 #include <asm/io.h> 33 34 35 struct resource ioport_resource = { 36 .name = "PCI IO", 37 .start = 0, 38 .end = IO_SPACE_LIMIT, 39 .flags = IORESOURCE_IO, 40 }; 41 EXPORT_SYMBOL(ioport_resource); 42 43 struct resource iomem_resource = { 44 .name = "PCI mem", 45 .start = 0, 46 .end = -1, 47 .flags = IORESOURCE_MEM, 48 }; 49 EXPORT_SYMBOL(iomem_resource); 50 51 static DEFINE_RWLOCK(resource_lock); 52 53 /* 54 * Return the next node of @p in pre-order tree traversal. If 55 * @skip_children is true, skip the descendant nodes of @p in 56 * traversal. If @p is a descendant of @subtree_root, only traverse 57 * the subtree under @subtree_root. 58 */ 59 static struct resource *next_resource(struct resource *p, bool skip_children, 60 struct resource *subtree_root) 61 { 62 if (!skip_children && p->child) 63 return p->child; 64 while (!p->sibling && p->parent) { 65 p = p->parent; 66 if (p == subtree_root) 67 return NULL; 68 } 69 return p->sibling; 70 } 71 72 /* 73 * Traverse the resource subtree under @_root in pre-order, excluding 74 * @_root itself. 75 * 76 * NOTE: '__p' is introduced to avoid shadowing '_p' outside of loop. 77 * And it is referenced to avoid unused variable warning. 78 */ 79 #define for_each_resource(_root, _p, _skip_children) \ 80 for (typeof(_root) __root = (_root), __p = _p = __root->child; \ 81 __p && _p; _p = next_resource(_p, _skip_children, __root)) 82 83 #ifdef CONFIG_PROC_FS 84 85 enum { MAX_IORES_LEVEL = 5 }; 86 87 static void *r_start(struct seq_file *m, loff_t *pos) 88 __acquires(resource_lock) 89 { 90 struct resource *root = pde_data(file_inode(m->file)); 91 struct resource *p; 92 loff_t l = *pos; 93 94 read_lock(&resource_lock); 95 for_each_resource(root, p, false) { 96 if (l-- == 0) 97 break; 98 } 99 100 return p; 101 } 102 103 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 104 { 105 struct resource *p = v; 106 107 (*pos)++; 108 109 return (void *)next_resource(p, false, NULL); 110 } 111 112 static void r_stop(struct seq_file *m, void *v) 113 __releases(resource_lock) 114 { 115 read_unlock(&resource_lock); 116 } 117 118 static int r_show(struct seq_file *m, void *v) 119 { 120 struct resource *root = pde_data(file_inode(m->file)); 121 struct resource *r = v, *p; 122 unsigned long long start, end; 123 int width = root->end < 0x10000 ? 4 : 8; 124 int depth; 125 126 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 127 if (p->parent == root) 128 break; 129 130 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 131 start = r->start; 132 end = r->end; 133 } else { 134 start = end = 0; 135 } 136 137 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 138 depth * 2, "", 139 width, start, 140 width, end, 141 r->name ? r->name : "<BAD>"); 142 return 0; 143 } 144 145 static const struct seq_operations resource_op = { 146 .start = r_start, 147 .next = r_next, 148 .stop = r_stop, 149 .show = r_show, 150 }; 151 152 static int __init ioresources_init(void) 153 { 154 proc_create_seq_data("ioports", 0, NULL, &resource_op, 155 &ioport_resource); 156 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 157 return 0; 158 } 159 __initcall(ioresources_init); 160 161 #endif /* CONFIG_PROC_FS */ 162 163 static void free_resource(struct resource *res) 164 { 165 /** 166 * If the resource was allocated using memblock early during boot 167 * we'll leak it here: we can only return full pages back to the 168 * buddy and trying to be smart and reusing them eventually in 169 * alloc_resource() overcomplicates resource handling. 170 */ 171 if (res && PageSlab(virt_to_head_page(res))) 172 kfree(res); 173 } 174 175 static struct resource *alloc_resource(gfp_t flags) 176 { 177 return kzalloc(sizeof(struct resource), flags); 178 } 179 180 /* Return the conflict entry if you can't request it */ 181 static struct resource * __request_resource(struct resource *root, struct resource *new) 182 { 183 resource_size_t start = new->start; 184 resource_size_t end = new->end; 185 struct resource *tmp, **p; 186 187 if (end < start) 188 return root; 189 if (start < root->start) 190 return root; 191 if (end > root->end) 192 return root; 193 p = &root->child; 194 for (;;) { 195 tmp = *p; 196 if (!tmp || tmp->start > end) { 197 new->sibling = tmp; 198 *p = new; 199 new->parent = root; 200 return NULL; 201 } 202 p = &tmp->sibling; 203 if (tmp->end < start) 204 continue; 205 return tmp; 206 } 207 } 208 209 static int __release_resource(struct resource *old, bool release_child) 210 { 211 struct resource *tmp, **p, *chd; 212 213 p = &old->parent->child; 214 for (;;) { 215 tmp = *p; 216 if (!tmp) 217 break; 218 if (tmp == old) { 219 if (release_child || !(tmp->child)) { 220 *p = tmp->sibling; 221 } else { 222 for (chd = tmp->child;; chd = chd->sibling) { 223 chd->parent = tmp->parent; 224 if (!(chd->sibling)) 225 break; 226 } 227 *p = tmp->child; 228 chd->sibling = tmp->sibling; 229 } 230 old->parent = NULL; 231 return 0; 232 } 233 p = &tmp->sibling; 234 } 235 return -EINVAL; 236 } 237 238 static void __release_child_resources(struct resource *r) 239 { 240 struct resource *tmp, *p; 241 resource_size_t size; 242 243 p = r->child; 244 r->child = NULL; 245 while (p) { 246 tmp = p; 247 p = p->sibling; 248 249 tmp->parent = NULL; 250 tmp->sibling = NULL; 251 __release_child_resources(tmp); 252 253 printk(KERN_DEBUG "release child resource %pR\n", tmp); 254 /* need to restore size, and keep flags */ 255 size = resource_size(tmp); 256 tmp->start = 0; 257 tmp->end = size - 1; 258 } 259 } 260 261 void release_child_resources(struct resource *r) 262 { 263 write_lock(&resource_lock); 264 __release_child_resources(r); 265 write_unlock(&resource_lock); 266 } 267 268 /** 269 * request_resource_conflict - request and reserve an I/O or memory resource 270 * @root: root resource descriptor 271 * @new: resource descriptor desired by caller 272 * 273 * Returns 0 for success, conflict resource on error. 274 */ 275 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 276 { 277 struct resource *conflict; 278 279 write_lock(&resource_lock); 280 conflict = __request_resource(root, new); 281 write_unlock(&resource_lock); 282 return conflict; 283 } 284 285 /** 286 * request_resource - request and reserve an I/O or memory resource 287 * @root: root resource descriptor 288 * @new: resource descriptor desired by caller 289 * 290 * Returns 0 for success, negative error code on error. 291 */ 292 int request_resource(struct resource *root, struct resource *new) 293 { 294 struct resource *conflict; 295 296 conflict = request_resource_conflict(root, new); 297 return conflict ? -EBUSY : 0; 298 } 299 300 EXPORT_SYMBOL(request_resource); 301 302 /** 303 * release_resource - release a previously reserved resource 304 * @old: resource pointer 305 */ 306 int release_resource(struct resource *old) 307 { 308 int retval; 309 310 write_lock(&resource_lock); 311 retval = __release_resource(old, true); 312 write_unlock(&resource_lock); 313 return retval; 314 } 315 316 EXPORT_SYMBOL(release_resource); 317 318 static bool is_type_match(struct resource *p, unsigned long flags, unsigned long desc) 319 { 320 return (p->flags & flags) == flags && (desc == IORES_DESC_NONE || desc == p->desc); 321 } 322 323 /** 324 * find_next_iomem_res - Finds the lowest iomem resource that covers part of 325 * [@start..@end]. 326 * 327 * If a resource is found, returns 0 and @*res is overwritten with the part 328 * of the resource that's within [@start..@end]; if none is found, returns 329 * -ENODEV. Returns -EINVAL for invalid parameters. 330 * 331 * @start: start address of the resource searched for 332 * @end: end address of same resource 333 * @flags: flags which the resource must have 334 * @desc: descriptor the resource must have 335 * @res: return ptr, if resource found 336 * 337 * The caller must specify @start, @end, @flags, and @desc 338 * (which may be IORES_DESC_NONE). 339 */ 340 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 341 unsigned long flags, unsigned long desc, 342 struct resource *res) 343 { 344 struct resource *p; 345 346 if (!res) 347 return -EINVAL; 348 349 if (start >= end) 350 return -EINVAL; 351 352 read_lock(&resource_lock); 353 354 for_each_resource(&iomem_resource, p, false) { 355 /* If we passed the resource we are looking for, stop */ 356 if (p->start > end) { 357 p = NULL; 358 break; 359 } 360 361 /* Skip until we find a range that matches what we look for */ 362 if (p->end < start) 363 continue; 364 365 /* Found a match, break */ 366 if (is_type_match(p, flags, desc)) 367 break; 368 } 369 370 if (p) { 371 /* copy data */ 372 *res = (struct resource) { 373 .start = max(start, p->start), 374 .end = min(end, p->end), 375 .flags = p->flags, 376 .desc = p->desc, 377 .parent = p->parent, 378 }; 379 } 380 381 read_unlock(&resource_lock); 382 return p ? 0 : -ENODEV; 383 } 384 385 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 386 unsigned long flags, unsigned long desc, 387 void *arg, 388 int (*func)(struct resource *, void *)) 389 { 390 struct resource res; 391 int ret = -EINVAL; 392 393 while (start < end && 394 !find_next_iomem_res(start, end, flags, desc, &res)) { 395 ret = (*func)(&res, arg); 396 if (ret) 397 break; 398 399 start = res.end + 1; 400 } 401 402 return ret; 403 } 404 405 /** 406 * walk_iomem_res_desc - Walks through iomem resources and calls func() 407 * with matching resource ranges. 408 * * 409 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 410 * @flags: I/O resource flags 411 * @start: start addr 412 * @end: end addr 413 * @arg: function argument for the callback @func 414 * @func: callback function that is called for each qualifying resource area 415 * 416 * All the memory ranges which overlap start,end and also match flags and 417 * desc are valid candidates. 418 * 419 * NOTE: For a new descriptor search, define a new IORES_DESC in 420 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 421 */ 422 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 423 u64 end, void *arg, int (*func)(struct resource *, void *)) 424 { 425 return __walk_iomem_res_desc(start, end, flags, desc, arg, func); 426 } 427 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 428 429 /* 430 * This function calls the @func callback against all memory ranges of type 431 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 432 * Now, this function is only for System RAM, it deals with full ranges and 433 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 434 * ranges. 435 */ 436 int walk_system_ram_res(u64 start, u64 end, void *arg, 437 int (*func)(struct resource *, void *)) 438 { 439 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 440 441 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 442 func); 443 } 444 445 /* 446 * This function, being a variant of walk_system_ram_res(), calls the @func 447 * callback against all memory ranges of type System RAM which are marked as 448 * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from 449 * higher to lower. 450 */ 451 int walk_system_ram_res_rev(u64 start, u64 end, void *arg, 452 int (*func)(struct resource *, void *)) 453 { 454 struct resource res, *rams; 455 int rams_size = 16, i; 456 unsigned long flags; 457 int ret = -1; 458 459 /* create a list */ 460 rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL); 461 if (!rams) 462 return ret; 463 464 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 465 i = 0; 466 while ((start < end) && 467 (!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) { 468 if (i >= rams_size) { 469 /* re-alloc */ 470 struct resource *rams_new; 471 472 rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource), 473 GFP_KERNEL); 474 if (!rams_new) 475 goto out; 476 477 rams = rams_new; 478 rams_size += 16; 479 } 480 481 rams[i++] = res; 482 start = res.end + 1; 483 } 484 485 /* go reverse */ 486 for (i--; i >= 0; i--) { 487 ret = (*func)(&rams[i], arg); 488 if (ret) 489 break; 490 } 491 492 out: 493 kvfree(rams); 494 return ret; 495 } 496 497 /* 498 * This function calls the @func callback against all memory ranges, which 499 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 500 */ 501 int walk_mem_res(u64 start, u64 end, void *arg, 502 int (*func)(struct resource *, void *)) 503 { 504 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 505 506 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 507 func); 508 } 509 510 /* 511 * This function calls the @func callback against all memory ranges of type 512 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 513 * It is to be used only for System RAM. 514 */ 515 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 516 void *arg, int (*func)(unsigned long, unsigned long, void *)) 517 { 518 resource_size_t start, end; 519 unsigned long flags; 520 struct resource res; 521 unsigned long pfn, end_pfn; 522 int ret = -EINVAL; 523 524 start = (u64) start_pfn << PAGE_SHIFT; 525 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 526 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 527 while (start < end && 528 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) { 529 pfn = PFN_UP(res.start); 530 end_pfn = PFN_DOWN(res.end + 1); 531 if (end_pfn > pfn) 532 ret = (*func)(pfn, end_pfn - pfn, arg); 533 if (ret) 534 break; 535 start = res.end + 1; 536 } 537 return ret; 538 } 539 540 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 541 { 542 return 1; 543 } 544 545 /* 546 * This generic page_is_ram() returns true if specified address is 547 * registered as System RAM in iomem_resource list. 548 */ 549 int __weak page_is_ram(unsigned long pfn) 550 { 551 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 552 } 553 EXPORT_SYMBOL_GPL(page_is_ram); 554 555 static int __region_intersects(struct resource *parent, resource_size_t start, 556 size_t size, unsigned long flags, 557 unsigned long desc) 558 { 559 int type = 0; int other = 0; 560 struct resource *p, *dp; 561 struct resource res, o; 562 bool covered; 563 564 res = DEFINE_RES(start, size, 0); 565 566 for (p = parent->child; p ; p = p->sibling) { 567 if (!resource_intersection(p, &res, &o)) 568 continue; 569 if (is_type_match(p, flags, desc)) { 570 type++; 571 continue; 572 } 573 /* 574 * Continue to search in descendant resources as if the 575 * matched descendant resources cover some ranges of 'p'. 576 * 577 * |------------- "CXL Window 0" ------------| 578 * |-- "System RAM" --| 579 * 580 * will behave similar as the following fake resource 581 * tree when searching "System RAM". 582 * 583 * |-- "System RAM" --||-- "CXL Window 0a" --| 584 */ 585 covered = false; 586 for_each_resource(p, dp, false) { 587 if (!resource_overlaps(dp, &res)) 588 continue; 589 if (is_type_match(dp, flags, desc)) { 590 type++; 591 /* 592 * Range from 'o.start' to 'dp->start' 593 * isn't covered by matched resource. 594 */ 595 if (dp->start > o.start) 596 break; 597 if (dp->end >= o.end) { 598 covered = true; 599 break; 600 } 601 /* Remove covered range */ 602 o.start = max(o.start, dp->end + 1); 603 } 604 } 605 if (!covered) 606 other++; 607 } 608 609 if (type == 0) 610 return REGION_DISJOINT; 611 612 if (other == 0) 613 return REGION_INTERSECTS; 614 615 return REGION_MIXED; 616 } 617 618 /** 619 * region_intersects() - determine intersection of region with known resources 620 * @start: region start address 621 * @size: size of region 622 * @flags: flags of resource (in iomem_resource) 623 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 624 * 625 * Check if the specified region partially overlaps or fully eclipses a 626 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 627 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 628 * return REGION_MIXED if the region overlaps @flags/@desc and another 629 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 630 * and no other defined resource. Note that REGION_INTERSECTS is also 631 * returned in the case when the specified region overlaps RAM and undefined 632 * memory holes. 633 * 634 * region_intersect() is used by memory remapping functions to ensure 635 * the user is not remapping RAM and is a vast speed up over walking 636 * through the resource table page by page. 637 */ 638 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 639 unsigned long desc) 640 { 641 int ret; 642 643 read_lock(&resource_lock); 644 ret = __region_intersects(&iomem_resource, start, size, flags, desc); 645 read_unlock(&resource_lock); 646 647 return ret; 648 } 649 EXPORT_SYMBOL_GPL(region_intersects); 650 651 void __weak arch_remove_reservations(struct resource *avail) 652 { 653 } 654 655 static void resource_clip(struct resource *res, resource_size_t min, 656 resource_size_t max) 657 { 658 if (res->start < min) 659 res->start = min; 660 if (res->end > max) 661 res->end = max; 662 } 663 664 /* 665 * Find empty space in the resource tree with the given range and 666 * alignment constraints 667 */ 668 static int __find_resource_space(struct resource *root, struct resource *old, 669 struct resource *new, resource_size_t size, 670 struct resource_constraint *constraint) 671 { 672 struct resource *this = root->child; 673 struct resource tmp = *new, avail, alloc; 674 resource_alignf alignf = constraint->alignf; 675 676 tmp.start = root->start; 677 /* 678 * Skip past an allocated resource that starts at 0, since the assignment 679 * of this->start - 1 to tmp->end below would cause an underflow. 680 */ 681 if (this && this->start == root->start) { 682 tmp.start = (this == old) ? old->start : this->end + 1; 683 this = this->sibling; 684 } 685 for(;;) { 686 if (this) 687 tmp.end = (this == old) ? this->end : this->start - 1; 688 else 689 tmp.end = root->end; 690 691 if (tmp.end < tmp.start) 692 goto next; 693 694 resource_clip(&tmp, constraint->min, constraint->max); 695 arch_remove_reservations(&tmp); 696 697 /* Check for overflow after ALIGN() */ 698 avail.start = ALIGN(tmp.start, constraint->align); 699 avail.end = tmp.end; 700 avail.flags = new->flags & ~IORESOURCE_UNSET; 701 if (avail.start >= tmp.start) { 702 alloc.flags = avail.flags; 703 if (alignf) { 704 alloc.start = alignf(constraint->alignf_data, 705 &avail, size, constraint->align); 706 } else { 707 alloc.start = avail.start; 708 } 709 alloc.end = alloc.start + size - 1; 710 if (alloc.start <= alloc.end && 711 resource_contains(&avail, &alloc)) { 712 new->start = alloc.start; 713 new->end = alloc.end; 714 return 0; 715 } 716 } 717 718 next: if (!this || this->end == root->end) 719 break; 720 721 if (this != old) 722 tmp.start = this->end + 1; 723 this = this->sibling; 724 } 725 return -EBUSY; 726 } 727 728 /** 729 * find_resource_space - Find empty space in the resource tree 730 * @root: Root resource descriptor 731 * @new: Resource descriptor awaiting an empty resource space 732 * @size: The minimum size of the empty space 733 * @constraint: The range and alignment constraints to be met 734 * 735 * Finds an empty space under @root in the resource tree satisfying range and 736 * alignment @constraints. 737 * 738 * Return: 739 * * %0 - if successful, @new members start, end, and flags are altered. 740 * * %-EBUSY - if no empty space was found. 741 */ 742 int find_resource_space(struct resource *root, struct resource *new, 743 resource_size_t size, 744 struct resource_constraint *constraint) 745 { 746 return __find_resource_space(root, NULL, new, size, constraint); 747 } 748 EXPORT_SYMBOL_GPL(find_resource_space); 749 750 /** 751 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 752 * The resource will be relocated if the new size cannot be reallocated in the 753 * current location. 754 * 755 * @root: root resource descriptor 756 * @old: resource descriptor desired by caller 757 * @newsize: new size of the resource descriptor 758 * @constraint: the memory range and alignment constraints to be met. 759 */ 760 static int reallocate_resource(struct resource *root, struct resource *old, 761 resource_size_t newsize, 762 struct resource_constraint *constraint) 763 { 764 int err=0; 765 struct resource new = *old; 766 struct resource *conflict; 767 768 write_lock(&resource_lock); 769 770 if ((err = __find_resource_space(root, old, &new, newsize, constraint))) 771 goto out; 772 773 if (resource_contains(&new, old)) { 774 old->start = new.start; 775 old->end = new.end; 776 goto out; 777 } 778 779 if (old->child) { 780 err = -EBUSY; 781 goto out; 782 } 783 784 if (resource_contains(old, &new)) { 785 old->start = new.start; 786 old->end = new.end; 787 } else { 788 __release_resource(old, true); 789 *old = new; 790 conflict = __request_resource(root, old); 791 BUG_ON(conflict); 792 } 793 out: 794 write_unlock(&resource_lock); 795 return err; 796 } 797 798 799 /** 800 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 801 * The resource will be reallocated with a new size if it was already allocated 802 * @root: root resource descriptor 803 * @new: resource descriptor desired by caller 804 * @size: requested resource region size 805 * @min: minimum boundary to allocate 806 * @max: maximum boundary to allocate 807 * @align: alignment requested, in bytes 808 * @alignf: alignment function, optional, called if not NULL 809 * @alignf_data: arbitrary data to pass to the @alignf function 810 */ 811 int allocate_resource(struct resource *root, struct resource *new, 812 resource_size_t size, resource_size_t min, 813 resource_size_t max, resource_size_t align, 814 resource_alignf alignf, 815 void *alignf_data) 816 { 817 int err; 818 struct resource_constraint constraint; 819 820 constraint.min = min; 821 constraint.max = max; 822 constraint.align = align; 823 constraint.alignf = alignf; 824 constraint.alignf_data = alignf_data; 825 826 if ( new->parent ) { 827 /* resource is already allocated, try reallocating with 828 the new constraints */ 829 return reallocate_resource(root, new, size, &constraint); 830 } 831 832 write_lock(&resource_lock); 833 err = find_resource_space(root, new, size, &constraint); 834 if (err >= 0 && __request_resource(root, new)) 835 err = -EBUSY; 836 write_unlock(&resource_lock); 837 return err; 838 } 839 840 EXPORT_SYMBOL(allocate_resource); 841 842 /** 843 * lookup_resource - find an existing resource by a resource start address 844 * @root: root resource descriptor 845 * @start: resource start address 846 * 847 * Returns a pointer to the resource if found, NULL otherwise 848 */ 849 struct resource *lookup_resource(struct resource *root, resource_size_t start) 850 { 851 struct resource *res; 852 853 read_lock(&resource_lock); 854 for (res = root->child; res; res = res->sibling) { 855 if (res->start == start) 856 break; 857 } 858 read_unlock(&resource_lock); 859 860 return res; 861 } 862 863 /* 864 * Insert a resource into the resource tree. If successful, return NULL, 865 * otherwise return the conflicting resource (compare to __request_resource()) 866 */ 867 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 868 { 869 struct resource *first, *next; 870 871 for (;; parent = first) { 872 first = __request_resource(parent, new); 873 if (!first) 874 return first; 875 876 if (first == parent) 877 return first; 878 if (WARN_ON(first == new)) /* duplicated insertion */ 879 return first; 880 881 if ((first->start > new->start) || (first->end < new->end)) 882 break; 883 if ((first->start == new->start) && (first->end == new->end)) 884 break; 885 } 886 887 for (next = first; ; next = next->sibling) { 888 /* Partial overlap? Bad, and unfixable */ 889 if (next->start < new->start || next->end > new->end) 890 return next; 891 if (!next->sibling) 892 break; 893 if (next->sibling->start > new->end) 894 break; 895 } 896 897 new->parent = parent; 898 new->sibling = next->sibling; 899 new->child = first; 900 901 next->sibling = NULL; 902 for (next = first; next; next = next->sibling) 903 next->parent = new; 904 905 if (parent->child == first) { 906 parent->child = new; 907 } else { 908 next = parent->child; 909 while (next->sibling != first) 910 next = next->sibling; 911 next->sibling = new; 912 } 913 return NULL; 914 } 915 916 /** 917 * insert_resource_conflict - Inserts resource in the resource tree 918 * @parent: parent of the new resource 919 * @new: new resource to insert 920 * 921 * Returns 0 on success, conflict resource if the resource can't be inserted. 922 * 923 * This function is equivalent to request_resource_conflict when no conflict 924 * happens. If a conflict happens, and the conflicting resources 925 * entirely fit within the range of the new resource, then the new 926 * resource is inserted and the conflicting resources become children of 927 * the new resource. 928 * 929 * This function is intended for producers of resources, such as FW modules 930 * and bus drivers. 931 */ 932 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 933 { 934 struct resource *conflict; 935 936 write_lock(&resource_lock); 937 conflict = __insert_resource(parent, new); 938 write_unlock(&resource_lock); 939 return conflict; 940 } 941 942 /** 943 * insert_resource - Inserts a resource in the resource tree 944 * @parent: parent of the new resource 945 * @new: new resource to insert 946 * 947 * Returns 0 on success, -EBUSY if the resource can't be inserted. 948 * 949 * This function is intended for producers of resources, such as FW modules 950 * and bus drivers. 951 */ 952 int insert_resource(struct resource *parent, struct resource *new) 953 { 954 struct resource *conflict; 955 956 conflict = insert_resource_conflict(parent, new); 957 return conflict ? -EBUSY : 0; 958 } 959 EXPORT_SYMBOL_GPL(insert_resource); 960 961 /** 962 * insert_resource_expand_to_fit - Insert a resource into the resource tree 963 * @root: root resource descriptor 964 * @new: new resource to insert 965 * 966 * Insert a resource into the resource tree, possibly expanding it in order 967 * to make it encompass any conflicting resources. 968 */ 969 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 970 { 971 if (new->parent) 972 return; 973 974 write_lock(&resource_lock); 975 for (;;) { 976 struct resource *conflict; 977 978 conflict = __insert_resource(root, new); 979 if (!conflict) 980 break; 981 if (conflict == root) 982 break; 983 984 /* Ok, expand resource to cover the conflict, then try again .. */ 985 if (conflict->start < new->start) 986 new->start = conflict->start; 987 if (conflict->end > new->end) 988 new->end = conflict->end; 989 990 pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 991 } 992 write_unlock(&resource_lock); 993 } 994 /* 995 * Not for general consumption, only early boot memory map parsing, PCI 996 * resource discovery, and late discovery of CXL resources are expected 997 * to use this interface. The former are built-in and only the latter, 998 * CXL, is a module. 999 */ 1000 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, "CXL"); 1001 1002 /** 1003 * remove_resource - Remove a resource in the resource tree 1004 * @old: resource to remove 1005 * 1006 * Returns 0 on success, -EINVAL if the resource is not valid. 1007 * 1008 * This function removes a resource previously inserted by insert_resource() 1009 * or insert_resource_conflict(), and moves the children (if any) up to 1010 * where they were before. insert_resource() and insert_resource_conflict() 1011 * insert a new resource, and move any conflicting resources down to the 1012 * children of the new resource. 1013 * 1014 * insert_resource(), insert_resource_conflict() and remove_resource() are 1015 * intended for producers of resources, such as FW modules and bus drivers. 1016 */ 1017 int remove_resource(struct resource *old) 1018 { 1019 int retval; 1020 1021 write_lock(&resource_lock); 1022 retval = __release_resource(old, false); 1023 write_unlock(&resource_lock); 1024 return retval; 1025 } 1026 EXPORT_SYMBOL_GPL(remove_resource); 1027 1028 static int __adjust_resource(struct resource *res, resource_size_t start, 1029 resource_size_t size) 1030 { 1031 struct resource *tmp, *parent = res->parent; 1032 resource_size_t end = start + size - 1; 1033 int result = -EBUSY; 1034 1035 if (!parent) 1036 goto skip; 1037 1038 if ((start < parent->start) || (end > parent->end)) 1039 goto out; 1040 1041 if (res->sibling && (res->sibling->start <= end)) 1042 goto out; 1043 1044 tmp = parent->child; 1045 if (tmp != res) { 1046 while (tmp->sibling != res) 1047 tmp = tmp->sibling; 1048 if (start <= tmp->end) 1049 goto out; 1050 } 1051 1052 skip: 1053 for (tmp = res->child; tmp; tmp = tmp->sibling) 1054 if ((tmp->start < start) || (tmp->end > end)) 1055 goto out; 1056 1057 res->start = start; 1058 res->end = end; 1059 result = 0; 1060 1061 out: 1062 return result; 1063 } 1064 1065 /** 1066 * adjust_resource - modify a resource's start and size 1067 * @res: resource to modify 1068 * @start: new start value 1069 * @size: new size 1070 * 1071 * Given an existing resource, change its start and size to match the 1072 * arguments. Returns 0 on success, -EBUSY if it can't fit. 1073 * Existing children of the resource are assumed to be immutable. 1074 */ 1075 int adjust_resource(struct resource *res, resource_size_t start, 1076 resource_size_t size) 1077 { 1078 int result; 1079 1080 write_lock(&resource_lock); 1081 result = __adjust_resource(res, start, size); 1082 write_unlock(&resource_lock); 1083 return result; 1084 } 1085 EXPORT_SYMBOL(adjust_resource); 1086 1087 static void __init 1088 __reserve_region_with_split(struct resource *root, resource_size_t start, 1089 resource_size_t end, const char *name) 1090 { 1091 struct resource *parent = root; 1092 struct resource *conflict; 1093 struct resource *res = alloc_resource(GFP_ATOMIC); 1094 struct resource *next_res = NULL; 1095 int type = resource_type(root); 1096 1097 if (!res) 1098 return; 1099 1100 res->name = name; 1101 res->start = start; 1102 res->end = end; 1103 res->flags = type | IORESOURCE_BUSY; 1104 res->desc = IORES_DESC_NONE; 1105 1106 while (1) { 1107 1108 conflict = __request_resource(parent, res); 1109 if (!conflict) { 1110 if (!next_res) 1111 break; 1112 res = next_res; 1113 next_res = NULL; 1114 continue; 1115 } 1116 1117 /* conflict covered whole area */ 1118 if (conflict->start <= res->start && 1119 conflict->end >= res->end) { 1120 free_resource(res); 1121 WARN_ON(next_res); 1122 break; 1123 } 1124 1125 /* failed, split and try again */ 1126 if (conflict->start > res->start) { 1127 end = res->end; 1128 res->end = conflict->start - 1; 1129 if (conflict->end < end) { 1130 next_res = alloc_resource(GFP_ATOMIC); 1131 if (!next_res) { 1132 free_resource(res); 1133 break; 1134 } 1135 next_res->name = name; 1136 next_res->start = conflict->end + 1; 1137 next_res->end = end; 1138 next_res->flags = type | IORESOURCE_BUSY; 1139 next_res->desc = IORES_DESC_NONE; 1140 } 1141 } else { 1142 res->start = conflict->end + 1; 1143 } 1144 } 1145 1146 } 1147 1148 void __init 1149 reserve_region_with_split(struct resource *root, resource_size_t start, 1150 resource_size_t end, const char *name) 1151 { 1152 int abort = 0; 1153 1154 write_lock(&resource_lock); 1155 if (root->start > start || root->end < end) { 1156 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1157 (unsigned long long)start, (unsigned long long)end, 1158 root); 1159 if (start > root->end || end < root->start) 1160 abort = 1; 1161 else { 1162 if (end > root->end) 1163 end = root->end; 1164 if (start < root->start) 1165 start = root->start; 1166 pr_err("fixing request to [0x%llx-0x%llx]\n", 1167 (unsigned long long)start, 1168 (unsigned long long)end); 1169 } 1170 dump_stack(); 1171 } 1172 if (!abort) 1173 __reserve_region_with_split(root, start, end, name); 1174 write_unlock(&resource_lock); 1175 } 1176 1177 /** 1178 * resource_alignment - calculate resource's alignment 1179 * @res: resource pointer 1180 * 1181 * Returns alignment on success, 0 (invalid alignment) on failure. 1182 */ 1183 resource_size_t resource_alignment(struct resource *res) 1184 { 1185 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1186 case IORESOURCE_SIZEALIGN: 1187 return resource_size(res); 1188 case IORESOURCE_STARTALIGN: 1189 return res->start; 1190 default: 1191 return 0; 1192 } 1193 } 1194 1195 /* 1196 * This is compatibility stuff for IO resources. 1197 * 1198 * Note how this, unlike the above, knows about 1199 * the IO flag meanings (busy etc). 1200 * 1201 * request_region creates a new busy region. 1202 * 1203 * release_region releases a matching busy region. 1204 */ 1205 1206 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1207 1208 static struct inode *iomem_inode; 1209 1210 #ifdef CONFIG_IO_STRICT_DEVMEM 1211 static void revoke_iomem(struct resource *res) 1212 { 1213 /* pairs with smp_store_release() in iomem_init_inode() */ 1214 struct inode *inode = smp_load_acquire(&iomem_inode); 1215 1216 /* 1217 * Check that the initialization has completed. Losing the race 1218 * is ok because it means drivers are claiming resources before 1219 * the fs_initcall level of init and prevent iomem_get_mapping users 1220 * from establishing mappings. 1221 */ 1222 if (!inode) 1223 return; 1224 1225 /* 1226 * The expectation is that the driver has successfully marked 1227 * the resource busy by this point, so devmem_is_allowed() 1228 * should start returning false, however for performance this 1229 * does not iterate the entire resource range. 1230 */ 1231 if (devmem_is_allowed(PHYS_PFN(res->start)) && 1232 devmem_is_allowed(PHYS_PFN(res->end))) { 1233 /* 1234 * *cringe* iomem=relaxed says "go ahead, what's the 1235 * worst that can happen?" 1236 */ 1237 return; 1238 } 1239 1240 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1); 1241 } 1242 #else 1243 static void revoke_iomem(struct resource *res) {} 1244 #endif 1245 1246 struct address_space *iomem_get_mapping(void) 1247 { 1248 /* 1249 * This function is only called from file open paths, hence guaranteed 1250 * that fs_initcalls have completed and no need to check for NULL. But 1251 * since revoke_iomem can be called before the initcall we still need 1252 * the barrier to appease checkers. 1253 */ 1254 return smp_load_acquire(&iomem_inode)->i_mapping; 1255 } 1256 1257 static int __request_region_locked(struct resource *res, struct resource *parent, 1258 resource_size_t start, resource_size_t n, 1259 const char *name, int flags) 1260 { 1261 DECLARE_WAITQUEUE(wait, current); 1262 1263 res->name = name; 1264 res->start = start; 1265 res->end = start + n - 1; 1266 1267 for (;;) { 1268 struct resource *conflict; 1269 1270 res->flags = resource_type(parent) | resource_ext_type(parent); 1271 res->flags |= IORESOURCE_BUSY | flags; 1272 res->desc = parent->desc; 1273 1274 conflict = __request_resource(parent, res); 1275 if (!conflict) 1276 break; 1277 /* 1278 * mm/hmm.c reserves physical addresses which then 1279 * become unavailable to other users. Conflicts are 1280 * not expected. Warn to aid debugging if encountered. 1281 */ 1282 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 1283 pr_warn("Unaddressable device %s %pR conflicts with %pR", 1284 conflict->name, conflict, res); 1285 } 1286 if (conflict != parent) { 1287 if (!(conflict->flags & IORESOURCE_BUSY)) { 1288 parent = conflict; 1289 continue; 1290 } 1291 } 1292 if (conflict->flags & flags & IORESOURCE_MUXED) { 1293 add_wait_queue(&muxed_resource_wait, &wait); 1294 write_unlock(&resource_lock); 1295 set_current_state(TASK_UNINTERRUPTIBLE); 1296 schedule(); 1297 remove_wait_queue(&muxed_resource_wait, &wait); 1298 write_lock(&resource_lock); 1299 continue; 1300 } 1301 /* Uhhuh, that didn't work out.. */ 1302 return -EBUSY; 1303 } 1304 1305 return 0; 1306 } 1307 1308 /** 1309 * __request_region - create a new busy resource region 1310 * @parent: parent resource descriptor 1311 * @start: resource start address 1312 * @n: resource region size 1313 * @name: reserving caller's ID string 1314 * @flags: IO resource flags 1315 */ 1316 struct resource *__request_region(struct resource *parent, 1317 resource_size_t start, resource_size_t n, 1318 const char *name, int flags) 1319 { 1320 struct resource *res = alloc_resource(GFP_KERNEL); 1321 int ret; 1322 1323 if (!res) 1324 return NULL; 1325 1326 write_lock(&resource_lock); 1327 ret = __request_region_locked(res, parent, start, n, name, flags); 1328 write_unlock(&resource_lock); 1329 1330 if (ret) { 1331 free_resource(res); 1332 return NULL; 1333 } 1334 1335 if (parent == &iomem_resource) 1336 revoke_iomem(res); 1337 1338 return res; 1339 } 1340 EXPORT_SYMBOL(__request_region); 1341 1342 /** 1343 * __release_region - release a previously reserved resource region 1344 * @parent: parent resource descriptor 1345 * @start: resource start address 1346 * @n: resource region size 1347 * 1348 * The described resource region must match a currently busy region. 1349 */ 1350 void __release_region(struct resource *parent, resource_size_t start, 1351 resource_size_t n) 1352 { 1353 struct resource **p; 1354 resource_size_t end; 1355 1356 p = &parent->child; 1357 end = start + n - 1; 1358 1359 write_lock(&resource_lock); 1360 1361 for (;;) { 1362 struct resource *res = *p; 1363 1364 if (!res) 1365 break; 1366 if (res->start <= start && res->end >= end) { 1367 if (!(res->flags & IORESOURCE_BUSY)) { 1368 p = &res->child; 1369 continue; 1370 } 1371 if (res->start != start || res->end != end) 1372 break; 1373 *p = res->sibling; 1374 write_unlock(&resource_lock); 1375 if (res->flags & IORESOURCE_MUXED) 1376 wake_up(&muxed_resource_wait); 1377 free_resource(res); 1378 return; 1379 } 1380 p = &res->sibling; 1381 } 1382 1383 write_unlock(&resource_lock); 1384 1385 pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end); 1386 } 1387 EXPORT_SYMBOL(__release_region); 1388 1389 #ifdef CONFIG_MEMORY_HOTREMOVE 1390 /** 1391 * release_mem_region_adjustable - release a previously reserved memory region 1392 * @start: resource start address 1393 * @size: resource region size 1394 * 1395 * This interface is intended for memory hot-delete. The requested region 1396 * is released from a currently busy memory resource. The requested region 1397 * must either match exactly or fit into a single busy resource entry. In 1398 * the latter case, the remaining resource is adjusted accordingly. 1399 * Existing children of the busy memory resource must be immutable in the 1400 * request. 1401 * 1402 * Note: 1403 * - Additional release conditions, such as overlapping region, can be 1404 * supported after they are confirmed as valid cases. 1405 * - When a busy memory resource gets split into two entries, the code 1406 * assumes that all children remain in the lower address entry for 1407 * simplicity. Enhance this logic when necessary. 1408 */ 1409 void release_mem_region_adjustable(resource_size_t start, resource_size_t size) 1410 { 1411 struct resource *parent = &iomem_resource; 1412 struct resource *new_res = NULL; 1413 bool alloc_nofail = false; 1414 struct resource **p; 1415 struct resource *res; 1416 resource_size_t end; 1417 1418 end = start + size - 1; 1419 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end))) 1420 return; 1421 1422 /* 1423 * We free up quite a lot of memory on memory hotunplug (esp., memap), 1424 * just before releasing the region. This is highly unlikely to 1425 * fail - let's play save and make it never fail as the caller cannot 1426 * perform any error handling (e.g., trying to re-add memory will fail 1427 * similarly). 1428 */ 1429 retry: 1430 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0)); 1431 1432 p = &parent->child; 1433 write_lock(&resource_lock); 1434 1435 while ((res = *p)) { 1436 if (res->start >= end) 1437 break; 1438 1439 /* look for the next resource if it does not fit into */ 1440 if (res->start > start || res->end < end) { 1441 p = &res->sibling; 1442 continue; 1443 } 1444 1445 if (!(res->flags & IORESOURCE_MEM)) 1446 break; 1447 1448 if (!(res->flags & IORESOURCE_BUSY)) { 1449 p = &res->child; 1450 continue; 1451 } 1452 1453 /* found the target resource; let's adjust accordingly */ 1454 if (res->start == start && res->end == end) { 1455 /* free the whole entry */ 1456 *p = res->sibling; 1457 free_resource(res); 1458 } else if (res->start == start && res->end != end) { 1459 /* adjust the start */ 1460 WARN_ON_ONCE(__adjust_resource(res, end + 1, 1461 res->end - end)); 1462 } else if (res->start != start && res->end == end) { 1463 /* adjust the end */ 1464 WARN_ON_ONCE(__adjust_resource(res, res->start, 1465 start - res->start)); 1466 } else { 1467 /* split into two entries - we need a new resource */ 1468 if (!new_res) { 1469 new_res = alloc_resource(GFP_ATOMIC); 1470 if (!new_res) { 1471 alloc_nofail = true; 1472 write_unlock(&resource_lock); 1473 goto retry; 1474 } 1475 } 1476 new_res->name = res->name; 1477 new_res->start = end + 1; 1478 new_res->end = res->end; 1479 new_res->flags = res->flags; 1480 new_res->desc = res->desc; 1481 new_res->parent = res->parent; 1482 new_res->sibling = res->sibling; 1483 new_res->child = NULL; 1484 1485 if (WARN_ON_ONCE(__adjust_resource(res, res->start, 1486 start - res->start))) 1487 break; 1488 res->sibling = new_res; 1489 new_res = NULL; 1490 } 1491 1492 break; 1493 } 1494 1495 write_unlock(&resource_lock); 1496 free_resource(new_res); 1497 } 1498 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1499 1500 #ifdef CONFIG_MEMORY_HOTPLUG 1501 static bool system_ram_resources_mergeable(struct resource *r1, 1502 struct resource *r2) 1503 { 1504 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */ 1505 return r1->flags == r2->flags && r1->end + 1 == r2->start && 1506 r1->name == r2->name && r1->desc == r2->desc && 1507 !r1->child && !r2->child; 1508 } 1509 1510 /** 1511 * merge_system_ram_resource - mark the System RAM resource mergeable and try to 1512 * merge it with adjacent, mergeable resources 1513 * @res: resource descriptor 1514 * 1515 * This interface is intended for memory hotplug, whereby lots of contiguous 1516 * system ram resources are added (e.g., via add_memory*()) by a driver, and 1517 * the actual resource boundaries are not of interest (e.g., it might be 1518 * relevant for DIMMs). Only resources that are marked mergeable, that have the 1519 * same parent, and that don't have any children are considered. All mergeable 1520 * resources must be immutable during the request. 1521 * 1522 * Note: 1523 * - The caller has to make sure that no pointers to resources that are 1524 * marked mergeable are used anymore after this call - the resource might 1525 * be freed and the pointer might be stale! 1526 * - release_mem_region_adjustable() will split on demand on memory hotunplug 1527 */ 1528 void merge_system_ram_resource(struct resource *res) 1529 { 1530 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 1531 struct resource *cur; 1532 1533 if (WARN_ON_ONCE((res->flags & flags) != flags)) 1534 return; 1535 1536 write_lock(&resource_lock); 1537 res->flags |= IORESOURCE_SYSRAM_MERGEABLE; 1538 1539 /* Try to merge with next item in the list. */ 1540 cur = res->sibling; 1541 if (cur && system_ram_resources_mergeable(res, cur)) { 1542 res->end = cur->end; 1543 res->sibling = cur->sibling; 1544 free_resource(cur); 1545 } 1546 1547 /* Try to merge with previous item in the list. */ 1548 cur = res->parent->child; 1549 while (cur && cur->sibling != res) 1550 cur = cur->sibling; 1551 if (cur && system_ram_resources_mergeable(cur, res)) { 1552 cur->end = res->end; 1553 cur->sibling = res->sibling; 1554 free_resource(res); 1555 } 1556 write_unlock(&resource_lock); 1557 } 1558 #endif /* CONFIG_MEMORY_HOTPLUG */ 1559 1560 /* 1561 * Managed region resource 1562 */ 1563 static void devm_resource_release(struct device *dev, void *ptr) 1564 { 1565 struct resource **r = ptr; 1566 1567 release_resource(*r); 1568 } 1569 1570 /** 1571 * devm_request_resource() - request and reserve an I/O or memory resource 1572 * @dev: device for which to request the resource 1573 * @root: root of the resource tree from which to request the resource 1574 * @new: descriptor of the resource to request 1575 * 1576 * This is a device-managed version of request_resource(). There is usually 1577 * no need to release resources requested by this function explicitly since 1578 * that will be taken care of when the device is unbound from its driver. 1579 * If for some reason the resource needs to be released explicitly, because 1580 * of ordering issues for example, drivers must call devm_release_resource() 1581 * rather than the regular release_resource(). 1582 * 1583 * When a conflict is detected between any existing resources and the newly 1584 * requested resource, an error message will be printed. 1585 * 1586 * Returns 0 on success or a negative error code on failure. 1587 */ 1588 int devm_request_resource(struct device *dev, struct resource *root, 1589 struct resource *new) 1590 { 1591 struct resource *conflict, **ptr; 1592 1593 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1594 if (!ptr) 1595 return -ENOMEM; 1596 1597 *ptr = new; 1598 1599 conflict = request_resource_conflict(root, new); 1600 if (conflict) { 1601 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1602 new, conflict->name, conflict); 1603 devres_free(ptr); 1604 return -EBUSY; 1605 } 1606 1607 devres_add(dev, ptr); 1608 return 0; 1609 } 1610 EXPORT_SYMBOL(devm_request_resource); 1611 1612 static int devm_resource_match(struct device *dev, void *res, void *data) 1613 { 1614 struct resource **ptr = res; 1615 1616 return *ptr == data; 1617 } 1618 1619 /** 1620 * devm_release_resource() - release a previously requested resource 1621 * @dev: device for which to release the resource 1622 * @new: descriptor of the resource to release 1623 * 1624 * Releases a resource previously requested using devm_request_resource(). 1625 */ 1626 void devm_release_resource(struct device *dev, struct resource *new) 1627 { 1628 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1629 new)); 1630 } 1631 EXPORT_SYMBOL(devm_release_resource); 1632 1633 struct region_devres { 1634 struct resource *parent; 1635 resource_size_t start; 1636 resource_size_t n; 1637 }; 1638 1639 static void devm_region_release(struct device *dev, void *res) 1640 { 1641 struct region_devres *this = res; 1642 1643 __release_region(this->parent, this->start, this->n); 1644 } 1645 1646 static int devm_region_match(struct device *dev, void *res, void *match_data) 1647 { 1648 struct region_devres *this = res, *match = match_data; 1649 1650 return this->parent == match->parent && 1651 this->start == match->start && this->n == match->n; 1652 } 1653 1654 struct resource * 1655 __devm_request_region(struct device *dev, struct resource *parent, 1656 resource_size_t start, resource_size_t n, const char *name) 1657 { 1658 struct region_devres *dr = NULL; 1659 struct resource *res; 1660 1661 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1662 GFP_KERNEL); 1663 if (!dr) 1664 return NULL; 1665 1666 dr->parent = parent; 1667 dr->start = start; 1668 dr->n = n; 1669 1670 res = __request_region(parent, start, n, name, 0); 1671 if (res) 1672 devres_add(dev, dr); 1673 else 1674 devres_free(dr); 1675 1676 return res; 1677 } 1678 EXPORT_SYMBOL(__devm_request_region); 1679 1680 void __devm_release_region(struct device *dev, struct resource *parent, 1681 resource_size_t start, resource_size_t n) 1682 { 1683 struct region_devres match_data = { parent, start, n }; 1684 1685 WARN_ON(devres_release(dev, devm_region_release, devm_region_match, 1686 &match_data)); 1687 } 1688 EXPORT_SYMBOL(__devm_release_region); 1689 1690 /* 1691 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1692 */ 1693 #define MAXRESERVE 4 1694 static int __init reserve_setup(char *str) 1695 { 1696 static int reserved; 1697 static struct resource reserve[MAXRESERVE]; 1698 1699 for (;;) { 1700 unsigned int io_start, io_num; 1701 int x = reserved; 1702 struct resource *parent; 1703 1704 if (get_option(&str, &io_start) != 2) 1705 break; 1706 if (get_option(&str, &io_num) == 0) 1707 break; 1708 if (x < MAXRESERVE) { 1709 struct resource *res = reserve + x; 1710 1711 /* 1712 * If the region starts below 0x10000, we assume it's 1713 * I/O port space; otherwise assume it's memory. 1714 */ 1715 if (io_start < 0x10000) { 1716 *res = DEFINE_RES_IO_NAMED(io_start, io_num, "reserved"); 1717 parent = &ioport_resource; 1718 } else { 1719 *res = DEFINE_RES_MEM_NAMED(io_start, io_num, "reserved"); 1720 parent = &iomem_resource; 1721 } 1722 res->flags |= IORESOURCE_BUSY; 1723 if (request_resource(parent, res) == 0) 1724 reserved = x+1; 1725 } 1726 } 1727 return 1; 1728 } 1729 __setup("reserve=", reserve_setup); 1730 1731 /* 1732 * Check if the requested addr and size spans more than any slot in the 1733 * iomem resource tree. 1734 */ 1735 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1736 { 1737 resource_size_t end = addr + size - 1; 1738 struct resource *p; 1739 int err = 0; 1740 1741 read_lock(&resource_lock); 1742 for_each_resource(&iomem_resource, p, false) { 1743 /* 1744 * We can probably skip the resources without 1745 * IORESOURCE_IO attribute? 1746 */ 1747 if (p->start > end) 1748 continue; 1749 if (p->end < addr) 1750 continue; 1751 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1752 PFN_DOWN(p->end) >= PFN_DOWN(end)) 1753 continue; 1754 /* 1755 * if a resource is "BUSY", it's not a hardware resource 1756 * but a driver mapping of such a resource; we don't want 1757 * to warn for those; some drivers legitimately map only 1758 * partial hardware resources. (example: vesafb) 1759 */ 1760 if (p->flags & IORESOURCE_BUSY) 1761 continue; 1762 1763 pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n", 1764 &addr, &end, p->name, p); 1765 err = -1; 1766 break; 1767 } 1768 read_unlock(&resource_lock); 1769 1770 return err; 1771 } 1772 1773 #ifdef CONFIG_STRICT_DEVMEM 1774 static int strict_iomem_checks = 1; 1775 #else 1776 static int strict_iomem_checks; 1777 #endif 1778 1779 /* 1780 * Check if an address is exclusive to the kernel and must not be mapped to 1781 * user space, for example, via /dev/mem. 1782 * 1783 * Returns true if exclusive to the kernel, otherwise returns false. 1784 */ 1785 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size) 1786 { 1787 const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM | 1788 IORESOURCE_EXCLUSIVE; 1789 bool skip_children = false, err = false; 1790 struct resource *p; 1791 1792 read_lock(&resource_lock); 1793 for_each_resource(root, p, skip_children) { 1794 if (p->start >= addr + size) 1795 break; 1796 if (p->end < addr) { 1797 skip_children = true; 1798 continue; 1799 } 1800 skip_children = false; 1801 1802 /* 1803 * IORESOURCE_SYSTEM_RAM resources are exclusive if 1804 * IORESOURCE_EXCLUSIVE is set, even if they 1805 * are not busy and even if "iomem=relaxed" is set. The 1806 * responsible driver dynamically adds/removes system RAM within 1807 * such an area and uncontrolled access is dangerous. 1808 */ 1809 if ((p->flags & exclusive_system_ram) == exclusive_system_ram) { 1810 err = true; 1811 break; 1812 } 1813 1814 /* 1815 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1816 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1817 * resource is busy. 1818 */ 1819 if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY)) 1820 continue; 1821 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1822 || p->flags & IORESOURCE_EXCLUSIVE) { 1823 err = true; 1824 break; 1825 } 1826 } 1827 read_unlock(&resource_lock); 1828 1829 return err; 1830 } 1831 1832 bool iomem_is_exclusive(u64 addr) 1833 { 1834 return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK, 1835 PAGE_SIZE); 1836 } 1837 1838 struct resource_entry *resource_list_create_entry(struct resource *res, 1839 size_t extra_size) 1840 { 1841 struct resource_entry *entry; 1842 1843 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1844 if (entry) { 1845 INIT_LIST_HEAD(&entry->node); 1846 entry->res = res ? res : &entry->__res; 1847 } 1848 1849 return entry; 1850 } 1851 EXPORT_SYMBOL(resource_list_create_entry); 1852 1853 void resource_list_free(struct list_head *head) 1854 { 1855 struct resource_entry *entry, *tmp; 1856 1857 list_for_each_entry_safe(entry, tmp, head, node) 1858 resource_list_destroy_entry(entry); 1859 } 1860 EXPORT_SYMBOL(resource_list_free); 1861 1862 #ifdef CONFIG_GET_FREE_REGION 1863 #define GFR_DESCENDING (1UL << 0) 1864 #define GFR_REQUEST_REGION (1UL << 1) 1865 #ifdef PA_SECTION_SHIFT 1866 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT) 1867 #else 1868 #define GFR_DEFAULT_ALIGN PAGE_SIZE 1869 #endif 1870 1871 static resource_size_t gfr_start(struct resource *base, resource_size_t size, 1872 resource_size_t align, unsigned long flags) 1873 { 1874 if (flags & GFR_DESCENDING) { 1875 resource_size_t end; 1876 1877 end = min_t(resource_size_t, base->end, DIRECT_MAP_PHYSMEM_END); 1878 return end - size + 1; 1879 } 1880 1881 return ALIGN(max(base->start, align), align); 1882 } 1883 1884 static bool gfr_continue(struct resource *base, resource_size_t addr, 1885 resource_size_t size, unsigned long flags) 1886 { 1887 if (flags & GFR_DESCENDING) 1888 return addr > size && addr >= base->start; 1889 /* 1890 * In the ascend case be careful that the last increment by 1891 * @size did not wrap 0. 1892 */ 1893 return addr > addr - size && 1894 addr <= min_t(resource_size_t, base->end, DIRECT_MAP_PHYSMEM_END); 1895 } 1896 1897 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size, 1898 unsigned long flags) 1899 { 1900 if (flags & GFR_DESCENDING) 1901 return addr - size; 1902 return addr + size; 1903 } 1904 1905 static void remove_free_mem_region(void *_res) 1906 { 1907 struct resource *res = _res; 1908 1909 if (res->parent) 1910 remove_resource(res); 1911 free_resource(res); 1912 } 1913 1914 static struct resource * 1915 get_free_mem_region(struct device *dev, struct resource *base, 1916 resource_size_t size, const unsigned long align, 1917 const char *name, const unsigned long desc, 1918 const unsigned long flags) 1919 { 1920 resource_size_t addr; 1921 struct resource *res; 1922 struct region_devres *dr = NULL; 1923 1924 size = ALIGN(size, align); 1925 1926 res = alloc_resource(GFP_KERNEL); 1927 if (!res) 1928 return ERR_PTR(-ENOMEM); 1929 1930 if (dev && (flags & GFR_REQUEST_REGION)) { 1931 dr = devres_alloc(devm_region_release, 1932 sizeof(struct region_devres), GFP_KERNEL); 1933 if (!dr) { 1934 free_resource(res); 1935 return ERR_PTR(-ENOMEM); 1936 } 1937 } else if (dev) { 1938 if (devm_add_action_or_reset(dev, remove_free_mem_region, res)) 1939 return ERR_PTR(-ENOMEM); 1940 } 1941 1942 write_lock(&resource_lock); 1943 for (addr = gfr_start(base, size, align, flags); 1944 gfr_continue(base, addr, align, flags); 1945 addr = gfr_next(addr, align, flags)) { 1946 if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) != 1947 REGION_DISJOINT) 1948 continue; 1949 1950 if (flags & GFR_REQUEST_REGION) { 1951 if (__request_region_locked(res, &iomem_resource, addr, 1952 size, name, 0)) 1953 break; 1954 1955 if (dev) { 1956 dr->parent = &iomem_resource; 1957 dr->start = addr; 1958 dr->n = size; 1959 devres_add(dev, dr); 1960 } 1961 1962 res->desc = desc; 1963 write_unlock(&resource_lock); 1964 1965 1966 /* 1967 * A driver is claiming this region so revoke any 1968 * mappings. 1969 */ 1970 revoke_iomem(res); 1971 } else { 1972 *res = DEFINE_RES_NAMED_DESC(addr, size, name, IORESOURCE_MEM, desc); 1973 1974 /* 1975 * Only succeed if the resource hosts an exclusive 1976 * range after the insert 1977 */ 1978 if (__insert_resource(base, res) || res->child) 1979 break; 1980 1981 write_unlock(&resource_lock); 1982 } 1983 1984 return res; 1985 } 1986 write_unlock(&resource_lock); 1987 1988 if (flags & GFR_REQUEST_REGION) { 1989 free_resource(res); 1990 devres_free(dr); 1991 } else if (dev) 1992 devm_release_action(dev, remove_free_mem_region, res); 1993 1994 return ERR_PTR(-ERANGE); 1995 } 1996 1997 /** 1998 * devm_request_free_mem_region - find free region for device private memory 1999 * 2000 * @dev: device struct to bind the resource to 2001 * @size: size in bytes of the device memory to add 2002 * @base: resource tree to look in 2003 * 2004 * This function tries to find an empty range of physical address big enough to 2005 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE 2006 * memory, which in turn allocates struct pages. 2007 */ 2008 struct resource *devm_request_free_mem_region(struct device *dev, 2009 struct resource *base, unsigned long size) 2010 { 2011 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; 2012 2013 return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN, 2014 dev_name(dev), 2015 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); 2016 } 2017 EXPORT_SYMBOL_GPL(devm_request_free_mem_region); 2018 2019 struct resource *request_free_mem_region(struct resource *base, 2020 unsigned long size, const char *name) 2021 { 2022 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; 2023 2024 return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name, 2025 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); 2026 } 2027 EXPORT_SYMBOL_GPL(request_free_mem_region); 2028 2029 /** 2030 * alloc_free_mem_region - find a free region relative to @base 2031 * @base: resource that will parent the new resource 2032 * @size: size in bytes of memory to allocate from @base 2033 * @align: alignment requirements for the allocation 2034 * @name: resource name 2035 * 2036 * Buses like CXL, that can dynamically instantiate new memory regions, 2037 * need a method to allocate physical address space for those regions. 2038 * Allocate and insert a new resource to cover a free, unclaimed by a 2039 * descendant of @base, range in the span of @base. 2040 */ 2041 struct resource *alloc_free_mem_region(struct resource *base, 2042 unsigned long size, unsigned long align, 2043 const char *name) 2044 { 2045 /* Default of ascending direction and insert resource */ 2046 unsigned long flags = 0; 2047 2048 return get_free_mem_region(NULL, base, size, align, name, 2049 IORES_DESC_NONE, flags); 2050 } 2051 EXPORT_SYMBOL_GPL(alloc_free_mem_region); 2052 #endif /* CONFIG_GET_FREE_REGION */ 2053 2054 static int __init strict_iomem(char *str) 2055 { 2056 if (strstr(str, "relaxed")) 2057 strict_iomem_checks = 0; 2058 if (strstr(str, "strict")) 2059 strict_iomem_checks = 1; 2060 return 1; 2061 } 2062 2063 static int iomem_fs_init_fs_context(struct fs_context *fc) 2064 { 2065 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM; 2066 } 2067 2068 static struct file_system_type iomem_fs_type = { 2069 .name = "iomem", 2070 .owner = THIS_MODULE, 2071 .init_fs_context = iomem_fs_init_fs_context, 2072 .kill_sb = kill_anon_super, 2073 }; 2074 2075 static int __init iomem_init_inode(void) 2076 { 2077 static struct vfsmount *iomem_vfs_mount; 2078 static int iomem_fs_cnt; 2079 struct inode *inode; 2080 int rc; 2081 2082 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt); 2083 if (rc < 0) { 2084 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc); 2085 return rc; 2086 } 2087 2088 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb); 2089 if (IS_ERR(inode)) { 2090 rc = PTR_ERR(inode); 2091 pr_err("Cannot allocate inode for iomem: %d\n", rc); 2092 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt); 2093 return rc; 2094 } 2095 2096 /* 2097 * Publish iomem revocation inode initialized. 2098 * Pairs with smp_load_acquire() in revoke_iomem(). 2099 */ 2100 smp_store_release(&iomem_inode, inode); 2101 2102 return 0; 2103 } 2104 2105 fs_initcall(iomem_init_inode); 2106 2107 __setup("iomem=", strict_iomem); 2108