1 /* 2 * linux/kernel/resource.c 3 * 4 * Copyright (C) 1999 Linus Torvalds 5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 6 * 7 * Arbitrary resource management. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/export.h> 13 #include <linux/errno.h> 14 #include <linux/ioport.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/device.h> 23 #include <linux/pfn.h> 24 #include <linux/mm.h> 25 #include <linux/resource_ext.h> 26 #include <asm/io.h> 27 28 29 struct resource ioport_resource = { 30 .name = "PCI IO", 31 .start = 0, 32 .end = IO_SPACE_LIMIT, 33 .flags = IORESOURCE_IO, 34 }; 35 EXPORT_SYMBOL(ioport_resource); 36 37 struct resource iomem_resource = { 38 .name = "PCI mem", 39 .start = 0, 40 .end = -1, 41 .flags = IORESOURCE_MEM, 42 }; 43 EXPORT_SYMBOL(iomem_resource); 44 45 /* constraints to be met while allocating resources */ 46 struct resource_constraint { 47 resource_size_t min, max, align; 48 resource_size_t (*alignf)(void *, const struct resource *, 49 resource_size_t, resource_size_t); 50 void *alignf_data; 51 }; 52 53 static DEFINE_RWLOCK(resource_lock); 54 55 /* 56 * For memory hotplug, there is no way to free resource entries allocated 57 * by boot mem after the system is up. So for reusing the resource entry 58 * we need to remember the resource. 59 */ 60 static struct resource *bootmem_resource_free; 61 static DEFINE_SPINLOCK(bootmem_resource_lock); 62 63 static struct resource *next_resource(struct resource *p, bool sibling_only) 64 { 65 /* Caller wants to traverse through siblings only */ 66 if (sibling_only) 67 return p->sibling; 68 69 if (p->child) 70 return p->child; 71 while (!p->sibling && p->parent) 72 p = p->parent; 73 return p->sibling; 74 } 75 76 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 77 { 78 struct resource *p = v; 79 (*pos)++; 80 return (void *)next_resource(p, false); 81 } 82 83 #ifdef CONFIG_PROC_FS 84 85 enum { MAX_IORES_LEVEL = 5 }; 86 87 static void *r_start(struct seq_file *m, loff_t *pos) 88 __acquires(resource_lock) 89 { 90 struct resource *p = PDE_DATA(file_inode(m->file)); 91 loff_t l = 0; 92 read_lock(&resource_lock); 93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 94 ; 95 return p; 96 } 97 98 static void r_stop(struct seq_file *m, void *v) 99 __releases(resource_lock) 100 { 101 read_unlock(&resource_lock); 102 } 103 104 static int r_show(struct seq_file *m, void *v) 105 { 106 struct resource *root = PDE_DATA(file_inode(m->file)); 107 struct resource *r = v, *p; 108 unsigned long long start, end; 109 int width = root->end < 0x10000 ? 4 : 8; 110 int depth; 111 112 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 113 if (p->parent == root) 114 break; 115 116 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 117 start = r->start; 118 end = r->end; 119 } else { 120 start = end = 0; 121 } 122 123 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 124 depth * 2, "", 125 width, start, 126 width, end, 127 r->name ? r->name : "<BAD>"); 128 return 0; 129 } 130 131 static const struct seq_operations resource_op = { 132 .start = r_start, 133 .next = r_next, 134 .stop = r_stop, 135 .show = r_show, 136 }; 137 138 static int __init ioresources_init(void) 139 { 140 proc_create_seq_data("ioports", 0, NULL, &resource_op, 141 &ioport_resource); 142 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 143 return 0; 144 } 145 __initcall(ioresources_init); 146 147 #endif /* CONFIG_PROC_FS */ 148 149 static void free_resource(struct resource *res) 150 { 151 if (!res) 152 return; 153 154 if (!PageSlab(virt_to_head_page(res))) { 155 spin_lock(&bootmem_resource_lock); 156 res->sibling = bootmem_resource_free; 157 bootmem_resource_free = res; 158 spin_unlock(&bootmem_resource_lock); 159 } else { 160 kfree(res); 161 } 162 } 163 164 static struct resource *alloc_resource(gfp_t flags) 165 { 166 struct resource *res = NULL; 167 168 spin_lock(&bootmem_resource_lock); 169 if (bootmem_resource_free) { 170 res = bootmem_resource_free; 171 bootmem_resource_free = res->sibling; 172 } 173 spin_unlock(&bootmem_resource_lock); 174 175 if (res) 176 memset(res, 0, sizeof(struct resource)); 177 else 178 res = kzalloc(sizeof(struct resource), flags); 179 180 return res; 181 } 182 183 /* Return the conflict entry if you can't request it */ 184 static struct resource * __request_resource(struct resource *root, struct resource *new) 185 { 186 resource_size_t start = new->start; 187 resource_size_t end = new->end; 188 struct resource *tmp, **p; 189 190 if (end < start) 191 return root; 192 if (start < root->start) 193 return root; 194 if (end > root->end) 195 return root; 196 p = &root->child; 197 for (;;) { 198 tmp = *p; 199 if (!tmp || tmp->start > end) { 200 new->sibling = tmp; 201 *p = new; 202 new->parent = root; 203 return NULL; 204 } 205 p = &tmp->sibling; 206 if (tmp->end < start) 207 continue; 208 return tmp; 209 } 210 } 211 212 static int __release_resource(struct resource *old, bool release_child) 213 { 214 struct resource *tmp, **p, *chd; 215 216 p = &old->parent->child; 217 for (;;) { 218 tmp = *p; 219 if (!tmp) 220 break; 221 if (tmp == old) { 222 if (release_child || !(tmp->child)) { 223 *p = tmp->sibling; 224 } else { 225 for (chd = tmp->child;; chd = chd->sibling) { 226 chd->parent = tmp->parent; 227 if (!(chd->sibling)) 228 break; 229 } 230 *p = tmp->child; 231 chd->sibling = tmp->sibling; 232 } 233 old->parent = NULL; 234 return 0; 235 } 236 p = &tmp->sibling; 237 } 238 return -EINVAL; 239 } 240 241 static void __release_child_resources(struct resource *r) 242 { 243 struct resource *tmp, *p; 244 resource_size_t size; 245 246 p = r->child; 247 r->child = NULL; 248 while (p) { 249 tmp = p; 250 p = p->sibling; 251 252 tmp->parent = NULL; 253 tmp->sibling = NULL; 254 __release_child_resources(tmp); 255 256 printk(KERN_DEBUG "release child resource %pR\n", tmp); 257 /* need to restore size, and keep flags */ 258 size = resource_size(tmp); 259 tmp->start = 0; 260 tmp->end = size - 1; 261 } 262 } 263 264 void release_child_resources(struct resource *r) 265 { 266 write_lock(&resource_lock); 267 __release_child_resources(r); 268 write_unlock(&resource_lock); 269 } 270 271 /** 272 * request_resource_conflict - request and reserve an I/O or memory resource 273 * @root: root resource descriptor 274 * @new: resource descriptor desired by caller 275 * 276 * Returns 0 for success, conflict resource on error. 277 */ 278 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 279 { 280 struct resource *conflict; 281 282 write_lock(&resource_lock); 283 conflict = __request_resource(root, new); 284 write_unlock(&resource_lock); 285 return conflict; 286 } 287 288 /** 289 * request_resource - request and reserve an I/O or memory resource 290 * @root: root resource descriptor 291 * @new: resource descriptor desired by caller 292 * 293 * Returns 0 for success, negative error code on error. 294 */ 295 int request_resource(struct resource *root, struct resource *new) 296 { 297 struct resource *conflict; 298 299 conflict = request_resource_conflict(root, new); 300 return conflict ? -EBUSY : 0; 301 } 302 303 EXPORT_SYMBOL(request_resource); 304 305 /** 306 * release_resource - release a previously reserved resource 307 * @old: resource pointer 308 */ 309 int release_resource(struct resource *old) 310 { 311 int retval; 312 313 write_lock(&resource_lock); 314 retval = __release_resource(old, true); 315 write_unlock(&resource_lock); 316 return retval; 317 } 318 319 EXPORT_SYMBOL(release_resource); 320 321 /** 322 * Finds the lowest iomem resource that covers part of [@start..@end]. The 323 * caller must specify @start, @end, @flags, and @desc (which may be 324 * IORES_DESC_NONE). 325 * 326 * If a resource is found, returns 0 and @*res is overwritten with the part 327 * of the resource that's within [@start..@end]; if none is found, returns 328 * -1 or -EINVAL for other invalid parameters. 329 * 330 * This function walks the whole tree and not just first level children 331 * unless @first_lvl is true. 332 * 333 * @start: start address of the resource searched for 334 * @end: end address of same resource 335 * @flags: flags which the resource must have 336 * @desc: descriptor the resource must have 337 * @first_lvl: walk only the first level children, if set 338 * @res: return ptr, if resource found 339 */ 340 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 341 unsigned long flags, unsigned long desc, 342 bool first_lvl, struct resource *res) 343 { 344 struct resource *p; 345 346 if (!res) 347 return -EINVAL; 348 349 if (start >= end) 350 return -EINVAL; 351 352 read_lock(&resource_lock); 353 354 for (p = iomem_resource.child; p; p = next_resource(p, first_lvl)) { 355 if ((p->flags & flags) != flags) 356 continue; 357 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 358 continue; 359 if (p->start > end) { 360 p = NULL; 361 break; 362 } 363 if ((p->end >= start) && (p->start <= end)) 364 break; 365 } 366 367 read_unlock(&resource_lock); 368 if (!p) 369 return -1; 370 371 /* copy data */ 372 res->start = max(start, p->start); 373 res->end = min(end, p->end); 374 res->flags = p->flags; 375 res->desc = p->desc; 376 return 0; 377 } 378 379 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 380 unsigned long flags, unsigned long desc, 381 bool first_lvl, void *arg, 382 int (*func)(struct resource *, void *)) 383 { 384 struct resource res; 385 int ret = -1; 386 387 while (start < end && 388 !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) { 389 ret = (*func)(&res, arg); 390 if (ret) 391 break; 392 393 start = res.end + 1; 394 } 395 396 return ret; 397 } 398 399 /** 400 * Walks through iomem resources and calls func() with matching resource 401 * ranges. This walks through whole tree and not just first level children. 402 * All the memory ranges which overlap start,end and also match flags and 403 * desc are valid candidates. 404 * 405 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 406 * @flags: I/O resource flags 407 * @start: start addr 408 * @end: end addr 409 * @arg: function argument for the callback @func 410 * @func: callback function that is called for each qualifying resource area 411 * 412 * NOTE: For a new descriptor search, define a new IORES_DESC in 413 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 414 */ 415 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 416 u64 end, void *arg, int (*func)(struct resource *, void *)) 417 { 418 return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func); 419 } 420 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 421 422 /* 423 * This function calls the @func callback against all memory ranges of type 424 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 425 * Now, this function is only for System RAM, it deals with full ranges and 426 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 427 * ranges. 428 */ 429 int walk_system_ram_res(u64 start, u64 end, void *arg, 430 int (*func)(struct resource *, void *)) 431 { 432 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 433 434 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true, 435 arg, func); 436 } 437 438 /* 439 * This function calls the @func callback against all memory ranges, which 440 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 441 */ 442 int walk_mem_res(u64 start, u64 end, void *arg, 443 int (*func)(struct resource *, void *)) 444 { 445 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 446 447 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true, 448 arg, func); 449 } 450 451 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) 452 453 /* 454 * This function calls the @func callback against all memory ranges of type 455 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 456 * It is to be used only for System RAM. 457 */ 458 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 459 void *arg, int (*func)(unsigned long, unsigned long, void *)) 460 { 461 resource_size_t start, end; 462 unsigned long flags; 463 struct resource res; 464 unsigned long pfn, end_pfn; 465 int ret = -1; 466 467 start = (u64) start_pfn << PAGE_SHIFT; 468 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 469 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 470 while (start < end && 471 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, 472 true, &res)) { 473 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT; 474 end_pfn = (res.end + 1) >> PAGE_SHIFT; 475 if (end_pfn > pfn) 476 ret = (*func)(pfn, end_pfn - pfn, arg); 477 if (ret) 478 break; 479 start = res.end + 1; 480 } 481 return ret; 482 } 483 484 #endif 485 486 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 487 { 488 return 1; 489 } 490 491 /* 492 * This generic page_is_ram() returns true if specified address is 493 * registered as System RAM in iomem_resource list. 494 */ 495 int __weak page_is_ram(unsigned long pfn) 496 { 497 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 498 } 499 EXPORT_SYMBOL_GPL(page_is_ram); 500 501 /** 502 * region_intersects() - determine intersection of region with known resources 503 * @start: region start address 504 * @size: size of region 505 * @flags: flags of resource (in iomem_resource) 506 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 507 * 508 * Check if the specified region partially overlaps or fully eclipses a 509 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 510 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 511 * return REGION_MIXED if the region overlaps @flags/@desc and another 512 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 513 * and no other defined resource. Note that REGION_INTERSECTS is also 514 * returned in the case when the specified region overlaps RAM and undefined 515 * memory holes. 516 * 517 * region_intersect() is used by memory remapping functions to ensure 518 * the user is not remapping RAM and is a vast speed up over walking 519 * through the resource table page by page. 520 */ 521 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 522 unsigned long desc) 523 { 524 resource_size_t end = start + size - 1; 525 int type = 0; int other = 0; 526 struct resource *p; 527 528 read_lock(&resource_lock); 529 for (p = iomem_resource.child; p ; p = p->sibling) { 530 bool is_type = (((p->flags & flags) == flags) && 531 ((desc == IORES_DESC_NONE) || 532 (desc == p->desc))); 533 534 if (start >= p->start && start <= p->end) 535 is_type ? type++ : other++; 536 if (end >= p->start && end <= p->end) 537 is_type ? type++ : other++; 538 if (p->start >= start && p->end <= end) 539 is_type ? type++ : other++; 540 } 541 read_unlock(&resource_lock); 542 543 if (other == 0) 544 return type ? REGION_INTERSECTS : REGION_DISJOINT; 545 546 if (type) 547 return REGION_MIXED; 548 549 return REGION_DISJOINT; 550 } 551 EXPORT_SYMBOL_GPL(region_intersects); 552 553 void __weak arch_remove_reservations(struct resource *avail) 554 { 555 } 556 557 static resource_size_t simple_align_resource(void *data, 558 const struct resource *avail, 559 resource_size_t size, 560 resource_size_t align) 561 { 562 return avail->start; 563 } 564 565 static void resource_clip(struct resource *res, resource_size_t min, 566 resource_size_t max) 567 { 568 if (res->start < min) 569 res->start = min; 570 if (res->end > max) 571 res->end = max; 572 } 573 574 /* 575 * Find empty slot in the resource tree with the given range and 576 * alignment constraints 577 */ 578 static int __find_resource(struct resource *root, struct resource *old, 579 struct resource *new, 580 resource_size_t size, 581 struct resource_constraint *constraint) 582 { 583 struct resource *this = root->child; 584 struct resource tmp = *new, avail, alloc; 585 586 tmp.start = root->start; 587 /* 588 * Skip past an allocated resource that starts at 0, since the assignment 589 * of this->start - 1 to tmp->end below would cause an underflow. 590 */ 591 if (this && this->start == root->start) { 592 tmp.start = (this == old) ? old->start : this->end + 1; 593 this = this->sibling; 594 } 595 for(;;) { 596 if (this) 597 tmp.end = (this == old) ? this->end : this->start - 1; 598 else 599 tmp.end = root->end; 600 601 if (tmp.end < tmp.start) 602 goto next; 603 604 resource_clip(&tmp, constraint->min, constraint->max); 605 arch_remove_reservations(&tmp); 606 607 /* Check for overflow after ALIGN() */ 608 avail.start = ALIGN(tmp.start, constraint->align); 609 avail.end = tmp.end; 610 avail.flags = new->flags & ~IORESOURCE_UNSET; 611 if (avail.start >= tmp.start) { 612 alloc.flags = avail.flags; 613 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 614 size, constraint->align); 615 alloc.end = alloc.start + size - 1; 616 if (alloc.start <= alloc.end && 617 resource_contains(&avail, &alloc)) { 618 new->start = alloc.start; 619 new->end = alloc.end; 620 return 0; 621 } 622 } 623 624 next: if (!this || this->end == root->end) 625 break; 626 627 if (this != old) 628 tmp.start = this->end + 1; 629 this = this->sibling; 630 } 631 return -EBUSY; 632 } 633 634 /* 635 * Find empty slot in the resource tree given range and alignment. 636 */ 637 static int find_resource(struct resource *root, struct resource *new, 638 resource_size_t size, 639 struct resource_constraint *constraint) 640 { 641 return __find_resource(root, NULL, new, size, constraint); 642 } 643 644 /** 645 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 646 * The resource will be relocated if the new size cannot be reallocated in the 647 * current location. 648 * 649 * @root: root resource descriptor 650 * @old: resource descriptor desired by caller 651 * @newsize: new size of the resource descriptor 652 * @constraint: the size and alignment constraints to be met. 653 */ 654 static int reallocate_resource(struct resource *root, struct resource *old, 655 resource_size_t newsize, 656 struct resource_constraint *constraint) 657 { 658 int err=0; 659 struct resource new = *old; 660 struct resource *conflict; 661 662 write_lock(&resource_lock); 663 664 if ((err = __find_resource(root, old, &new, newsize, constraint))) 665 goto out; 666 667 if (resource_contains(&new, old)) { 668 old->start = new.start; 669 old->end = new.end; 670 goto out; 671 } 672 673 if (old->child) { 674 err = -EBUSY; 675 goto out; 676 } 677 678 if (resource_contains(old, &new)) { 679 old->start = new.start; 680 old->end = new.end; 681 } else { 682 __release_resource(old, true); 683 *old = new; 684 conflict = __request_resource(root, old); 685 BUG_ON(conflict); 686 } 687 out: 688 write_unlock(&resource_lock); 689 return err; 690 } 691 692 693 /** 694 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 695 * The resource will be reallocated with a new size if it was already allocated 696 * @root: root resource descriptor 697 * @new: resource descriptor desired by caller 698 * @size: requested resource region size 699 * @min: minimum boundary to allocate 700 * @max: maximum boundary to allocate 701 * @align: alignment requested, in bytes 702 * @alignf: alignment function, optional, called if not NULL 703 * @alignf_data: arbitrary data to pass to the @alignf function 704 */ 705 int allocate_resource(struct resource *root, struct resource *new, 706 resource_size_t size, resource_size_t min, 707 resource_size_t max, resource_size_t align, 708 resource_size_t (*alignf)(void *, 709 const struct resource *, 710 resource_size_t, 711 resource_size_t), 712 void *alignf_data) 713 { 714 int err; 715 struct resource_constraint constraint; 716 717 if (!alignf) 718 alignf = simple_align_resource; 719 720 constraint.min = min; 721 constraint.max = max; 722 constraint.align = align; 723 constraint.alignf = alignf; 724 constraint.alignf_data = alignf_data; 725 726 if ( new->parent ) { 727 /* resource is already allocated, try reallocating with 728 the new constraints */ 729 return reallocate_resource(root, new, size, &constraint); 730 } 731 732 write_lock(&resource_lock); 733 err = find_resource(root, new, size, &constraint); 734 if (err >= 0 && __request_resource(root, new)) 735 err = -EBUSY; 736 write_unlock(&resource_lock); 737 return err; 738 } 739 740 EXPORT_SYMBOL(allocate_resource); 741 742 /** 743 * lookup_resource - find an existing resource by a resource start address 744 * @root: root resource descriptor 745 * @start: resource start address 746 * 747 * Returns a pointer to the resource if found, NULL otherwise 748 */ 749 struct resource *lookup_resource(struct resource *root, resource_size_t start) 750 { 751 struct resource *res; 752 753 read_lock(&resource_lock); 754 for (res = root->child; res; res = res->sibling) { 755 if (res->start == start) 756 break; 757 } 758 read_unlock(&resource_lock); 759 760 return res; 761 } 762 763 /* 764 * Insert a resource into the resource tree. If successful, return NULL, 765 * otherwise return the conflicting resource (compare to __request_resource()) 766 */ 767 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 768 { 769 struct resource *first, *next; 770 771 for (;; parent = first) { 772 first = __request_resource(parent, new); 773 if (!first) 774 return first; 775 776 if (first == parent) 777 return first; 778 if (WARN_ON(first == new)) /* duplicated insertion */ 779 return first; 780 781 if ((first->start > new->start) || (first->end < new->end)) 782 break; 783 if ((first->start == new->start) && (first->end == new->end)) 784 break; 785 } 786 787 for (next = first; ; next = next->sibling) { 788 /* Partial overlap? Bad, and unfixable */ 789 if (next->start < new->start || next->end > new->end) 790 return next; 791 if (!next->sibling) 792 break; 793 if (next->sibling->start > new->end) 794 break; 795 } 796 797 new->parent = parent; 798 new->sibling = next->sibling; 799 new->child = first; 800 801 next->sibling = NULL; 802 for (next = first; next; next = next->sibling) 803 next->parent = new; 804 805 if (parent->child == first) { 806 parent->child = new; 807 } else { 808 next = parent->child; 809 while (next->sibling != first) 810 next = next->sibling; 811 next->sibling = new; 812 } 813 return NULL; 814 } 815 816 /** 817 * insert_resource_conflict - Inserts resource in the resource tree 818 * @parent: parent of the new resource 819 * @new: new resource to insert 820 * 821 * Returns 0 on success, conflict resource if the resource can't be inserted. 822 * 823 * This function is equivalent to request_resource_conflict when no conflict 824 * happens. If a conflict happens, and the conflicting resources 825 * entirely fit within the range of the new resource, then the new 826 * resource is inserted and the conflicting resources become children of 827 * the new resource. 828 * 829 * This function is intended for producers of resources, such as FW modules 830 * and bus drivers. 831 */ 832 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 833 { 834 struct resource *conflict; 835 836 write_lock(&resource_lock); 837 conflict = __insert_resource(parent, new); 838 write_unlock(&resource_lock); 839 return conflict; 840 } 841 842 /** 843 * insert_resource - Inserts a resource in the resource tree 844 * @parent: parent of the new resource 845 * @new: new resource to insert 846 * 847 * Returns 0 on success, -EBUSY if the resource can't be inserted. 848 * 849 * This function is intended for producers of resources, such as FW modules 850 * and bus drivers. 851 */ 852 int insert_resource(struct resource *parent, struct resource *new) 853 { 854 struct resource *conflict; 855 856 conflict = insert_resource_conflict(parent, new); 857 return conflict ? -EBUSY : 0; 858 } 859 EXPORT_SYMBOL_GPL(insert_resource); 860 861 /** 862 * insert_resource_expand_to_fit - Insert a resource into the resource tree 863 * @root: root resource descriptor 864 * @new: new resource to insert 865 * 866 * Insert a resource into the resource tree, possibly expanding it in order 867 * to make it encompass any conflicting resources. 868 */ 869 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 870 { 871 if (new->parent) 872 return; 873 874 write_lock(&resource_lock); 875 for (;;) { 876 struct resource *conflict; 877 878 conflict = __insert_resource(root, new); 879 if (!conflict) 880 break; 881 if (conflict == root) 882 break; 883 884 /* Ok, expand resource to cover the conflict, then try again .. */ 885 if (conflict->start < new->start) 886 new->start = conflict->start; 887 if (conflict->end > new->end) 888 new->end = conflict->end; 889 890 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 891 } 892 write_unlock(&resource_lock); 893 } 894 895 /** 896 * remove_resource - Remove a resource in the resource tree 897 * @old: resource to remove 898 * 899 * Returns 0 on success, -EINVAL if the resource is not valid. 900 * 901 * This function removes a resource previously inserted by insert_resource() 902 * or insert_resource_conflict(), and moves the children (if any) up to 903 * where they were before. insert_resource() and insert_resource_conflict() 904 * insert a new resource, and move any conflicting resources down to the 905 * children of the new resource. 906 * 907 * insert_resource(), insert_resource_conflict() and remove_resource() are 908 * intended for producers of resources, such as FW modules and bus drivers. 909 */ 910 int remove_resource(struct resource *old) 911 { 912 int retval; 913 914 write_lock(&resource_lock); 915 retval = __release_resource(old, false); 916 write_unlock(&resource_lock); 917 return retval; 918 } 919 EXPORT_SYMBOL_GPL(remove_resource); 920 921 static int __adjust_resource(struct resource *res, resource_size_t start, 922 resource_size_t size) 923 { 924 struct resource *tmp, *parent = res->parent; 925 resource_size_t end = start + size - 1; 926 int result = -EBUSY; 927 928 if (!parent) 929 goto skip; 930 931 if ((start < parent->start) || (end > parent->end)) 932 goto out; 933 934 if (res->sibling && (res->sibling->start <= end)) 935 goto out; 936 937 tmp = parent->child; 938 if (tmp != res) { 939 while (tmp->sibling != res) 940 tmp = tmp->sibling; 941 if (start <= tmp->end) 942 goto out; 943 } 944 945 skip: 946 for (tmp = res->child; tmp; tmp = tmp->sibling) 947 if ((tmp->start < start) || (tmp->end > end)) 948 goto out; 949 950 res->start = start; 951 res->end = end; 952 result = 0; 953 954 out: 955 return result; 956 } 957 958 /** 959 * adjust_resource - modify a resource's start and size 960 * @res: resource to modify 961 * @start: new start value 962 * @size: new size 963 * 964 * Given an existing resource, change its start and size to match the 965 * arguments. Returns 0 on success, -EBUSY if it can't fit. 966 * Existing children of the resource are assumed to be immutable. 967 */ 968 int adjust_resource(struct resource *res, resource_size_t start, 969 resource_size_t size) 970 { 971 int result; 972 973 write_lock(&resource_lock); 974 result = __adjust_resource(res, start, size); 975 write_unlock(&resource_lock); 976 return result; 977 } 978 EXPORT_SYMBOL(adjust_resource); 979 980 static void __init 981 __reserve_region_with_split(struct resource *root, resource_size_t start, 982 resource_size_t end, const char *name) 983 { 984 struct resource *parent = root; 985 struct resource *conflict; 986 struct resource *res = alloc_resource(GFP_ATOMIC); 987 struct resource *next_res = NULL; 988 int type = resource_type(root); 989 990 if (!res) 991 return; 992 993 res->name = name; 994 res->start = start; 995 res->end = end; 996 res->flags = type | IORESOURCE_BUSY; 997 res->desc = IORES_DESC_NONE; 998 999 while (1) { 1000 1001 conflict = __request_resource(parent, res); 1002 if (!conflict) { 1003 if (!next_res) 1004 break; 1005 res = next_res; 1006 next_res = NULL; 1007 continue; 1008 } 1009 1010 /* conflict covered whole area */ 1011 if (conflict->start <= res->start && 1012 conflict->end >= res->end) { 1013 free_resource(res); 1014 WARN_ON(next_res); 1015 break; 1016 } 1017 1018 /* failed, split and try again */ 1019 if (conflict->start > res->start) { 1020 end = res->end; 1021 res->end = conflict->start - 1; 1022 if (conflict->end < end) { 1023 next_res = alloc_resource(GFP_ATOMIC); 1024 if (!next_res) { 1025 free_resource(res); 1026 break; 1027 } 1028 next_res->name = name; 1029 next_res->start = conflict->end + 1; 1030 next_res->end = end; 1031 next_res->flags = type | IORESOURCE_BUSY; 1032 next_res->desc = IORES_DESC_NONE; 1033 } 1034 } else { 1035 res->start = conflict->end + 1; 1036 } 1037 } 1038 1039 } 1040 1041 void __init 1042 reserve_region_with_split(struct resource *root, resource_size_t start, 1043 resource_size_t end, const char *name) 1044 { 1045 int abort = 0; 1046 1047 write_lock(&resource_lock); 1048 if (root->start > start || root->end < end) { 1049 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1050 (unsigned long long)start, (unsigned long long)end, 1051 root); 1052 if (start > root->end || end < root->start) 1053 abort = 1; 1054 else { 1055 if (end > root->end) 1056 end = root->end; 1057 if (start < root->start) 1058 start = root->start; 1059 pr_err("fixing request to [0x%llx-0x%llx]\n", 1060 (unsigned long long)start, 1061 (unsigned long long)end); 1062 } 1063 dump_stack(); 1064 } 1065 if (!abort) 1066 __reserve_region_with_split(root, start, end, name); 1067 write_unlock(&resource_lock); 1068 } 1069 1070 /** 1071 * resource_alignment - calculate resource's alignment 1072 * @res: resource pointer 1073 * 1074 * Returns alignment on success, 0 (invalid alignment) on failure. 1075 */ 1076 resource_size_t resource_alignment(struct resource *res) 1077 { 1078 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1079 case IORESOURCE_SIZEALIGN: 1080 return resource_size(res); 1081 case IORESOURCE_STARTALIGN: 1082 return res->start; 1083 default: 1084 return 0; 1085 } 1086 } 1087 1088 /* 1089 * This is compatibility stuff for IO resources. 1090 * 1091 * Note how this, unlike the above, knows about 1092 * the IO flag meanings (busy etc). 1093 * 1094 * request_region creates a new busy region. 1095 * 1096 * release_region releases a matching busy region. 1097 */ 1098 1099 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1100 1101 /** 1102 * __request_region - create a new busy resource region 1103 * @parent: parent resource descriptor 1104 * @start: resource start address 1105 * @n: resource region size 1106 * @name: reserving caller's ID string 1107 * @flags: IO resource flags 1108 */ 1109 struct resource * __request_region(struct resource *parent, 1110 resource_size_t start, resource_size_t n, 1111 const char *name, int flags) 1112 { 1113 DECLARE_WAITQUEUE(wait, current); 1114 struct resource *res = alloc_resource(GFP_KERNEL); 1115 1116 if (!res) 1117 return NULL; 1118 1119 res->name = name; 1120 res->start = start; 1121 res->end = start + n - 1; 1122 1123 write_lock(&resource_lock); 1124 1125 for (;;) { 1126 struct resource *conflict; 1127 1128 res->flags = resource_type(parent) | resource_ext_type(parent); 1129 res->flags |= IORESOURCE_BUSY | flags; 1130 res->desc = parent->desc; 1131 1132 conflict = __request_resource(parent, res); 1133 if (!conflict) 1134 break; 1135 if (conflict != parent) { 1136 if (!(conflict->flags & IORESOURCE_BUSY)) { 1137 parent = conflict; 1138 continue; 1139 } 1140 } 1141 if (conflict->flags & flags & IORESOURCE_MUXED) { 1142 add_wait_queue(&muxed_resource_wait, &wait); 1143 write_unlock(&resource_lock); 1144 set_current_state(TASK_UNINTERRUPTIBLE); 1145 schedule(); 1146 remove_wait_queue(&muxed_resource_wait, &wait); 1147 write_lock(&resource_lock); 1148 continue; 1149 } 1150 /* Uhhuh, that didn't work out.. */ 1151 free_resource(res); 1152 res = NULL; 1153 break; 1154 } 1155 write_unlock(&resource_lock); 1156 return res; 1157 } 1158 EXPORT_SYMBOL(__request_region); 1159 1160 /** 1161 * __release_region - release a previously reserved resource region 1162 * @parent: parent resource descriptor 1163 * @start: resource start address 1164 * @n: resource region size 1165 * 1166 * The described resource region must match a currently busy region. 1167 */ 1168 void __release_region(struct resource *parent, resource_size_t start, 1169 resource_size_t n) 1170 { 1171 struct resource **p; 1172 resource_size_t end; 1173 1174 p = &parent->child; 1175 end = start + n - 1; 1176 1177 write_lock(&resource_lock); 1178 1179 for (;;) { 1180 struct resource *res = *p; 1181 1182 if (!res) 1183 break; 1184 if (res->start <= start && res->end >= end) { 1185 if (!(res->flags & IORESOURCE_BUSY)) { 1186 p = &res->child; 1187 continue; 1188 } 1189 if (res->start != start || res->end != end) 1190 break; 1191 *p = res->sibling; 1192 write_unlock(&resource_lock); 1193 if (res->flags & IORESOURCE_MUXED) 1194 wake_up(&muxed_resource_wait); 1195 free_resource(res); 1196 return; 1197 } 1198 p = &res->sibling; 1199 } 1200 1201 write_unlock(&resource_lock); 1202 1203 printk(KERN_WARNING "Trying to free nonexistent resource " 1204 "<%016llx-%016llx>\n", (unsigned long long)start, 1205 (unsigned long long)end); 1206 } 1207 EXPORT_SYMBOL(__release_region); 1208 1209 #ifdef CONFIG_MEMORY_HOTREMOVE 1210 /** 1211 * release_mem_region_adjustable - release a previously reserved memory region 1212 * @parent: parent resource descriptor 1213 * @start: resource start address 1214 * @size: resource region size 1215 * 1216 * This interface is intended for memory hot-delete. The requested region 1217 * is released from a currently busy memory resource. The requested region 1218 * must either match exactly or fit into a single busy resource entry. In 1219 * the latter case, the remaining resource is adjusted accordingly. 1220 * Existing children of the busy memory resource must be immutable in the 1221 * request. 1222 * 1223 * Note: 1224 * - Additional release conditions, such as overlapping region, can be 1225 * supported after they are confirmed as valid cases. 1226 * - When a busy memory resource gets split into two entries, the code 1227 * assumes that all children remain in the lower address entry for 1228 * simplicity. Enhance this logic when necessary. 1229 */ 1230 int release_mem_region_adjustable(struct resource *parent, 1231 resource_size_t start, resource_size_t size) 1232 { 1233 struct resource **p; 1234 struct resource *res; 1235 struct resource *new_res; 1236 resource_size_t end; 1237 int ret = -EINVAL; 1238 1239 end = start + size - 1; 1240 if ((start < parent->start) || (end > parent->end)) 1241 return ret; 1242 1243 /* The alloc_resource() result gets checked later */ 1244 new_res = alloc_resource(GFP_KERNEL); 1245 1246 p = &parent->child; 1247 write_lock(&resource_lock); 1248 1249 while ((res = *p)) { 1250 if (res->start >= end) 1251 break; 1252 1253 /* look for the next resource if it does not fit into */ 1254 if (res->start > start || res->end < end) { 1255 p = &res->sibling; 1256 continue; 1257 } 1258 1259 /* 1260 * All memory regions added from memory-hotplug path have the 1261 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have 1262 * this flag, we know that we are dealing with a resource coming 1263 * from HMM/devm. HMM/devm use another mechanism to add/release 1264 * a resource. This goes via devm_request_mem_region and 1265 * devm_release_mem_region. 1266 * HMM/devm take care to release their resources when they want, 1267 * so if we are dealing with them, let us just back off here. 1268 */ 1269 if (!(res->flags & IORESOURCE_SYSRAM)) { 1270 ret = 0; 1271 break; 1272 } 1273 1274 if (!(res->flags & IORESOURCE_MEM)) 1275 break; 1276 1277 if (!(res->flags & IORESOURCE_BUSY)) { 1278 p = &res->child; 1279 continue; 1280 } 1281 1282 /* found the target resource; let's adjust accordingly */ 1283 if (res->start == start && res->end == end) { 1284 /* free the whole entry */ 1285 *p = res->sibling; 1286 free_resource(res); 1287 ret = 0; 1288 } else if (res->start == start && res->end != end) { 1289 /* adjust the start */ 1290 ret = __adjust_resource(res, end + 1, 1291 res->end - end); 1292 } else if (res->start != start && res->end == end) { 1293 /* adjust the end */ 1294 ret = __adjust_resource(res, res->start, 1295 start - res->start); 1296 } else { 1297 /* split into two entries */ 1298 if (!new_res) { 1299 ret = -ENOMEM; 1300 break; 1301 } 1302 new_res->name = res->name; 1303 new_res->start = end + 1; 1304 new_res->end = res->end; 1305 new_res->flags = res->flags; 1306 new_res->desc = res->desc; 1307 new_res->parent = res->parent; 1308 new_res->sibling = res->sibling; 1309 new_res->child = NULL; 1310 1311 ret = __adjust_resource(res, res->start, 1312 start - res->start); 1313 if (ret) 1314 break; 1315 res->sibling = new_res; 1316 new_res = NULL; 1317 } 1318 1319 break; 1320 } 1321 1322 write_unlock(&resource_lock); 1323 free_resource(new_res); 1324 return ret; 1325 } 1326 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1327 1328 /* 1329 * Managed region resource 1330 */ 1331 static void devm_resource_release(struct device *dev, void *ptr) 1332 { 1333 struct resource **r = ptr; 1334 1335 release_resource(*r); 1336 } 1337 1338 /** 1339 * devm_request_resource() - request and reserve an I/O or memory resource 1340 * @dev: device for which to request the resource 1341 * @root: root of the resource tree from which to request the resource 1342 * @new: descriptor of the resource to request 1343 * 1344 * This is a device-managed version of request_resource(). There is usually 1345 * no need to release resources requested by this function explicitly since 1346 * that will be taken care of when the device is unbound from its driver. 1347 * If for some reason the resource needs to be released explicitly, because 1348 * of ordering issues for example, drivers must call devm_release_resource() 1349 * rather than the regular release_resource(). 1350 * 1351 * When a conflict is detected between any existing resources and the newly 1352 * requested resource, an error message will be printed. 1353 * 1354 * Returns 0 on success or a negative error code on failure. 1355 */ 1356 int devm_request_resource(struct device *dev, struct resource *root, 1357 struct resource *new) 1358 { 1359 struct resource *conflict, **ptr; 1360 1361 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1362 if (!ptr) 1363 return -ENOMEM; 1364 1365 *ptr = new; 1366 1367 conflict = request_resource_conflict(root, new); 1368 if (conflict) { 1369 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1370 new, conflict->name, conflict); 1371 devres_free(ptr); 1372 return -EBUSY; 1373 } 1374 1375 devres_add(dev, ptr); 1376 return 0; 1377 } 1378 EXPORT_SYMBOL(devm_request_resource); 1379 1380 static int devm_resource_match(struct device *dev, void *res, void *data) 1381 { 1382 struct resource **ptr = res; 1383 1384 return *ptr == data; 1385 } 1386 1387 /** 1388 * devm_release_resource() - release a previously requested resource 1389 * @dev: device for which to release the resource 1390 * @new: descriptor of the resource to release 1391 * 1392 * Releases a resource previously requested using devm_request_resource(). 1393 */ 1394 void devm_release_resource(struct device *dev, struct resource *new) 1395 { 1396 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1397 new)); 1398 } 1399 EXPORT_SYMBOL(devm_release_resource); 1400 1401 struct region_devres { 1402 struct resource *parent; 1403 resource_size_t start; 1404 resource_size_t n; 1405 }; 1406 1407 static void devm_region_release(struct device *dev, void *res) 1408 { 1409 struct region_devres *this = res; 1410 1411 __release_region(this->parent, this->start, this->n); 1412 } 1413 1414 static int devm_region_match(struct device *dev, void *res, void *match_data) 1415 { 1416 struct region_devres *this = res, *match = match_data; 1417 1418 return this->parent == match->parent && 1419 this->start == match->start && this->n == match->n; 1420 } 1421 1422 struct resource * 1423 __devm_request_region(struct device *dev, struct resource *parent, 1424 resource_size_t start, resource_size_t n, const char *name) 1425 { 1426 struct region_devres *dr = NULL; 1427 struct resource *res; 1428 1429 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1430 GFP_KERNEL); 1431 if (!dr) 1432 return NULL; 1433 1434 dr->parent = parent; 1435 dr->start = start; 1436 dr->n = n; 1437 1438 res = __request_region(parent, start, n, name, 0); 1439 if (res) 1440 devres_add(dev, dr); 1441 else 1442 devres_free(dr); 1443 1444 return res; 1445 } 1446 EXPORT_SYMBOL(__devm_request_region); 1447 1448 void __devm_release_region(struct device *dev, struct resource *parent, 1449 resource_size_t start, resource_size_t n) 1450 { 1451 struct region_devres match_data = { parent, start, n }; 1452 1453 __release_region(parent, start, n); 1454 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1455 &match_data)); 1456 } 1457 EXPORT_SYMBOL(__devm_release_region); 1458 1459 /* 1460 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1461 */ 1462 #define MAXRESERVE 4 1463 static int __init reserve_setup(char *str) 1464 { 1465 static int reserved; 1466 static struct resource reserve[MAXRESERVE]; 1467 1468 for (;;) { 1469 unsigned int io_start, io_num; 1470 int x = reserved; 1471 struct resource *parent; 1472 1473 if (get_option(&str, &io_start) != 2) 1474 break; 1475 if (get_option(&str, &io_num) == 0) 1476 break; 1477 if (x < MAXRESERVE) { 1478 struct resource *res = reserve + x; 1479 1480 /* 1481 * If the region starts below 0x10000, we assume it's 1482 * I/O port space; otherwise assume it's memory. 1483 */ 1484 if (io_start < 0x10000) { 1485 res->flags = IORESOURCE_IO; 1486 parent = &ioport_resource; 1487 } else { 1488 res->flags = IORESOURCE_MEM; 1489 parent = &iomem_resource; 1490 } 1491 res->name = "reserved"; 1492 res->start = io_start; 1493 res->end = io_start + io_num - 1; 1494 res->flags |= IORESOURCE_BUSY; 1495 res->desc = IORES_DESC_NONE; 1496 res->child = NULL; 1497 if (request_resource(parent, res) == 0) 1498 reserved = x+1; 1499 } 1500 } 1501 return 1; 1502 } 1503 __setup("reserve=", reserve_setup); 1504 1505 /* 1506 * Check if the requested addr and size spans more than any slot in the 1507 * iomem resource tree. 1508 */ 1509 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1510 { 1511 struct resource *p = &iomem_resource; 1512 int err = 0; 1513 loff_t l; 1514 1515 read_lock(&resource_lock); 1516 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1517 /* 1518 * We can probably skip the resources without 1519 * IORESOURCE_IO attribute? 1520 */ 1521 if (p->start >= addr + size) 1522 continue; 1523 if (p->end < addr) 1524 continue; 1525 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1526 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1527 continue; 1528 /* 1529 * if a resource is "BUSY", it's not a hardware resource 1530 * but a driver mapping of such a resource; we don't want 1531 * to warn for those; some drivers legitimately map only 1532 * partial hardware resources. (example: vesafb) 1533 */ 1534 if (p->flags & IORESOURCE_BUSY) 1535 continue; 1536 1537 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n", 1538 (unsigned long long)addr, 1539 (unsigned long long)(addr + size - 1), 1540 p->name, p); 1541 err = -1; 1542 break; 1543 } 1544 read_unlock(&resource_lock); 1545 1546 return err; 1547 } 1548 1549 #ifdef CONFIG_STRICT_DEVMEM 1550 static int strict_iomem_checks = 1; 1551 #else 1552 static int strict_iomem_checks; 1553 #endif 1554 1555 /* 1556 * check if an address is reserved in the iomem resource tree 1557 * returns true if reserved, false if not reserved. 1558 */ 1559 bool iomem_is_exclusive(u64 addr) 1560 { 1561 struct resource *p = &iomem_resource; 1562 bool err = false; 1563 loff_t l; 1564 int size = PAGE_SIZE; 1565 1566 if (!strict_iomem_checks) 1567 return false; 1568 1569 addr = addr & PAGE_MASK; 1570 1571 read_lock(&resource_lock); 1572 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1573 /* 1574 * We can probably skip the resources without 1575 * IORESOURCE_IO attribute? 1576 */ 1577 if (p->start >= addr + size) 1578 break; 1579 if (p->end < addr) 1580 continue; 1581 /* 1582 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1583 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1584 * resource is busy. 1585 */ 1586 if ((p->flags & IORESOURCE_BUSY) == 0) 1587 continue; 1588 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1589 || p->flags & IORESOURCE_EXCLUSIVE) { 1590 err = true; 1591 break; 1592 } 1593 } 1594 read_unlock(&resource_lock); 1595 1596 return err; 1597 } 1598 1599 struct resource_entry *resource_list_create_entry(struct resource *res, 1600 size_t extra_size) 1601 { 1602 struct resource_entry *entry; 1603 1604 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1605 if (entry) { 1606 INIT_LIST_HEAD(&entry->node); 1607 entry->res = res ? res : &entry->__res; 1608 } 1609 1610 return entry; 1611 } 1612 EXPORT_SYMBOL(resource_list_create_entry); 1613 1614 void resource_list_free(struct list_head *head) 1615 { 1616 struct resource_entry *entry, *tmp; 1617 1618 list_for_each_entry_safe(entry, tmp, head, node) 1619 resource_list_destroy_entry(entry); 1620 } 1621 EXPORT_SYMBOL(resource_list_free); 1622 1623 static int __init strict_iomem(char *str) 1624 { 1625 if (strstr(str, "relaxed")) 1626 strict_iomem_checks = 0; 1627 if (strstr(str, "strict")) 1628 strict_iomem_checks = 1; 1629 return 1; 1630 } 1631 1632 __setup("iomem=", strict_iomem); 1633