1 /* 2 * linux/kernel/resource.c 3 * 4 * Copyright (C) 1999 Linus Torvalds 5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 6 * 7 * Arbitrary resource management. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/export.h> 13 #include <linux/errno.h> 14 #include <linux/ioport.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/device.h> 23 #include <linux/pfn.h> 24 #include <linux/mm.h> 25 #include <asm/io.h> 26 27 28 struct resource ioport_resource = { 29 .name = "PCI IO", 30 .start = 0, 31 .end = IO_SPACE_LIMIT, 32 .flags = IORESOURCE_IO, 33 }; 34 EXPORT_SYMBOL(ioport_resource); 35 36 struct resource iomem_resource = { 37 .name = "PCI mem", 38 .start = 0, 39 .end = -1, 40 .flags = IORESOURCE_MEM, 41 }; 42 EXPORT_SYMBOL(iomem_resource); 43 44 /* constraints to be met while allocating resources */ 45 struct resource_constraint { 46 resource_size_t min, max, align; 47 resource_size_t (*alignf)(void *, const struct resource *, 48 resource_size_t, resource_size_t); 49 void *alignf_data; 50 }; 51 52 static DEFINE_RWLOCK(resource_lock); 53 54 /* 55 * For memory hotplug, there is no way to free resource entries allocated 56 * by boot mem after the system is up. So for reusing the resource entry 57 * we need to remember the resource. 58 */ 59 static struct resource *bootmem_resource_free; 60 static DEFINE_SPINLOCK(bootmem_resource_lock); 61 62 static struct resource *next_resource(struct resource *p, bool sibling_only) 63 { 64 /* Caller wants to traverse through siblings only */ 65 if (sibling_only) 66 return p->sibling; 67 68 if (p->child) 69 return p->child; 70 while (!p->sibling && p->parent) 71 p = p->parent; 72 return p->sibling; 73 } 74 75 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 76 { 77 struct resource *p = v; 78 (*pos)++; 79 return (void *)next_resource(p, false); 80 } 81 82 #ifdef CONFIG_PROC_FS 83 84 enum { MAX_IORES_LEVEL = 5 }; 85 86 static void *r_start(struct seq_file *m, loff_t *pos) 87 __acquires(resource_lock) 88 { 89 struct resource *p = m->private; 90 loff_t l = 0; 91 read_lock(&resource_lock); 92 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 93 ; 94 return p; 95 } 96 97 static void r_stop(struct seq_file *m, void *v) 98 __releases(resource_lock) 99 { 100 read_unlock(&resource_lock); 101 } 102 103 static int r_show(struct seq_file *m, void *v) 104 { 105 struct resource *root = m->private; 106 struct resource *r = v, *p; 107 int width = root->end < 0x10000 ? 4 : 8; 108 int depth; 109 110 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 111 if (p->parent == root) 112 break; 113 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 114 depth * 2, "", 115 width, (unsigned long long) r->start, 116 width, (unsigned long long) r->end, 117 r->name ? r->name : "<BAD>"); 118 return 0; 119 } 120 121 static const struct seq_operations resource_op = { 122 .start = r_start, 123 .next = r_next, 124 .stop = r_stop, 125 .show = r_show, 126 }; 127 128 static int ioports_open(struct inode *inode, struct file *file) 129 { 130 int res = seq_open(file, &resource_op); 131 if (!res) { 132 struct seq_file *m = file->private_data; 133 m->private = &ioport_resource; 134 } 135 return res; 136 } 137 138 static int iomem_open(struct inode *inode, struct file *file) 139 { 140 int res = seq_open(file, &resource_op); 141 if (!res) { 142 struct seq_file *m = file->private_data; 143 m->private = &iomem_resource; 144 } 145 return res; 146 } 147 148 static const struct file_operations proc_ioports_operations = { 149 .open = ioports_open, 150 .read = seq_read, 151 .llseek = seq_lseek, 152 .release = seq_release, 153 }; 154 155 static const struct file_operations proc_iomem_operations = { 156 .open = iomem_open, 157 .read = seq_read, 158 .llseek = seq_lseek, 159 .release = seq_release, 160 }; 161 162 static int __init ioresources_init(void) 163 { 164 proc_create("ioports", 0, NULL, &proc_ioports_operations); 165 proc_create("iomem", 0, NULL, &proc_iomem_operations); 166 return 0; 167 } 168 __initcall(ioresources_init); 169 170 #endif /* CONFIG_PROC_FS */ 171 172 static void free_resource(struct resource *res) 173 { 174 if (!res) 175 return; 176 177 if (!PageSlab(virt_to_head_page(res))) { 178 spin_lock(&bootmem_resource_lock); 179 res->sibling = bootmem_resource_free; 180 bootmem_resource_free = res; 181 spin_unlock(&bootmem_resource_lock); 182 } else { 183 kfree(res); 184 } 185 } 186 187 static struct resource *alloc_resource(gfp_t flags) 188 { 189 struct resource *res = NULL; 190 191 spin_lock(&bootmem_resource_lock); 192 if (bootmem_resource_free) { 193 res = bootmem_resource_free; 194 bootmem_resource_free = res->sibling; 195 } 196 spin_unlock(&bootmem_resource_lock); 197 198 if (res) 199 memset(res, 0, sizeof(struct resource)); 200 else 201 res = kzalloc(sizeof(struct resource), flags); 202 203 return res; 204 } 205 206 /* Return the conflict entry if you can't request it */ 207 static struct resource * __request_resource(struct resource *root, struct resource *new) 208 { 209 resource_size_t start = new->start; 210 resource_size_t end = new->end; 211 struct resource *tmp, **p; 212 213 if (end < start) 214 return root; 215 if (start < root->start) 216 return root; 217 if (end > root->end) 218 return root; 219 p = &root->child; 220 for (;;) { 221 tmp = *p; 222 if (!tmp || tmp->start > end) { 223 new->sibling = tmp; 224 *p = new; 225 new->parent = root; 226 return NULL; 227 } 228 p = &tmp->sibling; 229 if (tmp->end < start) 230 continue; 231 return tmp; 232 } 233 } 234 235 static int __release_resource(struct resource *old) 236 { 237 struct resource *tmp, **p; 238 239 p = &old->parent->child; 240 for (;;) { 241 tmp = *p; 242 if (!tmp) 243 break; 244 if (tmp == old) { 245 *p = tmp->sibling; 246 old->parent = NULL; 247 return 0; 248 } 249 p = &tmp->sibling; 250 } 251 return -EINVAL; 252 } 253 254 static void __release_child_resources(struct resource *r) 255 { 256 struct resource *tmp, *p; 257 resource_size_t size; 258 259 p = r->child; 260 r->child = NULL; 261 while (p) { 262 tmp = p; 263 p = p->sibling; 264 265 tmp->parent = NULL; 266 tmp->sibling = NULL; 267 __release_child_resources(tmp); 268 269 printk(KERN_DEBUG "release child resource %pR\n", tmp); 270 /* need to restore size, and keep flags */ 271 size = resource_size(tmp); 272 tmp->start = 0; 273 tmp->end = size - 1; 274 } 275 } 276 277 void release_child_resources(struct resource *r) 278 { 279 write_lock(&resource_lock); 280 __release_child_resources(r); 281 write_unlock(&resource_lock); 282 } 283 284 /** 285 * request_resource_conflict - request and reserve an I/O or memory resource 286 * @root: root resource descriptor 287 * @new: resource descriptor desired by caller 288 * 289 * Returns 0 for success, conflict resource on error. 290 */ 291 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 292 { 293 struct resource *conflict; 294 295 write_lock(&resource_lock); 296 conflict = __request_resource(root, new); 297 write_unlock(&resource_lock); 298 return conflict; 299 } 300 301 /** 302 * request_resource - request and reserve an I/O or memory resource 303 * @root: root resource descriptor 304 * @new: resource descriptor desired by caller 305 * 306 * Returns 0 for success, negative error code on error. 307 */ 308 int request_resource(struct resource *root, struct resource *new) 309 { 310 struct resource *conflict; 311 312 conflict = request_resource_conflict(root, new); 313 return conflict ? -EBUSY : 0; 314 } 315 316 EXPORT_SYMBOL(request_resource); 317 318 /** 319 * release_resource - release a previously reserved resource 320 * @old: resource pointer 321 */ 322 int release_resource(struct resource *old) 323 { 324 int retval; 325 326 write_lock(&resource_lock); 327 retval = __release_resource(old); 328 write_unlock(&resource_lock); 329 return retval; 330 } 331 332 EXPORT_SYMBOL(release_resource); 333 334 /* 335 * Finds the lowest iomem reosurce exists with-in [res->start.res->end) 336 * the caller must specify res->start, res->end, res->flags and "name". 337 * If found, returns 0, res is overwritten, if not found, returns -1. 338 * This walks through whole tree and not just first level children 339 * until and unless first_level_children_only is true. 340 */ 341 static int find_next_iomem_res(struct resource *res, char *name, 342 bool first_level_children_only) 343 { 344 resource_size_t start, end; 345 struct resource *p; 346 bool sibling_only = false; 347 348 BUG_ON(!res); 349 350 start = res->start; 351 end = res->end; 352 BUG_ON(start >= end); 353 354 if (first_level_children_only) 355 sibling_only = true; 356 357 read_lock(&resource_lock); 358 359 for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) { 360 if (p->flags != res->flags) 361 continue; 362 if (name && strcmp(p->name, name)) 363 continue; 364 if (p->start > end) { 365 p = NULL; 366 break; 367 } 368 if ((p->end >= start) && (p->start < end)) 369 break; 370 } 371 372 read_unlock(&resource_lock); 373 if (!p) 374 return -1; 375 /* copy data */ 376 if (res->start < p->start) 377 res->start = p->start; 378 if (res->end > p->end) 379 res->end = p->end; 380 return 0; 381 } 382 383 /* 384 * Walks through iomem resources and calls func() with matching resource 385 * ranges. This walks through whole tree and not just first level children. 386 * All the memory ranges which overlap start,end and also match flags and 387 * name are valid candidates. 388 * 389 * @name: name of resource 390 * @flags: resource flags 391 * @start: start addr 392 * @end: end addr 393 */ 394 int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end, 395 void *arg, int (*func)(u64, u64, void *)) 396 { 397 struct resource res; 398 u64 orig_end; 399 int ret = -1; 400 401 res.start = start; 402 res.end = end; 403 res.flags = flags; 404 orig_end = res.end; 405 while ((res.start < res.end) && 406 (!find_next_iomem_res(&res, name, false))) { 407 ret = (*func)(res.start, res.end, arg); 408 if (ret) 409 break; 410 res.start = res.end + 1; 411 res.end = orig_end; 412 } 413 return ret; 414 } 415 416 /* 417 * This function calls callback against all memory range of "System RAM" 418 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. 419 * Now, this function is only for "System RAM". This function deals with 420 * full ranges and not pfn. If resources are not pfn aligned, dealing 421 * with pfn can truncate ranges. 422 */ 423 int walk_system_ram_res(u64 start, u64 end, void *arg, 424 int (*func)(u64, u64, void *)) 425 { 426 struct resource res; 427 u64 orig_end; 428 int ret = -1; 429 430 res.start = start; 431 res.end = end; 432 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; 433 orig_end = res.end; 434 while ((res.start < res.end) && 435 (!find_next_iomem_res(&res, "System RAM", true))) { 436 ret = (*func)(res.start, res.end, arg); 437 if (ret) 438 break; 439 res.start = res.end + 1; 440 res.end = orig_end; 441 } 442 return ret; 443 } 444 445 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) 446 447 /* 448 * This function calls callback against all memory range of "System RAM" 449 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. 450 * Now, this function is only for "System RAM". 451 */ 452 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 453 void *arg, int (*func)(unsigned long, unsigned long, void *)) 454 { 455 struct resource res; 456 unsigned long pfn, end_pfn; 457 u64 orig_end; 458 int ret = -1; 459 460 res.start = (u64) start_pfn << PAGE_SHIFT; 461 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 462 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; 463 orig_end = res.end; 464 while ((res.start < res.end) && 465 (find_next_iomem_res(&res, "System RAM", true) >= 0)) { 466 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT; 467 end_pfn = (res.end + 1) >> PAGE_SHIFT; 468 if (end_pfn > pfn) 469 ret = (*func)(pfn, end_pfn - pfn, arg); 470 if (ret) 471 break; 472 res.start = res.end + 1; 473 res.end = orig_end; 474 } 475 return ret; 476 } 477 478 #endif 479 480 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 481 { 482 return 1; 483 } 484 /* 485 * This generic page_is_ram() returns true if specified address is 486 * registered as "System RAM" in iomem_resource list. 487 */ 488 int __weak page_is_ram(unsigned long pfn) 489 { 490 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 491 } 492 EXPORT_SYMBOL_GPL(page_is_ram); 493 494 /* 495 * Search for a resouce entry that fully contains the specified region. 496 * If found, return 1 if it is RAM, 0 if not. 497 * If not found, or region is not fully contained, return -1 498 * 499 * Used by the ioremap functions to ensure the user is not remapping RAM and is 500 * a vast speed up over walking through the resource table page by page. 501 */ 502 int region_is_ram(resource_size_t start, unsigned long size) 503 { 504 struct resource *p; 505 resource_size_t end = start + size - 1; 506 int flags = IORESOURCE_MEM | IORESOURCE_BUSY; 507 const char *name = "System RAM"; 508 int ret = -1; 509 510 read_lock(&resource_lock); 511 for (p = iomem_resource.child; p ; p = p->sibling) { 512 if (end < p->start) 513 continue; 514 515 if (p->start <= start && end <= p->end) { 516 /* resource fully contains region */ 517 if ((p->flags != flags) || strcmp(p->name, name)) 518 ret = 0; 519 else 520 ret = 1; 521 break; 522 } 523 if (p->end < start) 524 break; /* not found */ 525 } 526 read_unlock(&resource_lock); 527 return ret; 528 } 529 530 void __weak arch_remove_reservations(struct resource *avail) 531 { 532 } 533 534 static resource_size_t simple_align_resource(void *data, 535 const struct resource *avail, 536 resource_size_t size, 537 resource_size_t align) 538 { 539 return avail->start; 540 } 541 542 static void resource_clip(struct resource *res, resource_size_t min, 543 resource_size_t max) 544 { 545 if (res->start < min) 546 res->start = min; 547 if (res->end > max) 548 res->end = max; 549 } 550 551 /* 552 * Find empty slot in the resource tree with the given range and 553 * alignment constraints 554 */ 555 static int __find_resource(struct resource *root, struct resource *old, 556 struct resource *new, 557 resource_size_t size, 558 struct resource_constraint *constraint) 559 { 560 struct resource *this = root->child; 561 struct resource tmp = *new, avail, alloc; 562 563 tmp.start = root->start; 564 /* 565 * Skip past an allocated resource that starts at 0, since the assignment 566 * of this->start - 1 to tmp->end below would cause an underflow. 567 */ 568 if (this && this->start == root->start) { 569 tmp.start = (this == old) ? old->start : this->end + 1; 570 this = this->sibling; 571 } 572 for(;;) { 573 if (this) 574 tmp.end = (this == old) ? this->end : this->start - 1; 575 else 576 tmp.end = root->end; 577 578 if (tmp.end < tmp.start) 579 goto next; 580 581 resource_clip(&tmp, constraint->min, constraint->max); 582 arch_remove_reservations(&tmp); 583 584 /* Check for overflow after ALIGN() */ 585 avail.start = ALIGN(tmp.start, constraint->align); 586 avail.end = tmp.end; 587 avail.flags = new->flags & ~IORESOURCE_UNSET; 588 if (avail.start >= tmp.start) { 589 alloc.flags = avail.flags; 590 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 591 size, constraint->align); 592 alloc.end = alloc.start + size - 1; 593 if (resource_contains(&avail, &alloc)) { 594 new->start = alloc.start; 595 new->end = alloc.end; 596 return 0; 597 } 598 } 599 600 next: if (!this || this->end == root->end) 601 break; 602 603 if (this != old) 604 tmp.start = this->end + 1; 605 this = this->sibling; 606 } 607 return -EBUSY; 608 } 609 610 /* 611 * Find empty slot in the resource tree given range and alignment. 612 */ 613 static int find_resource(struct resource *root, struct resource *new, 614 resource_size_t size, 615 struct resource_constraint *constraint) 616 { 617 return __find_resource(root, NULL, new, size, constraint); 618 } 619 620 /** 621 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 622 * The resource will be relocated if the new size cannot be reallocated in the 623 * current location. 624 * 625 * @root: root resource descriptor 626 * @old: resource descriptor desired by caller 627 * @newsize: new size of the resource descriptor 628 * @constraint: the size and alignment constraints to be met. 629 */ 630 static int reallocate_resource(struct resource *root, struct resource *old, 631 resource_size_t newsize, 632 struct resource_constraint *constraint) 633 { 634 int err=0; 635 struct resource new = *old; 636 struct resource *conflict; 637 638 write_lock(&resource_lock); 639 640 if ((err = __find_resource(root, old, &new, newsize, constraint))) 641 goto out; 642 643 if (resource_contains(&new, old)) { 644 old->start = new.start; 645 old->end = new.end; 646 goto out; 647 } 648 649 if (old->child) { 650 err = -EBUSY; 651 goto out; 652 } 653 654 if (resource_contains(old, &new)) { 655 old->start = new.start; 656 old->end = new.end; 657 } else { 658 __release_resource(old); 659 *old = new; 660 conflict = __request_resource(root, old); 661 BUG_ON(conflict); 662 } 663 out: 664 write_unlock(&resource_lock); 665 return err; 666 } 667 668 669 /** 670 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 671 * The resource will be reallocated with a new size if it was already allocated 672 * @root: root resource descriptor 673 * @new: resource descriptor desired by caller 674 * @size: requested resource region size 675 * @min: minimum boundary to allocate 676 * @max: maximum boundary to allocate 677 * @align: alignment requested, in bytes 678 * @alignf: alignment function, optional, called if not NULL 679 * @alignf_data: arbitrary data to pass to the @alignf function 680 */ 681 int allocate_resource(struct resource *root, struct resource *new, 682 resource_size_t size, resource_size_t min, 683 resource_size_t max, resource_size_t align, 684 resource_size_t (*alignf)(void *, 685 const struct resource *, 686 resource_size_t, 687 resource_size_t), 688 void *alignf_data) 689 { 690 int err; 691 struct resource_constraint constraint; 692 693 if (!alignf) 694 alignf = simple_align_resource; 695 696 constraint.min = min; 697 constraint.max = max; 698 constraint.align = align; 699 constraint.alignf = alignf; 700 constraint.alignf_data = alignf_data; 701 702 if ( new->parent ) { 703 /* resource is already allocated, try reallocating with 704 the new constraints */ 705 return reallocate_resource(root, new, size, &constraint); 706 } 707 708 write_lock(&resource_lock); 709 err = find_resource(root, new, size, &constraint); 710 if (err >= 0 && __request_resource(root, new)) 711 err = -EBUSY; 712 write_unlock(&resource_lock); 713 return err; 714 } 715 716 EXPORT_SYMBOL(allocate_resource); 717 718 /** 719 * lookup_resource - find an existing resource by a resource start address 720 * @root: root resource descriptor 721 * @start: resource start address 722 * 723 * Returns a pointer to the resource if found, NULL otherwise 724 */ 725 struct resource *lookup_resource(struct resource *root, resource_size_t start) 726 { 727 struct resource *res; 728 729 read_lock(&resource_lock); 730 for (res = root->child; res; res = res->sibling) { 731 if (res->start == start) 732 break; 733 } 734 read_unlock(&resource_lock); 735 736 return res; 737 } 738 739 /* 740 * Insert a resource into the resource tree. If successful, return NULL, 741 * otherwise return the conflicting resource (compare to __request_resource()) 742 */ 743 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 744 { 745 struct resource *first, *next; 746 747 for (;; parent = first) { 748 first = __request_resource(parent, new); 749 if (!first) 750 return first; 751 752 if (first == parent) 753 return first; 754 if (WARN_ON(first == new)) /* duplicated insertion */ 755 return first; 756 757 if ((first->start > new->start) || (first->end < new->end)) 758 break; 759 if ((first->start == new->start) && (first->end == new->end)) 760 break; 761 } 762 763 for (next = first; ; next = next->sibling) { 764 /* Partial overlap? Bad, and unfixable */ 765 if (next->start < new->start || next->end > new->end) 766 return next; 767 if (!next->sibling) 768 break; 769 if (next->sibling->start > new->end) 770 break; 771 } 772 773 new->parent = parent; 774 new->sibling = next->sibling; 775 new->child = first; 776 777 next->sibling = NULL; 778 for (next = first; next; next = next->sibling) 779 next->parent = new; 780 781 if (parent->child == first) { 782 parent->child = new; 783 } else { 784 next = parent->child; 785 while (next->sibling != first) 786 next = next->sibling; 787 next->sibling = new; 788 } 789 return NULL; 790 } 791 792 /** 793 * insert_resource_conflict - Inserts resource in the resource tree 794 * @parent: parent of the new resource 795 * @new: new resource to insert 796 * 797 * Returns 0 on success, conflict resource if the resource can't be inserted. 798 * 799 * This function is equivalent to request_resource_conflict when no conflict 800 * happens. If a conflict happens, and the conflicting resources 801 * entirely fit within the range of the new resource, then the new 802 * resource is inserted and the conflicting resources become children of 803 * the new resource. 804 */ 805 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 806 { 807 struct resource *conflict; 808 809 write_lock(&resource_lock); 810 conflict = __insert_resource(parent, new); 811 write_unlock(&resource_lock); 812 return conflict; 813 } 814 815 /** 816 * insert_resource - Inserts a resource in the resource tree 817 * @parent: parent of the new resource 818 * @new: new resource to insert 819 * 820 * Returns 0 on success, -EBUSY if the resource can't be inserted. 821 */ 822 int insert_resource(struct resource *parent, struct resource *new) 823 { 824 struct resource *conflict; 825 826 conflict = insert_resource_conflict(parent, new); 827 return conflict ? -EBUSY : 0; 828 } 829 830 /** 831 * insert_resource_expand_to_fit - Insert a resource into the resource tree 832 * @root: root resource descriptor 833 * @new: new resource to insert 834 * 835 * Insert a resource into the resource tree, possibly expanding it in order 836 * to make it encompass any conflicting resources. 837 */ 838 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 839 { 840 if (new->parent) 841 return; 842 843 write_lock(&resource_lock); 844 for (;;) { 845 struct resource *conflict; 846 847 conflict = __insert_resource(root, new); 848 if (!conflict) 849 break; 850 if (conflict == root) 851 break; 852 853 /* Ok, expand resource to cover the conflict, then try again .. */ 854 if (conflict->start < new->start) 855 new->start = conflict->start; 856 if (conflict->end > new->end) 857 new->end = conflict->end; 858 859 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 860 } 861 write_unlock(&resource_lock); 862 } 863 864 static int __adjust_resource(struct resource *res, resource_size_t start, 865 resource_size_t size) 866 { 867 struct resource *tmp, *parent = res->parent; 868 resource_size_t end = start + size - 1; 869 int result = -EBUSY; 870 871 if (!parent) 872 goto skip; 873 874 if ((start < parent->start) || (end > parent->end)) 875 goto out; 876 877 if (res->sibling && (res->sibling->start <= end)) 878 goto out; 879 880 tmp = parent->child; 881 if (tmp != res) { 882 while (tmp->sibling != res) 883 tmp = tmp->sibling; 884 if (start <= tmp->end) 885 goto out; 886 } 887 888 skip: 889 for (tmp = res->child; tmp; tmp = tmp->sibling) 890 if ((tmp->start < start) || (tmp->end > end)) 891 goto out; 892 893 res->start = start; 894 res->end = end; 895 result = 0; 896 897 out: 898 return result; 899 } 900 901 /** 902 * adjust_resource - modify a resource's start and size 903 * @res: resource to modify 904 * @start: new start value 905 * @size: new size 906 * 907 * Given an existing resource, change its start and size to match the 908 * arguments. Returns 0 on success, -EBUSY if it can't fit. 909 * Existing children of the resource are assumed to be immutable. 910 */ 911 int adjust_resource(struct resource *res, resource_size_t start, 912 resource_size_t size) 913 { 914 int result; 915 916 write_lock(&resource_lock); 917 result = __adjust_resource(res, start, size); 918 write_unlock(&resource_lock); 919 return result; 920 } 921 EXPORT_SYMBOL(adjust_resource); 922 923 static void __init __reserve_region_with_split(struct resource *root, 924 resource_size_t start, resource_size_t end, 925 const char *name) 926 { 927 struct resource *parent = root; 928 struct resource *conflict; 929 struct resource *res = alloc_resource(GFP_ATOMIC); 930 struct resource *next_res = NULL; 931 932 if (!res) 933 return; 934 935 res->name = name; 936 res->start = start; 937 res->end = end; 938 res->flags = IORESOURCE_BUSY; 939 940 while (1) { 941 942 conflict = __request_resource(parent, res); 943 if (!conflict) { 944 if (!next_res) 945 break; 946 res = next_res; 947 next_res = NULL; 948 continue; 949 } 950 951 /* conflict covered whole area */ 952 if (conflict->start <= res->start && 953 conflict->end >= res->end) { 954 free_resource(res); 955 WARN_ON(next_res); 956 break; 957 } 958 959 /* failed, split and try again */ 960 if (conflict->start > res->start) { 961 end = res->end; 962 res->end = conflict->start - 1; 963 if (conflict->end < end) { 964 next_res = alloc_resource(GFP_ATOMIC); 965 if (!next_res) { 966 free_resource(res); 967 break; 968 } 969 next_res->name = name; 970 next_res->start = conflict->end + 1; 971 next_res->end = end; 972 next_res->flags = IORESOURCE_BUSY; 973 } 974 } else { 975 res->start = conflict->end + 1; 976 } 977 } 978 979 } 980 981 void __init reserve_region_with_split(struct resource *root, 982 resource_size_t start, resource_size_t end, 983 const char *name) 984 { 985 int abort = 0; 986 987 write_lock(&resource_lock); 988 if (root->start > start || root->end < end) { 989 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 990 (unsigned long long)start, (unsigned long long)end, 991 root); 992 if (start > root->end || end < root->start) 993 abort = 1; 994 else { 995 if (end > root->end) 996 end = root->end; 997 if (start < root->start) 998 start = root->start; 999 pr_err("fixing request to [0x%llx-0x%llx]\n", 1000 (unsigned long long)start, 1001 (unsigned long long)end); 1002 } 1003 dump_stack(); 1004 } 1005 if (!abort) 1006 __reserve_region_with_split(root, start, end, name); 1007 write_unlock(&resource_lock); 1008 } 1009 1010 /** 1011 * resource_alignment - calculate resource's alignment 1012 * @res: resource pointer 1013 * 1014 * Returns alignment on success, 0 (invalid alignment) on failure. 1015 */ 1016 resource_size_t resource_alignment(struct resource *res) 1017 { 1018 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1019 case IORESOURCE_SIZEALIGN: 1020 return resource_size(res); 1021 case IORESOURCE_STARTALIGN: 1022 return res->start; 1023 default: 1024 return 0; 1025 } 1026 } 1027 1028 /* 1029 * This is compatibility stuff for IO resources. 1030 * 1031 * Note how this, unlike the above, knows about 1032 * the IO flag meanings (busy etc). 1033 * 1034 * request_region creates a new busy region. 1035 * 1036 * check_region returns non-zero if the area is already busy. 1037 * 1038 * release_region releases a matching busy region. 1039 */ 1040 1041 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1042 1043 /** 1044 * __request_region - create a new busy resource region 1045 * @parent: parent resource descriptor 1046 * @start: resource start address 1047 * @n: resource region size 1048 * @name: reserving caller's ID string 1049 * @flags: IO resource flags 1050 */ 1051 struct resource * __request_region(struct resource *parent, 1052 resource_size_t start, resource_size_t n, 1053 const char *name, int flags) 1054 { 1055 DECLARE_WAITQUEUE(wait, current); 1056 struct resource *res = alloc_resource(GFP_KERNEL); 1057 1058 if (!res) 1059 return NULL; 1060 1061 res->name = name; 1062 res->start = start; 1063 res->end = start + n - 1; 1064 res->flags = resource_type(parent); 1065 res->flags |= IORESOURCE_BUSY | flags; 1066 1067 write_lock(&resource_lock); 1068 1069 for (;;) { 1070 struct resource *conflict; 1071 1072 conflict = __request_resource(parent, res); 1073 if (!conflict) 1074 break; 1075 if (conflict != parent) { 1076 parent = conflict; 1077 if (!(conflict->flags & IORESOURCE_BUSY)) 1078 continue; 1079 } 1080 if (conflict->flags & flags & IORESOURCE_MUXED) { 1081 add_wait_queue(&muxed_resource_wait, &wait); 1082 write_unlock(&resource_lock); 1083 set_current_state(TASK_UNINTERRUPTIBLE); 1084 schedule(); 1085 remove_wait_queue(&muxed_resource_wait, &wait); 1086 write_lock(&resource_lock); 1087 continue; 1088 } 1089 /* Uhhuh, that didn't work out.. */ 1090 free_resource(res); 1091 res = NULL; 1092 break; 1093 } 1094 write_unlock(&resource_lock); 1095 return res; 1096 } 1097 EXPORT_SYMBOL(__request_region); 1098 1099 /** 1100 * __check_region - check if a resource region is busy or free 1101 * @parent: parent resource descriptor 1102 * @start: resource start address 1103 * @n: resource region size 1104 * 1105 * Returns 0 if the region is free at the moment it is checked, 1106 * returns %-EBUSY if the region is busy. 1107 * 1108 * NOTE: 1109 * This function is deprecated because its use is racy. 1110 * Even if it returns 0, a subsequent call to request_region() 1111 * may fail because another driver etc. just allocated the region. 1112 * Do NOT use it. It will be removed from the kernel. 1113 */ 1114 int __check_region(struct resource *parent, resource_size_t start, 1115 resource_size_t n) 1116 { 1117 struct resource * res; 1118 1119 res = __request_region(parent, start, n, "check-region", 0); 1120 if (!res) 1121 return -EBUSY; 1122 1123 release_resource(res); 1124 free_resource(res); 1125 return 0; 1126 } 1127 EXPORT_SYMBOL(__check_region); 1128 1129 /** 1130 * __release_region - release a previously reserved resource region 1131 * @parent: parent resource descriptor 1132 * @start: resource start address 1133 * @n: resource region size 1134 * 1135 * The described resource region must match a currently busy region. 1136 */ 1137 void __release_region(struct resource *parent, resource_size_t start, 1138 resource_size_t n) 1139 { 1140 struct resource **p; 1141 resource_size_t end; 1142 1143 p = &parent->child; 1144 end = start + n - 1; 1145 1146 write_lock(&resource_lock); 1147 1148 for (;;) { 1149 struct resource *res = *p; 1150 1151 if (!res) 1152 break; 1153 if (res->start <= start && res->end >= end) { 1154 if (!(res->flags & IORESOURCE_BUSY)) { 1155 p = &res->child; 1156 continue; 1157 } 1158 if (res->start != start || res->end != end) 1159 break; 1160 *p = res->sibling; 1161 write_unlock(&resource_lock); 1162 if (res->flags & IORESOURCE_MUXED) 1163 wake_up(&muxed_resource_wait); 1164 free_resource(res); 1165 return; 1166 } 1167 p = &res->sibling; 1168 } 1169 1170 write_unlock(&resource_lock); 1171 1172 printk(KERN_WARNING "Trying to free nonexistent resource " 1173 "<%016llx-%016llx>\n", (unsigned long long)start, 1174 (unsigned long long)end); 1175 } 1176 EXPORT_SYMBOL(__release_region); 1177 1178 #ifdef CONFIG_MEMORY_HOTREMOVE 1179 /** 1180 * release_mem_region_adjustable - release a previously reserved memory region 1181 * @parent: parent resource descriptor 1182 * @start: resource start address 1183 * @size: resource region size 1184 * 1185 * This interface is intended for memory hot-delete. The requested region 1186 * is released from a currently busy memory resource. The requested region 1187 * must either match exactly or fit into a single busy resource entry. In 1188 * the latter case, the remaining resource is adjusted accordingly. 1189 * Existing children of the busy memory resource must be immutable in the 1190 * request. 1191 * 1192 * Note: 1193 * - Additional release conditions, such as overlapping region, can be 1194 * supported after they are confirmed as valid cases. 1195 * - When a busy memory resource gets split into two entries, the code 1196 * assumes that all children remain in the lower address entry for 1197 * simplicity. Enhance this logic when necessary. 1198 */ 1199 int release_mem_region_adjustable(struct resource *parent, 1200 resource_size_t start, resource_size_t size) 1201 { 1202 struct resource **p; 1203 struct resource *res; 1204 struct resource *new_res; 1205 resource_size_t end; 1206 int ret = -EINVAL; 1207 1208 end = start + size - 1; 1209 if ((start < parent->start) || (end > parent->end)) 1210 return ret; 1211 1212 /* The alloc_resource() result gets checked later */ 1213 new_res = alloc_resource(GFP_KERNEL); 1214 1215 p = &parent->child; 1216 write_lock(&resource_lock); 1217 1218 while ((res = *p)) { 1219 if (res->start >= end) 1220 break; 1221 1222 /* look for the next resource if it does not fit into */ 1223 if (res->start > start || res->end < end) { 1224 p = &res->sibling; 1225 continue; 1226 } 1227 1228 if (!(res->flags & IORESOURCE_MEM)) 1229 break; 1230 1231 if (!(res->flags & IORESOURCE_BUSY)) { 1232 p = &res->child; 1233 continue; 1234 } 1235 1236 /* found the target resource; let's adjust accordingly */ 1237 if (res->start == start && res->end == end) { 1238 /* free the whole entry */ 1239 *p = res->sibling; 1240 free_resource(res); 1241 ret = 0; 1242 } else if (res->start == start && res->end != end) { 1243 /* adjust the start */ 1244 ret = __adjust_resource(res, end + 1, 1245 res->end - end); 1246 } else if (res->start != start && res->end == end) { 1247 /* adjust the end */ 1248 ret = __adjust_resource(res, res->start, 1249 start - res->start); 1250 } else { 1251 /* split into two entries */ 1252 if (!new_res) { 1253 ret = -ENOMEM; 1254 break; 1255 } 1256 new_res->name = res->name; 1257 new_res->start = end + 1; 1258 new_res->end = res->end; 1259 new_res->flags = res->flags; 1260 new_res->parent = res->parent; 1261 new_res->sibling = res->sibling; 1262 new_res->child = NULL; 1263 1264 ret = __adjust_resource(res, res->start, 1265 start - res->start); 1266 if (ret) 1267 break; 1268 res->sibling = new_res; 1269 new_res = NULL; 1270 } 1271 1272 break; 1273 } 1274 1275 write_unlock(&resource_lock); 1276 free_resource(new_res); 1277 return ret; 1278 } 1279 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1280 1281 /* 1282 * Managed region resource 1283 */ 1284 static void devm_resource_release(struct device *dev, void *ptr) 1285 { 1286 struct resource **r = ptr; 1287 1288 release_resource(*r); 1289 } 1290 1291 /** 1292 * devm_request_resource() - request and reserve an I/O or memory resource 1293 * @dev: device for which to request the resource 1294 * @root: root of the resource tree from which to request the resource 1295 * @new: descriptor of the resource to request 1296 * 1297 * This is a device-managed version of request_resource(). There is usually 1298 * no need to release resources requested by this function explicitly since 1299 * that will be taken care of when the device is unbound from its driver. 1300 * If for some reason the resource needs to be released explicitly, because 1301 * of ordering issues for example, drivers must call devm_release_resource() 1302 * rather than the regular release_resource(). 1303 * 1304 * When a conflict is detected between any existing resources and the newly 1305 * requested resource, an error message will be printed. 1306 * 1307 * Returns 0 on success or a negative error code on failure. 1308 */ 1309 int devm_request_resource(struct device *dev, struct resource *root, 1310 struct resource *new) 1311 { 1312 struct resource *conflict, **ptr; 1313 1314 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1315 if (!ptr) 1316 return -ENOMEM; 1317 1318 *ptr = new; 1319 1320 conflict = request_resource_conflict(root, new); 1321 if (conflict) { 1322 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1323 new, conflict->name, conflict); 1324 devres_free(ptr); 1325 return -EBUSY; 1326 } 1327 1328 devres_add(dev, ptr); 1329 return 0; 1330 } 1331 EXPORT_SYMBOL(devm_request_resource); 1332 1333 static int devm_resource_match(struct device *dev, void *res, void *data) 1334 { 1335 struct resource **ptr = res; 1336 1337 return *ptr == data; 1338 } 1339 1340 /** 1341 * devm_release_resource() - release a previously requested resource 1342 * @dev: device for which to release the resource 1343 * @new: descriptor of the resource to release 1344 * 1345 * Releases a resource previously requested using devm_request_resource(). 1346 */ 1347 void devm_release_resource(struct device *dev, struct resource *new) 1348 { 1349 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1350 new)); 1351 } 1352 EXPORT_SYMBOL(devm_release_resource); 1353 1354 struct region_devres { 1355 struct resource *parent; 1356 resource_size_t start; 1357 resource_size_t n; 1358 }; 1359 1360 static void devm_region_release(struct device *dev, void *res) 1361 { 1362 struct region_devres *this = res; 1363 1364 __release_region(this->parent, this->start, this->n); 1365 } 1366 1367 static int devm_region_match(struct device *dev, void *res, void *match_data) 1368 { 1369 struct region_devres *this = res, *match = match_data; 1370 1371 return this->parent == match->parent && 1372 this->start == match->start && this->n == match->n; 1373 } 1374 1375 struct resource * __devm_request_region(struct device *dev, 1376 struct resource *parent, resource_size_t start, 1377 resource_size_t n, const char *name) 1378 { 1379 struct region_devres *dr = NULL; 1380 struct resource *res; 1381 1382 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1383 GFP_KERNEL); 1384 if (!dr) 1385 return NULL; 1386 1387 dr->parent = parent; 1388 dr->start = start; 1389 dr->n = n; 1390 1391 res = __request_region(parent, start, n, name, 0); 1392 if (res) 1393 devres_add(dev, dr); 1394 else 1395 devres_free(dr); 1396 1397 return res; 1398 } 1399 EXPORT_SYMBOL(__devm_request_region); 1400 1401 void __devm_release_region(struct device *dev, struct resource *parent, 1402 resource_size_t start, resource_size_t n) 1403 { 1404 struct region_devres match_data = { parent, start, n }; 1405 1406 __release_region(parent, start, n); 1407 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1408 &match_data)); 1409 } 1410 EXPORT_SYMBOL(__devm_release_region); 1411 1412 /* 1413 * Called from init/main.c to reserve IO ports. 1414 */ 1415 #define MAXRESERVE 4 1416 static int __init reserve_setup(char *str) 1417 { 1418 static int reserved; 1419 static struct resource reserve[MAXRESERVE]; 1420 1421 for (;;) { 1422 unsigned int io_start, io_num; 1423 int x = reserved; 1424 1425 if (get_option (&str, &io_start) != 2) 1426 break; 1427 if (get_option (&str, &io_num) == 0) 1428 break; 1429 if (x < MAXRESERVE) { 1430 struct resource *res = reserve + x; 1431 res->name = "reserved"; 1432 res->start = io_start; 1433 res->end = io_start + io_num - 1; 1434 res->flags = IORESOURCE_BUSY; 1435 res->child = NULL; 1436 if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0) 1437 reserved = x+1; 1438 } 1439 } 1440 return 1; 1441 } 1442 1443 __setup("reserve=", reserve_setup); 1444 1445 /* 1446 * Check if the requested addr and size spans more than any slot in the 1447 * iomem resource tree. 1448 */ 1449 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1450 { 1451 struct resource *p = &iomem_resource; 1452 int err = 0; 1453 loff_t l; 1454 1455 read_lock(&resource_lock); 1456 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1457 /* 1458 * We can probably skip the resources without 1459 * IORESOURCE_IO attribute? 1460 */ 1461 if (p->start >= addr + size) 1462 continue; 1463 if (p->end < addr) 1464 continue; 1465 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1466 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1467 continue; 1468 /* 1469 * if a resource is "BUSY", it's not a hardware resource 1470 * but a driver mapping of such a resource; we don't want 1471 * to warn for those; some drivers legitimately map only 1472 * partial hardware resources. (example: vesafb) 1473 */ 1474 if (p->flags & IORESOURCE_BUSY) 1475 continue; 1476 1477 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n", 1478 (unsigned long long)addr, 1479 (unsigned long long)(addr + size - 1), 1480 p->name, p); 1481 err = -1; 1482 break; 1483 } 1484 read_unlock(&resource_lock); 1485 1486 return err; 1487 } 1488 1489 #ifdef CONFIG_STRICT_DEVMEM 1490 static int strict_iomem_checks = 1; 1491 #else 1492 static int strict_iomem_checks; 1493 #endif 1494 1495 /* 1496 * check if an address is reserved in the iomem resource tree 1497 * returns 1 if reserved, 0 if not reserved. 1498 */ 1499 int iomem_is_exclusive(u64 addr) 1500 { 1501 struct resource *p = &iomem_resource; 1502 int err = 0; 1503 loff_t l; 1504 int size = PAGE_SIZE; 1505 1506 if (!strict_iomem_checks) 1507 return 0; 1508 1509 addr = addr & PAGE_MASK; 1510 1511 read_lock(&resource_lock); 1512 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1513 /* 1514 * We can probably skip the resources without 1515 * IORESOURCE_IO attribute? 1516 */ 1517 if (p->start >= addr + size) 1518 break; 1519 if (p->end < addr) 1520 continue; 1521 if (p->flags & IORESOURCE_BUSY && 1522 p->flags & IORESOURCE_EXCLUSIVE) { 1523 err = 1; 1524 break; 1525 } 1526 } 1527 read_unlock(&resource_lock); 1528 1529 return err; 1530 } 1531 1532 static int __init strict_iomem(char *str) 1533 { 1534 if (strstr(str, "relaxed")) 1535 strict_iomem_checks = 0; 1536 if (strstr(str, "strict")) 1537 strict_iomem_checks = 1; 1538 return 1; 1539 } 1540 1541 __setup("iomem=", strict_iomem); 1542