xref: /linux/kernel/resource.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <asm/io.h>
31 
32 
33 struct resource ioport_resource = {
34 	.name	= "PCI IO",
35 	.start	= 0,
36 	.end	= IO_SPACE_LIMIT,
37 	.flags	= IORESOURCE_IO,
38 };
39 EXPORT_SYMBOL(ioport_resource);
40 
41 struct resource iomem_resource = {
42 	.name	= "PCI mem",
43 	.start	= 0,
44 	.end	= -1,
45 	.flags	= IORESOURCE_MEM,
46 };
47 EXPORT_SYMBOL(iomem_resource);
48 
49 /* constraints to be met while allocating resources */
50 struct resource_constraint {
51 	resource_size_t min, max, align;
52 	resource_size_t (*alignf)(void *, const struct resource *,
53 			resource_size_t, resource_size_t);
54 	void *alignf_data;
55 };
56 
57 static DEFINE_RWLOCK(resource_lock);
58 
59 static struct resource *next_resource(struct resource *p)
60 {
61 	if (p->child)
62 		return p->child;
63 	while (!p->sibling && p->parent)
64 		p = p->parent;
65 	return p->sibling;
66 }
67 
68 static struct resource *next_resource_skip_children(struct resource *p)
69 {
70 	while (!p->sibling && p->parent)
71 		p = p->parent;
72 	return p->sibling;
73 }
74 
75 #define for_each_resource(_root, _p, _skip_children) \
76 	for ((_p) = (_root)->child; (_p); \
77 	     (_p) = (_skip_children) ? next_resource_skip_children(_p) : \
78 				       next_resource(_p))
79 
80 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
81 {
82 	struct resource *p = v;
83 	(*pos)++;
84 	return (void *)next_resource(p);
85 }
86 
87 #ifdef CONFIG_PROC_FS
88 
89 enum { MAX_IORES_LEVEL = 5 };
90 
91 static void *r_start(struct seq_file *m, loff_t *pos)
92 	__acquires(resource_lock)
93 {
94 	struct resource *p = pde_data(file_inode(m->file));
95 	loff_t l = 0;
96 	read_lock(&resource_lock);
97 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
98 		;
99 	return p;
100 }
101 
102 static void r_stop(struct seq_file *m, void *v)
103 	__releases(resource_lock)
104 {
105 	read_unlock(&resource_lock);
106 }
107 
108 static int r_show(struct seq_file *m, void *v)
109 {
110 	struct resource *root = pde_data(file_inode(m->file));
111 	struct resource *r = v, *p;
112 	unsigned long long start, end;
113 	int width = root->end < 0x10000 ? 4 : 8;
114 	int depth;
115 
116 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
117 		if (p->parent == root)
118 			break;
119 
120 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
121 		start = r->start;
122 		end = r->end;
123 	} else {
124 		start = end = 0;
125 	}
126 
127 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
128 			depth * 2, "",
129 			width, start,
130 			width, end,
131 			r->name ? r->name : "<BAD>");
132 	return 0;
133 }
134 
135 static const struct seq_operations resource_op = {
136 	.start	= r_start,
137 	.next	= r_next,
138 	.stop	= r_stop,
139 	.show	= r_show,
140 };
141 
142 static int __init ioresources_init(void)
143 {
144 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
145 			&ioport_resource);
146 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
147 	return 0;
148 }
149 __initcall(ioresources_init);
150 
151 #endif /* CONFIG_PROC_FS */
152 
153 static void free_resource(struct resource *res)
154 {
155 	/**
156 	 * If the resource was allocated using memblock early during boot
157 	 * we'll leak it here: we can only return full pages back to the
158 	 * buddy and trying to be smart and reusing them eventually in
159 	 * alloc_resource() overcomplicates resource handling.
160 	 */
161 	if (res && PageSlab(virt_to_head_page(res)))
162 		kfree(res);
163 }
164 
165 static struct resource *alloc_resource(gfp_t flags)
166 {
167 	return kzalloc(sizeof(struct resource), flags);
168 }
169 
170 /* Return the conflict entry if you can't request it */
171 static struct resource * __request_resource(struct resource *root, struct resource *new)
172 {
173 	resource_size_t start = new->start;
174 	resource_size_t end = new->end;
175 	struct resource *tmp, **p;
176 
177 	if (end < start)
178 		return root;
179 	if (start < root->start)
180 		return root;
181 	if (end > root->end)
182 		return root;
183 	p = &root->child;
184 	for (;;) {
185 		tmp = *p;
186 		if (!tmp || tmp->start > end) {
187 			new->sibling = tmp;
188 			*p = new;
189 			new->parent = root;
190 			return NULL;
191 		}
192 		p = &tmp->sibling;
193 		if (tmp->end < start)
194 			continue;
195 		return tmp;
196 	}
197 }
198 
199 static int __release_resource(struct resource *old, bool release_child)
200 {
201 	struct resource *tmp, **p, *chd;
202 
203 	p = &old->parent->child;
204 	for (;;) {
205 		tmp = *p;
206 		if (!tmp)
207 			break;
208 		if (tmp == old) {
209 			if (release_child || !(tmp->child)) {
210 				*p = tmp->sibling;
211 			} else {
212 				for (chd = tmp->child;; chd = chd->sibling) {
213 					chd->parent = tmp->parent;
214 					if (!(chd->sibling))
215 						break;
216 				}
217 				*p = tmp->child;
218 				chd->sibling = tmp->sibling;
219 			}
220 			old->parent = NULL;
221 			return 0;
222 		}
223 		p = &tmp->sibling;
224 	}
225 	return -EINVAL;
226 }
227 
228 static void __release_child_resources(struct resource *r)
229 {
230 	struct resource *tmp, *p;
231 	resource_size_t size;
232 
233 	p = r->child;
234 	r->child = NULL;
235 	while (p) {
236 		tmp = p;
237 		p = p->sibling;
238 
239 		tmp->parent = NULL;
240 		tmp->sibling = NULL;
241 		__release_child_resources(tmp);
242 
243 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
244 		/* need to restore size, and keep flags */
245 		size = resource_size(tmp);
246 		tmp->start = 0;
247 		tmp->end = size - 1;
248 	}
249 }
250 
251 void release_child_resources(struct resource *r)
252 {
253 	write_lock(&resource_lock);
254 	__release_child_resources(r);
255 	write_unlock(&resource_lock);
256 }
257 
258 /**
259  * request_resource_conflict - request and reserve an I/O or memory resource
260  * @root: root resource descriptor
261  * @new: resource descriptor desired by caller
262  *
263  * Returns 0 for success, conflict resource on error.
264  */
265 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
266 {
267 	struct resource *conflict;
268 
269 	write_lock(&resource_lock);
270 	conflict = __request_resource(root, new);
271 	write_unlock(&resource_lock);
272 	return conflict;
273 }
274 
275 /**
276  * request_resource - request and reserve an I/O or memory resource
277  * @root: root resource descriptor
278  * @new: resource descriptor desired by caller
279  *
280  * Returns 0 for success, negative error code on error.
281  */
282 int request_resource(struct resource *root, struct resource *new)
283 {
284 	struct resource *conflict;
285 
286 	conflict = request_resource_conflict(root, new);
287 	return conflict ? -EBUSY : 0;
288 }
289 
290 EXPORT_SYMBOL(request_resource);
291 
292 /**
293  * release_resource - release a previously reserved resource
294  * @old: resource pointer
295  */
296 int release_resource(struct resource *old)
297 {
298 	int retval;
299 
300 	write_lock(&resource_lock);
301 	retval = __release_resource(old, true);
302 	write_unlock(&resource_lock);
303 	return retval;
304 }
305 
306 EXPORT_SYMBOL(release_resource);
307 
308 /**
309  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
310  *			 [@start..@end].
311  *
312  * If a resource is found, returns 0 and @*res is overwritten with the part
313  * of the resource that's within [@start..@end]; if none is found, returns
314  * -ENODEV.  Returns -EINVAL for invalid parameters.
315  *
316  * @start:	start address of the resource searched for
317  * @end:	end address of same resource
318  * @flags:	flags which the resource must have
319  * @desc:	descriptor the resource must have
320  * @res:	return ptr, if resource found
321  *
322  * The caller must specify @start, @end, @flags, and @desc
323  * (which may be IORES_DESC_NONE).
324  */
325 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
326 			       unsigned long flags, unsigned long desc,
327 			       struct resource *res)
328 {
329 	struct resource *p;
330 
331 	if (!res)
332 		return -EINVAL;
333 
334 	if (start >= end)
335 		return -EINVAL;
336 
337 	read_lock(&resource_lock);
338 
339 	for (p = iomem_resource.child; p; p = next_resource(p)) {
340 		/* If we passed the resource we are looking for, stop */
341 		if (p->start > end) {
342 			p = NULL;
343 			break;
344 		}
345 
346 		/* Skip until we find a range that matches what we look for */
347 		if (p->end < start)
348 			continue;
349 
350 		if ((p->flags & flags) != flags)
351 			continue;
352 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
353 			continue;
354 
355 		/* Found a match, break */
356 		break;
357 	}
358 
359 	if (p) {
360 		/* copy data */
361 		*res = (struct resource) {
362 			.start = max(start, p->start),
363 			.end = min(end, p->end),
364 			.flags = p->flags,
365 			.desc = p->desc,
366 			.parent = p->parent,
367 		};
368 	}
369 
370 	read_unlock(&resource_lock);
371 	return p ? 0 : -ENODEV;
372 }
373 
374 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
375 				 unsigned long flags, unsigned long desc,
376 				 void *arg,
377 				 int (*func)(struct resource *, void *))
378 {
379 	struct resource res;
380 	int ret = -EINVAL;
381 
382 	while (start < end &&
383 	       !find_next_iomem_res(start, end, flags, desc, &res)) {
384 		ret = (*func)(&res, arg);
385 		if (ret)
386 			break;
387 
388 		start = res.end + 1;
389 	}
390 
391 	return ret;
392 }
393 
394 /**
395  * walk_iomem_res_desc - Walks through iomem resources and calls func()
396  *			 with matching resource ranges.
397  * *
398  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
399  * @flags: I/O resource flags
400  * @start: start addr
401  * @end: end addr
402  * @arg: function argument for the callback @func
403  * @func: callback function that is called for each qualifying resource area
404  *
405  * All the memory ranges which overlap start,end and also match flags and
406  * desc are valid candidates.
407  *
408  * NOTE: For a new descriptor search, define a new IORES_DESC in
409  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
410  */
411 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
412 		u64 end, void *arg, int (*func)(struct resource *, void *))
413 {
414 	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
415 }
416 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
417 
418 /*
419  * This function calls the @func callback against all memory ranges of type
420  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
421  * Now, this function is only for System RAM, it deals with full ranges and
422  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
423  * ranges.
424  */
425 int walk_system_ram_res(u64 start, u64 end, void *arg,
426 			int (*func)(struct resource *, void *))
427 {
428 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
429 
430 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
431 				     func);
432 }
433 
434 /*
435  * This function calls the @func callback against all memory ranges, which
436  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
437  */
438 int walk_mem_res(u64 start, u64 end, void *arg,
439 		 int (*func)(struct resource *, void *))
440 {
441 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
442 
443 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
444 				     func);
445 }
446 
447 /*
448  * This function calls the @func callback against all memory ranges of type
449  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
450  * It is to be used only for System RAM.
451  */
452 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
453 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
454 {
455 	resource_size_t start, end;
456 	unsigned long flags;
457 	struct resource res;
458 	unsigned long pfn, end_pfn;
459 	int ret = -EINVAL;
460 
461 	start = (u64) start_pfn << PAGE_SHIFT;
462 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
463 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
464 	while (start < end &&
465 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
466 		pfn = PFN_UP(res.start);
467 		end_pfn = PFN_DOWN(res.end + 1);
468 		if (end_pfn > pfn)
469 			ret = (*func)(pfn, end_pfn - pfn, arg);
470 		if (ret)
471 			break;
472 		start = res.end + 1;
473 	}
474 	return ret;
475 }
476 
477 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
478 {
479 	return 1;
480 }
481 
482 /*
483  * This generic page_is_ram() returns true if specified address is
484  * registered as System RAM in iomem_resource list.
485  */
486 int __weak page_is_ram(unsigned long pfn)
487 {
488 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
489 }
490 EXPORT_SYMBOL_GPL(page_is_ram);
491 
492 static int __region_intersects(resource_size_t start, size_t size,
493 			unsigned long flags, unsigned long desc)
494 {
495 	struct resource res;
496 	int type = 0; int other = 0;
497 	struct resource *p;
498 
499 	res.start = start;
500 	res.end = start + size - 1;
501 
502 	for (p = iomem_resource.child; p ; p = p->sibling) {
503 		bool is_type = (((p->flags & flags) == flags) &&
504 				((desc == IORES_DESC_NONE) ||
505 				 (desc == p->desc)));
506 
507 		if (resource_overlaps(p, &res))
508 			is_type ? type++ : other++;
509 	}
510 
511 	if (type == 0)
512 		return REGION_DISJOINT;
513 
514 	if (other == 0)
515 		return REGION_INTERSECTS;
516 
517 	return REGION_MIXED;
518 }
519 
520 /**
521  * region_intersects() - determine intersection of region with known resources
522  * @start: region start address
523  * @size: size of region
524  * @flags: flags of resource (in iomem_resource)
525  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
526  *
527  * Check if the specified region partially overlaps or fully eclipses a
528  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
529  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
530  * return REGION_MIXED if the region overlaps @flags/@desc and another
531  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
532  * and no other defined resource. Note that REGION_INTERSECTS is also
533  * returned in the case when the specified region overlaps RAM and undefined
534  * memory holes.
535  *
536  * region_intersect() is used by memory remapping functions to ensure
537  * the user is not remapping RAM and is a vast speed up over walking
538  * through the resource table page by page.
539  */
540 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
541 		      unsigned long desc)
542 {
543 	int ret;
544 
545 	read_lock(&resource_lock);
546 	ret = __region_intersects(start, size, flags, desc);
547 	read_unlock(&resource_lock);
548 
549 	return ret;
550 }
551 EXPORT_SYMBOL_GPL(region_intersects);
552 
553 void __weak arch_remove_reservations(struct resource *avail)
554 {
555 }
556 
557 static resource_size_t simple_align_resource(void *data,
558 					     const struct resource *avail,
559 					     resource_size_t size,
560 					     resource_size_t align)
561 {
562 	return avail->start;
563 }
564 
565 static void resource_clip(struct resource *res, resource_size_t min,
566 			  resource_size_t max)
567 {
568 	if (res->start < min)
569 		res->start = min;
570 	if (res->end > max)
571 		res->end = max;
572 }
573 
574 /*
575  * Find empty slot in the resource tree with the given range and
576  * alignment constraints
577  */
578 static int __find_resource(struct resource *root, struct resource *old,
579 			 struct resource *new,
580 			 resource_size_t  size,
581 			 struct resource_constraint *constraint)
582 {
583 	struct resource *this = root->child;
584 	struct resource tmp = *new, avail, alloc;
585 
586 	tmp.start = root->start;
587 	/*
588 	 * Skip past an allocated resource that starts at 0, since the assignment
589 	 * of this->start - 1 to tmp->end below would cause an underflow.
590 	 */
591 	if (this && this->start == root->start) {
592 		tmp.start = (this == old) ? old->start : this->end + 1;
593 		this = this->sibling;
594 	}
595 	for(;;) {
596 		if (this)
597 			tmp.end = (this == old) ?  this->end : this->start - 1;
598 		else
599 			tmp.end = root->end;
600 
601 		if (tmp.end < tmp.start)
602 			goto next;
603 
604 		resource_clip(&tmp, constraint->min, constraint->max);
605 		arch_remove_reservations(&tmp);
606 
607 		/* Check for overflow after ALIGN() */
608 		avail.start = ALIGN(tmp.start, constraint->align);
609 		avail.end = tmp.end;
610 		avail.flags = new->flags & ~IORESOURCE_UNSET;
611 		if (avail.start >= tmp.start) {
612 			alloc.flags = avail.flags;
613 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
614 					size, constraint->align);
615 			alloc.end = alloc.start + size - 1;
616 			if (alloc.start <= alloc.end &&
617 			    resource_contains(&avail, &alloc)) {
618 				new->start = alloc.start;
619 				new->end = alloc.end;
620 				return 0;
621 			}
622 		}
623 
624 next:		if (!this || this->end == root->end)
625 			break;
626 
627 		if (this != old)
628 			tmp.start = this->end + 1;
629 		this = this->sibling;
630 	}
631 	return -EBUSY;
632 }
633 
634 /*
635  * Find empty slot in the resource tree given range and alignment.
636  */
637 static int find_resource(struct resource *root, struct resource *new,
638 			resource_size_t size,
639 			struct resource_constraint  *constraint)
640 {
641 	return  __find_resource(root, NULL, new, size, constraint);
642 }
643 
644 /**
645  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
646  *	The resource will be relocated if the new size cannot be reallocated in the
647  *	current location.
648  *
649  * @root: root resource descriptor
650  * @old:  resource descriptor desired by caller
651  * @newsize: new size of the resource descriptor
652  * @constraint: the size and alignment constraints to be met.
653  */
654 static int reallocate_resource(struct resource *root, struct resource *old,
655 			       resource_size_t newsize,
656 			       struct resource_constraint *constraint)
657 {
658 	int err=0;
659 	struct resource new = *old;
660 	struct resource *conflict;
661 
662 	write_lock(&resource_lock);
663 
664 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
665 		goto out;
666 
667 	if (resource_contains(&new, old)) {
668 		old->start = new.start;
669 		old->end = new.end;
670 		goto out;
671 	}
672 
673 	if (old->child) {
674 		err = -EBUSY;
675 		goto out;
676 	}
677 
678 	if (resource_contains(old, &new)) {
679 		old->start = new.start;
680 		old->end = new.end;
681 	} else {
682 		__release_resource(old, true);
683 		*old = new;
684 		conflict = __request_resource(root, old);
685 		BUG_ON(conflict);
686 	}
687 out:
688 	write_unlock(&resource_lock);
689 	return err;
690 }
691 
692 
693 /**
694  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
695  * 	The resource will be reallocated with a new size if it was already allocated
696  * @root: root resource descriptor
697  * @new: resource descriptor desired by caller
698  * @size: requested resource region size
699  * @min: minimum boundary to allocate
700  * @max: maximum boundary to allocate
701  * @align: alignment requested, in bytes
702  * @alignf: alignment function, optional, called if not NULL
703  * @alignf_data: arbitrary data to pass to the @alignf function
704  */
705 int allocate_resource(struct resource *root, struct resource *new,
706 		      resource_size_t size, resource_size_t min,
707 		      resource_size_t max, resource_size_t align,
708 		      resource_size_t (*alignf)(void *,
709 						const struct resource *,
710 						resource_size_t,
711 						resource_size_t),
712 		      void *alignf_data)
713 {
714 	int err;
715 	struct resource_constraint constraint;
716 
717 	if (!alignf)
718 		alignf = simple_align_resource;
719 
720 	constraint.min = min;
721 	constraint.max = max;
722 	constraint.align = align;
723 	constraint.alignf = alignf;
724 	constraint.alignf_data = alignf_data;
725 
726 	if ( new->parent ) {
727 		/* resource is already allocated, try reallocating with
728 		   the new constraints */
729 		return reallocate_resource(root, new, size, &constraint);
730 	}
731 
732 	write_lock(&resource_lock);
733 	err = find_resource(root, new, size, &constraint);
734 	if (err >= 0 && __request_resource(root, new))
735 		err = -EBUSY;
736 	write_unlock(&resource_lock);
737 	return err;
738 }
739 
740 EXPORT_SYMBOL(allocate_resource);
741 
742 /**
743  * lookup_resource - find an existing resource by a resource start address
744  * @root: root resource descriptor
745  * @start: resource start address
746  *
747  * Returns a pointer to the resource if found, NULL otherwise
748  */
749 struct resource *lookup_resource(struct resource *root, resource_size_t start)
750 {
751 	struct resource *res;
752 
753 	read_lock(&resource_lock);
754 	for (res = root->child; res; res = res->sibling) {
755 		if (res->start == start)
756 			break;
757 	}
758 	read_unlock(&resource_lock);
759 
760 	return res;
761 }
762 
763 /*
764  * Insert a resource into the resource tree. If successful, return NULL,
765  * otherwise return the conflicting resource (compare to __request_resource())
766  */
767 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
768 {
769 	struct resource *first, *next;
770 
771 	for (;; parent = first) {
772 		first = __request_resource(parent, new);
773 		if (!first)
774 			return first;
775 
776 		if (first == parent)
777 			return first;
778 		if (WARN_ON(first == new))	/* duplicated insertion */
779 			return first;
780 
781 		if ((first->start > new->start) || (first->end < new->end))
782 			break;
783 		if ((first->start == new->start) && (first->end == new->end))
784 			break;
785 	}
786 
787 	for (next = first; ; next = next->sibling) {
788 		/* Partial overlap? Bad, and unfixable */
789 		if (next->start < new->start || next->end > new->end)
790 			return next;
791 		if (!next->sibling)
792 			break;
793 		if (next->sibling->start > new->end)
794 			break;
795 	}
796 
797 	new->parent = parent;
798 	new->sibling = next->sibling;
799 	new->child = first;
800 
801 	next->sibling = NULL;
802 	for (next = first; next; next = next->sibling)
803 		next->parent = new;
804 
805 	if (parent->child == first) {
806 		parent->child = new;
807 	} else {
808 		next = parent->child;
809 		while (next->sibling != first)
810 			next = next->sibling;
811 		next->sibling = new;
812 	}
813 	return NULL;
814 }
815 
816 /**
817  * insert_resource_conflict - Inserts resource in the resource tree
818  * @parent: parent of the new resource
819  * @new: new resource to insert
820  *
821  * Returns 0 on success, conflict resource if the resource can't be inserted.
822  *
823  * This function is equivalent to request_resource_conflict when no conflict
824  * happens. If a conflict happens, and the conflicting resources
825  * entirely fit within the range of the new resource, then the new
826  * resource is inserted and the conflicting resources become children of
827  * the new resource.
828  *
829  * This function is intended for producers of resources, such as FW modules
830  * and bus drivers.
831  */
832 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
833 {
834 	struct resource *conflict;
835 
836 	write_lock(&resource_lock);
837 	conflict = __insert_resource(parent, new);
838 	write_unlock(&resource_lock);
839 	return conflict;
840 }
841 
842 /**
843  * insert_resource - Inserts a resource in the resource tree
844  * @parent: parent of the new resource
845  * @new: new resource to insert
846  *
847  * Returns 0 on success, -EBUSY if the resource can't be inserted.
848  *
849  * This function is intended for producers of resources, such as FW modules
850  * and bus drivers.
851  */
852 int insert_resource(struct resource *parent, struct resource *new)
853 {
854 	struct resource *conflict;
855 
856 	conflict = insert_resource_conflict(parent, new);
857 	return conflict ? -EBUSY : 0;
858 }
859 EXPORT_SYMBOL_GPL(insert_resource);
860 
861 /**
862  * insert_resource_expand_to_fit - Insert a resource into the resource tree
863  * @root: root resource descriptor
864  * @new: new resource to insert
865  *
866  * Insert a resource into the resource tree, possibly expanding it in order
867  * to make it encompass any conflicting resources.
868  */
869 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
870 {
871 	if (new->parent)
872 		return;
873 
874 	write_lock(&resource_lock);
875 	for (;;) {
876 		struct resource *conflict;
877 
878 		conflict = __insert_resource(root, new);
879 		if (!conflict)
880 			break;
881 		if (conflict == root)
882 			break;
883 
884 		/* Ok, expand resource to cover the conflict, then try again .. */
885 		if (conflict->start < new->start)
886 			new->start = conflict->start;
887 		if (conflict->end > new->end)
888 			new->end = conflict->end;
889 
890 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
891 	}
892 	write_unlock(&resource_lock);
893 }
894 
895 /**
896  * remove_resource - Remove a resource in the resource tree
897  * @old: resource to remove
898  *
899  * Returns 0 on success, -EINVAL if the resource is not valid.
900  *
901  * This function removes a resource previously inserted by insert_resource()
902  * or insert_resource_conflict(), and moves the children (if any) up to
903  * where they were before.  insert_resource() and insert_resource_conflict()
904  * insert a new resource, and move any conflicting resources down to the
905  * children of the new resource.
906  *
907  * insert_resource(), insert_resource_conflict() and remove_resource() are
908  * intended for producers of resources, such as FW modules and bus drivers.
909  */
910 int remove_resource(struct resource *old)
911 {
912 	int retval;
913 
914 	write_lock(&resource_lock);
915 	retval = __release_resource(old, false);
916 	write_unlock(&resource_lock);
917 	return retval;
918 }
919 EXPORT_SYMBOL_GPL(remove_resource);
920 
921 static int __adjust_resource(struct resource *res, resource_size_t start,
922 				resource_size_t size)
923 {
924 	struct resource *tmp, *parent = res->parent;
925 	resource_size_t end = start + size - 1;
926 	int result = -EBUSY;
927 
928 	if (!parent)
929 		goto skip;
930 
931 	if ((start < parent->start) || (end > parent->end))
932 		goto out;
933 
934 	if (res->sibling && (res->sibling->start <= end))
935 		goto out;
936 
937 	tmp = parent->child;
938 	if (tmp != res) {
939 		while (tmp->sibling != res)
940 			tmp = tmp->sibling;
941 		if (start <= tmp->end)
942 			goto out;
943 	}
944 
945 skip:
946 	for (tmp = res->child; tmp; tmp = tmp->sibling)
947 		if ((tmp->start < start) || (tmp->end > end))
948 			goto out;
949 
950 	res->start = start;
951 	res->end = end;
952 	result = 0;
953 
954  out:
955 	return result;
956 }
957 
958 /**
959  * adjust_resource - modify a resource's start and size
960  * @res: resource to modify
961  * @start: new start value
962  * @size: new size
963  *
964  * Given an existing resource, change its start and size to match the
965  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
966  * Existing children of the resource are assumed to be immutable.
967  */
968 int adjust_resource(struct resource *res, resource_size_t start,
969 		    resource_size_t size)
970 {
971 	int result;
972 
973 	write_lock(&resource_lock);
974 	result = __adjust_resource(res, start, size);
975 	write_unlock(&resource_lock);
976 	return result;
977 }
978 EXPORT_SYMBOL(adjust_resource);
979 
980 static void __init
981 __reserve_region_with_split(struct resource *root, resource_size_t start,
982 			    resource_size_t end, const char *name)
983 {
984 	struct resource *parent = root;
985 	struct resource *conflict;
986 	struct resource *res = alloc_resource(GFP_ATOMIC);
987 	struct resource *next_res = NULL;
988 	int type = resource_type(root);
989 
990 	if (!res)
991 		return;
992 
993 	res->name = name;
994 	res->start = start;
995 	res->end = end;
996 	res->flags = type | IORESOURCE_BUSY;
997 	res->desc = IORES_DESC_NONE;
998 
999 	while (1) {
1000 
1001 		conflict = __request_resource(parent, res);
1002 		if (!conflict) {
1003 			if (!next_res)
1004 				break;
1005 			res = next_res;
1006 			next_res = NULL;
1007 			continue;
1008 		}
1009 
1010 		/* conflict covered whole area */
1011 		if (conflict->start <= res->start &&
1012 				conflict->end >= res->end) {
1013 			free_resource(res);
1014 			WARN_ON(next_res);
1015 			break;
1016 		}
1017 
1018 		/* failed, split and try again */
1019 		if (conflict->start > res->start) {
1020 			end = res->end;
1021 			res->end = conflict->start - 1;
1022 			if (conflict->end < end) {
1023 				next_res = alloc_resource(GFP_ATOMIC);
1024 				if (!next_res) {
1025 					free_resource(res);
1026 					break;
1027 				}
1028 				next_res->name = name;
1029 				next_res->start = conflict->end + 1;
1030 				next_res->end = end;
1031 				next_res->flags = type | IORESOURCE_BUSY;
1032 				next_res->desc = IORES_DESC_NONE;
1033 			}
1034 		} else {
1035 			res->start = conflict->end + 1;
1036 		}
1037 	}
1038 
1039 }
1040 
1041 void __init
1042 reserve_region_with_split(struct resource *root, resource_size_t start,
1043 			  resource_size_t end, const char *name)
1044 {
1045 	int abort = 0;
1046 
1047 	write_lock(&resource_lock);
1048 	if (root->start > start || root->end < end) {
1049 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1050 		       (unsigned long long)start, (unsigned long long)end,
1051 		       root);
1052 		if (start > root->end || end < root->start)
1053 			abort = 1;
1054 		else {
1055 			if (end > root->end)
1056 				end = root->end;
1057 			if (start < root->start)
1058 				start = root->start;
1059 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1060 			       (unsigned long long)start,
1061 			       (unsigned long long)end);
1062 		}
1063 		dump_stack();
1064 	}
1065 	if (!abort)
1066 		__reserve_region_with_split(root, start, end, name);
1067 	write_unlock(&resource_lock);
1068 }
1069 
1070 /**
1071  * resource_alignment - calculate resource's alignment
1072  * @res: resource pointer
1073  *
1074  * Returns alignment on success, 0 (invalid alignment) on failure.
1075  */
1076 resource_size_t resource_alignment(struct resource *res)
1077 {
1078 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1079 	case IORESOURCE_SIZEALIGN:
1080 		return resource_size(res);
1081 	case IORESOURCE_STARTALIGN:
1082 		return res->start;
1083 	default:
1084 		return 0;
1085 	}
1086 }
1087 
1088 /*
1089  * This is compatibility stuff for IO resources.
1090  *
1091  * Note how this, unlike the above, knows about
1092  * the IO flag meanings (busy etc).
1093  *
1094  * request_region creates a new busy region.
1095  *
1096  * release_region releases a matching busy region.
1097  */
1098 
1099 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1100 
1101 static struct inode *iomem_inode;
1102 
1103 #ifdef CONFIG_IO_STRICT_DEVMEM
1104 static void revoke_iomem(struct resource *res)
1105 {
1106 	/* pairs with smp_store_release() in iomem_init_inode() */
1107 	struct inode *inode = smp_load_acquire(&iomem_inode);
1108 
1109 	/*
1110 	 * Check that the initialization has completed. Losing the race
1111 	 * is ok because it means drivers are claiming resources before
1112 	 * the fs_initcall level of init and prevent iomem_get_mapping users
1113 	 * from establishing mappings.
1114 	 */
1115 	if (!inode)
1116 		return;
1117 
1118 	/*
1119 	 * The expectation is that the driver has successfully marked
1120 	 * the resource busy by this point, so devmem_is_allowed()
1121 	 * should start returning false, however for performance this
1122 	 * does not iterate the entire resource range.
1123 	 */
1124 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1125 	    devmem_is_allowed(PHYS_PFN(res->end))) {
1126 		/*
1127 		 * *cringe* iomem=relaxed says "go ahead, what's the
1128 		 * worst that can happen?"
1129 		 */
1130 		return;
1131 	}
1132 
1133 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1134 }
1135 #else
1136 static void revoke_iomem(struct resource *res) {}
1137 #endif
1138 
1139 struct address_space *iomem_get_mapping(void)
1140 {
1141 	/*
1142 	 * This function is only called from file open paths, hence guaranteed
1143 	 * that fs_initcalls have completed and no need to check for NULL. But
1144 	 * since revoke_iomem can be called before the initcall we still need
1145 	 * the barrier to appease checkers.
1146 	 */
1147 	return smp_load_acquire(&iomem_inode)->i_mapping;
1148 }
1149 
1150 static int __request_region_locked(struct resource *res, struct resource *parent,
1151 				   resource_size_t start, resource_size_t n,
1152 				   const char *name, int flags)
1153 {
1154 	DECLARE_WAITQUEUE(wait, current);
1155 
1156 	res->name = name;
1157 	res->start = start;
1158 	res->end = start + n - 1;
1159 
1160 	for (;;) {
1161 		struct resource *conflict;
1162 
1163 		res->flags = resource_type(parent) | resource_ext_type(parent);
1164 		res->flags |= IORESOURCE_BUSY | flags;
1165 		res->desc = parent->desc;
1166 
1167 		conflict = __request_resource(parent, res);
1168 		if (!conflict)
1169 			break;
1170 		/*
1171 		 * mm/hmm.c reserves physical addresses which then
1172 		 * become unavailable to other users.  Conflicts are
1173 		 * not expected.  Warn to aid debugging if encountered.
1174 		 */
1175 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1176 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1177 				conflict->name, conflict, res);
1178 		}
1179 		if (conflict != parent) {
1180 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1181 				parent = conflict;
1182 				continue;
1183 			}
1184 		}
1185 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1186 			add_wait_queue(&muxed_resource_wait, &wait);
1187 			write_unlock(&resource_lock);
1188 			set_current_state(TASK_UNINTERRUPTIBLE);
1189 			schedule();
1190 			remove_wait_queue(&muxed_resource_wait, &wait);
1191 			write_lock(&resource_lock);
1192 			continue;
1193 		}
1194 		/* Uhhuh, that didn't work out.. */
1195 		return -EBUSY;
1196 	}
1197 
1198 	return 0;
1199 }
1200 
1201 /**
1202  * __request_region - create a new busy resource region
1203  * @parent: parent resource descriptor
1204  * @start: resource start address
1205  * @n: resource region size
1206  * @name: reserving caller's ID string
1207  * @flags: IO resource flags
1208  */
1209 struct resource *__request_region(struct resource *parent,
1210 				  resource_size_t start, resource_size_t n,
1211 				  const char *name, int flags)
1212 {
1213 	struct resource *res = alloc_resource(GFP_KERNEL);
1214 	int ret;
1215 
1216 	if (!res)
1217 		return NULL;
1218 
1219 	write_lock(&resource_lock);
1220 	ret = __request_region_locked(res, parent, start, n, name, flags);
1221 	write_unlock(&resource_lock);
1222 
1223 	if (ret) {
1224 		free_resource(res);
1225 		return NULL;
1226 	}
1227 
1228 	if (parent == &iomem_resource)
1229 		revoke_iomem(res);
1230 
1231 	return res;
1232 }
1233 EXPORT_SYMBOL(__request_region);
1234 
1235 /**
1236  * __release_region - release a previously reserved resource region
1237  * @parent: parent resource descriptor
1238  * @start: resource start address
1239  * @n: resource region size
1240  *
1241  * The described resource region must match a currently busy region.
1242  */
1243 void __release_region(struct resource *parent, resource_size_t start,
1244 		      resource_size_t n)
1245 {
1246 	struct resource **p;
1247 	resource_size_t end;
1248 
1249 	p = &parent->child;
1250 	end = start + n - 1;
1251 
1252 	write_lock(&resource_lock);
1253 
1254 	for (;;) {
1255 		struct resource *res = *p;
1256 
1257 		if (!res)
1258 			break;
1259 		if (res->start <= start && res->end >= end) {
1260 			if (!(res->flags & IORESOURCE_BUSY)) {
1261 				p = &res->child;
1262 				continue;
1263 			}
1264 			if (res->start != start || res->end != end)
1265 				break;
1266 			*p = res->sibling;
1267 			write_unlock(&resource_lock);
1268 			if (res->flags & IORESOURCE_MUXED)
1269 				wake_up(&muxed_resource_wait);
1270 			free_resource(res);
1271 			return;
1272 		}
1273 		p = &res->sibling;
1274 	}
1275 
1276 	write_unlock(&resource_lock);
1277 
1278 	printk(KERN_WARNING "Trying to free nonexistent resource "
1279 		"<%016llx-%016llx>\n", (unsigned long long)start,
1280 		(unsigned long long)end);
1281 }
1282 EXPORT_SYMBOL(__release_region);
1283 
1284 #ifdef CONFIG_MEMORY_HOTREMOVE
1285 /**
1286  * release_mem_region_adjustable - release a previously reserved memory region
1287  * @start: resource start address
1288  * @size: resource region size
1289  *
1290  * This interface is intended for memory hot-delete.  The requested region
1291  * is released from a currently busy memory resource.  The requested region
1292  * must either match exactly or fit into a single busy resource entry.  In
1293  * the latter case, the remaining resource is adjusted accordingly.
1294  * Existing children of the busy memory resource must be immutable in the
1295  * request.
1296  *
1297  * Note:
1298  * - Additional release conditions, such as overlapping region, can be
1299  *   supported after they are confirmed as valid cases.
1300  * - When a busy memory resource gets split into two entries, the code
1301  *   assumes that all children remain in the lower address entry for
1302  *   simplicity.  Enhance this logic when necessary.
1303  */
1304 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1305 {
1306 	struct resource *parent = &iomem_resource;
1307 	struct resource *new_res = NULL;
1308 	bool alloc_nofail = false;
1309 	struct resource **p;
1310 	struct resource *res;
1311 	resource_size_t end;
1312 
1313 	end = start + size - 1;
1314 	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1315 		return;
1316 
1317 	/*
1318 	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1319 	 * just before releasing the region. This is highly unlikely to
1320 	 * fail - let's play save and make it never fail as the caller cannot
1321 	 * perform any error handling (e.g., trying to re-add memory will fail
1322 	 * similarly).
1323 	 */
1324 retry:
1325 	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1326 
1327 	p = &parent->child;
1328 	write_lock(&resource_lock);
1329 
1330 	while ((res = *p)) {
1331 		if (res->start >= end)
1332 			break;
1333 
1334 		/* look for the next resource if it does not fit into */
1335 		if (res->start > start || res->end < end) {
1336 			p = &res->sibling;
1337 			continue;
1338 		}
1339 
1340 		/*
1341 		 * All memory regions added from memory-hotplug path have the
1342 		 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1343 		 * this flag, we know that we are dealing with a resource coming
1344 		 * from HMM/devm. HMM/devm use another mechanism to add/release
1345 		 * a resource. This goes via devm_request_mem_region and
1346 		 * devm_release_mem_region.
1347 		 * HMM/devm take care to release their resources when they want,
1348 		 * so if we are dealing with them, let us just back off here.
1349 		 */
1350 		if (!(res->flags & IORESOURCE_SYSRAM)) {
1351 			break;
1352 		}
1353 
1354 		if (!(res->flags & IORESOURCE_MEM))
1355 			break;
1356 
1357 		if (!(res->flags & IORESOURCE_BUSY)) {
1358 			p = &res->child;
1359 			continue;
1360 		}
1361 
1362 		/* found the target resource; let's adjust accordingly */
1363 		if (res->start == start && res->end == end) {
1364 			/* free the whole entry */
1365 			*p = res->sibling;
1366 			free_resource(res);
1367 		} else if (res->start == start && res->end != end) {
1368 			/* adjust the start */
1369 			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1370 						       res->end - end));
1371 		} else if (res->start != start && res->end == end) {
1372 			/* adjust the end */
1373 			WARN_ON_ONCE(__adjust_resource(res, res->start,
1374 						       start - res->start));
1375 		} else {
1376 			/* split into two entries - we need a new resource */
1377 			if (!new_res) {
1378 				new_res = alloc_resource(GFP_ATOMIC);
1379 				if (!new_res) {
1380 					alloc_nofail = true;
1381 					write_unlock(&resource_lock);
1382 					goto retry;
1383 				}
1384 			}
1385 			new_res->name = res->name;
1386 			new_res->start = end + 1;
1387 			new_res->end = res->end;
1388 			new_res->flags = res->flags;
1389 			new_res->desc = res->desc;
1390 			new_res->parent = res->parent;
1391 			new_res->sibling = res->sibling;
1392 			new_res->child = NULL;
1393 
1394 			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1395 							   start - res->start)))
1396 				break;
1397 			res->sibling = new_res;
1398 			new_res = NULL;
1399 		}
1400 
1401 		break;
1402 	}
1403 
1404 	write_unlock(&resource_lock);
1405 	free_resource(new_res);
1406 }
1407 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1408 
1409 #ifdef CONFIG_MEMORY_HOTPLUG
1410 static bool system_ram_resources_mergeable(struct resource *r1,
1411 					   struct resource *r2)
1412 {
1413 	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1414 	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1415 	       r1->name == r2->name && r1->desc == r2->desc &&
1416 	       !r1->child && !r2->child;
1417 }
1418 
1419 /**
1420  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1421  *	merge it with adjacent, mergeable resources
1422  * @res: resource descriptor
1423  *
1424  * This interface is intended for memory hotplug, whereby lots of contiguous
1425  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1426  * the actual resource boundaries are not of interest (e.g., it might be
1427  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1428  * same parent, and that don't have any children are considered. All mergeable
1429  * resources must be immutable during the request.
1430  *
1431  * Note:
1432  * - The caller has to make sure that no pointers to resources that are
1433  *   marked mergeable are used anymore after this call - the resource might
1434  *   be freed and the pointer might be stale!
1435  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1436  */
1437 void merge_system_ram_resource(struct resource *res)
1438 {
1439 	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1440 	struct resource *cur;
1441 
1442 	if (WARN_ON_ONCE((res->flags & flags) != flags))
1443 		return;
1444 
1445 	write_lock(&resource_lock);
1446 	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1447 
1448 	/* Try to merge with next item in the list. */
1449 	cur = res->sibling;
1450 	if (cur && system_ram_resources_mergeable(res, cur)) {
1451 		res->end = cur->end;
1452 		res->sibling = cur->sibling;
1453 		free_resource(cur);
1454 	}
1455 
1456 	/* Try to merge with previous item in the list. */
1457 	cur = res->parent->child;
1458 	while (cur && cur->sibling != res)
1459 		cur = cur->sibling;
1460 	if (cur && system_ram_resources_mergeable(cur, res)) {
1461 		cur->end = res->end;
1462 		cur->sibling = res->sibling;
1463 		free_resource(res);
1464 	}
1465 	write_unlock(&resource_lock);
1466 }
1467 #endif	/* CONFIG_MEMORY_HOTPLUG */
1468 
1469 /*
1470  * Managed region resource
1471  */
1472 static void devm_resource_release(struct device *dev, void *ptr)
1473 {
1474 	struct resource **r = ptr;
1475 
1476 	release_resource(*r);
1477 }
1478 
1479 /**
1480  * devm_request_resource() - request and reserve an I/O or memory resource
1481  * @dev: device for which to request the resource
1482  * @root: root of the resource tree from which to request the resource
1483  * @new: descriptor of the resource to request
1484  *
1485  * This is a device-managed version of request_resource(). There is usually
1486  * no need to release resources requested by this function explicitly since
1487  * that will be taken care of when the device is unbound from its driver.
1488  * If for some reason the resource needs to be released explicitly, because
1489  * of ordering issues for example, drivers must call devm_release_resource()
1490  * rather than the regular release_resource().
1491  *
1492  * When a conflict is detected between any existing resources and the newly
1493  * requested resource, an error message will be printed.
1494  *
1495  * Returns 0 on success or a negative error code on failure.
1496  */
1497 int devm_request_resource(struct device *dev, struct resource *root,
1498 			  struct resource *new)
1499 {
1500 	struct resource *conflict, **ptr;
1501 
1502 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1503 	if (!ptr)
1504 		return -ENOMEM;
1505 
1506 	*ptr = new;
1507 
1508 	conflict = request_resource_conflict(root, new);
1509 	if (conflict) {
1510 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1511 			new, conflict->name, conflict);
1512 		devres_free(ptr);
1513 		return -EBUSY;
1514 	}
1515 
1516 	devres_add(dev, ptr);
1517 	return 0;
1518 }
1519 EXPORT_SYMBOL(devm_request_resource);
1520 
1521 static int devm_resource_match(struct device *dev, void *res, void *data)
1522 {
1523 	struct resource **ptr = res;
1524 
1525 	return *ptr == data;
1526 }
1527 
1528 /**
1529  * devm_release_resource() - release a previously requested resource
1530  * @dev: device for which to release the resource
1531  * @new: descriptor of the resource to release
1532  *
1533  * Releases a resource previously requested using devm_request_resource().
1534  */
1535 void devm_release_resource(struct device *dev, struct resource *new)
1536 {
1537 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1538 			       new));
1539 }
1540 EXPORT_SYMBOL(devm_release_resource);
1541 
1542 struct region_devres {
1543 	struct resource *parent;
1544 	resource_size_t start;
1545 	resource_size_t n;
1546 };
1547 
1548 static void devm_region_release(struct device *dev, void *res)
1549 {
1550 	struct region_devres *this = res;
1551 
1552 	__release_region(this->parent, this->start, this->n);
1553 }
1554 
1555 static int devm_region_match(struct device *dev, void *res, void *match_data)
1556 {
1557 	struct region_devres *this = res, *match = match_data;
1558 
1559 	return this->parent == match->parent &&
1560 		this->start == match->start && this->n == match->n;
1561 }
1562 
1563 struct resource *
1564 __devm_request_region(struct device *dev, struct resource *parent,
1565 		      resource_size_t start, resource_size_t n, const char *name)
1566 {
1567 	struct region_devres *dr = NULL;
1568 	struct resource *res;
1569 
1570 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1571 			  GFP_KERNEL);
1572 	if (!dr)
1573 		return NULL;
1574 
1575 	dr->parent = parent;
1576 	dr->start = start;
1577 	dr->n = n;
1578 
1579 	res = __request_region(parent, start, n, name, 0);
1580 	if (res)
1581 		devres_add(dev, dr);
1582 	else
1583 		devres_free(dr);
1584 
1585 	return res;
1586 }
1587 EXPORT_SYMBOL(__devm_request_region);
1588 
1589 void __devm_release_region(struct device *dev, struct resource *parent,
1590 			   resource_size_t start, resource_size_t n)
1591 {
1592 	struct region_devres match_data = { parent, start, n };
1593 
1594 	__release_region(parent, start, n);
1595 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1596 			       &match_data));
1597 }
1598 EXPORT_SYMBOL(__devm_release_region);
1599 
1600 /*
1601  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1602  */
1603 #define MAXRESERVE 4
1604 static int __init reserve_setup(char *str)
1605 {
1606 	static int reserved;
1607 	static struct resource reserve[MAXRESERVE];
1608 
1609 	for (;;) {
1610 		unsigned int io_start, io_num;
1611 		int x = reserved;
1612 		struct resource *parent;
1613 
1614 		if (get_option(&str, &io_start) != 2)
1615 			break;
1616 		if (get_option(&str, &io_num) == 0)
1617 			break;
1618 		if (x < MAXRESERVE) {
1619 			struct resource *res = reserve + x;
1620 
1621 			/*
1622 			 * If the region starts below 0x10000, we assume it's
1623 			 * I/O port space; otherwise assume it's memory.
1624 			 */
1625 			if (io_start < 0x10000) {
1626 				res->flags = IORESOURCE_IO;
1627 				parent = &ioport_resource;
1628 			} else {
1629 				res->flags = IORESOURCE_MEM;
1630 				parent = &iomem_resource;
1631 			}
1632 			res->name = "reserved";
1633 			res->start = io_start;
1634 			res->end = io_start + io_num - 1;
1635 			res->flags |= IORESOURCE_BUSY;
1636 			res->desc = IORES_DESC_NONE;
1637 			res->child = NULL;
1638 			if (request_resource(parent, res) == 0)
1639 				reserved = x+1;
1640 		}
1641 	}
1642 	return 1;
1643 }
1644 __setup("reserve=", reserve_setup);
1645 
1646 /*
1647  * Check if the requested addr and size spans more than any slot in the
1648  * iomem resource tree.
1649  */
1650 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1651 {
1652 	struct resource *p = &iomem_resource;
1653 	int err = 0;
1654 	loff_t l;
1655 
1656 	read_lock(&resource_lock);
1657 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1658 		/*
1659 		 * We can probably skip the resources without
1660 		 * IORESOURCE_IO attribute?
1661 		 */
1662 		if (p->start >= addr + size)
1663 			continue;
1664 		if (p->end < addr)
1665 			continue;
1666 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1667 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1668 			continue;
1669 		/*
1670 		 * if a resource is "BUSY", it's not a hardware resource
1671 		 * but a driver mapping of such a resource; we don't want
1672 		 * to warn for those; some drivers legitimately map only
1673 		 * partial hardware resources. (example: vesafb)
1674 		 */
1675 		if (p->flags & IORESOURCE_BUSY)
1676 			continue;
1677 
1678 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1679 		       (unsigned long long)addr,
1680 		       (unsigned long long)(addr + size - 1),
1681 		       p->name, p);
1682 		err = -1;
1683 		break;
1684 	}
1685 	read_unlock(&resource_lock);
1686 
1687 	return err;
1688 }
1689 
1690 #ifdef CONFIG_STRICT_DEVMEM
1691 static int strict_iomem_checks = 1;
1692 #else
1693 static int strict_iomem_checks;
1694 #endif
1695 
1696 /*
1697  * Check if an address is exclusive to the kernel and must not be mapped to
1698  * user space, for example, via /dev/mem.
1699  *
1700  * Returns true if exclusive to the kernel, otherwise returns false.
1701  */
1702 bool iomem_is_exclusive(u64 addr)
1703 {
1704 	const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1705 						  IORESOURCE_EXCLUSIVE;
1706 	bool skip_children = false, err = false;
1707 	int size = PAGE_SIZE;
1708 	struct resource *p;
1709 
1710 	addr = addr & PAGE_MASK;
1711 
1712 	read_lock(&resource_lock);
1713 	for_each_resource(&iomem_resource, p, skip_children) {
1714 		if (p->start >= addr + size)
1715 			break;
1716 		if (p->end < addr) {
1717 			skip_children = true;
1718 			continue;
1719 		}
1720 		skip_children = false;
1721 
1722 		/*
1723 		 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1724 		 * IORESOURCE_EXCLUSIVE is set, even if they
1725 		 * are not busy and even if "iomem=relaxed" is set. The
1726 		 * responsible driver dynamically adds/removes system RAM within
1727 		 * such an area and uncontrolled access is dangerous.
1728 		 */
1729 		if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1730 			err = true;
1731 			break;
1732 		}
1733 
1734 		/*
1735 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1736 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1737 		 * resource is busy.
1738 		 */
1739 		if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1740 			continue;
1741 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1742 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1743 			err = true;
1744 			break;
1745 		}
1746 	}
1747 	read_unlock(&resource_lock);
1748 
1749 	return err;
1750 }
1751 
1752 struct resource_entry *resource_list_create_entry(struct resource *res,
1753 						  size_t extra_size)
1754 {
1755 	struct resource_entry *entry;
1756 
1757 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1758 	if (entry) {
1759 		INIT_LIST_HEAD(&entry->node);
1760 		entry->res = res ? res : &entry->__res;
1761 	}
1762 
1763 	return entry;
1764 }
1765 EXPORT_SYMBOL(resource_list_create_entry);
1766 
1767 void resource_list_free(struct list_head *head)
1768 {
1769 	struct resource_entry *entry, *tmp;
1770 
1771 	list_for_each_entry_safe(entry, tmp, head, node)
1772 		resource_list_destroy_entry(entry);
1773 }
1774 EXPORT_SYMBOL(resource_list_free);
1775 
1776 #ifdef CONFIG_DEVICE_PRIVATE
1777 static struct resource *__request_free_mem_region(struct device *dev,
1778 		struct resource *base, unsigned long size, const char *name)
1779 {
1780 	resource_size_t end, addr;
1781 	struct resource *res;
1782 	struct region_devres *dr = NULL;
1783 
1784 	size = ALIGN(size, 1UL << PA_SECTION_SHIFT);
1785 	end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1);
1786 	addr = end - size + 1UL;
1787 
1788 	res = alloc_resource(GFP_KERNEL);
1789 	if (!res)
1790 		return ERR_PTR(-ENOMEM);
1791 
1792 	if (dev) {
1793 		dr = devres_alloc(devm_region_release,
1794 				sizeof(struct region_devres), GFP_KERNEL);
1795 		if (!dr) {
1796 			free_resource(res);
1797 			return ERR_PTR(-ENOMEM);
1798 		}
1799 	}
1800 
1801 	write_lock(&resource_lock);
1802 	for (; addr > size && addr >= base->start; addr -= size) {
1803 		if (__region_intersects(addr, size, 0, IORES_DESC_NONE) !=
1804 				REGION_DISJOINT)
1805 			continue;
1806 
1807 		if (__request_region_locked(res, &iomem_resource, addr, size,
1808 						name, 0))
1809 			break;
1810 
1811 		if (dev) {
1812 			dr->parent = &iomem_resource;
1813 			dr->start = addr;
1814 			dr->n = size;
1815 			devres_add(dev, dr);
1816 		}
1817 
1818 		res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1819 		write_unlock(&resource_lock);
1820 
1821 		/*
1822 		 * A driver is claiming this region so revoke any mappings.
1823 		 */
1824 		revoke_iomem(res);
1825 		return res;
1826 	}
1827 	write_unlock(&resource_lock);
1828 
1829 	free_resource(res);
1830 	if (dr)
1831 		devres_free(dr);
1832 
1833 	return ERR_PTR(-ERANGE);
1834 }
1835 
1836 /**
1837  * devm_request_free_mem_region - find free region for device private memory
1838  *
1839  * @dev: device struct to bind the resource to
1840  * @size: size in bytes of the device memory to add
1841  * @base: resource tree to look in
1842  *
1843  * This function tries to find an empty range of physical address big enough to
1844  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1845  * memory, which in turn allocates struct pages.
1846  */
1847 struct resource *devm_request_free_mem_region(struct device *dev,
1848 		struct resource *base, unsigned long size)
1849 {
1850 	return __request_free_mem_region(dev, base, size, dev_name(dev));
1851 }
1852 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1853 
1854 struct resource *request_free_mem_region(struct resource *base,
1855 		unsigned long size, const char *name)
1856 {
1857 	return __request_free_mem_region(NULL, base, size, name);
1858 }
1859 EXPORT_SYMBOL_GPL(request_free_mem_region);
1860 
1861 #endif /* CONFIG_DEVICE_PRIVATE */
1862 
1863 static int __init strict_iomem(char *str)
1864 {
1865 	if (strstr(str, "relaxed"))
1866 		strict_iomem_checks = 0;
1867 	if (strstr(str, "strict"))
1868 		strict_iomem_checks = 1;
1869 	return 1;
1870 }
1871 
1872 static int iomem_fs_init_fs_context(struct fs_context *fc)
1873 {
1874 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
1875 }
1876 
1877 static struct file_system_type iomem_fs_type = {
1878 	.name		= "iomem",
1879 	.owner		= THIS_MODULE,
1880 	.init_fs_context = iomem_fs_init_fs_context,
1881 	.kill_sb	= kill_anon_super,
1882 };
1883 
1884 static int __init iomem_init_inode(void)
1885 {
1886 	static struct vfsmount *iomem_vfs_mount;
1887 	static int iomem_fs_cnt;
1888 	struct inode *inode;
1889 	int rc;
1890 
1891 	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
1892 	if (rc < 0) {
1893 		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
1894 		return rc;
1895 	}
1896 
1897 	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
1898 	if (IS_ERR(inode)) {
1899 		rc = PTR_ERR(inode);
1900 		pr_err("Cannot allocate inode for iomem: %d\n", rc);
1901 		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
1902 		return rc;
1903 	}
1904 
1905 	/*
1906 	 * Publish iomem revocation inode initialized.
1907 	 * Pairs with smp_load_acquire() in revoke_iomem().
1908 	 */
1909 	smp_store_release(&iomem_inode, inode);
1910 
1911 	return 0;
1912 }
1913 
1914 fs_initcall(iomem_init_inode);
1915 
1916 __setup("iomem=", strict_iomem);
1917