xref: /linux/kernel/resource.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *	linux/kernel/resource.c
3  *
4  * Copyright (C) 1999	Linus Torvalds
5  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6  *
7  * Arbitrary resource management.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <linux/resource_ext.h>
26 #include <asm/io.h>
27 
28 
29 struct resource ioport_resource = {
30 	.name	= "PCI IO",
31 	.start	= 0,
32 	.end	= IO_SPACE_LIMIT,
33 	.flags	= IORESOURCE_IO,
34 };
35 EXPORT_SYMBOL(ioport_resource);
36 
37 struct resource iomem_resource = {
38 	.name	= "PCI mem",
39 	.start	= 0,
40 	.end	= -1,
41 	.flags	= IORESOURCE_MEM,
42 };
43 EXPORT_SYMBOL(iomem_resource);
44 
45 /* constraints to be met while allocating resources */
46 struct resource_constraint {
47 	resource_size_t min, max, align;
48 	resource_size_t (*alignf)(void *, const struct resource *,
49 			resource_size_t, resource_size_t);
50 	void *alignf_data;
51 };
52 
53 static DEFINE_RWLOCK(resource_lock);
54 
55 /*
56  * For memory hotplug, there is no way to free resource entries allocated
57  * by boot mem after the system is up. So for reusing the resource entry
58  * we need to remember the resource.
59  */
60 static struct resource *bootmem_resource_free;
61 static DEFINE_SPINLOCK(bootmem_resource_lock);
62 
63 static struct resource *next_resource(struct resource *p, bool sibling_only)
64 {
65 	/* Caller wants to traverse through siblings only */
66 	if (sibling_only)
67 		return p->sibling;
68 
69 	if (p->child)
70 		return p->child;
71 	while (!p->sibling && p->parent)
72 		p = p->parent;
73 	return p->sibling;
74 }
75 
76 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77 {
78 	struct resource *p = v;
79 	(*pos)++;
80 	return (void *)next_resource(p, false);
81 }
82 
83 #ifdef CONFIG_PROC_FS
84 
85 enum { MAX_IORES_LEVEL = 5 };
86 
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 	__acquires(resource_lock)
89 {
90 	struct resource *p = m->private;
91 	loff_t l = 0;
92 	read_lock(&resource_lock);
93 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94 		;
95 	return p;
96 }
97 
98 static void r_stop(struct seq_file *m, void *v)
99 	__releases(resource_lock)
100 {
101 	read_unlock(&resource_lock);
102 }
103 
104 static int r_show(struct seq_file *m, void *v)
105 {
106 	struct resource *root = m->private;
107 	struct resource *r = v, *p;
108 	unsigned long long start, end;
109 	int width = root->end < 0x10000 ? 4 : 8;
110 	int depth;
111 
112 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
113 		if (p->parent == root)
114 			break;
115 
116 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
117 		start = r->start;
118 		end = r->end;
119 	} else {
120 		start = end = 0;
121 	}
122 
123 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
124 			depth * 2, "",
125 			width, start,
126 			width, end,
127 			r->name ? r->name : "<BAD>");
128 	return 0;
129 }
130 
131 static const struct seq_operations resource_op = {
132 	.start	= r_start,
133 	.next	= r_next,
134 	.stop	= r_stop,
135 	.show	= r_show,
136 };
137 
138 static int ioports_open(struct inode *inode, struct file *file)
139 {
140 	int res = seq_open(file, &resource_op);
141 	if (!res) {
142 		struct seq_file *m = file->private_data;
143 		m->private = &ioport_resource;
144 	}
145 	return res;
146 }
147 
148 static int iomem_open(struct inode *inode, struct file *file)
149 {
150 	int res = seq_open(file, &resource_op);
151 	if (!res) {
152 		struct seq_file *m = file->private_data;
153 		m->private = &iomem_resource;
154 	}
155 	return res;
156 }
157 
158 static const struct file_operations proc_ioports_operations = {
159 	.open		= ioports_open,
160 	.read		= seq_read,
161 	.llseek		= seq_lseek,
162 	.release	= seq_release,
163 };
164 
165 static const struct file_operations proc_iomem_operations = {
166 	.open		= iomem_open,
167 	.read		= seq_read,
168 	.llseek		= seq_lseek,
169 	.release	= seq_release,
170 };
171 
172 static int __init ioresources_init(void)
173 {
174 	proc_create("ioports", 0, NULL, &proc_ioports_operations);
175 	proc_create("iomem", 0, NULL, &proc_iomem_operations);
176 	return 0;
177 }
178 __initcall(ioresources_init);
179 
180 #endif /* CONFIG_PROC_FS */
181 
182 static void free_resource(struct resource *res)
183 {
184 	if (!res)
185 		return;
186 
187 	if (!PageSlab(virt_to_head_page(res))) {
188 		spin_lock(&bootmem_resource_lock);
189 		res->sibling = bootmem_resource_free;
190 		bootmem_resource_free = res;
191 		spin_unlock(&bootmem_resource_lock);
192 	} else {
193 		kfree(res);
194 	}
195 }
196 
197 static struct resource *alloc_resource(gfp_t flags)
198 {
199 	struct resource *res = NULL;
200 
201 	spin_lock(&bootmem_resource_lock);
202 	if (bootmem_resource_free) {
203 		res = bootmem_resource_free;
204 		bootmem_resource_free = res->sibling;
205 	}
206 	spin_unlock(&bootmem_resource_lock);
207 
208 	if (res)
209 		memset(res, 0, sizeof(struct resource));
210 	else
211 		res = kzalloc(sizeof(struct resource), flags);
212 
213 	return res;
214 }
215 
216 /* Return the conflict entry if you can't request it */
217 static struct resource * __request_resource(struct resource *root, struct resource *new)
218 {
219 	resource_size_t start = new->start;
220 	resource_size_t end = new->end;
221 	struct resource *tmp, **p;
222 
223 	if (end < start)
224 		return root;
225 	if (start < root->start)
226 		return root;
227 	if (end > root->end)
228 		return root;
229 	p = &root->child;
230 	for (;;) {
231 		tmp = *p;
232 		if (!tmp || tmp->start > end) {
233 			new->sibling = tmp;
234 			*p = new;
235 			new->parent = root;
236 			return NULL;
237 		}
238 		p = &tmp->sibling;
239 		if (tmp->end < start)
240 			continue;
241 		return tmp;
242 	}
243 }
244 
245 static int __release_resource(struct resource *old, bool release_child)
246 {
247 	struct resource *tmp, **p, *chd;
248 
249 	p = &old->parent->child;
250 	for (;;) {
251 		tmp = *p;
252 		if (!tmp)
253 			break;
254 		if (tmp == old) {
255 			if (release_child || !(tmp->child)) {
256 				*p = tmp->sibling;
257 			} else {
258 				for (chd = tmp->child;; chd = chd->sibling) {
259 					chd->parent = tmp->parent;
260 					if (!(chd->sibling))
261 						break;
262 				}
263 				*p = tmp->child;
264 				chd->sibling = tmp->sibling;
265 			}
266 			old->parent = NULL;
267 			return 0;
268 		}
269 		p = &tmp->sibling;
270 	}
271 	return -EINVAL;
272 }
273 
274 static void __release_child_resources(struct resource *r)
275 {
276 	struct resource *tmp, *p;
277 	resource_size_t size;
278 
279 	p = r->child;
280 	r->child = NULL;
281 	while (p) {
282 		tmp = p;
283 		p = p->sibling;
284 
285 		tmp->parent = NULL;
286 		tmp->sibling = NULL;
287 		__release_child_resources(tmp);
288 
289 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
290 		/* need to restore size, and keep flags */
291 		size = resource_size(tmp);
292 		tmp->start = 0;
293 		tmp->end = size - 1;
294 	}
295 }
296 
297 void release_child_resources(struct resource *r)
298 {
299 	write_lock(&resource_lock);
300 	__release_child_resources(r);
301 	write_unlock(&resource_lock);
302 }
303 
304 /**
305  * request_resource_conflict - request and reserve an I/O or memory resource
306  * @root: root resource descriptor
307  * @new: resource descriptor desired by caller
308  *
309  * Returns 0 for success, conflict resource on error.
310  */
311 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
312 {
313 	struct resource *conflict;
314 
315 	write_lock(&resource_lock);
316 	conflict = __request_resource(root, new);
317 	write_unlock(&resource_lock);
318 	return conflict;
319 }
320 
321 /**
322  * request_resource - request and reserve an I/O or memory resource
323  * @root: root resource descriptor
324  * @new: resource descriptor desired by caller
325  *
326  * Returns 0 for success, negative error code on error.
327  */
328 int request_resource(struct resource *root, struct resource *new)
329 {
330 	struct resource *conflict;
331 
332 	conflict = request_resource_conflict(root, new);
333 	return conflict ? -EBUSY : 0;
334 }
335 
336 EXPORT_SYMBOL(request_resource);
337 
338 /**
339  * release_resource - release a previously reserved resource
340  * @old: resource pointer
341  */
342 int release_resource(struct resource *old)
343 {
344 	int retval;
345 
346 	write_lock(&resource_lock);
347 	retval = __release_resource(old, true);
348 	write_unlock(&resource_lock);
349 	return retval;
350 }
351 
352 EXPORT_SYMBOL(release_resource);
353 
354 /*
355  * Finds the lowest iomem resource existing within [res->start.res->end).
356  * The caller must specify res->start, res->end, res->flags, and optionally
357  * desc.  If found, returns 0, res is overwritten, if not found, returns -1.
358  * This function walks the whole tree and not just first level children until
359  * and unless first_level_children_only is true.
360  */
361 static int find_next_iomem_res(struct resource *res, unsigned long desc,
362 			       bool first_level_children_only)
363 {
364 	resource_size_t start, end;
365 	struct resource *p;
366 	bool sibling_only = false;
367 
368 	BUG_ON(!res);
369 
370 	start = res->start;
371 	end = res->end;
372 	BUG_ON(start >= end);
373 
374 	if (first_level_children_only)
375 		sibling_only = true;
376 
377 	read_lock(&resource_lock);
378 
379 	for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
380 		if ((p->flags & res->flags) != res->flags)
381 			continue;
382 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
383 			continue;
384 		if (p->start > end) {
385 			p = NULL;
386 			break;
387 		}
388 		if ((p->end >= start) && (p->start < end))
389 			break;
390 	}
391 
392 	read_unlock(&resource_lock);
393 	if (!p)
394 		return -1;
395 	/* copy data */
396 	if (res->start < p->start)
397 		res->start = p->start;
398 	if (res->end > p->end)
399 		res->end = p->end;
400 	return 0;
401 }
402 
403 /*
404  * Walks through iomem resources and calls func() with matching resource
405  * ranges. This walks through whole tree and not just first level children.
406  * All the memory ranges which overlap start,end and also match flags and
407  * desc are valid candidates.
408  *
409  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
410  * @flags: I/O resource flags
411  * @start: start addr
412  * @end: end addr
413  *
414  * NOTE: For a new descriptor search, define a new IORES_DESC in
415  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
416  */
417 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
418 		u64 end, void *arg, int (*func)(u64, u64, void *))
419 {
420 	struct resource res;
421 	u64 orig_end;
422 	int ret = -1;
423 
424 	res.start = start;
425 	res.end = end;
426 	res.flags = flags;
427 	orig_end = res.end;
428 
429 	while ((res.start < res.end) &&
430 		(!find_next_iomem_res(&res, desc, false))) {
431 
432 		ret = (*func)(res.start, res.end, arg);
433 		if (ret)
434 			break;
435 
436 		res.start = res.end + 1;
437 		res.end = orig_end;
438 	}
439 
440 	return ret;
441 }
442 
443 /*
444  * This function calls the @func callback against all memory ranges of type
445  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
446  * Now, this function is only for System RAM, it deals with full ranges and
447  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
448  * ranges.
449  */
450 int walk_system_ram_res(u64 start, u64 end, void *arg,
451 				int (*func)(u64, u64, void *))
452 {
453 	struct resource res;
454 	u64 orig_end;
455 	int ret = -1;
456 
457 	res.start = start;
458 	res.end = end;
459 	res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
460 	orig_end = res.end;
461 	while ((res.start < res.end) &&
462 		(!find_next_iomem_res(&res, IORES_DESC_NONE, true))) {
463 		ret = (*func)(res.start, res.end, arg);
464 		if (ret)
465 			break;
466 		res.start = res.end + 1;
467 		res.end = orig_end;
468 	}
469 	return ret;
470 }
471 
472 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
473 
474 /*
475  * This function calls the @func callback against all memory ranges of type
476  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
477  * It is to be used only for System RAM.
478  */
479 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
480 		void *arg, int (*func)(unsigned long, unsigned long, void *))
481 {
482 	struct resource res;
483 	unsigned long pfn, end_pfn;
484 	u64 orig_end;
485 	int ret = -1;
486 
487 	res.start = (u64) start_pfn << PAGE_SHIFT;
488 	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
489 	res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
490 	orig_end = res.end;
491 	while ((res.start < res.end) &&
492 		(find_next_iomem_res(&res, IORES_DESC_NONE, true) >= 0)) {
493 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
494 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
495 		if (end_pfn > pfn)
496 			ret = (*func)(pfn, end_pfn - pfn, arg);
497 		if (ret)
498 			break;
499 		res.start = res.end + 1;
500 		res.end = orig_end;
501 	}
502 	return ret;
503 }
504 
505 #endif
506 
507 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
508 {
509 	return 1;
510 }
511 /*
512  * This generic page_is_ram() returns true if specified address is
513  * registered as System RAM in iomem_resource list.
514  */
515 int __weak page_is_ram(unsigned long pfn)
516 {
517 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
518 }
519 EXPORT_SYMBOL_GPL(page_is_ram);
520 
521 /**
522  * region_intersects() - determine intersection of region with known resources
523  * @start: region start address
524  * @size: size of region
525  * @flags: flags of resource (in iomem_resource)
526  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
527  *
528  * Check if the specified region partially overlaps or fully eclipses a
529  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
530  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
531  * return REGION_MIXED if the region overlaps @flags/@desc and another
532  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
533  * and no other defined resource. Note that REGION_INTERSECTS is also
534  * returned in the case when the specified region overlaps RAM and undefined
535  * memory holes.
536  *
537  * region_intersect() is used by memory remapping functions to ensure
538  * the user is not remapping RAM and is a vast speed up over walking
539  * through the resource table page by page.
540  */
541 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
542 		      unsigned long desc)
543 {
544 	resource_size_t end = start + size - 1;
545 	int type = 0; int other = 0;
546 	struct resource *p;
547 
548 	read_lock(&resource_lock);
549 	for (p = iomem_resource.child; p ; p = p->sibling) {
550 		bool is_type = (((p->flags & flags) == flags) &&
551 				((desc == IORES_DESC_NONE) ||
552 				 (desc == p->desc)));
553 
554 		if (start >= p->start && start <= p->end)
555 			is_type ? type++ : other++;
556 		if (end >= p->start && end <= p->end)
557 			is_type ? type++ : other++;
558 		if (p->start >= start && p->end <= end)
559 			is_type ? type++ : other++;
560 	}
561 	read_unlock(&resource_lock);
562 
563 	if (other == 0)
564 		return type ? REGION_INTERSECTS : REGION_DISJOINT;
565 
566 	if (type)
567 		return REGION_MIXED;
568 
569 	return REGION_DISJOINT;
570 }
571 EXPORT_SYMBOL_GPL(region_intersects);
572 
573 void __weak arch_remove_reservations(struct resource *avail)
574 {
575 }
576 
577 static resource_size_t simple_align_resource(void *data,
578 					     const struct resource *avail,
579 					     resource_size_t size,
580 					     resource_size_t align)
581 {
582 	return avail->start;
583 }
584 
585 static void resource_clip(struct resource *res, resource_size_t min,
586 			  resource_size_t max)
587 {
588 	if (res->start < min)
589 		res->start = min;
590 	if (res->end > max)
591 		res->end = max;
592 }
593 
594 /*
595  * Find empty slot in the resource tree with the given range and
596  * alignment constraints
597  */
598 static int __find_resource(struct resource *root, struct resource *old,
599 			 struct resource *new,
600 			 resource_size_t  size,
601 			 struct resource_constraint *constraint)
602 {
603 	struct resource *this = root->child;
604 	struct resource tmp = *new, avail, alloc;
605 
606 	tmp.start = root->start;
607 	/*
608 	 * Skip past an allocated resource that starts at 0, since the assignment
609 	 * of this->start - 1 to tmp->end below would cause an underflow.
610 	 */
611 	if (this && this->start == root->start) {
612 		tmp.start = (this == old) ? old->start : this->end + 1;
613 		this = this->sibling;
614 	}
615 	for(;;) {
616 		if (this)
617 			tmp.end = (this == old) ?  this->end : this->start - 1;
618 		else
619 			tmp.end = root->end;
620 
621 		if (tmp.end < tmp.start)
622 			goto next;
623 
624 		resource_clip(&tmp, constraint->min, constraint->max);
625 		arch_remove_reservations(&tmp);
626 
627 		/* Check for overflow after ALIGN() */
628 		avail.start = ALIGN(tmp.start, constraint->align);
629 		avail.end = tmp.end;
630 		avail.flags = new->flags & ~IORESOURCE_UNSET;
631 		if (avail.start >= tmp.start) {
632 			alloc.flags = avail.flags;
633 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
634 					size, constraint->align);
635 			alloc.end = alloc.start + size - 1;
636 			if (resource_contains(&avail, &alloc)) {
637 				new->start = alloc.start;
638 				new->end = alloc.end;
639 				return 0;
640 			}
641 		}
642 
643 next:		if (!this || this->end == root->end)
644 			break;
645 
646 		if (this != old)
647 			tmp.start = this->end + 1;
648 		this = this->sibling;
649 	}
650 	return -EBUSY;
651 }
652 
653 /*
654  * Find empty slot in the resource tree given range and alignment.
655  */
656 static int find_resource(struct resource *root, struct resource *new,
657 			resource_size_t size,
658 			struct resource_constraint  *constraint)
659 {
660 	return  __find_resource(root, NULL, new, size, constraint);
661 }
662 
663 /**
664  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
665  *	The resource will be relocated if the new size cannot be reallocated in the
666  *	current location.
667  *
668  * @root: root resource descriptor
669  * @old:  resource descriptor desired by caller
670  * @newsize: new size of the resource descriptor
671  * @constraint: the size and alignment constraints to be met.
672  */
673 static int reallocate_resource(struct resource *root, struct resource *old,
674 			resource_size_t newsize,
675 			struct resource_constraint  *constraint)
676 {
677 	int err=0;
678 	struct resource new = *old;
679 	struct resource *conflict;
680 
681 	write_lock(&resource_lock);
682 
683 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
684 		goto out;
685 
686 	if (resource_contains(&new, old)) {
687 		old->start = new.start;
688 		old->end = new.end;
689 		goto out;
690 	}
691 
692 	if (old->child) {
693 		err = -EBUSY;
694 		goto out;
695 	}
696 
697 	if (resource_contains(old, &new)) {
698 		old->start = new.start;
699 		old->end = new.end;
700 	} else {
701 		__release_resource(old, true);
702 		*old = new;
703 		conflict = __request_resource(root, old);
704 		BUG_ON(conflict);
705 	}
706 out:
707 	write_unlock(&resource_lock);
708 	return err;
709 }
710 
711 
712 /**
713  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
714  * 	The resource will be reallocated with a new size if it was already allocated
715  * @root: root resource descriptor
716  * @new: resource descriptor desired by caller
717  * @size: requested resource region size
718  * @min: minimum boundary to allocate
719  * @max: maximum boundary to allocate
720  * @align: alignment requested, in bytes
721  * @alignf: alignment function, optional, called if not NULL
722  * @alignf_data: arbitrary data to pass to the @alignf function
723  */
724 int allocate_resource(struct resource *root, struct resource *new,
725 		      resource_size_t size, resource_size_t min,
726 		      resource_size_t max, resource_size_t align,
727 		      resource_size_t (*alignf)(void *,
728 						const struct resource *,
729 						resource_size_t,
730 						resource_size_t),
731 		      void *alignf_data)
732 {
733 	int err;
734 	struct resource_constraint constraint;
735 
736 	if (!alignf)
737 		alignf = simple_align_resource;
738 
739 	constraint.min = min;
740 	constraint.max = max;
741 	constraint.align = align;
742 	constraint.alignf = alignf;
743 	constraint.alignf_data = alignf_data;
744 
745 	if ( new->parent ) {
746 		/* resource is already allocated, try reallocating with
747 		   the new constraints */
748 		return reallocate_resource(root, new, size, &constraint);
749 	}
750 
751 	write_lock(&resource_lock);
752 	err = find_resource(root, new, size, &constraint);
753 	if (err >= 0 && __request_resource(root, new))
754 		err = -EBUSY;
755 	write_unlock(&resource_lock);
756 	return err;
757 }
758 
759 EXPORT_SYMBOL(allocate_resource);
760 
761 /**
762  * lookup_resource - find an existing resource by a resource start address
763  * @root: root resource descriptor
764  * @start: resource start address
765  *
766  * Returns a pointer to the resource if found, NULL otherwise
767  */
768 struct resource *lookup_resource(struct resource *root, resource_size_t start)
769 {
770 	struct resource *res;
771 
772 	read_lock(&resource_lock);
773 	for (res = root->child; res; res = res->sibling) {
774 		if (res->start == start)
775 			break;
776 	}
777 	read_unlock(&resource_lock);
778 
779 	return res;
780 }
781 
782 /*
783  * Insert a resource into the resource tree. If successful, return NULL,
784  * otherwise return the conflicting resource (compare to __request_resource())
785  */
786 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
787 {
788 	struct resource *first, *next;
789 
790 	for (;; parent = first) {
791 		first = __request_resource(parent, new);
792 		if (!first)
793 			return first;
794 
795 		if (first == parent)
796 			return first;
797 		if (WARN_ON(first == new))	/* duplicated insertion */
798 			return first;
799 
800 		if ((first->start > new->start) || (first->end < new->end))
801 			break;
802 		if ((first->start == new->start) && (first->end == new->end))
803 			break;
804 	}
805 
806 	for (next = first; ; next = next->sibling) {
807 		/* Partial overlap? Bad, and unfixable */
808 		if (next->start < new->start || next->end > new->end)
809 			return next;
810 		if (!next->sibling)
811 			break;
812 		if (next->sibling->start > new->end)
813 			break;
814 	}
815 
816 	new->parent = parent;
817 	new->sibling = next->sibling;
818 	new->child = first;
819 
820 	next->sibling = NULL;
821 	for (next = first; next; next = next->sibling)
822 		next->parent = new;
823 
824 	if (parent->child == first) {
825 		parent->child = new;
826 	} else {
827 		next = parent->child;
828 		while (next->sibling != first)
829 			next = next->sibling;
830 		next->sibling = new;
831 	}
832 	return NULL;
833 }
834 
835 /**
836  * insert_resource_conflict - Inserts resource in the resource tree
837  * @parent: parent of the new resource
838  * @new: new resource to insert
839  *
840  * Returns 0 on success, conflict resource if the resource can't be inserted.
841  *
842  * This function is equivalent to request_resource_conflict when no conflict
843  * happens. If a conflict happens, and the conflicting resources
844  * entirely fit within the range of the new resource, then the new
845  * resource is inserted and the conflicting resources become children of
846  * the new resource.
847  *
848  * This function is intended for producers of resources, such as FW modules
849  * and bus drivers.
850  */
851 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
852 {
853 	struct resource *conflict;
854 
855 	write_lock(&resource_lock);
856 	conflict = __insert_resource(parent, new);
857 	write_unlock(&resource_lock);
858 	return conflict;
859 }
860 
861 /**
862  * insert_resource - Inserts a resource in the resource tree
863  * @parent: parent of the new resource
864  * @new: new resource to insert
865  *
866  * Returns 0 on success, -EBUSY if the resource can't be inserted.
867  *
868  * This function is intended for producers of resources, such as FW modules
869  * and bus drivers.
870  */
871 int insert_resource(struct resource *parent, struct resource *new)
872 {
873 	struct resource *conflict;
874 
875 	conflict = insert_resource_conflict(parent, new);
876 	return conflict ? -EBUSY : 0;
877 }
878 EXPORT_SYMBOL_GPL(insert_resource);
879 
880 /**
881  * insert_resource_expand_to_fit - Insert a resource into the resource tree
882  * @root: root resource descriptor
883  * @new: new resource to insert
884  *
885  * Insert a resource into the resource tree, possibly expanding it in order
886  * to make it encompass any conflicting resources.
887  */
888 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
889 {
890 	if (new->parent)
891 		return;
892 
893 	write_lock(&resource_lock);
894 	for (;;) {
895 		struct resource *conflict;
896 
897 		conflict = __insert_resource(root, new);
898 		if (!conflict)
899 			break;
900 		if (conflict == root)
901 			break;
902 
903 		/* Ok, expand resource to cover the conflict, then try again .. */
904 		if (conflict->start < new->start)
905 			new->start = conflict->start;
906 		if (conflict->end > new->end)
907 			new->end = conflict->end;
908 
909 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
910 	}
911 	write_unlock(&resource_lock);
912 }
913 
914 /**
915  * remove_resource - Remove a resource in the resource tree
916  * @old: resource to remove
917  *
918  * Returns 0 on success, -EINVAL if the resource is not valid.
919  *
920  * This function removes a resource previously inserted by insert_resource()
921  * or insert_resource_conflict(), and moves the children (if any) up to
922  * where they were before.  insert_resource() and insert_resource_conflict()
923  * insert a new resource, and move any conflicting resources down to the
924  * children of the new resource.
925  *
926  * insert_resource(), insert_resource_conflict() and remove_resource() are
927  * intended for producers of resources, such as FW modules and bus drivers.
928  */
929 int remove_resource(struct resource *old)
930 {
931 	int retval;
932 
933 	write_lock(&resource_lock);
934 	retval = __release_resource(old, false);
935 	write_unlock(&resource_lock);
936 	return retval;
937 }
938 EXPORT_SYMBOL_GPL(remove_resource);
939 
940 static int __adjust_resource(struct resource *res, resource_size_t start,
941 				resource_size_t size)
942 {
943 	struct resource *tmp, *parent = res->parent;
944 	resource_size_t end = start + size - 1;
945 	int result = -EBUSY;
946 
947 	if (!parent)
948 		goto skip;
949 
950 	if ((start < parent->start) || (end > parent->end))
951 		goto out;
952 
953 	if (res->sibling && (res->sibling->start <= end))
954 		goto out;
955 
956 	tmp = parent->child;
957 	if (tmp != res) {
958 		while (tmp->sibling != res)
959 			tmp = tmp->sibling;
960 		if (start <= tmp->end)
961 			goto out;
962 	}
963 
964 skip:
965 	for (tmp = res->child; tmp; tmp = tmp->sibling)
966 		if ((tmp->start < start) || (tmp->end > end))
967 			goto out;
968 
969 	res->start = start;
970 	res->end = end;
971 	result = 0;
972 
973  out:
974 	return result;
975 }
976 
977 /**
978  * adjust_resource - modify a resource's start and size
979  * @res: resource to modify
980  * @start: new start value
981  * @size: new size
982  *
983  * Given an existing resource, change its start and size to match the
984  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
985  * Existing children of the resource are assumed to be immutable.
986  */
987 int adjust_resource(struct resource *res, resource_size_t start,
988 			resource_size_t size)
989 {
990 	int result;
991 
992 	write_lock(&resource_lock);
993 	result = __adjust_resource(res, start, size);
994 	write_unlock(&resource_lock);
995 	return result;
996 }
997 EXPORT_SYMBOL(adjust_resource);
998 
999 static void __init __reserve_region_with_split(struct resource *root,
1000 		resource_size_t start, resource_size_t end,
1001 		const char *name)
1002 {
1003 	struct resource *parent = root;
1004 	struct resource *conflict;
1005 	struct resource *res = alloc_resource(GFP_ATOMIC);
1006 	struct resource *next_res = NULL;
1007 
1008 	if (!res)
1009 		return;
1010 
1011 	res->name = name;
1012 	res->start = start;
1013 	res->end = end;
1014 	res->flags = IORESOURCE_BUSY;
1015 	res->desc = IORES_DESC_NONE;
1016 
1017 	while (1) {
1018 
1019 		conflict = __request_resource(parent, res);
1020 		if (!conflict) {
1021 			if (!next_res)
1022 				break;
1023 			res = next_res;
1024 			next_res = NULL;
1025 			continue;
1026 		}
1027 
1028 		/* conflict covered whole area */
1029 		if (conflict->start <= res->start &&
1030 				conflict->end >= res->end) {
1031 			free_resource(res);
1032 			WARN_ON(next_res);
1033 			break;
1034 		}
1035 
1036 		/* failed, split and try again */
1037 		if (conflict->start > res->start) {
1038 			end = res->end;
1039 			res->end = conflict->start - 1;
1040 			if (conflict->end < end) {
1041 				next_res = alloc_resource(GFP_ATOMIC);
1042 				if (!next_res) {
1043 					free_resource(res);
1044 					break;
1045 				}
1046 				next_res->name = name;
1047 				next_res->start = conflict->end + 1;
1048 				next_res->end = end;
1049 				next_res->flags = IORESOURCE_BUSY;
1050 				next_res->desc = IORES_DESC_NONE;
1051 			}
1052 		} else {
1053 			res->start = conflict->end + 1;
1054 		}
1055 	}
1056 
1057 }
1058 
1059 void __init reserve_region_with_split(struct resource *root,
1060 		resource_size_t start, resource_size_t end,
1061 		const char *name)
1062 {
1063 	int abort = 0;
1064 
1065 	write_lock(&resource_lock);
1066 	if (root->start > start || root->end < end) {
1067 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1068 		       (unsigned long long)start, (unsigned long long)end,
1069 		       root);
1070 		if (start > root->end || end < root->start)
1071 			abort = 1;
1072 		else {
1073 			if (end > root->end)
1074 				end = root->end;
1075 			if (start < root->start)
1076 				start = root->start;
1077 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1078 			       (unsigned long long)start,
1079 			       (unsigned long long)end);
1080 		}
1081 		dump_stack();
1082 	}
1083 	if (!abort)
1084 		__reserve_region_with_split(root, start, end, name);
1085 	write_unlock(&resource_lock);
1086 }
1087 
1088 /**
1089  * resource_alignment - calculate resource's alignment
1090  * @res: resource pointer
1091  *
1092  * Returns alignment on success, 0 (invalid alignment) on failure.
1093  */
1094 resource_size_t resource_alignment(struct resource *res)
1095 {
1096 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1097 	case IORESOURCE_SIZEALIGN:
1098 		return resource_size(res);
1099 	case IORESOURCE_STARTALIGN:
1100 		return res->start;
1101 	default:
1102 		return 0;
1103 	}
1104 }
1105 
1106 /*
1107  * This is compatibility stuff for IO resources.
1108  *
1109  * Note how this, unlike the above, knows about
1110  * the IO flag meanings (busy etc).
1111  *
1112  * request_region creates a new busy region.
1113  *
1114  * release_region releases a matching busy region.
1115  */
1116 
1117 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1118 
1119 /**
1120  * __request_region - create a new busy resource region
1121  * @parent: parent resource descriptor
1122  * @start: resource start address
1123  * @n: resource region size
1124  * @name: reserving caller's ID string
1125  * @flags: IO resource flags
1126  */
1127 struct resource * __request_region(struct resource *parent,
1128 				   resource_size_t start, resource_size_t n,
1129 				   const char *name, int flags)
1130 {
1131 	DECLARE_WAITQUEUE(wait, current);
1132 	struct resource *res = alloc_resource(GFP_KERNEL);
1133 
1134 	if (!res)
1135 		return NULL;
1136 
1137 	res->name = name;
1138 	res->start = start;
1139 	res->end = start + n - 1;
1140 
1141 	write_lock(&resource_lock);
1142 
1143 	for (;;) {
1144 		struct resource *conflict;
1145 
1146 		res->flags = resource_type(parent) | resource_ext_type(parent);
1147 		res->flags |= IORESOURCE_BUSY | flags;
1148 		res->desc = parent->desc;
1149 
1150 		conflict = __request_resource(parent, res);
1151 		if (!conflict)
1152 			break;
1153 		if (conflict != parent) {
1154 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1155 				parent = conflict;
1156 				continue;
1157 			}
1158 		}
1159 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1160 			add_wait_queue(&muxed_resource_wait, &wait);
1161 			write_unlock(&resource_lock);
1162 			set_current_state(TASK_UNINTERRUPTIBLE);
1163 			schedule();
1164 			remove_wait_queue(&muxed_resource_wait, &wait);
1165 			write_lock(&resource_lock);
1166 			continue;
1167 		}
1168 		/* Uhhuh, that didn't work out.. */
1169 		free_resource(res);
1170 		res = NULL;
1171 		break;
1172 	}
1173 	write_unlock(&resource_lock);
1174 	return res;
1175 }
1176 EXPORT_SYMBOL(__request_region);
1177 
1178 /**
1179  * __release_region - release a previously reserved resource region
1180  * @parent: parent resource descriptor
1181  * @start: resource start address
1182  * @n: resource region size
1183  *
1184  * The described resource region must match a currently busy region.
1185  */
1186 void __release_region(struct resource *parent, resource_size_t start,
1187 			resource_size_t n)
1188 {
1189 	struct resource **p;
1190 	resource_size_t end;
1191 
1192 	p = &parent->child;
1193 	end = start + n - 1;
1194 
1195 	write_lock(&resource_lock);
1196 
1197 	for (;;) {
1198 		struct resource *res = *p;
1199 
1200 		if (!res)
1201 			break;
1202 		if (res->start <= start && res->end >= end) {
1203 			if (!(res->flags & IORESOURCE_BUSY)) {
1204 				p = &res->child;
1205 				continue;
1206 			}
1207 			if (res->start != start || res->end != end)
1208 				break;
1209 			*p = res->sibling;
1210 			write_unlock(&resource_lock);
1211 			if (res->flags & IORESOURCE_MUXED)
1212 				wake_up(&muxed_resource_wait);
1213 			free_resource(res);
1214 			return;
1215 		}
1216 		p = &res->sibling;
1217 	}
1218 
1219 	write_unlock(&resource_lock);
1220 
1221 	printk(KERN_WARNING "Trying to free nonexistent resource "
1222 		"<%016llx-%016llx>\n", (unsigned long long)start,
1223 		(unsigned long long)end);
1224 }
1225 EXPORT_SYMBOL(__release_region);
1226 
1227 #ifdef CONFIG_MEMORY_HOTREMOVE
1228 /**
1229  * release_mem_region_adjustable - release a previously reserved memory region
1230  * @parent: parent resource descriptor
1231  * @start: resource start address
1232  * @size: resource region size
1233  *
1234  * This interface is intended for memory hot-delete.  The requested region
1235  * is released from a currently busy memory resource.  The requested region
1236  * must either match exactly or fit into a single busy resource entry.  In
1237  * the latter case, the remaining resource is adjusted accordingly.
1238  * Existing children of the busy memory resource must be immutable in the
1239  * request.
1240  *
1241  * Note:
1242  * - Additional release conditions, such as overlapping region, can be
1243  *   supported after they are confirmed as valid cases.
1244  * - When a busy memory resource gets split into two entries, the code
1245  *   assumes that all children remain in the lower address entry for
1246  *   simplicity.  Enhance this logic when necessary.
1247  */
1248 int release_mem_region_adjustable(struct resource *parent,
1249 			resource_size_t start, resource_size_t size)
1250 {
1251 	struct resource **p;
1252 	struct resource *res;
1253 	struct resource *new_res;
1254 	resource_size_t end;
1255 	int ret = -EINVAL;
1256 
1257 	end = start + size - 1;
1258 	if ((start < parent->start) || (end > parent->end))
1259 		return ret;
1260 
1261 	/* The alloc_resource() result gets checked later */
1262 	new_res = alloc_resource(GFP_KERNEL);
1263 
1264 	p = &parent->child;
1265 	write_lock(&resource_lock);
1266 
1267 	while ((res = *p)) {
1268 		if (res->start >= end)
1269 			break;
1270 
1271 		/* look for the next resource if it does not fit into */
1272 		if (res->start > start || res->end < end) {
1273 			p = &res->sibling;
1274 			continue;
1275 		}
1276 
1277 		if (!(res->flags & IORESOURCE_MEM))
1278 			break;
1279 
1280 		if (!(res->flags & IORESOURCE_BUSY)) {
1281 			p = &res->child;
1282 			continue;
1283 		}
1284 
1285 		/* found the target resource; let's adjust accordingly */
1286 		if (res->start == start && res->end == end) {
1287 			/* free the whole entry */
1288 			*p = res->sibling;
1289 			free_resource(res);
1290 			ret = 0;
1291 		} else if (res->start == start && res->end != end) {
1292 			/* adjust the start */
1293 			ret = __adjust_resource(res, end + 1,
1294 						res->end - end);
1295 		} else if (res->start != start && res->end == end) {
1296 			/* adjust the end */
1297 			ret = __adjust_resource(res, res->start,
1298 						start - res->start);
1299 		} else {
1300 			/* split into two entries */
1301 			if (!new_res) {
1302 				ret = -ENOMEM;
1303 				break;
1304 			}
1305 			new_res->name = res->name;
1306 			new_res->start = end + 1;
1307 			new_res->end = res->end;
1308 			new_res->flags = res->flags;
1309 			new_res->desc = res->desc;
1310 			new_res->parent = res->parent;
1311 			new_res->sibling = res->sibling;
1312 			new_res->child = NULL;
1313 
1314 			ret = __adjust_resource(res, res->start,
1315 						start - res->start);
1316 			if (ret)
1317 				break;
1318 			res->sibling = new_res;
1319 			new_res = NULL;
1320 		}
1321 
1322 		break;
1323 	}
1324 
1325 	write_unlock(&resource_lock);
1326 	free_resource(new_res);
1327 	return ret;
1328 }
1329 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1330 
1331 /*
1332  * Managed region resource
1333  */
1334 static void devm_resource_release(struct device *dev, void *ptr)
1335 {
1336 	struct resource **r = ptr;
1337 
1338 	release_resource(*r);
1339 }
1340 
1341 /**
1342  * devm_request_resource() - request and reserve an I/O or memory resource
1343  * @dev: device for which to request the resource
1344  * @root: root of the resource tree from which to request the resource
1345  * @new: descriptor of the resource to request
1346  *
1347  * This is a device-managed version of request_resource(). There is usually
1348  * no need to release resources requested by this function explicitly since
1349  * that will be taken care of when the device is unbound from its driver.
1350  * If for some reason the resource needs to be released explicitly, because
1351  * of ordering issues for example, drivers must call devm_release_resource()
1352  * rather than the regular release_resource().
1353  *
1354  * When a conflict is detected between any existing resources and the newly
1355  * requested resource, an error message will be printed.
1356  *
1357  * Returns 0 on success or a negative error code on failure.
1358  */
1359 int devm_request_resource(struct device *dev, struct resource *root,
1360 			  struct resource *new)
1361 {
1362 	struct resource *conflict, **ptr;
1363 
1364 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1365 	if (!ptr)
1366 		return -ENOMEM;
1367 
1368 	*ptr = new;
1369 
1370 	conflict = request_resource_conflict(root, new);
1371 	if (conflict) {
1372 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1373 			new, conflict->name, conflict);
1374 		devres_free(ptr);
1375 		return -EBUSY;
1376 	}
1377 
1378 	devres_add(dev, ptr);
1379 	return 0;
1380 }
1381 EXPORT_SYMBOL(devm_request_resource);
1382 
1383 static int devm_resource_match(struct device *dev, void *res, void *data)
1384 {
1385 	struct resource **ptr = res;
1386 
1387 	return *ptr == data;
1388 }
1389 
1390 /**
1391  * devm_release_resource() - release a previously requested resource
1392  * @dev: device for which to release the resource
1393  * @new: descriptor of the resource to release
1394  *
1395  * Releases a resource previously requested using devm_request_resource().
1396  */
1397 void devm_release_resource(struct device *dev, struct resource *new)
1398 {
1399 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1400 			       new));
1401 }
1402 EXPORT_SYMBOL(devm_release_resource);
1403 
1404 struct region_devres {
1405 	struct resource *parent;
1406 	resource_size_t start;
1407 	resource_size_t n;
1408 };
1409 
1410 static void devm_region_release(struct device *dev, void *res)
1411 {
1412 	struct region_devres *this = res;
1413 
1414 	__release_region(this->parent, this->start, this->n);
1415 }
1416 
1417 static int devm_region_match(struct device *dev, void *res, void *match_data)
1418 {
1419 	struct region_devres *this = res, *match = match_data;
1420 
1421 	return this->parent == match->parent &&
1422 		this->start == match->start && this->n == match->n;
1423 }
1424 
1425 struct resource * __devm_request_region(struct device *dev,
1426 				struct resource *parent, resource_size_t start,
1427 				resource_size_t n, const char *name)
1428 {
1429 	struct region_devres *dr = NULL;
1430 	struct resource *res;
1431 
1432 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1433 			  GFP_KERNEL);
1434 	if (!dr)
1435 		return NULL;
1436 
1437 	dr->parent = parent;
1438 	dr->start = start;
1439 	dr->n = n;
1440 
1441 	res = __request_region(parent, start, n, name, 0);
1442 	if (res)
1443 		devres_add(dev, dr);
1444 	else
1445 		devres_free(dr);
1446 
1447 	return res;
1448 }
1449 EXPORT_SYMBOL(__devm_request_region);
1450 
1451 void __devm_release_region(struct device *dev, struct resource *parent,
1452 			   resource_size_t start, resource_size_t n)
1453 {
1454 	struct region_devres match_data = { parent, start, n };
1455 
1456 	__release_region(parent, start, n);
1457 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1458 			       &match_data));
1459 }
1460 EXPORT_SYMBOL(__devm_release_region);
1461 
1462 /*
1463  * Called from init/main.c to reserve IO ports.
1464  */
1465 #define MAXRESERVE 4
1466 static int __init reserve_setup(char *str)
1467 {
1468 	static int reserved;
1469 	static struct resource reserve[MAXRESERVE];
1470 
1471 	for (;;) {
1472 		unsigned int io_start, io_num;
1473 		int x = reserved;
1474 
1475 		if (get_option (&str, &io_start) != 2)
1476 			break;
1477 		if (get_option (&str, &io_num)   == 0)
1478 			break;
1479 		if (x < MAXRESERVE) {
1480 			struct resource *res = reserve + x;
1481 			res->name = "reserved";
1482 			res->start = io_start;
1483 			res->end = io_start + io_num - 1;
1484 			res->flags = IORESOURCE_BUSY;
1485 			res->desc = IORES_DESC_NONE;
1486 			res->child = NULL;
1487 			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1488 				reserved = x+1;
1489 		}
1490 	}
1491 	return 1;
1492 }
1493 
1494 __setup("reserve=", reserve_setup);
1495 
1496 /*
1497  * Check if the requested addr and size spans more than any slot in the
1498  * iomem resource tree.
1499  */
1500 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1501 {
1502 	struct resource *p = &iomem_resource;
1503 	int err = 0;
1504 	loff_t l;
1505 
1506 	read_lock(&resource_lock);
1507 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1508 		/*
1509 		 * We can probably skip the resources without
1510 		 * IORESOURCE_IO attribute?
1511 		 */
1512 		if (p->start >= addr + size)
1513 			continue;
1514 		if (p->end < addr)
1515 			continue;
1516 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1517 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1518 			continue;
1519 		/*
1520 		 * if a resource is "BUSY", it's not a hardware resource
1521 		 * but a driver mapping of such a resource; we don't want
1522 		 * to warn for those; some drivers legitimately map only
1523 		 * partial hardware resources. (example: vesafb)
1524 		 */
1525 		if (p->flags & IORESOURCE_BUSY)
1526 			continue;
1527 
1528 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1529 		       (unsigned long long)addr,
1530 		       (unsigned long long)(addr + size - 1),
1531 		       p->name, p);
1532 		err = -1;
1533 		break;
1534 	}
1535 	read_unlock(&resource_lock);
1536 
1537 	return err;
1538 }
1539 
1540 #ifdef CONFIG_STRICT_DEVMEM
1541 static int strict_iomem_checks = 1;
1542 #else
1543 static int strict_iomem_checks;
1544 #endif
1545 
1546 /*
1547  * check if an address is reserved in the iomem resource tree
1548  * returns 1 if reserved, 0 if not reserved.
1549  */
1550 int iomem_is_exclusive(u64 addr)
1551 {
1552 	struct resource *p = &iomem_resource;
1553 	int err = 0;
1554 	loff_t l;
1555 	int size = PAGE_SIZE;
1556 
1557 	if (!strict_iomem_checks)
1558 		return 0;
1559 
1560 	addr = addr & PAGE_MASK;
1561 
1562 	read_lock(&resource_lock);
1563 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1564 		/*
1565 		 * We can probably skip the resources without
1566 		 * IORESOURCE_IO attribute?
1567 		 */
1568 		if (p->start >= addr + size)
1569 			break;
1570 		if (p->end < addr)
1571 			continue;
1572 		/*
1573 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1574 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1575 		 * resource is busy.
1576 		 */
1577 		if ((p->flags & IORESOURCE_BUSY) == 0)
1578 			continue;
1579 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1580 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1581 			err = 1;
1582 			break;
1583 		}
1584 	}
1585 	read_unlock(&resource_lock);
1586 
1587 	return err;
1588 }
1589 
1590 struct resource_entry *resource_list_create_entry(struct resource *res,
1591 						  size_t extra_size)
1592 {
1593 	struct resource_entry *entry;
1594 
1595 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1596 	if (entry) {
1597 		INIT_LIST_HEAD(&entry->node);
1598 		entry->res = res ? res : &entry->__res;
1599 	}
1600 
1601 	return entry;
1602 }
1603 EXPORT_SYMBOL(resource_list_create_entry);
1604 
1605 void resource_list_free(struct list_head *head)
1606 {
1607 	struct resource_entry *entry, *tmp;
1608 
1609 	list_for_each_entry_safe(entry, tmp, head, node)
1610 		resource_list_destroy_entry(entry);
1611 }
1612 EXPORT_SYMBOL(resource_list_free);
1613 
1614 static int __init strict_iomem(char *str)
1615 {
1616 	if (strstr(str, "relaxed"))
1617 		strict_iomem_checks = 0;
1618 	if (strstr(str, "strict"))
1619 		strict_iomem_checks = 1;
1620 	return 1;
1621 }
1622 
1623 __setup("iomem=", strict_iomem);
1624