xref: /linux/kernel/resource.c (revision 067012974c8ae31a8886046df082aeba93592972)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/device.h>
24 #include <linux/pfn.h>
25 #include <linux/mm.h>
26 #include <linux/resource_ext.h>
27 #include <asm/io.h>
28 
29 
30 struct resource ioport_resource = {
31 	.name	= "PCI IO",
32 	.start	= 0,
33 	.end	= IO_SPACE_LIMIT,
34 	.flags	= IORESOURCE_IO,
35 };
36 EXPORT_SYMBOL(ioport_resource);
37 
38 struct resource iomem_resource = {
39 	.name	= "PCI mem",
40 	.start	= 0,
41 	.end	= -1,
42 	.flags	= IORESOURCE_MEM,
43 };
44 EXPORT_SYMBOL(iomem_resource);
45 
46 /* constraints to be met while allocating resources */
47 struct resource_constraint {
48 	resource_size_t min, max, align;
49 	resource_size_t (*alignf)(void *, const struct resource *,
50 			resource_size_t, resource_size_t);
51 	void *alignf_data;
52 };
53 
54 static DEFINE_RWLOCK(resource_lock);
55 
56 /*
57  * For memory hotplug, there is no way to free resource entries allocated
58  * by boot mem after the system is up. So for reusing the resource entry
59  * we need to remember the resource.
60  */
61 static struct resource *bootmem_resource_free;
62 static DEFINE_SPINLOCK(bootmem_resource_lock);
63 
64 static struct resource *next_resource(struct resource *p, bool sibling_only)
65 {
66 	/* Caller wants to traverse through siblings only */
67 	if (sibling_only)
68 		return p->sibling;
69 
70 	if (p->child)
71 		return p->child;
72 	while (!p->sibling && p->parent)
73 		p = p->parent;
74 	return p->sibling;
75 }
76 
77 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
78 {
79 	struct resource *p = v;
80 	(*pos)++;
81 	return (void *)next_resource(p, false);
82 }
83 
84 #ifdef CONFIG_PROC_FS
85 
86 enum { MAX_IORES_LEVEL = 5 };
87 
88 static void *r_start(struct seq_file *m, loff_t *pos)
89 	__acquires(resource_lock)
90 {
91 	struct resource *p = PDE_DATA(file_inode(m->file));
92 	loff_t l = 0;
93 	read_lock(&resource_lock);
94 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
95 		;
96 	return p;
97 }
98 
99 static void r_stop(struct seq_file *m, void *v)
100 	__releases(resource_lock)
101 {
102 	read_unlock(&resource_lock);
103 }
104 
105 static int r_show(struct seq_file *m, void *v)
106 {
107 	struct resource *root = PDE_DATA(file_inode(m->file));
108 	struct resource *r = v, *p;
109 	unsigned long long start, end;
110 	int width = root->end < 0x10000 ? 4 : 8;
111 	int depth;
112 
113 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
114 		if (p->parent == root)
115 			break;
116 
117 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
118 		start = r->start;
119 		end = r->end;
120 	} else {
121 		start = end = 0;
122 	}
123 
124 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
125 			depth * 2, "",
126 			width, start,
127 			width, end,
128 			r->name ? r->name : "<BAD>");
129 	return 0;
130 }
131 
132 static const struct seq_operations resource_op = {
133 	.start	= r_start,
134 	.next	= r_next,
135 	.stop	= r_stop,
136 	.show	= r_show,
137 };
138 
139 static int __init ioresources_init(void)
140 {
141 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
142 			&ioport_resource);
143 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
144 	return 0;
145 }
146 __initcall(ioresources_init);
147 
148 #endif /* CONFIG_PROC_FS */
149 
150 static void free_resource(struct resource *res)
151 {
152 	if (!res)
153 		return;
154 
155 	if (!PageSlab(virt_to_head_page(res))) {
156 		spin_lock(&bootmem_resource_lock);
157 		res->sibling = bootmem_resource_free;
158 		bootmem_resource_free = res;
159 		spin_unlock(&bootmem_resource_lock);
160 	} else {
161 		kfree(res);
162 	}
163 }
164 
165 static struct resource *alloc_resource(gfp_t flags)
166 {
167 	struct resource *res = NULL;
168 
169 	spin_lock(&bootmem_resource_lock);
170 	if (bootmem_resource_free) {
171 		res = bootmem_resource_free;
172 		bootmem_resource_free = res->sibling;
173 	}
174 	spin_unlock(&bootmem_resource_lock);
175 
176 	if (res)
177 		memset(res, 0, sizeof(struct resource));
178 	else
179 		res = kzalloc(sizeof(struct resource), flags);
180 
181 	return res;
182 }
183 
184 /* Return the conflict entry if you can't request it */
185 static struct resource * __request_resource(struct resource *root, struct resource *new)
186 {
187 	resource_size_t start = new->start;
188 	resource_size_t end = new->end;
189 	struct resource *tmp, **p;
190 
191 	if (end < start)
192 		return root;
193 	if (start < root->start)
194 		return root;
195 	if (end > root->end)
196 		return root;
197 	p = &root->child;
198 	for (;;) {
199 		tmp = *p;
200 		if (!tmp || tmp->start > end) {
201 			new->sibling = tmp;
202 			*p = new;
203 			new->parent = root;
204 			return NULL;
205 		}
206 		p = &tmp->sibling;
207 		if (tmp->end < start)
208 			continue;
209 		return tmp;
210 	}
211 }
212 
213 static int __release_resource(struct resource *old, bool release_child)
214 {
215 	struct resource *tmp, **p, *chd;
216 
217 	p = &old->parent->child;
218 	for (;;) {
219 		tmp = *p;
220 		if (!tmp)
221 			break;
222 		if (tmp == old) {
223 			if (release_child || !(tmp->child)) {
224 				*p = tmp->sibling;
225 			} else {
226 				for (chd = tmp->child;; chd = chd->sibling) {
227 					chd->parent = tmp->parent;
228 					if (!(chd->sibling))
229 						break;
230 				}
231 				*p = tmp->child;
232 				chd->sibling = tmp->sibling;
233 			}
234 			old->parent = NULL;
235 			return 0;
236 		}
237 		p = &tmp->sibling;
238 	}
239 	return -EINVAL;
240 }
241 
242 static void __release_child_resources(struct resource *r)
243 {
244 	struct resource *tmp, *p;
245 	resource_size_t size;
246 
247 	p = r->child;
248 	r->child = NULL;
249 	while (p) {
250 		tmp = p;
251 		p = p->sibling;
252 
253 		tmp->parent = NULL;
254 		tmp->sibling = NULL;
255 		__release_child_resources(tmp);
256 
257 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
258 		/* need to restore size, and keep flags */
259 		size = resource_size(tmp);
260 		tmp->start = 0;
261 		tmp->end = size - 1;
262 	}
263 }
264 
265 void release_child_resources(struct resource *r)
266 {
267 	write_lock(&resource_lock);
268 	__release_child_resources(r);
269 	write_unlock(&resource_lock);
270 }
271 
272 /**
273  * request_resource_conflict - request and reserve an I/O or memory resource
274  * @root: root resource descriptor
275  * @new: resource descriptor desired by caller
276  *
277  * Returns 0 for success, conflict resource on error.
278  */
279 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
280 {
281 	struct resource *conflict;
282 
283 	write_lock(&resource_lock);
284 	conflict = __request_resource(root, new);
285 	write_unlock(&resource_lock);
286 	return conflict;
287 }
288 
289 /**
290  * request_resource - request and reserve an I/O or memory resource
291  * @root: root resource descriptor
292  * @new: resource descriptor desired by caller
293  *
294  * Returns 0 for success, negative error code on error.
295  */
296 int request_resource(struct resource *root, struct resource *new)
297 {
298 	struct resource *conflict;
299 
300 	conflict = request_resource_conflict(root, new);
301 	return conflict ? -EBUSY : 0;
302 }
303 
304 EXPORT_SYMBOL(request_resource);
305 
306 /**
307  * release_resource - release a previously reserved resource
308  * @old: resource pointer
309  */
310 int release_resource(struct resource *old)
311 {
312 	int retval;
313 
314 	write_lock(&resource_lock);
315 	retval = __release_resource(old, true);
316 	write_unlock(&resource_lock);
317 	return retval;
318 }
319 
320 EXPORT_SYMBOL(release_resource);
321 
322 /**
323  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
324  *			 [@start..@end].
325  *
326  * If a resource is found, returns 0 and @*res is overwritten with the part
327  * of the resource that's within [@start..@end]; if none is found, returns
328  * -ENODEV.  Returns -EINVAL for invalid parameters.
329  *
330  * This function walks the whole tree and not just first level children
331  * unless @first_lvl is true.
332  *
333  * @start:	start address of the resource searched for
334  * @end:	end address of same resource
335  * @flags:	flags which the resource must have
336  * @desc:	descriptor the resource must have
337  * @first_lvl:	walk only the first level children, if set
338  * @res:	return ptr, if resource found
339  *
340  * The caller must specify @start, @end, @flags, and @desc
341  * (which may be IORES_DESC_NONE).
342  */
343 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
344 			       unsigned long flags, unsigned long desc,
345 			       bool first_lvl, struct resource *res)
346 {
347 	bool siblings_only = true;
348 	struct resource *p;
349 
350 	if (!res)
351 		return -EINVAL;
352 
353 	if (start >= end)
354 		return -EINVAL;
355 
356 	read_lock(&resource_lock);
357 
358 	for (p = iomem_resource.child; p; p = next_resource(p, siblings_only)) {
359 		/* If we passed the resource we are looking for, stop */
360 		if (p->start > end) {
361 			p = NULL;
362 			break;
363 		}
364 
365 		/* Skip until we find a range that matches what we look for */
366 		if (p->end < start)
367 			continue;
368 
369 		/*
370 		 * Now that we found a range that matches what we look for,
371 		 * check the flags and the descriptor. If we were not asked to
372 		 * use only the first level, start looking at children as well.
373 		 */
374 		siblings_only = first_lvl;
375 
376 		if ((p->flags & flags) != flags)
377 			continue;
378 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
379 			continue;
380 
381 		/* Found a match, break */
382 		break;
383 	}
384 
385 	if (p) {
386 		/* copy data */
387 		*res = (struct resource) {
388 			.start = max(start, p->start),
389 			.end = min(end, p->end),
390 			.flags = p->flags,
391 			.desc = p->desc,
392 			.parent = p->parent,
393 		};
394 	}
395 
396 	read_unlock(&resource_lock);
397 	return p ? 0 : -ENODEV;
398 }
399 
400 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
401 				 unsigned long flags, unsigned long desc,
402 				 bool first_lvl, void *arg,
403 				 int (*func)(struct resource *, void *))
404 {
405 	struct resource res;
406 	int ret = -EINVAL;
407 
408 	while (start < end &&
409 	       !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) {
410 		ret = (*func)(&res, arg);
411 		if (ret)
412 			break;
413 
414 		start = res.end + 1;
415 	}
416 
417 	return ret;
418 }
419 
420 /**
421  * walk_iomem_res_desc - Walks through iomem resources and calls func()
422  *			 with matching resource ranges.
423  * *
424  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
425  * @flags: I/O resource flags
426  * @start: start addr
427  * @end: end addr
428  * @arg: function argument for the callback @func
429  * @func: callback function that is called for each qualifying resource area
430  *
431  * This walks through whole tree and not just first level children.
432  * All the memory ranges which overlap start,end and also match flags and
433  * desc are valid candidates.
434  *
435  * NOTE: For a new descriptor search, define a new IORES_DESC in
436  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
437  */
438 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
439 		u64 end, void *arg, int (*func)(struct resource *, void *))
440 {
441 	return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func);
442 }
443 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
444 
445 /*
446  * This function calls the @func callback against all memory ranges of type
447  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
448  * Now, this function is only for System RAM, it deals with full ranges and
449  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
450  * ranges.
451  */
452 int walk_system_ram_res(u64 start, u64 end, void *arg,
453 			int (*func)(struct resource *, void *))
454 {
455 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
456 
457 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
458 				     arg, func);
459 }
460 
461 /*
462  * This function calls the @func callback against all memory ranges, which
463  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
464  */
465 int walk_mem_res(u64 start, u64 end, void *arg,
466 		 int (*func)(struct resource *, void *))
467 {
468 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
469 
470 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
471 				     arg, func);
472 }
473 
474 /*
475  * This function calls the @func callback against all memory ranges of type
476  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
477  * It is to be used only for System RAM.
478  *
479  * This will find System RAM ranges that are children of top-level resources
480  * in addition to top-level System RAM resources.
481  */
482 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
483 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
484 {
485 	resource_size_t start, end;
486 	unsigned long flags;
487 	struct resource res;
488 	unsigned long pfn, end_pfn;
489 	int ret = -EINVAL;
490 
491 	start = (u64) start_pfn << PAGE_SHIFT;
492 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
493 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
494 	while (start < end &&
495 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE,
496 				    false, &res)) {
497 		pfn = PFN_UP(res.start);
498 		end_pfn = PFN_DOWN(res.end + 1);
499 		if (end_pfn > pfn)
500 			ret = (*func)(pfn, end_pfn - pfn, arg);
501 		if (ret)
502 			break;
503 		start = res.end + 1;
504 	}
505 	return ret;
506 }
507 
508 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
509 {
510 	return 1;
511 }
512 
513 /*
514  * This generic page_is_ram() returns true if specified address is
515  * registered as System RAM in iomem_resource list.
516  */
517 int __weak page_is_ram(unsigned long pfn)
518 {
519 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
520 }
521 EXPORT_SYMBOL_GPL(page_is_ram);
522 
523 /**
524  * region_intersects() - determine intersection of region with known resources
525  * @start: region start address
526  * @size: size of region
527  * @flags: flags of resource (in iomem_resource)
528  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
529  *
530  * Check if the specified region partially overlaps or fully eclipses a
531  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
532  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
533  * return REGION_MIXED if the region overlaps @flags/@desc and another
534  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
535  * and no other defined resource. Note that REGION_INTERSECTS is also
536  * returned in the case when the specified region overlaps RAM and undefined
537  * memory holes.
538  *
539  * region_intersect() is used by memory remapping functions to ensure
540  * the user is not remapping RAM and is a vast speed up over walking
541  * through the resource table page by page.
542  */
543 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
544 		      unsigned long desc)
545 {
546 	struct resource res;
547 	int type = 0; int other = 0;
548 	struct resource *p;
549 
550 	res.start = start;
551 	res.end = start + size - 1;
552 
553 	read_lock(&resource_lock);
554 	for (p = iomem_resource.child; p ; p = p->sibling) {
555 		bool is_type = (((p->flags & flags) == flags) &&
556 				((desc == IORES_DESC_NONE) ||
557 				 (desc == p->desc)));
558 
559 		if (resource_overlaps(p, &res))
560 			is_type ? type++ : other++;
561 	}
562 	read_unlock(&resource_lock);
563 
564 	if (type == 0)
565 		return REGION_DISJOINT;
566 
567 	if (other == 0)
568 		return REGION_INTERSECTS;
569 
570 	return REGION_MIXED;
571 }
572 EXPORT_SYMBOL_GPL(region_intersects);
573 
574 void __weak arch_remove_reservations(struct resource *avail)
575 {
576 }
577 
578 static resource_size_t simple_align_resource(void *data,
579 					     const struct resource *avail,
580 					     resource_size_t size,
581 					     resource_size_t align)
582 {
583 	return avail->start;
584 }
585 
586 static void resource_clip(struct resource *res, resource_size_t min,
587 			  resource_size_t max)
588 {
589 	if (res->start < min)
590 		res->start = min;
591 	if (res->end > max)
592 		res->end = max;
593 }
594 
595 /*
596  * Find empty slot in the resource tree with the given range and
597  * alignment constraints
598  */
599 static int __find_resource(struct resource *root, struct resource *old,
600 			 struct resource *new,
601 			 resource_size_t  size,
602 			 struct resource_constraint *constraint)
603 {
604 	struct resource *this = root->child;
605 	struct resource tmp = *new, avail, alloc;
606 
607 	tmp.start = root->start;
608 	/*
609 	 * Skip past an allocated resource that starts at 0, since the assignment
610 	 * of this->start - 1 to tmp->end below would cause an underflow.
611 	 */
612 	if (this && this->start == root->start) {
613 		tmp.start = (this == old) ? old->start : this->end + 1;
614 		this = this->sibling;
615 	}
616 	for(;;) {
617 		if (this)
618 			tmp.end = (this == old) ?  this->end : this->start - 1;
619 		else
620 			tmp.end = root->end;
621 
622 		if (tmp.end < tmp.start)
623 			goto next;
624 
625 		resource_clip(&tmp, constraint->min, constraint->max);
626 		arch_remove_reservations(&tmp);
627 
628 		/* Check for overflow after ALIGN() */
629 		avail.start = ALIGN(tmp.start, constraint->align);
630 		avail.end = tmp.end;
631 		avail.flags = new->flags & ~IORESOURCE_UNSET;
632 		if (avail.start >= tmp.start) {
633 			alloc.flags = avail.flags;
634 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
635 					size, constraint->align);
636 			alloc.end = alloc.start + size - 1;
637 			if (alloc.start <= alloc.end &&
638 			    resource_contains(&avail, &alloc)) {
639 				new->start = alloc.start;
640 				new->end = alloc.end;
641 				return 0;
642 			}
643 		}
644 
645 next:		if (!this || this->end == root->end)
646 			break;
647 
648 		if (this != old)
649 			tmp.start = this->end + 1;
650 		this = this->sibling;
651 	}
652 	return -EBUSY;
653 }
654 
655 /*
656  * Find empty slot in the resource tree given range and alignment.
657  */
658 static int find_resource(struct resource *root, struct resource *new,
659 			resource_size_t size,
660 			struct resource_constraint  *constraint)
661 {
662 	return  __find_resource(root, NULL, new, size, constraint);
663 }
664 
665 /**
666  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
667  *	The resource will be relocated if the new size cannot be reallocated in the
668  *	current location.
669  *
670  * @root: root resource descriptor
671  * @old:  resource descriptor desired by caller
672  * @newsize: new size of the resource descriptor
673  * @constraint: the size and alignment constraints to be met.
674  */
675 static int reallocate_resource(struct resource *root, struct resource *old,
676 			       resource_size_t newsize,
677 			       struct resource_constraint *constraint)
678 {
679 	int err=0;
680 	struct resource new = *old;
681 	struct resource *conflict;
682 
683 	write_lock(&resource_lock);
684 
685 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
686 		goto out;
687 
688 	if (resource_contains(&new, old)) {
689 		old->start = new.start;
690 		old->end = new.end;
691 		goto out;
692 	}
693 
694 	if (old->child) {
695 		err = -EBUSY;
696 		goto out;
697 	}
698 
699 	if (resource_contains(old, &new)) {
700 		old->start = new.start;
701 		old->end = new.end;
702 	} else {
703 		__release_resource(old, true);
704 		*old = new;
705 		conflict = __request_resource(root, old);
706 		BUG_ON(conflict);
707 	}
708 out:
709 	write_unlock(&resource_lock);
710 	return err;
711 }
712 
713 
714 /**
715  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
716  * 	The resource will be reallocated with a new size if it was already allocated
717  * @root: root resource descriptor
718  * @new: resource descriptor desired by caller
719  * @size: requested resource region size
720  * @min: minimum boundary to allocate
721  * @max: maximum boundary to allocate
722  * @align: alignment requested, in bytes
723  * @alignf: alignment function, optional, called if not NULL
724  * @alignf_data: arbitrary data to pass to the @alignf function
725  */
726 int allocate_resource(struct resource *root, struct resource *new,
727 		      resource_size_t size, resource_size_t min,
728 		      resource_size_t max, resource_size_t align,
729 		      resource_size_t (*alignf)(void *,
730 						const struct resource *,
731 						resource_size_t,
732 						resource_size_t),
733 		      void *alignf_data)
734 {
735 	int err;
736 	struct resource_constraint constraint;
737 
738 	if (!alignf)
739 		alignf = simple_align_resource;
740 
741 	constraint.min = min;
742 	constraint.max = max;
743 	constraint.align = align;
744 	constraint.alignf = alignf;
745 	constraint.alignf_data = alignf_data;
746 
747 	if ( new->parent ) {
748 		/* resource is already allocated, try reallocating with
749 		   the new constraints */
750 		return reallocate_resource(root, new, size, &constraint);
751 	}
752 
753 	write_lock(&resource_lock);
754 	err = find_resource(root, new, size, &constraint);
755 	if (err >= 0 && __request_resource(root, new))
756 		err = -EBUSY;
757 	write_unlock(&resource_lock);
758 	return err;
759 }
760 
761 EXPORT_SYMBOL(allocate_resource);
762 
763 /**
764  * lookup_resource - find an existing resource by a resource start address
765  * @root: root resource descriptor
766  * @start: resource start address
767  *
768  * Returns a pointer to the resource if found, NULL otherwise
769  */
770 struct resource *lookup_resource(struct resource *root, resource_size_t start)
771 {
772 	struct resource *res;
773 
774 	read_lock(&resource_lock);
775 	for (res = root->child; res; res = res->sibling) {
776 		if (res->start == start)
777 			break;
778 	}
779 	read_unlock(&resource_lock);
780 
781 	return res;
782 }
783 
784 /*
785  * Insert a resource into the resource tree. If successful, return NULL,
786  * otherwise return the conflicting resource (compare to __request_resource())
787  */
788 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
789 {
790 	struct resource *first, *next;
791 
792 	for (;; parent = first) {
793 		first = __request_resource(parent, new);
794 		if (!first)
795 			return first;
796 
797 		if (first == parent)
798 			return first;
799 		if (WARN_ON(first == new))	/* duplicated insertion */
800 			return first;
801 
802 		if ((first->start > new->start) || (first->end < new->end))
803 			break;
804 		if ((first->start == new->start) && (first->end == new->end))
805 			break;
806 	}
807 
808 	for (next = first; ; next = next->sibling) {
809 		/* Partial overlap? Bad, and unfixable */
810 		if (next->start < new->start || next->end > new->end)
811 			return next;
812 		if (!next->sibling)
813 			break;
814 		if (next->sibling->start > new->end)
815 			break;
816 	}
817 
818 	new->parent = parent;
819 	new->sibling = next->sibling;
820 	new->child = first;
821 
822 	next->sibling = NULL;
823 	for (next = first; next; next = next->sibling)
824 		next->parent = new;
825 
826 	if (parent->child == first) {
827 		parent->child = new;
828 	} else {
829 		next = parent->child;
830 		while (next->sibling != first)
831 			next = next->sibling;
832 		next->sibling = new;
833 	}
834 	return NULL;
835 }
836 
837 /**
838  * insert_resource_conflict - Inserts resource in the resource tree
839  * @parent: parent of the new resource
840  * @new: new resource to insert
841  *
842  * Returns 0 on success, conflict resource if the resource can't be inserted.
843  *
844  * This function is equivalent to request_resource_conflict when no conflict
845  * happens. If a conflict happens, and the conflicting resources
846  * entirely fit within the range of the new resource, then the new
847  * resource is inserted and the conflicting resources become children of
848  * the new resource.
849  *
850  * This function is intended for producers of resources, such as FW modules
851  * and bus drivers.
852  */
853 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
854 {
855 	struct resource *conflict;
856 
857 	write_lock(&resource_lock);
858 	conflict = __insert_resource(parent, new);
859 	write_unlock(&resource_lock);
860 	return conflict;
861 }
862 
863 /**
864  * insert_resource - Inserts a resource in the resource tree
865  * @parent: parent of the new resource
866  * @new: new resource to insert
867  *
868  * Returns 0 on success, -EBUSY if the resource can't be inserted.
869  *
870  * This function is intended for producers of resources, such as FW modules
871  * and bus drivers.
872  */
873 int insert_resource(struct resource *parent, struct resource *new)
874 {
875 	struct resource *conflict;
876 
877 	conflict = insert_resource_conflict(parent, new);
878 	return conflict ? -EBUSY : 0;
879 }
880 EXPORT_SYMBOL_GPL(insert_resource);
881 
882 /**
883  * insert_resource_expand_to_fit - Insert a resource into the resource tree
884  * @root: root resource descriptor
885  * @new: new resource to insert
886  *
887  * Insert a resource into the resource tree, possibly expanding it in order
888  * to make it encompass any conflicting resources.
889  */
890 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
891 {
892 	if (new->parent)
893 		return;
894 
895 	write_lock(&resource_lock);
896 	for (;;) {
897 		struct resource *conflict;
898 
899 		conflict = __insert_resource(root, new);
900 		if (!conflict)
901 			break;
902 		if (conflict == root)
903 			break;
904 
905 		/* Ok, expand resource to cover the conflict, then try again .. */
906 		if (conflict->start < new->start)
907 			new->start = conflict->start;
908 		if (conflict->end > new->end)
909 			new->end = conflict->end;
910 
911 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
912 	}
913 	write_unlock(&resource_lock);
914 }
915 
916 /**
917  * remove_resource - Remove a resource in the resource tree
918  * @old: resource to remove
919  *
920  * Returns 0 on success, -EINVAL if the resource is not valid.
921  *
922  * This function removes a resource previously inserted by insert_resource()
923  * or insert_resource_conflict(), and moves the children (if any) up to
924  * where they were before.  insert_resource() and insert_resource_conflict()
925  * insert a new resource, and move any conflicting resources down to the
926  * children of the new resource.
927  *
928  * insert_resource(), insert_resource_conflict() and remove_resource() are
929  * intended for producers of resources, such as FW modules and bus drivers.
930  */
931 int remove_resource(struct resource *old)
932 {
933 	int retval;
934 
935 	write_lock(&resource_lock);
936 	retval = __release_resource(old, false);
937 	write_unlock(&resource_lock);
938 	return retval;
939 }
940 EXPORT_SYMBOL_GPL(remove_resource);
941 
942 static int __adjust_resource(struct resource *res, resource_size_t start,
943 				resource_size_t size)
944 {
945 	struct resource *tmp, *parent = res->parent;
946 	resource_size_t end = start + size - 1;
947 	int result = -EBUSY;
948 
949 	if (!parent)
950 		goto skip;
951 
952 	if ((start < parent->start) || (end > parent->end))
953 		goto out;
954 
955 	if (res->sibling && (res->sibling->start <= end))
956 		goto out;
957 
958 	tmp = parent->child;
959 	if (tmp != res) {
960 		while (tmp->sibling != res)
961 			tmp = tmp->sibling;
962 		if (start <= tmp->end)
963 			goto out;
964 	}
965 
966 skip:
967 	for (tmp = res->child; tmp; tmp = tmp->sibling)
968 		if ((tmp->start < start) || (tmp->end > end))
969 			goto out;
970 
971 	res->start = start;
972 	res->end = end;
973 	result = 0;
974 
975  out:
976 	return result;
977 }
978 
979 /**
980  * adjust_resource - modify a resource's start and size
981  * @res: resource to modify
982  * @start: new start value
983  * @size: new size
984  *
985  * Given an existing resource, change its start and size to match the
986  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
987  * Existing children of the resource are assumed to be immutable.
988  */
989 int adjust_resource(struct resource *res, resource_size_t start,
990 		    resource_size_t size)
991 {
992 	int result;
993 
994 	write_lock(&resource_lock);
995 	result = __adjust_resource(res, start, size);
996 	write_unlock(&resource_lock);
997 	return result;
998 }
999 EXPORT_SYMBOL(adjust_resource);
1000 
1001 static void __init
1002 __reserve_region_with_split(struct resource *root, resource_size_t start,
1003 			    resource_size_t end, const char *name)
1004 {
1005 	struct resource *parent = root;
1006 	struct resource *conflict;
1007 	struct resource *res = alloc_resource(GFP_ATOMIC);
1008 	struct resource *next_res = NULL;
1009 	int type = resource_type(root);
1010 
1011 	if (!res)
1012 		return;
1013 
1014 	res->name = name;
1015 	res->start = start;
1016 	res->end = end;
1017 	res->flags = type | IORESOURCE_BUSY;
1018 	res->desc = IORES_DESC_NONE;
1019 
1020 	while (1) {
1021 
1022 		conflict = __request_resource(parent, res);
1023 		if (!conflict) {
1024 			if (!next_res)
1025 				break;
1026 			res = next_res;
1027 			next_res = NULL;
1028 			continue;
1029 		}
1030 
1031 		/* conflict covered whole area */
1032 		if (conflict->start <= res->start &&
1033 				conflict->end >= res->end) {
1034 			free_resource(res);
1035 			WARN_ON(next_res);
1036 			break;
1037 		}
1038 
1039 		/* failed, split and try again */
1040 		if (conflict->start > res->start) {
1041 			end = res->end;
1042 			res->end = conflict->start - 1;
1043 			if (conflict->end < end) {
1044 				next_res = alloc_resource(GFP_ATOMIC);
1045 				if (!next_res) {
1046 					free_resource(res);
1047 					break;
1048 				}
1049 				next_res->name = name;
1050 				next_res->start = conflict->end + 1;
1051 				next_res->end = end;
1052 				next_res->flags = type | IORESOURCE_BUSY;
1053 				next_res->desc = IORES_DESC_NONE;
1054 			}
1055 		} else {
1056 			res->start = conflict->end + 1;
1057 		}
1058 	}
1059 
1060 }
1061 
1062 void __init
1063 reserve_region_with_split(struct resource *root, resource_size_t start,
1064 			  resource_size_t end, const char *name)
1065 {
1066 	int abort = 0;
1067 
1068 	write_lock(&resource_lock);
1069 	if (root->start > start || root->end < end) {
1070 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1071 		       (unsigned long long)start, (unsigned long long)end,
1072 		       root);
1073 		if (start > root->end || end < root->start)
1074 			abort = 1;
1075 		else {
1076 			if (end > root->end)
1077 				end = root->end;
1078 			if (start < root->start)
1079 				start = root->start;
1080 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1081 			       (unsigned long long)start,
1082 			       (unsigned long long)end);
1083 		}
1084 		dump_stack();
1085 	}
1086 	if (!abort)
1087 		__reserve_region_with_split(root, start, end, name);
1088 	write_unlock(&resource_lock);
1089 }
1090 
1091 /**
1092  * resource_alignment - calculate resource's alignment
1093  * @res: resource pointer
1094  *
1095  * Returns alignment on success, 0 (invalid alignment) on failure.
1096  */
1097 resource_size_t resource_alignment(struct resource *res)
1098 {
1099 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1100 	case IORESOURCE_SIZEALIGN:
1101 		return resource_size(res);
1102 	case IORESOURCE_STARTALIGN:
1103 		return res->start;
1104 	default:
1105 		return 0;
1106 	}
1107 }
1108 
1109 /*
1110  * This is compatibility stuff for IO resources.
1111  *
1112  * Note how this, unlike the above, knows about
1113  * the IO flag meanings (busy etc).
1114  *
1115  * request_region creates a new busy region.
1116  *
1117  * release_region releases a matching busy region.
1118  */
1119 
1120 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1121 
1122 /**
1123  * __request_region - create a new busy resource region
1124  * @parent: parent resource descriptor
1125  * @start: resource start address
1126  * @n: resource region size
1127  * @name: reserving caller's ID string
1128  * @flags: IO resource flags
1129  */
1130 struct resource * __request_region(struct resource *parent,
1131 				   resource_size_t start, resource_size_t n,
1132 				   const char *name, int flags)
1133 {
1134 	DECLARE_WAITQUEUE(wait, current);
1135 	struct resource *res = alloc_resource(GFP_KERNEL);
1136 	struct resource *orig_parent = parent;
1137 
1138 	if (!res)
1139 		return NULL;
1140 
1141 	res->name = name;
1142 	res->start = start;
1143 	res->end = start + n - 1;
1144 
1145 	write_lock(&resource_lock);
1146 
1147 	for (;;) {
1148 		struct resource *conflict;
1149 
1150 		res->flags = resource_type(parent) | resource_ext_type(parent);
1151 		res->flags |= IORESOURCE_BUSY | flags;
1152 		res->desc = parent->desc;
1153 
1154 		conflict = __request_resource(parent, res);
1155 		if (!conflict)
1156 			break;
1157 		/*
1158 		 * mm/hmm.c reserves physical addresses which then
1159 		 * become unavailable to other users.  Conflicts are
1160 		 * not expected.  Warn to aid debugging if encountered.
1161 		 */
1162 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1163 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1164 				conflict->name, conflict, res);
1165 		}
1166 		if (conflict != parent) {
1167 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1168 				parent = conflict;
1169 				continue;
1170 			}
1171 		}
1172 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1173 			add_wait_queue(&muxed_resource_wait, &wait);
1174 			write_unlock(&resource_lock);
1175 			set_current_state(TASK_UNINTERRUPTIBLE);
1176 			schedule();
1177 			remove_wait_queue(&muxed_resource_wait, &wait);
1178 			write_lock(&resource_lock);
1179 			continue;
1180 		}
1181 		/* Uhhuh, that didn't work out.. */
1182 		free_resource(res);
1183 		res = NULL;
1184 		break;
1185 	}
1186 	write_unlock(&resource_lock);
1187 
1188 	if (res && orig_parent == &iomem_resource)
1189 		revoke_devmem(res);
1190 
1191 	return res;
1192 }
1193 EXPORT_SYMBOL(__request_region);
1194 
1195 /**
1196  * __release_region - release a previously reserved resource region
1197  * @parent: parent resource descriptor
1198  * @start: resource start address
1199  * @n: resource region size
1200  *
1201  * The described resource region must match a currently busy region.
1202  */
1203 void __release_region(struct resource *parent, resource_size_t start,
1204 		      resource_size_t n)
1205 {
1206 	struct resource **p;
1207 	resource_size_t end;
1208 
1209 	p = &parent->child;
1210 	end = start + n - 1;
1211 
1212 	write_lock(&resource_lock);
1213 
1214 	for (;;) {
1215 		struct resource *res = *p;
1216 
1217 		if (!res)
1218 			break;
1219 		if (res->start <= start && res->end >= end) {
1220 			if (!(res->flags & IORESOURCE_BUSY)) {
1221 				p = &res->child;
1222 				continue;
1223 			}
1224 			if (res->start != start || res->end != end)
1225 				break;
1226 			*p = res->sibling;
1227 			write_unlock(&resource_lock);
1228 			if (res->flags & IORESOURCE_MUXED)
1229 				wake_up(&muxed_resource_wait);
1230 			free_resource(res);
1231 			return;
1232 		}
1233 		p = &res->sibling;
1234 	}
1235 
1236 	write_unlock(&resource_lock);
1237 
1238 	printk(KERN_WARNING "Trying to free nonexistent resource "
1239 		"<%016llx-%016llx>\n", (unsigned long long)start,
1240 		(unsigned long long)end);
1241 }
1242 EXPORT_SYMBOL(__release_region);
1243 
1244 #ifdef CONFIG_MEMORY_HOTREMOVE
1245 /**
1246  * release_mem_region_adjustable - release a previously reserved memory region
1247  * @start: resource start address
1248  * @size: resource region size
1249  *
1250  * This interface is intended for memory hot-delete.  The requested region
1251  * is released from a currently busy memory resource.  The requested region
1252  * must either match exactly or fit into a single busy resource entry.  In
1253  * the latter case, the remaining resource is adjusted accordingly.
1254  * Existing children of the busy memory resource must be immutable in the
1255  * request.
1256  *
1257  * Note:
1258  * - Additional release conditions, such as overlapping region, can be
1259  *   supported after they are confirmed as valid cases.
1260  * - When a busy memory resource gets split into two entries, the code
1261  *   assumes that all children remain in the lower address entry for
1262  *   simplicity.  Enhance this logic when necessary.
1263  */
1264 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1265 {
1266 	struct resource *parent = &iomem_resource;
1267 	struct resource *new_res = NULL;
1268 	bool alloc_nofail = false;
1269 	struct resource **p;
1270 	struct resource *res;
1271 	resource_size_t end;
1272 
1273 	end = start + size - 1;
1274 	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1275 		return;
1276 
1277 	/*
1278 	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1279 	 * just before releasing the region. This is highly unlikely to
1280 	 * fail - let's play save and make it never fail as the caller cannot
1281 	 * perform any error handling (e.g., trying to re-add memory will fail
1282 	 * similarly).
1283 	 */
1284 retry:
1285 	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1286 
1287 	p = &parent->child;
1288 	write_lock(&resource_lock);
1289 
1290 	while ((res = *p)) {
1291 		if (res->start >= end)
1292 			break;
1293 
1294 		/* look for the next resource if it does not fit into */
1295 		if (res->start > start || res->end < end) {
1296 			p = &res->sibling;
1297 			continue;
1298 		}
1299 
1300 		/*
1301 		 * All memory regions added from memory-hotplug path have the
1302 		 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1303 		 * this flag, we know that we are dealing with a resource coming
1304 		 * from HMM/devm. HMM/devm use another mechanism to add/release
1305 		 * a resource. This goes via devm_request_mem_region and
1306 		 * devm_release_mem_region.
1307 		 * HMM/devm take care to release their resources when they want,
1308 		 * so if we are dealing with them, let us just back off here.
1309 		 */
1310 		if (!(res->flags & IORESOURCE_SYSRAM)) {
1311 			break;
1312 		}
1313 
1314 		if (!(res->flags & IORESOURCE_MEM))
1315 			break;
1316 
1317 		if (!(res->flags & IORESOURCE_BUSY)) {
1318 			p = &res->child;
1319 			continue;
1320 		}
1321 
1322 		/* found the target resource; let's adjust accordingly */
1323 		if (res->start == start && res->end == end) {
1324 			/* free the whole entry */
1325 			*p = res->sibling;
1326 			free_resource(res);
1327 		} else if (res->start == start && res->end != end) {
1328 			/* adjust the start */
1329 			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1330 						       res->end - end));
1331 		} else if (res->start != start && res->end == end) {
1332 			/* adjust the end */
1333 			WARN_ON_ONCE(__adjust_resource(res, res->start,
1334 						       start - res->start));
1335 		} else {
1336 			/* split into two entries - we need a new resource */
1337 			if (!new_res) {
1338 				new_res = alloc_resource(GFP_ATOMIC);
1339 				if (!new_res) {
1340 					alloc_nofail = true;
1341 					write_unlock(&resource_lock);
1342 					goto retry;
1343 				}
1344 			}
1345 			new_res->name = res->name;
1346 			new_res->start = end + 1;
1347 			new_res->end = res->end;
1348 			new_res->flags = res->flags;
1349 			new_res->desc = res->desc;
1350 			new_res->parent = res->parent;
1351 			new_res->sibling = res->sibling;
1352 			new_res->child = NULL;
1353 
1354 			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1355 							   start - res->start)))
1356 				break;
1357 			res->sibling = new_res;
1358 			new_res = NULL;
1359 		}
1360 
1361 		break;
1362 	}
1363 
1364 	write_unlock(&resource_lock);
1365 	free_resource(new_res);
1366 }
1367 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1368 
1369 #ifdef CONFIG_MEMORY_HOTPLUG
1370 static bool system_ram_resources_mergeable(struct resource *r1,
1371 					   struct resource *r2)
1372 {
1373 	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1374 	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1375 	       r1->name == r2->name && r1->desc == r2->desc &&
1376 	       !r1->child && !r2->child;
1377 }
1378 
1379 /**
1380  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1381  *	merge it with adjacent, mergeable resources
1382  * @res: resource descriptor
1383  *
1384  * This interface is intended for memory hotplug, whereby lots of contiguous
1385  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1386  * the actual resource boundaries are not of interest (e.g., it might be
1387  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1388  * same parent, and that don't have any children are considered. All mergeable
1389  * resources must be immutable during the request.
1390  *
1391  * Note:
1392  * - The caller has to make sure that no pointers to resources that are
1393  *   marked mergeable are used anymore after this call - the resource might
1394  *   be freed and the pointer might be stale!
1395  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1396  */
1397 void merge_system_ram_resource(struct resource *res)
1398 {
1399 	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1400 	struct resource *cur;
1401 
1402 	if (WARN_ON_ONCE((res->flags & flags) != flags))
1403 		return;
1404 
1405 	write_lock(&resource_lock);
1406 	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1407 
1408 	/* Try to merge with next item in the list. */
1409 	cur = res->sibling;
1410 	if (cur && system_ram_resources_mergeable(res, cur)) {
1411 		res->end = cur->end;
1412 		res->sibling = cur->sibling;
1413 		free_resource(cur);
1414 	}
1415 
1416 	/* Try to merge with previous item in the list. */
1417 	cur = res->parent->child;
1418 	while (cur && cur->sibling != res)
1419 		cur = cur->sibling;
1420 	if (cur && system_ram_resources_mergeable(cur, res)) {
1421 		cur->end = res->end;
1422 		cur->sibling = res->sibling;
1423 		free_resource(res);
1424 	}
1425 	write_unlock(&resource_lock);
1426 }
1427 #endif	/* CONFIG_MEMORY_HOTPLUG */
1428 
1429 /*
1430  * Managed region resource
1431  */
1432 static void devm_resource_release(struct device *dev, void *ptr)
1433 {
1434 	struct resource **r = ptr;
1435 
1436 	release_resource(*r);
1437 }
1438 
1439 /**
1440  * devm_request_resource() - request and reserve an I/O or memory resource
1441  * @dev: device for which to request the resource
1442  * @root: root of the resource tree from which to request the resource
1443  * @new: descriptor of the resource to request
1444  *
1445  * This is a device-managed version of request_resource(). There is usually
1446  * no need to release resources requested by this function explicitly since
1447  * that will be taken care of when the device is unbound from its driver.
1448  * If for some reason the resource needs to be released explicitly, because
1449  * of ordering issues for example, drivers must call devm_release_resource()
1450  * rather than the regular release_resource().
1451  *
1452  * When a conflict is detected between any existing resources and the newly
1453  * requested resource, an error message will be printed.
1454  *
1455  * Returns 0 on success or a negative error code on failure.
1456  */
1457 int devm_request_resource(struct device *dev, struct resource *root,
1458 			  struct resource *new)
1459 {
1460 	struct resource *conflict, **ptr;
1461 
1462 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1463 	if (!ptr)
1464 		return -ENOMEM;
1465 
1466 	*ptr = new;
1467 
1468 	conflict = request_resource_conflict(root, new);
1469 	if (conflict) {
1470 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1471 			new, conflict->name, conflict);
1472 		devres_free(ptr);
1473 		return -EBUSY;
1474 	}
1475 
1476 	devres_add(dev, ptr);
1477 	return 0;
1478 }
1479 EXPORT_SYMBOL(devm_request_resource);
1480 
1481 static int devm_resource_match(struct device *dev, void *res, void *data)
1482 {
1483 	struct resource **ptr = res;
1484 
1485 	return *ptr == data;
1486 }
1487 
1488 /**
1489  * devm_release_resource() - release a previously requested resource
1490  * @dev: device for which to release the resource
1491  * @new: descriptor of the resource to release
1492  *
1493  * Releases a resource previously requested using devm_request_resource().
1494  */
1495 void devm_release_resource(struct device *dev, struct resource *new)
1496 {
1497 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1498 			       new));
1499 }
1500 EXPORT_SYMBOL(devm_release_resource);
1501 
1502 struct region_devres {
1503 	struct resource *parent;
1504 	resource_size_t start;
1505 	resource_size_t n;
1506 };
1507 
1508 static void devm_region_release(struct device *dev, void *res)
1509 {
1510 	struct region_devres *this = res;
1511 
1512 	__release_region(this->parent, this->start, this->n);
1513 }
1514 
1515 static int devm_region_match(struct device *dev, void *res, void *match_data)
1516 {
1517 	struct region_devres *this = res, *match = match_data;
1518 
1519 	return this->parent == match->parent &&
1520 		this->start == match->start && this->n == match->n;
1521 }
1522 
1523 struct resource *
1524 __devm_request_region(struct device *dev, struct resource *parent,
1525 		      resource_size_t start, resource_size_t n, const char *name)
1526 {
1527 	struct region_devres *dr = NULL;
1528 	struct resource *res;
1529 
1530 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1531 			  GFP_KERNEL);
1532 	if (!dr)
1533 		return NULL;
1534 
1535 	dr->parent = parent;
1536 	dr->start = start;
1537 	dr->n = n;
1538 
1539 	res = __request_region(parent, start, n, name, 0);
1540 	if (res)
1541 		devres_add(dev, dr);
1542 	else
1543 		devres_free(dr);
1544 
1545 	return res;
1546 }
1547 EXPORT_SYMBOL(__devm_request_region);
1548 
1549 void __devm_release_region(struct device *dev, struct resource *parent,
1550 			   resource_size_t start, resource_size_t n)
1551 {
1552 	struct region_devres match_data = { parent, start, n };
1553 
1554 	__release_region(parent, start, n);
1555 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1556 			       &match_data));
1557 }
1558 EXPORT_SYMBOL(__devm_release_region);
1559 
1560 /*
1561  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1562  */
1563 #define MAXRESERVE 4
1564 static int __init reserve_setup(char *str)
1565 {
1566 	static int reserved;
1567 	static struct resource reserve[MAXRESERVE];
1568 
1569 	for (;;) {
1570 		unsigned int io_start, io_num;
1571 		int x = reserved;
1572 		struct resource *parent;
1573 
1574 		if (get_option(&str, &io_start) != 2)
1575 			break;
1576 		if (get_option(&str, &io_num) == 0)
1577 			break;
1578 		if (x < MAXRESERVE) {
1579 			struct resource *res = reserve + x;
1580 
1581 			/*
1582 			 * If the region starts below 0x10000, we assume it's
1583 			 * I/O port space; otherwise assume it's memory.
1584 			 */
1585 			if (io_start < 0x10000) {
1586 				res->flags = IORESOURCE_IO;
1587 				parent = &ioport_resource;
1588 			} else {
1589 				res->flags = IORESOURCE_MEM;
1590 				parent = &iomem_resource;
1591 			}
1592 			res->name = "reserved";
1593 			res->start = io_start;
1594 			res->end = io_start + io_num - 1;
1595 			res->flags |= IORESOURCE_BUSY;
1596 			res->desc = IORES_DESC_NONE;
1597 			res->child = NULL;
1598 			if (request_resource(parent, res) == 0)
1599 				reserved = x+1;
1600 		}
1601 	}
1602 	return 1;
1603 }
1604 __setup("reserve=", reserve_setup);
1605 
1606 /*
1607  * Check if the requested addr and size spans more than any slot in the
1608  * iomem resource tree.
1609  */
1610 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1611 {
1612 	struct resource *p = &iomem_resource;
1613 	int err = 0;
1614 	loff_t l;
1615 
1616 	read_lock(&resource_lock);
1617 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1618 		/*
1619 		 * We can probably skip the resources without
1620 		 * IORESOURCE_IO attribute?
1621 		 */
1622 		if (p->start >= addr + size)
1623 			continue;
1624 		if (p->end < addr)
1625 			continue;
1626 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1627 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1628 			continue;
1629 		/*
1630 		 * if a resource is "BUSY", it's not a hardware resource
1631 		 * but a driver mapping of such a resource; we don't want
1632 		 * to warn for those; some drivers legitimately map only
1633 		 * partial hardware resources. (example: vesafb)
1634 		 */
1635 		if (p->flags & IORESOURCE_BUSY)
1636 			continue;
1637 
1638 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1639 		       (unsigned long long)addr,
1640 		       (unsigned long long)(addr + size - 1),
1641 		       p->name, p);
1642 		err = -1;
1643 		break;
1644 	}
1645 	read_unlock(&resource_lock);
1646 
1647 	return err;
1648 }
1649 
1650 #ifdef CONFIG_STRICT_DEVMEM
1651 static int strict_iomem_checks = 1;
1652 #else
1653 static int strict_iomem_checks;
1654 #endif
1655 
1656 /*
1657  * check if an address is reserved in the iomem resource tree
1658  * returns true if reserved, false if not reserved.
1659  */
1660 bool iomem_is_exclusive(u64 addr)
1661 {
1662 	struct resource *p = &iomem_resource;
1663 	bool err = false;
1664 	loff_t l;
1665 	int size = PAGE_SIZE;
1666 
1667 	if (!strict_iomem_checks)
1668 		return false;
1669 
1670 	addr = addr & PAGE_MASK;
1671 
1672 	read_lock(&resource_lock);
1673 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1674 		/*
1675 		 * We can probably skip the resources without
1676 		 * IORESOURCE_IO attribute?
1677 		 */
1678 		if (p->start >= addr + size)
1679 			break;
1680 		if (p->end < addr)
1681 			continue;
1682 		/*
1683 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1684 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1685 		 * resource is busy.
1686 		 */
1687 		if ((p->flags & IORESOURCE_BUSY) == 0)
1688 			continue;
1689 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1690 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1691 			err = true;
1692 			break;
1693 		}
1694 	}
1695 	read_unlock(&resource_lock);
1696 
1697 	return err;
1698 }
1699 
1700 struct resource_entry *resource_list_create_entry(struct resource *res,
1701 						  size_t extra_size)
1702 {
1703 	struct resource_entry *entry;
1704 
1705 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1706 	if (entry) {
1707 		INIT_LIST_HEAD(&entry->node);
1708 		entry->res = res ? res : &entry->__res;
1709 	}
1710 
1711 	return entry;
1712 }
1713 EXPORT_SYMBOL(resource_list_create_entry);
1714 
1715 void resource_list_free(struct list_head *head)
1716 {
1717 	struct resource_entry *entry, *tmp;
1718 
1719 	list_for_each_entry_safe(entry, tmp, head, node)
1720 		resource_list_destroy_entry(entry);
1721 }
1722 EXPORT_SYMBOL(resource_list_free);
1723 
1724 #ifdef CONFIG_DEVICE_PRIVATE
1725 static struct resource *__request_free_mem_region(struct device *dev,
1726 		struct resource *base, unsigned long size, const char *name)
1727 {
1728 	resource_size_t end, addr;
1729 	struct resource *res;
1730 
1731 	size = ALIGN(size, 1UL << PA_SECTION_SHIFT);
1732 	end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1);
1733 	addr = end - size + 1UL;
1734 
1735 	for (; addr > size && addr >= base->start; addr -= size) {
1736 		if (region_intersects(addr, size, 0, IORES_DESC_NONE) !=
1737 				REGION_DISJOINT)
1738 			continue;
1739 
1740 		if (dev)
1741 			res = devm_request_mem_region(dev, addr, size, name);
1742 		else
1743 			res = request_mem_region(addr, size, name);
1744 		if (!res)
1745 			return ERR_PTR(-ENOMEM);
1746 		res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1747 		return res;
1748 	}
1749 
1750 	return ERR_PTR(-ERANGE);
1751 }
1752 
1753 /**
1754  * devm_request_free_mem_region - find free region for device private memory
1755  *
1756  * @dev: device struct to bind the resource to
1757  * @size: size in bytes of the device memory to add
1758  * @base: resource tree to look in
1759  *
1760  * This function tries to find an empty range of physical address big enough to
1761  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1762  * memory, which in turn allocates struct pages.
1763  */
1764 struct resource *devm_request_free_mem_region(struct device *dev,
1765 		struct resource *base, unsigned long size)
1766 {
1767 	return __request_free_mem_region(dev, base, size, dev_name(dev));
1768 }
1769 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1770 
1771 struct resource *request_free_mem_region(struct resource *base,
1772 		unsigned long size, const char *name)
1773 {
1774 	return __request_free_mem_region(NULL, base, size, name);
1775 }
1776 EXPORT_SYMBOL_GPL(request_free_mem_region);
1777 
1778 #endif /* CONFIG_DEVICE_PRIVATE */
1779 
1780 static int __init strict_iomem(char *str)
1781 {
1782 	if (strstr(str, "relaxed"))
1783 		strict_iomem_checks = 0;
1784 	if (strstr(str, "strict"))
1785 		strict_iomem_checks = 1;
1786 	return 1;
1787 }
1788 
1789 __setup("iomem=", strict_iomem);
1790