1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/resource.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 7 * 8 * Arbitrary resource management. 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/export.h> 14 #include <linux/errno.h> 15 #include <linux/ioport.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/proc_fs.h> 21 #include <linux/sched.h> 22 #include <linux/seq_file.h> 23 #include <linux/device.h> 24 #include <linux/pfn.h> 25 #include <linux/mm.h> 26 #include <linux/resource_ext.h> 27 #include <asm/io.h> 28 29 30 struct resource ioport_resource = { 31 .name = "PCI IO", 32 .start = 0, 33 .end = IO_SPACE_LIMIT, 34 .flags = IORESOURCE_IO, 35 }; 36 EXPORT_SYMBOL(ioport_resource); 37 38 struct resource iomem_resource = { 39 .name = "PCI mem", 40 .start = 0, 41 .end = -1, 42 .flags = IORESOURCE_MEM, 43 }; 44 EXPORT_SYMBOL(iomem_resource); 45 46 /* constraints to be met while allocating resources */ 47 struct resource_constraint { 48 resource_size_t min, max, align; 49 resource_size_t (*alignf)(void *, const struct resource *, 50 resource_size_t, resource_size_t); 51 void *alignf_data; 52 }; 53 54 static DEFINE_RWLOCK(resource_lock); 55 56 /* 57 * For memory hotplug, there is no way to free resource entries allocated 58 * by boot mem after the system is up. So for reusing the resource entry 59 * we need to remember the resource. 60 */ 61 static struct resource *bootmem_resource_free; 62 static DEFINE_SPINLOCK(bootmem_resource_lock); 63 64 static struct resource *next_resource(struct resource *p, bool sibling_only) 65 { 66 /* Caller wants to traverse through siblings only */ 67 if (sibling_only) 68 return p->sibling; 69 70 if (p->child) 71 return p->child; 72 while (!p->sibling && p->parent) 73 p = p->parent; 74 return p->sibling; 75 } 76 77 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 78 { 79 struct resource *p = v; 80 (*pos)++; 81 return (void *)next_resource(p, false); 82 } 83 84 #ifdef CONFIG_PROC_FS 85 86 enum { MAX_IORES_LEVEL = 5 }; 87 88 static void *r_start(struct seq_file *m, loff_t *pos) 89 __acquires(resource_lock) 90 { 91 struct resource *p = PDE_DATA(file_inode(m->file)); 92 loff_t l = 0; 93 read_lock(&resource_lock); 94 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 95 ; 96 return p; 97 } 98 99 static void r_stop(struct seq_file *m, void *v) 100 __releases(resource_lock) 101 { 102 read_unlock(&resource_lock); 103 } 104 105 static int r_show(struct seq_file *m, void *v) 106 { 107 struct resource *root = PDE_DATA(file_inode(m->file)); 108 struct resource *r = v, *p; 109 unsigned long long start, end; 110 int width = root->end < 0x10000 ? 4 : 8; 111 int depth; 112 113 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 114 if (p->parent == root) 115 break; 116 117 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 118 start = r->start; 119 end = r->end; 120 } else { 121 start = end = 0; 122 } 123 124 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 125 depth * 2, "", 126 width, start, 127 width, end, 128 r->name ? r->name : "<BAD>"); 129 return 0; 130 } 131 132 static const struct seq_operations resource_op = { 133 .start = r_start, 134 .next = r_next, 135 .stop = r_stop, 136 .show = r_show, 137 }; 138 139 static int __init ioresources_init(void) 140 { 141 proc_create_seq_data("ioports", 0, NULL, &resource_op, 142 &ioport_resource); 143 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 144 return 0; 145 } 146 __initcall(ioresources_init); 147 148 #endif /* CONFIG_PROC_FS */ 149 150 static void free_resource(struct resource *res) 151 { 152 if (!res) 153 return; 154 155 if (!PageSlab(virt_to_head_page(res))) { 156 spin_lock(&bootmem_resource_lock); 157 res->sibling = bootmem_resource_free; 158 bootmem_resource_free = res; 159 spin_unlock(&bootmem_resource_lock); 160 } else { 161 kfree(res); 162 } 163 } 164 165 static struct resource *alloc_resource(gfp_t flags) 166 { 167 struct resource *res = NULL; 168 169 spin_lock(&bootmem_resource_lock); 170 if (bootmem_resource_free) { 171 res = bootmem_resource_free; 172 bootmem_resource_free = res->sibling; 173 } 174 spin_unlock(&bootmem_resource_lock); 175 176 if (res) 177 memset(res, 0, sizeof(struct resource)); 178 else 179 res = kzalloc(sizeof(struct resource), flags); 180 181 return res; 182 } 183 184 /* Return the conflict entry if you can't request it */ 185 static struct resource * __request_resource(struct resource *root, struct resource *new) 186 { 187 resource_size_t start = new->start; 188 resource_size_t end = new->end; 189 struct resource *tmp, **p; 190 191 if (end < start) 192 return root; 193 if (start < root->start) 194 return root; 195 if (end > root->end) 196 return root; 197 p = &root->child; 198 for (;;) { 199 tmp = *p; 200 if (!tmp || tmp->start > end) { 201 new->sibling = tmp; 202 *p = new; 203 new->parent = root; 204 return NULL; 205 } 206 p = &tmp->sibling; 207 if (tmp->end < start) 208 continue; 209 return tmp; 210 } 211 } 212 213 static int __release_resource(struct resource *old, bool release_child) 214 { 215 struct resource *tmp, **p, *chd; 216 217 p = &old->parent->child; 218 for (;;) { 219 tmp = *p; 220 if (!tmp) 221 break; 222 if (tmp == old) { 223 if (release_child || !(tmp->child)) { 224 *p = tmp->sibling; 225 } else { 226 for (chd = tmp->child;; chd = chd->sibling) { 227 chd->parent = tmp->parent; 228 if (!(chd->sibling)) 229 break; 230 } 231 *p = tmp->child; 232 chd->sibling = tmp->sibling; 233 } 234 old->parent = NULL; 235 return 0; 236 } 237 p = &tmp->sibling; 238 } 239 return -EINVAL; 240 } 241 242 static void __release_child_resources(struct resource *r) 243 { 244 struct resource *tmp, *p; 245 resource_size_t size; 246 247 p = r->child; 248 r->child = NULL; 249 while (p) { 250 tmp = p; 251 p = p->sibling; 252 253 tmp->parent = NULL; 254 tmp->sibling = NULL; 255 __release_child_resources(tmp); 256 257 printk(KERN_DEBUG "release child resource %pR\n", tmp); 258 /* need to restore size, and keep flags */ 259 size = resource_size(tmp); 260 tmp->start = 0; 261 tmp->end = size - 1; 262 } 263 } 264 265 void release_child_resources(struct resource *r) 266 { 267 write_lock(&resource_lock); 268 __release_child_resources(r); 269 write_unlock(&resource_lock); 270 } 271 272 /** 273 * request_resource_conflict - request and reserve an I/O or memory resource 274 * @root: root resource descriptor 275 * @new: resource descriptor desired by caller 276 * 277 * Returns 0 for success, conflict resource on error. 278 */ 279 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 280 { 281 struct resource *conflict; 282 283 write_lock(&resource_lock); 284 conflict = __request_resource(root, new); 285 write_unlock(&resource_lock); 286 return conflict; 287 } 288 289 /** 290 * request_resource - request and reserve an I/O or memory resource 291 * @root: root resource descriptor 292 * @new: resource descriptor desired by caller 293 * 294 * Returns 0 for success, negative error code on error. 295 */ 296 int request_resource(struct resource *root, struct resource *new) 297 { 298 struct resource *conflict; 299 300 conflict = request_resource_conflict(root, new); 301 return conflict ? -EBUSY : 0; 302 } 303 304 EXPORT_SYMBOL(request_resource); 305 306 /** 307 * release_resource - release a previously reserved resource 308 * @old: resource pointer 309 */ 310 int release_resource(struct resource *old) 311 { 312 int retval; 313 314 write_lock(&resource_lock); 315 retval = __release_resource(old, true); 316 write_unlock(&resource_lock); 317 return retval; 318 } 319 320 EXPORT_SYMBOL(release_resource); 321 322 /** 323 * find_next_iomem_res - Finds the lowest iomem resource that covers part of 324 * [@start..@end]. 325 * 326 * If a resource is found, returns 0 and @*res is overwritten with the part 327 * of the resource that's within [@start..@end]; if none is found, returns 328 * -ENODEV. Returns -EINVAL for invalid parameters. 329 * 330 * This function walks the whole tree and not just first level children 331 * unless @first_lvl is true. 332 * 333 * @start: start address of the resource searched for 334 * @end: end address of same resource 335 * @flags: flags which the resource must have 336 * @desc: descriptor the resource must have 337 * @first_lvl: walk only the first level children, if set 338 * @res: return ptr, if resource found 339 * 340 * The caller must specify @start, @end, @flags, and @desc 341 * (which may be IORES_DESC_NONE). 342 */ 343 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 344 unsigned long flags, unsigned long desc, 345 bool first_lvl, struct resource *res) 346 { 347 bool siblings_only = true; 348 struct resource *p; 349 350 if (!res) 351 return -EINVAL; 352 353 if (start >= end) 354 return -EINVAL; 355 356 read_lock(&resource_lock); 357 358 for (p = iomem_resource.child; p; p = next_resource(p, siblings_only)) { 359 /* If we passed the resource we are looking for, stop */ 360 if (p->start > end) { 361 p = NULL; 362 break; 363 } 364 365 /* Skip until we find a range that matches what we look for */ 366 if (p->end < start) 367 continue; 368 369 /* 370 * Now that we found a range that matches what we look for, 371 * check the flags and the descriptor. If we were not asked to 372 * use only the first level, start looking at children as well. 373 */ 374 siblings_only = first_lvl; 375 376 if ((p->flags & flags) != flags) 377 continue; 378 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 379 continue; 380 381 /* Found a match, break */ 382 break; 383 } 384 385 if (p) { 386 /* copy data */ 387 *res = (struct resource) { 388 .start = max(start, p->start), 389 .end = min(end, p->end), 390 .flags = p->flags, 391 .desc = p->desc, 392 .parent = p->parent, 393 }; 394 } 395 396 read_unlock(&resource_lock); 397 return p ? 0 : -ENODEV; 398 } 399 400 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 401 unsigned long flags, unsigned long desc, 402 bool first_lvl, void *arg, 403 int (*func)(struct resource *, void *)) 404 { 405 struct resource res; 406 int ret = -EINVAL; 407 408 while (start < end && 409 !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) { 410 ret = (*func)(&res, arg); 411 if (ret) 412 break; 413 414 start = res.end + 1; 415 } 416 417 return ret; 418 } 419 420 /** 421 * walk_iomem_res_desc - Walks through iomem resources and calls func() 422 * with matching resource ranges. 423 * * 424 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 425 * @flags: I/O resource flags 426 * @start: start addr 427 * @end: end addr 428 * @arg: function argument for the callback @func 429 * @func: callback function that is called for each qualifying resource area 430 * 431 * This walks through whole tree and not just first level children. 432 * All the memory ranges which overlap start,end and also match flags and 433 * desc are valid candidates. 434 * 435 * NOTE: For a new descriptor search, define a new IORES_DESC in 436 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 437 */ 438 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 439 u64 end, void *arg, int (*func)(struct resource *, void *)) 440 { 441 return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func); 442 } 443 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 444 445 /* 446 * This function calls the @func callback against all memory ranges of type 447 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 448 * Now, this function is only for System RAM, it deals with full ranges and 449 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 450 * ranges. 451 */ 452 int walk_system_ram_res(u64 start, u64 end, void *arg, 453 int (*func)(struct resource *, void *)) 454 { 455 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 456 457 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true, 458 arg, func); 459 } 460 461 /* 462 * This function calls the @func callback against all memory ranges, which 463 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 464 */ 465 int walk_mem_res(u64 start, u64 end, void *arg, 466 int (*func)(struct resource *, void *)) 467 { 468 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 469 470 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true, 471 arg, func); 472 } 473 474 /* 475 * This function calls the @func callback against all memory ranges of type 476 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 477 * It is to be used only for System RAM. 478 * 479 * This will find System RAM ranges that are children of top-level resources 480 * in addition to top-level System RAM resources. 481 */ 482 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 483 void *arg, int (*func)(unsigned long, unsigned long, void *)) 484 { 485 resource_size_t start, end; 486 unsigned long flags; 487 struct resource res; 488 unsigned long pfn, end_pfn; 489 int ret = -EINVAL; 490 491 start = (u64) start_pfn << PAGE_SHIFT; 492 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 493 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 494 while (start < end && 495 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, 496 false, &res)) { 497 pfn = PFN_UP(res.start); 498 end_pfn = PFN_DOWN(res.end + 1); 499 if (end_pfn > pfn) 500 ret = (*func)(pfn, end_pfn - pfn, arg); 501 if (ret) 502 break; 503 start = res.end + 1; 504 } 505 return ret; 506 } 507 508 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 509 { 510 return 1; 511 } 512 513 /* 514 * This generic page_is_ram() returns true if specified address is 515 * registered as System RAM in iomem_resource list. 516 */ 517 int __weak page_is_ram(unsigned long pfn) 518 { 519 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 520 } 521 EXPORT_SYMBOL_GPL(page_is_ram); 522 523 /** 524 * region_intersects() - determine intersection of region with known resources 525 * @start: region start address 526 * @size: size of region 527 * @flags: flags of resource (in iomem_resource) 528 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 529 * 530 * Check if the specified region partially overlaps or fully eclipses a 531 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 532 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 533 * return REGION_MIXED if the region overlaps @flags/@desc and another 534 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 535 * and no other defined resource. Note that REGION_INTERSECTS is also 536 * returned in the case when the specified region overlaps RAM and undefined 537 * memory holes. 538 * 539 * region_intersect() is used by memory remapping functions to ensure 540 * the user is not remapping RAM and is a vast speed up over walking 541 * through the resource table page by page. 542 */ 543 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 544 unsigned long desc) 545 { 546 struct resource res; 547 int type = 0; int other = 0; 548 struct resource *p; 549 550 res.start = start; 551 res.end = start + size - 1; 552 553 read_lock(&resource_lock); 554 for (p = iomem_resource.child; p ; p = p->sibling) { 555 bool is_type = (((p->flags & flags) == flags) && 556 ((desc == IORES_DESC_NONE) || 557 (desc == p->desc))); 558 559 if (resource_overlaps(p, &res)) 560 is_type ? type++ : other++; 561 } 562 read_unlock(&resource_lock); 563 564 if (type == 0) 565 return REGION_DISJOINT; 566 567 if (other == 0) 568 return REGION_INTERSECTS; 569 570 return REGION_MIXED; 571 } 572 EXPORT_SYMBOL_GPL(region_intersects); 573 574 void __weak arch_remove_reservations(struct resource *avail) 575 { 576 } 577 578 static resource_size_t simple_align_resource(void *data, 579 const struct resource *avail, 580 resource_size_t size, 581 resource_size_t align) 582 { 583 return avail->start; 584 } 585 586 static void resource_clip(struct resource *res, resource_size_t min, 587 resource_size_t max) 588 { 589 if (res->start < min) 590 res->start = min; 591 if (res->end > max) 592 res->end = max; 593 } 594 595 /* 596 * Find empty slot in the resource tree with the given range and 597 * alignment constraints 598 */ 599 static int __find_resource(struct resource *root, struct resource *old, 600 struct resource *new, 601 resource_size_t size, 602 struct resource_constraint *constraint) 603 { 604 struct resource *this = root->child; 605 struct resource tmp = *new, avail, alloc; 606 607 tmp.start = root->start; 608 /* 609 * Skip past an allocated resource that starts at 0, since the assignment 610 * of this->start - 1 to tmp->end below would cause an underflow. 611 */ 612 if (this && this->start == root->start) { 613 tmp.start = (this == old) ? old->start : this->end + 1; 614 this = this->sibling; 615 } 616 for(;;) { 617 if (this) 618 tmp.end = (this == old) ? this->end : this->start - 1; 619 else 620 tmp.end = root->end; 621 622 if (tmp.end < tmp.start) 623 goto next; 624 625 resource_clip(&tmp, constraint->min, constraint->max); 626 arch_remove_reservations(&tmp); 627 628 /* Check for overflow after ALIGN() */ 629 avail.start = ALIGN(tmp.start, constraint->align); 630 avail.end = tmp.end; 631 avail.flags = new->flags & ~IORESOURCE_UNSET; 632 if (avail.start >= tmp.start) { 633 alloc.flags = avail.flags; 634 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 635 size, constraint->align); 636 alloc.end = alloc.start + size - 1; 637 if (alloc.start <= alloc.end && 638 resource_contains(&avail, &alloc)) { 639 new->start = alloc.start; 640 new->end = alloc.end; 641 return 0; 642 } 643 } 644 645 next: if (!this || this->end == root->end) 646 break; 647 648 if (this != old) 649 tmp.start = this->end + 1; 650 this = this->sibling; 651 } 652 return -EBUSY; 653 } 654 655 /* 656 * Find empty slot in the resource tree given range and alignment. 657 */ 658 static int find_resource(struct resource *root, struct resource *new, 659 resource_size_t size, 660 struct resource_constraint *constraint) 661 { 662 return __find_resource(root, NULL, new, size, constraint); 663 } 664 665 /** 666 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 667 * The resource will be relocated if the new size cannot be reallocated in the 668 * current location. 669 * 670 * @root: root resource descriptor 671 * @old: resource descriptor desired by caller 672 * @newsize: new size of the resource descriptor 673 * @constraint: the size and alignment constraints to be met. 674 */ 675 static int reallocate_resource(struct resource *root, struct resource *old, 676 resource_size_t newsize, 677 struct resource_constraint *constraint) 678 { 679 int err=0; 680 struct resource new = *old; 681 struct resource *conflict; 682 683 write_lock(&resource_lock); 684 685 if ((err = __find_resource(root, old, &new, newsize, constraint))) 686 goto out; 687 688 if (resource_contains(&new, old)) { 689 old->start = new.start; 690 old->end = new.end; 691 goto out; 692 } 693 694 if (old->child) { 695 err = -EBUSY; 696 goto out; 697 } 698 699 if (resource_contains(old, &new)) { 700 old->start = new.start; 701 old->end = new.end; 702 } else { 703 __release_resource(old, true); 704 *old = new; 705 conflict = __request_resource(root, old); 706 BUG_ON(conflict); 707 } 708 out: 709 write_unlock(&resource_lock); 710 return err; 711 } 712 713 714 /** 715 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 716 * The resource will be reallocated with a new size if it was already allocated 717 * @root: root resource descriptor 718 * @new: resource descriptor desired by caller 719 * @size: requested resource region size 720 * @min: minimum boundary to allocate 721 * @max: maximum boundary to allocate 722 * @align: alignment requested, in bytes 723 * @alignf: alignment function, optional, called if not NULL 724 * @alignf_data: arbitrary data to pass to the @alignf function 725 */ 726 int allocate_resource(struct resource *root, struct resource *new, 727 resource_size_t size, resource_size_t min, 728 resource_size_t max, resource_size_t align, 729 resource_size_t (*alignf)(void *, 730 const struct resource *, 731 resource_size_t, 732 resource_size_t), 733 void *alignf_data) 734 { 735 int err; 736 struct resource_constraint constraint; 737 738 if (!alignf) 739 alignf = simple_align_resource; 740 741 constraint.min = min; 742 constraint.max = max; 743 constraint.align = align; 744 constraint.alignf = alignf; 745 constraint.alignf_data = alignf_data; 746 747 if ( new->parent ) { 748 /* resource is already allocated, try reallocating with 749 the new constraints */ 750 return reallocate_resource(root, new, size, &constraint); 751 } 752 753 write_lock(&resource_lock); 754 err = find_resource(root, new, size, &constraint); 755 if (err >= 0 && __request_resource(root, new)) 756 err = -EBUSY; 757 write_unlock(&resource_lock); 758 return err; 759 } 760 761 EXPORT_SYMBOL(allocate_resource); 762 763 /** 764 * lookup_resource - find an existing resource by a resource start address 765 * @root: root resource descriptor 766 * @start: resource start address 767 * 768 * Returns a pointer to the resource if found, NULL otherwise 769 */ 770 struct resource *lookup_resource(struct resource *root, resource_size_t start) 771 { 772 struct resource *res; 773 774 read_lock(&resource_lock); 775 for (res = root->child; res; res = res->sibling) { 776 if (res->start == start) 777 break; 778 } 779 read_unlock(&resource_lock); 780 781 return res; 782 } 783 784 /* 785 * Insert a resource into the resource tree. If successful, return NULL, 786 * otherwise return the conflicting resource (compare to __request_resource()) 787 */ 788 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 789 { 790 struct resource *first, *next; 791 792 for (;; parent = first) { 793 first = __request_resource(parent, new); 794 if (!first) 795 return first; 796 797 if (first == parent) 798 return first; 799 if (WARN_ON(first == new)) /* duplicated insertion */ 800 return first; 801 802 if ((first->start > new->start) || (first->end < new->end)) 803 break; 804 if ((first->start == new->start) && (first->end == new->end)) 805 break; 806 } 807 808 for (next = first; ; next = next->sibling) { 809 /* Partial overlap? Bad, and unfixable */ 810 if (next->start < new->start || next->end > new->end) 811 return next; 812 if (!next->sibling) 813 break; 814 if (next->sibling->start > new->end) 815 break; 816 } 817 818 new->parent = parent; 819 new->sibling = next->sibling; 820 new->child = first; 821 822 next->sibling = NULL; 823 for (next = first; next; next = next->sibling) 824 next->parent = new; 825 826 if (parent->child == first) { 827 parent->child = new; 828 } else { 829 next = parent->child; 830 while (next->sibling != first) 831 next = next->sibling; 832 next->sibling = new; 833 } 834 return NULL; 835 } 836 837 /** 838 * insert_resource_conflict - Inserts resource in the resource tree 839 * @parent: parent of the new resource 840 * @new: new resource to insert 841 * 842 * Returns 0 on success, conflict resource if the resource can't be inserted. 843 * 844 * This function is equivalent to request_resource_conflict when no conflict 845 * happens. If a conflict happens, and the conflicting resources 846 * entirely fit within the range of the new resource, then the new 847 * resource is inserted and the conflicting resources become children of 848 * the new resource. 849 * 850 * This function is intended for producers of resources, such as FW modules 851 * and bus drivers. 852 */ 853 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 854 { 855 struct resource *conflict; 856 857 write_lock(&resource_lock); 858 conflict = __insert_resource(parent, new); 859 write_unlock(&resource_lock); 860 return conflict; 861 } 862 863 /** 864 * insert_resource - Inserts a resource in the resource tree 865 * @parent: parent of the new resource 866 * @new: new resource to insert 867 * 868 * Returns 0 on success, -EBUSY if the resource can't be inserted. 869 * 870 * This function is intended for producers of resources, such as FW modules 871 * and bus drivers. 872 */ 873 int insert_resource(struct resource *parent, struct resource *new) 874 { 875 struct resource *conflict; 876 877 conflict = insert_resource_conflict(parent, new); 878 return conflict ? -EBUSY : 0; 879 } 880 EXPORT_SYMBOL_GPL(insert_resource); 881 882 /** 883 * insert_resource_expand_to_fit - Insert a resource into the resource tree 884 * @root: root resource descriptor 885 * @new: new resource to insert 886 * 887 * Insert a resource into the resource tree, possibly expanding it in order 888 * to make it encompass any conflicting resources. 889 */ 890 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 891 { 892 if (new->parent) 893 return; 894 895 write_lock(&resource_lock); 896 for (;;) { 897 struct resource *conflict; 898 899 conflict = __insert_resource(root, new); 900 if (!conflict) 901 break; 902 if (conflict == root) 903 break; 904 905 /* Ok, expand resource to cover the conflict, then try again .. */ 906 if (conflict->start < new->start) 907 new->start = conflict->start; 908 if (conflict->end > new->end) 909 new->end = conflict->end; 910 911 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 912 } 913 write_unlock(&resource_lock); 914 } 915 916 /** 917 * remove_resource - Remove a resource in the resource tree 918 * @old: resource to remove 919 * 920 * Returns 0 on success, -EINVAL if the resource is not valid. 921 * 922 * This function removes a resource previously inserted by insert_resource() 923 * or insert_resource_conflict(), and moves the children (if any) up to 924 * where they were before. insert_resource() and insert_resource_conflict() 925 * insert a new resource, and move any conflicting resources down to the 926 * children of the new resource. 927 * 928 * insert_resource(), insert_resource_conflict() and remove_resource() are 929 * intended for producers of resources, such as FW modules and bus drivers. 930 */ 931 int remove_resource(struct resource *old) 932 { 933 int retval; 934 935 write_lock(&resource_lock); 936 retval = __release_resource(old, false); 937 write_unlock(&resource_lock); 938 return retval; 939 } 940 EXPORT_SYMBOL_GPL(remove_resource); 941 942 static int __adjust_resource(struct resource *res, resource_size_t start, 943 resource_size_t size) 944 { 945 struct resource *tmp, *parent = res->parent; 946 resource_size_t end = start + size - 1; 947 int result = -EBUSY; 948 949 if (!parent) 950 goto skip; 951 952 if ((start < parent->start) || (end > parent->end)) 953 goto out; 954 955 if (res->sibling && (res->sibling->start <= end)) 956 goto out; 957 958 tmp = parent->child; 959 if (tmp != res) { 960 while (tmp->sibling != res) 961 tmp = tmp->sibling; 962 if (start <= tmp->end) 963 goto out; 964 } 965 966 skip: 967 for (tmp = res->child; tmp; tmp = tmp->sibling) 968 if ((tmp->start < start) || (tmp->end > end)) 969 goto out; 970 971 res->start = start; 972 res->end = end; 973 result = 0; 974 975 out: 976 return result; 977 } 978 979 /** 980 * adjust_resource - modify a resource's start and size 981 * @res: resource to modify 982 * @start: new start value 983 * @size: new size 984 * 985 * Given an existing resource, change its start and size to match the 986 * arguments. Returns 0 on success, -EBUSY if it can't fit. 987 * Existing children of the resource are assumed to be immutable. 988 */ 989 int adjust_resource(struct resource *res, resource_size_t start, 990 resource_size_t size) 991 { 992 int result; 993 994 write_lock(&resource_lock); 995 result = __adjust_resource(res, start, size); 996 write_unlock(&resource_lock); 997 return result; 998 } 999 EXPORT_SYMBOL(adjust_resource); 1000 1001 static void __init 1002 __reserve_region_with_split(struct resource *root, resource_size_t start, 1003 resource_size_t end, const char *name) 1004 { 1005 struct resource *parent = root; 1006 struct resource *conflict; 1007 struct resource *res = alloc_resource(GFP_ATOMIC); 1008 struct resource *next_res = NULL; 1009 int type = resource_type(root); 1010 1011 if (!res) 1012 return; 1013 1014 res->name = name; 1015 res->start = start; 1016 res->end = end; 1017 res->flags = type | IORESOURCE_BUSY; 1018 res->desc = IORES_DESC_NONE; 1019 1020 while (1) { 1021 1022 conflict = __request_resource(parent, res); 1023 if (!conflict) { 1024 if (!next_res) 1025 break; 1026 res = next_res; 1027 next_res = NULL; 1028 continue; 1029 } 1030 1031 /* conflict covered whole area */ 1032 if (conflict->start <= res->start && 1033 conflict->end >= res->end) { 1034 free_resource(res); 1035 WARN_ON(next_res); 1036 break; 1037 } 1038 1039 /* failed, split and try again */ 1040 if (conflict->start > res->start) { 1041 end = res->end; 1042 res->end = conflict->start - 1; 1043 if (conflict->end < end) { 1044 next_res = alloc_resource(GFP_ATOMIC); 1045 if (!next_res) { 1046 free_resource(res); 1047 break; 1048 } 1049 next_res->name = name; 1050 next_res->start = conflict->end + 1; 1051 next_res->end = end; 1052 next_res->flags = type | IORESOURCE_BUSY; 1053 next_res->desc = IORES_DESC_NONE; 1054 } 1055 } else { 1056 res->start = conflict->end + 1; 1057 } 1058 } 1059 1060 } 1061 1062 void __init 1063 reserve_region_with_split(struct resource *root, resource_size_t start, 1064 resource_size_t end, const char *name) 1065 { 1066 int abort = 0; 1067 1068 write_lock(&resource_lock); 1069 if (root->start > start || root->end < end) { 1070 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1071 (unsigned long long)start, (unsigned long long)end, 1072 root); 1073 if (start > root->end || end < root->start) 1074 abort = 1; 1075 else { 1076 if (end > root->end) 1077 end = root->end; 1078 if (start < root->start) 1079 start = root->start; 1080 pr_err("fixing request to [0x%llx-0x%llx]\n", 1081 (unsigned long long)start, 1082 (unsigned long long)end); 1083 } 1084 dump_stack(); 1085 } 1086 if (!abort) 1087 __reserve_region_with_split(root, start, end, name); 1088 write_unlock(&resource_lock); 1089 } 1090 1091 /** 1092 * resource_alignment - calculate resource's alignment 1093 * @res: resource pointer 1094 * 1095 * Returns alignment on success, 0 (invalid alignment) on failure. 1096 */ 1097 resource_size_t resource_alignment(struct resource *res) 1098 { 1099 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1100 case IORESOURCE_SIZEALIGN: 1101 return resource_size(res); 1102 case IORESOURCE_STARTALIGN: 1103 return res->start; 1104 default: 1105 return 0; 1106 } 1107 } 1108 1109 /* 1110 * This is compatibility stuff for IO resources. 1111 * 1112 * Note how this, unlike the above, knows about 1113 * the IO flag meanings (busy etc). 1114 * 1115 * request_region creates a new busy region. 1116 * 1117 * release_region releases a matching busy region. 1118 */ 1119 1120 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1121 1122 /** 1123 * __request_region - create a new busy resource region 1124 * @parent: parent resource descriptor 1125 * @start: resource start address 1126 * @n: resource region size 1127 * @name: reserving caller's ID string 1128 * @flags: IO resource flags 1129 */ 1130 struct resource * __request_region(struct resource *parent, 1131 resource_size_t start, resource_size_t n, 1132 const char *name, int flags) 1133 { 1134 DECLARE_WAITQUEUE(wait, current); 1135 struct resource *res = alloc_resource(GFP_KERNEL); 1136 struct resource *orig_parent = parent; 1137 1138 if (!res) 1139 return NULL; 1140 1141 res->name = name; 1142 res->start = start; 1143 res->end = start + n - 1; 1144 1145 write_lock(&resource_lock); 1146 1147 for (;;) { 1148 struct resource *conflict; 1149 1150 res->flags = resource_type(parent) | resource_ext_type(parent); 1151 res->flags |= IORESOURCE_BUSY | flags; 1152 res->desc = parent->desc; 1153 1154 conflict = __request_resource(parent, res); 1155 if (!conflict) 1156 break; 1157 /* 1158 * mm/hmm.c reserves physical addresses which then 1159 * become unavailable to other users. Conflicts are 1160 * not expected. Warn to aid debugging if encountered. 1161 */ 1162 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 1163 pr_warn("Unaddressable device %s %pR conflicts with %pR", 1164 conflict->name, conflict, res); 1165 } 1166 if (conflict != parent) { 1167 if (!(conflict->flags & IORESOURCE_BUSY)) { 1168 parent = conflict; 1169 continue; 1170 } 1171 } 1172 if (conflict->flags & flags & IORESOURCE_MUXED) { 1173 add_wait_queue(&muxed_resource_wait, &wait); 1174 write_unlock(&resource_lock); 1175 set_current_state(TASK_UNINTERRUPTIBLE); 1176 schedule(); 1177 remove_wait_queue(&muxed_resource_wait, &wait); 1178 write_lock(&resource_lock); 1179 continue; 1180 } 1181 /* Uhhuh, that didn't work out.. */ 1182 free_resource(res); 1183 res = NULL; 1184 break; 1185 } 1186 write_unlock(&resource_lock); 1187 1188 if (res && orig_parent == &iomem_resource) 1189 revoke_devmem(res); 1190 1191 return res; 1192 } 1193 EXPORT_SYMBOL(__request_region); 1194 1195 /** 1196 * __release_region - release a previously reserved resource region 1197 * @parent: parent resource descriptor 1198 * @start: resource start address 1199 * @n: resource region size 1200 * 1201 * The described resource region must match a currently busy region. 1202 */ 1203 void __release_region(struct resource *parent, resource_size_t start, 1204 resource_size_t n) 1205 { 1206 struct resource **p; 1207 resource_size_t end; 1208 1209 p = &parent->child; 1210 end = start + n - 1; 1211 1212 write_lock(&resource_lock); 1213 1214 for (;;) { 1215 struct resource *res = *p; 1216 1217 if (!res) 1218 break; 1219 if (res->start <= start && res->end >= end) { 1220 if (!(res->flags & IORESOURCE_BUSY)) { 1221 p = &res->child; 1222 continue; 1223 } 1224 if (res->start != start || res->end != end) 1225 break; 1226 *p = res->sibling; 1227 write_unlock(&resource_lock); 1228 if (res->flags & IORESOURCE_MUXED) 1229 wake_up(&muxed_resource_wait); 1230 free_resource(res); 1231 return; 1232 } 1233 p = &res->sibling; 1234 } 1235 1236 write_unlock(&resource_lock); 1237 1238 printk(KERN_WARNING "Trying to free nonexistent resource " 1239 "<%016llx-%016llx>\n", (unsigned long long)start, 1240 (unsigned long long)end); 1241 } 1242 EXPORT_SYMBOL(__release_region); 1243 1244 #ifdef CONFIG_MEMORY_HOTREMOVE 1245 /** 1246 * release_mem_region_adjustable - release a previously reserved memory region 1247 * @start: resource start address 1248 * @size: resource region size 1249 * 1250 * This interface is intended for memory hot-delete. The requested region 1251 * is released from a currently busy memory resource. The requested region 1252 * must either match exactly or fit into a single busy resource entry. In 1253 * the latter case, the remaining resource is adjusted accordingly. 1254 * Existing children of the busy memory resource must be immutable in the 1255 * request. 1256 * 1257 * Note: 1258 * - Additional release conditions, such as overlapping region, can be 1259 * supported after they are confirmed as valid cases. 1260 * - When a busy memory resource gets split into two entries, the code 1261 * assumes that all children remain in the lower address entry for 1262 * simplicity. Enhance this logic when necessary. 1263 */ 1264 void release_mem_region_adjustable(resource_size_t start, resource_size_t size) 1265 { 1266 struct resource *parent = &iomem_resource; 1267 struct resource *new_res = NULL; 1268 bool alloc_nofail = false; 1269 struct resource **p; 1270 struct resource *res; 1271 resource_size_t end; 1272 1273 end = start + size - 1; 1274 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end))) 1275 return; 1276 1277 /* 1278 * We free up quite a lot of memory on memory hotunplug (esp., memap), 1279 * just before releasing the region. This is highly unlikely to 1280 * fail - let's play save and make it never fail as the caller cannot 1281 * perform any error handling (e.g., trying to re-add memory will fail 1282 * similarly). 1283 */ 1284 retry: 1285 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0)); 1286 1287 p = &parent->child; 1288 write_lock(&resource_lock); 1289 1290 while ((res = *p)) { 1291 if (res->start >= end) 1292 break; 1293 1294 /* look for the next resource if it does not fit into */ 1295 if (res->start > start || res->end < end) { 1296 p = &res->sibling; 1297 continue; 1298 } 1299 1300 /* 1301 * All memory regions added from memory-hotplug path have the 1302 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have 1303 * this flag, we know that we are dealing with a resource coming 1304 * from HMM/devm. HMM/devm use another mechanism to add/release 1305 * a resource. This goes via devm_request_mem_region and 1306 * devm_release_mem_region. 1307 * HMM/devm take care to release their resources when they want, 1308 * so if we are dealing with them, let us just back off here. 1309 */ 1310 if (!(res->flags & IORESOURCE_SYSRAM)) { 1311 break; 1312 } 1313 1314 if (!(res->flags & IORESOURCE_MEM)) 1315 break; 1316 1317 if (!(res->flags & IORESOURCE_BUSY)) { 1318 p = &res->child; 1319 continue; 1320 } 1321 1322 /* found the target resource; let's adjust accordingly */ 1323 if (res->start == start && res->end == end) { 1324 /* free the whole entry */ 1325 *p = res->sibling; 1326 free_resource(res); 1327 } else if (res->start == start && res->end != end) { 1328 /* adjust the start */ 1329 WARN_ON_ONCE(__adjust_resource(res, end + 1, 1330 res->end - end)); 1331 } else if (res->start != start && res->end == end) { 1332 /* adjust the end */ 1333 WARN_ON_ONCE(__adjust_resource(res, res->start, 1334 start - res->start)); 1335 } else { 1336 /* split into two entries - we need a new resource */ 1337 if (!new_res) { 1338 new_res = alloc_resource(GFP_ATOMIC); 1339 if (!new_res) { 1340 alloc_nofail = true; 1341 write_unlock(&resource_lock); 1342 goto retry; 1343 } 1344 } 1345 new_res->name = res->name; 1346 new_res->start = end + 1; 1347 new_res->end = res->end; 1348 new_res->flags = res->flags; 1349 new_res->desc = res->desc; 1350 new_res->parent = res->parent; 1351 new_res->sibling = res->sibling; 1352 new_res->child = NULL; 1353 1354 if (WARN_ON_ONCE(__adjust_resource(res, res->start, 1355 start - res->start))) 1356 break; 1357 res->sibling = new_res; 1358 new_res = NULL; 1359 } 1360 1361 break; 1362 } 1363 1364 write_unlock(&resource_lock); 1365 free_resource(new_res); 1366 } 1367 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1368 1369 #ifdef CONFIG_MEMORY_HOTPLUG 1370 static bool system_ram_resources_mergeable(struct resource *r1, 1371 struct resource *r2) 1372 { 1373 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */ 1374 return r1->flags == r2->flags && r1->end + 1 == r2->start && 1375 r1->name == r2->name && r1->desc == r2->desc && 1376 !r1->child && !r2->child; 1377 } 1378 1379 /** 1380 * merge_system_ram_resource - mark the System RAM resource mergeable and try to 1381 * merge it with adjacent, mergeable resources 1382 * @res: resource descriptor 1383 * 1384 * This interface is intended for memory hotplug, whereby lots of contiguous 1385 * system ram resources are added (e.g., via add_memory*()) by a driver, and 1386 * the actual resource boundaries are not of interest (e.g., it might be 1387 * relevant for DIMMs). Only resources that are marked mergeable, that have the 1388 * same parent, and that don't have any children are considered. All mergeable 1389 * resources must be immutable during the request. 1390 * 1391 * Note: 1392 * - The caller has to make sure that no pointers to resources that are 1393 * marked mergeable are used anymore after this call - the resource might 1394 * be freed and the pointer might be stale! 1395 * - release_mem_region_adjustable() will split on demand on memory hotunplug 1396 */ 1397 void merge_system_ram_resource(struct resource *res) 1398 { 1399 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 1400 struct resource *cur; 1401 1402 if (WARN_ON_ONCE((res->flags & flags) != flags)) 1403 return; 1404 1405 write_lock(&resource_lock); 1406 res->flags |= IORESOURCE_SYSRAM_MERGEABLE; 1407 1408 /* Try to merge with next item in the list. */ 1409 cur = res->sibling; 1410 if (cur && system_ram_resources_mergeable(res, cur)) { 1411 res->end = cur->end; 1412 res->sibling = cur->sibling; 1413 free_resource(cur); 1414 } 1415 1416 /* Try to merge with previous item in the list. */ 1417 cur = res->parent->child; 1418 while (cur && cur->sibling != res) 1419 cur = cur->sibling; 1420 if (cur && system_ram_resources_mergeable(cur, res)) { 1421 cur->end = res->end; 1422 cur->sibling = res->sibling; 1423 free_resource(res); 1424 } 1425 write_unlock(&resource_lock); 1426 } 1427 #endif /* CONFIG_MEMORY_HOTPLUG */ 1428 1429 /* 1430 * Managed region resource 1431 */ 1432 static void devm_resource_release(struct device *dev, void *ptr) 1433 { 1434 struct resource **r = ptr; 1435 1436 release_resource(*r); 1437 } 1438 1439 /** 1440 * devm_request_resource() - request and reserve an I/O or memory resource 1441 * @dev: device for which to request the resource 1442 * @root: root of the resource tree from which to request the resource 1443 * @new: descriptor of the resource to request 1444 * 1445 * This is a device-managed version of request_resource(). There is usually 1446 * no need to release resources requested by this function explicitly since 1447 * that will be taken care of when the device is unbound from its driver. 1448 * If for some reason the resource needs to be released explicitly, because 1449 * of ordering issues for example, drivers must call devm_release_resource() 1450 * rather than the regular release_resource(). 1451 * 1452 * When a conflict is detected between any existing resources and the newly 1453 * requested resource, an error message will be printed. 1454 * 1455 * Returns 0 on success or a negative error code on failure. 1456 */ 1457 int devm_request_resource(struct device *dev, struct resource *root, 1458 struct resource *new) 1459 { 1460 struct resource *conflict, **ptr; 1461 1462 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1463 if (!ptr) 1464 return -ENOMEM; 1465 1466 *ptr = new; 1467 1468 conflict = request_resource_conflict(root, new); 1469 if (conflict) { 1470 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1471 new, conflict->name, conflict); 1472 devres_free(ptr); 1473 return -EBUSY; 1474 } 1475 1476 devres_add(dev, ptr); 1477 return 0; 1478 } 1479 EXPORT_SYMBOL(devm_request_resource); 1480 1481 static int devm_resource_match(struct device *dev, void *res, void *data) 1482 { 1483 struct resource **ptr = res; 1484 1485 return *ptr == data; 1486 } 1487 1488 /** 1489 * devm_release_resource() - release a previously requested resource 1490 * @dev: device for which to release the resource 1491 * @new: descriptor of the resource to release 1492 * 1493 * Releases a resource previously requested using devm_request_resource(). 1494 */ 1495 void devm_release_resource(struct device *dev, struct resource *new) 1496 { 1497 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1498 new)); 1499 } 1500 EXPORT_SYMBOL(devm_release_resource); 1501 1502 struct region_devres { 1503 struct resource *parent; 1504 resource_size_t start; 1505 resource_size_t n; 1506 }; 1507 1508 static void devm_region_release(struct device *dev, void *res) 1509 { 1510 struct region_devres *this = res; 1511 1512 __release_region(this->parent, this->start, this->n); 1513 } 1514 1515 static int devm_region_match(struct device *dev, void *res, void *match_data) 1516 { 1517 struct region_devres *this = res, *match = match_data; 1518 1519 return this->parent == match->parent && 1520 this->start == match->start && this->n == match->n; 1521 } 1522 1523 struct resource * 1524 __devm_request_region(struct device *dev, struct resource *parent, 1525 resource_size_t start, resource_size_t n, const char *name) 1526 { 1527 struct region_devres *dr = NULL; 1528 struct resource *res; 1529 1530 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1531 GFP_KERNEL); 1532 if (!dr) 1533 return NULL; 1534 1535 dr->parent = parent; 1536 dr->start = start; 1537 dr->n = n; 1538 1539 res = __request_region(parent, start, n, name, 0); 1540 if (res) 1541 devres_add(dev, dr); 1542 else 1543 devres_free(dr); 1544 1545 return res; 1546 } 1547 EXPORT_SYMBOL(__devm_request_region); 1548 1549 void __devm_release_region(struct device *dev, struct resource *parent, 1550 resource_size_t start, resource_size_t n) 1551 { 1552 struct region_devres match_data = { parent, start, n }; 1553 1554 __release_region(parent, start, n); 1555 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1556 &match_data)); 1557 } 1558 EXPORT_SYMBOL(__devm_release_region); 1559 1560 /* 1561 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1562 */ 1563 #define MAXRESERVE 4 1564 static int __init reserve_setup(char *str) 1565 { 1566 static int reserved; 1567 static struct resource reserve[MAXRESERVE]; 1568 1569 for (;;) { 1570 unsigned int io_start, io_num; 1571 int x = reserved; 1572 struct resource *parent; 1573 1574 if (get_option(&str, &io_start) != 2) 1575 break; 1576 if (get_option(&str, &io_num) == 0) 1577 break; 1578 if (x < MAXRESERVE) { 1579 struct resource *res = reserve + x; 1580 1581 /* 1582 * If the region starts below 0x10000, we assume it's 1583 * I/O port space; otherwise assume it's memory. 1584 */ 1585 if (io_start < 0x10000) { 1586 res->flags = IORESOURCE_IO; 1587 parent = &ioport_resource; 1588 } else { 1589 res->flags = IORESOURCE_MEM; 1590 parent = &iomem_resource; 1591 } 1592 res->name = "reserved"; 1593 res->start = io_start; 1594 res->end = io_start + io_num - 1; 1595 res->flags |= IORESOURCE_BUSY; 1596 res->desc = IORES_DESC_NONE; 1597 res->child = NULL; 1598 if (request_resource(parent, res) == 0) 1599 reserved = x+1; 1600 } 1601 } 1602 return 1; 1603 } 1604 __setup("reserve=", reserve_setup); 1605 1606 /* 1607 * Check if the requested addr and size spans more than any slot in the 1608 * iomem resource tree. 1609 */ 1610 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1611 { 1612 struct resource *p = &iomem_resource; 1613 int err = 0; 1614 loff_t l; 1615 1616 read_lock(&resource_lock); 1617 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1618 /* 1619 * We can probably skip the resources without 1620 * IORESOURCE_IO attribute? 1621 */ 1622 if (p->start >= addr + size) 1623 continue; 1624 if (p->end < addr) 1625 continue; 1626 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1627 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1628 continue; 1629 /* 1630 * if a resource is "BUSY", it's not a hardware resource 1631 * but a driver mapping of such a resource; we don't want 1632 * to warn for those; some drivers legitimately map only 1633 * partial hardware resources. (example: vesafb) 1634 */ 1635 if (p->flags & IORESOURCE_BUSY) 1636 continue; 1637 1638 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n", 1639 (unsigned long long)addr, 1640 (unsigned long long)(addr + size - 1), 1641 p->name, p); 1642 err = -1; 1643 break; 1644 } 1645 read_unlock(&resource_lock); 1646 1647 return err; 1648 } 1649 1650 #ifdef CONFIG_STRICT_DEVMEM 1651 static int strict_iomem_checks = 1; 1652 #else 1653 static int strict_iomem_checks; 1654 #endif 1655 1656 /* 1657 * check if an address is reserved in the iomem resource tree 1658 * returns true if reserved, false if not reserved. 1659 */ 1660 bool iomem_is_exclusive(u64 addr) 1661 { 1662 struct resource *p = &iomem_resource; 1663 bool err = false; 1664 loff_t l; 1665 int size = PAGE_SIZE; 1666 1667 if (!strict_iomem_checks) 1668 return false; 1669 1670 addr = addr & PAGE_MASK; 1671 1672 read_lock(&resource_lock); 1673 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1674 /* 1675 * We can probably skip the resources without 1676 * IORESOURCE_IO attribute? 1677 */ 1678 if (p->start >= addr + size) 1679 break; 1680 if (p->end < addr) 1681 continue; 1682 /* 1683 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1684 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1685 * resource is busy. 1686 */ 1687 if ((p->flags & IORESOURCE_BUSY) == 0) 1688 continue; 1689 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1690 || p->flags & IORESOURCE_EXCLUSIVE) { 1691 err = true; 1692 break; 1693 } 1694 } 1695 read_unlock(&resource_lock); 1696 1697 return err; 1698 } 1699 1700 struct resource_entry *resource_list_create_entry(struct resource *res, 1701 size_t extra_size) 1702 { 1703 struct resource_entry *entry; 1704 1705 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1706 if (entry) { 1707 INIT_LIST_HEAD(&entry->node); 1708 entry->res = res ? res : &entry->__res; 1709 } 1710 1711 return entry; 1712 } 1713 EXPORT_SYMBOL(resource_list_create_entry); 1714 1715 void resource_list_free(struct list_head *head) 1716 { 1717 struct resource_entry *entry, *tmp; 1718 1719 list_for_each_entry_safe(entry, tmp, head, node) 1720 resource_list_destroy_entry(entry); 1721 } 1722 EXPORT_SYMBOL(resource_list_free); 1723 1724 #ifdef CONFIG_DEVICE_PRIVATE 1725 static struct resource *__request_free_mem_region(struct device *dev, 1726 struct resource *base, unsigned long size, const char *name) 1727 { 1728 resource_size_t end, addr; 1729 struct resource *res; 1730 1731 size = ALIGN(size, 1UL << PA_SECTION_SHIFT); 1732 end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1); 1733 addr = end - size + 1UL; 1734 1735 for (; addr > size && addr >= base->start; addr -= size) { 1736 if (region_intersects(addr, size, 0, IORES_DESC_NONE) != 1737 REGION_DISJOINT) 1738 continue; 1739 1740 if (dev) 1741 res = devm_request_mem_region(dev, addr, size, name); 1742 else 1743 res = request_mem_region(addr, size, name); 1744 if (!res) 1745 return ERR_PTR(-ENOMEM); 1746 res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY; 1747 return res; 1748 } 1749 1750 return ERR_PTR(-ERANGE); 1751 } 1752 1753 /** 1754 * devm_request_free_mem_region - find free region for device private memory 1755 * 1756 * @dev: device struct to bind the resource to 1757 * @size: size in bytes of the device memory to add 1758 * @base: resource tree to look in 1759 * 1760 * This function tries to find an empty range of physical address big enough to 1761 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE 1762 * memory, which in turn allocates struct pages. 1763 */ 1764 struct resource *devm_request_free_mem_region(struct device *dev, 1765 struct resource *base, unsigned long size) 1766 { 1767 return __request_free_mem_region(dev, base, size, dev_name(dev)); 1768 } 1769 EXPORT_SYMBOL_GPL(devm_request_free_mem_region); 1770 1771 struct resource *request_free_mem_region(struct resource *base, 1772 unsigned long size, const char *name) 1773 { 1774 return __request_free_mem_region(NULL, base, size, name); 1775 } 1776 EXPORT_SYMBOL_GPL(request_free_mem_region); 1777 1778 #endif /* CONFIG_DEVICE_PRIVATE */ 1779 1780 static int __init strict_iomem(char *str) 1781 { 1782 if (strstr(str, "relaxed")) 1783 strict_iomem_checks = 0; 1784 if (strstr(str, "strict")) 1785 strict_iomem_checks = 1; 1786 return 1; 1787 } 1788 1789 __setup("iomem=", strict_iomem); 1790