xref: /linux/kernel/resource.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <asm/io.h>
31 
32 
33 struct resource ioport_resource = {
34 	.name	= "PCI IO",
35 	.start	= 0,
36 	.end	= IO_SPACE_LIMIT,
37 	.flags	= IORESOURCE_IO,
38 };
39 EXPORT_SYMBOL(ioport_resource);
40 
41 struct resource iomem_resource = {
42 	.name	= "PCI mem",
43 	.start	= 0,
44 	.end	= -1,
45 	.flags	= IORESOURCE_MEM,
46 };
47 EXPORT_SYMBOL(iomem_resource);
48 
49 /* constraints to be met while allocating resources */
50 struct resource_constraint {
51 	resource_size_t min, max, align;
52 	resource_size_t (*alignf)(void *, const struct resource *,
53 			resource_size_t, resource_size_t);
54 	void *alignf_data;
55 };
56 
57 static DEFINE_RWLOCK(resource_lock);
58 
59 /*
60  * For memory hotplug, there is no way to free resource entries allocated
61  * by boot mem after the system is up. So for reusing the resource entry
62  * we need to remember the resource.
63  */
64 static struct resource *bootmem_resource_free;
65 static DEFINE_SPINLOCK(bootmem_resource_lock);
66 
67 static struct resource *next_resource(struct resource *p)
68 {
69 	if (p->child)
70 		return p->child;
71 	while (!p->sibling && p->parent)
72 		p = p->parent;
73 	return p->sibling;
74 }
75 
76 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77 {
78 	struct resource *p = v;
79 	(*pos)++;
80 	return (void *)next_resource(p);
81 }
82 
83 #ifdef CONFIG_PROC_FS
84 
85 enum { MAX_IORES_LEVEL = 5 };
86 
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 	__acquires(resource_lock)
89 {
90 	struct resource *p = PDE_DATA(file_inode(m->file));
91 	loff_t l = 0;
92 	read_lock(&resource_lock);
93 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94 		;
95 	return p;
96 }
97 
98 static void r_stop(struct seq_file *m, void *v)
99 	__releases(resource_lock)
100 {
101 	read_unlock(&resource_lock);
102 }
103 
104 static int r_show(struct seq_file *m, void *v)
105 {
106 	struct resource *root = PDE_DATA(file_inode(m->file));
107 	struct resource *r = v, *p;
108 	unsigned long long start, end;
109 	int width = root->end < 0x10000 ? 4 : 8;
110 	int depth;
111 
112 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
113 		if (p->parent == root)
114 			break;
115 
116 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
117 		start = r->start;
118 		end = r->end;
119 	} else {
120 		start = end = 0;
121 	}
122 
123 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
124 			depth * 2, "",
125 			width, start,
126 			width, end,
127 			r->name ? r->name : "<BAD>");
128 	return 0;
129 }
130 
131 static const struct seq_operations resource_op = {
132 	.start	= r_start,
133 	.next	= r_next,
134 	.stop	= r_stop,
135 	.show	= r_show,
136 };
137 
138 static int __init ioresources_init(void)
139 {
140 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
141 			&ioport_resource);
142 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
143 	return 0;
144 }
145 __initcall(ioresources_init);
146 
147 #endif /* CONFIG_PROC_FS */
148 
149 static void free_resource(struct resource *res)
150 {
151 	if (!res)
152 		return;
153 
154 	if (!PageSlab(virt_to_head_page(res))) {
155 		spin_lock(&bootmem_resource_lock);
156 		res->sibling = bootmem_resource_free;
157 		bootmem_resource_free = res;
158 		spin_unlock(&bootmem_resource_lock);
159 	} else {
160 		kfree(res);
161 	}
162 }
163 
164 static struct resource *alloc_resource(gfp_t flags)
165 {
166 	struct resource *res = NULL;
167 
168 	spin_lock(&bootmem_resource_lock);
169 	if (bootmem_resource_free) {
170 		res = bootmem_resource_free;
171 		bootmem_resource_free = res->sibling;
172 	}
173 	spin_unlock(&bootmem_resource_lock);
174 
175 	if (res)
176 		memset(res, 0, sizeof(struct resource));
177 	else
178 		res = kzalloc(sizeof(struct resource), flags);
179 
180 	return res;
181 }
182 
183 /* Return the conflict entry if you can't request it */
184 static struct resource * __request_resource(struct resource *root, struct resource *new)
185 {
186 	resource_size_t start = new->start;
187 	resource_size_t end = new->end;
188 	struct resource *tmp, **p;
189 
190 	if (end < start)
191 		return root;
192 	if (start < root->start)
193 		return root;
194 	if (end > root->end)
195 		return root;
196 	p = &root->child;
197 	for (;;) {
198 		tmp = *p;
199 		if (!tmp || tmp->start > end) {
200 			new->sibling = tmp;
201 			*p = new;
202 			new->parent = root;
203 			return NULL;
204 		}
205 		p = &tmp->sibling;
206 		if (tmp->end < start)
207 			continue;
208 		return tmp;
209 	}
210 }
211 
212 static int __release_resource(struct resource *old, bool release_child)
213 {
214 	struct resource *tmp, **p, *chd;
215 
216 	p = &old->parent->child;
217 	for (;;) {
218 		tmp = *p;
219 		if (!tmp)
220 			break;
221 		if (tmp == old) {
222 			if (release_child || !(tmp->child)) {
223 				*p = tmp->sibling;
224 			} else {
225 				for (chd = tmp->child;; chd = chd->sibling) {
226 					chd->parent = tmp->parent;
227 					if (!(chd->sibling))
228 						break;
229 				}
230 				*p = tmp->child;
231 				chd->sibling = tmp->sibling;
232 			}
233 			old->parent = NULL;
234 			return 0;
235 		}
236 		p = &tmp->sibling;
237 	}
238 	return -EINVAL;
239 }
240 
241 static void __release_child_resources(struct resource *r)
242 {
243 	struct resource *tmp, *p;
244 	resource_size_t size;
245 
246 	p = r->child;
247 	r->child = NULL;
248 	while (p) {
249 		tmp = p;
250 		p = p->sibling;
251 
252 		tmp->parent = NULL;
253 		tmp->sibling = NULL;
254 		__release_child_resources(tmp);
255 
256 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
257 		/* need to restore size, and keep flags */
258 		size = resource_size(tmp);
259 		tmp->start = 0;
260 		tmp->end = size - 1;
261 	}
262 }
263 
264 void release_child_resources(struct resource *r)
265 {
266 	write_lock(&resource_lock);
267 	__release_child_resources(r);
268 	write_unlock(&resource_lock);
269 }
270 
271 /**
272  * request_resource_conflict - request and reserve an I/O or memory resource
273  * @root: root resource descriptor
274  * @new: resource descriptor desired by caller
275  *
276  * Returns 0 for success, conflict resource on error.
277  */
278 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
279 {
280 	struct resource *conflict;
281 
282 	write_lock(&resource_lock);
283 	conflict = __request_resource(root, new);
284 	write_unlock(&resource_lock);
285 	return conflict;
286 }
287 
288 /**
289  * request_resource - request and reserve an I/O or memory resource
290  * @root: root resource descriptor
291  * @new: resource descriptor desired by caller
292  *
293  * Returns 0 for success, negative error code on error.
294  */
295 int request_resource(struct resource *root, struct resource *new)
296 {
297 	struct resource *conflict;
298 
299 	conflict = request_resource_conflict(root, new);
300 	return conflict ? -EBUSY : 0;
301 }
302 
303 EXPORT_SYMBOL(request_resource);
304 
305 /**
306  * release_resource - release a previously reserved resource
307  * @old: resource pointer
308  */
309 int release_resource(struct resource *old)
310 {
311 	int retval;
312 
313 	write_lock(&resource_lock);
314 	retval = __release_resource(old, true);
315 	write_unlock(&resource_lock);
316 	return retval;
317 }
318 
319 EXPORT_SYMBOL(release_resource);
320 
321 /**
322  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
323  *			 [@start..@end].
324  *
325  * If a resource is found, returns 0 and @*res is overwritten with the part
326  * of the resource that's within [@start..@end]; if none is found, returns
327  * -ENODEV.  Returns -EINVAL for invalid parameters.
328  *
329  * @start:	start address of the resource searched for
330  * @end:	end address of same resource
331  * @flags:	flags which the resource must have
332  * @desc:	descriptor the resource must have
333  * @res:	return ptr, if resource found
334  *
335  * The caller must specify @start, @end, @flags, and @desc
336  * (which may be IORES_DESC_NONE).
337  */
338 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
339 			       unsigned long flags, unsigned long desc,
340 			       struct resource *res)
341 {
342 	struct resource *p;
343 
344 	if (!res)
345 		return -EINVAL;
346 
347 	if (start >= end)
348 		return -EINVAL;
349 
350 	read_lock(&resource_lock);
351 
352 	for (p = iomem_resource.child; p; p = next_resource(p)) {
353 		/* If we passed the resource we are looking for, stop */
354 		if (p->start > end) {
355 			p = NULL;
356 			break;
357 		}
358 
359 		/* Skip until we find a range that matches what we look for */
360 		if (p->end < start)
361 			continue;
362 
363 		if ((p->flags & flags) != flags)
364 			continue;
365 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
366 			continue;
367 
368 		/* Found a match, break */
369 		break;
370 	}
371 
372 	if (p) {
373 		/* copy data */
374 		*res = (struct resource) {
375 			.start = max(start, p->start),
376 			.end = min(end, p->end),
377 			.flags = p->flags,
378 			.desc = p->desc,
379 			.parent = p->parent,
380 		};
381 	}
382 
383 	read_unlock(&resource_lock);
384 	return p ? 0 : -ENODEV;
385 }
386 
387 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
388 				 unsigned long flags, unsigned long desc,
389 				 void *arg,
390 				 int (*func)(struct resource *, void *))
391 {
392 	struct resource res;
393 	int ret = -EINVAL;
394 
395 	while (start < end &&
396 	       !find_next_iomem_res(start, end, flags, desc, &res)) {
397 		ret = (*func)(&res, arg);
398 		if (ret)
399 			break;
400 
401 		start = res.end + 1;
402 	}
403 
404 	return ret;
405 }
406 
407 /**
408  * walk_iomem_res_desc - Walks through iomem resources and calls func()
409  *			 with matching resource ranges.
410  * *
411  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
412  * @flags: I/O resource flags
413  * @start: start addr
414  * @end: end addr
415  * @arg: function argument for the callback @func
416  * @func: callback function that is called for each qualifying resource area
417  *
418  * All the memory ranges which overlap start,end and also match flags and
419  * desc are valid candidates.
420  *
421  * NOTE: For a new descriptor search, define a new IORES_DESC in
422  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
423  */
424 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
425 		u64 end, void *arg, int (*func)(struct resource *, void *))
426 {
427 	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
428 }
429 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
430 
431 /*
432  * This function calls the @func callback against all memory ranges of type
433  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
434  * Now, this function is only for System RAM, it deals with full ranges and
435  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
436  * ranges.
437  */
438 int walk_system_ram_res(u64 start, u64 end, void *arg,
439 			int (*func)(struct resource *, void *))
440 {
441 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
442 
443 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
444 				     func);
445 }
446 
447 /*
448  * This function calls the @func callback against all memory ranges, which
449  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
450  */
451 int walk_mem_res(u64 start, u64 end, void *arg,
452 		 int (*func)(struct resource *, void *))
453 {
454 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
455 
456 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
457 				     func);
458 }
459 
460 /*
461  * This function calls the @func callback against all memory ranges of type
462  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
463  * It is to be used only for System RAM.
464  */
465 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
466 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
467 {
468 	resource_size_t start, end;
469 	unsigned long flags;
470 	struct resource res;
471 	unsigned long pfn, end_pfn;
472 	int ret = -EINVAL;
473 
474 	start = (u64) start_pfn << PAGE_SHIFT;
475 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
476 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
477 	while (start < end &&
478 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
479 		pfn = PFN_UP(res.start);
480 		end_pfn = PFN_DOWN(res.end + 1);
481 		if (end_pfn > pfn)
482 			ret = (*func)(pfn, end_pfn - pfn, arg);
483 		if (ret)
484 			break;
485 		start = res.end + 1;
486 	}
487 	return ret;
488 }
489 
490 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
491 {
492 	return 1;
493 }
494 
495 /*
496  * This generic page_is_ram() returns true if specified address is
497  * registered as System RAM in iomem_resource list.
498  */
499 int __weak page_is_ram(unsigned long pfn)
500 {
501 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
502 }
503 EXPORT_SYMBOL_GPL(page_is_ram);
504 
505 static int __region_intersects(resource_size_t start, size_t size,
506 			unsigned long flags, unsigned long desc)
507 {
508 	struct resource res;
509 	int type = 0; int other = 0;
510 	struct resource *p;
511 
512 	res.start = start;
513 	res.end = start + size - 1;
514 
515 	for (p = iomem_resource.child; p ; p = p->sibling) {
516 		bool is_type = (((p->flags & flags) == flags) &&
517 				((desc == IORES_DESC_NONE) ||
518 				 (desc == p->desc)));
519 
520 		if (resource_overlaps(p, &res))
521 			is_type ? type++ : other++;
522 	}
523 
524 	if (type == 0)
525 		return REGION_DISJOINT;
526 
527 	if (other == 0)
528 		return REGION_INTERSECTS;
529 
530 	return REGION_MIXED;
531 }
532 
533 /**
534  * region_intersects() - determine intersection of region with known resources
535  * @start: region start address
536  * @size: size of region
537  * @flags: flags of resource (in iomem_resource)
538  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
539  *
540  * Check if the specified region partially overlaps or fully eclipses a
541  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
542  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
543  * return REGION_MIXED if the region overlaps @flags/@desc and another
544  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
545  * and no other defined resource. Note that REGION_INTERSECTS is also
546  * returned in the case when the specified region overlaps RAM and undefined
547  * memory holes.
548  *
549  * region_intersect() is used by memory remapping functions to ensure
550  * the user is not remapping RAM and is a vast speed up over walking
551  * through the resource table page by page.
552  */
553 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
554 		      unsigned long desc)
555 {
556 	int ret;
557 
558 	read_lock(&resource_lock);
559 	ret = __region_intersects(start, size, flags, desc);
560 	read_unlock(&resource_lock);
561 
562 	return ret;
563 }
564 EXPORT_SYMBOL_GPL(region_intersects);
565 
566 void __weak arch_remove_reservations(struct resource *avail)
567 {
568 }
569 
570 static resource_size_t simple_align_resource(void *data,
571 					     const struct resource *avail,
572 					     resource_size_t size,
573 					     resource_size_t align)
574 {
575 	return avail->start;
576 }
577 
578 static void resource_clip(struct resource *res, resource_size_t min,
579 			  resource_size_t max)
580 {
581 	if (res->start < min)
582 		res->start = min;
583 	if (res->end > max)
584 		res->end = max;
585 }
586 
587 /*
588  * Find empty slot in the resource tree with the given range and
589  * alignment constraints
590  */
591 static int __find_resource(struct resource *root, struct resource *old,
592 			 struct resource *new,
593 			 resource_size_t  size,
594 			 struct resource_constraint *constraint)
595 {
596 	struct resource *this = root->child;
597 	struct resource tmp = *new, avail, alloc;
598 
599 	tmp.start = root->start;
600 	/*
601 	 * Skip past an allocated resource that starts at 0, since the assignment
602 	 * of this->start - 1 to tmp->end below would cause an underflow.
603 	 */
604 	if (this && this->start == root->start) {
605 		tmp.start = (this == old) ? old->start : this->end + 1;
606 		this = this->sibling;
607 	}
608 	for(;;) {
609 		if (this)
610 			tmp.end = (this == old) ?  this->end : this->start - 1;
611 		else
612 			tmp.end = root->end;
613 
614 		if (tmp.end < tmp.start)
615 			goto next;
616 
617 		resource_clip(&tmp, constraint->min, constraint->max);
618 		arch_remove_reservations(&tmp);
619 
620 		/* Check for overflow after ALIGN() */
621 		avail.start = ALIGN(tmp.start, constraint->align);
622 		avail.end = tmp.end;
623 		avail.flags = new->flags & ~IORESOURCE_UNSET;
624 		if (avail.start >= tmp.start) {
625 			alloc.flags = avail.flags;
626 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
627 					size, constraint->align);
628 			alloc.end = alloc.start + size - 1;
629 			if (alloc.start <= alloc.end &&
630 			    resource_contains(&avail, &alloc)) {
631 				new->start = alloc.start;
632 				new->end = alloc.end;
633 				return 0;
634 			}
635 		}
636 
637 next:		if (!this || this->end == root->end)
638 			break;
639 
640 		if (this != old)
641 			tmp.start = this->end + 1;
642 		this = this->sibling;
643 	}
644 	return -EBUSY;
645 }
646 
647 /*
648  * Find empty slot in the resource tree given range and alignment.
649  */
650 static int find_resource(struct resource *root, struct resource *new,
651 			resource_size_t size,
652 			struct resource_constraint  *constraint)
653 {
654 	return  __find_resource(root, NULL, new, size, constraint);
655 }
656 
657 /**
658  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
659  *	The resource will be relocated if the new size cannot be reallocated in the
660  *	current location.
661  *
662  * @root: root resource descriptor
663  * @old:  resource descriptor desired by caller
664  * @newsize: new size of the resource descriptor
665  * @constraint: the size and alignment constraints to be met.
666  */
667 static int reallocate_resource(struct resource *root, struct resource *old,
668 			       resource_size_t newsize,
669 			       struct resource_constraint *constraint)
670 {
671 	int err=0;
672 	struct resource new = *old;
673 	struct resource *conflict;
674 
675 	write_lock(&resource_lock);
676 
677 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
678 		goto out;
679 
680 	if (resource_contains(&new, old)) {
681 		old->start = new.start;
682 		old->end = new.end;
683 		goto out;
684 	}
685 
686 	if (old->child) {
687 		err = -EBUSY;
688 		goto out;
689 	}
690 
691 	if (resource_contains(old, &new)) {
692 		old->start = new.start;
693 		old->end = new.end;
694 	} else {
695 		__release_resource(old, true);
696 		*old = new;
697 		conflict = __request_resource(root, old);
698 		BUG_ON(conflict);
699 	}
700 out:
701 	write_unlock(&resource_lock);
702 	return err;
703 }
704 
705 
706 /**
707  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
708  * 	The resource will be reallocated with a new size if it was already allocated
709  * @root: root resource descriptor
710  * @new: resource descriptor desired by caller
711  * @size: requested resource region size
712  * @min: minimum boundary to allocate
713  * @max: maximum boundary to allocate
714  * @align: alignment requested, in bytes
715  * @alignf: alignment function, optional, called if not NULL
716  * @alignf_data: arbitrary data to pass to the @alignf function
717  */
718 int allocate_resource(struct resource *root, struct resource *new,
719 		      resource_size_t size, resource_size_t min,
720 		      resource_size_t max, resource_size_t align,
721 		      resource_size_t (*alignf)(void *,
722 						const struct resource *,
723 						resource_size_t,
724 						resource_size_t),
725 		      void *alignf_data)
726 {
727 	int err;
728 	struct resource_constraint constraint;
729 
730 	if (!alignf)
731 		alignf = simple_align_resource;
732 
733 	constraint.min = min;
734 	constraint.max = max;
735 	constraint.align = align;
736 	constraint.alignf = alignf;
737 	constraint.alignf_data = alignf_data;
738 
739 	if ( new->parent ) {
740 		/* resource is already allocated, try reallocating with
741 		   the new constraints */
742 		return reallocate_resource(root, new, size, &constraint);
743 	}
744 
745 	write_lock(&resource_lock);
746 	err = find_resource(root, new, size, &constraint);
747 	if (err >= 0 && __request_resource(root, new))
748 		err = -EBUSY;
749 	write_unlock(&resource_lock);
750 	return err;
751 }
752 
753 EXPORT_SYMBOL(allocate_resource);
754 
755 /**
756  * lookup_resource - find an existing resource by a resource start address
757  * @root: root resource descriptor
758  * @start: resource start address
759  *
760  * Returns a pointer to the resource if found, NULL otherwise
761  */
762 struct resource *lookup_resource(struct resource *root, resource_size_t start)
763 {
764 	struct resource *res;
765 
766 	read_lock(&resource_lock);
767 	for (res = root->child; res; res = res->sibling) {
768 		if (res->start == start)
769 			break;
770 	}
771 	read_unlock(&resource_lock);
772 
773 	return res;
774 }
775 
776 /*
777  * Insert a resource into the resource tree. If successful, return NULL,
778  * otherwise return the conflicting resource (compare to __request_resource())
779  */
780 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
781 {
782 	struct resource *first, *next;
783 
784 	for (;; parent = first) {
785 		first = __request_resource(parent, new);
786 		if (!first)
787 			return first;
788 
789 		if (first == parent)
790 			return first;
791 		if (WARN_ON(first == new))	/* duplicated insertion */
792 			return first;
793 
794 		if ((first->start > new->start) || (first->end < new->end))
795 			break;
796 		if ((first->start == new->start) && (first->end == new->end))
797 			break;
798 	}
799 
800 	for (next = first; ; next = next->sibling) {
801 		/* Partial overlap? Bad, and unfixable */
802 		if (next->start < new->start || next->end > new->end)
803 			return next;
804 		if (!next->sibling)
805 			break;
806 		if (next->sibling->start > new->end)
807 			break;
808 	}
809 
810 	new->parent = parent;
811 	new->sibling = next->sibling;
812 	new->child = first;
813 
814 	next->sibling = NULL;
815 	for (next = first; next; next = next->sibling)
816 		next->parent = new;
817 
818 	if (parent->child == first) {
819 		parent->child = new;
820 	} else {
821 		next = parent->child;
822 		while (next->sibling != first)
823 			next = next->sibling;
824 		next->sibling = new;
825 	}
826 	return NULL;
827 }
828 
829 /**
830  * insert_resource_conflict - Inserts resource in the resource tree
831  * @parent: parent of the new resource
832  * @new: new resource to insert
833  *
834  * Returns 0 on success, conflict resource if the resource can't be inserted.
835  *
836  * This function is equivalent to request_resource_conflict when no conflict
837  * happens. If a conflict happens, and the conflicting resources
838  * entirely fit within the range of the new resource, then the new
839  * resource is inserted and the conflicting resources become children of
840  * the new resource.
841  *
842  * This function is intended for producers of resources, such as FW modules
843  * and bus drivers.
844  */
845 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
846 {
847 	struct resource *conflict;
848 
849 	write_lock(&resource_lock);
850 	conflict = __insert_resource(parent, new);
851 	write_unlock(&resource_lock);
852 	return conflict;
853 }
854 
855 /**
856  * insert_resource - Inserts a resource in the resource tree
857  * @parent: parent of the new resource
858  * @new: new resource to insert
859  *
860  * Returns 0 on success, -EBUSY if the resource can't be inserted.
861  *
862  * This function is intended for producers of resources, such as FW modules
863  * and bus drivers.
864  */
865 int insert_resource(struct resource *parent, struct resource *new)
866 {
867 	struct resource *conflict;
868 
869 	conflict = insert_resource_conflict(parent, new);
870 	return conflict ? -EBUSY : 0;
871 }
872 EXPORT_SYMBOL_GPL(insert_resource);
873 
874 /**
875  * insert_resource_expand_to_fit - Insert a resource into the resource tree
876  * @root: root resource descriptor
877  * @new: new resource to insert
878  *
879  * Insert a resource into the resource tree, possibly expanding it in order
880  * to make it encompass any conflicting resources.
881  */
882 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
883 {
884 	if (new->parent)
885 		return;
886 
887 	write_lock(&resource_lock);
888 	for (;;) {
889 		struct resource *conflict;
890 
891 		conflict = __insert_resource(root, new);
892 		if (!conflict)
893 			break;
894 		if (conflict == root)
895 			break;
896 
897 		/* Ok, expand resource to cover the conflict, then try again .. */
898 		if (conflict->start < new->start)
899 			new->start = conflict->start;
900 		if (conflict->end > new->end)
901 			new->end = conflict->end;
902 
903 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
904 	}
905 	write_unlock(&resource_lock);
906 }
907 
908 /**
909  * remove_resource - Remove a resource in the resource tree
910  * @old: resource to remove
911  *
912  * Returns 0 on success, -EINVAL if the resource is not valid.
913  *
914  * This function removes a resource previously inserted by insert_resource()
915  * or insert_resource_conflict(), and moves the children (if any) up to
916  * where they were before.  insert_resource() and insert_resource_conflict()
917  * insert a new resource, and move any conflicting resources down to the
918  * children of the new resource.
919  *
920  * insert_resource(), insert_resource_conflict() and remove_resource() are
921  * intended for producers of resources, such as FW modules and bus drivers.
922  */
923 int remove_resource(struct resource *old)
924 {
925 	int retval;
926 
927 	write_lock(&resource_lock);
928 	retval = __release_resource(old, false);
929 	write_unlock(&resource_lock);
930 	return retval;
931 }
932 EXPORT_SYMBOL_GPL(remove_resource);
933 
934 static int __adjust_resource(struct resource *res, resource_size_t start,
935 				resource_size_t size)
936 {
937 	struct resource *tmp, *parent = res->parent;
938 	resource_size_t end = start + size - 1;
939 	int result = -EBUSY;
940 
941 	if (!parent)
942 		goto skip;
943 
944 	if ((start < parent->start) || (end > parent->end))
945 		goto out;
946 
947 	if (res->sibling && (res->sibling->start <= end))
948 		goto out;
949 
950 	tmp = parent->child;
951 	if (tmp != res) {
952 		while (tmp->sibling != res)
953 			tmp = tmp->sibling;
954 		if (start <= tmp->end)
955 			goto out;
956 	}
957 
958 skip:
959 	for (tmp = res->child; tmp; tmp = tmp->sibling)
960 		if ((tmp->start < start) || (tmp->end > end))
961 			goto out;
962 
963 	res->start = start;
964 	res->end = end;
965 	result = 0;
966 
967  out:
968 	return result;
969 }
970 
971 /**
972  * adjust_resource - modify a resource's start and size
973  * @res: resource to modify
974  * @start: new start value
975  * @size: new size
976  *
977  * Given an existing resource, change its start and size to match the
978  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
979  * Existing children of the resource are assumed to be immutable.
980  */
981 int adjust_resource(struct resource *res, resource_size_t start,
982 		    resource_size_t size)
983 {
984 	int result;
985 
986 	write_lock(&resource_lock);
987 	result = __adjust_resource(res, start, size);
988 	write_unlock(&resource_lock);
989 	return result;
990 }
991 EXPORT_SYMBOL(adjust_resource);
992 
993 static void __init
994 __reserve_region_with_split(struct resource *root, resource_size_t start,
995 			    resource_size_t end, const char *name)
996 {
997 	struct resource *parent = root;
998 	struct resource *conflict;
999 	struct resource *res = alloc_resource(GFP_ATOMIC);
1000 	struct resource *next_res = NULL;
1001 	int type = resource_type(root);
1002 
1003 	if (!res)
1004 		return;
1005 
1006 	res->name = name;
1007 	res->start = start;
1008 	res->end = end;
1009 	res->flags = type | IORESOURCE_BUSY;
1010 	res->desc = IORES_DESC_NONE;
1011 
1012 	while (1) {
1013 
1014 		conflict = __request_resource(parent, res);
1015 		if (!conflict) {
1016 			if (!next_res)
1017 				break;
1018 			res = next_res;
1019 			next_res = NULL;
1020 			continue;
1021 		}
1022 
1023 		/* conflict covered whole area */
1024 		if (conflict->start <= res->start &&
1025 				conflict->end >= res->end) {
1026 			free_resource(res);
1027 			WARN_ON(next_res);
1028 			break;
1029 		}
1030 
1031 		/* failed, split and try again */
1032 		if (conflict->start > res->start) {
1033 			end = res->end;
1034 			res->end = conflict->start - 1;
1035 			if (conflict->end < end) {
1036 				next_res = alloc_resource(GFP_ATOMIC);
1037 				if (!next_res) {
1038 					free_resource(res);
1039 					break;
1040 				}
1041 				next_res->name = name;
1042 				next_res->start = conflict->end + 1;
1043 				next_res->end = end;
1044 				next_res->flags = type | IORESOURCE_BUSY;
1045 				next_res->desc = IORES_DESC_NONE;
1046 			}
1047 		} else {
1048 			res->start = conflict->end + 1;
1049 		}
1050 	}
1051 
1052 }
1053 
1054 void __init
1055 reserve_region_with_split(struct resource *root, resource_size_t start,
1056 			  resource_size_t end, const char *name)
1057 {
1058 	int abort = 0;
1059 
1060 	write_lock(&resource_lock);
1061 	if (root->start > start || root->end < end) {
1062 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1063 		       (unsigned long long)start, (unsigned long long)end,
1064 		       root);
1065 		if (start > root->end || end < root->start)
1066 			abort = 1;
1067 		else {
1068 			if (end > root->end)
1069 				end = root->end;
1070 			if (start < root->start)
1071 				start = root->start;
1072 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1073 			       (unsigned long long)start,
1074 			       (unsigned long long)end);
1075 		}
1076 		dump_stack();
1077 	}
1078 	if (!abort)
1079 		__reserve_region_with_split(root, start, end, name);
1080 	write_unlock(&resource_lock);
1081 }
1082 
1083 /**
1084  * resource_alignment - calculate resource's alignment
1085  * @res: resource pointer
1086  *
1087  * Returns alignment on success, 0 (invalid alignment) on failure.
1088  */
1089 resource_size_t resource_alignment(struct resource *res)
1090 {
1091 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1092 	case IORESOURCE_SIZEALIGN:
1093 		return resource_size(res);
1094 	case IORESOURCE_STARTALIGN:
1095 		return res->start;
1096 	default:
1097 		return 0;
1098 	}
1099 }
1100 
1101 /*
1102  * This is compatibility stuff for IO resources.
1103  *
1104  * Note how this, unlike the above, knows about
1105  * the IO flag meanings (busy etc).
1106  *
1107  * request_region creates a new busy region.
1108  *
1109  * release_region releases a matching busy region.
1110  */
1111 
1112 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1113 
1114 static struct inode *iomem_inode;
1115 
1116 #ifdef CONFIG_IO_STRICT_DEVMEM
1117 static void revoke_iomem(struct resource *res)
1118 {
1119 	/* pairs with smp_store_release() in iomem_init_inode() */
1120 	struct inode *inode = smp_load_acquire(&iomem_inode);
1121 
1122 	/*
1123 	 * Check that the initialization has completed. Losing the race
1124 	 * is ok because it means drivers are claiming resources before
1125 	 * the fs_initcall level of init and prevent iomem_get_mapping users
1126 	 * from establishing mappings.
1127 	 */
1128 	if (!inode)
1129 		return;
1130 
1131 	/*
1132 	 * The expectation is that the driver has successfully marked
1133 	 * the resource busy by this point, so devmem_is_allowed()
1134 	 * should start returning false, however for performance this
1135 	 * does not iterate the entire resource range.
1136 	 */
1137 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1138 	    devmem_is_allowed(PHYS_PFN(res->end))) {
1139 		/*
1140 		 * *cringe* iomem=relaxed says "go ahead, what's the
1141 		 * worst that can happen?"
1142 		 */
1143 		return;
1144 	}
1145 
1146 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1147 }
1148 #else
1149 static void revoke_iomem(struct resource *res) {}
1150 #endif
1151 
1152 struct address_space *iomem_get_mapping(void)
1153 {
1154 	/*
1155 	 * This function is only called from file open paths, hence guaranteed
1156 	 * that fs_initcalls have completed and no need to check for NULL. But
1157 	 * since revoke_iomem can be called before the initcall we still need
1158 	 * the barrier to appease checkers.
1159 	 */
1160 	return smp_load_acquire(&iomem_inode)->i_mapping;
1161 }
1162 
1163 static int __request_region_locked(struct resource *res, struct resource *parent,
1164 				   resource_size_t start, resource_size_t n,
1165 				   const char *name, int flags)
1166 {
1167 	DECLARE_WAITQUEUE(wait, current);
1168 
1169 	res->name = name;
1170 	res->start = start;
1171 	res->end = start + n - 1;
1172 
1173 	for (;;) {
1174 		struct resource *conflict;
1175 
1176 		res->flags = resource_type(parent) | resource_ext_type(parent);
1177 		res->flags |= IORESOURCE_BUSY | flags;
1178 		res->desc = parent->desc;
1179 
1180 		conflict = __request_resource(parent, res);
1181 		if (!conflict)
1182 			break;
1183 		/*
1184 		 * mm/hmm.c reserves physical addresses which then
1185 		 * become unavailable to other users.  Conflicts are
1186 		 * not expected.  Warn to aid debugging if encountered.
1187 		 */
1188 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1189 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1190 				conflict->name, conflict, res);
1191 		}
1192 		if (conflict != parent) {
1193 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1194 				parent = conflict;
1195 				continue;
1196 			}
1197 		}
1198 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1199 			add_wait_queue(&muxed_resource_wait, &wait);
1200 			write_unlock(&resource_lock);
1201 			set_current_state(TASK_UNINTERRUPTIBLE);
1202 			schedule();
1203 			remove_wait_queue(&muxed_resource_wait, &wait);
1204 			write_lock(&resource_lock);
1205 			continue;
1206 		}
1207 		/* Uhhuh, that didn't work out.. */
1208 		return -EBUSY;
1209 	}
1210 
1211 	return 0;
1212 }
1213 
1214 /**
1215  * __request_region - create a new busy resource region
1216  * @parent: parent resource descriptor
1217  * @start: resource start address
1218  * @n: resource region size
1219  * @name: reserving caller's ID string
1220  * @flags: IO resource flags
1221  */
1222 struct resource *__request_region(struct resource *parent,
1223 				  resource_size_t start, resource_size_t n,
1224 				  const char *name, int flags)
1225 {
1226 	struct resource *res = alloc_resource(GFP_KERNEL);
1227 	int ret;
1228 
1229 	if (!res)
1230 		return NULL;
1231 
1232 	write_lock(&resource_lock);
1233 	ret = __request_region_locked(res, parent, start, n, name, flags);
1234 	write_unlock(&resource_lock);
1235 
1236 	if (ret) {
1237 		free_resource(res);
1238 		return NULL;
1239 	}
1240 
1241 	if (parent == &iomem_resource)
1242 		revoke_iomem(res);
1243 
1244 	return res;
1245 }
1246 EXPORT_SYMBOL(__request_region);
1247 
1248 /**
1249  * __release_region - release a previously reserved resource region
1250  * @parent: parent resource descriptor
1251  * @start: resource start address
1252  * @n: resource region size
1253  *
1254  * The described resource region must match a currently busy region.
1255  */
1256 void __release_region(struct resource *parent, resource_size_t start,
1257 		      resource_size_t n)
1258 {
1259 	struct resource **p;
1260 	resource_size_t end;
1261 
1262 	p = &parent->child;
1263 	end = start + n - 1;
1264 
1265 	write_lock(&resource_lock);
1266 
1267 	for (;;) {
1268 		struct resource *res = *p;
1269 
1270 		if (!res)
1271 			break;
1272 		if (res->start <= start && res->end >= end) {
1273 			if (!(res->flags & IORESOURCE_BUSY)) {
1274 				p = &res->child;
1275 				continue;
1276 			}
1277 			if (res->start != start || res->end != end)
1278 				break;
1279 			*p = res->sibling;
1280 			write_unlock(&resource_lock);
1281 			if (res->flags & IORESOURCE_MUXED)
1282 				wake_up(&muxed_resource_wait);
1283 			free_resource(res);
1284 			return;
1285 		}
1286 		p = &res->sibling;
1287 	}
1288 
1289 	write_unlock(&resource_lock);
1290 
1291 	printk(KERN_WARNING "Trying to free nonexistent resource "
1292 		"<%016llx-%016llx>\n", (unsigned long long)start,
1293 		(unsigned long long)end);
1294 }
1295 EXPORT_SYMBOL(__release_region);
1296 
1297 #ifdef CONFIG_MEMORY_HOTREMOVE
1298 /**
1299  * release_mem_region_adjustable - release a previously reserved memory region
1300  * @start: resource start address
1301  * @size: resource region size
1302  *
1303  * This interface is intended for memory hot-delete.  The requested region
1304  * is released from a currently busy memory resource.  The requested region
1305  * must either match exactly or fit into a single busy resource entry.  In
1306  * the latter case, the remaining resource is adjusted accordingly.
1307  * Existing children of the busy memory resource must be immutable in the
1308  * request.
1309  *
1310  * Note:
1311  * - Additional release conditions, such as overlapping region, can be
1312  *   supported after they are confirmed as valid cases.
1313  * - When a busy memory resource gets split into two entries, the code
1314  *   assumes that all children remain in the lower address entry for
1315  *   simplicity.  Enhance this logic when necessary.
1316  */
1317 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1318 {
1319 	struct resource *parent = &iomem_resource;
1320 	struct resource *new_res = NULL;
1321 	bool alloc_nofail = false;
1322 	struct resource **p;
1323 	struct resource *res;
1324 	resource_size_t end;
1325 
1326 	end = start + size - 1;
1327 	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1328 		return;
1329 
1330 	/*
1331 	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1332 	 * just before releasing the region. This is highly unlikely to
1333 	 * fail - let's play save and make it never fail as the caller cannot
1334 	 * perform any error handling (e.g., trying to re-add memory will fail
1335 	 * similarly).
1336 	 */
1337 retry:
1338 	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1339 
1340 	p = &parent->child;
1341 	write_lock(&resource_lock);
1342 
1343 	while ((res = *p)) {
1344 		if (res->start >= end)
1345 			break;
1346 
1347 		/* look for the next resource if it does not fit into */
1348 		if (res->start > start || res->end < end) {
1349 			p = &res->sibling;
1350 			continue;
1351 		}
1352 
1353 		/*
1354 		 * All memory regions added from memory-hotplug path have the
1355 		 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1356 		 * this flag, we know that we are dealing with a resource coming
1357 		 * from HMM/devm. HMM/devm use another mechanism to add/release
1358 		 * a resource. This goes via devm_request_mem_region and
1359 		 * devm_release_mem_region.
1360 		 * HMM/devm take care to release their resources when they want,
1361 		 * so if we are dealing with them, let us just back off here.
1362 		 */
1363 		if (!(res->flags & IORESOURCE_SYSRAM)) {
1364 			break;
1365 		}
1366 
1367 		if (!(res->flags & IORESOURCE_MEM))
1368 			break;
1369 
1370 		if (!(res->flags & IORESOURCE_BUSY)) {
1371 			p = &res->child;
1372 			continue;
1373 		}
1374 
1375 		/* found the target resource; let's adjust accordingly */
1376 		if (res->start == start && res->end == end) {
1377 			/* free the whole entry */
1378 			*p = res->sibling;
1379 			free_resource(res);
1380 		} else if (res->start == start && res->end != end) {
1381 			/* adjust the start */
1382 			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1383 						       res->end - end));
1384 		} else if (res->start != start && res->end == end) {
1385 			/* adjust the end */
1386 			WARN_ON_ONCE(__adjust_resource(res, res->start,
1387 						       start - res->start));
1388 		} else {
1389 			/* split into two entries - we need a new resource */
1390 			if (!new_res) {
1391 				new_res = alloc_resource(GFP_ATOMIC);
1392 				if (!new_res) {
1393 					alloc_nofail = true;
1394 					write_unlock(&resource_lock);
1395 					goto retry;
1396 				}
1397 			}
1398 			new_res->name = res->name;
1399 			new_res->start = end + 1;
1400 			new_res->end = res->end;
1401 			new_res->flags = res->flags;
1402 			new_res->desc = res->desc;
1403 			new_res->parent = res->parent;
1404 			new_res->sibling = res->sibling;
1405 			new_res->child = NULL;
1406 
1407 			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1408 							   start - res->start)))
1409 				break;
1410 			res->sibling = new_res;
1411 			new_res = NULL;
1412 		}
1413 
1414 		break;
1415 	}
1416 
1417 	write_unlock(&resource_lock);
1418 	free_resource(new_res);
1419 }
1420 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1421 
1422 #ifdef CONFIG_MEMORY_HOTPLUG
1423 static bool system_ram_resources_mergeable(struct resource *r1,
1424 					   struct resource *r2)
1425 {
1426 	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1427 	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1428 	       r1->name == r2->name && r1->desc == r2->desc &&
1429 	       !r1->child && !r2->child;
1430 }
1431 
1432 /**
1433  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1434  *	merge it with adjacent, mergeable resources
1435  * @res: resource descriptor
1436  *
1437  * This interface is intended for memory hotplug, whereby lots of contiguous
1438  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1439  * the actual resource boundaries are not of interest (e.g., it might be
1440  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1441  * same parent, and that don't have any children are considered. All mergeable
1442  * resources must be immutable during the request.
1443  *
1444  * Note:
1445  * - The caller has to make sure that no pointers to resources that are
1446  *   marked mergeable are used anymore after this call - the resource might
1447  *   be freed and the pointer might be stale!
1448  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1449  */
1450 void merge_system_ram_resource(struct resource *res)
1451 {
1452 	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1453 	struct resource *cur;
1454 
1455 	if (WARN_ON_ONCE((res->flags & flags) != flags))
1456 		return;
1457 
1458 	write_lock(&resource_lock);
1459 	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1460 
1461 	/* Try to merge with next item in the list. */
1462 	cur = res->sibling;
1463 	if (cur && system_ram_resources_mergeable(res, cur)) {
1464 		res->end = cur->end;
1465 		res->sibling = cur->sibling;
1466 		free_resource(cur);
1467 	}
1468 
1469 	/* Try to merge with previous item in the list. */
1470 	cur = res->parent->child;
1471 	while (cur && cur->sibling != res)
1472 		cur = cur->sibling;
1473 	if (cur && system_ram_resources_mergeable(cur, res)) {
1474 		cur->end = res->end;
1475 		cur->sibling = res->sibling;
1476 		free_resource(res);
1477 	}
1478 	write_unlock(&resource_lock);
1479 }
1480 #endif	/* CONFIG_MEMORY_HOTPLUG */
1481 
1482 /*
1483  * Managed region resource
1484  */
1485 static void devm_resource_release(struct device *dev, void *ptr)
1486 {
1487 	struct resource **r = ptr;
1488 
1489 	release_resource(*r);
1490 }
1491 
1492 /**
1493  * devm_request_resource() - request and reserve an I/O or memory resource
1494  * @dev: device for which to request the resource
1495  * @root: root of the resource tree from which to request the resource
1496  * @new: descriptor of the resource to request
1497  *
1498  * This is a device-managed version of request_resource(). There is usually
1499  * no need to release resources requested by this function explicitly since
1500  * that will be taken care of when the device is unbound from its driver.
1501  * If for some reason the resource needs to be released explicitly, because
1502  * of ordering issues for example, drivers must call devm_release_resource()
1503  * rather than the regular release_resource().
1504  *
1505  * When a conflict is detected between any existing resources and the newly
1506  * requested resource, an error message will be printed.
1507  *
1508  * Returns 0 on success or a negative error code on failure.
1509  */
1510 int devm_request_resource(struct device *dev, struct resource *root,
1511 			  struct resource *new)
1512 {
1513 	struct resource *conflict, **ptr;
1514 
1515 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1516 	if (!ptr)
1517 		return -ENOMEM;
1518 
1519 	*ptr = new;
1520 
1521 	conflict = request_resource_conflict(root, new);
1522 	if (conflict) {
1523 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1524 			new, conflict->name, conflict);
1525 		devres_free(ptr);
1526 		return -EBUSY;
1527 	}
1528 
1529 	devres_add(dev, ptr);
1530 	return 0;
1531 }
1532 EXPORT_SYMBOL(devm_request_resource);
1533 
1534 static int devm_resource_match(struct device *dev, void *res, void *data)
1535 {
1536 	struct resource **ptr = res;
1537 
1538 	return *ptr == data;
1539 }
1540 
1541 /**
1542  * devm_release_resource() - release a previously requested resource
1543  * @dev: device for which to release the resource
1544  * @new: descriptor of the resource to release
1545  *
1546  * Releases a resource previously requested using devm_request_resource().
1547  */
1548 void devm_release_resource(struct device *dev, struct resource *new)
1549 {
1550 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1551 			       new));
1552 }
1553 EXPORT_SYMBOL(devm_release_resource);
1554 
1555 struct region_devres {
1556 	struct resource *parent;
1557 	resource_size_t start;
1558 	resource_size_t n;
1559 };
1560 
1561 static void devm_region_release(struct device *dev, void *res)
1562 {
1563 	struct region_devres *this = res;
1564 
1565 	__release_region(this->parent, this->start, this->n);
1566 }
1567 
1568 static int devm_region_match(struct device *dev, void *res, void *match_data)
1569 {
1570 	struct region_devres *this = res, *match = match_data;
1571 
1572 	return this->parent == match->parent &&
1573 		this->start == match->start && this->n == match->n;
1574 }
1575 
1576 struct resource *
1577 __devm_request_region(struct device *dev, struct resource *parent,
1578 		      resource_size_t start, resource_size_t n, const char *name)
1579 {
1580 	struct region_devres *dr = NULL;
1581 	struct resource *res;
1582 
1583 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1584 			  GFP_KERNEL);
1585 	if (!dr)
1586 		return NULL;
1587 
1588 	dr->parent = parent;
1589 	dr->start = start;
1590 	dr->n = n;
1591 
1592 	res = __request_region(parent, start, n, name, 0);
1593 	if (res)
1594 		devres_add(dev, dr);
1595 	else
1596 		devres_free(dr);
1597 
1598 	return res;
1599 }
1600 EXPORT_SYMBOL(__devm_request_region);
1601 
1602 void __devm_release_region(struct device *dev, struct resource *parent,
1603 			   resource_size_t start, resource_size_t n)
1604 {
1605 	struct region_devres match_data = { parent, start, n };
1606 
1607 	__release_region(parent, start, n);
1608 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1609 			       &match_data));
1610 }
1611 EXPORT_SYMBOL(__devm_release_region);
1612 
1613 /*
1614  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1615  */
1616 #define MAXRESERVE 4
1617 static int __init reserve_setup(char *str)
1618 {
1619 	static int reserved;
1620 	static struct resource reserve[MAXRESERVE];
1621 
1622 	for (;;) {
1623 		unsigned int io_start, io_num;
1624 		int x = reserved;
1625 		struct resource *parent;
1626 
1627 		if (get_option(&str, &io_start) != 2)
1628 			break;
1629 		if (get_option(&str, &io_num) == 0)
1630 			break;
1631 		if (x < MAXRESERVE) {
1632 			struct resource *res = reserve + x;
1633 
1634 			/*
1635 			 * If the region starts below 0x10000, we assume it's
1636 			 * I/O port space; otherwise assume it's memory.
1637 			 */
1638 			if (io_start < 0x10000) {
1639 				res->flags = IORESOURCE_IO;
1640 				parent = &ioport_resource;
1641 			} else {
1642 				res->flags = IORESOURCE_MEM;
1643 				parent = &iomem_resource;
1644 			}
1645 			res->name = "reserved";
1646 			res->start = io_start;
1647 			res->end = io_start + io_num - 1;
1648 			res->flags |= IORESOURCE_BUSY;
1649 			res->desc = IORES_DESC_NONE;
1650 			res->child = NULL;
1651 			if (request_resource(parent, res) == 0)
1652 				reserved = x+1;
1653 		}
1654 	}
1655 	return 1;
1656 }
1657 __setup("reserve=", reserve_setup);
1658 
1659 /*
1660  * Check if the requested addr and size spans more than any slot in the
1661  * iomem resource tree.
1662  */
1663 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1664 {
1665 	struct resource *p = &iomem_resource;
1666 	int err = 0;
1667 	loff_t l;
1668 
1669 	read_lock(&resource_lock);
1670 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1671 		/*
1672 		 * We can probably skip the resources without
1673 		 * IORESOURCE_IO attribute?
1674 		 */
1675 		if (p->start >= addr + size)
1676 			continue;
1677 		if (p->end < addr)
1678 			continue;
1679 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1680 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1681 			continue;
1682 		/*
1683 		 * if a resource is "BUSY", it's not a hardware resource
1684 		 * but a driver mapping of such a resource; we don't want
1685 		 * to warn for those; some drivers legitimately map only
1686 		 * partial hardware resources. (example: vesafb)
1687 		 */
1688 		if (p->flags & IORESOURCE_BUSY)
1689 			continue;
1690 
1691 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1692 		       (unsigned long long)addr,
1693 		       (unsigned long long)(addr + size - 1),
1694 		       p->name, p);
1695 		err = -1;
1696 		break;
1697 	}
1698 	read_unlock(&resource_lock);
1699 
1700 	return err;
1701 }
1702 
1703 #ifdef CONFIG_STRICT_DEVMEM
1704 static int strict_iomem_checks = 1;
1705 #else
1706 static int strict_iomem_checks;
1707 #endif
1708 
1709 /*
1710  * check if an address is reserved in the iomem resource tree
1711  * returns true if reserved, false if not reserved.
1712  */
1713 bool iomem_is_exclusive(u64 addr)
1714 {
1715 	struct resource *p = &iomem_resource;
1716 	bool err = false;
1717 	loff_t l;
1718 	int size = PAGE_SIZE;
1719 
1720 	if (!strict_iomem_checks)
1721 		return false;
1722 
1723 	addr = addr & PAGE_MASK;
1724 
1725 	read_lock(&resource_lock);
1726 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1727 		/*
1728 		 * We can probably skip the resources without
1729 		 * IORESOURCE_IO attribute?
1730 		 */
1731 		if (p->start >= addr + size)
1732 			break;
1733 		if (p->end < addr)
1734 			continue;
1735 		/*
1736 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1737 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1738 		 * resource is busy.
1739 		 */
1740 		if ((p->flags & IORESOURCE_BUSY) == 0)
1741 			continue;
1742 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1743 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1744 			err = true;
1745 			break;
1746 		}
1747 	}
1748 	read_unlock(&resource_lock);
1749 
1750 	return err;
1751 }
1752 
1753 struct resource_entry *resource_list_create_entry(struct resource *res,
1754 						  size_t extra_size)
1755 {
1756 	struct resource_entry *entry;
1757 
1758 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1759 	if (entry) {
1760 		INIT_LIST_HEAD(&entry->node);
1761 		entry->res = res ? res : &entry->__res;
1762 	}
1763 
1764 	return entry;
1765 }
1766 EXPORT_SYMBOL(resource_list_create_entry);
1767 
1768 void resource_list_free(struct list_head *head)
1769 {
1770 	struct resource_entry *entry, *tmp;
1771 
1772 	list_for_each_entry_safe(entry, tmp, head, node)
1773 		resource_list_destroy_entry(entry);
1774 }
1775 EXPORT_SYMBOL(resource_list_free);
1776 
1777 #ifdef CONFIG_DEVICE_PRIVATE
1778 static struct resource *__request_free_mem_region(struct device *dev,
1779 		struct resource *base, unsigned long size, const char *name)
1780 {
1781 	resource_size_t end, addr;
1782 	struct resource *res;
1783 	struct region_devres *dr = NULL;
1784 
1785 	size = ALIGN(size, 1UL << PA_SECTION_SHIFT);
1786 	end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1);
1787 	addr = end - size + 1UL;
1788 
1789 	res = alloc_resource(GFP_KERNEL);
1790 	if (!res)
1791 		return ERR_PTR(-ENOMEM);
1792 
1793 	if (dev) {
1794 		dr = devres_alloc(devm_region_release,
1795 				sizeof(struct region_devres), GFP_KERNEL);
1796 		if (!dr) {
1797 			free_resource(res);
1798 			return ERR_PTR(-ENOMEM);
1799 		}
1800 	}
1801 
1802 	write_lock(&resource_lock);
1803 	for (; addr > size && addr >= base->start; addr -= size) {
1804 		if (__region_intersects(addr, size, 0, IORES_DESC_NONE) !=
1805 				REGION_DISJOINT)
1806 			continue;
1807 
1808 		if (__request_region_locked(res, &iomem_resource, addr, size,
1809 						name, 0))
1810 			break;
1811 
1812 		if (dev) {
1813 			dr->parent = &iomem_resource;
1814 			dr->start = addr;
1815 			dr->n = size;
1816 			devres_add(dev, dr);
1817 		}
1818 
1819 		res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1820 		write_unlock(&resource_lock);
1821 
1822 		/*
1823 		 * A driver is claiming this region so revoke any mappings.
1824 		 */
1825 		revoke_iomem(res);
1826 		return res;
1827 	}
1828 	write_unlock(&resource_lock);
1829 
1830 	free_resource(res);
1831 	if (dr)
1832 		devres_free(dr);
1833 
1834 	return ERR_PTR(-ERANGE);
1835 }
1836 
1837 /**
1838  * devm_request_free_mem_region - find free region for device private memory
1839  *
1840  * @dev: device struct to bind the resource to
1841  * @size: size in bytes of the device memory to add
1842  * @base: resource tree to look in
1843  *
1844  * This function tries to find an empty range of physical address big enough to
1845  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1846  * memory, which in turn allocates struct pages.
1847  */
1848 struct resource *devm_request_free_mem_region(struct device *dev,
1849 		struct resource *base, unsigned long size)
1850 {
1851 	return __request_free_mem_region(dev, base, size, dev_name(dev));
1852 }
1853 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1854 
1855 struct resource *request_free_mem_region(struct resource *base,
1856 		unsigned long size, const char *name)
1857 {
1858 	return __request_free_mem_region(NULL, base, size, name);
1859 }
1860 EXPORT_SYMBOL_GPL(request_free_mem_region);
1861 
1862 #endif /* CONFIG_DEVICE_PRIVATE */
1863 
1864 static int __init strict_iomem(char *str)
1865 {
1866 	if (strstr(str, "relaxed"))
1867 		strict_iomem_checks = 0;
1868 	if (strstr(str, "strict"))
1869 		strict_iomem_checks = 1;
1870 	return 1;
1871 }
1872 
1873 static int iomem_fs_init_fs_context(struct fs_context *fc)
1874 {
1875 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
1876 }
1877 
1878 static struct file_system_type iomem_fs_type = {
1879 	.name		= "iomem",
1880 	.owner		= THIS_MODULE,
1881 	.init_fs_context = iomem_fs_init_fs_context,
1882 	.kill_sb	= kill_anon_super,
1883 };
1884 
1885 static int __init iomem_init_inode(void)
1886 {
1887 	static struct vfsmount *iomem_vfs_mount;
1888 	static int iomem_fs_cnt;
1889 	struct inode *inode;
1890 	int rc;
1891 
1892 	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
1893 	if (rc < 0) {
1894 		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
1895 		return rc;
1896 	}
1897 
1898 	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
1899 	if (IS_ERR(inode)) {
1900 		rc = PTR_ERR(inode);
1901 		pr_err("Cannot allocate inode for iomem: %d\n", rc);
1902 		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
1903 		return rc;
1904 	}
1905 
1906 	/*
1907 	 * Publish iomem revocation inode initialized.
1908 	 * Pairs with smp_load_acquire() in revoke_iomem().
1909 	 */
1910 	smp_store_release(&iomem_inode, inode);
1911 
1912 	return 0;
1913 }
1914 
1915 fs_initcall(iomem_init_inode);
1916 
1917 __setup("iomem=", strict_iomem);
1918