1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.txt for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * close() vm_op implementation for relay file mapping. 32 */ 33 static void relay_file_mmap_close(struct vm_area_struct *vma) 34 { 35 struct rchan_buf *buf = vma->vm_private_data; 36 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 37 } 38 39 /* 40 * fault() vm_op implementation for relay file mapping. 41 */ 42 static vm_fault_t relay_buf_fault(struct vm_fault *vmf) 43 { 44 struct page *page; 45 struct rchan_buf *buf = vmf->vma->vm_private_data; 46 pgoff_t pgoff = vmf->pgoff; 47 48 if (!buf) 49 return VM_FAULT_OOM; 50 51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 52 if (!page) 53 return VM_FAULT_SIGBUS; 54 get_page(page); 55 vmf->page = page; 56 57 return 0; 58 } 59 60 /* 61 * vm_ops for relay file mappings. 62 */ 63 static const struct vm_operations_struct relay_file_mmap_ops = { 64 .fault = relay_buf_fault, 65 .close = relay_file_mmap_close, 66 }; 67 68 /* 69 * allocate an array of pointers of struct page 70 */ 71 static struct page **relay_alloc_page_array(unsigned int n_pages) 72 { 73 const size_t pa_size = n_pages * sizeof(struct page *); 74 if (pa_size > PAGE_SIZE) 75 return vzalloc(pa_size); 76 return kzalloc(pa_size, GFP_KERNEL); 77 } 78 79 /* 80 * free an array of pointers of struct page 81 */ 82 static void relay_free_page_array(struct page **array) 83 { 84 kvfree(array); 85 } 86 87 /** 88 * relay_mmap_buf: - mmap channel buffer to process address space 89 * @buf: relay channel buffer 90 * @vma: vm_area_struct describing memory to be mapped 91 * 92 * Returns 0 if ok, negative on error 93 * 94 * Caller should already have grabbed mmap_sem. 95 */ 96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 97 { 98 unsigned long length = vma->vm_end - vma->vm_start; 99 struct file *filp = vma->vm_file; 100 101 if (!buf) 102 return -EBADF; 103 104 if (length != (unsigned long)buf->chan->alloc_size) 105 return -EINVAL; 106 107 vma->vm_ops = &relay_file_mmap_ops; 108 vma->vm_flags |= VM_DONTEXPAND; 109 vma->vm_private_data = buf; 110 buf->chan->cb->buf_mapped(buf, filp); 111 112 return 0; 113 } 114 115 /** 116 * relay_alloc_buf - allocate a channel buffer 117 * @buf: the buffer struct 118 * @size: total size of the buffer 119 * 120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 121 * passed in size will get page aligned, if it isn't already. 122 */ 123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 124 { 125 void *mem; 126 unsigned int i, j, n_pages; 127 128 *size = PAGE_ALIGN(*size); 129 n_pages = *size >> PAGE_SHIFT; 130 131 buf->page_array = relay_alloc_page_array(n_pages); 132 if (!buf->page_array) 133 return NULL; 134 135 for (i = 0; i < n_pages; i++) { 136 buf->page_array[i] = alloc_page(GFP_KERNEL); 137 if (unlikely(!buf->page_array[i])) 138 goto depopulate; 139 set_page_private(buf->page_array[i], (unsigned long)buf); 140 } 141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 142 if (!mem) 143 goto depopulate; 144 145 memset(mem, 0, *size); 146 buf->page_count = n_pages; 147 return mem; 148 149 depopulate: 150 for (j = 0; j < i; j++) 151 __free_page(buf->page_array[j]); 152 relay_free_page_array(buf->page_array); 153 return NULL; 154 } 155 156 /** 157 * relay_create_buf - allocate and initialize a channel buffer 158 * @chan: the relay channel 159 * 160 * Returns channel buffer if successful, %NULL otherwise. 161 */ 162 static struct rchan_buf *relay_create_buf(struct rchan *chan) 163 { 164 struct rchan_buf *buf; 165 166 if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *)) 167 return NULL; 168 169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 170 if (!buf) 171 return NULL; 172 buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *), 173 GFP_KERNEL); 174 if (!buf->padding) 175 goto free_buf; 176 177 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 178 if (!buf->start) 179 goto free_buf; 180 181 buf->chan = chan; 182 kref_get(&buf->chan->kref); 183 return buf; 184 185 free_buf: 186 kfree(buf->padding); 187 kfree(buf); 188 return NULL; 189 } 190 191 /** 192 * relay_destroy_channel - free the channel struct 193 * @kref: target kernel reference that contains the relay channel 194 * 195 * Should only be called from kref_put(). 196 */ 197 static void relay_destroy_channel(struct kref *kref) 198 { 199 struct rchan *chan = container_of(kref, struct rchan, kref); 200 kfree(chan); 201 } 202 203 /** 204 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 205 * @buf: the buffer struct 206 */ 207 static void relay_destroy_buf(struct rchan_buf *buf) 208 { 209 struct rchan *chan = buf->chan; 210 unsigned int i; 211 212 if (likely(buf->start)) { 213 vunmap(buf->start); 214 for (i = 0; i < buf->page_count; i++) 215 __free_page(buf->page_array[i]); 216 relay_free_page_array(buf->page_array); 217 } 218 *per_cpu_ptr(chan->buf, buf->cpu) = NULL; 219 kfree(buf->padding); 220 kfree(buf); 221 kref_put(&chan->kref, relay_destroy_channel); 222 } 223 224 /** 225 * relay_remove_buf - remove a channel buffer 226 * @kref: target kernel reference that contains the relay buffer 227 * 228 * Removes the file from the filesystem, which also frees the 229 * rchan_buf_struct and the channel buffer. Should only be called from 230 * kref_put(). 231 */ 232 static void relay_remove_buf(struct kref *kref) 233 { 234 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 235 relay_destroy_buf(buf); 236 } 237 238 /** 239 * relay_buf_empty - boolean, is the channel buffer empty? 240 * @buf: channel buffer 241 * 242 * Returns 1 if the buffer is empty, 0 otherwise. 243 */ 244 static int relay_buf_empty(struct rchan_buf *buf) 245 { 246 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 247 } 248 249 /** 250 * relay_buf_full - boolean, is the channel buffer full? 251 * @buf: channel buffer 252 * 253 * Returns 1 if the buffer is full, 0 otherwise. 254 */ 255 int relay_buf_full(struct rchan_buf *buf) 256 { 257 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 258 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 259 } 260 EXPORT_SYMBOL_GPL(relay_buf_full); 261 262 /* 263 * High-level relay kernel API and associated functions. 264 */ 265 266 /* 267 * rchan_callback implementations defining default channel behavior. Used 268 * in place of corresponding NULL values in client callback struct. 269 */ 270 271 /* 272 * subbuf_start() default callback. Does nothing. 273 */ 274 static int subbuf_start_default_callback (struct rchan_buf *buf, 275 void *subbuf, 276 void *prev_subbuf, 277 size_t prev_padding) 278 { 279 if (relay_buf_full(buf)) 280 return 0; 281 282 return 1; 283 } 284 285 /* 286 * buf_mapped() default callback. Does nothing. 287 */ 288 static void buf_mapped_default_callback(struct rchan_buf *buf, 289 struct file *filp) 290 { 291 } 292 293 /* 294 * buf_unmapped() default callback. Does nothing. 295 */ 296 static void buf_unmapped_default_callback(struct rchan_buf *buf, 297 struct file *filp) 298 { 299 } 300 301 /* 302 * create_buf_file_create() default callback. Does nothing. 303 */ 304 static struct dentry *create_buf_file_default_callback(const char *filename, 305 struct dentry *parent, 306 umode_t mode, 307 struct rchan_buf *buf, 308 int *is_global) 309 { 310 return NULL; 311 } 312 313 /* 314 * remove_buf_file() default callback. Does nothing. 315 */ 316 static int remove_buf_file_default_callback(struct dentry *dentry) 317 { 318 return -EINVAL; 319 } 320 321 /* relay channel default callbacks */ 322 static struct rchan_callbacks default_channel_callbacks = { 323 .subbuf_start = subbuf_start_default_callback, 324 .buf_mapped = buf_mapped_default_callback, 325 .buf_unmapped = buf_unmapped_default_callback, 326 .create_buf_file = create_buf_file_default_callback, 327 .remove_buf_file = remove_buf_file_default_callback, 328 }; 329 330 /** 331 * wakeup_readers - wake up readers waiting on a channel 332 * @work: contains the channel buffer 333 * 334 * This is the function used to defer reader waking 335 */ 336 static void wakeup_readers(struct irq_work *work) 337 { 338 struct rchan_buf *buf; 339 340 buf = container_of(work, struct rchan_buf, wakeup_work); 341 wake_up_interruptible(&buf->read_wait); 342 } 343 344 /** 345 * __relay_reset - reset a channel buffer 346 * @buf: the channel buffer 347 * @init: 1 if this is a first-time initialization 348 * 349 * See relay_reset() for description of effect. 350 */ 351 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 352 { 353 size_t i; 354 355 if (init) { 356 init_waitqueue_head(&buf->read_wait); 357 kref_init(&buf->kref); 358 init_irq_work(&buf->wakeup_work, wakeup_readers); 359 } else { 360 irq_work_sync(&buf->wakeup_work); 361 } 362 363 buf->subbufs_produced = 0; 364 buf->subbufs_consumed = 0; 365 buf->bytes_consumed = 0; 366 buf->finalized = 0; 367 buf->data = buf->start; 368 buf->offset = 0; 369 370 for (i = 0; i < buf->chan->n_subbufs; i++) 371 buf->padding[i] = 0; 372 373 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 374 } 375 376 /** 377 * relay_reset - reset the channel 378 * @chan: the channel 379 * 380 * This has the effect of erasing all data from all channel buffers 381 * and restarting the channel in its initial state. The buffers 382 * are not freed, so any mappings are still in effect. 383 * 384 * NOTE. Care should be taken that the channel isn't actually 385 * being used by anything when this call is made. 386 */ 387 void relay_reset(struct rchan *chan) 388 { 389 struct rchan_buf *buf; 390 unsigned int i; 391 392 if (!chan) 393 return; 394 395 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 396 __relay_reset(buf, 0); 397 return; 398 } 399 400 mutex_lock(&relay_channels_mutex); 401 for_each_possible_cpu(i) 402 if ((buf = *per_cpu_ptr(chan->buf, i))) 403 __relay_reset(buf, 0); 404 mutex_unlock(&relay_channels_mutex); 405 } 406 EXPORT_SYMBOL_GPL(relay_reset); 407 408 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 409 struct dentry *dentry) 410 { 411 buf->dentry = dentry; 412 d_inode(buf->dentry)->i_size = buf->early_bytes; 413 } 414 415 static struct dentry *relay_create_buf_file(struct rchan *chan, 416 struct rchan_buf *buf, 417 unsigned int cpu) 418 { 419 struct dentry *dentry; 420 char *tmpname; 421 422 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 423 if (!tmpname) 424 return NULL; 425 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 426 427 /* Create file in fs */ 428 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 429 S_IRUSR, buf, 430 &chan->is_global); 431 if (IS_ERR(dentry)) 432 dentry = NULL; 433 434 kfree(tmpname); 435 436 return dentry; 437 } 438 439 /* 440 * relay_open_buf - create a new relay channel buffer 441 * 442 * used by relay_open() and CPU hotplug. 443 */ 444 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 445 { 446 struct rchan_buf *buf = NULL; 447 struct dentry *dentry; 448 449 if (chan->is_global) 450 return *per_cpu_ptr(chan->buf, 0); 451 452 buf = relay_create_buf(chan); 453 if (!buf) 454 return NULL; 455 456 if (chan->has_base_filename) { 457 dentry = relay_create_buf_file(chan, buf, cpu); 458 if (!dentry) 459 goto free_buf; 460 relay_set_buf_dentry(buf, dentry); 461 } else { 462 /* Only retrieve global info, nothing more, nothing less */ 463 dentry = chan->cb->create_buf_file(NULL, NULL, 464 S_IRUSR, buf, 465 &chan->is_global); 466 if (IS_ERR_OR_NULL(dentry)) 467 goto free_buf; 468 } 469 470 buf->cpu = cpu; 471 __relay_reset(buf, 1); 472 473 if(chan->is_global) { 474 *per_cpu_ptr(chan->buf, 0) = buf; 475 buf->cpu = 0; 476 } 477 478 return buf; 479 480 free_buf: 481 relay_destroy_buf(buf); 482 return NULL; 483 } 484 485 /** 486 * relay_close_buf - close a channel buffer 487 * @buf: channel buffer 488 * 489 * Marks the buffer finalized and restores the default callbacks. 490 * The channel buffer and channel buffer data structure are then freed 491 * automatically when the last reference is given up. 492 */ 493 static void relay_close_buf(struct rchan_buf *buf) 494 { 495 buf->finalized = 1; 496 irq_work_sync(&buf->wakeup_work); 497 buf->chan->cb->remove_buf_file(buf->dentry); 498 kref_put(&buf->kref, relay_remove_buf); 499 } 500 501 static void setup_callbacks(struct rchan *chan, 502 struct rchan_callbacks *cb) 503 { 504 if (!cb) { 505 chan->cb = &default_channel_callbacks; 506 return; 507 } 508 509 if (!cb->subbuf_start) 510 cb->subbuf_start = subbuf_start_default_callback; 511 if (!cb->buf_mapped) 512 cb->buf_mapped = buf_mapped_default_callback; 513 if (!cb->buf_unmapped) 514 cb->buf_unmapped = buf_unmapped_default_callback; 515 if (!cb->create_buf_file) 516 cb->create_buf_file = create_buf_file_default_callback; 517 if (!cb->remove_buf_file) 518 cb->remove_buf_file = remove_buf_file_default_callback; 519 chan->cb = cb; 520 } 521 522 int relay_prepare_cpu(unsigned int cpu) 523 { 524 struct rchan *chan; 525 struct rchan_buf *buf; 526 527 mutex_lock(&relay_channels_mutex); 528 list_for_each_entry(chan, &relay_channels, list) { 529 if ((buf = *per_cpu_ptr(chan->buf, cpu))) 530 continue; 531 buf = relay_open_buf(chan, cpu); 532 if (!buf) { 533 pr_err("relay: cpu %d buffer creation failed\n", cpu); 534 mutex_unlock(&relay_channels_mutex); 535 return -ENOMEM; 536 } 537 *per_cpu_ptr(chan->buf, cpu) = buf; 538 } 539 mutex_unlock(&relay_channels_mutex); 540 return 0; 541 } 542 543 /** 544 * relay_open - create a new relay channel 545 * @base_filename: base name of files to create, %NULL for buffering only 546 * @parent: dentry of parent directory, %NULL for root directory or buffer 547 * @subbuf_size: size of sub-buffers 548 * @n_subbufs: number of sub-buffers 549 * @cb: client callback functions 550 * @private_data: user-defined data 551 * 552 * Returns channel pointer if successful, %NULL otherwise. 553 * 554 * Creates a channel buffer for each cpu using the sizes and 555 * attributes specified. The created channel buffer files 556 * will be named base_filename0...base_filenameN-1. File 557 * permissions will be %S_IRUSR. 558 * 559 * If opening a buffer (@parent = NULL) that you later wish to register 560 * in a filesystem, call relay_late_setup_files() once the @parent dentry 561 * is available. 562 */ 563 struct rchan *relay_open(const char *base_filename, 564 struct dentry *parent, 565 size_t subbuf_size, 566 size_t n_subbufs, 567 struct rchan_callbacks *cb, 568 void *private_data) 569 { 570 unsigned int i; 571 struct rchan *chan; 572 struct rchan_buf *buf; 573 574 if (!(subbuf_size && n_subbufs)) 575 return NULL; 576 if (subbuf_size > UINT_MAX / n_subbufs) 577 return NULL; 578 579 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 580 if (!chan) 581 return NULL; 582 583 chan->buf = alloc_percpu(struct rchan_buf *); 584 chan->version = RELAYFS_CHANNEL_VERSION; 585 chan->n_subbufs = n_subbufs; 586 chan->subbuf_size = subbuf_size; 587 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs); 588 chan->parent = parent; 589 chan->private_data = private_data; 590 if (base_filename) { 591 chan->has_base_filename = 1; 592 strlcpy(chan->base_filename, base_filename, NAME_MAX); 593 } 594 setup_callbacks(chan, cb); 595 kref_init(&chan->kref); 596 597 mutex_lock(&relay_channels_mutex); 598 for_each_online_cpu(i) { 599 buf = relay_open_buf(chan, i); 600 if (!buf) 601 goto free_bufs; 602 *per_cpu_ptr(chan->buf, i) = buf; 603 } 604 list_add(&chan->list, &relay_channels); 605 mutex_unlock(&relay_channels_mutex); 606 607 return chan; 608 609 free_bufs: 610 for_each_possible_cpu(i) { 611 if ((buf = *per_cpu_ptr(chan->buf, i))) 612 relay_close_buf(buf); 613 } 614 615 kref_put(&chan->kref, relay_destroy_channel); 616 mutex_unlock(&relay_channels_mutex); 617 return NULL; 618 } 619 EXPORT_SYMBOL_GPL(relay_open); 620 621 struct rchan_percpu_buf_dispatcher { 622 struct rchan_buf *buf; 623 struct dentry *dentry; 624 }; 625 626 /* Called in atomic context. */ 627 static void __relay_set_buf_dentry(void *info) 628 { 629 struct rchan_percpu_buf_dispatcher *p = info; 630 631 relay_set_buf_dentry(p->buf, p->dentry); 632 } 633 634 /** 635 * relay_late_setup_files - triggers file creation 636 * @chan: channel to operate on 637 * @base_filename: base name of files to create 638 * @parent: dentry of parent directory, %NULL for root directory 639 * 640 * Returns 0 if successful, non-zero otherwise. 641 * 642 * Use to setup files for a previously buffer-only channel created 643 * by relay_open() with a NULL parent dentry. 644 * 645 * For example, this is useful for perfomring early tracing in kernel, 646 * before VFS is up and then exposing the early results once the dentry 647 * is available. 648 */ 649 int relay_late_setup_files(struct rchan *chan, 650 const char *base_filename, 651 struct dentry *parent) 652 { 653 int err = 0; 654 unsigned int i, curr_cpu; 655 unsigned long flags; 656 struct dentry *dentry; 657 struct rchan_buf *buf; 658 struct rchan_percpu_buf_dispatcher disp; 659 660 if (!chan || !base_filename) 661 return -EINVAL; 662 663 strlcpy(chan->base_filename, base_filename, NAME_MAX); 664 665 mutex_lock(&relay_channels_mutex); 666 /* Is chan already set up? */ 667 if (unlikely(chan->has_base_filename)) { 668 mutex_unlock(&relay_channels_mutex); 669 return -EEXIST; 670 } 671 chan->has_base_filename = 1; 672 chan->parent = parent; 673 674 if (chan->is_global) { 675 err = -EINVAL; 676 buf = *per_cpu_ptr(chan->buf, 0); 677 if (!WARN_ON_ONCE(!buf)) { 678 dentry = relay_create_buf_file(chan, buf, 0); 679 if (dentry && !WARN_ON_ONCE(!chan->is_global)) { 680 relay_set_buf_dentry(buf, dentry); 681 err = 0; 682 } 683 } 684 mutex_unlock(&relay_channels_mutex); 685 return err; 686 } 687 688 curr_cpu = get_cpu(); 689 /* 690 * The CPU hotplug notifier ran before us and created buffers with 691 * no files associated. So it's safe to call relay_setup_buf_file() 692 * on all currently online CPUs. 693 */ 694 for_each_online_cpu(i) { 695 buf = *per_cpu_ptr(chan->buf, i); 696 if (unlikely(!buf)) { 697 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n"); 698 err = -EINVAL; 699 break; 700 } 701 702 dentry = relay_create_buf_file(chan, buf, i); 703 if (unlikely(!dentry)) { 704 err = -EINVAL; 705 break; 706 } 707 708 if (curr_cpu == i) { 709 local_irq_save(flags); 710 relay_set_buf_dentry(buf, dentry); 711 local_irq_restore(flags); 712 } else { 713 disp.buf = buf; 714 disp.dentry = dentry; 715 smp_mb(); 716 /* relay_channels_mutex must be held, so wait. */ 717 err = smp_call_function_single(i, 718 __relay_set_buf_dentry, 719 &disp, 1); 720 } 721 if (unlikely(err)) 722 break; 723 } 724 put_cpu(); 725 mutex_unlock(&relay_channels_mutex); 726 727 return err; 728 } 729 EXPORT_SYMBOL_GPL(relay_late_setup_files); 730 731 /** 732 * relay_switch_subbuf - switch to a new sub-buffer 733 * @buf: channel buffer 734 * @length: size of current event 735 * 736 * Returns either the length passed in or 0 if full. 737 * 738 * Performs sub-buffer-switch tasks such as invoking callbacks, 739 * updating padding counts, waking up readers, etc. 740 */ 741 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 742 { 743 void *old, *new; 744 size_t old_subbuf, new_subbuf; 745 746 if (unlikely(length > buf->chan->subbuf_size)) 747 goto toobig; 748 749 if (buf->offset != buf->chan->subbuf_size + 1) { 750 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 751 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 752 buf->padding[old_subbuf] = buf->prev_padding; 753 buf->subbufs_produced++; 754 if (buf->dentry) 755 d_inode(buf->dentry)->i_size += 756 buf->chan->subbuf_size - 757 buf->padding[old_subbuf]; 758 else 759 buf->early_bytes += buf->chan->subbuf_size - 760 buf->padding[old_subbuf]; 761 smp_mb(); 762 if (waitqueue_active(&buf->read_wait)) { 763 /* 764 * Calling wake_up_interruptible() from here 765 * will deadlock if we happen to be logging 766 * from the scheduler (trying to re-grab 767 * rq->lock), so defer it. 768 */ 769 irq_work_queue(&buf->wakeup_work); 770 } 771 } 772 773 old = buf->data; 774 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 775 new = buf->start + new_subbuf * buf->chan->subbuf_size; 776 buf->offset = 0; 777 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 778 buf->offset = buf->chan->subbuf_size + 1; 779 return 0; 780 } 781 buf->data = new; 782 buf->padding[new_subbuf] = 0; 783 784 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 785 goto toobig; 786 787 return length; 788 789 toobig: 790 buf->chan->last_toobig = length; 791 return 0; 792 } 793 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 794 795 /** 796 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 797 * @chan: the channel 798 * @cpu: the cpu associated with the channel buffer to update 799 * @subbufs_consumed: number of sub-buffers to add to current buf's count 800 * 801 * Adds to the channel buffer's consumed sub-buffer count. 802 * subbufs_consumed should be the number of sub-buffers newly consumed, 803 * not the total consumed. 804 * 805 * NOTE. Kernel clients don't need to call this function if the channel 806 * mode is 'overwrite'. 807 */ 808 void relay_subbufs_consumed(struct rchan *chan, 809 unsigned int cpu, 810 size_t subbufs_consumed) 811 { 812 struct rchan_buf *buf; 813 814 if (!chan || cpu >= NR_CPUS) 815 return; 816 817 buf = *per_cpu_ptr(chan->buf, cpu); 818 if (!buf || subbufs_consumed > chan->n_subbufs) 819 return; 820 821 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed) 822 buf->subbufs_consumed = buf->subbufs_produced; 823 else 824 buf->subbufs_consumed += subbufs_consumed; 825 } 826 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 827 828 /** 829 * relay_close - close the channel 830 * @chan: the channel 831 * 832 * Closes all channel buffers and frees the channel. 833 */ 834 void relay_close(struct rchan *chan) 835 { 836 struct rchan_buf *buf; 837 unsigned int i; 838 839 if (!chan) 840 return; 841 842 mutex_lock(&relay_channels_mutex); 843 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) 844 relay_close_buf(buf); 845 else 846 for_each_possible_cpu(i) 847 if ((buf = *per_cpu_ptr(chan->buf, i))) 848 relay_close_buf(buf); 849 850 if (chan->last_toobig) 851 printk(KERN_WARNING "relay: one or more items not logged " 852 "[item size (%zd) > sub-buffer size (%zd)]\n", 853 chan->last_toobig, chan->subbuf_size); 854 855 list_del(&chan->list); 856 kref_put(&chan->kref, relay_destroy_channel); 857 mutex_unlock(&relay_channels_mutex); 858 } 859 EXPORT_SYMBOL_GPL(relay_close); 860 861 /** 862 * relay_flush - close the channel 863 * @chan: the channel 864 * 865 * Flushes all channel buffers, i.e. forces buffer switch. 866 */ 867 void relay_flush(struct rchan *chan) 868 { 869 struct rchan_buf *buf; 870 unsigned int i; 871 872 if (!chan) 873 return; 874 875 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 876 relay_switch_subbuf(buf, 0); 877 return; 878 } 879 880 mutex_lock(&relay_channels_mutex); 881 for_each_possible_cpu(i) 882 if ((buf = *per_cpu_ptr(chan->buf, i))) 883 relay_switch_subbuf(buf, 0); 884 mutex_unlock(&relay_channels_mutex); 885 } 886 EXPORT_SYMBOL_GPL(relay_flush); 887 888 /** 889 * relay_file_open - open file op for relay files 890 * @inode: the inode 891 * @filp: the file 892 * 893 * Increments the channel buffer refcount. 894 */ 895 static int relay_file_open(struct inode *inode, struct file *filp) 896 { 897 struct rchan_buf *buf = inode->i_private; 898 kref_get(&buf->kref); 899 filp->private_data = buf; 900 901 return nonseekable_open(inode, filp); 902 } 903 904 /** 905 * relay_file_mmap - mmap file op for relay files 906 * @filp: the file 907 * @vma: the vma describing what to map 908 * 909 * Calls upon relay_mmap_buf() to map the file into user space. 910 */ 911 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 912 { 913 struct rchan_buf *buf = filp->private_data; 914 return relay_mmap_buf(buf, vma); 915 } 916 917 /** 918 * relay_file_poll - poll file op for relay files 919 * @filp: the file 920 * @wait: poll table 921 * 922 * Poll implemention. 923 */ 924 static __poll_t relay_file_poll(struct file *filp, poll_table *wait) 925 { 926 __poll_t mask = 0; 927 struct rchan_buf *buf = filp->private_data; 928 929 if (buf->finalized) 930 return EPOLLERR; 931 932 if (filp->f_mode & FMODE_READ) { 933 poll_wait(filp, &buf->read_wait, wait); 934 if (!relay_buf_empty(buf)) 935 mask |= EPOLLIN | EPOLLRDNORM; 936 } 937 938 return mask; 939 } 940 941 /** 942 * relay_file_release - release file op for relay files 943 * @inode: the inode 944 * @filp: the file 945 * 946 * Decrements the channel refcount, as the filesystem is 947 * no longer using it. 948 */ 949 static int relay_file_release(struct inode *inode, struct file *filp) 950 { 951 struct rchan_buf *buf = filp->private_data; 952 kref_put(&buf->kref, relay_remove_buf); 953 954 return 0; 955 } 956 957 /* 958 * relay_file_read_consume - update the consumed count for the buffer 959 */ 960 static void relay_file_read_consume(struct rchan_buf *buf, 961 size_t read_pos, 962 size_t bytes_consumed) 963 { 964 size_t subbuf_size = buf->chan->subbuf_size; 965 size_t n_subbufs = buf->chan->n_subbufs; 966 size_t read_subbuf; 967 968 if (buf->subbufs_produced == buf->subbufs_consumed && 969 buf->offset == buf->bytes_consumed) 970 return; 971 972 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 973 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 974 buf->bytes_consumed = 0; 975 } 976 977 buf->bytes_consumed += bytes_consumed; 978 if (!read_pos) 979 read_subbuf = buf->subbufs_consumed % n_subbufs; 980 else 981 read_subbuf = read_pos / buf->chan->subbuf_size; 982 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 983 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 984 (buf->offset == subbuf_size)) 985 return; 986 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 987 buf->bytes_consumed = 0; 988 } 989 } 990 991 /* 992 * relay_file_read_avail - boolean, are there unconsumed bytes available? 993 */ 994 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos) 995 { 996 size_t subbuf_size = buf->chan->subbuf_size; 997 size_t n_subbufs = buf->chan->n_subbufs; 998 size_t produced = buf->subbufs_produced; 999 size_t consumed = buf->subbufs_consumed; 1000 1001 relay_file_read_consume(buf, read_pos, 0); 1002 1003 consumed = buf->subbufs_consumed; 1004 1005 if (unlikely(buf->offset > subbuf_size)) { 1006 if (produced == consumed) 1007 return 0; 1008 return 1; 1009 } 1010 1011 if (unlikely(produced - consumed >= n_subbufs)) { 1012 consumed = produced - n_subbufs + 1; 1013 buf->subbufs_consumed = consumed; 1014 buf->bytes_consumed = 0; 1015 } 1016 1017 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 1018 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 1019 1020 if (consumed > produced) 1021 produced += n_subbufs * subbuf_size; 1022 1023 if (consumed == produced) { 1024 if (buf->offset == subbuf_size && 1025 buf->subbufs_produced > buf->subbufs_consumed) 1026 return 1; 1027 return 0; 1028 } 1029 1030 return 1; 1031 } 1032 1033 /** 1034 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 1035 * @read_pos: file read position 1036 * @buf: relay channel buffer 1037 */ 1038 static size_t relay_file_read_subbuf_avail(size_t read_pos, 1039 struct rchan_buf *buf) 1040 { 1041 size_t padding, avail = 0; 1042 size_t read_subbuf, read_offset, write_subbuf, write_offset; 1043 size_t subbuf_size = buf->chan->subbuf_size; 1044 1045 write_subbuf = (buf->data - buf->start) / subbuf_size; 1046 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 1047 read_subbuf = read_pos / subbuf_size; 1048 read_offset = read_pos % subbuf_size; 1049 padding = buf->padding[read_subbuf]; 1050 1051 if (read_subbuf == write_subbuf) { 1052 if (read_offset + padding < write_offset) 1053 avail = write_offset - (read_offset + padding); 1054 } else 1055 avail = (subbuf_size - padding) - read_offset; 1056 1057 return avail; 1058 } 1059 1060 /** 1061 * relay_file_read_start_pos - find the first available byte to read 1062 * @read_pos: file read position 1063 * @buf: relay channel buffer 1064 * 1065 * If the @read_pos is in the middle of padding, return the 1066 * position of the first actually available byte, otherwise 1067 * return the original value. 1068 */ 1069 static size_t relay_file_read_start_pos(size_t read_pos, 1070 struct rchan_buf *buf) 1071 { 1072 size_t read_subbuf, padding, padding_start, padding_end; 1073 size_t subbuf_size = buf->chan->subbuf_size; 1074 size_t n_subbufs = buf->chan->n_subbufs; 1075 size_t consumed = buf->subbufs_consumed % n_subbufs; 1076 1077 if (!read_pos) 1078 read_pos = consumed * subbuf_size + buf->bytes_consumed; 1079 read_subbuf = read_pos / subbuf_size; 1080 padding = buf->padding[read_subbuf]; 1081 padding_start = (read_subbuf + 1) * subbuf_size - padding; 1082 padding_end = (read_subbuf + 1) * subbuf_size; 1083 if (read_pos >= padding_start && read_pos < padding_end) { 1084 read_subbuf = (read_subbuf + 1) % n_subbufs; 1085 read_pos = read_subbuf * subbuf_size; 1086 } 1087 1088 return read_pos; 1089 } 1090 1091 /** 1092 * relay_file_read_end_pos - return the new read position 1093 * @read_pos: file read position 1094 * @buf: relay channel buffer 1095 * @count: number of bytes to be read 1096 */ 1097 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 1098 size_t read_pos, 1099 size_t count) 1100 { 1101 size_t read_subbuf, padding, end_pos; 1102 size_t subbuf_size = buf->chan->subbuf_size; 1103 size_t n_subbufs = buf->chan->n_subbufs; 1104 1105 read_subbuf = read_pos / subbuf_size; 1106 padding = buf->padding[read_subbuf]; 1107 if (read_pos % subbuf_size + count + padding == subbuf_size) 1108 end_pos = (read_subbuf + 1) * subbuf_size; 1109 else 1110 end_pos = read_pos + count; 1111 if (end_pos >= subbuf_size * n_subbufs) 1112 end_pos = 0; 1113 1114 return end_pos; 1115 } 1116 1117 static ssize_t relay_file_read(struct file *filp, 1118 char __user *buffer, 1119 size_t count, 1120 loff_t *ppos) 1121 { 1122 struct rchan_buf *buf = filp->private_data; 1123 size_t read_start, avail; 1124 size_t written = 0; 1125 int ret; 1126 1127 if (!count) 1128 return 0; 1129 1130 inode_lock(file_inode(filp)); 1131 do { 1132 void *from; 1133 1134 if (!relay_file_read_avail(buf, *ppos)) 1135 break; 1136 1137 read_start = relay_file_read_start_pos(*ppos, buf); 1138 avail = relay_file_read_subbuf_avail(read_start, buf); 1139 if (!avail) 1140 break; 1141 1142 avail = min(count, avail); 1143 from = buf->start + read_start; 1144 ret = avail; 1145 if (copy_to_user(buffer, from, avail)) 1146 break; 1147 1148 buffer += ret; 1149 written += ret; 1150 count -= ret; 1151 1152 relay_file_read_consume(buf, read_start, ret); 1153 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1154 } while (count); 1155 inode_unlock(file_inode(filp)); 1156 1157 return written; 1158 } 1159 1160 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1161 { 1162 rbuf->bytes_consumed += bytes_consumed; 1163 1164 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1165 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1166 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1167 } 1168 } 1169 1170 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1171 struct pipe_buffer *buf) 1172 { 1173 struct rchan_buf *rbuf; 1174 1175 rbuf = (struct rchan_buf *)page_private(buf->page); 1176 relay_consume_bytes(rbuf, buf->private); 1177 } 1178 1179 static const struct pipe_buf_operations relay_pipe_buf_ops = { 1180 .confirm = generic_pipe_buf_confirm, 1181 .release = relay_pipe_buf_release, 1182 .steal = generic_pipe_buf_steal, 1183 .get = generic_pipe_buf_get, 1184 }; 1185 1186 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) 1187 { 1188 } 1189 1190 /* 1191 * subbuf_splice_actor - splice up to one subbuf's worth of data 1192 */ 1193 static ssize_t subbuf_splice_actor(struct file *in, 1194 loff_t *ppos, 1195 struct pipe_inode_info *pipe, 1196 size_t len, 1197 unsigned int flags, 1198 int *nonpad_ret) 1199 { 1200 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages; 1201 struct rchan_buf *rbuf = in->private_data; 1202 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1203 uint64_t pos = (uint64_t) *ppos; 1204 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1205 size_t read_start = (size_t) do_div(pos, alloc_size); 1206 size_t read_subbuf = read_start / subbuf_size; 1207 size_t padding = rbuf->padding[read_subbuf]; 1208 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1209 struct page *pages[PIPE_DEF_BUFFERS]; 1210 struct partial_page partial[PIPE_DEF_BUFFERS]; 1211 struct splice_pipe_desc spd = { 1212 .pages = pages, 1213 .nr_pages = 0, 1214 .nr_pages_max = PIPE_DEF_BUFFERS, 1215 .partial = partial, 1216 .ops = &relay_pipe_buf_ops, 1217 .spd_release = relay_page_release, 1218 }; 1219 ssize_t ret; 1220 1221 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1222 return 0; 1223 if (splice_grow_spd(pipe, &spd)) 1224 return -ENOMEM; 1225 1226 /* 1227 * Adjust read len, if longer than what is available 1228 */ 1229 if (len > (subbuf_size - read_start % subbuf_size)) 1230 len = subbuf_size - read_start % subbuf_size; 1231 1232 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1233 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1234 poff = read_start & ~PAGE_MASK; 1235 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max); 1236 1237 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { 1238 unsigned int this_len, this_end, private; 1239 unsigned int cur_pos = read_start + total_len; 1240 1241 if (!len) 1242 break; 1243 1244 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1245 private = this_len; 1246 1247 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1248 spd.partial[spd.nr_pages].offset = poff; 1249 1250 this_end = cur_pos + this_len; 1251 if (this_end >= nonpad_end) { 1252 this_len = nonpad_end - cur_pos; 1253 private = this_len + padding; 1254 } 1255 spd.partial[spd.nr_pages].len = this_len; 1256 spd.partial[spd.nr_pages].private = private; 1257 1258 len -= this_len; 1259 total_len += this_len; 1260 poff = 0; 1261 pidx = (pidx + 1) % subbuf_pages; 1262 1263 if (this_end >= nonpad_end) { 1264 spd.nr_pages++; 1265 break; 1266 } 1267 } 1268 1269 ret = 0; 1270 if (!spd.nr_pages) 1271 goto out; 1272 1273 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1274 if (ret < 0 || ret < total_len) 1275 goto out; 1276 1277 if (read_start + ret == nonpad_end) 1278 ret += padding; 1279 1280 out: 1281 splice_shrink_spd(&spd); 1282 return ret; 1283 } 1284 1285 static ssize_t relay_file_splice_read(struct file *in, 1286 loff_t *ppos, 1287 struct pipe_inode_info *pipe, 1288 size_t len, 1289 unsigned int flags) 1290 { 1291 ssize_t spliced; 1292 int ret; 1293 int nonpad_ret = 0; 1294 1295 ret = 0; 1296 spliced = 0; 1297 1298 while (len && !spliced) { 1299 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1300 if (ret < 0) 1301 break; 1302 else if (!ret) { 1303 if (flags & SPLICE_F_NONBLOCK) 1304 ret = -EAGAIN; 1305 break; 1306 } 1307 1308 *ppos += ret; 1309 if (ret > len) 1310 len = 0; 1311 else 1312 len -= ret; 1313 spliced += nonpad_ret; 1314 nonpad_ret = 0; 1315 } 1316 1317 if (spliced) 1318 return spliced; 1319 1320 return ret; 1321 } 1322 1323 const struct file_operations relay_file_operations = { 1324 .open = relay_file_open, 1325 .poll = relay_file_poll, 1326 .mmap = relay_file_mmap, 1327 .read = relay_file_read, 1328 .llseek = no_llseek, 1329 .release = relay_file_release, 1330 .splice_read = relay_file_splice_read, 1331 }; 1332 EXPORT_SYMBOL_GPL(relay_file_operations); 1333