xref: /linux/kernel/relay.c (revision cd354f1ae75e6466a7e31b727faede57a1f89ca5)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relayfs.txt for an overview of relayfs.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 
25 /* list of open channels, for cpu hotplug */
26 static DEFINE_MUTEX(relay_channels_mutex);
27 static LIST_HEAD(relay_channels);
28 
29 /*
30  * close() vm_op implementation for relay file mapping.
31  */
32 static void relay_file_mmap_close(struct vm_area_struct *vma)
33 {
34 	struct rchan_buf *buf = vma->vm_private_data;
35 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
36 }
37 
38 /*
39  * nopage() vm_op implementation for relay file mapping.
40  */
41 static struct page *relay_buf_nopage(struct vm_area_struct *vma,
42 				     unsigned long address,
43 				     int *type)
44 {
45 	struct page *page;
46 	struct rchan_buf *buf = vma->vm_private_data;
47 	unsigned long offset = address - vma->vm_start;
48 
49 	if (address > vma->vm_end)
50 		return NOPAGE_SIGBUS; /* Disallow mremap */
51 	if (!buf)
52 		return NOPAGE_OOM;
53 
54 	page = vmalloc_to_page(buf->start + offset);
55 	if (!page)
56 		return NOPAGE_OOM;
57 	get_page(page);
58 
59 	if (type)
60 		*type = VM_FAULT_MINOR;
61 
62 	return page;
63 }
64 
65 /*
66  * vm_ops for relay file mappings.
67  */
68 static struct vm_operations_struct relay_file_mmap_ops = {
69 	.nopage = relay_buf_nopage,
70 	.close = relay_file_mmap_close,
71 };
72 
73 /**
74  *	relay_mmap_buf: - mmap channel buffer to process address space
75  *	@buf: relay channel buffer
76  *	@vma: vm_area_struct describing memory to be mapped
77  *
78  *	Returns 0 if ok, negative on error
79  *
80  *	Caller should already have grabbed mmap_sem.
81  */
82 int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
83 {
84 	unsigned long length = vma->vm_end - vma->vm_start;
85 	struct file *filp = vma->vm_file;
86 
87 	if (!buf)
88 		return -EBADF;
89 
90 	if (length != (unsigned long)buf->chan->alloc_size)
91 		return -EINVAL;
92 
93 	vma->vm_ops = &relay_file_mmap_ops;
94 	vma->vm_private_data = buf;
95 	buf->chan->cb->buf_mapped(buf, filp);
96 
97 	return 0;
98 }
99 
100 /**
101  *	relay_alloc_buf - allocate a channel buffer
102  *	@buf: the buffer struct
103  *	@size: total size of the buffer
104  *
105  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
106  *	passed in size will get page aligned, if it isn't already.
107  */
108 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
109 {
110 	void *mem;
111 	unsigned int i, j, n_pages;
112 
113 	*size = PAGE_ALIGN(*size);
114 	n_pages = *size >> PAGE_SHIFT;
115 
116 	buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
117 	if (!buf->page_array)
118 		return NULL;
119 
120 	for (i = 0; i < n_pages; i++) {
121 		buf->page_array[i] = alloc_page(GFP_KERNEL);
122 		if (unlikely(!buf->page_array[i]))
123 			goto depopulate;
124 	}
125 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
126 	if (!mem)
127 		goto depopulate;
128 
129 	memset(mem, 0, *size);
130 	buf->page_count = n_pages;
131 	return mem;
132 
133 depopulate:
134 	for (j = 0; j < i; j++)
135 		__free_page(buf->page_array[j]);
136 	kfree(buf->page_array);
137 	return NULL;
138 }
139 
140 /**
141  *	relay_create_buf - allocate and initialize a channel buffer
142  *	@chan: the relay channel
143  *
144  *	Returns channel buffer if successful, %NULL otherwise.
145  */
146 struct rchan_buf *relay_create_buf(struct rchan *chan)
147 {
148 	struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
149 	if (!buf)
150 		return NULL;
151 
152 	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
153 	if (!buf->padding)
154 		goto free_buf;
155 
156 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
157 	if (!buf->start)
158 		goto free_buf;
159 
160 	buf->chan = chan;
161 	kref_get(&buf->chan->kref);
162 	return buf;
163 
164 free_buf:
165 	kfree(buf->padding);
166 	kfree(buf);
167 	return NULL;
168 }
169 
170 /**
171  *	relay_destroy_channel - free the channel struct
172  *	@kref: target kernel reference that contains the relay channel
173  *
174  *	Should only be called from kref_put().
175  */
176 void relay_destroy_channel(struct kref *kref)
177 {
178 	struct rchan *chan = container_of(kref, struct rchan, kref);
179 	kfree(chan);
180 }
181 
182 /**
183  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
184  *	@buf: the buffer struct
185  */
186 void relay_destroy_buf(struct rchan_buf *buf)
187 {
188 	struct rchan *chan = buf->chan;
189 	unsigned int i;
190 
191 	if (likely(buf->start)) {
192 		vunmap(buf->start);
193 		for (i = 0; i < buf->page_count; i++)
194 			__free_page(buf->page_array[i]);
195 		kfree(buf->page_array);
196 	}
197 	chan->buf[buf->cpu] = NULL;
198 	kfree(buf->padding);
199 	kfree(buf);
200 	kref_put(&chan->kref, relay_destroy_channel);
201 }
202 
203 /**
204  *	relay_remove_buf - remove a channel buffer
205  *	@kref: target kernel reference that contains the relay buffer
206  *
207  *	Removes the file from the fileystem, which also frees the
208  *	rchan_buf_struct and the channel buffer.  Should only be called from
209  *	kref_put().
210  */
211 void relay_remove_buf(struct kref *kref)
212 {
213 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
214 	buf->chan->cb->remove_buf_file(buf->dentry);
215 	relay_destroy_buf(buf);
216 }
217 
218 /**
219  *	relay_buf_empty - boolean, is the channel buffer empty?
220  *	@buf: channel buffer
221  *
222  *	Returns 1 if the buffer is empty, 0 otherwise.
223  */
224 int relay_buf_empty(struct rchan_buf *buf)
225 {
226 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
227 }
228 EXPORT_SYMBOL_GPL(relay_buf_empty);
229 
230 /**
231  *	relay_buf_full - boolean, is the channel buffer full?
232  *	@buf: channel buffer
233  *
234  *	Returns 1 if the buffer is full, 0 otherwise.
235  */
236 int relay_buf_full(struct rchan_buf *buf)
237 {
238 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
239 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
240 }
241 EXPORT_SYMBOL_GPL(relay_buf_full);
242 
243 /*
244  * High-level relay kernel API and associated functions.
245  */
246 
247 /*
248  * rchan_callback implementations defining default channel behavior.  Used
249  * in place of corresponding NULL values in client callback struct.
250  */
251 
252 /*
253  * subbuf_start() default callback.  Does nothing.
254  */
255 static int subbuf_start_default_callback (struct rchan_buf *buf,
256 					  void *subbuf,
257 					  void *prev_subbuf,
258 					  size_t prev_padding)
259 {
260 	if (relay_buf_full(buf))
261 		return 0;
262 
263 	return 1;
264 }
265 
266 /*
267  * buf_mapped() default callback.  Does nothing.
268  */
269 static void buf_mapped_default_callback(struct rchan_buf *buf,
270 					struct file *filp)
271 {
272 }
273 
274 /*
275  * buf_unmapped() default callback.  Does nothing.
276  */
277 static void buf_unmapped_default_callback(struct rchan_buf *buf,
278 					  struct file *filp)
279 {
280 }
281 
282 /*
283  * create_buf_file_create() default callback.  Does nothing.
284  */
285 static struct dentry *create_buf_file_default_callback(const char *filename,
286 						       struct dentry *parent,
287 						       int mode,
288 						       struct rchan_buf *buf,
289 						       int *is_global)
290 {
291 	return NULL;
292 }
293 
294 /*
295  * remove_buf_file() default callback.  Does nothing.
296  */
297 static int remove_buf_file_default_callback(struct dentry *dentry)
298 {
299 	return -EINVAL;
300 }
301 
302 /* relay channel default callbacks */
303 static struct rchan_callbacks default_channel_callbacks = {
304 	.subbuf_start = subbuf_start_default_callback,
305 	.buf_mapped = buf_mapped_default_callback,
306 	.buf_unmapped = buf_unmapped_default_callback,
307 	.create_buf_file = create_buf_file_default_callback,
308 	.remove_buf_file = remove_buf_file_default_callback,
309 };
310 
311 /**
312  *	wakeup_readers - wake up readers waiting on a channel
313  *	@work: work struct that contains the the channel buffer
314  *
315  *	This is the work function used to defer reader waking.  The
316  *	reason waking is deferred is that calling directly from write
317  *	causes problems if you're writing from say the scheduler.
318  */
319 static void wakeup_readers(struct work_struct *work)
320 {
321 	struct rchan_buf *buf =
322 		container_of(work, struct rchan_buf, wake_readers.work);
323 	wake_up_interruptible(&buf->read_wait);
324 }
325 
326 /**
327  *	__relay_reset - reset a channel buffer
328  *	@buf: the channel buffer
329  *	@init: 1 if this is a first-time initialization
330  *
331  *	See relay_reset() for description of effect.
332  */
333 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
334 {
335 	size_t i;
336 
337 	if (init) {
338 		init_waitqueue_head(&buf->read_wait);
339 		kref_init(&buf->kref);
340 		INIT_DELAYED_WORK(&buf->wake_readers, NULL);
341 	} else {
342 		cancel_delayed_work(&buf->wake_readers);
343 		flush_scheduled_work();
344 	}
345 
346 	buf->subbufs_produced = 0;
347 	buf->subbufs_consumed = 0;
348 	buf->bytes_consumed = 0;
349 	buf->finalized = 0;
350 	buf->data = buf->start;
351 	buf->offset = 0;
352 
353 	for (i = 0; i < buf->chan->n_subbufs; i++)
354 		buf->padding[i] = 0;
355 
356 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
357 }
358 
359 /**
360  *	relay_reset - reset the channel
361  *	@chan: the channel
362  *
363  *	This has the effect of erasing all data from all channel buffers
364  *	and restarting the channel in its initial state.  The buffers
365  *	are not freed, so any mappings are still in effect.
366  *
367  *	NOTE. Care should be taken that the channel isn't actually
368  *	being used by anything when this call is made.
369  */
370 void relay_reset(struct rchan *chan)
371 {
372 	unsigned int i;
373 
374 	if (!chan)
375 		return;
376 
377  	if (chan->is_global && chan->buf[0]) {
378 		__relay_reset(chan->buf[0], 0);
379 		return;
380 	}
381 
382 	mutex_lock(&relay_channels_mutex);
383 	for_each_online_cpu(i)
384 		if (chan->buf[i])
385 			__relay_reset(chan->buf[i], 0);
386 	mutex_unlock(&relay_channels_mutex);
387 }
388 EXPORT_SYMBOL_GPL(relay_reset);
389 
390 /*
391  *	relay_open_buf - create a new relay channel buffer
392  *
393  *	used by relay_open() and CPU hotplug.
394  */
395 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
396 {
397  	struct rchan_buf *buf = NULL;
398 	struct dentry *dentry;
399  	char *tmpname;
400 
401  	if (chan->is_global)
402 		return chan->buf[0];
403 
404 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
405  	if (!tmpname)
406  		goto end;
407  	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
408 
409 	buf = relay_create_buf(chan);
410 	if (!buf)
411  		goto free_name;
412 
413  	buf->cpu = cpu;
414  	__relay_reset(buf, 1);
415 
416 	/* Create file in fs */
417  	dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
418  					   buf, &chan->is_global);
419  	if (!dentry)
420  		goto free_buf;
421 
422 	buf->dentry = dentry;
423 
424  	if(chan->is_global) {
425  		chan->buf[0] = buf;
426  		buf->cpu = 0;
427   	}
428 
429  	goto free_name;
430 
431 free_buf:
432  	relay_destroy_buf(buf);
433 free_name:
434  	kfree(tmpname);
435 end:
436 	return buf;
437 }
438 
439 /**
440  *	relay_close_buf - close a channel buffer
441  *	@buf: channel buffer
442  *
443  *	Marks the buffer finalized and restores the default callbacks.
444  *	The channel buffer and channel buffer data structure are then freed
445  *	automatically when the last reference is given up.
446  */
447 static void relay_close_buf(struct rchan_buf *buf)
448 {
449 	buf->finalized = 1;
450 	cancel_delayed_work(&buf->wake_readers);
451 	flush_scheduled_work();
452 	kref_put(&buf->kref, relay_remove_buf);
453 }
454 
455 static void setup_callbacks(struct rchan *chan,
456 				   struct rchan_callbacks *cb)
457 {
458 	if (!cb) {
459 		chan->cb = &default_channel_callbacks;
460 		return;
461 	}
462 
463 	if (!cb->subbuf_start)
464 		cb->subbuf_start = subbuf_start_default_callback;
465 	if (!cb->buf_mapped)
466 		cb->buf_mapped = buf_mapped_default_callback;
467 	if (!cb->buf_unmapped)
468 		cb->buf_unmapped = buf_unmapped_default_callback;
469 	if (!cb->create_buf_file)
470 		cb->create_buf_file = create_buf_file_default_callback;
471 	if (!cb->remove_buf_file)
472 		cb->remove_buf_file = remove_buf_file_default_callback;
473 	chan->cb = cb;
474 }
475 
476 /**
477  *
478  * 	relay_hotcpu_callback - CPU hotplug callback
479  * 	@nb: notifier block
480  * 	@action: hotplug action to take
481  * 	@hcpu: CPU number
482  *
483  * 	Returns the success/failure of the operation. (NOTIFY_OK, NOTIFY_BAD)
484  */
485 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
486 				unsigned long action,
487 				void *hcpu)
488 {
489 	unsigned int hotcpu = (unsigned long)hcpu;
490 	struct rchan *chan;
491 
492 	switch(action) {
493 	case CPU_UP_PREPARE:
494 		mutex_lock(&relay_channels_mutex);
495 		list_for_each_entry(chan, &relay_channels, list) {
496 			if (chan->buf[hotcpu])
497 				continue;
498 			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
499 			if(!chan->buf[hotcpu]) {
500 				printk(KERN_ERR
501 					"relay_hotcpu_callback: cpu %d buffer "
502 					"creation failed\n", hotcpu);
503 				mutex_unlock(&relay_channels_mutex);
504 				return NOTIFY_BAD;
505 			}
506 		}
507 		mutex_unlock(&relay_channels_mutex);
508 		break;
509 	case CPU_DEAD:
510 		/* No need to flush the cpu : will be flushed upon
511 		 * final relay_flush() call. */
512 		break;
513 	}
514 	return NOTIFY_OK;
515 }
516 
517 /**
518  *	relay_open - create a new relay channel
519  *	@base_filename: base name of files to create
520  *	@parent: dentry of parent directory, %NULL for root directory
521  *	@subbuf_size: size of sub-buffers
522  *	@n_subbufs: number of sub-buffers
523  *	@cb: client callback functions
524  *	@private_data: user-defined data
525  *
526  *	Returns channel pointer if successful, %NULL otherwise.
527  *
528  *	Creates a channel buffer for each cpu using the sizes and
529  *	attributes specified.  The created channel buffer files
530  *	will be named base_filename0...base_filenameN-1.  File
531  *	permissions will be %S_IRUSR.
532  */
533 struct rchan *relay_open(const char *base_filename,
534 			 struct dentry *parent,
535 			 size_t subbuf_size,
536 			 size_t n_subbufs,
537 			 struct rchan_callbacks *cb,
538 			 void *private_data)
539 {
540 	unsigned int i;
541 	struct rchan *chan;
542 	if (!base_filename)
543 		return NULL;
544 
545 	if (!(subbuf_size && n_subbufs))
546 		return NULL;
547 
548 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
549 	if (!chan)
550 		return NULL;
551 
552 	chan->version = RELAYFS_CHANNEL_VERSION;
553 	chan->n_subbufs = n_subbufs;
554 	chan->subbuf_size = subbuf_size;
555 	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
556 	chan->parent = parent;
557 	chan->private_data = private_data;
558 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
559 	setup_callbacks(chan, cb);
560 	kref_init(&chan->kref);
561 
562 	mutex_lock(&relay_channels_mutex);
563 	for_each_online_cpu(i) {
564 		chan->buf[i] = relay_open_buf(chan, i);
565 		if (!chan->buf[i])
566 			goto free_bufs;
567 	}
568 	list_add(&chan->list, &relay_channels);
569 	mutex_unlock(&relay_channels_mutex);
570 
571 	return chan;
572 
573 free_bufs:
574 	for_each_online_cpu(i) {
575 		if (!chan->buf[i])
576 			break;
577 		relay_close_buf(chan->buf[i]);
578 	}
579 
580 	kref_put(&chan->kref, relay_destroy_channel);
581 	mutex_unlock(&relay_channels_mutex);
582 	return NULL;
583 }
584 EXPORT_SYMBOL_GPL(relay_open);
585 
586 /**
587  *	relay_switch_subbuf - switch to a new sub-buffer
588  *	@buf: channel buffer
589  *	@length: size of current event
590  *
591  *	Returns either the length passed in or 0 if full.
592  *
593  *	Performs sub-buffer-switch tasks such as invoking callbacks,
594  *	updating padding counts, waking up readers, etc.
595  */
596 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
597 {
598 	void *old, *new;
599 	size_t old_subbuf, new_subbuf;
600 
601 	if (unlikely(length > buf->chan->subbuf_size))
602 		goto toobig;
603 
604 	if (buf->offset != buf->chan->subbuf_size + 1) {
605 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
606 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
607 		buf->padding[old_subbuf] = buf->prev_padding;
608 		buf->subbufs_produced++;
609 		buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
610 			buf->padding[old_subbuf];
611 		smp_mb();
612 		if (waitqueue_active(&buf->read_wait)) {
613 			PREPARE_DELAYED_WORK(&buf->wake_readers,
614 					     wakeup_readers);
615 			schedule_delayed_work(&buf->wake_readers, 1);
616 		}
617 	}
618 
619 	old = buf->data;
620 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
621 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
622 	buf->offset = 0;
623 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
624 		buf->offset = buf->chan->subbuf_size + 1;
625 		return 0;
626 	}
627 	buf->data = new;
628 	buf->padding[new_subbuf] = 0;
629 
630 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
631 		goto toobig;
632 
633 	return length;
634 
635 toobig:
636 	buf->chan->last_toobig = length;
637 	return 0;
638 }
639 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
640 
641 /**
642  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
643  *	@chan: the channel
644  *	@cpu: the cpu associated with the channel buffer to update
645  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
646  *
647  *	Adds to the channel buffer's consumed sub-buffer count.
648  *	subbufs_consumed should be the number of sub-buffers newly consumed,
649  *	not the total consumed.
650  *
651  *	NOTE. Kernel clients don't need to call this function if the channel
652  *	mode is 'overwrite'.
653  */
654 void relay_subbufs_consumed(struct rchan *chan,
655 			    unsigned int cpu,
656 			    size_t subbufs_consumed)
657 {
658 	struct rchan_buf *buf;
659 
660 	if (!chan)
661 		return;
662 
663 	if (cpu >= NR_CPUS || !chan->buf[cpu])
664 		return;
665 
666 	buf = chan->buf[cpu];
667 	buf->subbufs_consumed += subbufs_consumed;
668 	if (buf->subbufs_consumed > buf->subbufs_produced)
669 		buf->subbufs_consumed = buf->subbufs_produced;
670 }
671 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
672 
673 /**
674  *	relay_close - close the channel
675  *	@chan: the channel
676  *
677  *	Closes all channel buffers and frees the channel.
678  */
679 void relay_close(struct rchan *chan)
680 {
681 	unsigned int i;
682 
683 	if (!chan)
684 		return;
685 
686 	mutex_lock(&relay_channels_mutex);
687 	if (chan->is_global && chan->buf[0])
688 		relay_close_buf(chan->buf[0]);
689 	else
690 		for_each_possible_cpu(i)
691 			if (chan->buf[i])
692 				relay_close_buf(chan->buf[i]);
693 
694 	if (chan->last_toobig)
695 		printk(KERN_WARNING "relay: one or more items not logged "
696 		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
697 		       chan->last_toobig, chan->subbuf_size);
698 
699 	list_del(&chan->list);
700 	kref_put(&chan->kref, relay_destroy_channel);
701 	mutex_unlock(&relay_channels_mutex);
702 }
703 EXPORT_SYMBOL_GPL(relay_close);
704 
705 /**
706  *	relay_flush - close the channel
707  *	@chan: the channel
708  *
709  *	Flushes all channel buffers, i.e. forces buffer switch.
710  */
711 void relay_flush(struct rchan *chan)
712 {
713 	unsigned int i;
714 
715 	if (!chan)
716 		return;
717 
718 	if (chan->is_global && chan->buf[0]) {
719 		relay_switch_subbuf(chan->buf[0], 0);
720 		return;
721 	}
722 
723 	mutex_lock(&relay_channels_mutex);
724 	for_each_possible_cpu(i)
725 		if (chan->buf[i])
726 			relay_switch_subbuf(chan->buf[i], 0);
727 	mutex_unlock(&relay_channels_mutex);
728 }
729 EXPORT_SYMBOL_GPL(relay_flush);
730 
731 /**
732  *	relay_file_open - open file op for relay files
733  *	@inode: the inode
734  *	@filp: the file
735  *
736  *	Increments the channel buffer refcount.
737  */
738 static int relay_file_open(struct inode *inode, struct file *filp)
739 {
740 	struct rchan_buf *buf = inode->i_private;
741 	kref_get(&buf->kref);
742 	filp->private_data = buf;
743 
744 	return 0;
745 }
746 
747 /**
748  *	relay_file_mmap - mmap file op for relay files
749  *	@filp: the file
750  *	@vma: the vma describing what to map
751  *
752  *	Calls upon relay_mmap_buf() to map the file into user space.
753  */
754 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
755 {
756 	struct rchan_buf *buf = filp->private_data;
757 	return relay_mmap_buf(buf, vma);
758 }
759 
760 /**
761  *	relay_file_poll - poll file op for relay files
762  *	@filp: the file
763  *	@wait: poll table
764  *
765  *	Poll implemention.
766  */
767 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
768 {
769 	unsigned int mask = 0;
770 	struct rchan_buf *buf = filp->private_data;
771 
772 	if (buf->finalized)
773 		return POLLERR;
774 
775 	if (filp->f_mode & FMODE_READ) {
776 		poll_wait(filp, &buf->read_wait, wait);
777 		if (!relay_buf_empty(buf))
778 			mask |= POLLIN | POLLRDNORM;
779 	}
780 
781 	return mask;
782 }
783 
784 /**
785  *	relay_file_release - release file op for relay files
786  *	@inode: the inode
787  *	@filp: the file
788  *
789  *	Decrements the channel refcount, as the filesystem is
790  *	no longer using it.
791  */
792 static int relay_file_release(struct inode *inode, struct file *filp)
793 {
794 	struct rchan_buf *buf = filp->private_data;
795 	kref_put(&buf->kref, relay_remove_buf);
796 
797 	return 0;
798 }
799 
800 /*
801  *	relay_file_read_consume - update the consumed count for the buffer
802  */
803 static void relay_file_read_consume(struct rchan_buf *buf,
804 				    size_t read_pos,
805 				    size_t bytes_consumed)
806 {
807 	size_t subbuf_size = buf->chan->subbuf_size;
808 	size_t n_subbufs = buf->chan->n_subbufs;
809 	size_t read_subbuf;
810 
811 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
812 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
813 		buf->bytes_consumed = 0;
814 	}
815 
816 	buf->bytes_consumed += bytes_consumed;
817 	read_subbuf = read_pos / buf->chan->subbuf_size;
818 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
819 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
820 		    (buf->offset == subbuf_size))
821 			return;
822 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
823 		buf->bytes_consumed = 0;
824 	}
825 }
826 
827 /*
828  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
829  */
830 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
831 {
832 	size_t subbuf_size = buf->chan->subbuf_size;
833 	size_t n_subbufs = buf->chan->n_subbufs;
834 	size_t produced = buf->subbufs_produced;
835 	size_t consumed = buf->subbufs_consumed;
836 
837 	relay_file_read_consume(buf, read_pos, 0);
838 
839 	if (unlikely(buf->offset > subbuf_size)) {
840 		if (produced == consumed)
841 			return 0;
842 		return 1;
843 	}
844 
845 	if (unlikely(produced - consumed >= n_subbufs)) {
846 		consumed = (produced / n_subbufs) * n_subbufs;
847 		buf->subbufs_consumed = consumed;
848 	}
849 
850 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
851 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
852 
853 	if (consumed > produced)
854 		produced += n_subbufs * subbuf_size;
855 
856 	if (consumed == produced)
857 		return 0;
858 
859 	return 1;
860 }
861 
862 /**
863  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
864  *	@read_pos: file read position
865  *	@buf: relay channel buffer
866  */
867 static size_t relay_file_read_subbuf_avail(size_t read_pos,
868 					   struct rchan_buf *buf)
869 {
870 	size_t padding, avail = 0;
871 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
872 	size_t subbuf_size = buf->chan->subbuf_size;
873 
874 	write_subbuf = (buf->data - buf->start) / subbuf_size;
875 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
876 	read_subbuf = read_pos / subbuf_size;
877 	read_offset = read_pos % subbuf_size;
878 	padding = buf->padding[read_subbuf];
879 
880 	if (read_subbuf == write_subbuf) {
881 		if (read_offset + padding < write_offset)
882 			avail = write_offset - (read_offset + padding);
883 	} else
884 		avail = (subbuf_size - padding) - read_offset;
885 
886 	return avail;
887 }
888 
889 /**
890  *	relay_file_read_start_pos - find the first available byte to read
891  *	@read_pos: file read position
892  *	@buf: relay channel buffer
893  *
894  *	If the @read_pos is in the middle of padding, return the
895  *	position of the first actually available byte, otherwise
896  *	return the original value.
897  */
898 static size_t relay_file_read_start_pos(size_t read_pos,
899 					struct rchan_buf *buf)
900 {
901 	size_t read_subbuf, padding, padding_start, padding_end;
902 	size_t subbuf_size = buf->chan->subbuf_size;
903 	size_t n_subbufs = buf->chan->n_subbufs;
904 
905 	read_subbuf = read_pos / subbuf_size;
906 	padding = buf->padding[read_subbuf];
907 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
908 	padding_end = (read_subbuf + 1) * subbuf_size;
909 	if (read_pos >= padding_start && read_pos < padding_end) {
910 		read_subbuf = (read_subbuf + 1) % n_subbufs;
911 		read_pos = read_subbuf * subbuf_size;
912 	}
913 
914 	return read_pos;
915 }
916 
917 /**
918  *	relay_file_read_end_pos - return the new read position
919  *	@read_pos: file read position
920  *	@buf: relay channel buffer
921  *	@count: number of bytes to be read
922  */
923 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
924 				      size_t read_pos,
925 				      size_t count)
926 {
927 	size_t read_subbuf, padding, end_pos;
928 	size_t subbuf_size = buf->chan->subbuf_size;
929 	size_t n_subbufs = buf->chan->n_subbufs;
930 
931 	read_subbuf = read_pos / subbuf_size;
932 	padding = buf->padding[read_subbuf];
933 	if (read_pos % subbuf_size + count + padding == subbuf_size)
934 		end_pos = (read_subbuf + 1) * subbuf_size;
935 	else
936 		end_pos = read_pos + count;
937 	if (end_pos >= subbuf_size * n_subbufs)
938 		end_pos = 0;
939 
940 	return end_pos;
941 }
942 
943 /*
944  *	subbuf_read_actor - read up to one subbuf's worth of data
945  */
946 static int subbuf_read_actor(size_t read_start,
947 			     struct rchan_buf *buf,
948 			     size_t avail,
949 			     read_descriptor_t *desc,
950 			     read_actor_t actor)
951 {
952 	void *from;
953 	int ret = 0;
954 
955 	from = buf->start + read_start;
956 	ret = avail;
957 	if (copy_to_user(desc->arg.buf, from, avail)) {
958 		desc->error = -EFAULT;
959 		ret = 0;
960 	}
961 	desc->arg.data += ret;
962 	desc->written += ret;
963 	desc->count -= ret;
964 
965 	return ret;
966 }
967 
968 /*
969  *	subbuf_send_actor - send up to one subbuf's worth of data
970  */
971 static int subbuf_send_actor(size_t read_start,
972 			     struct rchan_buf *buf,
973 			     size_t avail,
974 			     read_descriptor_t *desc,
975 			     read_actor_t actor)
976 {
977 	unsigned long pidx, poff;
978 	unsigned int subbuf_pages;
979 	int ret = 0;
980 
981 	subbuf_pages = buf->chan->alloc_size >> PAGE_SHIFT;
982 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
983 	poff = read_start & ~PAGE_MASK;
984 	while (avail) {
985 		struct page *p = buf->page_array[pidx];
986 		unsigned int len;
987 
988 		len = PAGE_SIZE - poff;
989 		if (len > avail)
990 			len = avail;
991 
992 		len = actor(desc, p, poff, len);
993 		if (desc->error)
994 			break;
995 
996 		avail -= len;
997 		ret += len;
998 		poff = 0;
999 		pidx = (pidx + 1) % subbuf_pages;
1000 	}
1001 
1002 	return ret;
1003 }
1004 
1005 typedef int (*subbuf_actor_t) (size_t read_start,
1006 			       struct rchan_buf *buf,
1007 			       size_t avail,
1008 			       read_descriptor_t *desc,
1009 			       read_actor_t actor);
1010 
1011 /*
1012  *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1013  */
1014 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1015 					subbuf_actor_t subbuf_actor,
1016 					read_actor_t actor,
1017 					read_descriptor_t *desc)
1018 {
1019 	struct rchan_buf *buf = filp->private_data;
1020 	size_t read_start, avail;
1021 	int ret;
1022 
1023 	if (!desc->count)
1024 		return 0;
1025 
1026 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1027 	do {
1028 		if (!relay_file_read_avail(buf, *ppos))
1029 			break;
1030 
1031 		read_start = relay_file_read_start_pos(*ppos, buf);
1032 		avail = relay_file_read_subbuf_avail(read_start, buf);
1033 		if (!avail)
1034 			break;
1035 
1036 		avail = min(desc->count, avail);
1037 		ret = subbuf_actor(read_start, buf, avail, desc, actor);
1038 		if (desc->error < 0)
1039 			break;
1040 
1041 		if (ret) {
1042 			relay_file_read_consume(buf, read_start, ret);
1043 			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1044 		}
1045 	} while (desc->count && ret);
1046 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1047 
1048 	return desc->written;
1049 }
1050 
1051 static ssize_t relay_file_read(struct file *filp,
1052 			       char __user *buffer,
1053 			       size_t count,
1054 			       loff_t *ppos)
1055 {
1056 	read_descriptor_t desc;
1057 	desc.written = 0;
1058 	desc.count = count;
1059 	desc.arg.buf = buffer;
1060 	desc.error = 0;
1061 	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1062 				       NULL, &desc);
1063 }
1064 
1065 static ssize_t relay_file_sendfile(struct file *filp,
1066 				   loff_t *ppos,
1067 				   size_t count,
1068 				   read_actor_t actor,
1069 				   void *target)
1070 {
1071 	read_descriptor_t desc;
1072 	desc.written = 0;
1073 	desc.count = count;
1074 	desc.arg.data = target;
1075 	desc.error = 0;
1076 	return relay_file_read_subbufs(filp, ppos, subbuf_send_actor,
1077 				       actor, &desc);
1078 }
1079 
1080 const struct file_operations relay_file_operations = {
1081 	.open		= relay_file_open,
1082 	.poll		= relay_file_poll,
1083 	.mmap		= relay_file_mmap,
1084 	.read		= relay_file_read,
1085 	.llseek		= no_llseek,
1086 	.release	= relay_file_release,
1087 	.sendfile       = relay_file_sendfile,
1088 };
1089 EXPORT_SYMBOL_GPL(relay_file_operations);
1090 
1091 static __init int relay_init(void)
1092 {
1093 
1094 	hotcpu_notifier(relay_hotcpu_callback, 0);
1095 	return 0;
1096 }
1097 
1098 module_init(relay_init);
1099