1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relayfs.txt for an overview of relayfs. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 25 /* list of open channels, for cpu hotplug */ 26 static DEFINE_MUTEX(relay_channels_mutex); 27 static LIST_HEAD(relay_channels); 28 29 /* 30 * close() vm_op implementation for relay file mapping. 31 */ 32 static void relay_file_mmap_close(struct vm_area_struct *vma) 33 { 34 struct rchan_buf *buf = vma->vm_private_data; 35 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 36 } 37 38 /* 39 * nopage() vm_op implementation for relay file mapping. 40 */ 41 static struct page *relay_buf_nopage(struct vm_area_struct *vma, 42 unsigned long address, 43 int *type) 44 { 45 struct page *page; 46 struct rchan_buf *buf = vma->vm_private_data; 47 unsigned long offset = address - vma->vm_start; 48 49 if (address > vma->vm_end) 50 return NOPAGE_SIGBUS; /* Disallow mremap */ 51 if (!buf) 52 return NOPAGE_OOM; 53 54 page = vmalloc_to_page(buf->start + offset); 55 if (!page) 56 return NOPAGE_OOM; 57 get_page(page); 58 59 if (type) 60 *type = VM_FAULT_MINOR; 61 62 return page; 63 } 64 65 /* 66 * vm_ops for relay file mappings. 67 */ 68 static struct vm_operations_struct relay_file_mmap_ops = { 69 .nopage = relay_buf_nopage, 70 .close = relay_file_mmap_close, 71 }; 72 73 /** 74 * relay_mmap_buf: - mmap channel buffer to process address space 75 * @buf: relay channel buffer 76 * @vma: vm_area_struct describing memory to be mapped 77 * 78 * Returns 0 if ok, negative on error 79 * 80 * Caller should already have grabbed mmap_sem. 81 */ 82 int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 83 { 84 unsigned long length = vma->vm_end - vma->vm_start; 85 struct file *filp = vma->vm_file; 86 87 if (!buf) 88 return -EBADF; 89 90 if (length != (unsigned long)buf->chan->alloc_size) 91 return -EINVAL; 92 93 vma->vm_ops = &relay_file_mmap_ops; 94 vma->vm_private_data = buf; 95 buf->chan->cb->buf_mapped(buf, filp); 96 97 return 0; 98 } 99 100 /** 101 * relay_alloc_buf - allocate a channel buffer 102 * @buf: the buffer struct 103 * @size: total size of the buffer 104 * 105 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 106 * passed in size will get page aligned, if it isn't already. 107 */ 108 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 109 { 110 void *mem; 111 unsigned int i, j, n_pages; 112 113 *size = PAGE_ALIGN(*size); 114 n_pages = *size >> PAGE_SHIFT; 115 116 buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL); 117 if (!buf->page_array) 118 return NULL; 119 120 for (i = 0; i < n_pages; i++) { 121 buf->page_array[i] = alloc_page(GFP_KERNEL); 122 if (unlikely(!buf->page_array[i])) 123 goto depopulate; 124 } 125 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 126 if (!mem) 127 goto depopulate; 128 129 memset(mem, 0, *size); 130 buf->page_count = n_pages; 131 return mem; 132 133 depopulate: 134 for (j = 0; j < i; j++) 135 __free_page(buf->page_array[j]); 136 kfree(buf->page_array); 137 return NULL; 138 } 139 140 /** 141 * relay_create_buf - allocate and initialize a channel buffer 142 * @chan: the relay channel 143 * 144 * Returns channel buffer if successful, %NULL otherwise. 145 */ 146 struct rchan_buf *relay_create_buf(struct rchan *chan) 147 { 148 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 149 if (!buf) 150 return NULL; 151 152 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL); 153 if (!buf->padding) 154 goto free_buf; 155 156 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 157 if (!buf->start) 158 goto free_buf; 159 160 buf->chan = chan; 161 kref_get(&buf->chan->kref); 162 return buf; 163 164 free_buf: 165 kfree(buf->padding); 166 kfree(buf); 167 return NULL; 168 } 169 170 /** 171 * relay_destroy_channel - free the channel struct 172 * @kref: target kernel reference that contains the relay channel 173 * 174 * Should only be called from kref_put(). 175 */ 176 void relay_destroy_channel(struct kref *kref) 177 { 178 struct rchan *chan = container_of(kref, struct rchan, kref); 179 kfree(chan); 180 } 181 182 /** 183 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 184 * @buf: the buffer struct 185 */ 186 void relay_destroy_buf(struct rchan_buf *buf) 187 { 188 struct rchan *chan = buf->chan; 189 unsigned int i; 190 191 if (likely(buf->start)) { 192 vunmap(buf->start); 193 for (i = 0; i < buf->page_count; i++) 194 __free_page(buf->page_array[i]); 195 kfree(buf->page_array); 196 } 197 chan->buf[buf->cpu] = NULL; 198 kfree(buf->padding); 199 kfree(buf); 200 kref_put(&chan->kref, relay_destroy_channel); 201 } 202 203 /** 204 * relay_remove_buf - remove a channel buffer 205 * @kref: target kernel reference that contains the relay buffer 206 * 207 * Removes the file from the fileystem, which also frees the 208 * rchan_buf_struct and the channel buffer. Should only be called from 209 * kref_put(). 210 */ 211 void relay_remove_buf(struct kref *kref) 212 { 213 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 214 buf->chan->cb->remove_buf_file(buf->dentry); 215 relay_destroy_buf(buf); 216 } 217 218 /** 219 * relay_buf_empty - boolean, is the channel buffer empty? 220 * @buf: channel buffer 221 * 222 * Returns 1 if the buffer is empty, 0 otherwise. 223 */ 224 int relay_buf_empty(struct rchan_buf *buf) 225 { 226 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 227 } 228 EXPORT_SYMBOL_GPL(relay_buf_empty); 229 230 /** 231 * relay_buf_full - boolean, is the channel buffer full? 232 * @buf: channel buffer 233 * 234 * Returns 1 if the buffer is full, 0 otherwise. 235 */ 236 int relay_buf_full(struct rchan_buf *buf) 237 { 238 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 239 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 240 } 241 EXPORT_SYMBOL_GPL(relay_buf_full); 242 243 /* 244 * High-level relay kernel API and associated functions. 245 */ 246 247 /* 248 * rchan_callback implementations defining default channel behavior. Used 249 * in place of corresponding NULL values in client callback struct. 250 */ 251 252 /* 253 * subbuf_start() default callback. Does nothing. 254 */ 255 static int subbuf_start_default_callback (struct rchan_buf *buf, 256 void *subbuf, 257 void *prev_subbuf, 258 size_t prev_padding) 259 { 260 if (relay_buf_full(buf)) 261 return 0; 262 263 return 1; 264 } 265 266 /* 267 * buf_mapped() default callback. Does nothing. 268 */ 269 static void buf_mapped_default_callback(struct rchan_buf *buf, 270 struct file *filp) 271 { 272 } 273 274 /* 275 * buf_unmapped() default callback. Does nothing. 276 */ 277 static void buf_unmapped_default_callback(struct rchan_buf *buf, 278 struct file *filp) 279 { 280 } 281 282 /* 283 * create_buf_file_create() default callback. Does nothing. 284 */ 285 static struct dentry *create_buf_file_default_callback(const char *filename, 286 struct dentry *parent, 287 int mode, 288 struct rchan_buf *buf, 289 int *is_global) 290 { 291 return NULL; 292 } 293 294 /* 295 * remove_buf_file() default callback. Does nothing. 296 */ 297 static int remove_buf_file_default_callback(struct dentry *dentry) 298 { 299 return -EINVAL; 300 } 301 302 /* relay channel default callbacks */ 303 static struct rchan_callbacks default_channel_callbacks = { 304 .subbuf_start = subbuf_start_default_callback, 305 .buf_mapped = buf_mapped_default_callback, 306 .buf_unmapped = buf_unmapped_default_callback, 307 .create_buf_file = create_buf_file_default_callback, 308 .remove_buf_file = remove_buf_file_default_callback, 309 }; 310 311 /** 312 * wakeup_readers - wake up readers waiting on a channel 313 * @work: work struct that contains the the channel buffer 314 * 315 * This is the work function used to defer reader waking. The 316 * reason waking is deferred is that calling directly from write 317 * causes problems if you're writing from say the scheduler. 318 */ 319 static void wakeup_readers(struct work_struct *work) 320 { 321 struct rchan_buf *buf = 322 container_of(work, struct rchan_buf, wake_readers.work); 323 wake_up_interruptible(&buf->read_wait); 324 } 325 326 /** 327 * __relay_reset - reset a channel buffer 328 * @buf: the channel buffer 329 * @init: 1 if this is a first-time initialization 330 * 331 * See relay_reset() for description of effect. 332 */ 333 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 334 { 335 size_t i; 336 337 if (init) { 338 init_waitqueue_head(&buf->read_wait); 339 kref_init(&buf->kref); 340 INIT_DELAYED_WORK(&buf->wake_readers, NULL); 341 } else { 342 cancel_delayed_work(&buf->wake_readers); 343 flush_scheduled_work(); 344 } 345 346 buf->subbufs_produced = 0; 347 buf->subbufs_consumed = 0; 348 buf->bytes_consumed = 0; 349 buf->finalized = 0; 350 buf->data = buf->start; 351 buf->offset = 0; 352 353 for (i = 0; i < buf->chan->n_subbufs; i++) 354 buf->padding[i] = 0; 355 356 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 357 } 358 359 /** 360 * relay_reset - reset the channel 361 * @chan: the channel 362 * 363 * This has the effect of erasing all data from all channel buffers 364 * and restarting the channel in its initial state. The buffers 365 * are not freed, so any mappings are still in effect. 366 * 367 * NOTE. Care should be taken that the channel isn't actually 368 * being used by anything when this call is made. 369 */ 370 void relay_reset(struct rchan *chan) 371 { 372 unsigned int i; 373 374 if (!chan) 375 return; 376 377 if (chan->is_global && chan->buf[0]) { 378 __relay_reset(chan->buf[0], 0); 379 return; 380 } 381 382 mutex_lock(&relay_channels_mutex); 383 for_each_online_cpu(i) 384 if (chan->buf[i]) 385 __relay_reset(chan->buf[i], 0); 386 mutex_unlock(&relay_channels_mutex); 387 } 388 EXPORT_SYMBOL_GPL(relay_reset); 389 390 /* 391 * relay_open_buf - create a new relay channel buffer 392 * 393 * used by relay_open() and CPU hotplug. 394 */ 395 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 396 { 397 struct rchan_buf *buf = NULL; 398 struct dentry *dentry; 399 char *tmpname; 400 401 if (chan->is_global) 402 return chan->buf[0]; 403 404 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 405 if (!tmpname) 406 goto end; 407 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 408 409 buf = relay_create_buf(chan); 410 if (!buf) 411 goto free_name; 412 413 buf->cpu = cpu; 414 __relay_reset(buf, 1); 415 416 /* Create file in fs */ 417 dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR, 418 buf, &chan->is_global); 419 if (!dentry) 420 goto free_buf; 421 422 buf->dentry = dentry; 423 424 if(chan->is_global) { 425 chan->buf[0] = buf; 426 buf->cpu = 0; 427 } 428 429 goto free_name; 430 431 free_buf: 432 relay_destroy_buf(buf); 433 free_name: 434 kfree(tmpname); 435 end: 436 return buf; 437 } 438 439 /** 440 * relay_close_buf - close a channel buffer 441 * @buf: channel buffer 442 * 443 * Marks the buffer finalized and restores the default callbacks. 444 * The channel buffer and channel buffer data structure are then freed 445 * automatically when the last reference is given up. 446 */ 447 static void relay_close_buf(struct rchan_buf *buf) 448 { 449 buf->finalized = 1; 450 cancel_delayed_work(&buf->wake_readers); 451 flush_scheduled_work(); 452 kref_put(&buf->kref, relay_remove_buf); 453 } 454 455 static void setup_callbacks(struct rchan *chan, 456 struct rchan_callbacks *cb) 457 { 458 if (!cb) { 459 chan->cb = &default_channel_callbacks; 460 return; 461 } 462 463 if (!cb->subbuf_start) 464 cb->subbuf_start = subbuf_start_default_callback; 465 if (!cb->buf_mapped) 466 cb->buf_mapped = buf_mapped_default_callback; 467 if (!cb->buf_unmapped) 468 cb->buf_unmapped = buf_unmapped_default_callback; 469 if (!cb->create_buf_file) 470 cb->create_buf_file = create_buf_file_default_callback; 471 if (!cb->remove_buf_file) 472 cb->remove_buf_file = remove_buf_file_default_callback; 473 chan->cb = cb; 474 } 475 476 /** 477 * relay_hotcpu_callback - CPU hotplug callback 478 * @nb: notifier block 479 * @action: hotplug action to take 480 * @hcpu: CPU number 481 * 482 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD) 483 */ 484 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb, 485 unsigned long action, 486 void *hcpu) 487 { 488 unsigned int hotcpu = (unsigned long)hcpu; 489 struct rchan *chan; 490 491 switch(action) { 492 case CPU_UP_PREPARE: 493 mutex_lock(&relay_channels_mutex); 494 list_for_each_entry(chan, &relay_channels, list) { 495 if (chan->buf[hotcpu]) 496 continue; 497 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu); 498 if(!chan->buf[hotcpu]) { 499 printk(KERN_ERR 500 "relay_hotcpu_callback: cpu %d buffer " 501 "creation failed\n", hotcpu); 502 mutex_unlock(&relay_channels_mutex); 503 return NOTIFY_BAD; 504 } 505 } 506 mutex_unlock(&relay_channels_mutex); 507 break; 508 case CPU_DEAD: 509 /* No need to flush the cpu : will be flushed upon 510 * final relay_flush() call. */ 511 break; 512 } 513 return NOTIFY_OK; 514 } 515 516 /** 517 * relay_open - create a new relay channel 518 * @base_filename: base name of files to create 519 * @parent: dentry of parent directory, %NULL for root directory 520 * @subbuf_size: size of sub-buffers 521 * @n_subbufs: number of sub-buffers 522 * @cb: client callback functions 523 * @private_data: user-defined data 524 * 525 * Returns channel pointer if successful, %NULL otherwise. 526 * 527 * Creates a channel buffer for each cpu using the sizes and 528 * attributes specified. The created channel buffer files 529 * will be named base_filename0...base_filenameN-1. File 530 * permissions will be %S_IRUSR. 531 */ 532 struct rchan *relay_open(const char *base_filename, 533 struct dentry *parent, 534 size_t subbuf_size, 535 size_t n_subbufs, 536 struct rchan_callbacks *cb, 537 void *private_data) 538 { 539 unsigned int i; 540 struct rchan *chan; 541 if (!base_filename) 542 return NULL; 543 544 if (!(subbuf_size && n_subbufs)) 545 return NULL; 546 547 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 548 if (!chan) 549 return NULL; 550 551 chan->version = RELAYFS_CHANNEL_VERSION; 552 chan->n_subbufs = n_subbufs; 553 chan->subbuf_size = subbuf_size; 554 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs); 555 chan->parent = parent; 556 chan->private_data = private_data; 557 strlcpy(chan->base_filename, base_filename, NAME_MAX); 558 setup_callbacks(chan, cb); 559 kref_init(&chan->kref); 560 561 mutex_lock(&relay_channels_mutex); 562 for_each_online_cpu(i) { 563 chan->buf[i] = relay_open_buf(chan, i); 564 if (!chan->buf[i]) 565 goto free_bufs; 566 } 567 list_add(&chan->list, &relay_channels); 568 mutex_unlock(&relay_channels_mutex); 569 570 return chan; 571 572 free_bufs: 573 for_each_online_cpu(i) { 574 if (!chan->buf[i]) 575 break; 576 relay_close_buf(chan->buf[i]); 577 } 578 579 kref_put(&chan->kref, relay_destroy_channel); 580 mutex_unlock(&relay_channels_mutex); 581 return NULL; 582 } 583 EXPORT_SYMBOL_GPL(relay_open); 584 585 /** 586 * relay_switch_subbuf - switch to a new sub-buffer 587 * @buf: channel buffer 588 * @length: size of current event 589 * 590 * Returns either the length passed in or 0 if full. 591 * 592 * Performs sub-buffer-switch tasks such as invoking callbacks, 593 * updating padding counts, waking up readers, etc. 594 */ 595 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 596 { 597 void *old, *new; 598 size_t old_subbuf, new_subbuf; 599 600 if (unlikely(length > buf->chan->subbuf_size)) 601 goto toobig; 602 603 if (buf->offset != buf->chan->subbuf_size + 1) { 604 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 605 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 606 buf->padding[old_subbuf] = buf->prev_padding; 607 buf->subbufs_produced++; 608 buf->dentry->d_inode->i_size += buf->chan->subbuf_size - 609 buf->padding[old_subbuf]; 610 smp_mb(); 611 if (waitqueue_active(&buf->read_wait)) { 612 PREPARE_DELAYED_WORK(&buf->wake_readers, 613 wakeup_readers); 614 schedule_delayed_work(&buf->wake_readers, 1); 615 } 616 } 617 618 old = buf->data; 619 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 620 new = buf->start + new_subbuf * buf->chan->subbuf_size; 621 buf->offset = 0; 622 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 623 buf->offset = buf->chan->subbuf_size + 1; 624 return 0; 625 } 626 buf->data = new; 627 buf->padding[new_subbuf] = 0; 628 629 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 630 goto toobig; 631 632 return length; 633 634 toobig: 635 buf->chan->last_toobig = length; 636 return 0; 637 } 638 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 639 640 /** 641 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 642 * @chan: the channel 643 * @cpu: the cpu associated with the channel buffer to update 644 * @subbufs_consumed: number of sub-buffers to add to current buf's count 645 * 646 * Adds to the channel buffer's consumed sub-buffer count. 647 * subbufs_consumed should be the number of sub-buffers newly consumed, 648 * not the total consumed. 649 * 650 * NOTE. Kernel clients don't need to call this function if the channel 651 * mode is 'overwrite'. 652 */ 653 void relay_subbufs_consumed(struct rchan *chan, 654 unsigned int cpu, 655 size_t subbufs_consumed) 656 { 657 struct rchan_buf *buf; 658 659 if (!chan) 660 return; 661 662 if (cpu >= NR_CPUS || !chan->buf[cpu]) 663 return; 664 665 buf = chan->buf[cpu]; 666 buf->subbufs_consumed += subbufs_consumed; 667 if (buf->subbufs_consumed > buf->subbufs_produced) 668 buf->subbufs_consumed = buf->subbufs_produced; 669 } 670 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 671 672 /** 673 * relay_close - close the channel 674 * @chan: the channel 675 * 676 * Closes all channel buffers and frees the channel. 677 */ 678 void relay_close(struct rchan *chan) 679 { 680 unsigned int i; 681 682 if (!chan) 683 return; 684 685 mutex_lock(&relay_channels_mutex); 686 if (chan->is_global && chan->buf[0]) 687 relay_close_buf(chan->buf[0]); 688 else 689 for_each_possible_cpu(i) 690 if (chan->buf[i]) 691 relay_close_buf(chan->buf[i]); 692 693 if (chan->last_toobig) 694 printk(KERN_WARNING "relay: one or more items not logged " 695 "[item size (%Zd) > sub-buffer size (%Zd)]\n", 696 chan->last_toobig, chan->subbuf_size); 697 698 list_del(&chan->list); 699 kref_put(&chan->kref, relay_destroy_channel); 700 mutex_unlock(&relay_channels_mutex); 701 } 702 EXPORT_SYMBOL_GPL(relay_close); 703 704 /** 705 * relay_flush - close the channel 706 * @chan: the channel 707 * 708 * Flushes all channel buffers, i.e. forces buffer switch. 709 */ 710 void relay_flush(struct rchan *chan) 711 { 712 unsigned int i; 713 714 if (!chan) 715 return; 716 717 if (chan->is_global && chan->buf[0]) { 718 relay_switch_subbuf(chan->buf[0], 0); 719 return; 720 } 721 722 mutex_lock(&relay_channels_mutex); 723 for_each_possible_cpu(i) 724 if (chan->buf[i]) 725 relay_switch_subbuf(chan->buf[i], 0); 726 mutex_unlock(&relay_channels_mutex); 727 } 728 EXPORT_SYMBOL_GPL(relay_flush); 729 730 /** 731 * relay_file_open - open file op for relay files 732 * @inode: the inode 733 * @filp: the file 734 * 735 * Increments the channel buffer refcount. 736 */ 737 static int relay_file_open(struct inode *inode, struct file *filp) 738 { 739 struct rchan_buf *buf = inode->i_private; 740 kref_get(&buf->kref); 741 filp->private_data = buf; 742 743 return 0; 744 } 745 746 /** 747 * relay_file_mmap - mmap file op for relay files 748 * @filp: the file 749 * @vma: the vma describing what to map 750 * 751 * Calls upon relay_mmap_buf() to map the file into user space. 752 */ 753 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 754 { 755 struct rchan_buf *buf = filp->private_data; 756 return relay_mmap_buf(buf, vma); 757 } 758 759 /** 760 * relay_file_poll - poll file op for relay files 761 * @filp: the file 762 * @wait: poll table 763 * 764 * Poll implemention. 765 */ 766 static unsigned int relay_file_poll(struct file *filp, poll_table *wait) 767 { 768 unsigned int mask = 0; 769 struct rchan_buf *buf = filp->private_data; 770 771 if (buf->finalized) 772 return POLLERR; 773 774 if (filp->f_mode & FMODE_READ) { 775 poll_wait(filp, &buf->read_wait, wait); 776 if (!relay_buf_empty(buf)) 777 mask |= POLLIN | POLLRDNORM; 778 } 779 780 return mask; 781 } 782 783 /** 784 * relay_file_release - release file op for relay files 785 * @inode: the inode 786 * @filp: the file 787 * 788 * Decrements the channel refcount, as the filesystem is 789 * no longer using it. 790 */ 791 static int relay_file_release(struct inode *inode, struct file *filp) 792 { 793 struct rchan_buf *buf = filp->private_data; 794 kref_put(&buf->kref, relay_remove_buf); 795 796 return 0; 797 } 798 799 /* 800 * relay_file_read_consume - update the consumed count for the buffer 801 */ 802 static void relay_file_read_consume(struct rchan_buf *buf, 803 size_t read_pos, 804 size_t bytes_consumed) 805 { 806 size_t subbuf_size = buf->chan->subbuf_size; 807 size_t n_subbufs = buf->chan->n_subbufs; 808 size_t read_subbuf; 809 810 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 811 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 812 buf->bytes_consumed = 0; 813 } 814 815 buf->bytes_consumed += bytes_consumed; 816 read_subbuf = read_pos / buf->chan->subbuf_size; 817 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 818 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 819 (buf->offset == subbuf_size)) 820 return; 821 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 822 buf->bytes_consumed = 0; 823 } 824 } 825 826 /* 827 * relay_file_read_avail - boolean, are there unconsumed bytes available? 828 */ 829 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos) 830 { 831 size_t subbuf_size = buf->chan->subbuf_size; 832 size_t n_subbufs = buf->chan->n_subbufs; 833 size_t produced = buf->subbufs_produced; 834 size_t consumed = buf->subbufs_consumed; 835 836 relay_file_read_consume(buf, read_pos, 0); 837 838 if (unlikely(buf->offset > subbuf_size)) { 839 if (produced == consumed) 840 return 0; 841 return 1; 842 } 843 844 if (unlikely(produced - consumed >= n_subbufs)) { 845 consumed = (produced / n_subbufs) * n_subbufs; 846 buf->subbufs_consumed = consumed; 847 } 848 849 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 850 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 851 852 if (consumed > produced) 853 produced += n_subbufs * subbuf_size; 854 855 if (consumed == produced) 856 return 0; 857 858 return 1; 859 } 860 861 /** 862 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 863 * @read_pos: file read position 864 * @buf: relay channel buffer 865 */ 866 static size_t relay_file_read_subbuf_avail(size_t read_pos, 867 struct rchan_buf *buf) 868 { 869 size_t padding, avail = 0; 870 size_t read_subbuf, read_offset, write_subbuf, write_offset; 871 size_t subbuf_size = buf->chan->subbuf_size; 872 873 write_subbuf = (buf->data - buf->start) / subbuf_size; 874 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 875 read_subbuf = read_pos / subbuf_size; 876 read_offset = read_pos % subbuf_size; 877 padding = buf->padding[read_subbuf]; 878 879 if (read_subbuf == write_subbuf) { 880 if (read_offset + padding < write_offset) 881 avail = write_offset - (read_offset + padding); 882 } else 883 avail = (subbuf_size - padding) - read_offset; 884 885 return avail; 886 } 887 888 /** 889 * relay_file_read_start_pos - find the first available byte to read 890 * @read_pos: file read position 891 * @buf: relay channel buffer 892 * 893 * If the @read_pos is in the middle of padding, return the 894 * position of the first actually available byte, otherwise 895 * return the original value. 896 */ 897 static size_t relay_file_read_start_pos(size_t read_pos, 898 struct rchan_buf *buf) 899 { 900 size_t read_subbuf, padding, padding_start, padding_end; 901 size_t subbuf_size = buf->chan->subbuf_size; 902 size_t n_subbufs = buf->chan->n_subbufs; 903 904 read_subbuf = read_pos / subbuf_size; 905 padding = buf->padding[read_subbuf]; 906 padding_start = (read_subbuf + 1) * subbuf_size - padding; 907 padding_end = (read_subbuf + 1) * subbuf_size; 908 if (read_pos >= padding_start && read_pos < padding_end) { 909 read_subbuf = (read_subbuf + 1) % n_subbufs; 910 read_pos = read_subbuf * subbuf_size; 911 } 912 913 return read_pos; 914 } 915 916 /** 917 * relay_file_read_end_pos - return the new read position 918 * @read_pos: file read position 919 * @buf: relay channel buffer 920 * @count: number of bytes to be read 921 */ 922 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 923 size_t read_pos, 924 size_t count) 925 { 926 size_t read_subbuf, padding, end_pos; 927 size_t subbuf_size = buf->chan->subbuf_size; 928 size_t n_subbufs = buf->chan->n_subbufs; 929 930 read_subbuf = read_pos / subbuf_size; 931 padding = buf->padding[read_subbuf]; 932 if (read_pos % subbuf_size + count + padding == subbuf_size) 933 end_pos = (read_subbuf + 1) * subbuf_size; 934 else 935 end_pos = read_pos + count; 936 if (end_pos >= subbuf_size * n_subbufs) 937 end_pos = 0; 938 939 return end_pos; 940 } 941 942 /* 943 * subbuf_read_actor - read up to one subbuf's worth of data 944 */ 945 static int subbuf_read_actor(size_t read_start, 946 struct rchan_buf *buf, 947 size_t avail, 948 read_descriptor_t *desc, 949 read_actor_t actor) 950 { 951 void *from; 952 int ret = 0; 953 954 from = buf->start + read_start; 955 ret = avail; 956 if (copy_to_user(desc->arg.buf, from, avail)) { 957 desc->error = -EFAULT; 958 ret = 0; 959 } 960 desc->arg.data += ret; 961 desc->written += ret; 962 desc->count -= ret; 963 964 return ret; 965 } 966 967 /* 968 * subbuf_send_actor - send up to one subbuf's worth of data 969 */ 970 static int subbuf_send_actor(size_t read_start, 971 struct rchan_buf *buf, 972 size_t avail, 973 read_descriptor_t *desc, 974 read_actor_t actor) 975 { 976 unsigned long pidx, poff; 977 unsigned int subbuf_pages; 978 int ret = 0; 979 980 subbuf_pages = buf->chan->alloc_size >> PAGE_SHIFT; 981 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 982 poff = read_start & ~PAGE_MASK; 983 while (avail) { 984 struct page *p = buf->page_array[pidx]; 985 unsigned int len; 986 987 len = PAGE_SIZE - poff; 988 if (len > avail) 989 len = avail; 990 991 len = actor(desc, p, poff, len); 992 if (desc->error) 993 break; 994 995 avail -= len; 996 ret += len; 997 poff = 0; 998 pidx = (pidx + 1) % subbuf_pages; 999 } 1000 1001 return ret; 1002 } 1003 1004 typedef int (*subbuf_actor_t) (size_t read_start, 1005 struct rchan_buf *buf, 1006 size_t avail, 1007 read_descriptor_t *desc, 1008 read_actor_t actor); 1009 1010 /* 1011 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries 1012 */ 1013 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos, 1014 subbuf_actor_t subbuf_actor, 1015 read_actor_t actor, 1016 read_descriptor_t *desc) 1017 { 1018 struct rchan_buf *buf = filp->private_data; 1019 size_t read_start, avail; 1020 int ret; 1021 1022 if (!desc->count) 1023 return 0; 1024 1025 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex); 1026 do { 1027 if (!relay_file_read_avail(buf, *ppos)) 1028 break; 1029 1030 read_start = relay_file_read_start_pos(*ppos, buf); 1031 avail = relay_file_read_subbuf_avail(read_start, buf); 1032 if (!avail) 1033 break; 1034 1035 avail = min(desc->count, avail); 1036 ret = subbuf_actor(read_start, buf, avail, desc, actor); 1037 if (desc->error < 0) 1038 break; 1039 1040 if (ret) { 1041 relay_file_read_consume(buf, read_start, ret); 1042 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1043 } 1044 } while (desc->count && ret); 1045 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex); 1046 1047 return desc->written; 1048 } 1049 1050 static ssize_t relay_file_read(struct file *filp, 1051 char __user *buffer, 1052 size_t count, 1053 loff_t *ppos) 1054 { 1055 read_descriptor_t desc; 1056 desc.written = 0; 1057 desc.count = count; 1058 desc.arg.buf = buffer; 1059 desc.error = 0; 1060 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, 1061 NULL, &desc); 1062 } 1063 1064 static ssize_t relay_file_sendfile(struct file *filp, 1065 loff_t *ppos, 1066 size_t count, 1067 read_actor_t actor, 1068 void *target) 1069 { 1070 read_descriptor_t desc; 1071 desc.written = 0; 1072 desc.count = count; 1073 desc.arg.data = target; 1074 desc.error = 0; 1075 return relay_file_read_subbufs(filp, ppos, subbuf_send_actor, 1076 actor, &desc); 1077 } 1078 1079 const struct file_operations relay_file_operations = { 1080 .open = relay_file_open, 1081 .poll = relay_file_poll, 1082 .mmap = relay_file_mmap, 1083 .read = relay_file_read, 1084 .llseek = no_llseek, 1085 .release = relay_file_release, 1086 .sendfile = relay_file_sendfile, 1087 }; 1088 EXPORT_SYMBOL_GPL(relay_file_operations); 1089 1090 static __init int relay_init(void) 1091 { 1092 1093 hotcpu_notifier(relay_hotcpu_callback, 0); 1094 return 0; 1095 } 1096 1097 module_init(relay_init); 1098